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Abstract

Glioblastoma (GBM) is the most common and highly aggressive brain tumor. GBM poses
unique challenges due to high rates of tumor recurrence ( 34%) and resistance to treatment.
Despite advances in treatment strategies, themedian survival of glioblastoma patients has not
improved beyond 12 - 15months. Patients who survive less than 12 months are considered
as Short-Term Survivors (STS). Despite all the challenges associated with the disease, there
are a small group of patients who survive longer than 3 years and are termed as Long-Term
Survivors (LTS). Researchers in the area continue to be perplexed by this group of patients
since investigations on clinical, radiological, histological, and genetic features have failed to
provide consensus on predictors of long-term response to current treatment.The goal of this
study is to identify crucial survival factors in GBM and to elucidate the molecular processes
that drive poor survival using gene expression profiles. To achieve this, I have used different
computational approaches which are discussed in detail in the four chapters of my thesis.

The time-to-event analysis helps to investigate the impact of any clinical or molecular
factor on survival and is hence also called survival Analysis. Survival analysis is performed
on 2309 GBM patients aggregated from 14 publicly available datasets in Chapter 1 to see
impact of various clinical and molecular factors like Age, Gender, Karnofsky Performance
Score, IDHmutation status, andMGMTpromoter methylation status on survival. Ameta-
analytic approach is considered to integrate the observations using the random effectsmodel.
Age andMGMTpromotermethylation statuswere found to be factors of prognostic impor-
tance. This work also signifies the importance of Age as well as quantifies the risk of death
that a patient experience based on his age group. Example,patients aged beyond 70 years were
found to experience 2.4 times higher risk of death/ poor survival than younger patients (40 -
50 yrs).

In the next approach,I [Kalya et al., 2021a] investigated gene-expression signatures that
had an impact on survival Chapter 2. 720 genes were found to impact survival according
to univariate cox regression and are reported. The enrichment analysis has revealed beta-
catenin network, hypoxia pathway, IL-6 signaling pathways, cell-cell communication, Inter-
feron signaling pathways which are known for their diverse role in GBM biology. Gene-
regulatory networks were built using state-of-art promoter analysis and pathway analysis us-
ing the GenomeEnhancer pipeline. This analysis revealed 43 master regulators which regu-
late the signal transduction networks driving prognosis in glioblastoma. Upon the informa-
tion available in the HumanPSDTM database, we find that some of these targets have action-
able drugs reported at multiple stages of clinical trials.
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To investigate themolecularmechanismunderpinning poor prognosis and short survival
in Glioblastoma, gene-regulatory networks were built on the genes differentially upregulated
(LogFC > 0.5) in short-survivors of glioblastoma Chapter 3 [Kalya et al., 2021b]. Regula-
tory networks are built on the network feedback loops of Walking pathways described ear-
lier. 12 Transcription Factors including NANOG, PPARG, FRA-1 and others were found
enriched in promoters of these dysregulated genes. Graph analysis of the signal transduc-
tion network upstream of these transcription factors revealed five potential master regulators
that could explain gene dysregulation in short-survivors: insulin-like growth factor binding
protein (IGFBP2), vascular endothelial growth factor A (VEGF-A), its isoform VEGF165,
platelet-derived growth factorA (PDGFA), oncostatinM (OSMR), and adipocyte enhancer-
binding protein (AEBP1). All of the identified master regulators were elevated in STS, and
their expression patterns were computationally verified in two additional independent co-
horts. This work proposes a novel mechanism of gene dysregulation by IGFBP2 by modu-
lating a key molecule of tumor invasiveness and progression - FRA-1 transcription factor.

Machine Learning has now become an indispensable tool in GBM research. Chapter
4 [Kalya et al., 2022] evaluates application of 10 ML models to build a classifier which can
classify GBM patients into short-term and long-term survivor groups based on their tran-
scriptomic profiles and clinical information (age). A random forest model with an F1 score
of 86.4% (Accuracy = 80%, AUC =74% ) is proposed (with good external validity). This
classification model is deployed as a webtool. The important features are discussed for their
biological relevance in the disease using gene ontology analysis, survival analysis, differential
expression and bymapping them onto existing databases of gene-disease biomarkers associa-
tions. Using this approach, we have identified 199 mRNAexpression based biomarkers that
are associated with survival group prediction. Of them, 171 are not reported to be biomark-
ers of glioblastoma in existing databases.

In conclusion, this work evaluates clinical factors associatedwith prognosis using ameta-
analytic approach. This work proposes 242 gene-expression based biomarkers associated
withGBMsurvival usingdifferent computational approaches. Molecules likePDGFA,AEBP1
and VEGFwere found to be important in both gene-regulatory network analysis and inMa-
chine Learningmodels. A novelmechanismof gene dysregulation in short-term survivors via
FRA-1 transcription, a keymolecule of tumor invasiveness and progression is proposed. The
thesis encompasses 2 published research papers and a ready to submit version of the research
article.
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Look to this day,
for it is life, the very breath of life.

In its brief course lie
all the realities of your existence;

the bliss of growth,
the glory of action,

the splendor of beauty.
For yesterday is only a dream,
and tomorrow is but a vision.

But today, well lived,
makes every yesterday a dream of happiness,

and every tomorrow
a vision of hope.

Lookwell, therefore, to this day.
(Ancient Sanskrit)
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Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear
less.

Marie Curie

0
Introduction

Glioblastoma (GBM) is one of the most common and highly malignant brain tumors of the
central nervous system. It corresponds to 54% of all the adult brain tumors with a global
incidence of 10 in 10,000. The incidence is found tobehigher inmen as compared towomen,
male-to-female ratio of 1.33 for primary GBMs [Wen & Kesari, 2008,Thakkar et al., 2014].
Even though the incidence rate is low, it is a very important public health issue because of its
poor prognosis with a median survival of 15 months [Iacob & Dinca, 2009,Thakkar et al.,
2014, Gilard et al., 2021]. Despite improvements in the treatment strategies, less than five
percent of patients survive beyond 5 years after diagnosis [Verhaak et al., 2010,Hanif et al.,
2017,Henson, 2006].

The coming sections give an overview about Clinical Presentation, Diagnosis and Manage-
ment aspects of Glioblastoma

0.1 Clinical presentation, diagnosis and management

0.1.1 Clinical Presentation

Clinical presentation of GBM depends on the size and location of the tumor. Most of them
are located in the supra-tentorial space. Approximately one-fourthof tumors are in the frontal
lobe resulting in deficits of mood and executive abilities. The incidence of tumors in other
regions are 20% in temporal lobe, 13% in parietal and 3% in occipital lobe [Davis, 2016]. In
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terms of symptoms (Figure 1), nausea and headache are some of the nonspecific symptoms
which are seenwith large sized tumors. Motor deficit, loss of bodyweight, confusion, speech
or visual deficit are expressed in caseswith intracranial hypertension. Initial presentationwith
epilepsy is not uncommon. 15-20% patients inGBMpresent with seizures and are associated
with better prognosis as it helps in faster diagnosis Figure 1.

Figure 1: Clinical Presentation of GBM

0.1.2 Diagnosis

Inmagnetic resonance imaging (MRI) scans, nearly allGBMs showenhancementwith gadolin-
ium contrast and show an irregularly shaped mass with a dense ring of enhancement (Figure
2). In T1-weighted images a hypointense centre of necrosis is seen. Necrosis is a hallmark fea-
ture of GBM, and presence of necrosis is required for a brain tumor to be grade IV or to be
classified as a GBM on theWorldHealth Organization classification system (AANN, 2014).
The surrounding vasogeneic edema is seen as a hyperintense signal in theT2-weighted images
and fluid-attenuated inversion recovery (FLAIR) images [Ellis & Kurian, 2014, Ellor et al.,
2014, Davis, 2016]. Recent multimodal MRI techniques such as diffusion/perfusion se-
quences givemore information on lesions and enable accurate diagnosis. Perfusionweighted
imaging (PWI) reveals an increase in cerebral blood flow corresponding to neoangiogenesis
and blood brain barrier (BBB) disruption. In addition, the elevated peak of lactate and lipids
aswell as a decreased peak ofmyoinositol helps to discriminate glioblastomas frommetastasis,
lymphoma and brain abscess [Gilard et al., 2021,Hanif et al., 2017].
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Figure 2: T1‐gadolinium contrast‐enhancing tumor of the right frontal lobe [adopted from operativeneurosurgery].

0.1.3 Management

The principal mode of treatment includes a combination of surgical resection of the tumor
and/or radiotherapy and/or chemotherapy. The modality of treatment choices depend on
the age of the patients, location of the tumor and Karnofsky score. Karnofsky score assesses
the patients’ ability to conduct everyday chores. Scores vary from 0 to 100 and a higher score
means the patient is better able to carry out daily activities.
Surgery is the principal component of standard care in Glioblastoma. Studies show, tumor
resection in > 90% of patients with no comorbidities improves treatment outcome and re-
duced recurrence. However, complete surgical resection is proposed for patients aged less
than 70 and having Karnofsky score > 70. Due to the importance of a complete resection
on survival, several advanced surgical techniques are developed such as fluorescence-guided
surgery, Laser-Interstitial Thermal Therapy (LTT), mass spectrometry-based surgical resec-
tion, which can ensure near complete resection of the tumor. Feasibility of surgical resection
also depends on the location, for e.g. sites like eloquent cortex, brain stem, or basal ganglia
are not amenable to surgical intervention and these patients usually have a worse progno-
sis [Mrugala, 2013,Hanif et al., 2017].
Radiotherapy kills remaining tumor cells after surgical procedures. It is found to increase
life expectancy in patients with high-grade glioblastoma. Radiotherapy is given for six weeks
with a total dose of 60 grays. Temozolomide is an alkylating agent administered daily during
the RT and then, for six cycles of five consecutive days per month, one month after the end
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of the RT. This treatment protocol is famously called the Stupp protocol.
Alkylating agents like Temozolomide, Carmustine (BCNU), and Lomustine (CCNU) are
effective in GBM. These drugs work by methylating the guanine nucleotide at the N7 and
O6positionswhich leads to formingof nicks in theDNAand subsequently blocks the cell cy-
cle at the G2-M boundary and triggers apoptosis [Scott et al., 2011]. These methylation sites
can be demethylated byMethyl GuanineMethyl Transferase (MGMT), which is encoded by
MGMT gene, whose activity is associated with poor response to Alkylating agents [Hanif
et al., 2017].

0.1.4 Prognosis

The median overall survival of GBM patients in population based studies is around 10-12
months even with the advances in the treatment modalities, which indicates an overall poor
prognosis. A very small set of patients survive beyond 36months who are referred to as Long
term survivors (LTS). Some of the important clinical based prognostic factors areAge at diag-
nosis, Gender, Extent of tumor resection, Karnofsky performance status (KPS), chemother-
apy, a dose of radiation, tumor location in the brain. Understanding the biological underpin-
nings which might contribute for long term survival might bring insight to etiopathogenesis
and drug development. Several studies have tried to examine the genetic alterations of GBM
and develop different classifications which are based on their molecular phenotyping. In the
following section, I shall briefly discuss approaches used to classify the GBM tumors using
different omics data.

0.2 Genetic andMolecular Pathology

Some of the molecular alterations which are considered to be hallmark in primary GBM
include EGFR mutation and amplification, MDM2 overexpression, deletion of p16, and
loss of heterozygosity (LOH) of chromosome 10q holding phosphatase and tensin homolog
(PTEN) and TERT promoter mutation. As an example molecular phenotyping of GBMs
using isocitrate dehydrogenase (IDH)mutation status into IDHmutant and IDHwild type
is frequentlyused; and 90%of caseswho are over 55 years of age showIDHwild type. IDHal-
terations andMGMThypermethylation are associated with longer survival, whereas Telom-
erase Reverse Transcriptase promoter (TERTp) variants and chromosome 10 deletion are as-
sociated with short survival time. Even though numerous genetic aberrations are known to
be reported with GBM,mainly three signaling pathways are found to be playing a significant
role in pathogenesis. These three pathways are 1) Receptor Tyrosine Kinase (RAS/PI3K)
pathwaywhich is altered inmore than 88% ofGBMs, 2) P53 pathwaywhich is altered in 87%
of cases, and 3) RB signaling pathway which is altered in nearly 80% of the GBM cases [Al-
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dape et al., 2015,Hanif et al., 2017]. Using these molecular aberrations and global gene ex-
pression several GBM categorisation or typing are proposed. Such classifications which are
based on molecular phenotyping can shorten the time from diagnosis to treatment and sig-
nificantly improve accuracy and testing. In the next section, I shall discuss and review various
classifications that are studied in the GBM.

0.2.1 Transcription based classification

Tumordevelopment is highly complexwhich involvesmultiple genetic and epigenetic changes.
Using microarray or high-throughput sequencing genes associated with GBM can be identi-
fied and used as biomarkers for early diagnosis, classification and treatment purposes [Schena
et al., 1995, Irizarry et al., 2003,Nutt et al., 2003,Hu et al., 2006].

In a landmark study Phillips et al.2006 [Phillips et al., 2006] has classified GBM into three
subtypes: Proneural, Proliferative, and Mesenchymal. The proneural subtype is seen pre-
dominantly in the younger age group with better prognosis. The cells are similar to neu-
rons of normal brain tissues and have expression ofNCAM (Neural cell adhesionmolecule),
GABBR1 (Gamma-aminobutyric acid type B receptor subunit 1), and SNAP91 (Clathrin
coat assembly protein AP180). The proliferative subtype shows cells that are comparable
to stem cells with expression of proliferation markers such as TOP2A (DNA topoisomerase
II alpha) and PCNA (Proliferating cell nuclear antigen). The mesenchymal subtype shows
overexpression of angiogenesis markers like endothelial PECAM1 (Platelet endothelial cell
adhesionmolecule), VEGF (Vascular endothelial growth factor), VEGFR1 (Vascular endothe-
lial growth factor receptor 1), and VEGFR2 (Vascular endothelial growth factor receptor 2).
These subtypes resemble various stages of neurodevelopment which provides a newer per-
spective for GBMmolecular classification.

Verhaak et al.2010 [Verhaak et al., 2010] have further subdivided GBM into four subgroups
Proneural, Neural, Classical andMesenchymal which is further validated byWang et al. The
proneural subtype is noted to have strong PDGFRA gene expression and frequent IDH1
mutation. The neural subtype includes neural markers such as SYT1 (Synaptotagmin 1),
SLC12A5 (Solute carrier family 12members 5), GABRA1 (Gamma-aminobutyric acid type
A receptor alpha1), and NEFL (Neurofilament light polypeptide) and are more susceptible
to radiation and chemotherapy. The classical subtype has high expression of neural precur-
sor and stem cellmarkers and requires aggressive radio and chemotherapy. Themesenchymal
subtype has extensive necrosis and inflammation, overexpression of interstitial and angiogen-
esis genes and has the worst prognosis. Teo et al.2019 [Teo et al., 2019] used six different
datasets to validate three GBM subtypes: Proneural/Neural, Classical, and Mesenchymal
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Table 1 summarizes all the transcription profiles based Glioblastoma subtypes.

Using large-scale gene expression patterns Park et al.2019 have identified three subtypes that
are associated with prognostic prediction: Mitotic, Intermediate and Invasive subtype. The
Invasive subtype has much more invasiveness and has poor prognosis than the Mitotic sub-
type. Themethylation of theMGMTgene promoter is linked to theMitotic subtype, imply-
ing that Mitotic subtype patients are more likely to respond to temozolomide” [Park et al.,
2019].

0.2.2 Genetic Alteration-Based Subtypes

The large-scale genomics has led to identification of several genetic alterations in the tumor
suppressor genes and oncogenes. Some of these genetic alterations are linked to patient sur-
vival and can be used as indicators for patient classification. The strongest genetic variant
that is linked is Isocitrate Dehydrogenase (IDH) mutation.

Isocitrate Dehydrogenase
In 2016, WHO has divided the GBM into IDH wild type and mutant type because of its
prognostic importance. IDH is an enzyme which is involved in citric acid or Krebs cycle. It
is important for both oxidative metabolism and oxidative stress response. Krebs cycle occurs
both in cytoplasm and mitochondria because of which the enzyme is located in both loca-
tions. However, the isoforms are different in different locations. The IDHhas three isoforms
i.e IDH1-3; of which IDH1 is primarily found in cytoplasm and the other two are found in
the mitochondrial matrix. In 2008 Parsons et al discovered a point mutation(R132H) in the
IDH1 gene, which is the most prevalent IDH1mutation found in the gliomas IDH-mutant
GBMpatients showed a greater overall survival rate andweremore sensitive to temozolomide
than GBM patients with wild-type IDH [Songtao et al., 2012].

0.2.3 Other mutations

A frequent mutation in Epithelial growth factor receptor (EGFR) gene is EGFRvIII [Gan
et al., 2009]. EGFRplays a crucial role in cell proliferation, differentiation, and development.
The EGFR gene is located on the short arm of Chromosome 7 and encodes a cell surface ty-
rosine kinase receptor. EGFRvIII is noted to have absence of 267 amino acids in the extra-
cellular domain which results in the inability of the receptor to bind to its ligand [Hatanpaa
et al., 2010]. EGFRvIII is shown to enhance the tumor potential by activating mitotic and
anti-apoptotic signalling pathways [Gan et al., 2009] and is associated with poor progno-
sis.Summary in Table 2
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Table 1: Glioblastoma subtypes based on transcription profiles

Phillips
et al.
(2006)

Proneural Proliferative Mesenchymal

Signature NCAM,
GABBR1,
SNAP91

PCNA, TOP2A, EGFR

VEGF,
VEGFR1,
VEGFR2,
PECAM1

Chromo-
some

Gain/loss
None Gain on Chr.7, loss on Chr.10 Gain on

Chr.7, loss
on Chr.10

Biological
process

Neuro-
genesis

Proliferation Angiogenesis

Verhaak
et al.
(2010)

Proneural Neural Classic Mesenchymal

Signature PDGFRA,
OLIG2,
DDL3,
SOX2,
NKX2-2

MBP/MAL,
NEFL,

SLC12A5,
SYT1,

GABRA1

EGFR,
AKT2, SMO,
GAS1, GLI2,
NOTCH3,
JAG1, LFNG

YKL40, MET,
CD44,

MERTYK,
TRADD,
RELB,

TNFRSF1A

Mutated
genes

TP53,
PI3K,
IDH1,
PDGFRA

PTEN,
CHKN2,
PDGFRA

NF-κB, NF1

Phosphatase and tensin homolog (PTEN) gene encodes protein that catalyzes the dephos-
phorylationof the inositol ring inphosphatidylinositol-3,4,5-trisphosphate (PIP3) tophosph-
atidylinositol-4,5-bisphosphate (PIP2). This dephosphorylation is an important step in the
inhibiting AKT signalling pathway. The PI3K/AKT pathway which is usually dormant in
the normal cells, when activated leads to cancer. Loss of PTEN leads to activation of the
AKT pathway and is associated with aggressive phenotypes. [Endersby & Baker, 2008]

7



Table 2: Frequency of mutations in core genes of Glioblastoma across subtypes

Glioblastoma Subtypes
(Frequency of Mutation in %)

Genes mutated in Glioblastoma Proneural Neural Classical Mesenchymal
TP53 54 21 0 12
NF1 5 16 5 37
EGFR 16 5 0 0

EGFRvIII 3 0 23 3
IDH1 30 5 0 0

PDGFRA 11 0 0 0

In addition, patients with CDK4/MDM2 co-amplification have a median survival rate of
6.6months after diagnosis in IDH1wild typeGBM,while patients without CDK4/MDM2
co-amplification have a median survival rate of 12.7 months [Abedalthagafi et al., 2018]. A
mutation in the TERTpromoter has recently been found as an indication of poor prognosis.
It is more prevalent in senior people, with around 40% of them having grade II/III glioma,
implying that TERT is a crucial pathogenic factor and therapeutic target in glioma [MC &
M, 2015,Yuan et al., 2016, Spiegl-Kreinecker et al., 2015].

0.2.4 DNAMethylation-Based Subtypes

DNA methylation is a critical component in facilitating carcinogenesis, as well as a core el-
ement of epigenetic modification and an important signaling tool for regulating genomic
functions [Koch et al., 2018,Muhammad et al., 2018]. DNAmethylation can be used to de-
velop biomarkers for cancer diagnosis and prognosis [Lofton-Day & Lesche, 2003,Gustafs-
son et al., 2018]. Methylation status of single genes corresponds to expression levels in GBM
[Bell et al., 2018, Johannessen et al., 2018]. MGMT promoter methylation is an important
prognostic factor and is associated with increased survival [Brennan et al., 2013].

