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Preface

“If you are not confused, you are not thinking.”

attributed to Albert Einstein

The trajectory that brought me to this point did certainly not feel linear or easily
foreseeable. After graduating from high school, I was quite confident that my future
would lie in the world of physics, while mathematics merely seemed like a useful but
rather lifeless tool. The decision to pursue a physics bachelor program in Göttingen
was then caused by a combination of accidental but fortunate events. In fact, it was
nearly independent of the grand legacy that this university sustains.

Since then, the way I view and understand mathematics and physics, or science in
general, has fundamentally shifted. I remember days in my first semester when I
would be genuinely thrilled – shocked even – if our professor misspelled the tenth
or eleventh digit of an important constant, like the speed of light. “Is this type
of knowledge not an essential part of being a scientist?,” the naive me back then
wondered. By now, I certainly would not have noticed as well. Nor would I care too
much. After all, being a proper scientist is much better characterized by a mode of
thinking than a body of raw knowledge.

In my physics education, acquiring the proper mode of thinking turned out to be a
painful exercise at times. The path to insight and understanding was often guided
by unspoken or hazy rules and arguments, frequently referred to as “intuition” by
teaching staff overwhelmed with sceptical “why?” questions of the students. Indeed,
cultivating physical intuition was in many ways tremendously helpful and rewarding.
I was repeatedly amazed when intense engagement and grappling with a subject of
study would slowly turn perceived arbitrariness, absurdity, and contradiction into
something like common sense, opening a door to elegant arguments and efficient
reasoning. The confusion experienced in this process, however, often felt profound
and discouraging.

I was delighted when I discovered that mathematics can help lift at least some of this
confusion. Many rules that seem arbitrary from a naive student’s perspective (e.g.,
why are equations with partial derivatives in classical thermodynamics dependent
on which state variables are held constant, while equations with differentials are
not?) follow a consistent logic that is revealed as soon as the actual mathematical
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objects and their relation to the physical theory are understood (manifolds in the
case of thermodynamics: partial derivatives are chart-dependent while differentials
are not). Since physics lectures are inclined to de-emphasize or hide these objects in
favor of putting more focus on the resulting computation rules (the terms “groups”
and “representation theory” would not be prominent in my first quantum mechanics
lectures, even though their influence lingered everywhere), it became a habit of
mine to search for “X for mathematicians” whenever a new topic X arose. Even
though I would often be overchallenged by the texts I encountered, I was attracted
by the structured deductive reasoning. This was an important trigger for me to more
profoundly engage in mathematics.

It was only in the second year of my mathematics master program that I seri-
ously came into contact with mathematical statistics. After earlier encounters with
statistics and data science had been very applied (I confess I searched for the term
“statistics for mathematicians” more than once), the more rigorous treatment of
statistical modeling resonated as a sweet spot between mathematical abstraction,
applicability in the sciences, and practical utility. In the time that followed at the
Institute of Mathematical Stochastics under the mentorship of Axel Munk – first for
my master thesis and then as a PhD student – I worked on various distinct topics
and collaborated with fellow mathematicians and also lab scientists.

In a first phase, my research focused on the statistical modeling of super resolution
microscopy and fluorescent molecules. Together with Timo Aspelmeier and a group
of physicists around Alex Egner at the Institute for Nanophotonics in Göttingen, we
established and analyzed a two-timescale hidden Markov model to statistically model
the intensity traces that can be derived from data in coordinate-stochastic modes of
super-resolution microscopy (like PALM or STORM). Through maximum likelihood
inference, our model can be used to estimate the number of fluorescent molecules
that contribute to a given trace, making it possible to quantify the molecule density
in super-resolution images. One specialty of our method is that it requires little
preprocessing of data (compared to other counting techniques), since it incorpo-
rates the whole imaging process from photon generation in the fluorescent dye to
detection in the camera. Furthermore, the modeling is fine enough to detect when
the assumption of statistical independence between fluorescent dyes is violated:
experiments showed that our model fitted data notably better for samples where the
distance between dyes is large than when they are placed within interaction range.
Out of this work, a publication detailing the statistical model has emerged (Staudt
et al. 2020), and a further manuscript on experimental results is in preparation. In
addition, I helped prepare a chapter on the statistics of nanoscale photonic imaging
for the summary book of the SFB 755 (Munk et al. 2020).

My work on counting molecules in microscopy has also served as an entry point
into another project, in collaboration with Laura Fee Nern and Johannes Schmidt-
Hieber, which investigated the estimation of the binomial parameter 𝑛 (number of
independent Bernoulli trials) if the success probability 𝑝 of each trial is unknown



v

(Schmidt-Hieber et al. 2021). We were especially interested in the difficult asymptotic
regime where 𝑝 goes to zero as the number 𝑘 of independent observations grows
to infinity. By minimax estimation theory, we were able to show that 𝑘 must at
least grow with (𝑛/𝑝)2 if 𝑛 is to be estimated consistently. Furthermore, in several
asymptotic settings of interest, the Bayesian estimators we considered could be
shown to be consistent if 𝑘 grows at least slightly (i.e., logarithmically) faster than
(𝑛/𝑝)2. Numerical work supporting our theory has been published as well (Schneider
et al. 2019).

In parallel to the aforementioned projects, I came into contact with another topic
that would heavily influence – and eventually dominate – my research interests: the
theory of optimal transport and its applications in statistics. It is easy to be intrigued
by this intuitive and attractive optimization problem, which starts from a very
innocent premise (how to best transform one distribution of mass into another), but
features enormous richness from a multitude of perspectives. Besides its fascinating
and deep theory (related to aspects of optimization, combinatorics, probability theory,
partial differential equations, and differential geometry, besides others), its scope for
meaningful application is vast and touches diverse disciplines where transportation
and matching are of importance. To name just a few, this includes economic modeling
and image analysis, as well as various branches of data science, physics, and biology.
In these applications, data is often incomplete and only (random) samples of a larger
population are available. Thus, by necessity, the study of statistical optimal transport
assumes a prominent role.

My work on optimal transport, in collaborations with Shayan Hundrieser, Thomas
Giacomo Nies, and Marcel Klatt, has resulted in both novel statistical insights as well
as a number of previously uncharted deterministic findings. The latter complement
the statistical theory in essential ways, but they also provide mathematical value
in their own right. In Hundrieser et al. 2022b, we establish convergence rates if
the optimal transport cost between two probability measures is estimated by the
empirical measures (the empirical optimal transport cost). If the two measures are
different, our approach admits the surprising conclusion that the convergence rate is
determined by the simpler of the two measure (think of a lower intrinsic dimension).
This property, which we refer to as lower complexity adaptation (LCA), opens the
door to a plethora of subsequent questions concerning statistical optimal transport.
For example, our work in Hundrieser et al. 2022a, where a unified approach to
distributional limit theorems for the empirical optimal transport cost is established,
profits from the LCA observation in requiring that only one of the involved measures
has a support with sufficiently low dimension. In this context, we also put forward a
precise characterization that clarifies when dual solutions of the optimal transport
problem are constant. Together with the uniqueness of said dual solutions, which is
the premier object of interest in Staudt et al. 2022, this provides a thorough under-
standing of situations in which the distributional limits are Gaussian or degenerate.
Crucially, we for the first time derive dual uniqueness statements in continuous
settings with measures that have disconnected support, considerably broadening the
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conditions where uniqueness is understood to hold. Finally, we have also studied a
statistically attractive setting that benefits from the LCA property due to an inherent
asymmetry in the two involved probability measures. In Nies et al. 2021, the statis-
tical dependency between two random variables is quantified by comparing their
joint distribution (which may have a low intrinsic dimension) to the product of their
marginal distributions (which may have a higher intrinsic dimension) via optimal
transport. Among several desirable properties of the resulting dependency measure,
which we named the transport dependency, a key observation is that it is maximized
if and only if the two random variables are related by a Lipschitz function in a
deterministic fashion. This structural property distinguishes our concept from other
measures of dependency, which are often either maximized for a much smaller class
of deterministic relations (like linear ones) or a much larger class (like all measurable
ones).

Since this is a cumulative doctoral thesis, my contributions to the topic of statistical
optimal transport are chiefly contained in the four research papers referenced in the
paragraph above. They are also attached to this document as Contribution A to D,
with some minor editorial adaptions. The introductory chapter attempts to provide
a general overview over the broader themes and concepts that guide and connect
my work, revolving around the struggle to overcome the curse of dimensionality
in statistics. It stresses that the four papers A to D are not merely isolated efforts,
but that they are part of a larger development in a field with a rich history and a
promising outlook for the future. The second chapter is meant to distill and present
a more detailed summary of my core contributions. For the convenience of the
reader, it starts with a brief introduction to the topic of optimal transport and its
dual formulation, which plays a fundamental role for most of my results. Afterwards,
several pages are devoted to motivate and spell out the main results that I have been
involved in while working on statistical optimal transport. The scope, significance,
and limitations of my research are discussed, and leverage points for future work are
pointed out. Technicalities and exhaustive citations are consciously de-emphasized
in this part of the document, favoring a more digestible and readable exposition.
Readers whose interest has been aroused and who intend to dig deeper are invited
to find much more details in the dedicated research articles.
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1 Introduction

“Nature is pleased with simplicity. And nature is no dummy.”

Isaac Newton

It is a common observation that the difficulty of computational and statistical prob-
lems can rapidly increase when the dimension, or the number of involved variables,
grows. Difficulty, in this context, might refer to the number of computational steps
and the memory requirements of an algorithm, or to the number of observations
necessary for reliable statistical inference. For example, the number of points neces-
sary to sample the 𝑑-dimensional unit cube with a given spatial accuracy increases
exponentially with the dimension 𝑑 . Working in high dimensions, this means that
essentially any practical amount of samples or data will be distributed sparsely
within the space of interest.

Various statistical and computational techniques that suffer from this and similar
effects – apparent victims being numerical integration and function estimation or
approximation – have long been investigated. The urgency of this phenomenon,
however, became particularly glaring in the computer age, where even an explosive
growth of data gathering and computational resources could frequently not offset the
difficulties presented by increasingly high dimensional data sets. After all, sampling
a 100-dimensional cube on a grid with 10 points in each direction, resulting in
10100 grid points in total (by far more than the estimated number of protons in the
observable universe), is firmly off limits. In fact, current technology would easily be
pushed towards its boundary for values like 𝑑 = 15 already.

To capture the phenomenon that many problems become disproportionally harder as
the dimension increases, Bellman 1957 coined the term curse of dimensionality in the
preface of his textbook on dynamic programming.1 This was indeed a curse for him,
as it imposed major obstacles to the practicability of his theory. In his subsequent
book (Bellman 1961), he laments that the curse “casts the pall over our victory
celebration” and is “what defeats us at the present time in much of our work.” After

1Regarding the origin of the name “dynamic programming”, Bellman states in his autobiography
that “it’s impossible to use the word dynamic in a pejorative sense”, making dynamic programming
“something not even a Congressman could object to”, when talking about political factors to justify his
research (Bellman 1984). These quotes were found in Eddy 2004.
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2 Chapter 1. Introduction

decades of further research, however, the outlook on the practicability of dynamic
programming has turned: techniques like hierarchical partitioning or (stochastic)
approximation made it applicable to problems that were out of reach initially (Powell
2011), establishing dynamic programming as an essential tool in computer science
and computational biology, where it now powers standard algorithms for gene
sequence or protein structure alignment (Waterman 2018).

This type of success story of a methodology that was originally handicapped by the
curse of dimensionality is not unique. In fact, concerted efforts of researchers to over-
come the curse have lead to progress and even breakthroughs in countless contexts
and applications in statistics, data science, and machine learning. A good specimen
is the development of the field of high dimensional statistics, which was born out of
the difficulties and pathologies that classical statistical methods tend to experience
in high dimensional settings (Johnstone and Titterington 2009; Wainwright 2019). In
classical frameworks, statistical analysis is commonly performed under the assump-
tion of increasing amounts of data in a fixed dimension. Fundamental results that
provide excellent approximations for applications where the sample size 𝑛 is large
compared to the dimension 𝑑 can be much less useful, or even break down entirely,
if 𝑑 is too large compared to 𝑛. This already concerns the statistics of linear models,
where crucial parts of the theory fail for 𝑑 > 𝑛. It also affects areas like regression,
matrix and covariance estimation, clustering, or classification, besides many others
(Wainwright 2019). Usually, the situation appears to be outright hopeless: within the
given models, the curse of dimensionality is inherent and cannot be avoided merely
by picking better test statistics or a more sophisticated estimator, say, as minimax
theory readily tells us.

What saves statistics from becoming irrelevant in high dimensional settings, then, is
the fact that real-world data often obeys an internal logic that makes it considerably
simpler than it appears at first. For instance, a data set consisting of megapixel-
resolution greyscale images of a certain type of animal could be regarded as a point
cloud in the space [0, 1]𝑑 with 𝑑 = 106, and one could apply generic statistical meth-
ods to analyze data in a million dimensions. At the same time, it is intuitive that
the actual space of images depicting the relevant information about the animal is
only a tiny subspace: some parameters describing the body form, positioning, and
skin texture, and some more values describing the camera configuration and the
lighting might actually suffice for most applications. Furthermore, the information
to be extracted from the data, like inference of the age or weight of the animal, might
not even require high-resolution images. The simple act of subsampling can thus
already lead to a significant reduction of the dimensionality without sacrificing ex-
pressiveness. Analogous observations apply to high dimensional datasets generated
in many real-world applications as well as the sciences. Think of biomedical patient
data, genome expression studies, climate modeling, or economic time series data, for
example. All of them will – at least to some degree – follow an internal logic that
might be surprisingly simple once uncovered.
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The realization that even complicated data is usually equipped with a hidden low
dimensional structure is the recipe for success of high dimensional statistics. From
this perspective, the important task is to establish methodologies that either explicitly
reconstruct, or at least implicitly exploit, relevant low dimensional characteristics
in the data. These characteristics can come in many forms. For example, the idea
to exploit (strong) correlations between variables has served as a motivation for
shrinkage techniques like ridge regression (Hoerl and Kennard 1970). Relatedly,
the assumption of sparsity – assuming that many of the parameters in a statistical
model are actually zero, usually without detailed apriori knowledge which entries
these are going to be – has been extremely fruitful, both in theory and practice.
Methodologies developed in the vast literature on sparse statistical modeling include
wavelet thresholding (Donoho et al. 1996), the lasso (Tibshirani 1996; Candes and
Tao 2005; Donoho 2006b) in various flavors (Zou 2006; Meier et al. 2008), as well
as techniques for variable selection (Candes and Tao 2007; Fan and Lv 2008; Bickel
et al. 2009), compression (Donoho 2006a), or clustering (Elhamifar and Vidal 2013).
Furthermore, diverse methods of (explicit) dimension reduction search to expose
relevant low dimensional structures in data sets. While techniques like projection
pursuit (Friedman and Tukey 1974), (sparse) principal component analysis (Johnstone
2001; Zou et al. 2006), or independent component analysis (Comon 1994) can be
used to find linear subspaces best explaining certain characteristics of a data set,
the idea that high dimensional data is often supported on low dimensional (but
possibly non-linear) surfaces underpins ongoing developments in the theory of
manifold learning (Hastie and Stuetzle 1989; Goldberg et al. 2008) and other nonlinear
dimensionality reduction techniques (Lee and Verleysen 2007). To counteract the
curse of dimensionality for regression models in nonparametric statistics, structural
assumptions like smoothness or a special (e.g., additive or compositional) form of
the regressor function have been salvaged (Stone 1980; Stone 1985; Schmidt-Hieber
2020).

How is all of this related to this thesis? The link is that the topic of statistical optimal
transport is currently facing similar difficulties to the ones that many areas of statistic
have faced in the past: it is severely handicapped by the curse of dimensionality, and
its applicability for a variety of high dimensional tasks remains an open question at
the present point in time.

Optimal transport has a rich history that dates back to the work of the engineer and
mathematician Gaspard Monge, who in 1781 formalized the problem of finding the
best way to move soil at a construction site. More than a century later only, the topic
would be revisited, most influentially so by Kantorovich 1942. He framed the optimal
transport problem in its modern formulation: given two probability measures 𝜇
and 𝜈 on measurable spaces X and Y , what is the optimal way to couple 𝜇 and 𝜈
such that the resulting transport between them is as cost-efficient as possible? The
different ways to couple 𝜇 and 𝜈 are listed in the set C (𝜇, 𝜈), the set of couplings. If a
coupling 𝜋 ∈ C (𝜇, 𝜈) is chosen, which is understood to be a probability measure on
X × Y , then the value 𝜋 (𝐴 × 𝐵) signifies the amount of mass that is moved between
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a subset𝐴 ⊂ X and a subset 𝐵 ⊂ Y . Clearly, it has to hold that 𝜋 (𝐴×Y) = 𝜇 (𝐴) and
𝜋 (X × 𝐵) = 𝜈 (𝐵) for this interpretation to work without loss or creation of mass.
Which couplings are good ones? To answer this, a cost function 𝑐 : X × Y → R is
introduced, which describes the effort that needs to be undertaken to move points in
X to points in Y (or vice versa). The total cost for moving all of the mass according
to the coupling 𝜋 is found by integrating 𝑐 against 𝜋 , which naturally leads to the
optimization task

inf
𝜋∈C (𝜇,𝜈 )

∫
X×Y

𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦) (1.1)

when searching for the best coupling. Optimal couplings that attain the infimum in
this problem, if they exist, are called optimal transport plans, and the optimal value in
(1.1) is called the optimal transport cost. It will be denoted by𝑇𝑐 (𝜇, 𝜈) in the following.
A more thorough introduction to the topic with more precise definitions is provided
in Section 2.1.

The optimization problem (1.1) expresses a deeply fundamental question, and the
answers to this question contain a lot of valuable information. Indeed, the optimal
transport plan tells us which regions of 𝜇 are related to which regions of 𝜈 under a
general notion of how expensive transport is. It even tells us how strong this relation
is. In this sense, the optimal plan constitutes a natural matching procedure. The
optimal transport cost, then, quantifies how different the measures 𝜇 and 𝜈 are. It
provides a way to discriminate between probability measures in general contexts,
and in a way that incorporates flexible criteria of similarity. If X = Y and 𝑐 = 𝑑𝑝
is the 𝑝-th power of a metric 𝑑 on X for 𝑝 ≥ 1, then the 𝑝-Wasserstein distance
𝑊𝑝 (𝜇, 𝜈) = 𝑇𝑐 (𝜇, 𝜈)1/𝑝 is in fact a metric on the space of probability measures on X
with finite 𝑝-th moment. In respecting the structure of the ground spaces, optimal
transport distinguishes itself crucially from information-based notions of discrepancy
between probability measures, like the Kullback-Leibler divergence.

The conceptual appeal of optimal transport has not remained without consequences:
countless seminal research papers (by Kantorovich, Sudakov, Rachev, Rüschendorf,
Brenier, McCann, Ambrosio, or Figalli, to cite just the tip of the iceberg) and thou-
sands of pages of monographs (Rachev and Rüschendorf 1998; Villani 2008; Santam-
brogio 2015; Peyré and Cuturi 2019; Panaretos and Zemel 2020; Ambrosio et al. 2021)
dive into great depth to study the discipline from analytical, probabilistic, geometric,
statistical, computational, and other perspectives. Additionally, optimal transport
has been the subject of a fields medal, and interest in its application to tackle scientific
and engineering problems has rapidly developed over the past decades. Techniques
that are based upon or inspired by optimal transport have, for example, been picked
up in economics (Galichon 2016), biology (Schiebinger et al. 2019; Tameling et al.
2021), physics (Lohse et al. 2020; Pollard and Windischhofer 2022), computer vision
(Ge et al. 2021), machine learning (Courty et al. 2017; Yurochkin et al. 2019), and
deep learning (Arjovsky et al. 2017; Tolstikhin et al. 2017). This has contributed to a
broadening of the research focus, and statistical issues – how do we best work with
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optimal transport tools in the presence of finite data, and which kind of guarantees
do such techniques enjoy? – are becoming more relevant.

A central question in this context is how well the optimal transport value can be
estimated on the basis of data. In the simplest case, we observe 𝑛 independent and
identically distributed (i.i.d.) samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 and want
to understand how well this data can be used to estimate 𝑇𝑐 (𝜇, 𝜈). If we assume no
structure at all on 𝜇 and 𝜈 , then one obvious choice would be to base an estimator
on the empirical measures 𝜇𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 and 𝜈𝑛 = 1

𝑛

∑𝑛
𝑗=1 𝛿𝑌𝑗 , where 𝛿𝑥 denotes

the point measure at 𝑥 . This leads to estimators 𝑇𝑐,𝑛 of the form 𝑇𝑐 (𝜇𝑛, 𝜈), 𝑇𝑐 (𝜇, 𝜈𝑛),
or 𝑇𝑐 (𝜇𝑛, 𝜈𝑛), depending on which of the distributions are assumed to be known
beforehand. We refer to the study of these estimators as empirical optimal transport.

What do we know about the empirical estimators? On the one hand, we know that
they are consistent, meaning that 𝑇𝑐,𝑛 approaches 𝑇𝑐 (𝜇, 𝜈) almost surely under mild
moment and continuity assumptions as 𝑛 tends towards ∞. On the other hand, we
know that this convergence can be painfully slow. Early results by Dudley 1969
show asymptotic proportionality

E[𝑇𝑐 (𝜇𝑛, 𝜇)] ∼ 𝑛−1/𝑑 (1.2)

for the Euclidean cost function 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥ if 𝜇 is compactly supported and
absolute continuous with respect to the Lebesgue measure in R𝑑 for 𝑑 ≥ 3. Regret-
tably, this means that the curse of dimensionality strikes with full force: the number
of sample points required for reliable approximation of 𝑇𝑐 (𝜇, 𝜇), which equals zero
in this case, grows exponentially in 𝑑 . And the situation is even worse. Namely,
it is understood that the curse of dimensionality also haunts us if 𝜇 ≠ 𝜈 , in which
case the mean absolute error E

[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] may only converge with the rate
𝑛−1/𝑑 in relevant settings as well (Manole and Niles-Weed 2021). Moreover, if no
additional structural assumptions are placed on 𝜇, then the rate 𝑛−1/𝑑 in (1.2) is
minimax optimal (Singh and Póczos 2018), meaning that no estimator 𝜇̃𝑛 of 𝜇 that
is based on the observations 𝑋1, . . . , 𝑋𝑛 can significantly outperform the empirical
measure 𝜇𝑛 in general. To add to the problem, optimal transport is accompanied by
a high computational burden (Peyré and Cuturi 2019). Even though computational
optimal transport is a highly active field of research and improvements are constantly
being reported (Schmitzer 2016; Genevay et al. 2016; Jacobs and Léger 2020; Mai et al.
2021), the curse of dimensionality coupled with at least quadratic run times to assign
𝑛 points to 𝑛 points continue to plage the estimation of 𝑇𝑐 (𝜇, 𝜈) in high-dimensional
applications.

Fortunately, there are some signs for hope also. In fact, several advancements
have been pushed to curb the curse. A first branch of these advancements exploits
smoothness assumptions on the measures 𝜇 and 𝜈 , like smooth Lebesgue densities. In
this case, better estimators 𝜇̃𝑛 and 𝜈𝑛 of 𝜇 and 𝜈 than the empirical ones are available;
for example by means of kernel density estimation or wavelet estimation (Weed
and Berthet 2019; Deb et al. 2021; Manole et al. 2021). Under sufficient smoothness
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guarantees, these estimators do not suffer from the curse of dimensionality. In
a similar vein, the approach of smooth optimal transport enforces smoothness by
considering the problem𝑇𝜅𝑐 (𝜇, 𝜈) = 𝑇𝑐 (𝜇∗𝜅, 𝜈 ∗𝜅), where 𝜇 and 𝜈 may be arbitrary but
are both convoluted with a smooth kernel 𝜅 , e.g., a Gaussian one (Goldfeld et al. 2020;
Goldfeld and Greenewald 2020). Escaping the curse of dimensionality by these means,
however, has a high price: the actual computation of these estimators is difficult and
tricky, and no reliable and generically applicable implementation has as of yet been
established. An alternative approach, which has sparked enormous interest recently,
is to consider the optimal transport problem with an additional entropic penalty term
on the transport plan (Cuturi 2013). Due to this smoothness-inducing regularization,
entropic optimal transport does not suffer from the curse of dimensionality (Genevay
et al. 2019). Furthermore, for a given regularization parameter, efficient iterative
algorithms for its computation are available (Altschuler et al. 2017; Schmitzer 2019).
Still, if the regularization is not chosen mildly enough, which can drastically affect
numerical performance and stability, entropic regularization leads to blurry transport
plans that may not resolve all details of the true optimal transport problem (Feydy
et al. 2019).

Within the realm of empirical optimal transport, where we restrict ourselves to the
empirical estimators 𝜇𝑛 and 𝜈𝑛 in the vanilla optimal transport problem, understand-
ing has also advanced recently. For example, regularity of the cost function has been
shown to improve on the 𝑛−1/𝑑 rate in (1.2). For 𝑑 ≥ 5, Manole and Niles-Weed 2021
established that costs of the form 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝛼 for 0 < 𝛼 ≤ 2 (or even more
general 𝛼-Hölder smooth cost functions) essentially lead to minimax rates 𝑛−𝛼/𝑑 in
relevant settings. In particular, this means that the impact of the dimension 𝑑 is only
halve as bad in case of cost functions that are at least twofold differentiable. More-
over, a vital lesson from the history of high dimensional statistics has been picked
up: data in high dimensional spaces is usually equipped with a low-dimensional
structure. Advances to exploit this have, for example, been proposed by Weed and
Bach 2019, who clarify that the convergence of the Wasserstein distance𝑊𝑝 (𝜇𝑛, 𝜇)
for 𝑝 ≥ 1 towards zero is in fact governed by an intrinsic dimension 𝑠 of 𝜇, and not
by the dimension 𝑑 of the surrounding ambient space. Put in simplified terms: if 𝜇 is
concentrated on an 𝑠-dimensional surface in R𝑑 , then we can expect convergence
rates determined by 𝑠 instead of 𝑑 . Thus, empirical optimal transport exhibits the
pleasant property of automatically exploiting low dimensional structures in the data,
with no explicit adaptions necessary.

This is, finally, where my efforts enter the picture. One of the core realizations
captured in Contribution A is that the adaption of empirical optimal transport to
the intrinsic dimension of the data is even stronger than previously understood.
Indeed, if the two measures 𝜇 and 𝜈 are different – for example concentrated on an 𝑠-
and an 𝑟 -dimensional surface, respectively – then it is the minimum of 𝑠 and 𝑟 that
determines the rate of convergence of 𝑇𝑐,𝑛 to 𝑇𝑐 (𝜇, 𝜈). In this sense, the quantity 𝑇𝑐,𝑛
adapts to whichever is the simpler measure between 𝜇 and 𝜈 . We call this fundamental
property of empirical optimal transport lower complexity adaptation, or short LCA.
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On the first look, the LCA phenomenon might not exactly seem intuitive. We, at
least, were initially puzzled, since apparent arguments to upper bound the deviation
of 𝑇𝑐,𝑛 from the true value tend to suggest otherwise. For instance, the triangle
inequality of the 𝑝-Wasserstein distance implies��𝑊𝑝 (𝜇𝑛, 𝜈𝑛) −𝑊𝑝 (𝜇, 𝜈)

�� ≤𝑊𝑝 (𝜇𝑛, 𝜇) +𝑊𝑝 (𝜈𝑛, 𝜈),

which leads to an upper bound with a worse-case rate if both 𝜇 and 𝜈 are estimated
from data. Unfortunately, our proof strategy does not foster a strong geometric
interpretation about why the LCA property is true. It is based on a rather technical
observation about the complexity of certain function classes that are important in
the dual formulation of optimal transport (see Section 2.1 below and Section 2.2
of Contribution A). Still, some intuition is offered by our work in Section 2.3 of
Contribution A. It roughly suggests that finding an optimal assignment between
two point clouds, one of which lives on a lower dimensional surface, benefits from
the fact that the matching can essentially be performed in two acts: first, finding
a suitable “projection” onto the surface, and only then assigning the data points
within this lower dimensional space. The projection part, so the reasoning goes,
is statistically less costly than the matching part, and thus the smaller dimension
determines the statistical behavior. This explanation, however, should probably not
be overburdened, since we can rigorously justify it only in case of linear subspaces
and orthogonal projections.

Our work on the LCA principle brings forth a considerable list of implications and
questions, both of conceptual and of technical nature. Most strikingly, it unlocks
the door to a number of statistical techniques that rely on fast convergence. A
particular beneficiary is the theory of central limit theorems for empirical optimal
transport costs, around which Contribution B is focused. The core achievement of
this publication is the derivation of limit laws of the form

√
𝑛
(
𝑇𝑐 (𝜇𝑛, 𝜈) −𝑇𝑐 (𝜇, 𝜈)

) → sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

𝐺 (𝑓 ) (1.3)

under a number of technical conditions on the cost function 𝑐 and the measures 𝜇
and 𝜈 . Here,𝐺 designates a Gaussian process that is indexed by so-called Kantorovich
potentials 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈), which denote the dual solutions of the optimal transport
problem𝑇𝑐 (𝜇, 𝜈) (see Section 2.1 below for a definition). Furthermore, if 𝜈 is estimated
by 𝜈𝑛 , or both 𝜇 and 𝜈 are estimated by their empirical counterparts, similar limit laws
can be derived. A crucial requisite for all of these laws is that the class of candidates
for Kantorovich potentials (the class of 𝑐-transforms) behaves nicely, meaning that it
has small uniform covering numbers (see Section 2.2 below for details). In essence,
what this means is that limit laws of the form (1.3) – which were previously only
known for discrete or 1-dimensional optimal transport – can hold up to dimension
𝑑 = 3 for suitable (e.g., twice differentiable) cost functions. In fact, as a consequence
of our work on the LCA property, it suffices if the intrinsic dimension 𝑠 of one of
the two measures 𝜇 or 𝜈 is smaller or equal to 3. This greatly extends the scope of
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settings for which central limit theorems for the empirical optimal transport cost are
know to hold. Section 5 in Contribution B even provides negative results, indicating
that limit laws of the form (1.3) can not exist if both of the measures have an intrinsic
dimension ≥ 4.

My personal involvement with Contribution B has chiefly been the interpretation
of the arising limit laws. In particular, to develop a comprehensive understanding
of the right hand side of (1.3), two fundamental questions materialize: first, when
are Kantorovich potentials unique, implying Gaussian limit distributions. Secondly,
when are unique Kantorovich potentials additionally constant, implying degenerate
limit laws (since𝐺 (𝑓 ) equals zero for constant potentials 𝑓 ). Both of these questions
concern deterministic properties of the dual optimal transport problem, on which the
general literature compiled in the past decades is remarkably rich. However, while
the question of uniqueness of primal solutions has been targeted via duality theory
in many publications, a systematic inquiry into the uniqueness of dual solutions
themselves was missing. Synthesizing and considerably generalizing scattered re-
sults on aspects of the uniqueness of Kantorovich potentials, Contribution C draws a
comprehensive picture which asserts that dual uniqueness holds much more broadly
than formerly anticipated. For example, it was commonly accepted that uniqueness
of Kantorovich potentials in continuous settings seems to rely on the connected-
ness of the support of the measures 𝜇 and 𝜈 , even for differentiable cost functions.
Otherwise, trivial counter-examples can be constructed. Our work clarifies that
these counter-examples rely on a special distribution of mass, which makes the
optimal transport problem break down into several sub-problems between subsets
of connected components. Without this specific symmetry in the mass distribution,
Kantorovich potentials remain unique. In this sense, non-uniqueness is the exception
rather than the rule, and we commonly expect Gaussian limits in (1.3), at least for
differentiable costs. Degenerate limits, on the other hand, are closer examined in Sec-
tion 4 of Contribution B. The core result follows a simple geometric logic: constant
potentials 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) exist if and only if the optimal transport from 𝜈 to 𝜇 coincides
with a 𝑐-projection. The latter means that when mass is transported between 𝑥 ∈ X
and 𝑦 ∈ Y by the optimal transport plan, then 𝑐 (𝑥,𝑦) = inf𝑥 ′ 𝑐 (𝑥 ′, 𝑦) has to hold,
where the infimum ranges over the support of 𝜇. Therefore, the degeneracy of limit
laws of the empirical optimal transport cost necessitates a very special geometric
setup. More details on the results mentioned in this paragraph are provided in
Section 2.3 below.

By its very nature, the LCA principle plays a particular role when there is an in-
evitable asymmetry between the probability measures to be compared via optimal
transport. Many such setups are conceivable, like the attempt of dimensionality
reduction or feature extraction by matching a high dimensional distribution with
a low dimensional one. In Contribution D, we consider the problem of measuring
dependency, where a similar asymmetry can arise. If two random variables 𝑋 ∼ 𝜇
and 𝑌 ∼ 𝜈 follow a joint distribution 𝛾 , then quantifying their dependency effectively
means assigning a number to 𝛾 . This number should ideally be high if 𝑋 and 𝑌 are
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related deterministically, i.e., 𝑌 = 𝑓 (𝑋 ) for a suitable function 𝑓 , and low if 𝑋 and 𝑌
are statistically independent. We pursue the strategy to compare 𝛾 to the product
distribution of 𝜇 and 𝜈 via defining the transport dependency

𝜏𝑐 (𝛾) = 𝑇𝑐 (𝛾, 𝜇 ⊗ 𝜈) . (1.4)

Since (𝑋,𝑌 ) ∼ 𝜇 ⊗ 𝜈 would correspond to statistical independence of 𝑋 and 𝑌 , this
approach quantifies the discrepancy of 𝛾 from independence. A core achievement
of Contribution D is the precise characterization of distributions 𝛾 that maximize
𝜏𝑐 under suitable additive cost functions. Loosely speaking, we show that 𝜏𝑐 is
maximized (for given 𝜇 and 𝜈) if and only if𝑋 and𝑌 are related by Lipschitz functions,
whose modulus can be manipulated by adapting the cost function. This results
in a principled but flexible dependency measure with many desirable properties.
Crucially, lower complexity adaptation applies: it will be the intrinsic dimension of 𝛾
and not the (potentially twice as high) dimension of 𝜇 ⊗ 𝜈 that dictates the statistical
properties of empirical estimators. As discussed in Section 2.4 below, this insight
may pave the way to computationally simpler estimators of 𝜏𝑐 (𝛾) that have the same
statistical efficiency as the (computationally very costly) plug-in approach 𝜏𝑐 (𝛾𝑛).
Of course, our work on the lower complexity adaptation and its consequences are by
no means exhaustive or completed. Many questions are left open for future research.
On the technical side, for example, the arguments currently rely on bounded costs
and compact spaces. There are no fundamental reasons, however, why it should not
be possible to extend these statements to unbounded scenarios as long as a proper
interplay between the tail of the distributions and the costs is ensured. Furthermore,
it is as of yet unclear which notion of intrinsic dimension of a measure is best
suited for a general formulation of the LCA property. More importantly, it would
be desirable to understand the actual scope of the LCA principle. In particular,
what about estimators that are not the empirical ones, or observations that are not
i.i.d.? Under which conditions can we also find lower complexity adaption in these
cases, extending LCA to a genuine property of statistical optimal transport, and
not just empirical optimal transport? What about smoothness? Is there maybe an
LCA principle related to smoothness as well, and smoothness of a single of the two
measures 𝜇 and 𝜈 may be enough to alleviate the curse of dimensionality? Structural
insight along these and similar lines will be vital for the development of statistical
techniques that explicitly exploit the automatic adaption of optimal transport to low
dimensions.

If we direct our eyes beyond the LCA phenomenon, broader questions still linger.
After all, even the potentially smaller dimensionality associated to the simpler
measure might be too much to handle in real-world applications. So while the work
presented in this doctoral thesis attempts to provide a valuable window into the
nature of high-dimensional statistical optimal transport, we are, as of yet, only at the
beginning of forming a comprehensive understanding. In the future, we might have to
pick up further lessons from the study of high dimensional statistics, and, for example,
systematically integrate sparsity assumptions directly into the toolbox of optimal
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transport. First work in this directions has already been pushed (Forrow et al. 2019).
Also, it will be crucial to see if the theoretical benefits enjoyed under smoothness
assumptions will actually spill over into the practical world, ultimately providing us
with computationally feasible, reliable, and scalable estimators. Eventually, we will
also have to develop a more systematic understanding of properties that make optimal
transport attractive and practically useful even in settings where the application
of asymptotic statistical theory appears demanding or is even out of reach. This,
for example, concerns independence testing via the transport dependency: even in
finite-sample regimes of high bias, where the curse of dimensionality hits hard, we
find that there is still much information to be gathered from the empirical optimal
transport cost (and plan), leading to high discriminative power of permutation tests.

There is no doubt in my mind that statistical optimal transport and associated topics
will remain to be exciting and active research disciplines in the coming years and
probably decades. There is much left to learn and uncover. And with computational
barriers – which are contemporary still a major nuisance – being lifted step by step,
the adoption of methodologies based on or inspired by optimal transport will only
accelerate. After all, the basic premise of matching two distributions of objects in
the best way possible is truly ubiquitous in natural and scientific matters.



2 Contributions to (Statistical)
Optimal Transport

The goals of this chapter are twofold. First, to provide a summary representation of
the core findings on optimal transport that I have worked on in the course of my
PhD time. Second, to clarify my own contributions to the research papers A to D,
which are the joint product of multiple authors each.

The first section contains a brief introduction into the topic of optimal transport
with a focus on duality, and serves to prepare the notation and concepts referred to
by the rest of the chapter. All of the facts presented here are standard in the theory
of optimal transport and can be found in the first chapters of the books by Villani
2008 and Santambrogio 2015. The remaining sections form an attempt to lay out
the most important insights stemming from my work in a way that is digestible
for non-experts. In doing so, I focus on conceptual points and largely refrain from
emphasizing technical aspects, for which the corresponding research papers can be
consulted.

2.1 Optimal Transport and Duality

Let X and Y be separable and completely metrizable topological spaces. These spaces
are also called Polish. We equip them with their Borel 𝜎-algebra and denote the set
of probability measures (or probability distributions) on them via P (X ) and P (Y).
For given 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y), let

C (𝜇, 𝜈) = {
𝜋 ∈ P (X × Y) | 𝜋 (· × Y) = 𝜇, 𝜋 (X × ·) = 𝜈}

denote the set of couplings of 𝜇 and 𝜈 , which form a convex subset ofP (X×Y). Under
the topology of weak convergence of probability measures, C (𝜇, 𝜈) is compact as a
result of Prokhorov’s theorem. Couplings are also denoted as transport plans since
𝜋 (𝐴 × 𝐵) can be interpreted as the amount of mass transported between Borel sets
𝐴 ⊂ X and 𝐵 ⊂ Y . In the context of random variables 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈 , couplings
𝜋 ∈ C (𝜇, 𝜈) arise as joint distributions of 𝑋 and 𝑌 if the latter obey (𝑋,𝑌 ) ∼ 𝜋 .

If 𝜋 ∈ C (𝜇, 𝜈) is concentrated on the graph of a measurable map 𝑡 : X → Y , we call
𝜋 a deterministic coupling and the map 𝑡 the corresponding transport map. In this

11
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case, it holds that 𝑡#𝜇 = 𝜈 and (id, 𝑡)#𝜇 = 𝜋 , where 𝑡#𝜇 (𝐵) = 𝜇
(
𝑡−1(𝐵)) for any Borel

set 𝐵 ⊂ Y denotes the pushforward measure and (id, 𝑡) (𝑥) = (𝑥, 𝑡 (𝑥)) lifts 𝑥 ∈ X
to the graph of 𝑡 . Analogous language is used for transport maps 𝑡 : Y → X in the
reverse direction.

Let 𝑐 : X × Y → R be a measurable map, which we refer to as (ground) cost function.
Given two marginal distributions 𝜇 and 𝜈 , the core aspiration of optimal transport
theory is to find couplings that minimize the total cost 𝜋𝑐 =

∫
𝑐 d𝜋 associated to

transforming 𝜇 into 𝜈 under the plan 𝜋 and cost 𝑐 . The value attained in this linear
optimization problem is called the optimal transport cost,

𝑇𝑐 (𝜇, 𝜈) = inf
𝜋∈C (𝜇,𝜈 )

𝜋𝑐, (2.1)

and minimizers of this problem are called optimal transport plans. For general cost
functions, optimal transport plans do not have to exist. However, they do exist for
lower semicontinuous 𝑐 , for which the map 𝜋 ↦→ 𝜋𝑐 is always lower semicontinuous
with respect to the weak convergence of probability measures. The existence of
optimal transport maps, on the other hand, which was the original problem formulated
by Monge 1781, is a much more delicate issue and depends on various technical
assumptions. Closely related is the question of unique optimal transport plans, which
is mainly studied in settings in which optimal transport maps exist (see the references
in Contribution C for details).

As a linear program, the optimal transport problem (2.1) admits a dual formulation.
Strong duality holds under very general conditions, e.g., for measurable non-negative
cost functions (Beiglböck and Schachermayer 2011), and is a valuable asset for many
analytical insights into optimal transport theory. In its vanilla formulation, the dual
optimal transport problem is given by

sup
𝑓 ⊕𝑔≤𝑐

𝜇𝑓 + 𝜈𝑔,

where (𝑓 ⊕𝑔) (𝑥,𝑦) = 𝑓 (𝑥)+𝑔(𝑦) and the supremum runs over all integrable functions
𝑓 ∈ 𝐿1(𝜇) and𝑔 ∈ 𝐿1(𝜈). An alternative formulation of the dual problem exploits that
the function 𝑔 can be replaced by the largest function 𝑓 𝑐 that satisfies 𝑓 ⊕ 𝑓 𝑐 ≤ 𝑐 . This
function is determined by 𝑓 𝑐 (𝑦) = inf𝑥∈X 𝑐 (𝑥,𝑦) − 𝑓 (𝑥) and denoted as 𝑐-transform
of 𝑓 . The dual formulation then reads

sup
𝑓 ∈𝐿1 (𝜇 )

𝜇𝑓 + 𝜈 𝑓 𝑐 . (2.2)

This argument can be repeated once more, and 𝑓 can be replaced by the largest
function 𝑓 𝑐𝑐 such that 𝑓 𝑐𝑐 ⊕ 𝑓 𝑐 ≤ 𝑐 , defined by 𝑓 𝑐𝑐 (𝑥) = inf𝑦∈Y 𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦). In
particular, it is possible to restrict the supremum in (2.2) to the class of 𝑐-concave
functions on X , which are defined as

𝑆𝑐 =
{
𝑔𝑐

��𝑔 : Y → R ∪ {−∞}, 𝑔 ≠ −∞}
, (2.3)
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where only the constant function 𝑔 = −∞ is excluded. Since constant shifts in 𝑓 do
not change the value of 𝜇𝑓 + 𝜈 𝑓 𝑐 , one can, if desired, restrict the function class in
(2.2) even more, e.g., by demanding that 𝑓 (𝑥0) = 0 for a given anchor point 𝑥0 ∈ X .

In general, it is not guaranteed that 𝑐-concave functions are measurable, which
can lead to technical intricacies in the formulas presented above. For continuous
cost functions 𝑐 , however, they are always upper semicontinuous and thus also
measurable. Under additional regularity conditions, such as (𝜇 ⊗ 𝜈)𝑐 < ∞ for non-
negative costs, it is known that 𝑐-concave functions that attain the supremum in
(2.2) always exist. These dual solutions of the optimal transport problem are called
Kantorovich potentials, which we denote by 𝑆𝑐 (𝜇, 𝜈) for given 𝜇, 𝜈 , and 𝑐 . If 𝜋 denotes
an optimal transport plan, and supp𝜋 ⊂ X × Y is its support, then Kantorovich
potentials are exactly the 𝑐-concave functions 𝑓 for which

supp𝜋 ⊂ {(𝑥,𝑦) | 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) = 𝑐 (𝑥,𝑦)} ⊂ X × Y .
Certain properties of the cost function carry over to the set of 𝑐-concave functions,
and thus also to Kantorovich potentials. For example, if 𝑐 is absolutely bounded by
some value 𝐶 > 0, then Kantorovich potentials can always be shifted such that 𝑓
and 𝑓 𝑐 are absolutely bounded by 2𝐶 . Furthermore, if the family {𝑐 (·, 𝑦) |𝑦 ∈ Y} of
partially evaluated cost functions is equicontinuous, then all functions 𝑓 ∈ 𝑆𝑐 share
the same modulus of continuity. In particular, if 𝑐 (·, 𝑦) is 𝐿-Lipschitz or (𝛼, 𝐿)-Hölder
for 𝐿 > 0 and 0 < 𝛼 ≤ 1, then so is each Kantorovich potential. Another inherited
property concerns concavity in Euclidean spaces X = R𝑑 : if there exists a 𝜆 > 0
such that 𝑐 (·, 𝑦) is 𝜆-semiconcave for each 𝑦 ∈ Y , meaning that 𝑥 ↦→ 𝑐 (·, 𝑦) − 𝜆∥𝑥 ∥2

is concave, then each 𝑓 ∈ 𝑆𝑐 is 𝜆-semiconcave as well. Note that the preferential
treatment of 𝑓 and 𝜇 in the presented formalism is arbitrary, and the special roles
could also be assumed by 𝑔 = 𝑓 𝑐 and 𝜈 .

2.2 Lower Complexity Adaptation

This section summarizes the statistical theory developed in Contribution A, which I
co-authored together with Shayan Hundrieser and Axel Munk. The contributions of
Shayan Hundrieser and me were of comparable nature. We established the foundation
of the research paper – the observation of lower complexity adaptation – during
intense discussions and close collaboration. We both contributed in significant ways
to the writing of the document, which was restructured and generalized several times,
in part prompted by valuable insights and suggestions of Axel Munk. I conducted
the accompanying simulations.

Let 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 be 𝑛 ∈ N independent and identically dis-
tributed random variables with probability measures 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) on
Polish spaces X and Y . We call the measures

𝜇𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑋𝑖 , and 𝜈𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑌𝑖
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the empirical measures with respect to 𝜇 and 𝜈 , where 𝛿𝑥 denotes the point mass on
the point 𝑥 . We are concerned with situations in which 𝜇 is unknown, 𝜈 is unknown,
or both are unknown, so we consider any of the empirical plug-in estimators

𝑇𝑐,𝑛 ∈ {
𝑇𝑐 (𝜇𝑛, 𝜈),𝑇𝑐 (𝜇, 𝜈𝑛),𝑇𝑐 (𝜇𝑛, 𝜈𝑛)

}
,

in order to estimate the true population cost 𝑇𝑐 (𝜇, 𝜈). Our main results in Contribu-
tion A concern the behavior of the mean absolute error

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] (2.4)

as a function of 𝑛. In particular, we search for upper (and lower) bounds of this
quantity, which depend on the properties of 𝑐 , 𝜇, and 𝜈 . By exploiting the dual
formulation (2.2) together with the facts on 𝑐-concave functions presented in the
previous section, one can establish that

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≤ E

[
sup
𝑓 ∈F𝑐

��(𝜇𝑛 − 𝜇) 𝑓 ��
]
+ E

[
sup
𝑓 𝑐 ∈F𝑐

𝑐

��(𝜈𝑛 − 𝜈) 𝑓 𝑐 ��
]
, (2.5)

where F𝑐 ⊂ 𝑆𝑐 is a suitable subset of 𝑐-concave functions that can replace 𝐿1(𝜇) in
problem (2.2), and F𝑐

𝑐 is the element wise 𝑐-transform of functions in F𝑐 . In our case,
we assume 𝑐 to be absolutely bounded, which means that F𝑐 can be picked as a set
of 𝑐-concave functions that are absolutely bounded as well.

The expectation of suprema over function classes on the right hand side of inequality
(2.5) are classical objects of interest in empirical process theory (Vaart and Wellner
1996; Wainwright 2019). This theory provides suitable upper bound in terms of the
covering numbers of a function class. We make use of the uniform covering numbers
N (𝜖,F , ∥ · ∥∞) of a class F of real valued functions on some space X , which is
defined as the minimal number𝑚 of functions 𝑓1, . . . , 𝑓𝑚 : X → R necessary such
that

sup
𝑓 ∈F

min
1≤𝑖≤𝑚

∥ 𝑓𝑖 − 𝑓 ∥∞ < 𝜖,

where ∥ · ∥∞ denotes the uniform norm. Then, one can show that for each 𝛿 > 0

E

[
sup
𝑓 ∈F𝑐

��(𝜇𝑛 − 𝜇) 𝑓 ��
]
≲ 𝛿 + 1√

𝑛

∫ ∞

𝛿

√︃
logN (

𝜖,F𝑐 , ∥ · ∥∞
)

d𝜖, (2.6)

where ≲ denotes inequality up to a constant. An analogous bound holds for the
supremum over 𝑓 𝑐 ∈ F𝑐

𝑐 as well. The central observation now, which forms the
foundation for the LCA property, is that N (𝜖,F𝑐 , ∥ · ∥∞) can be shown to be equal
to N (𝜖,F𝑐

𝑐 , ∥ · ∥∞) for bounded cost functions. Therefore, it actually does not matter
whether we control the complexity of F𝑐 or the one of F𝑐

𝑐 , even if we sample from
both measures. Our main result, Theorem 1 in Contribution A, operates under the
assumption that

logN (
𝜖,F𝑐 , ∥ · ∥∞

)
= logN (

𝜖,F𝑐
𝑐 , ∥ · ∥∞

)
≲ 𝜖𝑘 (2.7)



2.2. Lower Complexity Adaptation 15

for some 𝑘 > 0, based on which (2.5) can be combined with (2.6) for suitable choices
of 𝛿 to yield the upper bounds

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑘 < 2,
𝑛−1/2 log 𝑛 if 𝑘 = 2,
𝑛−1/𝑘 if 𝑘 > 2.

(2.8)

Since we can always choose X = supp 𝜇 and Y = supp𝜈 , which makes F𝑐 and F𝑐
𝑐

classes of functions defined on the support of the measures 𝜇 and 𝜈 , this approach
lets us derive upper bounds for (2.4) that only rely on the properties of 𝑐 as well as
the simpler of the supports of 𝜇 and 𝜈 .

The remainder of Contribution A is chiefly concerned with various settings of interest
to which (2.8) can be applied in order to obtain novel upper bounds. In total, we
derive bounds for semidiscrete, Lipschitz, semiconcave, and Hölder-smooth settings
in Sections 3.1 to 3.4. In each of these cases, the uniform covering numbers are
controlled by relating 𝑘 in (2.7) to (a) the regularity and dimensionality of supp 𝜇
or supp𝜈 (whichever turns out to provide better results), and (b) the regularity of
𝑐 evaluated in either the first or second component. Put in conceptual terms, the
smoothness 0 < 𝛼 ≤ 2 of the setting and the intrinsic dimension 𝑑 of either 𝜇 or 𝜈 are
related to 𝑘 via 𝑘 = 𝑑/𝛼 . This leads to the general upper bounds

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑑 < 2𝛼,
𝑛−1/2 log 𝑛 if 𝑑 = 2𝛼,
𝑛−𝛼/𝑑 if 𝑑 > 2𝛼,

(2.9)

which can actually be understood to cover the semidiscrete (𝑑 = 0), Lipschitz (𝛼 = 1),
semiconcave (𝛼 = 2), or the general 𝛼-Hölder-smooth setting (up to 𝛼 = 2, i.e., the
existence of Lipschitz first derivatives).

Of course, several technical aspects have to be fleshed out to arrive at well-defined
meanings for the smoothness 𝛼 and the dimension 𝑑 in this context. First, to capture
the notion of the intrinsic dimension 𝑑 of a probability measure, say 𝜇, we essentially
expect that supp 𝜇 is contained in the union of the images of finitely many mappings
𝑔 : U → X from well-behaved, bounded patches U ⊂ R𝑑 . Second, to arrive at a
suitable notion of smoothness 𝛼 , we assume that the composition 𝑢 ↦→ 𝑐 (𝑔(𝑢), 𝑦)
has suitable smoothness properties uniformly in 𝑦 ∈ Y . Due to a union bound
(Lemma 2) and a composition bound (Lemma 3) for covering numbers derived in
Contribution A, these two assumptions lend themselves well to control the uniform
covering numbers of 𝑐-concave functions on supp 𝜇. Special instances of this setting
include compact 𝑑-dimensional smooth manfolds X , where the cost function 𝑐 (·, 𝑦)
is once (for 𝛼 = 1) or twice (for 𝛼 = 2) continuously differentiable with bounds on the
derivatives that are uniform in 𝑦 ∈ Y (see Example 2 and 4 in Contribution A). The
precise requirements for the different settings are formulated in Assumptions Lip,
SC, and Hol in Contribution A.
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Besides upper bounds derived from (2.8), additional work in Contribution A also
concerns lower bounds for the mean absolute error of the empirical optimal transport
cost. Here, we exploit that the LCA principle is also accessible from the primal for-
mulation of optimal transport in settings with a particular geometry (see Section 2.3
in Contribution A). In such settings, we find that the rates in the upper bounds in
(2.9) are essentially sharp (with a missing logarithmic term for 𝑑 = 2𝛼), see Exam-
ples 3 and 5. Additionally, we have numerically verified that the convergence rates
predicted by (2.9) conform well with the ones observed in simulations (Section 4 of
Contribution A).

While the concept of lower complexity adaptation provides valuable insight into
the nature of empirical optimal transport in high dimensional settings, there are
some technical limitations in our work that are subject to future research. For
example, our argumentation relies on bounded settings – bounded cost functions
and measures with bounded support. Otherwise, the uniform covering numbers
can not be controlled well or are not even finite. This restriction could potentially
be addressed by using sample-dependent covering numbers (in which case the
argumentation via the properties of 𝑐-transforms is not straightforward anymore,
however), or by employing concentration-of-measure arguments (e.g., arguing that
samples reside in compact subsets of the support with high probability), which
would require explicit and tight control over the constants in many of the emerging
inequalities. Furthermore, our proof strategy via empirical process theory only works
under i.i.d. assumptions on the data. It is as of yet unknown if an LCA principle
also holds for dependent data, or even for completely different estimators than the
empirical ones. While first numerical evidence suggests that a moderate amount
of dependency in the observed data does not corrupt the LCA property, exploring
in how far this principle actually permeates statistical optimal transport theory in
general is an exciting venue for further work.

2.3 Properties of Kantorovich Potentials

This section is concerned with an overview over the results on deterministic proper-
ties of Kantorovich potentials that I have established while working on Contribu-
tion B and C. Contribution B, on distributional limit laws of the empirical optimal
transport cost, is joint work together with Shayan Hundrieser, Marcel Klatt, and Axel
Munk. Besides some corrections and improvements of general nature, I have derived
and formulated the results on constant Kantorovich potentials in Section 4 of the
research paper. Contribution C, on the uniqueness of Kantorovich Potentials, is joint
work together with Shayan Hundrieser and Axel Munk. I have largely prepared and
formulated the document, while discussions with Axel Munk and especially Shayan
Hundrieser were crucial to flesh out the core ideas.

As mentioned in Section 2.1, Kantorovich potentials are never truely unique in the
strict sense of the word, since 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) implies 𝑓 + 𝑎 ∈ 𝑆𝑐 (𝜇, 𝜈) for any constant



2.3. Properties of Kantorovich Potentials 17

𝑎 ∈ R. Therefore, in the following, uniqueness always means uniqueness up to
constant shifts. Moreover, it is often too restrictive to expect uniqueness on all of X ,
and it is usually sufficient to work with 𝜇-almost sure uniqueness. Similarly, we do not
expect 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) to be constant on all of X if we talk about constant Kantorovich
potentials; we just assume it to be constant 𝜇-almost surely. In Contribution B we
also use the term trivial to refer to almost surely constant Kantorovich potentials.

The motivation to scrutinize the aforementioned properties of Kantorovich potentials
(them being unique and them being constant) not only stems from general interest
into structural aspects of optimal transport, but also from important questions
arising in statistical optimal transport. For example, Contribution B establishes
that distributional limits of the empirical optimal transport cost in diverse settings
assume the form √

𝑛
(
𝑇𝑐 (𝜇𝑛, 𝜈) −𝑇𝑐 (𝜇, 𝜈)

) → sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

𝐺 (𝑓 ), (2.10a)

where the notation of Section 2.1 and 2.2 above is reused. Here,𝐺 denotes a centered
Gaussian process indexed in 𝑆𝑐 (𝜇, 𝜈), which is determined by the covariance structure

E[𝐺 (𝑓1)𝐺 (𝑓2)] = 𝜇 (𝑓1 𝑓2) − 𝜇𝑓1 𝜇𝑓2
for 𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈). This in particular implies that the variance of 𝐺 (𝑓 ) vanishes
if and only if 𝑓 is constant 𝜇-almost surely. Note that validity of (2.10a) is only
proven in Contribution B for settings with sufficient regularity of 𝑐 as well as an
intrinsic dimension 𝑑 ≤ 3 of at least one of the measures 𝜇 and 𝜈 (this exploits
the LCA property, see Section 5.5 in Contribution B). Indeed, there is good reason
to believe that limit laws of this form will fail if 𝑑 ≥ 4 due to a high bias of the
empirical optimal transport cost (see Section 5.4 in Contribution B). Still, under a
set of technical assumptions, related results by del Barrio and Loubes 2019 and del
Barrio et al. 2021 prove Gaussian limits of the form

√
𝑛
(
𝑇𝑐 (𝜇𝑛, 𝜈) − E[𝑇𝑐 (𝜇𝑛, 𝜈)]

) → 𝐺 (𝑓 ) (2.10b)

in general dimensions, provided that there is an (up to constants) unique Kantorovich
potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). Notably, these limits do not center around the population
value but the expectation of the empirical cost, and it again holds that 𝐺 (𝑓 ) has
expectation zero and variance 𝜇𝑓 2−(𝜇𝑓 )2. Analogous distributional limits as in (2.10)
also hold if 𝜈 is estimated by its empirical measure 𝜈𝑛 , in which case the 𝑐-transformed
Kantorovich potentials 𝑓 𝑐 enter the formalism. We conclude that uniqueness of
Kantorovich potentials is intimately related to Gaussianity of the distributional limits
of the empirical optimal transport cost. If the unique Kantorovich potentials are
additionally constant, then the limits degenerate to a point measure at zero.

The usual argumentation to derive uniqueness of dual optimal transport solutions
exploits the fact that any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) satisfies 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) ≤ 𝑐 (𝑥,𝑦) with equality if
(𝑥,𝑦) lies in the support of an optimal transport plan 𝜋 . This implies that the mapping
given by 𝑥 ′ ↦→ 𝑐 (𝑥 ′, 𝑦) − 𝑓 (𝑥) has to attain its minimum at such (𝑥,𝑦) ∈ supp𝜋 .
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If several conditions align – the space X has a differentiable structure, the cost
function is differentiable in the first component, and the Kantorovich potential is
also differentiable – this characterization will essentially determine the gradient of 𝑓
on the support of 𝜇. And if the gradient of 𝑓 is determined, then the potential 𝑓 itself is
(up to constants) determined on each connected component of the support (barring
technicalities). Thus, if the support of 𝜇 is well-behaved and connected, then the
regularity of the cost function, which affects the regularity of 𝑆𝑐 as well, may directly
lead to the uniqueness of Kantorovich potentials. Several results that follow this logic
to establish statements on the uniqueness of Kantorovich potentials are available
in the literature (Villani 2008, Remark 10.30; Santambrogio 2015, Proposition 7.18;
del Barrio et al. 2021, Corollary 2.7). All of them, however, are (in part much) more
restrictive in their assumptions than necessary.

One important pillar of Contribution C is a systematic reiteration of this reasoning,
with some care taken to only work with assumptions that are actually needed to
arrive at uniqueness. Out of this grew Theorem 2 in Contribution C, which applies
to settings where X is a smooth manifold and the cost function 𝑐 is locally Lipschitz,
while Y can be arbitrary Polish. The technical difficulties that make the assumptions
of this statement somewhat opaque are mainly related to controlling transport towards
infinity, meaning that mass around some points in supp 𝜇 can be transported out
of any Y-compactum. Around these points, there is no guarantee for sufficient
regularity of 𝑐-concave functions, which could prevent the necessary differentiability
of 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). These problems, however, can be shown to be immaterial in a
number of more specialized settings, like the one of compact spaces Y (Corollary 2
in Contribution C) or the one of geodesic spaces X = Y with rapidly increasing costs
(Section 4 in Contribution C). The conceptual takeaway from these results is that
uniqueness in connected settings often holds for differentiable costs under mainly
topological conditions on the support of 𝜇, while the actual distribution of mass (at
least in the interior of supp 𝜇) does not matter.

The actual main advancement in Contribution C, however, concerns novel insights
into the uniqueness of Kantorovich potentials in disconnected settings. Since it is
easy to find instances where uniqueness fails due to a disconnected support – for
example, if 𝜇 = 𝜈 is the uniform measure on the union of two disjoint compact
sets in R𝑑 under squared Euclidean costs – it has been a common perception that
uniqueness relies on the connectedness of the support of at least one of the measures
𝜇 and 𝜈 . That this cannot be the full story is anticipated by the theory of finite linear
programming: if X = {𝑥𝑖 | 𝑖 ∈ 𝐼 } and Y = {𝑦 𝑗 | 𝑗 ∈ 𝐽 } are finite discrete spaces with
index sets 𝐼 and 𝐽 , it is well-known (Hung et al. 1986) that transportation problems
have unique dual solutions whenever there are no two proper nonempty subsets
𝐴 ⊂ X and 𝐵 ⊂ Y such that 𝜇 (𝐴) = 𝜈 (𝐵). Intuitively, this condition rules out that
the transport problem might be split up in two separate problems by decomposing
X and Y . These settings are referred to as non-degenerate. To lift these results to
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non-discrete settings with measures 𝜇 and 𝜈 on general Polish spaces X and Y , let

supp 𝜇 =
⋃
𝑖∈𝐼

X𝑖 and supp𝜈 =
⋃
𝑗∈ 𝐽

Y𝑗 (2.11)

denote the decomposition of the respective supports into their connected components.
For simplicity, the index sets 𝐼 and 𝐽 are taken to be finite. Furthermore, let 𝜋 ∈ C (𝜇, 𝜈)
be an optimal plan of the optimal transport problem between 𝜇 and 𝜈 under the cost
function 𝑐 . We denote the optimal transport problem between 𝜇𝑖 = 𝜇 |X𝑖/𝜇 (X𝑖) and
𝜈𝑖 = 𝜋 (X𝑖 ×·)/𝜇 (X𝑖) under 𝑐 as the𝑋𝑖-restricted problem for given 𝑖 ∈ 𝐼 . Furthermore,
we say that 𝜋 is non-degenerate if there are no nonempty proper subsets 𝐼 ′ ⊂ 𝐼 and
𝐽 ′ ⊂ 𝐽 such that ∑︁

𝑖∈𝐼 ′
𝜇 (X𝑖) =

∑︁
𝑖∈𝐼 ′, 𝑗∈ 𝐽 ′

𝜋 (X𝑖 × Y𝑗 ) =
∑︁
𝑗∈ 𝐽 ′

𝜈 (Y𝑗 ). (2.12)

What this effectively means is that it is impossible to split supp 𝜇 and supp𝜈 into
groups of connected components such that the optimal plan does not mix mass
between the different groups. With these preparations, our uniqueness result for
disconnected settings, Theorem 1 in Contribution C, can be summarized as follows: (a)
if the optimal transport plan 𝜋 is non-degenerate, (b) if the 𝑐-transformed Kantorovich
potentials 𝑆𝑐𝑐 (𝜇, 𝜈) are continuous, and (c) if the Kantorovich potentials of all X𝑖-
restricted problems are unique, then the potentials 𝑆𝑐 (𝜇, 𝜈) of the full problem (and
equivalently their 𝑐-transforms) are also unique.

Condition (a) might seem hard to verify, since it is concerned with properties of
the (potentially unknown) optimal transport plan, but it can easily be ensured by
enforcing that the measures 𝜇 and 𝜈 do not assign the same amount of mass to groups
of connected components, analogous to the finite case. The continuity condition
(b) can typically be shown to hold in interesting settings (see Section 2 and 4 of
Contribution C). It can even be weakened, which is further discussed in the context
of Theorem 1 in Contribution C. Finally, condition (c) relies on uniqueness results
on the connected components of supp 𝜇. As outlined above, such statements often
hold under mild regularity conditions for 𝑐 and topological requirements for X𝑖 .
Furthermore, extensions to countable index sets 𝐼 and 𝐽 are, with some technical
limitations, possible and further discussed in Contribution C. To our knowledge, this
is the first result on the uniqueness of Kantorovich potentials in disconnected (but
not finite) settings in the literature on optimal transport. The fundamental message is
that non-uniqueness due to disconnected supports is typically the exception, caused
by a specific symmetry in the mass distribution, rather than the rule.

All taken together, Contribution C provides a quite complete picture regarding the
issue of Gaussian distributional limits in empirical optimal transport theory. It
establishes that the main enemies of Gaussianity are (a) non-differentiabilities of the
cost function, which is well-known for metric costs, and (b) disconnected supports
with a peculiar mass distribution. If these factors do not apply, Gaussian limits can
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be expected. The remaining question is under which conditions these Gaussian limits
have a vanishing variance, which occurs if the unique Kantorovich potentials are
constant. Section 4 in Contribution B is dedicated to this problem and provides a
compelling geometric answer.

Given a probability measure 𝜈 ∈ P (Y), we say that 𝜇 ∈ P (X ) is a 𝜈-projected
measure with respect to a cost function 𝑐 if there exists a coupling 𝜋 ∈ C (𝜇, 𝜈) such
that

𝑐 (𝑥,𝑦) = inf
𝑥 ′∈supp 𝜇

𝑐 (𝑥 ′, 𝑦) for all (𝑥,𝑦) ∈ supp𝜋. (2.13)

If the relation is reversed, we say that 𝜈 is a 𝜇-projected measure. Expressed in words,
a 𝜈-projected measure is one that can be transported to 𝜇 by simply projecting each
point in the support of 𝜈 to the support of 𝜇, in the sense of finding the point with the
smallest movement cost according to 𝑐 . The coupling 𝜋 in (2.13) is then automatically
optimal. Clearly, such an arrangement between 𝜇 and 𝜈 implies severe restrictions
on how the supports (and the mass distribution on the supports) can be situated
relative to one another. For Euclidean costs, for example, 𝜇 cannot be 𝜈-projected if
their supports are disjoint and supp 𝜇 has interior points, since only boundary points
could be reached via projection (see Section 4 in Contribution B for more examples
and illustrative figures).

In a certain way, projected arrangements like these make the optimal transport
problem particularly simple: to find the optimal plan, each point can be projected
independently, effectively eliminating the marginal constraint that makes optimal
transport a hard problem in the first place. This simplicity also has consequences
of statistical nature. Theorem 5 in Contribution B states that constant Kantorovich
potentials 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) exist if and only if 𝜇 is 𝜈-projected. Likewise, constant 𝑐-
transformed Kantorovich potentials 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) exist if and only if 𝜈 is 𝜇-projected.
As a direct consequence, under the assumption of unique Kantorovich potentials, the
limit laws for 𝑇𝑐 (𝜇𝑛, 𝜈) degenerate if and only if 𝜇 is 𝜈-projected; the limit laws for
𝑇𝑐 (𝜇, 𝜈𝑛) degenerate if and only if 𝜈 is 𝜇-projected; and the limit laws for 𝑇𝑐 (𝜇𝑛, 𝜈𝑛)
degenerate if and only if both measures are projected with respect to the other. This
provides a complete characterization of degenerate limit laws in intuitive geometric
terms.

While the work on uniqueness and triviality of Kantorovich potentials in Contribu-
tion B and Contribution C covers a lot of ground and offers a comprehensive image,
some aspects still remain open and are subject to future work. On the technical side,
this includes the question in how far Theorem 1 in Contribution C can be generalized
to countable index sets 𝐼 . Also, our work on uniqueness for connected settings
currently (at least in part) relies on the assumption that no mass is placed on the
boundary of the support. I suspect that this is not a genuine condition but a technical
artefact that may be overcome with some additional care. Another point of interest
is to also find necessary conditions for the uniqueness of Kantorovich potentials,
i.e., to better characterize settings where the potentials are known to be ambiguous.
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Especially if the ambiguity is due to disconnected supports, criteria along those lines
are not well understood and only a few simple examples are accessible (see, e.g.,
Lemma 11 in Contribution C).

2.4 Quantifying Dependency

This section summarizes some of the main findings of my work on the transport
dependency, a concept to measure statistical dependency via optimal transport. It is
based on Contribution D, which is joint work together with Thomas Giacomo Nies
and Axel Munk. Most of the core insights and results that the research paper features
were developed in active discussion and collaboration with Thomas Giacomo Nies,
while Axel Munk provided the initial idea and proposed important corrections. The
text was largely prepared by myself and the included simulations are joint work.

Let 𝑋 and 𝑌 be random variables on Polish spaces X and Y with marginal distri-
butions 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y). Their joint distribution is denoted by 𝛾 ∈ C (𝜇, 𝜈).
For a given cost function 𝑐 : (X × Y)2 → R, the transport dependency is defined as

𝜏𝑐 (𝑋,𝑌 ) = 𝜏𝑐 (𝛾) = 𝑇𝑐 (𝛾, 𝜇 ⊗ 𝜈), (2.14)

which involves an optimal transport problem on the product space X × Y . Here,
𝜇 ⊗𝜈 is the product measure of 𝜇 and 𝜈 . If 𝛾 equals 𝜇 ⊗𝜈 , the two random variables 𝑋
and 𝑌 are statistically independent. Thus, the transport dependency 𝜏𝑐 quantifies the
discrepancy between the actual joint distribution 𝛾 and the independent case 𝜇 ⊗ 𝜈 .
In this sense, it is comparable to the mutual information of 𝑋 and 𝑌 , a well-known
quantifier of dependency, that is defined as the Kullback-Leibler divergence between
𝛾 and 𝜇 ⊗ 𝜈 . For reasonable cost functions, like metrics on X × Y , the relation
𝜏𝑐 (𝑋,𝑌 ) = 0 completely characterizes statistical independence. In contrast, a large
value of 𝜏𝑐 (𝑋,𝑌 ) intuitively suggests that 𝑋 and 𝑌 should be strongly dependent.

This raises the question what “strong dependency” between random variables actually
means. In general, this question has no easy or canonical answers. The mutual
information, for instance, is maximized under deterministic relations 𝑌 = 𝜑 (𝑋 ) for
any measurable function 𝜑 : X → Y or vice versa. According to this criterion, even
very chaotic relations, for which prediction of 𝑌 based on 𝑋 could be impossible in
statistical settings with a finite amount of data, would express strong dependency.
The transport dependency, on the other hand, enforces much more structure on
relations that maximize it. In particular, via the choice of the cost function 𝑐 , it can
be adapted to take metric properties into account. Under costs of the form

𝑐 (𝑥1, 𝑦1, 𝑥1, 𝑦2) = 𝑑X (𝑥1, 𝑥2) + 𝑑Y (𝑦1, 𝑦2), (2.15)

where 𝑑X and 𝑑Y are metrics on X and Y , one of the core insights of Contribution D
states that 𝜏𝑐 (𝑋,𝑌 ) is essentially maximized if and only if 𝑋 and 𝑌 are deterministi-
cally related by Lipschitz functions. More precisely, we prove in Proposition 6 that
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the transport dependency is upper bounded by

𝜏𝑐 (𝑋,𝑌 ) ≤ E[𝑑Y (𝑌1, 𝑌2)], (2.16)

where 𝑌1, 𝑌2 ∼ 𝜈 are i.i.d. copies of 𝑌 , and that this upper bound is attained if and
only if there is a 1-Lipschitz function 𝜑 : (X , 𝑑X ) → (Y, 𝑑Y ) such that 𝑌 = 𝜑 (𝑋 )
holds (Theorem 7 and Corollary 1). Of course, the roles of 𝑋 and 𝑌 in this statement
can also be reversed with an equivalent upper bound based on 𝑑X .

This insight equips the transport dependency with a clean interpretation: a large
value of 𝜏𝑐 (𝑋,𝑌 ) hints at a deterministic relation between 𝑋 and 𝑌 that is very
structured, in the sense that perturbing the value of 𝑋 will not change 𝑌 too much.
Furthermore, the upper bound in (2.16) offers a natural way to normalize 𝜏𝑐 to obtain
a coefficient of dependency with values in [0, 1]. For cost functions of the form

𝑐 (𝑥1, 𝑦1, 𝑥1, 𝑦2) = 𝛼 𝑑X (𝑥1, 𝑥2) + 𝑑Y (𝑦1, 𝑦2),

where𝛼 > 0, we define the𝛼-transport correlation 𝜌𝛼 (𝑋,𝑌 ) = 𝜏𝑐 (𝑋,𝑌 )/E[𝑑Y (𝑌1, 𝑌2)].
It is equal to 0 if and only if 𝑋 and 𝑌 are independent, and equals 1 if and only if
𝑌 = 𝜑 (𝑋 ) for an 𝛼-Lipschitz function 𝜑 . These and several other hallmark properties
of 𝜌𝛼 are derived in Section 5 of Contribution D; for example, it is invariant under
isometric transformations of the spaces X and Y . Also, we study two special cases
that lead to particularly interesting dependency coefficients. For a special choice
of 𝛼 , which depends on the marginals 𝜇 and 𝜈 , the resulting coefficient 𝜌∗(𝑋,𝑌 ) is
symmetric in 𝑋 and 𝑌 . In particular, it attains the value 1 if and only if 𝑌 = 𝜑 (𝑋 )
for a multiple of an isometry 𝜑 . In the limit 𝛼 → ∞, on the other hand, we obtain a
dependency coefficient 𝜌∞ that assumes maximal values for any measurable function
𝜑 : X → Y . In this respect, it is closer to the properties of purely information-
based concepts of dependency quantification, like the mutual information. The
transport dependency is hence a very flexible tool and allows for the interpolation
between structured (emphasizing isometric or Lipschitz relations) and unstructured
(emphasizing measurable relations) dependency quantification.

