Scientific Workflow Execution Using a
Dynamic Runtime Model

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
“Doctor rerum naturalium”
der Georg-August-Universitit Gottingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Johannes Martin Erbel
aus Koblenz

Gottingen, Juni 2022

Betreuungsausschuss

Prof. Dr. Jens Grabowski,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Prof. Dr. Ramin Yahyapour,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Prof. Dr. Philipp Wieder,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Mitglieder der Priifungskommission

Referent: Prof. Dr. Jens Grabowski,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Korreferent: Prof. Dr. Ramin Yahyapour,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Korreferent: Prof. Dr. Helmut Neukirchen,
Department of Computer Science, University of Iceland

Weitere Mitglieder der Priifungskommission

Prof. Dr. Dieter Hogrefe,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Prof. Dr. Marcus Baum,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Prof. Dr. Julian Kunkel,
Institut fiir Informatik, Georg-August-Universitit Gottingen

Tag der miindlichen Priifung
01.07.2022

Abstract

Research projects consist of several kinds of steps covering, e.g., individual procedures
to gather data, as well as different ways to process and analyze it. Moreover, the individual
steps of the project consist of a sequence of tasks that together form a workflow. With the
continuous advancements in computer science, scientists have more and more access to
different kinds of infrastructures and tools which are suited for different types of experiments.
Cloud computing is one of the premier infrastructures to perform experiments on, as it
provides flexible, on-demand computing resources that are off-premise. Still, a uniform and
platform-independent orchestration of these resources remains challenging, especially when
various infrastructures and human interactions are required throughout the execution of a
scientific workflow.

This thesis provides an approach to allow scientists to define infrastructural resources for
individual tasks within their workflows and dynamically shift them throughout the workflow
execution. To reach this goal, we couple recent advancements in cloud orchestration with
runtime models and open cloud standards. Combined, we aim for highly tailored workflows
while fostering the reuse of already existing methodologies built around the standards. To
realize this objective, we build a cloud runtime model orchestration process based on the
Open Cloud Computing Interface (OCCI) standard. We extend the OCCI data model with
workflow elements and corresponding capabilities to model cloud deployments for individual
workflow tasks. This allows forming a runtime workflow model that can be coupled to
different systems such as production clouds or simulation environments. To demonstrate the
feasibility of the approach, we perform several experiments to validate the standard conform
orchestration process and assess the applicability of the runtime workflow model coupled to
cloud infrastructures.

Our studies show that runtime models are a suitable knowledge base for adaptive behavior
including the modeling and runtime representation of highly tailored workflows. We observe
that the orchestration of cloud deployments and the execution of workflows follow a reoccur-
ring pattern which can be described via a sequence of runtime states. Especially the uniform
interface of OCCI allows for an automatic management and reuse of existing systems and
standards. By monitoring and reflecting operational properties, the runtime model fosters
decision-making processes not only for self-adaptive systems but also for human users. We
show that the runtime model enables human-in-the-loop activities, allowing, e.g., to influence
the control flow or the parallelization of workflow tasks at runtime. Furthermore, the runtime
model can be attached to different environments allowing to test adaptation and workflow
behavior.

Zusammenfassung

Forschungsprojekte umfassen in der Regel viele einzelne und unterschiedliche Berech-
nungen, z.B., um Daten zu erfassen oder zu verarbeiten. Diese Schritte bilden zusammen
einen Workflow und konnen automatisiert werden. Mit den kontinuierlichen Fortschritten im
Bereich der Informatik steht Wissenschaftlern ein immer grof3er werdender Pool an verschie-
denen Arten von Infrastrukturen und Werkzeugen zur Verfiigung. Diese eignen sich jeweils
fiir unterschiedliche und spezifische Aufgaben. Eine der wichtigsten Infrastrukturen in der
heutigen Zeit ist die Cloud, welche sich durch die flexible Bereitstellung von Rechenres-
sourcen auszeichnet. Trotz der langen und hohen Industrieakzeptanz von Cloud Ansitzen
bleibt eine einheitliche und plattformunabhiingige Orchestrierung dieser Ressourcen eine
Herausforderung. Zudem wird die Cloud-Orchestrierung komplizierter, wenn Infrastrukturen
wihrend eines Workflows gewechselt werden sollen und menschliche Interaktionen zur
Laufzeit notig sind.

Ziel dieser Arbeit ist es, eine vereinheitlichte Cloud-Orchestrierung unter der Nutzung von
modellgetriebener Entwicklung und 6ffentlicher Cloud Standards zu schaffen. So kdnnen
die notigen Infrastrukturen von Workflows klar definiert und im Laufzeitmodell dynamisch
bereitgestellt werden. Weiterhin wird das Erstellen von maBgeschneiderten Workflows
moglich gemacht. Um dieses Ziel zu erreichen, entwickeln wir einen Orchestrierungsprozess,
der auf dem Open Cloud Computing Interface (OCCI) Standard basiert. AuBerdem erweitern
wir den Standard insofern, dass Workflow-Aufgaben abgebildet und mit Infrastrukturen
der Cloud direkt verbunden werden konnen. Somit entsteht ein Workflow-Laufzeitmodell,
dass mit verschiedenen Systemen gekoppelt werden kann. Um die Durchfiihrbarkeit unseres
Ansatzes zu zeigen, filhren wir zwei Fallstudien durch, die den Orchestrierungsprozess
untersuchen und drei Fallstudien, die sich mit einem Workflow-Laufzeitmodell befassen, das
direkt mit Infrastrukturen der Cloud gekoppelt ist.

Unsere Studien zeigen, dass Laufzeitmodelle eine geeignete Grundlage fiir adaptives
Verhalten darstellen, inklusive der Laufzeitrepriasentation von Workflows. Die einheitliche
Schnittstelle von OCCI ermdglicht eine automatische Verwaltung und Wiederverwendung
bestehender Systeme und Standards. Die Abbildung von Attributen in dem Laufzeitmodell
ermoglicht es, den Kontrollfluss oder die Parallelisierung von Workflow-Aufgaben zur
Laufzeit manuell zu beeinflussen. Das Laufzeitmodell kann an verschiedene Umgebungen
angebunden werden, sodass Anpassungen und Workflow-Verhalten einfach getestet werden
konnen.

Acknowledgements

Now that my time as a PhD student comes to an end, I want to thank the people that supported
me throughout my studies.

I especially want to thank Prof. Dr. Jens Grabowski who took me into his group and
allowed me to study the wonders of distributed computing. He always provided me with
feedback on how to improve and guided me through all aspects of my PhD.

I additionally, want to thank Prof. Dr. Ramin Yahyapour and Prof. Dr. Philipp Wieder
who agreed to be part of my thesis advisory committee. After my presentations, they always
provided me with valuable hints on how to pursue my goal. Furthermore, I would also like
to thank Prof. Dr. Helmut Neukirchen, Prof. Dr. Marcus Baum, Prof. Dr. Dieter Hogrefe,
and Prof. Dr. Julian Kunkel for providing their time for me.

Another person, I want to thank is Fabian Korte who supervised me during my Bachelor
and Master studies. He is the person who taught me the beauty of distributed systems, which
encouraged me to pursue my PhD in the first place.

Many thanks also belong to all of my former and current colleagues who accompanied me
during my PhD and made sure that it was a great time overall. I will especially remember
the lively discussions about current research at the lunch table, including the terrible jokes. I
want to especially thank Alexander Trautsch, Fabian Trautsch, Patrick Harms, Ella Albrecht,
Philip Makedonski, Steffen Herbold, Kolja Thormann, Emmanuel Dapaah and Zaheed
Ahmed for proofreading this dissertation and being open to all of my questions.

Finally, I want to thank my mother Doris, my father Norbert, and my brother Markus
who supported me not only during my PhD studies, but my whole life. They constantly
encouraged me in the pursue of being a computer scientist. Even when the times were rough,
they always had an open ear for my concerns. Last but not least, I want to dedicate all the
thanks in the world to my wife Khyra. She was the calming influence during my studies and
was always open for discussion about my research ideas. Even in the late hours of the night.

Contents

List of Figures

List of Tables

List of Listings

List of Acronyms

1

Introduction
1.1 Goals and Contributions
1.2 Impact o e e e
1.3 Structure of the Thesis,
Fundamentals
2.1 Scientific Workflows
2.1.1 Fundamentals
2.1.2 Scientific Workflow Management Systems
2.2 Model-Driven Engineering
2.2.1 Fundamentals
222 Techniques
223 ModelsatRuntime
23 Cloud Computing v vt i it e e e
2.3.1 Fundamentals,
2.3.2 Cloud Orchestration
233 CloudStandards,
Related Work
3.1 Model-Driven and Standard Conform Cloud Orchestration
3.1.1 OCCIRelated Approaches
3.1.2 TOSCA Related Approaches
3.2 Workflows, Models and the Scientific Domain
3.3 Infrastructure Aware Workflow Management
34 Summaryand ResearchGap

Xiv

XV

Xvii

Xix

W -

|

10
11
12
13
15
17
19
19
21
23

Contents X

4 Standard Conform Cloud Runtime Model Orchestration 37
4.1 Model-Driven Cloud Orchestration Process 38
4.1.1 Design Time Abstraction Layers 38

4.1.2 Mapping of TOSCAto OCCI 40

4.1.3 Model-Driven Adaptationusing OCCI 43

4.2 Causal Connection to Cloud Environments 47
4.2.1 Combining Container and Configuration Management 47

4.2.2 Sensor Management and Reflection 49

5 Runtime Workflow Model Concept 51
5.1 Runtime Workflow Metamodel 53
5.1.1 Runtime Model Capabilities 55

5.1.2 Decision-Making Pipeline 56

5.1.3 Loop Reflection and Parallelization 58

5.2 Runtime Workflow Execution Engine 64
5.2.1 Architecture Scheduler 65

522 TaskEnactor 69

6 Model and Execution Environment 71
6.1 Causal Connection Configurations 72
6.1.1 Causal Cloud Connection 74

6.1.2 Simulation Connection 75

6.2 Smart Workflows Through Dynamic Runtime Models 77
6.2.1 Interface and Notation 78

6.2.2 Workflow Engine Implementation 80

6.2.3 Adaptation Engine Implementation 82

7 Runtime Model Orchestration Case Studies 85
7.1 Case Study 1: Computation Cluster Scaling 86
7.1.1 Case Study Artifacts 86

7.1.2 Orchestration Process 90

7.1.3 Resultsand Observations 95

7.2 Case Study 2: Standard Interoperability 99
7.2.1 Case Study Artifacts 99

7.2.2 Orchestration Process 102

7.2.3 Resultsand Observations 104

8 Runtime Workflow Model Case Studies 107
8.1 Case Study 1: On-Demand Big Data Framework 108
8.1.1 WorkflowModel 108

8.1.2 Workflow Execution, 110

X1

Contents

8.1.3 Results and Observations
8.2 Case Study 2: Dynamic Simulation.
8.2.1 WorkflowModel
8.2.2 Workflow Execution
8.2.3 Results and Observations
8.3 Case Study 3: Software Repository Mining
8.3.1 WorkflowModel
8.3.2 Workflow Execution
8.3.3 Results and Observations

9 Discussion

9.1 Applicability L.
9.1.1 Academia
9.12 Industry L.
9.13 Education,
9.2 Model Viewpoints,
9.2.1 Workflow and Cloud Architect
9.2.2 Self-Adaptive Control Loops
9.3 Standard Conformity
9.3.1 OCCI Interoperability
9.3.2 OCCI Recommendations
9.4 Threatsto Validity
94.1 Construct Validity
9.4.2 Internal Validity
943 External Validity
10 Conclusion
10.1 Summary L
10.2 Outlook

Bibliography

List of Figures

1.1

2.1
22
23
24
25
2.6
2.7
2.8
2.9
2.10

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
54
5.5
5.6

Overview: Thesis goal and contributions. 3
Overview: Foundations chapter. 9
Directed graph examples. 11
Example metamodel hierarchy (adapted from [34]). 14
Model transformation concept (adapted from [31]). 16
MAPE-K self-adaptive control loop (adapted from [63]). 18
Infrastructure as Code techniques. 22
OCCT’s Core Model (adapted from OCCI’s Core specification [98]). 24
Utilized OCCI extensions with resource types in white and link types in gray. 25
Finite state machine of applications and components (adapted from [105]). . 25
TOSCA metamodel subset. 27
Overview: Related work., 29
Overview: Standard conform cloud orchestration. 37
Design time model abstraction layers and transformation process. 38
Model transformations to map TOSCA and OCCL. 40
Example TOSCA to OCCI type layer transformation. 41
Example TOSCA to OCCl instance layer transformation. 42
Adaptation process COMpoNents. v vt 43
Comparison process and mapping to adaptive steps. 44
Model transformation chain generating OCCI request sequence. 46
Establishing a causal connection via effectors. 47
Combining container and configuration management. 48
Enhanced monitoring extension for OCCL. 49
Example cloud configuration with dynamic monitoring capabilities. 50
Overview: Runtime workflow model concept. 51
Design time workflow example with highlighted runtime states.. 52
Runtime workflow concept with resource types in white and link types in gray. 53
Finite state machine representing the states of atask. 55
Runtime workflow decisionconcept. 57
Example runtime workflow model with decision-making capabilities. . . . 58

List of Figures Xiv
5.7 Runtime workflow loop and parallelization concept. 59
5.8 Workflow example with an activeloop. 61
5.9 Two fold parallelization of the loop from Figure 5.8. 63
5.10 Workflow management system components. 64
5.11 Required runtime model generation example. 66
5.12 Example required runtime model generation for a parallel loop. 68
6.1 Overview: Runtime model environment. 71
6.2 Cloud and simulation environment connection. 75
6.3 Simulation extension subset. oL 76
6.4 Legend: OCCIcloudnotation. 78
6.5 Screenshot excerpt of the SmartWYRM user interface. 80
6.6 Screenshot of the workflow job history. 81
6.7 Screenshot of the adaptation job history. 83
7.1 Overview: Orchestration case studies. 85
7.2 Hadoop cluster deployment model. 87
7.3 Design time Hadoop cluster model with applied model transformations. 90
7.4 Runtime states of the initial Hadoop cluster deployment. 91
7.5 Local deployment simulation setup and runtime model. 92
7.6 Hadoop model excerpt with attached scaling scenario. 94
7.7 95% confidence intervals of deployment duration per environment. 96
7.8 OCCI model transformed from the TOSCA WordPress topology. 102
8.1 Overview: Workflow case studies. 107
8.2 On-demand big data workflow. 109
8.3 On-demand big data workflow execution. 110
8.4 95% confidence interval plot of the Hadoop workflow duration. 112
8.5 Multi-level-simulation workflow. L0000 115
8.6 Dynamic simulation workflow execution. 117
8.7 95% confidence interval plot of the simulation workflow duration. 120
8.8 Subset of the OCCI SmartSHARK extension. 122
8.9 Software repository mining workflow. 123
8.10 Software repository mining workflow execution. 125
8.11 Three-fold parallelization of the repository mining loop. 127
8.12 95% confidence interval plot of the repository mining workflow duration. . 130

List of Tables

4.1 TOSCA to OCCI type layer mapping.
4.2 TOSCA to OCCl instance layer mapping.

6.1 OCCI extensions registered by SmartWYRM and the OCCIWare Runtime.

73

List of Listings

7.1
7.2
7.3
7.4

Hadoop master configuration management code snippet (Ansible). 89
DataProcessor code snippet showing the start action (Ansible). 89
TOSCA WordPress node type definition excerpt. 100

TOSCA topology excerpt of defined node templates.

Acronyms

MAPE-K Monitor-Analyze-Plan-Execute-Knowledge. 18, 19, 38, 43, 64, 93

ARGON An infRastructure modelinG tool for clOud provisioniNg. 30
ATL ATL Transformation Language. 16

AWS Amazon Web Services. 20

BPEL Business Process Execution Language. 33

BPMN Business Process Model and Notation. 11, 12, 33, 35

CAMEL Cloud Application Modelling and Execution Language. 30, 134
CAMF Cloud Application Management Framework. 32

CAMP Cloud Application Management for Platforms. 23, 32

CDMI Cloud Data Management Interface. 23

Cl Continuous Integration. 72, 96, 135

CIM Computation Independent Model. 16, 17, 38

CloudML Cloud Modelling Language. 30, 134

COCCI Comparing OCCI. 129

CPU Central Processing Unit. 20, 50, 90, 93, 98, 112, 119, 129

CRUD Create, Read, Update, Delete. 24

CWG Cloud Working Group. 23

DAG Directed Acyclic Graph. 10, 11, 23, 26, 45, 138
DCG Directed Cyclic Graph. 10, 11, 14, 58

DOCCI Deployment of OCCI. 82

Acronyms XX

DSL Domain-Specific Language. 13, 30

EC2 Elastic Compute Cloud. 20

EDMM Essential Deployment Metamodel. 32

EGL Epsilon Generation Language. 16

EMF Eclipse Modeling Framework. 15, 30, 33,71, 140
EOL Epsilon Object Language. 15,71

Epsilon Extensible Platform for Specification of Integrated Languages for mOdel maNage-
ment. 15

ETL Epsilon Transformation Language. 16

ETSI European Telecommunications Standards Institute. 23
FSM Finite State Machine. 23, 26, 50, 55, 76, 139

GENTL GEneralized Topology Language. 32

GME Generic Modeling Environment. 33

HDFS Hadoop Distributed File System. 86, 88, 109, 111

HPC High Performance Computing. 12, 34, 145

laaS Infrastructure as a Service. 20, 21, 24, 25, 32, 38, 72
laC Infrastructure as Code. 21,22, 30, 98, 133, 138
IDE Integrated Development Environment. 30, 32, 82

IP Internet Protocol. 89, 104, 114, 118, 136
JSON JavaScript Object Notation. 24

M2M model-to-model transformation. 15-17, 37-39
M2T model-to-text transformation. 16
M@R Models at Runtime. 17

MDA Model-Driven Architecture. 13, 15, 16, 38, 39, 79

XXi Acronyms

MDE Model-Driven Engineering. 2, 12, 13, 15-17, 29, 33-35
MOCCI Monitoring with OCCI. 73,74, 77
MoDEMO Model-Driven Elasticity Management with OCCI). 31

MoDMaCAO Model-Driven Configuration Management of Cloud Applications with OCCI.
25, 26, 31, 39, 42,4649, 73, 74, 76, 88, 97, 103, 105, 122, 123, 140

NIST National Institute of Standards and Technology. 19, 20

OASIS Organization for the Advancement of Structured Information Standards. 1, 26

OCCI Open Cloud Computing Interface. 1-4, 8, 23-25, 30, 31, 35, 37, 38, 40-42, 47, 52-54,
72,76, 82, 85,99, 102—-105, 113, 138-141, 143-145

OCL Object Constraint Language. 14, 25, 33, 41, 56
OGF Open Grid Forum. 1,23

OMG Object Management Group. 13, 15, 23

OOl OpenStack OCCI Interface. 71, 140

OOP Object-Oriented Programming. 13

OS Operating System. 20, 22, 39, 101

PaaS Platform as a Service. 20, 23, 25, 31, 32
PIM Platform Independent Model. 16, 17, 38, 39, 74, 103
POG Provisioning Order Graph. 45

PSM Platform Specific Model. 16, 17, 38, 39, 74, 103
QVT Query/View/Transformation. 16
REST Representational State Transfer. 24, 45

S3Mining Supporting novice data miners in Selecting Suitable mining algorithms. 33
SaaS Software as a Service. 20

SmartWYRM Smart Workflows through dYnamic Runtime Models. 71,72, 77,79, 143

Acronyms XXii

SNIA Storage Networking Industry Association. 23
SSH Secure Shell. 22, 48
SWF Scientific Workflow. 1,9, 11, 29, 33-35

SWFMS Scientific Workflow Management System. 1, 11, 12, 32-35, 63

TOSCA Topology and Orchestration Specification for Cloud Applications. 1, 2, 4, 8, 23, 26,
30, 31, 33-35, 38, 40, 41, 82, 85, 99, 100, 102-105, 138, 143

UML Unified Modeling Language. 11, 12, 14, 26, 30, 32, 33, 35, 41, 55, 56, 102, 136

URL Uniform Resource Locator. 122

VCS Version Control System. 121

VM Virtual Machine. 20, 24-27, 39, 48, 50, 52, 54, 62, 72, 74, 76, 82, 90, 91, 93, 95-97,
101, 103, 108-113, 116-120, 124, 125, 129, 130, 134, 136, 138, 141

WASA Workflow-based Architecture to support Scientific Applications. 33

WOCCI Workflows and OCCI. 80

XML Extensible Markup Language. 26,71

XSD XML Schema. 26, 32

YAML YAML Ain’t Markup Language. 26, 99, 100

YARN Yet Another Resource Negotiator. 86, 88

1 Introduction

Nowadays, the utilization of distributed resources plays an ever-increasing role in efficiently
processing huge amounts of data from various sources for various domains [1]. Experiments
often contain a sequence of calculations required to achieve new and more detailed insights
about specific phenomena. Combined, the individual steps form a Scientific Workflow
(SWF) [2], for which a multitude of languages exist to ease their creation. Scientific Workflow
Management Systems (SWFMSs) automatically process the described workflows [3]. While
the description of a workflow heavily depends on the SWF language, a simple and abstract
example is a sequence in which the first task is responsible to gather data, while the follow-up
task processes it. Each task within this example requires a different amount of computing
resources with different kinds of applications. The data gathering task may require the
deployment of several web crawler applications, while the processing requires the deployment
of a big data framework hosted on a computation cluster.

In recent years, a multitude of orchestration techniques have been developed to adapt
running cloud infrastructures. These range from abstract infrastructure descriptions in models
to the utilization of scripts in form of infrastructure as code. These cover, e.g., scripting
languages, idempotent configuration management, or the fast deployment of preconfigured
environments in the form of containers. The trend in these developments originate from the
success of cloud computing services. These services allow the consumer to dynamically
rent virtualized resources on demand with the illusion of an infinite amount of available
resources [4,5]. The high demand for flexible computing resources has led to a multitude
of service providers offering cloud services via different interfaces. This resulted in the
provider lock-in problem, which essentially binds a consumer to a provider once a cloud
application has been built. To tackle this issue multiple approaches have been proposed
including two standards, namely the Topology and Orchestration Specification for Cloud
Applications (TOSCA) by the Organization for the Advancement of Structured Information
Standards (OASIS) [6], and the Open Cloud Computing Interface (OCCI), by the Open
Grid Forum (OGF) [7]. Both standards define an extensible description language for cloud
deployments with OCCI additionally specifying a uniform interface to manage modeled
resources. However, no standard conform approach exists that utilizes this interface to or-
chestrate running cloud application topologies. Furthermore, a concept to reflect operational
parameters directly within an OCCI model is still missing.

Even though many of the SWFMSs utilize cloud resources, several of the existing man-
agement systems rely on a preconfigured computation cluster without granting direct access
to the infrastructure layer. Therefore, scientists are often restricted to the applications and

1 Introduction 2

infrastructures available to them at design time. Thus, all computation clusters and appli-
cations essential for their workflow need to be set up preemptively. This design time setup
presents a manual effort that may hinder scientists from replicating studies. Moreover, it may
drastically increase the resource consumption and thus costs for executing a workflow, as
specific applications may only be required by a specific experiment or a single task within
the workflow [8]. Furthermore, this restriction complicates the integration of self-developed
or emerging computation frameworks into existing solutions. In addition to an efficient
resource management, one of the remaining challenges for large scale scientific workflows
is the integration of a human-in-the-loop to enable the monitoring and interaction with the
running workflow [9].

In this thesis, we address these issues by means of a cloud orchestration process built
around the OCCI standard. In our approach, we follow the Model-Driven Engineering
(MDE) paradigm in which formalized models are utilized to abstract the domain and ease
its access. Furthermore, we combine the description of cloud application and workflow
management within a runtime model that is causally connected to the abstracted system. This
connection ensures that changes to the model are directly propagated to the system, i.e., the
cloud, and vice versa. Especially the utilization of runtime models for workflows, according
to a literature study by Bencomo et al. [10], is currently missing in the state-of-the-art. In
the scope of this thesis, we implemented two environments to which the runtime model
can be connected. One which connects the model to the cloud and one that connects it to a
simulation environment for testing and assessment purposes. Independent of the environment
chosen for the causal connection, we enable scientists to interact with the workflow model
and respond to intermediate results, even at runtime. From a system point of view, the direct
connection of the model to infrastructural resources allows for the dynamic provisioning
of distributed resources throughout the workflow execution. To foster the reusability and
portability of the proposed approach, we show the feasibility of a standard conform cloud
orchestration based on two case studies. These case studies highlight the orchestration and
management capabilities of an OCCI based runtime model, as well as the interoperability
of the TOSCA and OCCI standards. Based on the results of this orchestration process, we
assess the applicability of a runtime and model-driven workflow management. For this we
use three case studies from different domains requiring changing cloud deployments and
workflow capabilities. The chosen workflow case studies deal with the utilization of big
data framework integration, shifting resource requirements within a dynamic simulation
application, as well as the compute-intensive processes of software repository mining. Each
of the chosen case studies has different requirements highlighting the individual capabilities
provided by the runtime model for the scientist, as well as self-adaptive control loops using
it as a knowledge base. We use the results and observations of the executed case studies
to discuss the applicability of a standard based runtime model and its utilization to execute
workflows for academia, education and industry. Furthermore, we use the gathered insights
to discuss different viewpoints on the runtime model as well as possible improvements to the
OCCIT standard.

3 1.1 Goals and Contributions

1.1 Goals and Contributions

The overall goal of this thesis is to develop and show the applicability of a concept to
dynamically manage shifting infrastructure requirements for the execution of scientific
workflows over a runtime model that can be easily maintained due to its abstract nature.
Figure 1.1 provides a short sketch of the approach presented in this thesis which can be
separated into three parts. The Workflow represents the design time model to be created by
the scientist with each task having its individual resource requirements. This model is then
used to derive the required state of the Runtime Model holding only the information currently
required to execute this workflow. The specific characteristic of this Runtime Model is that
we synchronize it with a Cloud, i.e., each resource in the Runtime Model is provisioned in
the Cloud. The thesis comprises two core contributions providing concepts to advance the
body of knowledge in the fields of model-driven engineering, cloud computing and workflow
execution. In the following, these contributions are explained in more detail:

* A Standard conform cloud orchestration (Section 4) in which we transfer the designed
cloud application to the Runtime Model and synchronize it with a Cloud environment
using the OCCI standard. While the Runtime Model represents the current state of the
Cloud, a new desired state is reached over a set of model transformations deriving
the required sequence of requests. These requests manage the infrastructure, as well
as deployed applications by applying either configuration or container management.
To increase the reflective capabilities of the runtime model, we extend the standard
with monitoring functionalities. The added capabilities enable the deployment of
sensors which reflect their observed operational parameters directly in the model.
Our approach demonstrates a complete cloud orchestration lifecycle fully relying on
available standards. We use this process to orchestrate the infrastructures required
during the workflow execution. For example, in Figure 1.1, only the infrastructure for
task D is contained in the Runtime Model and thus deployed in the Cloud.

Runtime Workflow Model :Standard conform cloud orchestration

|:> ° ° synchronize
e W =

— Infrastructure

Workflow Runtime Model Cloud

Figure 1.1: Overview: Thesis goal and contributions.

1 Introduction 4

* The Runtime Workflow Model (Section 5) allows using arbitrary Infrastructure and
application requirements for each individual Task in a Workflow. Therefore, we couple
workflow tasks to infrastructural and application resources. The concept infuses
the Runtime Model used to manage the Cloud deployment with information about
the sequence of tasks to enact a Workflow. As part of this concept, we present a
workflow execution engine that utilizes autonomous control loops with the workflow
runtime model serving as a knowledge base. This engine schedules infrastructures
required for individual workflow tasks by merging the design time and runtime model.
The resulting model depicts the required cloud infrastructure at the specific point in
time and serves as input for the standard conform cloud orchestration process. After
orchestrating the infrastructure, the workflow engine triggers the enactment of pending
tasks ready to be executed. This concept presents a novel approach to reflect and
execute scientific workflows using a dynamic runtime model. The utilization of
infrastructural descriptions allows for individual workflow tasks to be highly tailored
to their needs, as well as the integration of a human-in-the-loop by design.

We evaluate the two contributions by performing case studies. From the results and the
development of these case studies, we present three further contributions to the knowledge
pool of working with cloud standards and workflows regarding the utilization of runtime
models:

* A cloud and simulation environment for the runtime workflow model which we
used to develop and execute our case studies (Section 6). This environment consists
of a web application used for the cloud orchestration, as well as different effectors
maintaining the runtime model. To facilitate the replication of our study, all implemen-
tations are publicly available [11].

* Two feasibility studies of a standard conform cloud orchestration demonstrating
the runtime model capabilities of OCCI (Section 7). We highlight the reflective
capabilities of OCCI (Section 7.1), as well as the compatibility of its interface to
deploy cloud topologies conforming to the TOSCA standard (Section 7.2). The results
demonstrate the feasibility and benefits of a cloud runtime model managed over a
standardized and uniform interface and serve as a basis for further improvements of
the OCCI cloud standard.

* The assessment of the applicability of a workflow runtime model by modeling and
performing three scientific workflows showing the integration of existing frameworks
(Section 8.1), the process of runtime decision-making including a human-in-the-loop
(Section 8.2), as well as the deployment of self-developed frameworks requiring loops
and parallelization within their workflows (Section 8.3). The results of the assessment
reveal the benefits of a runtime model reflecting the workflow and its infrastructure
over a sequence of states.

5 1.2 Impact

1.2 Impact

The results of this dissertation and further research that has been performed to enable
this work have been published in two scientific journal articles and five peer-reviewed
international conference proceedings. One of the author’s journal publications was invited
and one was accepted as a Journal First presentation at international conferences. Also, one
conference publication is awarded with the “INSTICC Best Poster Award”.

Journal Articles

* Stéphanie Challita, Fabian Korte, Johannes Erbel, Faiez Zalila, Jens Grabowski,
and Philippe Merle. “Model-Based Cloud Resource Provisioning with TOSCA and
OCCIL.” Software and Systems Modeling (SoSyM), Springer Verlag, 2021. Invited for
presentation as a Journal First at MODELS 2021.

Own contributions

I contributed to this publication by providing an initial mapping between TOSCA and
OCCI elements. In this publication, I mainly focused on the orchestration of cloud
deployments including the development of a required platform-specific transforma-
tion. Furthermore, I contributed by developing and executing the deployment of the
presented case studies. Finally, I prepared and presented the contribution as a Journal
First at the ACM/IEEE 24th International Conference on Model Driven Engineering
Languages and Systems (MODELS)).

 Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,
Taher Ahmed Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip
Makedonski, Matin Nili Ahmadabadi, Kristéf Szabados, Helge Spieker, Matej Madeja,
Nathaniel Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema Rodriguez Perez, Ri-
cardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin, Debasish
Chakroborti, Willard Davis, Vijay Walunj, Hongjun Wu, Diego Marcilio, Omar Alam,
Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-Katharina Wickert,
Ivano Malavolta, Matds Sulir, Fatemeh Fard, Austin Z. Henley, Stratos Kourtzanidis,
Eray Tiiziin, Christoph Treude, Simin Maleki Shamasbi, Ivan Pashchenko, Marvin
Wyrich, James C. Davis, Alexander Serebrenik, Ella Albrecht, Ethem Utku Aktas,
Daniel Striiber, Johannes Erbel. “Large-Scale Manual Validation of Bug Fixing Com-
mits: A Fine-grained Analysis of Tangling.” Empirical Software Engineering (EMSE),
Springer Verlag, 2021. Accepted for presentation as a Journal First at ICSE 2022.

Own contributions

I contributed to this publication by manually labeling data as part of a crowdsourcing
approach as well as proofreading the journal article. Within this publication, the
SmartSHARK framework is used which builds the basis for one of the workflow case
studies presented in this thesis. The contribution got presented by Steffen Herbold at
the 44th International Conference on Software Engineering (ICSE).

1 Introduction 6

Conferences and Workshops

* Johannes Erbel, Alexander Trautsch, Jens Grabowski. “Simulating live cloud adapta-
tions prior to a production deployment using a models at runtime approach ”, Proceed-
ings of the 11th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH), 2021. Awarded with an INSTICC
Best Poster Award.

Own contributions

I am the lead author of the publication. I performed most of the work for this publica-
tion, including the technical implementations. Alexander Trautsch contributed to the
discussion of the simulation environment, the implementation of the replication set,
and the execution of the case study.

* Johannes Erbel, Thomas Brand, Holger Giese, Jens Grabowski. “OCCI-compliant,
fully causal-connected architecture runtime models supporting sensor management”,
Proceedings of the 14th Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2019.

Own contributions

I am the lead author of the publication. I performed most of the work for this pub-
lication, including the technical implementations and the performance of the case
studies. Thomas Brand contributed to the analysis of current problems within adaptive
monitoring and the selection of an appropriate case study with respect to its external
validity and the discussion of the study.

* Johannes Erbel, Stefan Wittek, Jens Grabowski, Andreas Rausch. “Dynamic Man-
agement of Multi-Level-Simulation Workflows in the Cloud”, Proceedings of the 2nd
International Workshop on Simulation Science (SimScience), 2019.

Own contributions

I am the lead author of the publication. I performed most of the work for this pub-
lication, including the technical implementations, except the multi-level-simulation
prototype developed by Stefan Wittek for the execution of the case study. Furthermore,
Stefan Wittek contributed to the discussion of dynamic simulation requirements.

* Johannes Erbel, Fabian Korte, Jens Grabowski. “Scheduling Architectures for Scien-
tific Workflows in the Cloud”, Proceedings of the 10th System Analysis and modeling
Conference (SAM), 2018.

Own contributions
I am the lead author of this publication. All main contributions, implementations, and
case studies have been done by me.

7 1.3 Structure of the Thesis

* Johannes Erbel, Fabian Korte, Jens Grabowski. “Comparison and Runtime Adaptation
of Cloud Application Topologies based on OCCI”, Proceedings of the 8th International
Conference on Cloud Computing and Services Science (CLOSER), 2018.

Own contributions
I am the lead author of this publication. All main contributions, implementations, and
case studies have been done by me.

Additionally, the author of this dissertation supervised two student projects and one bachelor
thesis in relation to the overall topic of this thesis.

Bachelor Theses

* Lennart Thiesen. “Containerization in A Causally Connected Runtime Model for
Scientific Workflows”, Bachelor Thesis, Institute of Computer Science, University of
Goettingen, 2020.

Student Projects

* Nijat Rzayev. “Runtime metric detection and reflection in a workflow runtime model”,
Student Project, Institute of Computer Science, University of Goettingen, 2020.

* Lennart Thiesen. “Development and integration of a Bash Connector into the MoD-
MaCAO framework”, Student Project, Institute of Computer Science, University of
Goettingen, 2019.

1.3 Structure of the Thesis

This thesis covers several aspects related to the goals and contributions stated above. It is
structured as follows.

Chapter 2 summarizes the foundations upon which the thesis is built. It includes foun-
dations regarding scientific workflow enactment (Section 2.1), model-driven engineering
(Section 2.2), cloud computing and its standards (Section 2.3).

Chapter 3 presents related work to the scientific topics to which the author contributed
during his studies and puts our work into a broader research context. This chapter includes
the work related to the topics of model-driven cloud orchestration (Section 3.1), model-driven
workflow systems (Section 3.2) and an overview of related infrastructure aware workflow
approaches (Section 3.3). In addition, a summary of the related work together with the
research gap is given within this chapter (Section 3.4).

1 Introduction 8

Chapter 4 introduces the standard conform cloud runtime model and its management by
providing an overview while focusing on the description of the orchestration process (Section
4.1). Furthermore, we go into detail about how the runtime model is connected to the cloud to
maintain a causal connection including the reflection of operational properties (Section 4.2).

Chapter 5 describes the concept of the runtime workflow model starting with an overview
describing how the workflow elements are coupled to infrastructural resources, as well as
their capabilities (Section 5.1). Finally, we introduce a workflow engine using the workflow
runtime model as a knowledge base to schedule required infrastructures and trigger the
execution of workflow tasks (Section 5.2).

Chapter 6 covers information about the ecosystem built around the OCCI cloud standard
(Section 6.1). Among others, this section introduces infrastructure configurations including
the connection of the runtime model to the cloud and the simulation environments. Further-
more, the chapter introduces the deployment and workflow framework to perform the case
studies (Section 6.2).

Chapter 7 describes the execution of the runtime model orchestration case studies demon-
strating the feasibility of a standard conform runtime model and orchestration process. This
chapter provides an overview of the case study selection process, as well as the execution of
a cluster scaling example (Section 7.1) and the deployment of cloud application topologies
via the OCCI interface that originate from TOSCA (Section 7.2).

Chapter 8 assesses the applicability of workflow runtime models over three case studies.
This chapter comprises the case study selection, followed by the description and execution
of workflows from the domain of big data analytics (Section 8.1), dynamic simulations
(Section 8.2), and software repository mining (Section 8.3).

Chapter 9 discusses the results of this thesis. We evaluate the applicability of a workflow
runtime model for academia, education and industry (Section 9.1). Furthermore, we discuss
the usefulness of the workflow runtime model from the viewpoints of personas, including
scientists, cloud architects and systems utilizing the model as a knowledge pool for adaptive
behavior (Section 9.2). Finally, we go over the standard conformity of the presented approach
while presenting possible improvements (Section 9.3). Finally, this chapter covers the study’s
threats to validity (Section 9.4).

Chapter 10 concludes this thesis with a summary and an outlook on future work.

2 Fundamentals

This chapter introduces the foundations of this thesis consisting of different terminology and
basic concepts. An overview of this chapter is visualized in Figure 2.1. Section 2.1 provides
an introduction to the Domain of our research, namely Scientific Workflows. Section 2.2
presents the development Technique used throughout this study. In this section, the concept
of Model-driven Engineering is introduced. Within this section, we especially highlight
the concepts of models at runtime and runtime model based approaches. Section 2.3
gives an overview of the Infrastructure utilized in this thesis highlighting the advantages of
Cloud Computing including current open standards.

Domain Technique Infrastructure

Scientific Model-driven Cloud
Workflows ‘:> Engineering ‘:> Computing
abstracted via applied on

Figure 2.1: Overview: Foundations chapter.

2.1 Scientific Workflows

The term workflow is broad and can be found in several different domains ranging from
manufacturing processes from the industrialization, over business processes, to information
processes performing calculations [12]. Independent of the different determination of a
workflow, they share the abstraction of describing a sequence of tasks that should either
be performed manual or within an automated procedure. Scientific Workflows (SWFs)
distinguish themselves from other workflow types over the kind of activities being performed
which again heavily depend on the kind of research area, experiment, and required analysis.
Often, the analysis of the experiment itself can be described over a sequence of tasks or
computations to be performed, also referred to as scientific workflow in the literature. In this
thesis we consider a scientific workflow as a sequence of computation tasks to be performed
and stick to the following definition [13]:

2 Fundamentals 10

Definition 2.1 (Scientific Workflow). A scientific workflow is the computerized facilitation
or automation of a scientific process, in whole or part, which usually streamlines a collection
of scientific tasks with data channels and data flow constructs to automate data computation
and analysis to enable and accelerate scientific discovery.

While multiple definitions exist for scientific workflows, it boils down to a sequence
of tasks operating on data for scientific purposes. One of the grand visions for scientific
workflows is to plug in any scientific data resource and computational service [14]. Also, the
inspection of data on the fly is of great interest, as well as being able to change parameters
while re-executing only affected components. Workflows in general are often either control
or data flow oriented. According to Ludischer et al. [14], control flow oriented workflows
are more used for business workflows, while data flow oriented are more often used for
scientific reasons. The distinction between both workflow scenarios is blurry and differs
mainly in the goals and priorities of the workflow [15]. This allows to intertwine techniques
and frameworks from both domains as the concepts are rather similar [16-18].

In the following, Section 2.1.1 describes the fundamentals of scientific workflows and
their description languages. Section 2.1.2 introduces basics about engines and infrastructures
used to process workflows.

2.1.1 Fundamentals

Workflows and thus scientific workflows are based on the same foundations. In this section,
common mathematical concepts and fundamentals regarding workflows are introduced. The
highest form of abstraction of a workflow is the one of a directed graph. Bang-Jensen and
Gutin define directed graphs as follows [19]:

Definition 2.2 (Directed Graph). A directed graph (or just digraph) D consists of a non-
empty finite set V(D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V(D) the vertex set and A(D) the arc set of D. We
will often write D = (V,A) which means that V and A are the vertex set and arc set of D,
respectively.

Multiple notations and terms can be found in the literature defining directed graphs.
Commonly used terms for vertices are, e.g., nodes and points. Arcs are also commonly
known as edges or lines [20]. Throughout this thesis we use these terms interchangeably.
Meanwhile, a multitude of languages have been developed around directed graphs. Often the
graphs vertices V(D) describe the workflow tasks while arcs A(D) define the dependencies
or data flow between them. In literature scientific workflow description are often separated
into Directed Acyclic Graphs (DAGS) or a Directed Cyclic Graphs (DCGs), depending on
whether the workflow contains loops [2]. Figure 2.2 provides examples for the different
types of graphs used in this thesis. Figure 2.2 (a), shows a small directed graph, with the
typical notation of a Vertex as a circle. In this example two vertices are connected by an Arc

11 2.1 Scientific Workflows

Arc

Vertex

(a) Directed graph. (b) Acyclic graph. (c) Cyclic graph.

Figure 2.2: Directed graph examples.

drawn as an arrow which directs from one vertex to another. Figure 2.2 (b) and (c) highlights
the difference between an acyclic and cyclic graph. While the DAG does not contain cycles,
i.e., none of the arcs in the graph create a closed loop, the DCG may consist of loops as
visualized by the blue vertices.

Multiple models exist to describe the execution behavior or the logic behind a workflow,
i.e., how to follow the control flow and when to execute which task. One of the most common
models is the petri net [21] that can be used to describe a workflow execution [22,23]. The
concept of a petri net can be found, e.g., in activity diagrams from the Unified Modeling
Language (UML) [24] or the Business Process Model and Notation (BPMN) [25]. These
are respectively used to describe software system behavior or business processes using a
sequence of actions. A petri net is a bipartite graph, i.e., a graph with two disjoint and
independent sets of vertices. These sets of vertices are places and transitions which are
interconnected by weighted arcs. In general, transitions represent events, e.g., the execution
of a computation step or job, and places represent its pre- or post-conditions, e.g., the
presence of resources or input data. Each place can be marked with a token representing that
the condition of a place is met. A transition is enabled if each input place is marked with
an amount of tokens at least equal to the weight of the arc from the input to the transition.
Whether an enabled transition is fired, depends on whether the event takes place. As soon as
the transition is fired the tokens are removed from the input place and transferred to each
output place. To get a better insight about desired characteristics of workflows the following
section goes into detail about common requirements and traits to automatically execute
scientific workflows.

2.1.2 Scientific Workflow Management Systems

To interpret modeled workflows and automate their execution a Scientific Workflow Man-
agement System (SWFMS) is required [9]. Often these management systems directly com-
plement the workflow language. Depending on the workflow and the infrastructure it is
operating on, several kinds of system architectures exist. In complement to the definition of
SWFs, Lin et al. [13] provide a definition for SWFMSs:

2 Fundamentals 12

Definition 2.3 (Scientific Workflow Management System). A scientific workflow manage-
ment system (SWFMS) is a system that completely defines, modifies, manages, monitors, and
executes scientific workflows through the execution of scientific tasks whose execution order
is driven by a computerized representation of the workflow logic.

Depending on the computation infrastructure utilized workflows can be further divided
into in situ workflows and distributed workflows [9]. In situ workflows exchange information
over an internal storage or internal networks, e.g., of a High Performance Computing
(HPC) system. In our approach, we focus on a distributed workflow concept in which tasks
are loosely coupled and executed on distributed resources, e.g, on cluster, grid and cloud
systems. As scientific calculations often require high amounts of computing resources, these
languages are often tied to a specific infrastructure they are operating on. While the modeling
of workflows is well investigated in the literature, we focus on how to create and infuse
a basic workflow structure with infrastructural information using the technologies from
the current state of the art of infrastructure management. Independent of the architecture
and the infrastructure utilized, SWFMSs come with several desired characteristics and
requirements. Typical requirements of scientific workflows comprise, but are not limited to
seamlessly accessing remote services, reuse of workflows definitions, utilization of scalable
infrastructure, reliability and fault tolerance mechanisms, data provenance, as well as a
detached execution to handle long-running workflows with human interaction [14]. To cope
with these challenges we combine techniques that provide practitioners with a description
language for workflows and cloud deployments that operate on a high level of abstraction.
These techniques refer to the area of model-driven engineering and are elaborated in the
following section.