In a study using large-scale methylated sequencing data to characterize GBM, the authors
have split the data into six categories based on the level of DNA methylation expression.
Cluster M1 through Cluster M6, with Cluster M5 being the G-CIMP subtype. In com-
parison to the G-CIMP subtype, Cluster M6 is more hypomethylated and has a higher pro-
portion of IDH1 wild-type patients. Cluster M2 was characterized by missense mutations
or deletions in MLL (histone-lysine N-methyltransferase 2A) or HDAC (Histone deacety-
lase) family genes [Brennan et al., 2013]. These findings suggest that GBM can be classified
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using a methylation profile. In a recent study, Ma et al. has identified prognostic subtypes
using DNAmethylation status, and identified three clusters (Cluster 1, Cluster 2, and Clus-
ter 3), each with significantly different survival curves. Cluster 2 offers the best prognosis of
all the clusters. The methylation levels in each cluster have specific molecular characteristics.
Cluster 3 has shownmore TP53 mutations and deletion of wildtype IDHwhich are related
to survival and biological processes in GBM. Using the DNA methylation patterns a new
prediction tool is developed for 10 CpGs. These 10CpGs are superior to other molecular
markers because they reflect the relationship between the GBM subtypes [Kloosterhof et al.,
2013,Paul et al., 2017,Yin et al., 2018].

Methylation is a significant complement to genetic changes and transcription-based classifi-
cation, allowing for a more thorough classification of GBMs.

0.2.5 Overlap of Subtypes based on different approaches

The subtypes identified using different omics approaches are found to be related and over-
lapping (Table 1 and 2). The combined analysis of the four transcriptome based subtypes
has shown enrichment of mesenchymal subtypes in Cluster M1 and M2, classical subtypes
in M3-M4 cluster, Cluster G-CIMP and M6 belong to Proneural subtype [Verhaak et al.,
2010]. The Cluster G-CIMP is noted to have increased frequency of MGMTDNAmethy-
lation (79 percent of patients with DNA methylation of MGMT in Cluster G-CIMP and
46 percent in non-G-CIMP). The C-CIMP is a distinct and nearly invariable hallmark of
IDH1/2 mutant GBMs, and studies have indicated that individuals with this GBM subtype
have a better prognosis [Noushmehr et al., 2010, Baysan et al., 2012]. The Proneural sub-
type is further split into G-CIMP positive and negative groups based on the characteristic
of DNA methylation pattern causally connected to IDH1/2 mutation status [Noushmehr
et al., 2010]. Summary is given in Table 3

Table 3: Overlap of multiple Glioblastoma subtypes based on different approaches

Phillips Proneural Proliferative Mesenchymal
Verhaak Proneural Neural Classical Mesenchymal
Brennan M5 (G-CIMP) M6 M3,M4 M1,M2
Louis IDHMutant IDHWildtype
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0.3 ResearchQuestion: Surviving glioblastoma despite the odds

While the majority of GBM patients live for less than two years, there is a subpopulation
of patients that live for more than three years (36 months) and are referred to as long-term
survivors (LTS) [Hwang et al., 2019]. Researchers in the area continue to be perplexed by
this group of patients, since investigations on clinical, radiological, histological, and genetic
features have failed to provide consensus onpredictors of long-term response to current treat-
ment [Hwang et al., 2019].

Glioblastomas are divided in the 2016 CNSWHO (Central Nervous System, World health
Organization) into (1)GBM, isocitrate dehydrogenase (IDH)-wildtype (about 90%of cases),
which corresponds most frequently with the clinically defined primary or de novo glioblas-
tomaandpredominates inpatients over 55years of age; (2) glioblastoma, IDH-mutant (about
10% of cases), (referred to secondaryGBM)with a history of prior lower-grade diffuse glioma
and preferentially arises in younger patients; and (3) glioblastoma, NOS, a diagnosis that is
reserved for those tumors for which full IDH evaluation cannot be performed” [Armocida
et al., 2019]. With the vast molecular knowledge gained by omics technology, Glioblastoma
are categorized into multiple subtypes based on transcriptional and methylation characteris-
tics. Most recent evidence being 3 subtypes proposed by Teo et al. [Teo et al., 2019] based on
transcriptional signatures andMaet al. [Ma et al., 2020]proposed3 subtypes basedonmethy-
lation clusters. These aspects are discussed in previous sections. However, these molecular
characterizations failed to explain relationship between long-term survival and membership
of one of the four expression-based subclasses [Bi & Beroukhim, 2014]. Researchers have
concentrated their efforts on determining the factors that indicate exceptional long-term sur-
vival. These patients’ sickness path differs significantly from that of the vastmajority ofGBM
patients. ”For instance, half of patients who have survived four years will live for another
four.” [Bi & Beroukhim, 2014].

Here, I review the studies which have discussed clinical, molecular and radiological charac-
teristics associated with Long-term survival in Glioblastoma.

A 14 year retrospective study of 480 GBM patients reported survival advantage of younger
age, good KPS score and extent of tumor resection to be good predictors of long-term sur-
vival [Mazaris et al., 2014]. A probable association of tumor localization without SVZ con-
tact (p = 0, 05)was proposed as a significant factor for prolonged survival [Krex et al., 2007].
Another study reported association of LTS to have unilateral tumors and undergo multi-
modality treatment [Gately et al., 2018]. Long-term survival, on the other hand, remains
dismal, and there appears to be little increase in 5-year survival [Poon et al., 2020].
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On the grounds of statistical analyses [Armocida et al., 2019] affirm that “volume of
the lesion, motor disorder at presentation and/or a Ki67 overexpression had significant sur-
vival advantage. This study has also pointed out that performing a standard molecular anal-
ysis (IDH, EGFR, p53 and Ki67) is not sufficient to predict the behavior of a GBM in re-
gards to overall survival (OS) [Armocida et al., 2019]. LTS was found associated with a
gross total resection (GTR) of tumor correlated with EGFR and p53 mutations with re-
gardless of localization, and poorly correlated to dimension” [Armocida et al., 2019]. An-
other study [Hwang et al., 2019], has discovered significant changes in “DNA methylation
profiles between LTS- and STS- GBMs, which are linked to oncogenic pathways via two sep-
arate mechanisms, transcriptional repression and somatic mutation, depending on their ge-
nomic position” [Hwang et al., 2019]. Systematic comparison of molecular features (“Ab-
normality of chromosome 1p/19q, IDH mutation and O6-methylguanine-DNA methyl-
transferase (MGMT) promoter), clinical and radiological characteristics between LTS and
short-term survivors (STS) in the cohort of GBM sheds some light about impact of IDH sta-
tus inLTSprognosis [Jiang et al., 2021]. “The authors reported that IDH-mutLTSpresented
a higher rate of 1q/19p co-polysomy than IDH-wt GBM. 1q/19p co-polysomy is previously
reported to an independent prognostic factor associatedwith prolonged survival [Zeng et al.,
2017]. IDH-wt LTS had a higher rate of non-local failure than that of IDH-mut LTS. This
explains the favorable Progression Free Survival among IDH-wt LTS. The survival analyses
demonstrated that IDH-mut LTS showed a trend towards increased survival after receiving
re-operation and reirradiation, while the clinical benefits disappeared in the subset of IDH-
wt” [Jiang et al., 2021]. However, Gerber et al. [Gerber et al., 2014] had concluded that
“survival beyond 4 years does not require IDHmutation and is not dictated by a single tran-
scriptional subclass. In contrast, MGMT methylation continues to have strong prognostic
value for survival beyond 4 years. These findings have substantial impact for understanding
GBM biology and progression”.

A study Ferguson et al. [Ferguson et al., 2021] has built a survival-predictive nomogram
based on clinical factors like Age, Sex, KPS Clinical trial participation; Molecular character-
istics like PDL1 status (+/-), Tumor mutational burden, MGMT methylation(+/-) ; Radi-
ological features like Extent of Resection (Gross Total Resection, Sub Total Resection, Sur-
gical approach (craniotomy/surgery)), Tumor necrosis Volume, Volumetric EOR based on
enhancement, Volumetric EORbased onT2/FLAIR disease, T1-enhancing volume, T2 vol-
ume includingT1, T1/T2 volumetric ratio for 80 patients fromUniversity of TexasMDAn-
dersonCancerCenter [Ferguson et al., 2021]. The conclusion is that there are an astonishing
number of potential factors that might influence the incidence of LTS in GBM.

Deepunderstandingof clinical andmolecular characteristics that determine survival inGlioblas-
toma is the need of the hour. A complete approach to this problem has the potential to not
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only improve prognostic classifications, but also to suggest therapeutic strategies that will
help more patients become extraordinary long-term survivors.

0.4 Research Approach

The major goal of the present work is to find key determinants of short and long survival in
primary Glioblastoma and to present a mechanistic picture of the signaling pathways that
drive prognosis. Gene expression studies provide a snapshot of all transcriptional activity in
a biological sample. They help to characterize the state and kind of that specific cell state.
Resources like The Cancer Genome Atlas, Chinese Glioma Genome Atlas and some of the
datasets of GEO and ArrayExpress not only provide valuable gene expression profiles but
also the clinical characteristics of Glioblastoma samples under study.

Figure 3: Computational approaches utilized in the current study to better understand prognosis in Glioblastoma

For the work presented here, data from 20 Glioblastoma studies that are publicly accessi-
ble are used. Time-to-event analysis can be used to identify factors which have prognostic
value on overall survival in Glioblastoma. At first, a meta-analytic approach is used to inves-
tigate prognostic value of clinical and molecular factors that are available for most of these
datasets. This includes Age, Gender, Karnofsky Performance Score, IDH mutation status
and MGMT promoter methylation status to see if any of these factors have significant con-
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tribution to the overall survival using univariate cox regression analysis (mentioned in detail
Chapter 1). Upon meta-analysis, age andMGMT status have a significant role in survival.

Time-to-event analysis on gene-expression profiles quantify the prognostic value of a gene in
the given disease context. Several studies have demonstrated potential application of a gene
panel-derived risk model built on time-to-analysis for predicting GBM prognosis. Zuo et
al. [Zuo et al., 2019] developed a six-gene signature risk score model using RNA-seq data
fromTCGA and CGGA databases, however, it lacked an independent validation. Similarly,
Cao et al. [Cao et al., 2019] proposed a 4-gene signature-derived risk score model that can
predict prognosis and treatment response in GBM. Yin et al. [Yin et al., 2019] identified
a 5-gene signature for prognosis prediction in GBM using TCGA RNA-seq cohort and a
dataset from GEO database (GSE7696) [Prasad et al., 2020]. In chapter 2, we have used
Time-to-event analysis to identify all the genes of prognostic value. Differentially expressed
genes (DEGs) are identified by comparing gene activity spectra of the cellular system of inter-
est and a control cell” [Koschmann et al., 2015]. This approach gives more refined insights
on the observed gene expression activity. Most standard transcriptome analysis involve map-
ping of these differentially expressed genes toGene ontology categories to decipherMolecular
Function, CellularComposition and biological process. Regulatory andmetabolic pathways
enriched can also be studied by enrichment analysis on pathway databases like KEGG or Re-
actome. These conventional approaches which give insights about downstream influences
of gene activity are called “downstream analysis”. However, they provide a very little clue
about the cause of such a dysregulated gene expression. Differential gene expression analysis
is exploited at multiple steps in this research work.

A novel approach which explains cause for such a gene dysregulation (Differential gene ex-
pression) in a given disease state is built on integrated promoter and pathway analysis. This
strategy explains upstream steps of the gene regulation and hence termed as “upstream analy-
sis”. Regulation of transcription in eukaryotes is a result of the combined effects of structural
properties (how DNA is ”packaged”) and the interactions of proteins called transcription
factors [Cooper, 2000]. Transcription factors are regulatory proteins which upon activa-
tion, bind to specific DNA segments like promoters and enhancers and activate (or rarely in-
hibit) transcription. In turn, activation of transcription factors happens via series of chemical
events in the cell upon binding of growth factors to the cell surface receptor. The upstream
analysis comprises of both these steps (1) analysis of promoters and enhancers of identified
DEGs to identify transcription factors (TFs) involved in the process under study; (2) recon-
struction of signaling pathways that activate theseTFs and identificationofmaster-regulators
on the top of such pathways [Koschmann et al., 2015, Boyarskikh et al., 2018, Stegmaier
et al., 2011]. TGFβ and HIF1A were proposed to be upstream regulators [Tejero et al.,
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2019], a causal relationship between innate immune cell infiltration andmesenchymal trans-
differentiation in glioblastoma [Schmitt et al., 2021], predicted activation of integrin-linked
kinase (ILK) signaling, actin cytoskeleton signaling, and lysine demethylase 5B (KDM5B) in
Cancer-stem like cells migration [Verano-Braga et al., 2018] were some of the applications
of this concept in Glioblastoma research. In this work, gene-regulatory networks are used to
understand the causal mechanisms associated with gene dysregulation and to identify drivers
of prognosis in Glioblastoma.

Machine Learning (ML) approaches are frequently used in glioblastoma research which is
evident from an increased number of publications over the last decade [Valdebenito &Med-
ina, 2019]. ML helps in identifying patterns, predicting outcomes or comprehending the
relationships of complicated biochemical networks using large amounts of high dimensional
data [Valdebenito &Medina, 2019]. Several studies have used machine learning approaches
for classification of GBM using various features (Table 4). A novel stemness-based classifier
built on data of 906 glioblastoma patients is suggested to have appealing implications in dis-
criminating the prognosis, immunotherapy and temozolomide responses [Wang et al., 2021].
iGlioSub –aML application built on integrated gene-expression andmethylation profiles of
304 glioblastomapatients shows promising performance (AUC>95%) in classifying samples
into classical, mesenchymal andProneural subtypes of glioblastoma [Ensenyat-Mendez et al.,
2021]. Anonline survival predictor is developedbasedondemographic; socioeconomic, clin-
ical, radiographic features obtained for 20,821 patients available fromSEER registry [Senders
et al., 2020]. Table 4 summarizes Machine learning approaches applied in Glioblastoma re-
search.
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Table 4: Machine learning applications in Glioblastoma research.

Publication Method No. of
samples for
training

Clinical
endpoint
(recurrence/
OS/TFS/)

Parameters
(clini-
cal/genomic/
methyl)

Performance

Zihao Wang
et al.,2021

logistic
regression

N = 376
(training)

Stemness
Sub-
type(I/II)
Predictor

Gene-
expression

AUC =
0.9599,
accuracy=
92.96%

Gregory P
way et al.,
2017

logistic
regression

N= 321 NF1 wild-
type and
NF1 inacti-
vated

Gene-
expression

AUC= 0.77

Random
Forest

N=234 Gene-
expression

AUC
(classical)
=90.5 ± 2.1

Random
Forest

N=126 DNAmethy-
lation

AUC (clas-
sical) =
94.2 ± 1.4 %

Miquel
Ensenyat-
Mendez et
al., 2021

nearest
shrunken
centroid
(NSC)

N= 234(gene-
expression),
N=126(DNA
methylation)
in training

GBM
subtype-
specific
classifiers

Gene-
expression
& DNA
methylation

AUC
(classical)
=97.5 ± 1.0 %,

SVM Accuracy =
85.2%

RF Accuracy =
87.7%

Yu-Hang
Zhang1 et
al., 2020

RIPPER N=343 train-
ing

GBM
subtype-
specific
classifiers

DNAmethy-
lation

Accuracy =
95.4%

Tine Geldof
et al., 2020

classification
tree

N=2472 TMZ
treatment
response

Clinico-
pathological

AUC = 67%

Random
Forest

C-index =
0.69

Bagged Deci-
sion trees

C-index
=0.67

Jokey T
senders et
al., 2020

SVM N = 20,821
(total)

Overall
Survival

demographic,
socioeco-
nomic,
clinical, and
radiographic
features

C-index =0.7
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0.5 Structure of the thesis

The thesis includes 4 chapters. Each chapter is a manuscript.

Chapter 1: Predictors of survival outcome in Glioblastoma: A meta-analysis of individual
patient data (Status: Manuscript unpublished)

Chapter 2: Master regulators associated with poor prognosis in Glioblastoma (Status: Pub-
lished work)

Chapter 3: IGFBP2 is a potential master-regulator driving the dysregulated gene network
responsible for short survival in Glioblastoma (Status: Published work)

Chapter 4: Machine Learning-based Survival Group Prediction in Glioblastoma (Status:
Published work

Each chapter includes ”Availability of software, data and materials”and ”Declaration of my
contributions”. Corresponding manuscript/publication is given after this section.
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Onenever notices what has been done; one can only see what
remains to be done.

Marie Curie

1
Predictors of survival outcome in

Glioblastoma: A meta-analysis of individual
patient data

Manuscript unpublished

Availability of software, data and materials

The dataset analyzed in the current study, supplementary files and plots are available in the
GitHub project here - Predictors of survival outcome in Glioblastoma: A meta-analysis of
individual patient data *

Declaration of my contributions

I conceptualized and executed this work and Dr. Alexander Kel participated in finalising
pipeline for data analysis. To the best of our knowledge, all the publicly available datasets
of Glioblastoma multiforme which had both gene expression and clinical information were

*https://github.com/genexplain/Manasa_KP_et_al_GBM_Survival_Predictors
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Abstract 

Glioblastoma is the most aggressive brain tumor with a poor median survival of ~15months.  

Several factors have been implicated in their role in treatment response and survival. Using 

a rigorous meta-analytic method, we investigated the determinants of survival in 14 separate 

GBM investigations. The research focuses on cohorts that include not only clinical data but 

also transcriptomics data from the related patient tumors. We only looked at primary GBMs, 

which are malignant tumors that started in the brain and didn't spread elsewhere. The 

biology of malignant brain tumors in children and adolescents (under the age of four years) 

might differ dramatically from that of adult-onset GBM patients. Overall, the current study 

looked at characteristics that influence prognosis in individuals with primary adult 

glioblastoma and each of these factors are discussed.  

 

1 Introduction 

Survival Analysis also called “time-to-event analysis” is an important approach in oncology 

research. It involves fundamental aspects of clinical management and drives decision-making 

around treatment strategies. The goal is to estimate the time for an individual or a group of 

individuals to experience an event of interest (e.g. time to disease remission, progression, or 

death). Patients with Glioblastoma have a poor prognosis with a poor median overall 

survival (OS) period of ~15months. Individual heterogeneity in the survival rates is 

undoubtedly observed and several prognostic factors have been found in recent years. To 

better understand the factors affecting the prognosis of glioma, we performed this 

retrospective study on patient cohorts collected from public databases.  

Several clinical factors such as Age, Gender, Extent of tumor resection, Karnofsky 

performance status (KPS), chemotherapy, a dose of radiation, tumor location in the brain 

affect response to therapy and thereby survival. 

1. Age at diagnosis– Age of the patient at the time he was diagnosed with the disease. Age is 

an important risk factor and is one of the strongest single prognostic factors for the outcome 
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(Paszat et al., 2001; Bauchet et al., 2010; Fabbro-Peray et al., 2019; Ius et al., 2020). Studies 

show median survival of patients older than 70 years is significantly lower than the younger 

patients (Ladomersky et al., 2020; Straube et al., 2020). 

2. Karnofsky Performance Score (KPS) - In GBM, the Karnofsky Performance Scale (KPS) 

score is widely used to stratify a patient's prognosis and identify suitable therapy 

(GBM)(Lamborn et al., 2004; Gorlia et al., 2008). It is an established method of assessing cancer 

patients' ability to conduct everyday chores. Scores vary from 0 to 100 on the Karnofsky 

Performance Status scale. Higher scores imply that the patient is better at carrying his daily 

activities. Low preoperative KPS is known to be associated with shorter survival. Some 

studies use postoperative KPS scores for prediction as surgical resection can have a dramatic 

effect on a patient's functional status. Recent studies have reported postoperative KPS scores 

to have superior predictive capabilities for survival than preoperative KPS (Straube et al., 

2020).  

2. MGMT status- Cells deficient in O(6)-methylguanine-DNA methyltransferase (MGMT) 

were found to show increased sensitivity to temozolomide (TMZ) (Jovanović et al., 2019). 

MGMT gene methylation was an independently significant prognostic factor for both OS and 

Progression-Free Survival (Gorlia et al., 2008). In contrast to what has been documented in 

major reviews and studies with larger series of patients, MGMT methylation was not 

identified to be a prognostic factor or predictive of the TMZ response. They reported that “no 

association was detected between methylation of MGMT promoter and molecular markers 

such as ATRX, IDH, p53, and Ki67. These results indicate that MGMT methylation did not 

influence in patient survival in their cohort” (Egaña et al., 2020). 

3. IDH status – The recurrent mutations in the isocitrate dehydrogenase (IDH1) gene is 

common in most Glioblastoma multiforme (GBM) cells and is associated with a better 

prognosis (Amelot et al., 2015) (Songtao et al., 2012).IDH1/2 mutations may result in genome-

wide epigenetic changes in human gliomas. These mutations also reduce the capacity of cells 

to produce NADPH, which in turn increases the vulnerability to oxidative stress, making the 

tumor cells more susceptible to irradiation and chemotherapy.  

4. Gender - A stratified analysis of GBM patient data obtained from the SEER database 

showed that male patients always had the lowest 5 year- cancer-specific survival rate across 

localized cancer stages and different age subgroups and is proposed to have a prognostic 

value (Tian et al., 2018).  