In the presence of empirical data, the transport dependency and the derived coeffi-
cients can be estimated in a straightforward manner. If (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) are i.i.d.
samples drawn from 𝛾 ∈ C (𝜇, 𝜈), then the plug-in approach

𝜏𝑐 (𝛾𝑛) = 𝑇𝑐 (𝛾𝑛, 𝜇𝑛 ⊗ 𝜈𝑛) (2.17)

where

𝛾𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿 (𝑋𝑖 ,𝑌𝑖 ) and 𝜇𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑋𝑖 , 𝜈𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑌𝑖 ,

defines a natural estimator of 𝜏𝑐 (𝛾𝑛). This estimator is consistent under suitable
moment assumptions (Theorem 2 in Contribution D). Furthermore, we have estab-
lished that E[|𝜏𝑐 (𝛾𝑛) −𝜏𝑐 (𝛾) |] ≤ 3𝑇𝑐 (𝛾𝑛, 𝛾) for cost functions like in (2.15). Since this
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means that the intrinsic dimension of 𝛾 determines the rate of convergence (and not
the potentially higher dimension of 𝜇 ⊗ 𝜈), the estimator 𝜏𝑐 (𝛾𝑛) in fact features lower
complexity adaption. Furthermore, the numerical study in Contribution D shows
that the transport dependency under this estimator compares generally very well
to established methods when discerning dependency in permutation based inde-
pendence tests. We are currently also working on the application of the transport
dependency to gene expression data, where our generic approach seems to admit
similar conclusions to much more specialized methods. The overall picture emerging
from our work thus confirms that the transport dependency is a robust and versatile
quantifier of dependency that can greatly benefit from the flexibility to work with
arbitrary notions of costs or similarity.

Still, there are some critical drawbacks to the transport dependency, in particular
regarding the plug-in estimator 𝜏𝑐 (𝛾𝑛). Foremost, the measure 𝜇𝑛 ⊗ 𝜈𝑛 is supported
on 𝑛2 points, which quickly makes computation of 𝜏𝑐 (𝛾𝑛) very expensive. This
essentially limits its usage to problems with small to moderate values of 𝑛 for many
practical problems (see Section 6 in Contribution D). Combined with the curse of
dimensionality, which makes 𝜏𝑐 (𝛾𝑛) suffer from a high bias if the dimensionality
of 𝛾 is large, this might pose a serious hurdle for the application of the transport
dependency in statistical data science and machine learning applications. However,
these apparent drawbacks also raise interesting questions. For example, our work in
Contribution A indicates that alternative estimators of the form

𝜏𝑐,𝑛 = 𝑇𝑐
(
𝛾𝑛, (�𝜇 ⊗ 𝜈)𝑛 ),

where 𝜇 ⊗ 𝜈 is not estimated by 𝜇𝑛 ⊗ 𝜈𝑛 , but by an estimator (�𝜇 ⊗ 𝜈)𝑛 with fewer
support points only, might be able to achieve the same convergence rates as 𝜏𝑐 (𝛾𝑛)
while being computationally much more viable. Simulations and theoretical results
which confirm the thrust of this argument are currently being worked on. Notewor-
thy issues in this context include the questions (a) how to best estimate 𝜇 ⊗ 𝜈 based
on the 𝑛 given sample points (e.g., via random permutations or clustering), (b) if an
LCA property can rigorously be established for the derived estimator 𝜏𝑐,𝑛 , and (c) if
even distributional limit laws in the sense of Contribution B might be feasible.
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Feydy, J., T. Séjourné, F.-X. Vialard, S. Amari, A. Trouve, and G. Peyré (2019). “Inter-
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Singh, S. and B. Póczos (2018). “Minimax distribution estimation in Wasserstein
distance”. Preprint arXiv:1802.08855.

Staudt, T., T. Aspelmeier, O. Laitenberger, C. Geisler, A. Egner, and A. Munk (2020).
“Statistical molecule counting in super-resolution fluorescence microscopy: To-
wards quantitative nanoscopy”. Statistical Science 35.1, pp. 92–111.

Staudt, T., S. Hundrieser, and A. Munk (2022). “On the uniqueness of Kantorovich
potentials”. Preprint arXiv:2201.08316.

Stone, C. J. (1985). “Additive regression and other nonparametric models”. The Annals
of Statistics 13.2, pp. 689–705.

Stone, C. J. (1980). “Optimal rates of convergence for nonparametric estimators”. The
Annals of Statistics 8.6, pp. 1348–1360.

Tameling, C., S. Stoldt, T. Stephan, J. Naas, S. Jakobs, and A. Munk (2021). “Colocal-
ization for super-resolution microscopy via optimal transport”. Nature Computa-
tional Science 1.3, pp. 199–211.



Bibliography 29

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. Journal of
the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–288.

Tolstikhin, I., O. Bousquet, S. Gelly, and B. Schoelkopf (2017). “Wasserstein auto-
encoders”. Preprint arXiv:1711.01558.

Vaart, A. W. van der and J. A. Wellner (1996). Weak Convergence and Empirical
Processes. Springer New York.

Villani, C. (2008). Optimal Transport: Old and New. Springer.
Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint.

Cambridge University Press.
Waterman, M. S. (2018). Introduction to Computational Biology. Taylor & Francis Ltd.

448 pp.
Weed, J. and F. Bach (2019). “Sharp asymptotic and finite-sample rates of convergence

of empirical measures in Wasserstein distance”. Bernoulli 25.4A, pp. 2620–2648.
Weed, J. and Q. Berthet (2019). “Estimation of smooth densities in Wasserstein

distance”. In: PMLR, pp. 3118–3119.
Yurochkin, M., S. Claici, E. Chien, F. Mirzazadeh, and J. M. Solomon (2019). “Hier-

archical optimal transport for document representation”. Advances in Neural
Information Processing Systems 32.

Zou, H. (2006). “The adaptive lasso and its oracle properties”. Journal of the American
Statistical Association 101.476, pp. 1418–1429.

Zou, H., T. Hastie, and R. Tibshirani (2006). “Sparse principal component analysis”.
Journal of Computational and Graphical Statistics 15.2, pp. 265–286.





A Empirical Optimal Transport
between Different Measures
Adapts to Lower Complexity

Shayan Hundrieser ∗,†,‡

s.hundrieser@math.uni-goettingen.de

Thomas Staudt ∗,†,‡

thomas.staudt@uni-goettingen.de

Axel Munk †,‡,§

munk@math.uni-goettingen.de

Abstract

The empirical optimal transport (OT) cost between two probability measures from
random data is a fundamental quantity in transport based data analysis. In this work,
we derive novel guarantees for its convergence rate when the involved measures are
different, possibly supported on different spaces. Our central observation is that the
statistical performance of the empirical OT cost is determined by the less complex
measure, a phenomenon we refer to as lower complexity adaptation of empirical OT.
For instance, under Lipschitz ground costs, we find that the empirical OT cost based
on 𝑛 observations converges at least with rate 𝑛−1/𝑑 to the population quantity if one
of the two measures is concentrated on a 𝑑-dimensional manifold, while the other
can be arbitrary. For semi-concave ground costs, we show that the upper bound for
the rate improves to 𝑛−2/𝑑 . Similarly, our theory establishes the general convergence
rate 𝑛−1/2 for semi-discrete OT. All of these results are valid in the two-sample case
as well, meaning that the convergence rate is still governed by the simpler of the
two measures. On a conceptual level, our findings therefore suggest that the curse
of dimensionality only affects the estimation of the OT cost when both measures
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exhibit a high intrinsic dimension. Our proofs are based on the dual formulation of
OT as a maximization over a suitable function class F𝑐 and the observation that the
𝑐-transform of F𝑐 under bounded costs has the same uniform metric entropy as F𝑐
itself.

Keywords: Wasserstein distance, convergence rate, curse of dimensionality, metric
entropy, semi-discrete, manifolds

MSC 2020 subject classification: primary 62R07, 62G20, 62G30, 49Q22; secondary
62E20, 62F35, 60B10

1 Introduction

The theory of optimal transport (OT) allows for an effective comparison of probability
measures that is faithful to the geometry of the underlying ground space (see Rachev
and Rüschendorf 1998a; Rachev and Rüschendorf 1998b; Villani 2003; Villani 2008;
Santambrogio 2015 for comprehensive treatments). Origins of OT date back to the
seminal work by Monge 1781 and its measure theoretic generalization by Kantorovich
1942; Kantorovich 1958, paving the way for a rich theory and many applications.
With recent computational advances (for a survey see Bertsimas and Tsitsiklis 1997;
Peyré and Cuturi 2019) OT based methodology is also quickly emerging as a useful
tool for data analysis with diverse applications in statistics. This includes bootstrap
and resampling (Bickel and Freedman 1981; Sommerfeld et al. 2019; Heinemann et al.
2020), goodness of fit testing (del Barrio et al. 1999; Hallin et al. 2021b), multivariate
quantiles and ranks (Chernozhukov et al. 2017; Deb and Sen 2021; Hallin et al. 2021a)
and general notions of dependency (Nies et al. 2021; Deb et al. 2021; Mordant and
Segers 2022). For a recent survey see Panaretos and Zemel 2019. Further areas of
application include machine learning (Arjovsky et al. 2017; Altschuler et al. 2017;
Dvurechensky et al. 2018), and computational biology (Evans and Matsen 2012;
Schiebinger et al. 2019; Tameling et al. 2021; Wang et al. 2021), among others.

Intuitively, OT aims to transform one probability measure into another one in the
most cost-efficient way. For a general formulation, let 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) be
probability measures on Polish spaces X and Y , and consider a measurable cost
function 𝑐 : X × Y → R. The optimal transport cost between 𝜇 and 𝜈 is defined as

𝑇𝑐 (𝜇, 𝜈) B inf
𝜋∈Π (𝜇,𝜈 )

∫
X×Y

𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦), (1)

where Π(𝜇, 𝜈) represents the set of all couplings between 𝜇 and 𝜈 , i.e., the probability
measures on X × Y with marginal distributions 𝜇 and 𝜈 . In statistical problems,
the measure 𝜇 is typically unknown and only i.i.d. observations 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇,
defining the empirical measure 𝜇𝑛 B 1

𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 , are available. A standard approach

to estimate 𝑇 (𝜇, 𝜈) in this setting is by means of the empirical optimal transport cost
𝑇𝑐 (𝜇𝑛, 𝜈), whose convergence to the population value for increasing 𝑛 has been the
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subject of numerous works. Most research in this context, of which we can only
give a selective overview, is devoted to the analysis of the Wasserstein distance (cf.
Mallows 1972; Shorack and Wellner 1986; Villani 2008) where X = Y and the cost
𝑐 in (1) corresponds to the 𝑝-th power of a metric 𝑑 on X . More specifically, for
𝜇, 𝜈 ∈ P (X ), the 𝑝-Wasserstein distance for 𝑝 ≥ 1 is defined by

𝑊𝑝 (𝜇, 𝜈) B
(
𝑇𝑑𝑝 (𝜇, 𝜈)

)1/𝑝
,

which is a metric on the space of probability measures on (X , 𝑑) with finite 𝑝-th
moment.

A first fundamental contribution for the analysis of the empirical Wasserstein dis-
tance𝑊𝑝 (𝜇𝑛, 𝜇) in case of 𝑝 = 1 was made by Dudley 1969 via metric entropy bounds,
asserting5 E [𝑊1(𝜇𝑛, 𝜇)] ≲ 𝑛−1/𝑑 for compactly supported probability measures 𝜇
on R𝑑 with 𝑑 ≥ 3. In particular, if 𝜇 is absolutely continuous with respect to the
Lebesgue measure, this upper bound is tight. Under similar conditions, Dobrić and
Yukich 1995 derived almost sure limits of 𝑛1/𝑑𝑊1(𝜇𝑛, 𝜇′𝑛) through explicit matching
arguments for two independent empirical measures 𝜇𝑛 and 𝜇′𝑛 of a common distribu-
tion 𝜇. Extensions to 𝑝 > 1 in Polish metric spaces were obtained by Boissard and
Le Gouic 2014 relying on covering arguments of the underlying ground space. For
probability measures on Euclidean spaces with possibly unbounded support, Dereich
et al. 2013 and Fournier and Guillin 2015 derived upper bounds on the 𝑝-th moment
E

[
𝑊

𝑝
𝑝 (𝜇𝑛, 𝜇)

]
under certain moment assumptions by explicitly constructing a cou-

plings between 𝜇𝑛 and 𝜇. For a compactly supported probability measure 𝜇 on R𝑑 ,
their main result implies for 𝑛 ≥ 1 that

E
[
𝑊𝑝 (𝜇𝑛, 𝜇)

] ≤ E [
𝑊

𝑝
𝑝 (𝜇𝑛, 𝜇)

]1/𝑝
≲ 𝑟𝑝,𝑑 (𝑛) B



𝑛−1/2𝑝 if 𝑑 < 2𝑝,
𝑛−1/2𝑝 log(𝑛)1/𝑝 if 𝑑 = 2𝑝,
𝑛−1/𝑑 if 𝑑 > 2𝑝.

(2)

This bound is known to be tight in several settings, e.g., for𝑑 < 2𝑝 when 𝜇 is discretely
supported and for 𝑑 > 2𝑝 when 𝜇 = Unif [0, 1]𝑑 is the uniform distribution on the
unit cube. For𝑑 = 2𝑝 , the differences between 𝜇𝑛 and 𝜇 at multiple scales culminate in
the proof of the upper bound to an additional logarithmic factor, however, it remains
open whether it is of correct order. For instance, contributions by Ajtai et al. 1984
and Talagrand 1994 show for 𝑑 = 2 and 𝑝 ≥ 1 that E

[
𝑊𝑝 (𝜇𝑛, 𝜇)

] ≍ 𝑛−1/2 log(𝑛)1/2 if
𝜇 = Unif [0, 1]2 (see also Bobkov and Ledoux 2021 for an alternative proof) which
improves (2) for 𝑝 = 1 by an additional log(𝑛)1/2 factor. Notably, the bounds in
(2) are known to delimit the accuracy of any estimator 𝜇̃𝑛 of 𝜇 with respect to
the Wasserstein distance in the high-dimensional regime. More precisely, without
additional assumptions on 𝜇, the rates in (2) are (up to logarithmic factors) minimax

5Throughout this work, we write 𝑎𝑛 ≲ 𝑏𝑛 for two non-negative real-valued sequences (𝑎𝑛)𝑛∈N
and (𝑏𝑛)𝑛∈N if there exists a constant 𝐶 > 0 such that 𝑎𝑛 ≤ 𝐶𝑏𝑛 for all 𝑛 ∈ N. If 𝑎𝑛 ≲ 𝑏𝑛 ≲ 𝑎𝑛 , we
write 𝑎𝑛 ≍ 𝑏𝑛 .
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optimal (Singh and Póczos 2018), which demonstrates that the estimation of measures
in the Wasserstein distance severely suffers from the curse of dimensionality.

To overcome this issue, there has been increased interest in structural properties of
𝜇 that allow for improved convergence rates. For probability measures on a compact
Polish space, Weed and Bach 2019 derived tight bounds in terms of a notion of
intrinsic dimension of 𝜇 (the upper and lower Wasserstein dimension). In particular,
if 𝜇 is compactly supported on R𝑑 with upper Wasserstein dimension 𝑠 > 2𝑝 , they
established that E

[
𝑊𝑝 (𝜇𝑛, 𝜇)

]
≲ 𝑛−1/𝑠 . Moreover, for uniformly distributed 𝜇 on a

compact connected Riemannian manifold of dimension 𝑑 ≥ 3, Ledoux 2019 derived
the bound E

[
𝑊𝑝 (𝜇𝑛, 𝜇)

] ≍ 𝑛−1/𝑑 , effectively improving upon (2) if 3 ≤ 𝑑 ≤ 2𝑝 .
Faster convergence rates can also be obtained under smoothness assumptions on
Lebesgue absolutely continuous measures by taking suitable wavelet or kernel
density estimators (Weed and Berthet 2019; Deb et al. 2021; Manole et al. 2021),
which exploit the smoothness explicitly in contrast to the vanilla empirical OT
cost. Under a high degree of smoothness, they approach the population measure in
Wasserstein distance nearly with the parametric rate 𝑛−1/2 (instead of 𝑛−1/𝑑 ), but
come with additional computational challenges (Vacher et al. 2021).

So far, we only discussed the situation when 𝜇𝑛 is compared to 𝜇. From a statistical
perspective, however, it is of similar interest to investigate𝑊𝑝 (𝜇𝑛, 𝜈) for a different
measure 𝜈 . We refer to Munk and Czado 1998 and Sommerfeld and Munk 2018 for
various applications, such as testing for relevant differences and confidence intervals
for𝑊𝑝 . One way to transfer the rates from𝑊𝑝 (𝜇𝑛, 𝜇) to𝑊𝑝 (𝜇𝑛, 𝜈) is by means of the
triangle inequality, ��𝑊𝑝 (𝜇𝑛, 𝜈) −𝑊𝑝 (𝜇, 𝜈)

�� ≤𝑊𝑝 (𝜇𝑛, 𝜇) . (3a)

Hence, all of the previous bounds on𝑊𝑝 (𝜇𝑛, 𝜇) immediately imply the same upper
bounds for the convergence rate of𝑊𝑝 (𝜇𝑛, 𝜈) towards𝑊𝑝 (𝜇, 𝜈) when 𝜇 and 𝜈 are
distinct measures on a common metric space. In the two-sample case, when 𝜈 is
additionally estimated by 𝜈𝑛 B 1

𝑛

∑𝑛
𝑖=1 𝛿𝑌𝑖 based on an i.i.d. sample 𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 ,

the triangle inequality yields

|𝑊𝑝 (𝜇𝑛, 𝜈𝑛) −𝑊𝑝 (𝜇, 𝜈) | ≤𝑊𝑝 (𝜇𝑛, 𝜇) +𝑊𝑝 (𝜈𝑛, 𝜈), (3b)

which implies the same upper bounds as in (2) (as well as all improvements described
above) for compactly supported 𝜇, 𝜈 on R𝑑 . Therefore, with 𝑟𝑝,𝑑 (𝑛) as in (2),

E
[��𝑊𝑝 (𝜇𝑛, 𝜈𝑛) −𝑊𝑝 (𝜇, 𝜈)

��] ≲ 𝑟𝑝,𝑑 (𝑛) . (4)

These upper bounds match the minimax rates (up to logarithmic factors) among all
estimators of𝑊𝑝 (𝜇, 𝜈) when no additional assumptions are placed on the measures
(Liang 2019; Niles-Weed and Rigollet 2019). In particular, this suggests that estimation
of the Wasserstein distance between (potentially different) two measures is (without
additional assumptions) statistically as difficult as estimation of the underlying
measure with respect to Wasserstein loss.
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However, crucial to the minimax optimality of (4) is the fact that 𝜇 and 𝜈 can be
chosen to be arbitrarily close. In fact, in case 𝜇 ≠ 𝜈 are sufficiently separated, faster
convergence rates may occur. Indeed, for compactly supported 𝜇, 𝜈 on R𝑑 , Chizat
et al. 2020 employed the dual formulation of the squared 2-Wasserstein distance
(with a similar strategy as for the 1-Wasserstein distance by Sriperumbudur et al.
2012) to derive the bound

E
[��𝑊 2

2 (𝜇𝑛, 𝜈𝑛) −𝑊 2
2 (𝜇, 𝜈)

��] ≲ 𝑟 2
2,𝑑 (𝑛). (5a)

If 𝜇 ≠ 𝜈 with𝑊2(𝜇, 𝜈) ≥ 𝛿 > 0, this implies squared convergence rates

E
[��𝑊2(𝜇𝑛, 𝜈𝑛) −𝑊2(𝜇, 𝜈)

��] ≲ 𝑟 2
2,𝑑 (𝑛)/𝛿 (5b)

when compared to (4). For 𝑑 ≥ 5, these upper bounds were recently generalized
by Manole and Niles-Weed 2021 to arbitrary 𝑝 ≥ 1, asserting the convergence rate
𝑛− min(𝑝,2)/𝑑 for the empirical 𝑝-Wasserstein distance. They also provided analogous
bounds under convex Hölder smooth costs and proved their sharpness for certain
instances as well as minimax rate optimality up to logarithmic factors.

Inspired by these developments, this work is dedicated to a comprehensive under-
standing of the statistical performance of the empirical OT cost when the underlying
probability measures are not only different but may additionally be supported on
distinct spaces, for example if X and Y are submanifolds of R𝑑 with (possibly) dif-
ferent dimension. This setting is practically relevant, since the concentration of
observations from a high-dimensional ambient space on a low dimensional subspace
is a commonly encountered phenomenon, reflected by the popularity of nonlinear
dimensionality reduction techniques like manifold learning (see, e.g., Talwalkar et al.
2008; Zhu et al. 2018). Based on the upper bound in (3), one is inclined to believe
that the convergence rate is determined by the slower rate, i.e., by the measure with
higher intrinsic dimension. However, the pivotal (and maybe unexpected) finding of
this work is that the convergence rate is actually determined by the measure with
lower intrinsic dimension. In this sense, empirical OT naturally adapts to measures
with distinct complexity in the most favorable way, and estimating the population
value is statistically no harder than estimating the simpler one of the measures 𝜇
and 𝜈 . We refer to this phenomenon of OT as lower complexity adaptation (LCA).

Example: ConsiderY = [0, 1]𝑑2 for𝑑2 ≥ 1 and letX ⊂ Y be a convex subset with
dimension 𝑑1 ≤ 𝑑2. In Section 2.3, we establish that the optimal transportation
of any 𝜈 ∈ P (Y) to any 𝜇 ∈ P (X ) under squared Euclidean costs can be
decomposed into two motions (see Figure 1): first an orthogonal projection
onto the linear space spanned by X , and then an OT assignment within that
linear space. Since such a projection is statistically negligible when compared
to an OT assignment, it follows for𝑊2(𝜇, 𝜈) ≥ 𝛿 > 0 by (5) that

E
[��𝑊2(𝜇𝑛, 𝜈𝑛) −𝑊2(𝜇, 𝜈)

��] ≲ 𝑟 2
2,𝑑1

(𝑛)/𝛿, (6)

which is independent of 𝑑2, reflecting the LCA principle.
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(a) (b)

X = [0, 1]2 × {0}

R

Figure 1: Optimal transport between two- and three-dimensional point clouds (blue and
green) for squared Euclidean costs ∥𝑥 − 𝑦∥2. The optimal assignment in (a) is characterized
by first projecting each point to the plane spanned by X before matching the data points, as
depicted in (b).

Our core contribution is to show that this phenomenon is a hallmark feature of
empirical OT that far exceeds the scope of convex subsets and orthogonal projections.
To formalize our main result, let X and Y be Polish spaces and consider a continuous
bounded cost function 𝑐 : X × Y → R. In this setting, the OT cost enjoys a dual
formulation (Villani 2008)

𝑇𝑐 (𝜇, 𝜈) = max
𝑓 ∈Fc

∫
X
𝑓 d𝜇 +

∫
Y
𝑓 𝑐d𝜈,

where Fc is a suitable collection of uniformly bounded measurable functions on X
(defined in Section 2.1) and 𝑓 𝑐 (𝑦) B inf𝑥∈X 𝑐 (𝑥,𝑦) − 𝑓 (𝑥) denotes the 𝑐-transform of
𝑓 ∈ Fc. To investigate the empirical OT cost, we quantify the complexity of the class
Fc and its 𝑐-transformed counterpart F𝑐

c = {𝑓 𝑐 | 𝑓 ∈ Fc} in terms of their uniform
metric entropy. The uniform metric entropy of a class G of real-valued functions on
a set Z is defined as the logarithm of the covering number with respect to uniform
norm ∥·∥∞, which is given for 𝜀 > 0 by

N (𝜀,G, ∥·∥∞) B inf
{
𝑛 ∈ N

���∃ 𝑔1, . . . , 𝑔𝑛 : Z → R with sup
𝑔∈G

min
1≤𝑖≤𝑛

∥𝑔 − 𝑔𝑖 ∥∞ ≤ 𝜀
}
.

A simple but crucial observation, which lies at the heart of this work, is that 𝑐-
transformation with bounded costs is a Lipschitz operation under the uniform norm.
Since 𝑓 𝑐𝑐 = 𝑓 for all 𝑓 ∈ Fc, this in particular implies (Lemma 1)

N (𝜀,F𝑐
c , ∥·∥∞) = N (𝜀,Fc, ∥·∥∞) . (7)

This captures the LCA principle from the dual perspective: we only need to be able
to control the complexity of either Fc or F𝑐

c . Then, under the growth condition

logN (𝜀,Fc, ∥·∥∞) ≲ 𝜀−𝑘
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for 𝜀 > 0 sufficiently small and a fixed 𝑘 > 0, we prove for arbitrary 𝜇 ∈ P (X ) and
𝜈 ∈ P (Y) that any of the empirical estimators

𝑇𝑐,𝑛 ∈ {𝑇𝑐 (𝜇𝑛, 𝜈),𝑇𝑐 (𝜇, 𝜈𝑛),𝑇𝑐 (𝜇𝑛, 𝜈𝑛)} (8)

satisfies the upper bound (Theorem 1)

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑘 < 2,
𝑛−1/2 log(𝑛) if 𝑘 = 2,
𝑛−1/𝑘 if 𝑘 > 2.

As we discuss in Section 3, suitable bounds for the uniform metric entropy of the
function class Fc are typically determined by the space X and the regularity proper-
ties of the cost function. Since X can be chosen as the support of 𝜇, these bounds
can often be understood in terms of the intrinsic complexity of 𝜇 (or the one of 𝜈 ,
if it turns out to be lower). To explore the consequences of the LCA principle, we
put special focus on the setting where the measure 𝜇 is supported on a space with
low intrinsic dimension while 𝜈 may live on a general Polish space. For example,
we obtain convergence rates for semi-discrete OT, where 𝜇 is supported on finitely
many points only. In this setting, we find that the empirical estimator 𝑇𝑐,𝑛 always
enjoys the parametric rate (Theorem 2)

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲ 𝑛−1/2.

This complements distributional limits for the one-sample estimator 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈)
by del Barrio et al. 2021. We also derive metric entropy bounds for F𝑐 if X is given
in terms of the image of sufficiently regular functions on sufficiently nice domains,
where we exploit the Lipschitz continuity, semi-concavity, or Hölder continuity of
the cost function to obtain novel theoretical guarantees for the convergence rate
of 𝑇𝑐,𝑛 (Theorems 3, 4 and 5). For example, a special case of Theorem 4 states that
the bound (6) for the 2-Wasserstein distance on R𝑑 remains valid for compactly
supported probability measures 𝜇 and 𝜈 if 𝜇 is concentrated on a 𝑑1-dimensional C2

submanifold (Example 4(𝑖𝑖𝑖)).
In Section 4, we gather computational evidence for the LCA principle and present
simulation results for various settings where the underlying measures have different
intrinsic dimensions. In particular, we observe that the numerical findings are in line
with the predictions of our theory. Section 5 concludes our work with a discussion
and an outline of some open questions. Appendix A contains bounds on the uniform
metric entropy of Fc.

2 Lower Complexity Adaptation (LCA)

Throughout the manuscript, we work with absolutely bounded and continuous
cost functions 𝑐 : X × Y → R on Polish spaces X and Y . For convenience, we
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formulate our theory for costs whose range is restricted to the interval [0, 1]. Since
𝑇𝑎𝑐+𝑏 = 𝑎 ·𝑇𝑐 + 𝑏 for any 𝑎 > 0 and 𝑏 ∈ R, this is not a genuine restriction, and all of
our results can easily be adapted to general costs that are absolutely bounded.

2.1 Duality and Complexity

In the following, we consider the dual formulation of the OT problem. This requires
the notion of 𝑐-conjugacy under a given cost function 𝑐 : X × Y → [0, 1] for non-
empty sets X and Y . The 𝑐-transforms of 𝑓 : X → R and 𝑔 : Y → R are defined
by

𝑓 𝑐 (𝑦) B inf
𝑥∈X

𝑐 (𝑥,𝑦) − 𝑓 (𝑥) and 𝑔𝑐 (𝑥) B inf
𝑦∈Y

𝑐 (𝑥,𝑦) − 𝑔(𝑦) . (9)

A function 𝑓 : X → R is called 𝑐-concave if there exists 𝑔 : Y → R such that 𝑓 = 𝑔𝑐 .
For Polish spaces X and Y and a continuous cost function, any 𝑐-transform 𝑓 𝑐 or
𝑔𝑐 is upper semi-continuous (as an infimum over continuous functions) and thus
(Borel-)measurable. The following existence statement, which is tailored to bounded
costs, shows that dual solutions of OT can always be assumed to be bounded and
𝑐-concave.

Theorem: LetX andY be Polish spaces and let 𝑐 : X×Y → [0, 1] be continuous.
Denote the class of feasible 𝑐-concave potentials by

Fc =
{
𝑓 : X → [−1, 1]

��� 𝑓 is 𝑐-concave with ∥ 𝑓 𝑐 ∥∞ ≤ 1
}
. (10)

Then, for any 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y), it holds that

𝑇𝑐 (𝜇, 𝜈) = max
𝑓 ∈Fc

∫
𝑓 d𝜇 +

∫
𝑓 𝑐d𝜈. (11)

Proof. Strong duality and the existence of maximizers in Fc follow from Theo-
rem 5.10(iii) in Villani 2008, where the bounds on 𝑓 ∈ Fc and 𝑓 𝑐 are detailed
in step 4 of the proof. □

The properties of the feasible 𝑐-concave potentials Fc strongly depend on the cost
function 𝑐 and the ground space X . For example, if the family

{
𝑐 (·, 𝑦) |𝑦 ∈ Y

}
of

partially evaluated costs has a common modulus of continuity (with respect to a
metric that metrizes X ), then all 𝑐-concave functions 𝑓 ∈ Fc are continuous with
the same modulus. Hence, if 𝑐 (·, 𝑦) is Lipschitz continuous uniform in 𝑦 ∈ Y , then
each 𝑓 ∈ Fc is Lipschitz as well (Santambrogio 2015, Section 1.2). We denote the
element-wise 𝑐-transform of the set Fc by F𝑐

c = {𝑓 𝑐 | 𝑓 ∈ Fc}, which is by definition
also uniformly bounded by one. A crucial observation is that the uniform metric
entropy of the function class F𝑐

c is bounded by the one of Fc, no matter how complex
the space Y is or how badly the functions 𝑐 (𝑥, ·) for fixed 𝑥 ∈ X behave.



2. Lower Complexity Adaptation (LCA) 39

Lemma 1 (Complexity under 𝑐-transformation): Let X and Y be non-empty sets
and 𝑐 : X × Y → [0, 1]. If F is a bounded function class on X , it follows for
𝜀 > 0 that

N (𝜀,F𝑐 , ∥·∥∞) ≤ N (𝜀,F , ∥·∥∞) .

Proof. If 𝑁 B N (𝜀,F , ∥·∥∞) = ∞, the claim is trivial, so assume 𝑁 < ∞. Let
{𝑓1, . . . , 𝑓𝑁 } be an 𝜀-covering for F with respect to the uniform norm on X . For
𝑓 ∈ F , consider 𝑓𝑖 such that ∥ 𝑓 − 𝑓𝑖 ∥∞ ≤ 𝜀. Since 𝑓 and 𝑐 are both bounded, it
follows that the 𝑐-transform 𝑓 𝑐 is bounded on Y . For all 𝑦 ∈ Y , we obtain

𝑓 𝑐 (𝑦) = inf
𝑥∈X

𝑐 (𝑥,𝑦) − 𝑓 (𝑥) = inf
𝑥∈X

𝑐 (𝑥,𝑦) − 𝑓𝑖 (𝑥) + 𝑓𝑖 (𝑥) − 𝑓 (𝑥){
≤ inf𝑥∈X 𝑐 (𝑥,𝑦) − 𝑓𝑖 (𝑥) + sup𝑥∈X |𝑓𝑖 (𝑥) − 𝑓 (𝑥) | ≤ 𝑓 𝑐𝑖 (𝑦) + 𝜀
≥ inf𝑥∈X 𝑐 (𝑥,𝑦) − 𝑓𝑖 (𝑥) − sup𝑥∈X |𝑓𝑖 (𝑥) − 𝑓 (𝑥) | ≥ 𝑓 𝑐𝑖 (𝑦) − 𝜀,

which implies sup𝑦∈Y |𝑓 𝑐 (𝑦) − 𝑓 𝑐𝑖 (𝑦) | ≤ 𝜀. Thus, {𝑓 𝑐1 , . . . , 𝑓 𝑐𝑁 } is an 𝜀-covering of F𝑐

with respect to the uniform norm. □

Since any feasible 𝑐-concave 𝑓 ∈ Fc fulfills 𝑓 = 𝑓 𝑐𝑐 Santambrogio 2015, Proposi-
tion 1.34, we conclude that the uniform metric entropies of the function classes Fc
and F𝑐

c are identical for any covering radius 𝜀 > 0, see (7). Hence, to control the
complexity of both function classes simultaneously, it suffices to upper bound only
one of them. In particular, in a concrete setting where different bounds for Fc and
F𝑐

c are available, their (𝜀-wise) minimum can be employed to derive an upper bound
for the convergence rate in Theorem 1 below. Methods to control the uniform metric
entropy of Fc and F𝑐

c typically exploit regularity properties of the underlying spaces
X and Y as well as the ground cost 𝑐 (cf. Section 3).

2.2 LCA: Dual Perspective

The observation that Fc and F𝑐
c have identical uniform metric entropies implies the

following upper bound on the convergence of the empirical estimators 𝑇𝑐,𝑛 in (8),
demonstrating the LCA principle. Notably, in the two-sample case 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈𝑛),
the statement holds irregardless of the dependency structure between the empirical
measures 𝜇𝑛 and 𝜈𝑛 .

Theorem 1 (General LCA): Let X and Y be Polish spaces and let 𝑐 : X × Y →
[0, 1] be continuous. Consider the function class Fc from (10) and assume that
there exist 𝑘 > 0, 𝐾 > 0, and 𝜀0 ∈ (0, 1] such that the uniform metric entropy
of Fc is bounded by

logN (
𝜀,Fc, ∥·∥∞

) ≤ 𝐾𝜀−𝑘 for 0 < 𝜀 ≤ 𝜀0. (12)
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Then, for any 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y), the empirical estimator 𝑇𝑐,𝑛 from (8)
satisfies

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑘 < 2,
𝑛−1/2 log(𝑛) if 𝑘 = 2,
𝑛−1/𝑘 if 𝑘 > 2,

(13)

where the implicit constant only depends on 𝑘 , 𝐾 , and 𝜀0.

When interpreting this statement, one should keep in mind that it is always possible
to assume X = supp(𝜇) and Y = supp(𝜈) if this leads to improved bounds for the
uniform metric entropy of Fc (or equivalently F𝑐

c ). In this sense, Theorem 1 can
be tailored to take advantage of intrinsic properties of (the support of) 𝜇 (or 𝜈).
The proof employs arguments from empirical process theory and generalizes the
technique of Sriperumbudur et al. 2012 and Chizat et al. 2020, where upper bounds
for bounded convex sets X = Y ⊆ R𝑑 and Euclidean costs 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 for
𝑝 = 1 and 𝑝 = 2 were derived.

Proof of Theorem 1. We first consider 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈𝑛). The definition of Fc implies

𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) = max
𝑓 ∈Fc

(∫
X
𝑓 d𝜇𝑛 +

∫
Y
𝑓 𝑐d𝜈𝑛

)
− max
𝑓 ∈Fc

(∫
X
𝑓 d𝜇 +

∫
Y
𝑓 𝑐d𝜈

)
{
≤ sup𝑓 ∈Fc

∫
X 𝑓 d(𝜇𝑛 − 𝜇) +

∫
Y 𝑓

𝑐d(𝜈𝑛 − 𝜈),
≥ − sup𝑓 ∈Fc

∫
X 𝑓 d(𝜇 − 𝜇𝑛) +

∫
Y 𝑓

𝑐d(𝜈 − 𝜈𝑛),
and hence

|𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) | ≤ sup
𝑓 ∈Fc

����
∫
X
𝑓 d(𝜇𝑛 − 𝜇)

���� + sup
𝑓 𝑐 ∈F𝑐

c

����
∫
Y
𝑓 𝑐d(𝜈𝑛 − 𝜈)

���� . (14)

Note by Lemma 1 that both Fc and F𝑐
c have finite uniform metric entropy for any

𝜀 > 0. Hence, both function classes contain subsets of at most countable cardinality
that are dense in uniform norm, and the right hand side of (14) can thus be considered
as a countable supremum and is therefore measurable. Further, recall that all elements
in Fc and F𝑐

c are absolutely bounded by one. Taking the expectation and invoking
symmetrization techniques (see Wainwright 2019, Proposition 4.11), we obtain

E
[��𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈)��] ≤ E

[
sup
𝑓 ∈Fc

����
∫
X
𝑓 d(𝜇𝑛 − 𝜇)

����
]
+ E

[
sup
𝑓 𝑐 ∈F𝑐

c

����
∫
Y
𝑓 𝑐d(𝜈𝑛 − 𝜈)

����
]

≤ 2
(R𝑛 (Fc) +R𝑛 (F𝑐

c )
)
,

where R𝑛 (Fc) and R𝑛 (F𝑐
c ) denote the Rademacher complexities of the function

classes Fc and F𝑐
c . The Rademacher complexity of Fc is defined by

R𝑛 (Fc) B E
[

sup
𝑓 ∈Fc

�����1𝑛
𝑛∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑋𝑖)
�����
]
,
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for i.i.d. 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 and independent i.i.d. Rademacher variables 𝜎1, . . . , 𝜎𝑛 ∼
Unif{−1, 1}. This quantity is dominated by Dudley’s entropy integral (see Luxburg
and Bousquet 2004, Theorem 16),

R𝑛 (Fc) ≤ inf
𝛿∈[0,1]

(
2𝛿 +

√
32𝑛−1/2

∫ 1

𝛿/4

√︁
log N (𝜀,Fc, ∥·∥∞) d𝜀

)
.

Let 𝐾̃ B
√

32𝐾 . Since the covering number is a decreasing function in 𝜀, a short
calculation shows that the assumption logN (𝜀,Fc, ∥ · ∥∞) ≤ 𝐾𝜀−𝑘 for 𝜀 ≤ 𝜀0 implies
that

R𝑛 (Fc) ≤ inf
𝛿∈[0,1]

(
2𝛿 + 𝐾̃𝑛−1/2

∫ 1

𝛿/4
min(𝜀, 𝜀0)−𝑘/2d𝜀

)

≤




𝐾̃

(
𝜀1−𝑘/2

0
1−𝑘/2 + 1−𝜀0

𝜀𝑘/2
0

)
𝑛−1/2 if 𝑘 < 2 for 𝛿 = 0,(

8 + 𝐾̃ log(𝜀0) + 𝐾̃ (1−𝜀0 )
𝜀0

)
𝑛−1/2 + 𝐾̃

2 𝑛
−1/2 log(𝑛) if 𝑘 = 2 for 𝛿 = 4𝑛−1/2,

𝐾̃

(
𝜀1−𝑘/2

0
1−𝑘/2 + 1−𝜀0

𝜀𝑘/2
0

)
𝑛−1/2 +

(
8 + 𝐾̃

𝑘/2−1

)
𝑛−1/𝑘 if 𝑘 > 2 for 𝛿 = 4𝑛−1/𝑘 ,

where we assume 𝑛 large enough such that 𝛿 ≤ 𝜀0 for the respective choices. As Fc
and F𝑐

c share the same covering number with respect to uniform norm (Lemma 1)
and since all functions in F𝑐

c are bounded in absolute value by one as well, it follows
that R𝑛 (F𝑐

c ) can be bounded just like R𝑛 (Fc). Finally, for the other estimators 𝑇𝑐,𝑛
in (8), we obtain

E
[��𝑇𝑐 (𝜇𝑛, 𝜈) −𝑇𝑐 (𝜇, 𝜈)��] ≤ R𝑛 (Fc) and E

[��𝑇𝑐 (𝜇, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈)��] ≤ R𝑛 (F𝑐
c )

in analogous fashion, which proves the bounds from (13) and finishes the proof. □

2.3 LCA: Primal Perspective

The proof of Theorem 1 relies on a technical observation about the nature of 𝑐-
transforms and does not convey a geometric interpretation why empirical OT should
follow the LCA principle. To provide some additional intuition, we next consider the
LCA phenomenon from the primal perspective. Even though this approach yields
less general results, its more explicit character has benefits, e.g., for establishing
matching lower bounds.

Proposition 1 (Decomposition under additive costs): Let X be a Polish space
and Y = Y1 × Y2 be the product of two Polish spaces. Let 𝑐 : X × Y → [0, 1]
be continuous so that

𝑐 (𝑥,𝑦) = 𝑐1(𝑥,𝑦1) + 𝑐2(𝑦2) (15)

for all 𝑥 ∈ X and 𝑦 = (𝑦1, 𝑦2) ∈ Y with continuous 𝑐1 : X × Y1 → [0, 1] and
𝑐2 : Y2 → [0, 1], and let 𝔭 : Y → Y1 be the Cartesian projection to Y1. Then,
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for any 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y),

𝑇𝑐 (𝜇, 𝜈) = 𝑇𝑐1 (𝜇,𝔭#𝜈) + 𝑅𝑐2 (𝜈), (16)

where 𝑅𝑐2 (𝜈) :=
∫
Y 𝑐2(𝑦2) d𝜈 (𝑦1, 𝑦2).

For example, this statement can be applied in Euclidean spaces under 𝑙𝑝𝑝 costs if
X ⊂ Y1. In this case, we find 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦1∥𝑝𝑝 + ∥𝑦2∥𝑝𝑝 (see also Figure 1 in the
introduction), which satisifies condition (15). If 𝑝 = 2, a relation of the form (16)
clearly remains valid whenever X is contained in an affine linear subspace of Y and
𝔭 is the corresponding orthogonal projection.

Proof of Proposition 1. For any coupling 𝜋 ∈ Π(𝜇, 𝜈), we consider the decomposition
∫
X×Y

𝑐 d𝜋 =
∫
X×Y

𝑐1 d𝜋 +
∫
X×Y

𝑐2 d𝜋.

The second term on the right is independent of𝜋 and equals𝑅𝑐2 (𝜈) :=
∫
Y 𝑐2(𝑦2) d𝜈 (𝑦1, 𝑦2),

while the first term can be rewritten in terms of 𝜋̃ = (id,𝔭)#𝜋 ∈ Π(𝜇,𝔭#𝜈) by a change
of variables, such that

∫
X×Y 𝑐1 d𝜋 =

∫
X×Y1

𝑐1 d𝜋̃ . Conversely, the gluing lemma (cf.
Villani 2008, Chapter 1) implies that each 𝜋̃ ∈ Π(𝜇,𝔭#𝜈) gives rise to a 𝜋 ∈ Π(𝜇, 𝜈)
for which

∫
X×Y 𝑐1 d𝜋 =

∫
X×Y1

𝑐1 d𝜋̃ holds as well. Therefore, we conclude that

𝑇𝑐 (𝜇, 𝜈) = inf
𝜋∈Π (𝜇,𝜈 )

∫
X×Y

𝑐1 d𝜋 +
∫
X×Y

𝑐2 d𝜋

= inf
𝜋̃∈Π (𝜇,𝔭#𝜈 )

∫
X×Y1

𝑐1 d𝜋̃ + 𝑅𝑐2 (𝜈) = 𝑇𝑐1 (𝜇,𝔭#𝜈) + 𝑅𝑐2 (𝜈) . □

Since relation (16) in Proposition 1 holds for any pair of probability measures 𝜇 ∈
P (X ) and 𝜈 ∈ P (Y), we obtain

𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) = 𝑇𝑐1 (𝜇𝑛,𝔭#𝜈𝑛) −𝑇𝑐1 (𝜇,𝔭#𝜈) + 𝑅𝑐2 (𝜈𝑛 − 𝜈), (17)

where 𝜈𝑛 − 𝜈 is understood as a signed measure. Thus, the statistical performance
when estimating 𝑇𝑐 (𝜇, 𝜈) via the empirical OT cost is governed by the (potentially
much simpler) complexity of 𝑇𝑐1 (𝜇,𝔭#𝜈). By the reverse triangle inequality, it fur-
thermore follows that

E [|𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) |] ≥ E
[��|𝑇𝑐1 (𝜇𝑛,𝔭#𝜈𝑛) −𝑇𝑐1 (𝜇,𝔭#𝜈) | − |𝑅𝑐2 (𝜈𝑛 − 𝜈) |

��] , (18)

where we note E
[|𝑅𝑐2 (𝜈𝑛 − 𝜈) |

] ≍ 𝑛−1/2 if 𝜎2
𝑐2 B Var𝑌∼𝜈 [𝑐2(𝑌 )] > 0. Let 𝑓𝑛 ∈ F𝑐1

denote an optimizer for (11) between 𝜇𝑛 and 𝔭#𝜈 under the cost function 𝑐1. If the
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i.i.d. random variables 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 are independent, we find

E
[
𝑇𝑐1 (𝜇𝑛,𝔭#𝜈𝑛) −𝑇𝑐1 (𝜇𝑛,𝔭#𝜈)

]
= E

[
max
𝑓 ∈F𝑐1

(∫
X
𝑓 d𝜇𝑛 +

∫
Y1

𝑓 𝑐1d𝔭#𝜈𝑛

)
− max
𝑓 ∈F𝑐1

(∫
X
𝑓 d𝜇𝑛 +

∫
Y1

𝑓 𝑐1d𝔭#𝜈

)]

≥ E𝑋1,...,𝑋𝑛

[
E𝑌1,...,𝑌𝑛

[∫
Y1

𝑓 𝑐1
𝑛 d(𝔭#𝜈𝑛 − 𝔭#𝜈)

���𝑋1, . . . , 𝑋𝑛

] ]

= 0,

where independence is crucial for the final equality. In particular, this implies

E
[|𝑇𝑐1 (𝜇𝑛,𝔭#𝜈𝑛) −𝑇𝑐1 (𝜇,𝔭#𝜈) |

] ≥ E [
𝑇𝑐1 (𝜇𝑛,𝔭#𝜈𝑛) −𝑇𝑐1 (𝜇,𝔭#𝜈)

]
≥ E [

𝑇𝑐1 (𝜇𝑛,𝔭#𝜈) −𝑇𝑐1 (𝜇,𝔭#𝜈)
]
, (19)

which means that lower bounds for the two-sample setting can be obtained from
lower bounds for the one-sample case. In Examples 3 and 5 of the subsequent section,
we employ relation (18) and (19) to this end.

Remark 1 (Dependent empirical measures): Dependencies between the empiri-
cal measures 𝜇𝑛 and 𝜈𝑛 can lead to parametric convergence rates of order 𝑛−1/2

irregardless of the underlying spaces Y1 and Y2. For example, if X = Y1 and
𝜇 = 𝔭#𝜈 with empirical measures related by 𝜇𝑛 = 𝔭#𝜈𝑛 , it follows from (17) that

E
[��𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈)��] = E [��𝑅𝑐2 (𝜈𝑛 − 𝜈)

��] ≍ 𝑛−1/2

for any non-negative cost 𝑐1 with 𝑐1(𝑦1, 𝑦1) = 0 for all 𝑦1 ∈ Y1 if 𝜎𝑐2 > 0.

3 Applications and Examples

The LCA principle, as formalized in Theorem 1, can readily be employed whenever
suitable bounds on the uniform metric entropy of Fc are available. In the following,
we consider a number of settings where well-known entropy bounds lead to novel
results on the convergence rate of empirical OT. In order to efficiently exploit the
properties of the space X in settings of low intrinsic dimensionality, the following
observation is useful.

Lemma 2 (Union bound): Let F be a class of real valued functions on a set
X =

⋃𝐼
𝑖=1 X𝑖 for (not necessarily disjoint) subsets X𝑖 ⊂ X and 𝐼 ∈ N, and let

F |X𝑖 B
{
𝑓 |X𝑖 : X𝑖 → R | 𝑓 ∈ F

}
be the class of functions restricted to X𝑖 for

all 𝑖 ∈ {1, . . . , 𝐼 }. Then, for each 𝜀 > 0,

logN (𝜀,F , ∥·∥∞) ≤
𝐼∑︁
𝑖=1

logN (𝜀,F |X𝑖 , ∥·∥∞).
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Proof. Suppose that the right hand side is finite, otherwise the bound is trivial. Denote
by F𝑖 a minimal 𝜀-covering of F |X𝑖 with respect to the uniform norm. Let X̃1 B X1
and define X̃𝑖 B X𝑖 \

⋃𝑖−1
𝑗=1 X𝑗 for 𝑖 ≥ 2. Then

{ ∑𝐼
𝑖=1 𝑓𝑖 ·1X̃𝑖

| 𝑓𝑖 ∈ F𝑖
}

is an 𝜀-covering
of F under the uniform norm with cardinality at most

∏𝐼
𝑖=1 N (𝜀,F |X𝑖 , ∥·∥∞). □

3.1 Semi-Discrete Optimal Transport

We first address the setting of semi-discrete OT, where X = {𝑥1, . . . , 𝑥𝐼 } is a finite
discrete space with 𝐼 ∈ N elements. Structural and computational properties of semi-
discrete OT have been investigated extensively, especially in Euclidean contexts
(see, e.g., Aurenhammer et al. 1998; Mérigot 2011; Geiß et al. 2013; Hartmann and
Schuhmacher 2020). For our purposes, consider a general Polish space Y and a
continuous cost function 𝑐 : X × Y → [0, 1]. By definition (10), the function class
Fc is absolutely bounded by one and we find that

N (𝜀,Fc |{𝑥𝑖 }, ∥·∥∞) ≤ ⌈1/𝜀⌉ (20)

for any 𝜀 > 0 and 𝑖 ∈ {1, . . . , 𝐼 }. Hence, Lemma 2 implies that logN (𝜀,Fc, ∥·∥∞) ≤
𝐼 log ⌈1/𝜀⌉ ≲ 𝐼/𝜀 and we can apply Theorem 1 to derive the following bound.

Theorem 2 (Semi-discrete LCA): Let X = {𝑥1, . . . , 𝑥𝐼 } be a finite discrete space,
Y a Polish space, and 𝑐 : X × Y → [0, 1] continuous. Then, for any 𝜇 ∈ P (X )
and 𝜈 ∈ P (Y), the empirical estimator 𝑇𝑐,𝑛 from (8) satisfies

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲ 𝑛−1/2. (21)

This result is in line with recent findings by del Barrio et al. 2021, who derive a central
limit theorem for the empirical semi-discrete OT cost. Their result allows for possibly
unbounded costs, but it is limited to the one-sample estimator 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈).
According to Markov’s inequality, Theorem 2 implies that the sequence of random
variables

√
𝑛
(
𝑇𝑐,𝑛 − 𝑇𝑐 (𝜇, 𝜈)

)
is tight even for 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇, 𝜈𝑛) or 𝑇𝑐 (𝜇𝑛, 𝜈𝑛), which

indicates that it might also be possible to derive limit distributions when the measure
on the general space Y is estimated empirically. Moreover, Theorem 2 asserts novel
bounds for the Wasserstein distance when one measure is supported on finitely
many points only while the support of the other measure is bounded.

3.2 Optimal Transport under Lipschitz costs

Semi-discrete OT can be regarded as a special OT setting where one probability
measure has intrinsic dimension zero. We now broaden this perspective to higher
dimensions and consider parameterized spaces and surfaces. The effective dimension
is then governed by the (possibly low-dimensional) domain of the parameterization,
and not by the (possibly high-dimensional) ambient space. In this section, we work
with an additional Lipschitz requirement for the cost function 𝑐 : X × Y → [0, 1]
and impose the following condition on the Polish space X . By rescaling, we may
assume that the Lipschitz constant is equal to one.
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Assumption (Lip): Suppose X =
⋃𝐼
𝑖=1 𝑔𝑖 (U𝑖) for 𝐼 ∈ N connected metric spaces

(U𝑖 , 𝑑𝑖) and maps 𝑔𝑖 : U𝑖 → X so that 𝑐 (𝑔𝑖 (·), 𝑦) is 1-Lipschitz with respect to
𝑑𝑖 for all 𝑦 ∈ Y .

This setting captures a broad notion of generalized surfaces in an ambient space.
Since the mappings 𝑔𝑖 are not required to be injective, self-intersections are possible.
Moreover, exploiting the (not necessarily disjoint) decomposition X =

⋃𝐼
𝑖=1 X𝑖 with

X𝑖 B 𝑔𝑖 (U𝑖) for 𝑖 ∈ {1, . . . , 𝐼 }, it suffices by Lemma 2 to control the complexity of
Fc |X𝑖 to bound the metric entropy of Fc. For this purpose, we note that the Lipschitz
continuity of 𝑐 (𝑔𝑖 (·), 𝑦) implies that 𝑓 ◦ 𝑔𝑖 for any 𝑐-concave potential 𝑓 ∈ Fc is
Lipschitz as well. This relates the restricted function class Fc |X𝑖

to the class of
bounded Lipschitz functions on U𝑖 . For the latter, metric entropy bounds in terms of
the covering number of U𝑖 are available (Kolmogorov and Tikhomirov 1961, Section
9). For 𝜀 > 0, the covering number of a metric space (U , 𝑑) is defined by

N (𝜀,U , 𝑑) B inf
{
𝑛 ∈ N

���∃ 𝑈1, . . . ,𝑈𝑛 ⊆ U with diam(𝑈𝑘 ) ≤ 2𝜀 and U =
𝑛⋃
𝑘=1

𝑈𝑘

}
,

where diam(𝑈 ) B sup𝑢,𝑣∈𝑈 𝑑 (𝑢, 𝑣) denotes the diameter of a subset𝑈 ⊆ U .

Theorem 3 (Lipschitz LCA): Let X and Y be Polish spaces and let 𝑐 : X × Y →
[0, 1] be continuous. If Assumption (Lip) holds and there exists 𝑘 > 0 so that
for all 𝑖 ∈ {1, . . . , 𝐼 }

N (𝜀,U𝑖 , 𝑑𝑖) ≲ 𝜀−𝑘 for 𝜀 > 0 sufficiently small,

then, for any 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y), the empirical estimator 𝑇𝑐,𝑛 from (8)
satisfies

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑘 < 2,
𝑛−1/2 log(𝑛) if 𝑘 = 2,
𝑛−1/𝑘 if 𝑘 > 2.

(22)

Proof. Lemma 4 in Appendix A shows that the uniform metric entropy in this setting
is bounded by logN (𝜀,F𝑐 , ∥·∥∞) ≲ 𝜀−𝑘 . Applying Theorem 1 yields bound (22). □

Remark 2 (Disconnected domains): If the metric spaces U1, . . . ,U𝐼 in Assump-
tion (Lip) consist of finitely many connected components, Theorem 3 remains
valid at the price of a possibly larger constant. Moreover, if someU𝑖 has infinitely
many components, Lemma 4 ensures

logN (𝜀,F𝑐 , ∥·∥∞) ≲ 𝜀−𝑘 log(𝜀−1) ≲ 𝜀−𝑘−𝛿

for any 𝛿 > 0 (where the implicit constant depends on 𝛿). Hence, Theorem 1
shows that bound (22) still holds when 𝑘 is replaced by 𝑘 + 𝛿 .
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We emphasize once more that no additional assumptions on the complexity of the
Polish spaceY are necessary. To highlight applications and noteworthy consequences
of Theorem 3, we consider a number of examples.

Example 1 (Metric spaces with Lipschitz costs): Let X and Y be closed subsets of
a Polish metric space (Z, 𝑑) and consider costs 𝑐 : Z2 → R that are continuous
and absolutely bounded on X ×Y . Furthermore, assume that 𝑐 (·, 𝑦) is Lipschitz
on X uniformly in 𝑦 ∈ Y , which, for example, holds for 𝑐 (𝑥,𝑦) = 𝑑𝑝 (𝑥,𝑦)
and 𝑝 ≥ 1 if Y is bounded. Then, Theorem 3 provides convergence rates
whenever N (𝜀,X , 𝑑) ≲ 𝜀−𝑘 . This condition holds if the upper Minkowski-
Bouligand dimension of X (Mattila 1995, Section 5.3), defined by

dim𝑀 (X ) B lim sup
𝜀↘0

logN (𝜀,X , 𝑑)
log(𝜀−1) ,

is strictly dominated by 𝑘 . Note that non-integral values of dim𝑀 (X ) are
possible and that X does not necessarily have to be connected (Remark 2).

Example 2 (Euclidean spaces with locally Lipschitz costs): Consider a locally
Lipschitz cost function 𝑐 : R𝑑 × R𝑑 → R for 𝑑 ∈ N. This setting entails the
choice 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 for the Euclidean norm ∥·∥, or the 𝑙𝑝𝑝 -costs 𝑐 (𝑥,𝑦) =∑𝑑
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |𝑝 , both of which are popular options for the Wasserstein distance

of order 𝑝 ≥ 1. In the following examples, we implicitly assume that X and Y
are Polish subsets of R𝑑 .

(𝑖) Bounded sets: If X ,Y ⊂ R𝑑 are bounded sets, then 𝑐 (·, 𝑦) is Lipschitz con-
tinuous on X uniformly in 𝑦 ∈ Y and N (𝜀,X , ∥·∥) ≲ 𝜀−𝑑 . Since one can
always enlarge X and Y to connected compact sets, Theorem 3 asserts that
the convergence rate of the empirical OT cost is dominated by (22) with
𝑘 = 𝑑 .

(𝑖𝑖) Surfaces: Improved bounds can be derived if X =
⋃𝐼
𝑖=1 𝑔𝑖 (U𝑖) for Lipschitz

maps 𝑔𝑖 : U𝑖 → R𝑑 on bounded and connected sets U𝑖 ⊆ R𝑠 with 𝑑 > 𝑠 ∈ N.
In this setting, the partially evaluated cost 𝑐

(
𝑔𝑖 (·), 𝑦

)
is Lipschitz on X

uniformly in 𝑦 ∈ Y for bounded sets Y , and it holds that N (𝜀,U𝑖 , ∥·∥) ≲ 𝜀−𝑠 .
Hence, bound (22) is valid for 𝑘 = 𝑠 .

(𝑖𝑖𝑖) Manifolds: The examples outlined in (𝑖𝑖) include compact 𝑠-dimensional
immersed C1 submanifolds of R𝑑 , possibly with boundary (Lee 2013). Due
to compactness, a finite atlas of charts with connected and bounded co-
domains U𝑖 can always be found.

We next show that the upper bounds in Theorem 3 can be complemented by matching
lower bounds in settings where the primal approach to the LCA principle (see
Proposition 1) is available.
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Example 3 (Lower bounds under Lipschitz costs): LetY = Y1×Y2 be the product
of two connected Polish spaces and let X = Y1. Consider the costs 𝑐 (𝑥,𝑦) =
𝑑1(𝑥,𝑦1) +𝑐2(𝑦2), where 𝑑1 is a Polish metric on Y1 such that 0 < diam(Y1) ≤ 1
and 𝑐2 : Y2 → [0, 1] is continuous. Then 𝑐 (·, 𝑦) is Lipschitz with respect to 𝑑1
uniformly in 𝑦 ∈ Y , so Assumption (Lip) is fulfilled. If N (𝜀,X , 𝑑1) ≍ 𝜀−𝑘 for
some 𝑘 > 0 as 𝜀 ↘ 0 and if the empirical measures 𝜇𝑛 and 𝜈𝑛 are independent,
one can show that

sup
𝜇,𝜈
E [|𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) |] ≳

{
𝑛−1/2 if 𝑘 ≤ 2,
𝑛−1/𝑘 if 𝑘 > 2,

(23)

where the supremum is taken over 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y). For 𝑘 ≤ 2,
inequality (23) follows by selecting suitable discrete measures 𝜇 and 𝜈 (see
Sommerfeld et al. 2019, Section 5). For 𝑘 > 2, inequality (23) follows by (18)
and (19) in conjunction with the minimax lower bounds for the 1-Wasserstein
distance𝑊1(𝜇, 𝜈) = 𝑇𝑑1 (𝜇, 𝜈) by Singh and Póczos 2018, Theorem 2

sup
𝜇,𝜈
E

[|𝑇𝑑1 (𝜇𝑛,𝔭#𝜈) −𝑇𝑑1 (𝜇,𝔭#𝜈) |
] ≥ sup

𝜇
E

[
𝑇𝑑1 (𝜇𝑛, 𝜇)

]
≳ 𝑛−1/𝑘 .

Hence, the upper bounds from (22) are sharp for 𝑘 ≠ 2 and sharp up to loga-
rithmic terms in case of 𝑘 = 2.

3.3 Optimal Transport under Semi-Concave Costs

It is known that better convergence rates than those offered by Theorem 3 can be
obtained on Euclidean spaces for more regular cost functions (Manole and Niles-
Weed 2021). In this section, we consider improvements for semi-concave costs (before
we turn to Hölder smooth costs in Section 3.4). A function 𝑓 : 𝑈 → R on a bounded,
convex domain 𝑈 ⊂ R𝑑 for 𝑑 ∈ N is called Λ-semi-concave with modulus Λ ≥ 0 if
the map

𝑢 ↦→ 𝑓 (𝑢) − Λ ∥𝑢∥2

is concave, where ∥·∥ denotes the Euclidean norm (cf. Gangbo and McCann 1996).
The uniform metric entropy of the class of bounded, Lipschitz, and semi-concave
functions on𝑈 is of order 𝜀−𝑑/2 (Bronshtein 1976; Guntuboyina and Sen 2013), com-
pared to 𝜀−𝑑 without semi-concavity. Since boundedness, Lipschitz continuity, and
semi-concavity are all inherited to Fc by the cost function, we impose the following
conditions. For convenience, we assume the Lipschitz constant and the modulus of
semi-concavity to be equal to one, since other constants can be accommodated by
scaling the cost function.

Assumption (SC): Suppose X =
⋃𝐼
𝑖=1 𝑔𝑖 (U𝑖) for 𝐼 ∈ N bounded, convex subsets

U𝑖 ⊆ R𝑑 and maps 𝑔𝑖 : U𝑖 → X so that 𝑐 (𝑔𝑖 (·), 𝑦) is 1-Lipschitz and 1-semi-
concave for all 𝑦 ∈ Y .
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Similar to Assumption (Lip) in the previous section, Assumption (SC) enables the
application of Lemma 2 to the union X =

⋃𝐼
𝑖=1 X𝑖 with X𝑖 = 𝑔𝑖 (U𝑖) for all 𝑖 ∈

{1, . . . , 𝐼 }. Combined with the uniform metric entropy bounds by Bronshtein 1976
and Guntuboyina and Sen 2013, this leads to the following result.

Theorem 4 (Semi-concave LCA): Let X and Y be Polish spaces and 𝑐 : X ×Y →
[0, 1] be continuous. If Assumption (SC) holds, then, for any 𝜇 ∈ P (X ) and
𝜈 ∈ P (Y), the empirical estimator 𝑇𝑐,𝑛 from (8) satisfies

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑑 ≤ 3,
𝑛−1/2 log(𝑛) if 𝑑 = 4,
𝑛−2/𝑑 if 𝑑 ≥ 5.

(24)

Proof. Lemma 5 in Appendix A shows that the uniform metric entropy in this setting
is bounded by logN (𝜀,Fc, ∥·∥∞) ≲ 𝜀−𝑑/2. This implies bound (24) via Theorem 1. □

Compared to Theorem 3, which would guarantee a convergence rate of 𝑛−1/𝑑 for
𝑑 ≥ 5 under Assumption (SC), Theorem 4 provides the considerably faster rate
𝑛−2/𝑑 . To explore applications, we revisit the settings discussed in Example 2 and
show how they fare under the stronger Assumption (SC). For this purpose, note that
semi-concavity of a C2 function 𝑓 on a convex domain is implied by the boundedness
of the Eigenvalues of its Hessian. Indeed, if the Eigenvalues are bounded from above
by 2Λ ≥ 0, then 𝑢 ↦→ 𝑓 (𝑢) − Λ ∥𝑢∥2 has a negative semi-definite Hessian and is
therefore concave (see Luenberger 2003, Section 6.4, Proposition 5).

Example 4 (Euclidean spaces with C2 costs): Extending Example 2, consider a
twice continuously differentiable cost function 𝑐 : R𝑑 ×R𝑑 → R for 𝑑 ∈ N. This
setting includes 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 as well as 𝑐 (𝑥,𝑦) = ∑𝑑

𝑖=1 |𝑥𝑖 − 𝑦𝑖 |𝑝 for 𝑝 ≥ 2.
We implicitly assume that X and Y are Polish subsets of R𝑑 in the following.

(𝑖) Bounded sets: Let X ,Y ⊂ R𝑑 be bounded sets. Since X and Y can always
be enlarged to convex compact sets, the functions 𝑐 (·, 𝑦) are Lipschitz con-
tinuous and semi-concave on X uniformly in 𝑦 ∈ Y . Hence, Theorem 4
provides the upper bounds (24).

(𝑖𝑖) Surfaces: Improved bounds can be obtained if X =
⋃𝐼
𝑖=1 𝑔𝑖 (U𝑖) for C2 maps

𝑔𝑖 : U𝑖 → R𝑑 with bounded second derivatives on open, bounded, and
convex sets U𝑖 ⊂ R𝑠 for 𝑠 < 𝑑 . In this setting, the partially evaluated
cost 𝑐 (𝑔𝑖 (·), 𝑦) is Lipschitz and semi-concave on U𝑖 uniformly in 𝑦 ∈ Y for
bounded Y . Hence, bound (24) holds with 𝑑 replaced by 𝑠 .

(𝑖𝑖𝑖) Manifolds: The setting described in (𝑖𝑖) includes compact 𝑠-dimensional
immersed C2 submanifolds of R𝑑 (Lee 2013). Compactness ensures the
existence of an atlas with finitely many charts such that all involved maps
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have bounded second derivative and all co-domains of charts are convex
and bounded.

We continue with a setting in which lower bounds for the empirical OT cost that
match the upper bounds in Theorem 4 can be derived via Proposition 1.

Example 5 (Lower bounds under semi-concave costs): Let 1 ≤ 𝑑1 ≤ 𝑑2 and
consider the unit cubes X = [0, 1]𝑑1 and Y = [0, 1]𝑑2 . If X is embedded into Y
along the first 𝑑1 coordinates, the squared Euclidean cost function amounts to

𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦1∥2 + ∥𝑦2∥2 C 𝑐1(𝑥,𝑦1) + 𝑐2(𝑦2),

where 𝑦 = (𝑦1, 𝑦2) ∈ [0, 1]𝑑1+(𝑑2−𝑑1 ) . Up to scaling of the cost function, this
setting satisfies Assumption (SC). For independent empirical measures 𝜇𝑛 and
𝜈𝑛 , one can show that

sup
𝜇,𝜈
E [|𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) |] ≳

{
𝑛−1/2 if 𝑑1 ≤ 4,
𝑛−2/𝑑1 if 𝑑1 ≥ 5,

(25)

where 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) in the supremum. For 𝑑1 ≤ 4, this lower bound
follows by selecting suitable discrete measures (see Sommerfeld et al. 2019,
Section 5), and for 𝑑1 ≥ 5, it follows from inequality (18) in conjunction with
Proposition 21 in Manole and Niles-Weed 2021 (which is also applicable for
more general strictly convex cost functions). Overall, the upper bounds in (24)
match the lower bounds (25) in case 𝑑1 ≠ 4 and are sharp up to logarithmic
factors for 𝑑1 = 4.

We want to highlight that the fast rates of Theorem 4 (compared to Theorem 3) can
often be expected in the settings of Example 4 even if the cost function is not C2 on
all of R2𝑑 . For example, if the set

D B
{(𝑥,𝑦) �� 𝑐 is not C2 at (𝑥,𝑦)} ⊂ R2𝑑

is strictly separated from Σ B supp(𝜇) × supp(𝜈) ⊂ R2𝑑 , one can extend the restric-
tion 𝑐 |Σ to a C2 cost function on all of R2𝑑 (by the extension theorem of Whitney
1934) without altering 𝑇𝑐,𝑛 or 𝑇𝑐 (𝜇, 𝜈). If 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 for any 0 < 𝑝 < 2, we
find D = {(𝑥, 𝑥) | 𝑥 ∈ R𝑑 }, implying the fast convergence rates in (24) whenever the
supports of 𝜇 and 𝜈 are strictly separated. Similar observations were pointed out by
Manole and Niles-Weed 2021, Corollary 3(ii) under additional convexity assumptions.
In contrast, considering the 𝑙𝑝𝑝 -cost function 𝑐 (𝑥,𝑦) = ∑𝑑

𝑖=1 |𝑥𝑖 − 𝑦𝑖 |𝑝 for 0 < 𝑝 < 2,
the set

D =
{(𝑥,𝑦) ��𝑥𝑖 = 𝑦𝑖 for some 𝑖 ∈ {1, . . . , 𝑑}} ⊂ R2𝑑 (26)

is notably larger. Therefore, the 𝑝-Wasserstein distance based on the Euclidean norm
may exhibit faster convergence rates than its 𝑙𝑝 counterpart, e.g., if 𝜇 is a translation
of 𝜈 along a coordinate axis.
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We conjecture that the faster rates implied by Theorem 4 will occur under even
more general circumstances. For example, in some settings it might suffice that D is
negligible under the actual optimal transport, meaning that 𝜋 (D) = 0 for an OT plan
between 𝜇 and 𝜈 . A proof of this claim, however, would likely require quantitative
statements on the regularity of the cost function along the support of empirical OT
plans and lies beyond the scope of this work. Still, we pick up on this hypothesis
and observe some numerical evidence in Section 4.

3.4 Optimal Transport under Hölder Costs

In Section 3.2 and 3.3, we have shown that the rate of convergence of the empirical
OT cost in R𝑑 is bounded by 𝑛−1/𝑑 for Lipschitz and 𝑛−2/𝑑 for C2 costs (if 𝑑 ≥ 5). The
recent work of Manole and Niles-Weed 2021 demonstrated that these results can be
generalized to 𝛼-Hölder smooth costs for 0 < 𝛼 ≤ 2, deriving the rates 𝑛−𝛼/𝑑 . In this
section, we employ similar arguments to bound the uniform metric entropy of the
class Fc by 𝜀−𝑑/𝛼 (for any 𝑑 ∈ N and 0 < 𝛼 ≤ 2) in settings resembling the ones of
Assumption (Lip) and (SC).

We say that a function 𝑓 : 𝑈 → R on a convex domain 𝑈 ⊂ R𝑑 is (𝛼,Λ)-Hölder
smooth for 0 < 𝛼 ≤ 1 and Λ > 0 if ∥ 𝑓 ∥∞ < Λ and

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ Λ · ∥𝑥 − 𝑦∥𝛼 .

Moreover, we say that 𝑓 is (𝛼,Λ)-Hölder smooth for 1 < 𝛼 ≤ 2 if ∥ 𝑓 ∥∞ < Λ and
𝑓 is differentiable with (𝛼 − 1,Λ)-Hölder smooth partial derivatives. If the convex
domain𝑈 in this definition is not open, we assume the existence of a Hölder smooth
function on an open subset of R𝑑 containing𝑈 that coincides with 𝑓 on𝑈 .

Assumption (Hol) : Let 𝛼 ∈ (0, 2] and suppose that X =
⋃𝐼
𝑖=1 𝑔𝑖 (U𝑖) for 𝐼 ∈ N

compact, convex subsets U𝑖 ⊂ R𝑑 and maps 𝑔𝑖 : U𝑖 → X so that 𝑐 (𝑔𝑖 (·), 𝑦) is
(𝛼, 1)-Hölder for all 𝑦 ∈ Y .

Theorem 5 (Hölder LCA): Let X and Y be Polish spaces and 𝑐 : X ×Y → [0, 1]
be continuous. If Assumption (Hol) holds, then, for any 𝜇 ∈ P (X ) and 𝜈 ∈
P (Y), the empirical estimator 𝑇𝑐,𝑛 from (8) satisfies

E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��] ≲



𝑛−1/2 if 𝑑 < 2𝛼,
𝑛−1/2 log(𝑛) if 𝑑 = 2𝛼,
𝑛−𝛼/𝑑 if 𝑑 > 2𝛼.

(27)

Proof. Lemma 6 in Appendix A shows that the uniform metric entropy in this setting
is bounded by logN (𝜀,Fc, ∥ · ∥∞) ≲ 𝜀−𝑑/𝛼 . An application of Theorem 1 yields the
claim. □
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Theorem 5 can be used to derive upper bounds for Hölder smooth cost functions on
Euclidean spaces analogous to Example 4. Moreover, it is again possible to derive
lower bounds in certain situations. For instance, in the setting of Example 5, we
can consider 𝛼-Hölder costs of the form 𝑐 (𝑥,𝑦) = ∑𝑑1

𝑖=1 |𝑥𝑖 −𝑦1𝑖 |𝛼 +
∑𝑑2
𝑖=𝑑1+1 |𝑦2𝑖 |𝛼 for

𝛼 ∈ (0, 2]. Then, Assumption (Hol) is fulfilled (for 𝑑 = 𝑑1) and one can show that

sup
𝜇,𝜈
E [|𝑇𝑐 (𝜇𝑛, 𝜈𝑛) −𝑇𝑐 (𝜇, 𝜈) |] ≳

{
𝑛−1/2 if 𝑑1 ≤ 2𝛼,
𝑛−𝛼/𝑑1 if 𝑑1 > 2𝛼,

where the supremum is taken over 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y). Herein, the lower
bound for 𝑑1 ≤ 2𝛼 follows by selecting discretely supported measures, whereas the
regime 𝑑1 > 2𝛼 is covered by Proposition 21 in Manole and Niles-Weed 2021. In
particular, in case of 𝑑1 ≠ 2𝛼 , the upper bound from Theorem 5 matches the lower
bound, whereas for 𝑑1 = 2𝛼 it is sharp only up to a logarithmic factor.

4 Simulations

In the previous sections, we investigated the convergence rate for the empirical OT
cost in various settings, stressing than an intrinsic adaptation to the less complex
measure governs asymptotic statistical properties. We now turn to the question if
these asymptotic properties can already be observed in the finite sample regime
accessible to numerical analysis. For this purpose, we fix probability measures 𝜇 and
𝜈 and approximate the mean absolute deviation

Δ𝑛 = E
[��𝑇𝑐,𝑛 −𝑇𝑐 (𝜇, 𝜈)��]

for various values of 𝑛 via Monte-Carlo simulations with 2000 independent repeti-
tions.6 Since the value of𝑇𝑐 (𝜇, 𝜈) has to be known with high accuracy for conclusive
results, we are restricted to relatively simple settings where analytical approaches
are feasible and the optimal transport cost or map can be computed explicitly. The
spaces X and Y are considered to be subsets ofR𝑑 , with either 𝑙1 and 𝑙22 cost functions
of the form

𝑐1(𝑥,𝑦) =
𝑑∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | or 𝑐2(𝑥,𝑦) =
𝑑∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |2.

