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Abstract

Structure evolution in multicomponent polymer melts and in their network equiv-

alents is investigated. In the first part, particle-based simulations reveal that on

short length and time scales, the collective kinetics of structure formation and

relaxation of polymeric systems is influenced by the sub-diffusive single-chain

dynamics. D-RPA and D-SCFT are employed to describe the collective behavior

in the simulation. D-RPA successfully captures the observed time evolution of

density fluctuations on short time scales, whereas D-SCFT fails to provide an ap-

propriate description on time scales much shorter than the Rouse relaxation time.

In addition, a modified D-SCFT that accounts for the non-locality of Onsager

coefficient in time is developed. In the second part, the structure and structure

formation in 2D networks with a fixed topology and in 3D randomly crosslinked

networks made of symmetric diblock copolymers are studied combining analyti-

cal approaches and particle-based simulations. The phase behavior of 2D regular

networks comprised of square-shaped unit cells is found to depend strongly on

the side lengths of the unit cells measured in the unit of the end-to-end distance

of the constituent polymer strands and the number of unit cells belonging to the

network. In 3D random networks, the crosslinks stabilize and partially memorize

the structure existing at the time of their formation. The phase behavior of random

networks is determined by the crosslink density and the strength of the repulsion

between unlike species at crosslinking.
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Chapter 1

Introduction

Polymers are popular and essential materials synthesized by linking a large number of

repeating units, the so-called monomers, by covalent bonds. Polymeric materials possess a

broad spectrum of unique properties regarding their resilience, strength, toughness, the ability

of self-assembly, etc. This variety of features has its origin in the countless possibilities in the

selection of monomers and the construction of the chain architecture.

Polymers formed from identical monomers, such as polyethylene (PE) and polystyrene

(PS) are called homopolymers. Polymer chains made of monomers from different species are

called copolymers [1, 2]. They can be engineered to combine properties owned by different

materials. Copolymer chains comprised of two or more homopolymer subunits are called

block copolymers. Depending on the number of sequences, block copolymers can be further

categorized into diblock, triblock copolymers, etc. Polymers formed from the same chemical

composition may also differ in their chain architecture and, thus, show very different physical

behavior. Known chain architectures range from linear chains to more elaborate ones, such as

rings, stars and networks. The large number of tunable properties that can be achieved during

synthesis makes this kind of material very attractive for various applications.

Characteristic for multicomponent copolymer systems is the repulsion between monomers

of different chemical species. This results in a microphase separation below a certain tem-

perature. The origin of the self-assembly is the reduction of energetically unfavored contacts

between blocks made of different monomer types. Above the critical temperature, the entropy

dominates and the system is found to be a homogeneous mixture. This is called the disordered
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phase. Below the critical temperature, the polymer melt forms spatially modulated regions.

This spatial segregation is restricted by the chain connectivity of block copolymers, leading

to microphase separation with domain sizes comparable to the size of a molecule. Most of the

applications of block copolymers stem from their ability to build microdomains. Currently,

their commercial application can be found in thermoplastic elastomers [3] and compatibi-

lization of polymer blends [4]. On top of that, block copolymers have enormous potential in

fields such as microelectronics [5], nanolithography [6–8], batteries [9] and controlled drug

delivery [10].

The focus of this study, diblock copolymers, are the simplest copolymers formed from

a sequence of A-type monomers attached to a sequence of B-type monomers. Depending

on the volume fraction of the two monomer blocks fA and fB = 1− fA, diblock copolymer

melts microphase separate into various ordered topologies. The following phases appear

with increasing asymmetry in the volume fraction: the lamellar phase (if fA ≈ fB), gyroid

phase, hexagonal phase and the cubic phase. One of the major goals of this thesis is to study

the dynamics during the early stage of structure formation and the interplay between the

single-chain dynamics and collective behavior in non-equilibrium polymer systems. Diblock

copolymers are ideal subjects because of their well understood equilibrium phase diagram,

straightforward chain architecture and a known accurate free-energy functional provided by

Self-Consistent Field Theory (SCFT).

Another focus of this thesis is polymer networks formed by crosslinking polymer chains.

This type of novel macromolecules exhibits great potential from both theoretical and industrial

perspectives because of their advantageous properties such as elasticity, controllable mechan-

ical strength and deformability. Their applications range from the conventional products

like rubber, membranes and sorbents, to more advanced ones including drug delivery [11],

catalysis [12, 13] and electronic materials [14]. I will concentrate on the phase behavior of

this class of fascinating materials made of symmetric diblock copolymers and perform studies

on regular networks with a fixed topology and on randomly crosslink polymer networks.

From a theoretical physics point of view, understanding the fundamental physical proper-

ties is essential for the design and synthesis of polymer materials with desired features. On the

one hand, the mean-field approximation can be applied to dense polymeric systems because
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FIGURE 1.1: An illustration of the three main subjects of this thesis.

of the high number of interacting neighbors in the surrounding. On the other hand, the fractal

nature of polymer systems enables coarse-grained descriptions. These useful features allow

me to employ computer simulations and analytical approaches to investigate polymer systems.

1.1 Outline

This thesis is divided into two parts. I will start with the dynamics of linear chains and proceed

with studies of regular polymer networks and random polymer networks made of symmetric

diblock copolymers. The three subjects are illustrated in Figure 1.1.

In the first part of this thesis, the collective kinetics of structure formation in polymer

melts at short length and time scales is investigated. In chapter 3, I present the key analytical

methods Dynamical Random Phase Approximation (D-RPA) and Dynamical Self-Consistent

Field Theory (D-SCFT), which are often used to describe the dynamics of structure formation.

A modified D-SCFT with a time-dependent Onsager coefficient will also be presented. The

predictions of the models are compared with the results obtained from the particle-based

Monte-Carlo simulation program SOft coarse grained Monte-Carlo Acceleration (SOMA) in

chapter 4. The central goal of this part is to investigate the impact of sub-diffusive single-chain

dynamics on short time and length scale.

In the second part of the thesis, I concentrate on the structure and structure formation

of crosslinked polymer networks made of symmetric diblock copolymers. In chapter 5, I
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study regular two-dimensional polymer networks comprised of square-shaped repeating units

(unit cells). A two-dimensional phonon model is applied to describe the structural properties

of the regular networks. Then, the accuracy of the phonon model will be compared with a

simplified Monte-Carlo (MC) simulation consisting of only junction points and with SOMA

simulations. With the simplified description for the molecular structure provided by the

phonon model, I continue to investigate the structure factor of the networks. Finally, the

order-disorder transition (ODT) of the regular networks is measured as a function of the

number of unit cells in the network and the size of the unit cells. In chapter 6, the study of

structure formation is extended to randomly crosslinked 3D polymer networks. The particle-

based simulation program SOMA is applied to carry out the simulation studies. First, the

percolation threshold that separates the sol and gel state of the network is measured. Then,

the stabilization effect of the crosslinks on the existing structure at their time of formation

will be studied in the simulation and compared to analytical predictions. At the end, the ODT

of the random networks is investigated as a function of the crosslink density and the strength

of the repulsion between unlike species in the preparation ensemble.
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Chapter 2

Theoretical concepts

The major subject of this thesis is melt of the simplest diblock copolymers comprised of A- and

B-type monomers and their network equivalents. Homopolymers and multiblock copolymers

will also be discussed in this thesis mainly for comparisons with diblock copolymers and

for studies of universal properties. I will combine analytical calculations with simulation

studies to investigate the structure and structure formation of copolymer systems during

self-assembly. This chapter is organized as follows: First, a brief summary of existing relevant

theories and elementary methods for the dynamics of polymer chains will be provided. After

that, well-known theories for self-assembly and phase separation are presented. At the

end, the simulation program SOMA, applied in the simulation part of this thesis, will be

introduced. More detailed background information and theoretical aspects regarding each

specific copolymer system can be found in the corresponding parts of this thesis.

2.1 The bead-spring model

The bead-spring model is one of the most popular models developed to described polymer

systems. In this model, a polymer chain is simplified to a string with N beads connected

via N − 1 harmonic springs. The length of such a spring, which is also called a bond, is

the statistical segment length b. The orientations of the spring vectors are assumed to be

independent from each other. In the following, polymer chains that are fully described by the

bead-spring model without other types of interaction will be referred to as ideal chains. An

illustration of an ideal chain with 8 beads and 7 bonds is shown in Figure 2.1.
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FIGURE 2.1: Illustration of a simplified polymer chain with N = 8 monomers
and N − 1 = 7 bonds in the bead-spring model.

The elastic energy stored in the bonds of such a simplified chain can be expressed with

the chain conformation represented by the set of position vectors {~r} of the beads in space

U =
N

∑
i=2

3kBT
2b2

(
~ri −~ri−1

)2, (2.1)

with i = 1, ..., N the indices of the beads. The probability distribution of the bond vectors

~Ri =~ri −~ri−1 results directly from the harmonic potential Equation 2.1

P(|~Ri|) =
(

3
2πb2

)3/2

exp

(
−

3~R2
i

2b2

)
. (2.2)

The joined probability distribution of the positions of all beads in the chain can be written as

P({~r}) =
(

3
2πb2

)3N/2

exp

(
− 3

2b2

N

∑
i=1

(~ri −~ri−1)
2

)
. (2.3)

The most important length scale of ideal chains is the end-to-end distance

Re =

√
〈(~r1 −~rN)

2〉,

where~r1 and~rN stand for the positions of the beads at the two ends of the polymer chain.

The end-to-end distance of an unconstrained ideal chain obeys random walk and depends on
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N according to

~Re = 0 and Re
2 =

〈
(~r1 −~rN)

2 〉 = (N − 1)b2. (2.4)

The extent of an ideal chain is described by another frequently used quantity called the radius

of gyration defined as

R2
G ≡

1
N

N

∑
i=1

(
~ri − 〈~r〉

)2
, (2.5)

with 〈~r〉 = 1
N ∑i=1,...,N~ri the center of mass. For an ideal linear chain, the radius of gyration

is

R2
G =

(N − 1)b2

6
=

Re
2

6
. (2.6)

Because of the self-similarity of long, flexible polymer chains, the degrees of freedom of such

a complex system can often be reduced by using one bead to represent not only one individual

monomer but a group of monomers. Therefore, Re and RG are often used as a reference to

express the length scale in polymer studies. In the following, all lengths will be measured in

the unit of Re if not specified otherwise.

2.2 Rouse model

The Rouse model was introduced in [15] to describe the dynamics of ideal chains in the melt

state. During the last decades, Rouse model and Rouse dynamics have been applied and

reviewed repeatedly in the literature. This section is based on the fourth chapter “Dynamics

of Flexible Polymers in Dilute Solution” from [16].