2.2 Model-Driven Engineering

To better understand and discuss software system designs and architectures, often models
are used that are visualizing an abstract version of the behavior or structure of the system.
Most often these models are utilized as a prescriptive or descriptive visualization to get an
overview of the system and support a discussion [26]. One common example is the UML
providing a standardized tool set of model elements to abstract computing systems, or the
BPMN to design business processes. In the Model-Driven Engineering (MDE) paradigm
these models are not only used as a visualisation of the system, but rather as a fundamental
artifact within the software development process that describes the software system on a high
level of detail [27]. Da Silva defines MDE as follows [28]:

Definition 2.4 (Model-Driven Engineering). MDE is a software engineering approach that
considers models not just as documentation artifacts but also as first-class citizens, where
models might be used throughout all engineering disciplines and in any application domain.

13 2.2 Model-Driven Engineering

When applying MDE, the utilized models are formalized allowing them to be automatically
processed, e.g., by transforming the model into another form or to generate code. A large
community exists around this concept. Not only in science but also in industry, as reflected
by the recurring Industry Day introduced in 2018 by the International Conference on Model-
Driven Engineering Languages and Systems [29]. MDE brings technologies closer to non
computer scientists by allowing users to work with Domain-Specific Languages (DSLs).
These consist of a dedicated set of model elements from an application domain to ease the
utilization of software solutions by domain experts. Szvetits and Zdun [30] define abstraction
in the context of MDE as a way to “interact with the system by using models which are
closer to the problem space”. One of the most adopted MDE approaches is the Model-Driven
Architecture (MDA) [31] specified by the Object Management Group (OMG), which focuses
on the definition and transformation of models using several abstraction layers.

Section 2.2.1 introduces fundamental MDE terms. Section 2.2.2 describes common model-
driven techniques used throughout this thesis. Section 2.2.3 explicitly highlights techniques
used for runtime models.

2.2.1 Fundamentals

To understand MDE, the term model and its relationship to a metamodel is fundamental.
Bézivin [32] highlights the importance of a model in MDE by comparing it to Object-
Oriented Programming (OOP). While in OOP “everything is an object”, in MDE “everything
is a model”. In the scope of this thesis, we refer to the term model as defined by Kiihne [26]:

Definition 2.5 (Model). A model is an abstraction of a (real or language based) system
allowing predictions or inferences to be made.

Each model follows a prescriptive or descriptive purpose, describing either an already
existing system or a system to be build [26]. To fulfill this purpose a model can be decom-
posed into three major features [33]. The mapping, reduction, and pragmatic feature. The
mapping feature denotes that a model always refers to the system or object to be abstracted,
also referred to as the original. Within the model, the original system is reduced to only a
small selection of properties that are required to interpret the model for its specific purpose.
Finally, the pragmatic feature of the model should be useful for its users, e.g., a human user
or a system when using MDE. This feature allows users to interpret the model giving it a
meaning in the end [27]. Each “model is an instance of a metamodel” [34] whereby the
metamodel specifies elements, e.g., entities, resources, links and attributes, that can be used
to create a model. In general, a metamodel can be defined as follows:

Definition 2.6 (Metamodel). A metamodel is a model of models [31] forming a language of
models [35].

The formality introduced by a metamodel allows validating its instances to check whether
its “language” is correctly used. To allow for such validation, developers can infuse their

2 Fundamentals 14

Layer Example Models Language
Meta-Metamodel 4 Class © MOF
(M3) Ed '
insfance of
' . classifier 2

Metamodel (M2) | Attribute Class h Instance UML

X) i)

instance of
Model (M1) . Video hf :Video User Model

+ title:String SNaPSNOt o "Titanic'|| (Class &

X A Object Diagram)

Original (M0) Videos Titanic Real World

Figure 2.3: Example metamodel hierarchy (adapted from [34]).

metamodel with constraints that need to be fulfilled. For this, declarative languages, like the
Object Constraint Language (OCL) [36], can be used, allowing for rules and expressions to
be specified. In the context of an abstract DCG metamodel, a constraint may be that each
arc always needs to connect to different vertices without forming a loop. This way errors in
the model can be easily detected, especially when models tend to get larger or a multitude
of models are used within a project. To create metamodels, a meta-metamodel is required
which basically is a metamodel for metamodels [34]. Even though an arbitrary amount of
meta-layers can be created, the most common is the utilization of four layers. Figure 2.3
provides an overview of these layers using UML class and object diagrams as an example.

In this figure, the notion of a video is abstracted over four layers. The layer Original (Mg)
represents the Real World object to be abstracted. While Videos describe the type of object
to be abstracted, the video Titanic represents a concrete instance. Within the Model (My) this
original is abstracted as a class Video reducing its properties to a single attribute title. Based
on this class, object instances can be created. These objects represent a snapshot of the
class which in this case describes the movie Titanic. Both the class, and the object diagram
are based on a Metamodel (My), e.g., UML. Here, the Video class is an instance of Class and
the title is an instance of Attribute. Finally, the metamodel itself is based on a description

15 2.2 Model-Driven Engineering

language often referred to as Meta-Metamodel (M3). One example is the Meta-Object Facility
(MOF) [37], defined by the OMG. These meta-metamodels conform to themselves and
provide a basic set of elements to be used for the creation of metamodels, such as a basic
Class element. Even though the MOF is often referred to as meta-metamodel, it is strictly
speaking a metamodel [34]. One example implementation for such a modeling stack is the
Eclipse Modeling Framework (EMF) [38] often used within the model-driven community. In
the following, techniques utilized within this thesis that operate on these different abstraction
layers are introduced.

2.2.2 Techniques

Around the concept of models and metamodels several techniques, standards and frameworks
have been developed to utilize the benefits of formalized information stored within models.
These techniques range from but are not limited to, automatic transformations from one
model to another, validation of models, and the generation of program code or graphical
editors. These techniques enable the automatic creation of software artifacts which can
result in reduced time efforts and lower mistakes made by manually created artifacts and
improved human interaction [39]. One example framework is the Extensible Platform
for Specification of Integrated Languages for mOdel maNagement (Epsilon) [40] which
provides a set of languages compatible with EMF models that support code generation,
model transformation and validation. The Epsilon Object Language (EOL) [41] builds
the basis for the set of Epsilon languages and allows modifying EMF models by using
typical programming constructs. In the following, we provide a definition of model-to-model
transformations (M2Ms) and an introduction to the MDA approach.

2.2.2.1 Model-to-Model Transformation

One of the most common techniques in MDE is the utilization of M2M transformations [42,
43]. These transformations define a set of transformation rules that describe how elements
from one metamodel are translated into the elements of another metamodel. These rules are
applied to model instances. Kleppe et al. define M2M transformations as follows [44]:

Definition 2.7 (Model-to-model transformation (M2M)). A transformation is the automatic
generation of a target model from a source model, according to a transformation definition.

Definition 2.8 (Transformation definition). A transformation definition is a set of transfor-
mation rules that together describe how a model in the source language can be transformed
into a model in the target language.

Definition 2.9 (Transformation rule). A transformation rule is a description of how one or
more constructs in the source language can be transformed into one or more constructs in
the target language.

2 Fundamentals 16

Metamodel A . Transformation rarget Metamodel B
isou ce Definition Ia 9¢
. anguage anguage .
Elements: [] Transformation Rules HEmENIES (@,
A D —»O f
instance of f. instance of
; applies ;

Source Model Target Model

555:8S, > [O9%80

o0 o Transformation o [e]®)

Figure 2.4: Model transformation concept (adapted from [31]).

The relationship between these different transformation terms is depicted in Figure 2.4.
The figure shows an example transformation from a Source Model of Metamodel A to a
Target Model of Metamodel B. Both metamodels define only one element, a square and a
circle, which are identified over the shape, color and size. The Transformation consists of a
Transformation Definition holding the set of Transformation Rules. In this example, only one
rule exists which describes that squares should be transformed into circles while maintaining
the remaining properties. Therefore, when this transformation is applied, the Source Model
gets transformed into the Target Model so that each square is transformed into a circle.
Meanwhile, a multitude of M2M transformation languages have been developed providing
access to a different set of features, e.g., the Query/View/Transformation (QVT) [45] lan-
guage, the Epsilon Transformation Language (ETL) [46], the ATL Transformation Language
(ATL) [47,48] and Viatra [49-52]. One related technique is the model-to-text transformation
(M2T) which targets a textual artifact rather than another model [28]. Common examples are
the Epsilon Generation Language (EGL) [53] and Acceleo [54].

2.2.2.2 Model-Driven Architecture

The Model-Driven Architecture (MDA) is a specialized MDE approach which focuses on
different viewpoints on a system. Hereby, selected details are suppressed within the model to
reach a simplified version of it [31]. Within this approach, the utilization of the Computation
Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model
(PSM) are specified which can be connected via M2M transformations. Within the MDA
guide [31], Truyen [55] defines these three model abstractions as follows:

Definition 2.10 (Computation Independent Model (CIM)). A CIM [...] presents exactly
what the system is expected to do, but hides all information technology related specifications
to remain independent of how that system will be (or currently is) implemented.

17 2.2 Model-Driven Engineering

Definition 2.11 (Platform Independent Model (PIM)). A PIM exhibits a sufficient degree
of independence |[...] to enable its mapping to one or more platforms. This is commonly
achieved by defining a set of services in a way that abstracts out technical details. Other
models then specify a realization of these services in a platform specific manner.

Definition 2.12 (Platform Specific Model (PSM)). A PSM combines the specifications in the
PIM with the details required to stipulate how a system uses a particular type of platform.
If the PSM does not include all the details necessary to produce an implementation of that
platform it is considered abstract (meaning that it relies on other explicit or implicit models
which do contain the necessary details).

Overall, the CIM hides all technological information, while the PIM is a generic represen-
tation of the model that should be applicable to any kind of related environment. The PSM,
on the other hand, contains information specific to a target environment. Using this approach,
the core information about a system can be retained increasing its portability. When required,
this model can be infused with additional information using an M2M transformation. This
approach allows preventing provider lock-ins by modeling a service at a high level of ab-
straction and thereafter adding provider specific information to the model in order to be
automatically processed. In the following, we go into further detail about models at runtime.

2.2.3 Models at Runtime

Models at Runtime (M@R) is a subcategory of MDE that promotes the utilization of models
not only as a static view on a system but rather as a live representation of it. This kind of
models are named runtime models which M@R approaches build upon. Two definitions
for a runtime model are often found in the literature which combined provide an in-depth
definition of the term:

Definition 2.13 (Runtime Model). A runtime model is defined as abstraction of a running
system that is being manipulated at runtime for a specific purpose [56]. [It maintains] a
causally connected self-representation of the associated system that emphasizes the structure,
behavior or goals of the system from a problem space perspective [57].

The interconnection of a runtime model and the system is declared as a causal connection,
which Maes defined as follows [58]:

Definition 2.14 (Causal Connection). A system is said to be causally connected to its domain
if the internal structures and the domain they represent are linked in such a way that if one
of them changes, this leads to a corresponding effect upon the other.

Among others, the utilization of runtime models helps to tackle inaccurate predictions and
changing environments as, e.g., change impacts and system adaptation rules can be visualized
before they are executed [30]. Furthermore, failing workflow resources [59], as well as

2 Fundamentals 18

violated constraints can be checked at runtime [60]. One of the major objectives of models at
runtime approaches is the adaptation of the running system which needs to be adjusted due
to changing requirements and other contextual changes [30]. The adaptation objective fits
to the autonomic computing paradigm that fosters the vision of software systems working
autonomously with each other and without the need for any human interaction or direct
recognition of the system itself [61]. Common motives for adaptive computer systems are
high frequencies of recurring adaptation tasks, required low reaction rates, as well as the
need to process huge amounts of relevant information. Systems handling such requirements
without needing human interaction are often referred to as self-adaptive systems which are
defined by Lemos et al. as follows [62]:

Definition 2.15 (Self-adaptive systems). Self-adaptive systems are able to adjust their
behavior or structure at runtime in response to their perception of the environment and the
system itself.

Self-adaptive systems are often implemented in form of a feedback loop. One common
example of an automated control loop is the Monitor-Analyze-Plan-Execute-Knowledge
(MAPE-K) control loop [64]. The MAPE-K loop, visualized in Figure 2.5, has four functions
that share a common Knowledge base [63]. The Monitor function provides details about
the system and its environment. Based on those details the Analyze function determines if
changes are required. The Plan function elaborates the procedure to perform the changes
and the Execute function triggers them. The shared Knowledge is the basis for adaptation
and decision-making processes and consists, e.g., of policies and details about the running
system that could be stored in a runtime model. The causal connection between a runtime
model and the system can be used by the control loop to trigger system changes and thus
often play a central role in the realization of a self-adaptive system [65].

-

Analyze Plan \

Knowledge

Monitor Execute
H Effector

System

Figure 2.5: MAPE-K self-adaptive control loop (adapted from [63]).

19 2.3 Cloud Computing

To causally connect a System with a MAPE-K loop, a Sensor needs to be employed
that grants access to it, e.g., to gather facts about the current workload of provisioned
infrastructure resources. Such a Sensor may be used by the Monitor step. Furthermore, to
adjust the System an interface to it needs to be provided. We refer to this interface as Effector
which can be used by the Execute step. Among others, an Effector provides the logic to add,
update or remove elements within the connected System to manage its resources.

2.3 Cloud Computing

Cloud computing has opened a new era of resource utilization and computing as a utility
as an upfront commitment of required resources is no longer required [4, 5, 66]. At its
core, cloud computing is a service in which virtualized chunks of a large pool of physical
computing resources can be rented from a provider [67]. The sheer amount of resources that
can be dynamically rented on demand removes the need to plan ahead of time. This allows
to quickly react to changing computation needs and requirements. The National Institute of
Standards and Technology (NIST) defines cloud computing as follows [67]:

Definition 2.16 (Cloud Computing). Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.

In the following, Section 2.3.1 goes into detail about cloud fundamentals and virtualization
techniques. Section 2.3.2 describes the current state of the art to orchestrate cloud resources.
Finally, Section 2.3.3 provides an overview of the cloud standards used within this thesis.

2.3.1 Fundamentals

The NIST definition for cloud computing provides an overall view on the topic and is one
of the most referenced specifications in literature. The definition is separated into three
categories: characteristics (i), deployment models (ii), and service models (iii).

Characteristics (i) defined by NIST form de-facto requirements for cloud services. For this
paragraph, we highlight these NIST characteristics in italic. At its core, a cloud comprises a
physical resource pool from which virtualized chunks can be rented using an on-demand
self-service requiring no interaction with administrators from the provider side. For this,
broad network access is required which supports standard mechanisms for a variety of
clients. A rapid elasticity ensures that the offered resources can be quickly provisioned and
released to enable dynamic scaling. Finally, a measured service needs to be provided which
monitors the offered and rented resources leveraging metering capabilities for the provider
and consumer.

Deployment models (ii) refer to where the cloud provider infrastructure is hosted, who
is administrating it and from whom it is accessible. A public cloud is available for the

2 Fundamentals 20

general public and owned by a company, such as the Elastic Compute Cloud (EC2) cloud by
Amazon [68]. A community cloud is a cloud environment shared by multiple organizations,
while a private cloud is operated for use by a single organization. Finally, a hybrid cloud is a
combination of two other deployment models which may be used, e.g, to store sensitive data
in a private cloud while using computation capabilities offered by a public cloud.

Service models (iii) describe the level to which a consumer has access to the shared
resources. Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (1aaS) are the most common ones and are specified in the NIST definition
as well. Throughout the years, the kind of services offered by cloud computing providers
drastically increased [69]. SaaS provides the end-user with a software application ready
to use such as office programs and email services like Google’s GSuite [70]. PaaS offers
configurable runtime environments and applications ready to be used by a development team.
Common examples are the Google App Engine [71] and the Elastic Beanstalk [72] from
the Amazon Web Services (AWS). The approach introduced in this thesis attaches to IaaS
as it allows to directly rent virtualized infrastructure resources and thus provides the most
flexibility. Common examples of an IaaS cloud are the AWS EC2 [68] and OpenStack [73]
as open-source solution. The two most common types of compute nodes offered by this
service are Virtual Machines (VMs) and containers. For the remainder of this thesis, we
stick to the NIST definition of IaaS [67] and the definition of VMs and container instances
as compute nodes by Brikman [74] :

Definition 2.17 (Infrastructure as a Service (IaaS)). The capability provided to the consumer
is to provision processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can include operating
systems and applications.

Definition 2.18 (Virtual Machine). A Virtual Machine (VM) emulates an entire computer
system, including the hardware. You run a hypervisor [...] to virtualize (i.e., simulate) the
underlying CPU, memory, hard drive, and networking.

Definition 2.19 (Container). A container emulates the user space of an OS [...][with]
isolated processes, memory, mount points, and networking.

VMs are fully isolated from the host machine, as well as from other VMs on the same
host. Each VM runs a separate Operating System (OS) which results in a high start-up time
as well as an overhead regarding Central Processing Unit (CPU) and memory utilization.
To circumvent this drawback, VMs are often used to host container nodes in which cloud
applications or components are deployed. These operate on a virtualized user space rather
than virtualized hardware and can be created in milliseconds with next to no CPU or memory
overhead [74]. This, however, comes with the drawback of sharing the hosts OS, kernel and
hardware and therefore are less isolated. Next, we introduce fundamental terminology and
technology regarding cloud orchestration.

21 2.3 Cloud Computing

2.3.2 Cloud Orchestration

To fulfill arbitrary requirements for research infrastructures, IaaS can be used to virtualize
hardware composition. Still, the provisioned resources need to be configured and managed,
e.g., by deploying and monitoring a specific application. Cloud orchestration describes a
managed process to automatically provision and deploy cloud applications in the correct
order. Liu et al. define the orchestration of IaaS cloud resources as follows [75]:

Definition 2.20 (Cloud Orchestration). Cloud orchestration involves the creation, manage-
ment and manipulation of cloud resources, i.e., compute, storage and network, in order to
realize user requests in a cloud environment, or to realize operational objectives of the cloud
service provider. User requests are driven by the service abstraction and service logic that
the cloud environment exposes to them.

When looking into the literature, different features required by cloud orchestration tools
can be found. Baur et al. [76] define four requirements of orchestration tools to manage
a cloud applications lifecycle. These include capabilities to define, deploy, monitor and
manage cloud applications. Brikman [74] defines a similar feature set required for real
world use cases. This feature set reflects the current capabilities of existing tools and
comprises, e.g., automated healing capabilities monitoring and replacing failing nodes. But
also service discovery, auto-scaling, load balancing and the functionality to roll out updates
on multiple compute nodes. To achieve these orchestration goals, often Infrastructure as
Code (1aC) techniques are used. These techniques allow specifying software artifacts that
contain infrastructure compositions and application deployments in a declarative manner. A
definition of IaC is given by Brikman [74]:

Definition 2.21 (Infrastructure as Code). [...] infrastructure as code [allows to] write and
execute code to define, deploy, update, and destroy your infrastructure. All aspects of
operations [are treated] as software — even those aspects that represent hardware (e.g.,
setting up physical servers).

The treatment of infrastructure configurations in the form of software artifacts allows for
“consistent, repeatable routines to provisioning and changing systems and their configura-
tion” [77]. This results in an easier management of distributed infrastructures. Brikman [74]
defines several broad categories of tools used for [aC which are used for different purposes to
orchestrate cloud applications. Figure 2.6 highlights three common IaC techniques and sets
them in relation to written Script artifacts, utilized Engines and access methods regarding
the Infrastructure to be managed.

An Infrastructure Configuration describes the composition of infrastructural resources
and serves as input for a Provisioning Engine. These engines, such as Terraform [78],
CloudFormation [79] and OpenStack Heat [80] orchestrate the infrastructure to reach the
desired state. Therefore, access to the IaaS layer is required using, e.g., the interface of the
Cloud provider. To configure the spawned infrastructure, an Ad hoc Script can be utilized.

2 Fundamentals 22

Scripts Engines Infrastructure
Infrastructure [\ Provisioning
Configuration Engine
Ad hoc
Script |
Configuration |\ @ (CM Engine)
Management

Figure 2.6: Infrastructure as Code techniques.

These refer to common scripting languages like Bash [81] and Python [82] and are used to
automate tasks on the server. For this, direct access to the spawned VM or compute node is
required. More profound IaC tools provide further and more complex functionalities, e.g., by
ensuring that a consistent state of the resources is maintained. Using an Ad hoc script may
not be sufficient to manage large computation clusters, as these kinds of scripts are typically
imperative and access each VM individually leaving them prone to manual errors. To mitigate
this problem, Configuration Management and a CM Engine can be utilized which handles the
overall installation and management process of software on provisioned infrastructure [74].
In this thesis we refer to configuration management as follows [83]:

Definition 2.22 (Configuration Management). Configuration management is a way of han-
dling changes in a system using a defined method so that the system maintains its integrity
over time. A log is kept of every change made to a system along with documentation about
who made the change, when the change was made, and why it was made. This allows us to
know the exact state of a system at any moment in time.

Common examples for configuration management tools are Chef [84], Puppet [85], An-
sible [86], and SaltStack [87]. Compared to simple ad hoc solutions these configuration
management tools are designed to configure multiple distributed resources using, e.g., Secure
Shell (SSH) connections. Furthermore, these tools often introduce “Idempotent tasks [which]
can be executed multiple times always yielding the same result” [88]. This helps to ensure
that the written scripts leads to the state described in the configuration management script.
Further, configuration management systems often offer the options for parallel and rolling
deployments. It should be noted that applications to be deployed can already be part of,
e.g., a container. This technique is referred to as templating which can be used “to create an
image of a server that captures a fully self-contained “snapshot” of the OS, the software, the
files and all other relevant details.” [74]. This technique is often used to deploy a compute
resource with common functionalities pre-installed before getting customized by additional
configuration management procedures. Up next, we introduce cloud standards utilized within
this thesis.

23 2.3 Cloud Computing

2.3.3 Cloud Standards

The success of cloud computing has led to various cloud providers each offering similar re-
sources but through heterogeneous interfaces, semantics [89], and utilized technologies [90].
These differences result in a lack of interoperability [91], and the problem of a vendor or
provider lock-in. This lock-in makes it difficult to switch from one provider to another [92].
In the literature study by Silva et al. [93] many approaches are enumerated that tackle this
issue. One of these solutions is the specification and utilization of cloud standards developed
by committees. Standardization groups include the OMG Cloud Working Group (CWG), pro-
viding vendor-neutral guidance for cloud interoperability and portability [94]. Standardized
specifications for certain parts of a cloud system cover, e.g., the Cloud Data Management
Interface (CDMI) [95] by the Storage Networking Industry Association (SNIA), as well as
specifications on how to test these interfaces defined by the European Telecommunications
Standards Institute (ETSI) [96]. Some standards are tailored towards specific service layers
such as the Cloud Application Management for Platforms (CAMP) [97] for PaaS. Finally,
standards specifying a data model for cloud deployments exist such as the Open Cloud
Computing Interface (OCCI) [98] and the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [6].

In the scope of this thesis, we focus on the OCCI standard [98]. In addition, we demonstrate
the interoperability of OCCI, and thus our orchestration approach, to the standardized
TOSCA [6] cloud language. We describe both standards and existing extensions next.

2.3.3.1 Open Cloud Computing Interface

OCCl is a cloud standard, developed by the Open Grid Forum (OGF). The standard provides
an extensible data model accompanied by the specification of a uniform interface to manage
modeled elements.

The OCCI Core Model [98], shown in Figure 2.7, introduces a set of core elements meant
to be extended in order to manage cloud resources. This extensible core is separated into two
categories. The Core base types and the Classification and identification mechanisms which
follow a type-instance pattern. The Core base types are composed of the abstract element
Entity and its specializations Resource and Link. Instances of those types represent actual
cloud resources that can be managed over the OCCI interface. OCCI models form a DAG with
a Resource being a node that contains a set of Link instances. Each Link possesses a target
pointing to another Resource. Each Entity is of one specific Kind which, combined with its id,
uniquely identify it. Kind represents the main element of the Classification and identification
mechanism of OCCI and defines a set of Attributes to be filled with values by the Entity as
well as Actions that can be performed on it. An Action, when triggered, affects the state of
the resource as described by a Finite State Machine (FSM). In addition to a Kind, each Entity
may have multiple applied Mixins introducing new capabilities to the Entity at runtime, e.g.,
in form of Attribute and Action instances. Kind, Mixin, and Action inherit from the abstract

2 Fundamentals 24

Core base types Classification and identification
parent
, " 1 ~—]0..1
Entity Kind Category

+ id:String 0"1Q . —{ >+ scheme:URI

4& Action + term:String
| | 14 11
Resource |g 1 Link | Mixin .
/P ‘ ’ Attribute

target Applies to ’
s;ecific Kinds depends

Figure 2.7: OCCI’s Core Model (adapted from OCCI’s Core specification [98]).

—

Category element and thus can be identified over a scheme and term. The term represents
the name of the Category instance while the scheme is a namespace that often refers to the
elements OCCI extension. Both Kind and Mixin possess generalization capabilities. A Kind
can only possess a single parent. However, a Mixin can have multiple depends relationships
allowing it to inherit and combine several capabilities at once.

The OCCI interface [99] is based on the Representational State Transfer (REST) [100],
a stateless application-level protocol that allows managing hypermedia resources. Hereby,
the interface supports the default Create, Read, Update, Delete (CRUD) operations, as well
as the execution of defined actions on specific entities. Single entities can be addressed
over their Kind and id. Also, complete collections can be managed over single requests by
referring to all entities of a specific Kind or which have specific Mixin instances applied. To
work with the interface, OCCI defines several renderings in its specification suite covering,
e.g., a text based [101] and JavaScript Object Notation (JSON) based rendering [102].

2.3.3.2 Open Cloud Computing Interface Extensions

OCCIT extensions utilize the classification and identification mechanisms to expand the
standard with new kinds to manage arbitrary entities. The extensions used in this thesis are
shown in Figure 2.8 with OCCI resource types in white and link types in gray.

The Infrastructure extension [103] adds specialized types to manage typical IaaS resources
including Storage, Network and Compute elements. The Compute type, e.g., abstracts a VM
or container resource and provides attributes to define the amount of memory, as well as
actions to start and stop the machine. Each infrastructure type possesses an active and inactive
state including actions to transition between them, such as start and stop. Additionally, each
resource type provides several attributes, e.g., to specify the amount of memory of a compute
node, the address range of a network, or the size of a storage. Compute nodes can be linked
to a Storage or Network instance via a StorageLink or Networkinterface respectively, serving

25 2.3 Cloud Computing

Docker Infrastructure Platform

Machine > Compute Eilr?fement Component

I"applies

’ N
Storage j tNetwork Component

Component:
Link Interface Link Mixin

V/ V/

i e s
Container — || Storage Network Application [<2P21ES Ap;?\l/:&?:]lon:

Figure 2.8: Utilized OCCI extensions with resource types in white and link types in gray.

Contains

as an interface to it. Among others, these links describe the mount point of the storage as
well as the desired network address of the compute resource. The extension specifies several
mixins to further extend the capabilities of infrastructure resources adding, e.g., the address
range of a network or preset configurations for VMs.

The Docker extension by Paraiso et al. [104] introduces the management of containerized
resources to OCCI by building upon the Infrastructure extension. It consists of two main
resource types Machine and Container which are both specializations of Compute. The
Machine type represents a typical VM that serves as a host for a Docker Container which is
modeled via a Contains link.

The Platform extension [106] supports the management of PaaS. An Application represents
a user-defined service, e.g., a computation cluster, that is composed of Component instances
that implement the service’s business logic. To abstract this behavior, the extension introduces
the ComponentLink type to interconnect Component instances in order to form a larger
Application. The Model-Driven Configuration Management of Cloud Applications with
0OCCI (MoDMaCAO) framework [105] enhances this extension and enables application
management for IaaS services. For this, MoDMaCAO introduces three new elements denoted
with an (in Figure 2.8. The PlacementLink type describes where a Component is deployed
by targeting a Compute node. The Application:Mixin allows specifying OCL constraints
to support validation features. Finally, the Component:Mixin manages the lifecycle of a
Component over a configuration management script that is executed on its compute host.
For a more precise management the framework enhances the lifecycle of OCCI Component

Platform FSM

deploy.

undeployed

A

undeploy

undeploy St undeploy

Figure 2.9: Finite state machine of applications and components (adapted from [105]).

2 Fundamentals 26

and Application elements. This lifecycle is depicted in Figure 2.9 as an FSM using an UML
state machine diagram. The common lifecycle follows the undeployed, deployed, inactive
and active states. To traverse through these states, MoDMaCAO introduces lifecycle actions,
i.e., deploy, configure, start, stop and undeploy. To manage this lifecycle with fewer action
requests, shortcuts allow, e.g., to directly traverse the complete lifecycle from undeploy to
active using a single start action request. When triggered, these actions execute a specific
block within a linked configuration management script.

2.3.3.3 Topology and Orchestration Specification for Cloud Applications

TOSCA is a cloud standard maintained by Organization for the Advancement of Structured
Information Standards (OASIS). Similar to OCCI, the standard provides a language to design
cloud deployments [107]. In addition to the definition of deployment topologies, TOSCA
allows modeling management procedures to modify services via orchestration processes
called plans. In this thesis, we focus on the cloud deployment description to investigate
similarities with the OCCI standard. Currently, two versions of TOSCA can be found. One
is based on the YAML Ain’t Markup Language (YAML) [108] and the other is based on the
Extensible Markup Language (XML) [107]. While the YAML version does not provide a
formal metamodel, the XML version is accompanied by an XML Schema (XSD). According
to the TOSCA XML specification, the language’s “focus is on design time aspects, i.e. the
description of services to ensure their exchange. Runtime aspects are addressed by providing
a container for specifying models of plans which support the management of instances of
services.” [107]. A simplified subset of the structure of the TOSCA metamodel is shown
in Figure 2.10. Overall, the metamodel can be separated in the Topology Template which is
accompanied by a Type Definition. Together, both parts form a type-instance pattern similar
to the one used within the OCCI data model.

The Topology Template, i.e., the cloud deployment model, is composed of abstract
Entity Template elements. These aggregate a set of Properties to describe the individual
template elements. The Node Template and Relationship Template are the main elements of
the Topology Template which together follow the notion of a DAG. While a Node Template
specifies, e.g., a VM to be provisioned, a Relationship Template is used to model a relation-
ship between Node Template instances. These can be used, e.g., to describe on which VM
a specific component is hosted. TOSCA allows specifying Capability and Requirement ele-
ments that are part of a Node Template. While a Capability describes certain abilities provided
by a node, a Requirement describes its consumption. An example of such a relationship is
the capability of a node providing a runtime environment to be consumed by a node requiring
one. In addition, TOSCA specifies further template types such as artifact and group templates
used, e.g., to scale a group of nodes together.

The Type Definition provides a set of Entity Type instances that can be used within the topol-
ogy template, as each Entity Template is of one Entity Type. Each template specialization is
constrained for the utilization of a specific entity type, e.g., the type of a Node Template needs

27 2.3 Cloud Computing

Topology Template Type Definition
. Entity |+ type 11 Entity |1 * Properties
Properties @ 1ompiate ! Tioe [® Definition
E 0.1 % 1
VAN i |derived from Z}
[| i | |
Node Relationship Node Relationship
Template Template : Type Type
1 11 source 1Y1t
Capability Requirement Requirement|| Capability Interface
target Definition Definition Definition
: type type type
The type of an Entity Template : \]/ i \]/ e \V 2
is constrained to use a Type) Requirement|| Capability Interface
of the same kind. Type Type Type

Figure 2.10: TOSCA metamodel subset.

to be Node Type, while the type of a Relationship Template needs to be a Relationship Type.
The abstract Entity Type contains a Property Definition specifying a set of attributes to be filled
by the template. To allow for generalizations of designed Entity Type instances, these can be
derived from another Entity Type. The Requirement Definition describes a dependency of a
Node Type or Node Template that needs to be fulfilled by a Capability Definition that matches
it. The corresponding Requirement Type and Capability Type elements represent reusable
entities to be exposed by a Node Type. A similar pattern can be found for Interface Definition
and Interface Type which are used to define a named interface. These serve as reusable entities
which define operations that can be included as a part of a Node Type or a Relationship Type.
Hereby, each operation defined within the interface can be associated with code or scripts
that can be executed later on by an orchestrator. These scripts implement lifecycle operations
of applications and allow to transition between states, e.g., a stop action which shifts the
application from an active to inactive state.

Similar to OCCI, the type-instance pattern pursued by TOSCA allows for customized
extensions to be defined. While OCCI defines dedicated extensions for individual service
layers, TOSCA provides a set of normative types introducing common base types to describe,
e.g., VMs nodes. The standard states, that especially these normative types need to be
supported by approaches implementing the standard. While the structure of the elements is
rather similar, TOSCA has a more design time focus with OCCI focusing more on runtime
aspects, especially due to the specification of a uniform interface corresponding to the
elements within the data model.

3 Related Work

In this thesis, we orchestrate cloud deployments using a runtime model that is based on
a standardized and uniform interface. Furthermore, we use this orchestration to schedule
and deploy infrastructure requirements for individual tasks within a scientific workflow.
Within this chapter, we introduce the related work to each of these fields and delimit our
work to existing approaches. As shown in Figure 3.1, we categorize the related work into
three sets based on the intersections of the thesis foundations (MDE, SWF, Cloud) with the
Research Gap building the intersection of all three foundation sets.

In Section 3.1, we investigate the intersection between the utilization of model-driven
techniques and cloud computing and provide an overview of cloud orchestration techniques
utilizing models (MDE N Cloud). Within this section, we especially consider the utiliza-
tion of standards. Section 3.2 presents general workflow approaches that can be found
in the literature with a special focus on the application of model-driven techniques in the
workflow domain (SWF N MDE). Section 3.3 introduces infrastructure aware workflow
management approaches which consider the management of infrastructure directly in the
workflow (SWF N Cloud). Finally, in Section 3.4 we give a summary of the identified related
work and define our Research Gap, covering the intersection of all three foundation sections
(SWF N MDE N Cloud).

Workflows, Models and the Scientific Domain

Model-Driven and Standard
Conform Cloud Orchestration

Infrastructure-Aware Workflow
Management

V Research Gap

Figure 3.1: Overview: Related work.

3 Related Work 30

3.1 Model-Driven and Standard Conform Cloud Orchestration

Several languages and techniques have been developed to manage distributed applications
in order to focus on user domains rather than complex infrastructure configurations. Some
existing solutions are directly offered by cloud providers like the OpenStack Heat Orches-
tration Template [80] or the CloudFormation Template format by Amazon [79]. Due to the
sheer amount of cloud orchestration solutions, we focus on the state-of-the-art of working
with cloud resources using model-driven techniques. Some of them are commercial, like
Juju [109], which allow modeling and managing applications within hybrid cloud solutions.
The research community also provides many different approaches. For example, several
extensions for UML have been created to support cloud application specifics [110-112]. The
Cloud Modelling Language (CloudML) [113] is used to design cloud deployments. The
language supports the automatic provisioning of cloud infrastructure and platform resources
by matching the designed application requirements to the services offered by the cloud
provider. Furthermore, CloudML supports the models at runtime paradigm allowing to
manage the deployed applications by changing the model. The CloudMF [114] corresponds
to this language and allows modeling and maintaining multi-cloud applications. Another
language to model cloud applications is the Cloud Application Modelling and Execution
Language (CAMEL) [115] which is aligned with TOSCA. CAMEL also introduces a mod-
els at runtime approach utilizing the Cloudiator toolkit [116] to deploy and manage the
lifecycle of modelled cloud deployments. The tool An infRastructure modelinG tool for
clOud provisioniNg (ARGON) [117, 118] also provides a DSL for cloud environments
and uses model-driven techniques to generate IaC artifacts in order to orchestrate modeled
infrastructures. The Saloon framework [119, 120] is used to form a software product line.
Hereby, it combines a feature model with a domain model to select suitable environments for
multi-cloud deployments.

The related work shows plenty of model-driven cloud orchestration techniques. In the
following, we further separate this section into approaches built around the OCCI or TOSCA
standard. Section 3.1.1 covers OCCI approaches while Section 3.1.2 discusses TOSCA
based approaches.

3.1.1 OCCI Related Approaches

OCCIT represents the cloud standard we focus on in this thesis. One of the projects used
within our studies is the OCCIWare project [121] which provides an Integrated Development
Environment (IDE) to support the complete lifecycle of cloud application management
using OCCI. The project is formed around the precise EMF metamodel defined by Merle
et al. [122] which later got enhanced by Zalila et al. [123]. OCCIWare provides a model-
driven toolchain to model and generate arbitrary OCCI extensions. A plethora of different
extensions have been designed around the standard adding new capabilities to the project,
highlighting the overall extensibility of OCCI. Paraiso et al. [104] extend the infrastructure

31 3.1 Model-Driven and Standard Conform Cloud Orchestration

layer of OCCI to support the management of containers. Within their study, Docker is
used, as well as the Docker-Machine tooling to spawn Docker hosts on different cloud
providers. The utilization of different cloud providers with OCCI is also shown in the
study of Al-Dhuraibi et al. [124] which adds the capabilities to manage the elasticity of
cloud applications. Furthermore, as part of the OCCIWare project, an extension for the
simulation of cloud applications is introduced in [125]. The implementation is built around
CloudSim [126] and allows modeling data centers to simulate resource utilization and pricing
strategies for cloud deployments. The actual deployment of such applications can be realized
using the MoDMaCAO framework [105] which enhances the OCCI platform extension
with more detailed component states and actions triggering configuration management
scripts. Furthermore, the Model-Driven Elasticity Management with OCCI) (MoDEMO)
framework [127] introduces vertical and horizontal scaling of cloud resources to OCCI and
can operate among multiple cloud providers. Apart from cloud infrastructures, the standard
and the OCCIWare ecosystem have been used to create an extension for the management of
mobile robots as a service [128].

Apart from the OCCIWare projects, further research exists that investigates the individual
layers of OCCI. Prior to the initial release of the OCCI platform extension specification [106],
Yangui and Tata [129] presented CloudServ as an extension to OCCI to incorporate PaaS
resources. This extension is reutilized in the concept of the COAPS [130] interface for the
management of cloud applications. In their approach, a platform extension is used to describe
and manage PaaS resources offered by the provider, while an OCCI application extension
describes application resources to be deployed in a PaaS environment [131]. Moreover, two
approaches investigating OCCI based monitoring exists. Ciuffoletti [132] extends OCCI
with sensor elements that are linked over collectors to the object to monitor. To form a
monitoring pipeline, modeled sensors and collectors can be enhanced via different mixins.
In the monitoring extension by Mohamed et al. [133] elements to monitor and reconfigure
OCCI resources are discussed. In this extension, mixins are introduced to manage polling
and subscription monitoring features. Additionally, the extension introduces capabilities to
describe how observed monitoring data should be handled.

3.1.2 TOSCA Related Approaches

Similar to OCCI approaches, many approaches exist that built upon or adapt the TOSCA
standard. While our approach focuses on cloud orchestration using OCCI, we demonstrate
its compatibility with the TOSCA standard. Therefore, we provide an overview of related
approaches based on TOSCA and reference a more exhaustive survey by Bellendorf and
Mann [134].

Similar to OCCI, multiple ecosystems exist for TOSCA that allow modeling and deploying
cloud applications using a standardized cloud modeling language. Winery [135] is a web
based modeling tool using the visualization of Vino4TOSCA [136]. The OpenTOSCA
ecosystem [137] can be used for a declarative deployment of the modeled TOSCA topol-

3 Related Work 32

ogy [138] and introduces an invocation mechanism to support management operations of
different node types for different cloud providers [139]. The Eclipse Incubation Project
Cloud Application Management Framework (CAMF) [140] describes a complete IDE built
around TOSCA. To support different cloud providers, different adapters were developed
and coupled with CAMEF to deploy designed TOSCA topologies on different clouds. The
Alien4Cloud project [141] provides a type and workflow designer that can be coupled with,
e.g., Cloudify [142]. Cloudify offers an open-source orchestration framework for the man-
agement of multi-cloud deployments that can be operated over a commercial web interface.
Carrasco et al. [143—-145] combine TOSCA with CAMP by transforming TOSCA topolo-
gies into a CAMP-compliant YAML format allowing for an automated migration of cloud
applications with the proposal of a unified interface for [aaS and PaaS. Another approach
is TOSCA Light [146], a subset of TOSCA, which can be coupled with production-ready
deployment technologies, e.g., Kubernetes [147], using TOSCA Lightning [148]. Several
further frameworks exist that built upon the benefits of TOSCA focusing, e.g., on a model-
driven approach to deploy big data cloud applications [149] or on deployment techniques to
increase the portability of topologies [150].

TOSCA is often used as an inspiration for cloud modeling languages, like the Essential
Deployment Metamodel (EDMM) [151], and also used as a mapping target for generic cloud
languages like the GEneralized Topology Language (GENTL) [152]. Bergmayr et al. [153]
demonstrate how UML can be coupled with TOSCA using an Ecore metamodel generated
from the TOSCA XSD. Further approaches use TOSCA and model-driven techniques to
auto-complete undeployable topologies [154] or generate resource-related DevOps tools for
seamless integration with TOSCA [155]. Meanwhile, many TOSCA extensions have been
developed and evaluated, e.g., to support the deployments for edge devices [156], goal model-
ing [157] or the management of applications based on serverless computing [158]. Moreover,
there is an approach that couples TOSCA with the execution of workflow logic [159]. In the
following section, an overview of existing workflow languages and modeling techniques is
provided.

3.2 Workflows, Models and the Scientific Domain

In literature, a multitude of different workflow languages can be found that are designed to
fulfill the requirements of different domains by tailoring the language accordingly. According
to Deelman et al. [9] most SWEMS rely on scripting languages or even provide a graphical
user interface to define and manage tasks as well as their dependencies. Common examples
that can be found in the literature are, e.g., Swift [160], Tigres [161], Kepler [162], Tri-
dent [163], Weaver [164], Triana [165], Pegasus [166,167], Galaxy [168], Taverna [169,170],
VisTrails [171], SCIRun [172], Wings [173], YAWL [174] and AVS [175]. In this section,
we highlight approaches that rely on model-driven techniques as well as approaches targeting
the scientific domain.

33 3.3 Infrastructure Aware Workflow Management

Many workflow metamodels already exist that are not exclusive to the scientific domain.
A common metamodel for workflow languages is the UML [24] allowing, e.g., to describe
the behavior of a workflow or to handle change requests [176]. Also, the BPMN [25] is well
known and used to describe business processes for which many extensions exist to support
different domains [177]. An example is the modeling of cloud orchestration processes
built around TOSCA [178,179]. Even though these workflows are not commonly used for
scientific workflows, their concepts are generic and can also be applied to them. Briining et
al. [180,181] describe a workflow language based on the UML metamodel that can be adapted
and evaluated during execution using the tool USE [182] which observes OCL invariants.
Also, approaches exist that couple design time and runtime decision-making for the execution
of business processes with resources considered as substantial requirements [183].

Specifically for the scientific domain, Cerezo et al. [16, 184] utilize multiple abstraction
layers and model transformations to provide the end-user with SWF semantics capturing
user goals before generating executable workflow artifacts. Similarly, in the ModFlow frame-
work [185,186], a domain specific, intermediate and technical layer is used to create a BPMN
model which is executed over the Business Process Execution Language (BPEL) [187] in a
Grid environment. The Supporting novice data miners in Selecting Suitable mining algo-
rithms (S3Mining) framework [188] combines MDE and workflow management to support
novice users to select appropriate data mining classification algorithms. In their implementa-
tion, the Taverna workflow environment is used to execute EMF artifacts via webservices.
Nordstrom et al. [59] describe a model-driven approach to detect failing components or
compute resources in workflow based environments. In their approach, the Generic Modeling
Environment (GME) [189] is used to create the WorkflowML modeling language which al-
lows modeling data stores and the synchronization of jobs. The Workflow-based Architecture
to support Scientific Applications (WASA) project [190, 191] aims at dynamic workflow
management for use in the scientific domain. As part of this project, Weske [192] describes
a metamodel based on subsequent activities with specific states that can be manipulated
over transitions and dynamically extended. In the following, we go into more detail about
scientific workflow approaches that are coupled with dynamic infrastructure capabilities.