In total, we look at the following choices for 𝜇 and 𝜈 . The intrinsic dimension of
the former is denoted by 𝑑1, and the one of the latter by 𝑑2, where 𝑑1 ≤ 𝑑2 ≤ 𝑑 . The
𝑟 -dimensional unit-sphere is denoted by S𝑟 ⊂ R𝑟+1.

6We employed the network-simplex based C++ solver by Bonneel et al. 2011 for the computation
of the empirical OT cost. The full source code used to produce the data in this section can be found
under https://gitlab.gwdg.de/staudt1/lca.

https://gitlab.gwdg.de/staudt1/lca
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Figure 2: Simulations of the mean absolute deviation Δ𝑛 in the cube and sphere settings. The
different curves correspond to 1 ≤ 𝑑1 ≤ 10. Green lines mark the dimensions 𝑑1 for which
the upper bounds in Theorem 3 and Theorem 4 suggest

√
𝑛Δ𝑛 to be bounded, while yellow

and blue lines enjoy no such guarantee.

(𝑖) Cube: We choose 𝜇 = Unif (X ) for X = [0, 1]𝑑1 × {0}𝑑2−𝑑1 and 𝜈 = Unif (Y) for
Y = [0, 1]𝑑2 . As the one-sample estimates 𝑇𝑐 (𝜇𝑛, 𝜈) and 𝑇𝑐 (𝜇, 𝜈𝑛) are computa-
tionally infeasible, we employ the two-sample estimates 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈𝑛) for up
to 𝑛 = 211 = 2048. The value of 𝑇𝑐 (𝜇, 𝜈) is calculated analytically.

(𝑖𝑖) Sphere: We choose 𝜇 = Unif (X ) for X = S𝑑1 × {0}𝑑2−𝑑1 and 𝜈 = Unif (Y) for Y =
S𝑑2 . The two-sample estimate 𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇𝑛, 𝜈𝑛) is used for up to 𝑛 = 211 = 2048
and 𝑇𝑐 (𝜇, 𝜈) is approximated numerically (the optimal transport map between 𝜈
to 𝜇 can be established due to the symmetry of the setting).

(𝑖𝑖𝑖) Semi-discrete: We choose 𝜈 = Unif (Y) for Y = [0, 1]𝑑 and set 𝜇 = 𝔭#𝜈 , where
𝔭(𝑦) = argmin𝑥∈X 𝑐 (𝑥,𝑦) denotes the 𝑐-projection onto the finite set X =
{𝑥𝑖}𝐼𝑖=1 ⊂ [0, 1]𝑑 with 𝐼 ∈ N. Consequently, 𝜇 ({𝑥𝑖}) equals the fraction of
the volume of [0, 1]𝑑 that lies closest to 𝑥𝑖 . The positions 𝑥𝑖 have been fixed
once for each pair (𝐼 , 𝑑) by drawing them uniformly in [0, 1]𝑑 . The one-sample
estimator𝑇𝑐,𝑛 = 𝑇𝑐 (𝜇, 𝜈𝑛) is used for up to 𝑛 = 215 = 32768 and𝑇𝑐 (𝜇, 𝜈) is approx-
imated numerically (based on the observation that 𝔭 is the optimal transport
map between 𝜈 and 𝜇).

A first set of simulation results in the cube and sphere settings with smooth 𝑙22 and
non-smooth 𝑙1 costs for fixed 𝑑2 = 10 can be seen in Figure 2. As anticipated by the
LCA principle, the smaller dimension 𝑑1 appears to dictate the convergence rate of
Δ𝑛 towards zero as 𝑛 becomes large. For smooth costs, Δ𝑛 seems to converge with
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Figure 3: Additional simulations of the mean absolute deviation Δ𝑛 in the cube setting. (a)
shows analogous simulations to Figure 2 for higher dimensions 𝑑2 = 100 and 𝑑2 = 1000. (b)
contrasts Δ𝑛 to the power law behavior 𝑛−2/𝑑1 (black lines) which is expected asymptotically
from Theorem 4 and Example 5.

the rate 1/√𝑛 for 𝑑1 ≤ 3 (and even in the critical case 𝑑1 = 4, which is in line with
results by Ledoux 2019), while the convergence for 𝑑1 ≥ 5 is perceivably slower
in both settings. This is in good agreement with the upper bounds (24) established
by Theorem 4 for C2 cost functions. For non-smooth 𝑙1 costs, in contrast, the cube
setting again exhibits the behavior to be expected if the bounds (22) of Theorem 3
were sharp (i.e, only 𝑑1 = 1 leads to a clear 𝑛−1/2 convergence), but the results for the
sphere setting somewhat resemble the ones for smooth costs. This salient difference
might be explained along the lines discussed in the context of equation (26). In fact,
if 𝜋 denotes an optimal transport plan for 𝑇𝑐1 (𝜇, 𝜈), then it is straightforward to see
that the cost function 𝑐1 is not differentiable 𝜋-almost surely in the cube setting (since
all optimal movement of mass leaves the first 𝑑1 coordinates unchanged), while it is
differentiable 𝜋-almost surely in the sphere setting (almost all mass is moved such
that each coordinate changes).

To understand the influence of a different choice of 𝑑2, we also conducted analogous
simulations with 𝑑2 = 100 and 𝑑2 = 1000. While the basic conclusions remained
unchanged and the LCA principle could be confirmed (see Figure 3a), the statistical
fluctuation of the Monte-Carlo estimate of Δ𝑛 increased with increasing 𝑑2 and larger
sample sizes 𝑛 were typically needed to observe linearity of Δ𝑛 in the presented
log-log plots. In this regard, Figure 3b indicates for 𝑑2 = 10 in the cube setting that
maximal sample sizes of 𝑛 = 211 = 2048 might not suffice to confidently discern the
actual asymptotic convergence rates 𝑛−2/𝑑1 for 𝑑1 ≥ 5 (see Examples 4 and 5).

Finally, we turn to the results obtained in the semidiscrete setting. According to upper
bound (21) established in Theorem 2, we anticipate asymptotically a convergence rate
of order 𝑛−1/2 for Δ𝑛 independent of the choice of the cost 𝑐 , the cardinality 𝐼 of X ,
and the dimension 𝑑2 of the ambient space. Figure 4 confirms this expectation under
smooth 𝑙22 cost. Indeed, in simulations with 𝐼 = 50 (and higher), the convergence of
Δ𝑛 seems to be quicker than 𝑛−1/2 at first, but eventually slows down for sufficiently
large 𝑛. Comparable results were observed for 𝑙1 costs as well.
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Figure 4: Simulations of the mean absolute deviation Δ𝑛 in the semidiscrete setting. The
three curves per value of 𝑑2 correspond to 𝐼 = 5, 10, 50, respectively. Since the computational
burden was significantly reduced compared to the cube and sphere settings, the range of
𝑛 could be increased substantially. Only this increased range makes the flattening of the
curves for 𝐼 = 50 apparent.

5 Discussion

In this work, we have established novel statistical guarantees for the empirical OT
cost between different probability measures, showing that the mean convergence rate
is governed by the less complex measure. In a broader sense, the LCA phenomenon
suggests that the curse of dimensionality only affects the estimation of the OT cost
when both probability measure exhibit high intrinsic dimensions – an observation
with possibly significant repercussions for OT based data analysis applications, as
the empirical OT functional automatically adapts to the complexity of the simpler
measure and not to the ambient space. In particular, our theory can also be applied
for the popular Wasserstein distance𝑊𝑝 (𝜇, 𝜈) = 𝑇𝑑𝑝 (𝜇, 𝜈)1/𝑝 with 𝑝 ≥ 1, since

E
[��𝑊̂𝑝,𝑛 −𝑊𝑝 (𝜇, 𝜈)

��] ≍ E [��𝑇𝑑𝑝 ,𝑛 −𝑇𝑑𝑝 (𝜇, 𝜈)��]
for fixed measures 𝜇 ≠ 𝜈 on compact metric spaces, where 𝑊̂ 𝑝

𝑝,𝑛 = 𝑇𝑑𝑝 ,𝑛 .

Several extensions of our theory seem to be natural targets for future research.
First, our arguments crucially rely on uniform metric entropy bounds, which es-
sentially restricts our results to bounded costs and spaces. A generalization to
measure-dependent notions of metric entropy, or a technique to properly exploit the
concentration of measures, might serve to overcome these limitations. In a similar
vein, it might be possible to adapt the LCA principle to more general notions of
dimensionality. While our theory already includes general compact Lipschitz and C2

surfaces in R𝑑 , and even metric spaces with finite Minkowski-Bouligand dimension,
it is as of yet unclear if general extensions to the Hausdorff dimension Mattila 1995,
Chapter 4 or the (concentration-dependent) Wasserstein dimension (Weed and Bach
2019) are viable.

Another interesting problem is to find non-trivial settings where the upper bounds
in Theorem 1 fail to provide sharp rates. While it is easy to find simple examples
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where the rates suggested by Theorem 3 and 4 are not sharp, the bottleneck for these
examples is typically a suboptimal bound for the uniform metric entropy of Fc when
applying Theorem 1. For instance, additive costs of the form 𝑐 (𝑥,𝑦) = 𝑐1(𝑥) + 𝑐2(𝑦)
always lead to the parametric convergence rate 𝑛−1/2, which is not necessarily
captured by Theorem 3 and 4. Adapting Theorem 1 to these specific costs, however,
yields the correct rate for non-constant costs.

We finally stress that our proof technique explicitly relies on empirical measure
based estimators under i.i.d. observations. It would be interesting to analyze whether
the same (or even faster) convergence rates can be verified for other estimators or for
dependent observations. In particular, it remains an open question to what extent
estimators leveraging smoothness properties of the underlying measures, e.g., when
𝜇 and 𝜈 are measures on Riemannian manifolds with sufficiently regular densities
with respect to the canonical volume forms, also obey the LCA principle.
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A Bounds on the Uniform Metric Entropy

In this appendix, we establish various upper bounds for the uniform metric entropy
of the function class Fc defined by equation (10). To cover the settings introduced
in Section 3, the following observation about uniform covering numbers under
composition is useful.

Lemma 3 (Composition bound): Let 𝑔 : U → V be a surjective map between
sets U and V , and let F be a real-valued function class on V . For any 𝜀 > 0, the
class F ◦ 𝑔 B {𝑓 ◦ 𝑔 | 𝑓 ∈ F } satisfies

N (
𝜀,F , ∥·∥∞,V

) ≤ N (
𝜀,F ◦ 𝑔, ∥·∥∞,U

)
.

Proof. Assume that 𝑁 B N (
𝜀,F ◦ 𝑔, ∥·∥∞,U

)
is finite, otherwise the inequality is

trivial. Let {𝑓1, . . . , 𝑓𝑁 } be an 𝜀-covering of F ◦ 𝑔 and let

𝑓𝑖 (𝑣) B sup
𝑢∈𝑔−1 (𝑣)

𝑓𝑖 (𝑢) .

For any 𝑓 ∈ F , there is an 𝑓𝑖 such that |𝑓 ◦ 𝑔 − 𝑓𝑖 | ≤ 𝜀 on U . By definition of 𝑓𝑖 ,
this implies 𝑓 − 𝑓𝑖 ≤ 𝜀 and 𝑓 − 𝑓𝑖 ≥ −𝜀 on V , which shows that {𝑓1, . . . , 𝑓𝑁 } is an
𝜀-covering of F . □

We now provide upper bounds on the metric entropy of Fc under the respective
assumptions (Lip), (SC), and (Hol) . Due to the union bound (Lemma 2) in conjunction
with the composition bound (Lemma 3), it is in all three cases sufficient to bound

logN (
𝜀,Fc ◦ 𝑔𝑖 , ∥ · ∥∞,U𝑖

)
for all 𝑖 ∈ {1, . . . , 𝐼 } and sufficiently small 𝜀 > 0. For convenience, we suppress the
index 𝑖 in the following proofs and work with generic 𝑔 B 𝑔𝑖 and U B U𝑖 , as well as
𝑑 B 𝑑𝑖 for Assumption (Lip).

Lemma 4 (Metric entropy under Lipschitz costs): Let X and Y be Polish spaces
and let 𝑐 : X × Y → [0, 1] be continuous so that Assumption (Lip) is fulfilled.
Then, for any 𝜀 > 0,

logN (𝜀,Fc, ∥·∥∞) ≲
𝐼∑︁
𝑖=1

(N (𝜀/4,U𝑖 , 𝑑𝑖) + log(𝜀−1)) (28a)

Moreover, without the connectedness assumption on U𝑖 in (Lip), it holds that

logN (𝜀,Fc, ∥·∥∞) ≲
𝐼∑︁
𝑖=1

N (𝜀/4,U𝑖 , 𝑑𝑖) log(𝜀−1). (28b)

The implicit constants in (28) are universal.
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Proof. By Assumption (Lip), it holds that 𝑐 (𝑔(·), 𝑦) is 1-Lipschitz for each 𝑦 ∈ Y .
Hence, the class Fc ◦ 𝑔 is contained in BL1(U , 𝑑), which denotes the 1-Lipschitz
functions on (U , 𝑑) that are absolutely bounded by one (Santambrogio 2015, Section
1.2). For connected U , their uniform metric entropy is bounded by (Kolmogorov and
Tikhomirov 1961, Section 9)

N (
𝜀, BL1(U , 𝑑), ∥·∥∞,U

) ≤ (2 ⌈2/𝜀⌉ + 1) 2N (𝜀/4,U,𝑑 ) , (29a)

while general metric spaces only permit the bound

N (
𝜀, BL1(U , 𝑑), ∥·∥∞,U

) ≤ (2 ⌈2/𝜀⌉ + 1)N (𝜀/4,U,𝑑 ) . (29b)

This implies claim (28). Note that (29a) is a variation of equation (238) in Kolmogorov
and Tikhomirov 1961, which only proves the stated bound for connected subsets
of a centrable metric space (with some improvements, e.g., 𝜀/4 can be relaxed to
𝑠𝜀/(𝑠 + 1) for 𝑠 ∈ N at the cost of a possibly worse constant). However, with minor
adaptions, the proof also works without requiring centrability for 𝜀/4. □

Lemma 5 (Metric entropy under semi-concave costs): Let X and Y be Polish
spaces and let 𝑐 : X × Y → [0, 1] be continuous so that Assumption (SC) is
fulfilled. Then, for 𝜀 > 0 sufficiently small,

logN (𝜀,Fc, ∥·∥∞) ≲ 𝐼𝜀−𝑑/2, (30)

where the implicit constant depends on the sets U1, . . . ,U𝐼 ⊂ R𝑑 .

Proof. Let 𝑠 B dim
(
span(U − 𝑢)) ≤ 𝑑 for an arbitrary 𝑢 ∈ U . If 𝑠 = 0, the metric

entropy of F𝑐 ◦ 𝑔 is bounded as in (20), so we consider 𝑠 ≥ 1. By translation and
rotation, we may w.l.o.g. assume that U is a bounded convex subset of R𝑠 that
contains the origin. By Assumption (SC) and the properties of the 𝑐-transform, any
𝑓 ∈ Fc is absolutely bounded by one, and the composition 𝑓 ◦ 𝑔 is 1-Lipschitz and
1-semi-concave on U . Thus, the function 𝑢 ↦→ 𝑓 ◦𝑔(𝑢) − ∥𝑢∥2 is concave, 𝐿-Lipschitz
with 𝐿 B 1 + 2 diam(U), and absolutely bounded by 1 + diam(U)2. According to
Dragomirescu and Ivan 1992, Theorem 1 and Remark 2(ii) there exists a concave
extension 𝑓 of this function to R𝑠 with identical Lipschitz-modulus. If D ⊂ R𝑠
denotes a bounded closed cube that contains U , then 𝑓 is absolutely bounded on D
by 𝐵 B 1 + diam(U)2 + 𝐿 diam(D). Denoting the class of concave functions on D
that are absolutely bounded by 𝐵 and 𝐿-Lipschitz by C𝐵,𝐿 (D), we conclude for small
𝜀 > 0

N (
𝜀,Fc ◦ 𝑔, ∥·∥∞,U

)
= N (

𝜀,Fc ◦ 𝑔 − ∥·∥2 , ∥·∥∞,U
)

≤ N (
𝜀,C𝐵,𝐿 (D), ∥·∥∞,D

)
≲ 𝜀−𝑠/2 ≤ 𝜀−𝑑/2,

where we used uniform metric entropy bounds for the class 𝐶𝐵,𝐿 (D) provided in
Bronshtein 1976 and Guntuboyina and Sen 2013. The implicit constants depend on
𝐵, 𝐿, and D, which in turn depend on U . □
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Lemma 6 (Metric entropy under Hölder costs): Let X and Y be Polish spaces
and let 𝑐 : X × Y → [0, 1] be continuous so that Assumption (Hol) is fulfilled
for some 𝛼 ∈ (0, 2]. Then, for 𝜀 > 0 sufficiently small,

logN (𝜀,Fc, ∥·∥∞) ≲ 𝐼𝜀−𝑑/𝛼 , (31)

where the implicit constant depends on 𝛼 and the sets U1, . . . ,U𝐼 ⊂ R𝑑 .

Proof. We consider 𝛼 ∈ (0, 1] first. An (𝛼, 1)-Hölder function with respect to the
Euclidean norm ∥ · ∥ is a 1-Lipschitz function with respect to the metric induced by
∥ · ∥𝛼 . It follows by Assumption (Hol) that Fc ◦ 𝑔 ⊆ BL1(U , ∥ · ∥𝛼 ) (see the proof of
Lemma 4). Furthermore, each function in BL1(U , ∥ ·∥𝛼 ) can be extended to an element
in BL1(D, ∥ · ∥𝛼 ), where D ⊂ R𝑑 is bounded, connected, and contains U (McShane
1934, Corollary 2). Thus, noting that N (𝜀,D, ∥ · ∥𝛼 ) = N (𝜀1/𝛼 ,D, ∥ · ∥) ≲ 𝜀−𝑑/𝛼 and
employing (29a), we find

logN (𝜀,Fc ◦ 𝑔, ∥·∥∞,U ) ≤ logN (
𝜀, BL1(D, ∥ · ∥𝛼 ), ∥·∥∞,D

)
≲ 𝜀−𝑑/𝛼 .

For 𝛼 ∈ (1, 2], we apply Lemma 7 to 𝑐 (𝑔(·), 𝑦) for each 𝑦 ∈ Y separately to define a
collection of smoothed, approximated cost functions 𝑐𝜎 : D × Y → R for 𝜎 ∈ (0, 1],
where D ⊆ R𝑑 contains U and is convex, open, and bounded. Furthermore, there is
𝐾 > 0 so that the functions 𝑐𝜎 satisfy, for all 𝑦 ∈ Y ,

∥𝑐 (𝑔(·), 𝑦) − 𝑐𝜎 (·, 𝑦)∥∞,U ≤ 𝐾𝜎𝛼 and ∥𝑐𝜎 (·, 𝑦)∥C2 (D) ≤ 𝐾𝜎𝛼−2 C Γ𝜎 , (32)

where the C2(D)-norm of a twice continuously differentiable function 𝑓 : D → R is

∥ 𝑓 ∥C2 (D) B max
|𝛽 | ≤2




𝐷𝛽 𝑓 



∞,D

, where 𝐷𝛽 𝑓 = 𝜕 |𝛽 | 𝑓 /𝜕𝑥𝛽1
1 · · · 𝜕𝑥𝛽𝑑

𝑑
for 𝛽 ∈ N𝑑0 .

Note that a function with ∥ 𝑓 ∥C2 (D) ≤ Γ for Γ > 0 is absolutely bounded by Γ,
Γ-Lipschitz, and 𝑑Γ-semi-concave (since the Eigenvalues of its Hessian are bounded
by 𝑑 · Γ). For each 𝑓 ∈ Fc, we define 𝑓𝜎 : D → R, 𝑢 ↦→ inf𝑦∈Y 𝑐𝜎 (𝑢,𝑦) − 𝑓 𝑐 (𝑦). Due
to 𝑓 = 𝑓 𝑐𝑐 (Santambrogio 2015, Proposition 1.34) combined with the first inequality
in (32), we conclude |𝑓 ◦ 𝑔 − 𝑓𝜎 | ≤ 𝐾𝜎𝛼 on U . For 𝜎 (𝜀) B (𝜀/2𝐾)1/𝛼 , this implies
|𝑓 ◦ 𝑔 − 𝑓𝜎 (𝜀 ) | ≤ 𝜀/2 on U . Consequently, defining F𝑐,𝜎 B {𝑓𝜎 |𝑓 ∈ Fc},

N (
𝜀,F ◦ 𝑔, ∥·∥∞,U

) ≤ N (
𝜀/2,F𝑐,𝜎 (𝜀 ) , ∥·∥∞,U

) ≤ N (
𝜀/2,F𝑐,𝜎 (𝜀 ) , ∥·∥∞,D

)
.

Since the functions 𝑐𝜎 (·, 𝑦)/𝑑Γ𝜎 are bounded by one, 1-Lipschitz, and 1-semi-concave,
we can apply the metric entropy bounds derived in the proof of Lemma 5 to conclude

logN
( 𝜀
2 ,F𝜎 (𝜀 ) , ∥·∥∞,D

)
= logN

(
𝜀

2𝑑Γ𝜎 (𝜀 )
,
F𝜎 (𝜀 )
𝑑Γ𝜎 (𝜀 )

, ∥·∥∞,D
)
≲

(
𝜀

Γ𝜎 (𝜀 )

)−𝑑/2
≍ 𝜀−𝑑/𝛼 ,

where the constants depend on 𝛼 and D, which in turn depends on U . □
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Lemma 7: Let D ⊂ R𝑑 be bounded, convex, and open, and let U ⊂ D be a
compact and convex subset. Then, there exists 𝐾 > 0 such that for any (𝛼, 1)-
Hölder function ℎ on U with 1 < 𝛼 ≤ 2 there is a collection of smooth functions
ℎ𝜎 : D → R such that

∥ℎ − ℎ𝜎 ∥∞,U ≤ 𝐾𝜎𝛼 and ∥ℎ𝜎 ∥C2 (D) ≤ 𝐾𝜎𝛼−2 for 𝜎 ∈ (0, 1] . (33)

Proof. Recall the definition of (𝛼,Λ)-Hölder smooth functions for 1 < 𝛼 ≤ 2 and
Λ > 0 from Section 3.4, and let𝑢,𝑢0 ∈ U . If we denote 𝑧 B 𝑢−𝑢0, then the mean value
theorem asserts the existence of 𝑡 ∈ [0, 1] such that ℎ(𝑢) = ℎ(𝑢0) + ⟨∇ℎ(𝑢0 + 𝑡𝑧), 𝑧⟩.
This implies

ℎ(𝑢) = ℎ(𝑢0) + ⟨∇ℎ(𝑢0), 𝑧⟩ + 𝑅𝑢0 (𝑢), where 𝑅𝑢0 (𝑢) = ⟨∇ℎ(𝑢0 + 𝑡𝑧) − ∇ℎ(𝑢0), 𝑧⟩.

Due to the (𝛼 − 1, 1)-Hölder smoothness of the partial derivatives of ℎ, we find

|𝑅𝑢0 (𝑢) | ≤ ∥∇ℎ(𝑢0 + 𝑡𝑧) − ∇ℎ(𝑢0)∥∥𝑧∥ ≤
√
𝑑 ∥𝑢 − 𝑢0∥𝛼 . (34)

This shows that the function ℎ is an element of the class Lip(𝛼,U) defined in Stein
1971, Chapter VI, Section 3. By Theorem 4 in the same reference, the function ℎ
admits an extension ℎ̃ to R𝑑 that is (𝛼, 𝐾 ′)-Hölder on R𝑑 for some 𝐾 ′ > 0 (which
is independent of U and ℎ). For an even and smooth mollifier 𝑀 : R𝑑 → [0,∞)
supported on the unit ball 𝐵1, we define 𝑀𝜎 B 𝜎−𝑑𝑀 ( · /𝜎), which is supported on
the ball with radius 𝜎 ∈ (0, 1], and set

ℎ𝜎 : D → R, 𝑢 ↦→ (
ℎ̃ ∗𝑀𝜎

) (𝑢) = ∫
ℎ̃(𝑢 − 𝑧)𝑀𝜎 (𝑧) d𝑧,

where integration is over R𝑑 (i.e., effectively over the support of 𝑀𝜎 ). The desired
properties (33) now follow analogously to the proof of Lemma 8 of Manole and
Niles-Weed 2021. For completeness, we include the arguments here. We first observe

ℎ̃(𝑢) = ℎ̃(𝑢0) + ⟨∇ℎ̃(𝑢0), 𝑢 − 𝑢0⟩ + 𝑅̃𝑢0 (𝑢), where |𝑅̃𝑢0 (𝑢) | ≤
√
𝑑𝐾 ′∥𝑢 − 𝑢0∥𝛼 ,

for any 𝑢,𝑢0 ∈ D, which can be derived analogously to (34). For the first bound
in (33), we note that 𝑀 is even, implying

∫
𝑧𝑖 𝑀𝜎 (𝑧) d𝑧 = 0 for all 1 ≤ 𝑖 ≤ 𝑑 . By

expanding ℎ̃(𝑢 − 𝑧) around 𝑢 ∈ U for ∥𝑧∥ ≤ 𝜎 , it follows that

|ℎ𝜎 (𝑢) − ℎ(𝑢) | =
����
∫ (

ℎ̃(𝑢 − 𝑧) − ℎ̃(𝑢)
)
𝑀𝜎 (𝑧) d𝑧

����
≤

∫ ��𝑅̃𝑢 (𝑢 − 𝑧)
��𝑀𝜎 (𝑧) d𝑧

≤
√
𝑑𝐾 ′𝜎𝛼 .
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For the second inequality in (33), we fix some 𝑢0 ∈ D and observe for any 𝑢 ∈ D that

ℎ𝜎 (𝑢) =
∫

ℎ̃(𝑢 − 𝑧)𝑀𝜎 (𝑧) d𝑧

=
∫ (

ℎ̃(𝑢0) + ⟨∇ℎ̃(𝑢0), 𝑢 − 𝑧 − 𝑢0⟩ + 𝑅̃𝑢0 (𝑢 − 𝑧))𝑀𝜎 (𝑧) d𝑧

C 𝐴1 + ⟨𝐴2, 𝑢⟩ +𝐴3(𝑢),

where 𝐴1 ∈ R, 𝐴2 ∈ R𝑑 , and 𝐴3(𝑢) =
∫
𝑅̃𝑢0 (𝑧)𝑀𝜎 (𝑢 − 𝑧) d𝑧 (after a change of vari-

ables). For 𝛽 ∈ N𝑑0 with |𝛽 | = 2, we evaluate 𝐷𝛽ℎ𝜎 at 𝑢0. Exchanging differentiation
and integration in the first inequality, and employing substitution in the final one,
we observe

��𝐷𝛽ℎ𝜎 (𝑢0)
�� = ��𝐷𝛽𝐴3(𝑢0)

�� ≤ 𝜎−𝑑−2
∫ ��𝑅̃𝑢0 (𝑧)

�� ���𝐷𝛽𝑀 (𝑢0 − 𝑧
𝜎

)��� d𝑧

≤
√
𝑑𝐾 ′𝜎−𝑑−2

∫
∥𝑢0 − 𝑧∥𝛼

���𝐷𝛽𝑀 (𝑢0 − 𝑧
𝜎

)��� d𝑧

≤
√
𝑑𝐾 ′𝜎𝛼−2

∫
∥𝑧∥𝛼 |𝐷𝛽𝑀 (𝑧) | d𝑧

= 𝐾 ′′𝜎𝛼−2

for some 0 < 𝐾 ′′ < ∞. Since this holds for any 𝑢0 ∈ D with 𝐾 ′′ independent of
𝑢0 and 𝜎 , we conclude ∥𝐷𝛽ℎ𝜎 ∥∞,D ≤ 𝐾 ′′𝜎𝛼−2. Analogous inequalities for |𝛽 | < 2
follow from the fact that D is convex and bounded, so 𝐷𝛽ℎ𝜎 can be bounded in terms
of the second derivatives of ℎ𝜎 and the diameter of D. □
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Abstract

We provide a unifying approach to central limit type theorems for empirical optimal
transport (OT). In general, the limit distributions are characterized as suprema
of Gaussian processes. We explicitly characterize when the limit distribution is
centered normal or degenerates to a Dirac measure. Moreover, in contrast to recent
contributions on distributional limit laws for empirical OT on Euclidean spaces
which require centering around its expectation, the distributional limits obtained
here are centered around the population quantity, which is well-suited for statistical
applications.

At the heart of our theory is Kantorovich duality representing OT as a supremum
over a function class F𝑐 for an underlying sufficiently regular cost function 𝑐 . In
this regard, OT is considered as a functional defined on ℓ∞ (F𝑐) the Banach space of
bounded functionals from F𝑐 to R and equipped with uniform norm. We prove the
OT functional to be Hadamard directional differentiable and conclude distributional
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convergence via a functional delta method that necessitates weak convergence of
an underlying empirical process in ℓ∞ (F𝑐). The latter can be dealt with empirical
process theory and requires F𝑐 to be a Donsker class. We give sufficient conditions
depending on the dimension of the ground space, the underlying cost function and the
probability measures under consideration to guarantee the Donsker property. Overall,
our approach reveals a noteworthy trade-off inherent in central limit theorems for
empirical OT: Kantorovich duality requires F𝑐 to be sufficiently rich, while the
empirical processes only converges weakly if F𝑐 is not too complex.

Keywords: Central limit theorem, optimal transport, Wasserstein distance, regular-
ity theory, empirical processes, bootstrap, Kantorovich potential

MSC 2020 subject classification: primary 60B12, 60F05, 60G15, 62E20, 62F40;
secondary 90C08, 90C31

1 Introduction

Comparing probability distributions is a fundamental task in statistics, probability
theory, machine learning, data analysis and related fields. From this viewpoint, in
addition to longstanding mathematical interest, optimal transport (OT) based metrics
have recently gained increasing attention for data analysis as well. A major reason
is that OT metrics and related similarity measures not only allow comparing general
probability distributions, but can also be designed to respect the metric structure
of the underlying ground space. This often results in visually appealing and well
interpretable outcomes which together with recent computational progress explains
the advancement of OT based data analysis throughout various disciplines, ranging
from economics (Galichon 2016) to statistics (Panaretos and Zemel 2019), machine
learning (Peyré and Cuturi 2019), signal and image processing (Bonneel et al. 2011;
Kolouri et al. 2017) and biology (Schiebinger et al. 2019; Tameling et al. 2021), among
others.

In the following, we consider Polish spaces X and Y and denote the set of probability
measures thereon by P (X ) and P (Y), respectively. Given some non-negative
measurable cost function 𝑐 : X × Y → R+, the OT cost between 𝜇 ∈ P (X ) and
𝜈 ∈ P (Y) is defined as

OT𝑐 (𝜇, 𝜈) B inf
𝜋∈Π (𝜇,𝜈 )

∫
X×Y

𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦), (1)

where set Π(𝜇, 𝜈) denotes the collection of probability measures on X × Y such
that their marginal distributions coincide with 𝜇 and 𝜈 , respectively. Any optimizer
𝜋 ∈ Π(𝜇, 𝜈) for (1) is termed OT plan. Essentially, OT in (1) comprises the challenge
to transform the measure 𝜇 into the measure 𝜈 in a cost optimal way. Under mild
assumptions on the cost function, OT𝑐 in (1) enjoys for any pair of measures 𝜇 ∈
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P (X ), 𝜈 ∈ P (Y) the dual formulation

OT𝑐 (𝜇, 𝜈) = sup
𝑓 ∈F𝑐

∫
X
𝑓 (𝑥) d𝜇 (𝑥) +

∫
Y
𝑓 𝑐 (𝑦) d𝜈 (𝑦), (2)

formally known as Kantorovich duality. The function class F𝑐 depends on the
underlying cost function and 𝑓 𝑐 (𝑦) = inf𝑥∈X 𝑐 (𝑥,𝑦) − 𝑓 (𝑥) is the 𝑐-conjugate of
𝑓 ∈ F𝑐 . Any function 𝑓 attaining the supremum in (2) is termed Kantorovich
potential and the set

𝑆𝑐 (𝜇, 𝜈) B
{
𝑓 ∈ F𝑐 | OT𝑐 (𝜇, 𝜈) =

∫
X
𝑓 (𝑥) d𝜇 (𝑥) +

∫
Y
𝑓 𝑐 (𝑦) d𝜈 (𝑦)

}
(3)

denotes the collection of all Kantorovich potentials. We refer to the monographs
by Rachev and Rüschendorf 1998a, Rachev and Rüschendorf 1998b, Villani 2003,
Villani 2008, and Santambrogio 2015 for comprehensive treatment, and to Section 2
for further details. In a statistical application the probability measures 𝜇 and 𝜈
are estimated from data. For the moment we assume 𝜈 to be known and that we
have access to realizations of independent and identically distributed (i.i.d.) random
variables 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇. The corresponding empirical measure 𝜇𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 thus

serves as a proxy for 𝜇. The population quantity OT𝑐 (𝜇, 𝜈) is then estimated by the
empirical OT cost OT𝑐 (𝜇𝑛, 𝜈), posing questions about its statistical performance.

To this end, distributional limits for the (properly standardized) empirical OT cost
are fundamental as they capture the asymptotic fluctuation around their population
quantities. In the following, we denote such results as central limits theorems (CLTs).4
Available results in the literature can be broadly distinguished between the case
that 𝜇 = 𝜈 (the null hypothesis in the context of statistical testing) and 𝜇 ≠ 𝜈
(corresponding to the alternative when testing 𝜇 = 𝜈). A well studied setting in
this regard is the 𝑝-th order Wasserstein distance5 OT1/𝑝

𝑝 (𝜇, 𝜈) on R𝑑 that arises by
choosing the cost 𝑐 (𝑥,𝑦) B ∥𝑥 − 𝑦∥𝑝 and probability measures with finite 𝑝-th
moments in (1). First analyses have been devoted to the real line (𝑑 = 1) for which
the 𝑝-th order Wasserstein distance is equal the 𝐿𝑝 distance between the quantile
functions of the measures. Under the null 𝜇 = 𝜈 and 𝑝 = 1, early contributions by del
Barrio et al. 1999 (see also Mason 2016) provide necessary and sufficient conditions
on the probability measures such that the random quantity

√
𝑛OT1(𝜇𝑛, 𝜇) weakly

converges towards an integral of a suitable Brownian bridge. A weak limit for 𝑝 = 2 is
obtained by del Barrio et al. 2005. The regime 𝑝 ∈ (1, 2) was analyzed only recently by
Berthet and Fort 2019. For 𝑝 > 2, CLTs are not immediately available but the work by

4Historically, the term CLT meant to describe the asymptotic distribution of a sum of random
variables (Le Cam 1986). Indeed, the empirical OT cost is the sum of costs between random points
weighted according to an OT plan.

5To alleviate notation, we write OT𝑝 (𝜇, 𝜈) for probability measures 𝜇, 𝜈 ∈ P (R𝑑 ) supported on a
Euclidean space and cost function equal to 𝑐 (𝑥,𝑦) = ∥𝑥 −𝑦∥𝑝 for some 𝑝 ≥ 1. The Wasserstein distance
is then equal to OT1/𝑝

𝑝 (𝜇, 𝜈) and commonly denoted by𝑊𝑝 (𝜇, 𝜈). Analogously, the set of Kantorovich
potentials in (3) is denoted by 𝑆𝑝 (𝜇, 𝜈) in this case.
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Bobkov and Ledoux 2019 indicates that similar results can be obtained from general
quantile process theory (Csörgö and Horváth 1993). Under the alternative 𝜇 ≠ 𝜈
for 𝑝 ≥ 1, the random quantity

√
𝑛(OT𝑝 (𝜇𝑛, 𝜈) − OT𝑝 (𝜇, 𝜈)) often asymptotically

follows a centered Gaussian distribution (Munk and Czado 1998; del Barrio et al. 2019;
Berthet and Fort 2019; Berthet et al. 2020). Similar in spirit are recent contributions
by Hundrieser et al. 2021 for measures supported on the circle.

While the previous works all benefit from the representation of the OT plan as a
quantile coupling when the ground space is totally ordered, the general situation
is much more complicated. A unifying analysis for discrete metric spaces X =
{𝑥1, 𝑥2, . . .} and a metric based cost function 𝑐 (𝑥𝑖 , 𝑥 𝑗 ) = 𝑑𝑝 (𝑥𝑖 , 𝑥 𝑗 ) for 𝑝 ≥ 1 is given
by Sommerfeld and Munk 2018 and Tameling et al. 2019, which could be seen as a
starting point for this paper. For arbitrary measures 𝜇, 𝜈 ∈ P (X ) the limiting random
variable is specifically characterized applying the functional delta method in terms of
a supremum over (infinite dimensional) Gaussian random vectors G𝜇 ∼ N (0, Σ(𝜇)),
namely

√
𝑛 (OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)) D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

〈
G𝜇, 𝑓

〉
, (4)

where the supremum is taken over 𝑆𝑐 (𝜇, 𝜈), the set of optimal Kantorovich potentials
in (3). Parallel and independently to our work, del Barrio et al. 2022 extended this
to semi-discrete OT for which (4) remains valid even if the discrete measure 𝜈 is
replaced by a general probability measure supported on some Polish space, e.g.,
absolutely continuous with respect to Lebesgue measure on R𝑑 (see Section 5).

Beyond the countable, one-dimensional and semi-discrete case, the asymptotic
distributional behavior for empirical OT becomes much more involved. Already
for 𝑑 = 2, precise CLTs remain elusive as highlighted by Ajtai et al. 1984 (see also
Talagrand 1994; Bobkov and Ledoux 2021) who showed for the uniform distribution 𝜇
on the unit square that OT1(𝜇𝑛, 𝜇) ≍ (log(𝑛)/𝑛)1/2 with high probability. For higher
dimensions 𝑑 ≥ 3, it is well known that any absolutely continuous measure 𝜇 with
compact support on R𝑑 fulfills OT1(𝜇𝑛, 𝜇) ≍ 𝑛−1/𝑑 (Dudley 1969; Dobrić and Yukich
1995) which implies

√
𝑛OT1(𝜇𝑛, 𝜇) to diverge. Indeed, for general 𝑝 ≥ 1 the literature

on the convergence of empirical OT is vast and we therefore only give a selective
view on recent papers biased towards our main results. Overall, slow convergence
rates in the high-dimensional regime seem inevitable as the Wasserstein distances
of any order 𝑝 ≥ 1 suffers from the curse of dimensionality E[OT𝑝 (𝜇𝑛, 𝜇)] ≍ 𝑛−𝑝/𝑑
whenever 𝑑 > 2𝑝 and 𝜇 is Lebesgue absolutely continuous (Boissard and Le Gouic
2014; Fournier and Guillin 2015; Weed and Bach 2019). This demonstrates the scaling
rate

√
𝑛 in (4) to be of wrong order for high dimensional (Euclidean) spaces. However,

when centering with the empirical expectation, concentration results demonstrate
the random quantity

√
𝑛 (OT2(𝜇𝑛, 𝜈) − E[OT2(𝜇𝑛, 𝜈)]) to be tight (Weed and Bach

2019; Chizat et al. 2020). A fundamental step further has been taken by del Barrio
and Loubes 2019 who obtain for probability measures with 4 + 𝛿 finite moments
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(𝛿 > 0) and a positive density in the interior of their convex support that
√
𝑛 (OT2(𝜇𝑛, 𝜈) − E[OT2(𝜇𝑛, 𝜈)]) D−−−→ 𝑍 ∼ N (

0,Var𝑋∼𝜇 [𝑓 (𝑋 )]
)
. (5)

Here and in the following, N (𝜇, 𝜎2) denotes the normal distribution with mean
𝜇 and variance 𝜎2. The asymptotic variance Var𝑋∼𝜇 [𝑓 (𝑋 )] in (5) is equal to the
variance of the random variable 𝑓 (𝑋 ) with 𝑋 ∼ 𝜇 and 𝑓 the unique Kantorovich
potential for (2). Under the null 𝜇 = 𝜈 , the asymptotic variance is equal to zero
and the CLT in (5) degenerates, in contrast to the alternative 𝜇 ≠ 𝜈 that usually
leads to a non-degenerate normal limit law. The approach by del Barrio and Loubes
2019 relies on approximating the empirical OT cost via (2) as a linear functional
involving a unique Kantorovich potential for which a CLT immediately follows.
Based on the Efron-Stein variance inequality this functional is shown to serve as
a good 𝐿2-approximizer for the random quantity

√
𝑛 (OT2(𝜇𝑛, 𝜈) − E[OT2(𝜇𝑛, 𝜈)])

which yields the conclusion. These results have recently been extended by del Barrio
et al. 2021 to more general convex cost functions, including a CLT similar to (5)
for OT𝑝 under 𝑝 > 1 provided the probability measures have moments of order
2𝑝 . Notably, the regularity conditions on the measures impose the Kantorovich
potential to be unique and it remains unclear how to generalize their approach
under non-uniqueness. More crucially, the statement requires centering around the
empirical expectation which hinders its immediate use for statistical applications. It
might be tempting to replace E[OT2(𝜇𝑛, 𝜈)] by its population counterpart OT2(𝜇, 𝜈)
in (5). On the real line (𝑑 = 1) and under sufficient regularity assumptions, this is
possible (del Barrio et al. 2019). However, it remains a delicate issue for 𝑑 ≥ 2. By an
observation of Manole and Niles-Weed 2021, Proof of Proposition 21, if 𝜇 and 𝜈 are
uniform measures on two different balls of equal radius the bias is lower bounded
by E[OT2(𝜇𝑛, 𝜈)] − OT2(𝜇, 𝜈) ≳ 𝑛−2/𝑑 . This demonstrates the replacement of the
centering with the population quantity in (5) to be invalid for 𝑑 ≥ 5 (the special
case 𝑑 = 4 is further addressed in Section 5.4). Nevertheless, employing a different
estimator may allow under additional assumptions for faster convergence rates of
the bias in high dimensions. Indeed, for probability measures 𝜇, 𝜈 on the unit cube
[0, 1]𝑑 with sufficiently smooth densities Manole et al. 2021 propose a suitable wavelet
estimator 𝜇̃𝑛 and prove the bias to be of order |E [OT2(𝜇̃𝑛, 𝜈)] −OT2(𝜇, 𝜈) | = 𝑜 (𝑛−1/2).
Combined with a strategy as outlined by del Barrio and Loubes 2019, the random
quantity

√
𝑛(OT2(𝜇̃𝑛, 𝜈) − OT2(𝜇, 𝜈)) is shown to asymptotically follow a centered

Gaussian distribution analogous to (5), which also degenerates under the null 𝜇 = 𝜈 .
Despite this being an interesting result, CLTs for empirical OT costs based on general
cost functions and centered around the population quantity remain largely open.

In this work, we provide a unifying approach to obtain CLTs for empirical OT that
include certain aforementioned settings but go far beyond. In particular, our approach
does not rely on discrete spaces, neither on explicit formulas involving quantiles
(𝑑 = 1) nor unique Kantorovich potentials (𝑑 ≥ 2). Our limit laws are reminiscent
of the discrete case (4) but hold for considerably more general cost functions and
probability measures. The limiting random variables are characterized as suprema
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of Gaussian processes G𝜇 in ℓ∞ (F𝑐) and indexed in Kantorovich potentials from
𝑆𝑐 (𝜇, 𝜈) in (3). The CLTs are centered around the population quantity. Our main
result (Theorem 1) states that under certain assumptions

√
𝑛 (OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)) D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )
G𝜇 (𝑓 ). (6)

The distributional limit law (6) is valid whenever F𝑐 in (7) (below) is 𝜇-Donsker and

(C) 𝑐 : X × Y → R+ is continuous and bounded by ∥𝑐 ∥∞ B sup𝑥,𝑦 |𝑐 (𝑥,𝑦) | < ∞.

holds true combined with one of the following two assumptions:

(S1) X and Y are locally compact and {𝑐 (·, 𝑦) | 𝑦 ∈ Y} and {𝑐 (𝑥, ·) | 𝑥 ∈ X } are
equicontinuous6 on X and Y , respectively.

(S2) X is compact and {𝑐 (·, 𝑦) | 𝑦 ∈ Y} is equicontinuous6 on X .

Under Assumption (C) the function class F𝑐 used in (2) can be chosen as a uniformly
bounded class of 𝑐-concave functions on X (Villani 2003, Remark 1.13)

F𝑐 B
{
𝑓 : X → R | ∃𝑔 : Y → R, −∥𝑐 ∥∞ ≤ 𝑔 ≤ 0, 𝑓 = inf

𝑦∈Y
𝑐 (·, 𝑦) − 𝑔(𝑦)

}
. (7)

Moreover,G𝜇 in (6) is a tight centered Gaussian process and represents the weak limit
of the empirical process

√
𝑛(𝜇𝑛 − 𝜇) in ℓ∞ (F𝑐), the Banach space of bounded func-

tionals from F𝑐 to R equipped with uniform norm. The covariance of G𝜇 specifically
depends on 𝜇 and is equal to

E
[
G𝜇 (𝑓1)G𝜇 (𝑓2)

]
=

∫
X
𝑓1(𝑥) 𝑓2(𝑥) d𝜇 (𝑥) −

∫
X
𝑓1(𝑥) d𝜇 (𝑥)

∫
X
𝑓2(𝑥) d𝜇 (𝑥) (8)

for two functions 𝑓1, 𝑓2 ∈ F𝑐 . If instead 𝜈 is estimated by its empirical version, then
under the same conditions on the cost and the spaces, i.e., Assumption (C) combined
with (S1) or (S2), and if F𝑐

𝑐 , the set of all 𝑐-conjugate functions from F𝑐 , is 𝜈-Donsker,
our CLT reads as

√
𝑛 (OT𝑐 (𝜇, 𝜈𝑛) − OT𝑐 (𝜇, 𝜈)) D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )
G𝜈 (𝑓 𝑐), (9)

where G𝜈 is a centered Gaussian process in the Banach space ℓ∞
(F𝑐

𝑐

)
with similar

covariance as (8) corresponding to the weak limit of the empirical process
√
𝑛(𝜈𝑛−𝜈).

Our proof technique relies on Kantorovich duality that represents the OT𝑐 (·, ·) cost
as a functional from ℓ∞ (F𝑐) × ℓ∞

(F𝑐
𝑐

)
to R. We take upon this approach in Section 2

6 Equicontinuity refers to a common modulus of continuity for the function classes
{
𝑐 (·, 𝑦) |𝑦 ∈ Y

}
and

{
𝑐 (𝑥, ·) | 𝑥 ∈ X

}
with respect to a continuous metric on X and Y .
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and prove that OT𝑐 (·, ·) is Hadamard directionally differentiable. An application of a
general functional delta method (Dümbgen 1993; Römisch 2004) allows concluding
our main results on CLTs for empirical OT. This necessitates the empirical process√
𝑛(𝜇𝑛 − 𝜇) to converge weakly to some tight random element G𝜇 in ℓ∞ (F𝑐). The

latter can be dealt with empirical process theory and requires the function class F𝑐
to be 𝜇-Donsker. Our results naturally extend to the two sample case where both
probability measures are estimated by their empirical versions, simultaneously. We
further characterize asymptotic normality, i.e., when the supremum in (6) and (9) is
over a singleton (Theorem 3 in Section 3) and degeneracy (Theorem 4 in Section 4),
i.e., when the limit law is equal to a Dirac measure which results from unique and
trivial (almost surely constant) Kantorovich potentials, respectively. We emphasize
that even if 𝜇 = 𝜈 , the CLTs might be non-degenerate, e.g., if 𝜇 has disconnected
support, as for the discrete case in (4), where limit laws usually do not degenerate to
a Dirac measure at zero (Tameling et al. 2019).

In light of the general CLT statement in (6), we discuss concrete settings for which
the assumptions on the cost are satisfied and F𝑐 is 𝜇-Donsker (Section 5). The latter
manifests itself in the complexity of F𝑐 measured in terms of covering numbers
(Van der Vaart and Wellner 1996) as well as tail conditions on the measure 𝜇. The
covering numbers depend on properties of the cost function and the underlying
dimension of the ground space (see also Gangbo and McCann 1996; Chizat et al.
2020; Hundrieser et al. 2022). The simplest case appears on finite spaces where
F𝑐 is even universal Donsker. On countable discrete spaces it requires the popular
Borisov-Dudley-Durst summability condition on the measure 𝜇. This is in line with
the aforementioned results by Sommerfeld and Munk 2018 and Tameling et al. 2019
(Corollary 4). Beyond discrete spaces, we employ well-known results in empirical
process theory. More precisely and tailored to Euclidean spaces R𝑑 with 𝑑 ≤ 3, if
the cost satisfies certain regularity conditions, then F𝑐 is 𝜇-Donsker provided the
measure 𝜇 ∈ P (R𝑑 ) satisfies ∑︁

𝑘∈Z𝑑

√︁
𝜇 ( [𝑘, 𝑘 + 1)) < ∞.

This implies CLTs for the empirical OT cost on the real line with general cost functions
(Theorem 6) but also novel statements for dimension 𝑑 = 2, 3 (Theorem 7). Moreover,
in Section 5.4 we show for 𝜇 = Unif ( [0, 1]𝑑 ) that the 𝜇-Donsker property of F𝑐 is
already violated under smooth costs 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2 for 𝑑 ≥ 4 and that CLTs as
in (6) cannot hold for 𝑑 ≥ 5 (for 𝑑 = 4 such CLTs are still possible though and we
give an example). In view of this observation, our approach is exhaustive in terms
of the dimension. Nevertheless, provided only one of the probability measures is
supported on low-dimensional compact smooth submanifold of R𝑑 we highlight
that the Donsker property is still fulfilled and that the CLTs in (6) remain valid
(Theorem 9). This is related to recent findings by Hundrieser et al. 2022 discovering
the lower complexity adaptation phenomenon of empirical OT which states that
the convergence rate of the empirical OT cost under different population measures
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adapts to the measure with lower-dimensional support. Moreover, based on this
observation, we also derive a CLT for the empirical OT cost in the semi-discrete
framework (Theorem 8). We postpone further technical proofs and auxiliary results
on Kantorovich potentials to Appendix A.

Notation. The set of non-negative real numbers is R+. For 𝑎, 𝑏 ∈ R the inequality
𝑎 ≲𝜅 𝑏 means that 𝑎 is larger than 𝑏 up to a constant depending on 𝜅. In certain
instances we omit the 𝜅. If 𝑎 ≲ 𝑏 ≲ 𝑎, we write 𝑎 ≍ 𝑏. The class of real-valued
continuous functions defined on a metric space X is denoted by 𝐶 (X ). A real-
valued function 𝑓 defined on some convex subset 𝐴 ⊂ X is 𝜆-semi-concave if there
exists some constant 𝜆 > 0 such that 𝑓 (𝑥) − 𝜆∥𝑥 ∥2

2 is concave. Furthermore, 𝑓 is
said to be (𝛼, 𝐿)-Hölder continuous if there exist positive constants 𝛼 ∈ (0, 1] and
𝐿 > 0 such that |𝑓 (𝑥) − 𝑓 (𝑥 ′) | ≤ 𝐿∥𝑥 − 𝑥 ′∥𝛼 for all 𝑥, 𝑥 ′ in the domain of 𝑓 . If
𝛼 = 1, then 𝑓 is 𝐿-Lipschitz. For a function class F on X denote by ∥ 𝑓 − 𝑔∥∞ the
uniform norm ∥ 𝑓 ∥∞ = sup𝑥∈X |𝑓 (𝑥) |. Let ℓ∞ (F) be the Banach space of real-valued
bounded functionals on F with respect to uniform norm ∥𝜑 ∥F B sup𝑓 ∈F |𝜑 (𝑓 ) |.
For (F , 𝑑) a subset of some metric space with metric 𝑑 and 𝜀 > 0, the covering
number N (𝜀,F , 𝑑) is the minimal number of balls {𝑔 | 𝑑 (𝑓 , 𝑔) < 𝜀} of radius 𝜀 such
that their union contains F . The metric entropy of F is the logarithm of the covering
number log

(N (𝜀,F , 𝑑)) .
2 Central Limit Theorems for Empirical Optimal

Transport

Throughout this section, we consider Polish spaces X and Y and a non-negative
cost function 𝑐 : X × Y → R+ such that Assumption (C) is fulfilled. Under this
assumption the OT cost in (1) is finite for any two probability measures 𝜇 ∈ P (X ),
𝜈 ∈ P (Y) and enjoys Kantorovich duality (2). The set F𝑐 , over which the dual is
optimized, is the collection of uniformly bounded 𝑐-concave functions on X defined
as in (7) (for details see Villani 2003, Remark 1.13 and the Appendix). The supremum
in (2) over F𝑐 is attained, i.e., there exists a Kantorovich potential 𝑓 ∈ F𝑐 , where we
recall the set 𝑆𝑐 (𝜇, 𝜈) in (3) of all Kantorovich potentials. Notably, as the cost function
is continuous, any function 𝑓 ∈ F𝑐 and its 𝑐-conjugate 𝑓 𝑐 are upper semi-continuous
and thus measurable on the Polish spaces X and Y , respectively.
More general structural properties for 𝑐-concave functions F𝑐 and its 𝑐-conjugate
class F𝑐

𝑐 B {𝑓 𝑐 | 𝑓 ∈ F𝑐 } are intrinsically linked to the cost function and the
underlying Polish space. Hence, to guarantee (minimal) regularity properties of the
set of Kantorovich potentials we impose Assumption (S1) or (S2). Under either of
these conditions, the Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) and 𝑆𝑐𝑐 (𝜇, 𝜈) are continuous as
well (Lemma 1). Moreover, under compactness or local compactness of the spaces X
and Y as well as the equicontinuity condition of the cost function, the classes F𝑐
and F𝑐

𝑐 are by the Arzelà-Ascoli theorem relatively compact with respect to uniform
convergence on compact sets (see proof of Theorem 1 and in particular Step 3).
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Examples of locally compact spaces are Euclidean spaces but also encompass finite
and countable spaces equipped with discrete topology. Assumptions (C) and (S1)
are then fulfilled for the Euclidean case X = Y = R𝑑 if 𝑐 (𝑥,𝑦) = ℎ(𝑥 − 𝑦) for some
bounded Lipschitz function ℎ : R𝑑 → R+ and for discrete spaces X ,Y if the cost
function is uniformly bounded. Furthermore and for compact subsets X ,Y ⊂ R𝑑 ,
Assumptions (C) and (S2) are fulfilled for cost 𝑐 (𝑥,𝑦) = ℎ(𝑥 − 𝑦) for some (possibly
unbounded) Lipschitz function ℎ : R𝑑 → R+. In particular, this includes the costs
𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 with 𝑝 ≥ 1. Other important settings are detailed in Section 5.

2.1 Main Result

In the following, the empirical process
√
𝑛(𝜇𝑛 − 𝜇) is considered as a random element

in the Banach space ℓ∞ (F𝑐) equipped with uniform norm.

Definition 1 (Van der Vaart and Wellner 1996): A function class F of measur-
able, pointwise bounded functions on X is called 𝜇-Donsker, if the empirical
process

√
𝑛(𝜇𝑛 − 𝜇) weakly converges to a tight random element G𝜇 in ℓ∞(F).

Furthermore, F is universal Donsker if for any probability measure 𝜇 ∈ P (X )
the function class F is 𝜇-Donsker.

If F𝑐 is 𝜇-Donsker, the weak limit G𝜇 is a mean-zero Gaussian process indexed over
the function class F𝑐 with covariance for 𝑓1, 𝑓2 ∈ F𝑐 as in (8). We now state our main
result on the CLTs for the empirical OT cost.

Theorem 1: Consider Polish spaces X and Y and a cost function 𝑐 : X ×Y → R+
satisfying Assumption (C) combined with (S1) or (S2). For two probability
measures 𝜇 ∈ P (X ), 𝜈 ∈ P (Y), i.i.d. random variables 𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 and
independent to that i.i.d. random variables 𝑌1, . . . , 𝑌𝑚 ∼ 𝜈 with 𝑛,𝑚 ∈ N denote
their respective empirical measures by 𝜇𝑛 B 1

𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 and 𝜈𝑚 B 1

𝑚

∑𝑚
𝑖=1 𝛿𝑌𝑖 .

(𝑖) (One-sample from 𝜇) Suppose that F𝑐 is 𝜇-Donsker. Then, for 𝑛 → ∞,
√
𝑛 (OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)) D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )
G𝜇 (𝑓 ) . (10a)

(𝑖𝑖) (One-sample from 𝜈) Suppose that F𝑐
𝑐 is 𝜈-Donsker. Then, for𝑚 → ∞,

√
𝑚 (OT𝑐 (𝜇, 𝜈𝑚) − OT𝑐 (𝜇, 𝜈)) D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )
G𝜈 (𝑓 𝑐) . (10b)

(𝑖𝑖𝑖) (Two-sample) Suppose that F𝑐 is 𝜇-Donsker and that F𝑐
𝑐 is 𝜈-Donsker.

Then, for 𝑛,𝑚 → ∞ with𝑚/(𝑛 +𝑚) → 𝛿 ∈ (0, 1),√︂
𝑛𝑚

𝑛 +𝑚 (OT𝑐 (𝜇𝑛, 𝜈𝑚) − OT𝑐 (𝜇, 𝜈))
D−−−→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

(√
𝛿G𝜇 (𝑓 ) +

√
1 − 𝛿G𝜈 (𝑓 𝑐)

)
. (10c)
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Proof. Our proof is based on the Hadamard directional differentiability of the OT
cost on the set of probability measures P (X ) × P (Y) with respect to the topology
induced by ℓ∞ (F𝑐) × ℓ∞

(F𝑐
𝑐

)
(see the subsequent Theorem 2). Under settings (𝑖)

and (𝑖𝑖) it holds for 𝑛 → ∞ and𝑚 → ∞ that
√
𝑛(𝜇𝑛 − 𝜇) D−−−→ G𝜇 in ℓ∞ (F𝑐) ,

√
𝑚(𝜈𝑚 − 𝜈) D−−−→ G𝜈 in ℓ∞

(F𝑐
𝑐

)
,

respectively. For setting (𝑖𝑖𝑖) it holds by Van der Vaart and Wellner 1996, Example
1.4.6, that the empirical processes converge jointly√︂

𝑛𝑚

𝑛 +𝑚
(
𝜇𝑛 − 𝜇, 𝜈𝑚 − 𝜈 ) D−−−→

(√
𝛿G𝜇,

√
1 − 𝛿G𝜈

)
in ℓ∞ (F𝑐) × ℓ∞

(F𝑐
𝑐

)
with𝑚/(𝑛 +𝑚) → 𝛿 ∈ (0, 1). Moreover, Theorem 2 below asserts that OT𝑐 : P (X ) ×
P (Y) → R is Hadamard directionally differentiable at (𝜇, 𝜈) with respect to ℓ∞ (F𝑐)×
ℓ∞

(F𝑐
𝑐

)
tangentially to P (X̃ ) × P (Ỹ) with X̃ = supp(𝜇) and Ỹ = supp(𝜈) and

T𝜇
(P (X̃ )) = Cl

{ 𝜇′−𝜇
𝑡 for 𝑡 > 0, 𝜇′ ∈ P (X̃ )} and analogously for T𝜈

(P (Ỹ)) . Port-
manteau’s Theorem for closed sets (Van der Vaart and Wellner 1996, Theorem 1.3.4
(iii)) proves that

P
(
G𝜇 ∈ T𝜇 (P (X̃ ))

)
≥ lim sup

𝑛→∞
P

(√
𝑛(𝜇𝑛 − 𝜇) ∈ T𝜇 (P (X̃ ))

)
= 1 (11)

since supp(𝜇𝑛) ⊆ supp(𝜇), and analogously for G𝜈 . Then, the statements in Theo-
rem 1 follow from the functional delta method (Römisch 2004, Theorem 1). □

We investigate specific settings that yield novel CLTs in Section 5. At this stage, we
like to highlight that Theorem 1 links CLTs for the empirical OT cost to the study of
the function classes F𝑐 and F𝑐

𝑐 being Donsker, respectively.

Remark 1: Even if Assumptions (S1) and (S2) fail to hold, the first step in the
proof of Theorem 2 still asserts Hadamard directional differentiability of the
OT cost. However, in this case the derivative rather depends on the set of 𝜀-
approximate optimizer 𝑆𝑐 (𝜇, 𝜈, 𝜀) B {𝑓 ∈ F𝑐 | 𝜇 (𝑓 ) + 𝜈 (𝑓 𝑐) ≥ OT𝑐 (𝜇, 𝜈) − 𝜀}
instead of the set of Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈). Hence, employing a func-
tional delta method (Römisch 2004, Theorem 1), we obtain that, as long as F𝑐 is
𝜇-Donsker, a CLT of the form

√
𝑛
(
OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)

) D−−−→ lim
𝜀↘0

sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈,𝜀 )

G𝜇 (𝑓 )

is valid. Assumptions (S1) and (S2) serve to simplify the limit distribution
obtained in Theorem 1. For more details we refer to Section 2.2.

Remark 2 (Bootstrap consistency): It is well-known that the naive 𝑛-out-of-
𝑛 bootstrap fails to be consistent if the functional is not linearly Hadamard
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differentiable (Dümbgen 1993; Fang and Santos 2019). Instead, Hadamard
directional differentiability (Dümbgen 1993, Proposition 2) asserts consistency
of the 𝑘-out-of-𝑛 bootstrap for 𝑘 = 𝑜 (𝑛) which has immediate consequences
for the approximation of quantiles for the empirical OT cost. We formalize this
principle exemplary for the one-sample case. For𝑛, 𝑘 ∈ N, consider i.i.d. samples
𝑋1, . . . , 𝑋𝑛 ∼ 𝜇 with empirical measure 𝜇𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 and consider i.i.d.

bootstrap samples 𝑋 ∗
1 , . . . , 𝑋

∗
𝑘
∼ 𝜇𝑛 with corresponding (bootstrap) empirical

measure 𝜇∗
𝑛,𝑘

= 1
𝑘

∑𝑘
𝑖=1 𝛿𝑋 ∗

𝑖
. Then, it follows for 𝑛, 𝑘 → ∞ with 𝑘 = 𝑜 (𝑛) that

sup
ℎ∈BL1 (R)

���E [
ℎ

(√
𝑘 (OT𝑐 (𝜇∗𝑛,𝑘 , 𝜈) − OT𝑐 (𝜇𝑛, 𝜈))

) ���𝑋1, . . . , 𝑋𝑛
]

− E
[
ℎ

(√
𝑛(OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈))

)] ��� P−−−→ 0.

Herein, P−−−→ denotes convergence in outer probability (Van der Vaart and
Wellner 1996) and BL1(R) is the set of real-valued functions on R that are
absolutely bounded by one and Lipschitz with modulus one.

2.2 Hadamard Directional Differentiability

Based on Kantorovich duality (2), we consider the OT cost as an optimization problem
over the set of 𝑐-concave functions mapping from the set of probability measures
P (X ) × P (Y) to R. For a pair of probability measures 𝜇 ∈ P (X ), 𝜈 ∈ P (Y), we
prove Hadamard directional differentiability of the OT cost at (𝜇, 𝜈) with respect to
the Banach spaces ℓ∞ (F𝑐) × ℓ∞

(F𝑐
𝑐

)
equipped with uniform norm. For a definition

of this notion of differentiability, we refer to Römisch 2004. Moreover, since the
support of empirical measures is always contained in the support of the underlying
measure, we focus in the following only on differentiability tangentially to the
set of probability measures whose support is contained in the support of 𝜇 and 𝜈 ,
respectively. This means that only those perturbations for 𝜇 and 𝜈 are considered
which do not lead to an enlargement of the support.

Theorem 2 (Hadamard directional differentiability of OT cost): Suppose that for
two Polish spaces X , Y and the cost function 𝑐 : X × Y → R+ the Assumption
(C) combined with (S1) or (S2) are satisfied. Consider the function class F𝑐 in
(7) and two probability measures 𝜇 ∈ P (X ), 𝜈 ∈ P (Y) with their respective
support X̃ B supp(𝜇) and Ỹ B supp(𝜈). Then, the OT cost functional

OT𝑐 : P (X ) × P (Y) ⊆ ℓ∞(F𝑐) × ℓ∞(F𝑐
𝑐 ) → R,

(𝜇, 𝜈) ↦→ sup
𝑓 ∈F𝑐

(𝜇 (𝑓 ) + 𝜈 (𝑓 𝑐)) (12)
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is Hadamard directionally differentiable at (𝜇, 𝜈) tangentially to the set of prob-
ability measures P (X̃ ) × P (Ỹ). The derivative is equal to

D𝐻
| (𝜇,𝜈 )OT𝑐 : T𝜇

(P (X̃ )) × T𝜈
(P (Ỹ)) → R,
(Δ𝜇,Δ𝜈 ) ↦→ sup

𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

(
Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)

)
.

Herein, the contingent Bouligand cone T𝜇
(P (X̃ )) to P (X̃ ) at 𝜇 is given by the

topological closure Cl
{ 𝜇′−𝜇

𝑡 for 𝑡 > 0, 𝜇′ ∈ P (X̃ )} ⊆ ℓ∞ (F𝑐) and analogously
for T𝜈

(P (Ỹ)) .
Proof. The proof is inspired by Römisch 2004, Proposition 1, and Cárcamo et al.
2020, Theorem 2.1 and Corollary 2.2. Compared to their setting, the proof here is
specifically tailored to the OT cost in (2) and exploits properties of the function class
F𝑐 . We divide the proof into four steps. The first two essentially prove the Hadamard
directional differentiability and simplify the representation of the derivative, whereas
the last two are concerned with the convergence results for Kantorovich potentials.

Step 1. Hadamard directional differentiability. Let (𝑡𝑛)𝑛∈N be a positive sequence with
𝑡𝑛 ↘ 0 and take sequences (Δ𝜇,𝑛,Δ𝜈,𝑛) ∈ ℓ∞(F𝑐) × ℓ∞(F𝑐

𝑐 ) such that for all 𝑛 ∈ N
holds

𝜇𝑛 B 𝜇 + 𝑡𝑛Δ𝜇,𝑛 ∈ P (X̃ ), 𝜈𝑛 B 𝜈 + 𝑡𝑛Δ𝜈,𝑛 ∈ P (Ỹ),
with (Δ𝜇,𝑛,Δ𝜈,𝑛) → (Δ𝜇,Δ𝜈 ) ∈ T𝜇

(P (X̃ )) × T𝜈
(P (Ỹ)) for 𝑛 → ∞ in the space

ℓ∞(F𝑐) × ℓ∞(F𝑐
𝑐 ). The representation of the Bouligand cone as a topological closure

follows by an observation of Römisch 2004 since P (X̃ ) and P (Ỹ) are convex sets.
For 𝜇, 𝜇𝑛 and 𝜈, 𝜈𝑛 considered as bounded functionals on F𝑐 and F𝑐

𝑐 , respectively, it
follows along the lines of Römisch 2004, Proposition 1 that the OT cost is Hadamard
directionally differentiable with

D𝐻
| (𝜇,𝜈 ) (Δ𝜇,Δ𝜈 ) = lim

𝑛→∞
1
𝑡𝑛

(OT𝑐 (𝜇𝑛, 𝜈𝑛) − OT𝑐 (𝜇, 𝜈)) = lim
𝜀↘0

sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈,𝜀 )

(Δ𝜇 (𝑓 )+Δ𝜈 (𝑓 𝑐)),

where 𝑆𝑐 (𝜇, 𝜈, 𝜀) denotes the set of 𝜀-approximizers

𝑆𝑐 (𝜇, 𝜈, 𝜀) B {𝑓 ∈ F𝑐 | 𝜇 (𝑓 ) + 𝜈 (𝑓 𝑐) ≥ OT𝑐 (𝜇, 𝜈) − 𝜀} .

Step 2. Simplifying the derivative. It remains to show that

lim
𝜀↘0

sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈,𝜀 )

(
Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)

)
= sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

(Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)) . (13)

The left hand side in (13) is greater or equal to the right hand side since 𝑆𝑐 (𝜇, 𝜈) ⊆
𝑆𝑐 (𝜇, 𝜈, 𝜀) for all 𝜀 > 0. For the converse, take a positive decreasing sequence (𝜀𝑛)𝑛∈N
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with 𝜀𝑛 ↘ 0 and a sequence (𝑓𝑛)𝑛∈N ⊆ F𝑐 with 𝑓𝑛 ∈ 𝑆𝑐 (𝜇, 𝜈, 𝜀𝑛) for which

sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈,𝜀𝑛 )

(Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)) − 𝜀𝑛 ≤ Δ𝜇 (𝑓𝑛) + Δ𝜈 (𝑓 𝑐𝑛 ).

As we prove below there exists a subsequence (𝑓𝑛𝑘 )𝑘∈N such that 𝑓𝑛𝑘 and 𝑓 𝑐𝑛𝑘 con-
verge pointwise for 𝑘 → ∞ on supp(𝜇) and supp(𝜈) to functions ℎ + 𝑎 and ℎ𝑐 − 𝑎,
respectively, for ℎ ∈ 𝑆𝑐 (𝜇, 𝜈) and 𝑎 ∈ R. Once we show that

lim
𝑘→∞

(Δ𝜇 (𝑓𝑛𝑘 ) + Δ𝜈 (𝑓 𝑐𝑛𝑘 )) = (Δ𝜇 (ℎ) + Δ𝜈 (ℎ𝑐)), (14)

equality (13) follows from

lim
𝜀↘0

sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈,𝜀 )

(Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)) ≤ lim
𝑘→∞

Δ𝜇 (𝑓𝑛𝑘 ) + Δ𝜈 (𝑓 𝑐𝑛𝑘 )

= (Δ𝜇 (ℎ) + Δ𝜈 (ℎ𝑐)) ≤ sup
𝑓 ∈𝑆𝑐 (𝜇,𝜈 )

(Δ𝜇 (𝑓 ) + Δ𝜈 (𝑓 𝑐)) .

To verify (14), let 𝛿 > 0 and select 𝑀 ∈ N such that


Δ𝜇 − Δ𝜇,𝑀




F𝑐

< 𝛿/4. Pointwise
convergence of 𝑓𝑛𝑘 on supp(𝜇) to ℎ + 𝑎 combined with the uniform bound on F𝑐
asserts by dominated convergence for 𝜇𝑀 , 𝜇 by supp(𝜇𝑀 ) ⊆ supp(𝜇) existence of
𝐾 ∈ N with ��𝜇𝑀 (𝑓𝑛𝑘 − (ℎ + 𝑎))

�� + ��𝜇 (𝑓𝑛𝑘 − (ℎ + 𝑎)) �� < 𝛿𝑡𝑀/2 ∀𝑘 ≥ 𝐾.

Hence, for all 𝑘 ≥ 𝐾 it follows that

|Δ𝜇 (𝑓𝑛𝑘 ) − Δ𝜇 (ℎ) | ≤ 2


Δ𝜇 − Δ𝜇,𝑀




F𝑐

+ |Δ𝜇,𝑀 (𝑓𝑛𝑘 ) − Δ𝜇,𝑀 (ℎ) |
= 2



Δ𝜇 − Δ𝜇,𝑀



F𝑐

+ 𝑡−1
𝑀

��(𝜇𝑀 − 𝜇) (𝑓𝑛𝑘 − ℎ) ��
= 2



Δ𝜇 − Δ𝜇,𝑀



F𝑐

+ 𝑡−1
𝑀

��(𝜇𝑀 − 𝜇) (𝑓𝑛𝑘 − (ℎ − 𝑎)) �� < 𝛿,
where we use in the second equality the definition of Δ𝜇,𝑀 and in the last equality
that (𝜇 − 𝜇𝑀 ) (𝑎) = 0. Repeating the argument for |Δ𝜈 (𝑓 𝑐𝑛𝑘 ) − Δ𝜈 (ℎ𝑐) | yields (14).

Step 3. Existence of converging subsequences. We prove existence of a subsequence
of (𝑓𝑛, 𝑓 𝑐𝑛 ) that converges uniformly on compact sets to a pair of continuous func-
tions (𝑓 , 𝑔). Uniform convergence on compact sets of continuous functions on X
is induced by the compact-open topology which is metrizable since X is a locally
compact Polish space (McCoy and Ntantu 1988, page 68). We show that F𝑐 is rela-
tively compact in the compact-open topology by means of a general version of the
Arzelà-Ascoli theorem.

Fact 1 (McCoy and Ntantu 1988, Theorem 3.2.6): If X is locally compact,
then a set of continuous real-valued functions on X is compact in the
compact-open topology if and only if it is closed, pointwise bounded and
equicontinuous.
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Since {𝑐 (·, 𝑦) | 𝑦 ∈ Y} is equicontinuous, so is F𝑐 and its closure Cl(F𝑐) in the
compact-open topology. Moreover, since F𝑐 is uniformly bounded by ∥𝑐 ∥∞, Fact 1
asserts the existence of a subsequence of 𝑓𝑛 that converges uniformly on compact sets
to a continuous function 𝑓 ∈ Cl(F𝑐). By restricting to a subsequence, we assume
that 𝑓𝑛 uniformly converges on compact sets to 𝑓 . Under Assumption (S2), this
asserts that 𝑓𝑛 uniformly converges on X to 𝑓 and thus 𝑓 𝑐𝑛 uniformly converges on
Y to 𝑔 B 𝑓 𝑐 . Under Assumption (S1), we instead repeat the above argument and
assume by local compactness of Y and equicontinuity of {𝑐 (𝑥, ·) | 𝑥 ∈ X } that 𝑓 𝑐𝑛
uniformly converges on compact sets of Y to some continuous function 𝑔 ∈ Cl(F𝑐

𝑐 ).

Step 4. Structural properties of limits with general OT theory. It remains to show that
there exists a 𝑐-concave function ℎ ∈ 𝑆𝑐 (𝜇, 𝜈) and some 𝑎 ∈ R such that 𝑓 = ℎ + 𝑎 on
supp(𝜇) and 𝑔 = ℎ𝑐 −𝑎 on supp(𝜈). For this purpose, note that uniform convergence
on compact sets implies pointwise convergence. Since 𝑓𝑛, 𝑓 , 𝑓 𝑐𝑛 , 𝑔 are all absolutely
bounded by ∥𝑐 ∥∞, we find by dominated convergence that

𝜇 (𝑓 ) + 𝜈 (𝑔) = lim
𝑛→∞ 𝜇 (𝑓𝑛) + 𝜈 (𝑓

𝑐
𝑛 ) ≥ lim

𝑛→∞ OT𝑐 (𝜇, 𝜈) − 𝜀𝑛 = OT𝑐 (𝜇, 𝜈).