In the Rouse model, the beads along the molecular backbones are described by the bead-

spring model and are subject to thermal fluctuations. The Rouse model does not consider

other types of interaction such as excluded volume interaction, hydrodynamic interactions and

entanglement effects, which are covered by more complicated models. In Rouse dynamics,

the motion of the beads is described by the Langevin equation. In the Langevin equation,

the beads experience a viscous force generated by the dense surrounding polymers. This

restoring force is proportional to the velocity via a coefficient of friction ζ and acts in the
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opposite direction of the velocity. Thermal noises resulting from collision with molecules in

the surrounding give rise to a fluctuation term η(t). The Langevin equation reads [16]

ζ
d~r
dt

= −∂U
∂~r

+ η(t), (2.7)

where U is the bonded elastic energy of the segments described by the bead-spring model. In

a linear chain, the two end segments (n = 1 and N) have only one neighbor. Their equations

of motion read

ζ
d~r(n = 1)

dt
= −3kBT

b2

[
~r(n = 1)−~r(n = 2)

]
+ η(n = 1, t) (2.8)

and

ζ
d~r(N)

dt
= −3kBT

b2

[
~r(n = N)−~r(n = N − 1)

]
+ η(n = N − 1, t). (2.9)

For a segment n in the middle of a linear chain with two neighbors, the equation reads

ζ
d~r(n)

dt
= −3kBT

b2

[
2~r (n)−~r (n− 1)−~r (n + 1)

]
+ η(n, t). (2.10)

In the continuous limit, Equation 2.10 takes the form

ζ
d~r
dt

= −3kBT
b2

(
∂2~r
∂n2

)
+ η(n, t). (2.11)

According to [16], the Langevin equation can be solved by decoupling a polymer chain

into independent Rouse modes. The Rouse modes with wavenumber p = 0, 1, 2, ... are

defined as [16]

~Xp =
1
N

∫ N

i=0
~ri cos

(
ipπ/N

)
di. (2.12)

And its inverse transform is

~rn = ~X0 + 2
∞

∑
p=1

~Xp cos
( pπn

N
)
. (2.13)

The Langevin equation of independent Rouse modes takes the form [16]

ζp
∂~Xp

∂t
= −kp~Xp + ηp, (2.14)
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with kp = 6π2kBT
Nb2 p2, ζ0 = Nζ and ζp = 2Nζ. For p = 0, the cosine function collapses to

1. This means that the lowest mode describes the motion of the center of mass of the chain,

which is denoted by~rc. The higher modes p = 1, ..., N − 1 correspond to fractions of the

chain at certain length scales. By introducing the Rouse modes description, the motion of a

polymer chain is decoupled into a series of independent functions that describe the dynamics

at different length scales.

Within the Rouse model, the self-diffusion constant DR can be obtained with the center

of mass of individual chains [16]

DR = lim
t→∞

1
6t

〈(
~rc(t)−~rc(0)

)2
〉
=

kBT
Nζ

. (2.15)

The Rouse time, which is the relaxation time required to equilibrate the polymer chains can

be directly expressed in terms of the self-diffusion constant via

τR =
Re

2

3π2DR
=

ζN2b2

3π2kBT
. (2.16)

The relaxation time of higher Rouse modes can be computed directly from τR according to

τp = τR/p2. (2.17)

The Rouse time characterizes the important time scale on which the individual polymer chains

have displaced their own extent and can thus be considered completely independent from the

original conformations.

2.3 Phase separation

Many unique properties of multicomponent polymer systems stem from the repulsion between

different segment species, which leads to a separation of the system into multiple regions with

different compositions. The Flory-Huggins theory [17, 18] deals with the thermodynamics of

binary polymer systems during mixing. In the following paragraph, I provide a brief summary

of this well-known theory based on Ref. [19].
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The Flory-Huggins theory is a lattice theory based on the assumption that each interaction

unit occupies one or more lattice nodes and the volume fraction of them stays constant during

mixing. Consider a binary homopolymer blend comprised of nA A-homopolymers made of

NA monomers and nB B-homopolymers made of NB monomers. In the homogeneous state,

an A-type polymer can occupy any lattice node in the system, whereas in the demixed state,

the number of possible positions is reduced by a factor of φA, which is the volume fraction of

A-type polymers. Thus, the entropy change of one A polymer during mixing is given by

∆SA = −kB ln φA. (2.18)

Accounting for the entropy change of B polymers, the total entropy change of mixing per

lattice site is [19]

∆S = −kB

(
φA

NA
ln φA +

φB

NB
ln φB

)
. (2.19)

The other contribution to the free energy stems from the interaction of the monomers

with their surroundings. In the homogeneous state, the probability of any polymer to have a

neighbor of type α is given by the corresponding volume fraction φα. In the demixed state,

polymers only have neighbors of the same type of themselves. The energy difference between

the homogeneous and the demixed state can be expressed as

∆U = χkBTφAφB (2.20)

with χ the Flory-Huggins parameter. In a dense system, the incompressibility assumption

implies φB = 1− φA. The excess free energy of mixing is (see also [19])

∆F = ∆U − T∆S

= kBT
(

φA

NA
ln φA +

(1− φA)

NB
ln (1− φA) + χφA (1− φA)

)
. (2.21)

The entropic part (first two terms in the above expression) favors mixing while the repulsive

force (the last term) between unlike species increases during mixing for positive χ. The

magnitude of the repulsion is controlled by the Flory-Huggins parameter χ. Although χ

is called a parameter, it actually depends on quantities such as temperature, molar mass

distribution and concentration [19]. This is because the expression introduced above is the
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free energy of a coarse-grained description. There exists an empirical law to describe the

dependence of χ on the temperature T

χ = α/T + β, (2.22)

with α and β material specific constants that can be determined in experiments. The excess free

energy as a function of φA given in Equation 2.21 is plotted assuming several different values

of χ. If χ is small, the free energy is a concave curve with only one minimum. In this case, the

free energy increases with inhomogeneity and there will be no phase separation. If χ is large,

the free energy has two local minima, phase separation at the coexisting concentrations will

result in a lower free energy than the homogeneous state. In this case, the system undergoes a

spontaneous phase transition into A/B-rich domains, the so-called macrophase separation.

FIGURE 2.2: The free energy of a binary polymer mixture is illustrated for
three χ values. If the free energy has only one minimum, the equilibrium state
will be a homogeneous one. The free energy curve has two minima if χ is large
enough. In this case, the equilibrium state is spatially segregated into domains

with corresponding coexisting concentrations.

In diblock copolymers, the connectivity between the blocks prevents a macrophase sep-

aration as in the mixture of homopolymers. Instead, the strong repulsion between unlike

sequences leads to microphase separation into smaller A/B-rich domains on the level of

molecular dimensions. More complex models are required in order to describe the microphase

separation of diblock copolymers, for they must take into account the long-range interaction

resulting from the connectivity.
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2.3.1 SCFT of diblock copolymer melts

In the limit of infinite invariant degree of polymerization, i.e.
√
N̄ = ρ0

N Re
3 → ∞, an

accurate free-energy functional can be calculated within the framework of SCFT. The content

of this section does not result from my own calculations but summarizes other literature

[20–22].

In SCFT, chains are continuous and the system is strictly incompressible everywhere.

Consider a system consisting of n molecules with monomer discretization N and the fraction

of A-block is denoted as fA. Normalized density operators are used to express the segment

concentration. They are defined as

φ̂A(~r) =
N
ρ0

n

∑
α=1

∫ fA

0
ds δ(~r−~rα(s)) (2.23)

φ̂B(~r) =
N
ρ0

n

∑
α=1

∫ 1

fA

ds δ(~r−~rα(s)), (2.24)

where ~rα(s) is the space curve of the α’th diblock and s the parameter used to label the

monomers. The bonded energy of the chain α can be expressed by its trajectory

Eb[~rα(s)]
kBT

=
3

2Nb2

∫ 1

0

∣∣∣d~rα(s)
ds

∣∣∣2ds. (2.25)

The non-bonded repulsive energy between unlike species is:

Enb[φ̂A, φ̂B]

kBT
= χρ0

∫
d~rφ̂Aφ̂B, (2.26)

with χ the Flory-Huggins incompatibility parameter and ρ0 = nN
V the number density of

particles in the system. Assuming incompressibility for a dense diblock copolymer melt leads

to the constraint

φ̂A(~r) + φ̂B(~r) = 1. (2.27)
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The partition function of the diblock copolymer melt is given by [20]

ZSCFT ∝
1
n!

∫ n

∏
α=1
D[{~r}α] exp

{
− χρ0

∫
d~rφ̂Aφ̂B

}
(2.28)

×δ[1− φ̂A − φ̂B] exp

{
− 3

2Nb2

∫ 1

0
ds
[d~rα(s)

ds

]2
}

. (2.29)

with D[{~r}α] the path integral that runs over all segments on polymer α. The partition

function ZSCFT cannot be solved directly. It is necessary to apply the Hubbard–Stratonovich

transformation, which decouples the pairwise interaction via fluctuating auxiliary fields.

This exact reformulation enables the subsequent mean-field approximation. For diblock

copolymers, auxiliary fields WA, WB, φA, φB and Ξ are introduced by establishing the unity

conditions [20]

1 =
∫
DΞ exp

{ ∫
d~r

ρ0

N
Ξ(1− φ̂A − φ̂B)

}
, (2.30)

1 =
∫
DφAδ

[
φA − φ̂A

]
, (2.31)

1 =
∫
DφBδ

[
φB − φ̂B

]
, (2.32)

1 =
∫
DWA

∫
DφA exp

{ ∫
d~r

ρ0

N
WA(φA − φ̂A)

}
, (2.33)

1 =
∫
DWB

∫
DφB exp

{ ∫
d~r

ρ0

N
WB(φB − φ̂B)

}
. (2.34)

Inserting the identities into the partition function one obtains

ZSCFT ∝
∫
DΞ

∫
DφA

∫
DφB

∫
DWA

∫
DWB exp

{
−FSCFT

kBT

}
. (2.35)

The free-energy functional FSCFT[φA, φB, WA, WB, Ξ] acquires the expression [20]

FSCFT

kBT
= − lnQ+

1
V

∫
d~r
{

χNφA(~r)φB(~r)

−WBφB(~r)−WAφA(~r)− Ξ
[
1− φA(~r)− φB(~r)

]}
, (2.36)
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with V denoting the volume. Q is the partition function of a single Gaussian chain in external

fields WA and WB

Q[WA, WB] ∝
∫
D[{~r}i] exp

{
−
∫ fA

0
dsWA

(
~ri(s)

)
−
∫ 1

fA

dsWB
(
~ri(s)

)}
× exp

{
− 3

2Nb2

∫ 1

0
ds
[d~ri(s)

ds

]2
}

. (2.37)

In the mean-field approximation, the equilibrium free-energy functional is obtained by

replacing the auxiliary fields by the most probable ones. Minimizing the free energy with

respect to φA, φB, WA, WB, Ξ leads to self-consistent equations [20]

φA + φB − 1 = 0 (2.38)
V
Q

δQ
δWA

+ φA = 0 (2.39)

V
Q

δQ
δWB

+ φB = 0 (2.40)

Ξ−WA + χNφB = 0 (2.41)

Ξ−WB + χNφA = 0. (2.42)

Back-substituting the solutions of the above equations φ∗A, φ∗B, W∗A, W∗B, Ξ∗ into FSCFT pro-

vides the free energy of the equilibrium state in the absence of thermal fluctuations.