3.3 Infrastructure Aware Workflow Management

For nearly any SWF language an accompanying SWEMS exist, which utilizes the benefits
of available distributed computing utilities developed throughout the years. For example,
many approaches can be found that utilize Grid capabilities for workflow execution like
DAGMan [193], ICENI [194], GrADS [195], Grid-Flow [196], UNICORE [197], Gridbus
workflow [198], GridAssist [199], GridAnt [200], Askalon [201] and Chiron [202]. Mean-
while, many of the existing SWFMS, such as Pegasus [167] and Taverna [170], incorporate
cloud resources due to their flexible and scalable capabilities. Often, cloud resources are
utilized to scale a preconfigured workflow management system or middleware based on

3 Related Work 34

current workload. While scientific workflows pose several opportunities to optimize resource
provisioning processes in the cloud [203,204], we focus on concepts that allow for the
management and reflection of the resources. In the following, we go into more detail about
infrastructure aware workflow management utilizing the dynamic capabilities offered by
cloud computing with a focus on model-driven approaches.

Vukojevic-Haupt et al. [205,206] use the cloud to spawn workflow middleware on demand
requiring no pre-configured workflow cluster to be up and running. Kacsuk et al. [207]
present the Flowbster system to deploy scaling architectures for the execution of workflows
with large scientific data sets using the cloud orchestrator Occopus [8]. Orzechowski et
al. [208] describe the deployment of HyperFlow [209], a SWEFMS for distributed systems,
on an automatically provisioned Kubernetes [147] cluster to manage and scale a container
infrastructure for the workflow. Hoppe et al. [210] couple Hyperflow with CAMEL [115] to
foster the utilization of cloud and HPC resources within a single workflow.

The ability of cloud computing to dynamically provision infrastructure on demand allows
workflows to be coupled directly to the infrastructure. Qasha et al. [159,211,212] extend
the TOSCA standard to ensure the reproducibility of workflows in the cloud utilizing the
benefits of containerization. Weder et al. [213] utilize TOSCA to describe workflows and
their required cloud compositions in a self-contained manner which gets deployed via
OpenTOSCA [137]. Even though the TOSCA standard is extended, no model representation
is considered at runtime that allows the scientist to observe and manipulate the workflow.
While most of the related work does not consider the utilization of runtime reflections,
some approaches exist heading in this direction. In the approach by Beni et al. [214,215],
a reflective middleware is presented that gathers information from a workflow model at
runtime to optimize infrastructure deployments. Here, annotations are used to describe the
workflow’s resource and deployment requirements. The annotations, however, do not couple
workflow tasks with modeled platform elements directly and therefore limit runtime model
capabilities for deployed applications. In the following, we discuss our approach in relation
to the related work and summarize the research gap addressed within this thesis.

3.4 Summary and Research Gap

The related work shows a plethora of model-driven cloud orchestration approaches and
workflow languages. However, there is still a gap in the intersection of scientific workflows,
cloud, and model-driven engineering. Especially for workflow approaches that combine
runtime models with a standard conform cloud management. We highlight the addressed
research gap by discussing the intersections of the SWF, MDE and cloud research areas.
Section 3.1 enumerated several approaches to orchestrate cloud resources using model-
driven techniques. One common goal is simplifying the access to cloud infrastructures and
applications with a special interest in multi-cloud deployments by leveraging upon different
abstraction layers and model transformations [112-114, 119, 120]. Also, the utilization of

35 3.4 Summary and Research Gap

existing standards can be seen throughout the related work utilizing the UML [110-112,
153], OCCI [104,105,121-124,127-133] and TOSCA [135-146, 148-150, 153-159]. In
literature, two cloud modeling languages can be found that focus on a models at runtime
approach [113-115]. However, these do not explicitly conform to one of the open cloud
standards. In this thesis, we address the gap of a missing orchestration process operating
on the OCCI interface and the capabilities of a runtime model conforming to the OCCI
data model. Utilizing the OCCIWare ecosystem [121], we enhance the capabilities of
OCCI to form a fully causally connected runtime model which reflects gathered monitoring
information directly in the runtime model. Furthermore, we show the capabilities of OCCI
to combine container and configuration management, allowing for local simulations of
cloud deployments. Additionally, we investigate the compatibility of OCCI and TOSCA to
utilize the best of both standards while further tackling the provider lock-in and fostering the
re-utilization of existing artifacts.

Section 3.2 listed several approaches providing concepts and implementations of
SWEMS [160-175]. Independent of the workflow domain, standardized models are used
to realize the creation and execution of workflows using, e.g., UML [176, 180, 181] or
BPMN [178,179, 185, 186]. In the SWF domain, MDE is often used to build multiple
abstraction layers coupled via model transformations in order to create different views on
the system [16, 184—-186]. Also, runtime aspects are discussed in related work covering
decision-making or metamodels for dynamic workflow management [183,190-192]. In com-
parison to the related work, we consider the dynamic management of scientific workflows
while relying on the runtime model paradigm. In this regard, we evaluate the capability of
OCCI models to be orchestrated over generated UML activity diagrams. Additionally, we
investigate the extent to which the standard can support a workflow layer that is coupled
with infrastructural resources and managed over a standard conform orchestration process.
This opens the opportunity to save resources and costs by tailoring infrastructure toward
specific tasks within scientific workflows.

Section 3.3 listed even further workflow approaches with special interest in using dis-
tributed computing resources [167, 170, 193-202]. The related work shows approaches
combining workflows and their execution with existing orchestration techniques [207,209]
or even cloud modeling languages [159,210-212]. Furthermore, approaches exist that uti-
lize a reflective middleware for workflow models using annotations to manage deployed
resources at runtime [214,215]. Compared to these approaches, we consider the utilization of
a standard conform runtime model which couples workflow tasks directly to cloud resources.
Our approach builds upon the OCCI standard allowing us to investigate the extent to which
the data model supports creating workflows that operate on highly tailored infrastructure.
Hereby, we especially investigate the benefits of reflecting the workflow within a runtime
model, as well as the degree to which the uniform OCCI interface can support the execution
of the workflow. The utilization of a standard that is backed up by model-driven engineering
techniques opens the opportunity to foster the replication of scientific workflows and the
reuse of individual deployments and artifacts for individual workflow tasks.

4 Standard Conform Cloud Runtime Model
Orchestration

In this chapter, we present an approach to orchestrate cloud deployments using the stan-
dardized data model and uniform interface provided by OCCI. Due to the flexibility offered
by OCCI, we follow a Models at Runtime approach and extend the standard allowing to
automatically orchestrate a cloud environment. Figure 4.1 separates this approach into the
Orchestration (1) of the cloud resources and their Causal Connection (2). We provide a brief
overview of both parts with details being explained in the remainder of this chapter.

The Orchestration (1) covers procedures to adapt the Runtime Model, i.e., the abstrac-
tion of the Cloud deployment. Hereby, it aims at recreating the state described in
the Design Time Model within the Runtime Model. The Design Time Model is either cre-
ated by a human user or as a result of another programmatic system which is used to
monitor, plan and adapt a running cloud deployment. Independent of the model’s ori-
gin, several M2M transformations get applied on it before it serves as an input for the
Adaptation Engine. The Adaptation Engine is used to extract and compare the Runtime Model
to the Design Time Model and derive required OCCI requests to adjust it accordingly.

The Causal Connection (2) describes how we process requested OCCI elements to
synchronize the Runtime Model with the Cloud. Hereby, existing extensions for OCCI can be
reutilized, e.g., extensions introducing container [104] or configuration management [105].
In this thesis, we combine both approaches to couple container and configuration manage-
ment using a runtime model. Additionally, we extend the OCCI data model with monitoring
instruments to reflect operational parameters of a specific node.

Section 4.1 describes the Orchestration (1) process in more detail, while Section 4.2 covers
the Causal Connection (2) between the cloud and the runtime model.

Orchestration @ : Causal Connection @

: s i : | =
Design Time Im:plg Adaptation % Runtime sync@onize
Model Engine Model VZ

M2M TT extract ’—‘

Figure 4.1: Overview: Standard conform cloud orchestration.

4 Standard Conform Cloud Runtime Model Orchestration 38

4.1 Model-Driven Cloud Orchestration Process

Adjusting a running cloud deployment to ever shifting environments requires a procedure that
adapts the deployed cloud resources accordingly. In this section, we present an orchestration
procedure that complements the OCCI data model and exploits its uniform interface to
manage any kind of resource. In our preliminary work, we only covered the management of
TaaS resources [216]. In this thesis, we enhance the orchestration procedure to incorporate
model transformations to increase the portability of models as well as to simplify the
modeling process. Furthermore, we introduce a pre-processing model transformation that
adds platform specific information to manage platform related resources. To actually transfer
an OCCI design time to the runtime model, an adaptation engine is used. This engine follows
the concept of a MAPE-K control loop and compares the running and desired state to derive
and execute required adaptive steps. Finally, to investigate the generalizability of OCCI, and
thus our approach, we define a model transformation to orchestrate TOSCA topologies via
the OCCI interface.

Section 4.1.1, goes into detail about the introduced pre-processing and platform spe-
cific model transformations. Section 4.1.2 defines the mapping of the TOSCA standard
to the OCCI standard which represents an optional design time transformation. Finally,
Section 4.1.3 describes the adaptation engine including individual steps required to adjust
the runtime model to adapt it to the design time model state.

4.1.1 Design Time Abstraction Layers

The automated deployment and runtime management of a cloud topology requires different
kinds of information ranging from technical to platform specific details. To address portability
issues and reduce the complexity of the model at design time, we resort to the model
abstraction layers defined by the MDA. Figure 4.2 depicts the CIM, PIM and PSM layer
and how our defined M2M transformations apply on a small example. While individual
transformations exist that transform the model from one abstraction layer to another, a
validation step can be integrated at each state. This step allows checking whether defined
model constraints hold, giving the user feedback on possible warnings and errors.

MDA transformation pipeline

PIM PSM
= -B—@m—E
SSH M2M Network

Figure 4.2: Design time model abstraction layers and transformation process.

39 4.1 Model-Driven Cloud Orchestration Process

The CIM presents an abstraction layer in which technical details are removed from the
model. In our domain this is only possible to a certain degree, as the model is supposed
to describe the composition of cloud infrastructure and deployed components. Thus, most
technical information is already present in the model. We use an M2M transformation to add
certain technical information in case it is missing, e.g., in form of default values.

We reach the PIM by adding further technical information that is cloud provider inde-
pendent. This includes, e.g., the addition of preconfigured SSH keys or user data that is
attached to compute nodes, making them accessible later on in the cloud. Additionally,
the transformation checks whether certain constraints are violated, e.g., whether duplicate
identifiers exist. Depending on the violated constraints either a warning is produced by the
model transformation or it is automatically repaired. Overall, the transformation reduces the
complexity to create the initial model, as well as the time required for it.

The PSM is required to automatically deploy the modeled cloud topology in the envi-
ronment of a chosen cloud provider. For this, we perform an M2M transformation that
adds pre-defined provider specific information, as well as elements required by utilized
frameworks. Hereby, the added information largely depends on the utilized OCCI extensions
and how introduced elements handle cloud provider specific behavior. For example, OCCI
Resource and OS templates offered by the cloud provider can be attached to the modeled
compute nodes which describe the VM size and flavor or the image to be used for a VM.
While the automatic addition of provider specific information is convenient, we additionally
use the M2M transformation to add elements required by the MoDMaCAO framework
which is later used to configure modeled compute nodes. To fulfill these requirements, a
management Network is added to the OCCI model. Additionally, an OCCI NetworkInterface
link is added to each compute node that targets the management Network. This link is marked
with a specific mixin indicating its use for configuration management. The transformation
ensures that at least one network is present for the creation of a VM, which is required
by some cloud environments, such as OpenStack. Furthermore, a mixin is added to each
infrastructural resource to map the id of the OCCI resource to the id assigned by the cloud
provider.

At this stage, the model is ready to be deployed and can be validated in order to check
whether all constraints are fulfilled. In order to increase the portability of designed models,
we additionally defined an M2M transformation that can operate on deployed runtime models
to decouple them from provider specific information, so that they can be used in another
environment as well. In addition to the presented MDA abstraction layer transformations,
further M2M transformations can be performed at design time. For example, in the scope of
this thesis, we transform a TOSCA topology into an OCCI model in order to evaluate the
compatibility between both standards.

In the following, we describe a mapping between the TOSCA standard and OCCI which
we use to demonstrate the generalizability of OCCI and our approach.

4 Standard Conform Cloud Runtime Model Orchestration 40

4.1.2 Mapping of TOSCA to OCCI

Both the TOSCA and OCCI standard specify an extensible language for cloud deployments
using a type-instance pattern. In the scope of a cooperation, we designed a mapping between
the standards that can be used within our orchestration process as a preliminary transforma-
tion. In this thesis, we focus on the capabilities of OCCI and use this mapping to investigate
the generalizability of the OCCI interface and thus our orchestration procedure. Therefore,
we briefly describe the concept of the transformation in the scope of our orchestration proce-
dure. A concise description of the mapping and transformation can be found in the respective
publication [217]. As shown in Figure 4.3, we separate the description of the transformation
into a mapping of the type and instance-layer.

In the Type Layer we map the elements defined in the TOSCA Types definition to the OCCI
classification and identification mechanism. This mapping is used to generate two OCCI
extensions. One that represents the TOSCA normative types (OCCI-TOSCA Normative), and
one that contains the elements of TOSCA custom types (OCCI-TOSCA Custom). We register
these generated extensions within an OCCI Interface to allow for management requests of
these specific types. In the Instance Layer (see Figure 4.3), we transform a TOSCA Topology
to an OCCI Model that can serve as input for our OCCI Orchestration Process. In the following,
we describe the mapping of the individual elements in both layers.

4.1.2.1 Type Layer

Table 4.1 maps TOSCA types to the OCCI classification & identification mechanism. Similar
to kinds and mixins, node types and relationship types define descriptive building blocks for
cloud resources. Typically, the normative types represent an abstract base from which custom
types inherit. To transform normative as well as custom types we accordingly implement
two subsequent transformations for this meta layer. Within these transformations, we map
TOSCA types to an OCCI mixin which can be applied to a specific kind. In order to apply
the generated OCCI mixins to actual OCCI resources, each mixin representing a TOSCA

ype ayer o o bet-sregister | 0CC
@ |:> Interface
Custom '
uses |
Instance layer OCCI

TOSCA |:> OCCl I input ___| Orchestration
Template M2M Model Process

Figure 4.3: Model transformations to map TOSCA and OCCI.

41 4.1 Model-Driven Cloud Orchestration Process

TOSCA types OCCI classification & identification
Node type Mixin applied to Resource Kind
Relationship type Mixin applied to Link Kind
Property & Attribute Attribute

Requirement type OCL Constraint

Capability type Mixin

Interface type Mixin (only actions)

Table 4.1: TOSCA to OCCI type layer mapping.

normative type can be applied to an OCCI kind from one of the standardized extensions, e.g.,
compute or component. For each type specified, properties and attributes are transformed into
OCCI attributes. The TOSCA capability type extends another type with certain capabilities,
e.g., to express the utilization of a specific service endpoint. This resembles the concept
of an OCCI mixin allowing to extend the capabilities of a kind. Combined, all properties
and attributes specified in the node type can be represented in OCCIL. TOSCA requirement
types can be implemented indirectly by transforming them to OCL within the OCCI model.
The actual body of the constraint, however, has to be filled manually. An interface type
defines operations that can be performed on the node, which complies to OCCI mixins
specifying only actions. While most TOSCA types can be transformed into OCCI, very
abstract and design time specific information that do not reflect actual cloud resources can
not be mapped. This covers, e.g., scaling and artifact groups offered by TOSCA which would
require additional OCCI extensions to be conceptually designed.

To visualize the concept of the transformation, Figure 4.4 provides a small example
for the transformation of the normative TOSCA Types to an OCCI extension using a UML
object diagram. This diagram visualizes an example normative node type with one of its
capabilities. Hereby, we shortened the extensive TOSCA type names for brevity. The
shown database:NodeType abstracts the utilization of database components and is typically
extended for specific database frameworks. This node type possesses multiple attributes from
which one is used to describe the administrative user. In addition, the node type specifies an

TOSCA [yarabase:NodeType OCCI-TOSCA (Normative)| | MoDMaCAO
Types ¥ ser: String endpoint:Mixin Platform
lendpoint:CapabalityDefinition | |:> port.lzr;t i vdelpe.nFis
M2M pends |component.M|X|n|
type endpoint:Capabality Type database:Mixin \}/ applies
- port: int - user: String |component:Kind&

Figure 4.4: Example TOSCA to OCCI type layer transformation.

4 Standard Conform Cloud Runtime Model Orchestration 42

TOSCA templates OCCI core base types
Node template Resource with a Mixin instance
Relationship template Link with a Mixin instance

Table 4.2: TOSCA to OCCI instance layer mapping.

endpoint:CapabilityDefinition which is typically used for any kind of distributed service. The
properties provided by this definition are modeled in the connected endpoint:Capability Type
covering, e.g., a property for the port that can be specified for later use by a database node
template. In the OCCI-TOSCA (Normative) extension, this node type is transformed to the
database:Mixin which has the user property stored as an OCCI attribute. This mixin depends
on the capability transformed into the endpoint:Mixin. This dependency relation resembles
the notion of a generalization and therefore provides the database:Mixin with access to the
port attribute. Moreover, due to the dependency to the MoDMaCAO component:Mixin, the
database:Mixin can also apply to the component:Kind from the OCCI Platform extension.

4.1.2.2 Instance Layer

In Table 4.2, we map TOSCA templates to the OCCI core base types covering the instance
layer. In general, templates specify the occurrence of a node or relationship in a topology
template instantiating the properties given by its accompanied type. Therefore, node tem-
plates fit the notion of an OCCI resource and relationship templates the concept of an OCCI
link. In addition, all transformed OCCI resources and links possess a specific mixin that
matches one of the previously generated normative or custom types.

An example transformation of the instance layer is shown in Figure 4.5. Within this
example, the previously generated TOSCA types from the example in Figure 4.4 are reused
within the depicted templates. The TOSCA Template consists of a single db:NodeTemplate
that is of the database type. Using this type, the template can define the administrative user
account to be used by the database, which in this case is set to admin. Additionally, the
template aggregates a :Capability instance of the endpoint type in which the port to be used
is configured to 3306. In the OCCI Model this template is transformed into the db:Component
with a database:Mixin. This provides access to the modeled information during the lifecycle
management of the component allowing us to configure the database accordingly.

TOSCA Template OCCI Model

db:NodeTemplate :Capability database:Mixin
- type = database [@—- type = endpoint :> ‘ db:Component K‘ user = admin

- user = admin - port = 3306 M2M applies | port = 3306

Figure 4.5: Example TOSCA to OCCI instance layer transformation.

43 4.1 Model-Driven Cloud Orchestration Process

4.1.3 Model-Driven Adaptation using OCCI

To adapt a running cloud deployment, we treat the Design Time Model as a high level goal to
be reached, as shown in Figure 4.6. This model is an instance of the OCCI Metamodel and is
either manually created by a User or generated by a System. The Adaptation Engine takes
this model as input and follows the concept of a MAPE-K loop to adapt the Runtime Model
and its causally connected system. To determine the required requests, the engine possesses
a Monitor step that extracts a Runtime (Snapshot). This snapshot contains the Knowledge
about the system’s current state which is required to perform adaptive steps. Based on this
knowledge, we Analyze required steps by comparing the entities of both models against each
other having the same id and kind. As a result, we identify whether an entity needs to be
deleted, updated or removed allowing to Plan a sequence of requests required to reach the
desired state. Finally, we Execute this adaptation plan resulting in adaptive requests being
sent to the OCCI Interface. In the following, the MAPE-K loop is described in more detail.

4.1.3.1 Monitoring and Analysis Step

The monitoring step covers the extraction of the information contained within the runtime
model. This procedure can be done over several means and highly depends on the capabilities
provided by the OCCI interface. For example, an interface may be offered that grants direct
access to the maintained runtime model or a message broker that notifies us when the runtime
model has changed. Moreover, information about the running entities can be retrieved
directly from the OCCI interface and be assembled into a model. To know the requests that
need to be performed to gather the complete runtime model, the registered OCCI extensions
can be queried. The response of this query provides information about all registered OCCI
kinds and thus paths that need to be requested to gain insights about all provisioned resources.
To form a knowledge base around the running cloud deployment, we store the extracted
information as a runtime model snapshot.

o....._instanceof Joccr] instance of
Metamodel
use

Adaptation Engine

. : input .
Design Time Inpu Runtime
Model J—»(— Plan Execute — Model

Analyze

Q @* 1— Knowledge ocGCl
< Monitor |<—g— Interface

T e Runtime
ser ngine (Snapshot)

Figure 4.6: Adaptation process components.

4 Standard Conform Cloud Runtime Model Orchestration 44

After the extraction of the runtime model, all the information required to perform adaptive
steps can be derived. As a first step, we match each resource from the design time and
the runtime model. For this match we make use of the entity kind and id as they represent
immutable attributes. In addition, provider specific identifiers, assigned to individual compute
nodes in form of mixins, are incorporated in this matching process. Based on the comparison
we determine whether a resource and its link is currently present or absent in the cloud,
indicating the need for its creation or deletion. Figure 4.7 highlights the Analyze phase
and provides a short example. In this phase, three different sets are built containing the
elements from the Design Time and Runtime model. In the given example, both models
contain three elements comprising one network, compute and component node. Elements
only present in the Runtime model are mapped to a Delete action, as they are not required by
the state indicated by the Design Time model. In this case, the entities to be deleted comprise
Component; and Compute; as well as its related links. The second set is concerned with
entities requiring an update of defined attributes. This set is build from the intersection of
the Runtime and Design Time models, i.e., the Network node, which serves as input for the
Update step. The last set comprises entities only present in the Design Time model which
indicates that they are currently missing in the cloud. The resulting set is used as input for
the Create step. In our example, this includes the Compute, node, the Component; node, and
their links.

4.1.3.2 Planning and Execution

The Plan and Execute phase, shown in Figure 4.7, is responsible to apply the actions on
the identified sets obtained during the analysis. As a first step within the plan, we Delete
all entities not required anymore. This reduces the amount of running resources during
the process to a minimum while avoiding quota conflicts. Thereafter, we Update entities
adjusting the attributes according to the desired values. Finally, we determine the order
in which requests have to be sent to Create the entities currently missing in the runtime
model. The requests required to remove, update and add the elements to the runtime model

Arl;alyze | Design Time
untime ; @ A2\ @
; = &
og @ | U >

’@ Network Compute; Component,
Component; Computeq LG] :

O O T
Cocoocooocooooo = _____ _ — Tt==== F--==-==-=====d

Y
®

Plan and Execute

Figure 4.7: Comparison process and mapping to adaptive steps.

45 4.1 Model-Driven Cloud Orchestration Process

are automatically generated from the OCCI elements by deriving a REST request from the
elements kind, mixins, and attributes that conforms to OCCI’s uniform interface.

During the Delete step, we separate the elements to be deleted into links and resources.
Based on this separation we iterate over the resources to be deleted while executing a
deprovisioning procedure matching to the specific kind. In the general case, we decouple
each resource before the resource itself gets deprovisioned. For this, we start by deleting all
links contained within the resource from the runtime model. One exception to this rule is
the deletion of components. Here, it needs to be checked whether the underlying host also
gets deleted. If not and the compute node remains in the model, the component needs to be
undeployed before it gets removed from the model. For this procedure, the PlacementLink
connecting the component to its host component is still required. This allows removing the
artifacts of the component from the host. If the host is marked as to be deleted as well, no
undeploy action is triggered as the host is completely removed. Therefore, the time required
to undo certain configurations and delete the artifacts of the managed component is saved.

In the Update phase, adaptations to single entities within the model are taken over including
changes to attributes and mixins. However, not all attributes are subject to a change covering,
e.g., attributes which reflect runtime information such as state messages. Therefore, we first
filter for attributes of interest to be adjusted in the runtime model, such as the amount of
cores of a compute node. The remaining attributes are changed in the runtime model by
performing the according request. Similar to the delete step, further steps are intended to
trigger update behavior based on the managed kind. While this step triggers the change of
attributes in the model, the actual change in the cloud is performed by the kind’s effector.

Finally, we Create the entities introduced in the design time model and add them to the
runtime model. To resolve dependencies between the individual elements, we perform two
subsequent M2M transformations as shown in Figure 4.8. The first M2M transformations
creates a Provisioning Order Graph (POG) from the Design Time model, similarly to the
approach presented in [138]. Subsequently, we transform the POG into an Activity Diagram.
This diagram describes a sequence of OCCI requests to be executed in order to create the
remaining OCCI entities in the runtime model. The POG is an instance of a DAG Metamodel
and consists of a node for each link and resource within the Design Time OCCI model.
Hereby, an edge in the POG represents a request dependency between two nodes. Due to the
requirement of an OCCI link to have both its source and target active in the runtime model,
the dependencies within the POG result in a pattern that determines which resources need to
be created first, before being connected by links. In case of the example, the POG consists
of five nodes that each represent one OCCI entity as well as their dependencies. While
the generated POG contains only information from the Design Time model, the additional
Runtime information needs to be incorporated. This phase of the orchestration process only
considers the creation of new entities. Therefore, all entities already present in the Runtime
model are removed from the POG, e.g., the Network node. Now that the POG only consists of
elements that are missing within the Runtime model, we transform it into an Activity Diagram
which is an instance of the UML Metamodel. This diagram represents the provisioning plan to

4 Standard Conform Cloud Runtime Model Orchestration 46

(Runtime) Design Time instance of |OCCI
@ =V @ Metamodel </ [UML
&2 % R LIDAG Metamodel
; Compute, Component, Metamodel J instar?ce of

Network ;
POG instance _Qf____i Activity Diagram
M2M ° .".'._b‘ M2M
Y
dependency request

Figure 4.8: Model transformation chain generating OCCI request sequence.

be executed. To generate this plan, the transformation adds an action to the Activity Diagram
for each POG node. Hereby, each action represents an OCCI request to provision the entity
in the cloud, e.g., Component,. Thus, each action within the activity diagram represents
one OCCI element that needs to be added to the runtime model. After transforming each
node to an action, the dependencies within the POG are incorporated to the Activity Diagram
in form of control flows. In case of the example, this results in both the Compute, and the
Component, node to be requested in parallel as they are independent of each other. The links
on the other hand require both the target and the source resource to be created within the
runtime model. Thus, for the connection to the Network only the Compute, node needs to
be created, while the connection of the Component, to the Compute, node requires both of
them to be created first.

After the provisioning process has been finished, we start the deployment procedure of
newly added component and application nodes. Hereby, we initially check whether the
runtime model now equals the design time model regarding the entity structure. If that is the
case, all infrastructure resources are up and running. For the deployment process, we utilize
the actions provided by the component and application resources. In case of the extended
platform extension offered by MoDMaCAO this comprises the deploy, configure and start
action linked to individual configuration management scripts. Additionally, this step covers
the start-up of container resources as these, similar to components, possess the requirement
of an up and running host. The provisioning, deployment, and update logic itself is contained
within the individual effectors of the entities, i.e., within the components maintaining the
causal connection between the runtime model and the cloud.

47 4.2 Causal Connection to Cloud Environments

4.2 Causal Connection to Cloud Environments

While the previous section described how an orchestration of modeled entities can be
achieved, this section describes actions taken after the OCCI requests have been received. We
reuse the concept of the OCCIWare runtime server [123] which manages the runtime model
over a set of effectors. As shown in Figure 4.9, this server can be interpreted as a Middleware
that registers a set of Effector implementations. Hereby, one Effector exists for each registered
OCCI kind which accepts respective OCCI Requests to manage the Runtime Model and the
cloud. In general, the set of effectors can be divided into Infrastructure and Platform effectors.

Infrastructure effectors translate incoming requests to the proprietary interface of the
Cloud. Several cloud provider specific effectors for OCCI already exist. To perform our
studies, e.g., we reused the OpenStack effector [105] which forwards OCCI requests to our
private OpenStack cloud. Throughout our studies, we extend this effector to reflect changes
made to the cloud deployment over the cloud provider interface in order to build a concise
OCCI runtime model.

In this thesis, we focus on Platform effectors that communicate with the interface of
individual Compute nodes using, e.g., SSH. To foster more complex deployments, we
combine container and configuration management. Additionally, we exploit the functionality
of the OCCI interface to deploy sensors which monitor events in the cloud and update the
Runtime Model accordingly.

Section 4.2.1 highlights the combination of container and configuration management.
Section 4.2.2 describes the concept of a fully causally connected OCCI runtime model which
supports the management of sensors and the reflection of operational parameters.

4.2.1 Combining Container and Configuration Management

Currently, two OCCI extensions exist that enable the management of platform elements on
top of infrastructure resources. The MoDMaCAO platform extension [105] and the container
extension presented by Paraiso et al. [104] (see Section 2.3.3.2). In the scope of this thesis,
we contribute to the MoDMaCAO framework by introducing Container (1) management
and by extending Variable File (2) generation. The interaction between the elements of both
extension is exemplified in Figure 4.10.

Middleware

occl]
ggﬂest + Effector K}—--r-{ Infrastructure
readfjwrite |
Elér;térlne Platform

Figure 4.9: Establishing a causal connection via effectors.

4 Standard Conform Cloud Runtime Model Orchestration 48

In course of a supervised Bachelor’s thesis [218], we combine Container (1) and config-
uration management by enhancing the MoDMaCAO framework. To apply configuration
management on container nodes, they need to be reachable by the platform effector. There-
fore, we configure them to be accessible like a VM, e.g., by having an SSH client installed.
When a VM is used to host multiple containers, each container needs to be connected to
the network of the host and the SSH connection has to be established over several ports.
For the configuration of the container, we inject a script that is triggered on the container’s
startup. When activated this script configures the container using the SSH key and port
information which we extract from the modeled container node. Alternatively, existing
container management systems can be utilized, as well as plugins to directly connect or
configure the container. The information required is present in the runtime model, e.g., the
name of the container and the address of the host network interface.

Once a lifecycle action of a component is triggered, the MoDMaCAO framework generates
a Variable File (). This file provides the accompanied configuration management script
with access to the component’s attributes. To manage more complex deployments, we
extend the generation of this variable file by additionally reflecting the information of
surrounding entities. For example, in case a lifecycle action of the :Component is triggered,
the Variable File provides the Management Script access to the port attribute specified within
the master:Mixin, as well as information stored within connected components. To enable
the utilization of runtime model information for components that are pre-installed within
container images a mock-up:Component can be modeled. Such components can be placed
on top of container nodes and follow the purpose of interconnecting component instances
while providing access to attributes. Depending on the model’s level of detail, this empty
component can be filled with logic to incorporate runtime model capabilities allowing to
further configure or manage the component in the container. In case of the example, the
mock-up:Component may provide management actions and access to information about the
service that is pre-installed within the image of the Container.

Runtime Model Management Script

:Component
+ title = Master |Undeploy| | Start |
+ id = urn:uuid:

mock-up:
Component

| Deploy || Stop |

master:Mixin || | coupled

+ port = 50070

:Container
+ image =
worker

query

: enerate (2
:‘Compute || 921128 »P Variable File 2

Figure 4.10: Combining container and configuration management.

49 4.2 Causal Connection to Cloud Environments

4.2.2 Sensor Management and Reflection

Self-adaptive control loops require a rich knowledge base to support their decision-making,
e.g., to choose which control flow to follow in a workflow. Therefore, we designed a monitor-
ing extension for OCCI to gather and reflect monitoring results directly in the runtime model.
To reduce the workload for the monitored system, our extension is designed to distribute
sensors among different compute resources, while activating their monitoring capabilities
on demand. To enable a dynamic management and deployment of sensor capabilities, we
built the Monitoring extension based on the MoDMaCAO Platform extension [105], as shown
in Figure 4.11.

Each Sensor is composed of several monitoring instruments. Thus, it inherits from the
Application type which is typically used to aggregate Component instances. In this case,
the Component instances are specialized to represent monitoring instruments including a
DataGatherer, DataProcessor and ResultProvider. Each monitoring instrument inherits from
the Component type and thus can be connected via ComponentLink instances to a Sensor.
One DataGatherer is required in each Sensor, as it collects data about the object to monitor.
Additionally, multiple sensors may share the same data gathering or processing device or
service. The gathered data is processed by the DataProcessor which is responsible to derive
meaningful information to be monitored. This instrument is optional, as not all data to be
reflected requires post-processing. The ResultProvider is specific to a particular Sensor as
it transports the monitored information to the consumer. To reflect the results directly in
the runtime model, the OCCIResultProvider:Mixin needs to be applied. Thus, at least one
ResultProvider should be contained in each Sensor to make the gathered and processed
data available. This mixin provides an attribute to configure the endpoint of the OCCI
interface. Subsequently, this mixin allows sending requests to the OCCI interface with
updated monitoring information. A Sensor can contain multiple ResultProvider instruments.
For example, one could provide the monitored information directly to a user via E-Mail
notifications, while the other reflects the information within the runtime model. It should

MoDMaCAO Platform OCCI Core
| target \ [/—|target

| Component¢|10—*| ComponentLink L—01|Applicati?n| | Resource |10—*| ALink |

Monitoring

| DataGatherer OCCIResultProvider:Mixin MonitorableProperty

| Dataprocessor + reSUlt.proVider.endeint Seﬂ?“l‘_'1 + monitoring'property
+ monitoring.result

|
| ResultProvider |2 appliesto_|

Figure 4.11: Enhanced monitoring extension for OCCI.

4 Standard Conform Cloud Runtime Model Orchestration 50

Monitorin Sensor
g MonitorableProperty
(CPU, "Critical) ComponentLink
Data A ComponentLink 2 Result
Gatherer oy o{} '\ch Provider
Placement Data
Link Processor
/—=>\Networkinterface C_—:_i\ \?ém
4 ey &
Infrastructure Compute 1 Network Compute 2

Figure 4.12: Example cloud configuration with dynamic monitoring capabilities.

be noted, that only one of them is allowed to have an OCCIResultProvider mixin which
ensures the runtime model reflection. For this, the MonitorableProperty link is used. This
link connects the Sensor to the monitored Resource and possesses two attributes. The
monitoring.property can be specified by the user to label the monitored information. The
monitoring.result, on the other hand, is filled by the ResultProvider to reflect the information
within the runtime model.

An example instance of a cloud configuration using the aforementioned monitoring types
is displayed in Figure 4.12. Here, the cloud deployment consists of two VMs described via
compute type instances that are connected to a Network instance using Networkinterface links.
Compute 1 represents the VM to be monitored hosting a DataGatherer. This instrument is con-
figured to gather metrics about the CPU and memory utilization of its host. Compute 2 hosts
the DataProcessor and ResultProvider. The lifecycle of modeled monitoring devices is de-
scribed over the component FSM (see Figure 2.9) and managed over dedicated configuration
management scripts deploying them on the host targeted by the corresponding PlacementLink
instance. To configure and couple the monitoring devices with each other ComponentLink
instances can be used. This ensures their configuration and startup procedure, i.e., that the
DataGatherer is deployed and started prior to the DataProcessor and ResultProvider. Finally,
each monitoring instrument is connected over a Sensor which is modeled by ComponentLink
relations. Furthermore, the link from the Sensor to the first compute node represents the
MonitorableProperty holding the property CPU, which is currently set to "Critical".

5 Runtime Workflow Model Concept

In this chapter, we present our models at runtime approach to support the execution of work-
flows on top of a custom infrastructure. By coupling dynamic infrastructures with workflow
capabilities, we allow tailoring individual tasks of the workflow to their specific needs, e.g.,
by dynamically deploying computation clusters. As infrastructure and cloud knowledge
is required, we assume two types of users. The scientist providing knowledge about their
domain, as well as a cloud architect who can model the tasks’ underlying infrastructure and
applications. While the management of the infrastructure requires a separate expert, the
deployment and applications can be designed and modeled in such a manner that they can be
reused in multiple workflows making them more accessible to the scientist. Similar to other
concepts that automate the execution of scientific workflows, the approach can be separated
into the workflow modeling language and the engine interpreting it. As shown in Figure 5.1,
we focus on models at runtime characteristics and divide the presentation of our approach
into the Workflow Orchestration (1) and the Causal Workflow Connection (2).

The Workflow Orchestration () process is built around a Workflow Engine which takes the
Design Time Workflow Model as input. While the Design Time Workflow Model represents the
high level goal to be reached, i.e., the execution of the workflow, the Runtime Workflow Model
provides valuable information about the cloud and workflow runtime state and serves as a
prominent knowledge base for the execution of a workflow. By combining both runtime and
design time information, the Workflow Engine derives a cloud runtime state at each point in
time by forming a new required runtime model. The generated cloud configuration is then
enacted by the Adaptation Engine (Chapter 4) which sends the appropriate OCCI requests to
adjust the Runtime Workflow Model.

Workflow Orchestration @ :Causal workflow connection @

u REJntianJe 2

l:> Workflow Workflow synchronize

R Model NS

Adaptation |gocol
Engine :

Figure 5.1: Overview: Runtime workflow model concept.

Design Time
Workflow
Model

5 Runtime Workflow Model Concept 52

The Causal Workflow Connection (2) forwards these Runtime Workflow Model adjustments
to the Cloud. To couple workflow elements and resources from the cloud domain, we
designed a concept in which workflow tasks can be attached to modeled cloud infrastructures
and applications. Using this connection, we allow deploying arbitrary infrastructure that
may shift throughout the execution of a workflow. Especially the abstract representation
of the runtime state allows scientists to observe and interact with the workflow at runtime.
We realize the concept by specifying an OCCI extension that adds workflow capabilities to
the standard. This in turn provides access to already existing tooling that can dynamically
manage cloud resources and provide access to runtime model capabilities.

Figure 5.2 exemplifies the goal to be reached by our extension and workflow engine. The
figure shows a Design Time Workflow with three subsequent tasks that get decomposed into
individual Runtime States. In this figure, we only show the Infrastructure requirements of
each task to provide an easier overview of the concept. In this example, task A requires a
single VM and storage which is used to gather data. Task B needs two VMs connected over
a network that together form a computation cluster to analyze the gathered data. Finally,
for task C a single VM is sufficient which deploys a web service that provides access to
the results of the analysis. In case of this rather simple workflow, the engine derives the
Runtime States in such a manner, that first the infrastructure of task A is transferred to the
runtime model and thus the cloud. After task A has been executed the workflow requirements
for task B are fulfilled. This leads to the deployment of its infrastructure and the execution of
the task itself. Finally, after task B has been successfully executed, the deployment of the
infrastructure for task C is performed. Once the deployment process is finished, the task is
executed which finishes the workflow.

In Section 5.1, we describe the different capabilities provided by the OCCI workflow
extension, followed by Section 5.2 which presents the engine orchestrating the workflow.

" -Runtime States -~

Figure 5.2: Design time workflow example with highlighted runtime states.

53 5.1 Runtime Workflow Metamodel

5.1 Runtime Workflow Metamodel

In this section we present the concept of the runtime workflow metamodel and how it can be
applied as an extension to the OCCI standard. Hereby, we reflect the state of the workflow
and the infrastructure within the runtime model. To conform to already existing approaches,
the concept resembles the one of a directed graph and consists of resources and links in
terms of the OCCI standard. A subset of utilized entity kinds, i.e., a subset of the metamodel,
as well as an example model instance is shown in Figure 5.3. Each element within the
metamodel is a specialization of either a resource or link in terms of OCCI. We omitted the
inheritance relationships for clarity and replaced them with white boxes indicating a resource
inheritance and gray boxes representing a link inheritance. We build our extension on top of
existing OCCI extensions which can be separated into three layers: the Workflow layer, the
Platform layer, and the Infrastructure layer.

The Workflow layer allows modeling a sequence of computations that should take place.
Hereby, the computation to be performed is represented by the Task element, while a
TaskDependency can be used to sequence two tasks. This link can be further specialized into
a ControlflowLink or a DataLink to support control and data flows. In addition to the base
task type, we introduce Decision and Loop nodes representing specialized versions of a Task.

Workflow Example Task Stack
Decision Task | @ TaskDependency||| @T .
- 3 as
| ControlflowLink [DataLink |
\Z Execution Platform
PlatformDependency | ExecutionLink | Link Dependency
Platf — L
atform @ @ Application
Application ComponentLink Component ST
ﬁl e
| Sensor |0%|MonitorableProperty| | PlacementLink | @Componenta
. PlacementLink
\\%
Compute Container Storage Network =\c .
=)om e
A A A =/~
| Contains | StorageLink |Network|nterface|
/[\ /I\ /[\ @ Storage
Infrastructure 4

Figure 5.3: Runtime workflow concept with resource types in white and link types in gray.

5 Runtime Workflow Model Concept 54

These specializations allow modeling decision-making processes as well as iterations within
the runtime model. To dynamically provision dedicated architectures for individual Task
instances, its platform requirements need to be modeled as well as the computation to be
performed.

The Platform layer is reached over the PlatformDependency and ExecutionLink types. The
PlatformDependency connects the Task to an Application that needs to be active prior to the
execution of the Task. The execution of the Task itself is modeled via an ExecutionLink. This
link typically targets a Component representing the computation to be performed by the
Task. We model the computation using Platform layer elements, as the executable represents
an artifact that needs to be deployed on the provisioned infrastructure. As both Task and
Application nodes can be connected to components, we differentiate between an executable
component and an application component. This differentiation is derived over contextual
information and the kind of links connecting the individual resources. An application
component is solely connected via a ComponentLink to an Application representing, e.g.,
a worker node or service within a large computation cluster. An executable Component
is targeted by an ExecutionLink and describes a computation to be triggered, e.g., a job
analyzing data from a repository which utilizes the deployed computation cluster.

The Infrastructure layer is composed of Compute elements, e.g., VMs, serving as hosts
for these Component elements. In OCCI these Compute nodes can be further connected to
additional Storage or Network instances. Due to the connection of the Workflow layer to the
Platform layer and the connection of the Platform to the Infrastructure layer, we can model
and trace the individual application and infrastructural requirements of a Task.

Figure 5.3 depicts an Example Task Stack that highlights the structure of the first task
from Figure 5.2. In this example, the Task represents a data gathering job that requires a
specific Application to be deployed, e.g., data gathering functionalities. Hereby, the platform
requirement of the Task is modeled via a PlatformDependency binding it to the Application.
The Application itself consists of a single Component, which is an application component
used to abstract several deployment and lifecycle procedures. To host the Component, a
Compute node is modeled. In addition, a Storage is attached to the Compute node to store the
data gathered by the Task. To trigger the execution of the Task an ExecutionLink is modeled
which connects it to the executable Component,. This executable Components is also placed
on the Compute node. In this example the Component, abstracts the lifecycle actions to
deploy, start, and stop the computation associated with the Task.

While the Platform and Infrastructure layer is already discussed in Chapter 4, this chapter
is build around the Workflow layer and the different task specializations introduced in the
overview. In Section 5.1.1 we give further information about the basic runtime workflow
model capabilities covering, e.g., possible task states. Section 5.1.2 discusses the decision-
making procedures and the connection to monitoring capabilities. Finally, Section 5.1.3
introduces loop capabilities and their parallelization.

55 5.1 Runtime Workflow Metamodel

5.1.1 Runtime Model Capabilities

In this section, we go into further detail about the runtime model capabilities of elements in
the workflow layer. To reflect and manage the execution of the workflow, each task and data
flow possesses its own state. This state is described over an attribute in the model with an
assigned FSM. This FSM comprises all possible states of the task or data flow and describes
how actions can be enacted on them to traverse through these states. We depict this FSM
in Figure 5.4 using the UML notation. The states comprise a scheduled, active, inactive,
skipped, and finished state. The initial state of each task is scheduled indicating that the task
can be processed as soon as its requirements are fulfilled, i.e., that the required infrastructure
is available, and all preceding tasks are in a finished state. To trigger the execution of the task,
or data transition, the start action can be performed. The start action of a task is coupled
with the deployment and execution of its executable component. As defined earlier, this
component describes a computation task to be performed on the compute node it is hosted
on. During the execution of the task it may be stopped via the stop action. This action
transitions the task from an active to an inactive state. From the inactive state, the start action
can be triggered again transferring the task into the active state. Furthermore, an error state
exists, which we omit for clarity. This state is reached on failed transitions, e.g., if an error
occurs during the start action. As soon as the computation has finished, the finished state
of the task element is reached, indicating that subsequent tasks may be executed. After the
execution of a task it may be rescheduled using the schedule action, bringing it from the
finished to the scheduled state again. Among others, this transition is used to control the
execution of loop iterations allowing to re-execute modeled tasks with new input. Finally, the
skipped state can be reached from the scheduled or inactive state. This state indicates that
the workflow requirement for subsequent tasks is fulfilled even though it was not executed.
Therefore, the final state can be reached from the skipped state. We utilize this capability
for decision-making processes when only a specific control flow should be followed. The
relation of the skipped state and the accompanying decision-making pipeline is described in
the following section.

([schedule)
scheduled start active e O
skip [schedule stop |start
skipped ski inactive

Figure 5.4: Finite state machine representing the states of a task.