Moreover, for (𝑥,𝑦) ∈ X × Y we find that

𝑓 (𝑥) + 𝑔(𝑦) = lim
𝑛→∞ 𝑓𝑛 (𝑥) + lim

𝑛→∞ 𝑓
𝑐
𝑛 (𝑦) = lim

𝑛→∞ 𝑓𝑛 (𝑥) + 𝑓
𝑐
𝑛 (𝑦) ≤ 𝑐 (𝑥,𝑦), (15)

which asserts by the dual formulation for the OT cost (Villani 2008, Theorem 5.9)
that 𝜇 (𝑓 ) + 𝜈 (𝑔) = OT𝑐 (𝜇, 𝜈). Upon defining ℎ̃ B 𝑔𝑐 , we therefore obtain from (15)
the inequalities 𝑓 ≤ ℎ̃ on X and 𝑔 ≤ ℎ̃𝑐 on Y . Hence, it holds that

OT𝑐 (𝜇, 𝜈) = 𝜇 (𝑓 ) + 𝜈 (𝑔) ≤ 𝜇 (ℎ̃) + 𝜈 (𝑔) ≤ 𝜇 (ℎ̃) + 𝜈 (ℎ̃𝑐) ≤ OT𝑐 (𝜇, 𝜈),

where the last inequality follows from ℎ̃(𝑥) + ℎ̃𝑐 (𝑦) ≤ 𝑐 (𝑥,𝑦) for all (𝑥,𝑦) ∈ X × Y .
We thus conclude that 𝑓 = ℎ̃ holds 𝜇-almost surely and 𝑔 = ℎ̃𝑐 holds 𝜈-almost surely.

Under Assumption (S1) it follows from step three that both 𝑓 and ℎ̃ as well as 𝑔
and ℎ̃𝑐 are continuous on X and Y , respectively. Thus, it holds (deterministically)
that 𝑓 = ℎ̃ on supp(𝜇) and 𝑔 = ℎ̃𝑐 on supp(𝜈). Likewise, under Assumption (S2) it
follows that 𝑓 and ℎ̃ are continuous on X which yields 𝑓 = ℎ̃ on supp(𝜇). Further,
from step three we know under (S2) that 𝑔 = 𝑓 𝑐 on Y , i.e., 𝑔 is 𝑐-concave and hence
𝑔 = 𝑔𝑐𝑐 = ℎ̃𝑐 on Y by Santambrogio 2015, Proposition 1.34. Finally, we note by
Villani 2003, Remark 1.13, that any 𝑐-concave Kantorovich potential ℎ̃ can be suitably
shifted by a constant 𝑎 ∈ R such that 0 ≤ ℎ̃(𝑥) − 𝑎 ≤ ∥𝑐 ∥∞ for all 𝑥 ∈ X and
− ∥𝑐 ∥∞ ≤ (ℎ̃ − 𝑎)𝑐 (𝑦) = ℎ̃𝑐 (𝑦) + 𝑎 ≤ 0 for all 𝑦 ∈ Y . In particular, the function
ℎ B ℎ̃ − 𝑎 lies in 𝑆𝑐 (𝜇, 𝜈) and fulfills the asserted properties. □

Remark 3: In the proof of Theorem 2, we cannot guarantee that the 𝑐-concave
function ℎ̃ = 𝑔𝑐 lies in 𝑆𝑐 (𝜇, 𝜈) ⊆ F𝑐 and therefore have to shift it by a suitable
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constant 𝑎. This is due to the inequalities − ∥𝑐 ∥∞ ≤ 𝑔 ≤ 0 being possibly
violated.

3 Normal Limits under Unique Kantorovich Potentials

The set of Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) in (3) and its 𝑐-conjugates 𝑆𝑐𝑐 (𝜇, 𝜈) play a
defining role for the limiting random variables in Theorem 1. A particular setting of
interest arises if Kantorovich potentials are uniquely determined. However, since any
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) can be shifted arbitrarily and 𝑓 + 𝑎 for 𝑎 ∈ R is still a 𝑐-concave function
that solves (2), the set 𝑆𝑐 (𝜇, 𝜈) can only be a singleton up to additive constants.
Furthermore, it suffices if uniqueness holds almost surely.

Definition 2 (Unique Kantorovich potentials): The Kantorovich potentials
𝑆𝑐 (𝜇, 𝜈) in (3) are said to be unique if 𝑓1 − 𝑓2 for all 𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈) is constant
𝜇-almost surely.

Notably, one can show that uniqueness of Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) with
respect to 𝜇 is in fact equivalent to uniqueness of the 𝑐-conjugate Kantorovich
potentials 𝑆𝑐𝑐 (𝜇, 𝜈) with respect to 𝜈 (Staudt et al. 2021, Lemma 5). Under this form of
uniqueness, the limit random variables for the empirical OT cost simplify and follow
a centered normal distribution.

Theorem 3 (Normal limits): Consider Polish spaces X and Y and a cost function
𝑐 : X ×Y → R+ satisfying Assumption (C) combined with (S1) or (S2). Assume
that the Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) for 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) are unique
and let 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). Then, for empirical measures 𝜇𝑛, 𝜈𝑚 the following CLT is
valid.

(𝑖) (One-sample from 𝜇) Suppose that F𝑐 is 𝜇-Donsker. Then, for 𝑛 → ∞,

√
𝑛 (OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)) D−−−→ G𝜇 (𝑓 ) ∼ N (0,Var𝑋∼𝜇 [𝑓 (𝑋 )]). (16a)

(𝑖𝑖) (One-sample from 𝜈) Suppose that F𝑐
𝑐 is 𝜈-Donsker. Then, for 𝑛 → ∞,

√
𝑚 (OT𝑐 (𝜇, 𝜈𝑚) − OT𝑐 (𝜇, 𝜈)) D−−−→ G𝜈 (𝑓 𝑐) ∼ N (0,Var𝑌∼𝜈 [𝑓 𝑐 (𝑌 )]). (16b)

(𝑖𝑖𝑖) (Two-sample) Suppose that F𝑐 is 𝜇-Donsker and that F𝑐
𝑐 is 𝜈-Donsker. Then,

for 𝑛,𝑚 → ∞ with𝑚/(𝑛 +𝑚) → 𝛿 ∈ (0, 1),√︂
𝑛𝑚

𝑛 +𝑚 (OT𝑐 (𝜇𝑛, 𝜈𝑚) − OT𝑐 (𝜇, 𝜈)) D−−−→
√
𝛿 G𝜇 (𝑓 ) +

√
1 − 𝛿 G𝜈 (𝑓 𝑐)

∼ N (
0, 𝛿Var𝑋∼𝜇 [𝑓 (𝑋 )] + (1 − 𝛿)Var𝑌∼𝜈 [𝑓 𝑐 (𝑌 )]

)
.

(16c)
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Proof. Due to Staudt et al. 2021, Lemma 5 and the continuity of Kantorovich potentials
in this setting (Lemma 1), we find that the set of Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) and
its 𝑐-conjugate counterparts 𝑆𝑐𝑐 (𝜇, 𝜈) are deterministically unique (up to constant
shifts) on the support of 𝜇 and 𝜈 , respectively. Since any Δ𝜇 ∈ T𝜇

(P (X̃ )) fulfills by
step two of the proof for Theorem 2 the (deterministic) equality Δ𝜇 (𝑓 ) = Δ𝜇 (𝑓 + 𝑎)
for 𝑓 ∈ F𝑐 and 𝑎 ∈ R with 𝑓 + 𝑎 ∈ F𝑐 , and likewise for Δ𝜈 ∈ T𝜈 (P (Ỹ)), uniqueness
of Kantorovich potentials implies linearity of the directional Hadamard derivative.
The functional delta method (Römisch 2004) thus implies the weak limit for the
empirical OT cost to be centered normal with variance as stated in (16). □

A useful statistical application of Theorem 3 arises when the variance Var𝑋∼𝜇 [𝑓 (𝑋 )]
in Theorem 3 can consistently be estimated from i.i.d. data. Indeed, this holds under
Assumption (C) combined with (S1) or (S2), leading to the following pivotal limit
law.

Corollary 1 (Pivotal limit law): If the unique Kantorovich potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈)
in Theorem 3 is not constant 𝜇-almost surely, then, for 𝑛 → ∞ and any 𝑓𝑛 ∈
𝑆𝑐 (𝜇𝑛, 𝜈),

√
𝑛

OT𝑐 (𝜇𝑛, 𝜈) − OT𝑐 (𝜇, 𝜈)√︁
Var𝑋∼𝜇𝑛 [𝑓𝑛 (𝑋 )]

D−−−→ G𝜇 (𝑓 )√︁
Var𝑋∼𝜇 [𝑓 (𝑋 )]

∼ N (0, 1) . (17)

Analogous statements hold for the weak limits in (16b) if 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) is
not constant 𝜈-almost surely and in (16c) if 𝑓 or 𝑓 𝑐 is not constant 𝜇-
respectively 𝜈-almost surely.

Proof of Corollary 1. We only show the claim for (17), the corresponding pivotal
limits for (16b) and (16c) follow analogously. In view of Theorem 3 and Slutzky’s
lemma it suffices to show for 𝑓𝑛 ∈ 𝑆𝑐 (𝜇𝑛, 𝜈) that Var𝑋∼𝜇𝑛 [𝑓𝑛 (𝑋 )] converges almost
surely for 𝑛 → ∞ to Var𝑋∼𝜇 [𝑓 (𝑋 )] > 0 for 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). Note that 𝑆𝑐 (𝜇𝑛, 𝜈) ⊆
𝑆𝑐 (𝜇, 𝜈, 2 ∥𝜇𝑛 − 𝜇∥F𝑐

) where ∥𝜇𝑛 − 𝜇∥F𝑐
tends to zero almost surely since F𝑐 is 𝜇-

Donsker. Hence, by steps three and four of the proof for Theorem 2, it follows
that there exists a subsequence (𝑓𝑛𝑘 )𝑘∈N such that (𝑓𝑛𝑘 , 𝑓 𝑐𝑛𝑘 ) converges pointwise
on supp(𝜇) × supp(𝜈) for 𝑘 → ∞ to (ℎ + 𝑎, ℎ𝑐 − 𝑎) for some ℎ ∈ 𝑆𝑐 (𝜇, 𝜈) and
some 𝑎 ∈ R. Since F𝑐 is uniformly bounded by ∥𝑐 ∥∞, and since F𝑐 as well as the
element-wise squared function class F2

𝑐 = {𝑓 2 : 𝑓 ∈ F𝑐 } are both 𝜇-Donsker (Van
der Vaart and Wellner 1996, Theorem 2.10.6), we conclude that Var𝑋∼𝜇𝑛𝑘 [𝑓𝑛𝑘 (𝑋 )] →
Var𝑋∼𝜇 [ℎ(𝑋 )] almost surely for 𝑘 → ∞. Finally, by almost sure uniqueness of
Kantorovich potentials it holds that Var𝑋∼𝜇 [ℎ(𝑋 )] = Var𝑋∼𝜇 [𝑓 (𝑋 )]. □

Uniqueness of Kantorovich potentials The recent work by Staudt et al. 2021
provides a detailed account on uniqueness guarantees of Kantorovich potentials.
The gist of their article is that uniqueness in settings with differentiable costs will
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commonly hold, and that non-differentiabilities, erratic mass placement, or specific
degeneracies in disconnected spaces have to be assumed for uniqueness to fail.

In the connected setting, one relies on the fact that the gradient of a Kantorovich
potential at some point 𝑥 is determined by the gradient of 𝑐 (·, 𝑦) at 𝑥 for any
(𝑥,𝑦) ∈ supp(𝜋), where 𝜋 is an OT plan, i.e., an optimizer of (1). The connect-
edness of the support of 𝜇 combined with the uniqueness of the gradient then imply
uniqueness of the potential. This approach was employed by Staudt et al. 2021 in
case of probability measures with possibly unbounded support that assign negligible
mass to the boundary of their support and differentiable cost functions that grow
sufficiently rapidly. Notably, this encompasses the strictly convex costs considered
by Gangbo and McCann 1996, for which uniqueness guarantees were also derived
by del Barrio et al. 2021, Theorem 2.4 and Bernton et al. 2021, Theorem B.2. In
discrete settings, the theory of linear programming shows Kantorovich potentials
to be unique if the measures 𝜇 and 𝜈 are non-degenerate, which (loosely speaking)
means that the OT problem cannot be divided into proper sub-problems. Staudt
et al. 2021 show that similar results hold for probability measures with disconnected
support on Polish spaces.

4 Degenerate Limits under Trivial Kantorovich
Potentials

Another important special case for our CLTs emerges if Kantorovich potentials
are not only unique but also constant. The asymptotic variance in Theorem 3 is
then equal to zero and the limit law degenerates. As for uniqueness, it suffices if
Kantorovich potentials are constant in an almost sure sense.

Definition 3 (Trivial Kantorovich potentials): A Kantorovich potential 𝑓 ∈
𝑆𝑐 (𝜇, 𝜈) is called trivial if it is constant 𝜇-almost surely. The set 𝑆𝑐 (𝜇, 𝜈) is
said to be trivial if all of its elements are trivial.

The same definition applies for conjugated potentials 𝑓 𝑐 and the set 𝑆𝑐𝑐 (𝜇, 𝜈) with
respect to 𝜈 . In contrast to uniqueness of Kantorovich potentials, triviality of 𝑆𝑐 (𝜇, 𝜈)
does not imply the triviality of 𝑆𝑐𝑐 (𝜇, 𝜈), since a 𝜇-almost surely constant 𝑓 can
(and often will) have a 𝑐-conjugate 𝑓 𝑐 that is not 𝜈-almost surely constant (see also
Remark 5 below). Simple examples with trivial Kantorovich potentials occur if one
of the measures 𝜇 or 𝜈 is a Dirac measure or if the cost function is itself constant.
More general and interesting settings will be discussed below.

Theorem 4 (Degenerate limits): Consider Polish spaces X and Y and a cost
function 𝑐 : X ×Y → R+ satisfying Assumption (C) combined with (S1) or (S2).
Let 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) be probability measures.

(𝑖) (One-sample from 𝜇) Suppose that F𝑐 is 𝜇-Donsker. Then, the limit law



82 Contribution B. Distributional Limits for Empirical Optimal Transport

(10a) degenerates to a Dirac measure if and only if 𝑆𝑐 (𝜇, 𝜈) is trivial.

(𝑖𝑖) (One-sample from 𝜈) Suppose that F𝑐
𝑐 is 𝜈-Donsker. Then, the limit law

(10b) degenerates to a Dirac measure if and only if 𝑆𝑐𝑐 (𝜇, 𝜈) is trivial.

(𝑖𝑖𝑖) (Two-sample) Suppose that F𝑐 and F𝑐
𝑐 are 𝜇- and 𝜈-Donsker, respectively.

Then, the limit law (10c) degenerates to a Dirac measure if and only if
𝑆𝑐 (𝜇, 𝜈) and 𝑆𝑐𝑐 (𝜇, 𝜈) are both trivial.

Proof. We only state the proof for setting (𝑖), the remaining cases follow analogously.
If 𝑆𝑐 (𝜇, 𝜈) is trivial, then the limit distribution degenerates by Theorem 3(𝑖) to a Dirac
measure at zero. In case 𝑆𝑐 (𝜇, 𝜈) is not trivial, there exists a Kantorovich potential
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) with Var𝑋∼𝜇 [𝑓 (𝑋 )] > 0. As the limit distribution for the one-sample
case from 𝜇 stochastically dominates N (0,Var𝑋∼𝜇 [𝑓 (𝑋 )]) it does not degenerate to
a Dirac measure. □

The existence of trivial Kantorovich potentials 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is intimately related to
the existence of transport plans that act as projections onto the support of 𝜇. To
highlight the underlying geometric interpretation, we introduce the following notion
of projected measures.

Definition 4 (Projected measures): Let 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) be probability
measures. We say that 𝜇 is a 𝜈-projected measure (with respect to 𝑐) and write
𝜇 ∈ 𝑃𝑐 (𝜈) if there exists a coupling 𝜋 ∈ Π(𝜇, 𝜈) such that

𝑐 (𝑥,𝑦) = inf
𝑥 ′∈supp(𝜇 )

𝑐 (𝑥 ′, 𝑦) for all (𝑥,𝑦) ∈ supp(𝜋) . (18)

Analogous definitions apply for 𝜇-projected measures, which we denote by 𝜈 ∈ 𝑃𝑐 (𝜇).
It can easily be verified that any coupling 𝜋 satisfying (18) solves the OT problem in
(1) between 𝜇 and 𝜈 . In fact, under continuous costs, it holds that (see Appendix A
for a proof)

𝜇 ∈ 𝑃𝑐 (𝜈) ⇐⇒ OT𝑐 (𝜇, 𝜈) =
∫
Y

inf
𝑥∈supp(𝜇 )

𝑐 (𝑥,𝑦) d𝜈 (𝑦), (19)

which can equivalently be used to characterize 𝜈-projected measures.

Theorem 5 (Existence of trivial Kantorovich potentials): Consider Polish spaces
X and Y and a cost function 𝑐 : X × Y → R+ satisfying Assumption (C)
combined with (S1) or (S2), and let 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y) be probability
measures. Then, trivial Kantorovich potentials 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) exist if and only if
𝜇 ∈ 𝑃𝑐 (𝜈).

Remark 4: In settings where we can assume unique Kantorovich potentials,
which is often not a restrictive condition (see Section 3), Theorem 5 in con-
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𝐵1 = supp(𝜈)

𝜕𝐵2 = supp(𝜇)

𝜈 = Unif (𝐵1)

𝑦

𝑝 (𝑦)
=

argmin
𝑥 ∥𝑥 −

𝑦∥

𝜇 = 𝑝#𝜈 = Unif (𝜕𝐵2)

(a) (b)

su
pp
(𝜈)supp(𝜇) Γ𝑐

Figure 1: Trivial Kantorovich potentials. In (a), 𝜇 is equal to the projection of 𝜈 onto the
set X̃ = 𝜕𝐵2, the boundary of an Euclidean ball. According to Corollary 2 (𝑖𝑖), there exists
a Kantorovich potential 𝑓 that is constant on 𝜕𝐵2. Furthermore, due to Staudt et al. 2021,
Corollary 2, the constant potential is also unique. In (b), the projection Γ𝑐 = Γ𝑐 (𝜇, 𝜈) of all
points 𝑦 ∈ supp(𝜈) onto the support of 𝜇 under Euclidean costs is marked by black segments
that are part of the boundary of supp(𝜇). Since supp(𝜇) is not contained in Γ𝑐 , Corollary 3
(𝑖𝑖𝑖) states that there cannot be a Kantorovich potential 𝑓 that is constant on supp(𝜇).

junction with Theorem 4 states that the one-sample limit laws (10a) and (10b)
degenerate if and only if 𝜇 ∈ 𝑃𝑐 (𝜈) or 𝜈 ∈ 𝑃𝑐 (𝜇), respectively. Furthermore the
two-sample limit law (10c) degenerates if and only if 𝜇 ∈ 𝑃𝑐 (𝜈) and 𝜈 ∈ 𝑃𝑐 (𝜇)
(see Remark 5 below).

Intuitively, a 𝜈-projected measure is any measure that can be obtained from 𝜈 by
projecting all points of supp(𝜈) to some subset of X according to the cost 𝑐 . For
example, 𝜇 ∈ 𝑃𝑐 (𝜈) always holds if 𝜇 = 𝑝#𝜈 for a measurable map 𝑝 : supp(𝜈) → X
that obeys

𝑝 (𝑦) ∈ argmin
𝑥∈supp(𝜇 )

𝑐 (𝑥,𝑦) (20)

for each 𝑦 ∈ supp(𝜈). We denote maps 𝑝 that satisfy (20) for given 𝜇 and 𝜈 as
𝑐-projections. One example of a 𝑐-projection is illustrated in Figure 1(𝑎). Based
on Theorem 5, we next formulate several necessary and sufficient criteria for the
existence of trivial Kantorovich potentials, all of which have an intuitive geometric
interpretation.

Corollary 2: Under the assumptions of Theorem 5, the set 𝑆𝑐 (𝜇, 𝜈) contains
trivial Kantorovich potentials if one of the following conditions is satisfied.

(𝑖) 𝜇 = 𝜈 and 𝑐 (𝑥, 𝑥) = 0 holds for all 𝑥 ∈ X ,

(𝑖𝑖) 𝜇 = 𝑝#𝜈 for a 𝑐-projection 𝑝 : supp(𝜈) → X̃ onto a closed set X̃ ⊂ X .
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Corollary 3: Under the assumptions of Theorem 5, the set 𝑆𝑐 (𝜇, 𝜈) does not
contain trivial Kantorovich potentials if one of the following conditions is
satisfied.

(𝑖) 𝜇 ≠ 𝜈 while supp(𝜈) ⊂ supp(𝜇) with 𝑐 (𝑥, 𝑥) = 0 and 𝑐 (𝑥,𝑦) > 0 for all
𝑥 ≠ 𝑦,

(𝑖𝑖) int(supp(𝜇)) ⊈ supp(𝜈) for subsets X ,Y ⊂ 𝑉 of a normed linear space
(𝑉 , ∥ · ∥) with cost 𝑐 (𝑥,𝑦) = ℎ(∥𝑥 − 𝑦∥) for strictly increasing ℎ,

(𝑖𝑖𝑖) supp(𝜇) is not equal to the topological closure Γ𝑐 (𝜇, 𝜈) ⊂ X of the set⋃
𝑦∈supp(𝜈 )

argmin
𝑥∈supp(𝜇 )

𝑐 (𝑥,𝑦) .

In each of these settings, the limit law (10a) in Theorem 1 is non-degenerate.

Exchanging the roles of 𝜇 and 𝜈 , Theorem 5 as well as Corollaries 2 and 3 can equally
be applied to 𝑓 𝑐 . Examples illustrating Corollary 2 (𝑖𝑖) and Corollary 3 (𝑖𝑖𝑖) in
Euclidean settings are provided in Figure 1. In particular, Figure 1(𝑎) highlights that
there is a crucial difference between demanding constant Kantorovich potentials on
all ofX and only demanding them to be constant almost surely. Indeed, if 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈)
was constant on the whole space X , then 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) would be constant as well,
which is by Theorem 5 not the case in Figure 1(𝑎). This setting also serves as an
example where 𝜇 ≠ 𝜈 and where every Kantorovich potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is trivial
while 𝑓 𝑐 is not.

Remark 5 (Bi-triviality): OT problems where both 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) and its conjugate
𝑓 𝑐 are trivial have a special underlying geometry. If 𝑓 is constant on supp(𝜇) and
𝑓 𝑐 is constant on supp(𝜈), then the optimality condition 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) = 𝑐 (𝑥,𝑦)
for points (𝑥,𝑦) on the support of any optimal transport plan 𝜋 implies that
𝑐 is constant on supp(𝜋), i.e., all points are transported with the same cost.
For an example, consider radially symmetric costs and uniform distributions 𝜇
and 𝜈 on centered Euclidean spheres of positive radius. For different radii, the
measures are distinct and both Kantorovich potentials are trivial.

5 Examples

Elaborating the main result in Theorem 1, we focus in this section on concrete
settings. The general setup requires Assumption (C) combined with (S1) or (S2) to
hold. It remains to verify the Donsker properties for the function classes F𝑐 and F𝑐

𝑐

which then leads to CLTs for the empirical OT cost.
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5.1 Countable Discrete Spaces

Our general theory leads to CLTs for the OT cost on countable discrete spaces X and
Y equipped with discrete topology. More precisely, for a non-negative cost function
𝑐 : X × Y → R+ bounded by some constant ∥𝑐 ∥∞ < ∞, Assumptions (C) and (S1)
hold trivially. To prove that the function class F𝑐 is 𝜇-Donsker, we define F𝑐1𝑥 as
the restriction of F𝑐 to a fixed element 𝑥 ∈ X . Notably, each element in the latter
function class is bounded by ∥𝑐 ∥∞ and we obtain

E
[∥√𝑛 (𝜇𝑛 − 𝜇) ∥F𝑐1𝑥

]
≲∥𝑐 ∥∞

√︁
𝜇 (𝑥) .

According to Van der Vaart and Wellner 1996, Theorem 2.10.24, we deduce that the
function class F𝑐 is 𝜇-Donsker if ∑︁

𝑥∈X

√︁
𝜇 (𝑥) < ∞ (21)

which is the celebrated Borisov-Dudley-Durst condition (Dudley 2014). Similarly, the
function class F𝑐

𝑐 is 𝜈-Donsker if
∑
𝑦∈Y

√︁
𝜈 (𝑦) < ∞.

Corollary 4 (Countable discrete spaces, Tameling et al. 2019): Let X and Y be
countable discrete spaces and 𝑐 : X ×Y → R+ a bounded cost function. Consider
probability measures 𝜇 ∈ P (X ) and 𝜈 ∈ P (Y). If 𝜇 fulfills the Borisov-Dudley-
Durst condition (21), then the CLT in (10a) is valid. If 𝜈 fulfills (21), then (10b)
holds. In case both 𝜇 and 𝜈 fulfill (21), then (10c) holds.

5.2 The One-dimensional Euclidean Space

From Theorem 1 we immediately derive CLTs for the empirical OT cost between
probability measures supported on the real line R and sufficiently regular cost
function. The proofs require the notion of covering and metric entropy for a real-
valued function class F defined on X as introduced in the notation. Based on metric
entropy bounds, empirical process theory provides tools to assess if a given function
class is 𝜇-Donsker or even universal Donsker (Van der Vaart and Wellner 1996,
Section 2.5). We first focus on the real line.

Theorem 6 (𝑑 = 1): Consider the Euclidean space R with cost 𝑐 : R × R→ R+
assumed to be bounded and (𝛼, 𝐿)-Hölder for 𝛼 ∈ (1/2, 1] and 𝐿 ≥ 0, i.e.,

|𝑐 (𝑥,𝑦) − 𝑐 (𝑥 ′, 𝑦′) | ≤ 𝐿
( |𝑥 − 𝑥 ′ |𝛼 + |𝑦 − 𝑦′ |𝛼 ) ∀𝑥, 𝑥 ′, 𝑦,𝑦′ ∈ R. (22)

If the probability measure 𝜇 ∈ P (R) fulfills∑︁
𝑘∈Z

√︁
𝜇 ( [𝑘, 𝑘 + 1)) < ∞, (23)

then the CLT in (10a) is valid. If 𝜈 ∈ P (R) fulfills (23), then (10b) holds. In case
both 𝜇 and 𝜈 fulfill (23), then (10c) holds.
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Proof. By the assumptions imposed on the cost and since the setting focuses on the
real line R, the Assumptions (C) and (S1) hold. Based on Theorem 1, it remains
to prove the Donsker properties of the function classes F𝑐 and F𝑐

𝑐 in this case.
By Lemma 2 (i), the function classes F𝑐 and F𝑐

𝑐 are both contained in the class of
uniformly bounded (𝛼, 𝐿)-Hölder functions on R. According to Van der Vaart and
Wellner 1996, Example 2.10.25, with 𝑀𝑘 = 𝐿 for all 𝑘 ∈ Z this class is 𝜇-Donsker if
(23) is fulfilled. □

Example 1 (Costs 𝑐 (𝑥,𝑦) = ℎ(𝑥 −𝑦), 𝑑 = 1): To demonstrate a few consequences
of Theorem 6, suppose the cost is equal to 𝑐 (𝑥,𝑦) = ℎ(𝑥 −𝑦) on R for a suitable
function ℎ : R → R+. For instance, under a bounded (𝛼, 𝐿)-Hölder function
ℎ : R→ R+ with 𝛼 > 1/2 and 𝐿 > 0 condition (22) is satisfied. Hence for 𝜇, 𝜈 ∈
P (R) that fulfill condition (23) Theorem 6 yields CLTs for the empirical OT cost.
This setting encompasses, e.g., thresholded costs 𝑐𝑝,𝑇 (𝑥,𝑦) = min( |𝑥 − 𝑦 |𝑝 ,𝑇 )
for 𝑝 > 𝛼 and 𝑇 > 0. Notably, for 𝑝 = 𝑇 = 1, the function class F𝑐 coincides by
Kantorovich-Rubinstein duality with BL1(R), the class of 1-Lipschitz functions
uniformly bounded by one, for which condition (23) is necessary and sufficient
in order to be 𝜇-Donsker (Giné and Zinn 1986, Theorem 1). For this case it holds
for 𝑛 → ∞ that √

𝑛OT𝑐1,1 (𝜇𝑛, 𝜇)
D−−−→ sup

𝑓 ∈BL1 (R)
G𝜇 (𝑓 ),

where the limit distribution only degenerates if 𝜇 is a Dirac measure.
When the probability measures 𝜇, 𝜈 are compactly supported, the summability
condition (23) is trivially fulfilled and by restricting to the support of the proba-
bility measures it suffices that ℎ is only locally 𝛼-Hölder for 𝛼 ∈ (1/2, 1]. This
provides for costs 𝑐 (𝑥,𝑦) = |𝑥 − 𝑦 |𝑝 with 𝑝 > 1/2 novel CLTs for the empirical
OT cost. In particular, if the support of 𝜇 is disconnected, then Staudt et al.
2021, Lemma 11 assert existence of non-trivial potentials for 𝑆𝑐 (𝜇, 𝜇) which
implies the resulting limit distribution of

√
𝑛OT𝑐 (𝜇𝑛, 𝜇) to be non-degenerate

(Theorem 4). In contrast, if supp(𝜇) is the closure of an open connected set for
𝑝 > 1 Kantorovich potentials 𝑆𝑐 (𝜇, 𝜇) are unique (Staudt et al. 2021, Corollary
2) and trivial and thus the respective limit distribution degenerates, indicating
a faster convergence rate (see e.g. for 𝑝 = 2 the CLT by del Barrio et al. 2005
which requires additional regularity assumptions on a density of 𝜇 and scaling
by 𝑛).

Example 2 (Kantorovich-Rubinstein duality): For Euclidean costs 𝑐 (𝑥,𝑦) = |𝑥 −
𝑦 | and a compactly supported probability measure 𝜇 set X = Y = supp(𝜇) ⊆ R.
Then, the set F𝑐 = 𝑆1(𝜇, 𝜇) = Lip1(X ) consists of 1-Lipschitz functions on X
which are absolutely bounded by the diameter of X . In particular, we obtain
for 𝑛 → ∞ that √

𝑛OT1(𝜇𝑛, 𝜇) D−−−→ sup
𝑓 ∈Lip(X )

G𝜇 (𝑓 ) .
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The approach presented here is based on the dual formulation of the OT cost.
Using the primal perspective, which provides for 𝑝 = 1 an explicit formula
for OT1(·, ·), del Barrio et al. 1999 derived a CLT that also holds for 𝜇 with
non-compact support (see also Mason 2016). If 𝐹𝜇 denotes the cumulative
distribution function of 𝜇 such that∫ ∞

−∞

√︃
𝐹𝜇 (𝑡) (1 − 𝐹𝜇 (𝑡)) d𝑡 < ∞,

then, for B𝜇 (𝑡) = B(𝐹𝜇 (𝑡)) with B(𝑡) a standard Brownian bridge and 𝑛 → ∞,
it holds √

𝑛OT1(𝜇𝑛, 𝜇) D−−−→
∫ ∞

−∞
|B𝜇 (𝑡) | d𝑡 . (24)

Indeed, by suitably coupling the Gaussian processes G𝜇 and B𝜇 and approximat-
ing the respective random element in terms of an unsigned measure, an appli-
cation of Fubini’s theorem shows for compactly supported 𝜇 with X = supp(𝜇)
that ∫ ∞

−∞
|B𝜇 (𝑡) | d𝑡 D

= sup
𝑓 ∈Lip(X )

G𝜇 (𝑓 ) .

5.3 The Two- andThree-dimensional Euclidean Space

Theorem 1 also characterizes the limit law for the empirical OT cost beyond the real
line. For Euclidean spaces with dimension 𝑑 = 2 or 𝑑 = 3 we obtain the following
novel results.

Theorem 7 (𝑑 = 2, 3): Consider the Euclidean space R𝑑 for 𝑑 = 2 or 𝑑 = 3 with
cost 𝑐 : R𝑑×R𝑑 → R+ assumed to be bounded and 𝐿-Lipschitza. Further, suppose
there exists some Λ > 0 such that for all 𝑘 ∈ Z𝑑 there exist 𝑥𝑘 , 𝑦𝑘 ∈ [𝑘, 𝑘 + 1)
such that

𝑐 (·, 𝑦) − Λ ∥· − 𝑥𝑘 ∥2
2 is concave on [𝑘, 𝑘 + 1) for all 𝑦 ∈ R𝑑 ,

𝑐 (𝑥, ·) − Λ ∥· − 𝑦𝑘 ∥2
2 is concave on [𝑘, 𝑘 + 1) for all 𝑥 ∈ R𝑑 .

(25)

If the probability measure 𝜇 ∈ P (R𝑑 ) fulfills∑︁
𝑘∈Z𝑑

√︁
𝜇 ( [𝑘, 𝑘 + 1)) < ∞, (26)

then the CLT in (10a) is valid. If 𝜈 ∈ P (R𝑑 ) fulfills (26), then (10b) holds. In
case both 𝜇 and 𝜈 fulfill (26), then (10c) holds.

aThis refers to the cost function being (1, 𝐿)-Hölder, recall (22).

Proof. By the assumptions imposed on the cost and since the setting focuses on
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the Euclidean space R𝑑 , the Assumptions (C) and (S1) hold. Based on the main
Theorem 1, it remains to prove the Donsker properties of the function classes F𝑐 and
F𝑐
𝑐 in this case. For a convex bounded set Ω ⊆ R𝑑 and constants𝐾, 𝐿 > 0, let C𝐾,𝐿 (Ω)

be the class of concave 𝐿-Lipschitz functions which are absolutely bounded by 𝐾 .
In order to prove that F𝑐 is 𝜇-Donsker if (26) holds, we employ Van der Vaart and
Wellner 1996, Theorem 2.10.24. To this end, consider a partition R𝑑 =

⋃
𝑘∈Z𝑑 [𝑘, 𝑘 +1)

and define the function class F𝑐,𝑘 B F𝑐1[𝑘,𝑘+1) . We first verify that each class F𝑐,𝑘
is 𝜇-Donsker. First note for 𝑘 ∈ Z𝑑 and any element 𝑓 ∈ F𝑐 that 𝑓 (·) − Λ ∥· − 𝑥𝑘 ∥2

2
is bounded, Lipschitz and concave on [𝑘, 𝑘 + 1) (see Lemma 2 (𝑖𝑖)). More precisely,
for any 𝑓 ∈ F𝑐 and since 𝑥𝑘 ∈ [𝑘, 𝑘 + 1) it follows

(
𝑓 (·) − Λ ∥· − 𝑥𝑘 ∥2

2
) ���
[𝑘,𝑘+1)

∈ C𝜅,𝑙 ( [𝑘, 𝑘 + 1))

with 𝜅 B (∥𝑐 ∥∞ + Λ𝑑) and 𝑙 B (𝐿 + 2Λ𝑑). According to Bronshtein 1976, Theorem
67, we conclude for 𝜀 > 0 sufficiently small

log
(N (𝜀,F𝑐,𝑘 , ∥·∥∞)

) ≤ log
(
N (𝜀, C𝜅,𝑙 ( [𝑘, 𝑘 + 1)), ∥·∥∞,[𝑘,𝑘+1) )

)
≲𝜅,𝑙,𝑑 𝜀

−𝑑/2.

Note that the function class F𝑐,𝑘 has envelope function 𝐹𝑐,𝑘 (·) B ∥𝑐 ∥∞ 1[𝑘,𝑘+1) (·).
Furthermore, an 𝜀 ∥𝑐 ∥∞-covering {𝑓1, . . . , 𝑓𝑁 } of F𝑐,𝑘 with respect to ∥·∥∞ defines
for any finitely supported probability measure 𝛾 ∈ P (R𝑑 ) with



𝐹𝑐,𝑘

2,𝛾 > 0 an
𝜀


𝐹𝑐,𝑘

2,𝛾 -covering for F𝑐,𝑘 with respect to ∥·∥2,𝛾 . Indeed, for 𝑓 ∈ F𝑐,𝑘 pick 𝑓𝑖 such

that ∥ 𝑓 − 𝑓𝑖 ∥∞ < 𝜀 ∥𝑐 ∥∞ which yields

∥ 𝑓 − 𝑓𝑖 ∥2,𝛾 ≤
√︄∫

[𝑘,𝑘+1)
𝜀2 ∥𝑐 ∥2

∞ d𝛾 = 𝜀 ∥𝑐 ∥∞
√︁
𝛾 ( [𝑘, 𝑘 + 1)) = 𝜀



𝐹𝑐,𝑘

2,𝛾 .

Hence, we conclude for any finitely supported 𝛾 ∈ P (R𝑑 ) with


𝐹𝑐,𝑘

2,𝛾 > 0 and

sufficiently small 𝜀 that

log
(
N (𝜀



𝐹𝑐,𝑘

2,𝛾 ,F𝑐,𝑘 , ∥·∥2,𝛾 )
)
≤ log

(N (𝜀 ∥𝑐 ∥∞ ,F𝑐,𝑘 , ∥·∥∞)
)
≲𝜅,𝑙,𝑑 𝜀

−𝑑/2.

After taking square roots the latter bound is integrable around zero for 𝑑 ≤ 3 which
yields the 𝜇-Donsker property for F𝑐,𝑘 (Van der Vaart and Wellner 1996, Theorem
2.5.2). The 𝜇-Donsker property of the whole F𝑐 now follows if

sup
𝑛∈N

∑︁
𝑘∈Z𝑑
E

[

√𝑛(𝜇𝑛 − 𝜇)

F𝑐,𝑘

]
< ∞. (27)

7The work by Bronshtein 1976 in fact only provides metric entropy bounds for convex bounded
Lipschitz functions on a cube but of course they remain valid for concave functions.
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By standard chaining arguments each individual summand can be bounded by

E
[

√𝑛(𝜇𝑛 − 𝜇)

F𝑐,𝑘

]
≤

∫ 1

0
sup
𝛾

√︂
1 + log

(
N (𝜀



𝐹𝑐,𝑘

2,𝛾 ,F𝑐,𝑘 , ∥·∥2,𝛾 )
)

d𝜀


𝐹𝑐,𝑘

2,𝜇

≤
∫ 1

0

√︃
1 + log

(N (𝜀 ∥𝑐 ∥∞ ,F𝑐,𝑘 , ∥·∥∞)
)

d𝜀


𝐹𝑐,𝑘

2,𝜇

≲𝜅,𝑙,𝑑

∫ 1

0
𝜀−𝑑/4 d𝜀



𝐹𝑐,𝑘

2,𝜇 ≲𝑑


𝐹𝑐,𝑘

2,𝜇 = ∥𝑐 ∥∞

√︁
𝜇 ( [𝑘, 𝑘 + 1)) .

Herein, the supremum runs over all finitely supported probability measures over R𝑑
which leads to the claimed upper bound by our previous arguments. Summing over
𝑘 ∈ Z𝑑 and provided 𝜇 fulfills (26) yields (27). □

The summability constraints (23) and (26) are reminiscent of the Borisov-Dudley-
Durst condition (21). Indeed, they naturally appear by partitioning the Euclidean
space R𝑑 =

⋃
𝑘∈Z𝑑 [𝑘, 𝑘 + 1) and controlling the empirical process indexed over the

respective function class restricted to individual partitions (Van der Vaart and Wellner
1996, Theorem 2.10.24). For the latter, the proof of Theorem 7 exploits well-known
metric entropy bounds for the class of 𝛼-Hölder and concave, Lipschitz functions,
respectively. Notably, crucial to CLTs for dimension 𝑑 = 2, 3 is condition (25) that
enables suitable upper bounds for the metric entropy of F𝑐 and F𝑐

𝑐 .

Remark 6 (On the assumptions): A few words regarding the required assump-
tions for the CLTs of this subsection are in order.

(𝑖) The partition of R𝑑 =
⋃
𝑘∈Z𝑑 [𝑘, 𝑘 + 1) by regular cubes is arbitrary and

any partition of convex, bounded sets 𝐼𝑘 ⊂ R𝑑 with non-empty interior
such that sup𝑘 diam(𝐼𝑘 ) < ∞ serves to derive the same conclusion.

(𝑖𝑖) Condition (25) is fulfilled if the cost function is twice continuously dif-
ferentiable in both components with a uniform bound 𝐾 > 0 on the
Eigenvalues of its Hessian. In this setting the bound from (25) is valid for
Λ = 𝐾/2.

(𝑖𝑖𝑖) The summability constraints (23) and (26) are well-known in the context of
empirical process theory (Van der Vaart and Wellner 1996, Section 2.10.4).
A sufficient condition is given in terms of finite moments E

[
∥𝑋 ∥2𝑑+𝛿

∞
]
<

∞ for some 𝛿 > 0 since

∑︁
𝑘∈Z𝑑

√︁
𝜇 ( [𝑘, 𝑘 + 1)) ≲ 2𝑑

∞∑︁
𝑛=1

√︃
𝑛2𝑑−2P(∥𝑋 ∥∞ ≥ 𝑛)

≤ 2𝑑
√︂
E

[
∥𝑋 ∥2𝑑+𝛿

∞
] ∞∑︁
𝑛=1

𝑛−(1+𝛿/2) ,
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where the latter inequality follows by Markov’s inequality. Notably, for
compactly supported measures the condition is vacuous.

Example 3 (Costs 𝑐 (𝑥,𝑦) = ℎ(𝑥 − 𝑦), 𝑑 = 2, 3): Let us provide a few conse-
quences of Theorem 7 by taking costs 𝑐 (𝑥,𝑦) = ℎ(𝑥 − 𝑦) for some suitable
function ℎ : R𝑑 → R+ with 𝑑 ∈ {2, 3}. If ℎ is a bounded and twice continuously
differentiable function with uniformly bounded first and second derivatives,
then the required conditions on the cost in Theorem 7 are fulfilled. Moreover,
since the pointwise minimum of bounded, Lipschitz, semi-concave functions
with bounded modulus also exhibits these properties, we find that Theorem 7
also covers thresholded costs 𝑐𝑝,𝑇 (𝑥,𝑦) = min(∥𝑥 − 𝑦∥𝑝 ,𝑇 ) for 𝑝 ≥ 2 and𝑇 > 0.
Costs for the canonical flat torus 𝑐 (𝑥,𝑦) = min𝑧∈Z𝑑 ℎ(𝑥−𝑦−𝑧), which have been
considered by González-Delgado et al. 2021 for ℎ(𝑥) = ∥𝑥 ∥2, also fulfill these
conditions. For these cases, Theorem 7 provides novel CLTs for 𝜇, 𝜈 ∈ P (R𝑑 )
if the summability constraint (26) is satisfied. Moreover, if 𝜇 and 𝜈 are both
compactly supported, condition (26) is vacuous and it suffices that ℎ is twice
continuously differentiable, hence, our theory encompasses 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝
with 𝑝 ≥ 2.
In view of Section 4 the resulting limit distributions typically do not degenerate
for 𝜇 ≠ 𝜈 since triviality of Kantorovich potentials is linked to the underlying
geometry of the corresponding measures’ supports (Theorem 5) and appears to
be limited to exotic settings. In contrast, under 𝜇 = 𝜈 constant potentials do exist
if ℎ(0) = 0 (Corollary 2) and degeneracy of the distributional limits depends on
whether the Kantorovich potentials are unique. Indeed, if supp(𝜇) is the closure
of a connected open set, then uniqueness holds (Staudt et al. 2021, Corollary 2)
and the convergence rate of the empirical OT cost is strictly faster than 𝑛−1/2.
Notably, this in line with results by Ajtai et al. 1984 and Ledoux 2019 stating that
the uniform distribution 𝜇 = Unif ( [0, 1]𝑑 ) fulfills E

[
OT𝑝 (𝜇𝑛, 𝜈)

]
= 𝑜 (𝑛−1/2) for

𝑑 ≤ 3 and 𝑝 ≥ 2. However, if supp(𝜇) is disconnected and those components
are cost-separateda, then non-trivial Kantorovich potentials also exist (Staudt
et al. 2021, Lemma 11) leading to non-degenerate limit laws.

aFor costs 𝑐 (𝑥,𝑦) : X × X → R+ with 𝑐 (𝑥, 𝑥) = 0 two subsets X1,X2 ⊆ X are said to be
cost-separated if inf𝑥∈X1,𝑦∈X2 min(𝑐 (𝑥,𝑦), 𝑐 (𝑦, 𝑥)) > 0.

5.4 The 𝑑-dimensional Euclidean Space for 𝑑 ≥ 4

Beyond the low dimensional setting 𝑑 ≤ 3 treated so far, CLTs centered by the
population quantity cannot hold in generality for 𝑑 ≥ 5 and remain a delicate
issue for 𝑑 = 4. For instance, under squared Euclidean costs 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2 and
𝜇 = Unif ( [𝑎, 𝑎 + 1]), 𝜈 = Unif ( [𝑏,𝑏 + 1]) for 𝑎, 𝑏 ∈ R𝑑 the OT plan between 𝜇 and 𝜈
is given by (id, id + 𝑏 − 𝑎)#𝜇 which implies according to Manole et al. 2021, Theorem
6 that

E [OT2(𝜇𝑛, 𝜈)] − OT2(𝜇, 𝜈) = E [OT2(𝜇𝑛, 𝜇)] .
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For 𝑑 ≥ 3 it is known by Ledoux 2019 that E [OT2(𝜇𝑛, 𝜇)] ≍ 𝑛−2/𝑑 . Recalling the
CLT by del Barrio and Loubes 2019 in (5) this implies the random sequence

√
𝑛(OT2(𝜇𝑛, 𝜈) − OT2(𝜇, 𝜈))

=
√
𝑛(OT2(𝜇𝑛, 𝜈) − E [OT2(𝜇𝑛, 𝜈)]) +

√
𝑛E [OT2(𝜇𝑛, 𝜇)]

to be tight for 𝑑 = 4 and to diverge almost surely to ∞ for 𝑑 ≥ 5. In conjunction with
Goldman and Trevisan 2021, Theorem 6.2 who prove lim𝑛→∞

√
𝑛E [OT2(𝜇𝑛, 𝜇)] = 𝐾

under 𝑑 = 4 for some positive constant 𝐾 > 0, it thus follows from (5) for 𝑛 → ∞
that √

𝑛(OT2(𝜇𝑛, 𝜈) − OT2(𝜇, 𝜈)) D−−−→ 𝑍 ∼ N (𝐾,Var𝑋∼𝜇 [𝑓 (𝑋 )]), (28)

where 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is a Kantorovich potential between 𝜇 and 𝜈 . Notably, in this
setting the Kantorovich potential is unique (recall Definition 2) and also trivial if and
only if 𝜇 = 𝜈 (or equivalently if 𝑎 = 𝑏).

In view of Theorem 3 the previous example also highlights that the function class
F𝑐 is not 𝜇-Donsker for 𝑑 ≥ 4, since otherwise a centered tight normal limit would
result. In particular, the CLT in (28) resembles the first asymptotic distributional
limit for the empirical squared 2-Wasserstein distance for 𝑑 = 4 where the centering
is given by the population quantity. An exception concerning the Donsker property
of F𝑐 in the high-dimensional regime occurs for different probability measures if
one of them is supported on a sufficiently low dimensional space as will be detailed
in the next subsection.

5.5 Empirical Optimal Transport under Lower Complexity
Adaptation

In this section, we highlight our CLTs for empirical OT in view of the recently
discovered lower complexity adaptation principle (Hundrieser et al. 2022). It states that
statistical rates to estimate the empirical OT cost between two different probability
measures 𝜇 and 𝜈 are driven by the less complex measure, e.g., the one with lower
dimensional support. In light of this principle, we emphasize that our CLTs extend
beyond the low-dimensional Euclidean case provided that at least one measure has
some low-dimensional compact support. The main result relies on the observation
that the uniform metric entropies for F𝑐 and F𝑐

𝑐 coincide in such settings (Hundrieser
et al. 2022, Lemma 2.1). Hence, under suitable bounds on the uniform metric entropy
for only one of the function classes F𝑐 or F𝑐

𝑐 , it follows that both are universal
Donsker (Definition 1).

The following result makes use of this observation and is specifically tailored to
settings where X has low intrinsic dimension which allows the complexity of F𝑐
to be suitably controlled such that it is universal Donsker. To formalize this, we
consider the setting where X is a finite set or a compact submanifold of R𝑑 (see
Lee 2013 for comprehensive treatment) with sufficiently small intrinsic dimension.
Notably, the first setting covers semi-discrete OT (Aurenhammer et al. 1998; Mérigot
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2011; Hartmann and Schuhmacher 2020), i.e., where one of the probability measures
is assumed to be finitely supported. Then, under suitable assumptions on the cost
function the uniform metric entropy of F𝑐 is suitably bounded which enables CLTs
for the empirical OT cost.

Theorem 8 (Semi-discrete): Let X be a finite set equipped with discrete topology,
let Y be Polish space and consider a bounded and continuous cost function
𝑐 : X × Y → R+. Then, for arbitrary 𝜇 ∈ P (X ), 𝜈 ∈ P (Y) the weak limits from
(10) hold.

Remark 7 (Limit distribution for semi-discrete OT): We comment on structural
properties of the limit distribution underlying Theorem 8. When the support
of 𝜈 is connected (and the cost function is continuous), then Kantorovich po-
tentials are unique (Staudt et al. 2021, Example 3). Hence, in this setting the
corresponding weak limit is always centered normal. Even if the support of 𝜈
is not connected, under a suitable non-degeneracy condition of the OT plan
Kantorovich potentials still remain unique. Hence, under uniqueness of Kan-
torovich potentials, Theorem 5 serves as a sharp statement for the degeneracy
of the limit distribution (Remark 4). In particular, this shows 𝑆𝑐 (𝜇, 𝜈) to be
trivial only under certain geometrical configurations, whereas 𝑆𝑐𝑐 (𝜇, 𝜈) to be
generically non-trivial.
Let us also point out that, parallel and independently to this work, del Bar-
rio et al. 2022 recently also obtained a CLT for the empirical OT cost in the
semi-discrete framework for unbounded cost functions. In their setting, our
triviality statements on Kantorovich potentials (Theorem 5) and degeneracy
results for the corresponding limit laws also apply since for semi-discrete OT
the Kantorovich potentials are always continuous (as a finite minimum over
continuous functions).

Theorem 9 (Manifolds): LetX be an 𝑠-dimensional smooth compact submanifold
of R𝑑 with 𝑠 ≤ min(3, 𝑑), let Y ⊆ R𝑑 be compact and consider a continuous
cost function 𝑐 : R𝑑 × R𝑑 → R+. Suppose one of the following two settings.

(𝑖) 𝑠 = 1 and 𝑐 is locally 𝛼-Hölder for 𝛼 ∈ (1/2, 1].
(𝑖𝑖) 𝑠 = 2 or 𝑠 = 3 and 𝑐 is twice continuously differentiable.

Then, for arbitrary 𝜇 ∈ P (X ), 𝜈 ∈ P (Y) the weak limits from (10) hold.

Proofs for Theorems 8 and 9. Note that Assumptions (C) and (S2) are fulfilled for
both settings. By Section 3.1, Lemma A.4 and Lemma A.3 in Hundrieser et al. 2022
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for all three cases, respectively, it follows for 𝜀 > 0 sufficiently small that

logN (𝜀,F𝑐 , ∥ · ∥∞) ≲X ,𝑐



log
(⌈
𝜀−1⌉) for Theorem 8,

𝜀−𝑠/𝛼 for setting (𝑖) in Theorem 9,
𝜀−𝑠/2 for setting (𝑖𝑖) in Theorem 9.

Moreover, by Hundrieser et al. 2022, Lemma 2.1 it holds for any 𝜀 > 0 that

N (𝜀,F𝑐 , ∥·∥∞) = N (𝜀,F𝑐
𝑐 , ∥·∥∞),

which implies that identical bounds on the uniform metric entropy of F𝑐
𝑐 hold for

all settings. Since the square root of the uniform metric entropy is for all settings
integrable with respect to 𝜀 > 0 near zero, it follows by Van der Vaart and Wellner
1996, Theorem 2.5.2 that both F𝑐 and F𝑐

𝑐 are universal Donsker. We thus conclude
from Theorem 1 the CLTs for the empirical OT cost (10) for arbitrary probability
measures 𝜇 ∈ P (X ), 𝜈 ∈ P (Y) . □

We emphasize that in contrast to previous CLTs from previous Subsections, no
summability conditions are necessary in Theorems 8 and 9 for 𝜇 and 𝜈 . Additionally,
let us point out that Hundrieser et al. 2022 also provide uniform metric entropy
bounds for F𝑐 under more general ground spaces X , such as metric spaces or
parametrized surfaces with low intrinsic dimension, as well as 𝛼-Hölder costs of
smoothness degree 𝛼 ∈ (1, 2]. As long as the integrability condition by Van der Vaart
and Wellner 1996, Theorem 2.5.2 for 𝜀 > 0 near zero is fulfilled, these bounds can
also be employed for the derivation of CLTs of the empirical OT cost in even more
general settings.

Remark 8 (Wasserstein distance in high-dimensional spaces): As a consequence
of Theorems 8 and 9, we obtain CLTs for the empirical Wasserstein distance, i.e.,
for the Euclidean cost function 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 for 𝑝 ≥ 1 even beyond 𝑑 ≤ 3
as long as both 𝜇 and 𝜈 have bounded support and one of them is sufficiently
low dimensional. More precisely, if 𝜇 is supported on a finite set or on an
𝑠-dimensional compact submanifold with 𝑠 = 1 and 𝑝 ≥ 1, or in case 𝑠 ∈ {2, 3}
and 𝑝 ≥ 2, our asymptotic results from (10) remain valid. Notably, for the latter
case the asymptotic results still hold for any 𝑝 ∈ [1, 2) if supp(𝜈) is disjoint
from supp(𝜇). Indeed, in this setting one can extend the cost function 𝑐 |Σ
for Σ = supp(𝜇) × supp(𝜈) in a smooth manner to R2𝑑 , e.g., by the extension
theorem of Whitney 1934, without altering the population and empirical OT
cost.
In particular, under 𝑠 < 𝑑 it follows by Corollary 3 (𝑖𝑖) that 𝑆𝑐𝑐 (𝜇, 𝜈), i.e., the
set of Kantorovich potentials corresponding to 𝜈 is not trivial if supp(𝜈) has
non-empty interior. Hence, for 𝑠 sufficiently small when replacing the measure
𝜈 by its empirical measure 𝜈𝑚 the limit laws do not degenerate. When instead
replacing 𝜇 by 𝜇𝑛 , the limit law could indeed degenerate although this is rather
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the exception than the rule (see Theorem 5). We recall Figure 1(𝑎), for an
example where all Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) are trivial, whereas 𝑆𝑐𝑐 (𝜇, 𝜈)
is not.
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A Appendix

Omitted proofs for Section 4

Proof of Equation (19). We prove this equivalence under the assumption of a continu-
ous cost function 𝑐 and a finite value OT𝑐 (𝜇, 𝜈) < ∞. We set ℎ = inf𝑥 ′∈supp(𝜇 ) 𝑐 (𝑥 ′, ·),
which is upper semi-continuous as an infimum of continuous functions.

If 𝜇 ∈ 𝑃𝑐 (𝜈) with a corresponding coupling 𝜋 ∈ Π(𝜇, 𝜈) in (18), then it follows that

OT𝑐 (𝜇, 𝜈) ≤
∫
X×Y

𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦) =
∫
Y
ℎ(𝑦) d𝜈 (𝑦) ≤ OT𝑐 (𝜇, 𝜈),

where the final step relies on the fact that ℎ(𝑦) ≤ 𝑐 (𝑥,𝑦) for all (𝑥,𝑦) ∈ supp(𝜇) ×
supp(𝜈). In particular, 𝜋 is an OT plan. Conversely, let the right hand side of (19) be
satisfied with an OT plan 𝜋 ∈ Π(𝜇, 𝜈). Then

0 ≤ OT𝑐 (𝜇, 𝜈) =
∫
X×Y

𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦) =
∫
Y
ℎ(𝑦) d𝜋 (𝑥,𝑦) < ∞.

Since ℎ(𝑦) ≤ 𝑐 (𝑥,𝑦), this equation implies that equality of the integrands holds
𝜋-almost surely, and thus at least in a dense subset 𝐴 ⊂ supp(𝜋). For any (𝑥,𝑦) ∈
supp(𝜋), choose a converging sequence (𝑥𝑛, 𝑦𝑛)𝑛 ⊂ 𝐴. Then, via continuity of 𝑐 and
semi-continuity of ℎ,

ℎ(𝑦) ≤ 𝑐 (𝑥,𝑦) = lim
𝑛→∞ 𝑐 (𝑥𝑛, 𝑦𝑛) = lim

𝑛→∞ℎ(𝑦𝑛) ≤ ℎ(𝑦),

establishing ℎ(𝑦) = 𝑐 (𝑥,𝑦) for all (𝑥,𝑦) ∈ supp(𝜋). This implies 𝜇 ∈ 𝑃𝑐 (𝜈). □

Proof of Theorem 5. According to Lemma 3 in Staudt et al. 2021, trivial Kantorovich
potentials exist if and only if trivial Kantorovich potentials exist in the formally
restricted problem where X is replaced by the support of 𝜇 and Y is replaced by the
support of 𝜈 . We can therefore assume X = supp(𝜇) and Y = supp(𝜈).
Let 𝑓 be a trivial Kantorovich potential and 𝜋 ∈ Π(𝜇, 𝜈) be an OT plan. By Lemma 1,
the Kantorovich potential 𝑓 is continuous and we can assume that 𝑓 ≡ 𝑎 on supp(𝜇)
for some 𝑎 ∈ R. Then, for each (𝑥,𝑦) ∈ supp(𝜋), it holds that 𝑓 𝑐 (𝑦) = 𝑐 (𝑥,𝑦) − 𝑎.
Therefore,

𝑐 (𝑥,𝑦) = 𝑓 𝑐 (𝑦) + 𝑎 = inf
𝑥 ′∈supp(𝜇 )

𝑐 (𝑥 ′, 𝑦),

which establishes relation (18) and shows 𝜇 ∈ 𝑃𝑐 (𝜈). Conversely, assume that (18)
holds for some 𝜋 ∈ Π(𝜇, 𝜈). Setting 𝑓 ≡ 0, we observe that

𝑓 (𝑥) + 𝑓 𝑐 (𝑦) = inf
𝑥 ′∈supp(𝜇 )

𝑐 (𝑥 ′, 𝑦) = 𝑐 (𝑥,𝑦) for all (𝑥,𝑦) ∈ supp(𝜋) .

According to standard OT theory (Santambrogio 2015), this equality also holds if
𝑓 is replaced by the 𝑐-concave function 𝑓 𝑐𝑐 ≥ 𝑓 , which implies that 𝑓 𝑐𝑐 ∈ 𝑆𝑐 (𝜇, 𝜈)
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is a Kantorovich potential (up to a suitable additive constant). Since 𝑓 𝑐𝑐 (𝑥) =
𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) = 𝑓 (𝑥) = 0 on the set {𝑥 | (𝑥,𝑦) ∈ supp(𝜋)}, which has full 𝜇-
measure, 𝑓 𝑐𝑐 is trivial. □

Proof of Corollary 2. Under condition (𝑖), we find that 𝜋 = (id, id)#𝜇 ∈ Π(𝜇, 𝜈) satis-
fies (18), implying 𝜇 ∈ 𝑃𝑐 (𝜈). If condition (𝑖𝑖) holds, the right hand side of (19) can
easily be established since 𝜋 = (𝑝, id)#𝜈 ∈ Π(𝜇, 𝜈) is optimal. In both cases, the claim
then follows by Theorem 5. □

Proof of Corollary 3. Due to Theorem 5, it is in all cases sufficient to show that
𝜇 ∉ 𝑃𝑐 (𝜈). Under condition (𝑖), we find OT𝑐 (𝜇, 𝜈) > 0. At the same time, supp(𝜈) ⊂
supp(𝜇) implies that the equality on the right hand side of (19) cannot hold.

We next note that 𝐴𝜋 B {𝑥 | (𝑥,𝑦) ∈ supp(𝜋)} is dense in supp(𝜇) for any 𝜋 ∈
Π(𝜇, 𝜈). Under condition (𝑖𝑖), the set𝑈 B int (supp(𝜇)) \ supp(𝜈) is non-empty and
open, since supp(𝜈) is closed. Therefore, we find 𝑥 ∈ 𝑈 ∩𝐴𝜋 and 𝑦 ∈ supp(𝜈) with
(𝑥,𝑦) ∈ supp(𝜋). Let 𝑢 = 𝑥 − 𝑦. As𝑈 is open, there exists 𝜀 > 0 small enough that
𝑥 ′ B 𝑥 − 𝜀 𝑢 ∈ 𝑈 ⊂ supp(𝜇). Then, employing the strict monotonicity of ℎ,

𝑐 (𝑥 ′, 𝑦) = ℎ(∥𝑥 ′ − 𝑦∥) = ℎ ((1 − 𝜀)∥𝑥 − 𝑦∥) < ℎ(∥𝑥 − 𝑦∥) = 𝑐 (𝑥,𝑦)
for (𝑥,𝑦) ∈ supp(𝜋) and 𝑥 ′ ∈ supp(𝜇), so 𝜇 ∉ 𝑃𝑐 (𝜈) follows by Definition 4.

Under condition (𝑖𝑖𝑖), let 𝑈 B supp(𝜇) \ Γ𝑐 (𝜇, 𝜈). For any coupling 𝜋 ∈ Π(𝜇, 𝜈),
we use the density of 𝐴𝜋 in supp(𝜇) to find 𝑥 ∈ 𝑈 ∩ 𝐴𝜋 , implying the existence
of 𝑦 ∈ supp(𝜈) with (𝑥,𝑦) ∈ supp(𝜋). We conclude 𝑐 (𝑥,𝑦) > inf𝑥 ′∈supp(𝜇 ) 𝑐 (𝑥 ′, 𝑦),
since 𝑥 would otherwise be an element of Γ𝑐 (𝜇, 𝜈). By Definition 4, 𝜇 ∉ 𝑃𝑐 (𝜈)
follows. □

Regularity of Kantorovich Potentials

Assumptions imposed on the cost function 𝑐 : X × Y → R+ translate to properties
on the function class F𝑐 and its 𝑐-conjugate F𝑐

𝑐 . A simple observation is uniform
boundedness of F𝑐 if the cost is non-negative and bounded. Indeed, for any 𝑓 ∈ F𝑐
it holds that

− ∥𝑐 ∥∞ ≤ inf
𝑦∈Y

𝑐 (𝑥,𝑦) − ∥𝑐 ∥∞ ≤ 𝑓 (𝑥) ≤ inf
𝑦∈Y

𝑐 (𝑥,𝑦) ≤ ∥𝑐 ∥∞

and analogously for any 𝑓 ∈ F𝑐
𝑐 . We summarize additional findings in this regard

in the following two statements (see also Gangbo and McCann 1996; Villani 2008;
Santambrogio 2015; Staudt et al. 2021 for further details).

Lemma 1 (Continuity of Kantorovich potentials): Consider Polish spaces X and
Y and a cost function 𝑐 : X ×Y → R+ satisfying Assumption (C) combined with
(S1) or (S2). Then, Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) and 𝑆𝑐𝑐 (𝜇, 𝜈) are continuous
on the supports 𝜇 and 𝜈 , respectively.
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Proof. Equicontinuity of the partially evaluated costs implies continuity of Kan-
torovich potentials since the modulus of continuity of a function class is preserved
under pointwise infima or suprema (see Santambrogio 2015, Section 1.2, for de-
tails). This implies continuity of Kantorovich potentials on both X and Y under
Assumption (S1), whereas under Assumption (S2) this only implies continuity on X .
Moreover, under Assumption (S2) the space X is compact, hence continuity of the
costs asserts by Staudt et al. 2021, Lemma 2 continuity of Kantorovich potentials on
the support of 𝜈 . □

As particular instances where structural properties of the cost function are inherited
to Kantorovich potentials, we focus on the setting of Hölder smoothness and semi-
concavity.

Lemma 2: Let X and Y be normed spaces.

(i) If for some 𝛼 ∈ (0, 1] and 𝐿 > 0 the cost 𝑐 (·, 𝑦) is (𝛼, 𝐿)-Hölder as a
function in 𝑥 for all 𝑦 ∈ Y , then any 𝑓 ∈ F𝑐 is (𝛼, 𝐿)-Hölder continuous.

(ii) If for some 𝜆 > 0 the cost 𝑐 (·, 𝑦) is Λ-semi-concave as a function in 𝑥 for
all 𝑦 ∈ Y , then any 𝑓 ∈ F𝑐 is 𝜆-semi-concave.

Note that reversing the roles of 𝑥 and 𝑦 leads to analogous results for the 𝑐-conjugate
function class F𝑐

𝑐 if {𝑐 (𝑥, ·) | 𝑥 ∈ X } is uniformly Hölder smooth or semi-concave.

Proof. Suppose 𝑐 (·, 𝑦) is (𝛼, 𝐿)-Hölder continuous for any 𝑦 ∈ Y . Then, it follows
that

𝑓 (𝑥) = inf
𝑦′∈Y

𝑐 (𝑥,𝑦′) − 𝑔(𝑦′) ≤ 𝑐 (𝑥,𝑦) − 𝑔(𝑦) ≤ 𝑐 (𝑥 ′, 𝑦) − 𝑔(𝑦) + 𝐿∥𝑥 − 𝑥 ′∥𝛼 .

Taking the infimum on the right hand side with respect to 𝑦 yields

𝑓 (𝑥) ≤ 𝑓 (𝑥 ′) + 𝐿∥𝑥 − 𝑥 ′∥𝛼 .

Changing the roles of 𝑥 and 𝑥 ′ proves that |𝑓 (𝑥) − 𝑓 (𝑥 ′) | ≤ 𝐿∥𝑥−𝑥 ∥𝛼 for any 𝑓 ∈ F𝑐 .
Suppose that 𝑐 (·, 𝑦) is Λ-semi-concave, i.e., 𝑐 (·, 𝑦) − Λ∥ · ∥2 is concave for all 𝑦 ∈ Y
as a function of 𝑥 . It then follows that

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑥 ′) − Λ∥𝑡𝑥 + (1 − 𝑡)𝑥 ′∥2

≥ 𝑡
(

inf
𝑦∈Y

𝑐 (𝑥,𝑦) − Λ∥𝑥 ∥2 − 𝑔(𝑦)
)
+ (1 − 𝑡)

(
inf
𝑦∈Y

𝑐 (𝑥 ′, 𝑦) − Λ∥𝑥 ′∥2 − 𝑔(𝑦)
)

= 𝑡
(
𝑓 (𝑥) − 𝜆∥𝑥 ∥2) + (1 − 𝑡) (

𝑓 (𝑥 ′) − Λ∥𝑥 ′∥2) .
Hence, any 𝑓 ∈ F𝑐 is itself a Λ-semi-concave function. □
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1 Introduction

Optimal transport theory addresses the question how mass can be moved from a
source to a target distribution in the most cost-efficient way. While the history of this
mathematical quest is long and rich, dating back to Monge 1781 and then Kantorovich
1942, who framed the theory in its modern formulation, it has drawn an enormous
amount of attention in the past decades. In-depth monographs cover analytical, prob-
abilistic, and geometric (Rachev and Rüschendorf 1998; Villani 2008; Santambrogio
2015; Ambrosio et al. 2021; Figalli and Glaudo 2021) as well as computational (Peyré
and Cuturi 2019) and statistical (Panaretos and Zemel 2020) perspectives, while count-
less applications span from economics (Galichon 2016) and biology (Schiebinger et al.
2019; Tameling et al. 2021) to machine learning (Arjovsky et al. 2017).

For given probability distributions 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) on measurable spaces 𝑋
and 𝑌 , the optimal transport problem is to find the minimal transportation cost

𝑇𝑐 (𝜇, 𝜈) = inf
𝜋∈C (𝜇,𝜈 )

∫
𝑐 d𝜋, (1a)

where 𝑐 : 𝑋 × 𝑌 → R+ denotes a non-negative measurable cost function that quanti-
fies the effort of moving one unit of mass between elements in 𝑋 and 𝑌 , and where
C (𝜇, 𝜈) ⊂ P (𝑋 × 𝑌 ) is the set of probability measures with marginal distributions 𝜇
and 𝜈 . Any solution 𝜋 to (1a) is called an optimal transport plan. Conditions under
which optimal transport plans exist are well-known, see for example Villani 2008
for the general framework of Polish spaces and lower-semicontinuous cost func-
tions. Under these assumptions, the optimal transport problem (1a) also admits a
dual formulation that reliably serves as a fertile ground for investigating structural
properties of 𝑇𝑐 . In fact, it holds that

𝑇𝑐 (𝜇, 𝜈) = sup
𝑓 ∈𝐿1 (𝜇 )

∫
𝑓 d𝜇 +

∫
𝑓 𝑐 d𝜈, (1b)

where 𝑓 𝑐 , the 𝑐-transform of 𝑓 , denotes the largest function satisfying 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) ≤
𝑐 (𝑥,𝑦) for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Specific optimizers 𝑓 for the dual problem – namely,
those which can be written as the 𝑐-transform of a function 𝑔 on 𝑌 – are called Kan-
torovich potentials, which exist under mild conditions (Villani 2008, Theorem 5.10).

While our efforts in this work focus on Kantorovich potentials, most of the foun-
dational research on the optimal transport problem (1) has targeted properties of
the primal solutions. Significant advances, which provided sufficient conditions for
optimal plans to be concentrated on the graph of a uniquely determined function
(the optimal transport map), have been achieved in Euclidean spaces (Smith and
Knott 1987; Cuesta and Matrán 1989; Brenier 1991; Gangbo and McCann 1996),
on manifolds (McCann 2001; Figalli 2007; Villani 2008; Figalli and Gigli 2011), and
more recently also in more general metric spaces (Bertrand 2008; Gigli et al. 2012;
Ambrosio and Rajala 2014). Strong regularity properties of optimal transport maps
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under squared Euclidean costs have first been established by the seminal work of
Caffarelli (1990,1991,1992) for probability measures with bounded convex support
(with recent extensions to unbounded settings by Cordero-Erausquin and Figalli
2019). Further insights were obtained by Ma et al. 2005 and Loeper 2009 for C4-costs
that satisfy a certain differential inequality (the Ma-Trudinger-Wang condition). Later,
De Philippis and Figalli 2015 demonstrated regularity of optimal maps outside of
“bad sets” of measure zero under more general conditions. A related line of research
is devoted to the analysis of optimal transport plans that are not necessarily induced
by a transport map. Uniqueness results for the primal solution in this context were,
for example, obtained by Ahmad et al. 2011 or McCann and Rifford 2016, and more
recently by Moameni and Rifford 2020.

Many of the techniques employed to characterize the primal solutions of (1a) cru-
cially depend on the duality theory (1b). In fact, the gradients of dual solutions are
intimately related to optimal transport maps (see Villani 2008, Chapter 10, for an in-
depth treatment). Still, dual solutions are commonly not studied as objects of interest
in their own right, and certain properties, such as the uniqueness of Kantorovich
potentials, have received considerably less attention when compared to their primal
counterparts. Recent developments, however, have emphasized the utility of dual
uniqueness. For example, in the context of statistical optimal transport, uniqueness
of Kantorovich potentials ensures a Gaussian limit distribution for the empirical
optimal transport cost (Sommerfeld and Munk 2018; del Barrio and Loubes 2019;
Tameling et al. 2019; del Barrio et al. 2021a; del Barrio et al. 2021b). Furthermore,
recent results on the convergence of entropically regularized optimal transport to its
vanilla counterpart as the regularization tends to zero utilize dual uniqueness as a
critical assumption as well (Altschuler et al. 2021; Bercu and Bigot 2021; Bernton et al.
2021; Nutz and Wiesel 2021). On a more general note, uniqueness is also required
for the meaningful and efficient computation of optimal transport gradient flows in
P (𝑋 ), since Kantorovich potentials coincide with the subgradients of the functional
𝜇 ↦→ 𝑇𝑐 (𝜇, 𝜈) (see Santambrogio 2015, Section 7.2).

For continuous measures in Euclidean spaces, several sufficient criteria for unique
Kantorovich potentials are available. The involved arguments are well-known from
the above mentioned literature on optimal transport maps, and depend on (i) suf-
ficient local regularity of dual solutions 𝑓 (e.g., local Lipschitz continuity) and (ii)
exploiting that the gradient of 𝑓 is (where it exists) determined by the cost function
and an (arbitrary) optimal transport plan. Notable results that adopt this strategy
include Proposition 7.18 in Santambrogio 2015, which is applicable in compact set-
tings, or Appendix B of Bernton et al. 2021 and Corollary 2.7 of del Barrio et al.
2021b, both relying on regularity properties of dual solutions derived by Gangbo and
McCann 1996 for a certain family of strictly convex costs. Meanwhile, Remark 10.30
in Villani 2008 sketches a general argument for uniqueness of Kantorovich potentials
on Riemannian manifolds. A commonality of these (and, to our knowledge, all other
related) results in this vein is the requirement that the support of at least one proba-
bility measure 𝜇 or 𝜈 is connected. This requirement is usually taken as self-evident,
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since the standard proof technique – concluding uniqueness of a function (up to
constants) from uniqueness of its gradients – naturally cannot bridge separated
connected components. In fact, it is easy to construct trivial counter examples, like
𝑋 = 𝑌 = [0, 1] ∪ [2, 3] with uniformly distributed 𝜇 = 𝜈 on 𝑋 , where uniqueness of
the Kantorovich potentials is bound to fail for a wide range of cost functions (see
Lemma 11 in Appendix A).

At the same time, on finite spaces, dual uniqueness results for transportation prob-
lems have long been established via methods from finite linear programming (Klee
and Witzgall 1968; Hung et al. 1986). Even though these settings naturally involve
disconnected supports, they still feature unique Kantorovich potentials whenever
the measures 𝜇 and 𝜈 are non-degenerate, meaning that all proper subsets𝑋 ′ ⊂ 𝑋 and
𝑌 ′ ⊂ 𝑌 are assigned different masses 𝜇 (𝑋 ′) ≠ 𝜈 (𝑌 ′). The main conceptual contribu-
tion of our work is the formulation of an analogon of this observation accessible to
the continuous world. This is realized by lifting the uniqueness of dual solutions on
connected components to their uniqueness on the full space, a strategy that works in
general Polish spaces. The following statement is an informal version of our central
result (Theorem 1).