2.3.2 RPA of diblock copolymer melts

In case the local density deviates only little from its mean value, the free energy can be

expanded in terms of the order parameter by means of Random Phase Approximation (RPA).

Here, I provide a brief overview of the static RPA of diblock copolymers. More detailed

aspects on the structure factor and RPA can be found in chapter 3. In the weak segregation

regime, Leibler [23] introduced the RPA formalism of microphase separation in diblock

copolymers. Because of the incompressibility constraint, the local density fluctuation of

A-type segments φ(~r) = φA(~r)− fA is sufficient to parametrize the density field. φ(~r) is

used as an order parameter for the free energy near the phase transition. The free energy

of copolymers in the weak segregation regime can be expressed by a fourth-order Taylor
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expansion in the Fourier modes of φ [23]

F [φ]
kBT

=
1
2!

∫ d~q
(2π)3 γ2(~q)φ(~q)φ(−~q) (2.43)

+
1
3!

∫ d~q1d~q2

(2π)6 γ3(~q1,~q2)φ(~q1)φ(~q2)φ(−~q1 −~q2)

+
1
4!

∫ d~q1d~q2d~q3

(2π)9 γ4(~q1,~q2,~q3)φ(~q1)φ(~q2)φ(~q3)φ(−~q1 −~q2 −~q3)

+ ...

with

φ(~q) =
1
V

∫
[φA(~r)− fA] exp(i~r ·~q)d~r (2.44)

the Fourier transformed order parameter.

For symmetric diblock copolymers, the third-order vertex vanishes. The fourth-order

vertex γ4 is found to be only weakly dependent on~q and can be approximated by a wavevector-

independent constant [23, 24]. The second-order vertex function γ2 is given by the inverse

structure factor S~q via

γ2(~q) = 1/S~q − 2χ. (2.45)

The structure factor takes the form [23]

S~q = N
g(x, f )g(x, 1− f )− 1/4

[
g(x, 1)− g(x, f )− g(x, 1− f )

]2

g(x, 1)
(2.46)

where g(x, f ) is the Debye-function defined as

g(x, f ) =
2
x2

[
f x + exp(− f x)− 1

]
with x =

~q2Re
2

6
. (2.47)

The second-order term contribution to the free energy is

F2[φ]

kBT
∝
∫

d~q φ(~q)φ(−~q)(1/S~q − 2χ). (2.48)

For 1/S~q − 2χ > 0, the second-order contribution to the free energy is positive. In this

case, any density fluctuation around the homogeneous state increases the free energy and
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thus will be suppressed. For large χ such that 1/S~q − 2χ becomes smaller than zero, the

second-order contribution to the free energy becomes negative. This suggests that large

density fluctuations are energetically favored and indicates the formation of domains with

very different compositions. In this case, the fourth-order term in the Taylor-expansion of the

free energy must be considered in order to describe the spatially modulated equilibrium state.

2.3.3 Microphase separation of diblock copolymer melts

At high χN, Equation 2.48 suggests ordered morphology of diblock copolymers. Depending

on the volume fraction of the block components, diblock copolymers form different equilib-

rium morphologies, such as body-centered cubic, hexagonal or lamellar microphase structure

in the ordered state. In Figure 2.3, a phase diagram with the equilibrium morphologies

of diblock copolymer melts in microphase separated phases is shown as a function of the

volume fraction of A-type block fA. The ODT of diblock copolymers is controlled by the

Flory-Huggins parameter χN.

FIGURE 2.3: The phase diagram of diblock copolymers as a function of the
volume fraction of A-type block fA is shown. The multitude of morphologies
in the corresponding ordered states is illustrated. The figures are republished
with permission of [25]; permission conveyed through Copyright Clearance
Center, Inc. And with permission from [20] Copyright 2021 by the American

Physical Society.

In this thesis, the focus is the lamella-forming symmetric diblock copolymers, i.e. fA =

1/2. As χN is increased, the system undergoes a transition from a disordered state, where the

composition field is homogeneous, to an ordered state with long-range order characterized by
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a dominant scattering vector q∗. RPA predicts a structure factor singularity at q∗Re ≈ 3.79

which corresponds to the length scale of 1.32Re. The ODT of symmetric diblock copolymers

is predicted to be a second-order one and occurs at χcN ≈ 10.495 [23].

To account for the correction to the mean-field approximation caused by fluctuation effects,

one could apply a universal class of models first considered by Brazovskii [26]. These systems

exhibit an instability against fluctuations and has an isotropic fluctuation spectrum with a

maximum near a shell of non-zero wavevectors |~q| = q∗ (instead of one single wavevector).

For this type of systems, Brazovskii suggests a fluctuation-induced first-order transition

instead of a continuous second-order one. Fredrickson and Helfand [27] studied fluctuation

corrections to Leibler’s theory on critical behavior of diblock copolymers. They explained

the fluctuation-induced first-order phase transition of symmetric diblock copolymers and

predicted the location of the ODT to be increased to

χcN = 10.495 + 41.022N̄−1/3

with N̄ the invariant degree of polymerization. In case of symmetric diblock copolymers

with infinite molecular weight, the result of Leibler is recovered.

2.4 Particle-based, coarse-grained simulations

Although many well developed analytical models such as RPA exist for polymer systems, the

accuracy of their predictions are often limited to a certain regime (weak segregation limit,

strong segregation limit, etc.). To overcome the limitation of analytical calculations as well

as to verify their correctness, computational simulations are applied to draw conclusions

about complex systems directly. For polymeric simulations, the entities involved in the

calculation range from atomic length scale (e.g. atoms) to micrometers (e.g. macromolecules).

With the current computational capacity, there exist no efficient way to capture the behavior

of such a system at all length scales for large system sizes and simulation time scales.

Various models [28, 29] were proposed to describe polymer systems at different levels of

granularity. Atomistic simulations handle atoms or molecules and their interactions explicitly.
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They provide insights on monomer-level phenomena on length scales much shorter than the

polymer chain contour length. This type of simulation is computationally very expensive

if one is interested in phenomena occurring on the length scales of polymer chains and on

large time scales. Coarse-grained models [30, 31] were introduced to speed up large-scale

simulations by replacing atomistic descriptions with coarse-grained ones. They make use

of the fractal nature of a macromolecule on mesoscopic length scales to reduce the degrees

of freedom. The effective interaction centers, or the so-called segments, are obtained by

integrating out the degrees of freedom inside the segment using underlying microscopic

models. In this type of simulations, each interaction center can represent multiple monomeric

repeating units. During this process, information below the coarse-grained scale is lost. Thus,

the coarse-graining level should be adjusted according to the scientific goal.

2.4.1 Single chain in mean field algorithm

The thermodynamics and the kinetics of diblock copolymers during structure formation is

governed by a large degree of universality with respect to the polymerization N as a result of

their self-similar structure. Coarse-grained models can be applied in the simulation of the

self-assembly of diblock copolymer systems. In this thesis, the main part of the simulations

are based on the Single Chain in Mean Field (SCMF) algorithm [32] developed for dense

polymer systems by Daoulas and Müller. In SCMF, a large number of monomeric repeating

units are grouped into an effective coarse-grained interaction center (segment) to reduce

the degrees of freedom. Henceforth, the terms monomer, bead and segment will be used

interchangeably.

The chain architecture and the interactions in SCMF are encoded by a few invariant

parameters. The basic length scale is the mean-squared end-to-end distance of a free, non-

interacting molecule Re. A configuration composed of n indistinguishable molecules, each

discretized into N segments, has an invariant degree of polymerization
√
N̄ = n

V Re
3, which

is the number of polymers in a cubic box with side length equal to the reference chain

length. N̄ reflects the number of neighbors one polymer chain interacts with and is also

an experimentally relevant quantity. The coarse-grained description of a polymer chain is

invariant under variation of the contour segment discretization N. The resolution of the
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coarse-grained model is constrained by the smallest length scale b = 1√
N−1

i.e. the statistical

segment length. The statistical segment lengths of all components are assumed to be identical

in this work.

The particles in SCMF simulation experience a bonded interaction, provided by the

connectivity between segments along the molecular backbone, and non-bonded monomer

interactions.

The bonded interaction is described by the discretized bead-spring model from section 2.1.

The effective Hamiltonian of the bonded interaction for all segments on a single polymer

chain is given by
Hb
kBT

=
n

∑
i=1

∑
(s,s′)

3(N − 1)
2Re

2

[
~ri(s)−~ri(s′)

]2
, (2.49)

where (s, s′) are pairs of segments that are connected via a bond. For a linear chain, (s, s′)

follows s′ = s + 1.

φ̂α(~r) is used to denote the density of a given component α after coarse-graining. In the

simulation, the discrete density field is computed for each type of particles in each simulation

cell c. This density is denoted by φ̂α(c) and computed as

φ̂α(c) =
∫

∆V

d3~r
∆V

φ̂α(~r), (2.50)

with ∆V the volume of a simulation cell.

In order to accelerate the simulation, the non-bonded interactions are simplified into

computational less demanding soft potentials that mimic the relevant interactions between the

segments. There are two types of non-bonded interactions in SCMF: the incompressibility

constraint that limits fluctuations of the total density and the repulsive force between segments

from different species.

The incompressibility constraint keeps the fluctuation of the total density around the

average density small. The strength of the total density fluctuation is restrained by the

parameter κ which is related to the inverse isothermal compressibility. The incompatibility

is the repulsion between monomers from different species. In SCMF, the strength of the
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thermodynamic incompatibility is controlled by the Flory-Huggins parameter χ. The non-

bonded part of the discretized effective Hamiltonian reads [32]

Hnb[φ̂A(c), φ̂B(c)]
kBT

=
ρ0∆V

N ∑
c∈cells

{
κN
2
[
φ̂A(c) + φ̂B(c)− 1

]2
−χN

4
[
φ̂A(c)− φ̂B(c)

]2} . (2.51)

The potentials can be described by auxiliary external fieldsWA(c) andWB(c) [32]. The

external fields are functional derivatives of the non-bonded part of the Hamiltonian with

respect to the corresponding density field

WA(c) =
N

kBTρ0∆V
δHnb

δφ̂A(c)

= κN
[
φ̂A(c) + φ̂B(c)− 1

]
− χN

2

[
φ̂A(c)− φ̂B(c)

]
(2.52)

WB(c) =
N

kBTρ0∆V
δHnb

δφ̂B(c)

= κN
[
φ̂A(c) + φ̂B(c)− 1

]
− χN

2

[
φ̂B(c)− φ̂A(c)

]
. (2.53)

During the simulation, the external fields are kept constant during each simulation step.