5 Runtime Workflow Model Concept 56

5.1.2 Decision-Making Pipeline

To dynamically decide which control flow to follow, each workflow language and manage-
ment system requires decision-making capabilities. Typically, the decision to be made is
performed at runtime and either depends on intermediate results of individual workflow
tasks or manual input manipulating which sequence to follow. In order to incorporate such
decision-making capabilities in our workflow runtime model, we introduce a decision ele-
ment and a control flow guard. Both these elements are inspired by the UML standard which
already utilizes the concept of guards, e.g., within activity diagrams or state machines [219].
In general, a guard can be attached to a link in order to evaluate whether a certain condition
is true. Based on the result it is then decided whether the task followed by the link is eligible
for execution. While the utilization of these decision nodes is well known for the use in
design time models, we further describe its utilization in a runtime model environment with
special regards to coupled infrastructural resources. An overview of the decision-making
capabilities is visualized in Figure 5.5. In the following, we provide an in detail description
of the individual elements.

The Decision element is a specialization of a Task, as it represents a step to be executed
within the workflow. Compared to a typical Task however, its purpose is to gather, process,
and store runtime information which is then used to decide which control flow to follow.
As the Decision is a Task, it possesses the same characteristics such as possible states and
actions that can be performed on it (see Section 5.1.1). This also includes the possibility
to model application and infrastructure requirements via PlatformDependency links, as
well as the coupling of executable artifacts via an ExecutionLink. Compared to the usual
Task, the Decision node is encouraged to utilize a Sensor as executable which can be, e.g.,
checked by an OCL constraint. The executable Sensor is responsible to inspect, aggregate,
and reflect the information that is used to decide which control flow to follow. While a
Sensor instance is designed to continuously produce monitoring results, we designed the
Decision node to extract the information from the MonitorableProperty link of the Sensor.
The extracted information is then stored within the workflow.decision.input attribute of the
Decision. Thereafter, the Sensor is stopped, as all the information required for decision-
making is available in the Decision node and the monitoring procedure is not required
anymore. While a Sensor can be used to fill this attribute automatically, it can also be
adjusted via manual input. This allows the user to alter the control flow dynamically at
runtime. For this, a single request is sufficient to adjust the runtime model. After the
workflow.decision.input attribute is filled, an evaluation pipeline is triggered to decide which
control flow to follow by adjusting the state of subsequent Task instances. The evaluation
itself is build around the workflow.decision.expression attribute which is defined in the
Decision node. This attribute allows users to describe how the runtime information stored
within the workflow.decision.input attribute is evaluated, e.g., using a Boolean expression.
The result of the evaluation is stored within the workflow.decision.result and compared
against attached ControlflowGuard instances.

57 5.1 Runtime Workflow Metamodel

Resource

ControlflowGuard

+ controlflow.guard

Decision ‘< @—> ExecutionLink
+ workflow.decsion.input

+ workflow.decision.result Sensor

|

|

|

| .. .

I + workflow.decision.expression
|

|

|

applies to

Figure 5.5: Runtime workflow decision concept.

The ControlflowGuard element is a specialized Mixin which appliesto a specific
TaskDependency instance. While the information used for the decision-making pro-
cess is stored within the Decision node, the decision on whether a certain control flow
should be followed is denoted within the controlflow.guard attribute. This attribute specifies
which condition must be met to pursuit the control flow it is guarding. In case of a decision
based on a Boolean expression, this guard may be true or false. If the condition of the
guard matches the decision result, the Task targeted by the TaskDependency remains in a
scheduled state. Therefore, it is ready to be processed as soon as its infrastructure has been
provisioned. If the condition evaluates to false, the task connected by the TaskDependency
is transferred to the skipped state, as well as all subsequent tasks that cannot be reached
otherwise. The skipped state indicates that the Task is not performed in this iteration of the
workflow. Additionally, the skipped state allows for subsequent tasks to be executed next, as
the task has been successfully processed for this iteration of the workflow. This allows the
engine to operate until each task is in either a finished or skipped state.

Figure 5.6 provides an example runtime workflow instance highlighting the utilization of
a Decision node in its active state. The Decision node ensures that only one of the follow-
up tasks are executed instead of both running in parallel. In this figure, we highlight the
workflow layer and therefore omit infrastructural resources for the sake of simplicity. In the
example workflow, Task A just reached the finished state allowing the subsequent Decision
to be executed. This in turn leads to the deployment of the Sensor by the workflow engine
which is then used to gather the decision-making information. After the Sensor has been
deployed, the Decision Pipeline is triggered. The deployed Sensor fills the input attribute of
the Decision with the value "B". Based on the gathered input, the expression of the Decision
is evaluated. In this case, it is checked whether the gathered runtime information matches
"B" (input.equals("B")). Thereafter, the evaluation of the expression is stored in the result
attribute, which in this case is true. Finally, the result attribute is compared against the control

5 Runtime Workflow Model Concept 58

ask Decision
>

finished

' Decision Pipeline

@ (input] [expression | (result|§
"B" | linput.equals("B") | | true i

iSensor

Figure 5.6: Example runtime workflow model with decision-making capabilities.

flow guards ([true] and [false]) of the connected task dependencies leading to the tasks B and
C. As visualized by the figure, task B remains in the scheduled state, as only the guard to
task B matches the decision’s result (true). The guard to task C however does not match the
decision’s result and therefore is skipped. Even though task C is skipped, task D remains
in a scheduled state, as it can still be reached over the control flow of task B. At this point
the decision node has completed its decision-making process transferring it to the finished
state. Therefore, all tasks prior to task B are now finished allowing its infrastructure to be
provisioned and the task itself to be started next. After task B is finished, D can be executed
as it is still scheduled. As soon as D has reached the finished state, each task within the
workflow is either skipped or finished. Therefore, the termination condition of the workflow
management system is reached completing the workflow. In the following, we discuss how
the introduced decision-making capabilities can be extended in order to support loops within
our runtime workflow model.

5.1.3 Loop Reflection and Parallelization

In this section, we introduce our concepts to reflect and manage the execution of tasks that
are contained within a loop. Furthermore, we discuss how these loops can be performed in
parallel including a duplication of assigned infrastructural resources. Even though a task
may be implemented to internally loop over a set of items, this internal procedure does not
reflect the current iteration of the loop within the runtime model. Therefore, we introduce
a loop element which reflects all the information required to manage a DCG. Figure 5.7
highlights the necessary additions to our runtime workflow metamodel to model and reflect
loops within a scientific workflow. Section 5.1.3.1 describes how a loop can be modeled and
reflected at runtime. Thereafter, in Section 5.1.3.2, we describe how loops can be modeled
for a parallel execution of looped tasks.

59 5.1 Runtime Workflow Metamodel

5.1.3.1 Loop Reflection

Throughout each iteration, a loop node needs to decide whether to perform an iteration or not.
For this, we define a Loop type that inherits from the Decision kind, as shown in Figure 5.7.
Therefore, the same attributes and mechanics described in the decision-making process are
used within the loop such as the decision input and expression attributes (see Section 5.1.2).
Furthermore, a Loop inherits all the actions of a Task and can therefore be started, stopped,
skipped, and scheduled (see Section 5.1.1). Additionally, due to this inheritance, a Loop
can be connected to another Task using a TaskDependency. This Task may again point to a
sequence of tasks which end with the Loop element forming the actual loop.

To trigger the execution of a Loop, its start action has to be requested. This action transfers
the Loop from the scheduled to the active state. This state describes that the loop is currently
processing its looped task instances. After the start action has been triggered, the decision-
making process of the Loop is executed. This process checks the configured expression
against the gathered runtime information. If an iteration is required, each task in the loop is
scheduled allowing them to be processed. Otherwise, the tasks are transferred to the skipped
state which indicates that they are not mandatory to complete the workflow execution. During
each iteration, a loop infuses its tasks with specific items to process. For this, we utilize
the Looplteration mixin that can be filled with a name and the value of the variable which

s~ Fesouee
/\

Replica _ Task
L+ replica.grou !
pioa.grotp - ! TaskDependency
+ replica.source.id :
|
, | —
_Looplteratlon] Decision target NestedDependency
— + loop.iteration.var.value
+ loop.iteration.var.name
Loop
ParaIIgILoop + loop.iteration.count source
+ parallel.replicate.number ~ <>
_________________ _applies to

For ForEach While

+ loop.item.delimiter
+ loop.item.name

Figure 5.7: Runtime workflow loop and parallelization concept.

5 Runtime Workflow Model Concept 60

is introduced to the executable component of a Task. When the item is distributed the first
task in the loop can be executed. As soon as the final looped task has reached the finished
state, the Loop itself is notified. Thereafter, a further decision-making process is performed.
Hereby, the decision result attribute is reset as it needs to be reevaluated based on the changed
runtime information, e.g., the iteration count or the amount of items left to process. It should
be noted, that no new runtime information is gathered by the sensor, as we assume that the
items to be processed do not change after they have been gathered. After the decision result
has been calculated anew, each task that possesses a control flow with a fulfilled guard is
rescheduled. This means, if another iteration is required, all looped tasks are rescheduled,
allowing them to be processed and started again. Otherwise, if no further iteration is required,
the loop as well as its containing tasks remain in the finished state. If no iteration is required
at all, all looped tasks are transferred to the skipped state. Even though no iteration is
performed, the Loop is executed successfully reaching the finished state allowing to perform
follow-up tasks.

To execute the decision-making process and support the looped tasks with dedicated
information, each Loop requires different kinds of information and, therefore, attributes. In
general, each Loop has access to a variable that indicates the amount of iterations already
performed (loop.iteration.count). This attribute, e.g., helps to execute a loop a certain amount
of time. Further typical loop types are the ForEach, For and While loops. While these can
be interpreted as specializations of a Loop, we modeled them as mixins as they can be
dynamically applied to the Loop. Depending on the kind of loop, different information
needs to be reflected. For example, the ForEach loop needs to slice the gathered item set
into individual items to be passed to the looped tasks. For this, the loop allows specifying
delimiter as well as a name attribute to represent the item. To distribute the items among
the looped tasks, multiple Looplteration mixin instances are created and attached to them.
Hereby, the value and name attribute are set to the value of the delimited item and the name
attribute configured in the ForEach loop.

To provide a more concrete overview of the loop concept, Figure 5.8 depicts an example
runtime workflow instance that contains a for-each Loop with three Looped Tasks, i.c., the
tasks B to D. Again, we omit the infrastructure layer to provide a clearer overview of the
workflow layer. The Loop itself iterates over runtime information gathered by a sensor which
is stored in the input attribute. Based on the configured delimiter, e.g., a comma, this input
is split into individual items to be spread among the Looped Tasks. In the shown iteration,
the item vary is currently processed and distributed in form of a Looplteration mixin among
the Looped Tasks. As soon as an item is shared, it is removed from the input attribute of
the Loop (varz,...,var,). Therefore, the expression attribute is set to input.isEmpty() allowing
the Loop to operate until all items have been processed. Hereby, each iteration follows the
same procedure provided by decision nodes. In this case, the decision input is not empty
resulting in the expression to evaluate to false. This leads to task E being skipped for this
iteration, as it is guarded by the condition true. The guard to task B however matches the
result of the decision-making process which results in it being scheduled. As the Loop is

61 5.1 Runtime Workflow Metamodel

[expression)
Linput.isEmpty() | Loop ®

B @ @0 — ([true]

[false] |
Y

- ﬁ ¥
scheduled scheduled scheduled

. Looped Tasks

Task

~
- ~
- ~
- ~
- ~
- ~
- ~
- ~

Figure 5.8: Workflow example with an active loop.

active and the task B is scheduled, its infrastructure can now be provisioned and the task can
be performed. Due to the distributed information about the iteration item (vary) task B and
its executable have access to it. Subsequently, task C and D are executed having access to the
item of the current iteration. As soon as the last task of the loop is finished, which in this
case is task D, the decision result of the Loop is reset and the control flow links to follow are
evaluated again. Hereby, a new decision-making process for the next iteration is performed,
transferring all subsequent tasks with a fulfilled guard to the scheduled state. In this case
the input holds another item. Therefore, the Looped Tasks are rescheduled. Furthermore, the
var, item is sliced from the input and spread among the Looped Tasks for another iteration.
As soon as no items are left in the decision input, the decision-making process evaluates
to true leading to task E being rescheduled. As the guard to the Looped Tasks area is not
fulfilled, they are not rescheduled leaving them in a finished state. Additionally, this results
in the Loop to reach the finished state. Finally, task E is processed finishing the workflow.
In the following, we discuss how loops can be modeled in such a manner that they can be
executed in parallel with shared resources.

5.1.3.2 Loop Parallelization

For the parallelization of loops we adopt the concept used by OpenMP [220], an appli-
cation programming interface commonly used for the loop parallelization in C, C++ and
Fortran. Among others, OpenMP allows to simply annotate the loop to be parallelized with
information about which variables are shared among spawned threads. To provide similar
capabilities, we introduce mixins that can be applied to a loop element to adjust its execution
in parallel. These mixins are shown in Figure 5.7.

5 Runtime Workflow Model Concept 62

The ParallelLoop can be appended to a Loop instance to express that it should be executed
in parallel. We refer to this loop as the original. The added mixin is recognized in the loop
effector which spawns a new set of Loop instances on the start action. Hereby, the amount of
loops spawned is taken from the parallel.replicate.number specified in the mixin. We refer
to the newly spawned Loop instances as nested. After the nested Loops are spawned, the
original Loop is promoted to administrate and supervise the duplicated elements. This covers,
e.g., the distribution of items to be processed by individual loops. A connection between
the original and nested Loop instances is established via NestedDependency links serving
as source and target respectively. Each Loop consists of a duplicated set of Task instances
formerly connected to the original. Hereby, one of the created nested loops contains the
original set of modeled tasks while the other nested loops contain duplicated versions of the
tasks.

The Replica mixin is used to mark created duplicates while providing a reference to its
origin using the replica.source.id attribute. Each nested Loop forms a replica group which
we use to determine to which Loop each duplicated Task or Resource belongs. We store
this information in each Replica using the replica.group attribute by referencing the nested
Loop identifier. Among others, the replica.group and replica.source.id attributes are used to
derive the architecture required for each of the replicated tasks at runtime. Finally, to process
the items in parallel, we distribute the items among the nested Loop instances and thus the
workload. All spawned loops operate in parallel using the aforementioned procedures. As
soon as one of the nested loops reaches the finished state, the original Loop is notified. When
all nested loops are finished, also the behavior of the original loop is triggered rescheduling
subsequent Task instances and reevaluating its expression before it is transferred to the
finished state, e.g., by checking whether all items in the input have been processed.

The Shared mixin is used to indicate that a resource should not be duplicated but shared
during parallel sections of their workflow. One example use case for is, e.g., the utilization
of a database application storing the information of all tasks within the workflow. In this
case, the application and its underlying infrastructure should not be replicated even though it
may be part of a parallelized section of the workflow. While the mixin does not hold any
behavior, it serves as a tag that supports the scheduling mechanisms to recognize elements
that should not to be parallelized but rather be shared among other resources replicated for
the execution of parallelized loop sections.

Figure 5.9 provides an example workflow instance in which the loop from Figure 5.8 is
parallelized. In this example, the Loop (O) has a parallel mixin attached with the p.number
set to two. In the visualized example, the original Loop is currently active, which results in
the creation of two replica groups Replica and Replica’. The Replica group contains a nested
loop iterating over the tasks (B, C, D) formerly belonging to the original loop (0), while the
Replica’ contains duplicated versions of them (B’, C’, D*). To describe the utilization of shared
resources, the currently active tasks in this example are C and C’ for which we highlight
the Infrastructure currently provisioned. Task C originally required a single VM which is

63 5.1 Runtime Workflow Metamodel

ask input.isEmpty()] Loop

) [true] @

p N
input=vary,...,var sz input=var |.1,...,var

|Replica Infrasfructure Replica’

Figure 5.9: Two fold parallelization of the loop from Figure 5.8.

duplicated for the replica task C’. Furthermore, in this example, the storage node shown at the
bottom of the figure is marked as Shared and therefore used for task C and C’. It should be
noted, that the active tasks within the replicated loops may differ at runtime as the duration
of the task may depend on its input. This could lead, e.g., to task B being active together with
task C’ resulting in tailored and different infrastructure compositions. The figure shows how
the input of the original loop is split among the individual replication areas. Here, the input
from the original loop (vary,...,var,) is separated between the two nested loops, so that the
Replica loop iterates over the first half of the items (vary...var|,)) and the Replica’ iterates
over the second half (var ,),1-.vary). After both replica groups have finished processing
their items, the original loop O reaches the finished state. At this point, each item has been
processed leaving the input empty. As a result the expression evaluates to true leaving the
task E in the scheduled state allowing it to be processed next.

By managing the parallelization of the workflow layer and the distribution of the workload
within the runtime model, we leave the provisioning and scheduling of additional required
resources to the SWFMS. This allows the engine to simply duplicate the modeled infras-
tructure for each newly spawned task. The behavior of the workflow engine, including a
description of how the required architecture of nested loops are derived, is introduced in the
following section.

5 Runtime Workflow Model Concept 64

5.2 Runtime Workflow Execution Engine

In this section, we present the workflow execution engine that uses the capabilities of
the runtime model to dynamically schedule and provision the infrastructures and applica-
tions required for the individual task within the workflow. As shown in Figure 5.10, the
Design Time Workflow Model serves as input for the Workflow Engine. Overall, the engine
follows the concept of a MAPE-K loop which pursuits the goal to transfer each modeled
design time task into the runtime model and operate until each has either reached a finished or
skipped state. To reach this goal, the Workflow Engine creates a Runtime Model (Snapshot) (1)
in each iteration. This snapshot serves as a knowledge pool which provides information
about the current state of the workflow and the provisioned infrastructure in the cloud. To
control the execution of the workflow, the engine contains two inner components. The
Architecture Scheduler (2), which is responsible to provision the infrastructure required at
each point in time, and the Task Enactor (3), which triggers tasks that fulfill both workflow
and infrastructure requirements. In the scope of this thesis, we provide two configurations of
these components running either in separate cycles or subsequent after each other.

In the following, these components are inspected in more detail. Section 5.2.1 covers the
architecture scheduling process and Section 5.2.2 describes how tasks are enacted.

‘Design Time Workflow Model J
]

Workflow Engine
("Architecture Scheduler\

, 1 (Task Enactor)
Runtime Model
(Snapshot)
Model Generation Inspect Tasks

Required
Runtime Model

v
Adaptation Engine Execute Tasks
L @ e g

L

Runtime Model Task

Infrastructure

Figure 5.10: Workflow management system components.

65 5.2 Runtime Workflow Execution Engine

5.2.1 Architecture Scheduler

The Architecture Scheduler (2), shown in Figure 5.10, orchestrates the runtime model by
adapting the Infrastructure and application deployment during the workflow execution. For
this, the process follows a control loop that analyzes and combines the information of
the Design Time Workflow Model and Runtime Model in each cycle. Based on this analy-
sis, a Model Generation is performed, creating a Required Runtime Model representing the
Runtime Model that is required next. The generated model then serves as input for the
Adaptation Engine which again performs the steps described in Chapter 4 to derive an adap-
tation plan containing a sequence of requests to adapt the Runtime Model. This plan is
executed to adjust the Infrastructure in the Runtime Model and, thus, the provisioned cloud.
The execution of the plan slightly differs between the workflow and infrastructure layer.
While attributes in the infrastructure layer may be changed, the information within workflow
elements may not be adjusted as these contain information to be adjusted by the model itself.
Therefore, the update step for the adaptation of elements in the workflow layer is disabled.
The process allows managing any kind of resource using the OCCI interface covering not only
infrastructure and platform resources but also entities from the workflow layer. Among others,
we use this capability to transfer the tasks modeled in the Design Time Workflow Model to the
Runtime Model in the first control loop cycle. As the functionality of the Adaptation Engine
is already discussed in Chapter 4, Section 5.2.1.1 highlights the general Model Generation
procedure. Additionally, Section 5.2.1.2 goes into detail about the duplication of resources
required for the parallel execution of loops.

5.2.1.1 Required Runtime Model Generation

To generate the required runtime model the scientist’s design time workflow serves as a basis
for which we simply copy it. Thereafter, we adjust the copy based on information available
in the runtime model. By using both models, the generation process has access to the current
state of the workflow, and the complete infrastructure required by the individual tasks. As
the design time model hosts the information of all the infrastructure required throughout
the whole workflow, we prune the resources not required at the current point in time. To
identify the resources to remove, the actual state of each task has to be known. Therefore,
as a first step, we propagate the state of the tasks from the runtime model to the required
runtime model. Based on the states of the tasks, we separate them into 4 categories: waiting,
executing, finished and skipped. The finished and skipped state are determined over tasks in
the corresponding states. Executing tasks are tasks that have all previous tasks finished or are
the first task within an active loop. Waiting tasks are tasks that are neither finished, skipped
nor executing. Based on the classification, we remove the infrastructure of all tasks marked
either as skipped, finished or waiting. Therefore, the required runtime model only contains
the infrastructure of each task that is either active or ready for execution. As a result, only
the infrastructure currently required gets provisioned.

5 Runtime Workflow Model Concept 66

In Figure 5.11 an example scheduling sequence is shown which highlights the generation
of a Required Runtime Model based on a Design Time Model and Runtime Model. In this
example, the Design Time Model consists of two Task instances named A and B. Task A
requires one compute and one storage node for its Infrastructure, while task B operates on a
single compute node. In the first cycle (1), the Runtime Model is currently empty. This results
in the Required Runtime Model to only contain the tasks of the Design Time Model. Thereafter,
in the second cycle (2) the Required Runtime Model generation utilizes the information of
the state information contained in the Runtime Model and couples it with the Infrastructure
information of the Design Time Model. In this case, task A belongs to the executing category,
as it is currently in the state scheduled and does not have any previous tasks. Task B on
the other hand is in the scheduled state, but its previous task A is not finished. Therefore,
the infrastructure of task B is removed from the Required Runtime Model. The generated
Required Runtime Model is then used to adapt the Runtime Model in order to provision the
compute and storage node. This results in the Runtime Model of the third cycle (3. In this
cycle, task A is finished, while B is still scheduled. As task A is finished its infrastructure
is removed from the Required Runtime Model. Furthermore, now all previous tasks of B are

Cycle Design Time Model Runtime Model Required Runtime Model
Task
(A B
0) Q)
@ Empty scheduled scheduled
Infrastructure J J
(A) B)
)) {
@ scheduled scheduled scheduled
< J

(!

finished
=)

Figure 5.11: Required runtime model generation example.

67 5.2 Runtime Workflow Execution Engine

finished resulting in its infrastructure to remain in the Required Runtime Model. Finally, the
Required Runtime Model is used to adapt the Runtime Model. This leads to the fourth cycle (4
in which task B is processed. After task B has finished the scheduler recognizes that all tasks
within the Runtime Model are now in the finished state completing the workflow. Therefore,
no further Required Runtime Model is generated. It should be noted, that by default the
infrastructure of the last task, in this case B, remains in the Runtime Model and therefore in
the cloud environment. To deprovision all resources, a cleanup task can be modeled. This
task can, e.g., store the results of the workflow in an external database and lead to another
task which requires no infrastructure at all.

5.2.1.2 Management of Duplicated Resources

While the generation process follows a simple process of removing unnecessary resources, the
execution of parallelized loops requires multiplying resources at runtime to fulfill the need of
newly spawned tasks. For this, we add another step in the generation process to consider tasks
and their links that are marked as replica. These tasks are spawned once a parallelized loop
is triggered (see Section 5.1.3.2). Based on the monitored and updated runtime information,
the model transformation identifies that additional infrastructure and platform resources are
required. To fulfill the requirements of the additional tasks, the transformation duplicates the
infrastructure and platform resources required by the original task as modeled in the design
time model and attaches them to the replicated tasks. During this process, each duplicated
resource is also marked with a replica mixin storing the information of the source id of the
original as well as its replication group. While the id of the original entity helps to reference
the source of the duplicate, the replication group is used to map each duplicated resource to
a specific loop. One exception to the duplication rule are resources that are tagged as shared,
including their sub-resources. Even though resources marked as shared are not replicated,
the edges towards these nodes are reproduced. This provides the resources in the replica
group access to the shared node.

Figure 5.12 provides an example Required Runtime Model generated for the execution of
a parallel loop. The Design Time Model consists of a Loop that is executed with a setting of
Parallel 2. To execute the looped Task, two Component instances are necessary. One that rep-
resents the executable of the Task and one which builds the Application to be deployed. Both,
the execution and application component, are hosted on a single Compute node which is con-
nected to a Storage node that is marked as Shared. The Runtime Model represents the state in
which the loop just started. This results in the creation of two Loop Replica instances that are
connected to the original loop via nested dependency links. Based on the Design Time Model,
the generation of the Required Runtime Model creates the infrastructure required for both
spawned Loop Replica instances. This replication process results in two replica groups, i.e.,
Original and Replicated. Both replica groups are identified over the id of their connected
Loop Replica instances. Additionally, for both groups, the Required Runtime Model dupli-
cates the infrastructure requirements of the original task. This includes the compute node,

5 Runtime Workflow Model Concept 68

application, and all components. As the storage is marked as Shared, only links targeting it
are duplicated. Therefore, the Original, as well as the Replicated section have access to the
storage resource.

Overall, the generation is implemented as a model transformation with the resulting model
being enacted via the adaptation engine. This allows enhancing the scheduling process
by incorporating additional information in the transformation, e.g., estimated execution
times of a task to reduce the overall deployment times. Furthermore, the resulting required
runtime model may serve as input for further transformations, e.g., to add platform specific
information like the addition of a management network. While the architecture scheduler is
responsible to manage infrastructure and application resources in the runtime model, it does
not trigger the execution of the tasks. For this, the task enactor component is used, which is
discussed in the following.

Design Time Model Required Runtime Model Runtime Model

Loop
(Parallel 2)

Nested

—
Q

(2}
=

@@
Dl O=S)
)
© &

{F {F —— {F
@ @ | & B @
Application
@) | &)
Component
== Original == == Replicated
Compute
Storage
(Shared) Shared

Figure 5.12: Example required runtime model generation for a parallel loop.

69 5.2 Runtime Workflow Execution Engine

5.2.2 Task Enactor

In this section, we introduce the task enactor and describe its procedure to trigger the exe-
cution of tasks on provisioned cloud resources. The Task Enactor (3), shown in Figure 5.10,
identifies tasks that are ready for their execution and enacts them accordingly. Compared to
the scheduling process, the task enactor directly operates on the task elements. In most cases,
this comes down to triggering the start action of a task. The behavior of the enactment process
can be compared to a petri net in which the transitions represent the execution of a task that
each have two places. In our case these places denote whether the task dependency if fulfilled
and the required architecture is provisioned. To detect and trigger tasks, two subsequent
actions are executed. First, the enactor performs an Inspect Tasks step, investigating a set of
tasks ready for execution. Second, the tasks are triggered in the Execute Tasks step. In the
following, both steps are described in more detail.

During the Inspect Tasks step, the workflow layer of the runtime model is inspected to
create a set of tasks that can be executed. We filter for tasks that have all their previous
tasks either in a finished or skipped state. In addition, we use the information in the design
time model to identify whether all platform and infrastructure resources for the tasks to be
executed are provisioned. For this purpose, we traverse the PlatformDependency instances
and check whether the connected application is in an active state. We use the active state of
elements from the platform layer as indicator because it describes whether the application
is successfully deployed and running. Moreover, an active application implicates that
the required infrastructure is up and running due to it being a prerequisite for the actual
deployment of the components.

In the Execute Tasks step, the task enactor takes the filtered tasks ready to be executed as
input. For each of these tasks a request is sent to the interface of the task, triggering its start
action. Independent of the task specialization, this action transfers the task into an active
state and triggers the logic within the corresponding effector. In case of a simple task, this
covers, e.g., the deployment of its executable component. When the task is a decision or a
loop, the decision-making process is performed additionally. If no data gathering process is
modeled at design time, the action waits until the decision-making information is manually
filled by a scientist at runtime.

In the following, we discuss the implementation used for the execution of the case study
and demonstrate how a runtime model based approach can be used for the development of
cloud deployments and workflows by coupling it to different infrastructural systems like
cloud and local environments.

6 Model and Execution Environment

In this chapter, we introduce the environment and the ecosystem used to evaluate the or-
chestration engine and workflow runtime model built around the OCCI standard. Both
concepts are implemented as part of the Smart Workflows through dYnamic Runtime Models
(SmartWYRM) framework which is publicly available [11]. Figure 6.1 depicts the envi-
ronment to perform our case studies. It consists of two deployed server instances, namely
SmartWYRM () and OCCIWare Runtime ().

SmartWYRM (1) is a web service that provides a front-end to a Cloud Architect or Scientist
that allows to upload, adjust and monitor the Cloud or Workflow Model. To operate the chosen
model, SmartWYRM hosts the Adaptation & Workflow Engine that can be triggered by the
user. Both engines utilize the EOL [41] transformation in order to send requests against
the OCCI Interface and manage resources in the cloud. OCCI implementations typically
translate incoming OCCI requests directly to a specific cloud provider. Example for such
an interface comprise the rOCCI implementation [221] or the OpenStack OCCI Interface
(0OO0I) [222], which we initially used to develop our adaptation engine. These interface
implementations are often limited in their capabilities to extend OCCI or are restricted
to a single cloud provider. Therefore, we adapted our implementation to conform to the
OCCIWare toolchain [123] which provides a formal OCCI Metamodel based on EMF with its
instances being described in XML. We used the toolchain to design and generate artifacts for
our monitoring and workflow OCCI Extension and the accompanied OCCI Interface.

SmartWYRM @ OCClWare Runtime @
Adaptation OCCIrIn\terface
& A Effector
Workflow
Scientist Engine
¥ OCGCI | conform
Extension N
maintain
Cloud or
Workflow OCClI Runtime
Cloud | Model o | [Metamodel/ | |Model —~O| Local
Architect T instance of)

Figure 6.1: Overview: Runtime model environment.

6 Model and Execution Environment 72

The OCCIWare Runtime (2) is a server application that implements the OCCI Interface using
a plugin based approach. Each plugin consists of an OCCI Extension which instantiates the
OCCI metamodel. Furthermore, the server maintains a set of Effector instances which conform
to the kinds introduced by the extension. This includes, e.g., effectors managing infrastructure
kinds like the compute kind to spawn VMs in the Cloud. In terms of OCCIWare Studio
the registered Effector components are called connector as they do not only maintain the
Runtime Model, but also inherit the logic to translate the incoming OCCI requests to a target
infrastructure. The targeted infrastructure is not limited to Cloud environments. Within the
scope of this thesis, we test the runtime model capabilities to simulate cloud adaptations
and perform workflows using Local resources. We utilize this capability, e.g., to perform
automatic tests within Continuous Integration (CI) environments. Moreover, we use this
environment for local deployments in order to support the development of deployment
models, configuration management scripts and adaptation engines.

Section 6.1 presents the infrastructure configuration of the cloud and simulation environ-
ments. Thereafter, in Section 6.2, we provide an overview of the framework used to execute
the workflow and orchestration case studies.

6.1 Causal Connection Configurations

In this section, we briefly describe the OCCI extensions registered in the OCCIWare Runtime
and SmartWYRM environment. We highlight the causal connection to the cloud environment,
as well as the effectors used to establish a connection to our local workstation. Furthermore,
we provide a detailed overview of utilized OCCI extensions and plugins including short
description of their functionality. As the concepts of each element are already described in
previous chapters, this section focuses more on technical aspects. Table 6.1 separates the used
extensions into four categories: Core, Infrastructure, Platform, and Workflow Extensions.

The Core Extensions represent the extensions providing abstract elements from which
other extension elements inherit. In this case, the layer only consists of the OCCI Core
extension [98] allowing to model basic Resource and Link instances.

The Infrastructure Extensions introduce entities to model and manage resources residing
on the infrastructure layer. The OCCI Infrastructure extension [103] extends the core with
entities to manage a cloud’s IaaS. These include Storage, Network and Compute entities,
e.g., to model VMs, as well as link kinds to connect them. The Docker extension [104] adds
Container and Machine entities, which are specializations of the Compute kind from the
OCCI infrastructure extension. The added types are used to provision Docker containers as
well as their hosts. The OpenStack Runtime extension [105] models a Runtimeld Mixin that
can be attached to any kind of infrastructural resource allowing to map an OCCI id to the id
assigned by the cloud provider. This information is, e.g., used in the comparison process of
the adaptation engine.

73 6.1 Causal Connection Configurations

Core Extensions Entities added
OCCI Core [98] Entity, Resource, Link

Infrastructure Extensions

OCCI Infrastructure [103] Compute, Storage, Network incl. Links
Docker extension [104] Machine, Container, Contains link
OpenStack Runtime [105] Runtimeld Mixin

Platform Extensions
MoDMaCAO platform [105] Application, Component, PlacementLink
MoDMaCAO Ansible [105] AnsibleEndpoint Mixin

MOCCI [223] Sensor, DataGatherer, DataProcessor, ResultProvider

Workflow Extensions
WOCCI [224,225] Task, Decision, Loop, Task/PlatformDependency

Table 6.1: OCCI extensions registered by SmartWYRM and the OCCIWare Runtime.

The Platform Extensions introduce elements that are deployed on top of the provisioned
infrastructure. The basis for these deployments is contained within the MoDMaCAO plat-
form extension [105], improving the standardized OCCI platform extension [106]. The
MoDMaCAO Ansible extension introduces a specific AnsibleEndpoint Mixin. This mixin
gets attached to OCCI NetworklInterface instances marking them for the use of configuration
management script executions. Using the MoDMaCAO platform extension, we created
the Monitoring with OCCI (MOCCI) extension [223] to model and deploy Sensors and its
monitoring instruments including the DataGatherer, DataProcessor and ResultProvider.

The Workflow Extensions extend OCCI with elements used to model and reflect workflow
elements. These include Task, Decision and Loop elements as well TaskDependency in-
stances sequencing them. Also, this extension provides PlatformDependency links allowing
to attach platform and infrastructure requirements to the individual tasks.

For each of the introduced extensions one effector exists that implements the behavior of
the individual resources. Throughout the development of our approach, we created several
sets of effectors. One of them covers a direct connection to a cloud environment. Another
one is utilized to perform automated tests and simulate the runtime model’s behavior. Yet
another is used to perform workflows on our local workstation. In the following, we provide
a more detailed look into the different kinds of effector sets and how they handle the different
extensions presented in Table 6.1. Section 6.1.1 provides implementation details about the
causal connection to an OpenStack cloud, while Section 6.1.2 discusses the utilization of a
simulation environment.

6 Model and Execution Environment 74

6.1.1 Causal Cloud Connection

In this section, we describe how the causal connection to a cloud environment is covered by
referring how the elements of the individual extension layers shown in Table 6.1 are managed.
For the execution of our case studies, we developed effectors providing a causal connection
to a private OpenStack cloud. Hereby, the effector is configured in such a manner that it
influences a single tenant in the cloud used for the orchestration of cloud adaptations and
workflow executions. Especially when using this connection, the application of the PIM to
PSM transformation is mandatory. Here, the transformation adds the management network
to the model which is required for the deployment of component instances.

For the Infrastructure Extensions an OpenStack effector is implemented that translates
incoming OCCI infrastructure requests, e.g., of kind Compute, Storage or Network to the
OpenStack interface using the OpenStack4j library [226]. To connect to the cloud and the
desired tenant, we initialize the effector using pre-configured configuration files. Overall,
incoming OCCI requests are translated into requests fitting to the OpenStack interface, e.g.,
by referring to the requested resource attributes. Changes to the cloud environment directly
are handled and integrated to the runtime model by constantly monitoring the proprietary
cloud interface. If a new, deprecated or changed resource is recognized, the translation
process is reverted translating OpenStack information to OCCI adding the changes to the
runtime model. While the OpenStack effector has to be configured with tenant information,
the Docker extension effector introduces Machine elements which allow to directly spawn
VMs on the OpenStack cloud by configuring corresponding attributes within the Compute
instance. These machines, however, serve the purpose of a Docker host and are spawned
using the Docker-Machine tool [227]. In addition to OpenStack hosts, the Docker extension
includes further Machine entities to spawn VMs on different cloud providers.

For the Platform Extensions, we utilize an effector for the MoDMaCAO platform extension
that couples Component instances with configuration management scripts. While MoD-
MaCAO supports multiple configuration management systems, we focus on the utilization of
Ansible configuration management scripts [86]. In the scope of this thesis, we additionally
integrated basic functionalities of SaltStack [87] to MoDMaCAO to further investigate the
flexibility of the framework. Furthermore, we tested the integration of Bash [81] in the scope
of a supervised students project and evaluated the advantages of common configuration
management approaches. The effector for the MOCCI extension functions similarly to
MoDMaCAO with its elements focusing on monitoring capabilities. For example, the offered
functionalities allow a Sensor to reflect its monitoring observations directly to the runtime
model. The behavior of this effector is described in Section 4.2.2.

Finally, the effector for the Workflow Extensions manages requested workflow elements as
described in Section 5.1. This management solely takes place on a model based level as no
resources in the cloud are directly affected.

75 6.1 Causal Connection Configurations

6.1.2 Simulation Connection

In addition to the effectors used for a cloud environment, we implemented a set of dummy
effectors to simulate the behavior of the runtime model. We use this set of effectors for several
purposes. Originally, the simulation effector got developed to support the implementation
process of our adaptation engines including the automatic execution and validation of test
scenarios. We enhanced this environment to locally deploy cloud topologies to assess the
impact of adaptation changes before applying them to a cloud environment. Furthermore,
the effector set allows to partially replicate our case studies as no access to an actual cloud is
required.

Figure 6.2 highlights the process of fitting a cloud deployment model into a local envi-
ronment. The effectorc establishes a connection to the Cloud, while the effector, spawns
a simulation environment on the local Workstation. To replicate the actual cloud deploy-
ment the Simulation Configurator is used. Here, we Extract the Runtime Model (Cloud) and
Transform it by adding one simulation tag to each resource. These tags serve as an annotation
for the effector, to trigger a desired simulation behavior. The annotated simulation can be
adjusted by the user in the Configure Level step. This sets up the Runtime Model (Local) to
perform the desired simulation on top of the local Workstation. For example, the model
can be configured in such a manner that compute resources are only partially deployed in
order to develop or investigate configuration management scripts of interest. Additionally,
the simulation environment can be used to develop Scaling Rules and runtime model en-
gines. Depending on the effector implementation, we need to Adjust the scaling rules to
consider the desired simulation tags. For a more convenient use, this step can be bypassed
by implementing an effector, set with pre-configured simulation levels for each resource
type. This pre-configuration, however, comes with the drawback of fewer simulation op-
tions. After assessing the impact of planned changes in the local environment, the added
simulation tags can be removed from the Runtime Model (Local). The resulting model can
then serve as input for the orchestration engine which derives the required requests to adapt
the Runtime Model (Cloud) to the new desired state.

e A ’ - A
Runtime Model (Extract H Transform }(Configure | Runtime Model
(Cloud) Level | (Local)
effectorg Simulation Configurator ieffector,
! Y
“[Scaling Scaling |’ Workstation
Rules Rules

- 7

N J N J

Figure 6.2: Cloud and simulation environment connection.

6 Model and Execution Environment 76

Figure 6.3 shows the Simulation Extension introducing the SimulationTag which we attach
to each individual resource during the simulation transformation process. The SimulationTag
is implemented as a mixin and introduces a simulation.level attribute. This attribute allows
for a more dynamic management of simulated resources. By default, the level zero describes
that each resource and operation should only be simulated on a model based level which
covers, e.g., state transitions. In the scope of our OCCI Simulation Extension, we introduce
three specializations of the SimulationTag. Hereby, one tag for each of the base OCCI kinds
exists, e.g., ComputeSim, SensorSim and ComponentSim. In the following, the simulation
options are described in reference to the extension categorization shown in Table 6.1.

The Infrastructure Extensions simulation effectors do not contain any connection to an
external infrastructure interface. Instead, they mimic the existence of distributed resources.
Therefore, when an infrastructure resource is requested, the corresponding entity is added
to the runtime model without affecting any other system. In the current implementation,
we focused on the simulation of compute nodes using the ComputeSim tag. In case of the
default simulation.level of zero, only state changes are performed based on the FSM of the
corresponding resource kind. When the resource is simulated with a simulation.level greater
than zero, we locally spawn a VM, e.g., using VirtualBox, or by treating the modeled compute
node as a Docker container using the Docker extension. The virtualization.type attribute
defines the type of deployment, e.g., container or compute type while the compute.image
refers to the desired image. Even though the OCCI extension already provides a mixin to
specify an image, we utilize the information in the simulation tag as it can be easily removed
once the local development process has been finished.

For the Platform Extensions different behaviors for the individual elements can be selected
by choosing a specific simulation.level. For the default simulation.level of zero, any behavior
directly affecting provisioned resources is removed. For this, we only removed a single line
from the configuration manager of MoDMaCAO triggering the execution of the configuration

Simulation Extension

/\

SimulationTag

- simulation.level=0

T

ComputeSim SensorSim ComponentSim

- virtualization.type - change.rate - action.timing.min
- compute.image - monitoring.results - action.timing.max

Figure 6.3: Simulation extension subset.

77 6.2 Smart Workflows Through Dynamic Runtime Models

management script which results in a simulation of state changes. For the simulation
of components we utilized different configurations of the ComponentSim which can be
defined over the simulation.level and its attributes. To visually observe the behavior of
deployment procedures and the changing runtime model, we slowed the adaptation process
down by injecting artificial deployment durations for individual application and component
lifecycle actions. These durations can be adjusted over two attributes action.timing.min
and action.timing.max which represent a range from which a random value within is drawn.
Finally, when setting the simulation.level to three, an actual deployment is performed on
the attached compute host utilizing the behavior from the effector used for the actual cloud
environment. For this, it must be ensured that the attached compute host has a simulation
level greater than zero in order to allow for an actual deployment. This, e.g., can be checked
using model validation.

For the MOCCI monitoring extension the effector can be configured to simulate the
monitoring information in the runtime model using values defined by the user. For this,
the SensorSim annotation is used which reflects artificial monitoring information in the
runtime model. This capability allows testing orchestration engines and scaling rules without
the time requirements for actual deployments. To generate monitoring information, the
simulation annotation provides two attributes montoring.results and change.rate. These
respectively describe the values to be observed by the sensor and how often they should
change. Using higher simulation levels, the sensor and its components can also be deployed
on local resources to monitor actual workload. Therefore, the developer can choose between
actual or generated workload that can be adjusted at runtime. As a result designed cloud
applications and scaling procedures can be simulated using dedicated workload scenarios.

For the Workflow Extensions the behavior remains the same as within the cloud effector.
No simulation behavior is needed for the workflow layer, as its elements do not represent
actual cloud resources and therefore can reside on a model based level.

In the following, we describe the our webserver application which implements the cloud
adaptation and workflow procedure used for the execution of our case studies.

6.2 Smart Workflows Through Dynamic Runtime Models

To operate the orchestration process and workflow engine, we developed a web application
called SmartWYRM. The framework and all surrounding implementations are publicly
available [228]. As described in the previous section, SmartWYRM utilizes the OCCI
metamodel by Merle et al. [122] which is also used in the OCCIWare toolchain. Additionally,
SmartWYRM registers the generated extensions and effectors based on the metamodel
concepts presented in Chapter 4 and Chapter 5. We chose to implement the proposed
workflow engine in form of a webserver to neglect the need for a local workstation to
run, especially as scientific workflows are often long-running processes. Furthermore, by
relying on requests for communication, the engine is loosely coupled to the OCCIWare

6 Model and Execution Environment 78

Runtime server representing the OCCI interface. This allows connecting the application
to further OCCI interface implementations. Even though other OCCI interfaces may not
register the elements presented in the workflow extensions, basic functionalities of the
adaptation mechanisms can be utilized. During the execution of the deployment and workflow
engines, job histories are recorded and visualized by SmartWYRM. These views grant insight
into the deployment and workflow execution including planned changes, provisioning and
deployment times.

In Section 6.2.1, we provide an overview of the interface and notation used in the frame-
work and the execution of our case studies. Thereafter, the implementations of the engines
are briefly covered by discussing recorded job histories and their visualization. Section 6.2.2
discusses the implementation of the workflow engine. Section 6.2.3 introduces the adaptation
engine implementation.

6.2.1 Interface and Notation

In this section, we introduce our concepts to support the visualization and execution of our
approach. As part of our implementation, we designed a graphical interface and notation for
OCCI. Hereby, we chose a notation that emphasizes the structure of cloud deployments at the
cost of a limited insight to configured attributes which we circumvent by utilizing interactive
capabilities offered by web frameworks. In the following, we introduce the OCCI notation
used within the framework and thesis. Additionally, we briefly introduce the implemented
interface used for the execution of our case studies.