Theorem (Informal): Assume that 𝜇 and 𝜈 are non-degenerate (in a suitable
sense) and that each optimal potential 𝑓 𝑐 is continuous. If the optimal transport
problems restricted to the connected components of the support of 𝜇 have
unique Kantorovich potentials, then the full optimal transport problem has
unique Kantorovich potentials as well.

Clearly, this statement is mainly useful if combined with dual uniqueness results
for measures with connected support. This motivates us to revisit the common
proof strategy for uniqueness in the connected setting and present a formulation
(Theorem 2) that is more general than the ones we have cited above. Theorem 2 covers
settings where 𝑋 is a smooth manifold and 𝑌 is allowed to be a generic Polish space,
and we carefully discuss which properties of 𝜇, 𝜈 , and 𝑐 are actually necessary for the
argumentation. Particular scenarios where the assumptions of Theorem 2 can easily
be checked include settings where the space 𝑌 is compact (Corollary 2) or where the
cost function satisfies certain growth and regularity conditions outside of compact
sets (Corollary 3 and Section 4). In fact, we will learn that the requirements on 𝜇 are
primarily of topological nature (i.e., concerning the shape of its support), while the
actual distribution of mass can often be quite arbitrary. For example, in the setting
𝑋 = 𝑌 = [0, 1] ∪ [2, 3] mentioned earlier, combining Theorem 1 and Corollary 2
establishes that Kantorovich potentials are unique if 𝜇 and 𝜈 are supported on all of
𝑋 and satisfy 𝜇 ( [0, 1]) ≠ 𝜈 ( [0, 1]). This holds for general differentiable costs without
further assumptions on 𝜇 or 𝜈 such as the existence of a Lebesgue density. In this
sense, failure of uniqueness due to disconnected supports is typically an exception
caused by a specific symmetry, and not the rule.
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Outline. The notion of 𝑐-concavity is introduced and discussed in Section 2. Kan-
torovich potentials are then defined as 𝑐-concave solutions of the optimal transport
problem in its dual formulation (1b). We proceed to discuss the regularity of such
potentials, with a focus on the connection between continuity and transport towards
infinity. Some technical results that cope with restrictions of the base spaces 𝑋 and
𝑌 are emphasized as well. Section 3 opens with a clarification of equivalent ways to
define almost surely unique Kantorovich potentials. Afterwards, our main results on
uniqueness of Kantorovich potentials for probability measures with disconnected
support (Theorem 1 and Corollary 1) are presented and discussed, including its
consequences for the semi-discrete setting and countably discrete spaces. We then
turn to uniqueness statements for measures with connected support on smooth
manifolds (Theorem 2, Corollary 2, and Corollary 3). Section 4 contributes some
findings on continuity properties of Kantorovich potentials for fast-growing cost
functions (particularly for geodesic metric spaces, Theorem 3), revealing that dis-
continuities are often confined to the boundary of the support. Finally, Section 5
contains the proof of Theorem 1 and Appendix A documents auxiliary observations
and arguments that have been omitted in the main text.

Notation. Throughout the manuscript, 𝑋 and 𝑌 denote Polish spaces, i.e., com-
pletely metrizable and separable topological spaces. For 𝐴 ⊂ 𝑋 , we write int(𝐴)
for its interior, cl(𝐴) for its closure, and 𝜕𝐴 = cl(𝐴) \ int(𝐴) for its boundary. The
Cartesian projection from a product of spaces to a component 𝑋 is denoted by 𝑝𝑋 .
Real-valued functions 𝑓 and 𝑔 on spaces 𝑋 and 𝑌 can be lifted to 𝑋 × 𝑌 via the oper-
ation (𝑥,𝑦) ↦→ 𝑓 (𝑥) + 𝑔(𝑦), which we denote by 𝑓 ⊕ 𝑔. The set of Borel probability
measures, or distributions, on a Polish space 𝑋 are called P (𝑋 ). The support of a
probability distribution 𝜇 ∈ P (𝑋 ), which is the smallest closed set 𝐴 ⊂ 𝑋 such that
𝜇 (𝐴) = 1, is denoted by supp 𝜇. We write 𝜇 ⊗ 𝜈 ∈ P (𝑋 × 𝑌 ) to denote the product of
probability measures on Polish spaces 𝑋 and 𝑌 . Integration

∫
𝑓 d𝜇 of a real-valued

function 𝑓 on 𝑋 is abbreviated by juxtaposition 𝜇𝑓 .

If 𝑀 is a smooth manifold (without boundary), we call 𝑓 : 𝑀 → R locally Lipschitz
if 𝑓 ◦ 𝜑−1 is locally Lipschitz for every chart 𝜑 of an atlas of 𝑀 . Similarly, we call
𝑓 locally semiconcave if 𝑓 ◦ 𝜑−1 is locally semiconcave for every chart 𝜑 of an
atlas of 𝑀 . By this we mean that each point in range𝜑 admits 𝜆 > 0 and a convex
neighbourhood 𝑉 ⊂ range𝜑 such that

𝑣 ↦→ 𝑓
(
𝜑−1(𝑣)) − 𝜆∥𝑣 ∥2 (2)

is concave on𝑉 . A family of functions 𝑓𝑦 : 𝑀 → R for𝑦 ∈ 𝑌 is called locally Lipschitz
(or locally semiconcave) uniformly in𝑦 if 𝑓𝑦 is locally Lipschitz (or locally semiconcave)
with neighborhoods and constants that do not depend on 𝑦. Similarly, the functions
𝑓𝑦 are locally Lipschitz locally uniformly in 𝑦 if the functions 𝑓𝑦 are locally Lipschitz
uniformly in 𝑦 ∈ 𝐾 for each compact set 𝐾 ⊂ 𝑌 . We furthermore say that a Borel set
𝐴 has full Lebesgue measure in charts of𝑀 if range𝜑 \𝜑 (

𝐴∩domain𝜑
)

is a Lebesgue
null set for each chart 𝜑 of an atlas of 𝑀 .
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2 Kantorovich Potentials

Let 𝑐 : 𝑋 × 𝑌 → R+ be a non-negative cost function that compares elements of Polish
spaces 𝑋 and 𝑌 . As laid out comprehensively in Villani 2008 or Santambrogio 2015,
a central part of the duality theory of optimal transport is the notion of 𝑐-conjugacy.
For any 𝑔 : 𝑌 → R ∪ {−∞}, its associated 𝑐-transform is defined via

𝑔𝑐 : 𝑋 → R ∪ {−∞}, 𝑔𝑐 (𝑥) = inf
𝑦∈𝑌

𝑐 (𝑥,𝑦) − 𝑔(𝑦) . (3a)

Any function 𝑓 : 𝑋 → R ∪ {−∞} that coincides with 𝑔𝑐 for some 𝑔 : 𝑌 → R ∪ {−∞}
and that is not equal −∞ everywhere is called 𝑐-concave on𝑋 . The set of all functions
that are 𝑐-concave on 𝑋 is denoted by 𝑆𝑐 . Since the roles of 𝑓 and 𝑔 can easily be
exchanged in these definitions, we also write

𝑓 𝑐 : 𝑌 → R ∪ {−∞}, 𝑓 𝑐 (𝑦) = inf
𝑥∈𝑋

𝑐 (𝑥,𝑦) − 𝑓 (𝑥) (3b)

for the 𝑐-transform of a function 𝑓 : 𝑋 → R ∪ {−∞}. Any 𝑔 : 𝑌 → R ∪ {−∞}
that originates from a 𝑐-transform and that is not equal −∞ everywhere is called
𝑐-concave on 𝑌 . Since 𝑓 = 𝑓 𝑐𝑐 and 𝑔 = 𝑔𝑐𝑐 for any 𝑐-concave 𝑓 or 𝑔 (see Santambrogio
2015, Proposition 1.34), the set 𝑆𝑐𝑐 of pointwise 𝑐-transformed elements of 𝑆𝑐 equals
the set of functions that are 𝑐-concave on 𝑌 . Under continuity of the cost function
𝑐 , all functions in 𝑆𝑐 and 𝑆𝑐𝑐 are upper-semicontinuous and thus Borel measurable.
Note that our notation accentuates the asymmetry in the operations (3a) and (3b)
less explicitly than Santambrogio 2015, who denotes (3a) as 𝑐-transform, or Villani
2008, who picks a different sign convention and contrasts 𝑐-concavity to 𝑐-convexity.

For any given 𝑓 : 𝑋 → R ∪ {−∞}, the 𝑐-transform 𝑔 = 𝑓 𝑐 designates the largest
function that satisfies 𝑓 ⊕ 𝑔 ≤ 𝑐 . The set of points in 𝑋 × 𝑌 where equality holds is
denoted as 𝑐-subdifferential of 𝑓 , and we write

𝜕𝑐 𝑓 =
{(𝑥,𝑦) ∈ 𝑋 × 𝑌

�� 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) = 𝑐 (𝑥,𝑦)} . (4)

This set is closed when 𝑐 is continuous and 𝑓 is upper-semicontinuous (so in particular
when 𝑓 is 𝑐-concave). If 𝑓 is a solution of the dual optimal transport problem (1b), it
is clear that any optimal transport plan has to be concentrated on 𝜕𝑐 𝑓 . The following
statement, which is a special case of Theorem 5.10 (ii) in Villani 2008, establishes
that (generalized) 𝑐-concave dual solutions exist under mild conditions.

Theorem (Existence of optimal solutions): Let𝑋 and𝑌 be Polish and 𝑐 : 𝑋 × 𝑌 →
R+ continuous. For any 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) with𝑇𝑐 (𝜇, 𝜈) < ∞, there exists
an optimal transport plan 𝜋 ∈ C (𝜇, 𝜈) and a 𝑐-concave function 𝑓 ∈ 𝑆𝑐 such that

𝑇𝑐 (𝜇, 𝜈) = 𝜋𝑐 = 𝜋
(
𝑓 ⊕ 𝑓 𝑐

)
. (5)

We emphasize that the function 𝑓 in this statement does not have to be 𝜇-integrable,
nor does 𝑓 𝑐 have to be𝜈-integrable. Ensuring integrability requires further conditions
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(Villani 2008, Remark 5.14), for instance (𝜇 ⊗ 𝜈) 𝑐 < ∞. Only then can 𝑓 be viewed
as a dual optimizer of (1b) in the strict sense

𝑇𝑐 (𝜇, 𝜈) = 𝜋𝑐 = 𝜇𝑓 + 𝜈 𝑓 𝑐 .

For our ends, however, the more general solutions provided by (5) are sufficient. We
call these solutions (generalized) Kantorovich potentials, and we write 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) ⊂
𝑆𝑐 or 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) ⊂ 𝑆𝑐𝑐 to emphasize their dependence on 𝜇 and 𝜈 . We stress that
any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) satisfies (5) for all optimal transport plans 𝜋 , so 𝑓 does not favor a
particular primal solution (Beiglböck and Schachermayer 2011, Lemma 1.1).

Note that the existence of solutions as well as duality statements for optimal trans-
portation problems have also been established for non-continuous cost functions (Vil-
lani 2008; Beiglböck and Schachermayer 2011) or more general spaces (Rüschendorf
2007). Two major advantages of working with continuous costs are the closedness of
the 𝑐-subdifferential 𝜕𝑐 𝑓 for any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) and the (related) upper-semicontinuity
of 𝑐-conjugate functions. The former implies

supp𝜋 ⊂ 𝜕𝑐 𝑓

for any optimal transport plan 𝜋 , a property which we will often resort to, while the
latter is needed for continuity results and permits sidestepping measurability issues.

Regularity

Due to their nature as 𝑐-concave functions, Kantorovich potentials inherit certain
regularity properties from the cost function 𝑐 . For example, if 𝑐 is concave in its
first argument, then 𝑓 ∈ 𝑆𝑐 is also concave as an infimum over concave functions.
Similarly, if the family {𝑐 (·, 𝑦) |𝑦 ∈ 𝑌 } of partially evaluated costs is (locally) equicon-
tinuous, then 𝑓 shares the respective (local) modulus of continuity (Santambrogio
2015, Section 1.2). Imposing conditions of this form is hence a convenient way
to guarantee continuity of 𝑐-concave functions, which are in general only upper-
semicontinuous (for continuous costs). In the following, we introduce tools that give
us a more fine-grained control over the continuity of Kantorovich potentials. We
begin with continuity along sequences in 𝜕𝑐 𝑓 .

Lemma 1: Let 𝑋 and 𝑌 be Polish, 𝑐 : 𝑋 × 𝑌 → R+ continuous, and 𝑓 ∈ 𝑆𝑐 . If
(𝑥𝑛, 𝑦𝑛)𝑛∈N is a sequence in 𝜕𝑐 𝑓 that converges to (𝑥,𝑦) ∈ 𝜕𝑐 𝑓 , then 𝑓 (𝑥𝑛) →
𝑓 (𝑥) and 𝑓 𝑐 (𝑦𝑛) → 𝑓 𝑐 (𝑦) as 𝑛 → ∞.

Proof. Both 𝑓 and 𝑓 𝑐 are upper-semicontinuous. Since (𝑥𝑛, 𝑦𝑛) and (𝑥,𝑦) are ele-
ments in 𝜕𝑐 𝑓 ,

𝑓 𝑐 (𝑦) ≥ lim sup
𝑛→∞

𝑓 𝑐 (𝑦𝑛) ≥ 𝑐 (𝑥,𝑦) − lim sup
𝑛→∞

𝑓 (𝑥𝑛) ≥ 𝑐 (𝑥,𝑦) − 𝑓 (𝑥) = 𝑓 𝑐 (𝑦) .

Therefore, lim sup𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑥) and lim sup𝑛→∞ 𝑓
𝑐 (𝑦𝑛) = 𝑓 𝑐 (𝑦) has to hold. □
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𝑌

𝑋

supp𝜋

𝑈 × 𝐾

𝜋 induces regularity 𝜋 does not induce regularity

𝑥 ∈ 𝑝𝑋 (supp𝜋)𝑥 ∉ 𝑝𝑋 (supp𝜋)𝑥 ∈ 𝑝𝑋 (supp𝜋)𝑥 ∈ 𝑝𝑋 (supp𝜋)
Figure 1: Transport plans and induced regularity. The two plans on the left induce regularity
at 𝑥 ∈ supp(𝜇) (dashed line), since a relatively open neighborhood 𝑈 ⊂ supp(𝜇) and a
compact set 𝐾 ⊂ 𝑌 can be found such that condition (6) is satisfied. The two plans on the
right fail to induce regularity. Note that 𝑥 ∈ 𝑝𝑋 (supp𝜋) is possible even if regularity is not
induced at the point 𝑥 (rightmost sketch).

We next show that Kantorovich potentials can only be discontinuous at points that
are “sent to infinity” by all optimal transport plans. To put this more precisely, given
a relatively open set 𝑈 ⊂ supp 𝜇, we say that a transport plan 𝜋 ∈ C (𝜇, 𝜈) induces
regularity on 𝑈 if there exists a compactum 𝐾 ⊂ 𝑌 such that

𝑝𝑋 (supp𝜋) ∩𝑈 = 𝑝𝑋
(
supp𝜋 ∩ (𝑈 × 𝐾)), (6)

where 𝑝𝑋 denotes the coordinate projection onto 𝑋 . We also say that 𝜋 induces
regularity at 𝑥 ∈ supp 𝜇, if there is a (relatively) open neighborhood𝑈 ⊂ supp 𝜇 of 𝑥
such that 𝜋 induces regularity on 𝑈 (see Figure 1). Similar definitions with reversed
roles are deployed for subsets or points in supp𝜈 , to which all of the following
statements can be adjusted as well.

Lemma 2: Let 𝑋 and 𝑌 be Polish, 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+
continuous with 𝑇𝑐 (𝜇, 𝜈) < ∞. Let 𝜋 ∈ C (𝜇, 𝜈) be optimal and 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). If 𝜋
induces regularity on𝑈 ⊂ supp 𝜇 with respect to the compact set 𝐾 ⊂ 𝑌 , then
𝑈 ⊂ 𝑝𝑋 (supp𝜋) and

𝑓 (𝑥) = inf
𝑦∈𝐾

𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) (7)

for all 𝑥 ∈ 𝑈 . In particular, 𝑓 |supp 𝜇 is continuous on𝑈 .

Proof. Let 𝜋 induce regularity on the relatively open set𝑈 ⊂ supp 𝜇 with respect to
the compact set𝐾 ⊂ 𝑌 as defined in (6). Restricted to the domain𝑋×𝐾 , the projection
𝑝𝑋 is a closed map. Condition (6) thus establishes that 𝐴 = 𝑝𝑋 (supp𝜋) ∩ 𝑈 =
𝑝𝑋

(
supp𝜋 ∩ (𝑋 × 𝐾)) ∩ 𝑈 is relatively closed in 𝑈 . Since 𝑝𝑋 (supp𝜋) is dense

in supp 𝜇, any point in 𝑈 is a limit point of 𝐴. Therefore, 𝑈 = 𝐴 ⊂ 𝑝𝑋 (supp𝜋).
Furthermore, each 𝑥 ∈ 𝑈 admits a partner 𝑦 ∈ 𝐾 such that (𝑥,𝑦) ∈ supp𝜋 ⊂ 𝜕𝑐 𝑓 .
This establishes (7), since

𝑓 (𝑥) = 𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) = inf
𝑦′∈𝐾

𝑐 (𝑥,𝑦′) − 𝑓 𝑐 (𝑦′) .
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To show continuity of 𝑓 |supp 𝜇 on 𝑈 , it is enough to show that each sequence
(𝑥𝑛)𝑛∈N ⊂ supp 𝜇 converging to 𝑥 ∈ 𝑈 has a subsequence attaining the limit 𝑓 (𝑥).
Since𝑈 is (relatively) open, we can assume (𝑥𝑛)𝑛 ⊂ 𝑈 . Thus, each 𝑥𝑛 admits 𝑦𝑛 ∈ 𝐾
such that (𝑥𝑛, 𝑦𝑛) ∈ supp𝜋 . After taking a suitable subsequence, we may assume
that 𝑦𝑛 → 𝑦 ∈ 𝐾 due to the compactness of 𝐾 . Thus, (𝑥𝑛, 𝑦𝑛) → (𝑥,𝑦) as 𝑛 → ∞.
Since supp𝜋 ⊂ 𝜕𝑐 𝑓 is closed in 𝑋 × 𝑌 , it contains (𝑥,𝑦), and so Lemma 1 can be
applied to establish lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑥). □

Remark 1 (Projections and measurability): We commonly formulate our results
in terms of the projected sets 𝑝𝑋 (supp𝜋) ⊂ supp 𝜇 and 𝑝𝑌 (supp𝜋) ⊂ supp𝜈 ,
where 𝜋 ∈ C (𝜇, 𝜈) denotes an (arbitrary) optimal transport plan. Note that the
inclusions can be strict, for which case Lemma 2 establishes the relation

supp 𝜇 \ 𝑝𝑋 (supp𝜋) ⊂ {
𝑥 ∈ supp 𝜇

��𝜋 does not induce regularity at 𝑥
}

and vice versa for 𝜈 . Projected sets of the form 𝑝𝑋 (supp𝜋) or 𝑝𝑌 (supp𝜋) are
not Borel measurable in general, but they are analytic and thus contain Borel
subsets of full 𝜇- or 𝜈-measure (see Lemma 9 in Appendix A for references). We
usually prefer the explicit formulation via these sets (instead of writing “almost
surely”) to emphasize that the domain of a property does not depend on the
choice of a specific Kantorovich potential.

Some consequences of Lemma 2 deserve to be highlighted. First, the Kantorovich
potentials 𝑆𝑐 (𝜇, 𝜈) are always continuous if the space 𝑌 is compact. If 𝑌 is not
compact, the intuition fostered by Lemma 2 is that discontinuities can only occur
at points from whose immediate vicinity some mass is sent towards infinity, in the
sense that this mass leaves any compactum in𝑌 . Relation (7) is particularly useful for
transferring properties of the cost function to Kantorovich potentials, like a modulus
of continuity of 𝑐 (·, 𝑦) that holds only locally in 𝑦. This observation becomes crucial
for Theorem 2 in Section 3.

Examples where induced regularity fails at some points can easily be found, and
include settings where 𝜇 is compactly supported but 𝜈 is not. At the offending points,
𝑓 can turn out to be both continuous or discontinuous, depending on the regularity
of the cost function as well as the specific behavior of 𝜇 and 𝜈 (this can already
be observed for 𝑋 = 𝑌 = R). The following example anticipates that points of
discontinuity are often restricted to the boundary of the support, a phenomenon
that we more closely study in Section 4.

Example 1 (Continuity in geodesic spaces): Let 𝑋 = 𝑌 for a locally compact
complete geodesic space (𝑋,𝑑) and consider a cost function of the form 𝑐 (𝑥,𝑦) =
ℎ(𝑑 (𝑥,𝑦)) with convex and differentiable ℎ : R+ → R+. Then every Kantorovich
potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is continuous on the interior of the support of 𝜇 and
discontinuities at the boundary are only possible if ℎ′(𝑎) → ∞ as 𝑎 → ∞.
Proofs and more details are provided in Section 4.
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We stress that regularity properties of Kantorovich potentials that go beyond mere
continuity, like their degree of differentiability, are extensively studied in the lit-
erature on the optimal transport map (see Villani 2008, Chapter 10, for a detailed
exposition). To mention a common argument in this context, one possible way to
enforce twofold differentiability of 𝑓 ∈ 𝑆𝑐 is to work with semiconcave cost functions.

Example 2 (Continuity under semiconcavity): Let 𝑋 = R𝑑 for some 𝑑 ∈ N with
the Euclidean norm ∥ · ∥ and assume that the function class

{
𝑐 (·, 𝑦)

��𝑦 ∈ 𝑌 }
has uniformly bounded second derivatives. Then there exists 𝜆 > 0 such that
𝑥 ↦→ 𝑐 (𝑥,𝑦) − 𝜆∥𝑥 ∥2 is concave for each 𝑦 ∈ 𝑌 , which implies concavity of 𝑥 ↦→
𝑓 (𝑥)−𝜆∥𝑥 ∥2 for 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) as well. In particular, 𝑓 is continuous and Lebesgue-
almost everywhere twice differentiable in the domain Ω = int({𝑥 | 𝑓 (𝑥) >
−∞}) ⊂ R𝑑 , which is convex and contains the interior of supp 𝜇. On the
boundary of Ω, the potential may assume finite values or −∞.

Restrictions

A valuable trait of optimal transport theory is that both primal and dual solutions
behave consistently when the base spaces 𝑋 and 𝑌 are restricted to subspaces.
General results in this direction can be found in Villani 2008, Theorem 4.6 and
Theorem 5.19. In the following, we stress some selected statements that complement
our assertions on continuity and uniqueness of Kantorovich potentials. We begin
with a technical observation that restrictions of Kantorovich potentials of the form
𝑓 |supp 𝜇 , as they appear in Lemma 2, can (almost) be understood as Kantorovich
potentials of a suitably restricted problem. The proof is delegated to Appendix A.

Lemma 3 (Restriction to sets of full mass): Let𝑋 and𝑌 be Polish and 𝑐 : 𝑋 × 𝑌 →
R+ continuous. Suppose 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) such that 𝑇𝑐 (𝜇, 𝜈) < ∞. Let
𝜋 ∈ C (𝜇, 𝜈) be an optimal plan and let 𝑐 denote the restriction of 𝑐 to the set 𝑋̃×𝑌̃ ,
where 𝑋̃ ⊂ 𝑋 and 𝑌̃ ⊂ 𝑌 are Borel and Polish subspaces with 𝜇 (𝑋̃ ) = 𝜈 (𝑌̃ ) = 1.
Let Γ̃ = supp𝜋 ∩ (𝑋̃ × 𝑌̃ ).
(Restrict) Every 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) admits 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) that agrees with 𝑓 on 𝑝𝑋 (Γ̃).
(Extend) Every 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) admits 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) that agrees with 𝑓 on 𝑝𝑋 (Γ̃).
In both cases, the conjugates 𝑓 𝑐 and 𝑓 𝑐 agree on 𝑝𝑌 (Γ̃).
Remark 2 (Ambiguity of extensions): Depending on the setting, there can be
distinct ways of extending Kantorovich potentials from the support to the whole
space. For example, if 𝑋 = 𝑌 are equal and 𝑐 is a metric, then the 𝑐-concave
functions are exactly the 1-Lipschitz functions with respect to 𝑐 , and it is easy to
see that 𝑓 𝑐 = −𝑓 holds for any 𝑓 ∈ 𝑆𝑐 . In this situation, ambiguous extensions
are common if supp 𝜇 ∪ supp𝜈 does not cover the whole space 𝑋 .

We next address the behavior of Kantorovich potentials when transportation is
restricted to a part of 𝑋 that does not necessarily occupy full 𝜇-mass. Let 𝜋 ∈ C (𝜇, 𝜈)
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be an optimal plan and suppose that 𝜇 (𝑋̃ ) > 0 for some closed subset 𝑋̃ ⊂ 𝑋 .
We denote the optimal transport problem between the probability measures 𝜇𝑋̃ =
𝜇 |𝑋̃ /𝜇 (𝑋̃ ) and 𝜈𝑋̃ = 𝜋 (𝑋̃ × ·)/𝜇 (𝑋̃ ) under the cost function 𝑐𝑋̃ = 𝑐 |𝑋̃×𝑌 as the 𝑋̃ -
restricted problem (with respect to 𝜋 ). As an application of Villani 2008, Theorem 5.19,
we note that the restriction of Kantorovich potentials in the original problem yields
Kantorovich potentials in the restricted problem.

Lemma 4 (Restriction to sets of partial mass): Let 𝑋 and 𝑌 be Polish and
𝑐 : 𝑋 × 𝑌 → R+ continuous. Suppose 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) such that
𝑇𝑐 (𝜇, 𝜈) < ∞ and let 𝑋̃ ⊂ 𝑋 be closed with 𝜇 (𝑋̃ ) > 0. Then any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈)
admits 𝑓 ∈ 𝑆𝑐𝑋̃ (𝜇𝑋̃ , 𝜈𝑋̃ ) that agrees with 𝑓 on 𝑝𝑋 (supp𝜋) ∩ 𝑋̃ .

As a consequence of Lemma 4, it is always possible to decompose Kantorovich
potentials defined on disconnected spaces in a natural way. Indeed, if supp 𝜇 =⋃
𝑖∈𝐼 𝑋𝑖 is a countable partitioning into connected components (which are always

closed) with 𝜇 (𝑋𝑖) > 0 for each 𝑖 ∈ 𝐼 , then any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) admits restricted
potentials 𝑓𝑖 ∈ 𝑆𝑐𝑋𝑖

(𝜇𝑋𝑖 , 𝜈𝑋𝑖 ) such that

𝑓 =
∑︁
𝑖∈𝐼

1𝑋𝑖 · 𝑓𝑖 on 𝑝𝑋 (supp𝜋) (8)

for any optimal 𝜋 ∈ C (𝜇, 𝜈). This simple but crucial observation lies at the heart of
the uniqueness result for probability measures with disconnected support discussed
in the next section.

3 Uniqueness

In a strict sense, Kantorovich potentials are never unique. Indeed, it is easy to see
that 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) implies 𝑓 + 𝑎 ∈ 𝑆𝑐 (𝜇, 𝜈) for any 𝑎 ∈ R. Therefore, statements
about uniqueness are generally only reasonable up to constant shifts. Besides this
ambiguity, it is often too restrictive to require uniqueness to hold outside of the
supports of the involved measures (see Remark 2 on ambiguous extensions). We
will therefore focus on the notion of almost surely unique Kantorovich potentials (up
to constant shifts), by which we mean that 𝑓1 − 𝑓2 is 𝜇-almost surely constant for
all 𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈). Due to the regularizing nature of the 𝑐-transform, almost sure
uniqueness of 𝑆𝑐 (𝜇, 𝜈) is actually equivalent to almost sure uniqueness of 𝑆𝑐𝑐 (𝜇, 𝜈).

Lemma 5: Let 𝑋 and 𝑌 be Polish, 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+
continuous such that 𝑇𝑐 (𝜇, 𝜈) < ∞. For any optimal transport plan 𝜋 and any
𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈)

1) 𝑓1 = 𝑓2 𝜇-almost surely iff 𝑓1 = 𝑓2 on 𝑝𝑋 (supp𝜋),
2) 𝑓 𝑐1 = 𝑓 𝑐2 𝜈-almost surely iff 𝑓 𝑐1 = 𝑓 𝑐2 on 𝑝𝑌 (supp𝜋),
3) 𝑓1 = 𝑓2 on 𝑝𝑋 (supp𝜋) iff 𝑓 𝑐1 = 𝑓 𝑐2 on 𝑝𝑌 (supp𝜋).
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Proof. We begin with the first assertion and assume that 𝑓1 = 𝑓2 holds on a Borel
set 𝐴 ⊂ 𝑋 with 𝜇 (𝐴) = 1. The set 𝐵 = supp𝜋 ∩ (𝐴 × 𝑌 ) is dense in supp𝜋 , so that
there is a convergent sequence in 𝐵 to any (𝑥,𝑦) ∈ supp𝜋 . Lemma 1 then asserts
𝑓1(𝑥) = 𝑓2(𝑥) for all 𝑥 ∈ 𝑝𝑋 (supp𝜋). Conversely, Lemma 9 in Appendix A shows
that 𝑝𝑋 (supp𝜋) contains a Borel set of full 𝜇-measure. Assertion 2 follows similarly.
To show assertion 3, it is sufficient to observe 𝑐 (𝑥,𝑦) = 𝑓1(𝑥) + 𝑓 𝑐1 (𝑦) = 𝑓2(𝑥) + 𝑓 𝑐2 (𝑦)
and thus 𝑓1(𝑥) − 𝑓2(𝑥) = 𝑓 𝑐2 (𝑦) − 𝑓 𝑐1 (𝑦) for any (𝑥,𝑦) ∈ supp𝜋 . □

Disconnected support

Our contributions regarding the uniqueness of Kantorovich potentials for measures
with disconnected support are inspired by well-known results from the theory of
finite linear programming. In a nutshell, we will show that unique Kantorovich
potentials on the connected components of the support are sufficient to imply the
uniqueness on the whole support, as long as we have continuous 𝑐-transformed
potentials and so-called non-degenerate optimal plans. If

supp 𝜇 =
⋃
𝑖∈𝐼

𝑋𝑖 and supp𝜈 =
⋃
𝑗∈ 𝐽

𝑌𝑗 (9)

are (at most countable) decompositions of the supports of 𝜇 and 𝜈 into connected
components, then 𝜋 ∈ C (𝜇, 𝜈) is called degenerate if there exist subsets 𝐼 ′ ⊂ 𝐼 and
𝐽 ′ ⊂ 𝐽 such that

0 <
∑︁
𝑖∈𝐼 ′

𝜇 (𝑋𝑖) =
∑︁
𝑖∈𝐼 ′

∑︁
𝑗∈ 𝐽 ′

𝜋 (𝑋𝑖 × 𝑌𝑗 ) =
∑︁
𝑗∈ 𝐽 ′

𝜈 (𝑌𝑗 ) < 1. (10)

This definition allows for the following sufficient criterion for non-degeneracy, which
has the advantage that it can easily be checked on the basis of 𝜇 and 𝜈 alone.

Lemma 6: If all nonempty proper 𝐼 ′ ⊂ 𝐼 and 𝐽 ′ ⊂ 𝐽 satisfy
∑
𝑖∈𝐼 ′ 𝜇 (𝑋𝑖) ≠∑

𝑗∈ 𝐽 ′ 𝜈 (𝑌𝑗 ), then no transport plan 𝜋 ∈ C (𝜇, 𝜈) is degenerate.

Under suitable conditions, non-degenerate optimal transport plans make it possible to
uniquely link together Kantorovich potentials of the𝑋𝑖-restricted transport problems
(recall this notion from Section 2) to assert uniqueness of Kantorovich potentials on
the full support. For the following result, note that 𝜇 (𝑋𝑖) > 0 for all 𝑖 ∈ 𝐼 if 𝐼 is finite,
since each 𝑋𝑖 ⊂ supp 𝜇 is open in this case.

Theorem 1 (Uniqueness under disconnected support): Let 𝑋 and 𝑌 be Polish,
𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+ continuous with 𝑇𝑐 (𝜇, 𝜈) < ∞.
Assume decomposition (9) for 𝐼 finite and 𝐽 (at most) countable and assume
that for all 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) either

1) 𝑓 𝑐 |supp 𝜈 is continuous, or

2) 𝑓 𝑐 |𝑌𝑗 is continuous and supp𝜈 |𝑌𝑗 is connected for all 𝑗 ∈ 𝐽 with 𝜈 (𝑌𝑗 ) > 0.
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Figure 2: Uniqueness of Kantorovich potentials in disconnected spaces. In sketch (a),
transport between 𝑋1 ∪ 𝑋2 and 𝑌1 is decoupled from transport between 𝑋3 and 𝑌2. As
the proof of Theorem 1 shows, the existence of a contact point 𝑦1 links the (restricted)
Kantorovich potentials 𝑓1 : 𝑋1 → R and 𝑓2 : 𝑋2 → R. However, since 𝑓3 : 𝑋3 → R is linked to
neither 𝑓1 nor 𝑓2, uniqueness of the full Kantorovich potential 𝑓 : 𝑋 → R is not guaranteed.
In sketch (b), 𝑓1 is linked to 𝑓2 via 𝑦1 and 𝑓2 is linked to 𝑓3 via 𝑦2. Therefore, uniqueness of 𝑓
follows from uniqueness of the restricted Kantorovich potentials if 𝑓 𝑐 is continuous at 𝑦1
and 𝑦2.

If there exists a non-degenerate optimal transport plan 𝜋 ∈ C (𝜇, 𝜈) with respect
to which the𝑋𝑖-restricted Kantorovich potentials 𝑆𝑐𝑋𝑖

(𝜇𝑋𝑖 , 𝜈𝑋𝑖 ) are almost surely
unique for all 𝑖 ∈ 𝐼 , the Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) are also almost surely
unique.

Example 3 (Semi-discrete optimal transport): Let 𝑋 be a finite set with 𝑛 ∈ N
elements and 𝑌 be a general Polish space. Questions concerning dual unique-
ness in this setting, which is referred to as semi-discrete optimal transport, have
recently been raised by Altschuler et al. 2021 and Bercu and Bigot 2021. Theo-
rem 1 provides simple and general answers in this context, since the uniqueness
of the 𝑋𝑖-restricted Kantorovich potentials and the continuity of all 𝑓 𝑐 ∈ 𝑆𝑐𝑐
turn out to be trivial (for continuous 𝑐). For example, if 𝜈 ∈ P (𝑌 ) has connected
support, Kantorovich potentials are always unique in the above sense for any
𝜇 ∈ P (𝑋 ). If the support of 𝜈 is disconnected with (at most) countably many
components 𝑌𝑗 , uniqueness holds if the measures 𝜇 and 𝜈 are non-degenerate
in the sense of Lemma 6. In particular, when 𝜇 is the uniform distribution on 𝑋 ,
Kantorovich potentials are guaranteed to be unique unless 𝜈 assigns a multiple
of mass 1/𝑛 to individual connected components of supp𝜈 .

A sketch that assists in the interpretation of Theorem 1 is provided by Figure 2. At
the heart of the proof lies observation (8), which ensures that each Kantorovich
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potential in 𝑆𝑐 (𝜇, 𝜈) assumes the form

𝑓𝑎 =
∑︁
𝑖∈𝐼

1𝑋𝑖 · (𝑓𝑖 + 𝑎𝑖) on 𝑝𝑋 (supp𝜋)

for some 𝑎 ∈ R |𝐼 | , where representatives 𝑓𝑖 ∈ 𝑆𝑐𝑋𝑖
(𝜇𝑋𝑖 , 𝜈𝑋𝑖 ) of the 𝑋𝑖-restricted

problems have been fixed. Not each choice of 𝑎 leads to a viable optimal solution
𝑓𝑎 ∈ 𝑆𝑐 (𝜇, 𝜈), however. Due to the continuity of 𝑓 𝑐𝑎 , one can show that a value 𝑎𝑖1
uniquely determines 𝑎𝑖2 for 𝑖1, 𝑖2 ∈ 𝐼 if the masses transported from 𝑋𝑖1 and 𝑋𝑖2 to 𝑌
touch one another, meaning that their topological closures have a common contact
point (see Section 5 for formal definitions). The non-degeneracy of 𝜋 then ensures the
existence of suitable contact points such that fixing 𝑎𝑖0 for an arbitrary 𝑖0 ∈ 𝐼 actually
determines the whole vector 𝑎, which in consequence implies dual uniqueness. The
full proof is documented in Section 5, while the following paragraphs discuss the
assumptions in Theorem 1.

Degeneracy. The uniqueness of Kantorovich potentials can break down if the
condition of non-degeneracy of 𝜋 is not satisfied. For a simple family of examples,
consider non-negative continuous and symmetric costs with 𝑐 (𝑥, 𝑥) = 0 for 𝑥 ∈ 𝑋 =
𝑌 in a setting where 𝜇 = 𝜈 with supp(𝜇) = 𝑋1 ∪𝑋2. If the components 𝑋1 and 𝑋2 are
strictly cost separated,

Δ = inf
𝑥1∈𝑋1,𝑥2∈𝑋2

𝑐 (𝑥1, 𝑥2) > 0, (11)

each optimal plan 𝜋 satisfies 𝜋 (𝑋1 × 𝑋2) = 𝜋 (𝑋2 × 𝑋1) = 0. In particular, no mass is
transported between 𝑋1 and 𝑋2. In this situation, any pair 𝑎, 𝑏 ∈ R with |𝑎 − 𝑏 | ≤ Δ
defines a Kantorovich potential 𝑓𝑎,𝑏 via 𝑓𝑎,𝑏 = 𝑎 on 𝑋1 and 𝑓𝑎,𝑏 = 𝑏 on 𝑋2. A proof of
this observation is provided in Appendix A, Lemma 11.

Continuity. Even in the presence of non-degenerate optimal transport plans,
the uniqueness of Kantorovich potentials can in principle still break down due to
discontinuities of the cost function or the potentials. For instance, the construction of
non-unique potentials 𝑓𝑎,𝑏 in Lemma 11 under a Δ-separation between components
of a disconnected support can easily be carried over to cost functions that exhibit a
jump by Δ between two disjoint subsets of supp 𝜇, even if the support is connected.

For continuous costs, we discussed in Section 2 that the 𝑐-transformed Kantorovich
potentials 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) are always continuous when the family {𝑐 (𝑥, ·) | 𝑥 ∈ 𝑋 } of
partially evaluated costs is (locally) equicontinuous, or when the space 𝑋 is compact
(Lemma 2). We also note that conditions 1 and 2 in Theorem 1 can actually be relaxed,
and it would in both cases suffice to require continuity only at the finite number
of contact points (implicitly) constructed in the proof. According to Lemma 2, this
is for example guaranteed if 𝜋 induces regularity at each contact point 𝑦 ∈ 𝑌 . In
settings with 𝜈 (𝜕 supp𝜈) = 0, we can sometimes even drop the additional continuity
assumption altogether: if the functions 𝑓 𝑐 are known to be continuous in the interior
of supp𝜈 , which is true for a wide range of superlinear costs (see Section 4, which in
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particular covers Example 1) or costs with uniformly bounded second derivatives
(see Example 2), then we can apply Lemma 3 to transition to the restricted problem
with 𝑋̃ = 𝑋 and 𝑌̃ = int(supp𝜈) ⊂ 𝑌 . This reformulation, where one only has to
heed possible changes in decomposition (9) when replacing𝑌 by 𝑌̃ (which may affect
the degeneracy of optimal transport plans), makes sure that suitable contact points
𝑦 can always be found in the interior of supp𝜈 .

Countable index sets. Due to topological complications in the proof, the decom-
position of supp 𝜇 in Theorem 1 is restricted to a finite index set 𝐼 . Indeed, if mass of
an infinite number of components 𝑋𝑖 is transported to a single component 𝑌𝑗 , our
proof technique cannot be used to establish the existence of suitable contact points.
Two settings where this issue can easily be reconciled is when 1) all sets 𝑌𝑗 receive
mass from finitely many 𝑋𝑖 only, or when 2) each 𝑌𝑖 is a single point.

Corollary 1: Under either of the following additional assumptions, Theorem 1
remains valid for countable index sets 𝐼 , where uniqueness of the 𝑋𝑖-restricted
Kantorovich potentials is only required for 𝑖 ∈ 𝐼 with 𝜇 (𝑋𝑖) > 0.

1) Condition 2 in Theorem 1 holds and
��{𝑖 ∈ 𝐼 | 𝜋 (𝑋𝑖 × 𝑌𝑗 ) > 0}

�� < ∞ for all
𝑗 ∈ 𝐽 .

2) 𝑌𝑗 consists of a single point for each 𝑗 ∈ 𝐽 with 𝜈 (𝑌𝑗 ) > 0 (then condition 2
in Theorem 1 is always satisfied).

In the special case of statement 2 of Corollary 1 where all components𝑋𝑖 are also sin-
gle points, we conclude that non-degeneracy of the vectors (𝜇 (𝑋𝑖))𝑖∈𝐼 and (𝜈 (𝑌𝑗 )) 𝑗∈ 𝐽
as in Lemma 6 is already sufficient to imply uniqueness of Kantorovich potentials
without further assumptions. This criterion has long been established for finite trans-
portation problems via the theory of finite linear programming (Klee and Witzgall
1968; Hung et al. 1986), but we are not aware of a comparable result that covers
probability measures with countable support. In particular, we note that Corollary 1
yields sufficient conditions for Gaussian distributional limits in the countable discrete
settings studied by Tameling et al. 2019.

Connected support

One piece that is still missing to fully utilize Theorem 1 is a set of criteria for the
uniqueness of Kantorovich potentials on the individual connected components of
the support. In Euclidean settings, results in this regard are readily available, see for
example Proposition 7.18 in Santambrogio 2015 (compactly supported measures) or
more recently Appendix B of Bernton et al. 2021 and Corollary 2.7 of del Barrio et al.
2021b (possibly non-compactly supported measures). The necessary techniques for
these statements have long been established (Brenier 1991; Gangbo and McCann
1996) and have been extended to the more general setting of manifolds (McCann
2001; Villani 2008; Fathi and Figalli 2010; Figalli and Gigli 2011). In the following, we
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briefly revisit the underlying arguments and spell out a general uniqueness result
together with some of its consequences for probability measures with connected
support. To our knowledge, no formal statement with comparable scope has yet
been assembled in this form, even though the involved arguments are well known
(see for example Villani 2008, Remark 10.30).

Let 𝜋 ∈ C (𝜇, 𝜈) denote an optimal transport plan under a continuous cost function 𝑐 .
Recalling the properties of the 𝑐-transform, any Kantorovich potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈)
satisfies 𝑓 (𝑥) + 𝑓 𝑐 (𝑦) ≤ 𝑐 (𝑥,𝑦) for all (𝑥,𝑦) ∈ 𝑋 × 𝑌 with equality if (𝑥,𝑦) ∈ 𝜕𝑐 𝑓 .
Fixing (𝑥,𝑦) ∈ supp𝜋 ⊂ 𝜕𝑐 𝑓 , this implies

𝑥 ′ ↦→ 𝑓 (𝑥 ′) − 𝑐 (𝑥 ′, 𝑦) is minimal at 𝑥 ′ = 𝑥 .

Therefore, if 𝑋 is a smooth manifold (without boundary) and the functions 𝑓 as well
as 𝑥 ′ ↦→ 𝑐 (𝑥 ′, 𝑦) are both differentiable at 𝑥 , it has to hold that

∇𝑓 (𝑥) = ∇𝑥𝑐 (𝑥,𝑦), (12)

by which we mean equality of the respective gradients in charts of 𝑋 . This relation
determines the derivatives of Kantorovich potentials in the set 𝑝𝑋 (Γ) ⊂ 𝑋 , where
we define

Γ =
{(𝑥,𝑦) ∈ supp𝜋

��∇𝑥𝑐 (𝑥,𝑦) exists
}
. (13)

In order to conclude uniqueness of 𝑓 up to constants from characterization (12), we
will make use of the following auxiliary result. A proof is provided in Appendix A.

Lemma 7: Let 𝑀 ⊂ 𝑋 be an open and connected subset of a smooth manifold
𝑋 and let 𝑓1, 𝑓2 : 𝑀 → R be locally Lipschitz. If ∇𝑓1 = ∇𝑓2 on a set that has full
Lebesgue measure in charts of 𝑀 , then 𝑓1 − 𝑓2 is constant on 𝑀 .

At this point, several considerations have to be taken into account.

1. The region 𝑀 ⊂ 𝑋 chosen for Lemma 7 should have full 𝜇-measure, or it
should at least be possible to uniquely recover the function 𝑓 from 𝑓 |𝑀 on a
set with full 𝜇-measure.

2. The Kantorovich potential 𝑓 must be locally Lipschitz on 𝑀 in order for
Lemma 7 to be applicable. This also implies the existence of ∇𝑓 in a set of full
Lebesgue measure in each chart (via Rademacher’s theorem).

3. The cost function has to be sufficiently smooth in its first argument along the
transport. More precisely, 𝑝𝑋 (Γ) must have full Lebesgue measure in charts
of 𝑀 . Otherwise, relation (12) would not determine the gradients of 𝑓 suitably
for application of Lemma 7.

One immediate conclusion of the first point is the necessity of the condition cl(𝑀) =
supp 𝜇, without which some mass would be out of reach from the region𝑀 controlled
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by the gradients. The second and third points stress that the cost function should
be locally Lipschitz in its first argument, in a way that is inherited to 𝑆𝑐 . In order
to choose 𝑀 properly for a general uniqueness statement, we recall the notion of
induced regularity defined in Section 2 and set

Σ =
{
𝑥 ∈ supp 𝜇

��𝜋 does not induce regularity at 𝑥
}
. (14)

We know that this set is closed (see Lemma 10 in Appendix A), that supp 𝜇 \ Σ ⊂
𝑝𝑋 (supp𝜋), and that Σ contains all points of discontinuity of 𝑓 |supp 𝜇 for any 𝑓 ∈
𝑆𝑐 (𝜇, 𝜈) (see Lemma 2).

Theorem 2 (Uniqueness under connected support): Let 𝑋 be a smooth manifold,
𝑌 be Polish, 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+ continuous such that
𝑐 (·, 𝑦) is locally Lipschitz locally uniformly in 𝑦 ∈ 𝑌 with 𝑇𝑐 (𝜇, 𝜈) < ∞. Let Γ
and Σ be as in (13) and (14) for an optimal 𝜋 ∈ C (𝜇, 𝜈). If

1) 𝜇 (supp 𝜇 \ Σ) = 1,

2) 𝑀 = int(supp 𝜇 \ Σ) is connected with cl(𝑀) = supp 𝜇,

3) 𝑝𝑋 (Γ) has full Lebesgue measure in charts of 𝑀 ,
then the Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) are almost surely unique.

Remark 3 (Uniqueness of optimal transport maps): Solving equation (12) for
𝑦 ∈ 𝑌 is a standard method to construct and study optimal transport maps
𝑡 : 𝑋 → 𝑌 , see Villani 2008, Chapter 10. In this context, a natural requirement
is the injectivity of ∇𝑥𝑐 (𝑥, ·), denoted as the twist condition, which also implies
that an optimal map is uniquely defined wherever (12) holds. To make sure
that 𝑡 is determined by (12) 𝜇-almost surely, one usually imposes some form
of regularity on 𝑐 (such as local semiconcavity) and requires the probability
measure 𝜇 to assign no mass to sets on which Kantorovich potentials may be
non-differentiable (e.g., by assuming a Lebesgue density). Theorem 2 helps
clarify to which extent similar assumptions on 𝑐 and 𝜇 are necessary if we are
only interested in uniqueness of the Kantorovich potentials, and not in the
uniqueness of optimal maps.

Proof. According to Lemma 2, each point of 𝑀 admits an open neighborhood 𝑈
and a compactum 𝐾 ⊂ 𝑌 such that 𝑓 (𝑥) = inf𝑦∈𝐾 𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) for all 𝑥 ∈ 𝑈 and
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). Since 𝑐 (·, 𝑦) is locally Lipschitz uniformly in 𝑦 ∈ 𝐾 by assumption,
we conclude that 𝑓 is locally Lipschitz on 𝑀 . Now, let 𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈) and let 𝐴
be the subset of 𝑀 where both functions are differentiable. Set 𝐵 = 𝐴 ∩ 𝑝𝑋 (Γ),
which is the set where the gradients of 𝑓1 and 𝑓2 have to coincide via (12). Due to
Rademacher’s Theorem (see, e.g., Federer 2014, Theorem 3.1.6) and assumption 3,
the set 𝐵 has full Lebesgue measure in each chart of 𝑀 . We can thus apply Lemma 7
under assumption 2 and conclude that 𝑓1 = 𝑓2 (up to a constant) on 𝑀 . Since any
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is continuous at each point in supp 𝜇 \ Σ ⊂ cl(𝑀) via Lemma 2, the
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function 𝑓 is uniquely determined on supp 𝜇 \ Σ by its values on 𝑀 . This shows
that 𝑓1 = 𝑓2 (up to a constant) on supp 𝜇 \ Σ, which is a set of full 𝜇-measure by
condition 1. □

Without further context, the assumptions in this theorem may seem to be fairly
opaque, as they rely on specific details of an optimal transport plan 𝜋 , like the
𝜇-measure of Σ and topological properties of supp 𝜇 \ Σ. In more specialized settings,
however, the requirements of Theorem 2 can often be checked easily. As a first
example, we assume 𝑌 to be compact. If 𝑐 is differentiable in its first component,
then all assumptions of Theorem 2 that depend on 𝜋 are automatically satisfied and
only conditions on the topology of supp 𝜇 remain.

Corollary 2: Let 𝑋 be a smooth manifold, 𝑌 be compact Polish, 𝜇 ∈ P (𝑋 ),
𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+ continuous such that 𝑐 (·, 𝑦) is differentiable and
locally Lipschitz uniformly in 𝑦 ∈ 𝑌 with 𝑇𝑐 (𝜇, 𝜈) < ∞. If 𝑀 = int(supp 𝜇) is
connected and cl(𝑀) = supp 𝜇, then the Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) are
almost surely unique.

Proof. For compact 𝑌 , it holds by definition that Σ = ∅. Thus, conditions 1 and 2 of
Theorem 2 are satisfied. Condition 3 is ensured since 𝑐 is differentiable in the first
component and we thus find Γ = 𝑝𝑋 (supp𝜋) = supp 𝜇 (since the projection 𝑝𝑋 is a
closed map for compact 𝑌 ). □

If𝑌 is not compact, uniqueness statements based on Theorem 2 hinge on the behavior
of the cost function outside of𝑌 -compacta. The simplest setting of this kind is the one
where 𝑐 (·, 𝑦) is (locally) Lipschitz uniformly in𝑦 ∈ 𝑌 . Then, a statement analogous to
Corollary 2 is possible, where the only obstacle is to assert condition 3 of Theorem 2.
To provide a convenient sufficient criterion to this end, we work with the assumption
that

𝜆 is absolutely continuous w.r.t. 𝜑#𝜇 on range𝜑 (15)

for any chart 𝜑 of 𝑀 = int(supp 𝜇), where 𝜑#𝜇 B 𝜇 ◦ 𝜑−1 corresponds to the
push-forward measure of 𝜇 under 𝜑 and 𝜆 denotes the Lebesgue measure. Loosely
speaking, this property states that the mass of 𝜇 can be placed quite arbitrarily on
supp 𝜇, as long as it contains a continuous component everywhere on its support.
As an example where condition (15) fails for 𝑋 = R, consider a measure 𝜇 that is
concentrated on the rational numbers Q but where supp 𝜇 contains an open set.

Corollary 3: Let 𝑋 be a smooth manifold, 𝑌 Polish, 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and
𝑐 : 𝑋 × 𝑌 → R+ continuous such that 𝑐 (·, 𝑦) is differentiable and locally Lipschitz
uniformly in 𝑦 ∈ 𝑌 with 𝑇𝑐 (𝜇, 𝜈) < ∞. If 𝑀 = int(supp 𝜇) is connected such
that cl(𝑀) = supp 𝜇 and condition (15) holds, then the Kantorovich potentials
𝑆𝑐 (𝜇, 𝜈) are almost surely unique.
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Proof. Since 𝑐 (·, 𝑦) is assumed to be locally Lipschitz uniformly in 𝑦 ∈ 𝑌 , every
Kantorovich potential 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) is locally Lipschitz on supp 𝜇. Looking at the
proof of Theorem 2, we furthermore note that the set Σ can actually be replaced by
any other subset of 𝑋 that contains all points at which some Kantorovich potential
fails to be locally Lipschitz. Therefore, we may functionally assume Σ = ∅ in
conditions 1 and 2 of Theorem 2, and only have to show that condition 3 holds with
𝑀 = int(supp 𝜇). Since Γ = supp𝜋 due to differentiability of 𝑐 , we find a Borel set
𝐴 ⊂ 𝑝𝑋 (Γ) ⊂ 𝑋 that satisfies 𝜇 (𝐴) = 1 (Lemma 9). Hence, range𝜑 \𝜑 (𝐴∩domain𝜑)
is a 𝜑#𝜇-null set for any chart 𝜑 of𝑀 . Due to condition (15), it is also a Lebesgue-null
set and we conclude that 𝑝𝑋 (Γ) has full Lebesgue measure in charts of 𝑀 . □

Remark 4 (local semiconcavity): In Example 2, we pointed out that Kantorovich
potentials can inherit semiconcavity from the cost function. In fact, it is possible
to formulate Corollary 3 for costs where 𝑐 (·, 𝑦) is locally semiconcave (instead
of locally Lipschitz) uniformly in 𝑦 ∈ 𝑌 , in the sense of equation (2). This
alternative formulation, whose proof is documented in Appendix A, can be put
to use in settings where Corollary 3 might not apply directly. For example, let
𝑋 and 𝑌 be two (possibly distinct) affine subspaces of R𝑑 equipped with an atlas
of linear charts. Then the squared Euclidean cost function 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2

is differentiable and locally semiconcave (but not necessarily locally Lipschitz)
in 𝑥 uniformly in 𝑦. Consequently, the Kantorovich potentials in this setting
are unique under the mild conditions on 𝜇 imposed by Corollary 3. If supp 𝜇
and supp𝜈 are separated sets, the same holds for Euclidean cost functions
𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥𝑝 with 0 < 𝑝 ≤ 2.

One question largely unaddressed by the previous results is how Theorem 2 fares
in the general setting that 𝑐 (·, 𝑦) is actually no more than locally Lipschitz locally
uniformly in 𝑦 ∈ 𝑌 , which is typically the case for rapidly growing cost functions.
In the next section, we show that such cost functions often confine the set Σ to the
boundary of supp 𝜇, which makes the application of Theorem 2 particularly simple:
condition 1 collapses into 𝜇 (𝜕 supp 𝜇) = 0 and condition 2 only relies on the topology
of supp 𝜇. Furthermore, condition 3 is always satisfied when 𝑐 is differentiable in the
first component, since then Γ = supp𝜋 and 𝑀 ⊂ supp 𝜇 \ Σ ⊂ 𝑝𝑋 (Γ) via Lemma 2.

4 Interior regularity

We now investigate conditions on the cost function under which each optimal
transport plan 𝜋 induces regularity in the interior of the support of 𝜇. In other words,
we search for criteria that ensure

Σ ⊂ 𝜕 supp 𝜇, (16)

where Σ ⊂ supp 𝜇 was defined in (14) and denotes the set of points where induced
regularity fails. This property is of interest for both Theorem 1 (applied to 𝜈 in place
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of 𝜇) and Theorem 2, as it guarantees continuity of Kantorovich potentials in the
interior of the support. Instead of working with definition (6) of induced regularity
directly, we will show the slightly stronger result that only boundary points can
be “sent towards infinity”, which implies (16). To achieve this, the cost function
has to behave in a certain way if 𝑦 leaves all compacta in 𝑌 . For convenience, we
write 𝑦𝑛 → ∞ to denote that each compact set in 𝑌 contains only a finite number of
elements of the sequence (𝑦𝑛)𝑛∈N ⊂ 𝑌 . Despite the suggestive notation, we want to
point out that 𝑦𝑛 → ∞ does not necessarily imply that 𝑦𝑛 leaves all bounded sets if
𝑌 is not a proper metric space. We also define the region of dominated cost

𝐶 (𝑥,𝑦) = {
𝑥 ′ ∈ 𝑋

�� 𝑐 (𝑥 ′, 𝑦) ≤ 𝑐 (𝑥,𝑦)} (17)

for any (𝑥,𝑦) ∈ 𝑋 × 𝑌 . In Euclidean settings, for example, under costs 𝑐 (𝑥,𝑦) =
∥𝑥 − 𝑦∥𝑝 for 𝑥,𝑦 ∈ R𝑑 and 𝑝 ≥ 1, the set 𝐶 (𝑥,𝑦) is the closed ball centered at 𝑦 with
radius ∥𝑥 − 𝑦∥. As we will see next, the geometry of 𝐶 (𝑥,𝑦) as 𝑦 → ∞ shapes the
region where Kantorovich potentials do not attain finite values.

Lemma 8 (Interior regularity): Let 𝑋 and 𝑌 be Polish, 𝑐 : 𝑋 × 𝑌 → R+ be contin-
uous, and 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ) with 𝑇𝑐 (𝜇, 𝜈) < ∞. Let 𝜋 ∈ C (𝜇, 𝜈) be optimal
and 𝑥 ∈ supp 𝜇 such that there exists (𝑥𝑛, 𝑦𝑛)𝑛∈N ⊂ supp𝜋 with 𝑥𝑛 → 𝑥 and
𝑦𝑛 → ∞ as 𝑛 → ∞. If

1) there is (𝑥𝑛)𝑛 ⊂ 𝑋 converging to 𝑥 and lim𝑛→∞ 𝑐 (𝑥𝑛, 𝑦𝑛) −𝑐 (𝑥𝑛, 𝑦𝑛) = −∞,
then all 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) assume the value −∞ on 𝐶∞ = lim sup𝑛→∞𝐶 (𝑥𝑛, 𝑦𝑛). If
additionally

2) 𝐶∞ contains an open subset𝑈 that touches 𝑥 , meaning 𝑥 ∈ cl(𝑈 ),
then 𝑥 ∈ 𝜕 supp 𝜇.

Proof. Let 𝑥 ′ ∈ 𝐶∞. After a suitable subsequence has been taken, we may assume
that 𝑥 ′ ∈ 𝐶 (𝑥𝑛, 𝑦𝑛) for all 𝑛 ∈ N. For 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈), note 𝑓 (𝑥𝑛) = 𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑓 𝑐 (𝑦𝑛)
and observe

𝑓 (𝑥 ′) ≤ 𝑐 (𝑥 ′, 𝑦𝑛) − 𝑓 𝑐 (𝑦𝑛)
≤ 𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑓 𝑐 (𝑦𝑛)
= 𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑐 (𝑥𝑛, 𝑦𝑛) + 𝑓 (𝑥𝑛) → −∞

due to condition 1 and the upper-semicontinuity of 𝑓 , which implies sup𝑛∈N 𝑓 (𝑥𝑛) <
∞. This shows the first claim. To show the second claim, we lead 𝑥 ∈ int(supp 𝜇) ∩
cl(𝑈 ) to a contradiction: by density of 𝑝𝑋 (supp𝜋) in supp 𝜇, such an 𝑥 would
imply 𝑝𝑋 (supp𝜋) ∩ 𝑈 ≠ ∅. Thus, there would exist (𝑥 ′, 𝑦′) ∈ supp𝜋 ⊂ 𝜕𝑐 𝑓 with
−∞ = 𝑓 (𝑥 ′) = 𝑐 (𝑥 ′, 𝑦′) − 𝑓 𝑐 (𝑦′) > −∞. □

The assumptions in Lemma 8 deserve some more context and discussion. First, note
that any 𝑥 ∈ Σ admits a suitable sequence (𝑥𝑛, 𝑦𝑛)𝑛 ⊂ supp𝜋 with 𝑥𝑛 → 𝑥 and
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Figure 3: Asymptotic regions of dominated cost. Both figures depict the sets 𝐶 (𝑥𝑛, 𝑦𝑛) as
defined in (17) for a sequence (𝑥𝑛, 𝑦𝑛)𝑛∈N with 𝑥𝑛 → 𝑥 and 𝑦𝑛 → ∞ as 𝑛 → ∞, where
𝑢 = lim𝑛→∞ (𝑦𝑛 − 𝑥𝑛)/∥𝑦𝑛 − 𝑥𝑛 ∥. In sketch (a), the cost function 𝑐 (𝑥,𝑦) = ℎ (∥𝑥 −𝑦∥) for the
Euclidean norm and some strictly increasing ℎ is chosen, while sketch (b) shows a similar
setting for costs based on the 𝑙1 norm. In both examples, condition 1 of Lemma 8 is always
satisfied if ℎ is differentiable and ℎ′ (𝑎) → ∞ as 𝑎 → ∞ (see Theorem 3). Therefore, all
Kantorovich potentials assume the value −∞ on the region 𝐶∞ if mass is transported from 𝑥
towards infinity in direction 𝑢. For illustration, (b) shows the rather exceptional case where
𝐶∞ is not a half space, which (in this example) can only happen if 𝑢 is aligned with one
of the coordinate axes. More precisely, the depicted shape is only possible if the vertical
coordinates of 𝑦𝑛 converge to the vertical coordinate of the apex of 𝐶∞.

𝑦 → ∞, meaning that Lemma 8 can be applied to all points at which 𝜋 fails to induce
regularity. This is a direct implication of definition (6). Furthermore, we observe that
conditions 1 and 2 in the presented formulation of Lemma 8 rely not only on the
cost function 𝑐 , but also on the support of 𝜋 (via the points 𝑥𝑛 and 𝑦𝑛). Typically,
however, these two conditions can be shown to hold for any sequences 𝑥𝑛 → 𝑥 ∈ 𝑋
and 𝑦𝑛 → ∞, which makes them an assumption on the cost function only. In fact,
condition 1 is implied by property (H∞)2 in Villani 2008, Chapter 10, which can be
viewed as a condition on the growth behavior of the cost function as 𝑦𝑛 → ∞.

Remark 5: Lemma 8 shows that optimal transport towards infinity places
conditions on the set {𝑓 = −∞} ⊂ 𝑋 for 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈), at least for rapidly
growing cost functions. In a certain sense, this relation can be reversed. If
𝑓 (𝑥) = inf𝑦∈𝑌 𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) = −∞ for any 𝑥 ∈ 𝑋 (not necessarily in supp 𝜇), it
follows that there exists (𝑦𝑛)𝑛∈N with 𝑐 (𝑥,𝑦𝑛) − 𝑓 𝑐 (𝑦𝑛) → −∞ as 𝑛 → ∞.
Due to the upper-semicontinuity of 𝑓 𝑐 , this implies 𝑦𝑛 → ∞. Moreover,
it is straightforward to see that 𝑓 has to assume the value −∞ on the set
𝐶∞ = lim sup𝑛→∞𝐶 (𝑥,𝑦𝑛). Therefore, if condition 2 of Lemma 8 holds, this set
has to be disjoint from the interior of supp 𝜇.

Example 4: Let 𝑋 = 𝑌 = R𝑑 with squared Euclidean costs 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2.
Given any sequence 𝑥𝑛 → 𝑥 ∈ R𝑑 and 𝑦𝑛 → ∞, the choice 𝑥𝑛 = 𝑥𝑛 + (𝑦𝑛 −
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𝑥𝑛)/∥𝑦𝑛 − 𝑥𝑛 ∥3/2 provides a perturbation of 𝑥𝑛 that satisfies condition 1 in
Lemma 8. To see that condition 2 is also satisfied, note that the asymptotic set
𝐶∞ will contain an open half-space anchored at the point 𝑥 (see Figure 3a for an
illustration). The (inwards pointing) normal direction is given by an (arbitrary)
limit point 𝑢 of the directions 𝑢𝑛 = (𝑦𝑛 − 𝑥𝑛)/∥𝑦𝑛 − 𝑥𝑛 ∥. Such a limit exists,
since the unit sphere in R𝑑 is compact. Therefore, Lemma 8 lets us conclude
(16) and provides additional insights about the set {𝑓 = −∞} and its relation to
the direction 𝑢 of transport towards infinity. Indeed, the fact that 𝐶∞ always
contains half-spaces (which is also true for all other 𝑙𝑝 costs for 𝑝 > 1, but not
necessarily for 𝑝 = 1, see Figure 3b) implies that the interior of the convex hull
of supp 𝜇 is contained in the set {𝑓 < ∞} (see Remark 5).

We stress that the reasoning in this example can easily be extended to other costs on
R𝑑 and even non-Euclidean spaces. For instance, Gangbo and McCann 1996 work
with cost functions of the form 𝑐 (𝑥,𝑦) = 𝑔(𝑥−𝑦) onR𝑑 for a convex and superlinear𝑔,
which automatically implies condition 1 of Lemma 8. They also consider a geometric
monotonicity condition on 𝑔, which ensures that, for 𝑦 large, the sets𝐶 (𝑥,𝑦) contain
broad cones with apex 𝑥 (implying condition 2). Similarly, the validity of (16) can be
exposed in geodesic spaces as well.

Theorem 3 (Interior regularity in geodesic spaces): Let 𝑋 = 𝑌 be a locally
compact complete geodesic space with metric 𝑑 and let 𝑐 : 𝑋 2 → R+ be
of the form 𝑐 (𝑥,𝑦) = ℎ

(
𝑑 (𝑥,𝑦)) , where ℎ : R+ → R+ is differentiable with

lim𝑎→∞ ℎ′(𝑎) = ∞. Then
Σ ⊂ 𝜕 supp 𝜇

for any 𝜇, 𝜈 ∈ P (𝑋 ) with𝑇𝑐 (𝜇, 𝜈) < ∞, where Σ is defined in (14) for 𝜋 ∈ C (𝜇, 𝜈)
optimal.

Proof. Let 𝑥𝑛 → 𝑥 ∈ 𝑋 and 𝑦𝑛 → ∞. Since 𝑋 is a proper metric space (e.g., by the
Hopf-Rinow theorem as stated in Bridson and Haefliger 2013, Proposition 3.7), each
closed ball in 𝑋 is compact. This implies 𝑟𝑛 = 𝑑 (𝑥𝑛, 𝑦𝑛) → ∞. Next, let 𝑔 : R+ → R
be a function that satisfies 𝑔 ≤ ℎ′ and 𝑔(𝑎) → ∞ as 𝑎 → ∞. For example, one can
pick 𝑔(𝑎) = inf𝑏≥𝑎 ℎ′(𝑏). We also let 𝛾𝑥 ′𝑥 ′′ : [0, 𝑑 (𝑥 ′, 𝑥 ′′)] → 𝑋 denote a geodesic
connecting 𝑥 ′ to 𝑥 ′′ in 𝑋 .

To show condition 1 of Lemma 8, let 𝑥𝑛 = 𝛾𝑥𝑛𝑦𝑛 (𝑡𝑛) for 0 < 𝑡𝑛 < 1, meaning that 𝑥𝑛
is pushed towards 𝑦𝑛 along a geodesic to generate perturbations 𝑥𝑛 . The amount 𝑡𝑛
by which 𝑥𝑛 is pushed is chosen to satisfy 𝑡𝑛 → 0 and 𝑡𝑛 𝑔(𝑟𝑛 − 1) → ∞ as 𝑛 → ∞.
Since 𝑑 (𝑥, 𝑥𝑛) ≤ 𝑑 (𝑥, 𝑥𝑛) + 𝑡𝑛 , the points 𝑥𝑛 indeed converge to 𝑥 . We also note that
𝑑 (𝑥𝑛, 𝑦𝑛) = 𝑟𝑛 − 𝑡𝑛 and observe, as 𝑛 → ∞,

𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑐 (𝑥𝑛, 𝑦𝑛) = ℎ(𝑟𝑛 − 𝑡𝑛) − ℎ(𝑟𝑛) ≤ −𝑡𝑛 𝑔(𝑟𝑛 − 1) → −∞.

To verify condition 2, let 𝑢𝑛 = 𝛾𝑥̃𝑛𝑦𝑛 (1) and pick a limit point 𝑢 ∈ 𝑋 of this sequence.
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Such a point exists, since the points 𝑢𝑛 are bounded and 𝑋 is proper. By selecting
a suitable subsequence, we may assume 𝑢𝑛 → 𝑢. Let 𝑈 be the open unit ball at
𝑢. We will show 𝑈 ⊂ lim sup𝐶 (𝑥𝑛, 𝑦𝑛) and 𝑥 ∈ cl(𝑈 ). The latter is evident, since
𝑑 (𝑥,𝑢) ≤ 𝑑 (𝑥, 𝑥𝑛) +𝑑 (𝑥𝑛, 𝑢𝑛) +𝑑 (𝑢𝑛, 𝑢) → 1 as 𝑛 → ∞. To see the former, let 𝑥 ′ ∈ 𝑈
and note that 𝑑 (𝑥 ′, 𝑢𝑛) < 1 = 𝑑 (𝑥𝑛, 𝑢𝑛) for large 𝑛. Then

𝑑 (𝑥 ′, 𝑦𝑛) ≤ 𝑑 (𝑥 ′, 𝑢𝑛) + 𝑑 (𝑢𝑛, 𝑦𝑛) < 𝑑 (𝑥𝑛, 𝑢𝑛) + 𝑑 (𝑢𝑛, 𝑦𝑛) = 𝑑 (𝑥𝑛, 𝑦𝑛) .
For 𝑛 large enough such that ℎ can be assumed to be increasing, this implies
ℎ
(
𝑑 (𝑥 ′, 𝑦𝑛)

) ≤ ℎ (𝑑 (𝑥𝑛, 𝑦𝑛)) and thus 𝑥 ′ ∈ 𝐶 (𝑥𝑛, 𝑦𝑛). □

The proof above shows that the asymptotic region 𝐶∞ in Lemma 8 at the very least
contains the unit ball touching 𝑥 centered at a suitable 𝑢 ∈ 𝑋 . Of course, this
approach can also be extended to balls of arbitrary radius 𝑟 > 1, which provides
additional insight about the geometry of 𝐶∞. Like in Example 4, a central argument
is the compactness of closed balls, which guarantees the existence of asymptotic
directions 𝑢 of transport towards infinity.

5 Proofs of the main results

In the following, we formulate the proofs of the uniqueness statements for Kan-
torovich potentials under disconnected support, Theorem 1 and Corollary 1. For
reasons of exposition, we start with Theorem 1 under continuity assumption 2, before
we document the adjustments necessary to prove the theorem under the alternative
assumption 1, which requires a slightly different strategy. Afterwards, we provide
the arguments to extend Theorem 1 to countable 𝐼 as claimed in Corollary 1. For
notational convenience, we denote the topological closure of a set 𝐴 by 𝐴 instead of
cl(𝐴) in this section.

Proof of Theorem 1 under assumption 2. Recall decomposition (9) of the support of
𝜇 and 𝜈 into connected components (𝑋𝑖)𝑖∈𝐼 and (𝑌𝑗 ) 𝑗∈ 𝐽 for finite 𝐼 and countable
𝐽 . Since we consider the second condition of Theorem 1 first, we can assume for
each 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) and 𝑗 ∈ 𝐽 with 𝜈 (𝑌𝑗 ) > 0 that 𝑓 𝑐 |𝑌𝑗 is continuous and that
the set 𝑌̃𝑗 = supp𝜈 |𝑌𝑗 is connected. As 𝐼 is finite, each 𝑋𝑖 is open in supp 𝜇 and
consequently satisfies 𝜇 (𝑋𝑖) > 0. Therefore, the 𝑋𝑖-restricted optimal transport
problem is well defined and we can fix a representative 𝑓𝑖 ∈ 𝑆𝑐𝑋𝑖

(𝜇𝑋𝑖 , 𝜈𝑋𝑖 ) for each
𝑖 ∈ 𝐼 . The uniqueness assumption in Theorem 1 together with Lemma 5 implies
that 𝑓𝑖 is uniquely determined on 𝑝𝑋 (supp𝜋) ∩ 𝑋𝑖 (up to an additive offset), so
its actual choice does not matter to us. Applying Lemma 4, we conclude that each
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) can be assigned a unique offset vector 𝑎 = (𝑎𝑖)𝑖∈𝐼 ∈ R |𝐼 | with components
𝑎𝑖 = 𝑓 (𝑥𝑖) − 𝑓𝑖 (𝑥𝑖), where the point 𝑥𝑖 ∈ 𝑝𝑋 (supp𝜋) ∩ 𝑋𝑖 can be chosen arbitrarily.
We suggestively write 𝑓 = 𝑓𝑎 if 𝑓 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈) has offset vector 𝑎 and emphasize that
the equality

𝑓𝑎 =
∑︁
𝑖∈𝐼

1𝑋𝑖 · (𝑓𝑖 + 𝑎𝑖) (18)
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holds on 𝑝𝑋 (supp𝜋). Clearly, two Kantorovich potentials in 𝑆𝑐 (𝜇, 𝜈) have identical
offset vectors if and only if they coincide on 𝑝𝑋 (supp𝜋). Therefore, almost sure
uniqueness of 𝑆𝑐 (𝜇, 𝜈) follows if we can show that there is only a single feasible offset
vector 𝑎 (up to an additive constant that is the same in each component). To formalize
this idea, we divide the support of 𝜋 into closed disjoint pieces Γ𝑖 𝑗 = supp𝜋∩(𝑋𝑖×𝑌𝑗 ),
and we say that two indices 𝑖1 and 𝑖2 in 𝐼 are linked if there exists a contact index
𝑗 ∈ 𝐽 with 𝜈 (𝑌𝑗 ) > 0 and a contact point 𝑦 ∈ 𝑌𝑗 such that

𝑦 ∈ 𝑝𝑌 (Γ𝑖1 𝑗 ) ∩ 𝑝𝑌 (Γ𝑖2 𝑗 ) . (19)

Intuitively, two indices in 𝐼 are linked if the masses transported from 𝑋𝑖1 and 𝑋𝑖2 to
𝑌𝑗 touch one another at a common point 𝑦 ∈ 𝑌𝑗 . In a first step, we establish that

𝑖1 and 𝑖2 are linked implies 𝑎𝑖1 − 𝑎𝑖2 is fixed

under the adopted continuity assumptions on 𝑆𝑐𝑐 (𝜇, 𝜈), where the right hand side
indicates that the difference 𝑎𝑖1 − 𝑎𝑖2 has to be the same for all feasible offset vectors.
In a second step, we then show that non-degeneracy of the optimal plan 𝜋 guarantees
that there are enough contact points to connect all indices in 𝐼 , which will conclude
the proof.