In this work, we have explored 14 independent GBM studies to study the predictors of 

survival using a systematic meta-analytic approach. The work concentrates on the cohorts 

that not only have clinical information but also transcriptomics data of the corresponding 

patient tumors. We restricted our analysis to the primary GBM, meaning malignant tumors 

which primarily originated from the brain and nowhere else. The biology of malignant brain 

tumors in pediatric or younger(<4oyrs) can significantly differ from that of the adult-onset 
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one we included on adult GBM patients. Overall, the current study explored factors affecting 

prognosis in primary adult glioblastoma patients.  

 

2 Results 

2.1 Sample Characteristics 

The median age of 1708 GBM patients from 14 different cohorts is 58years (Min = 40, max 

=90). Their median survival is 13.7 months. Of these patients, 244 patients are aged above 

70years and 414 patients are between the age of 40-50yrs. ~56% of the patients are Male and 

33.8% are Female. Table 1a and Table 1b. Age group was sub divided into Group A(40-

50yrs), B(51-60), C(61-70) and D(71-90 yrs).  

Table1: a) Distribution Age, Karnofsky score and Overall survival for data integrated from 14 individual 

studies b)  Number of samples in each category across 14 individual studies 

 

Min.   1st Qu. Median Mean  3rd Qu. Max NA's  

Age at 

diagnosis 

40 50.57 58 58.6 66 89 41 

Karnofsky score 0 70 80 77.36 90 100 1044 

Overall 

Survival 

0 7.02 13.7 19.94 23.14 299.42 61 

Gender 

Male: 973 

Female: 579 

NA's: 156 

MGMT Promoter 

Methylation status 

Methylated: 365 

Unmethylated: 388 

NA's: 955 

IDH mutation Status 

 
 

Wildtype: 814 

Mutant: 69 
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2.2 Univariate Analysis 

Clinical factors such as Age, Gender, Karnofsky performance, MGMT status, IDH status were 

studied for their impact on overall survival in all 14 datasets individually using univariate 

survival analysis. Figure 1 depicts KM plots describing the overall survival according to the 

single clinical factor under investigation. The log-rank test helps compare the groups within 

each clinical variable (e.g., Male and Female) for their impact on overall survival.  

The log-rank test for difference in overall survival gives a p-value of p = 2e-11, indicating 

that the age groups differ significantly in survival in the TCGA_GBM cohort. 

Univariate cox regression analysis is performed to evaluate simultaneously the effect of 

several factors on survival. The coefficient beta, Hazard ratio, corresponding Standard Error, 

and value for every clinical factor in every dataset are obtained from univariate Cox 

regression Table 2. According to these observations, Gender was not found to have a 

significant (p <0.05) impact on overall survival in any of the individual cohorts, MGMT 

methylation status was found significant in its impact in at least 4 individual datasets.  

The estimates of univariate Cox regression – Hazard ratio, Standard Error, and value are 

considered. 

 

 

 

 

 

 

NA's: 825 

Age Group 
 

Group_A: 414 

Group_B: 552 

Group_C: 457 

Group_D: 244 

NA's : 41 
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Figure1. KM plots depicting the impact of clinical variables A) MGMT methylation status (M-Methylated/U-

Unmethylated), B) Karnofsky category (>70 H70, <70 L70), C) Age groups [A:(40-50), B:(51-60), C:(61-70), D:(71-

90)] years of age on overall survival according to TCGA_GBM microarray data of 560 patients.  

Table 2. Univariate cox regression analysis of the clinical variables understudy in all 14 

datasets under study.  

Dataset_Name Clinical_Variable beta p-value SE HR 

Zhao Z et al.,2017 Gender_Cat 0.10 0.54 0.16 1.10 

age_at_diagnosis 0.00 0.88 0.01 1.00 

A) B) 

C) 
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MGMT -0.05 0.77 0.18 0.95 

IDH_status -0.78 0.00 0.27 0.46 

AgeGroup_B -0.34 0.08 0.20 0.71 

AgeGroup_C -0.21 0.32 0.21 0.81 

AgeGroup_D 0.46 0.21 0.36 1.58 

TCGA_GBM Gender_Cat -0.18 0.07 0.10 0.83 

age_at_diagnosis 0.04 0.00 0.00 1.04 

MGMT 0.27 0.03 0.12 1.31 

IDH_status -1.01 0.01 0.38 0.37 

Karnofsky -0.02 0.00 0.00 0.98 

AgeGroup_B 0.42 0.01 0.15 1.52 

AgeGroup_C 0.60 0.00 0.15 1.82 

AgeGroup_D 1.11 0.00 0.16 3.03 

GlioTrain Gender_Cat -0.29 0.16 0.21 0.75 

age_at_diagnosis 0.01 0.35 0.01 1.01 

MGMT 1.10 0.00 0.22 3.00 

AgeGroup_B -0.06 0.82 0.26 0.94 

AgeGroup_C 0.17 0.48 0.24 1.19 

AgeGroup_D -0.09 0.93 1.02 0.91 

Gusev Y et al.,2018 Gender_Cat -0.12 0.51 0.18 0.89 

age_at_diagnosis 0.00 0.88 0.01 1.00 

Karnofsky 0.00 0.56 0.00 1.00 
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AgeGroup_B 0.11 0.59 0.20 1.12 

AgeGroup_C 0.16 0.48 0.23 1.18 

AgeGroup_D -0.07 0.77 0.24 0.93 

Murat A et al.,2008 Gender_Cat 0.00 0.99 0.29 1.00 

age_at_diagnosis 0.05 0.02 0.02 1.05 

MGMT 1.50 0.00 0.31 4.48 

AgeGroup_B 0.03 0.91 0.31 1.04 

AgeGroup_C 0.42 0.22 0.35 1.53 

AgeGroup_D 1.02 0.33 1.04 2.76 

Kawaguchi A, et al.,2013 Gender_Cat 0.33 0.43 0.42 1.39 

age_at_diagnosis 0.05 0.02 0.02 1.05 

Karnofsky -0.04 0.01 0.02 0.96 

AgeGroup_B 2.13 0.05 1.10 8.44 

AgeGroup_C 2.45 0.02 1.07 11.53 

AgeGroup_D 2.48 0.03 1.15 11.95 

Gravendeel LA et al.,2009 Gender_Cat -0.33 0.10 0.20 0.72 

age_at_diagnosis 0.05 0.00 0.01 1.05 

IDH_status -0.44 0.12 0.29 0.64 

AgeGroup_B 0.25 0.35 0.27 1.28 

AgeGroup_C 0.71 0.01 0.27 2.03 

AgeGroup_D 1.53 0.00 0.34 4.64 

Lee Y*et al.,2008 Gender_Cat 0.07 0.68 0.17 1.07 
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age_at_diagnosis 0.03 0.00 0.01 1.03 

AgeGroup_B 0.50 0.02 0.21 1.65 

AgeGroup_C 0.72 0.00 0.25 2.04 

AgeGroup_D 0.83 0.00 0.27 2.28 

Sturm D et al.,2012 Gender_Cat 0.38 0.40 0.45 1.46 

age_at_diagnosis 0.02 0.66 0.06 1.02 

AgeGroup_B 0.68 0.12 0.43 1.96 

Gender_Cat 0.38 0.40 0.45 1.46 

Vital AL et al.,2010 age_at_diagnosis 0.02 0.66 0.06 1.02 

AgeGroup_B 0.32 0.79 1.19 1.38 

AgeGroup_C -0.19 0.79 0.71 0.83 

AgeGroup_D 0.31 0.70 0.80 1.36 

age_at_diagnosis 0.00 0.88 0.03 1.00 

Puchalski R.B. et al. ,2018 MGMT 1.35 0.02 0.57 3.84 

AgeGroup_B -0.55 0.40 0.65 0.57 

AgeGroup_C -0.28 0.64 0.60 0.76 

AgeGroup_D -0.08 0.91 0.72 0.92 

age_at_diagnosis 0.02 0.25 0.02 1.02 

Joo KM et al.,2013 Gender_Cat -0.31 0.37 0.34 0.74 

AgeGroup_B -0.27 0.52 0.42 0.76 

AgeGroup_C 0.13 0.77 0.43 1.13 

AgeGroup_D 1.03 0.09 0.60 2.81 
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age_at_diagnosis 0.04 0.02 0.02 1.04 

Ducray F. et al.,2010 MGMT -0.34 0.62 0.68 0.71 

AgeGroup_B 0.36 0.46 0.48 1.43 

AgeGroup_C 0.56 0.26 0.50 1.75 

AgeGroup_D 1.69 0.01 0.63 5.40 

age_at_diagnosis 0.03 0.06 0.01 1.03 

Freije WA. et al.,2004 Gender_Cat 0.57 0.11 0.36 1.77 

AgeGroup_B 0.95 0.03 0.45 2.59 

AgeGroup_C 0.37 0.46 0.50 1.45 

AgeGroup_D 0.93 0.09 0.55 2.54 

     

 

2.3. Identifying sources of heterogeneity in the data: 

Baujat plot helps to detect sources of heterogeneity in the meta-analytic data. The plot shows 

the contribution of each study to the overall Q-test statistic for heterogeneity on the horizontal 

axis versus the influence of each study (defined as the standardized squared difference 

between the overall estimate based on an equal-effects model with and without the ith study 

included in the model) on the vertical axis. 
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Figure 3. Baujat plot for meta-analytic data of Age groups(B/C/D). The plot shows Kawaguchi A, et al.,2013 

as the dataset contributing to high overall heterogeneity and has a high influence on the overall result.  

 

2.4 Publication Bias: 

Publication bias was evaluated by Test for plot asymmetry and Kendall’s Tau both were 

insignificant (p= 0.72 & p=0.59 respectively), indicating no publication bias. Figure 5A 

 

 

 

 

 

 

 

 

 

 

Figure 4: A Funnel plot for visualizing publication bias in meta-analytic data used in the study for Age group 

B (51-60yrs)   

2.5. Impact of Age on Overall Survival in GBM 

In 14 studies (References), survival was defined as the time from diagnosis till death or the 

end of follow-up, and it indicates OS. Due to heterogeneity (I2 >50%), we have used the 

Random Effect model for meta-analyses. We find that all clinical variables were significant in 

their impact on OS. We find that age group D (70-90yrs) were having high and significant HR 

of 2.47 with 95% CI of (1.646-3.294) and is higher than age group C [ HR=1.43, 95% CI = 1.15-

1.72] and group B [HR = 1.284, 95%CI =1.016-1.55]. In the Fixed effect model, I^2 was 23.58% 

and H^2 was 1.31. Gender and Karnofsky had ~1 HR indicating no higher influence upon 

Overall survival. Karnofsky score and IDH status information were available in fewer cohorts 

(K=4 & 3 respectively). The heterogeneity statistic I2 can be biased in such small meta-
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analyses. For Gender and IDH status, the Fixed effect models were also implemented due to 

low heterogeneity (I2 >50%). In the Fixed effect model, I^2 was 23.58% and H^2 was 1.31. 

Table 3.  

 

 

Figure 5:  Forest plot for visualizing meta-analyses results for Age groups (B, C &D) or individual studies 

together with their 95% Confidence intervals. The Q and I2 statistic along with the p.value for the Random Effect 

model is given at the bottom left of the plot. The polygon added at the bottom of the plot depicts a summary 

estimate based on the model (with the center of the polygon corresponding to the estimate and the left/right 

edges indicating the confidence interval limits.  
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Table 3. Meta-analysis on survival outcomes in 14 GBM cohorts using RandomEffect model 

 

 

 

 

 

 

 

Clinical 

Factors 

No. 

of 

Data

sets 

Degr

ees 

of 

Free

dom 

tau^2 ta

u 

I^2 H

^2 

Test for 

Heterogeneity 

Model Results: 

        

Esti

mate 

SE Zv

al 

pv

al 

95% 

CI 

Signifi

cance 

Age_at_dia

gnosis 

k = 14 df=13 0.000 (SE = 

0.000) 

0.0

16 

66.5

3% 

2.9

9 

Q(df = 13) = 41.429, 

p-val < .001 

1.026 0.0

06 

173.

319 

<.0

01 

1.014-

1.037 

*** 

AgeGroup_

B 

k=14 df=13 0.1296 (SE 

= 0.0933) 

0.3

6 

62.6

3% 

2.6

8 

Q(df = 12) = 30.8170, 

p-val = 0.0021 

1.2846 0.1

371 

9.37

19 

<.0

001 

1.016-

1.5533 

***  

AgeGroup_

C 

k=12 df=11 0.1348 (SE 

= 0.1012) 

0.3

672 

62.2

6% 

2.6

5 

Q(df = 11) = 30.6206, 

p-val = 0.0013 

1.4378 0.1

443 

9.96

56 

<.0

001 

 1.1550-

1.7205 

***  

Age_Group

_D 

k=12 df=11 1.7783 (SE 

= 0.8979) 

1.3

335 

92.6

5% 

13.

6 

Q(df = 11) = 

129.8737, p-val < 

.0001 

2.4707 0.4

205 

5.87

51 

<.0

001 

1.6464-

3.294 

***  

Gender  k=12 df=11 0.0054 (SE 

= 0.0184) 

0.0

733 

10.6

0% 

1.1

2 

Q(df = 11) = 14.3938, 

p-val = 0.2120 

0.9591 0.0

652 

14.7

149 

<.0

001 

0.8313-

1.0868 

***  

MGMT  k=6 df=5 2.375 (SE = 

1.597) 

1.5

41 

97.7

3% 

44.

02 

Q(df = 5) = 158.825, 

p-val < .001 

2.388 0.6

49 

3.67

8 

<.0

01 

1.114-

3.660 

*** 

Karnofsky k=3 df=2 0.000 (SE = 

0.000) 

0.0

14 

84.5

5% 

6.4

7 

Q(df = 2) = 11.868, p-

val = 0.003 

0.982 0.0

09 

107.

239 

<.0

01 

0.964-

1.00 

*** 

IDH_Status k=4 df=4 0 (SE = 

0.091) 

0 0.00

% 

1 Q(df = 3) = 0.398, p-

val = 0.941 

0.508 0.1

73 

2.92

6 

0.0

03 

0.168-

0.848 

 **  
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3. Discussion  

Despite improvements in treatment strategies over the last decade, the median survival in 

Glioblastoma has not significantly improved. Nevertheless, there is a small group of GBM 

patients who respond to standard care and survive beyond 36 months, clinically termed as 

Long-term survivors. It is been a long-standing effort to understand these extreme survivors 

and what factors favor their prognosis both at clinical and at the gene level information.  

In this chapter, we have conducted a retrospective study collecting clinical data from 2309 

patients with Glioblastoma obtained from 14 independent studies. The criteria for study 

selection is that they have clinical as well as gene-expression data available. To achieve more 

conclusive observations specific to primary glioblastoma, we have restricted the study to 

explore adult (>40yrs) primary glioblastoma. It is noteworthy that the biology of younger and 

pediatric glioblastoma is different than that of adult GBM.  We have explored clinical 

predictors of overall survival in Glioblastoma based on a systematic meta-analytic approach.  

 We find a significant association of age and MGMT status with overall survival. Further 

stratification of age groups as A/B/C & D (40-50, 51-60,61-70 & 71-90) gave us a clearer picture 

of the impact of age on prognosis. Most authors agree that age is an important prognostic 

factor, however, there is no standard age-group classification/information used to evaluate 

risk in GBM patients. Here we report that patients with age group of (51-60yrs) experience 

20% more risk & age group C(61-70yrs) experience 40% more risk of death respectively 

compared to younger age group (40-50yrs), group A. It is important to mention that the older 

age group – group D (71-90yrs) has 2.4times higher risk of death compared to group A. Thus, 

giving an amplitude of risk experienced at each age category.  

 Methylation of the O (6)-Methylguanine-DNA methyltransferase (MGMT) promoter is 

predictive for treatment response in glioblastoma patients and is directly associated with 

temozolomide drug sensitivity. Methylation of the MGMT promoter in GBM patients is 

associated with significantly higher survival rates if treated with radiotherapy and TMZ. 

With a meta-analytic approach on available data from 6 cohorts, we report that MGMT 

unmethylated patients exhibit a significant 2.3-fold increased risk of death.  

Earlier studies have reported an increased risk of death in Males than females. In the current 

study, we find that the risk of death is ~1 for both the gender categories. The information on 

Karnofsky and IDH status were available for fewer cohorts making it difficult to conclude on 

our observations of risk of hazard, As a result of the data's unavailability, the chapter has not 

explored the impact of other important clinical variables like tumor size, tumor location, 

tumor resection, and recurrence aspects which are strongly associated with the existing 

clinical factors like Karnofsky score. Multivariate analysis of individual survival predictors 

will help to understand the association of such multiple factors on survival factors which are 
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not discussed in the current chapter.  Sensitivity analysis is also not discussed in the current 

chapter as there were few prominent and influential studies removing them  

The knowledge gained in this chapter is later used in chapter 4, where we explore the 

machine learning approach integrating both clinical and transcriptomic information of 

tumors from GBM patients. 

4. Methods 

The analysis is restricted to all the GBM studies used in this research work. It mainly deals 

with the studies containing information on overall survival and availability of gene 

expression data.    

4.1 Patients  

This study involves Primary GBM cohorts publicly available like REMBRANDT, TCGA, 

CGGA, and from the GEO database. The clinical information – Overall Survival(OS), age, 

gender, Karnofsky_Score, MGMT_status (methylated or unmethylated), and IDH_mutation 

status (wild type/mutated) are extracted from the sample details provided in the respective 

studies. Karnofsky score is later classified into 2 categories as ‘Karnofsky_Category’ variable 

(>70 or <70). In Gravendeel La et Al.,2009 (REMBRANDT), the age of the patient is given in a 

range. The median of the age range is considered as the age of the patient for this analysis.  

The characteristics of all included studies are summarized in Table 1.  This encompasses ~14 

studies containing information on 2309 patients with a diagnosis of Glioblastoma. To make 

the study more homogeneous, pediatric samples are excluded, reducing the sample size to 

1708 adult(>40yrs) primary GBM tumors. ‘Survival in months’ is taken as a time variable and 

the survival status (Death/Alive) of the patients at the end of each study is considered as an 

event. 

4.2 Ethics statement 

The analysis did not involve interaction with human subjects or the use of personal 

identifying information. All the data is in the public domain. 

Table 4. Studies and sample characteristics considered for the meta-analytic approach 

Study Age Gender Karnofsky 
MGMT 

status 
IDH status 

TCGA,2008 

(N=528) 

(N=519) (N=517) 

- 

(N=347) (N=402) 

Range M =314 U= 177 WT= 372 

(10.9-89.3) F= 203 M=170 M= 30 
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Median=59.4    

Zhao Z et 

Al.,2017 
 (N=388)  

- 

(N=228) 

(N=388) Range (8-79) M =235 - WT= 175 

 Median=49 F= 153  M= 53 

     

Gusev Y et 

Al.,2018 
 (N=165) (N=108) 

- - 
(N=220) Range (42-87) M =106 Range (20-100) 

 Median=57 F= 59 ≤40 =9 
   41-69=22 
   ≥70 = 77 

Gliotrain, 2020  (N=133) (N=133) (N=130) (N=133) 

(N=133) 
Range ( 24.17 -

70.35) 
M =89 Range (70-100) U= 57 WT= 133 

(unpublished) Median= 57.92 F= 44 <70 = 0 M=73 M= 0 

   ≥70 = 133   

Murat A et 

Al.,2008 
 (N=80) 

- 

(N=78) 

- (N=80) 
Range (41.7-

70.3) 
M =59 U= 34 

 Median=52.25 F= 21 M=44 

Kawaguchi A, 

et Al.,2013 
 (N=50) (N=29) 

- - (N=32) Range (18-80) M =34 Range (40-100) 

 Median=59 F= 16 <70 = 9 

   ≥70 = 20 

Gravendeel La 

et Al.,2009 
 (N=159) 

- - 

(N=128) 

(N=159) 
Range (40.58-

80.65) 
M =108 WT=95 

 Median=55.39 F= 51 M= 33 

Lee Y et 

Al.,2008 
 (N=192) - - - 
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(N=191) Range (41-86) M =117 

 Median=54 F= 74 

Sturm D et 

Al.,2012 
 (N=109) 

- - 

(N=) 

(N=136) Range (41-75) M =57 WT= 114 

 Median=31.5 F= 52 M= 22 

Vital Al et 

Al.,2010 
 (N=26) (N=26) 

- - 
(N=26) Range (30-84) M =13 Range (50-90) 

 Median=67 F= 13 <70 = 11 

   ≥70 = 15 

IVYGAP 2018  

- - 

(N=36) 

- (N=37) Range (17-70) U= 23 

 median =60 M=13 

Joo et al., 2013  (N=57) 

- - - (N=57) Range (40-76) M =31 

 Median=51 F= 26 
   

Ducray et 

al.,2010 
 

- - 

(N=16) 

- 
(N=48) Range (78.7) U=12 

 Median=58.2 M=4 

   

Freije WA. et 

al.,2004 
(N=43) (N=43) 

- - - (N=43) Range (40-82) M=19 

 Median=54 F=24 
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4.3 Statistical analysis 

Univariate Analysis  

The Wilcoxon test was used to compare patient characteristics for overall survival in GBM 

for variables that were either continuous or ordered categorical (e.g., Karnofsky_Category). 