Because of this, they are also called quasi-instantaneous external fields. Instead of pairwise

interactions, the molecules in the simulation are in constant interaction with WA(c) and

WB(c). This allows all particles that are not directly connected with each other to be treated

simultaneously and thus enables a parallel implementation of the SCMF algorithm for large-

scale simulations on high-performance computers. The calculation of the quasi-instantaneous

fields requires a sufficient number of segments in each simulation cell. Hence, the method

is rather appropriate for dense polymer melts. SCMF includes fluctuation effects to achieve

an accurate description in vicinity of e.g. phase transitions [33, 34]. In the simulation, N̄

controls the strength of the fluctuations. In the limit
√
N̄ → ∞, fluctuations are strongly

suppressed and the mean-field results are recovered.

The MC sampling technique is applied to update the positions of the particles. To be

more precise, a smart MC procedure [35] that uses stiff bonded forces [36] is implemented to

mimic the Rouse-type dynamics. The procedure of the algorithm can be divided into four
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parts:

• The density φ̂α(c) of each simulation cell is calculated from the position vectors {~r} of

the segments.

• The external quasi-instantaneous fieldsWα(c) are computed from φ̂α(c).

• Changes to positions are suggested (smart Monte-Carlo move) to segments that are not

directly connected with each other via bonds. Segments that depend on each other are

treated successively.

• The energy difference between the new and old configuration is calculated. The

proposed attempts are accepted according to the Metropolis acceptance rate [37].

During the simulation, this cycle of calculation will be repeated and each round is called one

MC-step.

The SCMF method is a suitable tool to perform large-scale polymer simulations because

of its high parallel capability as a result of the application of quasi-instantaneous fields to

decouple the molecules. The features of SCMF have been well investigated and verified since

it was proposed. The simulated evolution of polymer chains successfully recovers the diffusive

behavior of Rouse-type dynamics [35]. The thermodynamics including fluctuations is also

correctly captured by the algorithm [38]. SOMA [38] is a software for polymer simulations

based on the SCMF algorithm implemented in C with the option to be executed in parallel on

multi-core central processing units and graphics processing units. The simulation study of

polymer systems throughout this thesis will be carried out with SOMA if not stated otherwise.
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Part I

Collective short-time dynamics in

multicomponent polymer melts





25

Chapter 3

Collective short-time dynamics:

Analytical aspects

Some content of this chapter 3 has been published in Macromolecules with the title “Collective

Short-Time Dynamics in Multicomponent Polymer Melts” [39]. Some parts of this chapter

are results of close collaboration with Marcus Müller and Yongzhi Ren.

Diblock copolymers microphase separate into diverse stable and metastable morphologies

when they experience a sudden change of thermodynamic control parameters (quench). The

condition for the phase transition as well as the equilibrium states are described by static

SCFT and static RPA as introduced in chapter 2. Despite the progress made in this field,

the fabrication of morphologies for experimental and engineering purposes still faces the

difficulty that the polymer systems often become stuck in a metastable state without reaching

the target thermodynamical equilibrium state. In order to invent and fabricate desired complex

morphologies, one needs to develop a strategy that allows guidance of the structure formation.

Studies on process-directed self-assembly [40–42] suggest that the early stage structure

evolution provides a template for the development of the morphology in the later stage. Hence,

to tailor the relaxation process after quenching, it is important to understand the short-time

dynamics that occurs spontaneously after the initial equilibrium state becomes unstable.

In this part of the thesis, the dynamics of multicomponent polymer systems from an

unstable initial state to the next free-energy local minimum is investigated with a focus on the

structure formation on very short length and time scales. The length scale shall remain small
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compared to the typical mean-squared end-to-end distance Re. The time scale will be kept

short compared to the single-chain relaxation time τR.

Two popular techniques, D-SCFT [43–55] and D-RPA [56–60] are applied to explore the

collective short-time dynamics of polymer melts. In this chapter, the basics of both methods

will be introduced. Equations of dynamics within the corresponding models, which can be

found in the literatures mentioned above, are used as the starting point of the calculations.

Then, time evolutions of specific systems of our interest are derived. In the next chapter,

the predictions made by the analytical models are compared with simulation results carried

out by SOMA. Since the dynamics at this time and length scale is very unique, common

analytical models might break down at this scale because the sub-diffusive dynamics become

the dominant factor.

3.1 D-SCFT and Onsager Coefficients

D-SCFT was introduced to describe the structure evolution in an incompressible binary poly-

mer melt. Incorporating the SCFT free-energy expression F , it searches for the dynamics

of the normalized density fields φA(~r) and φB(~r) = 1− φA(~r). During the spatial decom-

position of multicomponent polymer systems, the exchange chemical potential µ acts as the

driving force for the density evolution.

In the absence of fluctuations, the thermodynamical force is given by the gradient of the

exchange chemical potential [61]

J(~r, t) = −
∫

V
Λ(~r−~r′)∇µ(~r′, t)

kBT
. (3.1)

Inserting the above equation into the continuity equation

∂φA(~r, t)
∂t

= −∇J(~r, t) (3.2)
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with φA(~r, t) the segment density of particles of type A, a model-B type [56, 62, 63] time

evolution is obtained

∂φA(~r, t)
∂t

= ∇ ·
∫

d~r′Λ(~r−~r′)∇′µ(~r
′, t)

kBT
. (3.3)

The integral kernel Λ, that connects the gradient of the chemical potential with the dynamics

of the collective densities, is called the Onsager Coefficient. According to SCFT, the exchange

chemical potential is given by [64]

µ(~r) =
N
ρ0

δF [φA, φB = 1− φA]

δφA(~r)
. (3.4)

Performing Fourier transformation on Equation 3.3, the wavevector-dependent form of Equa-

tion 3.3 reads
∂φ~q,A(t)

∂t
= −~q2Λ~q

µ~q[φ~q,A]

kBT
. (3.5)

The structure evolution predicted by D-SCFT may break down on short time and length

scales because the displacement of segments, which corresponds to higher internal Rouse

modes, is rather sub-diffusive and hence much faster than the diffusive one of the molecule’s

center of mass [55]. Moreover, the Onsager Coefficient is assumed to be time independent

in D-SCFT but there is no physical evidence behind this assumption. In the latter part of

this study, a modified D-SCFT (also called generalized model-B) that uses a time-dependent

Onsager Coefficient is explored as an attempt to overcome some shortcomings of the original

D-SCFT, such as the inability to describe short-time dynamics.

3.2 Static RPA

In this section, I apply static RPA to calculate the equilibrium state of an incompressible

multicomponent polymer system depending on the Flory-Huggins parameter χ and external

fields if applicable. I will leave the dynamical aspects of structure evolution to section 3.3 and

concentrate only on the static results in this section. The partition function of polymers in
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canonical ensemble [20, 23] assuming ideal gas within the linear response regime is given by

Z [V~q,A, V~q,B] = ∏
i

1

ni!Λ
3ni Ni
T

∫ ni

∏
ip=1
D[{~r}i,ip ]P [{~r}i,ip ] exp

[
−ρ0V ∑

α
∑
~q

φ~q,αV−~q,α

]

= ∏
i

{
Qi[V~q,A, V~q,B]

}ni

ni!Λ
3ni Ni
T

(3.6)

with V~q,A and V~q,B the constant potentials acting on A and B segments. ΛT stands for

the thermal de-Broglie wavelength. The path integral D[{~r}i,ip ] runs over all segments

on polymer ip of type i. P [{~r}i,ip ] is the Boltzmann factor of the corresponding chain

conformation. The single-chain partition function of a polymer of type i takes the form [21,

65]

Qi[V~q,A, V~q,B] =
∫
D[{~r}i]P [{~r}i] exp

[
−ρ0V ∑

~q

(
φ~q,A,iV−~q,A + φ~q,B,iV−~q,B

)]

≈ Q(0)
i

[
1 +

(ρ0V)2

2 ∑
~q,~q′

∑
α,β

V−~q,αV~q′,β
〈

φ~q,α,iφ−~q′,β,i

〉
0
+ · · ·

]

≈ Q(0)
i exp

[
Ni

2 ∑
~q

∑
α,β

S~q,αβ,iV−~q,αV~q,β

]
(3.7)

where Q(0)
i denotes the single-chain partition function of a polymer of type i in the absence

of external fields. Ni stands for the polymerization of the polymer chain of type i. In the last

step, the structure factor of polymers of type i is defined as

S~q,αβ,i ≡ 〈φ~q,α,iφ−~q,β,i〉0. (3.8)

In the equation above, 〈· · · 〉0 is the average over all single-chain conformations in the absence

of external fields. Alternatively, in particle-based simulations, S~q,αβ,i can be computed directly

from particles positions via

S~q,αβ,i =
1
Ni

〈 Ni

∑
a∈α,b∈β

ei~q(~ra−~rb)
〉

ip
(3.9)

where the average is performed over an ideal gas of polymers of the type i.
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Inserting the single-chain partition function Equation 3.7 into the canonical ensemble

partition function Equation 3.6 leads to

ZRPA[V~q,A, V~q,B] = ∏
i

{
Q(0)

i

}ni

ni!Λ
3ni Ni
T

exp

[
∑

i

niNi

2 ∑
~q

∑
α,β

S~q,αβ,iV−~q,αV~q,β

]
. (3.10)

The average density of species α can be derived as the functional derivative of the partition

function with respect to the corresponding field [65]

〈φ~q,α〉RPA = − 1
ρ0V

∂ lnZ [V~q,A, V~q,B]

∂V−~q,α
(3.11)

= −∑
i

∑
β

niNi

ρ0V
S~q,αβ,iV~q,β (3.12)

= −∑
β

S~q,αβV~q,β (3.13)

with

S~q,αβ = ∑
i

niNi

ρ0V
S~q,αβ,i (3.14)

the concentration-weighted, static single-chain structure factor.