Figure 6.4 provides an overview of the icons used to visualize OCCI deployment and
workflow models. This figure serves as a legend that separates the different elements accord-
ing to their OCCI extension, namely the Core, Workflow, Monitoring, Platform, Infrastructure
and Docker extension. In general, the notation follows a graph based visualization with

Workflow Example
<> ExecutionLink
---------- >
Platform i Platform

©

Task Decision Loop Dependency vy Dependency
Core Monitoring Platform 6
N I ComponentLink
Link Sensor I\P/I%rg)léorgible Application Component @
Infrastructure Docker

@ @ PlacementLink

Compute Network Storage Container N J

O

Figure 6.4: Legend: OCCI cloud notation.

79 6.2 Smart Workflows Through Dynamic Runtime Models

each resource being a circular node inheriting an icon that corresponds to a specific kind.
In addition to the graphical representation of the resources, we introduce a hierarchical
separation based on a resource’s kind and extension. For example, Infrastructure resources
are depicted at the bottom of each workflow, while the Workflow elements remain at the
top. In our graphical notation, Link instances and their specializations are visualized as a
simple arrow. To better differentiate the connection between the workflow and platform
layer, we highlight ExecutionLink instances and PlatformDependency links using a dashed
line. Moreover, we visualize MonitorableProperty links with a dotted line as they target
resources on different layers. Next, the SmartWYRM user interface is introduced which
implements the introduced icons and our visualization of OCCIL.

Figure 6.5 shows a screenshot of the SmartWYRM webserver interface. On the top bar
the Options (1) are displayed which provide the capability to upload and transform a design
time model. After the OCCI model has been uploaded, the MDA transformation chain can
be triggered on top of this model. This transformation adds, e.g., platform specific or default
resources and information that can be configured in the framework. The uploaded model, as
well as resources added to it can be inspected in the Design Time Model Visualization 2). In
the figure a workflow with three tasks from which one is looped is shown. When the model is
enacted, changes to the runtime model can be observed in the Runtime Model Visualization (3).
Currently, only the management network is present in the runtime model which, e.g., can
be automatically added to the design time model. Both, the runtime model and the design
time model, are displayed using the same graph visualization introduced in Section 6.2.1 and
used throughout the thesis. If one of the entities is clicked, as shown by the blue highlighting,
the Entity Inspection () is opened. This window displays the mixins and attributes of the
chosen runtime entity and allows to easily interact with the model. In addition to a visual
representation of the entities attribute, this window can be used to adjust values. Also, actions
that can be applied on the entity are automatically derived from the registered plugins. The
runtime model visualization allows to actively observe how the system changes throughout
adaptation and workflow processes. Here, new resources can be dynamically added to the
runtime model using a form derived from registered OCCI extensions. For the derivation, we
extracted the information from the formalized metamodel and the extensions created with
it. This form navigates the user step by step through the creation process of a new element,
covering the selection of the extension, resource type, desired mixins, and the definition of
the resources attributes. Further features implemented in SmartWYRM that got utilized in
this thesis cover, e.g., the capability to download and store models previously executed, as
well the extraction of images which we use within our case study chapters.

In the following the implementation of the workflow engine and the recorded job history
is explained in more detail.

6 Model and Execution Environment 80

SMARTWYRM .
Options (1)
@ Runtime Model

Design Time Model Browse... | No file selected Upload Transform Enact Stop
poccl
woccl
Model Store
Job History
Runtime Screenshot
Settings

Mongo Memejob Meme
vesshark me:osk mongoQuery MongoDB memeshark
Design Time ‘E. ‘E)
Model Visualization) 7 =&
RGOVM
Runtime Model : Entity Details
© rar Network: management

Mixins: | runtimeid(runtime) |

Search:

OCCI Attribute 4 Value

occi.network.state.message ~ Network Active

occi.network.vlan 0

management 718eafde-

ST cc2b-4f19-9347-8ba8a045¢515

Actions

Runtime . .
Model Visualization (3) Entity Inspection (%)

Figure 6.5: Screenshot excerpt of the SmartWYRM user interface.

6.2.2 Workflow Engine Implementation

In this section, the implementation of the workflow engine, presented in Section 5.2, is
introduced. We refer to the engine and workflow extension as Workflows and OCCI
(WOCCI) [229]. In the scope of this thesis, we implemented and tested different sequences
of the architecture scheduling and task enactment process. A sequential arrangement of the
procedures, as well as a parallel one.

81 6.2 Smart Workflows Through Dynamic Runtime Models

The sequential arrangement implements alternating behavior of the architecture scheduling
component and the task enacting component. This means that a task’s infrastructure is first
built followed by the execution of the task. To facilitate the dynamic capabilities of the
runtime model, especially for the execution of parallelized workflows, we implemented the
task enactor and architecture scheduler within separate control loops. This allows a task that
is ready for execution to be enacted without needing to wait for the deployment process to
be finished. However, for this process, the individual cycles require more information of
each other to avoid race conditions. To distinguish the behavior of the different execution
modes, we store the chosen procedure type within the job history visualization. Based on the
design time model workflow shown in Figure 6.5, Figure 6.6 shows an example workflow
job history.

The Job Details (1) show general information about the workflow execution covering its
id, name, duration status, the start and end time as well as the chosen workflow execution
mode. As soon as the workflow has finished execution, i.e., all task states are finished, the
job is marked as success. Further job states describe whether, e.g., failed tasks are detected
in the runtime model. The Task Details (2) show the execution durations of individual tasks,
while the Scheduling Details (3) display the durations of performed architecture scheduling
processes. In case of the shown example, three task durations are shown which are accompa-
nied by four architecture scheduling processes. In the scope of our evaluation, we use the
recorded values to quantitatively analyze and discuss our approach. Finally, a Timeline () is

Job Details(1)

Task Details (2) Scheduling Details (3)

Timeline (4)

o | - sam

¥ VCSTask VeST
» loop Toop

» MemeTask Mer

15:07 15:08 15:09 15:10 15:11 15:12 15:13 15:14 15:15 15:16 15:17 15:18 15:19 1
Thu 5 August

Figure 6.6: Screenshot of the workflow job history.

6 Model and Execution Environment 82

displayed, highlighting at which point in time the individual task enactment or architecture
scheduling processes were triggered. This view highlights the behavior differences between
the sequential and parallel execution of the workflow job. In case of the provided figure,
a parallel job is shown which can be observed by the overlapping task and architecture
scheduling timelines.

As the workflow architecture scheduling process heavily relies on the adaptation engine,
we store one adaptation job history for each scheduling procedure. These scheduling
histories are coupled to the individual bars shown in the Scheduling Details (3) which allow
investigating the resource management during the workflow execution. In the following,
we go into detail about the adaptation engine implementation and the accompanied history
visualization.

6.2.3 Adaptation Engine Implementation

In this section, we briefly introduce the implementation of the adaptation engine presented in
Section 4.1 including a description of the recorded job history visualization. We refer to the
engine itself as Deployment of OCCI (DOCCI) [230]. This engine is not only included in
the SmartWYRM webserver, but also TOSCA-Studio [217] which is an Eclipse IDE plugin
that can transform TOSCA to OCCI models and deploy them via DOCCI. Independent
of the wrapping framework, DOCCI takes an OCCI model representing the desired state
in the cloud as input. As described in Section 4.1, it compares the input OCCI model
against the currently deployed one and sends requests against the OCCI interface provided
by the OCCIWare Runtime server. While we do not go into detail about the implementation
specifics, we highlight the information provided by our job history as it reveals the behavior
of the adaptation engine. Furthermore, the recorded values are later on used to quantitatively
discuss the adaptation process performed during our case studies. An example history for an
adaptation job is shown in Figure 6.7. The shown example highlights the adaptation process
from the first scheduling task shown in Figure 6.6.

The Job Details (1) depict general information such as the job id, start time, finish time,
the job name, the duration and whether the job was successful or not. The state of success
is hereby derived by checking whether the goal of the adaptation engine was reached by
comparing the desired input model to the runtime model once the adaptation process has been
finished. If all elements are the same at design and runtime, the job is considered successful.
Further job states are stopped and failure depending on whether the engine was stopped
during execution or whether the desired state could not be reached, e.g., due to failing
component deployments. The Deprovisioning Details (2) and the Provisioning Details (3)
describe the time required for the individual requests. Hereby, each performed request is
listed which allows us to compare their individual response times. The time is taken from
the moment we send the request until an answer is received. Therefore, the observed timing
heavily depend on the behavior implemented in the effector of the entity. For example, a
request provisioning an actual VM in the cloud may take several seconds, while a request

83 6.2 Smart Workflows Through Dynamic Runtime Models

managing a task may only require milliseconds. The Deployment Details (4) display the
application deployment times including the time required to perform the deploy, configure
and start action of all applications in the model. In case of the figure, e.g., the duration for
the deployment procedure is taking the most time. We especially investigate the deployment
of applications as they represent the element managing the underlying components and is of
most interest to us. The duration of update requests are not recorded nor visualized as they
only change attributes in the runtime model which only takes milliseconds and thus are not
of interest to us.

The boxes shown in the Comparison (5) visualize the input OCCI model, as well as the
runtime model at the time the engine is triggered. In case of this example, a management
network is currently present in the runtime model, with the targeted model being the required
runtime model from the first adaptation cycle of the workflow execution. In addition to the
visualization of the desired and current state, this view changes the background color of
the nodes in the model visualizations to highlight planned adaptive actions. For example, a
green background within the nodes describes the addition of new resources. The Timeline (6)
displays the exact point in time of each request. Hereby, a background color highlights
to which phase of the adaptation process the request belongs, e.g., blue describes the
provisioning and green the deployment phase. Complementary to this, the Duration (7) box
provides a more concise overview of the duration of these phases in form of a bar plot.

Job Details @

Deprovisioning Details (2) Provisioning Details (3) Deployment Details (4)

Comparison (5) Timeline (6) Duration (7)
000 T

©006 B
Q ® Management Network b

© @ MongoVM ||
el 20 30 10 50 0 10 20 30 40

5 August 15:07 5 August 15:08

Figure 6.7: Screenshot of the adaptation job history.

7 Runtime Model Orchestration Case
Studies

To investigate our orchestration capabilities for OCCI, we designed several scenarios that
highlight the adaptation, simulation and monitoring concepts introduced in Chapter 4. For
this, we use the implementations and the notation described in Chapter 6 including the
cloud and simulation connections. Due to the similar composition of our orchestration and
workflows studies, we discuss the threats to validity of this study in Section 9.4. In the
following, the remainder of this section is presented focusing around the scenarios shown in
Figure 7.1.

Section 7.1 discusses a Computation Cluster Scaling () scenario using the big data com-
putation frameworks Apache Hadoop [231] and Apache Spark [232]. In this study, we
highlight the Orchestration process transferring the designed model elements to the runtime
model and cloud environment. Furthermore, in this case study, we highlight the utilization
of the Simulation environment to extend the model with a new component introducing the
capabilities of Apache Spark. Additionally, we extend the OCCI model with Monitoring
functionality to directly reflect the monitoring results in the runtime model.

Section 7.2 introduces the second case study which we use to demonstrate the
Standard Interoperability (2) of OCCI with the TOSCA cloud standard. Using this study, we
highlight the Compatibility and Extensibility of the OCCI data model and the Generalizability
of its interface with special regards to our orchestration process. For this study, we utilize
an existing cloud deployment model originating from the TOSCA standard describing the
deployment of WordPress [233], a common content management system. To manage the
cloud deployment using our OCCI orchestration process, we map both standards to perform
an automated model transformation generating the required OCCI deployment model.

Computation Cluster Scaling @ Standard Interoperability @
;hadaap Orchestration @WORDPRESS Compatibility
Simulation [APACHE Extensibility
/ D
S Qrtl’(\z Monitoring N Generalizability
My

Figure 7.1: Overview: Orchestration case studies.

7 Runtime Model Orchestration Case Studies 86

7.1 Case Study 1: Computation Cluster Scaling

The goal of this study is to demonstrate the feasibility of our orchestration concepts presented
in Chapter 4. To reach this goal, we performed common orchestration tasks used to inves-
tigate the extent to which our orchestration, simulation and monitoring approach supports
the management and development of cloud applications with OCCI. For this investigation,
we modeled and orchestrated a Hadoop cluster as a representative example that represents a
state-of-the-art framework for scalable, distributed computing. We split the orchestration pro-
cedures into three different scenarios that cover the utilization of our model-transformations
and adaptation process (Section 4.1), the simulation environment (Section 6.1.2), and moni-
toring capabilities (Section 4.2). Within these scenarios, we showcase manual and automated
interactions with the runtime model in order to highlight the benefits of an abstract reflection
of the system. Based on the results of these scenarios, we qualitatively discuss the benefits
of a model-driven orchestration process built around OCCI, the reflective capabilities of
a runtime model, as well as provide quantitative insights about deployment times for the
simulation and cloud environment.

Section 7.1.1 presents the artifacts required for the execution of the case study. Sec-
tion 7.1.2 describes the orchestration process. Finally, in Section 7.1.3, we provide the results
and observations of this case study as well as the impact of small model variations. While
this section focuses on orchestrating the Hadoop computation cluster, Section 8.1 further
investigates the capability to integrate the framework into a workflow execution.

7.1.1 Case Study Artifacts

To perform this case study, we developed several artifacts. Section 7.1.1.1 covers the OCCI
deployment model. This model represents the primary artifact of the study and the basis for
our scenarios. Section 7.1.1.2 introduces a subset of the Ansible configuration management
scripts used to deploy and configure the Hadoop cluster with special regards to capabilities
provided by the runtime model information.

7.1.1.1 Deployment Model

The Hadoop framework [231] consists of NameNodes and DataNodes which we abstract
in our deployment model. A NameNode is responsible for management activities such as
storing metadata of the Hadoop Distributed File System (HDFS) and administer the Yet
Another Resource Negotiator (YARN) service. A DataNode stores the data to be processed in
the distributed file system and thus represents a resource that should be monitored and scaled.
Moreover, the framework can be extended with, e.g., Spark [232], that makes use of the
HDFS and YARN to introduce streaming capabilities. To evaluate our orchestration process,
simulation environment, and monitoring extension, we created the deployment model shown

87 7.1 Case Study 1: Computation Cluster Scaling

in Figure 7.2 which is composed of three increments. The individual increments serve as a
basis to evaluate our approach within the different adaptation scenarios of this case study.

The Hadoop Core is the deployment model which we use to initially deploy the framework
(Section 7.1.2.1). This model consists of three compute nodes, namely Hadoop-master,
Hadoop-worker-1 and Hadoop-worker-2. The hMaster and the two hWorker component in-
stances are hosted on these compute nodes which we modeled via PlacementLinks. The
hMaster component describes the lifecycle of a Hadoop NameNode and therefore requires
information from the hWorker instances representing DataNodes. For this, we modeled
ComponentLinks with ExecutionDependency mixins (ed) which indicate that the initial
setup of the hWorker nodes need to be started prior to the hMaster node. All components are
aggregated under one application node called HadoopCluster which unites the management
of its components.

The Spark compartment enhances the Hadoop Core and is used to evaluate our simula-
tion environment (Section 7.1.2.2). This increment of the model introduces an additional
component called spark. We use this component to evaluate the feasibility of our local simu-
lation environment by filling its attached configuration management script with directives
to handle the lifecycle of Spark prior to an adaptation of the actual cloud deployment. For
this, we placed the spark component on the Hadoop-master compute node. Additionally,
we connected the spark component to the hMaster component over a ComponentLink with
an attached InstallationDependency (id). We used this specialized dependency to indicate
that the DataNode needs to be running before Spark should be installed and started by the
orchestration process.

The Monitoring compartment introduces sensor elements and is used to evaluate our
monitoring extension in the scope of a scaling scenario (Section 7.1.2.3). In this model
extension, we added one Sensor for each worker node. Each Sensor application is composed

Spark Hadoop Core Monitoring

Hadoop
Cluster

o) (@05

spark hMaster = hWorker hWorker:]y” glances data result glances data result
processor provider processor provider

| m—] | — e] | m—]
—x —x —x

Hadoop- Hadoop- MonVM

master woake{—1 worker’—)é

Figure 7.2: Hadoop cluster deployment model.

7 Runtime Model Orchestration Case Studies 88

of three component nodes representing its monitoring instruments. The DataGatherer
component is represented by glances. This component deploys the Glances [234] monitoring
software on the worker nodes and provides an interface to request different performance
metrics such as the current CPU or memory utilization. The gathered information is retrieved
by the dataprocessor requesting and aggregating the CPU utilization of the worker nodes.
Finally, the resultprovider publishes the gathered information to the runtime model showing
whether the workload is, e.g., low or critical. To distribute the monitoring workload, the
dataprocessor component as well as the resultprovider are hosted on the MonVM. This
compute node is dedicated to host the monitoring pipeline and lift the monitoring workload
from the worker nodes. To allow for a configuration of the individual monitoring instruments,
we connected them via ComponentLinks. These connections ensure that the configuration
management scripts have access to the attributes of the connected components. In the
following, we go into further detail about the structure of the configuration management
scripts describing the deployment procedures of the individual components.

7.1.1.2 Configuration Management Scripts

For each component in the OCCI model, a corresponding configuration management script
exists that manages its lifecycle. This comprises the scripts to orchestrate the Hadoop cluster,
Spark, and the monitoring instruments. Due to the similarity of these scripts, we provide an
excerpt from two chosen configuration management scripts which represent their general
structure. To explain how applications are deployed, we briefly introduce the hMaster
component (Listing 7.1). Moreover, to exemplify the utilization of runtime model attributes
via the generated variable file, we describe the dataprocessor instrument (Listing 7.2).
Listing 7.1 displays an artifact snippet from the Hadoop master configuration management
script used to handle the component’s lifecycle actions. The MoDMaCAO framework
indicates that the individual lifecycle actions are performed within blocks. The DEPLOY task
manages the deployment of the component (1-7). As the deployment process itself is unrelated
to other components in the process, mainly package management statements are used, e.g.,
to upload and unarchive the Hadoop binaries. In the CONFIGURE block, the snippet shows
the adjustment of the core-site configuration file (9-13). Additional configuration lifecycle
tasks include the configuration of further files, as well as the setup of known hosts in the
cluster. In the START block the start lifecycle action is described (15-19). Within this action,
the HDFS and YARN services, required for the Hadoop master to run, are started. In this
excerpt, the startup of the namenode is shown which manages data stored in the HDFS. For
brevity, we omitted further blocks used to manage the stop and undeploy lifecycle actions.
Listing 7.2 highlights the utilization of attributes from the runtime model in configuration
management scripts. Once a lifecycle action of a component is triggered the MoDMaCAO
framework generates a variable file which contains the attributes of the component as well
as the attributes of surrounding entities. The shown snippet depicts the START block of
our DataProcessor monitoring instrument which starts a previously deployed processor.sh

89 7.1 Case Study 1: Computation Cluster Scaling

Listing 7.1: Hadoop master configuration management code snippet (Ansible).

1 | block:

2 |- name: Upload hadoop

3 unarchive:

4 src: hadoop-2.9.2.tar.gz

5 dest: /opt

6

7 |when: task == "DEPLOY"

9 |block:

10 |- name: edit core-site.xml configuration

1 shell: echo > /etc/hadoop/core-site.xml
12

13 |when: task == "CONFIGURE"

15 | block:

16 |- name: Start HDFS

17 shell: yes "yes" | /sbin/hadoop-daemon.sh start namenode
18

19 |when: task == "START"

script using a start-stop-daemon (3). This script implements directives to query the CPU
utilization currently monitored by the DataGatherer component. The queried monitoring
information is aggregated and stored to be accessed by the ResultProvider. To run multiple
scripts on the same host, it has to be uniquely identified. For this, we query the variable file
generated from the runtime model while filtering the id of the DataProcessor instance (4).
As a second argument, the script requires the information about the Internet Protocol (IP)
address of the compute node hosting the glances DataGatherer. This information is similarly
retrieved. First, the links from the DataProcessor are queried (5). These links are filtered for
componentlink instances with their target resource being of interest (6). For each target that
is a datagatherer we extract the ipaddresses from the queried results and pass it to the data
processing script (7).

Listing 7.2: DataProcessor code snippet showing the start action (Ansible).

1 | block:

2 |- name: Execute processor script

3 command: start-stop-daemon processor.sh

4 {{ iad }?

5 {{ 1links |

6 json_query ('[?kind == ~componentlink “].target') |

7 json_query ('[?kind == ~datagatherer "] . ipaddresses[] | [0]') }}
8

9 |when: task == "START"

7 Runtime Model Orchestration Case Studies 90

7.1.2 Orchestration Process

In this section, the execution of the initial Hadoop cluster deployment is described as well as
additional simulation and scaling scenarios built around it. Section 7.1.2.1 covers the initial
deployment of the Hadoop cluster on our private OpenStack cloud. Section 7.1.2.2 describes
the utilization of the simulation environment to extend the Hadoop cluster with additional
capabilities offered by Spark solely relying on local resources. Finally, Section 7.1.2.3
presents the addition of monitoring capabilities and highlights the interaction of the runtime
model with an additional scaling engine.

7.1.2.1 Initial Cloud Deployment

We use the initial deployment scenario to demonstrate the feasibility of our model-driven
and OCCI based orchestration process (Section 4.1). Before the deployment, we adjust the
Hadoop cluster model using our automated model transformations as shown in Figure 7.3.
The Hadoop core model itself represents a CIM, as compute related information is still
missing. The transformation to the PIM enhanced each compute node with mixins so that
they utilize our default SSH key and initialization script. In the PSM, further provider specific
compute mixins are added to use Ubuntu 18.04 with python pre-installed in a medium sized
VM having two virtual CPUs and four gigabyte memory. Also, the ManagementNetwork is
added to the model including NetworkInterfaces (nwi) to each compute node.

To describe the orchestration process, we investigate intermediate runtime model states
reached throughout the execution of the adaptation engine. For the initial deployment, we
empty the runtime model so that no resources are currently provisioned in the cloud.

CIM PSM —

Hadoop
Cluster

ﬂ
=)

Worke

=

>
‘ g@
QO
(2]
e
@
- [0}
Q
%
‘ o
Q
=
)

Haoop Haoop Haoo
master worker-1 worker 2

ssh:Mixin userdata:Mixin

- "key" - "script”

5
5

ManagementNetwork 7

J

Figure 7.3: Design time Hadoop cluster model with applied model transformations.

91 7.1 Case Study 1: Computation Cluster Scaling

Figure 7.4 (a) shows the first runtime model state in which all resource entities are re-
quested. This covers the requests to create the compute, component, network and application
nodes. In case of the infrastructure resources the requests are directly forwarded to our
OpenStack cloud. Once the startup of the VM and network has finished, they are transferred
to state active allowing the orchestration process to continue.

Figure 7.4 (b) depicts the time step in which each link is provisioned in the runtime model.
As the platform elements are first provisioned at the end of the orchestration process, they
are already interlinked with the ComponentLinks during the startup of the VMs. Once the
compute nodes are active, the PlacementLinks are requested connecting each component
to its host. Simultaneously, the connections from the compute nodes to the management
network are established. At this point in time, the runtime model contains all entities of the
design time model which leads to the next phase.

Figure 7.4 (c) shows the runtime state during the execution of the start action on the
application node. During each execution of a lifecycle action, the variable file for the
individual component is generated providing up-to-date information about the element’s
environment and configuration. The figure highlights the orchestration process at the time
in which the components transition from an inactive to an active state. Hereby, the Hadoop
master component is currently still inactive with the start action being currently processed.
Once the lifecycle action has finished processing, the master component reaches the active
state. This leads to the application node also transitioning to the state active. Finally, the
deployment process is finished, and the runtime model is compared to the design time model.
As both models match each other the Hadoop cluster is successfully deployed.

active

inactive

)

5
&

active @
(a) Resource provisioning. (b) Link provisioning. (c) Application deployment.

Figure 7.4: Runtime states of the initial Hadoop cluster deployment.

7 Runtime Model Orchestration Case Studies 92

7.1.2.2 Cluster Simulation Environment

In this scenario of the study, we highlight the causal connection of the runtime model
(Section 4.2). We use this connection to evaluate the extent to which our simulation en-
vironment (Section 6.1.2) can be used to develop and plan adaptive changes prior to a
deployment in the cloud. For this, we add additional capabilities to the Hadoop model to
include Apache Spark [232]. As shown in Figure 7.5, we separate the scenario in three
steps. The Local Setup (1) of the simulation environment, the Model Adaptation (2), and the
Component Development (3). In this scenario, individual steps of the process are showcased
in isolation to highlight particular aspects.

For the Local Setup (1), we spawned an instance of SmartWYRM (Section 6.2) and the
OCCIWare Runtime system [123] on our Workstation running a i7-7600U CPU2.80GHz with
16 GB of memory. Using this environment, we simulate the productive cloud environment by
replicating its runtime model in order to test and assess the impact of planned changes locally.
To utilize the benefits of the simulation environment, we first extracted the runtime model
currently connected to the cloud. Thereafter, we triggered an automated transformation on
the model which adds a simulation mixin of the appropriate type to each entity. This covers
a compute simulation mixin added to each compute node and a component simulation mixin
added to each component.

For the Model Adaptation (2) we utilize the default configuration of the simulation level
which indicates that the effector only performs state changes. Thereafter, we deployed the
annotated model in our local environment using the orchestration engine. In this simulation,
no virtualized computing resources got provisioned. This allows us to operate on a model-
based level with next to no resource consumption in which each entity only reflects its
state. To integrate the spark component into the Hadoop cluster model, we connected it to
the application node and placed it on the Hadoop-master compute node. In preparation for
the development of the spark configuration management script, we assume that a partial

N\ N

(Local @ Model (@] | Component ®

Setup Adaptation Development

o tate
Work SRS A +......3: | | |block: N

Simulation

5 i | | |- name: unarchive
— || P : unarchive:

i : hMaster hWorker ; b hWorker]

i R \ : 1 src: [...]

: Deploy g dest: /opt

E F aaoop- aqaoo 1

:Mc’de' f._r_ﬂ_?_%tf? war..efl » YV_‘?F!‘.“{F_)?____E Spark Script

Figure 7.5: Local deployment simulation setup and runtime model.

93 7.1 Case Study 1: Computation Cluster Scaling

deployment of the HadoopCluster application is sufficient. For this, we reduce the amount of
required local resources by adjusting the simulation mixins to only perform a State Simulation
for Hadoop-worker-2. Additionally, we set up a Deploy Simulation for the Hadoop-master and
Hadoop-worker-1 compute nodes which get simulated as containers (c). To ensure a correct
provisioning of the resources, we cleared the runtime model residing in our workstation and
performed a fresh deployment with the adjusted simulation levels. This deployment results
in containers being spawned in our workstation for the Hadoop-master and Hadoop-worker-1
which simulate the behavior of VMs in the cloud. To increase the validity of the simulation,
we utilized a container image which replicates the operating system used in the VMs of the
cloud. While we initially performed these changes in the runtime model, we exported the
adjusted model for an automated orchestration of the cloud deployment.

The Component Development (3) describes the implementation process of the configura-
tion management script attached to the spark component. After the provisioning of the
infrastructure, the platform elements are deployed with the Spark Script still being empty.
This allowed us to develop the corresponding configuration management script with a sim-
ulated state of the Hadoop cluster running in the cloud. During the development of the
script, we manually altered attributes within the runtime model and triggered individual
lifecycle actions of the component, e.g., DEPLOY, to exploit the direct connection between
the runtime model and configuration management script. After finishing the development
of the additional component, we replicate the adaptation scenario to be performed on the
cloud environment. For this, we used the orchestration process to first deploy the initial
Hadoop cluster model followed by triggering the orchestration process for the adjusted
model containing the additional spark component. After performing the local adaptation, we
removed the simulation tags from the model and applied it on the cloud runtime model. Due
to the utilization of the same ids in both environments, only the spark component is added to
the cloud runtime model introducing its functionality.

7.1.2.3 Cluster Monitoring and Scaling Scenario

In this section, we further extend the deployed Hadoop cluster model with monitoring
capabilities. We use this scenario to highlight the self-reflective capabilities of the runtime
model. Hereby, we investigate the extent to which the monitoring information can be utilized
by additional adaptation engines. Moreover, we evaluate the capability of the runtime model
to reflect artificial workload chosen by the developer to manipulate and test decision-making
and scaling processes. As shown in Figure 7.6, we attached a Scaling Engine that utilizes the
self-reflective capabilities of our Runtime Model for decision-making purposes.

The Scaling Engine is a MAPE-K loop which can be started next to the runtime model.
This engine monitors and scales the the Hadoop worker nodes in our deployment and was
specifically developed for this scenario. In the Monitor phase a sensor query requests the
information of all CPU related information contained in MonitorableProperty links. In the
case of Figure 7.6 the current workload of Hadoop-worker-2 is "Critical”. In the Analyze step,

7 Runtime Model Orchestration Case Studies 94

the gathered information is used to check whether the deployed cluster needs to be scaled.
The engine differentiates between a scale down and a scale up procedure. Scale down is
chosen if no compute node has a critical workload with one having no workload at all. The
scale up procedure is called when the majority of compute nodes have a critical workload. In
Figure 7.6, a "Critical" workload is detected leading to the decision that a scale up procedure
has to be performed. This decision in then passed to the Plan phase which, depending on the
chosen scenario, builds a new desired state for the runtime model. In the scale up scenario a
new worker node is added comprising a compute resource and a Hadoop worker component.
Additionally, a sensor is added which monitors the CPU utilization of the new worker node.
The added elements resemble the structure of the Runtime Model shown in Figure 7.6. In
the scale down scenario, the machine currently having a "None" CPU utilization is removed
from the model including its Hadoop worker component and sensor. Independent of the
scaling scenario chosen, the resulting model is transformed to add platform specific elements
such as the management network. Finally, the resulting model is passed to the Execute phase
which triggers the Adaptation Engine with the planned model serving as input. The engine
then extracts and compares the runtime model to the new desired state and performs the
adaptive actions over requests sent to the OCCI interface.

To develop the scaling engine, we used the simulation environment to assess the impact of
our scaling scenarios. For this, we adjusted the Sensor simulation mixin in such a manner
that it alternates between different artificial monitoring information that we predefined in
the model. Especially changes to the values "Critical”" and "None" were of interest as these
trigger the scaling procedures. Furthermore, we utilized the added simulation capabilities
to adjust the observed monitoring results manually. This forced specific scaling procedures
to be triggered. For example, to investigate the upscale behavior we configured the sensor
to only monitor critical workload. Additionally, to test the scaling in the actual cloud we
modeled example Hadoop jobs to stress the provisioned compute nodes.

: Runtime Model /‘\! Scaling Engine
: || sensor query
Sensor ; .
"Critical" | Monitor
"Critical"
E Analyze
@ —(P occl [Analy
result scale up
provider :
Adaptation Plan
Engine new worker
£ [_
. Hadoop-worker-2 MonvM J ({)‘ Execute)

Figure 7.6: Hadoop model excerpt with attached scaling scenario.

95 7.1 Case Study 1: Computation Cluster Scaling

7.1.3 Results and Observations

Within this case study, we demonstrate the initial deployment, as well as the adaptation
of a scalable computation framework in a cloud and a simulation environment. We show
that the OCCI standard is suitable to provide adaptive capabilities by demonstrating how a
OCCI based runtime model can serve as a knowledge base in a self-adaptive control loop.
Furthermore, the study demonstrates that this runtime model can be used to not only reflect
structural but also operational parameters by modeling sensors with runtime model access.
In the following, we describe our observations made about the modeling, execution and
simulation process at design and runtime. Moreover, we briefly highlight the impact of small
model and scenario variations and conclude this study with a summary.

7.1.3.1 Initial Deployment

The initial deployment scenario shows the feasibility of our orchestration process and
highlights our transformation and deployment process.

The model-transformations infuse our Hadoop model with provider specific information
required for an actual provisioning in the cloud. This allows focusing on the structure and
behavior of the model. By introducing the transformation process, we save time throughout
the development of the model as less information has to be added to the model in the first
place. However, most values to be added need to be preconfigured and attuned to the provider
covering, e.g., specific images and VM sizes or the authentication keys to be used.

The orchestration procedure derives the dependencies between the individual OCCI entities
to ensure an automatic deployment of the Hadoop cluster model. Hereby, resources are
requested first, followed by their links (see Figure 7.4). This comes due to the fact, that both
resources need to be present in the runtime model, before they can be connected. Furthermore,
depending on the kind of resource, a different state needs to be reached before they can be
connected. For example, in case of the connection of a compute node to a network resource,
the compute node needs to be active. For this, we directly start the compute node within the
initial resource request. During the deployment of the individual Hadoop cluster components,
the generated variable file, to be used by the configuration management scripts, provides
access to runtime information. Among others, this allows us, e.g., to utilize IP addresses
that are dynamically assigned by the management network to establish a communication
between the master and worker nodes. From a timing perspective, our observations show that
requesting OCCI entities without cloud behavior only takes a few milliseconds. For example,
in five successive executions of the deployment scenario, the PlacementLink requests took
14 milliseconds in the mean and ComponentLink requests took 33 milliseconds in the mean.
On the other hand, the provisioning of infrastructure resources, like a VM, took 59 seconds
in the mean with the deployment of the application taking up to three minutes. Therefore,
the model-driven derivation of cloud management requests produces a negligible overhead
when compared to the time required to spawn the infrastructure and deploy the application.

7 Runtime Model Orchestration Case Studies 96

To diversify the initial deployment study, we additional test different kinds of VMs images
and topologies including the utilization of a dedicated network for the communication of
nodes in the cluster. For this, we add a network node as well as network interfaces to the
individual compute nodes to the Hadoop core model. As a result, each VM spawns with
a predefined IP address. We observe that this variation allows for a static development
of configuration management scripts due to the utilization of hard-coded address ranges.
In comparison to the utilization of dynamic addresses that we derive from the runtime
model, these hard-coded scripts are only suitable for testing purposes due to the constraint of
requiring predefined addresses.

7.1.3.2 Simulation Environment

In this scenario we evaluate the extent to which our simulation environment can be used to
assess and test the impact of planed adaptive changes. For this, we use a state simulation
to extend the model itself and a deployment simulation for the development of the Spark
configuration management script. To substantiate our observation with quantitative data, we
executed the study five times per used environment with the 95% confidence intervals shown
in Figure 7.7 (a).

The State Simulation setup extracts and deploys the state of the cloud runtime model on
our local workstation only taking 2 seconds in the mean. As the runtime model in this
environment is not causally connected to an actual system, we are able to develop adaptive
changes directly in the runtime model using small iteration cycles. Moreover, due to the low
time requirements, the state simulation environment proves to be useful to define and execute
automated tests for our orchestration, workflow and scaling engine within a CI pipeline. Still,
in this setup, no configuration management scripts are executed which limits the assessment
of planned changes to the behavior of the runtime model.

160
250 I 140
200 1204
2 2 100
5 150 I s
2 S 80
g g
3 100 3 60
40
501
201 -
«
0 . 04 =
Cloud En\‘/ironment State Sir‘nulatiun Dep\oymen‘t Simulation Overall Provisioning Deploy Configure Start
(a) Deployment duration per environment. (b) Detailed Deployment Simulation.

Figure 7.7: 95% confidence intervals of deployment duration per environment.

97 7.1 Case Study 1: Computation Cluster Scaling

The Deployment Simulation environment can be used to mitigate the limitations of the
state simulation as configuration management scripts are actually executed. During the
development of our spark configuration management script, the runtime model allows us to
manually trigger single actions on the deployment. Hereby, the impact of the action is directly
reflected in the runtime model visualization notifying us, e.g., on failing deployment actions
with the error message updating appropriately. Compared to the 253 seconds deployment time
required in the Cloud Environment, the utilization of the Deployment Simulation takes only
133 seconds in the mean. As shown in Figure 7.7 (b), the simulation reduces the Provisioning
time from roughly a minute in the cloud to a few seconds in our local environment. In
both settings the individual Deploy, Configure, and Start action require roughly the same
amount of time. However, the Deployment Simulation allows reducing the time required for
the application deployment by a third, as we configure the simulation to partially deploy the
model covering only a single master and worker. Overall, the deployment times, as well as the
utilization of a local workstation as computation resource, allow for smaller iteration cycles
without the need to be connected to a cloud. Still, the utilization of different virtualization
technologies as substitute in the simulation pose some constraints that have to be considered,
e.g., in case of Docker the access to specific configuration files is restricted. The Provisioning
step in the Deployment Simulation takes only a few seconds rather than minute to spawn the
infrastructure due to the utilization of containers to simulate VM behavior.

7.1.3.3 Monitoring and Scaling Capabilities

To highlight the reflective capabilities of our OCCI extension, we add sensors to the Hadoop
cluster model and attach a scaling engine that utilizes the monitoring information. We
separate our results into observations made while extending the model with monitoring
capabilities and observations made about the reflective capabilities of the runtime model
during the development of the self-adaptive control loop.

The process of extending the Hadoop cluster model with monitoring capabilities resembles
the addition of the Spark component due to the inheritance of the MoDMaCAO framework.
Due to the manual configuration of the monitoring pipeline, the distribution and expressive-
ness of the reflected values depends on the aggregation process modeled by the user. Thus,
monitoring workload can be distributed across multiple machines with the ability to push
arbitrary monitoring properties to the runtime model. In its current state, the runtime model
is only capable of reflecting the “as is” state. As a result, historical information needs to be
collected and stored using an additional engine.

By reflecting monitoring information in the runtime model, the scaling engine is able to
monitor the structural and operational information of the deployment using simple OCCI
queries. While formerly only the information about the amount of resources and their con-
nections were available, our monitoring extension provides access to monitored deployment
specifics such as the cluster’s workload. This ensures that all relevant information is available
in the monitored runtime model to decide when and how to scale the cluster. As we reuse the

7 Runtime Model Orchestration Case Studies 98

orchestration engine for our scaling engine, no development effort is required to build the
execution phase. Therefore, the standard allows focusing on domain specific behavior rather
than re-implementing already existing approaches. In the case of our scenario, we are able to
focus on the scaling engine’s analyze and plan step. Especially in these steps the simulation
environment supports the development of adaptive behavior, as specific scaling actions can
be forced by injecting specific monitoring information. At runtime, we observe that several
subsequent scale up actions quickly clutter the runtime model visualization. Per scale up six
new resources are added from which four are used for monitoring capabilities. Once more
than two worker nodes are deployed, the amount of monitoring entities make up most of the
resources in the runtime model even though they are automatically generated. This hints
at a trade-off between the readability of the runtime model for a user and the fine-grained
representation of the system with detailed monitoring information.

In a second variation of the scaling engine, we utilize a simple Bash script that scales the
individual nodes in the cluster vertically. In this scenario, the engine directly queries the
monitoring results of a single node over the OCCI interface to adjust its amount of virtual
CPU. During this scenario we learn that managing attributes via simple scripts are sufficient,
but may be limited for multiple resources as request dependencies need to be manually
resolved. This highlights the usefulness of our developed approach as it allows focusing on
desired states rather than adaptive actions.

7.1.3.4 Summary

In the following, we summarize our results of the performed use case.

Summary: Our model-driven approach allows to automatically orchestrate cloud
deployments using the OCCI standard. At design time, model-transformations
reduce the amount of information to be modeled by automatically adding provider
specific information which, however, must be previously defined by a user. At
runtime, the deployment is reflected in the runtime model providing an abstract view
on the system. By connecting the runtime model to different environments, cloud
deployments can be simulated on different levels of detail. These support the change
assessment and development of [aC artifacts and automated test cases by reducing
deployment times and running outside the cloud. Reflecting operational parameters
in the runtime model fosters decision-making processes which are required, e.g.,
by scaling engines. By introducing monitoring elements to OCCI, sensors can be
distributed and individually managed to mitigate potential monitoring overheads.
Still, only the “as-is” state can be reflected with no historic information.

99 7.2 Case Study 2: Standard Interoperability

7.2 Case Study 2: Standard Interoperability

Similar to the first study, the goal of this study is to demonstrate the feasibility of our
orchestration concepts presented in Chapter 4. In this study, we especially emphasize the
generalizability of OCCI, and thus our orchestration approach, by managing TOSCA models
via the OCCI interface. Moreover, we use this study to discuss the mapping of TOSCA
to OCCI (Section 4.1.2) with special regards to the orchestration process presented in this
thesis. Hereby, we highlight the conceptual differences of both standards to distinguish their
individual advantages and drawbacks. As TOSCA provides two kinds of specification, we
choose to focus on the TOSCA YAML version [108] as it is more widely adopted by the
community and more actively maintained.

In the scope of our studies, we transformed and deployed several TOSCA topologies of
various sizes [217]. In this thesis, we present the transformation and deployment of the
TOSCA WordPress topology. We choose this topology, as WordPress [233] is one of the
most common content management systems. Therefore, it represents a common use case for
cloud deployments. Moreover, a complete WordPress stack is available within the TOSCA
YAML specification [108]. This allows us to extract a precise TOSCA topology to determine
the interoperability of OCCI and TOSCA. Finally, the topology is suitable to demonstrate
the feasibility of the transformation and orchestration process while maintaining a concise
description of the study.

The remainder of this section is structured as follows. Section 7.2.1 introduces the artifacts
implemented for the execution of the case study, covering the example TOSCA topology.
Section 7.2.2 describes the orchestration and transformation process. Finally, Section 7.2.3
discusses observations made at design and runtime.

7.2.1 Case Study Artifacts

To mitigate the threat of creating a model that perfectly fits our designed transformation, we
reutilize an existing model of the WordPress example as well as accompanied deployment
scripts from the Alien4Cloud Project [141].

Similar to OCCI, TOSCA is built around a type-instance pattern (see Section 2.3.3.3).
In general, TOSCA separates this pattern using the term type, e.g., for node types, and the
term template, e.g., node template, for the instance layer. Together, node templates and
relationship templates fill out the TOSCA topology, with each template relating to a specific
type describing the properties to instantiate.

The artifacts specifying the types and templates are described via several YAML files.
Section 7.2.1.1 introduces the TOSCA WordPress types, and Section 7.2.1.2, the TOSCA
template.

7 Runtime Model Orchestration Case Studies 100

7.2.1.1 TOSCA Types

Listing 7.3 shows the node_types definition of tosca.nodes.Wordpress which is a custom
type that is derived_from the tosca.nodes.WebApplication normative type (1-3). In addition to
a description, the type specifies two properties and one attributes type (4-9). For example, the
context_root describes the folder path to be used by the wordpress application. Additionally,
requirements are specified that need to be fulfilled by node templates instantiating it (10-
21). The host requirement is a HostedOn relationship describing where the node template
is deployed. Also, a database connection needs to be specified, as well as a php compo-
nent to which the wordpress application ConnectsTo. Finally, the type introduces several
interfaces (22). These describe actions that can be applied on wordpress node templates for
which individual scripts are assigned.

7.2.1.2 TOSCA Template

Listing 7.4 shows the YAML TOSCA template modeling the WordPress stack. In this
excerpt the node_templates (1) section of the topology is highlighted covering six nodes.
The wordpress template is of the previously discussed type: tosca.nodes.Wordpress (2-11).
Here, the individual requirements specified by the type are instantiated. As host the apache
node template is chosen, the database requirement is fulfilled by the mysql node and the php
requirement by the php node. To deploy all these requirements, the topology contains two

Listing 7.3: TOSCA WordPress node type definition excerpt.

1 |node_types:

2 tosca.nodes.Wordpress:

3 derived_from: tosca.nodes.WebApplication

4 description: The TOSCA Wordpress Node Type represents
5 properties:

6 zip_url:

7 context_root:

8 attributes:

9 max_user_number:

10 requirements:

11 - host:

12 capability: tosca.capabilities.Container

13 relationship: tosca.relationships.HostedOn

14 - database:

15 capability: tosca.capabilities.MysqglDatabaseEndpoint
16 relationship: tosca.capabilities.Endpoint.Database
17 occurrences:

18 - php:

19 capability: tosca.capabilities.Root

20 relationship: tosca.relationships.ConnectsTo

21 occurrences:

22 interfaces:

101 7.2 Case Study 2: Standard Interoperability

node templates of type tosca.nodes.Compute named computeWww and computeDb (13-18).
Both node templates represent VMs to be provisioned in the cloud and define capabilities
covering OS and sizes to be used. We omitted this information from the listing for brevity.
The apache node template provides information about the port and document_root to be used
for the component (20-26). Both the apache and the php node templates are hosted on the
computeWww node template (27-30). Finally, to fulfill the database requirement, the mysq|
template is modeled and deployed on the computeDb (31-34).

Listing 7.4: TOSCA topology excerpt of defined node templates.