Age was used as a continuous variable in the analysis. 

To see if there was statistical evidence of differences between the groups' survival curves, 

univariate cox proportional hazards regression model was used. To calculate the groups' 

hazard ratios, exact conditional maximum likelihood estimates were employed, and Fisher 

95% percent confidence intervals were created for significance testing between the groups' 

hazard ratios. The results were statistically significant at P 0.05. The hazard is modelled with 

the equation: 

ℎ(𝑡) = ℎ(0)𝑡 + exp(𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ . . 𝑏𝑘𝑥𝑘) 

Where, h0(t) represents underlying hazard 

b1,b2.. bk are parameters to be estimated  

x1,x2… xk are risk factors(covariates) 

The hazard is the chance that at any given moment, the event will occur, given that it hasn’t 

already done so. The hazard ratio (𝐻𝑅) is a measure of the relative hazard in two groups i.e. 

ratio of the hazard for one group compared to another. 

𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 =  
𝐻𝑎𝑧𝑎𝑟𝑑 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 𝐴

𝐻𝑎𝑧𝑎𝑟𝑑 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 𝐵
 

0< HR <1: group A are at a decreased hazard compared to group B. 

HR =1: The hazard is the same for both groups 

HR >1: group A are at increased hazard compared to group B 

a 𝐻𝑅 of 0.5 means a halving of hazard and a HR of 2 means doubling of hazard 

Kaplan-Meier curves are the graphical representation of the survival function estimated from 

the data under study. Non-parametric Log-rank test is used here to compare two groups. The 

log rank test compares the total number of events observed with the number of events we 

would expect assuming that there is no group effect. KM plots starts at 1 at time 0, where all 

patients are alive and event free. It is a step function the curve steps down each time an event 

occurs, and so tails off to 0. Poor survival is reflected by a curve that drops relatively rapidly.  

All statistical analyses utilized R software (Survival, Survminer and Metafor packages).  
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Meta-Analysis:  

Meta-analyses are used to determine the strength of the evidence for a condition or treatment. 

One goal is to see if there is an effect; another is to see if the effect is positive or negative, and, 

ideally, to get a single summary assessment of the effect. 

A meta-analysis' findings can increase the precision of effect estimates, answer problems not 

addressed by individual research, resolve disagreements emerging from seemingly 

contradictory studies, and develop new hypotheses. 

The investigation of heterogeneity, in particular, is critical for the formulation of new 

theories. 

The direct method of meta-analysis is to use the estimates of 𝑙𝑛𝐻𝑅 and its variance obtained 

from univariate cox regression model. Pooling is done using metafor package in R.  

An estimate of the log hazard ratio and variance pooled across studies can be calculated: 

ln(𝐻𝑅) =  

∑
ln (HRi)

𝑉𝑎𝑟[ln(𝐻𝑅𝑖)]
𝑘
𝑖=1

∑
1

𝑉𝑎𝑟[ln(𝐻𝑅𝑖)]
𝑘
𝑖=1

 

𝑉𝑎𝑟[ln(𝐻𝑅)] =  [∑
1

𝑉𝑎𝑟[ln(𝐻𝑅𝑖)]

𝑘

𝑖=1

]

−1

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 =  √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒       

# Standard error for each study 

We have tested Fixed-Effect and Random effect statistical models to aggregate all the data. 

Fixed Effect models assume that the explanatory variable has a fixed or constant relationship 

with the response variable across all observations. All the observations in the model have 

pre-determined categories and the inferences (patients’ response). Heterogeneity measures 

(Q and I2) will give insights on what model should be considered.  

The null hypothesis is to test that all treatment effects are zero. The alternate is to say that the 

effects are heterogenous.  

When the overall null hypothesis is rejected, the next step is to test whether all effects are 

equal, that is, whether the effects are homogeneous. Alternative is that at least one effect is 

different, that is, that the effects are heterogeneous 

chi-square test was designed to test the null hypothesis that all treatment effects are equal. 

This hypothesis is tested using Cochran’s Q test which is given by 
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𝑄 = ∑ 𝑤𝑖 (𝜃𝑖 − 𝜃)2

𝑘

𝐼=1

 

The test is conducted by comparing Q to a 𝑥𝑘−1
2  distribution. 

In the result table of meta-analysis;  

• Cochran’s Q: This is the computed chi-square value for Cochran’s Q statistic. 

• DF: For this test, the degrees of freedom is equal to the number of studies minus one 

• Pvalue: This is the significance level of the test. If this value is less than the specified 

value of alpha (usually 0.05), the test is statistically significant and the alternative is 

concluded. If the value is larger than the specified value of alpha, no conclusion can 

be drawn other than that you do not have enough evidence to reject the null 

hypothesis. 

Baujat plot a diagnostic plot to detect sources of heterogeneity in meta-analytic data. The plot 

shows the contribution of each study to the overall Q-test statistic for heterogeneity on the 

horizontal axis versus the influence of each study (defined as the standardized squared 

difference between the overall estimate based on an equal-effects model with and without 

the ith study included in the model) on the vertical axis. 

The I^2 indicates the level of heterogeneity. It can take values from 0% to 100%. If I^2 ≤ 50%, 

studies are considered homogeneous, and a fixed effect model of meta-analysis can be used. 

If I^2 > 50%, the heterogeneity is high, and one should use random effect model for meta-

analysis. 

Forest plots provide a graphical display of the observed effect, confidence interval, and 

usually also the weight of each study. They also display the pooled effect we have 

calculated in a meta-analysis. 

4.4 Publication Bias 

A potential stumbling block is relying solely on the corpus of published research, which can 

lead to inflated results due to publication bias, as studies with poor or negligible results are 

less likely to be published.  

Publication bias (the association of publication probability with the statistical significance of 

study results) may lead to asymmetrical funnel plots and is evaluated by regression and 

correlation tests for symmetry in funnel plot. 

Availability of software, data and materials: All the datasets analyzed in the current study are available from previous 

publications. The data and the results of the analysis performed using the Genome Enhancer in geneXplain platform are 

available here. 

https://github.com/genexplain/Manasa_KP_et_al_GBM_Survival_Predictors 
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Abstract—Glioblastoma multiforme is a highly malignant brain tumor with average survival time of
15 months. Less than 2% of the patients survive beyond 36 months. To understand the molecular mechanism
responsible for poor prognosis, we analyzed GBM samples of TCGA microarray (n = 560) data. We identi-
fied 720 genes that have a significant impact upon survival based on univariate cox regression. We applied the
Genome Enhancer pipeline to analyze potential mechanisms of regulation of activity of these genes and to
build gene regulatory networks. We identified 12 transcription factors enriched in the promoters of these
genes including the key molecule of GBM—STAT3. We found that STAT3 has significant differential expres-
sion across extreme survivor groups (short-term survivors– survival < 12 months and long-term survivors—
survival > 36 months) and also has significant impact on survival. In the next step, we identified master reg-
ulators in the signal transduction network that regulate the activity of these transcription factors. Master reg-
ulators are filtered based on their differential expression across extreme survivor groups and impact on sur-
vival. This work validates our earlier report on master regulators IGFBP2, PDGFA, OSMR and AEBP1 driving
short survival. Additionally, we propose CD14, CD44, DUSP6, GRB10, IL1RAP, FGFR3 and POSTN as mas-
ter regulators driving poor survival. These master regulators are proposed as promising therapeutic targets to
counter poor prognosis in GBM. Finally, the algorithm has prioritized several drugs for the further study as
potential remedies to conquer the aggressive forms of GBM and to extend survival of the patients.

Keywords: glioblastoma, gene regulatory networks, master regulators, upstream analysis, STAT3, survival,
short term survivors, transcription factors
DOI: 10.1134/S1990750821040077

INTRODUCTION
Glioblastoma multiforme (GBM) is the most com-

mon, highly malignant primary brain tumor [1]
Despite huge developments in treatment strategies,
there are as little as 2% of patients who actually
respond to standard care and survive beyond
36 months (3 years), known as long-term survivors
(LTS) [2]. Patients who survive less than 12 months
are called short-term survivors (STS). The patient
group with survival between 12 months to 36 months
are called mid-term survivors (MTS).

Analysis of differentially expressed genes (DEGs)
is an important and established in-silico strategy to
identify potential molecules of cellular state transi-
tions. Decreased expression of the CHI3L1, FBLN4,
EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN,
SERPING1 and TIMP1 genes have been reported to
be associated with prolonged survival [3–6] based on
gene expression analysis of extreme survivor groups
(STS & LTS). In our earlier work we reported
~200 genes differentially expressed between 113 STS

and 58 LTS using publicly available datasets [7]. How-
ever, in that analysis we have excluded the MTS group
which forms a majority of the patient population. In
this work using the univariate Cox regression analysis
on the entire TCGA (n = 560) dataset we identified
~720 genes that are associated with survival.

Reconstruction of the disease-specific regulatory
networks can help identify potential master regulators
of the respective pathological process. We used the
Genome Enhancer (https://genexplain.com/
genome-enhancer/), a multi-omics analysis tool, to
reconstruct the regulatory network using the top
300 genes sorted by increasing FDR value and under
the FDR cutoff of 0.05 that are identified using cox
regression analysis. In this analysis, the first step is to
analyze promoters and enhancers of genes for the
transcription factors (TFs) involved in their regulation
and, thus, important for the process under study;
(2) re-constructing the signalling pathways that acti-
vate these TFs and identifying master regulators at the
top of such pathways [8–10].
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We applied the Genome Enhancer tool for the top
300 genes which had maximal impact on survival. At
the 1st step, we identified important transcription fac-
tors enriched at the promoters of genes under study. Of
them, NR3C1 (GR) and STAT3 were found to have
highest regulatory scores signifying their role in con-
trolling the expression of genes that encode master
regulators. STAT3 is an important GBM regulator,
which induces cell proliferation, glioma stem cell
maintenance, tumor invasion, angiogenesis, and
immune evasion [11]. Next, we identified master reg-
ulators which regulate activity of these TFs. Out of
them, 4 master regulators, namely; IGFBP2, PDGFA,
AEBP1, OSMR were reported to drive poor prognosis
in GBM in our earlier published work [7]. Here, we
report POSTN, CD14, CD44, DUSP6, FGFR3, GRB10
and IL1RAP to be playing critical roles in driving poor
survival in GBM.

This work aims to explain the gene regulatory net-
work in GBM which drives poor survival. The identi-
fied master regulators can point ways to block a patho-
logical regulatory cascade. Suppression of compo-
nents of the regulatory network may stop the
pathological process.

MATERIALS AND METHODS

Data Collection

The raw gene expression profiles for Glioblastoma
multiforme patients and their corresponding clinical
information for GBM patients were collected from
TCGA legacy archive [12]. The dataset contains
560 samples. 540 samples belonging to 526 patients
have survival information. Duplicates are not removed
in the study. There are 271 short-term survivors (STS;
survival < 12 months), 240 mid-term survivors (MTS;
12 months < survival < 36 months) and 49 long-term
survivors (LTS; survival > 36 months) with GBM,
respectively. Sample information and cleaned datasets
are given in Github supplementary materials (Tables
S1-A, S1-B).

Affymetrix Microarray Data Pre-Processing

The raw data files (CEL format) of U133 Affymet-
rix microarray were preprocessed using RMA algo-
rithm in R (affy package) for background correction,
quality check and normalization to obtain log2 trans-
formed expression values [13]. Batch correction of the
pooled expression data for various data collection cen-
ters was performed using empirical Bayes framework is
performed [14]. This batch corrected file is used for
further analysis (Supplementary materials, Fig. S1).
Multiple Affymetrix ids were summarized to genes ids
by choosing the maximum out of probe intensities of
multiple probes belonging to a single gene. The final
expression matrix comprised 13914 probes and
560 samples.

Identification of Differentially Expressed Genes
The differential gene expression analysis between

STS and LTS groups of GBM, from the batch cor-
rected TCGA-GBM dataset was performed using
Limma [15] with FDR cutoff of 5%. The analysis
revealed 191 genes that are significantly differentially
expressed more than 0.5 fold (DEGs) (adj. p-value <
0.05)

Impact on Survival
Survival and Survminer libraries in R were used to

perform univariate survival analysis. Univariate Cox
regression for survival analysis was performed using
coxph function to calculate hazard ratio (HR) and
FDR value corrected for multiple testing. We identi-
fied 720 genes with FDR cutoff of 0.05 which were
used in the further upstream analysis in Genome
Enhancer. KM plots are generated using 50% non-
overlapping upper and lower quantiles based on
median of expression values.

Databases Used in the Study
Transcription factor binding sites in promoters and

enhancers of genes under study were analyzed using
known DNA-binding motifs described in the
TRANSFAC® library, release 2019.3 (geneXplain
GmbH, Wolfenbüttel, Germany) (https://genex-
plain.com/transfac) [16].The master regulator search
uses the TRANSPATH® database, release 2019.3
(geneXplain GmbH, Wolfenbüttel, Germany)
(https://genexplain.com/transpath) [17]. A compre-
hensive signal transduction network of human cells is
built by Genome Enhancer software based on reac-
tions annotated in TRANSPATH®. The Ensembl
database build 99.38 (http://www.ensembl.org) [18]
was used for gene IDs representation.

Analysis of Pathway Enrichment
To explore the biological importance of gene signa-

tures, the pathway enrichment analysis is performed
using Binomial distribution to compute p-value and
using Benjamin-Hochberg procedure to compute
adjusted p-value. The pathway enrichment of
720 genes was done by mapping the input genes to
canonical pathways in TRANSPATH® and Reac-
tome databases.

Genome Enhancer
The approaches mentioned above helps us in

understanding the impact of the genes under study in
GBM biology. To understand the reason behind
this dysregulation, the Genome Enhancer tool of ge-
neXplain is used. This incorporates an automated
pipeline for the previously published “upstream anal-
ysis” [8, 9] and the advanced approach “walking path-
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ways” [10]. The genes which had significant (FDR <
0.05) impact on survival are used in this analysis. The
workflow works in 2 steps: (1) analyzing promoters
and enhancers of the genes for the transcription fac-
tors (TFs) involved in their regulation and, thus,
important for the process under study; (2) re-con-
structing the signalling pathways that activate these
TFs and identifying master regulators at the top of
such pathways. For the first step, the database
TRANSFAC® is employed together with the TF
binding site identification algorithms MATCH™ and
CMA [19, 20]. The second step involves the signal
transduction database TRANSPATH® and special
graph search algorithms. The tool also generates a
visualization output of selected master regulators and
also maps the log2FC and p-values to color the nodes
on the created regulatory network.

2.6. Drug Prioritisation
We seek for the optimal combination of molecular

targets (key elements of the regulatory network of the
cell) that potentially interact with pharmaceutical
compounds from a library of approved drugs (more
than 9200 drugs) and pharmaceutically active known
chemical compounds (2507 compounds), using infor-
mation about known drugs from HumanPSD™ [21]
and predicting potential drug compounds using PASS
program.

We select drugs from the HumanPSD™ database
that have at least one target. Next, we prioritise these
drugs using “Drug rank” that is the sum of two other
ranks: rank by ‘Target activity score” (T-scorePSD) and
rank by “Disease activity score” (D-scorePSD).

“Target activity score” (T-scorePSD) is calculated as
follows:

where T is set of all targets related to the compound
intersected with input list, |T| is number of elements
in T; AT and |AT| are the set of all targets related to the
compound and number of elements in i; w is weight
multiplier, rank(t) is rank of given target, maxRank(T)
equals max(rank(t)) for all targets t in T.

We use the following formula to calculate “Disease
activity score” (D-scorePSD):

where D is the set of selected diseases, and if D is an
empty set, D-scorePSD = 0. P is a set of all known
phases for each disease, phase(p, d) equals to the phase
number if there are known clinical trials for the
selected disease on this phase and zero otherwise.
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For prioritization of active chemical compounds
using PASS, we are using a precomputed database
which was built by applying PASS software (a chemo-
informatics approach based on SAR/QSAR) to library
of which performs analysis of the structures of 2507
chemical compounds of known drugs (from Human-
PSD). PASS predicts potential pharmacological activ-
ities of those substances, their possible side and toxic
effects, as well as the possible mechanisms of action
(targets). All biological activities are expressed as
probability values for a substance to exert this activity
(Pa).

So, we select chemical compounds with at least
2 targets (corresponding to the predicted activity-
mechanisms) from our list of targets for which PASS
predicted Pa > 0.3. Next, we prioritize these com-
pounds in the similar way as before using PASS-based
“Drug rank” that is the sum of two other ranks:
rank by PASS-based “Target activity score” (T-score)
and rank by PASS-based “Disease activity score”
(D-score) that are calculated as follows. PASS-based
“Target activity score”:

where M(s) is the set of activity-mechanisms for the
given structure (which passed the chosen threshold for
activity-mechanisms Pa); G(m) is the set of targets
(converted to genes) that corresponds to the given
activity-mechanism (m) for the given compound;
pa(m) is the probability to be active of the activity-
mechanism (m), IAP(g) is the invariant accuracy of
prediction for gene from G(m); optWeight(g) is the
additional weight multiplier for gene. T is set of all tar-
gets related to the compound intersected with input
list, |T| is number of elements in T, AT and |AT| are set
of all targets related to the compound and number of
elements in it, w is weight multiplier set by a user.

PASS-based “Disease activity score”:

where S(g) is the set of structures for which target list
contains given target, M(s,g) is the set of activity-
mechanisms (for the given structure) that corresponds
to the given gene, Pa(m) is the probability to be active
of the activity-mechanism (m), IAP(g) is the invariant
accuracy of prediction for the given gene.

RESULTS AND DISCUSSION
Identification of Genes Having Impact on Survival

The univariate Cox regression analysis revealed
720 genes, which had a significant impact on survival.
Among the genes with the highest hazard ratio there
are: PDCD1LG2 (HR = 2.1), PPA3 (HR = 1.8),
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SIGLEC9 (HR = 1.7) and with the lowest hazard
ratio MLNR (HR = 0.28), ZNF208 (HR = 0.35), and
NEUROG1 (HR = 0.37). Survival impact of all
720 genes is given in supplementary materials
(Table S2-A).

Pathway Enrichment
The pathway enrichment analysis of 720 genes was

done by mapping the input genes to canonical path-
ways in TRANSPATH® and Reactome databases. We
have revealed 35 TRANSPATH short chains and
pathways and 22 Reactome pathways enriched with
the proteins encoded by the genes analysed. Among
the revealed signaling pathways we found: “beta-cat-
enin network”, “hypoxia pathway”, IL-6 signaling
pathways and chains, “cell-cell communication”,
“Interferon signaling”. It is known that many of these
pathways play an important role in several stages of
tumor progression. Full list of enriched pathways is
given in supplementary materials (Tables S2-B,
S2-C). In the Fig. 1 below we focus our attention on
two most statistically significant chains involved in
STAT3 signaling and in hypoxia regulation with sev-
eral genes that are characterized by extreme GBM sur-
vival hazard ratio values. 

Analysis of Enriched Transcription Factor Binding Sites 
and Composite Modules

In the next step, analysis of transcription factor
binding sides on the promoters (−1000 bp upstream of
transcription start site (TSS)) of the 720 genes is per-
formed using the TF binding motif library of the
TRANSFAC® database. CMA method is applied to
identify the transcription factors that through their
cooperation provide a synergistic effect and thus have
a great influence on the gene regulation process. Using
CMA, we identified two modules of transcription fac-
tors controlling the expression of the genes: module1:
MYOGNF1, JUN, NFATC2, AP2, LEF1, TFAP2A,
HOXA10; module2: E2A, CEBPA, GR, MYOGNF1,
MZF1, IK, NF1C, STAT3 (supplementary materials,
Fig. S2 and Table S2-D). These two models together
perform a reasonably good discrimination of promot-
ers of the 720 genes from the promoters of housekeep-
ing genes (Wilcoxon test p-value = 3.7 × 10–33; AUC =
0.74 (which is significantly higher than expected for a
random set of regulatory regions, Z-score = 4.44).

Out of them, we pay our attention to three TFs that
are involved in controlling expression of the revealed
genes: JUN, STAT3, and GR. JUN is a protooncogene
that plays a critical role in cell proliferation and malig-
nant transformation with its levels reported to be ele-
vated in GBM. Glucocorticoid receptor (GR) is
reported to promote stem cells-like phenotype and
resistance to chemotherapy [22]. STAT3 is a very
important glioblastoma related transcription factor.
Persistent activation of STAT3 induces cell prolifera-

tion, anti-apoptosis, glioma stem cell maintenance,
tumor invasion, angiogenesis, and immune evasion
[11, 23]. Here, we report that STAT3 is significantly
differentially expressed in short-term survivors
(log2FC = 0.403427421, adj. p-value = 0.00129).
STAT3 also had a significant impact on survival with
HR = 1.4 (p-value = 0.0015 with FDR = 0.009) Fig. 2.
STAT3 is suggested to be a therapeutic target to control
tumorigenesis by shaping tumor immune microenvi-
ronment [11].