For a binary system α = A, B, the external fields can be replaced by effective potentials

defined as V~q,A =
W~q+U~q

2 and V~q,B =
−W~q+U~q

2 for simplicity. U~q acts as a pressure field that

enforces the incompressibility constraint. I make use of the incompressibility constraint to

eliminate U~q:

0 = −〈φ~q,A〉RPA − 〈φ~q,B〉RPA

= ∑
i

niNi

2ρ0V

{
S~q,AA,i

[
W~q + U~q

]
+ S~q,AB,i

[
−W~q + U~q

]
+

S~q,BA,i

[
W~q + U~q

]
+ S~q,BB,i

[
−W~q + U~q

]}
= W~q ∑

i

niNi

2ρ0V

[
S~q,AA,i − S~q,BB,i

]
+

U~q ∑
i

niNi

2ρ0V

[
S~q,AA,i + 2S~q,BA,i + S~q,BB,i

]
. (3.15)
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One solution that guarantees the equality above is

U~q = −
∑i

ni Ni
ρ0V

[
S~q,AA,i − S~q,BB,i

]
∑i

ni Ni
ρ0V

[
S~q,AA,i + 2S~q,BA,i + S~q,BB,i

] W~q

= −
S~q,AA − S~q,BB

S~q,AA + 2S~q,BA + S~q,BB
W~q. (3.16)

From this follows

V~q,A =
S~q,AB + S~q,BB

S~q,AA + 2S~q,BA + S~q,BB
W~q

V~q,B = −
S~q,AB + S~q,AA

S~q,AA + 2S~q,BA + S~q,BB
W~q. (3.17)

Implementing Equation 3.17 into Equation 3.13 leads to the static RPA prediction for the

equilibrium density field in response to effective potentials

〈φ~q,A〉RPA = −S~q,AA
S~q,AB + S~q,BB

S~q,AA + 2S~q,BA + S~q,BB
W~q

+S~q,AB
S~q,AB + S~q,AA

S~q,AA + 2S~q,BA + S~q,BB
W~q

= −
S~q,AAS~q,BB −

(
S~q,AB

)2

S~q,AA + 2S~q,BA + S~q,BB︸ ︷︷ ︸
=S~q

W~q ≡ −S~qW~q. (3.18)

In case of the presence of a “real” external field H~q that contributes additionally to the

monomer interaction controlled by χN, the effective potential W~q takes the form

W~q = H~q − χ
[
〈φ~q,A〉RPA − 〈φ~q,B〉RPA

]
= H~q − 2χ〈φ~q,A〉RPA. (3.19)

And the resulting collective density field in equilibrium state is

〈φ~q,A〉RPA = −
H~q

1
S~q
− 2χ

= −Scoll
~q H~q (3.20)

with
1

Scoll
~q

≡ 1
S~q
− 2χ, (3.21)
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with Scoll
~q defined as the collective static structure factor. One should note that the expressions

S~q,αβ, H~q, W~q, etc. are time independent. In the next section on D-RPA, these quantities will

become dynamical and acquire explicit time dependency denoted as e.g. S~q,αβ(t). The static

structure factors are equivalent to the dynamical ones measured at reference time t = 0. The

quantities without signified explicit time dependency should be assumed static. Occasionally,

I will also address the static quantities explicitly with the argument (0), like in the case

S~q,αβ(0), to underline their difference to the dynamical ones.

3.3 Dynamic RPA

In this section, the dynamical RPA [56–60] is applied in order to derive the time evolution

towards the equilibrium state. In this case, time-dependent effective external potentials

Vα(~r, t) are used to mimic the relevant interactions.

The general starting point of D-RPA is a time-dependent structure factor, also called

the dynamical structure factor S~q(t), and a response function χ~q(t) [56] that connects the

effective external potentials with the density field. The difference between the dynamical

structure factor and the static one is the time delay between the measurements of the positions

of the two beads. In the static structure factor, the positions of the two beads are measured

simultaneously, whereas the dynamical structure factor is defined as a function of this time

delay t [16]

S~q,αβ(t) =
1
N

N

∑
a∈α,b∈β

e
i~q
[
~ra(t)−~rb(0)

]
. (3.22)

The time-dependent linear response functions in Fourier space χ~q,αβ(t) is given by the

dynamical structure factor of the reference system according to

χ~q,αβ(t) = −
∂S~q,αβ(t)

∂t
θ(t) with θ(t) =

 1, for t > 0

0, for t < 0
. (3.23)

(3.24)
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I calculate the Laplace transform (denoted by a tilde) defined as the one-sided temporal

Fourier transform of the response function

χ̃αβ(ω) =
∫ ∞

0
dt χαβ(t)e−iωt = S~q,αβ(0)− iωS̃~q,αβ(ω) (3.25)

with S~q,αβ(0) the static single-chain structure factor. The collective density field can be

obtained according to

φ~q,α(t) = −∑
β

∫ t

−∞
dτ χ~q,αβ(t− τ)V~q,β(τ)

or

φ̃~q,α(ω) = −∑
β

χ̃~q,αβ(ω)Ṽ~q,β(ω). (3.26)

In the following, I will demonstrate detailed calculations on the time evolution of the density

field (i) in response to external fields and (ii) after a quench from disordered state. For

the purpose of clarity, I drop the explicit (ω) dependency in expression S̃~q(ω), S̃~q,αβ(ω)

and χ̃~q,αβ(ω) hereafter. The ĩ symbol per se is an indication of the (ω) dependency of the

corresponding quantity.

3.3.1 Response to external fields

In this section, the response of density fields to a time periodic external field H~q(t) =

H(0)
~q cos(Ωt) is calculated. To start with, I write down the Laplace transform of the real

external field, which repels A segments and favors B segments,

H̃~q(ω) = πH(0)
~q [δ(ω−Ω) + δ(ω + Ω)] . (3.27)

The effective potential can be written as

V~q,A(t) =
−χ

[
φ~q,A(t)− φ~q,B(t)

]
+ H(0)

~q cos(Ωt) + U~q(t)

2
(3.28)

V~q,B(t) =
+χ

[
φ~q,A(t)− φ~q,B(t)

]
− H(0)

~q cos(Ωt) + U~q(t)

2
, (3.29)
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where the field U~q(t) enforces the incompressibility constraint. The Laplace transformed

effective potentials take the form

Ṽ~q,A(ω) =
−χ

[
φ̃~q,A(ω)− φ̃~q,B(ω)

]
+ H̃~q(ω) + Ũ~q(ω)

2
(3.30)

Ṽ~q,B(ω) =
+χ

[
φ̃~q,A(ω)− φ̃~q,B(ω)

]
− H̃~q(ω) + Ũ~q(ω)

2
. (3.31)

Inserting this into Equation 3.26, the density fields can be expressed as:

−2φ̃~q,A(ω) =
(

χ̃~q,AA − χ̃~q,AB

) (
−χ

[
φ̃~q,A(ω)− φ̃~q,B(ω)

]
+ H̃~q(ω)

)
+
(

χ̃~q,AA + χ̃~q,AB

)
Ũ~q(ω) (3.32)

−2φ̃~q,B(ω) =
(

χ̃~q,BA − χ̃~q,BB

) (
−χ

[
φ̃~q,A(ω)− φ̃~q,B(ω)

]
+ H̃~q(ω)

)
+
(

χ̃~q,BA + χ̃~q,BB

)
Ũ~q(ω). (3.33)

Note that χ̃~q,AB = χ̃~q,BA and the incompressibility constraint φ̃~q,A(ω) + φ̃~q,B(ω) = 0 can

applied to eliminate Ũ~q(ω)

Ũ~q(ω) = −
χ̃~q,AA − χ̃~q,BB

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB
×(

−χ
[
φ̃~q,A(ω)− φ̃~q,B(ω)

]
+ H̃~q(ω)

)
= 2χ

χ̃~q,AAφ̃~q,A(ω) + χ̃~q,BBφ̃~q,B(ω)

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB
−

χ̃~q,AA − χ̃~q,BB

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB
H̃~q(ω). (3.34)

Replacing Ũ~q(ω) in the expression of density fields leads to

φ̃~q,A(ω) = −
χ̃~q,AAχ̃~q,BB −

(
χ̃~q,AB

)2

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB︸ ︷︷ ︸
=S̃~q

W̃~q(ω) (3.35)

with W̃~q(ω) = −2χφ̃~q,A(ω) + H̃~q(ω). (3.36)
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Equation 3.35 is the time-dependent generalization of the static RPA. I rewrite this equation

similar to Equation 3.21

φ̃~q,A(ω) = −
H̃~q(ω)
1
S̃~q
− 2χ

= −S̃coll
~q H̃~q with

1
S̃coll
~q

=
1
S̃~q
− 2χ. (3.37)

3.3.2 Quench from disordered state

I continue with the dynamics in a quenched polymer mixture. At time t < 0, the external

field V~q,α(t) is set to a constant V(−)
~q,α to match the starting morphology φ

(−)
~q,α . The density

field is related to the effective external potential via (see static RPA)

V(−)
~q,A = −

S~q,AB + S~q,BB

S~q,AAS~q,BB −
(

S~q,AB

)2 φ
(−)
~q,A , (3.38)

V(−)
~q,B = +

S~q,AA + S~q,AB

S~q,AAS~q,BB −
(

S~q,AB

)2 φ
(−)
~q,A . (3.39)

For t > 0, monomers from unlike species start to repel each other. That gives rise to the

effective potential of the form

V~q,α(t) = −χφ~q,α(t) + U~q(t) (3.40)

where U~q(t) enforces the incompressibility constraint. Recalling Equation 3.26, the Laplace

transformed density field in the linear response regime can be obtained via

φ̃~q,α(ω) = −∑
β

∫ ∞

0
dt

∫ t

−∞
dτ χ~q,αβ(t− τ)V~q,β(τ)e

−iωt (3.41)

= −∑
β

S̃~q,αβ(ω)V(−)
~q,β −∑

β

χ̃~q,αβ(ω)Ṽ~q,β(ω). (3.42)
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Implementing the expression for external fields into the above equation, the density field of A

species is obtained

φ̃~q,A(ω) =
S̃~q,AA(ω)

[
S~q,AB + S~q,BB

]
− S̃~q,AB(ω)

[
S~q,AA + S~q,AB

]
S~q,AAS~q,BB −

(
S~q,AB

)2 φ
(−)
~q,A

+χ
[
χ̃~q,AAφ̃~q,A + χ̃~q,ABφ̃~q,B

]
−
[
χ̃~q,AA + χ̃~q,AB

]
Ũ~q. (3.43)

Ũ~q can be eliminated using the incompressibility constraint φ̃~q,A(ω) + φ̃~q,B(ω) = 0:

Ũ~q = χ
χ̃~q,AA − χ̃~q,BB

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB
φ̃~q,A (3.44)

+


S̃~q,AA

[
S~q,AB + S~q,BB

]
[
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

] [
S~q,AAS~q,BB −

(
S~q,AB

)2
]

−
S̃~q,AB

[
S~q,AA − S~q,BB

]
[
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

] [
S~q,AAS~q,BB −

(
S~q,AB

)2
]

−
S̃~q,BB

[
S~q,AA + S~q,AB

]
[
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

] [
S~q,AAS~q,BB −

(
S~q,AB

)2
]
 φ

(−)
~q,A .