1 |node_templates:

2 wordpress:

3 type: tosca.nodes.Wordpress

4 requirements:

5 - host: apache

6 - database:

7 node: mysql

8 capability: tosca.capabilities.Endpoint.Database
9 - php:

10 node: php

11 capability: tosca.capabilities.Root
13 computeWww:

14 type: tosca.nodes.Compute

15 capabilities: #omitted for brevity
16 computeDb:

17 type: tosca.nodes.Compute

18 capabilities: #omitted for brevity
20 apache:

21 type: tosca.nodes.Apache

22 properties: #omitted for brevity
23 port: 80

24 document_root: "/var/www"

25 requirements:

26 - host: computeWww

27 php:

28 type: tosca.nodes.PHP

29 requirements:

30 - host: computeWww

31 mysql:

32 type: tosca.nodes.Mysql

33 requirements:

34 - host: computeDb

7 Runtime Model Orchestration Case Studies 102

7.2.2 Orchestration Process

In this section, the execution of the transformation from the WordPress TOSCA topology to
the OCCI artifacts is described. Additionally, we describe the orchestration process of the
transformed model to discuss the interoperability and generalizability of our orchestration
process. Section 7.2.2.1 describes the OCCI extension and model generated from the TOSCA
artifacts. Section 7.2.2.2 presents the deployment of the generated OCCI model.

7.2.2.1 Generated OCCI Model

In this section, the automatically transformed OCCI model is described that serves
as input for the orchestration process. The model itself is shown in Figure 7.8
highlighting the OCCI Deployment Model, as well as exemplifying the transformed
OCCI Extensions for TOSCA in form of a UML class diagram.

We generated two OCCI Extensions for TOSCA to instantiate an OCCI model that complies
to the information of the original TOSCA topology. These comprise the TOSCA custom
extension, covering user defined types and the TOSCA normative extension introducing
common types specified by the standard. We visualize the wordpress:Mixin as an example
for a TOSCA custom type. This type consists of the attributes zip.url and context.root which
comply to the properties defined in the corresponding TOSCA node type (see Listing 7.3).
Similar to most custom mixins, this mixin depends on the webserver:Mixin. This mixin is part
of the TOSCA normative extension and depends on the component:Mixin of the MoDMaCAO
extension. This dependency is created as the webserver:Mixin and its specialization represent
components to be deployed and therefore need a configuration management script attached.
The same relation to the OCCI component kind can be found for the php, apache, and mysql
resources. The mixins generated for the infrastructure layer, i.e., for both compute nodes,
can be applied to the compute kind of the OCCI infrastructure extension.

OCCI OCCI :
Deployment Extensions TOSCA normative
Model for TOSCA webserver:Mixin
depends depends -
MoDMaCAO TOSCA custom
component:Mixin wordpress:Mixin
applies - Zip.url
‘ component:Kind - context.root
computeDb computeWww

Figure 7.8: OCCI model transformed from the TOSCA WordPress topology.

103 7.2 Case Study 2: Standard Interoperability

The OCCI Deployment Model is generated from the TOSCA topology template. The infras-
tructure is represented by the compute nodes computeDb, computeWww. The application
layer is represented by the components mysql, wordpress, apache, php which are aggregated
under a generic application node. Each of these resources has a mixin instance attached which
corresponds to the TOSCA custom node types. In case of the wordpress component, e.g., an
instance of the wordpress:Mixin is attached with the accompanying zip.url and context.root
attributes. The specific attribute values of the individual resources in Figure 7.8 are omitted
for brevity. To ensure the replicability, we reuse the configuration management scripts
provided by the Alien4Cloud project to manage each individual component. In addition to
resources, several links are generated during the transformation. The wordpress component,
is hosted on an apache web server and is connected to a mysql database and a php soft-
ware component. These links utilize the kinds tosca.relationships.hostedon and connectsto
mixin being part of the generated TOSCA normative extension. Furthermore, each of the
TOSCA host requirements from the original topology were transformed to a PlacementLink
connecting the component to the compute node it is deployed on. Before the orchestration
is performed, a PIM to PSM transformation is executed on the OCCI model to fulfill the
requirements given by the OCCI MoDMaCAO framework.

7.2.2.2 Provisioning and Deployment Procedure

In the first step, the orchestration process inspects the currently running cloud deployment,
which we emptied for this use case. Therefore, a provisioning plan is generated that includes
requests to create all elements being part of the model. The requests are sequenced by
creating the resource elements first, i.e., the computeDB, computeWww, mysql, wordpress,
apache, php and the general application resource. While the effector of the compute nodes
directly performs a request to the cloud environment spawning up the modeled VM, the
component nodes reside in a undeployed state. Once the VMs have reached an active state,
the orchestration process continues by sending requests to create the links interconnecting the
resources in the runtime model. In case of the given model, this includes the connection of
the VMs to the management network, the creation of PlacementLinks describing where each
component is hosted, as well as ComponentLinks interconnecting the individual components.
After validating the infrastructure, the application deployment process is taking place starting
the deploy, configure and start action on the generated application node. During this process
the information modeled within the added TOSCA mixins is taken into consideration and
passed to the configuration management script in order to be used. After the request has been
sent, the effector identifies the correct order of lifecycle actions to be triggered among the
components by utilizing the information modeled within the ComponentLinks and mixins. In
case of this deployment model, first the php and apache component are deployed, followed
by the mysql database and finishing with the wordpress component. The orchestration of the
configuration and start actions follow the same sequence. After each component has reached
the active state, the application is also set to active which closes the deployment procedure.

7 Runtime Model Orchestration Case Studies 104

7.2.3 Results and Observations

This case study demonstrates the cooperation between the two cloud standards TOSCA and
OCCI while utilizing the orchestration engine and effectors presented in this thesis. We
show that the OCCI standard is feasible to serve as an interface that may be used to deploy
TOSCA topologies using a uniform and standardized interface. In the following, we describe
observations about the compatibility of TOSCA and OCCI at design and runtime.

7.2.3.1 Design Time

In general, a standard-driven approach to model cloud deployments is quite advantageous.
This is, because the metamodel or language is designed by experts which agree about key
aspects in the cloud domain. Thus, the standard presents a sophisticated abstraction of the
cloud domain which is at least partially accepted by the community. In case of this study,
we demonstrate that TOSCA can be transformed to OCCI in the scope of our model-driven
environment. Even though both standards possess similarities, they differ in their focus and
therefore cannot be mapped one to one. TOSCA provides concepts to model on a higher
abstraction level providing elements which, e.g., allow grouping different elements and scale
them. OCCI on the other hand focuses with its uniform interface on a runtime perspective,
introducing elements such as mixins that provide the capability to dynamically add behavior.
Therefore, elements such as TOSCA scaling groups, as well as OCCI applications, do not
possess equivalents in the respective standards.

Overall, the transformation of TOSCA to OCCI transfers all information that refers to
actual cloud resources by generating corresponding mixins. However, not all information can
be directly utilized for an actual deployment over the OCCI interface. The elements in the
platform layer, i.e., components, can utilize the transformed information within the mixins in
the scope of the variable file generated for the configuration management scripts. However,
some information at the infrastructure layer require a more concise mapping. Contrary to
OCCI, TOSCA allows compute templates to define a default IP address without requiring
a network to be defined. To correctly transform this representation, an abstract network is
required in OCCI, which, e.g., represents a provider network. This, however, represents a
resource that a user is not allowed to manage which contradicts the purpose of OCCI. While
this hints at required adjustments to optimize the mapping in some use cases, the translated
information of the TOSCA to OCCI transformation is sufficient to deploy a cloud application
using our orchestration process.

7.2.3.2 Runtime

While the similarities and differences of the standardized languages can be identified by
comparing their specifications, the orchestration process is used to compare the implications
of managing the modeled resources at runtime. While multiple approaches exist that in-
terpret TOSCA topologies and orchestrate their deployment, our approach focuses on the

105 7.2 Case Study 2: Standard Interoperability

orchestration of such topologies over the uniform and standardized interface provided by
OCCI. Overall, our observations about the management of the resources can be divided into
the logic of the orchestration engine and the logic implemented in the effector managing the
resources of a specific kind. The logic within the orchestration engine does not have to be
adjusted, as each transformed TOSCA resource corresponds to a kind specified within the
OCCI standard, i.e., compute, component, or application. The utilized model transformation
solely generates TOSCA related mixins that can be attached to these kinds. As a result, no
new effectors need to be generated. Still, the specific behavior provided as capabilities by
the attached mixins must be implemented by the corresponding OCCI effector. It should
be noted, that in case of our case study no specialized implementations of our effectors
are necessary. This is because the default variable generation provides the configuration
management scripts with all attributes of attached mixins.

The configuration management scripts attached to the individual components play a major
role during the deployment of the topology. In case of this study, we utilize the scripts
provided by the Alien4Cloud project [141]. In the TOSCA topology these scripts are directly
attached to the type definition among the interfaces of a specific type. In case of OCCI, we
map these scripts to the individual MoDMaCAO actions, i.e., deploy, configure and start, and
store them within our runtime environment. In general, the design-time attachment of the
scripts to the TOSCA type definition makes them more portable. However, the utilization of
the scripts within the OCCI environment allows making use of runtime information. In case
of this deployment, the runtime information comprises, e.g., the IP addresses and ports of
the MySQL database. During the deployment of the wordpress component, this up-to-date
information is retrieved from the runtime model and passed over the variable file generation
to the configuration management script.

7.2.3.3 Summary

In the following, we summarize our results of the performed use case.

Summary: The TOSCA and OCCI standards both offer different advantages and can
be combined using a set of model transformations. Thus, our orchestration process
can be used to deploy and manage OCCI models that originate from the TOSCA
standard. Still, for design time aspects, TOSCA has a more sophisticated metamodel.
Therefore, elements that do not represent direct cloud resources, such as scaling
capabilities, can not be directly mapped to OCCI, while elements such as OCCI
applications do not have a direct TOSCA correspondent. Compared to TOSCA,
OCCI benefits from a simple core model with the advantage of being accompanied
by a uniform interface to abstract and manage modeled cloud resources.

8 Runtime Workflow Model Case Studies

In this chapter, we demonstrate the applicability of the runtime workflow model concept
presented in Chapter 5. For this we designed, modeled and reflected scientific workflows
from multiple domains using the notation and configuration introduced in Chapter 6. Due to
the similar composition of our orchestration and workflows studies, we discuss the threats to
validity in Section 9.4. As shown in Figure 8.1, this chapter comprises three case studies that
highlight individual capabilities, advantages and drawbacks offered by our workflow runtime
model. While focusing on different aspects of our concept, each of these case studies possess
the same structure. First we identify the need for shifting resource requirements within the
scientific domain for which we provide a brief introduction. Based on the gathered insights,
we create a corresponding workflow model and investigate how it operates at runtime by
visualizing reached runtime states. At the end of each case study we conclude our design
and runtime observations and discuss potential timing overheads.

Section 8.1 covers the Big Data Framework (1) case study which focuses on a Task and
DataLink communication to perform a Map Reduce job hosted on distributed machines.

Section 8.2 covers a Dynamic Simulation (2) scenario that highlights the Decision and
Sensor functionality within a Multi-Level Simulation application which requires shifting
amounts of computing resources. Moreover, this case demonstrates the utilization of special-
ized infrastructure resources within the workflow.

Section 8.3 presents our Repository Mining (3) case study which demonstrates the utiliza-
tion of Loop instances and their Parallelization within a software repository mining workflow
built around the SmartSHARK framework.

Big Data Framework (1) Dynamic Simulation (2) Repository Mining (3)

DataLink Decision | Loop
@ Sensor @ © Parallelization ?

Map ‘hadam Multi-Level Smart
P Simulation SHARK b

Reduce
Figure 8.1: Overview: Workflow case studies.

8 Runtime Workflow Model Case Studies 108

8.1 Case Study 1: On-Demand Big Data Framework

The ability to gather large amounts of data has led to many methodologies to efficiently
analyze them using distributed resources. As already described in Section 7.1, Apache
Hadoop [231] is a common big data analytic framework. This framework is built around
the MapReduce programming model [235] which needs to be further explained for this
case study. In general, this programming model can be separated into the map and reduce
step. The map step filters and sorts the data, while a reduce method performs a subsequent
summarizing operation. Combined huge amounts of data can be analyzed by distributing the
individual steps of this computation to the compute nodes storing the data.

In this case study, we demonstrate the applicability of our workflow approach to dy-
namically spawn a big data framework. Hereby, we highlight the general structure of our
workflow approach (Section 5.1.1). To discuss the feasibility of our approach, we review the
complexity of creating an infrastructure aware workflow model at design time. Moreover,
we investigate the behavior of the workflow model and the workflow engine at runtime while
using measured timings to discuss potential overheads.

As basis for our study, we model a workflow in which a MapReduce program is used to
calculate a bag of words that counts the occurrences of words from previously gathered text
data. In this scenario, a simple deployment of a single compute node is sufficient for the data
gathering step. However, to analyze it a more complex deployment of a Hadoop cluster is
required.

Section 8.1.1 describes the workflow model of this study which abstracts the different tasks
and their requirements. Section 8.1.2 introduces the runtime model states reached during
the execution of the workflow. Finally, Section 8.1.3 presents the results of the described
scenario highlighting design time, runtime, and timing observations.

8.1.1 Workflow Model

In Figure 8.2 the Hadoop workflow is shown using our notation for OCCI introduced in
Figure 6.4. The workflow consists of three tasks each requiring a specific deployment:
Data Fetching (1), Data Distribution (2) and MapReduce (3).

The Data Fetching (1) task requires a single VM named FetchVM. This compute resource is
used to download a set of text files to be analyzed. For this, the Wget executable component is
used. This component describes the deployment and execution of the wget software package
which we configured to download a set of public text books. After the download process is
finished, the data flow is triggered which transfers the fetched data from the FetchVM to the
Hadoop-master VM. The information to transfer the data between the tasks is derived from
the DataLink by configuring the desired input and output location of the data. Here, different
communication channels can be chosen to transfer the data by referring to corresponding
elements in the infrastructure layer. In this case, the management network serves as default

109 8.1 Case Study 1: On-Demand Big Data Framework

Data _Data p
Fetching Distribution Reducg

& & &

get Distribution Wordcount

Hadoo
Cluster

hMaster hWorker hWorker

| —] =X | — o] | m—]

=X =X | m— o] =

=) =) 1 1
FetchVM Hadoop- Hadoop- Hadoop-

master worker-1 worker-2

Figure 8.2: On-demand big data workflow.

communication channel as it is automatically added by the orchestration process. We omitted
this default network from the visualization for brevity.

The Data Distribution (2) task is responsible to store the downloaded files in the
HDEFS [236], a distributed file system on which the Hadoop computation cluster re-
sides. The commands to store the files in the HDFS are described within the configuration
management script attached to the Distribution component. To trigger this component the
deployment of the Hadoop cluster is required. This requirement is modeled via a Platfor-
mDependency link targeting the Hadoop Cluster application. To fulfill this dependency, we
reused the core model of the Hadoop application created in the previous case study. A
detailed description can be found in Section 7.1.1.1. In general, the application consists
of three components that are deployed on three separate VMs posing a typical master
worker architecture. The Hadoop-master compute node hosts the hMaster component, while
the Hadoop-worker-1 and Hadoop-worker-2 compute nodes host hWorker components. To
describe the interconnection between the individual components, ComponentLinks are used
with an attached ExecutionDependency mixin (ed).

The MapReduce (3) task finalizes the workflow. It is linked to the Wordcount executable
which itself is hosted on the Hadoop-master compute node. This component possesses a
configuration management script that deploys the artifacts to calculate a bag of words from
the gathered text books using the Hadoop framework. Similar to the previous task, the
MapReduce task requires the Hadoop Cluster to be deployed as it utilizes the capabilities
provided by the Hadoop framework, as well as the data stored within the HDFS.

8 Runtime Workflow Model Case Studies 110

8.1.2 Workflow Execution

To discuss the dynamic capabilities of our approach, we describe the execution of the
workflow by visualizing individual runtime states. These states are shown in Figure 8.3 with
deployed resources visualized in green and undeployed resources in gray. In this figure, the
individual time steps represent the runtime state and therefore the results of the generated
required runtime model. To initialize the workflow, the first required runtime model only
contains the tasks to be executed which are correspondingly transferred to the runtime model.

In Figure 8.3 (a) the first cycle of the workflow execution is depicted with the Data Fetching
task currently being in the active state. This task is the first one to be triggered, as it has no
previous tasks. Therefore, the generation of the required runtime model results in a model
that only contains the infrastructure of the Data Fetching task, i.e., a single VM. After the
architecture is successfully deployed, the Data Fetching task is triggered as part of the same
cycle. This results in the deployment, configuration, and start of its executable component

p))-

(a) Active data fetching task. (b) Active data distribution task.
(0)’(0)’
‘active] ™

(c) Active map reduce job.

Figure 8.3: On-demand big data workflow execution.

111 8.1 Case Study 1: On-Demand Big Data Framework

fetching a set of text books. Once the download is completed, the Data Fetching task reaches
the state finished. The finalization of this task indicates the availability of the fetched data so
that the DatalLink can be triggered. For this, both VMs hosting the executable components
get started by generating a corresponding required runtime model. Once triggered, the data
flow ensures that the fetched data is available for the Data Distribution task.

Figure 8.3 (b) depicts the second cycle of the workflow after the DataFetching task
is finished (f) and the files have been transferred. To trigger the Data Distribution task
(active), the deployment of the Hadoop Cluster application is required. Therefore, the VMs
of the Hadoop cluster are provisioned, and the corresponding components are deployed.
Additionally, the VM used to fetch the data is removed from the required runtime model as it
is not needed for the execution of the Data Distribution task. Once the cluster is deployed,
the Data Distribution is triggered which transfers the fetched data to the HDFS.

Figure 8.3 (c) visualizes the state in which the MapReduce task is executed and active. To
reach this state, only the executable component is deployed, as the infrastructure requirements
are already fulfilled by the previous task. Consequently, the task enactor triggers the execution
of the Hadoop job to compute the bag of words from the data stored within the HDFS. After
the Hadoop job has finished processing, each task within the workflow has reached the
finished state fulfilling the condition to end the execution of the workflow engine. This leads
to the Hadoop cluster being provisioned at the end of the workflow which can be released by
modeling an extra clean-up task.

8.1.3 Results and Observations

With this case study, we demonstrate the compatibility of our approach with a big-data
framework. Hereby, we highlight the capability of modeling infrastructures that can be
dynamically deployed and reflected during the workflow execution. To foster the discussion
of the applicability of our approach, we describe the complexity of creating a runtime
workflow model at design time, and provide observations made at runtime.

8.1.3.1 Design Time

At design time, we observe that the modeling process can be separated into two layers. The
workflow layer and the infrastructure layer. As the workflow layer only consists of three
subsequent tasks with clear requirements it represents a rather simple layer to model for this
scenario. Also, the modeling process of components describing the executable part of the
task requires next to no effort as they represent simple scripts triggering, e.g., command line
tools such as wget. Still, the scripts have to be configured to utilize the information within
the runtime model, e.g., to extract the information from the DataLink about desired input and
output files. The highest complexity of this workflow model resides within the deployment
of the Hadoop application. However, the model structure and the deployment artifacts could
be reused and therefore represent a one time effort.

8 Runtime Workflow Model Case Studies 112

8.1.3.2 Runtime

Performing the workflow reveals that the execution can be described via subsequent runtime
states. Hereby, each runtime state covers the complete workflow layer, indicating the goal to
be reached, as well as the infrastructure of the currently running workflow task. Independent
of whether a task is currently performed and active or whether the infrastructure is provisioned
and deployed, the visualization of the runtime model provides insights about the current
state of an application and its components. The visualization and the distinct runtime states
allow observing the individual attributes of each resource and link and even trigger their
actions. Combined, the runtime model provides an abstract and visualized interface to the
system that a user can interact with. During the execution of the workflow we identify that
the execution of the workflow and, therefore, the time requirements can be separated into
three steps. The first step comprises the generation of the required runtime model, i.e., the
analysis and planning of the next state required in the cloud. The second step considers the
time required to provision the cloud infrastructure and deploy the cloud application. Finally,
the third step comprises the time required to execute the modeled workflow task. Based
on this insight, we gathered the corresponding data regarding the time requirements of the
presented workflow which are discussed in the following section.

8.1.3.3 Timing Measurements

To provide a better overview of the workflow timings, we executed the case study five times
and visualized the 95% confidence interval and mean of the overall workflow, task execution,
scheduling, and model generation duration in Figure 8.4. The timings were recorded with
each compute node being a VM with two virtual CPUs and four gigabyte memory.

600 }
500
n
< 400 1 }
c
o
% 300
5
=)
200 - *
100 A
0 1 -
Workflow Task Scheduling Model Generation

Figure 8.4: 95% confidence interval plot of the Hadoop workflow duration.

113 8.1 Case Study 1: On-Demand Big Data Framework

The Workflow execution for the analysis of 22 text books takes 580 seconds in the mean.
When executing the workflow multiple times, a small variance in the time required for its
execution can be detected. This variance correlates with the time required to execute the
individual Task instances which takes 360 seconds in the mean. We explain the observed
variance with the Data Fetching task which utilizes an external mirror with shifting download
speeds. The Scheduling of the architecture on the other hand, has a rather small variance
which mainly relates to the time required to spawn VMs in our private cloud. Within our
experiment, the provisioning and deployment of the modeled resources take 210 seconds
in the mean. In this case study, the deployment time of the Hadoop application is rather
constant, as we upload the binaries directly from the OCCI server to the compute nodes
rather than relying on external download servers. Finally, the execution of all required
Model Generation procedures together take 0.7 seconds in the mean with each cycle taking
less than 0.3 seconds per iteration. Thus, the generation of the required runtime model is
negligible for this workflow model.

While experimenting with the workflow, we observe that small adjustments can greatly
impact the execution times. By increasing the amount of text books to analyze, more time
is required for the execution of the tasks. To compensate the longer task execution, further
worker and master nodes can be added to the Hadoop cluster. This, however, results in
more time required to spawn the infrastructure. Ultimately, the size of the model has to
be well-chosen to trade off the time to perform the tasks and the time to deploy the cloud
topology. Additionally, tailoring the workflow itself can improve the time required for the
overall execution. For example, the Data Fetching task can be modeled in such a manner
that its computation is performed on the Hadoop-master VM. In this case, the VM is reused
for multiple purposes which saves provisioning times and time required to transfer the data.

8.1.3.4 Summary

In the following, we summarize our results of the performed use case.

Summary: The execution of the workflow can be described via distinct runtime
model states in which the cloud infrastructure for each individual task is subsequently
deployed. At design time, existing artifacts can be reutilized allowing the user to
focus on the workflow layer to incorporate, e.g., data flows. The workflow execution
time is determined by the provisioning and deployment of the infrastructure as well
as the execution of the task. Compared to these timings, the time required for a
model based generation of required runtime represents a negligible overhead. By
performing small adjustments to the model, we observe that the time requirements
can be highly tuned to fit the scope of the experiment.

8 Runtime Workflow Model Case Studies 114

8.2 Case Study 2: Dynamic Simulation

To gain knowledge about specific behavior within a domain, it is common practice to perform
simulations which artificially recreate scenarios of interest. Depending on the level of detail
targeted by the simulation, different amounts of computing resources are required. Therefore,
the utilization of distributed environments can be of great benefit as cloud resources can be
dynamically scaled to reduce cost and energy consumption. In this section, we present a
workflow for a dynamic multi-level-simulation that simulates individual parts of a system
using different levels of detail [237].

Within this case study we investigate the applicability of our approach to enable dynamic
and distributed simulation while highlighting the decision-making process provided by the
runtime model (Section 5.1.2). Moreover, we evaluate the capability of a human-in-the-loop
that uses the runtime model as an abstract interface to influence the workflow and choose
desired simulation details.

As basis for our study, we utilize a multi-level-simulation that abstracts the supply chain
of a factory. While at default the factory is simulated at a coarse level, detailed simulations
describing quality assurance and order picking processes can be added.

Section 8.2.1 describes the workflow model of the simulation study. Section 8.2.2 in-
troduces the runtime states during the execution of the workflow. Section 8.2.3 discusses
observations about the workflow creation, execution and time requirements.

8.2.1 Workflow Model

The workflow model created for the execution of the multi-level-simulation application is
shown in Figure 8.5. Overall, the model comprises four tasks and one decision, namely,
Coarse (1), Decision (2), Picking (3), QA (4) and SimAll (5.

Coarse (1) represents the first task of the workflow with no previous tasks. This task is
responsible to perform the standard execution of the factory simulation, i.e., without specific
detailed simulations added. The simulation itself is packaged in the component of the CApp
application which needs to be deployed in order to perform the task. This relation is modeled
via a PlatformDependency going from the Coarse to the CApp node. Additionally, the task
possesses an execution link targeting the Cdob component representing the task’s executable.
This job triggers the deployed simulation application with predefined parameters such as
the amount of simulation steps to be performed. To deploy both the executable and the
application, the dedicated CoarseVM is modeled. The composition of task, application and
executable can be seen throughout the whole workflow as each task requires the deployment
of a simulation application on top of virtual hardware. As the simulation requires individual
and distributed resources for each simulation detail, each simulation application is hosted
on a separate compute node. Each compute node is connected to the misNetwork with a
pre-defined IP. This network is dedicated to manage the message exchange of the simulation.

115 8.2 Case Study 2: Dynamic Simulation

Coarse *, Decision

Picking ™~

@ @@

CApp CJob Sensor PJob PApp QAJobQAApp SimAllJob

==110.254.1.100

CoarseVM

misNetwork

Figure 8.5: Multi-level-simulation workflow.

The second task is represented by the Decision (2) node. This task is responsible to
investigate the results of the previously performed simulation and to decide which detailed
simulation to add. To investigate the results of the first simulation, the attached Sensor is
used. This sensor represents the PlatformDependency of the Decision task and therefore is
deployed in order to perform the decision-making process. The deployment of the Sensor
is mainly concerned with the installation of the CResult component. This component is
connected over a PlacementLink to the CoarseVM which serves as a host. Once deployed,
the component reads the output of the coarse simulation and aggregates it to decide which
detailed simulation to add. In this case, the output volume of processed packages is checked
in order to respond to unexpected results with a more fine-grained simulation of the picking
process. To ease the decision-making process, we configured the monitoring instrument in
such a manner that the observed information is aggregated to match the modeled guards,
i.e., ga or picking. These express the need for a detailed quality assurance simulation,
or the addition of a detailed order picking simulation. Finally, using the behavior of a
ResultProvider, the aggregated information is reflected within the MonitorableProperty link
that points from the Sensor to the Coarse task.

8 Runtime Workflow Model Case Studies 116

The Picking (3) task and the QA (4) task represent detailed simulations of the factory’s order
picking and quality assurance processes. Both simulation tasks extend the coarse simulation
and therefore possess a PlatformDependency targeting the CApp application. Additionally,
both simulation tasks have a PlatformDependency targeting their own simulation application,
i.e., PApp and QAApp, as well as an ExecutionLink targeting their executable component, i.e.,
PJob and QAJob. The components of both tasks are hosted on separate VMs being either the
PickingVM or the QAVM which are both connected to the misNetwork.

The SimAll (5) task finishes the workflow and performs the final steps within the simulation
by adding all levels of detail to the coarse simulation. For this, the task has a Platform-
Dependency to each simulation application, i.e., CApp, PApp, and QAApp. Furthermore, the
task is connected to the SimAllJob executable component which triggers all simulations at
once to inspect the behavior of the factory on the highest level of detail.

8.2.2 Workflow Execution

The execution of the workflow shown in Figure 8.5 starts with the transmission of the task
sequence into the runtime model. In Figure 8.6, we visualize the individual runtime states
reached during the workflow execution. Hereby, we reuse the original model visualization
and highlight deployed and active resources in green and undeployed resources in gray.

In Figure 8.6 (a) the first cycle of the workflow is shown. At this point in time, the Coarse
task is determined as ready for execution as it has no preceding tasks. Thus, a required
runtime model is generated containing only the infrastructure and platform elements required
by the Coarse task, followed by the deployment of the generated model. The reached state
comprises the VM on which the coarse application is deployed, as well as the executable
which triggers the application to perform the simulation. Once the orchestration engine has
finished, the VM and the application are successfully deployed allowing the task enactor to
request the execution of the Coarse task. This in turn transfers the Coarse task to an active
state and triggers the accompanied job executable starting the coarse simulation.

Figure 8.6 (b) depicts the second cycle of the workflow execution which is reached once the
Coarse task is finished (f). Consequently, the Decision task is performed next as visualized
by the figure. Here, the task enactor triggers the execution of the Decision node which
transfers it to the active state and starts the monitoring process. The monitor comprises
the activation of the Sensor application which is configured to reflect the coarse simulation
result in the MonitorableProperty. After the sensor has finished processing the monitored
information, the reflected information is used as decision input and checked against the
modeled control flow guards. In case of the visualized execution, the decision input is set to
“picking”. Therefore, the QA task is transferred to the skipped state with the Picking task
remaining in the scheduled state. It should be noted, that in a second experiment we adjust
the control flow as a human-in-the-loop to test the QA task. Independent of the observed
results, the Decision node is finished (f) with one of its following tasks being scheduled
allowing it to be executed.

117 8.2 Case Study 2: Dynamic Simulation

(c) Activation of the picking simulation. (d) Activation of all detailed simulations.

Figure 8.6: Dynamic simulation workflow execution.

Figure 8.6 (c) depicts the third cycle in which the Picking task is executed. For this, a
new required infrastructure is derived from the design and runtime model. The resulting
required runtime model state comprises a new VM as well as the simulation application
and job component of the picking simulation. Additionally, as the Decision task is finished,
the Sensor is not needed anymore and therefore deprovisioned. After the architecture
scheduling process, the task enactor transfers the Picking task to the active state which starts
the simulation. After the detailed simulation is performed, the Picking task reaches the
finished state.

8 Runtime Workflow Model Case Studies 118

Figure 8.6 (d) visualizes the fourth cycle of the workflow execution. At this point in time,
the state of the runtime model fulfills all workflow requirements to execute the final SimAll
task as every previous task is either finished or skipped. The generated required runtime
model for this step comprises the VMs for each simulation detail with the corresponding
application being provisioned on top. However, only a single executable is deployed corre-
sponding to the SimAll task. This task is executed as soon as the required infrastructure is
provisioned, and the applications are deployed. Triggering the task transfers it to the active
state with the overall simulation job being executed. After the simulation is processed, the
workflow is completed with each task being either finished or skipped. Again the infrastruc-
ture for the last task remains active after this workflow which may be adjusted by modeling a
cleanup step to store the results of the simulation and release excess resources.

8.2.3 Results and Observations

With this study, we demonstrate the applicability of a workflow runtime model for the
execution of a dynamic simulation. Hereby, we highlight the monitoring and decision-
making capabilities provided by the runtime model and the monitoring extension presented
in Section 4.2.2. Furthermore, we use the model of this case study to perform direct
interaction with the model by a human-in-the-loop adjusting, e.g., the decision input at
runtime. In order to foster the discussion of the applicability of our approach, we provide
our lessons learned about this workflows design time, runtime and overall timing aspects.

8.2.3.1 Design Time

The presented workflow follows the general scheme of our runtime workflow model concept.
For each task this scheme comprises a VM, the executable job component, as well as the
application node and the component describing its deployment. Compared to the former
study, this model additionally considers a sensor node and a dedicated network for the
communication of individual parts of the simulation. Hereby, we observe that the pre-
configured IP addresses can be either manually defined or dynamically retrieved by the
the configuration management scripts of the individual simulation components. While the
decision-making process is performed at runtime, the modeling at design time only requires
the addition of a sensor application. This capability allows reflecting intermediate results in
the runtime model which are then used to influence the control flow. We notice that the target
of the sensor’s MonitorableProperty is flexible and may point to different resources, e.g., the
task it observes or the job executable producing the results. This allows for more flexibility
as the information of the MonitorableProperty target can be used within configuration
management scripts connected to the monitoring instruments modeled. Finally, as each task
within the workflow requires the application of the coarse simulation to be deployed, a lot
of PlatformDependency links are present within the model. These connections clutter the
visualization of the model at design time.

119 8.2 Case Study 2: Dynamic Simulation

8.2.3.2 Runtime

At runtime, the problem of a highly cluttered visualization due to many PlatformDepen-
dency links connecting the tasks to the coarse application is mitigated. Here, only the
PlatformDependency links required at the current point in time are provisioned including the
infrastructure targeted. Therefore, a clear visualization of the workflow state is provided, as
well as the state of the infrastructure currently provisioned.

Apart from the visual benefits of a runtime workflow model, we observe that the integration
of sensors from our monitoring extension fosters decision-making capabilities. Combined
with the capability to spawn highly tailored infrastructure, this functionality allows tailoring
workflows to dynamically decide on required tasks and thus infrastructure. In this scenario,
we use a decision node which deploys a sensor that automatically inspects intermediate
results. Based on these results follow-up tasks are chosen including the required infrastructure.
During this decision-making process, the causal connection of the runtime model provides
access to the monitored intermediate results which helps to reason about the workflow and
the experiment. In addition to the representation of the monitoring information, the actual
decision of this process is reflected in the runtime model as well. Hereby, the runtime
states of the guarded tasks are directly manipulated to ensure the correct orchestration of the
workflow. In addition, the utilization of these states provide the user with information about
the workflow’s current state.

While we mainly discuss the automated decision-making process using modeled sensor
applications, we additionally investigate the extent to which a scientist can serve as a human-
in-the-loop. For this, we simply removed the sensor application from the model. This results
in the Decision node blocking the execution of the workflow, as long as no decision input is
set. Due to the causal connection of the model and the workflow, we are able to choose the
desired control flow to follow, i.e., the desired detailed simulation, by simply adjusting the
decision input attribute.

8.2.3.3 Timing Measurements

In this section we compare the workflow time, scheduling and task execution time, as well as
the accumulated time required to generate the required runtime model states. The workflow
model got executed five times with the 95% confidence interval of the timing measurements
shown in Figure 8.7. It should be noted, that in each execution of the workflow the decision-
making process decided for the picking assurance simulation. Furthermore, we configured
each VM to be of medium size comprising two virtual CPUs and four gigabyte memory.
Overall, the Workflow execution takes 344 seconds in the mean with a small variance.
This variance matches the one observed by the Scheduling process which takes 284 sec-
onds in the mean. We explain the variance with the individual start-up times of requested
VMs. Compared to the other timings, the variance for the Task execution is rather constant
with a mean duration of 50 seconds. Also, the accumulated times of all required runtime

8 Runtime Workflow Model Case Studies 120

3501 }
3001 ;
o 2501
£
.5 2001
=
©
S 150
a
100 -
50 - -
01 -
T T T T
Workflow Task Scheduling Model Generation

Figure 8.7: 95% confidence interval plot of the simulation workflow duration.

Model Generation executions take 1.8 seconds in the mean. The observed values show that
the model generation does not significantly impact the time required to execute the workflow
and therefore is negligible. All in all, the scheduling takes up the most of the workflow
execution time, mainly because of the time required to spawn the VMs. In this case, the
dynamic provisioning of distributed resources is only justifiable if the individual simulation
tasks represent long-running processes. This, e.g., can be reached by increasing the amounts
of simulation steps to be performed. Alternatively, the scheduling time can be reduced by
modeling container nodes instead of VMs.

8.2.3.4 Summary

In the following, we summarize our results of the performed use case.

Summary: By attaching workflow tasks to individual infrastructures deployed archi-
tectures can be dynamically shifted. Still, spawning new infrastructure is costly and
may induce an overhead for short executing tasks. Therefore, the workflow model
needs to be well designed by the user to ensure an efficient resource management.
The integration of sensors and the reflection of arbitrary information fosters the
decision-making process, €.g., by monitoring intermediate task results to decide
which control flow to follow. Hereby, the causal connection of the runtime model
ensures that users can simply influence the execution of the workflow at runtime by
performing small attribute adjustments.

121 8.3 Case Study 3: Software Repository Mining

8.3 Case Study 3: Software Repository Mining

Software repositories and Version Control Systems (VCSs) support the software implemen-
tation process by providing a traceable way to store artifacts and how they change over
time. Combined with the information that is stored within mailing lists and issue tracking
systems, huge amounts of data are available to draw insights about how software is developed,
implemented, and maintained. This process is commonly referred to as software repository
mining. When mining software repositories, different amounts of computing resources are
required, e.g., for the data gathering and analysis tasks.

In this case study, we demonstrate the applicability of our runtime workflow model concept
for the software repository mining domain. Hereby, we highlight our loop concept including
their parallelization (Section 5.1.3). Moreover, we use the insights gathered from the previous
study to investigate the extent to which a domain specific OCCI extension can support the
workflow runtime model.

As basis for our study, we recreate the mining and analytic process formed around the
SmartSHARK platform [238]. This platform allows scientists to extract software quality
metrics from software projects in order to perform empirical studies [239-242]. To allow
for a precise configuration of the repository mining workflow, we create a domain specific
extension to support the three core plugins of SmartSHARK. The VCSShark plugin extracts
metadata from the software repository and stores it in a database. The MecoShark plugin
utilizes this metadata to analyze the metric values of each commit in corresponding software
projects. The MemeShark plugin is used to reduce the amount of required storage and cleans
redundancies in the database. While gathering metadata and the removal of redundancies in
the database require only a few computing resources, the analysis of the individual commits
of the software project may utilize as many computing resources as available. Especially the
analysis of the individual commits can be performed in parallel.

Section 8.3.1 describes the workflow model and extension. In Section 8.3.2 the workflow
model runtime states are described including the state when the loop is marked as parallel.
Section 8.3.3 discusses results and observations made during the study.

8.3.1 Workflow Model

The SmartSHARK framework follows a plugin based approach and therefore consists of
multiple components introducing functionalities to support the software repository mining
process. To incorporate the individual plugins on a higher level of detail, we designed a
dedicated OCCI extension. In Section 8.3.1.1 this domain specific extension is introduced.
Thereafter, in Section 8.3.1.2, we describe the software repository mining workflow built
around the SmartSHARK framework.

8 Runtime Workflow Model Case Studies 122

8.3.1.1 SmartSHARK Repository Mining Extension

For the execution of this case study, we created an extension for the three major plugins
of the SmartSHARK framework. The VCSShark, MecoShark, and MemeShark. Addition-
ally, we use this extension to introduce dedicated elements for individual job components
of these plugins. Among others, these allow scientists to configure the repository to an-
alyze or the desired log level. A subset of the OCCI SmartSHARK extension, including
its relation to the MoDMaCAO platform extension, is shown in Figure 8.8. All elements
within the OCCI SmartSHARK Extension are mixin instances. Most of them depend on the
MoDMaCAO component:Mixin. This ensures that a configuration management script can
be attached in order to deploy and manage the domain specific framework. In case of this
extension, we allow the deployment of the SmartSHARK plugins using the MemeShark,
MecoShark and VCSShark mixins. These mixins do not contain any attributes as the actual
configuration of the framework is determined on the job level, e.g., over command line
arguments. This job level is reflected by the SharkJob mixin. This mixin mainly serves as
an abstract parent class introducing common attributes shared among the different plugins.
The shark.project.repository describes, e.g., the Uniform Resource Locator (URL) of the
repository to analyze. For each plugin we modeled one specialization which represents
the corresponding executable, i.e., VCSJob, MemedJob and MecoJob. Each of these mixins
introduce additional attributes that allow for a more concise representation of the workflow
runtime model. For example, the shark.project.revision attribute of the SharkJobRevision
mixin is used to automatically configure the revision which is analyzed during each iteration
of a loop. To determine the revision hashes of a software repository, the MongoQuery mixin

SmartSHARK Extension MoDMaCAO Platform
SharkJob . | component:Kind ‘
DatabaseQuery
+ shark.log.level | I MemeShark /Napplies
+ shark.project.repository component:Mixin
+ shark.project.name MongoQuery | [MecoShark _[>| ‘
+ shark.project.directory | |+ mongo.eval.js \ VCSShark } Componentlink g
| 4 | |ExecutionDependency‘ ‘
VCSJob SharkJobRevision T
+ vcs.usedcores + shark.project.revision DatabaseDependency
f + database.user
+ database.password
MemedJob MecoJob + database.name
+ meme.parallel.processes | |+ meco.output.directory + database.drive

Figure 8.8: Subset of the OCCI SmartSHARK extension.

123 8.3 Case Study 3: Software Repository Mining

is used. Using this mixin, the scientist can configure the exact query to perform against the
database storing the mined information. Due to the heavy utilization of databases within
the SmartSHARK environment, the extension introduces a DatabaseDependency mixin
which specializes the MoDMaCAOQO ExecutionDependency. The DatabaseDependency pro-
vides multiple attributes to configure the connection to the database, e.g., the database.user
and database.password. Among others, this information is used within the configuration
management scripts of the job components.

8.3.1.2 SmartSHARK Repository Mining Workflow Model

The software repository mining workflow, shown in Figure 8.9, exemplifies a common
software repository mining sequence covering a loop to iterate over the commits to analyze.
This sequence includes the VCSTask (1), Loop (2), MecoTask (3) and MemeTask (4).

Except of the loop, each task possesses a PlatformDependency to a modeled SmartSHARK
application. This structure is accompanied by an ExecutionLink that targets the corresponding
executable job component that is used to start the mining task. For these components the
domain specific SmartSHARK extension is applied that we introduced in Section 8.3.1.1. To
clarify the utilization of the modeled elements, we equally name the component instances to
the domain specific mixin utilized. To ensure a constant deployment of the database, each
task is connected over a PlatformDependency to the MongoDB. Moreover, each executable
component is connected to the database. The corresponding ComponentLinks are modeled
with DatabaseDependency mixins, which we visualize as dotted gray lines.

VCS*,
Task

@@600666

Mongo : vcs VCS Sensor meco Meco memeMeme

MongoVM

Figure 8.9: Software repository mining workflow.

8 Runtime Workflow Model Case Studies 124

The VCSTask (1) gathers the metadata of the software repository to mine. For this, it
requires the VCS application and the MongoDB to be deployed. The executable of the task
is represented by the vesjob component. When triggered, this component starts the VCS
application and therefore the gathering process. Hereby, the attributes of the component can
be adjusted by the scientist to define the repository to mine.

The Loop (2 task is modeled with an attached ParallelLoop mixin that we set to zero
and three in our experiment. The loop iterates over the commit revision hashes gathered
beforehand. To retrieve this metadata the MongoDB is queried using the VCSSensor and
its mongoQuery ResultProvider. This monitoring instrument has an attached MongoQuery
mixin which we configure to gather the metrics of each commit available for the given
project stored within the database. Once executed, the queried information is stored within
the decision input of the VCSSensor containing delimited revision hashes. The decision
expression is configured in such a manner, that the loop iterates as long as the decision input
is not empty. As each iteration consumes one item, the decision input is emptied once all
revision hashes have been processed. Therefore, the guards are modelled with true and false
which respectively describe that a further revision has to be analyzed or that the loop is
finished.

The MecoTask (3) represents the looped task to which the revision hashes are passed in
order to extract metrics of the software project at a specific point in time. In order to analyze
these metrics, the Meco application has to be deployed. To trigger the execution of the
analysis job, the mecojob executable component is used which locally replicates the software
repository, followed by a checkout and analysis of the revision hash.

The MemeTask (4) represents the final task within the software repository mining workflow.
It requires the Meme application to be deployed. This application, when triggered, shrinks
the amount of storage required in the database by removing redundancies. To trigger
the application the memejob executable component is activated which is filled with the
information about the software project to process.

At the infrastructural layer, the workflow model consists of two VMs. The MongoVM
hosts the MongoDB in which the mined metrics are stored. The SharkVM is used as host for
the SmartSHARK plugins. This VM is reutilized as each plugin requires similar packages
reducing the overall deployment time. It should be noted, that this VM is duplicated when
executing the workflow with a parallelized loop which spawns multiple MecoTask with
individual applications and VMs and commits to analyze.

8.3.2 Workflow Execution

In the scope of this study, we execute multiple configurations of the mining workflow to
analyze the different implementations of our approach. Independent of the chosen project,
the sequence of reached runtime model states are the exact same with only the execution
duration varying. Section 8.3.2.1 describes these runtime states for a serial execution of the
loop, while Section 8.3.2.2 highlights the parallel execution.

125 8.3 Case Study 3: Software Repository Mining

8.3.2.1 Serial Workflow Execution

Similarly to the previous workflow studies, we start with an empty runtime model. The
runtime states reached during the execution of the workflow are visualized in Figure 8.10. In
this figure, we marked the undeployed resources in gray, deployed resources in green and
skipped tasks in orange.