Step 1. Let 𝑖1 and 𝑖2 be indices in 𝐼 that are linked through a contact point 𝑦 ∈ 𝑌𝑗
for 𝑗 ∈ 𝐽 . According to (19), there are sequences (𝑥𝑛, 𝑦𝑛)𝑛 ⊂ Γ𝑖1 𝑗 and (𝑥 ′𝑛, 𝑦′𝑛)𝑛 ⊂ Γ𝑖2 𝑗
such that 𝑦𝑛 → 𝑦 and 𝑦′𝑛 → 𝑦 in 𝑌𝑗 as 𝑛 → ∞. Since 𝑓𝑎 ⊕ 𝑓 𝑐𝑎 = 𝑐 on supp𝜋 as well as
𝑓𝑎 = 𝑓𝑖1 + 𝑎𝑖1 and 𝑓𝑎 = 𝑓𝑖2 + 𝑎𝑖2 on 𝑝𝑋 (Γ𝑖1 𝑗 ) respectively 𝑝𝑋 (Γ𝑖2 𝑗 ) due to relation (18),
we find

𝑎𝑖1 − 𝑎𝑖2 =
(
𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑓𝑖1 (𝑥𝑛) − 𝑓 𝑐𝑎 (𝑦𝑛)

) − (
𝑐 (𝑥 ′𝑛, 𝑦′𝑛) − 𝑓𝑖2 (𝑥 ′𝑛) − 𝑓 𝑐𝑎 (𝑦′𝑛)

)
for all 𝑛 ∈ N. Exploiting the continuity of 𝑓 𝑐𝑎 |𝑌𝑗 at the contact point 𝑦 ∈ 𝑌𝑗 , we thus
obtain

𝑎𝑖1 − 𝑎𝑖2 = lim
𝑛→∞

(
𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑓𝑖1 (𝑥𝑛) − 𝑓 𝑐𝑎 (𝑦𝑛)

) − (
𝑐 (𝑥 ′𝑛, 𝑦′𝑛) − 𝑓𝑖2 (𝑥 ′𝑛) − 𝑓 𝑐𝑎 (𝑦′𝑛)

)
= lim
𝑛→∞ 𝑐 (𝑥𝑛, 𝑦𝑛) − 𝑐 (𝑥

′
𝑛, 𝑦

′
𝑛) − 𝑓𝑖1 (𝑥𝑛) + 𝑓𝑖2 (𝑥 ′𝑛).

Crucially, the limit in the second line exists and does not depend on 𝑎 anymore.
It only depends on the cost function 𝑐 , the restricted potentials 𝑓𝑖 , and the sets Γ𝑖 𝑗
(determined by 𝜋 ), whose topologies decide the contact point 𝑦 and the involved
sequences. Hence, knowing the value of 𝑎𝑖1 determines the one of 𝑎𝑖2 and vice versa.

Step 2. It is left to show that all indices are linked, at least indirectly, such that the
vector 𝑎 is in fact determined by fixing a single component. To do so, we consider
an arbitrary decomposition 𝐼 = 𝐼1 ∪ 𝐼2 of the index set 𝐼 into a disjoint union of
non-empty subsets, and show that there always exist 𝑖1 ∈ 𝐼1 and 𝑖2 ∈ 𝐼2 that are
linked. First, define

𝐽1 =
{
𝑗 ∈ 𝐽

��𝜋 (Γ𝑖 𝑗 ) > 0 for some 𝑖 ∈ 𝐼1
}

(20)



5. Proofs of the main results 125

and analogously 𝐽2. Intuitively, an index 𝑗 is in 𝐽1 (or 𝐽2) if 𝜋 transports mass between
𝑌𝑗 and some component 𝑋𝑖 with 𝑖 ∈ 𝐼1 (or 𝑖 ∈ 𝐼2). We note that the sets 𝐽1 and
𝐽2 cannot be disjoint: if they were, then 𝜋 would transport all mass in

⋃
𝑖∈𝐼1 𝑋𝑖 to⋃

𝑗∈ 𝐽1 𝑌𝑗 and vice versa, contradicting the condition of non-degeneracy. Formally,
this follows from 0 <

∑
𝑖∈𝐼1 𝜇 (𝑋𝑖) < 1 and

∑︁
𝑖∈𝐼1

𝜇 (𝑋𝑖) =
∑︁
𝑖∈𝐼1

𝜋
(
supp𝜋 ∩ (𝑋𝑖 × 𝑌 )

)
(definition of 𝐽1) =

∑︁
𝑖∈𝐼1

∑︁
𝑗∈ 𝐽1

𝜋
(
Γ𝑖 𝑗

)
(𝐽1 and 𝐽2 disjoint) =

∑︁
𝑗∈ 𝐽1

𝜋
(
supp𝜋 ∩ (𝑋 ∩ 𝑌𝑗 )

)
=

∑︁
𝑗∈ 𝐽1

𝜈 (𝑌𝑗 ),

the former of which holds since 𝐼1 is nonempty and a proper subset of 𝐼 . Therefore,
𝐽1 and 𝐽2 are not disjoint and we find some 𝑗 ∈ 𝐽1 ∩ 𝐽2. By definition of 𝐽1 and 𝐽2, this
implies that the two sets

𝐵1 =
⋃
𝑖∈𝐼1

𝑝𝑌 (Γ𝑖 𝑗 ) ⊂ 𝑌𝑗 and 𝐵2 =
⋃
𝑖∈𝐼2

𝑝𝑌 (Γ𝑖 𝑗 ) ⊂ 𝑌𝑗 (21)

have positive 𝜈-mass and are thus non-empty. Since 𝜋
( ⋃

𝑖∈𝐼 Γ𝑖 𝑗
)
= 𝜋 (𝑋 × 𝑌𝑗 ) =

𝜈 (𝑌𝑗 ) > 0, we can apply (a suitably restricted version of) Lemma 9 to conclude that
𝑝𝑌

( ⋃
𝑖∈𝐼 Γ𝑖 𝑗

)
=

⋃
𝑖∈𝐼 𝑝𝑌 (Γ𝑖 𝑗 ) contains a subset that is dense in 𝑌̃𝑗 = supp𝜈 |𝑌𝑗 . Thus,

we observe

𝑌̃𝑗 ⊂
⋃
𝑖∈𝐼

𝑝𝑌 (Γ𝑖 𝑗 ) =
⋃
𝑖∈𝐼1

𝑝𝑌 (Γ𝑖 𝑗 ) ∪
⋃
𝑖∈𝐼2

𝑝𝑌 (Γ𝑖 𝑗 ) = 𝐵1 ∪ 𝐵2, (22)

where the last equality hinges on the fact that 𝐵1 and 𝐵2 are closed (this is where
we need the assumption that 𝐼 is finite). Since 𝜈 (𝐵𝑘 ) = 𝜈 |𝑌𝑗 (𝐵𝑘 ) > 0, we find that
𝐵̃𝑘 = 𝐵𝑘 ∩ 𝑌̃𝑗 is non-empty for 𝑘 ∈ {1, 2}. Together with the connectedness of
𝑌̃𝑗 = 𝐵̃1∪ 𝐵̃2, this implies that 𝐵̃1 and 𝐵̃2 are not disjoint (since closed disjoint sets can
be separated by open neighborhoods in metric spaces) and the intersection 𝐵̃1 ∩ 𝐵̃2
hence contains at least one element 𝑦 ∈ 𝑌𝑗 . In particular, there also exist 𝑖1 ∈ 𝐼1 and
𝑖2 ∈ 𝐼2 such that

𝑦 ∈ 𝑝𝑌 (Γ𝑖1 𝑗 ) ∩ 𝑝𝑌 (Γ𝑖2 𝑗 ),
which means that 𝑖1 and 𝑖2 are linked with contact index 𝑗 and contact point 𝑦. We
have thus shown that any proper decomposition 𝐼 = 𝐼1 ∪ 𝐼2 admits links between the
components 𝐼1 and 𝐼2, implying that all indices in 𝐼 can be connected by a chain of
links. As discussed above, this makes the Kantorovich potentials 𝑓𝑎 ∈ 𝑆𝑐 (𝜇, 𝜈) almost
surely unique and finishes the proof of Theorem 1 under continuity assumption 2. □

Proof of Theorem 1 under assumption 1. The preceding proof has to be adapted to
some degree if we work with the slightly stronger continuity requirement that
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𝑓 𝑐 |supp 𝜈 is continuous for each 𝑓 𝑐 ∈ 𝑆𝑐𝑐 (𝜇, 𝜈), but in turn do not require any topo-
logical features of supp𝜈 |𝑌𝑗 . The main difference is that we now allow a contact
point 𝑦 ∈ supp𝜈 to be reached along sequences that hop through different com-
ponents 𝑌𝑗 (while 𝑗 was considered fixed for such sequences before). Thus, we let
Γ𝑖 = supp𝜋 ∩ (𝑋𝑖 × 𝑌 ) =

⋃
𝑗∈ 𝐽 Γ𝑖 𝑗 and this time define 𝑖1, 𝑖2 ∈ 𝐼 to be linked if there

exists a contact point 𝑦 ∈ supp𝜈 such that

𝑦 ∈ 𝑝𝑌 (Γ𝑖1) ∩ 𝑝𝑌 (Γ𝑖2), (23)

which replaces definition (19). In particular, we do not care about the contact index
anymore. It is now easy to check that continuity of 𝑓 𝑐𝑎 |supp 𝜈 is sufficient for step 1
of the proof above to work as before, and we find that 𝑎𝑖1 − 𝑎𝑖2 is fixed if 𝑖1 and 𝑖2 are
linked in the sense of (23).

For step 2, we choose the same approach as above and again exploit the non-
degeneracy of 𝜋 to find a suitable index 𝑗 ∈ 𝐽1 ∩ 𝐽2 with 𝐽1 and 𝐽2 defined as in (20).
Then, however, we define the sets

𝐵1 = 𝑌𝑗 ∩
⋃
𝑖∈𝐼1

𝑝𝑌 (Γ𝑖) and 𝐵2 = 𝑌𝑗 ∩
⋃
𝑖∈𝐼2

𝑝𝑌 (Γ𝑖)

somewhat differently, which is better aligned with (23). These sets are again closed
(use that 𝐼 is finite) and have positive 𝜈-mass (follows from the definition of 𝐽1 and 𝐽2).
Furthermore, 𝑝𝑌 (supp𝜋) = 𝑝𝑌 (

⋃
𝑖∈𝐼 Γ𝑖) is dense in 𝑌𝑗 , which leads to 𝑌𝑗 = 𝐵1 ∪ 𝐵2

along similar lines as in equation (22). Connectedness of 𝑌𝑗 thus shows that 𝐵1 ∩ 𝐵2
cannot be empty, from which the existence of 𝑦 ∈ 𝑌𝑗 as well as 𝑖1 ∈ 𝐼1 and 𝑖2 ∈ 𝐼2
that satisfy (23) follows. By the same argument as before, the claim of the theorem
is established. □

Proof of Corollary 1. There are two issues that arise in the proof of Theorem 1 when
𝐼 is allowed to be countable. The first is that some components 𝑋𝑖 might now have
a 𝜇-measure of zero, for which the notion of the 𝑋𝑖-restricted transport problem
ceases to make sense. This can be reconciled by replacing the index set 𝐼 by 𝐼+ = {𝑖 ∈
𝐼 | 𝜇 (𝑋𝑖) > 0} throughout the proof. Then, representation (18) of 𝑓𝑎 only works on the
set 𝑝𝑋 (supp𝜋) ∩ ⋃

𝑖∈𝐼+ 𝑋𝑖 , which is, however, sufficient for almost sure uniqueness.

The second issue concerns the sets 𝐵1 and 𝐵2 constructed in equation (21). For
countable 𝐼 , these sets do in general not have to be closed, which would invalidate
the ensuing argumentation. For the two settings described in Corollary 1, however,
this can easily be fixed. First, if the index set 𝐼 𝑗 = {𝑖 ∈ 𝐼 | 𝜋 (𝑋𝑖 × 𝑌𝑗 ) > 0} has finite
cardinality, then we may as well work with the alternative sets

𝐵1 =
⋃

𝑖∈𝐼1∩𝐼 𝑗
𝑝𝑌 (Γ𝑖 𝑗 ) ⊂ 𝑌𝑗 and 𝐵2 =

⋃
𝑖∈𝐼2∩𝐼 𝑗

𝑝𝑌 (Γ𝑖 𝑗 ) ⊂ 𝑌𝑗 ,

for which the remainder of the proof works just as before. Since the unions are
finite, these sets are closed. Secondly, if 𝑌𝑗 = {𝑦 𝑗 } for 𝑦 𝑗 ∈ 𝑌 consists of a single
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point only, then noting that 𝐵1 and 𝐵2 in (21) are both non-empty already establishes
𝐵1 = 𝐵2 = 𝑌𝑗 , directly yielding the desired contact point 𝑦 = 𝑦 𝑗 . In this case, the
continuity of 𝑓 𝑐 |𝑌𝑗 and the connectedness of supp𝜈 |𝑌𝑗 are trivially true. □
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A Auxiliary results and omitted proofs

In a brief assertion of his 1905 memoir, Henry Lebesgue famously sketched an
erroneous proof claiming that the projection of Borel subsets of the plane R2 onto
one of the coordinate axes is again Borel. The invalidity of this claim was uncovered
in 1916 by Mikhail Suslin, which inspired the study of what is now called analytic
sets or Suslin sets (Kanamori 1995). Placed into the context of our work, we learn
that it can happen that projected sets of the form 𝑝𝑋 (𝐴) and 𝑝𝑌 (𝐴) for Borel sets
𝐴 ⊂ 𝑋 × 𝑌 are not Borel again. However, these sets are analytic and thus universally
measurable. In particular, they can be approximated from within and without by
Borel sets whose difference is a null set. This settles potential measurability issues in
a satisfactory manner.

Lemma 9: Let 𝑋 and 𝑌 be Polish and 𝜋 ∈ C (𝜇, 𝜈) be a transport plan between
𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ). Suppose 𝐴 ⊂ 𝑋 × 𝑌 is Borel with 𝜋 (𝐴) = 1. Then
there exist Borel sets

𝐴𝜇 ⊂ 𝑝𝑋 (𝐴) and 𝐴𝜈 ⊂ 𝑝𝑌 (𝐴)

such that 𝜇 (𝐴𝜇) = 𝜈 (𝐴𝜈 ) = 1. In particular, 𝐴𝜇 and 𝐴𝜈 are dense in supp 𝜇 and
supp𝜈 .

Proof of Lemma 9. We only show the statement for 𝜇 since the one for 𝜈 follows
equivalently. According to Kechris 2012, Exercise 14.3, the set 𝑝𝑋 (𝐴) ⊂ 𝑋 is analytic,
i.e., the continuous image of a Polish space. By Kechris 2012, Theorem 21.10, every
analytic set is universally measurable (see Definition 12.5 for the term standard Borel
space), which implies that 𝑝𝑋 (𝐴) = 𝐴𝜇 ∪ 𝑁 where 𝐴𝜇 ⊂ 𝑋 is Borel and 𝑁 is a subset
of a Borel 𝜇-null set𝑀 ⊂ 𝑋 (see Kechris 2012, Section 17.A, for respective definitions).
It is left to show that 𝜇 (𝐴𝜇) = 𝜇 (𝐴𝜇 ∪𝑀) = 1, which follows from observing that
𝐴 ⊂ 𝑝𝑋 (𝐴) × 𝑌 ⊂ (𝐴𝜇 ∪𝑀) × 𝑌 and thus

𝜇 (𝐴𝜇 ∪𝑀) = 𝜋 ((𝐴𝜇 ∪𝑀) × 𝑌 ) ≥ 𝜋 (𝐴) = 1. □

Most of the time, we employ Lemma 9 with the choice 𝐴 = supp𝜋 for an optimal
transport plan 𝜋 , making sure that properties on the sets 𝑝𝑋 (supp𝜋) and 𝑝𝑌 (supp𝜋)
are valid 𝜇- and 𝜈-almost surely. We next highlight a simple consequence of Lemma 2,
relating the points 𝑥 ∈ supp 𝜇 with 𝑥 ∉ 𝑝𝑋 (supp𝜋) to the ones where 𝜋 does not
induce regularity.

Lemma 10: Let 𝑋 and 𝑌 be Polish, 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 𝑐 : 𝑋 × 𝑌 → R+
continuous such that𝑇𝑐 (𝜇, 𝜈) < ∞. Let 𝜋 ∈ C (𝜇, 𝜈) be an optimal transport plan.
Then

cl
(
supp 𝜇\𝑝𝑋 (supp𝜋)) ⊂ {

𝑥 ∈ supp 𝜇
��𝜋 does not induce regularity at 𝑥

}
≕ Σ

and the set Σ is closed in supp 𝜇.
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Proof. To see that Σ is closed, assume 𝜋 to induce regularity at 𝑥 ∈ supp 𝜇 with
relatively open𝑈 ⊂ supp(𝜇) and compact 𝐾 ⊂ 𝑌 . Then 𝜋 is also inducing regularity
at any other 𝑥 ′ ∈ 𝑈 with the same𝑈 and 𝐾 , showing that supp 𝜇 \ Σ is open. It now
suffices to note that supp 𝜇 \ Σ ⊂ 𝑝𝑋 (supp𝜋) according to Lemma 2, which, together
with closedness of Σ, implies the inclusion. □

We now turn to Lemma 3, which states that Kantorovich potentials behave as
expected when restricted to subsets 𝑋̃ ⊂ 𝑋 and 𝑌̃ ⊂ 𝑌 with full 𝜇- and 𝜈-mass. The
proof of this statement follows the reasoning behind Villani 2008, Lemma 5.18 and
Theorem 5.19. Cases of particular interest to us are restrictions to the (interior of
the) support of 𝜇 or 𝜈 (if the boundary carries no mass). Then the subsets 𝑋̃ and 𝑌̃
are either closed or open, and so they are always Borel and Polish.

Proof of Lemma 3. By assumption, 𝑋̃ ⊂ 𝑋 , 𝑌̃ ⊂ 𝑌 , and 𝑋̃ × 𝑌̃ ⊂ 𝑋 × 𝑌 are Borel
and Polish subsets with 𝜇 (𝑋̃ ) = 𝜈 (𝑌̃ ) = 1. Since the Borel 𝜎-algebra of a restricted
spaces coincides with the respective subspace 𝜎-algebra (see, e.g., Kallenberg 1997,
Lemma 1.6), it is easy to recognize that 𝑇𝑐 (𝜇, 𝜈) = 𝑇𝑐 (𝜇, 𝜈) with equal optimal plans
𝜋 ∈ 𝑆 (𝜇, 𝜈), where we permissively identify the measures 𝜇, 𝜈 , and 𝜋 with their
restrictions to the Borel sets 𝑋̃ , 𝑌̃ , and 𝑋̃ × 𝑌̃ of full mass.

Recall that Γ̃ = supp𝜋 ∩ (𝑋̃ × 𝑌̃ ) and observe 𝜋 (Γ̃) = 1, which implies that Γ̃ is
dense in the support of 𝜋 . We begin with the claim on restrictions. Let 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈)
and define the 𝑐-concave function 𝑓 : 𝑋̃ → R ∪ {−∞} via

𝑓 (𝑥) = (
𝑓 𝑐 |𝑌̃

)𝑐 (𝑥) = inf
𝑦∈𝑌̃

𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦) .

For any (𝑥0, 𝑦0) ∈ Γ̃, we calculate

𝑓 (𝑥0) = inf
𝑦∈𝑌̃

𝑐 (𝑥0, 𝑦) − 𝑓 𝑐 (𝑦) ≤ 𝑐 (𝑥0, 𝑦0) − 𝑓 𝑐 (𝑦0) = 𝑓 (𝑥0),

𝑓 (𝑥0) = inf
𝑦∈𝑌̃

𝑐 (𝑥0, 𝑦) − inf
𝑥∈𝑋

𝑐 (𝑥,𝑦) + 𝑓 (𝑥) ≥ 𝑓 (𝑥0),

which shows that 𝑓 = 𝑓 on 𝑝𝑋 (Γ̃). Similarly,

𝑓 𝑐 (𝑦0) = inf
𝑥∈𝑋̃

𝑐 (𝑥,𝑦0) − 𝑓 (𝑥) ≤ 𝑐 (𝑥0, 𝑦0) − 𝑓 (𝑥0) = 𝑓 𝑐 (𝑦0),

𝑓 𝑐 (𝑦0) = inf
𝑥∈𝑋̃

𝑐 (𝑥,𝑦0) − inf
𝑦∈𝑌̃

𝑐 (𝑥,𝑦) + 𝑓 𝑐 (𝑦) ≥ 𝑓 𝑐 (𝑦0),

which asserts 𝑓 𝑐 = 𝑓 𝑐 on 𝑝𝑌 (Γ̃). Since the set Γ̃ has full 𝜋-measure, it follows that
𝑇𝑐 (𝜇, 𝜈) = 𝑇𝑐 (𝜇, 𝜈) = 𝜋 (𝑓 ⊕ 𝑓 𝑐) = 𝜋 (𝑓 ⊕ 𝑓 𝑐). This shows 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) and thus
proves the first statement.

We next turn towards the claim on extending potentials, where we begin with
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) and observe Γ̃ ⊂ 𝜕𝑐 𝑓 (which is true since Γ̃ equals the support of the
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measure 𝜋 restricted to 𝑋̃ × 𝑌̃ ). We extend 𝑓 to a function 𝑓 : 𝑋 → R on all of 𝑋 via
defining

𝑓 (𝑥) = inf
𝑦∈𝑌̃

𝑐 (𝑥,𝑦) − 𝑓 𝑐 (𝑦).

This function is 𝑐-concave, since it is the 𝑐-transform of a function that equals 𝑓 𝑐 on
𝑌̃ and −∞ on 𝑌 \ 𝑌̃ . Furthermore, since 𝑓 is 𝑐-concave, the definition of 𝑓 directly
shows that it coincides with 𝑓 (= 𝑓 𝑐𝑐 ) on 𝑋̃ . For (𝑥0, 𝑦0) ∈ Γ̃, we furthermore note
that

𝑓 𝑐 (𝑦0) = inf
𝑥∈𝑋

𝑐 (𝑥,𝑦0) − 𝑓 (𝑥) ≤ 𝑐 (𝑥0, 𝑦0) − 𝑓 (𝑥0) = 𝑓 𝑐 (𝑦0),
𝑓 𝑐 (𝑦0) = inf

𝑥∈𝑋
𝑐 (𝑥,𝑦0) − inf

𝑦∈𝑌̃
𝑐 (𝑥,𝑦) + 𝑓 𝑐 (𝑦) ≥ 𝑓 𝑐 (𝑦0),

and thus 𝑓 𝑐 = 𝑓 𝑐 on 𝑝𝑌 (Γ̃). The optimality of 𝑓 is checked like above, yielding
𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈). □

Note that the sets of consensus 𝑝𝑋 (Γ̃) and 𝑝𝑌 (Γ̃) in Lemma 3 can be enlarged to the
(potentially slightly bigger) sets 𝑝𝑋 (supp𝜋)∩𝑋̃ and 𝑝𝑌 (supp𝜋)∩𝑌̃ when restricting
Kantorovich potentials. To prove this, the density of Γ̃ in supp𝜋 can be exploited
in combination with Lemma 1. For extending a potential 𝑓 , the proof above shows
that it is always possible to pick an extension that agrees with 𝑓 on all of 𝑋̃ , or
alternatively to pick an extension whose 𝑐-transform agrees with 𝑓 𝑐 on all of 𝑌̃ .

We next prove the claim stated in the context of equation (11), which provides
an example where degeneracy of the optimal transport plan leads to non-unique
Kantorovich potentials.

Lemma 11: Let 𝑋 = 𝑌 be Polish, 𝜇 = 𝜈 ∈ P (𝑋 ) with supp(𝜇) = 𝑋1 ∪ 𝑋2, and
𝑐 : 𝑋 2 → R+ be continuous and symmetric with 𝑐 (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋 . If

Δ = inf
𝑥1∈𝑋1,𝑥2∈𝑋2

𝑐 (𝑥1, 𝑥2) > 0,

then for all 𝑎, 𝑏 ∈ R with |𝑎 − 𝑏 | ≤ Δ, there exists 𝑓𝑎,𝑏 ∈ 𝑆𝑐 (𝜇, 𝜇) such that
𝑓𝑎,𝑏 = 𝑎 on 𝑋1 and 𝑓𝑎,𝑏 = 𝑏 on 𝑋2.

Proof. It is apparent that 𝑇𝑐 (𝜇, 𝜇) = 0. For real numbers 𝑎, 𝑏 ∈ R with |𝑎 − 𝑏 | ≤ Δ,
we define the map 𝑔 : 𝑋 → R ∪ {−∞} via

𝑔(𝑥) =


−𝑎 if 𝑥 ∈ 𝑋1,

−𝑏 if 𝑥 ∈ 𝑋2,

−∞ if 𝑥 ∉ 𝑋1 ∪ 𝑋2.
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For 𝑥 ∈ 𝑋1, the 𝑐-concave function 𝑓𝑎,𝑏 B 𝑔𝑐 fulfills

𝑓𝑎,𝑏 (𝑥) = inf
𝑦∈𝑋

𝑐 (𝑥,𝑦) − 𝑔(𝑦) = inf
𝑦∈𝑋




𝑎 for 𝑦 = 𝑥 ∈ 𝑋1,

𝑐 (𝑥,𝑦) + 𝑎 for 𝑦 ∈ 𝑋1,

𝑐 (𝑥,𝑦) + 𝑏 for 𝑦 ∈ 𝑋2,

∞ for 𝑦 ∉ 𝑋1 ∪ 𝑋2.

Since 𝑐 ≥ 0 and 𝑎 ≤ Δ + 𝑏 ≤ 𝑐 (𝑥,𝑦) + 𝑏 for 𝑥 ∈ 𝑋1, 𝑦 ∈ 𝑋2, we find 𝑓𝑎,𝑏 = 𝑎 on
𝑋1. Likewise, we also find 𝑓𝑎,𝑏 = 𝑏 on 𝑋2. By a similar argument, it follows that
𝑓 𝑐
𝑎,𝑏

≤ −𝑎 on 𝑋1 and 𝑓 𝑐
𝑎,𝑏

≤ −𝑏 on 𝑋2. Due to the lower bound 𝑔 ≤ 𝑔𝑐𝑐 = 𝑓 𝑐
𝑎,𝑏

(see Villani 2008, Proposition 5.8), we conclude that 𝑓 𝑐 = −𝑓 on 𝑋1 ∪ 𝑋2. This
implies 𝑇𝑐 (𝜇, 𝜇) = 0 = 𝜋

(
𝑓𝑎,𝑏 ⊕ 𝑓 𝑐

𝑎,𝑏

)
for any optimal 𝜋 , asserting that 𝑓𝑎,𝑏 is indeed a

Kantorovich potential. □

Next, we address the claim raised in Lemma 7, which states that (locally) Lipschitz
continuous functions on connected manifolds coincide (up to constants) if their
gradients coincide almost surely (in charts). This is a simple generalization of corre-
sponding results on R𝑑 , which can, for example, be gathered from considerations in
Qi 1989.

Proof of Lemma 7. Let 𝑓1, 𝑓2 : 𝑀 → R be locally Lipschitz on a 𝑑-dimensional smooth
manifold 𝑀 , and let (𝜑𝑥 )𝑥∈𝑀 be a family of charts with 𝑥 ∈ 𝑈𝑥 = domain𝜑𝑥 for all
𝑥 ∈ 𝑀 . By translating, restricting, and rescaling the charts, we can assume that
range𝜑𝑥 = 𝐵1 ⊂ R𝑑 is the unit ball and that 𝑓𝑖,𝑥 = 𝑓𝑖 ◦ 𝜑−1

𝑥 : 𝐵1 → R is Lipschitz
for each 𝑥 ∈ 𝑀 and 𝑖 ∈ {1, 2}. Since ∇𝑓1,𝑥 = ∇𝑓2,𝑥 holds by assumption on a set
with full Lebesgue measure, we can conclude (e.g., by formula (2) of Qi 1989) that
𝑓1,𝑥 − 𝑓2,𝑥 = 𝑐𝑥 on all of 𝐵1, where 𝑐𝑥 ∈ R is a constant. This implies 𝑓1 |𝑈𝑥 − 𝑓2 |𝑈𝑥 = 𝑐𝑥
as well. To see that 𝑐𝑥 is actually independent of 𝑥 , note that 𝑐𝑥 ′ = 𝑐𝑥 holds for any
𝑥 ′ ∈ 𝑈𝑥 , since then 𝑈𝑥 ∩𝑈𝑥 ′ ≠ ∅. Thus, 𝑥 ↦→ 𝑐𝑥 is a locally constant function. The
connectedness of 𝑀 implies that it is also constant on the whole space. To see this,
just note that the set 𝑉 = {𝑥 ∈ 𝑋 | 𝑐𝑥 = 𝑐𝑥0} ≠ ∅ and its complement are both open
(for some fixed 𝑥0 ∈ 𝑋 ), which makes 𝑉 open and closed. Hence, 𝑉 = 𝑀 and the
claim 𝑓1 − 𝑓2 = 𝑐𝑥0 is established. □

To conclude this appendix, we show that Corollary 3 is also true if 𝑐 (·, 𝑦) is assumed
to be locally semiconcave uniformly in 𝑦 ∈ 𝑌 (instead of locally Lipschitz uniformly
in 𝑦), which is claimed in Remark 4.

Proof of Remark 4. We adhere to the general proof strategy of Theorem 2, but will
provide additional details for some of the arguments. For every 𝑥 ∈ 𝑋 , let 𝜑𝑥 : 𝑈𝑥 →
𝑉𝑥 ⊂ R𝑑 denote a chart around 𝑥 . By restricting and translating, we can assume that
𝑉𝑥 is convex with 𝜑 (𝑥) = 0 ∈ 𝑉𝑥 . Recalling equation (2), we may also assume that
𝑣 ↦→ 𝑐

(
𝜑−1
𝑥 (𝑣), 𝑦)−𝜆𝑥 ∥𝑣 ∥2 is concave on𝑉𝑥 for some 𝜆𝑥 > 0 and all𝑦 ∈ 𝑌 . Due to the
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nature of 𝑐-conjugates as infima, we find that the function 𝑣 ↦→ ℎ𝑥 (𝑣) = 𝑓
(
𝜑−1
𝑥 (𝑣)) −

𝜆𝑥 ∥𝑣 ∥2 is concave as well for any 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈) (Rockafellar 2015, Theorem 5.5).

We first show that 𝑓 > −∞ on 𝑀 = int(supp 𝜇). Indeed, assume that there existed
a point 𝑥 ∈ 𝑀 with 𝑓 (𝑥) = −∞. Then ℎ𝑥 (0) = −∞, and, since the effective domain
ℎ−1
𝑥 (R) ⊂ 𝑉𝑥 is convex, it followed that ℎ−1

𝑥

({−∞}) contained at least an open half-
space (intersected with 𝑉𝑥 ) touching the origin. Hence, 𝑓 = −∞ would have to
hold on an open subset of 𝑀 ⊂ supp 𝜇, which cannot be true, since 𝑝𝑋 (supp𝜋) is
dense in supp 𝜇 and 𝑓 > −∞ on 𝑝𝑋 (supp𝜋) due to supp𝜋 ⊂ 𝜕𝑐 𝑓 . Since (locally
semi-)concave functions are locally Lipschitz in the interior of their effective domain
(Rockafellar 2015, Theorem 10.4), we can conclude that each Kantorovich potential
is locally Lipschitz on all of 𝑀 .

Next, since Γ = supp𝜋 , we find a Borel set 𝐴 ⊂ 𝑝𝑋 (Γ) ⊂ 𝑋 that satisfies 𝜇 (𝐴) = 1
(Lemma 9). Hence, 𝐵 = range𝜑 \𝜑 (𝐴∩domain𝜑) is a 𝜑#𝜇-null set for any chart 𝜑 of
𝑀 . Due to condition (15), it is also a Lebesgue-null set and we conclude that 𝑝𝑋 (Γ)
has full Lebesgue measure in charts of 𝑀 . We can now argue as in Theorem 2 to find
that any two Kantorovich potentials 𝑓1, 𝑓2 ∈ 𝑆𝑐 (𝜇, 𝜈) coincide on 𝑀 . It remains to
show that 𝑓1 = 𝑓2 holds on the boundary of supp 𝜇 as well. Let 𝑥 ∈ 𝜕 supp 𝜇 and let
(𝑥𝑛)𝑛∈N ⊂ 𝑀 be a sequence converging to 𝑥 . Then it holds that lim𝑛→∞ 𝑓𝑖 (𝑥𝑛) = 𝑓𝑖 (𝑥)
for 𝑖 ∈ {1, 2}. This can be seen as follows: if 𝑓𝑖 (𝑥) > −∞, then the limit holds
since (locally semi-)concave functions are continuous on their effective domain
(Rockafellar 2015, Theorem 10.1), and if 𝑓𝑖 (𝑥) = −∞, then the limit holds due to
upper-semicontinuity of 𝑓𝑖 . Since 𝑓1(𝑥𝑛) = 𝑓2(𝑥𝑛) for all 𝑛, this establishes equality
of 𝑓1 and 𝑓2 on the full support. □
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Abstract

Finding meaningful ways to determine the dependency between two random vari-
ables 𝜉 and 𝜁 is a timeless statistical endeavor with vast practical relevance. In recent
years, several concepts that aim to extend classical means (such as the Pearson
correlation or rank-based coefficients like Spearman’s 𝜌) to more general spaces
have been introduced and popularized, a well-known example being the distance
correlation. In this article, we propose and study an alternative framework for
measuring statistical dependency, the transport dependency 𝜏 ≥ 0, which relies on
the notion of optimal transport and is applicable in general Polish spaces. It can
be estimated consistently via the corresponding empirical measure, is versatile and
adaptable to various scenarios by proper choices of the cost function, and intrinsically
respects metric properties of the ground spaces. Notably, statistical independence
is characterized by 𝜏 = 0, while large values of 𝜏 indicate highly regular relations
between 𝜉 and 𝜁 . Indeed, for suitable base costs, 𝜏 is maximized if and only if 𝜁 can
be expressed as 1-Lipschitz function of 𝜉 or vice versa. Based on sharp upper bounds,
we exploit this characterization and define three distinct dependency coefficients
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(a-c) with values in [0, 1], each of which emphasizes different functional relations.
These transport correlations attain the value 1 if and only if 𝜁 = 𝜑 (𝜉), where 𝜑 is
a) a Lipschitz function, b) a measurable function, c) a multiple of an isometry. The
properties of coefficient c) make it comparable to the distance correlation, while
coefficient b) is a limit case of a) that was recently studied independently by Wiesel
2021. Numerical results suggest that the transport dependency is a robust quantity
that efficiently discerns structure from noise in simple settings, often out-performing
other commonly applied coefficients of dependency.

Keywords: transport dependency, transport correlation, optimal transport, statisti-
cal dependence, mutual information, correlation, distance correlation

MSC 2020 Subject Classification: primary 62H20, 49Q22; secondary 62R20, 62G35,
60E15

1 Introduction

In this article, we explore a method to quantify the statistical dependence between
two random variables 𝜉 and 𝜁 on Polish spaces 𝑋 and 𝑌 via optimal transport. The
core idea is to calculate the effort necessary to transform the joint distribution 𝛾 of 𝜉
and 𝜁 into the product 𝜇 ⊗ 𝜈 of their marginal distributions 𝜇 and 𝜈 . This motivates
the definition of the transport dependency

𝜏 (𝜉, 𝜁 ) = 𝜏 (𝛾) = 𝑇𝑐
(
𝛾, 𝜇 ⊗ 𝜈 ) = inf

𝜋

∫
𝑐 d𝜋, (1)

where 𝑇𝑐 is the optimal transport cost with (non-negative) base costs 𝑐 on 𝑋 × 𝑌 .
The infimum on the right is taken over the set of all couplings between 𝛾 and 𝜇 ⊗ 𝜈 ,
i.e., distributions 𝜋 with marginals 𝛾 and 𝜇 ⊗ 𝜈 (see Villani 2008 for a comprehensive
treatment). If the cost function has benign properties, the transport dependency 𝜏
displays many traits that are attractive for a measure of statistical association. For
example, if 𝑐 is a metric (or a power thereof), then 𝜏 (𝛾) = 0 if and only if 𝛾 = 𝜇 ⊗ 𝜈 ,
which is the case of statistical independence of 𝜉 and 𝜁 . Figure 1a illustrates the
intuition behind this concept.

In a Euclidean setting, the general idea of applying an optimal transport distance
between a coupling 𝛾 and the product 𝜇 ⊗ 𝜈 of its marginals has recently gained
traction in both the statistics and the machine learning literature. For example, it
was proposed under the names Wasserstein dependence measure and Wasserstein total
correlation by Ozair et al. 2019 and Xiao and Wang 2019, who applied it to improve
results during representation learning. The same ansatz also underlies a very recent
article by Mordant and Segers 2022, who, parallel to our work, defined normalized
coefficients of association (Wasserstein dependency coefficients) that are based on (1)
under squared Euclidean costs. Since the authors divide 𝜏 (𝛾) by the supremum of
𝜏 (𝛾) over all 𝛾 with fixed marginals 𝜇 and 𝜈 , however, their coefficients are difficult
to calculate and rely on a quasi-Gaussian approximation. On general Polish metric
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spaces, Móri and Székely 2020 introduced the Earth mover’s correlation, which is
also based on (1). While it fails to satisfy some desirable properties proposed in
Móri and Székely 2019, it is grounded on an easily computable upper bound of (1) in
terms of the diameters of the marginals 𝜇 and 𝜈 . As we will see, this bound is sharp
for suitable cost structures on 𝑋 × 𝑌 (which do not include the Euclidean squared
distance). Indeed, the properties of couplings 𝛾 that attain this bound are a premier
object of interest for us.

Independently from our work, another close relative of the transport dependency 𝜏
has recently been explored by Wiesel 2021, who proposes the association measure

𝜏𝑌 (𝜉, 𝜁 ) = 𝜏𝑌 (𝛾) =
∫
𝑇𝑐𝑌 (𝛾𝑥 , 𝜈) 𝜇 (d𝑥), (2)

where (𝛾𝑥 )𝑥∈𝑋 denotes the disintegration of 𝛾 with respect to the first coordinate
(i.e., 𝛾𝑥 is the law of 𝜁 given 𝜉 = 𝑥), and 𝑐𝑌 is (the power of) a metric on the space
𝑌 . For normalization to a coefficient in [0, 1], Wiesel 2021 also uses the diameter
of 𝜈 , which does not only upper bound 𝜏 (𝛾), but 𝜏𝑌 (𝛾) as well. He further shows
that this coefficient exhibits a list of desirable properties advanced by the work of
Chatterjee 2021 (and earlier proposed by Dette et al. 2013), and suggests a method
by which it can be estimated consistently. Even though (2) appears to address a
different problem when compared to (1) – after all, the optimal transport in 𝜏𝑌 is
calculated only on 𝑌 and the metric structure of 𝑋 plays no role – it is in fact a
special case: if transport along the space 𝑋 is forbidden by choosing costs 𝑐 that
assume the value ∞ for movements of mass that are not vertical (see Figure 1b), then
𝜏 reduces to the expression in (2). We therefore call 𝜏𝑌 (𝛾) the marginal transport
dependency of 𝛾 . In the course of our exploration, the marginal transport dependency
will naturally emerge both as an upper bound and as a limiting case. We also want
to mention that integrals of the form (2) have previously appeared in the context
of generalization bounds for statistical learning problems (Zhang et al. 2018; Lopez
and Jog 2018; Wang et al. 2019), and that a special case of 𝜏𝑌 has been employed
by Xiao and Wang 2019 in order to improve estimates of the dependency gap in
representation learning tasks.

Mutual information. The idea of quantifying dependency as a measure of dis-
crepancy between the joint distribution of 𝜉 and 𝜁 and the product distribution of
their marginals reaches far back. In his landmark work, Shannon 1948 introduced
the mutual information𝑀 (𝛾) = 𝐷 (𝛾 | 𝜇 ⊗ 𝜈), where the Kullback-Leibler divergence
𝐷 is used to compare 𝛾 to 𝜇 ⊗ 𝜈 . The mutual information has become an indis-
pensable tool for measuring the information content stored in the relation between
random variables and has found application in feature selection (Estévez et al. 2009),
image registration and alignment (Maes et al. 1997; Pluim et al. 2000; Viola and
Wells III 1997), clustering (Kraskov et al. 2005), and independence testing (Berrett
and Samworth 2019), besides others. Its immediate use for statistical data analysis,
however, is complicated by several issues. For example, it is often inconvenient
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coupling 𝛾 ∈ C (𝜇, 𝜈 )

indep. coupling 𝜇 ⊗ 𝜈

𝑋

𝑌

𝜇

𝜈

transport
𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈 )

coupling 𝛾 ∈ C (𝜇, 𝜈 )

indep. coupling 𝜇 ⊗ 𝜈

𝑋

𝑌

𝜇

𝜈

marginal transport
𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈 )

(a) (b)

𝜏 (𝛾) = 𝑇𝑐 (𝛾, 𝜇 ⊗ 𝜈) 𝜏𝑌 (𝛾) =
∫
𝑇𝑐𝑌 (𝛾𝑥 , 𝜈) 𝜇 (d𝑥)

Figure 1: Illustration of the (marginal) transport dependency. Sketch (a) shows how mass
could be moved in an optimal way when transforming 𝜇 ⊗ 𝜈 into 𝛾 (visualized on level sets).
The closer 𝛾 is to 𝜇 ⊗ 𝜈 , the less mass has to be transported and the smaller the value of 𝜏 (𝛾)
will be. Sketch (b) displays the same situation as (a), but this time transport along the space
𝑋 is forbidden and mass has to be transported vertically, which is clearly less optimal.

to estimate 𝑀 (𝛾) from data, as density estimates or binning / clustering methods
are necessary and estimation suffers from the curse of dimensionality (Hall and
Morton 1993; Paninski and Yajima 2008; Berrett et al. 2019). Furthermore, the mutual
information itself does not respect topological or metric properties of the coupling 𝛾 ,
as rearrangements of 𝜉 and 𝜁 by measurable functions leave 𝑀 (𝛾) invariant. In this
sense, the mutual information is not able to distinguish chaotic relations between 𝜉
and 𝜁 from well-behaved ones (see Figure 2). Still, the mutual information and its
surrogates, such as the mutual information dimension (Sugiyama and Borgwardt
2013) or the maximal information coefficient (Reshef et al. 2011), have proven to be
useful tools for detecting statistical dependency in data analysis.

Distance covariance. Another popular approach to measure dependency by
comparing 𝛾 to 𝜇 ⊗ 𝜈 is the distance covariance proposed by Székely et al. 2007.
If 𝜉 and 𝜁 are random vectors in R𝑟 and R𝑞 for 𝑟, 𝑞 ∈ N, the (Euclidean) distance
covariance between 𝜉 and 𝜁 is a weighted 𝐿2 distance between the joint characteristic
function 𝑓𝛾 and the product of the individual characteristic functions 𝑓𝜇 and 𝑓𝜈 ,

dcov2(𝜉, 𝜁 ) = 1
𝑐𝑟𝑐𝑞

∫ ��𝑓𝛾 (𝑡, 𝑠) − 𝑓𝜇 (𝑡) 𝑓𝜈 (𝑠)��2
∥𝑡 ∥1+𝑟 ∥𝑠 ∥1+𝑞 𝜆𝑟 (d𝑡) 𝜆𝑞 (d𝑠), (3)

where ∥ · ∥ is the Euclidean norm, 𝑐𝑑 is a constant only depending on the dimensions
𝑑 , and 𝜆𝑑 denotes the Lebesgue measure in R𝑑 . Lyons 2013 later proposed a gener-
alization of (3) to metric spaces (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ). Subsequent work by Jakobsen
2017 established that these spaces have to be separable in order to provide a sound



1. Introduction 141

(𝜉, 𝜁 ) ∼ 𝛾 = (id, 𝑓1 )∗𝜇𝜇 ⊗ 𝜈

𝑋

𝑌
𝜁
∼
𝜈
=

Un
if
[0,

1]

𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈 )

(a) (b)

𝜉 ∼ 𝜇 = Unif [0, 1]

transport

𝑋

𝑌

𝜁
∼
𝜈
=

Un
if
[0,

1]

𝜉 ∼ 𝜇 = Unif [0, 1]

(𝜉, 𝜁 ) ∼ 𝛾 = (id, 𝑓8 )∗𝜇

𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈 )
transport

𝜇 ⊗ 𝜈

Figure 2: Marginal and joint distribution of random variables 𝜉 ∼ Unif [0, 1] and 𝜁 = 𝑓𝑛 (𝜉) ∼
Unif [0, 1] for zigzag functions 𝑓𝑛 with 𝑛 linear segments for 𝑛 = 1 in (a) and 𝑛 = 8 in (b). The
drawn arrows illustrate how the optimal transport between 𝜇 ⊗ 𝜈 and 𝛾 could look like. Note
that the mutual information and related concepts that only measure the information content
do not distinguish between the two scenarios. In contrast, dependency measures that are
aware of metric or topological properties, like the transport dependency 𝜏 or the distance
covariance, assign a (much) lower degree of dependence to scenario (b). This discrepancy
stresses an important point: should deterministic but chaotic relations between 𝜉 and 𝜁
maximize a measure for statistical dependency? After all, one may not be able to recover the
relation in practice and distinguish it from noise if data is limited.

theory, see also Lyons 2018. The generalized distance covariance takes the form

dcov2(𝜉, 𝜁 ) = E[𝑑𝑋 (𝜉, 𝜉 ′) 𝑑𝑌 (𝜁 , 𝜁 ′)] + E[𝑑𝑋 (𝜉, 𝜉 ′)] E[𝑑𝑌 (𝜁 , 𝜁 ′)]
− 2E

[
𝑑𝑋 (𝜉, 𝜉 ′) 𝑑𝑌 (𝜁 , 𝜁 ′′)

]
,

(4)

where (𝜉 ′, 𝜁 ′) ∼ 𝛾 and 𝜁 ′′ ∼ 𝜈 are independent copies of 𝜉 and 𝜁 . If the metric spaces
𝑋 and 𝑌 are of strong negative type5, one can show that dcov2(𝜉, 𝜁 ) as defined above
is indeed non-negative, and that it vanishes if and only if 𝜉 and 𝜁 are statistically
independent (Lyons 2013; Jakobsen 2017). Together with fast computability on data
and a well-understood limit theory, this renders the distance covariance a compelling
instrument for non-parametric (i.e., without assuming a specific dependency model)
independence testing (Yao et al. 2018; Castro-Prado and González-Manteiga 2020;
Chakraborty and Zhang 2021) and related problems, like independent component
analysis (Matteson and Tsay 2017). Moreover, the work of Sejdinovic et al. 2013
has established the equivalence of the distance covariance and the Hilbert-Schmidt
independence criterion (Gretton et al. 2005). Corollary 26 in (Sejdinovic et al. 2013)
additionally clarifies that the general distance covariance (4) can be understood as

5A separable metric space (𝑋,𝑑𝑋 ) is of negative type iff there is an isometric embedding 𝜑 of(
𝑋,𝑑

1/2
𝑋

)
into a separable Hilbert space. This condition asserts dcov2 ≥ 0. If the mean embedding

𝜇 ↦→
∫
𝜑 d𝜇 for probability measures 𝜇 ∈ P (𝑋 ) with finite first 𝑑𝑋 -moment is additionally injective,

the space (𝑋,𝑑𝑋 ) is of strong negative type and dcov = 0 characterizes independence. Examples for
spaces of negative type are 𝐿𝑝 spaces for 1 ≤ 𝑝 ≤ 2, ultrametric spaces, and weighted trees (Meckes
2013, Theorem 3.6). Known counter examples are R𝑑 with 𝑙𝑝 norms for 𝑝 > 2 (see the references in
Lyons 2013).
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the maximum mean discrepancy (MMD, see Gretton et al. 2012) between 𝛾 and 𝜇 ⊗ 𝜈
under a suitable kernel choice.

The distance covariance possesses a natural upper bound that only depends on the
marginal measures 𝜇 and 𝜈 , namely dcov2(𝜉, 𝜁 ) ≤ dcov(𝜉, 𝜉) · dcov(𝜁 , 𝜁 ). Through
normalization with this bound, a coefficient that assumes values in [0, 1] can be
defined. This coefficient, called the distance correlation dcor, can be used as a surrogate
for classical coefficients of dependency, like the Pearson correlation, in the general
setting of separable metric spaces (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) of strong negative type. It has
the following two distinguishing characteristics (Lyons 2013):

• dcor(𝜉, 𝜁 ) = 0 iff 𝜉 and 𝜁 are independent,

• dcor(𝜉, 𝜁 ) = 1 iff there is a 𝛽 > 0 and an isometry 𝜑 : (𝑋, 𝛽𝑑𝑋 ) → (𝑌,𝑑𝑌 ) with
𝜁 = 𝜑 (𝜉),

where 𝜑 only has to be defined 𝜇-almost surely. This lends the distance covariance a
neat and tangible interpretation: while the Pearson correlation measures the degree
of linear functional dependency between random variables, the distance correlation
measures a degree of isometric functional dependency (up to scalings). For the
Euclidean case, this means that a value of dcor(𝜉, 𝜁 ) = 1 is assumed if and only if
𝜁 = 𝛽 (𝐴𝜉 + 𝑎), where 𝐴 is an orthogonal matrix, 𝑎 a shift vector, and 𝛽 > 0 (at least
if the support of 𝜇 contains an open set). Other relations between 𝜉 and 𝜁 , even
if they are deterministic, result in smaller values dcor(𝜉, 𝜁 ) < 1. Indeed, the more
chaotic the relation becomes, the further away one is from an isometric dependency,
and the lower the value of the distance correlation will typically be (see Figure 2).
This draws a sharp distinction to other (non-parametric) concepts of dependency,
like the mutual information or several recently proposed coefficients of association
(Dette et al. 2013; Chatterjee 2021; Deb et al. 2020; Wiesel 2021), which assume
maximal values for any measurable deterministic relation – and not only for suitably
structured ones.

Other measures of association. On a more general note, when one looks past
a number of classical concepts of correlation that are universally applied (like the
Pearson correlation, Spearman’s 𝜌 , or Kendall’s 𝜏), the statistical literature on how
to best measure dependency in applications quickly becomes immensely broad
and scattered. Besides the approaches cited above, suggestions include maximal
correlation coefficients (Gebelein 1941; Koyak 1987), rank or copula based methods
(Schweizer and Wolff 1981; Marti et al. 2017), or various measures acting on the
distribution of pairwise distances (Friedman and Rafsky 1983; Heller et al. 2013),
to only mention a few (for a more complete survey of established methods, see for
example Tjøstheim et al. 2018). Recently, optimal transport maps have been utilized to
establish multivariate rank statistics that allow for (asymptotically) distribution-free
tests of independence (Ghosal and Sen 2019; Shi et al. 2020; Shi et al. 2021).
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A different class of data analysis and exploration techniques to be mentioned in this
context are those that quantify how multiple data sets are spatially associated. A
prominent example is Ripley’s 𝐾 function (Ripley 1976), for which new develop-
ments have recently been advanced (Amgad et al. 2015). Regarding functional data
analysis, we refer to (Petersen and Müller 2019; Dubey and Müller 2020). For colo-
calization problems in cell microscopy, we mention Wang et al. 2017, who propose a
statistically optimal colocalization metric based on Kendall’s 𝜏 , and Tameling et al.
2021, who suggest certain surrogates of the optimal transport plan for quantifying
colocalization.

Transport dependency. A primary reason for the widely scattered literature on
this topic is that the notion of “dependency”, and what exactly is meant and intended
by it, eludes the reduction to a real number that suits all needs. One important
demarcation line in this regard has already been stressed: do we aim to measure
dependency in a purely stochastic sense (like with the mutual information), or do
we also seek to impose structural conditions, like linearity (Pearson correlation),
monotonicity (rank correlations), or metric compatibility (distance correlation)?
Indeed, the theme of shape restrictions is central for recent efforts to find meaningful
quantifiers of dependency (Cao and Bickel 2020; see also Guntuboyina, Sen, et al.
2018 for related work on shape-restricted regression).

In this article, we contribute to this topic by establishing the transport dependency as
a principled tool that can flexibly bridge the gap between unstructured and structured
dependency quantification. On an abstract level, the transport dependency 𝜏 (𝛾)
defined in equation (1) features a series of attractive and intuitive properties. Under
mild assumptions on the costs 𝑐 , it is true that 𝜏 (𝛾) = 0 characterizes independence
(e.g., if 𝑐 is a metric, see Theorem 1), and that 𝜏 (𝛾) can consistently be estimated by
𝜏 (𝛾𝑛), where 𝛾𝑛 is the empirical measure (e.g., if 𝑐 is continuous and obeys some
moment conditions, see Theorem 2). Furthermore, the transport dependency does
not explicitly rely on how 𝜉 and 𝜁 are embedded into the respective spaces 𝑋 and
𝑌 , but only on the chosen cost structure on them. In particular, the value 𝜏 (𝛾)
does not change under (marginal) transformations of 𝜉 and 𝜁 that leave the costs
invariant (Proposition 2). The transport dependency is also a convex functional on
the space of probability measures on 𝑋 × 𝑌 with fixed marginals (Proposition 1).
Thus, under convex contamination models commonly studied in robust estimation
theory (Huber 1992; Horowitz and Manski 1995), polluting 𝛾 with a distribution 𝛾 ′ of
smaller transport dependency 𝜏 (𝛾 ′) < 𝜏 (𝛾) and the same marginals will inevitably
decrease the measured dependence,

𝜏
((1 − 𝑡) 𝛾 + 𝑡 𝛾 ′) < 𝜏 (𝛾)

for all 𝑡 ∈ (0, 1]. Similarly, if 𝑐 is a translation invariant cost on vector spaces,
then convolutions of 𝛾 with any (product) kernel 𝜅 cannot increase the transport
dependency (see Theorem 4), meaning

𝜏
(
𝛾 ∗ 𝜅) ≤ 𝜏 (𝛾) .
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𝑑𝑌 (𝑦,𝑦1) ≤ 𝑑𝑌 (𝑦,𝑦2) + 𝑑𝑌 (𝑦2, 𝑦1)
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Figure 3: Projection onto the graph of an 𝛼-Lipschitz function 𝜑 : 𝑋 → 𝑌 under costs
𝑐 = 𝑑𝑝 as in (6). By applying the triangle inequality of 𝑑𝑌 and the Lipschitz property
𝑑𝑌

(
𝜑 (𝑥1), 𝜑 (𝑥2)

) ≤ 𝛼𝑑𝑋 (𝑥1, 𝑥2), one can see that the cost-optimal way to move any point
(𝑥,𝑦) ∈ 𝑋 × 𝑌 to the graph of 𝜑 is to simply shift it up- or downwards.

Since the convolution of measures 𝛾 and 𝜅 is equivalent to taking the sum of in-
dependent random variables (𝜉, 𝜁 ) ∼ 𝛾 and (𝜉 ′, 𝜁 ′) ∼ 𝜅, this implies that additive
contaminations with independent noise never increase the value of 𝜏 . It is also
possible to upper bound 𝜏 in instructive ways. If 𝑐𝑌 is a marginal cost on 𝑌 that
bounds 𝑐 suitably, we derive the inequality

𝜏 (𝛾) ≤
∫
𝑐𝑌 d(𝜈 ⊗ 𝜈) = E[𝑐𝑌 (𝜁 , 𝜁 ′)], (5)

where 𝜁 , 𝜁 ′ ∼ 𝜈 are independent (Proposition 6). This inequality, which already
appeared Móri and Székely 2020, bounds 𝜏 in terms of the diameter of 𝜈 and is central
for deriving dependency coefficients living in [0, 1].
A particularly interesting theory unfolds when the structure of the costs 𝑐 on the
space 𝑋 × 𝑌 is restricted to a specific form. If (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) are Polish metric
spaces, we consider additive costs

𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) =
(
𝛼 · 𝑑𝑋 (𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)

)𝑝 (6)

for 𝛼, 𝑝 > 0, where 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌 . The primary reason why costs of
this form are fertile for our purposes is visualized in Figure 3: the price of moving
any point (𝑥,𝑦) in 𝑋 × 𝑌 to the graph of an 𝛼-Lipschitz function 𝜑 : 𝑋 → 𝑌 , which
satisfies

𝑑𝑌
(
𝜑 (𝑥1), 𝜑 (𝑥2)

) ≤ 𝛼 · 𝑑𝑋 (𝑥1, 𝑥2)
for all 𝑥1, 𝑥2 ∈ 𝑋 , is minimized by vertical movements, i.e., by the projection (𝑥,𝑦) ↦→(
𝑥, 𝜑 (𝑥)) . Under suitable conditions, this (locally optimal) choice of movement

corresponds to a valid transport plan that is globally optimal. As a consequence, we
find that our upper bounds are sharp if and only if the support of 𝛾 coincides with
the graph of an 𝛼-Lipschitz function. In other words, 𝜏 (𝛾) assumes upper bound (5)
if and only if 𝜁 = 𝜑 (𝜉) for an 𝛼-Lipschitz map 𝜑 (Theorem 7 and Corollary 1).
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Transport correlation. We use the special properties of the transport dependency
under costs of the form (6) to propose a family 𝜌𝛼 ∈ [0, 1] of coefficients for 𝛼 > 0
that are tuned to detect 𝛼-Lipschitz associations between 𝜉 and 𝜁 . The 𝛼-transport
correlation is defined by

𝜌𝛼 (𝜉, 𝜁 ) = 𝜌𝛼 (𝛾) =
(

𝜏 (𝛾)∫
𝑑
𝑝
𝑌 d(𝜈 ⊗ 𝜈)

)1/𝑝
,

where the scaling by the inverse of bound (5), which we assume to be positive,
guarantees that 0 ≤ 𝜌𝛼 ≤ 1. Two of the hallmark features of 𝜌𝛼 are (Proposition 9)

• 𝜌𝛼 (𝛾) = 0 iff 𝜉 and 𝜁 are independent,

• 𝜌𝛼 (𝛾) = 1 iff there is an 𝛼-Lipschitz function 𝜑 : (𝑋,𝑑𝑋 ) → (𝑌,𝑑𝑌 ) with
𝜁 = 𝜑 (𝜉),

where 𝜑 only needs to be defined 𝜇-almost surely. Therefore, we may view 𝜌𝛼 as a
general alternative to Pearsons’s correlation coefficient that measures the degree of
association not in terms of best approximation by linear functions, but by 𝛼-Lipschitz
functions. Later, we will see that the idea behind 𝜌𝛼 can fluently be extended to
the limit 𝛼 → ∞ (Theorem 6). In this case, the transport dependency 𝜏 is equal
to the marginal transport dependency defined in (2), while upper bound (5) stays
valid. One can then show that the resulting coefficient 𝜌∞, which we name marginal
transport correlation, satisfies (Proposition 10)

• 𝜌∞(𝛾) = 0 iff 𝜉 and 𝜁 are independent,

• 𝜌∞(𝛾) = 1 iff there is a measurable function 𝜑 : 𝑋 → 𝑌 with 𝜁 = 𝜑 (𝜉),

where the equality 𝜁 = 𝜑 (𝜉) only has to hold 𝜇-almost surely. In fact, the marginal
transport correlation 𝜌∞ is equal to the measure of association introduced by Wiesel
2021, who also recognized the above properties as essential.

Both the 𝛼-transport correlation and the marginal transport correlation are asymmet-
ric and measure to what extend 𝜁 can be understood as a function of 𝜉 , not the other
way around. If symmetry is desired, the coefficients can easily be adapted, for example
by taking the maximum of 𝜌𝛼 (𝜉, 𝜁 ) and 𝜌𝛼 (𝜁 , 𝜉). Another way to obtain a symmetric
dependency coefficient consists in choosing 𝛼𝑝∗ =

∫
𝑑
𝑝
𝑌 d(𝜈 ⊗ 𝜈)/

∫
𝑑
𝑝
𝑋 d(𝜇 ⊗ 𝜇) and

setting 𝜌∗ = 𝜌𝛼∗ . This defines the isometric transport correlation, which is symmetric
in 𝜉 and 𝜁 and has the following properties (Proposition 11):

• 𝜌∗(𝛾) = 0 iff 𝜉 and 𝜁 are independent,

• 𝜌∗(𝛾) = 1 iff there is a 𝛽 > 0 and an isometry 𝜑 : (𝑋, 𝛽𝑑𝑋 ) → (𝑌,𝑑𝑌 ) with
𝜁 = 𝜑 (𝜉),
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Figure 4: Power of independence tests under increasing levels of noise. The upper row
depicts exemplary samples of size 𝑛 = 50 at varying noise levels 𝜖 . The undisturbed samples
(𝜖 = 0) are drawn from the graph of a 3-Lipschitz zigzag function. The figure on the bottom
depicts the power of level 0.1 permutation tests for independence based on 𝜌∗, 𝜌𝛼 for 𝛼 = 3,
the distance correlation, the Pearson correlation, the Spearman correlation, and the maximal
information coefficient. See Section 6 for more details on the setting.

where, again, 𝜑 only needs to be defined 𝜇-almost surely (and 𝛽 has to equal 𝛼∗). This
shows that the coefficient 𝜌∗ assumes its extremal values 𝜌∗(𝛾) = 0 and 𝜌∗(𝛾) = 1
for the same joint distributions 𝛾 as the distance correlation dcor. In particular 𝜌∗
satisfies the “Four simple axioms for dependency measures” proposed by Móri and
Székely 2019 and may be explored as a principled alternative to dcor for quantify-
ing dependency in general Polish spaces. When we inspect commonalities of and
differences between 𝜌𝛼 , 𝜌∗, dcor, and a series of other dependency coefficients later
on (Section 6), we find that their absolute values are often comparable in nature,
but that their performance when testing for independence can differ considerably.
Figure 4 conveys a first impression along this line, highlighting the interpretation of
𝜌𝛼 as a coefficient well suited to detect 𝛼-Lipschitz relations between 𝜉 and 𝜁 .

The article is structured as follows. We begin by introducing our notation and the
basic definitions of optimal transport and the transport dependency in Section 2.
Section 3 revolves around establishing a number of general properties of 𝜏 as a
functional on P (𝑋 ×𝑌 ). This entails convexity, invariance properties, continuity, the
behavior under convolutions, as well as upper bounds. We also recover the marginal
transport dependency as a limit case. In Section 4, we consider additive costs like
(6) and focus on the distinguished role of contracting relations between random
variables. The results in this section may be regarded as our main findings, since
they lend the concept of transport dependency a clean interpretation. We make use
of this interpretation in Section 5, where we introduce the transport correlation 𝜌𝛼
and show that this family of coefficients features the properties summarized above.
Section 6 concludes our work with a series of elementary numerical examples that
hint at the potential of the transport dependency, comparing it to other measures
of association. Proofs omitted in the main text in favor of a better reading flow are
collected in Appendix A, and additional simulations can be found in Appendix B.
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Discussion and outlook. Our work establishes the transport dependency as a
versatile tool for the quantification of dependency between random variables. We
particularly underscore that the transport correlation 𝜌𝛼 provides a systematic way
to interpolate between structured (𝛼 < ∞) and unstructured (𝛼 = ∞) dependency
quantification through the selection of suitable cost functions. Moreover, the general
flexibility of 𝜏 to work with any costs 𝑐 , which do not even have to be based on metrics,
could be attractive for a range of practical applications, as state of the art methods
for comparing complex objects are often engineered in an ad-hoc fashion without
strong mathematical guarantees. One prospect in this regard are nonparametric
independence tests guided by arbitrary heuristics of similarity. In addition, probing
the transport dependency of a data set under different costs 𝑐 might expose structural
properties of the data, which could render 𝜏 to become a handy tool for exploration.

Despite the apparent conceptual appeal, however, we do not want to conceal a
major obstacle when the transport dependency is applied to data, which is its heavy
computational burden. For the (naive) estimation of 𝜏 based on 𝑛 points of data,
an optimal transport problem of size 𝑛 × 𝑛2 has to be solved. For generic exact
optimal transport solvers, this leads to excessively long run times even for moderate
problem sizes of, say, 𝑛 ≈ 500. By making use of an elaborate approximation method
of optimal transport costs via entropy regularization (Cuturi 2013) proposed by
Schmitzer 2019, we verify in our simulations (Section 6) that 𝜏 can accurately be
calculated for 𝑛 = 1000 in a matter of seconds to minutes on a modern GPU. Still, it is
much more time consuming to compute 𝜏 than alternative coefficients of dependency,
like the distance correlation. Since the application of optimal transport based methods
and its surrogates to large datasets is an active research topic that steadily advances,
however, it might only be a matter of time until current computational barriers are
further mitigated and eventually overcome (for recent algorithmic progress, see
for example Lin et al. 2019; Sommerfeld et al. 2019; Erbar et al. 2020; Jacobs and
Léger 2020; Liu et al. 2021). Another potential hurdle for the application of 𝜏 on data
sets is the bias that comes along with the empirical estimation of optimal transport
costs, especially in high dimensions. Refining the theory of transport dependency
to settings with structural regularity (like grid-based ground spaces) and devising
specialized estimators might offer opportunity for improvements in this respect.

To conclude, we want to emphasize that this article should only be regarded as one
step amongst many towards the goal of fully exploring the use of optimal transport
as a statistical association measure between random variables. Indeed, as witnessed
by the work of Wiesel 2021 and Mordant and Segers 2022 conducted in parallel to
ours, this topic currently experiences a surge of attention, with many questions left
open. In particular, the framework of transport dependency has yet to be vetted in
real world applications to make sure that its promising performance is not limited
to artificial settings. Furthermore, establishing a more dedicated statistical theory,
including distributional and asymptotic properties or statistically efficient estimators,
and a better sense of 𝜏 in high-dimensional settings remain an outstanding task that
seems worth to be investigated in the future.
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2 Optimal transport and transport dependency

In the following, we are always concerned with probability distributions on Polish
spaces (which are separable and completely metrizable topological spaces) equipped
with their respective Borel 𝜎-algebra. On these spaces, analytic properties of optimal
transport are well understood (Rachev and Rüschendorf 1998; Villani 2008; Ambrosio
et al. 2008; Santambrogio 2015) and we have the general toolbox of disintegration,
or conditioning, of measures at our disposal. See Kallenberg 2006 for a general
treatment of this topic and Chang and Pollard 1997 for a view on conditioning
through the lens of disintegration.

Notation. We denote the set of all probability measures on a Polish space 𝑋 by
P (𝑋 ). The integration of a (Borel-)measurable function 𝑓 : 𝑋 → R with respect to
𝜇 ∈ P (𝑌 ) is flexibly denoted as

∫
𝑓 (𝑥) 𝜇 (d𝑥),

∫
𝑓 d𝜇, or simply 𝜇𝑓 . Every measurable

function 𝜑 : 𝑋 → 𝑌 between Polish spaces induces a pushforward map 𝜑∗ : P (𝑋 ) →
P (𝑌 ) via 𝜇 ↦→ 𝜑∗𝜇 = 𝜇 ◦ 𝜑−1. We write 𝜇𝑛 ⇀ 𝜇 if a sequence (𝜇𝑛)𝑛∈N ⊂ P (𝑋 )
converges weakly (or in distribution) to 𝜇 in P (𝑋 ). The product 𝑋 ×𝑌 of two Polish
spaces is again Polish if equipped with its product topology. We write 𝑝𝑋 and 𝑝𝑌 for
the Cartesian projections onto the spaces 𝑋 and 𝑌 , and we let

(𝜑,𝜓 ) (𝑥) = (
𝜑 (𝑥),𝜓 (𝑥)) and (𝜑 ×𝜓 ) (𝑥,𝑦) = (

𝜑 (𝑥),𝜓 (𝑦))
for suitable functions 𝜑 and𝜓 . The notation C (𝜇, 𝜈) ⊂ P (𝑋 × 𝑌 ) is used to denote
the set of couplings (or transport plans) between measures 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ).
Thus, 𝛾 ∈ C (𝜇, 𝜈) is a joint distribution on𝑋 ×𝑌 with marginals 𝑝𝑋∗ 𝛾 = 𝜇 and 𝑝𝑌∗ 𝛾 = 𝜈 .
We also write C (𝜇, ·) or C (·, 𝜈) for the subsets of P (𝑋 ×𝑌 ) where only one marginal
distribution is fixed. If we want to condition 𝛾 ∈ C (𝜇, 𝜈) on one of its components,
we use the shorthand notation

𝛾 (d𝑥, d𝑦) = 𝛾 (𝑥, d𝑦) 𝜇 (d𝑥)

to indicate a disintegration of 𝛾 along the space 𝑋 , where 𝛾 (𝑥, ·) ∈ P (𝑌 ) is a proba-
bility distribution for each 𝑥 ∈ 𝑋 . The family

(
𝛾 (𝑥, ·))𝑥∈𝑋 is a probability kernel (or

Markov kernel or stochastic kernel), which means that the mapping 𝑥 ↦→ 𝛾 (𝑥,𝐴) is
measurable for each Borel set 𝐴 ⊂ 𝑌 . Analog notation will be used for conditioning
on 𝑦 ∈ 𝑌 or if products of more than two spaces are considered.

Whenever convenient, we may express our arguments in terms of random elements
instead of probability measures. Typically, we then refer to 𝜉 and 𝜁 as random
elements on the spaces 𝑋 and 𝑌 . Their joint law is usually (𝜉, 𝜁 ) ∼ 𝛾 ∈ C (𝜇, 𝜈). Note
that 𝛾 (𝑥, ·) is the conditional distribution of 𝜁 given 𝜉 = 𝑥 and vice versa for 𝛾 (·, 𝑦),
and that the pushforward 𝑓∗𝛾 equals the law of 𝑓 (𝜉, 𝜁 ) whenever 𝑓 : 𝑋 × 𝑌 → 𝑍 is a
measurable map into a Polish space.

We call a lower semi-continuous function 𝑐 : 𝑋 × 𝑋 → [0,∞] a cost function on 𝑋
if it is symmetric and vanishes on the diagonal, meaning 𝑐 (𝑥1, 𝑥2) = 𝑐 (𝑥2, 𝑥1) and
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𝑐 (𝑥, 𝑥) = 0 for all 𝑥, 𝑥1, 𝑥2 ∈ 𝑋 . Sometimes we require 𝑐 (𝑥1, 𝑥2) > 0 for 𝑥1 ≠ 𝑥2, in
which case we call the cost function positive. Finally, the 𝑐-diameter of a measure
𝜇 ∈ P (𝑋 ) is defined as

diam𝑐 𝜇 =
∫
𝑐 (𝑥1, 𝑥2) d𝜇 (𝑥1) d𝜇 (𝑥2) = (𝜇 ⊗ 𝜇) 𝑐, (7)

where 𝜇 ⊗ 𝜇 denotes the product measure of 𝜇 with itself.

Optimal transport. The optimal transport cost 𝑇𝑐 between measures 𝜇 and 𝜈 in
P (𝑋 ) for base costs 𝑐 on a Polish space 𝑋 is defined as

𝑇𝑐 (𝜇, 𝜈) = inf
𝜋∈C (𝜇,𝜈 )

𝜋𝑐. (8)

Within the assumptions we work in, an optimal transport plan 𝜋∗ that attains the
infimum in equation (8) always exists if 𝑐 is lower semi-continuous (Villani 2008,
Theorem 4.1). In general, optimal transport plans need not be unique. If 𝑐 = 𝑑𝑝 for a
metric 𝑑 on 𝑋 with 𝑝 ≥ 1, the quantity𝑇𝑐 (𝜇, 𝜈)1/𝑝 is called the 𝑝-Wasserstein distance
and is a metric on the probability measures in P (𝑋 ) that have finite 𝑝-th moments.

When a transport plan 𝜋 ∈ C (𝜇, 𝜈) is concentrated on the graph of a function
𝜑 : 𝑋 → 𝑋 , then 𝜑 is called transport map and satisfies 𝜑∗𝜇 = 𝜈 and (id, 𝜑)∗𝜇 = 𝜋 .
Under certain conditions on 𝜇, 𝜈 , and 𝑐 , optimal transport plans 𝜋∗ that minimize (8)
correspond to optimal transport maps 𝜑∗ (see Villani 2008; Santambrogio 2015). For
example, this always holds when 𝜇 has a Lebesgue density in R𝑑 for 𝑑 ∈ N and 𝑐 is
given by an 𝑙𝑝 norm with 𝑝 > 1.

The optimal transport problem (8) can alternatively be stated in its dual formulation,

𝑇𝑐 (𝜇, 𝜈) = sup
𝑓 ⊕𝑔≤𝑐

𝜇𝑓 + 𝜈𝑔, (9)

where (𝑓 ⊕𝑔) (𝑥1, 𝑥2) = 𝑓 (𝑥1)+𝑔(𝑥2) and where the supremum is taken over bounded
and continuous functions 𝑓 and 𝑔. This fact is commonly known as Kantorovich-
duality, dating back to Kantorovich 1942. Like for the existence of transport plans,
the cost function 𝑐 being lower semi-continuous is sufficient for (8) and (9) to coincide
(Villani 2008, Theorem 5.10). If 𝑐 is a metric, (9) takes the particular form

𝑇𝑐 (𝜇, 𝜈) = sup
𝑓 ∈Lip1 (𝑋 )

𝜇𝑓 − 𝜈 𝑓 , (10)

where Lip1(𝑋 ) denotes all real valued 1-Lipschitz functions on 𝑋 with respect to
𝑐 . Note that this is a special case of an integral probability metric (Müller 1997;
Sriperumbudur et al. 2012).