Finding Master Regulators in Networks
Master regulators of the revealed transcription fac-

tors were identified using signal transduction database
TRANSPATH® and the Genome Enhancer algo-
rithm that searches for key-nodes in the global signal
transduction network upstream of transcription fac-
tors as it is described previously [8, 9] and filters iden-
tified key-nodes by the criteria of presence of positive
feedback loops [10] (“walking pathways” approach),
requiring that the key-node proteins should be
expressed by the genes that are found to be under the
regulatory control of the same key-nodes.

As the result of such master-regulator analysis of
the revealed 720 genes associated with the GBM sur-
vival we identified 43 potential feedback-loop-con-
trolled master regulators. The full list of identified
master regulators is given in supplementary materials
(Table S2-E). These master regulators map mainly to
such signaling pathways as: beta-catenin network,
EGF pathway, stress-associated pathway and Cyto-
kine Signaling. We have constructed a heatmap of the
expression values of these 43 master-regulator genes
(see Fig. S3 in the supplementary materials). It splits
them into two subgroups of genes—in average with
higher expression in the STS group (POSTN, IGFBP2,
FGFR3 and others) and with average higher expression
in LTS group (CASP9, PARD3, APEX1). Still, we can
see very high variability of the expression of these
genes in each group.

Identification of Perspective Drug Targets
The identified master regulators can be considered

as key candidates for therapeutic targets as they have a
master effect on regulation of intracellular pathways
that activate the pathological process of our study. In
order to select the most prospective drug targets we,
first of all, filtered all found master regulators based on
their differential expression (log2FC > 0.5) between
short-term and long-term survivors. Full results of
Limma analysis are given in supplementary materials
(Table S2-F). We identified several master regulators
out of which 16 had significant differential expression
between extreme survivor groups (full list is given in
supplementary materials, Table S2-G). Of them,
11 master regulators which had higher differential
expressions (log2FC > 0.5) across extreme survivor
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Fig. 1. Two top signal transduction chains (from TRANSPATH) significantly enriched by gene with extreme GBM survival
hazard ratio values. (a) OSM → STAT3 chain with three gene products with increased hazard ratios (red shadows around nodes)
(p-value < 6.5 × 10–4). (b) CHII → AP-1 chain with three gene products with decreased hazard ratios (blue shadows) (p-value <
6.5 × 10–4). The node shade coloring is done according to the Cox regression values. The color version is available in the elec-
tronic version of the article.
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groups were considered for reconstructing gene-regu-
latory networks. Below, we characterize these genes
from the point of view of their involvement in neo-
plasm pathology.

Periostin (POSTN), a secreted extracellular matrix
protein is reported to play a major role in GBM pro-
gression, invasiveness and a potential role in the clini-
cal response to angiogenic therapy [25]. Growth factor
receptor-binding protein 10 (GRB10), known sub-
strate of mTOR has been suggested as a major down-
stream effector of PI3K-AKT signalling with tumor
promoting effects in prostate cancer [26]. It is reported
to have high expression in mesenchymal subtype but
lower expression in G-CIMP tumor subtypes of GBM
[27]. Fibroblast growth factor receptor gene (FGFR)
aberrations have been implicated in tumor develop-
ment and progression and include FGFR overexpres-
sion, amplification, mutations, splicing isoform varia-
tions, and FGFR translocations in many cancers [28].
Nonetheless, FGFR expression changes in astrocytes
can lead to malignant transformation and GBM pro-
gression due to the activation of mitogenic, migratory,
and antiapoptotic responses [28]. IGFBP2 is consid-
ered as one of the strongest biomarkers of aggressive
behavior in GBM [29, 30] and also a prognostic
marker for survival [30, 31]. IGFBP2 along with
AEBP1 (ACLP), PDGFA and OSMR are reported to be
master regulators driving short survival in GBM and
are discussed in detail in our earlier work [7].

CD14, which modulates cellular and humoral
immune response by interacting directly with T and B
cells, is suggested to play a major role in immunode-
pletion which contributes to the grim prognosis of
GBM [32]. CD44 overexpression predicts poor sur-
vival in GBM, plays a role in GBM progression and its
role as a therapeutic target are reported earlier [33, 34].
DUSP6, encoding dual specificity phosphatase 6, is

reported to be overexpressed in GBM and is suggested
to play a vital role in epithelial-mesenchymal transi-
tion and tumor progression [35].

Next, since we observed very high variability of
expression values between different samples, some
important drug targets can be found among genes,
whose expression is specifically high in a subset of ST
samples only. Therefore, we have looked also at all
other potential feedback-loop-controlled master regu-
lators, paying particular attention to their well known
or PASS predicted role as drug targets in GBM, in
other neoplasms or in other related diseases. 

The identified master regulators that may govern
pathology associated genes were checked for drugga-
bility potential (Drugability score) using HumanPSD™
[21] database of gene-disease-drug assignments and
PASS software [22] for prediction of biological activi-
ties of chemical compounds on the basis of a (Q)SAR
approach. The Drugability score represents the number
of drugs that are known to act on the corresponding
target either according to the information extracted
from medical literature (from HumanPSD™ data-
base) or according to cheminformatics predictions of
compounds activity against the examined target (from
PASS software). So, we did the further selection of the
drug targets using the Drugability score and have added
three additional targets: APEX1, MAPK8, and PTK2B.
These three targets, although have relatively low haz-
ard ratio, but are characterized by quite high Drugabil-
ity score.

APEX Nuclease (Multifunctional DNA Repair
Enzyme) 1 is a DNA repair enzyme which is reported
to positively correlate with altered MGMT status, sig-
natures of Temozolomide treatment resistance, GBM
recurrence and polarize towards immune-suppressive
microenvironment in GBM [36]. Downregulation of
APEX1 is said to enhance sensitivity to Temozolomide

Fig. 2. The Kaplan-Meier plot to depict impact of STAT3 on survival using 526 samples of TCGA-GBM microarray data for
STAT3 transcription factor. Hazard ratio (HR) and statistical significance (p(HR)) according to Cox survival estimates are men-
tioned.
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treatment in resistant GBM cell lines [37]. MAPK8
and MAPK signaling is reported to be activated in
Temozolomide resistant GBM cell lines. MAPK8 also
enhances cell proliferation and inhibits apoptosis [38].
Expression of PTK2B (encoding PYK2, Protein Tyro-
sine Kinase 2 Beta) is suggested to play a critical role
in migratory behavior of tumor cells thus leading to
more aggressiveness in GBM [39]. In addition to these
known targets, we can reveal two components of the
beta-catenin pathway shown in Fig. 1b—CSNK2A2
and CSNK2B as potential new targets, whose potential
in therapy of aggressive forms of GBM is still to be
confirmed [40].

The diagram of the master regulator network with
positive feedback loops is shown in Fig. 3. The identi-
fied master regulators may potentially act as targets for
therapeutic interventions.

Prioritisation of Potential Drugs

Finally, we ranked the drugs that are known or
PASS predicted as active on the identified targets. The
ranking of the drugs was done by Drug rank which is a
sum of partial ranks computed on the basis of the tar-
get role as the potent master-regulator of the network
mechanism (Target activity score), on the basis of the
target Druggability score and Disease activity score (See
the Materials and Methods section).

As a result, we identified and ranked the following
drugs presented in Tables 1 and 2.

Among the top prioritized drugs, we can see several
drugs that are known to be used or going through clin-
ical trials on Glioma, Glioblastoma, Neoplasms of
Central Nervous System, other Neoplasms. The algo-
rithm has also proposed several drugs that can be sug-
gested for further studies as repurposing candidates.
Several of the identified drugs are currently going
through various studies to confirm their potential role

Fig. 3. Signal transduction and gene regulatory network of master regulators (red nodes) regulating two transcription factor mod-
ules (purple nodes) found as enriched in the promoters of genes under study. The dotted lines from genes to the encoding by them
signaling proteins represent the transcription and translation processes (positive feedback loops). Network is constructed using
master regulators which have significant log2FC > 0.5. OSMR is included to validate the previously reported drivers of short-sur-
vival [7]. Three additional master-regulators (APEX1, MAPK8, PTK2B) as known drug targets are also added to the diagram. The
outside box filling is based on differential gene expression and is filled red when upregulated (logFC > 0.1) and blue if downreg-
ulated (log2FC < –0.1) in the current study. The color version is available in the electronic version of the article.
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in treating Glioblastoma, including leflunomide (clin
trial:NCT00003293), nintedanib [41], pamidronate
[42], palifermin (in cell lines) [43]. In another study,
meta-analysis showed that etoposide and teniposide
improves survival in high-grade glioma [44]. Recently,
enhanced efficiency of GBM treatment by doxorubi-
cin was reported by combination with standard ther-
apy [45].

CONCLUSIONS
The current work focuses on analysing TCGA-

GBM microarray data (n = 560) to identify master
regulators driving the expression of the genes which
had significant impact on survival in GBM. We have
reported important genes of survival and have compu-

tationally proposed gene regulatory networks driving
poor prognosis using the “Genome Enhancer” pipe-
line. Out of the transcription factors reported, STAT3
was found to be important in terms of its regulatory
scores, differential expression in extreme survivor
groups as well as its impact on survival. Along with the
earlier reported IGFBP2, PDGFA, OSMR and AEBP1,
we propose 7 more master regulators, which can
potentially act as therapeutic targets. We propose,
STAT3 and other transcription factors are in positive
feedback loop with these master regulators to drive
pathological self-enhancing processes leading to poor
survival in GBM. On the basis of reconstructed mas-
ter-regulatory signal transduction and gene regulatory
network and chemoinformatic tool PASS we have
identified the most promising drug targets and priori-

Table 1. Most promising treatment candidates selected for the identified drug targets on the basis of literature curation in
the HumanPSD™ database

Drug Target 
names

Status (provided by 
Drugbank) Clinical trials (Phase)

Target 
activity 
score

Disease 
activity 
score

Drug 
rank

Palifermin FGFR3 Biotech, approved Brain Abscess (1, 3, 4); Neoplasms (1, 2, 3); 
Leukemia (1, 2, 3); Multiple Myeloma (1, 2, 
3, 4), Mucosis (3)

0.1115 0 16

Pazopanib FGFR3 Small molecule, 
approved

Glioma (1, 2); Neoplasms (1, 2, 3, 4), 
Central Nervous System Neoplasms (2, 3)

0.0820 9 17

Leflunomide PTK2B Small molecule, 
approved, 
investigational

Arthritis (1, 2, 3, 4); Psoriatic (1); 
Central Nervous System Neoplasms (2, 3)

0.0874 0 20

Lenvatinib FGFR3 Small molecule, 
approved

Adenocarcinoma (1, 2), Neoplasms (1, 2, 3) 0.0899 3 21

Nintedanib FGFR3 Small molecule, 
approved

Adenocarcinoma (1, 2); Neoplasms (1, 2, 3), 
Pulmonary Fibrosis (3, 4)

0.0753 0 23

XL999 FGFR3 Small molecule, 
investigational

Lung neoplasms (1,2); Neoplasms (1, 2); 
Brain Abscess (2)

0.1267 0 24

Ponatinib FGFR3 Small molecule, 
approved

Leukemia (1, 2, 3); Neoplasms (1, 2, 3) 0.0569 2 27

Hyaluronic acid CD44 Small molecule, 
approved

Arthritis (1, 2, 3, 4); Osteoarthritis (1, 2, 3, 4); 
Glaucoma (4)

0.0009 0 28

Lucanthone APEX1 Small molecule, 
approved, 
investigational

Glioblastoma (2), Neoplasms (2) 0.0755 2 29

Genistein PTK2B Small molecule, 
investigational

Carcinoma (1); Neoplasms (1, 2, 3); Bone 
Diseases (3, 4)

0.0559 0 30

Pyrazolanthrone MAPK8 Small molecule, 
experimental

0.1050 0 30

Flavopiridol CDK8 Small molecule, 
experimental, 
investigational

Carcinoma (1), Lymphoma (1, 2) 0.0488 0 35

Adenosine tri-
phosphate

NAE1 Small molecule, 
approved, nutra-
ceutical

Neoplasms (1), Pain (1); Alzheimer Disease 
(2)

0.0027 0 36
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tized drugs that can be potentially used for treating
high grade GBM.
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Only 2% of glioblastoma multiforme (GBM) patients respond to standard therapy and
survive beyond 36 months (long-term survivors, LTS), while the majority survive less
than 12 months (short-term survivors, STS). To understand the mechanism leading
to poor survival, we analyzed publicly available datasets of 113 STS and 58 LTS.
This analysis revealed 198 differentially expressed genes (DEGs) that characterize
aggressive tumor growth and may be responsible for the poor prognosis. These
genes belong largely to the Gene Ontology (GO) categories “epithelial-to-mesenchymal
transition” and “response to hypoxia.” In this article, we applied an upstream analysis
approach that involves state-of-the-art promoter analysis and network analysis of the
dysregulated genes potentially responsible for short survival in GBM. Binding sites
for transcription factors (TFs) associated with GBM pathology like NANOG, NF-κB,
REST, FRA-1, PPARG, and seven others were found enriched in the promoters of
the dysregulated genes. We reconstructed the gene regulatory network with several
positive feedback loops controlled by five master regulators [insulin-like growth factor
binding protein 2 (IGFBP2), vascular endothelial growth factor A (VEGFA), VEGF165,
platelet-derived growth factor A (PDGFA), adipocyte enhancer-binding protein (AEBP1),
and oncostatin M (OSMR)], which can be proposed as biomarkers and as therapeutic
targets for enhancing GBM prognosis. A critical analysis of this gene regulatory network
gives insights into the mechanism of gene regulation by IGFBP2 via several TFs
including the key molecule of GBM tumor invasiveness and progression, FRA-1. All the
observations were validated in independent cohorts, and their impact on overall survival
has been investigated.

Keywords: glioblastoma, master regulators, upstream analysis, IGFBP2, FRA-1, FOSL1, short term survivors,
transcription factors

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common, highly malignant primary brain tumor
(Wen and Kesari, 2008). Despite huge developments in treatment strategies, GBM poses unique
treatment challenges due to tumor recurrence (34%) and drug resistance leading to poor survival
rates of less than 15 months even after advanced chemoradiotherapy (Krex et al., 2007). As few as
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2% of patients respond to standard therapy and survive beyond
36 months (Krex et al., 2007; Das et al., 2011), clinically called
long-term survivors (LTS). Another group termed short-term
survivors (STS) are those who survive less than 12 months
(Shinawi et al., 2013). The factors that determine the long survival
are not well understood.

Though several factors like age, gender, Karnofsky
Performance Score, the extent of tumor resection, radiotherapy,
and chemotherapy are associated with survival and treatment
response (Scott et al., 1999; Lee et al., 2008; Sonoda et al.,
2009; Zhang et al., 2012), it is evident from recent research that
certain molecular signatures can be connected with treatment
response and thereby survival. Promoter methylation of the
gene MGMT, mutations in the genes IDH1/2, and loss of
heterozygosity in chromosome 1p/19q have been confirmed
to be highly informative (Krex et al., 2007; Das et al., 2011;
Zhang et al., 2012; Han et al., 2014; Reifenberger et al., 2014;
Franceschi et al., 2015; Chen et al., 2016). Furthermore, CHI3L1,
FBLN4, EMP3, IGFBP2, IGFBP3, LGALS3, MAOB, PDPN,
SERPING1, and TIMP1 gene expression has repeatedly been
reported to be decreased in LTS patients (De Vega et al., 2009; Bi
and Beroukhim, 2014; Han et al., 2014; Franceschi et al., 2015).
A better characterization of these extreme survival groups at the
molecular level will likely shed important light on the biological
aspects that drive their malignancy and survival.

With the advent of gene expression profiling and remarkable
developments in high-throughput technologies, it is possible to
gain deeper molecular insights into disease biology. Databases
like Gene Expression Omnibus—GEO (Barrett et al., 2013),
Array Express (Athar et al., 2019), and The Cancer Genome
Atlas—TCGA (Grossman et al., 2016) serve as open platforms
for retrieval of high-quality multi-omics data to search for
new markers in cancer research. The analysis of differentially
expressed genes (DEGs) is already an important and established
in silico strategy to identify potential drivers of cellular state
transitions. For a more refined analysis, annotation of DEGs,
using a priori known biological categories from the Gene
Ontology (GO; Ashburner et al., 2000) and pathway databases,
e.g., TRANSPATH R©(Krull et al., 2003), KEGG (Kanehisa et al.,
2020), PANTHER (Thomas et al., 2003), and Reactome (Jassal
et al., 2020), has proven to be an effective hypothesis-
driven approach in cancer research. Moreover, with the advent
of state-of-the-art promoter analysis, it is now possible to
establish gene regulatory networks computationally that can
be used to understand the causes of gene dysregulation and
for identification of causal master regulators driving them. In
this regard, we applied the Genome Enhancer1, a multi-omics
analysis tool that makes use of the open-source programming
environment BioUML (Kolpakov et al., 2019) and incorporates
an automated pipeline for the previously published “upstream
analysis” (Koschmann et al., 2015; Boyarskikh et al., 2018)
and the “walking pathways” (Kel et al., 2019) approach. There
are two major steps that constitute this strategy: (1) analysis
of the promoters of DEGs to identify relevant transcription
factors (TFs): this is done with the help of the TRANSFAC R©

1https://genexplain.com/genome-enhancer/

database (Matys et al., 2006) and the binding site identification
algorithms, MATCHTM (Kel et al., 2003, 2006) and CMA
(Waleev et al., 2006); (2) reconstruction of signaling pathways
that activate these TFs and identification of master regulators
on the top of such pathways: for this, the signaling pathway
database TRANSPATH R© (Krull et al., 2003) has been employed
in conjunction with special graph search algorithms that identify
positive feedback loops (Kel et al., 2019).

In this study, we applied the upstream analysis to publicly
available datasets of GBM from the GEO database to understand
the gene-regulatory networks contributing to short survival in
GBM. This regulatory network revealed a set of 12 TFs binding
to the regulatory regions of the genes of interest and five master
regulators regulating them, namely, (a) vascular endothelial
growth factor A (VEGFA), a mediator of angiogenesis (Xu et al.,
2013) and a promoter of stem-like cells in GBM; (b) PDGF, a
highly amplified gene and key player of tumorigenesis (Martinho
and Reis, 2011); (c) oncostatin M (OSMR), which orchestrates
feed-forward signaling with EGFR and STAT3 to regulate tumor
growth (Jahani-As et al., 2016); (d) adipocyte enhancer-binding
protein (AEBP1), which plays a key role in pathogenesis through
NF-κB activation (Majdalawieh et al., 2020); and (e) IGFBP2.

Insulin-like growth factor binding protein 2, a well-established
molecule of interest in GBM (Yao et al., 2016), was found
to be more highly expressed in STS and to have an impact
on overall survival. IGFBP2 expression is said to be higher
in all four (classical, mesenchymal, proneural, and neural)
GBM subtypes (Lindström, 2019). It also drives gene programs
for immunosuppression in the mesenchymal subtype and is
suggested as an immunotherapeutic target (Liu et al., 2019). In
non-mesenchymal subtypes (classical, proneural, and neural), it
modulates cell proliferation (Phillips et al., 2016; Cai et al., 2018).
It has also been found to be a marker of tumor aggressiveness and
a prognostic marker for survival (Lindström, 2019). However,
the molecular mechanism by which IGFBP2 affects disease
progression and patient prognosis is not fully understood.

This work focuses on understanding gene regulatory networks
that drive short survival in GBM and their master regulators,
which we suggest as biomarkers and therapeutic targets.
Later, we critically discuss the role of IGFBP2 in the gene
regulatory network.

RESULTS

Identification of Differentially Expressed
Genes
Identifying DEGs gives us insight into the biological semantics
of a cellular state and helps to identify promising biomarkers of
various disease states. The differential gene expression analysis
between STS and LTS groups of GBM, from the batch-corrected
GSE dataset, was performed using linear models for microarray
data (LIMMA) (Ritchie et al., 2015) with FDR cutoff of 5%. The
analysis revealed 957 genes that are significantly differentially
expressed (DEGs) (adjusted p-value < 0.05). Furthermore, the
analysis revealed 115 significantly upregulated (log2FC > 0.5)
and 83 significantly downregulated [log2FC < (−0.5)] genes.

Frontiers in Genetics | www.frontiersin.org 2 June 2021 | Volume 12 | Article 670240

58



fgene-12-670240 June 9, 2021 Time: 17:41 # 3

Kalya et al. Regulatory Networks of Short Survival in GBM

The top five upregulated and downregulated genes and their
corresponding log2FC are shown in Table 1 and the full list is
given in Supplementary Table 1-A.