Figure 8.10 (a) depicts the first major runtime state highlighting the workflow with the
VCSTask being currently active. The modeled PlatformDependency links from the VCSTask
result in a required runtime model containing both the SharkVM and MongoVM, as well
as the components and application nodes of the MongoDB and VCS plugin. The resulting
required runtime model then serves as input for the orchestration engine which leads to the
provisioning of the aforementioned VMs with the corresponding applications being deployed

skipped

== {==)- =x {==)-
[,

(c) Commit analysis of active MecoTask. (d) Active MemeTask finishing the workflow.

Figure 8.10: Software repository mining workflow execution.

8 Runtime Workflow Model Case Studies 126

on top. After the orchestration process has finished the deployment of both applications,
the task enactor triggers the execution of the VCSTask resulting in the depicted active state.
Once triggered, the vcsjob executable component is deployed, configured and started leading
to the VCSShark plugin being executed against the defined software repository. After the
VCSShark has finished mining the metadata of the repository, the VCSTask transfers to the
finished state. This leads to a deprovisioning of the VCS application and job component, as
well as the Loop task to be triggered next. It should be noted, that for the remainder of the
workflow execution the Mongo application, MongoDB component, and MongoVM persist
in an active state. These elements remain in the state active, due to each task possessing a
PlatformDependency targeting the Mongo application.

Figure 8.10 (b) depicts the second major time step during the execution of the software
repository mining workflow, after the VCS task is finished (f). In this time step, the Loop
task is currently in an active state with the VCSSensor being triggered. By triggering the
sensor, also the mongoQuery monitoring instrument is started. As a result, the revisions of
the project are queried from the database and stored within the decision input attribute of
the loop. Thereafter, the VCSSensor is stopped. In our case study, the projects to analyze
contain multiple commits leading to the decision input being not empty. Therefore, the
MemeTask is transferred to the skipped state with the MecoTask remaining in the scheduled
state. Finally, the revision hash of the commit to analyze is passed to the MecoTask by
attaching a Looplteration mixin.

Figure 8.10 (c) highlights the runtime model state during the execution of the loop. Here,
the Meco application is deployed with both the MecoTask and the Loop task being in the
state active. It should be noted, that in this state the executable VCSSensor is deprovisioned
as the Loop already contains a decision input and therefore is not required anymore. Finally,
the mecojob is triggered. This executable utilizes the passed revision hash to gather and store
its metric values within the MongoDB database. This loop continues until each revision hash
has been passed from the Loop task to the MecoTask. Thereafter, the decision input attribute
of the Loop is emptied. Once emptied, the evaluation of the loop expression results in the
MemeTask being scheduled. This allows it to be executed next.

Figure 8.10 (d) shows the runtime model state during the execution of the now active
MemeTask. During the transition to this state, the Meco application is deprovisioned with
the Meme application being deployed. Once deployed, the platform dependencies for the
MemeTask are fulfilled allowing for its memejob executable component to be triggered. This
results in the deletion of created duplicates from previous mining steps and therefore in
smaller storage required within the deployed MongoDB. As the MemeTask represents the
final task, its platform dependencies remain deployed. Again a cleanup step can be added
which, e.g., can be used to deploy a Jupyter Notebook [243] to analyze the mined data.

In the following, we describe a variant of the repository mining workflow in which the
loop is tagged as parallel leading to multiple MecoTask instances being spawned.

127 8.3 Case Study 3: Software Repository Mining

8.3.2.2 Parallel Workflow Execution

The MecoTask shown in Figure 8.9 can be parallelized as the metric gathering process of the
individual commits is independent of each other. To enable a parallel computation, we added
a parallel mixin to the Loop task and set the parallelization level to three. Additionally, we
infused the MongoDB with a shared mixin as all the mined data should be stored within the
same database. Compared to the sequential execution of the workflow, this change results
in nearly the same sequence of runtime model states. One exception is the execution of
the loop (see Figure 8.10 (c)) which we further discuss in this section. We visualized the
differing runtime model state for the three-fold parallelization of the loop in Figure 8.11. The
execution of the parallelization process is separated into two parts. The MecoTask replication
on the workflow layer () and the additional provisioning of infrastructure (2).

The task replication (1) starts once the main Loop is triggered. For each parallelization
level one nested ParLoop is created. Each ParLoop is connected to the main Loop via a
NestedDependency link. Additionally, each looped task is replicated for each nested loop. In
this case, the MecoTask is replicated two times in form of a Replica MecoTask. To distribute
the workload, the decision input of the main Loop, that is filled with the revision hashes, is
evenly divided among the ParLoop instances.

" Replica ! " Replica
" MecoTask i MecoTask

[ppp—— oy A J G U — S oy A (U ————
|||||

Replica

Replica
mecoshark

mecoshark

@ MongoVM SharkVM Replica SharkVM 1 Replica SharkVM 2

Figure 8.11: Three-fold parallelization of the repository mining loop.

8 Runtime Workflow Model Case Studies 128

To provision additional infrastructure (2), the resources required by the MecoTask are
replicated. Hereby, one Meco application and one mecoshark application component is
created for each Replica MecoTask, as well as an executable mecojob component. Each of
these components is hosted on a replicated version of the SharkVM, i.e., Replica SharkVM 1-2.
It should be noted, that the MongoDB is tagged as shared and is therefore not duplicated.
Moreover, by tagging the database as shared, the mecojob executable and its replicas are
connected to the same database. In the figure, the corresponding ComponentLinks are
visualized in gray.

Throughout this step of the workflow execution, the main Loop is notified once one of its
nested loops reaches the finished state. Each time the main Loop is notified it checks whether
all nested loops are finished. Once the last ParLoop is finished, the main Loop also transfers
to the finished state. At this time a further evaluation is performed. As the decision input
is emptied, the control flow guard targeting the MemeTask is evaluated to true. Therefore,
the MemeTask is scheduled again which allows for its execution. As the finalizing task does
not need the replicated resources anymore, they are released from the runtime model and
deprovisioned in the cloud. Thus, only the MongoVM and the SharkVM remain. As a last step,
the MemeTask is executed which finalizes the workflow.

8.3.3 Results and Observations

Within this case study we highlight the feasibility of loops and parallelization within our
runtime workflow model approach. We show that the decision-making process can be reused
to iterate over a set of tasks. Additionally, we demonstrate how a loop and its tasks can be
parallelized by provisioning and reflecting additional infrastructure. Furthermore, as part of
this study, we investigate the benefits and drawbacks of a domain specific extension. In the
following, we discuss the impact of these individual aspects on the workflow at design time,
runtime, and general time requirements.

8.3.3.1 Design Time

The repository mining workflow is designed in the same pattern as the workflows presented
in the previous studies. Again, each task requires a specific application to run which is
accompanied by an executable component that is triggered once the task is started. Compared
to the other studies, each executable component requires direct access to a database and
therefore is connected over a link. This link ensures that the generation of the variable file
contains the information to connect to the database. While these connections foster a concise
representation of the runtime model, it represents an extra modeling effort for the user that
could be automated, e.g., by a model transformation. Modeling the loop is similar to the
concept of the decision node including the need for a sensor. The modeled sensor partially
reflects the intermediate results of the VCS task providing us with information about the
amount of revision hashes to analyze.

129 8.3 Case Study 3: Software Repository Mining

To create a sophisticated software repository mining workflow model, we designed and
generated a domain specific OCCI extension. The utilization of domain specific extensions
provides a pre-defined set of attributes that can be configured by the scientist. In case of
this domain, these attributes allow specifying the exact repository to analyze. Thus, the
repository to analyze can be quickly adjusted by changing the corresponding attribute. Once
designed, the implementation represents a small one time effort as corresponding artifacts
can be partially generated from the model.

8.3.3.2 Runtime

During the execution of the workflow, the runtime model allows observing the current state
of the infrastructure and the overall workflow. Especially the reflection of the loop provides
insight about the amount of iterations already performed. Moreover, it displays which
commit is currently processed by which task. Also, we observe that the runtime visualization
supports the transparency of the parallelization strategy by directly showing added and
removed resources. In case of the three-fold parallelization, the addition of the two additional
VMs is clearly visible including the deployment procedure of the required applications.
Furthermore, the observation of the loop parallelization shows that the individual task
iterations require different amounts of time. Therefore, different infrastructure configurations
are scheduled which depend on the state of the nested loops. Once a nested loop finishes, its
associated infrastructure is deprovisioned. This, however, does not affect the infrastructure
of still active loops which remain deployed.

Over the course of the parallel execution study, we observe that PlatformDependency
links play an important role to tune individual runtime states. For example, if a Platform-
Dependency to the Meco application is modeled, the infrastructure for each replicated
resource exists until all loops are finished. This, however, leads to an excess of infrastructural
resources. On the other hand, if no PlatformDependency is modeled the infrastructure of a
finished loop is deprovisioned even though it may be required by the a subsequent workflow
task. While not affecting the concept of our workflow runtime model, these observations
reveal possible improvements in the required runtime model generation. For example,
subsequent model transformations may incorporate state-of-the-art scheduling techniques.

8.3.3.3 Timing Measurements

In this section we describe the timing measurements for the repository mining workflow.
For this, we configured the workflow to mine the software repository of our Comparing
OCCI (COCCI) [244] project. This project implements the model transformations used in
our approach and consists of roughly 60 commits. Similar to the previous workflow studies,
we set up each VM to be of medium size comprising two virtual CPUs and four gigabyte
memory. Figure 8.12 visualizes the 95% confidence interval and mean of the duration for
both the sequential and parallel execution.

8 Runtime Workflow Model Case Studies 130

Figure 8.12 (a) shows the duration values for the sequential execution of the workflow. The
mean of the overall Workflow execution amounts to 798 seconds. This timing is composed
of a Task duration with a mean of 636 seconds and a Scheduling duration of 197 seconds in
the mean. Hereby, the scheduling of the architecture for the first task takes up the most time
with roughly 130 seconds. This timing occurs due to the provisioning of the VMs required
throughout the workflow, as well as the deployment of the database. For the Task duration,
the looped task that iterates over the individual commits takes up the most time with roughly
600 seconds. Finally, the accumulated time for the Model Generation processes requires 1.4
seconds. Each of these values show a low variance with an overall potential to speed up the
workflow using parallelization.

Figure 8.12 (b) depicts the confidence interval and means for the execution of the three-fold
parallelization of the workflow. This visualization shows that the overall workflow requires
less time with 705 seconds in the mean. In this experiment the duration of the Scheduling
process takes up 454 seconds. While this duration is higher compared to the sequential
execution, the Task duration is reduced to 238 seconds in the mean. This shift occurs as
the parallelization spawns multiple additional VMs at runtime that are subsequently used to
speed up the calculations within the workload. It should be noted, that the time required to
provision the infrastructure and deploy the applications does not scale with the size of the
project to analyze. Therefore, once a larger software project is mined, the extended time
to spawn up additional infrastructure is quickly made up with the faster processing of the
loop iterations. In the parallelized version of the workflow, an overall higher variance can
be observed. This is likely related to the parallel management of the tasks, as well as the
additional workload put on our small private cloud. Finally, the accumulated duration of the
Model Generation processes rises to 4.6 seconds in the mean. Still, the duration is negligible
compared to the task and scheduling execution times.

©
1=}
S
to
]

700

600

500

400

300

tion

N

S

S]
Durationin s

200 - 200

100 100

0 . 0 .

Workflow Task Scheduling Model Generation Workflow Task Scheduling Model Generation

(a) Sequential workflow execution. (b) Three-fold parallel workflow execution.

Figure 8.12: 95% confidence interval plot of the repository mining workflow duration.

131 8.3 Case Study 3: Software Repository Mining

8.3.3.4 Summary

In the following, we summarize our results of the performed use case.

Summary: Modeling a domain specific extension allows for a more concise man-
agement and reflection of the runtime workflow model. This opens the opportunity
to influence the workflow by adjusting pre-defined attributes. Overall, the creation
of such an extension represents a one time effort that raises the reusability of the
workflow model. By reflecting loops in the runtime model, the current iteration of
the workflow is revealed. Therefore, users can directly inspect and interact with
it. When executing loops in parallel, a speed-up of the workflow can be achieved.
However, in order to avoid overheads, the additional time required to dynamically
spawn new infrastructure needs to be considered. In summary, the runtime workflow
model offers the capability to tailor scientific workflows to their individual needs
while simultaneously maintaining a visualization and interface to interact with the
system at runtime.

9 Discussion

In this chapter, we discuss the extent to which the OCCI standard can be used to combine
a runtime model management of workflows and cloud deployments. The chapter itself is
structured into four parts. Section 9.1 discusses the applicability of a standard based cloud
orchestration and workflow runtime model in academia, industry and education. Section 9.2
considers different viewpoints on the presented runtime model from the perspective of
practitioners and software components. Section 9.3 discusses lessons learned about OCCI
and highlights recommendations to improve the standard. Finally, Section 9.4 discusses the
threats to validity we identified.

9.1 Applicability

By performing the orchestration case studies (Section 7), we show that an OCCI conform
orchestration process can support the management and development of cloud deployments.
Furthermore, the workflow execution case studies (Section 8) show the feasibility of ex-
tending OCCI with workflow management capabilities to utilize dynamic and arbitrary
infrastructures, as well as a human-in-the-loop. To extend the discussion to a point beyond
the feasibility of the approach, this section investigates the extent to which a standardized and
runtime model-driven management of cloud applications and workflows can be beneficial in
academia, industry and education.

9.1.1 Academia

The amount of existing workflow systems, such as Pegasus [167] and Taverna [170], reflect
their need and usefulness in academia. We identify four advantages of a standardized
cloud workflow runtime model for academic purposes: 1) the utilization of task tailored
infrastructure, 2) a human-in-the-loop that can interact with the model, 3) the distribution
of domain specific extensions that conform to a cloud standard and 4) the opportunity to
replicate cloud research using local resources.

In this thesis, we emphasize the flexibility offered by cloud computing and current IaC
tools to show how infrastructures can be dynamically orchestrated throughout the execution
of a workflow. While the runtime workflow model is potentially applicable on industry
use cases, this thesis is focused on workflow case studies from the scientific domain. Our
approach allows scientists to choose their desired infrastructure for individual tasks in the
workflow and tailor the infrastructure to their needs while using the high level of abstraction

9 Discussion 134

provided by the model. The big data workflow (Section 8.1) shows, e.g., that large clusters
can be dynamically spawned for analysis tasks while using only a small set of resources to
fetch data. While a dynamically spawned infrastructure stretches the overall execution time
of the workflow, preconfigured computation clusters are no longer needed, allowing to save
resources and costs.

In context of scientific workflows, a human-in-the-loop enables scientists to directly
interact with the workflow throughout its execution. Also, the runtime model provides a
visual reflection of the infrastructure and workflow that can be observed by the scientist.
In our dynamic simulation case study (Section 8.2), we demonstrate how a human-in-the-
loop can change the workflow’s control flow at important decision-making points using
intermediate results directly reflected in the runtime model. Furthermore, we demonstrate
how the interface to the model can be used to provide scaling mechanisms to be influenced
by the scientist. Here, we adjust, e.g., the amount of parallel running worker nodes or the size
of provisioned VMs. This allows us to trade resource consumption and cost for execution
time and faster results.

Building upon an open cloud standard, our approach introduces platform, monitoring and
workflow capabilities extending the OCCI ecosystem. Compared to non-standard conform
solutions, standard based approaches can be reused which supports the exchange of ideas
among scientists to even further extend the standard. In the software repository mining
workflow (Section 8.3), we develop a domain specific extension for OCCI that integrates
the SmartSHARK framework into our workflow approach. This extension may be shared
among researchers to utilize the tooling in various workflows with only minimum knowledge
required due to the abstract model representation.

Replicating cloud deployment studies from literature often requires access to a cloud
environment which limits the reproducibility of the research. Runtime models can help
researchers to mitigate this issue by providing different effectors linking, e.g., to a cloud or
local resources. We show this exemplary in our simulation study (Section 7.1.2.2). Here,
we create a local environment to develop cloud deployments and assess, e.g., the impact
of adaptive changes. Among others, this environment is used to create a replication kit for
our studies. This replication kit mirrors a cloud runtime model behavior using container
instances that run on a local workstation.

9.1.2 Industry

The benefits of using a model-driven language for cloud deployments is already discussed in
literature and utilized in many related approaches, such as CloudML [114], CAMEL [115]
and OpenTOSCA [137]. In this thesis we work with a standard based runtime model which
allows focusing on the domain while supporting monitoring and testing of cloud deployments.
In the previous section, we have discussed the applicability of the orchestration process for
the provisioning of infrastructures for scientific workflows and thus in an academic context.
In this section, we discuss the applicability of our approach from a more industry based

135 9.1 Applicability

perspective, even though the offered capabilities can be applied on research projects. In
the following, we discuss our observations based on the three common industry scenarios
executed in Section 7.1.2.

The standard conform orchestration process allows practitioners to focus on the cloud
application domain rather than provider or framework specific details. Especially the uti-
lization of model transformations enable the addition of default or provider specific in-
formation which eases the transition between providers. Within our initial deployment
scenario (Section 7.1.2.1), we demonstrate how the orchestration process automatically ad-
justs a platform independent model to be deployed in an OpenStack. Especially the utilization
of a standard allows us to reuse existing approaches, e.g., to integrate container [104] or
configuration management [105] which are based on state-of-the-art implementations.

During our studies, we observe that the runtime model is able to aid in the development
process of configuration management scripts, as parts of the scripts can be individually
triggered and observed through the model. Furthermore, different environments can be used
to mirror the behavior of the deployed model in different scenarios. Therefore, the impact of
planned adaptive actions can be locally assessed before an actual enactment on the production
environment. The simulation scenario (Section 7.1.2.2) shows how the capabilities of the
runtime model can be exploited to partially deploy a computation cluster using only local
resources. This local simulation allows to incrementally test the different lifecycle actions by
triggering them through the runtime model interface. The quick redeployment of the model
results in a quick recovery of erroneous states as it requires less time than the deployment
in an actual cloud environment. Additionally, the runtime model supports the development
of test cases as individual states could be stored and reused, e.g., in CI-pipelines. Overall,
using a simulation environment the runtime model possesses a resemblance to a digital twin
allowing the operators to work on a high level of abstraction with a predefined language.

Another major benefit of a runtime model approach is its reflective nature which allows
monitoring and observing the system. With our monitoring approach, we extend the OCCI
runtime model to reflect operational parameters in addition to structural resource composi-
tions. Combined with a visual representation of individual runtime states, changes to the
system can be monitored which helps to understand how certain adaptation or scaling proce-
dures behave. Within the scaling engine scenario (Section 7.1.2.3) we demonstrate that the
added reflection of monitoring information in the runtime model supports the development
of adaptation engines. Due to the automatic orchestration of OCCI adaptation, practitioners
can focus on the analyze step in the self-adaptive control loop as the monitoring, planning
and execution phase is handled by the runtime model. Moreover, the utilization of model
transformations results in a loose coupling of engines that can be chained together, e.g., to
further optimize the scheduling mechanism and subsequently save resources.

9 Discussion 136

9.1.3 Education

Abstraction layers and metamodels are often used to teach about domains as they provide an
abstract description language that is typically supported by an accompanied visual notation.
While the UML standard is the de-facto staple for teaching about software architectures and
design, cloud languages also have been proven useful to simplify the utilization of cloud
deployments [117]. In this section, we discuss the potential impact of our approach for
educational purposes.

In general, the OCCI metamodel layer can be taught using, e.g., UML class diagrams. In
turn, also the instance layer can be visualized and explained using the UML object diagram
notation. We argue that this notation is not suited for runtime representation as it visualizes
OCCI links in form of rectangles which increases the amount of displayed elements and thus
clutters the overall visualization. In the scope of this thesis, we propose a graphical notation
(Section 6.2.1) which emphasizes the graph based nature of the standard that supports
interactions with the runtime model. In this notation, resources are represented by nodes with
a color code based on their state. Links are depicted in form of arrows connecting them with
their most important attribute represented as label. In addition, our approach can be used by
lecturers to spawn infrastructures and deploy applications quickly and without much manual
effort. For example, computation clusters such as Apache Hadoop [231] can be automatically
provisioned. Moreover, the spawned deployment can be observed and monitored due to the
models high level of abstraction.

The runtime model may foster an interactive learning experience for students as changes
to the cloud deployment result in immediate feedback. Furthermore, using the abstract
representation of the model, implementation specific details can be partially neglected by the
student such as setting up a specific IP address of a VM in network. This may foster a more
incremental learning procedure as students can focus on core cloud elements before being
confronted with all available configurations. Moreover, due to the reflection of operational
parameters students may benefit from a reflection of workload they are producing to get a
better understanding of how certain computations are distributed. Additionally, due to the
runtime model being able to connect to different systems, students do not need access to
large computation clusters to start working with specific frameworks as they can also be
spawned locally at a much smaller scale. We observe that only a few kinds need to be known
to start creating larger deployment models with details of the application represented by
mixins. Additionally, we discover a reoccurring pattern in all of our case study models which
mainly differed in utilized mixins and their configuration. Combined with the extension
based structure of the standard, students may incrementally and interactively learn about the
individual capabilities of OCCI and the cloud domain.

137 9.2 Model Viewpoints

9.2 Model Viewpoints

The pragmatic feature of a model [33] describes that the usefulness is partially dictated by
the user of the model. In this section, we discuss the potential usefulness of the workflow
runtime model from two different perspectives. First, from the perspective of the scientist
and cloud architect which observe and interact with the runtime state of the workflow, and
second, from the self-adaptive control loop utilizing the runtime model as a knowledge base
and interface.

9.2.1 Workflow and Cloud Architect

From a workflow and cloud architect point of view, the runtime model supports a human-
in-the-loop that can interact with the states and attributes of the modeled elements. During
the development of our case study models this capability allowed us to test and interact
with individual parts of cloud and workflow deployments. Especially the visualization of
resource states helped us during the development of the case study models as failing nodes
were directly highlighted. To actively cooperate with the workflow at runtime, parameters
in the individual entities can be changed to incorporate, e.g., information gained based on
intermediate results. For this, domain specific knowledge is required to adjust deployed
applications or provisioned infrastructure as changes are directly propagated to the system.
To potentially ease the integration of domain specific elements, the model-driven approach
allows generating extensions which include pre-defined and highly abstracted actions that
can be applied on individual elements. This may include, e.g., an action to automatically up
or downscale a cluster application with the click of a button. To foster the interaction with
the model, specialized model perspectives could be beneficial that focus on an individual
user. For example, complete OCCI extensions can be faded out. This would allow hiding the
workflow layer for the cloud architect and the platform layer for the scientist. Furthermore,
elements such as applications and loops can be collapsed to reduce the amount of visualized
entities within the model which we, e.g., use in the cluster scaling scenario (Section 7.1.2.3)
and the software repository mining case study (Section 8.3.2.2). Next, we discuss the
viewpoint of engines using the runtime model as an interface to the system to be managed.

9.2.2 Self-Adaptive Control Loops

From a system point of view, self-adaptive control loops benefit from a highly detailed
runtime model. A highly detailed model results in more information available for the self-
adaptive control loops and eventually more options to control the system. For example, in
our cluster scaling scenario (Section 7.1), the addition of new workers and accompanied
sensors can be programmatically orchestrated. However, the added sensors and monitoring
instruments quickly clutter the visualization. This highlights the need for different runtime
model viewpoints, especially when human users and systems utilize the same interface.

9 Discussion 138

In our workflow engine we combine the information contained within the design time and
runtime model. Therefore, it is worthwhile to discuss which of both models contains the more
important information for attached systems. The design time model describes the high level
goal to be achieved within the workflow. However, the runtime model may contain additional
capabilities not intended by the design time model. In the proposed approach we value the
information in the runtime model higher, as it allows other autonomic control loops to be
attached to the process, e.g., to add scaling capabilities to databases. For example, within
the repository mining process another control loop may observe the size of the MongoDB
and scale it by adding additional VMs that are not considered in the design time model.
Therefore, design time capabilities that introduce scalable parts are beneficial such as the
ones provided by TOSCA. While approaches exist that allow scaling plans or groups to
be modeled, behavioral models are not envisioned by the OCCI standard. Especially as
individual activities do not refer to an actual cloud resource to be managed.

In the following, we discuss interoperability of OCCI to other standards and systems, as
well as provide insights about lessons learned working with it.

9.3 Standard Conformity

In our studies, we work with the OCCI standard including its data model, uniform interface,
and several extensions. Even though the OCCIWare ecosystem [123] introduces extended
functionalities not directly part of the standard, like abstract data types, we only utilize
OCCT’s core features. In Section 9.3.1, we provide a short discussion about the versatility of
the OCCI data model and its extension capabilities in regard to other existing cloud modeling
approaches. Additionally, in Section 9.3.2, we provide lessons learned working with OCCI
and give our recommendations on how to further improve the standard.

9.3.1 OCCI Interoperability

In our studies we create and work with multiple extensions for OCCI to further support the
infrastructure, platform and workflow layer. Overall, the structure of OCCI resembles the
one of a DAG, i.e., nodes connected by arcs. In case of this study, we use this structure to
instantiate monitoring and workflow elements that are based on dedicated OCCI extensions.
Within these extensions, we heavily utilize the capabilities provided by the OCCI mixin
elements. The versatility of this element allows for the creation of annotation or tags that
dynamically add information or capabilities to an entity at runtime.

In our computation cluster scaling study (Section 7.1) we demonstrate the feasibility of
combining the management of different state of the art IaC technologies within a runtime
model that can be managed over a single interface. As a result, our OCCI based approach
allows cloud architects to choose the tool most suitable for a given project while keeping the
same abstraction and orchestration procedure.

139 9.3 Standard Conformity

Similarly, in our standard interoperability study (Section 7.2), we investigate the extent
to which the uniform OCCI interface can be used to manage cloud resources modeled with
TOSCA. We show, that both the type and instance layer can be transformed from TOSCA to
OCCI in order to be managed by the interface. Only few elements cannot be automatically
mapped in this process such as scaling rules for which OCCI currently does not possess an
extension. Overall, we demonstrate the feasibility of combining both standards to manage
cloud systems allowing users to utilize the extensive design time model of TOSCA while
relying on OCCI’s uniform interface to manage actual resources in the cloud.

9.3.2 OCCIl Recommendations

Even though the OCCI data model is versatile and can be extended for many use cases, the
specification was not updated since 2016 and is in need of a revision to foster the reusability
and interoperability of designed extensions. In this section, we discuss our recommendations
on how the standard could be improved to allow for a more pleasant developer and end-user
experience. Overall, we recommend an update of state descriptions and attributes, as well as
standardized guidelines for upcoming extensions.

The state information within the individual components is crucial to correctly reflect the
current state of a deployed application. While the enhanced platform extension [105] covers
additional states for OCCI components, the error state is not detailed enough. For example,
when not actively observing the model during the deployment it remains hidden how the
component reached the error state. In this case, the only possibility is to trigger the undeploy
action even though the component may be correctly deployed already. Therefore, a more
detailed FSM would be beneficial to add to the standard that, e.g., supports hierarchical
states and histories. Combined, these would allow performing rollbacks on failed actions
and navigate to the last functional state.

To further sophisticate the notion of an OCCI based runtime model, it would be beneficial
to add runtime attributes to the standard. This kind of attributes could be automatically
detected and hidden from graphical user interfaces reducing the complexity the user is
confronted with at design time. Furthermore, a mechanism that restricts adjustments to
the model from certain entities would be beneficial, e.g., to scope the access of attached
adaptation engines. Another major limitation observed while designing OCCI extensions is
the rather simple attribute structure of OCCI that does not allow any kind of abstract data
types. Thus, extensions are limited to attributes holding single values or values divided by a
delimiter. This limits us in certain settings, e.g., to monitor only one attribute by each sensor
in the monitoring extension, as well as utilize a delimited string in the loop element. The
OCCIWare metamodel [123] already addresses this issue by proposing an extended OCCI
metamodel introducing, e.g., abstract data types. However, these are not yet integrated into
the standard’s specification and would require accompanied reworks of the interface.

The extension capability of OCCI represents one of its biggest advantages, especially,
with the availability of a model-driven toolchain, like OCCIWare [123], to design and

9 Discussion 140

automatically generate arbitrary extensions. A document covering best practices to extend
the standard would support the interoperability of designed extensions and tooling. We
especially recommend specifying a reading direction for links connecting two extensions.
Contradicting reading directions of links connecting two layers can be observed, e.g., in
MoDMaCAO [105] and the Docker extension [104]. In MoDMaCAO, a platform component
is placed on a compute node having the link going from the platform to the infrastructure
extension. In the Docker extension, the compute node contains a container directing from the
OCClT infrastructure to the Docker extension. Unifying reading directions is of importance
for surrounding tooling as links are typically traversed to access the information contained
within connected elements. A uniform reading direction would improve the reusability and
interoperability of designed OCCI extensions while reducing the need for implementation
adjustments and an improved navigation within the model.

9.4 Threats to Validity

In this section, we discuss the threats to validity following the criteria by Wohlin et al. [245].
Section 9.4.1 covers the construct validity, Section 9.4.2 the internal validity, and Sec-
tion 9.4.3 the external validity of our study.

9.4.1 Construct Validity

Construct validity refers to the extent to which a study conforms with its investigation
intents [245]. In our case, this aspect of validity is concerned with the extent to which
we conform to the OCCI standard, including its data model, interface, and utilization as a
runtime model.

To perform our study, we designed the extension solely relying on the classification and
identification mechanisms provided by the OCCI core specification [98] that is implemented
as an EMF metamodel [122]. Even though this metamodel was later enhanced as part
of the OCCIWare toolchain [123], we restricted our workflow and monitoring extension
design to only use elements available in the OCCI specification, such as simple attributes.
Our adaptation engine is designed to perform model transformations based on this meta
information and derive required OCCI requests. Throughout the course of our studies,
we test two OCCI interfaces that conform to the specification. In the first version of this
engine, the generated OCCI requests were sent against the OOI [222], before we later on
switched to the OCCIWare runtime server that provides a better compatibility with generated
extensions. Even though the workflow execution is only tested in the OCCIWare environment,
we evaluate the generation of requests for multiple implementations of the standardized
interface. Therefore, we mitigate the threat of our implementation not conforming to the
specification of the standard’s interface.

141 9.4 Threats to Validity

9.4.2 Internal Validity

Internal validity is concerned with causal relations examined by the study [245]. As our study
focuses on the feasibility and applicability of our approach, the internal validity is concerned
with threats about our recorded timing measurements and diversity of case studies.

To mitigate the threat of hidden influencing variables, we created multiple environments
to perform the case studies in isolation. Furthermore, to cope with changing workloads
in our cloud environment we performed each study multiple times to derive our presented
timing measurements. It should be noted, that the observed timings originate from an
implemented research prototype used to investigate the feasibility of the runtime model
approach. Thus, the implementation and timings can benefit from optimized application
and infrastructure scheduling mechanisms. To investigate the extent of a model-driven
management overhead, we measured the time required for communications of our engines
with the cloud and compared it against the time requirements of the performed required
runtime model transformations. By performing a variety of different workflow domains and
workflow sizes, we mitigate the influence of highly similar model structures.

9.4.3 External Validity

External validity is concerned with the general applicability of an approach, so that observed
results not only apply on settings of a specific environment [245]. In our approach the
external validity is concerned with the selected case studies and the extent to which they
underline the generalizability of our approach.

In this thesis, we describe two orchestration and three workflow scenarios in detail. We
chose the presented scenarios from different domains to examine the general applicability of
the OCCI orchestration process and the workflow runtime model. Furthermore, we chose the
case studies to cover workflow models of different sizes, while describing its main features
including its decision-making process, loops, and data flows between distributed hosts. While
only one of the orchestration case studies utilized a scaling engine for the deployment, the
orchestration capabilities are demonstrated within the workflow scenarios.

Another threat to the external validity of our study is the amount of virtualization tech-
niques and cloud providers used. To perform our case studies, we utilize a private OpenStack
cloud. Even though the proposed approach is only tested on a single cloud provider, the
utilization of the OCCI cloud standard allows incorporating other provider specific interfaces.
Furthermore, our provisioned computation resources mostly referred to VMs even though the
use of containers could speed up the provisioning process. However, for the demonstration of
the usefulness of runtime models for workflow execution the utilized virtualization technique
is negligible.

10 Conclusion

In this section, we conclude the thesis. Overall, we discover that a model-driven cloud
orchestration process based on OCCI is feasible to fulfill arbitrary and shifting resource
requirements during workflow executions. While the OCCI standard serves as baseline
concept of our study, we implement our workflow and orchestration concepts within the
publicly available SmartWYRM framework [228]. Hereby, we design the framework to
integrate seamlessly into the existing OCCIWare ecosystem [123]. In the following, we
provide a summary of both the orchestration and workflow contributions. Moreover, we
present an outlook into future work.

10.1 Summary

In this thesis, we investigate the orchestration capabilities of OCCI and the utilization of
a workflow runtime model on top of it. Our model-driven cloud orchestration compares
the state of a running cloud application to a desired one and performs adaptive actions
by sending OCCI conform requests. During this process, the current state of the cloud is
reflected as a runtime model which we utilize in a chain of model transformations. In addition
to a standard conform orchestration process, we extend existing platform management
solutions to combine configuration and container management within the OCCI runtime
model. Furthermore, we increase the self-reflectiveness of OCCI by designing an extension
which introduces monitoring capabilities that allow reflecting operational properties directly
in the runtime model.

To demonstrate the generalizability of our adaption procedure and the capabilities of
an OCCI runtime model, we performed two case studies. We selected the case studies to
highlight the usefulness of a runtime model as a knowledge base, the interoperability of
our orchestration approach to the OCCI and the TOSCA standard, as well as the possibility
for the utilization of a simulation environment. Our studies reveal that the utilization of a
standard conform runtime model possesses several advantages. Practitioners can directly
interact with the system over a highly abstracted representation of it. We observe that the
causal connection of the system and the model, as well as its visual representation supports
the development process of, e.g., configuration management scripts or scaling engines. By
attaching the runtime model to a local simulation environment cloud developers can be
supported as planned adaptations can be designed and tested before getting applied on a
production environment.

10 Conclusion 144

Moreover, we utilize the advantages of the model-driven cloud orchestration to design
and dynamically shift infrastructures throughout the execution of scientific workflows. We
demonstrate the feasibility of a runtime model to couple individual workflow tasks with
tailored infrastructure and application requirements. To realize this concept, we create an
OCCI workflow extension that connects to the standardized OCCI platform and infrastructure
extension. To study the extent to which a runtime workflow model can be beneficial for
the execution of workflows, we develop concepts for typical workflow functionalities and
couple them with the infrastructure aware capabilities of the runtime model. Among others,
this includes the integration of data flows, dynamic decision-making points, as well as the
modeling of loops and parallelization techniques.

To discuss the extent to which a workflow execution may benefit from an infrastructure
aware runtime model, we performed several case studies from different domains. In this
thesis, we selected three of them to highlight the individual functionalities offered by
the runtime model. Throughout the execution of the study, we discover that the runtime
model provides a prominent knowledge base that can be manipulated over the adaptation
process described in this thesis. Therefore, we are able to schedule required resources solely
relying on model transformations forming the next required runtime state. Thus, the overall
workflow execution can be described over a set of changing runtime model states that are
easy to observe. Furthermore, these states support the development process of workflows
as they can be easily extracted, e.g., for test purposes. Overall, the utilization of a standard
conform runtime model for workflows possesses several benefits for scientists. The causal
connection of the runtime model supports direct interaction with the system over an abstract
representation fostering the integration of a human-in-the-loop. This allows scientist to
inspect intermediate results and, e.g., change the active control flow or adjust parallelization
values to trade of time for resources. Furthermore, as the workflow dynamically spawns the
modeled infrastructure, no preconfigured computation clusters are required, allowing for
an easier replication of the study. Especially the utilization of an open standard encourages
the active exchange of workflow and infrastructure extension from different domains and
communities.

10.2 Outlook

The concepts and implementations presented in this thesis demonstrate the feasibility of
a workflow runtime model and open up further research opportunities. In this section, we
discuss future work regarding a model-driven cloud orchestration and workflow management.

To foster the use of standards for cloud orchestration, an automated extraction mechanisms
may be beneficial that builds a standardized runtime model from a currently running cloud
deployment. While a derivation of infrastructure resources can be reached by requesting
provider specific interfaces, the replication of deployed configuration remains open and
requires further investigations, e.g., by checking for certain services which could be reflected

145 10.2 Outlook

in the runtime model. Ultimately, the derived model can then be deployed at the site of a
new cloud provider using our orchestration engine. Additionally, this allows utilizing the
benefits of the standards’ ecosystem. Moreover, an update of the standard’s specification
would be worthwhile to include, e.g., abstract data types, improved state machine definitions.
Also, further specifications may be introduced that cover best practices to design extensions,
or collections of mappings between OCCI and, e.g., Amazon EC2, Microsoft Azure and the
Google Cloud Platform.

To further support the development of cloud applications and the replication of cloud re-
search, the local simulation environment can be extended to support more realistic simulation
scenarios. In future work, the utilized simulation can be extended by adding tags to test the
robustness of cloud applications, e.g., by injecting faults into existing networks. Moreover,
to improve the usability of the simulation, size proportions could be derived to automatically
fit the model to the local environment.

In addition to an improved simulation extension, the workflow runtime model may benefit
from several extensions introducing, e.g., task estimation. Also, a direct mapping of data to
the infrastructure storing it may be beneficial to support the provenance of processed data.
Even further infrastructure types may be considered and evaluated to, e.g., integrate HPC
systems within the workflow runtime model. Additionally, we plan to investigate the extent
to which OCCI supports actions that heavily adjust the runtime model, e.g., to automatically
up or downscale a cluster application. Furthermore, we plan to incorporate real world sensors
in the runtime model to dynamically spawn virtualized computing resources based on the
sensor results observed within a workflow.

Apart from several functionalities that may be added to the runtime model, one major
area of interest is the evaluation of suitable views on the model. As a cloud runtime model
provides the capability to directly interact and reflect the current system, it represents a point
of access for several stakeholders. In our case, these comprise the cloud architect interested
in the infrastructure, the scientist designing the workflow, as well as the self-adaptive control
loops managing the system. All views, however, have totally different requirements on
the model regarding its level of abstraction. Therefore, as future work, an investigation
of individual and interoperable views on the runtime model system is required, as well as
mechanisms to seal off the access of different parts of the model from specific users.

Bibliography

[1]

[6]

[7]

Y. Zhao, Y. Li, L. Raicu, S. Lu, W. Tian, and H. Liu, “Enabling scalable scientific
workflow management in the cloud,” Future Generation Computer Systems, vol. 46,
pp- 3-16, 2015.

E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science: An
overview of workflow system features and capabilities,” Future Generation Computer
Systems, vol. 25, no. 5, pp. 528 — 540, 2009.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-intensive scientific
workflow management,” Journal of Grid Computing, vol. 13, no. 4, pp. 457-493,
2015.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” Electrical Engineering and Computer Sciences, Univer-
sity of California at Berkeley, 2009.

Organization for the Advancement of Structured Information Standards, “Topol-
ogy and Orchestration Specification for Cloud Applications,” 2013, Available on-
line: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca, last
retrieved: 31.05.2022.

Open Grid Forum, “Open Cloud Computing Interface,” 2010, Available online: http:
/locci-wg.org/, last retrieved: 31.05.2022.

J. Kovécs and P. Kacsuk, “Occopus: a multi-cloud orchestrator to deploy and manage
complex scientific infrastructures,” Journal of Grid Computing, vol. 16, no. 1, pp.
19-37, 2018.

E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter, “The future of scientific
workflows,” The International Journal of High Performance Computing Applications,
vol. 32, no. 1, pp. 159-175, 2018.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://occi-wg.org/
http://occi-wg.org/

Bibliography 148

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

N. Bencomo, S. Gétz, and H. Song, “Models@run.time: a guided tour of the state
of the art and research challenges,” Software & Systems Modeling, vol. 18, no. 5, pp.
3049-3082, 2019.

J. Erbel, “Runtime Workflow Modelling,” 2021, Available online: https://doi.org/10.
25625/0OE4AN3 or https://gitlab.gwdg.de/rwm, last retrieved: 31.05.2022.

D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure,” Distributed
and parallel Databases, vol. 3, no. 2, pp. 119-153, 1995.

C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. Hua, “A reference
architecture for scientific workflow management systems and the view soa solution,”
IEEFE Transactions on Services Computing, vol. 2, no. 1, pp. 79-92, 2009.

B. Ludéscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao, “Scientific workflow management and the kepler system,” Concurrency
and computation: Practice and experience, vol. 18, no. 10, pp. 1039-1065, 2006.

B. Ludiascher, M. Weske, T. McPhillips, and S. Bowers, “Scientific workflows: Busi-
ness as usual?” in Proceedings of the 7th International Conference on Business
Process Management (BPM). Springer Berlin Heidelberg, 2009.

N. Cerezo, J. Montagnat, and M. Blay-Fornarino, “Computer-assisted scientific work-
flow design,” Journal of grid computing, vol. 11, no. 3, pp. 585-612, 2013.

K. Gorlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, Conventional
Workflow Technology for Scientific Simulation. Springer London, 2011, pp. 323-352.

M. Sonntag, D. Karastoyanova, and F. Leymann, “The missing features of work-
flow systems for scientific computations,” in Proceedings of the 3rd Grid Workflow
Workshop (GWW), 2010.

J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2000.

R. Diestel, Graph Theory: 5th edition, ser. Springer Graduate Texts in Mathematics.
Springer-Verlag, 2017.

C. A. Petri, “Kommunikation mit Automaten,” Dissertation, Technische Hochschule
Darmstadt, 1962.

N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and analysis of workflows using
petri nets,” Journal of Intelligent Information Systems, vol. 10, no. 2, pp. 131-158,
1998.

https://doi.org/10.25625/OE4AN3
https://doi.org/10.25625/OE4AN3
https://gitlab.gwdg.de/rwm

149 Bibliography

[23] K. Salimifard and M. Wright, “Petri net-based modelling of workflow systems: An
overview,” European journal of operational research, vol. 134, no. 3, pp. 664—676,
2001.

[24] Object Management Group, “Unified Modeling Language,” 2015, Available online:
http://www.omg.org/spec/UML/2.5/PDF, last retrieved: 31.05.2022.

[25] ——, “OMG: Business Process Model and Notation,” 2011, Available online: http:
/Iwww.omg.org/spec/BPMN/2.0/PDF, last retrieved: 31.05.2022.

[26] T. Kiihne, “Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4,
pp- 369-385, 2006.

[27] E. Seidewitz, “What Models Mean,” IEEE software, vol. 20, no. 5, pp. 26-32, 2003.

[28] A. R. Da Silva, “Model-driven engineering: A survey supported by the unified
conceptual model,” Computer Languages, Systems & Structures, vol. 43, pp. 139-155,
2015.

[29] International Conference on Model Driven Engineering Languages and Systems,
“Industry Day,” 2018, Available online: https://modelsconf2018.github.io/program/
industryday/, last retrieved: 31.05.2022.

[30] M. Szvetits and U. Zdun, “Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime,” Software & Systems Modeling, 2016.

[31] Object Management Group, “MDA Guide Version 1.0.1,” 2003, Available
online: http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_
MDA _Guide_v1.0.1.pdf, last retrieved: 31.05.2022.

[32] J. Bézivin, “In Search of a Basic Principle for Model Driven Engineering,” Novatica
Journal, Special Issue, vol. 5, no. 2, pp. 21-24, 2004.

[33] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973.

[34] Object Management Group, “Unified Modeling Language Infrastructure Specification,”
2011, Available online: http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF, last
retrieved: 31.05.2022.

[35] J.-M. Favre, “Towards a Basic Theory to Model Model Driven Engineering,” in
Proceedings of the 3rd UML Workshop in Software Model Engineering (WiSME),
2004.

[36] Object Management Group, “Object Constraint Language,” 2016, Available online:
http://www.omg.org/spec/OCL/2.4/PDF/, last retrieved: 31.05.2022.

http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
https://modelsconf2018.github.io/program/industryday/
https://modelsconf2018.github.io/program/industryday/
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/OCL/2.4/PDF/

Bibliography 150

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

——, “OMG Meta Object Facility (MOF) Core Specification,” 2016, Available online:
http://www.omg.org/spec/MOF/2.5.1/PDF/, last retrieved: 31.05.2022.

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

R. France and B. Rumpe, ‘“Model-driven Development of Complex Software: A
Research Roadmap,” in 2007 Future of Software Engineering. 1EEE Computer
Society, 2007.

R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. Polack, “The Design
of a Conceptual Framework and Technical Infrastructure for Model Management
Language Engineering,” in Proceedings of the 14th IEEFE International Conference
on Engineering of Complex Computer Systems (ICECCS), 2009.