The literature on optimal transport is vast, deep, and fragmented over many disci-
plines, reaching from analysis over statistics and optimization to economics. Apart
from the analytical work cited before, valuable resources are the recent monograph
by Panaretos and Zemel 2020, which studies the Wasserstein space from a statistical
perspective, and a book by Peyré and Cuturi 2019, which focuses on computational
aspects of optimal transport.
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Transport dependency. Let 𝑋 and 𝑌 be Polish spaces, and let 𝑐 be a cost function
on the product space 𝑋 × 𝑌 . Recall that 𝑝𝑋 and 𝑝𝑌 denote the Cartesian projections
onto the spaces 𝑋 and 𝑌 . We define the (𝑐-)transport dependency 𝜏𝑐 : P (𝑋 × 𝑌 ) →
[0,∞] via

𝜏 (𝛾) = 𝜏𝑐 (𝛾) = 𝑇𝑐
(
𝛾, 𝑝𝑋∗ 𝛾 ⊗ 𝑝𝑌∗ 𝛾

)
, (11)

where we usually omit the cost function 𝑐 in the subscript if it is apparent from
the context. Each coupling 𝛾 ∈ C (𝜇, 𝜈) ⊂ P (𝑋 × 𝑌 ) can be understood as the joint
distribution of random elements 𝜉 and 𝜁 with laws 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ). In this
case, the value 𝜏 (𝜉, 𝜁 ) = 𝜏 (𝛾) quantifies how much the distribution of (𝜉, 𝜁 ) deviates
from the joint distribution 𝜇 ⊗ 𝜈 that 𝜉 and 𝜁 would have if they were independent.
One can easily see that 𝜏 (𝜉, 𝜁 ) = 0 in case of statistical independence. If 𝑐 is a positive
cost function, this criterion is even sufficient for independence of 𝜉 and 𝜁 .

Theorem 1 (independence): Let 𝑋 and 𝑌 be Polish spaces and 𝑐 a positive cost
function on 𝑋 × 𝑌 . Then 𝜏 (𝛾) = 0 if and only if 𝛾 = 𝜇 ⊗ 𝜈 for some 𝜇 ∈ P (𝑋 )
and 𝜈 ∈ P (𝑌 ).

Proof. If𝛾 = 𝜇⊗𝜈 , picking the transport plan 𝜋 = (id, id)∗(𝜇⊗𝜈) ∈ C (𝛾, 𝜇⊗𝜈) asserts
that 0 ≤ 𝜏 (𝛾) ≤ 𝜋𝑐 = 0, where we used that 𝑐 ≥ 0 and that 𝑐 vanishes on the diagonal.
Conversely, if 𝜏 (𝛾) = 0 for some 𝛾 ∈ C (𝜇, 𝜈), we find 𝜋∗𝑐 = 0 for the optimal plan 𝜋∗,
so 𝑐 = 0 holds 𝜋∗-almost surely. Since 𝑐 is positive, this implies 𝜋∗{(𝑥,𝑦, 𝑥,𝑦) | 𝑥 ∈
𝑋,𝑦 ∈ 𝑌 } = 1. Consequently, it follows that 𝜋∗ = (id, id)∗(𝜇 ⊗ 𝜈) ∈ C (𝜇 ⊗ 𝜈, 𝜇 ⊗ 𝜈),
establishing 𝛾 = 𝜇 ⊗ 𝜈 . □

Example 1 (Multivariate Gaussian): Let (𝜉, 𝜁 ) be a pair of real valued and nor-
mally distributed random vectors on𝑋×𝑌 = R𝑟+𝑞 that follow a joint distribution
𝛾 = N (𝜂, Σ) so that

𝜂 =

(
𝜂1
𝜂2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)

with 𝜂1 ∈ R𝑟 , 𝜂2 ∈ R𝑞 , Σ11 ∈ R𝑟×𝑟 , Σ22 ∈ R𝑞×𝑞 , Σ12 ∈ R𝑟×𝑞 and Σ21 = Σ𝑇12. Since
independence of normal random variables is characterized by zero correlation,
the independent coupling is given by

𝜇 ⊗ 𝜈 = N (𝜂, Σind) with Σind =

(
Σ11 0
0 Σ22

)
.

As costs on the space 𝑋 × 𝑌 , we consider the squared Euclidean distance

𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = ∥𝑥1 − 𝑥2∥2 + ∥𝑦1 − 𝑦2∥2

for (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ R𝑟 × R𝑞 . In this setting, evaluating the transport depen-
dence of 𝛾 corresponds to computing the square of the 2-Wasserstein distance
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between two normal distributions. We obtain (Dowson and Landau 1982)

𝜏 (𝛾) = 2 trace(Σ11) + 2 trace(Σ22) − 2 trace
((

Σ2
11 Σ11Σ12

Σ22Σ21 Σ2
22

)1/2)
. (12)

If 𝜉 and 𝜁 are univariate random variables, a more explicit formula can easily
be derived. Let the covariance matrix be given by

Σ =

(
𝜎2

1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

)

with 𝜌 ∈ [0, 1) and 𝜎1, 𝜎2 > 0. Then, using an identity provided in (Levinger
1980), we can compute the square root of the 2 × 2 matrix appearing in (12) and
obtain

𝜏 (𝛾) = 2
(
𝜎2

1 + 𝜎2
2 −

√︃
𝜎4

1 + 𝜎4
2 + 2𝜎2

1𝜎
2
2
√︁

1 − 𝜌2
)
. (13)

If 𝜎1 = 𝜎2 = 𝜎 for some 𝜎 > 0, this expression simplifies to

𝜏 (𝛾) = 2𝜎2
(
2 −

√︃
2 + 2

√︁
1 − 𝜌2

)
.

As to be expected, the transport dependency between 𝜉 and 𝜁 is a strictly
increasing function of the correlation 𝜌2. Its minimal value is 0 for 𝜌 = 0 and
its maximal value is (4 − 2

√
2) 𝜎2 ≈ 1.2𝜎2 for 𝜌 = ±1 (if 𝜎1 = 𝜎2 = 𝜎). Note that

the mutual information and the Euclidean distance covariance also have closed
forms in the bivariate normal setting. These are given by𝑀 (𝛾) = − log(1−𝜌2)/2
and

dcov2(𝛾) = 4𝜎2

𝜋

(
𝜌 arcsin 𝜌 +

√︁
1 − 𝜌2 − 𝜌 arcsin(𝜌/2) −

√︁
4 − 𝜌2 + 1

)
,

see Gelfand 1959 and Székely et al. 2007. Figure 5 depicts how the values of 𝜏
compare to these measures of dependency as a function of 𝜌 .

3 General properties

The transport dependency features several desirable traits for a measure of statistical
association. In this section, we discuss a series of its general properties, including
convexity, symmetry, continuity, and the behavior under convolutions. We also
establish three distinct upper bounds, one of which corresponds to the special case
of 𝜏 when movement of mass along the space 𝑋 is forbidden. This naturally leads to
the definition of the marginal transport dependency.
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Figure 5: Behavior of selected dependency measures in the bivariate case 𝜉, 𝜁 ∼ N (0, 1)
with cov(𝜉, 𝜁 ) = 𝜌 , as discussed in Example 1. Graph (a) shows the mutual information
(which diverges as 𝜌2 → 1), the Euclidean distance covariance (3), the marginal transport
dependency (2), and the general transport dependency as function of 𝜌2. Graph (b) shows
the latter three quantities normalized such that their respective maximal value equals 1
for 𝜌2 = 1. See the forthcoming Example 5 for a closed form of the marginal transport
dependency 𝜏𝑌 in this setting.

Convexity and invariance. The optimal transport cost 𝑇𝑐 is convex in both of
its arguments. As a consequence, the transport dependency 𝜏 can also be shown to
be convex, albeit with some restrictions. Following the arguments in Villani 2008,
Theorem 4.8, it is straightforward to establish convexity on subsets of P (𝑋 ×𝑌 ) that
share (at least) one marginal.

Proposition 1 (convexity): Let 𝑋 and 𝑌 be Polish spaces and 𝑐 a cost function on
𝑋 × 𝑌 . Fix marginal distributions 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ). Then the transport
dependency 𝜏 is convex when restricted to C (𝜇, ·) or C (·, 𝜈).

Proof. Let 𝛾0, 𝛾1 ∈ C (𝜇, ·) with second marginals 𝜈𝑖 ∈ P (𝑌 ) for 𝑖 ∈ {0, 1}, and let
𝜋∗
𝑖 be an optimal transport plan between 𝛾𝑖 and 𝜇 ⊗ 𝜈𝑖 with respect to 𝑐 . Then,

defining 𝛾𝑡 = (1− 𝑡)𝛾0 + 𝑡𝛾1 for 𝑡 ∈ [0, 1] (and similarly 𝜈𝑡 ), we find 𝛾𝑡 ∈ C (𝜇, 𝜈𝑡 ) and
𝜋𝑡 = (1 − 𝑡)𝜋∗

0 + 𝑡𝜋∗
1 ∈ C (𝛾𝑡 , 𝜇 ⊗ 𝜈𝑡 ). Hence,

𝜏 (𝛾𝑡 ) = 𝑇𝑐 (𝛾𝑡 , 𝜇 ⊗ 𝜈𝑡 ) ≤ 𝜋𝑡𝑐 = (1 − 𝑡) 𝜏 (𝛾0) + 𝑡 𝜏 (𝛾1),
which establishes convexity on C (𝜇, ·). The result on C (·, 𝜈) follows analogously. □

Note that the marginal restrictions on the convexity in Proposition 1 are reasonable,
since 𝜏 cannot be convex on the whole space P (𝑋 × 𝑌 ). In fact, if it were, then

0 ≤ 2𝜏
(
𝛿𝑧1/2 + 𝛿𝑧2/2

) ≤ 𝜏 (𝛿𝑧1) + 𝜏 (𝛿𝑧2) = 0,

where 𝛿𝑧𝑖 denotes the point mass at 𝑧𝑖 for points 𝑧1, 𝑧2 ∈ 𝑋 ×𝑌 . Pursuing this thought
further, it is easy to see that 𝜏 would have to vanish on all empirical measures – which
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it clearly does not. The same argument holds for any other dependency measure
as soon as it assigns the value 0 to point measures, which shows that convexity on
all of P (𝑋 × 𝑌 ) is generally not desirable. On the contrary, it is intuitive to expect
the amount of dependency inherent in 𝑡𝛾1 + (1 − 𝑡)𝛾2 to exceed the one in 𝛾1 or 𝛾2
individually if the supports are sufficiently distinct.

Recalling that 𝜏 (𝜇 ⊗ 𝜈) = 0 for any 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ), one interesting
conclusion of Proposition 1 is that the map 𝑡 ↦→ 𝜏 (𝛾𝑡 ) with 𝛾𝑡 = (1− 𝑡)𝛾 + 𝑡 (𝜇 ⊗𝜈) for
𝛾 ∈ C (𝜇, 𝜈) and 𝑡 ∈ [0, 1] is convex, monotonically decreasing, and that it satisfies

𝜏 (𝛾𝑡 ) ≤ (1 − 𝑡) 𝜏 (𝛾). (14)

Therefore, the contamination of 𝛾 with an independent contribution consistently
decreases the transport dependency. When 𝑐 is a metric, we even find equality

𝜏 (𝛾𝑡 ) = (1 − 𝑡) 𝜏 (𝛾)
for all 𝑡 ∈ [0, 1]. In this case, the optimal transport plan 𝜋∗

𝑡 mediating between 𝛾𝑡
and 𝜇 ⊗ 𝜈 will not move the mass 𝑡 (𝜇 ⊗ 𝜈) at all. Only the transportation of (1 − 𝑡) 𝛾
to the remainder (1 − 𝑡) (𝜇 ⊗ 𝜈) contributes to 𝜏 (𝛾𝑡 ), which can be validated via the
dual formulation (10):

𝜏 (𝛾𝑡 ) = sup
(
𝛾𝑡 𝑓 − (𝜇 ⊗ 𝜈) 𝑓 ) = (1 − 𝑡) sup

(
𝛾 𝑓 − (𝜇 ⊗ 𝜈) 𝑓 ) = (1 − 𝑡) 𝜏 (𝛾),

where both suprema are taken over 𝑓 ∈ Lip1(𝑋 × 𝑌 ) with respect to 𝑐 .

Next, we shed some light on the symmetries of the transport dependency 𝜏 . They
follow from a fundamental statement of invariance of the optimal transport cost (a
proof is provided in Appendix A).

Lemma 1: Let 𝑋 and 𝑌 be Polish spaces and let 𝑐 be a cost function on 𝑌 .
Consider a measurable function 𝑓 : 𝑋 → 𝑌 and let 𝑐 𝑓 denote the induced cost
function on 𝑋 defined by 𝑐 𝑓 (𝑥, 𝑥 ′) = 𝑐

(
𝑓 (𝑥), 𝑓 (𝑥 ′)) . Then for any 𝜇, 𝜈 ∈ P (𝑋 ),

𝑇𝑐 (𝑓∗𝜇, 𝑓∗𝜈) = 𝑇𝑐 𝑓 (𝜇, 𝜈) .

Let us consider a measurable function 𝑓 that maps 𝑋 × 𝑌 into itself. In order to be
able to apply Lemma 1 to 𝜏 (𝛾) for 𝛾 ∈ C (𝜇, 𝜈) ⊂ P (𝑋 × 𝑌 ), we have to require that
𝑓∗(𝜇 ⊗ 𝜈) is again a product measure of, say, distributions 𝜇′ and 𝜈 ′ in P (𝑋 ) and
P (𝑌 ). When 𝑓∗𝛾 has the same marginals 𝜇′ and 𝜈 ′, we may conclude

𝜏𝑐 (𝑓∗𝛾) = 𝜏𝑐 𝑓 (𝛾).
If, in addition, applying 𝑓 does not affect the costs 𝑐 , meaning that 𝑐 = 𝑐 𝑓 , we even
obtain the invariance relation

𝜏𝑐 (𝑓∗𝛾) = 𝜏𝑐 (𝛾) . (15)

This observation is particularly potent if 𝑐 is a function of marginal costs.
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Proposition 2 (invariance): Let 𝑋 and 𝑌 be Polish spaces and let 𝑐 be a cost
function on 𝑋 × 𝑌 satisfying

𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = ℎ
(
𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)

)
(16)

for marginal costs 𝑐𝑋 and 𝑐𝑌 on 𝑋 and 𝑌 , and a measurable function
ℎ : [0,∞]2 → [0,∞]. If 𝑓𝑋 : 𝑋 → 𝑋 and 𝑓𝑌 : 𝑌 → 𝑌 are measurable maps
that leave 𝑐𝑋 and 𝑐𝑌 invariant, then 𝑓 = 𝑓𝑋 × 𝑓𝑌 leaves 𝑐 invariant and (15) holds
for any 𝛾 ∈ P (𝑋 × 𝑌 ).

Proof. For 𝛾 ∈ C (𝜇, 𝜈) with 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ), it is sufficient to observe that
𝑐 𝑓 = 𝑐 as well as 𝑓∗(𝜇 ⊗ 𝜈) = 𝑓𝑋∗𝜇 ⊗ 𝑓𝑌∗𝜈 and 𝑓∗𝛾 ∈ C (𝑓𝑋∗𝜇, 𝑓𝑌∗𝜈), which makes
Lemma 1 applicable. □

If 𝑐𝑋 and 𝑐𝑌 are (based on) metrics and 𝜉 and 𝜁 are random elements on 𝑋 and 𝑌 , we
conclude that applying isometries to either 𝜉 or 𝜁 does not change the value 𝜏 (𝜉, 𝜁 ).
In other words, 𝜏 measures dependency in a way that is indifferent to isometric
transformations on the margins, a property that is shared by the distance covariance
(4). We also note that Proposition 2 can readily be generalized to cost preserving
maps between distinct Polish spaces.

Example 2 (invariance in Euclidean space): Let 𝜉 and 𝜁 be random vectors in
𝑋 = R𝑟 and 𝑌 = R𝑞 . If 𝑐𝑋 and 𝑐𝑌 denote the respective Euclidean metrics and 𝑐
takes the form ℎ(𝑐𝑋 , 𝑐𝑌 ), for example 𝑐 = 𝑐2

𝑋 + 𝑐2
𝑌 as in Example 1, Proposition 2

asserts that
𝜏 (𝜉, 𝜁 ) = 𝜏 (𝐴 𝜉 + 𝑎, 𝐵 𝜁 + 𝑏)

for all orthogonal matrices 𝐴 ∈ R𝑟×𝑟 , 𝐵 ∈ R𝑞×𝑞 as well as vectors 𝑎 ∈ R𝑟 ,
𝑏 ∈ R𝑞 .

Continuity and convergence. The optimal transport cost 𝑇𝑐 with lower semi-
continuous base costs 𝑐 is again lower semi-continuous with respect to the weak
convergence of measures. This property carries over to the transport dependency.

Proposition 3 (lower semi-continuity): Let 𝑋 and 𝑌 be Polish spaces and let 𝑐
be a cost function on 𝑋 × 𝑌 . Then 𝜏 is lower semi-continuous with respect to
weak convergence.

Proof. Let (𝛾𝑛)𝑛∈N ⊂ P (𝑋 × 𝑌 ) be a sequence of probability measures that weakly
converges to 𝛾 ∈ C (𝜇, 𝜈) for 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ). By the continuous mapping
theorem, the respective marginals (𝜇𝑛)𝑛∈N and (𝜈𝑛)𝑛∈N weakly converge to 𝜇 and 𝜈 .
According to Billingsley 2013, Theorem 2.8, this implies weak convergence of the
product measures 𝜇𝑛 ⊗ 𝜈𝑛 to 𝜇 ⊗ 𝜈 .



3. General properties 155

The result of the proposition now follows along the lines of the proof of the lower
semi-continuity of the optimal transport cost (see for example Santambrogio 2015,
Proposition 7.4, which requires only slight adaptations to make it work for sequences
in both arguments of 𝑇𝑐 ). □

To approach proper continuity of 𝜏 , we will need a stronger set of assumptions, since
the optimal transport cost 𝑇𝑐 is in general not continuous under weak convergence,
even for continuous costs 𝑐 (cf. Santambrogio 2015, Proposition 7.4). Indeed, we have
to sharpen the notion of convergence 𝛾𝑛 → 𝛾 in P (𝑋 ×𝑌 ). To this end, we equip the
Polish space 𝑋 with a compatible metric 𝑑𝑋 that (completely) metrizes its topology.
For 𝑝 ≥ 1, we define the set of probability distributions with finite 𝑝-th moment by

P𝑝 (𝑋 ) =
{
𝜇 ∈ P (𝑋 )

�� 𝜇 𝑑𝑝𝑋 (·, 𝑥0) < ∞ for some 𝑥0 ∈ 𝑋 }
,

and we say that a sequence (𝜇𝑛)𝑛∈N in P𝑝 (𝑋 ) converges 𝑝-weakly to 𝜇 ∈ P𝑝 (𝑋 ) if

𝜇𝑛 ⇀ 𝜇 and 𝜇𝑛 𝑑𝑋 (·, 𝑥0)𝑝 → 𝜇 𝑑𝑋 (·, 𝑥0)𝑝 (17)

as 𝑛 → ∞ for some 𝑥0 ∈ 𝑋 . It is a well known fact (going back to Mallows 1972) that
the 𝑝-Wasserstein distance metrizes this particular form of convergence (see Villani
2008, Theorem 6.9 for a general proof), so (17) is equivalent to 𝑇𝑑𝑝𝑋 (𝜇𝑛, 𝜇) → 0 as
𝑛 → ∞. Note that the anchor point 𝑥0 in these definitions does not matter and can
be replaced by any other point in 𝑋 .

On products 𝑋 × 𝑌 of two Polish metric spaces (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ), there are many
different ways to choose a compatible metric. For simplicity, we pick

𝑑 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝑑𝑋 (𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2) (18)

for (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 in the following statement, even though any equivalent
metric, like 𝑑 = max(𝑑𝑋 , 𝑑𝑌 ), would work as well. The proof can be found in
Appendix A.

Proposition 4 (continuity): Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be Polish metric spaces and
let 𝑐 be a continuous cost function on 𝑋 ×𝑌 bounded by 𝑐 ≤ 𝑑𝑝 for 𝑝 ≥ 1 and 𝑑
as in (18). If the sequence (𝛾𝑛)𝑛∈N converges 𝑝-weakly to 𝛾 in P𝑝 (𝑋 × 𝑌 ), then
𝜏 (𝛾𝑛) → 𝜏 (𝛾).

One significant consequence of Proposition 4 is the guarantee of consistency when
empirically estimating 𝜏 (𝛾). Let (𝜉𝑖 , 𝜁𝑖) ∼ 𝛾 for 𝑖 ∈ {1, . . . , 𝑛} be 𝑛 independent and
identically distributed random variables. We denote the empirical measure associated
to 𝛾 by

𝛾𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛿 (𝜉𝑖 ,𝜁𝑖 ) , (19)

which is a random element in P (𝑋 × 𝑌 ). The next result shows that we can simply
plug 𝛾𝑛 in 𝜏 to obtain a strongly consistent estimator of 𝜏 (𝛾).
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Theorem 2 (consistency): Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be Polish metric spaces and 𝑐
a continuous cost function on 𝑋 × 𝑌 bounded by 𝑐 ≤ 𝑑𝑝 for some 𝑝 ≥ 1 and 𝑑
as in (18). If 𝛾 ∈ P𝑝 (𝑋 × 𝑌 ), then almost surely

lim
𝑛→∞𝜏 (𝛾𝑛) = 𝜏 (𝛾).

Proof. We know that 𝛾𝑛 ⇀ 𝛾 almost surely as 𝑛 → ∞ (Varadarajan 1958). Further-
more, for any anchor point (𝑥0, 𝑦0) ∈ 𝑋 ×𝑌 , the strong law of large numbers implies
that the convergence

𝛾𝑛 𝑑
(·, (𝑥0, 𝑦0)

)𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

𝑑
((𝜉𝑖 , 𝜁𝑖), (𝑥0, 𝑦0)

)𝑝 → 𝛾 𝑑
(·, (𝑥0, 𝑦0)

)𝑝
< ∞

holds almost surely as 𝑛 → ∞. This makes Proposition 4 applicable and the assertion
follows. □

Later on, when we consider the transport correlation coefficients 𝜌𝛼 in Section 5,
we face costs that are normalized in a way that depends on 𝛾 . In order to show that
continuity and consistency are preserved in this setting, we need a slight extension
of our previous results to uniformly perturbed cost functions. We write ∥ · ∥∞ to
denote the sup-norm of a real valued function and use the convention 0/0 = 1 in the
following statement.

Proposition 5 (varying costs): Let 𝑋 and 𝑌 be Polish spaces and let 𝑐 and 𝑐𝑛 be
cost functions on 𝑋 × 𝑌 that satisfy ∥𝑐/𝑐𝑛 − 1∥∞ → 0 as 𝑛 → ∞. Let (𝛾𝑛)𝑛∈N
be a sequence in P (𝑋 × 𝑌 ) and 𝛾 ∈ P (𝑋 × 𝑌 ) such that 𝜏𝑐 (𝛾) < ∞. Then

lim
𝑛→∞𝜏𝑐 (𝛾𝑛) = 𝜏𝑐 (𝛾) implies lim

𝑛→∞𝜏𝑐𝑛 (𝛾𝑛) = 𝜏𝑐 (𝛾) . (20)

Proof. We set 𝑎𝑛 = max
(∥𝑐/𝑐𝑛−1∥∞, ∥𝑐𝑛/𝑐−1∥∞

)
and observe 𝑎𝑛 → 0 as 𝑛 → ∞ by

the assumption of uniform convergence. Applying Lemma 4 provided in Appendix A,
we can control the deviation of 𝜏𝑐𝑛 from 𝜏𝑐 and find, as 𝑛 → ∞,

|𝜏𝑐𝑛 (𝛾𝑛) − 𝜏𝑐 (𝛾) | ≤ |𝜏𝑐𝑛 (𝛾𝑛) − 𝜏𝑐 (𝛾𝑛) | + |𝜏𝑐 (𝛾𝑛) − 𝜏𝑐 (𝛾) |
≤ 𝑎𝑛 (1 + 𝑎𝑛) 𝜏𝑐 (𝛾𝑛) + |𝜏𝑐 (𝛾𝑛) − 𝜏𝑐 (𝛾) | → 0. □

We also want to present an alternative continuity statement with explicit bounds in
case that 𝑐 is equal to the power of a metric 𝑑 on 𝑋 × 𝑌 . This time, we need nothing
more than the triangle inequality, so 𝑑 may in fact be a pseudo-metric.

Theorem 3: Let 𝑋 and 𝑌 be Polish spaces and let 𝑐 = 𝑑𝑝 for a (pseudo-)metric 𝑑
on 𝑋 × 𝑌 . Assume that 𝛾,𝛾 ′ ∈ P (𝑋 × 𝑌 ) with 𝜏 (𝛾), 𝜏 (𝛾 ′) < ∞. Then, for any
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𝑝 ≥ 1, ��𝜏 (𝛾)1/𝑝 − 𝜏 (𝛾 ′)1/𝑝 �� ≤ 𝑇𝑐 (𝛾,𝛾 ′)1/𝑝 +𝑇𝑐 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′)1/𝑝 .

Proof. Since 𝑑 satisfies the triangle inequality, so does 𝜌 = 𝑇 1/𝑝
𝑐 (see Villani 2008,

Definition 6.1). Furthermore, the stated inequality is trivial if the right hand side
is ∞. Thus, we can assume 𝜌 (𝛾,𝛾 ′) < ∞ and 𝜌 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′) < ∞. Then also
𝜌 (𝛾 ′, 𝜇 ⊗ 𝜈) ≤ 𝜌 (𝛾 ′, 𝜇′ ⊗ 𝜈 ′) + 𝜌 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′) < ∞. Now, the result follows from
applying the reverse triangle inequality:��𝜏 (𝛾)1/𝑝 − 𝜏 (𝛾 ′)1/𝑝 �� = ��𝜌 (𝛾, 𝜇 ⊗ 𝜈) − 𝜌 (𝛾 ′, 𝜇′ ⊗ 𝜈 ′)��

≤
��𝜌 (𝛾, 𝜇 ⊗ 𝜈) − 𝜌 (𝛾 ′, 𝜇 ⊗ 𝜈)�� + ��𝜌 (𝛾 ′, 𝜇 ⊗ 𝜈) − 𝜌 (𝛾 ′, 𝜇′ ⊗ 𝜈 ′)��

≤ 𝜌 (𝛾,𝛾 ′) + 𝜌 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′) . □

If the metric 𝑑 on 𝑋 ×𝑌 in the statement above is given in terms of marginal metrics
𝑑𝑋 and 𝑑𝑌 on 𝑋 and 𝑌 , like 𝑑 = 𝑑𝑋 + 𝑑𝑌 , then one can apply the triangle inequality
and upper bound

𝑇𝑐 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′)1/𝑝 ≤ 𝑇𝑐 (𝜇 ⊗ 𝜈, 𝜇′ ⊗ 𝜈)1/𝑝 +𝑇𝑐 (𝜇′ ⊗ 𝜈, 𝜇′ ⊗ 𝜈 ′)1/𝑝

≤ 𝑇𝑐𝑋 (𝜇, 𝜇′)1/𝑝 +𝑇𝑐𝑌 (𝜈, 𝜈 ′)1/𝑝

≤ 2𝑇𝑐 (𝛾,𝛾 ′)1/𝑝 (21)

for 𝑐𝑋 = 𝑑𝑝𝑋 and 𝑐𝑌 = 𝑑𝑝𝑌 . In this situation, Theorem 3 implies that 𝜏1/𝑝 is Lipschitz
continuous with respect to the 𝑝-Wasserstein distance, which can be used to deduce
rates of convergence of the empirically estimated transport dependency 𝜏 (𝛾𝑛). More
specifically, combining Theorem 3 and observation (21) yields��𝜏 (𝛾𝑛)1/𝑝 − 𝜏 (𝛾)1/𝑝 �� ≤ 3𝑇𝑐 (𝛾𝑛, 𝛾)1/𝑝 . (22)

Any result on convergence rates 𝑇𝑐 (𝛾𝑛, 𝛾)1/𝑝 → 0 can therefore be used to derive
analog rates for 𝜏 (𝛾𝑛)1/𝑝 → 𝜏 (𝛾)1/𝑝 . One example is a bound on the 𝑝-Wasserstein
distance for compact spaces derived by Weed and Bach 2019. For any 𝑠 greater than
the upper Wasserstein dimension of 𝛾 (as defined in their work), their results imply

E
[��𝜏 (𝛾𝑛)1/𝑝 − 𝜏 (𝛾)1/𝑝 ��] ≤ 𝐾 𝑛−1/𝑠 ,

where𝐾 > 0 is a constant that does not depend on𝑛. Other recent convergence result
that can be applied in the context of (22) include distributional limits on countable
spaces (Tameling et al. 2019) and finite sample convergence rates on unbounded
spaces (Lei 2020).

Convolutions. In many statistical applications, the sum of independent random
elements plays a distinguished role. Regression models, for example, assume a
relation of the form 𝜁 = 𝜑 (𝜉) for random variables 𝜁 and 𝜉 determined by a function
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𝜑 : 𝑋 → 𝑌 between two vector spaces. Instead of observing samples of 𝜉 and 𝜁
directly, however, only polluted versions 𝜉 + 𝜖𝑋 and 𝜁 + 𝜖𝑌 are accessible, where 𝜖𝑋
and 𝜖𝑌 are considered to be noise contributions independent of 𝜉 and 𝜁 . In this case,
the distribution 𝜇 of 𝜉 and the actually observed distribution 𝜇̃ of 𝜉 + 𝜖𝑋 are related
by a convolution:

𝜇̃ = 𝜇 ∗ 𝜅𝑋 , where (𝜇 ∗ 𝜅𝑋 ) (𝐴) =
∫

1𝐴 (𝑥1 + 𝑥2) (𝜇 ⊗ 𝜅𝑋 ) (d𝑥1, d𝑥2)

for any Borel-measurable set𝐴 ⊂ 𝑋 , and where 𝜅𝑋 denotes the law of 𝜖𝑋 . An analog
relation holds for 𝜁 ∼ 𝜈 with noise distribution 𝜅𝑌 , and the joint distributions of
(𝜉, 𝜁 ) and (𝜉 + 𝜖𝑋 , 𝜁 + 𝜖𝑌 ) are connected by

𝛾 = 𝛾 ∗ 𝜅, where 𝜅 = 𝜅𝑋 ⊗ 𝜅𝑌 .
In the following, we investigate how the transport dependency 𝜏 (𝛾 ∗ 𝜅) is related to
the (noise-free) value 𝜏 (𝛾). As preparation, we take a look at the effect of convolutions
on optimal transport costs if the base cost is translation invariant. We work in Polish
vector spaces, by which we mean topological vector spaces that are Polish; examples
include separable Banach spaces. A proof of the following statement is provided in
Appendix A.

Lemma 2: Let𝑋 be a Polish vector space and 𝑐 (𝑥1, 𝑥2) = ℎ(𝑥1−𝑥2) for 𝑥1, 𝑥2 ∈ 𝑋
a translation invariant cost function on 𝑋 . For any probability measures 𝜇, 𝜈 ,
and 𝜅 in P (𝑋 ),

𝑇𝑐 (𝜇 ∗ 𝜅, 𝜈 ∗ 𝜅) ≤ 𝑇𝑐 (𝜇, 𝜈) and 𝑇𝑐 (𝜇, 𝜇 ∗ 𝜅) ≤ 𝜅ℎ.

When trying to apply Lemma 2 to the transport dependency 𝜏 (𝛾) = 𝑇𝑐 (𝛾, 𝜇 ⊗ 𝜈)
for 𝛾 ∈ C (𝜇, 𝜈) in a sensible manner, we have to make sure that the convolution of
𝜇 ⊗ 𝜈 with a kernel 𝜅 ∈ P (𝑋 × 𝑌 ) is again a product distribution. As long as we
restrict ourselves to product kernels of the form 𝜅 = 𝜅𝑋 ⊗ 𝜅𝑌 with 𝜅𝑋 ∈ P (𝑋 ) and
𝜅𝑌 ∈ P (𝑌 ), this condition is always satisfied and Lemma 2 can be put to use.

Theorem 4 (convolution): Let 𝑋 and 𝑌 be Polish vector spaces and let 𝑐 be a
cost function on 𝑋 × 𝑌 that satisfies 𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = ℎ(𝑥1 − 𝑥2, 𝑦1 − 𝑦2) for
(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 and some ℎ : 𝑋 × 𝑌 → [0,∞]. For any 𝛾 ∈ P (𝑋 × 𝑌 )
and 𝜅 = 𝜅𝑋 ⊗ 𝜅𝑌 with 𝜅𝑋 ∈ P (𝑋 ) and 𝜅𝑌 ∈ P (𝑌 ), it holds that

𝜏 (𝛾 ∗ 𝜅) ≤ 𝜏 (𝛾) .

If additionally 𝑐 = 𝑑𝑝 and 𝜏 (𝛾) < ∞ for a (pseudo-)metric 𝑑 on𝑋 ×𝑌 with 𝑝 ≥ 1,
then

𝜏 (𝛾)1/𝑝 − 𝜏 (𝛾 ∗ 𝜅)1/𝑝 ≤ 2(𝜅ℎ)1/𝑝 .

Proof. One can easily check that 𝛾 ∗𝜅 ∈ C (𝜇 ∗𝜅𝑋 , 𝜈 ∗𝜅𝑌 ) and (𝜇 ⊗𝜈) ∗𝜅 = (𝜇 ∗𝜅𝑋 ) ⊗
(𝜈 ∗ 𝜅𝑌 ). Therefore, 𝜏 (𝛾 ∗ 𝜅) = 𝑇𝑐

(
𝛾 ∗ 𝜅, (𝜇 ⊗ 𝜈) ∗ 𝜅) and Lemma 2 can be applied,
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which yields the first result. For the second result, we recall Theorem 3 and use the
second part of Lemma 2 to find

𝜏 (𝛾)1/𝑝 − 𝜏 (𝛾 ∗ 𝜅)1/𝑝 ≤ 𝑇𝑐 (𝛾,𝛾 ∗ 𝜅)1/𝑝 +𝑇𝑐
(
𝜇 ⊗ 𝜈, (𝜇 ⊗ 𝜈) ∗ 𝜅)1/𝑝 ≤ 2(𝜅ℎ)1/𝑝 ,

which finishes the proof. □

Theorem 4 unveils a fundamental property of the transport dependency: if a cou-
pling 𝛾 is blurred by the convolution with a product kernel, then 𝜏 never increases.
Intuitively, this is a desirable trait. In common regression settings with Gaussian
noise, for example, it guarantees that 𝜏 monotonically decreases with increasing
standard deviation of the noise. At the same time, the second part of Theorem 4 lets
us control by how much we decrease the transport dependency at most.

Example 3 (Gaussian additive noise): Let 𝑋 = R𝑟 and 𝑌 = R𝑞 and consider
squared Euclidean costs of the form 𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = ℎ(𝑥1 − 𝑥2, 𝑦1 − 𝑦2) =
∥𝑥1 − 𝑥2∥2 + ∥𝑦1 − 𝑦2∥2, where 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌 . Under Gaussian
noise contributions 𝜅𝑋 ∼ N (0, Σ𝑋 ) and 𝜅𝑌 ∼ N (0, Σ𝑌 ), where Σ𝑋 and Σ𝑌 are
covariance matrices in R𝑟×𝑟 and R𝑞×𝑞 , Theorem 4 states that

𝜏 (𝛾)1/2 ≥ 𝜏 (𝛾 ∗ 𝜅)1/2 ≥ 𝜏 (𝛾)1/2 − 2
(
trace Σ𝑋 + trace Σ𝑌

)1/2

for any 𝛾 ∈ P (𝑋 × 𝑌 ) with 𝜏 (𝛾) < ∞.

Example 4 (Manhattan-type costs): If
(
𝑋, ∥ · ∥𝑋

)
and

(
𝑌, ∥ · ∥𝑌

)
are separable

Banach spaces and the costs 𝑐 are given by ℎ = ∥ · ∥𝑋 + ∥ · ∥𝑌 , application of
Theorem 4 yields

𝜏 (𝛾) ≥ 𝜏 (𝛾 ∗ 𝜅) ≥ 𝜏 (𝛾) − 2
(∫

∥𝑥 ∥𝑋 𝜅𝑋 (d𝑥) +
∫

∥𝑦∥𝑌 𝜅𝑌 (d𝑦)
)

for any 𝛾 ∈ P (𝑋 × 𝑌 ), 𝜅𝑋 ∈ P (𝑋 ), and 𝜅𝑌 ∈ P (𝑌 ), as long as 𝜏 (𝛾) < ∞ holds.

The role of convolutions in the theory of optimal transport has recently been studied
in the context of smoothed optimal transport, where 𝑇𝜅𝑐 (𝜇, 𝜈) = 𝑇𝑐 (𝜇 ∗ 𝜅, 𝜈 ∗ 𝜅) for a
suitable kernel 𝜅, often Gaussian, is used as an approximation of 𝑇𝑐 (Goldfeld et al.
2020; Goldfeld and Greenewald 2020; Chen and Niles-Weed 2021). This smoothed
transport cost has a series of desirable properties that distinguish it from vanilla
optimal transport. Most notably, it does not suffer from the curse of dimensionality
when estimated from empirical data, which makes it a promising candidate for
applications.

Upper bounds. Our next goal is to derive upper bounds of the transport depen-
dency. We take the common route of bounding the infimum in definition (8) of the
optimal transport problem by explicitly constructing transport plans 𝜋 with feasible
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marginals. The overall idea behind our constructions is to restrict the transport in
𝑋 × 𝑌 to the fibers 𝑋 × {𝑦} and {𝑥} × 𝑌 for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . For this reason, we
often have to deal with costs of the form 𝑐 (𝑥,𝑦1, 𝑥,𝑦2) or 𝑐 (𝑥1, 𝑦, 𝑥2, 𝑦), and we will
thus assume that the cost function 𝑐 is controlled by suitable marginal costs 𝑐𝑋 and
𝑐𝑌 on 𝑋 and 𝑌 via

𝑐𝑋 (𝑥1, 𝑥2) ≥ sup
𝑦∈𝑌

𝑐 (𝑥1, 𝑦, 𝑥2, 𝑦) and 𝑐𝑌 (𝑦1, 𝑦2) ≥ sup
𝑥∈𝑋

𝑐 (𝑥,𝑦1, 𝑥,𝑦2) (23)

for all (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 . To gain some intuition for the (in total three) upper
bounds we propose in the following, Figure 6 can be consulted. We start with a
simple but fundamental inequality that controls 𝜏 (𝛾) in terms of the diameters of
the marginal distributions of 𝛾 .

Proposition 6: Let 𝛾 ∈ C (𝜇, 𝜈) for 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) in Polish spaces 𝑋
and 𝑌 . If the cost function 𝑐 on 𝑋 × 𝑌 satisfies the marginal bounds (23), then

𝜏 (𝛾) ≤ diam𝑐𝑌 𝜈. (24)

By symmetry, the inequality 𝜏 (𝛾) ≤ diam𝑐𝑋 𝜇 holds as well.

Proof. In order to bound 𝑇𝑐 from above, we explicitly construct a transport plan 𝜋1
that mediates between 𝛾 and 𝜇 ⊗ 𝜈 . We choose it in such a way that no transport
within 𝑋 takes place. To this end, let 𝑟 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = (𝑥1, 𝑦1, 𝑥1, 𝑦2) be a mapping
from 𝑋 × 𝑌 to itself. We set 𝜋1 = 𝑟∗(𝛾 ⊗ 𝛾), which can easily be checked to be an
element in C (𝛾, 𝜇 ⊗ 𝜈). Therefore,

𝑇𝑐 (𝛾, 𝜇 ⊗ 𝜈) ≤ 𝜋1𝑐 =
∫

𝑐 (𝑥1, 𝑦1, 𝑥1, 𝑦2) 𝛾 (d𝑥1, d𝑦1) 𝛾 (d𝑥2, d𝑦2) ≤ (𝜈 ⊗ 𝜈) 𝑐𝑌 , (25)

where we made use of condition (23) to bound 𝑐 by 𝑐𝑌 . This establishes 𝜏 (𝛾) ≤
diam𝑐𝑌 𝜈 . □

The preceding arguments can equivalently be formulated in the language of random
variables. When (𝜉, 𝜁 ) ∼ 𝛾 and (𝜉 ′, 𝜁 ′) ∼ 𝜇 ⊗ 𝜈 , the construction of 𝜋1 above
corresponds to the dependency structure 𝜉 = 𝜉 ′, while 𝜁 and 𝜁 ′ remain independent.
This prevents any transport within the space 𝑋 . To clarify the transport along 𝑌 , we
can condition on 𝜉 = 𝑥 and slightly reformulate equation (25) as

𝜏 (𝛾) ≤
∫ (∫

𝑐𝑌 (𝑦1, 𝑦2) 𝛾 (𝑥, d𝑦1) 𝜈 (d𝑦2)
)
𝜇 (d𝑥) . (26)

The inner integral on the right hand side is the transport cost between 𝛾 (𝑥, ·) and 𝜈
along the product plan 𝜋𝑥 = 𝛾 (𝑥, ·) ⊗ 𝜈 . Thus, for each fixed 𝑥 , the plan 𝜋1 evenly
smears the measure 𝜈 into 𝛾 (𝑥, ·). If 𝜁 is a function of 𝜉 , meaning 𝜁 = 𝜑 (𝜉) for some
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coupling 𝛾 ∈ C (𝜇, 𝜈) indep. coupling 𝜇 ⊗ 𝜈 transport plan 𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈)

𝜋∗ : 𝜏 (𝛾) 𝜋1 : diam𝑐𝑌 𝜈 𝜋2 : diam𝑐𝑋𝑌 𝛾 𝜋3 : 𝜏𝑌 (𝛾)

Figure 6: Several different transport plans between 𝛾 ∈ C (𝜇 ⊗ 𝜈) and 𝜇 ⊗ 𝜈 for 𝛾 =
Unif{(1, 6), (2, 1), (4, 2), (4, 5)}. Each arrow corresponds to the movement of 1/16 parts
of mass. Graph (a) shows the optimal transport plan 𝜋∗ under 𝑙2 (or 𝑙1) costs on 𝑋 × 𝑌 = R2,
while the plans 𝜋1 to 𝜋3 in (b-d) correspond to the three upper bounds established in Propo-
sition 6 to 8. The example was chosen such that all bounds are different, and we find
𝜋∗𝑐 < 𝜋2𝑐 < 𝜋3𝑐 < 𝜋1𝑐 . The difference between 𝜋1 and 𝜋3 is that the vertical movement
of mass on the fiber 𝑥 = 4 is optimal in case of 𝜋3, while it is clearly not for 𝜋1. The plan
𝜋2 corresponds to the best assignment if transport is restricted to vertical and horizontal
movements.

measurable map 𝜑 : 𝑋 → 𝑌 , this implies that 𝜋𝑥 moves all mass from 𝜈 to the single
point 𝜑 (𝑥). Consequently, the vertical projection

𝑡 (𝑥,𝑦) = (
𝑥, 𝜑 (𝑥)) (27)

is the transport map that corresponds to 𝜋1. Indeed, one can check that the two
identities 𝑡∗(𝜇 ⊗ 𝜈) = 𝛾 and (𝑡, id)∗(𝜇 ⊗ 𝜈) = 𝜋1 hold in this setting.

While the upper bound diam𝑐𝑌 𝜈 will play an important role later on (see Section 4
and 5), it is apparent that the plan 𝜋1 leading to Proposition 6 is quite crude in general
and can likely be improved. The following two results do so in different ways.

Proposition 7: Let 𝛾 ∈ C (𝜇, 𝜈) for 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) in Polish spaces 𝑋
and 𝑌 . If the cost function 𝑐 on 𝑋 × 𝑌 satisfies the marginal bounds (23), then

𝜏 (𝛾) ≤ diam𝑐𝑋𝑌𝛾 ≤ min
(
diam𝑐𝑋 𝜇, diam𝑐𝑌 𝜈

)
, (28)

where 𝑐𝑋𝑌 : (𝑋 × 𝑌 )2 → [0,∞] is a cost function defined by

𝑐𝑋𝑌 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = min
(
𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)

)
. (29)

The idea of the proof is straightforward and similar to Proposition 6, in that we con-
struct a feasible transport plan 𝜋2 ∈ C (𝛾, 𝜇 ⊗ 𝜈) by vertical or horizontal movements.
This time, however, we do not globally enforce vertical or horizontal movements,
but we locally move mass along 𝑌 if 𝑐𝑌 ≤ 𝑐𝑋 and along 𝑋 otherwise. In Appendix A,
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we show that this idea indeed leads to a valid transport plan that attains the upper
bound in (28). Note that it is crucial that both 𝑐𝑋 and 𝑐𝑌 are symmetric, as there
is no guarantee that the constructed plan 𝜋2 has the correct marginals otherwise.
Furthermore, our arguments explicitly rely on the product structure of 𝜇 ⊗ 𝜈 , as
well as on the fact that 𝜇 and 𝜈 are the marginals of 𝛾 . As far as we can see, there is
thus no way to generalize the upper bounds in Proposition 6 and 7 to more generic
optimal transport costs 𝑇𝑐 (𝛾,𝛾 ′) with 𝛾 ′ ≠ 𝜇 ⊗ 𝜈 .

Analog to (27), we can again state an explicit transport map for the plan 𝜋2 in case
of (suitable) deterministic couplings. If 𝛾 = (id, 𝜑)∗𝜇 is induced by an invertible and
bimeasurable function 𝜑 , one can show that 𝜋2 = (𝑡, id)∗(𝜇 ⊗ 𝜈) for the mapping

𝑡 (𝑥,𝑦) =
{(
𝑥, 𝜑 (𝑥)) if 𝑐𝑌

(
𝑦, 𝜑 (𝑥)) ≤ 𝑐𝑋 (

𝜑−1(𝑦), 𝑥 ),(
𝜑−1(𝑦), 𝑦) else.

(30)

Marginal transport dependency. Finally, we present a third upper bound of the
transport dependency, which corresponds to the marginal transport dependency6

𝜏𝑌 (𝛾) = 𝜏𝑌𝑐𝑌 (𝛾) =
∫
𝑇𝑐𝑌

(
𝛾 (𝑥, ·), 𝜈 ) 𝜇 (d𝑥) (31)

that was already mentioned in the introduction. Again, we typically suppress the
dependence on 𝑐𝑌 in our notation if the costs are apparent from the context.

Proposition 8: Let 𝛾 ∈ C (𝜇, 𝜈) for 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) in Polish spaces 𝑋
and 𝑌 . If the cost function 𝑐 on 𝑋 × 𝑌 satisfies the marginal bounds (23) for a
continuous 𝑐𝑌 , then

𝜏 (𝛾) ≤ 𝜏𝑌 (𝛾) ≤ diam𝑐𝑌 𝜈. (32)

An analog inequality with the roles of (𝑋, 𝜇) and (𝑌, 𝜈) reversed holds if 𝑐𝑋 is
continuous.

This result is a natural refinement of Proposition 6: instead of choosing the condi-
tional plans 𝜋𝑥 between 𝛾 (𝑥, ·) and 𝜈 as product measures, as it is done in (26), they
are chosen optimally. Details can be found in Appendix A.

Besides its function as an upper bound, the marginal transport dependency is in-
teresting as a measure of association in its own right. Since 𝜏𝑌 disregards the cost
structure on 𝑋 , it is a promising candidate to quantify dependency in asymmetric
settings where points in 𝑋 cannot be moved from one to another in a meaningful
way, for instance if 𝑋 is categorical. One of the key characteristic of 𝜏𝑌 (𝛾) is that it
equals the upper bound diam𝑐𝑌 𝜈 if and only if 𝛾 is induced by a function from 𝑋 to
𝑌 (see Appendix A for a proof).

6Note that we have to assume that the mapping 𝑥 ↦→ 𝑇𝑐𝑌
(
𝛾 (𝑥, ·), 𝜈 ) is measurable for this definition

to make sense. If 𝑐𝑌 is continuous, measurability is guaranteed by Villani 2008, Corollary 5.22.
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Theorem 5 (maximal marginal transport dependency): Let 𝑋 and 𝑌 be Polish
spaces and 𝑐𝑌 a positive continuous cost function on 𝑌 . For any 𝛾 ∈ C (𝜇, 𝜈)
with 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and diam𝑐𝑌 𝜈 < ∞, the equality

𝜏𝑌 (𝛾) = diam𝑐𝑌 𝜈

holds if and only if 𝛾 = (id, 𝜑)∗𝜇 for a measurable function 𝜑 : 𝑋 → 𝑌 .

It is worth pointing out that the marginal transport dependency defined in equation
(31) is in fact a special case of the general transport dependency 𝜏 under costs of the
form

𝑐∞(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
{
𝑐𝑌 (𝑦1, 𝑦2) if 𝑥1 = 𝑥2,

∞ else.

This indicates that 𝜏𝑌 arises as limit case if movements within the space 𝑋 become
prohibitively expensive, such that all transport eventually withdraws to the fibers
{𝑥} × 𝑌 for 𝑥 ∈ 𝑋 . The following result, which is proved in Appendix A, confirms
that this intuition is accurate.

Theorem 6 (marginal transport dependency as limit): Let 𝑋 and 𝑌 be Polish
spaces. For 𝛼 > 0, let 𝑐𝛼 be a cost function on 𝑋 × 𝑌 that satisfies

𝑐𝛼 (𝑥1, 𝑦1, 𝑥2, 𝑦2)
{
= 𝑐𝑌 (𝑦1, 𝑦2) if 𝑥1 = 𝑥2,

≥ max
(
𝛼 𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)

)
else,

where 𝑐𝑌 is a continuous cost function on 𝑌 and 𝑐𝑋 a positive cost function on
𝑋 . Then, for any 𝛾 ∈ P (𝑋 × 𝑌 ),

lim
𝛼→∞𝜏𝑐𝛼 (𝛾) = 𝜏𝑐∞ (𝛾) = 𝜏

𝑌
𝑐𝑌 (𝛾) .

Example 5 (Multivariate Gaussian, part 2): We revisit the Gaussian setting of
Example 1. Recall that (𝜉, 𝜁 ) ∼ 𝛾 = N (𝜂, Σ), where 𝜂 is a mean vector and Σ a
covariance matrix with blocks Σ11, Σ12, Σ21 = Σ𝑇12 and Σ22. This time, we work
with costs of the form

𝑐𝛼 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝛼 ∥𝑥1 − 𝑥2∥2 + ∥𝑦1 − 𝑦2∥2 (33)

for𝛼 > 0. Since these costs can be interpreted as scaling 𝜉 by the factor
√
𝛼 under

the usual squared Euclidean distance 𝑐1, we can employ the same arguments as
in Example 1 and find expressions for 𝜏𝑐𝛼 via replacing Σ11 by 𝛼 Σ11 and Σ12 by√
𝛼 Σ12. Adapting equation (12) in this way yields

𝜏𝑐𝛼 (𝛾) = 2𝛼 trace(Σ11) + 2 trace(Σ22) − 2 trace
((

𝛼2Σ2
11 𝛼3/2 Σ11Σ12

𝛼1/2 Σ22Σ21 Σ2
22

)1/2)
.
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Figure 7: Transport dependency under increasing values of 𝛼 in the setting of Example 5.
The costs are given as weighted squared Euclidean distances of the form 𝑐𝛼 = 𝛼𝑐𝑋 + 𝑐𝑌 , see
equation (33). Shown is the actual transport dependency 𝜏𝑐𝛼 (𝛾) in the bivariate normal case
for 𝜎1 = 𝜎2 = 1 and 𝜌 = 0.75 (with optimal transport plan 𝜋∗

𝛼 ), as well as the average vertical
(𝜋∗
𝛼𝑐𝑌 ) and horizontal (𝜋∗

𝛼𝑐𝑋 ) transport cost. For 𝛼 = 0, transport along 𝑋 is free and thus
governs 𝜋∗

0 . For 𝛼 → ∞, movements along 𝑋 become prohibitively expensive and all mass is
eventually transported exclusively along 𝑌 (as predicted by Theorem 6).

According to Theorem 6, the right hand side converges to the marginal transport
dependency 𝜏𝑌𝑐𝑌 (𝛾) as 𝛼 → ∞, where 𝑐𝑌 is the squared Euclidean distance. In
the bivariate case (13), this limit can readily be calculated and reads

𝜏𝑌𝑐𝑌 (𝛾) = lim
𝛼→∞𝜏𝑐𝛼 (𝛾)

= lim
𝛼→∞ 2

(
𝛼 𝜎2

1 + 𝜎2
2 −

√︃
𝛼2𝜎4

1 + 𝜎4
2 + 2𝛼𝜎2

1𝜎
2
2
√︁

1 − 𝜌2
)

= 2𝜎2
2

(
1 −

√︁
1 − 𝜌2

)
. (34)

Figure 7 displays the average transport of mass occurring in this setting as a
function of 𝛼 .

Note that it is not straightforward to estimate the marginal transport dependency
from empirical data 𝛾𝑛 . Since the costs 𝑐∞ are not continuous, we cannot apply
Proposition 4 and thus cannot expect consistency of 𝜏𝑌 (𝛾𝑛). In fact, a similar obstacle
that affects other quantifiers of unstructured dependency, like the mutual information,
also arises here: in settings where 𝜇 is diffuse, empirical data 𝛾𝑛 with marginals 𝜇𝑛
and 𝜈𝑛 likely obeys functional relations 𝛾𝑛 = (id, 𝜑𝑛)∗𝜇𝑛 , in which case 𝜏𝑌 (𝛾𝑛) is not
informative (since it always equals diam𝑐𝑌 𝜈𝑛 via Theorem 5).

A usual counter measure in this situation is to preprocess 𝛾𝑛 . In Euclidean settings,
for example, it is common to first estimate a smooth density or to bin the data. In
both cases, one would typically pick a kernel size or bin width ℎ𝑛 that decreases to 0
as 𝑛 grows. If ℎ𝑛 is chosen suitably for the setting at hand, one obtains a consistent
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estimator (see Tsybakov 2008). In a certain sense, the limiting procedure of 𝛼 → ∞ in
Theorem 6 has a similar effect: a finite 𝛼 < ∞ allows for some leeway along the space
𝑋 when matching 𝛾𝑛 with 𝜇𝑛 ⊗ 𝜈𝑛 , and this leeway becomes progressively smaller as
𝛼 increases. Indeed, it is possible to find suitable sequences 𝛼𝑛 → ∞ so that 𝜏𝑐𝛼𝑛 (𝛾𝑛)
is a consistent estimator of 𝜏𝑌 (𝛾) under mild assumptions. The following application
of Theorem 6 serves as a proof of concept for this idea, even though the choice of 𝛼𝑛
can likely be improved.

Example 6 (estimation of marginal transport dependency): Let (𝑋,𝑑𝑋 ) and
(𝑌,𝑑𝑌 ) be Polish metric spaces, 𝑐𝑌 = 𝑑

𝑝
𝑌 , and 𝑐𝛼 = (𝛼𝑑𝑋 + 𝑑𝑌 )𝑝 for 𝑝 ≥ 1.

Moreover, assume 𝛾 ∈ P (𝑋 × 𝑌 ) to have a finite 𝑝-moment with respect to the
metric 𝑑 = 𝑑𝑋 + 𝑑𝑌 (which in particular implies 𝜏𝑐𝛼 (𝛾) < ∞ for all 0 < 𝛼 ≤ ∞)
and let (𝛼𝑛)𝑛∈N be a diverging sequence. We observe that

E
[��𝜏𝑐𝛼𝑛 (𝛾𝑛)1/𝑝 − 𝜏𝑌𝑐𝑌 (𝛾)1/𝑝 ��] ≤

E
[��𝜏𝑐𝛼𝑛 (𝛾𝑛)1/𝑝 − 𝜏𝑐𝛼𝑛 (𝛾)1/𝑝 ��] + ��𝜏𝑐𝛼𝑛 (𝛾)1/𝑝 − 𝜏𝑌𝑐𝑌 (𝛾)1/𝑝 ��.

By Theorem 6, the second summand converges to zero as 𝑛 → ∞. The first
summand can be controlled by Theorem 3 and bound (22), yielding

E
[��𝜏𝑐𝛼𝑛 (𝛾𝑛)1/𝑝 − 𝜏𝑐𝛼𝑛 (𝛾)1/𝑝 ��] ≤ 3E

[
𝑇𝑐𝛼𝑛 (𝛾,𝛾𝑛)1/𝑝

]
≤ 3𝛼𝑛 E

[
𝑇𝑐1 (𝛾,𝛾𝑛)1/𝑝

]
.

This reveals that 𝜏𝑐𝛼𝑛 (𝛾𝑛) is a consistent estimator of 𝜏𝑌𝑐𝑌 (𝛾) under the assump-
tion

𝛼𝑛 = 𝑜

(
E

[
𝑇𝑐1 (𝛾,𝛾𝑛)1/𝑝

]−1
)
.

One can therefore use the asymptotic convergence rates discussed in the context
of equation (22) to find a suitable sequence (𝛼𝑛)𝑛∈N.

Another route to consistently estimate the marginal transport dependency from
data was recently proposed in Wiesel 2021, who, independently from our work, also
considered expressions of the form (31). He derives convergence rates if 𝜏𝑌 (𝛾) is
estimated by 𝜏𝑌 (𝛾𝑛) for a so-called adapted empirical measure 𝛾𝑛 . One example for
such an adaption is the projection of the individual observations 𝜉𝑖 and 𝜁𝑖 to a grid
in the unit cube (see Backhoff et al. 2022).

4 Contractions

Up to this point, we were concerned with universal properties of the transport
dependency for generic cost functions. We now focus on a particular additive cost
structure that enables us to characterize under which conditions the bounds of the
previous section are sharp.
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In the following, we equip the Polish space 𝑋 with a (general) cost function 𝑘𝑋 and
the Polish space 𝑌 with a lower semi-continuous (pseudo-)metric 𝑑𝑌 . We consider
costs of the form

𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) = ℎ
(
𝑘𝑋 (𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)

)
(35a)

for (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 , where ℎ : [0,∞) → [0,∞) is a strictly increasing
function that satisfies ℎ(0) = 0. We also fix the marginal costs

𝑐𝑋 = ℎ ◦ 𝑘𝑋 and 𝑐𝑌 = ℎ ◦ 𝑑𝑌 , (35b)

which fulfill condition (23). Therefore, 𝑐𝑋 and 𝑐𝑌 are suited for application in the
previously derived upper bounds (Proposition 6 to 8).

To state our findings, we first define couplings that describe contractions between 𝑋
and 𝑌 . For given 𝑑𝑌 and 𝑘𝑋 as above, we say that 𝛾 ∈ P (𝑋 ×𝑌 ) is contracting (on its
support) if

𝑑𝑌 (𝑦1, 𝑦2) ≤ 𝑘𝑋 (𝑥1, 𝑥2) for all (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ supp𝛾 . (36)

We also need a slightly weaker condition and say that 𝛾 is almost surely contracting
if (36) holds (𝛾 ⊗ 𝛾)-almost surely (but not necessarily on each single pair of points
of the support). Our next result characterizes contracting couplings as those that
maximize the transport dependency for fixed marginals and attain the upper bound
in Proposition 6.

Theorem 7 (contracting couplings): Let 𝑋 and 𝑌 be Polish spaces, 𝑐 be a cost
function on 𝑋 × 𝑌 of the form (35), and 𝛾 ∈ C (·, 𝜈) ⊂ P (𝑋 × 𝑌 ) for 𝜈 ∈ P (𝑌 ).
If 𝛾 is contracting,

𝜏 (𝛾) = diam𝑐𝑌 𝜈. (37)

Conversely, if diam𝑐𝑌 𝜈 < ∞ and (37) holds, then 𝛾 is almost surely contracting.

The second assertion in this statement is a direct consequence of the upper bound in
Proposition 7. For the first claim, we use disintegration to insert a suitable auxiliary
variable into the integrals 𝜋𝑐 for arbitrary 𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈), after which we can
exploit 𝑑𝑌 ≤ 𝑘𝑋 as well as the triangle inequality of 𝑑𝑌 . This line of argumentation
reveals that vertical movements are indeed globally optimal when transporting to
a contracting coupling 𝛾 – an idea that was already anticipated in Figure 3 of the
introduction. Details of the proof are documented in Appendix A.

Note that the distinction between “contracting” and “almost surely contracting” in
Theorem 7 is necessary under the stated generality. Indeed, one can construct almost
surely contracting couplings 𝛾 such that, e.g., 𝜏 (𝛾) = 0 and diam𝑐𝑌 𝜈 > 0. This can
only be done, however, if the costs are not continuous. If 𝑑𝑌 and 𝑘𝑋 are continuous,
then every almost surely contracting coupling is also contracting on its support, and
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the two concepts coincide (see Lemma 7 in Appendix A). In this case, Theorem 7
implies the equivalence

𝛾 ∈ C (·, 𝜈) is contracting ⇐⇒ 𝜏 (𝛾) = diam𝑐𝑌 𝜈.

Another crucial observation is that contracting couplings are, under mild assump-
tions, always deterministic. In fact, if 𝑑𝑌 is a proper metric and ℎ is continuous,
Proposition 8 and Theorem 5 show that any 𝛾 satisfying (37) is induced by a function.
Furthermore, if a measurable function 𝜑 : 𝑋 → 𝑌 is 𝜇-almost surely contracting,
meaning that there is a Borel set 𝐴 ⊂ 𝑋 with 𝜇 (𝐴) = 1 and

𝑑𝑌
(
𝜑 (𝑥1), 𝜑 (𝑥2)

) ≤ 𝑘𝑋 (𝑥1, 𝑥2) for all 𝑥1, 𝑥2 ∈ 𝐴, (38)

then 𝛾 = (id, 𝜑)∗𝜇 ∈ C (𝜇, 𝜈) is contracting and (37) holds under assumptions of con-
tinuity. The following corollary collects these observations into a useful statement.

Corollary 1 (contracting deterministic couplings): Let 𝑋 and Y be Polish spaces
and 𝑐 be a cost function on𝑋×𝑌 of the form (35), whereℎ and 𝑘𝑋 are continuous
and 𝑑𝑌 is a continuous metric. Let 𝛾 ∈ C (𝜇, 𝜈) with 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and
diam𝑐𝑌 𝜈 < ∞. Then

𝜏 (𝛾) = diam𝑐𝑌 𝜈

holds if and only if 𝛾 = (id, 𝜑)∗𝜇 for a 𝜇-almost surely contracting function
𝜑 : 𝑋 → 𝑌 .

Proof of Corollary 1. Let 𝜑 : 𝑋 → 𝑌 be 𝜇-almost surely contracting such that 𝛾 =
(id, 𝜑)∗𝜇. By a change of variables,

(𝛾 ⊗ 𝛾) (𝑑𝑌 ≤ 𝑘𝑋 ) = (𝜇 ⊗ 𝜇) (𝑑𝜑 ≤ 𝑘𝑋 ) = 1, (39)

where 𝑑𝜑 (𝑥1, 𝑥2) = 𝑑𝑌
(
𝜑 (𝑥1), 𝜑 (𝑥2)

)
for any 𝑥1, 𝑥2 ∈ 𝑋 . Therefore, 𝛾 is almost surely

contracting. Since 𝑘𝑋 and 𝑑𝑌 are continuous, we can apply Lemma 7 to conclude
that 𝛾 is contracting on its support. By Theorem 7, 𝜏 (𝛾) = diam𝑐𝑌 𝜈 follows.

For the reverse direction, we consult the upper bound in Proposition 8 to find that
𝜏 (𝛾) = diam𝑐𝑌 𝜈 implies 𝜏𝑌 (𝛾) = diam𝑐𝑌 𝜈 . Consequently, Theorem 5 establishes the
existence of a measurable function 𝜑 : 𝑋 → 𝑌 with 𝛾 = (id, 𝜑)∗𝜇. It is left to show
that 𝜑 is 𝜇-almost surely contracting. According to Lemma 7 and Theorem 7, 𝛾 is
contracting on its support. We can therefore consider the set 𝐴 = (id, 𝜑)−1(supp𝛾)
and conclude that both 𝜇 (𝐴) = 𝛾 (supp𝛾) = 1 and

𝑑𝑌
(
𝜑 (𝑥1), 𝜑 (𝑥2)

) ≤ 𝑑𝑋 (𝑥1, 𝑥2) for all 𝑥1, 𝑥2 ∈ 𝐴,

since all tuples
(
𝑥, 𝜑 (𝑥)) ∈ 𝑋 × 𝑌 for 𝑥 ∈ 𝐴 are elements of the support of 𝛾 . □

A point that deserves emphasis is that Corollary 1 actually provides a characterization
of Lipschitz and Hölder functions, as well as of isometries. If 𝑘𝑋 is set to 𝛼 · 𝑑𝑋 for a
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metric 𝑑𝑋 on 𝑋 , then condition (38) is equivalent to 𝜑 being 𝛼-Lipschitz 𝜇-almost
surely. Similarly, under the choice 𝑘𝑋 = 𝛼 ·𝑑𝛽𝑋 for 𝛽 ∈ (0, 1), condition (38) coincides
with the 𝛽-Hölder criterion for𝜑 (with constant 𝛼). Finally, the simultaneous equality

𝜏 (𝛾) = diam𝑐𝑋 𝜇 = diam𝑐𝑌 𝜈

for 𝑘𝑋 = 𝑑𝑋 holds if and only if 𝜑 is 𝜇-almost surely an isometry from (𝑋,𝑑𝑋 )
to (𝑌,𝑑𝑌 ). In this context, it might be interesting to note that a 𝜇-almost sure
contraction 𝜑 in the setting of Corollary 1 can always be uniformly extended to the
full support of 𝜇 if (𝑌,𝑑𝑌 ) is a Polish metric space (see Lemma 8 in Appendix A). In
other words: if 𝑑𝑌 completely metrizes the topological space 𝑌 , then we can always
assume 𝐴 = supp 𝜇 in definition (38). In particular, the map 𝜑 in Corollary 1 can be
chosen to be continuous on the support of 𝜇.

To conclude this section, we want to highlight that the preceding results equip the
transport dependency with a powerful interpretation as quantifier of structural de-
pendence: the larger the transport dependency 𝜏 (𝜉, 𝜁 ) between two random variables
𝜉 and 𝜁 is, the more they have to be associated in a contracting manner. Intuitively,
this means that the conditional law of 𝜁 | 𝜉 = 𝑥 must behave well as a function of
𝑥 ∈ 𝑋 , judged in terms of 𝑘𝑋 and 𝑑𝑌 . In fact, the highest possible degree of transport
dependency for fixed marginals is (under continuity assumptions) only assumed if 𝜉
and 𝜁 are deterministically related by 𝜁 = 𝜑 (𝜉) for a contraction 𝜑 . Other determinis-
tic relations between 𝜁 and 𝜉 , which exhibit rapid changes that break condition (38),
are assigned a lower degree of dependency. This way of dependency quantification
might often be desirable, especially in situations where quickly oscillating or chaotic
relations between 𝜉 and 𝜁 practically cannot (or should not) be distinguished from
actual noise.

5 Transport correlation

In this section, we introduce several coefficients of association that are based on the
transport dependency. The central ingredient is upper bound (24) in Proposition 6,
which can be used to scale 𝜏 to the interval [0, 1] in a way that only depends on
the marginal distributions. Without further assumptions, however, bound (24) is
not necessarily sharp, and values close to 1 may be impossible (see Figure 8 for an
illustrative example in this regard). In the following, we therefore focus on cost
structures of the form (35a). In this setting, the conditions under which 𝜏 assumes its
upper bounds are well understood (Theorem 7 and Corollary 1 in Section 4), which
makes the resulting coefficients more expressive.

For the sake of clarity, we work in a slightly less general setting than in Section 4
and right away assume (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) to be Polish metric spaces, restricting to
costs

𝑐 (𝑥1, 𝑦1, 𝑥2, 𝑦2) =
(
𝛼 · 𝑑𝑋 (𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)

)𝑝 (40)
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coupling 𝛾∗ ∈ C (𝜇, 𝜈)

product 𝜇 ⊗ 𝜈

(a)

𝜋∗𝑐 = 2(2+√2)
9 = 𝜏∗ 𝜋𝑐 = 8

9 > 𝜏∗

plans 𝜋, 𝜋∗ ∈ C (𝛾∗, 𝜇 ⊗ 𝜈)

𝜇 = 𝜈 = Unif{1, 2, 3}

1 2 3

1

2

3

𝑋

𝑌

(b)
1 2 3

1

2

3

𝑋

𝑌

Figure 8: Example for which the upper bounds (24), (28), and (32) are not sharp. The marginal
distributions are 𝜇 = 𝜈 = Unif{1, 2, 3}. (a) One can show that 𝛾∗ = Unif{(1, 1), (2, 2), (3, 3)}
maximizes 𝜏 (𝛾) over 𝛾 ∈ C (𝜇, 𝜈), assuming the value 𝜏∗ = 2(2 + √

2)/9 if 𝑐 is the Euclidean
distance on R2. The visualized plan 𝜋∗ is optimal. (b) All of the established upper bounds
move mass along a plan 𝜋 that is restricted to vertical or horizontal transports. The total
transportation cost is 8/9 > 𝜏∗. Note that the Euclidean distance on 𝑋 × 𝑌 can not be
expressed in the additive form (35a).

for 𝑥1, 𝑥2 ∈ 𝑋 , 𝑦1, 𝑦2 ∈ 𝑌 , and 𝛼, 𝑝 > 0. In what follows, 𝑑𝑋 , 𝑑𝑌 , and 𝑝 are usually
considered to be fixed, and we mainly explore the influence of 𝛼 . We call a map
𝜑 : 𝑋 → 𝑌 a dilatation if there exists some 𝛽 > 0 such that

𝑑𝑌
(
𝜑 (𝑥1), 𝜑 (𝑥2)

)
= 𝛽 𝑑𝑋 (𝑥1, 𝑥2)

for all 𝑥1, 𝑥2 ∈ 𝑋 . A dilatation can be thought of as an isometry from (𝑋, 𝛽𝑑𝑋 ) to
(𝑌,𝑑𝑌 ), i.e., an isometry up to the correct scaling. We also recall the notion of 𝑝-weak
convergence on P𝑝 (𝑋 × 𝑌 ), which was introduced and discussed in the context of
continuity (Section 3).

For any 𝛾 ∈ C (·, 𝜈) with 0 < diam𝑑
𝑝
𝑌
𝜈 < ∞, we define the 𝛼-transport correlation via

𝜌𝛼 (𝛾) =
(

𝜏 (𝛾)
diam𝑑

𝑝
𝑌
𝜈

)1/𝑝
. (41)

This dependency coefficient has a series of interesting properties, most of which are
direct consequences of our previous findings. For detailed proofs, see Appendix A.

Proposition 9 (𝛼-transport correlation): Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be Polish metric
spaces. For any 𝛾 ∈ C (𝜇, 𝜈) with 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and 0 < diam𝑑

𝑝
𝑌
𝜈 < ∞,

the 𝛼-transport correlation defined in (41) for 0 < 𝛼 < ∞ has the following
properties:

1. 𝜌𝛼 (𝛾) = 0 iff 𝛾 = 𝜇 ⊗ 𝜈 ,

2. 𝜌𝛼 (𝛾) = 1 iff 𝛾 = (id, 𝜑)∗𝜇 for an 𝛼-Lipschitz function 𝜑 : 𝑋 → 𝑌 ,



170 Contribution D. Transport Dependency

3. 𝜌𝛼 (𝛾) = 𝜌𝛼 (𝛾 ′) if 𝛾 ′ = (𝑓𝑋 , 𝑓𝑌 )∗𝛾 for isometries 𝑓𝑋 : 𝑋 → 𝑋 and 𝑓𝑌 : 𝑌 → 𝑌 ,

4. 𝛾 ↦→ 𝜌𝛼 (𝛾)𝑝 is convex when restricted to C (·, 𝜈) ⊂ P (𝑋 × 𝑌 ) for fixed 𝜈 ,

5. 𝜌𝛼𝑛 (𝛾𝑛) → 𝜌𝛼 (𝛾) as 𝑛 → ∞ if (𝛾𝑛)𝑛∈N converges 𝑝-weakly to 𝛾 and 𝛼𝑛 → 𝛼 ,

6. 𝛼 ↦→ 𝜌𝛼 (𝛾)𝑝 is monotonically increasing for all 𝑝 > 0 and concave if 𝑝 ≤ 1,

where the functions 𝜑 , 𝑓𝑋 , and 𝑓𝑌 only have to be defined 𝜇- or 𝜈-almost surely.

Properties 1 and 2 lend the transport correlation a distinctive interpretation as
dependency coefficient that identifies Lipschitz relations between random variables
𝜉 and 𝜁 . This makes 𝜌𝛼 a flexible tool for quantifying the degree of association
between 𝜉 and 𝜁 , especially when we have a clear picture of how structured a
deterministic relation 𝜑 with 𝜁 = 𝜑 (𝜉) should at least be in order to be distinguished
from noise. Properties 3 to 5 state that 𝜌𝛼 benefits from the general properties of the
transport dependency 𝜏 . For example, property 5 implies that 𝜌𝛼 (𝛾) can be estimated
consistently just by plugging the empirical measure 𝛾𝑛 in definition (41).

Based on our earlier findings in Theorem 5 and 6, it is possible to extend 𝜌𝛼 (𝛾) to
𝛼 = ∞ as a special case. Effectively, this means employing the marginal transport
dependency (31) in equation (41), which leads us to define the ∞-transport correlation
or marginal transport correlation

𝜌∞(𝛾) = ©­«
𝜏𝑌
𝑑
𝑝
𝑌

(𝛾)
diam𝑑

𝑝
𝑌
𝜈
ª®¬

1/𝑝

. (42)

Proposition 10 (marginal transport correlation): Let 𝑋 and (𝑌,𝑑𝑌 ) be Polish
(metric) spaces. For any 𝛾 ∈ C (𝜇, 𝜈) with 𝜇 ∈ P (𝑋 ), 𝜈 ∈ P (𝑌 ), and
0 < diam𝑑

𝑝
𝑌
𝜈 < ∞, the marginal transport correlation defined in (42) has

the following properties:

1. 𝜌∞(𝛾) = 0 iff 𝛾 = 𝜇 ⊗ 𝜈 ,

2. 𝜌∞(𝛾) = 1 iff 𝛾 = (id, 𝜑)∗𝜇 for a measurable function 𝜑 : 𝑋 → 𝑌 ,

3. 𝜌∞(𝛾) = 𝜌∞(𝛾 ′) if 𝛾 ′ = (𝑓𝑋 , 𝑓𝑌 )∗𝛾 for a measurable injection 𝑓𝑋 : 𝑋 → 𝑋 and
a dilatation 𝑓𝑌 : 𝑌 → 𝑌 ,

4. 𝛾 ↦→ 𝜌∞(𝛾)𝑝 is convex when restricted to C (·, 𝜈) ⊂ P (𝑋 × 𝑌 ) for fixed 𝜈 ,

where the functions 𝜑 , 𝑓𝑋 , and 𝑓𝑌 only have to be defined 𝜇- or 𝜈-almost surely.