Functional Annotation of Differentially
Expressed Genes
Functional annotation was performed to investigate the
biological roles of these DEGs. As shown in Supplementary
Figure 1A, the top GO biological processes are extracellular
structure and matrix organization with 30 DEG hits.
Supplementary Figure 1B shows the results for GO cellular
component enrichment, which revealed dysregulation of
genes that encode proteins for the extracellular matrix and
synaptic membranes. The important enriched molecular
function GO terms are channel activity and transmembrane
transporter activity (Supplementary Figure 1C). The disruption
in extracellular matrix organization is one of the important
signatures in glioblastoma treatment response dealing with
invasiveness and malignancy (De Vega et al., 2009). Deeper
biological insights are required in this aspect. It is interesting
to see enrichment of genes known to be involved in glioma
(Figure 1A). Gene signature enrichment based on hallmark gene
sets of MSigDB clearly signifies the enrichment of epithelial-
to-mesenchymal transition depicted in Figure 1B. The process
of epithelial-to-mesenchymal transition plays a very important
role in GBM survival by driving tumor invasiveness and drug
resistance (Iwadate, 2016). Important pathways like Aurora
signaling, G2/M phase transition, and TGF-β pathway are found

TABLE 1 | The list of the top five significantly upregulated and downregulated
genes in STS identified in the GSE dataset.

Gene
symbol

Description Log2FC p-Value Adjusted
p-value

Upregulated
genes

CHI3L1 Chitinase-3-like 1 1.371 9.73E−05 0.013

PDPN Podoplanin 1.241 7.88E−07 0.002

MEOX2 Mesenchymal
homeobox 2

1.159 6.45E−04 0.028

IGFBP2 Insulin-like growth
factor binding
protein 2

1.149 4.87E−05 0.010

COL6A2 Collagen type VI
alpha 2 chain

1.0479 5.79E−05 0.011

Downregulated
genes

KLRC2 Killer cell lectin-like
receptor C2

−1.2187 3.63E−04 0.022

KLRC1 Killer cell lectin-like
receptor C1

−1.2187 3.63E−04 0.022

FUT9 Fucosyltransferase 9 −1.0709 1.15E−04 0.014

DPP10 Dipeptidyl
peptidase-like 10

−1.02781 2.97E−05 0.008

GABRB3 Gamma-
aminobutyric acid
type A receptor
subunit beta3

−0.96352 6.73E−05 0.011

to be enriched according to TRANSPATH R© (Table 2). The full list
of enrichment results can be found in Supplementary Table 1-B.

Identifying the Master Regulators of
Dysregulated Gene Networks
Reconstruction of the disease-specific regulatory networks can
help to identify potential master regulators that may serve as
mechanism-based biomarkers or as therapeutic targets to block
a specific pathological regulatory cascade. Using the promoter
analysis as a first step, we analyzed enrichment of TF binding sites
in promoters of upregulated genes of STS using DNA-binding
motifs from the TRANSFAC R© library. Two hundred seventy-four
TFs (Supplementary Table 1-C) enriched for CCKR signaling,
interleukin signaling, PDGF signaling, and WNT signaling were
found to have their binding sites enriched; full enrichment results
can be found in Supplementary Table 1-D.

Next, we applied the Composite Module Analyst (CMA)
and identified two modules involving 12 TF binding site
combinations that regulate the expression of the genes of interest.
CMA revealed the following modules comprising clustering
binding sites for the following TFs: module 1: HNF3B, NANOG,
NFKAPPAB, TAF1, TCF4, and FRA-1; module 2: PPARG, TAL1,
REST, POU6F1, FOSJUN, and PBX. The modules and their
significance are depicted in Supplementary Figure 2. Differential
expression statistics for the 12 TFs are given in Supplementary
Table 2. Among them, FRA-1 TF (also known as FOSL1) was
found to be p-value significant and upregulated in STS of
GBM (log2FC = 0.023, p-value = 0.008, adjusted p-value (0.093)
(Supplementary Table 2).

Figure 2 validates the predicted cluster of TF binding sites
from the composite modules identified in the promoter of
IGFBP2 gene. We can see that binding sites for the TFs –
c-Fos/c-Jun, Nanog, Tal-1, and HNF3/FoxA1 in this cluster
can be confirmed by publicly available ChIP-seq data of the
GTRD database (Kolmykov et al., 2021). In addition, binding
site of FRA-1 can be confirmed by a cluster of mapped reads
of independent publicly available ChIP-seq data (FRA1 track in
Figure 2) (full map is shown in the Supplementary Figure 4).

Finally, we reconstructed signaling network that activates
the TFs revealed by CMA analysis and thereby identifying
the top regulators in these networks using the TRANSPATH R©

database. With this approach, we identified five important master
regulators that are plausible drivers of short survival in GBM:
IGFBP2, VEGFA/VEGF165, platelet-derived growth factor A
(PDGFA), AEBP1, and OSMR. All the master regulators were
found to be significantly upregulated in STS. The genes that
encode the master regulator proteins are controlled by the
TFs revealed by CMA in their promoters, which maintains the
multiple positive feedback loops in the system. It should be
underlined here that, in such networks with positive feedback
loops, the identified key TFs, such as FRA-1, are both upstream
of their target genes, among them the IGFBP2, as well as
downstream from the master regulator proteins, one of them
the IGFBP2 protein. The regulatory network reconstructed with
six master regulators is shown in Figure 3, and the master
regulators and their log2FC in STS are listed in Table 3. Since
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FIGURE 1 | Functional enrichment analysis of differentially expressed genes (DEGs). (A) Enrichment for known disease gene networks in different diseases. Y-axis
represents enriched ontology categories and X-axis represents gene ratio. Gene ratio is count/set size. The “count” is the number of genes that belong to a given
gene set, while “set size” is the total number of genes in the gene set. Y-axis is sorted based on leading edge. Leading edge is a subset of genes that contributes
most to the enrichment score. The dots are sized based on gene ratio and are colored according to their adjusted p-value. (B) Enrichment for hallmark gene sets in
the molecular signature database similar to (A).

TABLE 2 | Pathway enrichment using the TRANSPATH R© pathway (2019.3) for differentially expressed genes.

ID (TRANSPATH) Title Group size Expected hits Nominal p-value ES Rank at max NES FDR Number of hits

CH000001004 Aurora-A cell cycle regulation 68 67.262 0 0.422 8,347 4.138 0 68

CH000000919 Cyclosome regulatory network 77 76.164 0 0.349 7,336 3.728 0 77

CH000000694 G2/M phase (cyclin B: Cdk1) 66 65.284 0 0.375 6,641 3.587 0 66

CH000000879 Caspase network 83 82.099 0 0.333 8,414 3.523 0 83

CH000000711 TGFbeta pathway 153 151.340 0 0.232 8,431 3.346 0 151

VEGF165 is a splice variant of VEGFA, only the latter will be
considered further on.

Validating the Expression of Master
Regulators in Other Cohorts
The expression patterns of the master regulators identified above
have been validated in two different cohorts: (A) TCGA-GBM
microarray data (Grossman et al., 2016) and (B) GSE16011
(Gravendeel et al., 2009). The expression patterns were similar,
and there is a significant upregulation of all master regulators

except for VEGFA (GSE16011: adjusted p-value = 0.069
and TCGA-GBM: adjusted p-value = 0.075) (Supplementary
Tables 1-E, 1-F). The differential expression values are given in
Table 4.

Validating the Master Regulators in the
TCGA-GBM Cohort
The TCGA-GBM microarray data containing 271 STS and 49
LTS is used to validate the above-identified drivers of short
survival. The data is preprocessed and adjusted for batch effects
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FIGURE 2 | Map of the cluster of transcription factor (TF) binding sites of the composite model identified within the promoter of IGFBP2 gene [–1000 to + 100 bp
relative to TSS]. The position of the TSS (the beginning of the first exon on IGFBP2 gene) is shown by the vertical dotted line. “Yes track” represents the cluster of
identified TF binding sites of the composite model within the promoter. The direction of the arrows gives the orientation of the PWMs. The names of TFs binding to
these sites are shown above the arrows. The track “FRA1” represents the mapped reads of the FRA1 (also called FOSL1) ChIP-seq data of GEO, GSM803382. The
reads were mapped on the hg38 human genome using Subread aligner (Liao et al., 2013) with default parameters. The track “all meta clusters” shows all known
meta-clusters in this region from the GTRD database that represent the overlapping fragments of peaks for one particular TF from several ChIP-seq experiments.
The name of TF is shown above each meta-cluster. Several predicted TF binding sites in the composite model are confirmed in independent ChIP-seq experiments:
several overlapping reads of FRA1 ChIP-seq data in the “FRA1” track and FOSL2 meta-cluster in the GTRD confirm the predicted site for Fra-1; FOS and JUN
meta-clusters in the GTRD confirm the predicted c-Fos/c-Jun binding sites; NANOG meta-cluster confirms the predicted Nanog binding site; TAL1 meta-cluster
confirms the predicted Tal-1 binding site; FOXA2 and FOXA1 meta-clusters of the GTRD confirm the HNF3beta binding site.

(Supplementary Figure 3), and a differential gene expression
analysis is performed. Same cutoffs for log2FC and adjusted
p-value are used. We identified 171 genes upregulated in STS
of GBM (log2FC > 0.5 and adjusted p-value < 0.05) (full
list in Supplementary Table 1-E). Forty-nine of them were
in common between the GSE dataset and TCGA-GBM; the
full differential gene expression analysis results are given in
Supplementary Table 1-G. Composite models selected by the
CMA algorithm across the two datasets were expected to
vary. We identified a model that includes a set of 16 TFs
(Supplementary Table 3) and 12 master regulators upstream of
them (Supplementary Table 4) regulating the signal transduction
and gene regulatory network in STS.

As a result, the TCGA-GBM dataset validates IGFBP2,
AEBP1 (ACLP), and PDGFA as master regulators driving the
dysregulated gene network in STS. We also found that binding
sites for FRA-1 TF are statistically significantly enriched at the
regulatory regions of the dysregulated genes including IGFBP2 in
the TCGA-GBM cohort (Supplementary Table 5).

Impact of Master Regulators on Survival
in GBM
Univariate survival analysis was used to study the impact of these
master regulators and the TFs they regulate on the overall survival
in GBM based on TCGA-RNA-seq data. Patients are split into
non-overlapping 50% upper and lower quantiles. Additionally,
cox regression for the univariate survival analysis is performed,
and hazard ratio (HR) and corresponding p-values are shown in

Figure 4. Univariate survival Cox regression analysis on other
microarray datasets is given in Supplementary Table 1-I. All
master regulators were found to have a significant impact upon
survival except VEGFA. FRA-1 (FOSL1) was found to have a
significant HR.

Master Regulator Expression Patterns
Across GBM Subtypes
Based on the regulatory landscape of GBM, there are four
subtypes—classical, mesenchymal, proneural, and neural
(Verhaak et al., 2010). There is a significant level of intertumoral
as well as intra-tumoral heterogeneity within each of them
(Verhaak et al., 2010; Bradshaw et al., 2016). Molecular subtypes
of GBM in the GSE dataset is given in Supplementary Table 6.
DEGs between STS and LTS within each subtype are given in
Supplementary Table 7. The expression patterns of master
regulators across subtypes and across survival groups are
depicted as boxplot in Supplementary Figure 5. None of the
master regulators were found to be significantly differentially
expressed between survivor groups in any subtypes.

DISCUSSION

Gene regulatory networks represent the causal regulatory
relationships between TFs and their gene targets, which enables
us to discover dysregulated genes in certain biological states
(Marbach et al., 2012). Comparative studies of STS and LTS of
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FIGURE 3 | Signal transduction and gene regulatory network of six master regulators (red nodes) regulating two transcription factor modules (purple nodes) enriched
in promoters of highly upregulated genes of short-term survivors (STS). The dotted lines from genes to such signaling proteins represent the transcription and
translation processes (positive feedback loops). The outside box filling is based on log2FC < (−0.2) and is filled red when upregulated (log2FC > 0.2 and
p-value < 0.05) and filled blue when downregulated (log2FC < 0.2 and p-value < 0.05) in the current study.

GBM showed that gene expression programs executed across
survival groups vary significantly. In the light of these findings,
we sought to apply an upstream analysis approach to gain an
insight about gene regulatory networks driving the short survival.

In the promoter analysis, we identified a set of 12 TFs
in composite clusters that are enriched in the promoter
regions of dysregulated genes in STS (upregulated in STS).
For several of these TFs, a connection to GBM has previously
been established. The TFs NANOG and REST are critical
for self-renewal and maintenance of oncogenic signatures in
glioblastoma stem-like cells (Kamal et al., 2012; Bradshaw
et al., 2016); PPARG has emerged as a promising therapeutic
target as its agonists increased median survival in GBM
patients (Ellis and Kurian, 2014); NF-κB is implicated in several
processes like invasion, epithelial–mesenchymal transition
(Yamini, 2018), resistance to radiotherapy (Avci et al., 2020),
and maintenance of cancer stem-like cells (da Hora et al.,
2019); and FRA-1/FOSL1 has been reported to be important
in maintenance/progression of malignant glioma (Debinski
and Gibo, 2005). FRA-1 along with JUN-B modulates a
malignant feature of GBM by regulating the expression of
the metalloproteinases like MMP-2 and MMP-9 (Kesari and
Bota, 2011). Among these 12 TFs, we found that FRA-1 has a
significant impact upon survival and has a higher expression
in STS. Debinski and Gibo (2005) hypothesized that any
AP1-stimulating signals like epidermal growth factor (EGF),
leukemia inhibitory factor, OSMR, or FGF-2 can positively

regulate FRA-1. VEGF-D is regulated by FRA-1 (supporting the
feedback loop found in our work) and is a known prognostic
factor in other aggressive cancers (Debinski et al., 2001;
Azar et al., 2014).

A graph analysis of the signal transduction network upstream
of these TFs identified five potential master regulators that

TABLE 3 | Table of the master regulators identified, their description, log2FC in
STS, and number of transcription factors regulated.

Molecule
name

Gene description HGNC
gene
symbol

Log2FC in
STS

Number of
TFs

regulated

IGFBP2 Insulin-like growth
factor binding
protein 2

IGFBP2 1.149 9

ACLP AE-binding
protein 1

AEBP1 0.782 9

VEGFA Vascular endothelial
growth factor A

VEGFA 0.778 9

VEGF165 Vascular endothelial
growth factor A

VEGFA 0.778 9

OSMRbeta Oncostatin M
receptor

OSMR 0.634 8

PDGFA Platelet-derived
growth factor
subunit A

PDGFA 0.529 9
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TABLE 4 | Expression of the master regulators identified across survival groups (STS and LTS, respectively) and across three datasets (GSE,GSE16011 and TCGA-GBM
microarray).

Master regulator GSE GSE16011 TCGA

Log2FC (STS vs LTS) Adjusted p-value Log2FC (STS vs LTS) Adjusted p-value Log2FC (STS vs LTS) Adjusted p-value

IGFBP2 1.149 4.87E−05 2.030 4.598E−04 1.098 5.00E−06

AEBP1 0.782 7.75E−05 1.723 0.001 0.971 3.96E−06

PDGFA 0.529 4.55E−04 1.680 4.709E−09 0.825 2.07E−05

VEGFA 0.778 5.20E−04 0.884 0.069 0.500 0.0752

OSMR 0.634 8.65E−04 1.957 4.24E−05 0.486 0.0318

FIGURE 4 | Survival analysis using RNA-seq data of The Cancer Genome Atlas glioblastoma (TCGA-GBM) cohort. (A) AEBP1, (B) OSMR, (C) IGFBP2, (D) PDGFA,
(E) VEGFA, and (F) FRA-1 (FOSL1). Out of the five master regulators, all but VEGFA (AEBP1, OSMR, PDGFA, and IGFBP2) had a statistically significant impact on
survival. Hazard ratio (HR) and statistical significance [p (HR)] according to Cox survival estimates are mentioned.

might explain gene dysregulation in STS, namely, insulin-like
growth factor binding protein 2 (IGFBP2), VEGFA, its isoform
VEGF165, PDGFA, OSMR, and AEBP1. All the identified master
regulators were upregulated in STS, and their expression patterns
were validated computationally in two other independent
cohorts. We found that the expression of all master regulators,
with the exception of VEGFA, was correlated with overall
survival in the GBM patients. IGFBP2, AEBP1, and PDGFA
master regulators driving short survival were validated as master
regulators of short survival in the TCGA-GBM microarray
cohort. Out of them, IGFBP2 had higher expression in STS. The
IGFBP2 is said to be one of most potential glioma oncogenes
and functions as a hub of oncogenic signaling pathways by
regulating pro-tumorigenic signals of tumor initiation and
progression. Earlier studies have suggested IGFBP2 to drive
EMT and as a potential therapeutic target in mesenchymal GBM
(Yamini, 2018; Liu et al., 2019). It is established that exogenous
IGFBP2 promotes proliferation, invasion, and chemoresistance
to temozolomide in glioma cells via integrin β1 by promoting
ERK phosphorylation and nuclear translocation (Schütt et al.,

2004; Yau et al., 2015). IGFBP2 is considered as one of the
strongest biomarkers of aggressive behavior in GBM (Holmes,
2012; Phillips et al., 2016) and also a prognostic marker for
survival (McDonald et al., 2007; Phillips et al., 2016).

Here, we propose that IGFBP2 can be a potential regulator of
FRA-1 TF. IGFBP2-induced RAF/MAPK signaling can activate
FRA-1 (Figure 3). It has been shown earlier that IGFBP2 and
FRA-1 regulate transcription of VEGF (Debinski et al., 2001; Azar
et al., 2011, 2014), which is the second most dysregulated master
regulator in our network. Enhanced ERK signaling, triggered
by these master regulators, may lead to mitogen-induced FRA-1
transcription (Adiseshaiah et al., 2005) as well as its protection
from proteasomal degradation (Vial and Marshall, 2003). The
gene regulatory network deduced here suggests that FRA-1
mediates a positive feedback loop where it activates transcription
of master regulator genes in cooperation with other TFs, which
in turn cause an increase in FRA-1 activity. Promoters of the
genes of all five master regulators reported in the study contain
potential binding sites for FRA-1. Experimental evidences that
IGFBP2 can drive GBM invasion by enhancing MMP2 expression
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FIGURE 5 | A diagram combining prior knowledge about the role of IGFBP2 in GBM and the gene regulatory network developed in the study. The hexagons are
master regulators identified in our analysis. All the intermediates of the gene regulatory network are colored red if upregulated in STS and black if not present in the
network. Dotted black line indicates the knowledge is through literature and continuous black line if known through gene regulatory network. Blue dotted lines
represent gene regulatory connections between master regulators and their corresponding genes transcribed by target transcription factors. VEGFA, PDGFA, IGFs,
and IL-31 activate RAF/MEK/ERK signaling, which mediate cell survival through PI3K-AKT pathway (Yao et al., 2016; Simpson et al., 2017). MEK2/RAF1/ERK5 and
AKT-1 are found to be upregulated in STS, suggestive of activated ERK signaling, which can contribute to drug resistance (Abrams et al., 2010; Salaroglio et al.,
2019). IGFBP2 activates IGFR either by increasing bioavailability of IGFs or by direct interaction with its functional domain. Integrin acts as receptor for IGFBP2
extracellular signals (Schütt et al., 2004; Yau et al., 2015) and modulates NF-κB signaling. IGFBP2 by nuclear translocation (Azar et al., 2011) is involved in
transcriptional regulation of the VEGF gene and modulates angiogenesis (Azar et al., 2011). STAT3 and NF-κB are said to be the two major downstream transcription
factors of IGFBP2 that direct tumorigenic intracellular signaling (Phillips et al., 2016) via EGFR signaling. Oncostatin M, a receptor for cytokine IL31, is a regulator of
EGFR signaling (Jahani-As et al., 2016). FRA-1 is required for AKT activation in cancers to promote AKT-dependent cell growth (Zhang et al., 2016). NF-κB can
regulate AP1 (FOS and JUN) thereby VEGF expression in pancreatic tumor cell lines (Fujioka et al., 2004). All the five master regulators have binding sites for FRA-1.
In the figure, we depicted the possible positive feedback loop between FRA-1 and the master regulators to orchestrate a complex tumorigenic program of
invasiveness, migration, drug resistance, and angiogenesis.

(Wang etal., 2003) support our computational prediction of
IGFBP2 as a therapeutic target. Hence, the gene regulatory
networks proposed by our computational analysis suggest a
novel molecular mechanism associated with GBM survival in
which FRA-1 acts as a transcription regulator of IGFBP2. The
study of Kesari and Bota (2011) confirmed our hypothesis that
IGFBP2 can enhance GBM invasion via TF AP1 (FOS-JUN).
Metalloproteinases like MMP-2/MMP-9 have been reported
earlier to be regulated by FRA-1 in several cancers including GBM
(Debinski and Gibo, 2005; Adiseshaiah et al., 2008; Kimura et al.,
2011; Prywes and Henckels, 2013). Taking these findings together,
our work proposes that the regulation of IGFBP2 gene expression
via AP1 (FOS-JUN) can be an important mechanism of GBM
invasion. An overview of the gene regulatory network developed

in this work and supporting literature evidence is illustrated
in Figure 5.