D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The epsilon object language (eol),”
in Model Driven Architecture — Foundations and Applications. Springer Berlin
Heidelberg, 2006.

E. Syriani, J. Gray, and H. Vangheluwe, “Modeling a model transformation language,”
in Domain Engineering. Springer, 2013, pp. 211-237.

C. Gomes, B. Barroca, and V. Amaral, “Classification of model transformation
tools: Pattern matching techniques,” in Proceedings of the 17th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
Springer International Publishing, 2014.

A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

Object Management Group, “OMG Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification,” 2016, Available online: https://www.omg.org/spec/
QVT/1.3/PDF, last retrieved: 31.05.2022.

D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation language,”
in Proceedings of the 1st International Conference on Theory and Practice of Model
Transformations (ICMT). Springer, 2008.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “Atl: A qvt-like
transformation language,” in Proceedings of the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
Association for Computing Machinery, 2006.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transformation tool,”
Science of Computer Programming, vol. 72, no. 1, pp. 31-39, 2008.

http://www.omg.org/spec/MOF/2.5.1/PDF/
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF

151

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Varr6, G. Bergmann, A. Hegediis, A. Horvéth, I. Rath, and Z. Ujhelyi, “Road to
areactive and incremental model transformation platform: three generations of the
viatra framework,” Software & Systems Modeling, vol. 15, no. 3, pp. 609-629, 2016.

G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro, “Viatra - visual
automated transformations for formal verification and validation of uml models,”
in Proceedings of the 17th IEEE International Conference on Automated Software
Engineering (ASE), 2002.

D. Varr6 and A. Balogh, “The model transformation language of the viatra2 frame-
work,” Science of Computer Programming, vol. 68, no. 3, pp. 214-234, 2007.

G. Bergmann, I. David, A. Hegediis, A. Horvath, I. Réth, Z. Ujhelyi, and D. Varr,
“Viatra 3: A reactive model transformation platform,” in Proceedings of the Sth
International Conference on Theory and Practice of Model Transformations (ICMT).
Springer International Publishing, 2015.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C. Polack, “The epsilon generation
language,” in Proceedings of 4th the European Conference on Model Driven Archi-
tecture — Foundations and Applications (ECMDA-FA). Springer Berlin Heidelberg,
2008.

Eclipse Foundation, “Acceleo,” 2020, Available online: https://www.eclipse.org/
acceleo/, last retrieved: 31.05.2022.

F. Truyen, “The fast guide to model driven architecture the basics of model driven ar-
chitecture: The basics of model driven architecture,” Whitepaper; Cephas Consulting
Corp, Architecture Oriented Services, 2006.

N. Bencomo, G. Blair, S. G6tz, B. Morin, and B. Rumpe, “Report on the 7th interna-
tional workshop on models @run.time,” ACM SIGSOFT Software Engineering Notes,
vol. 38, no. 1, p. 27-30, 2013.

G. Blair, N. Bencomo, and R. B. France, “Models @ run.time,” Computer, vol. 42,
no. 10, pp. 22-27, 2009.

P. Maes, “Concepts and experiments in computational reflection,” in Proceedings
of the 2nd Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA). Association for Computing Machinery, 1987.

S. Nordstrom, A. Dubey, T. Keskinpala, R. Datta, S. Neema, and T. Bapty, “Model
predictive analysis for autonomic workflow management in large-scale scientific
computing environments,” in Proceedings of the 4th IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems (EASE), 2007.

https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/

Bibliography 152

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

G. Waignier, A.-F. Le Meur, and L. Duchien, “A Model-Based Framework to Design
and Debug Safe Component-Based Autonomic Systems,” in Proceedings of the Sth
International Conference on the Quality of Software Architectures (QoSA). Springer,
2009.

J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” Computer,
vol. 36, no. 1, pp. 41-50, 2003.

R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Software Engineering for Self-
Adaptive Systems IIl. Assurances. Springer International Publishing, 2017.

I. B. M. Corporation, “An architectural blueprint for autonomic computing,” /IBM
White paper, 2005.

Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Miiller,
M. Pezze, and M. Shaw, “Engineering self-adaptive systems through feedback loops:
Software engineering for self-adaptive systems,” in Software Engineering for Self-
Adaptive Systems, 2009.

D. Weyns, “Software engineering of self-adaptive systems: An organised tour and
future challenges,” in Handbook of Software Engineering, 2018.

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research
challenges,” Journal of internet services and applications, vol. 1, no. 1, pp. 7-18,
2010.

P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute
of Standards and Technology, 2011.

Amazon, “Amazon Web Services Elastic Compute Cloud,” Available online: https:
//laws.amazon.com/ec2/, last retrieved: 31.05.2022.

S. Kéchele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond iaas and paas: An
extended cloud taxonomy for computation, storage and networking,” in Proceedings of
the 6th IEEE/ACM International Conference on Utility and Cloud Computing (UCC),
2013.

Google, “GSuite,” Available online: https://gsuite.google.com/index.html, last re-
trieved: 31.05.2022.

——, “Google App Engine,” Available online: https://cloud.google.com/appengine/,
last retrieved: 31.05.2022.

Amazon, “Amazon Web Services Elastic Beanstalk,” Available online: https://aws.
amazon.com/elasticbeanstalk/, last retrieved: 31.05.2022.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://gsuite.google.com/index.html
https://cloud.google.com/appengine/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/

153 Bibliography

[73] OpenStack, “Newton,” 2016, Available online: https://releases.openstack.org/newton/,
last retrieved: 31.05.2022.

[74] Y. Brikman, Terraform: Up & Running: Writing Infrastructure as Code. O’Reilly
Media, 2019.

[75] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernandez, “Cloud resource orchestration:
A data-centric approach,”’ in Proceedings of the 5th biennial Conference on Innovative
Data Systems Research (CIDR). Citeseer, 2011.

[76] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and J. Domaschka,
“Cloud orchestration features: Are tools fit for purpose?” in Proceedings of the Sth
IEEE/ACM International Conference on Utility and Cloud Computing (UCC), 2015.

[77] K. Morris, Infrastructure as code: managing servers in the cloud. " O’Reilly Media,
Inc.", 2016.

[78] HashiCorp, “Terraform,” 2021, Available online: https://www.terraform.io/, last
retrieved: 31.05.2022.

[79] Amazon Web Services, “Cloudformation,” 2020, Available online: https://aws.amazon.
com/de/cloudformation/, last retrieved: 31.05.2022.

[80] OpenStack, “Heat - 15.0.0,” 2020, Available online: https://wiki.openstack.org/wiki/
Heat/, last retrieved: 31.05.2022.

[81] GNU Project, “Bourne-again shell,” 2021, Available online: https://www.gnu.org/
software/bash/, last retrieved: 31.05.2022.

[82] Python Software Foundation, “Python,” 2021, Available online: https://www.python.
org/, last retrieved: 31.05.2022.

[83] M. Heap, Ansible: from beginner to pro. Springer, 2016.

[84] Progress, “Chef,” 2021, Available online: https://www.chef.io/, last retrieved:
31.05.2022.

[85] Puppet, “Puppet,” 2021, Available online: https://puppet.com/, last retrieved:
31.05.2022.

[86] Red Hat, “Ansible,” 2021, Available online: https://www.ansible.com/, last retrieved:
31.05.2022.

[87] VMWare, “SaltStack,” 2021, Available online: https://www.vmware.com/support/
acquisitions/saltstack.html, last retrieved: 31.05.2022.

https://releases.openstack.org/newton/
https://www.terraform.io/
https://aws.amazon.com/de/cloudformation/
https://aws.amazon.com/de/cloudformation/
https://wiki.openstack.org/wiki/Heat/
https://wiki.openstack.org/wiki/Heat/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.python.org/
https://www.python.org/
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://www.vmware.com/support/acquisitions/saltstack.html
https://www.vmware.com/support/acquisitions/saltstack.html

Bibliography 154

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Testing idempotence for in-
frastructure as code,” in Proceedings of the 14th ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing (Mid-
dleware). Springer Berlin Heidelberg, 2013.

N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and K. Tarabanis, “To-
wards a reference architecture for semantically interoperable clouds,” in Proceedings
of the 2nd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2010.

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Montero,
Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan,
“The reservoir model and architecture for open federated cloud computing,” IBM
Journal of Research and Development, vol. 53, no. 4, pp. 1-11, 2009.

P. Hofmann and D. Woods, “Cloud computing: The limits of public clouds for business
applications,” IEEE Internet Computing, vol. 14, no. 6, pp. 90-93, 2010.

T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in
Proceedings of the 24th IEEE International Conference on Advanced Information
Networking and Applications (AINA), 2010.

G. C. Silva, L. M. Rose, and R. Calinescu, “A systematic review of cloud lock-
in solutions,” in Proceedings of the 5th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), 2013.

Cloud Standards Customer Council, “Interoperability and porta-
bility for cloud computing: A guide version 2.0, 2017,
Available online: https://www.omg.org/cloud/deliverables/

CSCC-Interoperability-and-Portability-for-Cloud-Computing- A-Guide.pdf,
last retrieved: 31.05.2022.

Storage Networking Industry Association, “Cloud data management interface
(cdmi) version 2.0.0,” 2020, Available online: https://www.snia.org/sites/default/
files/technical_work/CDMI/CDMI_v2.0.0.pdf, last retrieved: 31.05.2022.

European Telecommunications Standards Institute, “Etsi ts 103 142 v1.1.1 cloud;
test descriptions for cloud interoperability,” 2013, Available online: https://www.etsi.
org/deliver/etsi_ts/103100_103199/103142/01.01.01_60/ts_103142v010101p.pdf, last
retrieved: 31.05.2022.

Organization for the Advancement of Structured Information Standards, “Cloud
Application Management for Platforms Version 1.2,” 2018, Available online: http:
//docs.oasis-open.org/camp/camp-spec/v1.2/csO1/camp-spec-v1.2-csO1.pdf, last re-
trieved: 31.05.2022.

https://www.omg.org/cloud/deliverables/CSCC-Interoperability-and-Portability-for-Cloud-Computing-A-Guide.pdf
https://www.omg.org/cloud/deliverables/CSCC-Interoperability-and-Portability-for-Cloud-Computing-A-Guide.pdf
https://www.snia.org/sites/default/files/technical_work/CDMI/CDMI_v2.0.0.pdf
https://www.snia.org/sites/default/files/technical_work/CDMI/CDMI_v2.0.0.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103142/01.01.01_60/ts_103142v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103142/01.01.01_60/ts_103142v010101p.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.2/cs01/camp-spec-v1.2-cs01.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.2/cs01/camp-spec-v1.2-cs01.pdf

155 Bibliography

[98] Open Grid Forum, “Open Cloud Computing Interface - Core,” 2016, Available online:
https://www.ogf.org/documents/GFD.221.pdf, last retrieved: 31.05.2022.

[99] ——, “Open Cloud Computing Interface - HT'TP Protocol,” 2016, Available online:
https://www.ogf.org/documents/GFD.223.pdf, last retrieved: 31.05.2022.

[100] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[101] Open Grid Forum, “Open Cloud Computing Interface - Text Rendering,” 2016, Avail-
able online: https://www.ogf.org/documents/GFD.229.pdf, last retrieved: 31.05.2022.

[102] ——, “Open Cloud Computing Interface - JSON Rendering,” 2016, Available online:
https://www.ogf.org/documents/GFD.226.pdf, last retrieved: 31.05.2022.

[103] ——, “Open Cloud Computing Interface - Infrastructure,” 2016, Available online:
https://www.ogf.org/documents/GFD.224.pdf, last retrieved: 31.05.2022.

[104] F. Paraiso, S. Challita, Y. Al-Dhuraibi, and P. Merle, “Model-Driven Management
of Docker Containers,” in Proceedings of the 9th IEEE International Conference on
Cloud Computing (CLOUD), 2016.

[105] F. Korte, S. Challita, F. Zalila, P. Merle, and J. Grabowski, “Model-driven con-
figuration management of cloud applications with occi,” in Proceedings of the Sth
International Conference on Cloud Computing and Services Science (CLOSER), 2018.

[106] Open Grid Forum, “Open Cloud Computing Interface - Platform,” 2016, Available
online: https://www.ogf.org/documents/GFD.227.pdf, last retrieved: 31.05.2022.

[107] Organization for the Advancement of Structured Information Standards, “Topology
and Orchestration Specification for Cloud Applications Version 1.0.” November 2013,
Available online: http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-o0s.
html, last retrieved: 31.05.2022.

[108] ——, “TOSCA Simple Profile in YAML Version 1.3, February 2020, Avail-
able online: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile- YAML/v1.3/
0s/TOSCA-Simple-Profile- YAML-v1.3-o0s.html, last retrieved: 31.05.2022.

[109] Canonical, “Juju,” 2021, Available online: https://juju.is/, last retrieved: 31.05.2022.

[110] A. Bergmayr, J. Troya, P. Neubauer, M. Wimmer, and G. Kappel, “UML-based Cloud
Application Modeling with Libraries, Profiles, and Templates,” in Proceedings of

the 3rd International Workshop on Model-Driven Engineering on and for the Cloud
(CloudMDE), 2014.

https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.223.pdf
https://www.ogf.org/documents/GFD.229.pdf
https://www.ogf.org/documents/GFD.226.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.227.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://juju.is/

Bibliography 156

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

A. Kamali, S. Mohammadi, and A. A. Barforoush, “UCC: UML profile to cloud
computing modeling: Using stereotypes and tag values,” in Proceedings of the 7th
International Symposium on Telecommunications (IST). 1EEE, 2014.

J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, “A UML Profile for Modeling
Multicloud Applications,” in Proceedings of the 2nd European Conference on Service-
Oriented and Cloud Computing (ESOCC). Springer, 2013.

N. Ferry, G. Brataas, A. Rossini, F. Chauvel, and A. Solberg, “Towards bridging
the gap between scalability and elasticity,” in Proceedings of the 4th International
Conference on Cloud Computing and Services Science (CLOSER), 2014.

N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko, and A. Solberg, “Cloudmf:
Model-driven management of multi-cloud applications,” ACM Transactions on Inter-
net Technology, vol. 18, no. 2, pp. 1-24, 2018.

A. P. Achilleos, K. Kritikos, A. Rossini, G. M. Kapitsaki, J. Domaschka, M. Orze-
chowski, D. Seybold, F. Griesinger, N. Nikolov, D. Romero ef al., “The cloud applica-

tion modelling and execution language,” Journal of Cloud Computing, vol. 8, no. 1,
p. 20, 2019.

D. Baur, D. Seybold, F. Griesinger, H. Masata, and J. Domaschka, “A provider-
agnostic approach to multi-cloud orchestration using a constraint language,” in Pro-
ceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). 1EEE Press, 2018.

J. Sandobalin, E. Insfran, and S. Abrahao, “On the effectiveness of tools to support
infrastructure as code: Model-driven versus code-centric,” IEEE Access, vol. 8, pp.
17 734-17761, 2020.

J. Sandobalin, E. Insfran, S. Abrah ef al., “A model-driven migration approach among
cloud providers,” in Proceedings of the XIV Jornadas de Ciencia e Ingenieria de
Servicios (JCIS). SISTEDES, 2018.

C. Quinton, N. Haderer, R. Rouvoy, and L. Duchien, “Towards multi-cloud configura-
tions using feature models and ontologies,” in Proceedings of the Ist International
Workshop on Multi-Cloud Applications and Federated Clouds (MultiCloud). Associ-
ation for Computing Machinery, 2013.

C. Quinton, D. Romero, and L. Duchien, “Saloon: a platform for selecting and

configuring cloud environments,” Software: Practice and Experience, vol. 46, no. 1,
pp- 55-78, 2016.

157

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

OCCIWare - Project, “A formal framework for the management of any digital resource
in the cloud,” 2014 - 2017, Available online: http://occiware.github.io/, last retrieved:
31.05.2022.

P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata, “A Precise Metamodel
for Open Cloud Computing Interface,” in Proceedings of 8th IEEE International
Conference on Cloud Computing (CLOUD), 2015.

F. Zalila, S. Challita, and P. Merle, “A model-driven tool chain for OCCI,” in Pro-
ceedings of the 25th International Conference on Cooperative Information Systems
(CooplS), 2017.

Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle, “Model-driven elasticity man-
agement with occi,” IEEE Transactions on Cloud Computing, pp. 1-1, 2019.

M. Ahmed-Nacer, S. Kallel, F. Zalila, P. Merle, and W. Gaaloul, “Model-Driven
Simulation of Elastic OCCI Cloud Resources,” The Computer Journal, 2020.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, p. 23-50, 2011.

Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle, “Model-driven elasticity manage-
ment with occi,” IEEE Transactions on Cloud Computing, vol. 9, no. 4, pp. 1549-1562,
2021.

P. Merle, C. Gourdin, and N. Mitton, “Mobile cloud robotics as a service with

occiware,” in Proceedings of the 2nd IEEE International Congress on Internet of
Things (ICIOT), 2017.

S. Yangui and S. Tata, “Cloudserv: Paas resources provisioning for service-based
applications,” in Proceedings of the 27th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2013.

M. Sellami, S. Yangui, M. Mohamed, and S. Tata, “Paas-independent provision-
ing and management of applications in the cloud,” in Proceedings of the 6th IEEE
International Conference on Cloud Computing (CLOUD), 2013.

S. Yangui and S. Tata, “An OCCI Compliant Model for PaaS Resources Description
and Provisioning,” The Computer Journal, vol. 59, no. 3, pp. 308-324, 2014.

A. Ciuffoletti, “A simple and generic interface for a cloud monitoring service,” in
Proceedings of the 4th International Conference on Cloud Computing and Services
Science (CLOSER), 2014.

http://occiware.github.io/

Bibliography 158

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

M. Mohamed, D. Belaid, and S. Tata, “Monitoring and reconfiguration for occi
resources,” in Proceedings of the 5th International Conference on Cloud Computing
Technology and Science (CloudCom), 2013.

J. Bellendorf and Z. A. Mann, “Specification of cloud topologies and orchestration
using tosca: a survey,” Computing, pp. 1-23, 2019.

O. Kopp, T. Binz, U. Breitenbiicher, and F. Leymann, “Winery—a modeling tool for
tosca-based cloud applications,” in Proceedings of the 11th International Conference
on Service-Oriented Computing (ICSOC). Springer, 2013.

U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann, and D. Schumm, “Vino4TOSCA:
A Visual Notation for Application Topologies based on TOSCA,” in Proceedings of
the Confederated International Conferences "On the Move to Meaningful Internet
Systems" (OTM). Springer, 2012.

U. Breitenbiicher, C. Endres, K. Képes, O. Kopp, F. Leymann, S. Wagner, and J. W. M.
Zimmermann, “The OpenTOSCA Ecosystem —Concepts & Tools,” European Space

project on Smart Systems, Big Data, Future Internet -Towards Serving the Grand
Societal Challenges, pp. 112-130, 2016.

U. Breitenbiicher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger, “Com-
bining declarative and imperative cloud application provisioning based on tosca,” in
Proceedings of the 2nd IEEE International Conference on Cloud Engineering (IC2E),
2014.

J. Wettinger, T. Binz, U. Breitenbiicher, O. Kopp, F. Leymann, and M. Zimmer-
mann, “Unified Invocation of Scripts and Services for Provisioning, Deployment,
and Management of Cloud Applications Based on TOSCA,” in Proceedings of the
4th International Conference on Cloud Computing and Services Science (CLOSER),
2014.

N. Loulloudes, C. Sofokleous, D. Trihinas, M. D. Dikaiakos, and G. Pallis, “Enabling
Interoperable Cloud Application Management through an Open Source Ecosystem,”
IEEFE Internet Computing, vol. 19, no. 3, pp. 54-59, 2015.

Alien4Cloud - Project, “Application LIfecycle ENablement for Cloud,” 2021, Avail-
able online: https://alien4cloud.github.io, last retrieved: 31.05.2022.

Cloudify, “Version 5.1,” 2021, Available online: https://cloudify.co/, last retrieved:
31.05.2022.

J. Carrasco, J. Cubo, and E. Pimentel, “Towards a Flexible Deployment of Multi-Cloud
Applications Based on TOSCA and CAMP,” in Proceedings of the 3rd European
Conference on Service-Oriented and Cloud Computing (ESOCC). Springer, 2014.

https://alien4cloud.github.io
https://cloudify.co/

159

Bibliography

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

J. Carrasco, J. Cubo, E. Pimentel, and F. Durén, “Deployment over Heterogeneous
Clouds with TOSCA and CAMP,” in Proceedings of the 6th International Conference
on Cloud Computing and Services Science (CLOSER), 2016.

J. Carrasco, F. Duran, and E. Pimentel, “Trans-cloud: CAMP/TOSCA-based Bidi-
mensional Cross-Cloud,” Computer Standards & Interfaces, vol. 58, pp. 167-179,
2018.

M. Wurster, U. Breitenbiicher, L. Harzenetter, F. Leymann, J. Soldani, and V. Yussupov,
“Tosca light: Bridging the gap between the tosca specification and production-ready
deployment technologies,” in Proceedings of the 10th International Conference on
Cloud Computing and Services Science (CLOSER), 2020.

Cloud Native Computing Foundation, ‘“Kubernetes,” 2021, Available online: https:
//kubernetes.io/, last retrieved: 31.05.2022.

M. Wurster, U. Breitenbiicher, L. Harzenetter, F. Leymann, and J. Soldani, “Tosca
lightning: An integrated toolchain for transforming tosca light into production-ready
deployment technologies,” in Proceedings of 32nd International Conference on Ad-
vanced Information Systems Engineering (CAiSE). Springer International Publishing,
2020.

M. Artac, T. Borovsak, E. Di Nitto, M. Guerriero, and D. A. Tamburri, “Model-driven
continuous deployment for quality devops,” in Proceedings of the 2nd International
Workshop on Quality-Aware DevOps (QUDOS). Association for Computing Ma-
chinery, 2016.

J. DesLauriers, T. Kiss, R. C. Ariyattu, H.-V. Dang, A. Ullah, J. Bowden, D. Krefting,
G. Pierantoni, and G. Terstyanszky, “Cloud apps to-go: Cloud portability with tosca

and micado,” Concurrency and Computation: Practice and Experience, p. e6093,
2020.

M. Wurster, U. Breitenbiicher, M. Falkenthal, C. Krieger, F. Leymann, K. Saatkamp,
and J. Soldani, “The Essential Deployment Metamodel: a Systematic Review of
Deployment Automation Technologies,” SICS Software-Intensive Cyber-Physical
Systems, pp. 1-13, 2019.

V. Andrikopoulos, A. Reuter, S. G. Sdez, and F. Leymann, “A GENTL Approach for
Cloud Application Topologies,” in Proceedings of the 3rd European Conference on
Service-Oriented and Cloud Computing (ESOCC). Springer, 2014.

A. Bergmayr, U. Breitenbiicher, O. Kopp, M. Wimmer, G. Kappel, and F. Leymann,
“From Architecture Modeling to Application Provisioning for the Cloud by Combining
UML and TOSCA,” in Proceedings of the 6th International Conference on Cloud
Computing and Services Science (CLOSER), 2016.

https://kubernetes.io/
https://kubernetes.io/

Bibliography 160

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

P. Hirmer, U. Breitenbiicher, T. Binz, F. Leymann et al., “Automatic Topology Comple-
tion of TOSCA-based Cloud Applications,” in Proceedings of the 44th Jahrestagung
der Gesellschaft fiir Informatik (INFORMATIK), 2014.

H. Brabra, A. Mtibaa, W. Gaaloul, B. Benatallah, and F. Gargouri, “Model-driven
orchestration for cloud resources,” in Proceedings of the 12th IEEE International
Conference on Cloud Computing (CLOUD), 2019.

A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou, and G. Mentzas,
“Extending tosca for edge and fog deployment support,” Electronics, vol. 10, no. 6, p.
737, 2021.

D. A. Tamburri, W.-J. Van den Heuvel, C. Lauwers, P. Lipton, D. Palma, and
M. Rutkowski, “Tosca-based intent modelling: goal-modelling for infrastructure-as-
code,” SICS Software-Intensive Cyber-Physical Systems, vol. 34, no. 2, pp. 163-172,
2019.

G. Casale, M. Arta¢, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits, F. Ley-
mann, M. Long, V. Papanikolaou, D. Presenza, A. Russo et al., “Radon: rational
decomposition and orchestration for serverless computing,” SICS Software-Intensive
Cyber-Physical Systems, vol. 35, no. 1, pp. 77-87, 2020.

R. Qasha, J. Cala, and P. Watson, “Dynamic deployment of scientific workflows in the
cloud using container virtualization,” in Proceedings of the 8th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2016.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster, “Swift:
A language for distributed parallel scripting,” Parallel Computing, vol. 37, no. 9, pp.
633-652, 2011.

L. Ramakrishnan, S. Poon, V. Hendrix, D. Gunter, G. Z. Pastorello, and D. Agarwal,
“Experiences with user-centered design for the tigres workflow api,” in Proceedings of
the 10th IEEE International Conference on e-Science (e-Science), 2014.

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludéscher, and S. Mock, “Kepler: an
extensible system for design and execution of scientific workflows,” in Proceedings of
the 16th International Conference on Scientific and Statistical Database Management
(SSDBM). 1EEE, 2004.

R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y. Simmhan, “The trident
scientific workflow workbench,” in In Proceedings of the 4th IEEE International
Conference on e-Science (e-Science), 2008.

161

Bibliography

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

P. Bui, L. Yu, and D. Thain, “Weaver: Integrating distributed computing abstractions
into scientific workflows using python,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC), 2010.

D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor,
and I. Wang, “Programming scientific and distributed workflow with triana services,’

Concurrency and Computation: Practice and Experience, vol. 18, no. 10, pp. 1021-
1037, 2006.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus: a frame-
work for mapping complex scientific workflows onto distributed systems,” Scientific
Programming Journal, vol. 13, no. 3, pp. 219-237, 2005.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,
W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a workflow management system

for science automation,” Future Generation Computer Systems, vol. 46, pp. 17-35,
2015.

J. Goecks, A. Nekrutenko, J. Taylor, G. Team et al., “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences,” Genome biology, vol. 11, no. 8, p. R86, 2010.

T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin et al., “Taverna: lessons in creating a workflow

environment for the life sciences,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1067-1100, 2006.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-
Reyes, 1. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall,
A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble,
“The taverna workflow suite: designing and executing workflows of web services
on the desktop, web or in the cloud,” Nucleic Acids Research, vol. 41, no. W1, pp.
W557-W561, 2013.

L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva, and
H. T. Vo, “Vistrails: Enabling interactive multiple-view visualizations,” in Proceedings
of the 16th IEEE Conference on Visualization (VIS), 2005.

S. G. Parker and C. R. Johnson, “Scirun: a scientific programming environment
for computational steering,” in Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing (SC), 1995.

R. Bergmann and Y. Gil, “Similarity assessment and efficient retrieval of semantic
workflows,” Information Systems, vol. 40, pp. 115-127, 2014.

Bibliography 162

[174] A. Ter Hofstede and W. Van der Aalst, “Yawl: yet another workflow language,”
Information Systems, vol. 30, pp. 245-275, 2005.

[175] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,
and A. Van Dam, “The application visualization system: A computational environment
for scientific visualization,” IEEE Computer Graphics and Applications, vol. 9, no. 4,
pp- 3042, 1989.

[176] A. Schleicher and B. Westfechtel, “Beyond stereotyping: Metamodeling approaches
for the uml,” in Proceedings of the 34th Hawaii International Conference on System
Sciences (HICSS). IEEE, 2001.

[177] R. Braun and W. Esswein, “Classification of domain-specific bpmn extensions,” in
Proceedings of the 7th IFIP Working Conference on The Practice of Enterprise
Modeling (PoEM). Springer Berlin Heidelberg, 2014.

[178] D. Calcaterra, V. Cartelli, G. Di Modica, and O. Tomarchio, “Combining tosca and
bpmn to enable automated cloud service provisioning,” in Proceedings of the 7th
International Conference on Cloud Computing and Services Science (CLOSER), 2017.

[179] ——, “Exploiting bpmn features to design a fault-aware tosca orchestrator,” in Pro-
ceedings of the 8th International Conference on Cloud Computing and Services
Science (CLOSER), 2018.

[180] J. Briining and M. Gogolla, “Uml metamodel-based workflow modeling and execu-
tion,” in Proceedings of the 15th IEEE International Enterprise Distributed Object
Computing Conference (EDOCW), 2011.

[181] J. Briining, M. Gogolla, and P. Forbrig, “Modeling and formally checking workflow
properties using uml and ocl,” in Proceedings on the 9th International Conference on
Perspectives in Business Informatics Research (BIR). Springer Berlin Heidelberg,
2010.

[182] M. Gogolla, F. Biittner, and M. Richters, “Use: A uml-based specification environment
for validating uml and ocl,” Science of Computer Programming, vol. 69, no. 1-3, pp.
27-34, 2007.

[183] R. Ramdoyal, C. Ponsard, M.-A. Derbali, G. Schwanen, I. Linden, and J.-M. Jacquet,
“A generic workflow metamodel to support resource-aware decision making,” in

Proceedings of the 15th International Conference on Enterprise Information Systems
(ICEIS), 2013.

[184] N. Cerezo and J. Montagnat, “Scientific workflow reuse through conceptual workflows
on the virtual imaging platform,” in Proceedings of the 6th workshop on Workflows in
support of large-scale science (WORKS), 2011.

163

Bibliography

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

G. Scherp, “A Framework for Model-Driven Scientific Workflow Engineering,” Ph.D.
dissertation, Christian-Albrechts-University, Kiel, 2013.

G. Scherp and W. Hasselbring, “Towards a model-driven transformation framework
for scientific workflows,” Procedia Computer Science, vol. 1, no. 1, pp. 15191526,
2010.

Organization for the Advancement of Structured Information Standards, “Web services
business process execution language version 2.0,” 2007, Available online: http://docs.
oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html, last retrieved: 31.05.2022.

R. Espinosa, D. Garcia-Saiz, M. Zorrilla, J. J. Zubcoff, and J.-N. Mazén, “S3mining:
A model-driven engineering approach for supporting novice data miners in selecting
suitable classifiers,” Computer Standards & Interfaces, vol. 65, pp. 143158, 2019.

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi, “The generic modeling environment,” in Proceedings of
the IEEFE International Workshop on Intelligent Signal Processing (WISP), 2001.

G. Vossen and M. Weske, The WASA Approach to Workflow Management for Scientific
Applications. Springer Berlin Heidelberg, 1998, pp. 145-164.

M. Weske, G. Vossen, and C. B. Medeiros, Scientific workflow management: WASA
architecture and applications. Citeseer, 1996.

M. Weske, “Flexible modeling and execution of workflow activities,” in Proceedings
of the 31st Hawaii International Conference on System Sciences (HICSS). 1EEE,
1998.

T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a distributed job
scheduler,” in Beowulf Cluster Computing with Windows. MIT Press, 2001.

S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington, “Workflow
enactment in iceni,” in Proceedings of the UK e-Science All Hands Meeting, 2004.

F. Berman, A. Chien, K. Cooper, J. Dongarra, 1. Foster, D. Gannon, L. Johnsson,
K. Kennedy, C. Kesselman, J. Mellor-Crumme et al., “The grads project: Software
support for high-level grid application development,” The International Journal of
High Performance Computing Applications, vol. 15, no. 4, pp. 327-344, 2001.

Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and Y. Liu,
“Grid-flow: a grid-enabled scientific workflow system with a petri-net-based interface,”
Concurrency and Computation: Practice and Experience, vol. 18, no. 10, pp. 1115-
1140, 2006.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography 164

[197] J. Almond and D. Snelling, “Unicore: Secure and uniform access to distributed
resources via the world wide web,” White Paper, October, 1998.

[198] J. Yu and R. Buyya, “A novel architecture for realizing grid workflow using tuple
spaces,” in Proceedings of the 5th IEEE/ACM International Workshop on Grid Com-
puting (GRID), 2004.

[199] M. Ter Linden, H. De Wolf, and R. Grim, “Gridassist, a user friendly grid-based
workflow management tool,” in Proceedings of the International Conference on
Farallel Processing Workshops (ICPPW). 1EEE, 2005.

[200] K. Amin, G. Von Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi,
“Gridant: A client-controllable grid workflow system,” in Proceedings of the 37th
Hawaii International Conference on System Sciences (HICSS). 1EEE, 2004.

[201] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto Jr, and H.-L. Truong,
“Askalon: a tool set for cluster and grid computing,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 2-4, pp. 143-169, 2005.

[202] E. Ogasawara, J. Dias, V. Silva, F. Chirigati, D. de Oliveira, F. Porto, P. Valduriez, and
M. Mattoso, “Chiron: a parallel engine for algebraic scientific workflows,” Concur-
rency and Computation: Practice and Experience, vol. 25, no. 16, pp. 2327-2341,
2013.

[203] R. Oda, D. Cordeiro, and K. R. Braghetto, “Dynamic resource provisioning for scien-
tific workflow executions in clouds,” in Proceedings of the 15th IEEE International
Conference on Services Computing (SCC), 2018.

[204] A. C. Zhou, B. He, X. Cheng, and C. T. Lau, “A declarative optimization engine
for resource provisioning of scientific workflows in iaas clouds,” in Proceedings of
the 24th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC). Association for Computing Machinery, 2015.

[205] K. Vukojevic-Haupt, F. Haupt, and F. Leymann, “On-demand provisioning of work-
flow middleware and services into the cloud: An overview,” Computing, vol. 99, no. 2,
p. 147-162, 2017.

[206] K. Vukojevic-Haupt, D. Karastoyanova, and F. Leymann, “On-demand provisioning
of infrastructure, middleware and services for simulation workflows,” in Proceed-
ings of the 6th IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), 2013.

[207] P. Kacsuk, J. Kovdcs, and Z. Farkas, “The flowbster cloud-oriented workflow system
to process large scientific data sets,” Journal of Grid Computing, vol. 16, no. 1, pp.
55-83, 2018.

165

Bibliography

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

M. Orzechowski, B. Balis, K. Pawlik, M. Pawlik, and M. Malawski, “Transparent
deployment of scientific workflows across clouds - kubernetes approach,” in Proceed-
ings of the 11th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), 2018.

B. Balis, “Hyperflow: A model of computation, programming approach and enactment
engine for complex distributed workflows,” Future Generation Computer Systems,
vol. 55, pp. 147-162, 2016.

D. Hoppe, Y. Sandoval, A. Sulistio, M. Malawski, B. Balis, M. Pawlik, K. Figiela,
D. Krol, M. Orzechowski, J. Kitowski et al., “Bridging the gap between hpc and cloud
using hyperflow and paasage,” in Proceedings of the 12th International Conference
on Parallel Processing and Applied Mathematics (PPAM), 2017.

R. Qasha, J. Cala, and P. Watson, “Towards automated workflow deployment in the
cloud using TOSCA,” in Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD), 2015.

R. Qasha, J. Cata, and P. Watson, “A framework for scientific workflow reproducibility
in the cloud,” in Proceedings of the 12th IEEE International Conference on e-Science
(e-Science), 2016.

B. Weder, U. Breitenbiicher, K. Képes, F. Leymann, and M. Zimmermann, “Deploy-
able self-contained workflow models,” in Proceedings of the 8th European Conference
on Service-Oriented and Cloud Computing (ESOCC), 2020.

E. H. Beni, B. Lagaisse, and W. Joosen, “Infracomposer: Policy-driven adaptive and
reflective middleware for the cloudification of simulation & optimization workflows,”
Journal of Systems Architecture, vol. 95, pp. 36-46, 2019.

——, “Adaptive and reflective middleware for the cloudification of simulation &
optimization workflows,” in Proceedings of the 16th Workshop on Adaptive and
Reflective Middleware (ARM), 2017.

J. Erbel, “Comparison And Adaptation Of Cloud Application Topologies Using
Models At Runtime,” Master’s thesis, Institute of Computer Science, University of
Goettingen, 2017.

S. Challita, F. Korte, J. Erbel, F. Zalila, J. Grabowski, and P. Merle, “Model-Based
Cloud Resource Management with TOSCA and OCCI,” Software & Systems Modeling,
2021.

L. Thiesen, “Containerization in a causally connected runtime model for scientific
workflows,” Bachelor’s Thesis, Institute of Computer Science, University of Goettin-
gen, 2020.

Bibliography 166

[219] Eclipse, “UML2, an EMF-based implementation of the Unified Modeling Language
(UML) 2.x,” Available online: https://wiki.eclipse.org/MDT/UML?2, last retrieved:
31.05.2022.

[220] OpenMP Architecture Review Board, “OpenMP Application Programming Interface
Version 5.1,” 2020, Available online: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf, last retrieved: 31.05.2022.

[221] B. Pardk, Z. Sustr, F. Feldhaus, P. Kasprzakc, and M. Srbac, “The rocci project—
providing cloud interoperability with occi 1.1,” in Proceedings of the International
Symposium on Grids and Clouds (ISGC), 2014.

[222] OpenStack OCCI Interface, “OpenStack OCCI Interface,” 2015, Available online:
http://ooi.readthedocs.io/en/stable/, last retrieved: 31.05.2022.

[223] J. Erbel, T. Brand, H. Giese, and J. Grabowski, “OCCI-compliant, fully causal-
connected architecture runtime models supporting sensor management,” in Proceed-
ings of the 14th Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2019.

[224] J. Erbel, S. Wittek, J. Grabowski, and A. Rausch, “Dynamic Management of Multi-
Level-Simulation Workflows in the Cloud,” in Proceedings of the 2nd International
Workshop on Simulation Science (SimScience), 2019.

[225] J. Erbel, F. Korte, and J. Grabowski, “Scheduling architectures for scientific workflows
in the cloud,” in Proceedings of the 10th International Conference on System Analysis
and Modeling (SAM), 2018.

[226] OpenStack4j, “OpenStack4j,” 2021, Available online: http://www.openstack4j.com/,
last retrieved: 31.05.2022.

[227] Docker, Inc., “Docker Machine,” 2021, Available online: https://docs.docker.com/
machine/, last retrieved: 31.05.2022.

[228] J. Erbel, “Smart Workflows through dYnamic Runtime Models,” 2021, Available
online: https://doi.org/10.25625/0E4AN3 or https://gitlab.gwdg.de/rwm/smartwyrm,
last retrieved: 31.05.2022.

[229] ——, “Workflows and OCCI (WOCCI),” 2021, Available online: https://doi.org/10.
25625/0OE4AN3 or https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.wocci, last retrieved:
31.05.2022.

[230] ——, “Deployment of OCCI (DOCCI),” 2021, Available online: https://doi.org/10.
25625/0E4AN3 or https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.docci, last retrieved:
31.05.2022.

https://wiki.eclipse.org/MDT/UML2
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
http://ooi.readthedocs.io/en/stable/
http://www.openstack4j.com/
https://docs.docker.com/machine/
https://docs.docker.com/machine/
https://doi.org/10.25625/OE4AN3
https://gitlab.gwdg.de/rwm/smartwyrm
https://doi.org/10.25625/OE4AN3
https://doi.org/10.25625/OE4AN3
https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.wocci
https://doi.org/10.25625/OE4AN3
https://doi.org/10.25625/OE4AN3
https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.docci

167

Bibliography

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

Apache Software Foundation, “Hadoop,” 2020, Available online: https://hadoop.
apache.org/, last retrieved: 31.05.2022.

——, “Spark,” 2020, Available online: https://spark.apache.org/, last retrieved:
31.05.2022.

WordPress Foundation, “WordPress,” 2021, Available online: https://wordpress.com/,
last retrieved: 31.05.2022.

Nicolas Hennion, “Glances an Eye on your system,” 2021, Available online: https:
//github.com/nicolargo/glances, last retrieved: 31.05.2022.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, p. 107-113, 2008.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file
system,” in Proceedings of the 26th IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2010.

S. Wittek and A. Rausch, “Learning state mappings in multi-level-simulation,” in
Proceedings of the 1st International Workshop on Simulation Science (SimScience),
2017.

E. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, “Addressing problems with
replicability and validity of repository mining studies through a smart data platform,”
Empirical Software Engineering, vol. 23, no. 2, pp. 1036-1083, 2018.

S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. Ghaleb, K. Chahal,
T. Bossenmaier, B. Nagaria, P. Makedonski, M. Nili Ahmadabadi, K. Szabados,
H. Spieker, M. Madeja, N. Hoy, V. Lenarduzzi, S. Wang, G. Rodriguez Perez,
R. Colomo-Palacios, R. Verdecchia, P. Singh, Y. Qin, D. Chakroborti, W. Davis,
V. Walunj, H. Wu, D. Marcilio, O. Alam, A. Aldaeej, I. Amit, B. Turhan, S. Eismann,
A.-K. Wickert, 1. Malavolta, M. Sulir, F. Fard, A. Henley, S. Kourtzanidis, E. Tiiziin,
C. Treude, S. Maleki Shamasbi, I. Pashchenko, M. Wyrich, J. Davis, A. Serebrenik,
E. Albrecht, E. Aktas, D. Striiber, and J. Erbel, “A fine-grained data set and analysis
of tangling in bug fixing commits,” Empirical Software Engineering, 2021.

A. Trautsch, S. Herbold, and J. Grabowski, “A Longitudinal Study of Static Analysis
Warning Evolution and the Effects of PMD on Software Quality in Apache Open
Source Projects,” Empirical Software Engineering, vol. 25, no. 6, p. 5137-5192, 2020.

F. Trautsch, S. Herbold, and J. Grabowski, “Are Unit and Integration Test Definitions
Still Valid for Modern Java Projects? An Empirical Study on Open-Source Projects,”
Journal of Systems and Software, vol. 159, p. 110421, 2019.

https://hadoop.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/
https://wordpress.com/
https://github.com/nicolargo/glances
https://github.com/nicolargo/glances

Bibliography 168

[242] F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, “Addressing problems with
replicability and validity of repository mining studies through a smart data platform,”
Empirical Software Engineering, vol. 23, no. 2, p. 10361083, 2017.

[243] Project Jupyter, “Jupyter Notebook,” 2021, Available online: https://jupyter.org/, last
retrieved: 31.05.2022.

[244] J. Erbel, “Comparing OCCI (COCCI),” 2021, Available online: https://doi.org/10.
25625/0OE4AN3 or https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.cocci, last retrieved:
31.05.2022.

[245] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

https://jupyter.org/
https://doi.org/10.25625/OE4AN3
https://doi.org/10.25625/OE4AN3
https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.cocci

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Goals and Contributions
	Impact
	Structure of the Thesis

	Fundamentals
	Scientific Workflows
	Fundamentals
	Scientific Workflow Management Systems

	Model-Driven Engineering
	Fundamentals
	Techniques
	Models at Runtime

	Cloud Computing
	Fundamentals
	Cloud Orchestration
	Cloud Standards

	Related Work
	Model-Driven and Standard Conform Cloud Orchestration
	OCCI Related Approaches
	TOSCA Related Approaches

	Workflows, Models and the Scientific Domain
	Infrastructure Aware Workflow Management
	Summary and Research Gap

	Standard Conform Cloud Runtime Model Orchestration
	Model-Driven Cloud Orchestration Process
	Design Time Abstraction Layers
	Mapping of TOSCA to OCCI
	Model-Driven Adaptation using OCCI

	Causal Connection to Cloud Environments
	Combining Container and Configuration Management
	Sensor Management and Reflection

	Runtime Workflow Model Concept
	Runtime Workflow Metamodel
	Runtime Model Capabilities
	Decision-Making Pipeline
	Loop Reflection and Parallelization

	Runtime Workflow Execution Engine
	Architecture Scheduler
	Task Enactor

	Model and Execution Environment
	Causal Connection Configurations
	Causal Cloud Connection
	Simulation Connection

	Smart Workflows Through Dynamic Runtime Models
	Interface and Notation
	Workflow Engine Implementation
	Adaptation Engine Implementation

	Runtime Model Orchestration Case Studies
	Case Study 1: Computation Cluster Scaling
	Case Study Artifacts
	Orchestration Process
	Results and Observations

	Case Study 2: Standard Interoperability
	Case Study Artifacts
	Orchestration Process
	Results and Observations

	Runtime Workflow Model Case Studies
	Case Study 1: On-Demand Big Data Framework
	Workflow Model
	Workflow Execution
	Results and Observations

	Case Study 2: Dynamic Simulation
	Workflow Model
	Workflow Execution
	Results and Observations

	Case Study 3: Software Repository Mining
	Workflow Model
	Workflow Execution
	Results and Observations

	Discussion
	Applicability
	Academia
	Industry
	Education

	Model Viewpoints
	Workflow and Cloud Architect
	Self-Adaptive Control Loops

	Standard Conformity
	OCCI Interoperability
	OCCI Recommendations

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	Summary
	Outlook

	Bibliography