Inserting Ũ~q into Equation 3.43 leads to the D-RPA prediction for the structure evolution after

a quench from the initial configuration φ
(−)
~q,A χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2 − 2χ

 φ̃~q,A(ω) =
φ
(−)
~q,A

S̃′~q(ω)
(3.45)
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with

1
S̃′~q(ω)

=

−iω
(

S̃~q,AAS̃~q,BB −
(

S̃~q,AB

)2
)(

S~q,AA + 2S~q,BA + S~q,BB

)
(

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2
)(

S~q,AAS~q,BB −
(

S~q,AB

)2
)

+
S̃~q,AA

[
S~q,AB + S~q,BB

]2
+ S̃~q,BB

[
S~q,AB + S~q,AA

]2(
χ̃~q,AAχ̃~q,BB −

(
χ̃~q,AB

)2
)(

S~q,AAS~q,BB −
(

S~q,AB

)2
)

−
2S̃~q,AB

[
S~q,AB + S~q,AA

] [
S~q,AB + S~q,BB

]
(

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2
)(

S~q,AAS~q,BB −
(

S~q,AB

)2
) .

3.4 Analytical form of S~q,αβ(t)

So far, I have derived a relation between the dynamical single-chain structure factor S~q,αβ(t)

and the time evolution of the density field without specifying the exact form of S~q,αβ(t).

Numerically, one can measure S~q,αβ(t) in the simulation with Equation 3.22. However, in

order to explore the underlying nature of the dynamics and to make predictions that can be

generalized to other polymer systems, an analytic expression for S~q,αβ(t) is essential.

In many simple cases, the dynamical structure factor S~q,αβ(t) of an ideal gas of polymers

is related to a normalized structure factor g~q(t) defined as

g~q(t) ≡
1

N2 ∑
i,j

〈
exp

[
i~q(~ri(t)−~rj(0)

]〉
. (3.46)

The expression of g~q(t) is very similar to that of S~q,αβ(t) but independent of monomer types.

Instead of computing an analytic expression for the time dependence of S~q,αβ(t) for each

specific type of polymer, I will first explore the temporal behavior of g~q(t). Then, g~q(t) will

be used as an intermediate quantity to compute S~q,αβ(t) for specific chain architectures. The

advantages of this procedure are (i) g~q(t) has been studied for many decades and (ii) the

transition from g~q(t) to S~q,αβ(t) is straightforward for the systems of my interest.
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The summands in g~q(t) can be calculated as [16]

〈
exp

[
i~q(~ri(t)−~rj(0)

]〉
=

〈
exp

[
∑

α=x,y,z
iqα(riα − rjα)

]〉
(3.47)

= ∏
α=x,y,z

exp
(
−1

2
q2

α

〈(
riα(t)− rjα(0)

)2
〉)

= exp
[
−~q

2

6

〈(
~ri(t)−~rj(0)

)2
〉]

. (3.48)

Using the Rouse modes expression in Equation 2.13 leads to [16]

〈(
~ri(t)−~rj(0)

)2
〉
=

〈([
X0 (t)− X0 (0)

]
(3.49)

+ 2
∞

∑
p=1

[
cos

(
pπi
N

)
Xp(t)− cos

(
pπ j
N

)
Xp(0)

])2〉
.

Since the correlation between different modes vanishes, the above equality can be rewrite into

〈(
~ri(t)−~rj(0)

)2
〉
=

〈([
X0 (t)− X0 (0)

])〉2

(3.50)

+

〈(
2

∞

∑
p=1

[
cos

(
pπi
N

)
Xp(t)− cos

(
pπ j
N

)
Xp(0)

])2〉

where the last term can be simplified to [16]

∞

∑
p=1

[
cos

(
pπi
N

)
Xp(t)− cos

(
pπ j
N

)
Xp(0)

]2

=
π2

2N
∣∣i− j

∣∣. (3.51)

Making use of the above equation, one obtains [16]

〈(
~ri(t)−~rj(0)

)2
〉

= 6Dt + |i− j| b2 +
4Nb2

π2

∞

∑
p=1

1
p2 cos

(
pπi
N

)
(3.52)

× cos
(

pπ j
N

)(
1− exp

(
−p2t/τR

) )
.
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Thus, g~q(t) can be calculated numerically by solving the following integral

g~q(t) =
∫ 1

0
ds
∫ 1

0
ds′ exp

{
− (~qRe)2|s− s′|

6
− (~qRe)2

3π2
t

τR

−2(~qRe)2

3π2 ∑
p=1

1− e−p2t/τR

p2 cos (πps) cos
(
πps′

)}
. (3.53)

The relation between S~q,αβ(t) and g~q(t) can be worked out analytically for simple chain

architectures [63]. For homopolymer blends, the dynamical single-chain structure factor is

linked to g~q(t) according to

S~q,αβ(t) = φ̄αNδαβg~q(t) (3.54)

χ̃~q,αβ(ω) = φ̄αNδαβ

[
g~q(0)− iωg̃~q(ω)

]
. (3.55)

For diblock copolymers with A-fraction given by fA, the structure factor is given by

S~q,AA(t) = Ng~q, f (t) (3.56)

S~q,BB(t) = Ng~q,1− f (t) (3.57)

S~q,AB(t) =
N
2

[
g~q(t)− g~q, f (t)− g~q,1− f (t)

]
. (3.58)

In case of symmetric diblock copolymers i.e. fA = 1/2, the Laplace transformed response

function is found to be

χ̃~q,AA = χ̃~q,BB = N
[

g~q,1/2(0)− iωg̃~q,1/2(ω)
]

(3.59)

2χ̃~q,AB = N
[

g~q(0)− 2g~q,1/2(0)− iωg̃~q(ω) + 2iωg̃~q,1/2(ω)
]

. (3.60)

g~q(0) is the well known Debye-function [66]:

g~q(0) =
2
x2

(
e−x − 1 + x

)
with x =

(~qRe)2

6
. (3.61)
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For (~qRe)2 � 1, the exponential term e−x in Equation 3.61 can be Taylor expanded around

zero. In this regime, the Debye-function can be approximated by

g~q(0) =
2
x2 (1− x + x2/2− x3/6...− 1 + x) (3.62)

≈ 2
x2 (

x2

2
− x3/6) = (1− x/3) (3.63)

= 1− (~qRe)
2/18. (3.64)

For (~qRe)2 � 1, the linear term x is the dominant term and the Debye-function can be

approximated by

g~q(0) ≈
2
x
=

12
(~qRe)2 . (3.65)

3.4.1 Temporal behavior of g~q(t)

With an accurate expression for g~q(t) and S~q(t), the time evolution of collective quantities,

such as the density field, can be “easily” calculated within the linear response regime. Unfortu-

nately, an accurate analytic form of the dynamical single-chain structure factor is not available

even for the simplest linear chains. Approximations must be made in order to perform calcu-

lations with the dynamical structure factor. Typically, the structure evolution after a sudden

change of control parameters can be separated into a sub-diffusive regime, an intermediate

regime and a diffusive regime. Here, I introduce several approximations proposed to describe

the time dependence of g~q(t) on different time scales. The approximations discussed in this

section are visualized in Figure 3.1.

3.4.1.1 Ultimate short-time regime

The ultimate short-time behavior of the dynamic, single-chain structure factor deals with the

short time limit where structure on small length scales i.e. (~qRe)2 � 1 is important. In this

limit, the segments in polymer chains move only very little from their original position. The

dynamics on this scale are dominated by free particle motion and the chain connectivity has
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almost no impact. The time dependence of g~q(t) can be approximated by [16, 67]

g~q(t) = g~q(0)

[
1− t

τ~q
+O

(
t3/2

)]
(3.66)

= g~q(0) e−t/τ~q +O
(

t3/2
)

with
1
τ~q

=
(~qRe)2

3π2τRg~q
=

(~qRe)4

36π2τR
.

g~q(t) adopts the scaling form

g~q(t) = g~q(0) ϕ

(
(~qRe)4t
36π2τR

)
, (3.67)

with ϕ the scaling function with argument τ = (~qRe)4t
36π2τR

. The Laplace transformed form of this

scaling behavior reads

g̃~q(ω)

g~q(0)
=

Ω
ω

ϕ̃(Ω), (3.68)

with ϕ̃(Ω) =
∫ ∞

0
dx e−iΩτ ϕ(τ) and Ω =

36π2ωτR

(~qRe)4 . (3.69)

The behavior of the scaling function ϕ(τ) in the limit t . 36π2τR
(~qRe)4 is [67]

ϕ(τ) = 1− τ +
4
√

2
3
√

π
τ3/2 + · · · . (3.70)

Or simply

ϕ(τ) ≈ exp(−τ). (3.71)

In this limit, the important length scales are the very short ones and the Onsager coefficient

can be treated as spatial-independent. This gives rise to the~q-independent “local" Onsager

coefficient, Λlocal
~q = φ̄Aφ̄BD. The Laplace representation of the exponential function in

Equation 3.71 yields

ϕ̃(Ω) ≈ 1/(1 + iΩ). (3.72)
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3.4.1.2 Intermediate regime

I consider the intermediate regime 36π2τR
(~qRe)4 � t� τR between the ultimate short-time scale

and the classical long-time scale. In this regime, the dynamics is dominated by the sub-

diffusive motion. The single-chain dynamics in this region can be approximated by [68,

69]

ϕ(τ) ≈ π3/4
√

2
τ1/4 exp

(
−
√

4τ

π

)
. (3.73)

A popular alternative expression for this regime is given by

ϕ(τ) ≈ 4.2 exp

(
−
√

4τ

π

)
. (3.74)

For large Ω, the Laplace transformation of Equation 3.73 is

ϕ̃(Ω) =
π3/4
√

2

∞

∑
n=0

(
− 2√

π

)n Γ(2n+5
4 )

n!

(
1

iΩ

) 2n+5
4

. (3.75)

The above expression for ϕ̃ can be numerically approximated over the entire Ω-regime by

ϕ̃(Ω) ≈ 1

iΩ + 1− Ω0(ϕ̃(0)−1)
ϕ̃(0)(iΩ+Ω0)

. (3.76)

with Ω0 ≈ 3.619 and ϕ̃(0) =
∫ ∞

0 dx ϕ(x) ≈ 3.47. Another advantage of this simplified

expression is that it recovers the ultimate short-time scale limit for Ω → 0. The Taylor-

expansion this expression in z = 1
iΩ is

ϕ̃(Ω) = z− z2 +
(1−Ω0)ϕ̃(0) + Ω0

ϕ̃(0)
z3

+
(Ω2

0 + 2Ω0 − 1)ϕ̃(0)− (Ω0 + 2)Ω0

ϕ̃(0)
z4 + · · · . (3.77)

In time representation, this expression reads

ϕ(t) = 1− t +
(1−Ω0)ϕ̃(0) + Ω0

2ϕ̃(0)
t2

+
(Ω2

0 + 2Ω0 − 1)ϕ̃(0)− (Ω0 + 2)Ω0

6ϕ̃(0)
t3 + · · · . (3.78)
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The first two terms in Equation 3.78 match the exact ultimate short-time expansion. This

expression gives rise to a time-dependent Onsager coefficient Λ~q(t) and provides a better

approximation than D-SCFT.