In summary, our work proposes a gene regulatory network
associated with STS in GBM, which is regulated by five master
regulators, namely, IGFBP2, VEGFA, PDGFA, OSMR, and
AEBP1. Furthermore, these five master regulators may present
biomarkers of GBM prognosis and/or as therapeutic targets for
enhancing survival in GBM. This work also proposes a novel
mechanism of gene dysregulation by IGFBP2 by modulating
a key molecule of tumor invasiveness and progression—FRA-
1 TF. All the genes encoding these five master regulators have
binding sites for FRA-1 in their promoters. FRA-1 and the master
regulators cooperate in a positive feedback loop to orchestrate a
complex tumorigenic program leading to poor survival in GBM.

Frontiers in Genetics | www.frontiersin.org 8 June 2021 | Volume 12 | Article 670240

64



fgene-12-670240 June 9, 2021 Time: 17:41 # 9

Kalya et al. Regulatory Networks of Short Survival in GBM

TABLE 5 | Statistics of datasets under study.

Platform Short-
term

survivors

Long-term
survivors

GSE53733
(Reifenberger et al.,
2014)

HU133 plus 2.0
arrays

16 23

GSE108474
(Gusev et al., 2018)

HU133 plus 2.0
arrays

97 35

The datasets with labels GSE’ were collected from the GEO database.

MATERIALS AND METHODS

Data Collection
The genome-wide expression profiles based on Human Genome
U133 plus 2.0 array and clinical information of patients
with GBM were collected from the public repository of GEO
database—GSE108474 (Gusev et al., 2018)2 and GSE53733
(Reifenberger et al., 2014)3. The two datasets were pooled
together leading to 113 and 58 samples corresponding to STS
(survival <12 months) and LTS (survival >36 months) with
GBM, respectively (Table 5). Duplicates were not removed.
Sample information and cleaned datasets are given in GitHub.

Affymetrix Microarray Data
Pre-processing
The raw data files (.CEL format) for GSE108474 and GSE53733
were collected from the GEO database—from here on called
as GSE dataset. RMA algorithm is used in R (affy package)
for background correction, quality check, and normalization to
obtain log2-transformed expression values (Gautier et al., 2004).
Batch correction of the pooled expression data was performed
using empirical Bayes framework (Leek et al., 2012). This batch-
corrected file is used for further analysis. Multiple Affymetrix
IDs were summarized to gene IDs by choosing the maximum
out of the probe intensities of multiple probes belonging to a
single gene. The final expression matrix comprised 21,526 probes
and 171 samples.

Differential Gene Expression Analysis
The LIMMA method was applied to identify DEGs (Ritchie
et al., 2015). It is an efficient tool that is stable even for
experiments with small samples. A differential gene expression
analysis of 171 samples of the GSE dataset was performed
with Benjamini–Hochberg adjusted p-value. Nine hundred
fifty-seven genes were significantly (adjusted p-value < 0.05)
differentially expressed (DEGs). One hundred fifteen of them
were significantly upregulated (adjusted p-value < 0.05 and
log2FC > 0.5) and 83 were significantly downregulated [adjusted
p-value < 0.05 and log2FC < (−0.5)].

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53733

Databases Used in the Study
Transcription factor binding sites in promoters and enhancers
of DEGs were analyzed using known DNA-binding motifs
described in the TRANSFAC R© library, release 2019.3 (geneXplain
GmbH, Wolfenbüttel, Germany)4 (Wingender et al., 1996). The
master regulator search uses the TRANSPATH R© database, release
2019.3 (geneXplain GmbH, Wolfenbüttel, Germany)5 (Krull
et al., 2003). A comprehensive signal transduction network of
human cells is built by the Genome Enhancer software based
on reactions annotated in TRANSPATH R©. The information
about drugs corresponding to identified drug targets and
clinical trials references were extracted from the HumanPSDTM

database (Wingender et al., 2007), release 2020.26. The Ensembl
database build 99.387 (Aken et al., 2016) was used for gene ID
representation and GO8 (Ashburner et al., 2000) was used for
functional classification of the studied gene set.

Functional Annotation
To explore the biological importance of gene signatures, a
gene set enrichment analysis is performed. All the adjusted p-
value significant genes were used. GSEA is an efficient method
to determine whether the genes of interest show statistically
significant enrichment between different biological states. GO
enrichments for cellular component, biological process, and
molecular functions were performed. To investigate the top
enriched ontology terms, 1,000 random permutations were done
and an adjusted p-value cutoff of 0.05 is used. The dysregulated
gene network enrichment also gives a useful insight about known
disease signatures (Subramanian et al., 2005). The hallmark gene
set of MSigDB (Liberzon et al., 2011) defines specific biological
states or processes. Enrichment analysis is performed in R using
DOSE package (Yu et al., 2015). PANTHER pathway enrichment
of the identified TFs was performed using the EnrichR tool
(Chen et al., 2013). TRANSPATH R© (Krull et al., 2003) pathway
enrichment was performed using the geneXplain platform.

Genome Enhancer Pipeline
The approaches mentioned above help us in understanding
the impact of the DEGs in GBM biology. To understand the
reason behind this dysregulation, the genome enhancer pipeline
of geneXplain is used. The genome enhancer is a multi-omics
analysis service (see text footnote 1) that is built using an
open-source programming environment BioUML (Kolpakov
et al., 2019)9 and incorporates an automated pipeline for the
previously published “upstream analysis” (Koschmann et al.,
2015; Boyarskikh et al., 2018) and the advanced approach
“walking pathways” (Kel et al., 2019). Significantly upregulated
genes in STS were used in this workflow.

The workflow works in 2 steps.

4https://genexplain.com/transfac
5https://genexplain.com/transpath
6https://genexplain.com/humanpsd
7http://www.ensembl.org
8http://geneontology.org
9www.biouml.org
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A. Analysis of enriched transcription factor binding sites and
composite modules

Binding of TFs to the specific sites in promoters and
enhancers is the key to the transcriptional regulation of genes.
Identifying clusters of binding sites for TFs (composite modules)
in the upstream regulatory regions [−1,000 bp upstream of
transcription start site (TSS)] of the genes of interest is a
determining step to understand the gene regulatory mechanism
(composite regulatory modules) (Kel-Margoulis et al., 2002).

We use the CMA (Waleev et al., 2006) to detect such potential
enhancers, as targets of multiple TFs bound to the regulatory
regions of the genes of interest. The TFs are ranked based
on (a) the yes/no ratio: given a set of promoter sequences of
dysregulated genes, denoted as a yes set, and promoter sequences
of unchanged genes under the same experimental condition,
denoted as a no set, motifs are considered important if they have
a high yes/no ratio, the ratio of motif occurrences per promoter
in yes and no sets, and a statistically significant enrichment of
occurrences in yes sequences assessed by the binomial p-value. (b)
A regulatory score, which is a measure of involvement of a TF in
controlling the expression of genes that encode master regulators.
CMA identifies the TFs that, through their cooperation, provide
a synergistic effect and thus have a great influence on the gene
regulation process.

B. Finding master regulators in networks

The second step involves the signal transduction database
TRANSPATH R© and special graph search algorithms to identify
common regulators of the revealed TFs. These master regulators
appear to be the key candidates for therapeutic targets as they
have a master effect on the regulation of intracellular pathways
that activate the pathological process of our study. Master
regulators regulating the TFs revealed in step A are ranked based
on (a) logFC, (b) CMA score, which signifies how strong is the
potential for this gene to be regulated by TFs of interest, and (c)
master regulator score, which signifies how strong is the potential
of this gene product to regulate the activity of those TFs. Selected
master regulators can also be visualized and with the possibility
to map the logFC and p-value on the created regulatory network.

Validation of Observed Gene Signatures
The raw microarray data of 560 TCGA-GBM samples were
downloaded from TCGA legacy. The GSE16011 raw.CEL data

TABLE 6 | Statistics of the two validation datasets.

Datasets Platform Short-
term

survivors

Long-term
survivors

GSE16011
(Gravendeel et al.,
2009)

HU133 plus 2.0
arrays

93 16

TCGA-GBM
microarray
(Grossman et al.,
2016)

HU133 271 49

was downloaded from the GEO repository. Both raw datasets
were processed and analyzed independently following same steps
as mentioned earlier. These two datasets are used to observe and
validate the expression pattern of master regulators across the
two survival groups (see Table 6). GSE16011 comprises of data
generated at a single center and is used in several studies (Prasad
et al., 2020), unlike TCGA. TCGA-GBM microarray data PCA
plots are given Supplementary Figure 3, and no significant batch
effects in the context of survival groups were found.

Validation of Master Regulators
The TCGA-GBM microarray data downloaded from TCGA
legacy archive is processed in the same fashion as GSE. Similar
cutoffs (log2FC and p-value) and parameters are used to identify
enriched TFs and network analysis in order to understand drivers
of gene regulatory networks in short survival.

Impact on Survival
Master regulators and their target TFs affect the whole regulatory
network and therefore can have an independent impact on
survival in GBM patients. Level 3 RNA-seq data and clinical
data for 152 TCGA-GBM cohort is downloaded using the
TCGAbiolinks package in R. Survival and survminer libraries
in R were used to perform a univariate survival analysis.
A univariate survival analysis was used to understand the impact
of individual master regulator on survival in GBM with non-
overlapping 50% upper and lower quantiles. Additionally, a
univariate Cox regression for survival analysis was performed
using the coxph function of the survival package to calculate the
HR with p-value cutoff of 0.05 for significance.

CONCLUSION

In the work presented, we have identified candidate master
regulators responsible for gene dysregulation in STS. These
candidates have sufficient experimental evidence toward their
role in GBM. Out of reported five master regulators, IGFBP2
is established as the most promising master regulator. Through
the gene regulatory network analysis, we propose that IGFBP2
and FRA-1 are in a positive feedback loop that may lead
to a pathological self-enhancing process responsible for poor
survival in GBM.
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Abstract:  

Glioblastoma (GBM) is a very aggressive malignant brain tumor with the vast majority of patients 

surviving less than 12 months (Short-term survivors [STS]). Only around 2% of patients survive more 

than 36 months (Long-term survivors [LTS]). Studying these extreme survival groups might help in 

better understanding GBM biology. This work aims at exploring application of machine learning 

methods in predicting survival groups(STS, LTS). We used age and gene expression profiles belonging 

to 249 samples from publicly available datasets. 10 Machine learning methods have been implemented 

and compared for their performances. Hyperparameter tuned random forest model performed best 

with accuracy of 80% (AUC of 74% and F1_score of 85%). The performance of this model is validated 

on external test data of 16 samples. The model predicted the true survival group for 15 samples 

achieving an accuracy of 93.75%. This classification model is deployed as a web tool GlioSurvML. The 

top 1500 features which retained classification efficiency (Accuracy of 80%, AUC of 74%) were studied 

for enriched pathways and disease-causal biomarker associations using the HumanPSDTM database. 

We identified 199 genes as possible biomarkers of GBM and/or similar diseases (like Glioma, 

astrocytoma, and others). 57 of these genes are shown to be differentially expressed across survival 

groups and/or have impact on survival. This work demonstrates the application of machine learning 

methods in predicting survival groups of GBM.  
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1. Introduction 

The majority of patients with glioblastoma (GBM) have a short-term survival rate of fewer than 12 

months (short-term survivors [STS]), however there is a minority of individuals who have a long-term 

survival rate of more than three years (36 months), referred to as long-term survivors (LTS)(Hwang et 

al., 2019a). Clinical, radiological, and histological characteristics have not been found to be predictors 

of long-term survival or response to therapy in studies (Davis, 2016). (Hwang et al., 2019) Machine 

Learning (ML) techniques are increasingly being applied in GBM research, as evidenced by a rise in the 

number of publications in the recent decade (Valdebenito and Medina, 2019). With enormous volumes 

of high-dimensional data, machine learning aids in recognizing patterns, forecasting events, and 

interpreting the interactions of complex biochemical networks (Valdebenito and Medina, 2019). 

A biomarker is a biological marker that indicates a biological condition and can signal illness-associated 

molecular alterations at the molecular level which is valuable in understanding the disease state or 

diagnosis. ML based classification and feature selection methods have aided such a biomarker 

discovery (Mamoshina et al., 2018; Torres and Judson-Torres, 2019; Fortino et al., 2020; Xie et al., 2021). 

Some of the major examples of ML use in GBM research are the Stemness Subtype(I/II) Predictor (Wang 

et al., 2021), NF1 activation status predictor , GBM subtype-specific classifiers (Ensenyat-Mendez et al., 

2021), and temozolomide treatment response predictor(Geldof et al., 2020). (Senders et al., 2020)Joeky 

et al.,2020 has developed an online survival calculator for patients with glioblastoma based on 

demographic, socioeconomic, clinical, and radiographic variables to predict overall survival. 

Transcriptomics approaches have been demonstrated to be highly promising as they offer prognostic 

techniques for gaining a better knowledge of the condition. Using TCGA RNA-seq data from 129 

samples, a study has used an Autoencoder (AE)-based approach for the prediction of GBM patient 

survival (short-term or long-term survivors) with an accuracy 89%.(Kirtania et al., 2021) In this study, 

we evaluated 10 ML models to build a classifier which can classify GBM patients into short-term and 

long-term survivo groups using transcriptomic profiles and clinical information(age) of 249 patients, 

pooled from 5 publicly available datasets. Random forest model has performed best with an accuracy 

of 80% and is deployed as a webtool - GlioSurvML. Following model identification, the top 1500 

features are used for further analysis to identify important biological pathways and biomarkers. 

2. Materials and Methods  

2.1. Data Collection  

The genome-wide expression profiles based on the Human Genome U133 Plus 2.0 array and clinical 

information of patients with GBM were collected from the public repository of the GEO database. Age 

information was available for 75.5% of the samples, whereas information on Gender, Karnofsky score, 

MGMT status, or IDH status were not available for most of them (<30%) and hence only information of 

age is considered along with the transcriptome to build the survival predictor.  

All the datasets were pooled together leading to 176 and 73 samples corresponding to short-term 

survivors (STS; survival < 12 months) and long-term survivors (LTS; survival > 36 months), respectively 

(Table 1). Duplicates were not removed. Raw data, sample information, and cleaned datasets are given 

in Supplementary file 1. 
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Table 1. Statistics of datasets studied in this work.  

 

 

2.2. Affymetrix microarray data pre-processing  

The raw data files (. CEL format) for the above-mentioned datasets were collected from the GEO 

database- from here on called as GSE dataset. RMA algorithm is used in R (affy package) for 

background correction, quality check, and normalization to obtain log2 transformed expression values 

(Gautier et al., 2004). Batch correction of the pooled expression data was performed using empirical 

Bayes framework is performed (Leek et al., 2012). PCA plot for the batch corrected data is given in 

Supplementary file 2. This batch corrected file is used for further analysis. Multiple Affymetrix ids 

were summarized to genes ids by choosing the maximum out of probe intensities of multiple probes 

belonging to a single gene. The final expression matrix comprised 21526 probes and 249 samples is 

given in Table S1-C.  

2.3 Development of a Prediction Model Using a Machine Learning Algorithm 

To develop a machine learning model, we have used several functionalities of model building in python 

sklearn (Pedregosa FABIANPEDREGOSA et al., 2011). The dataset used to build the model contains 

transcriptomics profiles of 176 STS and 73 LTS and the age of the corresponding patient. Using a 

variance filter the top 10,000 highly variant genes are identified and were considered for model 

building. Labels were encoded using label encoder. Figure 1 shows the work flow of model 

development.The samples were first split into 80% training and 20% test data. All the downstream 

operations to build the predictive model were performed only on training data and is later tested on 

test data. The training data is scaled and quantile transformed. The scaling and quantiles were saved 

so that they can be applied to test data.  
  
To deal with the problem of class imbalance during model training (training - STS:139, LTS=60), we 

have used the synthetic minority oversampling technique SMOTE of the imblearn package 

(LemaˆıtreLemaˆıtre et al., 2017). This oversampling strategy first randomly selects an instance from the 

minority class and finds its k nearest minority class neighbors. Synthetic data would then be made 

between the random data and the randomly selected k-nearest neighbor. With SMOTE oversampling, 

the number of samples in the minority class was increased to 139. On this resampled training data, we 

applied 10 ML models. However, only the random forest model performed better in terms of classifying 

the minority classes. For hyperparameter tuning of model parameters we used GridSearchCV. Models 

 Platform 
Short-term 

survivors 

Long-term 

survivors 

GSE53733 

(Reifenberger et al., 

2014) 

HU133 plus 2.0 

arrays 

 

16 23 

GSE108474 

(Gusev et al., 2018) 

HU133 plus 2.0 

arrays 

 

97 35 

GSE13041 

(Lee et al., 2008) 

HU133 plus 2.0 

arrays 

 

20 02 

GSE7696 

(Murat et al., 2008) 

HU133 plus 2.0 

arrays 

 

29 09 

GSE43378 

(Kawaguchi et al., 

2013) 

HU133 plus 2.0 

arrays 

 

14 04 
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were tuned for their hyperparameters (Table 2) for optimal performances. Hyperparameter tuning 

results for all ML models are given in Table S3-A.  

 
 
Table 2. Hyperparameter tuning in ML models 

Method Parameters 

Random forest Criterion, max_depth, n_estimators 

Logistic regression penalty, Solver & C 

Linear Support Vector Classification  

(Linear SVC) 
C, kernel, gamma, 

Support Vector Classification (SVC) Kernel, C, gamma 

Nu-Support Vector Classification (NuSVC) Nu, Kernel, decision_function_shape 

Naïve Bayes var_smoothing 

Classification and Regression Trees  

(CART) 
Criterion, max_features 

k-nearest neighbors (KNN) N_neighbors,algorithm & weights 

Balanced random forest 
max_features, n_estimators, max_depth, 

criterion 

Balanced Bagging n_estimators 

 

Hyperparameter tuned models were applied on the (20%) test data to evaluate model performances 

and choose the best performing classifier. The best performing model was evaluated on an external 

independent microarray data to evaluate the application of this classifier as a reliable tool for predicting 

Glioblastoma survival groups. The top best features based which retains higher classification efficiency 

were extracted and evaluated for biological relevance by using Gene set enrichment, Differential 

expression, Survival significance and their association with Glioblastoma or similar diseases.  
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Workflow explaining the steps of building ML models.  

2.4.Gene  Enrichment Analysis 

To explore the biological importance of these 1500features, gene list enrichment tool enrichR (Chen 

et al., 2013) is used. Enrichment for Molecular Signature Database (MSigDB) (Liberzon et al., 2011) is 

used.  

 

2.5  Differential gene expression (DEG) analysis  

 

LIMMA (Linear Models for Microarray Data) method was applied to identify differentially 

expressed genes (Ritchie et al., 2015) . Differential gene expression analysis for short-term and long-
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term survivors is performed in GSE108474 and TCGA GBM microarray data. Clinical information and 

cleaned datasets of GSE108474 and TCGA GBM microarray data are given in Supplementary 4.  

2.6.  Impact on survival  

Survival and Survminer libraries in R are used to perform univariate survival analysis. Univariate Cox 

regression for survival analysis is performed using the coxph function of the Survival package to 

calculate the Hazard ratio (HR) with p-value cutoff of 0.05 for significance (Therneau, 2021). KMplots 

are used to depict impact of genes on survival with non-overlapping 50% upper and lower quantiles. 

supplementary 4 

 

2.7  Identification of biomarkers  

 

Causal molecular mechanisms present a unifying principle for disease classification, analysis of clinical 

disorder associations, as well as prediction of disease genes, diagnostic markers, and therapeutic 

targets. A novel approach published (Stegmaier et al., 2010) built of 1000 causal gene-disease networks 

is now updated and available in the HumanPSDTM database (Wingender et al., 2007).  The important 

features identified using the ML model can serve as biomarkers of survival/prognosis in GBM. 

HumanPSD™ database 2021.2 is mined to fetch information on the association of these features with 

GBM or similar diseases 

 

 

3. Results  

3.1. Development of ML model:  

The genome-wide expression profiles from 5 independent experiments using Human Genome U133 

Plus 2.0 arrays with corresponding clinical information of Glioblastoma patients were collected, 

normalized and integrated to obtain a data matrix of 176 and 73 samples corresponding to short-term 

survivors (STS; survival < 12 months) and long-term survivors (LTS; survival > 36 months), 

respectively. Top 10k highly variant genes were used for building ML models for classification. See 

more details in methods section (Supplementary file 1 and 2) 

In the current work, we have used machine learning methods to predict the survival class of GBM 

patients using gene expression profiles. 