The differences in Proposition 9 and 10 reflect that 𝜌𝛼 progressively loses its sense
for the metrical structure of 𝑋 when 𝛼 is increased. In the limit 𝛼 = ∞, the Lips-
chitz restrictions appearing in Proposition 9 are dissolved and only conditions of
measurability remain.
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Since we normalize with the diameter of 𝜈 instead of the one of 𝜇 in definition
(41), the transport correlation 𝜌𝛼 singles out relations in the direction 𝑋 → 𝑌 . One
possibility to compensate for this asymmetry is to adapt the value of 𝛼 by choosing

𝛼∗ =
(
diam𝑑

𝑝
𝑌
𝜈/diam𝑑

𝑝
𝑋
𝜇
)1/𝑝

. (43)

The coefficient 𝜌∗ = 𝜌𝛼∗ , which we call isometric transport correlation, takes the form

𝜌∗(𝛾) =
(
𝜏𝑐∗ (𝛾)

)1/𝑝
, (44)

where

𝑐∗(𝑥1, 𝑦1, 𝑥2, 𝑦2) = ©­
«
𝑑𝑋 (𝑥1, 𝑥2)(

diam𝑑
𝑝
𝑋
𝜇
)1/𝑝 + 𝑑𝑌 (𝑦1, 𝑦2)(

diam𝑑
𝑝
𝑌
𝜈
)1/𝑝

ª®
¬
𝑝

for 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌 . We can interpret (44) as first normalizing the metric
measure spaces (𝑋,𝑑𝑋 , 𝜇) and (𝑌,𝑑𝑌 , 𝜈) by their 𝑝-diameters before calculating the
transport dependency.

Proposition 11 (isometric transport correlation): Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be Pol-
ish metric spaces. For any 𝛾 ∈ C (𝜇, 𝜈) with 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) such that
0 < 𝛼∗ < ∞ in (43) is well defined, the isometric transport correlation (44) has
the following properties:

1. 𝜌∗(𝛾) = 0 iff 𝛾 = 𝜇 ⊗ 𝜈 ,

2. 𝜌∗(𝛾) = 1 iff 𝛾 = (id, 𝜑)∗𝜇 or 𝛾 = (𝜓, id)∗𝜈 for dilatations 𝜑 : 𝑋 → 𝑌 or
𝜓 : 𝑌 → 𝑋 ,

3. 𝜌∗(𝛾) = 𝜌∗(𝛾 ′) if 𝛾 ′ = (𝑓𝑋 , 𝑓𝑌 )∗𝛾 for dilatations 𝑓𝑋 : 𝑋 → 𝑋 and 𝑓𝑌 : 𝑌 → 𝑌 ,

4. 𝛾 ↦→ 𝜌∗(𝛾)𝑝 is convex restricted to C (𝜇, 𝜈) ⊂ P (𝑋 × 𝑌 ) for fixed 𝜇 and 𝜈 ,

5. 𝜌∗(𝛾𝑛) → 𝜌∗(𝛾) as 𝑛 → ∞ if (𝛾𝑛)𝑛∈N converges 𝑝-weakly to 𝛾 ,

6. 𝜌∗(𝛾) = 𝜌∗(𝛾 ′) if 𝛾 ′ = 𝑓∗𝛾 for the symmetry map 𝑓 (𝑥,𝑦) = (𝑦, 𝑥),
where the functions 𝜑 , 𝜓 , 𝑓𝑋 , and 𝑓𝑌 only have to be defined 𝜇- or 𝜈-almost
surely.

Note that the dilatation 𝜑 in property 2 above actually has to be an isometry
from (𝑋, 𝛼∗𝑑𝑋 ) to (𝑌,𝑑𝑌 ), i.e., the correct scaling is given by 𝛽 = 𝛼∗ such that
diam(𝛼∗𝑑𝑋 )𝑝 𝜇 = diam𝑑

𝑝
𝑌
𝜈 .

To conclude, we want to mention another symmetric coefficient of association which
can be built on top of the transport dependency. Instead of dividing by the diameter
of 𝜈 in (41), we divide by the minimum of the diameters of 𝜈 and 𝜇. Setting 𝛼 = 1 in
(40), this results in the coefficient(

𝜏𝑐 (𝛾)
min

(
diam𝑑

𝑝
𝑋
𝜇, diam𝑑

𝑝
𝑌
𝜈
)
)1/𝑝

. (45)
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This coefficient has already been introduced as Earth mover’s correlation and is
studied in Móri and Székely 2020 for 𝑝 = 1. It enjoys similar properties to the
isometric transport correlation. In Conjecture 3 of Móri and Székely 2020, it is even
hypothesized that the expression in (45) might equal 1 if and only if 𝛾 = (id, 𝜙)∗𝜇
for a dilatation 𝜙 : 𝑋 → 𝑌 . In general, however, Corollary 1 shows that this is not
correct and that the Earth mover’s coefficient assumes the value 1 if and only if 𝛾
describes a 1-Lipschitz function from 𝑋 to 𝑌 or a 1-Lipschitz function from 𝑌 to 𝑋 .

6 Applications

To assess the actual usefulness of the transport dependency for applications, we
next investigate the performance of the coefficients 𝜌𝛼 and 𝜌∗ on empirical data. In
particular, we conduct a series of benchmarks that illuminate basic properties and
demonstrate commonalities and differences to other commonly used coefficients of
association. In what follows, we restrict our attention to the choice 𝑝 = 1 in the cost
structure (40); additional simulations that cover 𝑝 = 1/2 and 𝑝 = 2 and that adopt
alternative dependency models can be found in Appendix B.

Setting. We consider Euclidean spaces 𝑋 = R𝑟 and 𝑌 = R𝑞 for 𝑟, 𝑞 ∈ N, and
equip them with their respective Euclidean metrics 𝑑𝑋 and 𝑑𝑌 . We focus on joint
distributions 𝛾 ∈ P (R𝑟 × R𝑞) that are typically either given deterministically via
𝛾 = (id, 𝜑)∗𝜇 for 𝜑 : [0, 1]𝑟 → [0, 1]𝑞 and 𝜇 = Unif [0, 1]𝑟 (i.e., concentrated on the
graph of a function), or by placing (uniform) mass on more general shapes in [0, 1]𝑟+𝑞 .
The number of samples independently drawn from 𝛾 for the purpose of empirical
estimation is denoted by 𝑛 ∈ N, and we write 𝛾𝑛 to refer to the corresponding
empirical measure, see equation (19). To study the influence of statistical noise, we
consider convex contamination models of the form

𝛾𝜖 = (1 − 𝜖) 𝛾 + 𝜖 (𝜇 ⊗ 𝜈), (46)
where 𝜖 ∈ [0, 1] denotes the noise level distorting 𝛾 ∈ C (𝜇, 𝜈). Observations (𝑥,𝑦) ∈
R𝑟 × R𝑞 sampled from 𝛾𝜖 are with probability (1 − 𝜖) randomly drawn from 𝛾 and
with probability 𝜖 randomly drawn from 𝜇 ⊗ 𝜈 . Further simulations that use additive
Gaussian noise instead are provided in Appendix B.

Our numerical study compares different dependency coefficients that assume values
in [0, 1]. Besides the isometric and 𝛼-Lipschitz transport correlations 𝜌∗ and 𝜌𝛼 for
𝛼 > 0, which were introduced in the previous section, we consider the following
commonly applied quantities:

cor the Pearson correlation. It is only applicable if 𝑟 = 𝑞 = 1. Since it assumes
values in [−1, 1], we always report its absolute value.

spe the Spearman rank correlation coefficient. It is only applicable if 𝑟 = 𝑞 = 1
and is comparable to Kendall’s 𝜏 , another popular rank based correlation
coefficient.
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dcor the Euclidean distance correlation (Székely et al. 2007), based on the distance
covariance defined in equation (3). It is applicable for all 𝑟, 𝑞 ∈ N. In its
generalized form (4), it is also applicable in generic (separable) metric spaces
of (strong) negative type. As discussed previously, several of its properties
make it comparable to 𝜌∗.

mic the maximal information coefficient (Reshef et al. 2011). It is only applicable
if 𝑟 = 𝑞 = 1. For its estimation, we use the estimator mice (Reshef et al.
2016), which we compute via the tools provided by Albanese et al. 2012. The
two algorithmic parameters 𝑐 and 𝛼 were set to 5 and 0.75, respectively (as
recommended in Albanese et al. 2018).

For each of these coefficients, generically called 𝜌 for the moment, we are interested
in several features. Apart from the actual value of 𝜌 (𝛾), which signifies the amount
of dependency attributed to 𝛾 , we look at the variance and bias of 𝜌 (𝛾𝑛) as an
estimator of 𝜌 (𝛾) when data is limited. To check how well the coefficients are able
to distinguish structure from noise, we also include the results of permutation tests
for independence (see Lehmann and Romano 2006, Section 15.2 or Janssen and Pauls
2003 for background on permutation based tests).

The 𝜌-based permutation test we employ works as follows: for given data 𝑧 =
(𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1 ∈ (𝑋 ×𝑌 )𝑛 , assumed to be sampled from 𝛾⊗𝑛 , we write 𝜌 (𝑧) for the empir-
ical estimate of 𝜌 (𝛾) based on 𝑧. Furthermore, we denote 𝑧𝜎 = (𝑥𝑖 , 𝑦𝜎 (𝑖 ) )𝑛𝑖=1, where
𝜎 is a permutation of 𝑛 elements. For the test, we randomly select𝑚 permutations
𝜎1, . . . , 𝜎𝑚 and reject the null hypothesis that 𝑧 is sampled from an independent
coupling 𝛾 = 𝜇 ⊗ 𝜈 if ��{𝑖 : 𝜌 (𝑧𝜎𝑖 ) > 𝜌 (𝑧)}�� ≤ 𝑘 (47)

for some 𝑘 ∈ {0, . . . ,𝑚}. Since a permutation of the second components does not
affect the distribution of 𝛾⊗𝑛 if 𝛾 = 𝜇 ⊗ 𝜈 is a product coupling, this leads to a level
(𝑘 + 1)/(𝑚 + 1) test. In all of our applications, we choose 𝑘 and𝑚 such that this level
is ≤ 0.1. Note that the power of the permutation test will usually increase if𝑚 is
increased while the level is held constant.

Computation. One issue that seriously affects our numerical work is the compu-
tational effort when solving optimal transport problems. In order to calculate the
transport dependency based on 𝑛 data points, we are faced with finding an optimal
coupling with 𝑛 × 𝑛2 entries. For generic algorithms, for example the network sim-
plex, this implies a runtime of𝑂 (𝑛5) (up to logarithmic factors; see Peyré and Cuturi
2019 for more details on computational aspects). For this reason, we have to choose
moderate sample sizes, like 𝑛 = 50, when the transport correlation is evaluated
repeatedly (i.e., thousands of times) for Monte Carlo simulations. We also restrict
the number of permutations to𝑚 = 29 when testing under the transport correlation.
For all other coefficients, which can be calculated much faster,𝑚 = 999 is chosen.
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In settings with 𝑛 ≤ 100, we make use of solvers based on the network simplex
provided by the python optimal transport (POT) package (Flamary and Courty
2017). To still be able to capture the behavior of 𝜌𝛼 and 𝜌∗ for larger values of 𝑛, we
additionally employ our own implementation of an approximation scheme recently
proposed by Schmitzer 2019. It is based on the Sinkhorn algorithm for entropically
regularized optimal transport (Cuturi 2013) and operates by successively decreasing
the regularization constant 𝜂 until a suitable approximation of the non-regularized
problem is obtained. While 𝜂 is scaled down, in our case from 𝜂 = 10−1 to 𝜂 = 10−3,
the increasing sparsity of the transport plan (after entries with negligible values
≤ 10−15 are removed) can be exploited to boost performance by using sparsity-
optimized data structures. On systems equipped with a modern GPU, we can thereby
calculate the transport dependency for generic costs accurately for sample sizes
up to 𝑛 = 1000 (as is done in Figure 13) within a couple of seconds to minutes.
Note, however, that we do not make use of the multi-resolution ansatz described
by Schmitzer 2019, which might open the door to still larger sample sizes. Another
way to ameliorate computational barriers is to restrict to data on grids (see, e.g.,
Schrieber et al. 2016 for benchmarks of different optimal transport algorithms applied
to images) or to utilize resampling techniques (Sommerfeld et al. 2019).

Recognizing shapes. We begin with an investigation of the behavior of the afore
mentioned coefficients in two dimensional settings, meaning 𝑟 = 𝑞 = 1. Figure 9
contains box plots depicting the coefficients’ performance on simple geometries, like
lines or circles, for 𝑛 = 50 samples. As a point of reference, we also include uniform
noise on [0, 1]2.

To showcase the Lipschitz-selectivity of 𝜌𝛼 , we chose to include the coefficient 𝜌3
for 𝛼 = 3. Recall that this implies 𝜌3(𝛾) = 1 whenever 𝛾 is concentrated on the
graph of a function whose slope is at most 3. Figure 9 confirms this property of 𝜌3,
which is the only coefficient to assign maximal dependency to the zigzag function
with slope 3 and the polynomial. On the zigzag function with 5 segments (and
thus slope 5), it has already decreased to about 0.7. In this context, the mic, which
generally achieves high values on all geometries, performs notably well. It is also the
coefficient that most clearly distinguishes the pretzel example from noise. Another
noteworthy observation is that 𝜌∗ and dcor indeed behave comparably, especially
on functional relations. On non-functional patterns, like the circle or the cross, 𝜌∗
assumes somewhat higher values than dcor. At the same time, the bias of 𝜌∗ on
independent noise (for which values of 0 are expected in the limit of large 𝑛) is
slightly higher than the one of dcor, albeit with a smaller variance. Finally, as to
be expected, the Pearson and Spearman correlation coefficients do a poor job at
discerning non-monotonic structures. In case of the circle, for example, the values
of these coefficients are systematically lower than when confronted with random
noise.
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Figure 9: Comparison of several dependency coefficients on two dimensional geometries.
As reference, independent Unif [0, 1]2 noise has also been simulated (bottom right). For each
geometry, the scatter plot on top displays an exemplary sample of size 𝑛 = 50. The box plots
below summarize the values of the empirically estimated coefficients based on 100 such
samples. For the sake of visualization, boxes in the box plot are replaced by single dots if
their extent would be smaller than 0.1.

Behavior under noise. Our next simulations concern the performance under
convex noise models 𝛾𝜖 as defined in equation (46). Figure 10 and 11 illustrate
the coefficients’ empirical estimates and their power when used for independence
testing in case that 𝛾 is deterministically given in terms of the identity (Figure 10) or
the zigzag function with maximal slope 5 (Figure 11). In Appendix B, this type of
comparison can be found for other distributions considered in Figure 9 as well, and
we also present results under additive Gaussian noise.

In case of the identity, all coefficients seem to behave roughly similar, especially for
small noise levels. Under pure noise (𝜖 = 1), for which the coefficients should attain
the value 0 in the limit of large 𝑛, the transport correlation exhibits a comparably
large bias at a relatively small variance. This trend of high biases becomes even more
serious in higher dimensions and is further investigated below (Figure 13). Regarding
the test performance, the power curves in Figure 10 reveal that all coefficients except
𝜌∗ and mic perform comparably. The power of 𝜌∗ is consistently higher than its
competitors’, while mic performs notably worse.



176 Contribution D. Transport Dependency

= 0

* 3
dco

r cor spe mic
0.0

0.2

0.4

0.6

0.8

1.0

co
ef

fic
ie

nt
 v

al
ue

= 1
4

* 3
dco

r cor spe mic

= 1
2

* 3
dco

r cor spe mic

= 3
4

* 3
dco

r cor spe mic

= 1

* 3
dco

r cor spe mic

1

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

po
we

r

*

3
dcor
cor
spe
mic

Figure 10: Dependency coefficients applied to increasingly noisy datasets according to the
convex noise model in (46), where 𝛾 is given in terms of the identity on [0, 1]. The scatter
plots on the top show exemplary samples drawn from 𝛾𝜖 of size 𝑛 = 50. The box plots
are based on 100 such samples. The power curves on the bottom display the results of the
permutation tests described in (47). To estimate the power, 1000 tests were conducted per
value of 𝜖 for each coefficient. The significance level (dashed line) of these tests is 10%.

The picture changes substantially for the zigzag example in Figure 11. Due to the
absence of monotonicity, cor and spe are not able to distinguish data points originated
from the zigzag function from the ones coming from the independence coupling of its
marginals. The coefficient dcor and, to a lesser extend, 𝜌∗ also assume lower values
and can only partially discern the dependency structure under noise. Meanwhile,
the coefficients mic and specifically 𝜌3 lie systematically higher and are still able to
recognize dependency under high noise levels.

Adaptability. In Figure 4 of the introduction, we already noted that 𝜌3 performs
very well on a 3-Lipschitz functional relation. Additionally, Figure 11 testifies that
𝜌3 also outperforms all other considered coefficients when applied to a 5-Lipschitz
relation. It stands to reason, however, that 𝜌5 would do even better than 𝜌3 in this
setting. To further examine the claim that adapting 𝛼 to the slopes inherent in 𝛾
improves the performance, we conducted a series of numerical experiments with
functions of different maximal slope and varying 𝛼 . The findings are displayed in
Figure 12, where the power of 𝜌𝛼 -based permutation tests is plotted as a function
of 𝛼 (for fixed noise levels 𝜖 = 0.75). The results clearly suggest that choosing a
value of 𝛼 close to the Lipschitz constant of the actual functional relation in 𝛾 can
significantly improve the test performance. If 𝛼 is chosen too small or too large, the
power systematically declines.
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Figure 11: Dependency coefficients applied to increasingly noisy datasets according to the
convex noise model in (46), where 𝛾 is given in terms of a zigzag function with maximal
slope 5. See Figure 10 for a description of the individual graphs.

Bias and higher dimensions. Another prevalent trend in the numerical results
so far is the notable bias of 𝜌∗ and 𝜌𝛼 on independent noise (i.e., for 𝜖 = 1), where
we expect a value of 0 for 𝑛 → ∞. In fact, empirical estimators of optimal transport
distances are known to be susceptible to a certain degree of bias, especially in high
dimensions. In Figure 13, we therefore take a look at the empirical estimation of
𝜌∗ and compare it to dcor in settings of different dimensions for sample sizes 𝑛
running from 10 to 1000. We observe that the bias of 𝜌∗ and dcor seem comparable
for 𝑟 = 𝑞 = 1. If the dimensions are chosen higher, the bias increases much quicker
for 𝜌∗ than for dcor. At the same time, the variance of the 𝜌∗ estimates is (in part
much) smaller for all choices of dimensions. Indeed, in case of 𝑟 = 𝑞 = 5 and 𝑛 = 1000,
the estimated standard deviation of 𝜌∗ is multiple times smaller than the one of dcor,
even though the bias is substantial (𝜌∗ ≈ 0.72, while dcor ≈ 0.13).

A high bias in itself does not necessarily mean that 𝜌∗ is blind to dependencies in
high dimensions, however. Figure 14 reveals that simple linear structures with noise
of the form (46) are still recognized somewhat better via 𝜌∗ than via dcor for 𝑛 = 50,
particularly in the setting 𝑟 = 𝑞 = 5. To examine a more involved example, we also
look at spherical dependencies, where 𝛾 is the uniform distribution on the sphere
S𝑟+𝑞−1 ⊂ R𝑟 × R𝑞 . In this case, the results are more unintuitive and prompt several
questions. First of all, spherical dependencies are separated from noise (much) better
by the transport correlation than by dcor in settings with 𝑟, 𝑞 ∈ {1, 2}. At the same
time, for 𝑟 = 𝑞 = 5, both the distance correlation and the transport correlation
consistently exhibit test powers that are smaller than 0.1, meaning that a random
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Figure 12: Influence of 𝛼 on the test performance of 𝜌𝛼 for linear (a) and sine (b) dependen-
cies at a noise level of 𝜖 = 0.75, see (46). The graphs on the top display exemplary samples
together with the actual functional relations encoded in 𝛾 for different slopes. From left
to right, the respective curves have maximal slopes of 1, 3, and 5 in both (a) and (b). The
respective values of 𝛼 ∈ {1, 3, 5} are marked as vertical lines in the power plot below. For
each value of 𝛼 , the power is estimated based on 500 samples of size 𝑛 = 50.
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Figure 13: Empirical estimates of the isometric transport correlation and the distance
correlation as a function of the sample size 𝑛 in different dimensions 𝑟 and 𝑞. The true
distribution in the respective graphs is given by the product measure 𝛾 = Unif [0, 1]𝑟 ⊗
Unif [0, 1]𝑞 . Therefore, 𝜌∗ (𝛾) = dcor(𝛾) = 0 is the (unbiased) value to be expected for 𝑛 → ∞.
The shaded error regions correspond to ± three times the estimated standard deviation. The
number of samples employed for the estimation of the mean and variance was adaptively
decreased from 500 for 𝑛 = 10 to 20 for 𝑛 = 1000.
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Figure 14: Test performance of the isometric transport correlation and the distance correla-
tion in different dimensions 𝑟 and 𝑞. Shown are results for both linear and spherical relations
under the noise model (46). In the former case, 𝛾 is given by (id, id)∗Unif [0, 1]𝑟 if 𝑟 = 𝑞 and
by (id, pr1)∗Unif [0, 1]𝑟 in case of 𝑟 = 2 and 𝑞 = 1, where pr1 denotes the projection on the
first coordinate. In case of the sphere, 𝛾 is uniformly distributed on the surface S𝑟+𝑞−1 ⊂ R𝑟+𝑞 .
For all power curves, 1000 samples of size 𝑛 = 50 were used.

sample from the sphere regularly results in lower estimates of 𝜌∗ and dcor than
drawing from the corresponding marginals 𝜇 ⊗ 𝜈 would. This effect is particularly
severe in case of the transport dependency. Even though this observation could (in
part) be caused by the small sample size 𝑛 = 50, which might not be sufficient for
detecting non-trivial dependencies in higher dimensions, it demonstrates that the
properties of the transport correlation in more complex settings remain an open
issue that merit further investigation.
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A Omitted statements and proofs

This appendix provides detailed proofs for all statements that are not proven in the
main text. As a principal strategy, we often employ disintegrations to construct
or destruct transport plans. This is often not the only viable method, however,
and several of our results could alternatively be tackled by other techniques, like
exploiting the cyclical monotonicity of optimal transport plans (see Villani 2008).

Invariance, continuity, and convolutions. In the following, we provide proofs
for Lemma 1 (invariance of optimal transport), Proposition 4 (continuity of the
transport dependency), as well as Lemma 2 (properties of optimal transport under
convolutions). We furthermore provide the auxiliary Lemma 4 that controls optimal
transport costs under uniform changes of the base costs.

Proof of Lemma 1. By a change of variables, we can immediately establish 𝜋𝑐 𝑓 =
(𝑓 × 𝑓 )∗𝜋𝑐 for any 𝜋 ∈ C (𝜇, 𝜈), where (𝑓 × 𝑓 )∗𝜋 ∈ C (𝑓∗𝜇, 𝑓∗𝜈). This shows

𝑇𝑐 𝑓 (𝜇, 𝜈) = inf
𝜋∈C (𝜇,𝜈 )

𝜋𝑐 𝑓 = inf
𝜋∈C (𝜇,𝜈 )

(𝑓 × 𝑓 )∗𝜋𝑐 ≥ inf
𝜋̃∈C (𝑓∗𝜇,𝑓∗𝜈 )

𝜋̃𝑐 = 𝑇𝑐 (𝑓∗𝜇, 𝑓∗𝜈) .

To prove the reverse inequality, we fix some 𝜋̃ ∈ C (𝑓∗𝜇, 𝑓∗𝜈) and explicitly construct
a measure 𝜋 ∈ C (𝜇, 𝜈) that satisfies 𝜋𝑐 𝑓 = 𝜋̃𝑐 .

We construct 𝜋 in two steps. First, we define an intermediate measure 𝜋 ′ by the
relation 𝜋 ′(d𝑥1, d𝑦2) = 𝜋̃

(
𝑓 (𝑥1), d𝑦2

)
𝜇 (d𝑥1). In the second step, we set 𝜋 (d𝑥1, d𝑥2) =

𝜋 ′ (d𝑥1, 𝑓 (𝑥2)
)
𝜈 (d𝑥2). It is straightforward to check 𝜋 ′ ∈ C (𝜇, 𝑓∗𝜈) and 𝜋 ∈ C (𝜇, 𝜈)

by applying substitution and utilizing the properties of conditioning. In a similar
vein, consecutive steps of substitution also show

𝜋𝑐 𝑓 =
∫

𝑐 𝑓 (𝑥1, 𝑥2) 𝜋 (d𝑥1, d𝑥2)

=
∫

𝑐
(
𝑓 (𝑥1), 𝑓 (𝑥2)

)
𝜋 ′ (d𝑥1, 𝑓 (𝑥2)

)
𝜈 (d𝑥2)

=
∫

𝑐
(
𝑓 (𝑥1), 𝑦2

)
𝜋 ′(d𝑥1, 𝑦2) (𝑓∗𝜈) (d𝑦2)

=
∫

𝑐
(
𝑓 (𝑥1), 𝑦2

)
𝜋 ′(d𝑥1, d𝑦2)

=
∫

𝑐
(
𝑓 (𝑥1), 𝑦2

)
𝜋̃
(
𝑓 (𝑥1), d𝑦2

)
𝜇 (d𝑥1)

=
∫

𝑐 (𝑦1, 𝑦2) 𝜋̃ (𝑦1, d𝑦2) (𝑓∗𝜇) (d𝑦1) = 𝜋̃𝑐 .

This establishes 𝑇𝑐 𝑓 (𝜇, 𝜈) ≤ 𝑇𝑐 (𝑓∗𝜇, 𝑓∗𝜈) and thus the equality of the two transport
costs. Note that 𝑇𝑐 (𝑓∗𝜇, 𝑓∗𝜈) and 𝑇𝑐 𝑓 (𝜇, 𝜈) do not have to be finite for this result to
hold, as all integrands are non-negative. □
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Proof of Proposition 4. In order to prove this claim, we first establish an auxiliary
result.

Lemma 3: Let 𝑋 be a Polish space and 𝑓 , 𝑔 : 𝑋 → [0,∞) continuous functions
with 𝑔 ≤ 𝑓 . For a sequence (𝜇𝑛)𝑛∈N ⊂ P (𝑋 ) converging weakly to 𝜇 ∈ P (𝑋 ),
it holds that

lim
𝑛→∞ 𝜇𝑛 𝑓 = 𝜇𝑓 < ∞ implies lim

𝑛→∞ 𝜇𝑛𝑔 = 𝜇𝑔 < ∞.

Proof. Assume 𝜇𝑛 𝑓 → 𝜇𝑓 < ∞ as 𝑛 → ∞. According to Ambrosio et al. 2008,
Lemma 5.1.7, this implies that 𝑓 is uniformly integrable with respect to (𝜇𝑛)𝑛∈N. Fix
some 𝑘 > 0. Since 𝑔(𝑥) > 𝑘 implies 𝑓 (𝑥) > 𝑘 for all 𝑥 ∈ 𝑋 , we find 𝜇𝑛

(
1𝑔>𝑘 𝑔

) ≤
𝜇𝑛

(
1𝑓 >𝑘 𝑓

)
for all 𝑛 and conclude that 𝑔 is also uniformly integrable with respect to

(𝜇𝑛)𝑛∈N. This in turn asserts that 𝜇𝑛𝑔 → 𝜇𝑔 as 𝑛 → ∞. □

We now return to the proof of Proposition 4. We know that lim inf𝑛→∞ 𝜏 (𝛾𝑛) ≥
𝜏 (𝛾) due to the semi-continuity of 𝜏 (Proposition 3). Thus, it is enough to show
lim sup𝑛→∞ 𝜏 (𝛾𝑛) =: 𝜏 ≤ 𝜏 (𝛾). By passing to a (not explicitly named) subsequence,
we can assume that 𝜏 (𝛾𝑛) converges to 𝜏 .

Let 𝛾𝑛 ∈ C (𝜇𝑛, 𝜈𝑛) and 𝛾 ∈ C (𝜇, 𝜈) for suitable marginal distributions 𝜇, 𝜇𝑛 ∈ P (𝑋 )
and 𝜈, 𝜈𝑛 ∈ P (𝑌 ). Since 𝛾𝑛 ⇀ 𝛾 by assumption, we note that 𝜇𝑛 ⇀ 𝜇 and 𝜈𝑛 ⇀ 𝜈 as
𝑛 → ∞ by the continuous mapping theorem. Like in the proof of Proposition 3, we
conclude that 𝜇𝑛 ⊗𝜈𝑛 converges weakly to 𝜇 ⊗𝜈 . Next, we fix a point (𝑥0, 𝑦0) ∈ 𝑋 ×𝑌 .
According to Lemma 3, 𝜇𝑛 𝑑𝑋 (·, 𝑥0)𝑝 = 𝛾𝑛 𝑑𝑋 (·, 𝑥0)𝑝 → 𝛾 𝑑𝑋 (·, 𝑥0)𝑝 = 𝜇 𝑑𝑋 (·, 𝑥0)𝑝 as
𝑛 → ∞, where we set 𝑔(𝑥,𝑦) = 𝑑𝑋 (𝑥, 𝑥0)𝑝 , 𝑓 (𝑥,𝑦) = 𝑑 ((𝑥,𝑦), (𝑥0, 𝑦0)

)𝑝 , and used
that 𝛾𝑛 𝑓 → 𝛾 𝑓 < ∞ (by assumption). Therefore, 𝜇𝑛 converges 𝑝-weakly to 𝜇, and
the same holds for 𝜈𝑛 by an analog argument.

In the next step, we bound the metric 𝑑 on 𝑋 ×𝑌 by applying the triangle inequality
and using that

( ∑4
𝑖=1 𝑎𝑖

)𝑝 ≤ (
4 max𝑖 𝑎𝑖

)𝑝 ≤ 4𝑝
∑4
𝑖=1 𝑎

𝑝
𝑖 for numbers 𝑎𝑖 ≥ 0 with

1 ≤ 𝑖 ≤ 4. We find

𝑑 (𝑥1, 𝑦1, 𝑥2, 𝑦2)𝑝 ≤ (
𝑑𝑋 (𝑥1, 𝑥0) + 𝑑𝑋 (𝑥2, 𝑥0) + 𝑑𝑌 (𝑦1, 𝑦0) + 𝑑𝑌 (𝑦2, 𝑦0)

)𝑝
≤ 4𝑝

(
𝑑𝑋 (𝑥1, 𝑥0)𝑝 + 𝑑𝑋 (𝑥2, 𝑥0)𝑝 + 𝑑𝑌 (𝑦1, 𝑦0)𝑝 + 𝑑𝑌 (𝑦2, 𝑦0)𝑝

)
=: 𝛿 (𝑥1, 𝑦1, 𝑥2, 𝑦2) .

Let 𝜋∗
𝑛 denote an (arbitrary) optimal transport plan between 𝛾𝑛 and 𝜇𝑛 ⊗ 𝜈𝑛 , meaning

𝜏 (𝛾𝑛) = 𝜋∗
𝑛𝑐 . Applying the previous inequality yields

𝜋∗
𝑛 𝑐 ≤ 𝜋∗

𝑛 𝑑
𝑝 ≤ 𝜋∗

𝑛 𝛿 = 2 · 4𝑝
(
𝜇𝑛 𝑑𝑋 (·, 𝑥0)𝑝 + 𝜈𝑛 𝑑𝑌 (·, 𝑦0)𝑝

)
,

where the right hand side converges as 𝑛 → ∞, since we have established that 𝜇𝑛
and 𝜈𝑛 converge 𝑝-weakly. As the cost 𝑐 is continuous, we can use the stability
result in (Villani 2008, Theorem 5.20) and conclude that there is a subsequence 𝜋∗

𝑛𝑘 of



188 Contribution D. Transport Dependency

optimal transport plans weakly converging to some optimal 𝜋∗ ∈ C (𝛾, 𝜇 ⊗ 𝜈), such
that 𝜏 (𝛾) = 𝜋∗𝑐 . Exploiting that

𝜋∗
𝑛𝑘𝛿 → 2 · 4𝑝

(
𝜇 𝑑𝑋 (·, 𝑥0)𝑝 + 𝜈 𝑑𝑌 (·, 𝑦0)𝑝

)
= 𝜋∗𝛿 < ∞

as 𝑘 → ∞, we can apply Lemma 3 with 𝑓 = 𝛿 and 𝑔 = 𝑐 to finally conclude

𝜏 = lim
𝑛→∞𝜋

∗
𝑛 𝑐 = lim

𝑘→∞
𝜋∗
𝑛𝑘𝑐 = 𝜋

∗𝑐 = 𝜏 (𝛾),

which completes the proof. □

Lemma 4: Let 𝑋 be a Polish space and let 𝑐1 and 𝑐2 be cost functions on 𝑋 that
satisfy

max
(∥𝑐1/𝑐2 − 1∥∞, ∥𝑐2/𝑐1 − 1∥∞

) ≤ 𝑎
under the convention 0/0 = 1, where ∥ · ∥∞ is the sup norm and 𝑎 > 0. Then for
all 𝜇, 𝜈 ∈ P (𝑋 ) with𝑇𝑐2 (𝜇, 𝜈) < ∞, we find𝑇𝑐1 (𝜇, 𝜈) ≤ (1 + 𝑎)𝑇𝑐2 (𝜇, 𝜈) < ∞ and

|𝑇𝑐1 (𝜇, 𝜈) −𝑇𝑐2 (𝜇, 𝜈) | ≤ 𝑎 max
(
𝑇𝑐1 (𝜇, 𝜈),𝑇𝑐2 (𝜇, 𝜈)

) ≤ 𝑎(1 + 𝑎)𝑇𝑐2 (𝜇, 𝜈) .

Proof of Lemma 4. We first note that 𝑐1 ≤ (1 + 𝑎)𝑐2, which implies 𝑇𝑐1 (𝜇, 𝜈) ≤ (1 +
𝑎)𝑇𝑐2 (𝜇, 𝜈). Furthermore, if 𝜋∗

1 and 𝜋∗
2 denote optimal transport plans between 𝜇 and

𝜈 under the costs 𝑐1 and 𝑐2, then

𝑇𝑐1 (𝜇, 𝜈) −𝑇𝑐2 (𝜇, 𝜈) = 𝜋∗
1 𝑐1 − 𝜋∗

2 𝑐2 ≤ 𝜋∗
2 |𝑐1 − 𝑐2 | ≤ 𝑎 𝜋∗

2 𝑐2 = 𝑎𝑇𝑐2 (𝜇, 𝜈)

with an analog result for 𝑇𝑐2 (𝜇, 𝜈) − 𝑇𝑐1 (𝜇, 𝜈), which establishes the claims of the
lemma. □

Proof of Lemma 2. To prove the first inequality, we reach for the dual formulation
(9) of optimal transport. For any continuous and bounded potential 𝑓 : 𝑋 → R, we
define 𝑓𝜅 (𝑥) = 𝜅 𝑓 (𝑥 + ·) for 𝑥 ∈ 𝑋 . It is easy to check that 𝑓𝜅 is again continuous
and bounded. If 𝑔 is another potential such that 𝑓 ⊕ 𝑔 ≤ 𝑐 , we find

𝑓𝜅 (𝑥1) + 𝑔𝜅 (𝑥2) = 𝜅
(
𝑓 (𝑥1 + ·) + 𝑔(𝑥2 + ·)) ≤ ∫

𝑐 (𝑥1 + 𝑦, 𝑥2 + 𝑦) 𝜅 (d𝑦) = 𝑐 (𝑥1, 𝑥2)

for any 𝑥1, 𝑥2 ∈ 𝑋 due to the translation invariance of 𝑐 . Therefore, 𝑓𝜅 ⊕ 𝑔𝜅 ≤ 𝑐 . This
implies

(𝜇 ∗ 𝜅) 𝑓 + (𝜈 ∗ 𝜅) 𝑔 = 𝜇𝑓𝜅 + 𝜈𝑔𝜅 ≤ sup 𝜇𝑓 ′ + 𝜈𝑔′ = 𝑇𝑐 (𝜇, 𝜈),
where the supremum is taken over continuous and bounded potentials 𝑓 ′ and 𝑔′
with 𝑓 ′ ⊗ 𝑔′ ≤ 𝑐 . Since 𝑓 and 𝑔 were arbitrary, 𝑇𝑐 (𝜇 ∗ 𝜅, 𝜈 ∗ 𝜅) ≤ 𝑇𝑐 (𝜇, 𝜈) follows.
Note that this arguments holds even if 𝑇𝑐 (𝜇, 𝜈) = ∞, so there are no restrictions on
𝜇, 𝜈 ∈ P (𝑋 ).
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For the upper bound in the second result, we construct an explicit transport plan
𝜋 between 𝜇 and 𝜇 ∗ 𝜅. It is defined by 𝜋 𝑓 =

∫
𝑓 (𝑥1, 𝑥1 + 𝑥2) 𝜇 (d𝑥1)𝜅 (d𝑥2) for any

measurable map 𝑓 : 𝑋×𝑋 → [0,∞). It is straightforward to check that 𝜋 ∈ C (𝜇, 𝜇∗𝜅),
and we can conclude

𝑇𝑐 (𝜇, 𝜇 ∗ 𝜅) ≤ 𝜋𝑐 =
∫

𝑐 (𝑥1, 𝑥1 + 𝑥2) 𝜇 (d𝑥1) 𝜅 (d𝑥2) = 𝜅ℎ,

where we made use of the translation invariance 𝑐 (𝑥1, 𝑥2) = ℎ(𝑥1 − 𝑥2) and the
symmetry 𝑐 (𝑥1, 𝑥2) = 𝑐 (𝑥2, 𝑥1) of 𝑐 for any 𝑥1, 𝑥2 ∈ 𝑋 . Again, the argument stays
valid even if 𝑇𝑐 (𝜇, 𝜇 ∗ 𝜅) = ∞, so the results holds for any 𝜇 ∈ P (𝑋 ). □

Upper bounds and marginal transport dependency. The segment ahead estab-
lishes the upper bounds in Proposition 7 and 8, and contains proofs for Theorem 5
and 6 concerning the marginal transport dependency. While most of the guiding
ideas are straightforward, several technical aspects have to be resolved.

Proof of Proposition 7. It is evident that 𝑐𝑋𝑌 is a cost function (non-negative, sym-
metric, lower semi-continuous). Furthermore, the second inequality in (28) follows
trivially. To prove the first inequality, we construct a coupling 𝜋2 ∈ C (𝛾, 𝜇 ⊗ 𝜈) that
aims to prevent either horizontal or vertical movements, depending on which of the
associated marginal costs is larger. We therefore define the set

𝑆 =
{(𝑥1, 𝑦1, 𝑥2, 𝑦2)

�� 𝑐𝑋 (𝑥1, 𝑥2) ≥ 𝑐𝑌 (𝑦1, 𝑦2)
} ⊂ (𝑋 × 𝑌 )2,

and note that 𝑆 is symmetric under exchanging (𝑥1, 𝑦1) and (𝑥2, 𝑦2) due to the
symmetry of the costs 𝑐𝑋 and 𝑐𝑌 . We write 𝑅 to denote the complement of 𝑆 , which
is also symmetric. Next, we introduce the function 𝑟 : (𝑋 ×𝑌 )2 → (𝑋 ×𝑌 )2 given by

𝑟 (𝑥1, 𝑦1, 𝑥2, 𝑦2) =
{
(𝑥1, 𝑦1, 𝑥1, 𝑦2) if (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝑆,
(𝑥2, 𝑦2, 𝑥1, 𝑦2) else.

The proof is completed once we show that the coupling defined by 𝜋2 = 𝑟∗(𝛾 ⊗ 𝛾)
has the correct marginals, meaning 𝜋2 ∈ C (𝛾, 𝜇 ⊗ 𝜈), and that 𝜋2𝑐 , which is an upper
bound for 𝜏 (𝛾), is in turn upper bounded by diam𝑐𝑋𝑌𝛾 . The second marginal 𝜇 ⊗ 𝜈 is
an immediate consequence of the definition of 𝑟 and 𝜋2. To check the first marginal,
we consider an arbitrary positive and measurable function 𝑓 : 𝑋 ×𝑌 → R. Then, if 𝑞
denotes the two first components of 𝑟 ,∫

𝑓 (𝑥1, 𝑦1) d𝜋2(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
∫

𝑓
(
𝑞(𝑥1, 𝑦1, 𝑥2, 𝑦2)

)
d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2)

=
∫

1𝑆 (𝑥1, 𝑦1, 𝑥2, 𝑦2) 𝑓 (𝑥1, 𝑦1) d𝛾 (𝑥1, 𝑦2) d𝛾 (𝑥2, 𝑦2)

+
∫

1𝑅 (𝑥1, 𝑦1, 𝑥2, 𝑦2) 𝑓 (𝑥2, 𝑦2) d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2)

=
∫

𝑓 (𝑥1, 𝑦1) d𝛾 (𝑥1, 𝑦1) = 𝛾 𝑓 ,
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where we swapped the roles of (𝑥1, 𝑦1) and (𝑥2, 𝑦2) to establish the third equality.
This is permissible due to the symmetry of 𝑆 (and 𝑅). Similarly, we observe

𝜏 (𝛾) ≤ 𝜋2𝑐

=
∫
𝑆
𝑐 (𝑥1, 𝑦1, 𝑥1, 𝑦2) d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2) +

∫
𝑅
𝑐 (𝑥2, 𝑦2, 𝑥1, 𝑦2) d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2)

≤
∫
𝑆
𝑐𝑌 (𝑦1, 𝑦2) d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2) +

∫
𝑅
𝑐𝑋 (𝑥1, 𝑥2) d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2)

=
∫

min
(
𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)

)
d𝛾 (𝑥1, 𝑦1) d𝛾 (𝑥2, 𝑦2) = (𝛾 ⊗ 𝛾) 𝑐𝑋𝑌 ,

where we bounded 𝑐 by 𝑐𝑌 and 𝑐𝑋 via condition (23). □

Proof of Proposition 8. In order to prove this result, we first introduce an alternative
characterization of the measurability of probability kernels that is employed in
Villani 2008.

Lemma 5 (measurability of kernels): Let 𝑋 be Polish and let (𝜇𝜔 )𝜔∈Ω ⊂ P (𝑋 )
be a family of probability measures indexed in a measurable space (Ω,F). Then

𝜔 ↦→ 𝜇𝜔 (𝐴) is measurable for all Borel𝐴 ⊂ 𝑋 ⇐⇒ 𝜔 ↦→ 𝜇𝜔 is measurable,

where P (𝑋 ) is equipped with the Borel 𝜎-algebra with respect to the topology
of weak convergence of measures.

Proof. Theorem 17.24 in Kechris 2012 asserts that the Borel 𝜎-algebra of P (𝑋 ) is
generated by functions 𝑟𝐴 : P (𝑋 ) → [0, 1] of the form 𝜈 ↦→ 𝜈 (𝐴) for Borel sets
𝐴 ⊂ 𝑋 . This means that G =

{
𝑟−1
𝐴 (𝐵)

��𝐵 ⊂ [0, 1] Borel and 𝐴 ⊂ 𝑋 Borel
}

is a
generator of the Borel 𝜎-algebra of P (𝑋 ). In particular, each 𝑟𝐴 is measurable.

Thus, if 𝜇 : 𝜔 ↦→ 𝜇𝜔 is measurable, then𝜔 ↦→ (𝑟𝐴 ◦ 𝜇) (𝜔) = 𝜇𝜔 (𝐴) is also measurable
as composition of measurable functions. Conversely, if 𝜔 ↦→ 𝜇𝜔 (𝐴) is measurable
for each Borel set 𝐴 ⊂ 𝑋 , then 𝜇−1(𝐺) ∈ F for each 𝐺 ∈ G. Since G is a generator,
this suffices to show that 𝜔 ↦→ 𝜇𝜔 is measurable. □

We now return to the proof of Proposition 8, where we aim to improve the inner
integral occurring in equation (26). To do so, we let 𝜋∗

𝑥 ∈ C (
𝛾 (𝑥, ·), 𝜇) be an optimal

transport plan with respect to the base costs 𝑐𝑌 for each 𝑥 ∈ 𝑋 . Corollary 5.22 in
Villani 2008 together with the continuity of 𝑐𝑋 and Lemma 5 above guarantee that
𝜋∗
𝑥 can be selected such that (𝜋∗

𝑥 )𝑥∈𝑋 is a probability kernel. We can thus define
𝜋3 ∈ P (𝑋 × 𝑌 ) via

d𝜋3(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝜋∗
𝑥1 (d𝑦1, d𝑦2) 𝛿𝑥1 (d𝑥2) 𝜇 (d𝑥1) .
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It can easily be checked that the marginals of 𝜋3 match 𝛾 and 𝜇 ⊗ 𝜈 . Using condi-
tion (23), we find

𝜏 (𝛾) ≤ 𝜋3𝑐 ≤
∫ (∫

𝑐𝑌 (𝑦1, 𝑦2) 𝜋∗
𝑥 (d𝑦1, d𝑦2)

)
𝜇 (d𝑥) =

∫
(𝜋∗
𝑥 𝑐𝑌 ) 𝜇 (d𝑥),

which shows the first inequality of the proposition. To assert the second inequality,
one just has to note that 𝜋∗

𝑥 𝑐𝑌 ≤ (
𝛾 (𝑥, ·) ⊗ 𝜈 ) 𝑐𝑌 for each 𝑥 ∈ 𝑋 by construction of

𝜋∗
𝑥 as optimal plan. □

Proof of Theorem 5. We begin the proof by showing the following auxiliary state-
ment.

Lemma 6: Let 𝑋 be a Polish space and 𝑐 a positive continuous cost function on
𝑋 . For 𝜇, 𝜈 ∈ P (𝑋 ) with supp 𝜇 ⊂ supp𝜈 and 𝑇𝑐 (𝜇, 𝜈) < ∞, it holds that

𝑇𝑐 (𝜇, 𝜈) = (𝜇 ⊗ 𝜈)𝑐 ⇐⇒ 𝜇 = 𝛿𝑥 for some 𝑥 ∈ 𝑋 .

Proof. The implication from right to left is trivial, since 𝜇 ⊗ 𝜈 is the only feasible
coupling if 𝜇 is a point mass. To show the reverse direction, we assume that 𝜇 ≠ 𝛿𝑥
for any 𝑥 ∈ 𝑋 and show that 𝑇𝑐 (𝜇, 𝜈) = (𝜇 ⊗ 𝜈)𝑐 is impossible. First, we pick two
distinct points 𝑥1 ≠ 𝑥2 from the support of 𝜇. By assumption, these points also lie
in the support of 𝜈 . To show that 𝜇 ⊗ 𝜈 cannot be an optimal transport plan, it is
sufficient to show that supp (𝜇 ⊗ 𝜈) = supp 𝜇 × supp𝜈 is not 𝑐-cyclically monotone
(Villani 2008). This is easy to see, since for (𝑥1, 𝑥2), (𝑥2, 𝑥1) ∈ supp (𝜇 ⊗ 𝜈), we find

𝑐 (𝑥1, 𝑥2) + 𝑐 (𝑥2, 𝑥1) > 𝑐 (𝑥1, 𝑥1) + 𝑐 (𝑥2, 𝑥2) = 0

due to the positivity of 𝑐 . □

Returning to the proof of Theorem 5, we note that 𝜏𝑌 (𝛾) and diam𝑐𝑌 𝜈 are equal iff∫
𝑇𝑐𝑌

(
𝛾 (𝑥, ·), 𝜈 ) 𝜇 (d𝑥) = ∫ (

𝛾 (𝑥, ·) ⊗ 𝜈 ) 𝑐𝑌 𝜇 (d𝑥) . (48)

Evidently, these two values are the same if 𝛾 = (id, 𝜑)∗𝜇, since this implies 𝛾 (𝑥, ·) =
𝛿𝜑 (𝑥 ) for 𝜇-almost all 𝑥 ∈ 𝑋 . So it only remains to show that equality in (48) implies
𝛾 = (id, 𝜑)∗𝜇 for some 𝜇-almost surely defined measurable function 𝜑 : 𝑋 → 𝑌 .

Since the right hand side in (48) is by assumption finite and 0 ≤ 𝑇𝑐𝑌
(
𝛾 (𝑥, ·), 𝜈 ) ≤(

𝛾 (𝑥, ·) ⊗ 𝜈 )𝑐𝑌 holds for each 𝑥 ∈ 𝑋 , we find that equality in (48) can only hold if

𝑇𝑐𝑌
(
𝛾 (𝑥, ·), 𝜈 ) = (

𝛾 (𝑥, ·) ⊗ 𝜈 )𝑐𝑌
for 𝜇-almost all 𝑥 ∈ 𝑋 . As supp𝛾 (𝑥, ·) ⊂ supp𝜈 also holds for 𝜇-almost all 𝑥 ∈ 𝑋
(see below), we can apply Lemma 6 and find that 𝛾 (𝑥, ·) = 𝛿𝜑 (𝑥 ) for a 𝜇-almost
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surely defined function 𝜑 . The measurability of 𝜑 follows from the measurability
of the maps 𝑥 ↦→ 𝛾 (𝑥,𝐴) for all Borel sets 𝐴 ⊂ 𝑌 , since 𝑥 ∈ 𝜑−1(𝐴) is equivalent to
𝛾 (𝑥,𝐴) = 1 for all 𝑥 ∈ 𝑋 for which 𝜑 is defined by the construction above.

A brief argument to see that supp𝛾 (𝑥, ·) ⊂ supp𝜈 for 𝜇-almost all 𝑥 ∈ 𝑋 goes as
follows: note that supp𝛾 ⊂ supp (𝜇 ⊗ 𝜈) = supp 𝜇 × supp𝜈 and write

1 =
∫

d𝛾 =
∫

1supp𝜈 (𝑦) 𝛾 (d𝑥, d𝑦) =
∫

1supp𝜈 (𝑦) 𝛾 (𝑥, d𝑦) 𝜇 (d𝑥),

which proves that 𝛾 (𝑥, supp𝜈) = 1 for 𝜇-almost all 𝑥 ∈ 𝑋 . □

Proof of Theorem 6. We begin by defining a set that contains all vertical movements
along the fibers {𝑥} × 𝑌 , given by 𝑆 = {(𝑥,𝑦1, 𝑥,𝑦2) | 𝑥 ∈ 𝑋, 𝑦1, 𝑦2 ∈ 𝑌 } ⊂ (𝑋 × 𝑌 )2.
Due to the definition of 𝑐∞, it is evident that

𝜏𝑐∞ (𝛾) = inf
𝜋∈C (𝛾,𝜇⊗𝜈 )
𝜋 (𝑆 )=1

𝜋𝑐𝑌 . (49)

We use this characterization to show that the equality 𝜏𝑐∞ (𝛾) = 𝜏𝑌𝑐𝑌 (𝛾) holds. First,
we define 𝑓 : 𝑆 → 𝑋 × 𝑌 2 via 𝑓 (𝑥,𝑦1, 𝑥,𝑦2) = (𝑥,𝑦1, 𝑦2). For each 𝜋 that is feasible
in the infimum in (49), we furthermore define 𝜋𝑥 = (𝑓∗𝜋) (𝑥, ·, ·) ∈ P (𝑌 × 𝑌 ) for
𝑥 ∈ 𝑋 . One can check that 𝜋𝑥 ∈ C (

𝛾 (𝑥, ·), 𝜈 ) holds 𝜇-almost surely due to the (almost
sure) uniqueness property of disintegrations. If 𝜋∗

𝑥 ∈ C (
𝛾 (𝑥, ·), 𝜈 ) are a measurable

selection of optimal transport plans for the problem 𝑇𝑐𝑌
(
𝛾 (𝑥, ·), 𝜈 ) as in the proof of

Proposition 8, we observe

𝜋𝑐𝑌 =
∫
𝑆
𝑐𝑌 d𝜋 =

∫
𝑐𝑌 d(𝑓∗𝜋) =

∫
(𝜋𝑥𝑐𝑌 ) 𝜇 (d𝑥) ≥

∫
(𝜋∗
𝑥𝑐𝑌 ) 𝜇 (d𝑥) = 𝜏𝑌𝑐𝑌 (𝛾) .

Taking the infimum on the left hand side and applying (49) implies 𝜏𝑐∞ (𝛾) ≥ 𝜏𝑌𝑐𝑌 (𝛾).
Since we already know 𝜏𝑐∞ (𝛾) ≤ 𝜏𝑌𝑐𝑌 (𝛾) by Proposition 8, this proves equality.

It is left to show that 𝜏𝑐𝛼 (𝛾) → 𝜏𝑐∞ (𝛾) as 𝛼 → ∞. Since 𝑐∞ ≥ 𝑐𝛼 for all 𝛼 > 0, we
know that𝜏𝑐∞ (𝛾) ≥ 𝜏𝑐𝛼 (𝛾) and it is accordingly sufficient to show lim inf𝛼→∞ 𝜏𝑐𝛼 (𝛾) =
𝜏𝑐∞ (𝛾). We thus fix 𝜏 = lim inf𝛼→∞ 𝜏𝑐𝛼 (𝛾) and consider a diverging sequence
(𝛼𝑛)𝑛∈N ⊂ (0,∞) such that 𝜏𝑐𝛼𝑛 (𝛾) → 𝜏 . Due to Prokhorov’s theorem and the
existence of optimal transport plans, we can assume that there are couplings 𝜋∗

𝑛 and
𝜋∞ in C (𝛾, 𝜇 ⊗ 𝜈) that satisfy 𝜏𝑐𝛼𝑛 (𝛾) = 𝜋∗

𝑛𝑐𝛼𝑛 and 𝜋∗
𝑛 ⇀ 𝜋∞. We use these properties

to lead the assumption ∞ ≥ 𝜏𝑐∞ (𝛾) > 𝜏 to a contradiction. If this assumption were
true, observe that for any 𝑘 > 0,

∞ > 𝜏 = lim
𝑛→∞𝜋

∗
𝑛𝑐𝛼𝑛 ≥ lim inf

𝑛→∞ 𝛼𝑛𝜋
∗
𝑛𝑐𝑋 ≥ 𝑘 lim inf

𝑛→∞ 𝜋∗
𝑛𝑐𝑋 ≥ 𝑘 𝜋∞𝑐𝑋 ,

where the final inequality follows from the lower semi-continuity of the mapping
𝜋 ↦→ 𝜋ℎ under weak convergence for lower semi-continuous integrands ℎ that are
bounded from below (Santambrogio 2015, Proposition 7.1). Since 𝑘 is arbitrary, we
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conclude 𝜋∞𝑐𝑋 = 0, which implies 𝜋∞(𝑆) = 1 due to the positivity of 𝑐𝑋 . Employing
representation (49) of 𝜏𝑐∞ (𝛾), we find the contradiction

𝜏𝑐∞ (𝛾) > 𝜏 = lim
𝑛→∞𝜋

∗
𝑛𝑐𝛼𝑛 ≥ lim inf

𝑛→∞ 𝜋∗
𝑛𝑐𝑌 ≥ 𝜋∞𝑐𝑌 ≥ 𝜏𝑐∞ (𝛾).

This establishes 𝜏 = 𝜏𝑐∞ (𝛾) and finishes the proof. □

Contracting couplings and maps. We next provide proofs and statements that
were omitted in our work on contractions in Section 4. This includes the proof of
our main result, Theorem 7, as well as the formulation of two auxiliary statements
(Lemma 7 and 8), which simplify Theorem 7 if sufficient regularity is imposed on the
involved costs.

Proof of Theorem 7. We first show the second part. Assuming that 𝜏 (𝛾) = diam𝑐𝑌 𝜈 <
∞, we use the upper bound in Proposition 7 to conclude diam𝑐𝑋𝑌𝛾 = diam𝑐𝑌 𝜈 , which
can be stated as∫

min
(
𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)

)
d(𝛾 ⊗ 𝛾) (𝑥1, 𝑦1, 𝑥2, 𝑦2) =

∫
𝑐𝑌 (𝑦1, 𝑦2) d(𝜈 ⊗ 𝜈) (𝑦1, 𝑦2) .

This implies (𝛾 ⊗𝛾) (𝑐𝑌 ≤ 𝑐𝑋 ) = 1, since the left hand side in the equality above would
otherwise be strictly smaller than the right hand side. Recalling that 𝑐𝑋 = ℎ ◦𝑘𝑋 and
𝑐𝑌 = ℎ ◦ 𝑑𝑌 for a strictly increasing ℎ, we find (𝛾 ⊗ 𝛾) (𝑑𝑌 ≤ 𝑘𝑋 ) = 1, meaning that 𝛾
is almost surely contracting.

To prove the first statement, we show that 𝜏 (𝛾) ≥ diam𝑐𝑌 𝜈 , which is sufficient
to assert equality due to Proposition 6. Let 𝜋 ∈ C (𝜇, 𝜈) be arbitrary. We define
𝜆 ∈ P ((𝑋 ×𝑌 )2 ×𝑌 )

via the relation d𝜆(𝑥1, 𝑦1, 𝑥2, 𝑦,𝑦2) = 𝛾 (𝑥2, d𝑦) d𝜋 (𝑥1, 𝑦1, 𝑥2, 𝑦2).
One can readily establish that integrating out 𝑦2 ∈ 𝑌 yields a measure 𝜆 ∈ C (𝛾,𝛾) ⊂
P ((𝑋 ×𝑌 )2) . In particular, supp 𝜆 ⊂ supp𝛾 × supp𝛾 , which implies 𝜆(𝑑𝑌 ≤ 𝑘𝑋 ) = 1
by the assumption that 𝛾 is contracting on its support. Combining this insight with
the strict monotonicity of ℎ and the triangle inequality for 𝑑𝑌 , we find

𝜋𝑐 =
∫

ℎ
(
𝑘𝑋 (𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)

)
d𝜆(𝑥1, 𝑦2, 𝑥1, 𝑦,𝑦2)

≥
∫

ℎ
(
𝑑𝑌 (𝑦1, 𝑦) + 𝑑𝑌 (𝑦1, 𝑦2)

)
d𝜆(𝑥1, 𝑦2, 𝑥1, 𝑦,𝑦2)

≥
∫

ℎ
(
𝑑𝑌 (𝑦,𝑦2)

)
d𝜆(𝑥1, 𝑦2, 𝑥1, 𝑦,𝑦2)

=
∫

𝑐𝑌 (𝑦,𝑦2) d𝜈 (𝑦) d𝜈 (𝑦2) = diam𝑐𝑌 (𝜈).

One can check that the independence in the final line follows from the definition of
𝜆. Taking the infimum over 𝜋 ∈ C (𝛾, 𝜇 ⊗ 𝜈) now yields the desired result. □
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Lemma 7: Let 𝑋 and 𝑌 be Polish spaces and let 𝑘𝑋 and 𝑑𝑌 be continuous cost
functions on 𝑋 and 𝑌 . Then 𝛾 is contracting on its support iff it is almost surely
contracting (with respect to 𝑘𝑋 and 𝑑𝑌 ).

Proof of Lemma 7. It is clear that a contracting coupling𝛾 is almost surely contracting
since the set (𝑋 ×𝑌 )2\ (supp𝛾)2 is a null set for𝛾 ⊗𝛾 . Let𝛾 therefore be almost surely
contracting. If 𝑘𝑋 and 𝑑𝑌 are continuous and there are (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ supp𝛾 with
𝑑𝑌 (𝑦1, 𝑦2) > 𝑘𝑋 (𝑥1, 𝑥2), then we also find an open neighbourhood 𝑈 ⊂ (𝑋 × 𝑌 )2

of (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ (supp𝛾)2 = supp (𝛾 ⊗ 𝛾) where this inequality is true. By the
definition of the support, we conclude (𝛾 ⊗ 𝛾) (𝑈 ) > 0 and 𝛾 thus fails to be almost
surely contracting. □

Lemma 8 (uniform extension): Let𝑋 be Polish and (𝑌,𝑑𝑌 ) a Polish metric space,
and let 𝑘𝑋 : 𝑋 × 𝑋 → [0,∞) be a continuous cost function on 𝑋 . Any function
𝜑̃ : 𝐷 → 𝑌 defined on a subset 𝐷 ⊂ 𝑋 that satisfies

𝑑𝑌
(
𝜑̃ (𝑥1), 𝜑̃ (𝑥2)

) ≤ 𝑘𝑋 (𝑥1, 𝑥2) (50)

for all 𝑥1, 𝑥2 ∈ 𝐷 can uniquely be extended to a function 𝜑 : 𝐷̄ → 𝑌 on the
closure 𝐷̄ of 𝐷 that satisfies (50) for all 𝑥1, 𝑥2 ∈ 𝐷̄ . In particular, 𝜑 is continuous.

Proof of Lemma 8. Let 𝑥 ∈ 𝐷̄ \ 𝐷 and (𝑥𝑛)𝑛∈N be a sequence in 𝐷 converging to 𝑥 .
Set 𝑦𝑛 = 𝜑̃ (𝑥𝑛) for 𝑛 ∈ N and observe that 𝑑𝑌 (𝑦𝑛, 𝑦𝑚) ≤ 𝑘𝑋 (𝑥𝑛, 𝑥𝑚) for all 𝑛,𝑚 ∈ N.
In particular, the sequence (𝑦𝑛)𝑛 is Cauchy: if it were not Cauchy, there would
exist an 𝜖 > 0 and values 𝑛𝑟 ,𝑚𝑟 ≥ 𝑟 for each 𝑟 ∈ N such that 𝑑𝑌 (𝑦𝑛𝑟 , 𝑦𝑚𝑟 ) ≥ 𝜖 .
However, observing lim𝑟→∞ 𝑘𝑋 (𝑥𝑛𝑟 , 𝑥𝑚𝑟 ) → 0 due to continuity of 𝑘𝑋 leads this to
a contradiction. Consequently, the sequence (𝑦𝑛)𝑛∈N converges to a unique limit
𝑦 ∈ 𝑌 due to the completeness of (𝑌,𝑑𝑌 ).
The limit point 𝑦 does not depend on the chosen sequence: if (𝑥 ′𝑛)𝑛 is another
sequence converging to 𝑥 , and 𝑦′ is the corresponding limit in 𝑌 , continuity of 𝑑𝑌
and 𝑘𝑋 make sure that

0 ≤ 𝑑𝑌 (𝑦,𝑦′) = lim
𝑛→∞𝑑𝑌 (𝑦𝑛, 𝑦

′
𝑛) ≤ lim

𝑛→∞𝑘𝑋 (𝑥𝑛, 𝑥
′
𝑛) = 0.

Therefore, a well-defined extension of 𝜑̃ to 𝐷̄ exists. For any 𝑥, 𝑥 ′ ∈ 𝐷̄ , this extension
𝜑 satisfies

𝑑𝑌
(
𝜑 (𝑥), 𝜑 (𝑥 ′)) = lim

𝑛→∞𝑑𝑌
(
𝜑̃ (𝑥𝑛), 𝜑̃ (𝑥 ′𝑛)

) ≤ lim
𝑛→∞𝑘𝑋 (𝑥𝑛, 𝑥

′
𝑛) = 𝑘𝑋 (𝑥, 𝑥 ′)

as𝑛 → ∞ for any sequence (𝑥𝑛, 𝑥 ′𝑛)𝑛∈N ⊂ 𝐷×𝐷 that converges to (𝑥, 𝑥 ′) ∈ 𝐷̄×𝐷̄ . □
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Properties of the transport correlation. We next present proofs of Proposition 9
to 11 regarding basic properties of the transport correlation. Most of the claimed
properties are direct consequences of previously established results. Additional
arguments are mainly required for properties 5 and 6 in Proposition 9 and property
2 in Proposition 11. Recall from Section 5 that we focus on additive costs of the form

𝑐 = (𝛼𝑑𝑋 + 𝑑𝑌 )𝑝

on Polish metric spaces (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) for 𝛼, 𝑝 > 0.

Proof of Proposition 9. Properties 1 and 2, which characterize when 𝜌𝛼 (𝛾) equals 0
and 1, follow from Theorem 1 in Section 2 and from Corollary 1 in Section 4. The
invariance in property 3 is a consequence of Proposition 2. If 𝛾 is restricted to a
set with fixed marginal 𝑝𝑌∗ 𝛾 = 𝜈 , then diam𝑑

𝑝
𝑌
𝜈 is constant and convexity of 𝛾 ↦→

𝜌𝛼 (𝛾)𝑝 = 𝜏 (𝛾)/diam𝑑
𝑝
𝑌
𝜈 is guaranteed by convexity of 𝜏 as stated in Proposition 1.

This shows property 4.

We now turn to the continuity in property 5. Let𝜈𝑛 and𝜈 denote the respective second
marginals of 𝛾𝑛 and 𝛾 . For convenience, we write 𝛿𝑛 = diam𝑑

𝑝
𝑌
𝜈𝑛 = (𝜈𝑛 ⊗ 𝜈𝑛) 𝑑𝑝𝑌 . Our

first goal is to show that 𝑝-weak convergence of 𝛾𝑛 to 𝛾 implies 𝛿𝑛 → 𝛿 = diam𝑑
𝑝
𝑌
𝜈

as 𝑛 → ∞. To do so, we fix some 𝑦0 ∈ 𝑌 and define the function

𝑓 (𝑦1, 𝑦2) = 2𝑝
(
𝑑𝑌 (𝑦1, 𝑦0)𝑝 + 𝑑𝑌 (𝑦0, 𝑦2)𝑝

)
for 𝑦1, 𝑦2 ∈ 𝑌 . Noting that (𝑎 + 𝑏)𝑝 ≤ 2𝑝 (𝑎𝑝 + 𝑏𝑝) for 𝑎, 𝑏 ≥ 0, we find 𝑑𝑝𝑌 ≤ 𝑓 by
application of the triangle inequality. Consequently,

𝛿𝑛 = (𝜈𝑛 ⊗ 𝜈𝑛) 𝑑𝑝𝑌 ≤ (𝜈𝑛 ⊗ 𝜈𝑛) 𝑓 = 2𝑝+1𝜈𝑛𝑑𝑌 (·, 𝑦0)𝑝 → 2𝑝+1𝜈𝑑𝑌 (·, 𝑦0)𝑝

as 𝑛 → ∞. The convergence in this inequality follows from the fact that 𝜈𝑛 converges
𝑝-weakly if 𝛾𝑛 converges 𝑝-weakly, which was shown in the proof of Proposition 4.
Reaching back to Lemma 3 (setting 𝑔 = 𝑑𝑝𝑌 , 𝑓 = 𝑓 , and 𝜇𝑛 = 𝜈𝑛 ⊗𝜈𝑛), we conclude that
𝛿𝑛 indeed converges to 𝛿 as 𝑛 → ∞. Next, since 𝑐 = (𝛼𝑑𝑋 +𝑑𝑌 )𝑝 ≤ max(1, 𝛼)𝑝 (𝑑𝑋 +
𝑑𝑌 )𝑝 , we can apply Proposition 4 and find 𝜏𝑐 (𝛾𝑛) → 𝜏𝑐 (𝛾). Setting 𝑐𝑛 = (𝛼𝑛𝑑𝑋 +𝑑𝑌 )𝑝 ,
it is straightforward to see that ∥𝑐/𝑐𝑛 − 1∥∞ → 0 due to 𝛼𝑛 → 𝛼 > 0 for 𝑛 → ∞,
which lets us use Proposition 5 to obtain

lim
𝑛→∞ 𝜌𝛼𝑛 (𝛾𝑛)

𝑝 = lim
𝑛→∞

𝜏𝑐𝑛 (𝛾𝑛)
𝛿𝑛

=
𝜏𝑐 (𝛾)
𝛿

= 𝜌𝛼 (𝛾)𝑝 .

Finally, the monotonicity of 𝛼 ↦→ 𝜌𝛼 (𝛾) in property 6 is trivial, since 𝑐 increases
with 𝛼 . The concavity of 𝛼 ↦→ 𝜌𝛼 (𝛾)𝑝 for 𝑝 ≤ 1 and fixed 𝛾 ∈ C (𝜇, 𝜈) with marginals
𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ) follows from the fact that pointwise infima over concave
functions are again concave. Indeed, we have that

𝜌𝛼 (𝛾)𝑝 =
1

diam𝑑
𝑝
𝑌
𝜈

inf
𝜋∈C (𝛾,𝜇⊗𝜈 )

𝜋 (𝛼𝑑𝑋 + 𝑑𝑌 )𝑝 ,

where the mapping 𝛼 ↦→ 𝜋 (𝛼𝑑𝑋 + 𝑑𝑌 )𝑝 is concave for any fixed 𝜋 if 𝑝 ≤ 1. □
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Proof of Proposition 10. Due to Theorem 6, results established for 𝜏 under generic
lower semi-continuous costs 𝑐 also hold for the marginal transport dependency with
𝛼 = ∞. Therefore, properties 1, 3, and 4 follow from the general results stated in
Theorem 1, Proposition 2, and Proposition 1. Note that we can allow dilatations 𝑓𝑌 in
property 3 (instead of just isometries), since we normalize by diam𝑑

𝑝
𝑌
𝜈 in definition

(42) of 𝜌∞, which neutralizes the dilatation factor 𝛽 > 0. Property 2 relies on the
specific cost structure for 𝛼 = ∞ and was derived separately in Theorem 5. □

Proof of Proposition 11. Properties 1, 4, and 5 follow in the same way as in the proof
of Proposition 9. The symmetry property 6 is trivial and directly visible from the
definition of 𝜌∗. Property 3 is a consequence of the general invariance of the transport
dependence under isometries (Proposition 2). We can extend this to dilatations 𝑓𝑋
and 𝑓𝑌 since we divide by the respective diameters in definition (44) of 𝜌∗, which
nullifies any scaling factors.

Regarding property 2, let 𝛾 ∈ C (𝜇, 𝜈) for 𝜇 ∈ P (𝑋 ) and 𝜈 ∈ P (𝑌 ). We equip the
spaces 𝑋 and 𝑌 with the scaled metrics

𝑑𝑋 = 𝑑𝑋 /(diam𝑑
𝑝
𝑋
𝜇)1/𝑝 and 𝑑𝑌 = 𝑑𝑌 /(diam𝑑

𝑝
𝑌
𝜈)1/𝑝 .

According to Corollary 1 (combined with Lemma 8), a value of 𝜌∗(𝛾) = 1 is equivalent
to there being a contraction 𝜑 from (supp 𝜇, 𝑑𝑋 ) to (𝑌,𝑑𝑌 ) that satisfies (id, 𝜑)∗𝜇 = 𝛾 .
This in particular means 𝜑∗𝜇 = 𝜈 . Defining 𝑑𝜑 (𝑥1, 𝑥2) = 𝑑𝑌

(
𝜑 (𝑥1), 𝜑 (𝑥2)

)
for any

𝑥1, 𝑥2 ∈ supp 𝜇, we know that 𝑑𝜑 ≤ 𝑑𝑋 since 𝜑 is a contraction. By a change of
variables, we calculate

(𝜇 ⊗ 𝜇) 𝑑𝑝𝜑 = (𝜈 ⊗ 𝜈) 𝑑𝑝𝑌 = 1 = (𝜇 ⊗ 𝜇) 𝑑𝑝𝑋
and assert 𝑑𝜑 = 𝑑𝑋 to hold (𝜇 ⊗ 𝜇)-almost surely. Since 𝑑𝑋 and 𝑑𝜑 are continuous, we
can conclude that 𝜑 : (supp 𝜇, 𝑑𝑋 ) → (𝑌,𝑑𝑌 ) is an isometry. Thus, 𝜑 is a dilatation
under the metrics 𝑑𝑋 and 𝑑𝑌 . Note that its dilatation factor 𝛽 is uniquely given by
𝛼∗ defined in equation (43). Due to the symmetry of the setting, the same arguments
also hold for𝜓 instead of 𝜑 by exchanging the roles of 𝑋 and 𝑌 . □
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B Additional Simulations

This appendix contains a range of figures that supplement Section 6 and further
illustrate the behaviour of the transport correlation on noisy datasets.

Convex noise. Like Figure 10 and 11 in Section 6, the upcoming Figures 15 to 17
compare 𝜌∗, 𝜌3, and several other dependency coefficients under the convex noise
model (46) for different geometries 𝛾 . One particularly noteworthy observation is
that 𝜌∗ has a higher (or at least the same) discriminative power compared to the
distance correlation, Pearson correlation, and Spearman correlation for all geometries
considered.
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Gaussian additive noise. We repeated our previous simulations under a Gaussian
additive noise model instead of convex noise (Figure 18 to Figure 22). For a given level
of noise 𝜎 > 0 and a given base distribution 𝛾 , we consider the noisy relationships
(𝜉, 𝜁 ) ∼ 𝛾𝜎 , where

𝛾𝜎 = 𝛾 ∗ 𝜅 with 𝜅 = N (0, 𝜎 Id2) .

In this setting, we notice that the Pearson and Spearman correlations as well as the
distance correlation have a higher power than 𝜌∗ if 𝛾 exhibits a clear monotonic
tendency. If, on the other hand, the linear correlation of the underlying distribution
𝛾 is low, then we observe similar trends as for the convex noise model.
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Influence of 𝒑. Finally, we use the same distributions and noise models as above
to study the effect of the parameter 𝑝 on the transport correlation coefficient 𝜌∗,
see definition (44). From Figure 23 to Figure 27, we compare the values of 𝜌∗ when
the parameter 𝑝 is set equal to 0.5, 1, and 2, respectively. The setting is the same as
for the previous comparisons, the only difference being that just 9 (instead of 29)
random permutations are used for the permutation tests. One observation that holds
for all geometries 𝛾 is that the box plots of the estimates of 𝜏 are generally very
similar for all 𝑝 . In contrast, we observe that the parameter 𝑝 = 0.5 often provides a
(slightly) higher discriminative power against independence than the choices 𝑝 = 1
or 𝑝 = 2.
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