3.4.1.3 Long-time regime

The structure evolution on long-time scale t � τR, ~qRe � 1 (the classical regime) is

governed by diffusive dynamics which can be described by an exponential decay

g~q(t) = g~q(0)e
−~q2Dt. (3.79)

The Laplace transformed structure evolution in the classical regime is

g̃~q(ω) =
g~q(0)

iω +~q2D
=

g~qτR

iωτR + (~qRe)2

3π2

. (3.80)

3.5 Dynamics of symmetric diblock copolymer

In the previous section, I computed an analytic expression for g~q(t) of a linear chain without

further specification. In this section, I will perform this study on a fraction of a chain in order

to describe the dynamics of block copolymers.

3.5.1 Dynamics of a chain fraction

Many mechanical and dynamical properties of polymer systems are governed by universal

scaling behavior which has its origin in the fractal nature of polymer chains. Therefore,

one would naturally expect a fragment of a chain to be described by the same dynamical

behavior as an entire chain requiring only proper scaling. However, the dynamical single-

chain structure factor of a chain fraction obeys, despite the self-similarity, a non-trivial decay

law on certain length scales.
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FIGURE 3.1: Time evolution of the single-chain structure factor ϕ ≡ g~q(t)
g~q

measured in simulation (black dots) is shown for qRe = 8π. One Rouse time
τR corresponds to τ ≈ 1123 for this wavevector. The analytic approximations
discussed in this section are shown for comparison. Equation 3.74 (red dashed)
and Equation 3.73 (red solid) are popular approximation for the intermediate
time scale. For the ultimate short-time scale, appropriate approximations
are Equation 3.71 (blue dashed) and Equation 3.70 (green solid). The inset
enlarges the small-τ regime. The figure is reprinted with permission from [39].

Copyright 2021 American Chemical Society.

The scale-free behavior in the limit (~qRe)2 � 1 and t � τR relates the dynamical

structure factor of a block of a chain with fraction f to that of the entire chain according to

g~q, f (t) = f 2 g√ f~q(t/ f 2) = f 2 g√ f~q(0) ϕ

(
(~qRe)4t
36π2τR

)
. (3.81)
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However, for a wide range of length scales, the scale-free universality is not the dominating

effect. The dynamics of a chain fraction f for small~q is derived in the following

g~q, f (t) =
∫ f

0
ds
∫ f

0
ds′ exp

{
− (~qRe)2|s− s′|

6
−~q2Dt−

2(~qRe)2

3π2 ∑
p=1

1− e−p2t/τR

p2 cos (πps) cos
(
πps′

)}

≈ e−~q
2Dt

∫ f

0
ds
∫ f

0
ds′

{
1− (~qRe)2|s− s′|

6
−

2(~qRe)2

3π2 ∑
p=1

1− e−p2t/τR

p2 cos (πps) cos
(
πps′

)}
+O

(
(~qRe)

4
)

≈ e−~q
2Dt
{

f 2 − (~qRe)2

18
f 3−

2(~qRe)2

3π2 ∑
p=1

1− e−p2t/τR

p2

∫ f

0
ds
∫ f

0
ds′ cos (πps) cos

(
πps′

)}
+O

(
(~qRe)

4
)

= e−~q
2Dt f 2

{
1− f (~qRe)2

18
−

2(~qRe)2

3π2 f 2 ∑
p=1

1− e−p2t/τR

p2

[
sin (πp f )

pπ

]2
}
+O

(
(~qRe)

2
)

= g~q, f (0)e
−~q2Dte−(~qRe)2h f (t) +O

(
(~qRe)

4
)

. (3.82)

In the last step, a new function h f (t) defined as

h f (t) ≡
2

3π2 ∑
p=1

1− e−p2t/τR

p2

[
sin (πp f )

πp f

]2

(3.83)

is introduced to characterize the deviation of the dynamics of a block of a Rouse chain from

the diffusive motion. The difference between the dynamics of a block of a chain with f = 1/2

and that of an entire chain is demonstrated in Figure 3.2.

For f = 1, h f (t) vanishes and the diffusive decay of an entire chain is recovered. For

symmetric diblock polymers, i.e. f = 0.5, there exists no closed analytical expression for

h1/2(t). However, such an expression is needed in order to compute the Laplace transfor-

mation of the dynamical structure factor g̃ f (ω). To overcome this difficulty, I explore the
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FIGURE 3.2: The decay of g~q, f (t) of an entire Rouse chain is compared with
that of a fraction of a chain g~q, f (t) for three wavevectors, |~q|Re = 0.2, 0.4, and
0.6. For |~q|Re � 1, the time dependence of the dynamic, single-chain structure
can be described by a master curve. The figure is reprinted with permission

from [39]. Copyright 2021 American Chemical Society.

asymptotic behavior of h1/2(t) and find for t� τR

(~qRe)
2h1/2(t) ≈ (~qRe)

2t/(3π2τR) = ~q2Dt (3.84)

and for large t

h1/2(∞) =
2

3π4 1
4

· π4

96
=

1
36

. (3.85)

I approximate h1/2(t) by a much simpler function heff
1/2(t) = t/(3π2τR + 36t). This

approximation is illustrated in Figure 3.3. With this, the Laplace transformed dynamical

structure factor in the limit of (~qRe)2 � 1 can be computed

g̃~q, f (ω) ≈
f 2
{

1− f (~qRe)2

18 − (~qRe)2h f (∞)
}

~q2D + iω

+
2(~qRe)2

3π4 ∑
p=1

(
sin(πp f )

p2

)2

~q2D + p2

τR
+ iω

. (3.86)

One should keep in mind that the calculation in this section and the impact of the auxiliary
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FIGURE 3.3: The correction factor h1/2(t) for the dynamical structure factor
for a block of a symmetric copolymer is shown. The figure is reprinted with

permission from [39]. Copyright 2021 American Chemical Society.

function h f (t) is not restricted to any regime. In fact, the calculation suggests a correction

term to g~q, f (t) of a block of a chain at all length scales. In the classical diffusive regime

i.e. t � τR, this correction factor becomes time independent and shifts g~q, f (t) only by a

constant factor, while for t� τR, the correction factor speeds up the decay. This extensive

understanding of the dynamics of chain fractions is important for the application of D-SCFT

and D-RPA on diblock copolymers.

3.6 Generalized model-B

In the previous sections, I worked out some essential formulas for the dynamical single-chain

structure factor. The single-chain structure factor can be applied within the framework of

D-RPA to describe the time evolution of collective quantities such as the density field. Another

approach towards dynamical behavior of polymer systems was provided by D-SCFT which

predicts a pure diffusive motion (see section 3.1). As mentioned before, modifications of

D-SCFT have been developed to also include non-diffusive motion at, for instance, short

time scales. In this section, I test a generalization of the model-B dynamics by introducing a
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time-dependent Onsager coefficient Λ~q(t). The generalized model-B dynamics, originally

proposed by Semenov in [58], read

∂φ~q,A(t)
∂t

= −~q2
∫ t

−∞
dτ Λ~q(t− τ)

µ~q[φ~q,A(τ)]

kBT
(3.87)

(3.88)

or in the Laplace transformed form

iωφ̃~q,A(ω)− φ
(−)
~q,A = −~q2Λ̃~q(ω)

µ̃~q(ω)

kBT
(3.89)

with φ
(−)
~q,A ≡ φ~q,A(t = 0) the initial configuration at reference time t = 0. The chemical

potential can be derived from the functional derivative of the free energy according to

µ~q[φ~q,A] =
N

ρ0V
∂F [φ~q,A]

∂φ−~q,A
. (3.90)

In order to derive an expression for the frequency-dependent Onsager coefficient Λ̃~q(ω),

Equation 3.89 is matched with the D-RPA results. Within the framework of D-RPA, I have

solved the time evolution of the density field in two scenarios, namely in response to a time

periodic external field and during spinodal decomposition after a quench. In the following,

Λ̃~q(ω) is derived by comparing generalized model-B with D-RPA within the linear regime

for both cases.

3.6.1 Response of density fields to an external field at χ = 0

In this case, the chemical potential is given by

µ̃~q

kBT
=

φ̃~q,A

Scoll
~q

+ H̃~q. (3.91)
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Inserting the chemical potential expression into Equation 3.89, the generalized model-B

equation of motion is obtained

iωφ̃~q,A = −~q2Λ̃~q

(
φ̃~q,A

Scoll
~q

+ H̃~q

)

φ̃~q,A = −
Scoll
~q H̃~q

1 +
iωScoll

~q

~q2Λ̃~q

. (3.92)

Recall the D-RPA prediction for density field evolution in response to an external potential in

Equation 3.37

φ̃~q,A = −
H̃~q

1
S̃~q
− 2χ

= −S̃coll
~q H̃~q with

1
S̃coll
~q

=
1
S̃~q
− 2χ. (3.93)

Comparing Equation 3.93 with Equation 3.92 leads to

~q2Λ̃~qτR = − iωτR

1
Scoll
~q

+
H̃~q

φ̃~q,A

= − iωτR
1

Scoll
~q
− 1

S̃coll
~q

= − iωτR
1
S~q
− 1

S̃~q

(3.94)

= − iωτR
S~q,AA+2S~q,BA+S~q,BB

S~q,AAS~q,BB−(S~q,AB)
2 −

χ̃~q,AA+2χ̃~q,AB+χ̃~q,BB

χ̃~q,AAχ̃~q,BB−(χ̃~q,AB)
2

. (3.95)

Thus, an expression for Λ̃~q(ω) is obtained

iω
~q2Λ̃~q

=
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2 −
S~q,AA + 2S~q,BA + S~q,BB

S~q,AAS~q,BB −
(

S~q,AB

)2 . (3.96)
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3.6.2 Spinodal decomposition

I perform the same type of calculation in the case of spinodal decomposition. An accurate

expression of the free-energy functional and the chemical potential after a quench is [23]

F (RPA)[φA]

kBT
=

ρ0V
2 ∑

~q
φ−~q,A

[
1
S~q
− 2χ

]
φ~q,A (3.97)

and
µ
(RPA)
~q

kBT
=

[
N
S~q
− 2χN

]
φ~q,A

with S~q ≡
S~q,AAS~q,BB −

(
S~q,AB

)2

S~q,AA + 2S~q,BA + S~q,BB
.