Ten ML models such as random forest, Naïve Bayes, Support Vector Classification, Linear SVC, 

NuSVC, Logistic Regression, Classification and Regression Trees (CART), k-nearest neighbors (KNN), 

and specialized packages of imbalanced learning like Balanced Random forest and Balanced Bagging 

are evaluated in this study. The dataset was split into 80% training and 20% test data. To address the 

problem of class imbalance, SMOTE oversampling is applied during the training of the model to 

balance the classes. GridSearchCV upon StratifiedShuffleSplit on the oversampled training data is used 

for hyperparameter tuning of the models (Table S3-A and Table S3-B). The performance of all the 

hyperparameter tuned models on the test data is given in Table 1. 

We found that hyperparameter-tuned random forest model (Figure 2) performed best out of all other 

models mentioned earlier, with f1_score of 86.48%, Accuracy of 80%, and AUC of 74% on test data. This 

corresponds to 86% of true labels in majority class and 62% true labels in minority class (Figure 3A) 
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Figure 2. Hyperparameter Tuning in RF. The following hyperparameters were tuned: Tuning 

parameters of criterion(gini/entropy), maximum depth (1/2) and number of estimators 

(500/1000/2000/5000) for random forest model upon 5-fold cross validation using GridSearchCV. 

The hyperparameter tuned BalancedRandomForest model performed with f1_score of 82.3%, Accuracy 

of 76%, AUC of 76.29% on test data. The model positively identified 77% of minority labels and 78% of 

majority labels (Figure 3B). The linear models like LR, SVC, NuSVC, LinearSVC had lower AUC values 

as they identified less than 35% of the minority class (LTS) and hence were not considered in our further 

analysis. 
 
Table 3. Performance of 10 ML models under study on 20% test data upon hyperparameter tuning  

 

Hyperparameter tuned ML model  F1_Score Accuracy  AUC 

Logistic Regression 0.81 0.720 0.636 

Random forest 0.864 0.800 0.740 

NuSVC 0.864 0.780 0.626 

SVC 0.864 0.787 0.626 

Balanced random forest 0.823 0.760 0.762 

Balanced Bagging  0.853 0.780 0.701 

Linear SVC  0.746 0.660 0.645 

Naïve Bayes  0.805 0.720 0.661 

KNN 0.407 0.360 0.417 

CART- Decision Trees 0.788 0.700 0.647 
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Figure3. Normalized Confusion Matrix for ML models.  

Normalized Confusion matrix for the classification of survival groupsis shown here.For the classes, 0(LTS) and 

1(STS), the X-axis in the plot is for the predicted class and the Y-axis is for the true class. The true class elements of 

a row are spread across columns and the elements of the matrix are normalized row wise, i.e., sum of fractions 

along a row sum to 1. The only true predictions are along the diagonal, i.e., each of the i–ith element of the matrix 

and all other off-diagonal elements along a row are wrong predictions. The more the correctness of a class, the 

darker the blue hue it has in a cell of the plot of the confusion matrix. A) Normalized Confusion Matrix of Random 

forest model on internal (20%) test data B) Normalized Confusion Matrix for BalancedRandom forest model 

without oversampling C) Normalized Confusion Matrix for Random forest model on external test data 

 

To build a robust machine learning model which can identify the survival class of the GBM patients, 

we tested the random forest model on an external microarray dataset (Supplementary file 7). The LTS 

are rare events and hard to find adequate samples for testing. The external dataset containing 16 

samples (1-LTS and 15-STS) was from a single experiment. Random forest model performed with an 

accuracy of 93.75% (AUC of 96.66%) (Figure 3C).   

 

Age was found to be one of the top important (Top 7) features of the random forest model developed. 

The random forest model built on gene-expression and age had better sensitivity (93.75%) than the 

random forest model built on gene expression alone (81.25%) (Supplementary file 7). 

3.2. Deployment of ML model:  

The random forest model developed here for survival class prediction is deployed as a webtool- 

GlioSurvML. All information associated is given in github repository. Webtool has 2 models of RF 

one with including age and one without age. The webtool prints the output as a PDF report as well 

as an excel-table. (Supplementary file 8) 

 

3.3.  Feature Importances  

Ranking of features/genes according to their importance in the random forest classification model 

discussed above is given in Table S3-C. The performance of the model using top 

100/500/1000/1500/2000 features (Table S3-D) is investigated. We observed that the top 1500 features 

(Table S3-E) were sufficient enough to maintain the 80% accuracy of prediction. These genes are looked 

for their relevance in the disease using gene enrichment analysis, differential expression analysis, 

univariate survival analysis to investigate prognostic value and by utilizing existing knowledge on 

biomarkers of the glioblastoma.   

We found that TNF-alpha Signaling via NF-kB, mTORsignalling, G2-M checkpoints, Epithelial to 

Mesenchymal transition are some of the top overlapping gene sets according to MsigDB Table S3-F.  

 

3.4  Biomarker Identification  

 

Exploiting the previously reported method on unifying disease mechanisms based on causal gene-

disease associations as described in HumanPSDTM database (Supplementary file 5), we find that, out 

of top 1500 genes, 63 known gene expression biomarkers of Glioblasytoma and 136 gene expression 

biomarkers from similar diseases to Glioblastoma and 35 markers were reported both in Glioblastoma 

and in one of the similar diseases according to HumanPSDTM database (199 unique biomarkers in total). 

Figure 4. Based on this analysis, we propose 171(136+35) gene expression based biomarkers to 

Glioblastoma. According to the database, these genes were mapped to 8 diseases like Osteosarcoma, 

Melonoma, Ovarian neoplasm, Nasopharangeal neoplasm including Glioma , astrocytoma, brain 
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neoplasms. Top 10 (based on feature ranking in random forest model) of these new proposed 

biomarkers of Glioblastoma prognoisis are given in Table 4. 

 

 
Figure 4: Venn Diagram of HumanPSDTM biomarkers and important features. 

HumanPSDTM database reports 537 mRNAexpression based Glioblastoma markers, 1946 mRNA expression based 

biomarkers of diseases similar to GBM. Out of the top 1500 important features required for classifying the survival 

group of GBM, 63 Glioblastoma and 171 similar disease biomarkers were found overlapping. 35 genes were found 

associated with both GBM and related disease.  

 

These biomarkers are checked for differential gene expression between STS and LTS and univariate 

impact on survival. The analysis is performed in GSE108474 dataset which is U133 plus 2 affymetrix 

platform and TCGA-GBM of 560 microarray (U133 Affy array) datasets (Supplementary file 4). 

 
Table 4. Top 10 features proposed as biomarkers of prognosis in Glioblastoma in our study  

 
Features Feature_R

ank 

Molec

ule 

Disease Disease_Association PMID 

CBX3 25 mRNA Osteosarco

ma 

increased expression of CBX3 mRNA correlates 

with increased neoplasm metastasis associated 

with osteosarcoma 

228702

17 

GHR 29 mRNA Melanoma increased expression of GHR mRNA correlates 

with neoplasm metastasis associated with 

melanoma 

241348

47 

HNRNPA

2B1 

38 mRNA Brain 

Neoplasm

s 

increased expression of HNRNPA2B1 mRNA 

correlates with oligodendroglioma tumors 

associated with brain neoplasms 

114858

29 

NES 41 mRNA Astrocyto

ma 

increased expression of NES mRNA may 

correlate with disease progression associated 

with astrocytoma 

176117

14 

SKP2 44 mRNA Ovarian 

Neoplasm

s 

decreased expression of SKP2 mRNA may 

correlate with increased response to 

salinomycin associated with ovarian neoplasms 

238072

22 

RARRES2 48 mRNA Glioma increased expression of RARRES2 mRNA 

correlates with glioma 

219491

24 

ERBB2 58 mRNA Ovarian 

Neoplasm

s 

increased expression of ERBB2 mRNA may 

correlate with malignant form of ovarian 

neoplasms 

809403

4 

ELAVL1 63 mRNA Ovarian 

Neoplasm

s 

decreased expression of ELAVL1 mRNA may 

prevent increased positive regulation of gene 

expression associated with ovarian neoplasms 

233945

80 

TGIF2 68 mRNA Ovarian 

Neoplasm

s 

increased expression of TGIF2 mRNA correlates 

with ovarian neoplasms 

110061

16 
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FZD1 80 mRNA Ovarian 

Neoplasm

s 

increased expression of FZD1 mRNA correlates 

with glandular and epithelial neoplasms 

associated with ovarian neoplasms 

191485

01 

 

 

 
The information of differential gene expression (Log2FC, adj.pvalue)  and survival significance (Hazard 

Ratio and FDR <0.05) for these 199 biomarkers in GSE108474 are given in Supplementary File 6. Out 

of these, 17 genes were significantly differentially expressed, 28 had survival significance and 12 

biomarkers were both differentially expressed and had significant impact on survival.  

4. Discussion   

In this study, we evaluated application of 10 ML models to build a classifier to differentiate patients 

between STS and LTS groups based on their transcriptomic profiles and clinical information(age) from 

249 patients data which is pooled from publicly available datasets. To the best of our knowledge this is 

the first application of its kind. Of the models evaluated, a random forest model performed best with 

accuracy of 80% (F1_score=86.4% AUC =74%). Furthermore, this model is evaluated on external 

microarray data and found to have high accuracy of 93.75% (AUC of 96.66%). The identification of age 

as an important feature is in line with the observation that age is an important clinical predictor for 

survival.We have noted that the top 1500 features alone can preserve the classification efficiency of the 

model and these are only used for further analysis. 

The enrichment analysis revealed enrichment of TNF-Alpha via NF-kB, mTOR signalling, G2-

M checkpoints, Epithelial to Mesenchymal transition signaling pathways. All of these 

pathways are identified as therapeutic targets in GBM (ref) and play a role in response to 

Temozolomide (ref), which is a first line of treatment in GBM.  

Using HumanPSDTM we have identified 8 disorders which are mapped to be similar to 

Glioblastoma. Of these three are related to central nervous system tumors and others include 

ovarian, osteosarcoma, melanoma, nasopharyngeal tumors and general neoplasms. This 

identified overlap of GBM with gliomas and melanoma is interesting as studies have shown 

increased risk of gliomas in malignant melanoma patients (Scarbrough et al., 2014) and 

increased representation of melanoma in GBM patients (Yang et al., 2021). The gliomas and 

melanoma are shown to be responsive to Temozolomide which is indicative of a common 

potential pathophysiological pathway (Desai and Grossman, 2008). 

From the HumanPSDTM we have identified 199 mRNA biomarkers that have previously been 

linked to Glioblastoma and/or related. 

Some of the important biomarkers include retinoic acid receptor responder 2(RERRES2), 

Distinct Subgroup of The Ras Family Member 3 (DIRAS3), DEP Domain Containing MTOR 

Interacting Protein (DEPTOR), Insulin like Growth Binding Protein 5(IGFBP5) and C-Type 

Lectin Domain Family 2 Member B (CLEC2B). RERRES2 is a critical gene of retinoic acid 

signaling which is reported to be highly upregulated in STS in GBM (Barbus et al., 2011). 

DIRAS3 drives autophagy by Ras/AKT/mTOR pathway in GBM and is reported to be 

significantly downregulated in long-term survivors of GBM (Zhong et al., 2019). DEPTOR is 

a natural inhibitor of MTORc1 and mTORc2 which plays an important role in autophagy. 

Inhibitors of mTOR signaling are widely discussed as an adjuvant therapy to regulate 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2022                   doi:10.20944/preprints202202.0051.v1

80



autophagy in GBM (Xia et al., 2020). IGFBP5 promotes cell invasion by regulating Epithelial 

to Mesenchymal Transition and inhibits cell proliferation by suppressing the phosphorylation 

of AKT in GBM (Dong et al., 2020). Its expression was upregulated in high grades of glioma 

and is correlated with worse prognosis (Dong et al., 2020). CLEC2B - A rise in expression of 

CLEC2B was linked to a rise in the progression-free Hazard ratio (Serão et al., 2011) 

Identifying the signaling pathways and biomarkers that are related to Glioblastoma, mapping 

to the diseases which are related to CNS or those with shared biology gives strength to our 

machine learning model and reinforces the idea that machine learning models can be used for 

understanding the biology of GBM. Our analysis has shown inclusion of clinical information 

i.e. age has increased the sensitivity of survival group prediction which shows the importance 

of adding clinical information to the machine learning models. Other clinically important 

variables are not added to the model due to high levels of missingness in the datasets which 

needs to be addressed while collecting the future data.  One important limitation of the 

current study is that the method is applicable only for microarray platforms and extension of 

this model for application in RNA-seq data requires further work. 

 

5. Conclusion 

The current study presents a Machine Learning model for use in research to classify patients into 

Glioblastoma survival groups, deploys application as a webtool, discusses important features for 

relevance in the disease, proposes new plausible markers of survival in Glioblastoma.  

 

Availability of software, data and materials: All the datasets analyzed in the current study are available from 

previous publications. All datasets, models and supplementary materials are available here: 

https://github.com/genexplain/Manasa_KP_et_al_MLmodels_predictionofGBMsurvivorgroups 
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5
Conclusion

Glioblastomas (GBM) are grade IV gliomas. The prognosis is extremely poor and a majority
of patients have a median survival time of fewer than 12 months and are referred to as short-
term survivors (STS). Long-term survivors (LTS) are a rare group of patients who survive
more than three years. Understanding the predictors and biological underpinnings of the
LTS is an active area of research and investigations into clinical, radiological, histological,
and genetic aspects have failed to yield an agreement on predictors of LTS. Using a variety
of computational approaches, the present research thesis tries to uncover probable drivers of
mechanisms driving prognosis in Glioblastoma.

In Chapter 1, I have used a meta-analytic approach to combine 14 independent GBM
studies containing information of 2309 glioblastoma patients to study the predictors of sur-
vival (clinical and molecular) using a time-to-event analysis. Age and MGMT promoter
methylation status were found to have a significant impact on survival. Several authors agree
to the fact that age is an important prognostic factor, however, there is no age-group based
information on the degree of risk a patient experiences because of his age factor. This work
attempts to answer this question. Patients belonging to the age groupofB (51 - 60 yrs) experi-
ence 20%more risk& age groupC (61 - 70 yrs) experience 40%more risk of death respectively
compared to a younger age group (40 - 50 yrs), group A. The older age group – group D (71
- 90 yrs) experiences a 2.4 times higher risk of death compared to group A.

Using time to event analysis, gene-expression profiles of 560GBMpatients of theTCGA
database were analyzed to investigate their contribution to overall survival Chapter 2. This
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analysis has revealed 720 genes that have prognostic value. Gene regulatory networks built on
these genes revealed 14 TFs and 43 important drivers of upstream analysis. Some of the TFs
enriched are know to be involved in the GBMpathogenesis such as 1) JUN a protooncogene
that plays a critical role in cell proliferation and malignant transformation , 2) Glucocorti-
coid receptor(GR), which is shown to promote stem cells‐like phenotype and resistance to
chemotherapy , and 3) STAT3, persistent activation of which induces cell proliferation, anti-
apoptosis, glioma stemcellmaintenance, tumor invasion, angiogenesis, and immune evasion.
The STAT3 which is significantly differentially expressed in short-term survivors (Log2FC
= 0.403427421, adj.p-value = 0.00129) and also had a significant impact on survival with
HR = 1.4 (p-value = 0.0015 with FDR = 0.009). Some of the master regulators proposed
in the study have drugs that can target them, thus making these master regulators potential
molecules for therapeutic intervention. This work is published in Biochemistry (Moscow),
Supplement Series B: Biomedical Chemistry volume inNovember 2021. [Kalya et al., 2021a]

Comparative analyses of short-term and long-termGBM survivors revealed that gene ex-
pression patterns implemented across survival groups differ considerably. In light of these
findings, Chapter 3 discusses the upstream analysis technique to learn about the gene reg-
ulatory networks that are responsible for the short survival. To the best of our knowledge,
this is the first of its kind approach which attempts to explain the master regulators of poor
prognosis and the molecular mechanism behind it. The gene regulatory network associated
with STS in GBM is regulated by five master regulators, Insulin like growth factor bind-
ing protein-2 (IGFBP2), Vascular-Endothelial Growth Factor A (VEGFA), Platelet-Derived
Growth Factor (PDGFA), OncostatinM receptor (OSMR), and Adipocyte Enhancer Bind-
ing protein(AEBP1), andThese fivemaster regulatorsmaypresent biomarkers ofGBMprog-
nosis and/or as therapeutic targets for enhancing survival in GBM. This work also proposes
a novel mechanism of gene dysregulation by IGFBP2 by modulating a key molecule of tu-
mor invasiveness and progression – the FRA-1 transcription factor. All the genes encoding
these five master regulators have binding sites for FRA-1 in their promoters. FRA-1 and the
master regulators cooperate in a positive feedback loop to orchestrate a complex tumorigenic
program leading to poor survival in GBM. This work is published in Frontiers in Genetics,
June 2021. [Kalya et al., 2021b]

In Chapter 4, I [Kalya et al., 2022] have explored different machine learning classifers
that can predict the survival of GBM patients. To build these models I have used clinical in-
formation (Age) and transcriptomic profiles of 249 patients integrated from several microar-
ray experiments. Of the 10MLmodels that are tested, RandomForest model outperformed
others with an accuracy of 80% on the test data. The model performed well on validation
using external test data. A webtool (GlioSurvML) has been built using this model and made
available for research applications. The features which are important for the classifier are
discussed in detail. The biological relevance of these important features are explained based
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on known biomarker information in the HumanPSDTM database. 199 biomarkers of prog-
nosis in Glioblastoma are proposed in this work of which 12 were found to have a signifi-
cant impact on survival in GBM and were differentially expressed.This work is published in
preprints, February 2022. [Kalya et al., 2022]

In summary, the entire work tried to identify probable biomarkers for GBM by using
time to event analysis, upstream analysis and ML approach on gene expression databases.
Around 242 gene-expression based biomarkers were identified of which PDGFA, AEBP1,
and VEGFA were found to be important in all the approaches. They were also found to
be master regulators driving gene-dysregulation with differential expression across survivor
groups. 171 out of 242 biomarkers are not previously reported inGBMbut they are found in
other diseases like Ovarian carcinoma, Glioma andMelanoma. This underscores the impor-
tance of shared biology or similar pathogenesis in cancer development.I believe that the work
contributes to understanding drivers as well as mechanisms driving prognosis in Glioblas-
toma.
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PEER-REVIEWED JOURNAL PUBLICATIONS

Published Publications

Kalya M, Kel A, Wlochowitz D, Wingender E, Beißbarth T. IGFBP2 Is a Potential Mas-
ter Regulator Driving the Dysregulated Gene Network Responsible for Short Survival in
GlioblastomaMultiforme. FrontGenet. 2021 Jun15;12:670240. DOI: 10.3389/fgene.2021.
670240. PMID: 34211498; PMCID: PMC8239365
(link to the article)

Kalya, M., Beißbarth, T. & Kel, A.E. Master Regulators Associated with Poor Prognosis in
GlioblastomaMultiforme. Biochem. Moscow Suppl. Ser. B 15, 263–273 (2021).
(link to the article)

Kalya, M.; Altynbekova.K, Alexander Kel. Master-regulators of host response to SARS-
CoV-2 as promising targets for drug repurposing, Dec 2020 (link to the article)
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Preprint Publications

Kalya,M.; Kel, A.; Leha, A.; Altynbekova, K.;Wingender, E.; beissbarth, T.Machine Learn-
ing based Survival Group Prediction in Glioblastoma . Preprints 2022, 2022020051 (doi:
10.20944/preprints202202.0051.v1)
”Machine Learning based Survival Group Prediction in Glioblastoma”

Publications In Process

ManasaKalya;AlexanderKel;TimBeißbarth ”Predictors of survival outcome inGlioblastoma:
meta-analysis of individual patient data”

Web Application developed in the study

GlioSurvML : Machine Learning based survival group prediction in Glioblastoma
(link to github)

Poster andOral Presentations

”Modelling Therapeutic resistance in Glioblastoma using multi-Omics computational
models” , 1st course on computational systems biology of Cancer Institut Curie, Paris, France,
Sep 2018

”MachineLearningmethods formechanism-based study onGlioblastomaMultiforme”,
Brain TumorMeeting, Berlin, May 2019

Certifications

“Machine Learning: Data to Decisions” from Massachusetts Institute of Technology,
USA, 2019

”Transcriptomics summer school”, A workshop on Next-Generation Sequencing Data-
Analysis, VIB, Belgium, 2019

89

https://github.com/genexplain/Manasa_KP_et_al_MLmodels_predictionofGBMsurvivorgroups


Teaching Experience

Conducted hands on training workshop on Basic R and RNA seq Data Analysis in the
University
InCollaborationwithmycolleagueDariusWlochowitz andmentoringofProf.TimBeißbarth,
I supervised a 6-week internship of a Master’s student on Integrating Machine Learning
and Upstream Analysis approaches
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