Inserting this chemical potential into Equation 3.89 gives

iωφ̃~q,A(ω)− φ
(−)
~q,A = −~q2Λ̃~q(ω)

µ̃~q(ω)

kBT

= −~q2Λ̃~q(ω)
(

N/S~q − 2χN
)

φ̃~q,A(ω). (3.98)

Rearranging the terms in the above equation leads to(
iω +~q2Λ~q(ω)

N
S~q

)
φ̃~q,A(ω)− φ

(−)
~q,A = 2χN~q2Λ̃~q(ω)φ̃~q,A(ω)(

1−
2χNΛ̃~q(ω)~q2

iω +~q2Λ̃~q(ω)N/S~q

)
φ̃~q,A(ω) =

1
iω +~q2Λ̃~q(ω)N/S~q

φ
(−)
~q,A . (3.99)

Recall Equation 3.45 χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2 − 2χ

 φ̃~q,A(ω) =
φ
(−)
~q,A

S̃′~q(ω)
. (3.100)

Comparing the Equation 3.45 with Equation 3.99, I identify the generalized time-dependent

Onsager coefficient also for this scenario

iω
~q2Λ̃~q(ω)

= N
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2 − N
S~q,AA + 2S~q,BA + S~q,BB

S~q,AAS~q,BB −
(

S~q,AB

)2 . (3.101)
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With the above-mentioned definition for Λ̃~q(ω) in Equation 3.96, model-B type dynamics

that match the result of D-RPA in the linear-response regime is received. Moreover, this

model is not restricted to the linear-response theory, but can be applied for any given chemical

potential of arbitrary order. In the following, I will take a closer look at the formalism of

generalized model-B dynamics for two simple examples: homopolymer blend and diblock

copolymer melt. I will also investigate the limiting behavior of generalized model-B and

examine its crossover to the original D-SCFT.

3.6.3 Symmetric binary homopolymer blends

I first calculate the time-dependent Onsager coefficient for symmetric binary homopolymer

blends. For homopolymers, the single-chain cross-correlations χ̃~q,AB(ω) and S~q,AB, between

monomers of different types vanish. The Onsager coefficient can be simplified to

Λ̃~q(ω) = φ̄Aφ̄BDg~q(0)
3π2

(~qR)2

[
g~q(0)τR

g̃~q(ω)
− iωτR

]
. (3.102)

The first four factors are the original Onsager coefficient in D-SCFT [46]

ΛD−SCFT
~q = φ̄Aφ̄BDg~q(0). (3.103)

I define for the following

∆̃~q(ω) ≡ 3π2

(~qR)2

[
g~q(0)τR

g̃~q(ω)
− iωτR

]
. (3.104)

3.6.3.1 Ultimate short-time regime

Recalling Equation 3.69 in the limit referred to as the ultimate short-time scale for small

length scales qRe � 1 and small time scales ωτR � 1 gives

∆̃~q(ω) =
(~qR)2

12 ϕ̃(Ω)
− i

3π2ωτR

(~qR)2 ≈
1

g~q(0)
1− iΩϕ̃(Ω)

ϕ̃(Ω)
. (3.105)
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Using the large-Ω approximation ϕ̃(Ω) ≈ 1
1+iΩ results in a frequency-independent ∆̃~q ≈

1
g~q(0)

and

Λ~q(t) = φ̄Aφ̄BD︸ ︷︷ ︸
Λlocal
~q

δ(t) for
t

τR
→ 0 and (~qRe)

2 � 1. (3.106)

This recovers the “local” Onsager coefficient [46] in the ultimate short-time limit.

3.6.3.2 Intermediate regime

Within the intermediate sub-diffusive regime, i.e. 36π2

(~qRe)2 � t
τR
� 1, the approximation of

Equation 3.76

ϕ̃(Ω) ≈ 1

iΩ + 1− Ω0(ϕ̃(0)−1)
ϕ̃(0)(iΩ+Ω0)

(3.107)

can be applied. In this case, the approximation leads to

∆̃~q(ω) ≈ 1
g~q(0)

[
1− Ω0(ϕ̃(0)− 1)

ϕ̃(0)[iΩ + Ω0]

]
(3.108)

=
1

g~q(0)

1− ϕ̃(0)− 1

ϕ̃(0) 36π2τR
(~qRe)4Ω0

1

iω + (~qRe)4Ω0
36π2τR

 . (3.109)

This gives a time-dependent Onsager coefficient

Λ~q(t) = φ̄Aφ̄BD

δ(t)− ϕ̃(0)− 1

ϕ̃(0) 36π2τR
(~qRe)4Ω0

exp
(
− (~qRe)4Ω0t

36π2τR

) . (3.110)

Applying the Markovian approximation leads to

Λ~q(t) ≈ φ̄Aφ̄BD
[

δ(t)− ϕ̃(0)− 1
ϕ̃(0)

δ(t)
]

(3.111)

=
φ̄Aφ̄BD

ϕ̃(0)
δ(t) ≈ 0.288 φ̄Aφ̄BDδ(t). (3.112)
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3.6.3.3 Classical regime

For large length scales (~qRe)2 � 1 and all time scales, the diffusive approximation in

Equation 3.80 can be used

g̃~q(ω) =
g~qτR

iωτR + (~qRe)2

3π2

g~q(0)τR

g̃~q(ω)
= iωτR +

(~qRe)2

3π2 . (3.113)

This gives

∆̃(ω) ≈ 1 and Λ̃~q(ω) = ΛD−SCFT
~q . (3.114)

In this regime, the time-dependent Onsager coefficient from the generalized model-B dynam-

ics recovers the constant Onsager coefficient [46] from the original D-SCFT

Λ~q(t) ≈ φ̄Aφ̄BDg~q(0)δ(t) = ΛD−SCFT
~q δ(t) for (~qRe)

2 � 1. (3.115)

3.6.4 Symmetric diblock copolymers

For symmetric diblock copolymer melts, the Onsager coefficient in Equation 3.101 can be

simplified to

Λ̃~q(ω) = D
(

g~q,1/2(0)−
1
4

g~q(0)
)
×

3π2

(~qR)2


(

g~q,1/2(0)− 1
4 g~q(0)

)
τR

g̃~q,1/2(ω)− 1
4 g̃~q(ω)

− iωτR

 . (3.116)
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3.6.4.1 Ultimate short-time regime

On short length and time scales, (~qRe)2 � 1 and t� τR, I use the approximation

g~q =
2
x2

(
e−x − 1 + x

)
≈ 2

x2 x =
2
x
=

12
(~qRe)2 . (3.117)

The Debye-function of a chain fraction f = 1/2 can be approximated by

g~q,1/2(0) =
1
4

g~q/
√

2(0) ≈
6

(~qRe)2

g~q,1/2(0) −
1
4

g~q(0) ≈
3

(~qRe)2 . (3.118)

In Laplace representation, the normalized dynamical structure factor takes the form

g̃~q,1/2(ω)− 1
4

g̃~q(ω) ≈
(

g~q,1/2(0)−
1
4

g̃~q(0)
)

36π2τR

(~qR)4 ϕ̃(Ω)

≈ 108π2τR

(~qR)6 ϕ̃(Ω). (3.119)

with Ω = 36π2τR
(~qR)4 ω. Inserting this expression into Equation 3.116, the Onsager coefficient for

generalized model-B dynamics of symmetric diblock copolymers is obtained

Λ̃~q(ω) ≈ D
(

g~q,1/2(0)−
1
4

g̃~q(0)
)
(~qRe)2

12

[
1

ϕ̃(Ω)
− iΩ

]
(3.120)

≈ D
4

[
1

ϕ̃(Ω)
− iΩ

]
. (3.121)

I use again the large-Ω approximation ϕ̃(Ω) ≈ 1
1+iΩ for the ultimate short-time scale. For

the limit t
τR
→ 0 and (~qRe)2 � 1, the dynamical Onsager Coefficient takes the form

Λ̃~q(ω) ≈ D
(

g~q,1/2(0)−
1
4

g̃~q(0)
)
(~qRe)2

12

Λ~q(t) ≈ D
(

g~q,1/2(0)−
1
4

g̃~q(0)
)
(~qRe)2

12
δ(t) ≈ D

4
δ(t). (3.122)

Here, the “local” Onsager Coefficient Λ~q(t) ≈ Λlocal
~q δ(t)is recovered.
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3.6.4.2 Intermediate regime

The numerical approximation of ϕ(Ω) in Equation 3.76 is used again for the sub-diffusive

region

ϕ̃(Ω) ≈ 1

iΩ + 1− Ω0(ϕ̃(0)−1)
ϕ̃(0)(iΩ+Ω0)

. (3.123)

I obtain for this limit

Λ~q(t) ≈ D
(

g~q,1/2(0)−
1
4

g̃~q(0)
)
×

(~qRe
2)

12

δ(t)− ϕ̃(0)− 1

ϕ̃(0) 36π2τR
(~qRe)4Ω0

exp
(
− (~qRe)4Ω0t

36π2τR

)
≈ D

4

δ(t)− ϕ̃(0)− 1

ϕ̃(0) 36π2τR
(~qRe)4Ω0

exp
(
− (~qRe)4Ω0t

36π2τR

) . (3.124)

For 36π2

(~qRe)2 � t
τR
� 1, the Markovian approximation leads to

Λ~q(t) =
D

4ϕ̃(0)
δ(t) ≈ 0.072 Dδ(t). (3.125)

This result is identical to the Onsager coefficients of homopolymers computed in the previous

section. This is because this limit is within the scale-free Gaussian coil on very short time

scales t� τR. In this case, the Onsager coefficient depends only on~q and is given by

Λ~q(t) = Λlocal
~q δ(t)/ϕ̃(0) =

ΛD−SCFT
~q

g~q(0)ϕ̃(0)
δ(t). (3.126)
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3.6.4.3 Classical regime

For (qRe)2 � 1, the Debye-function g~q(0) can be approximated by

g~q(0) =
2
x2

(
e−x − 1 + x

)
with x =

(~qRe)2

6

=
2
x2

(
1− x +

x2

2
− x3

6
+O

(
(~qRe)

4
)
− 1 + x

)
= 1− x

3
(3.127)

= 1− (~qRe)2

18
+O

(
(~qRe)

4
)

. (3.128)

And for a chain fraction of f = 1/2, the relation reads

g~q,1/2(0) =
1
4

g~q/
√

2(0) = 1− (~qRe)2

144
+O

(
(~qRe)

4
)

(3.129)

g~q,1/2(0)−
1
4

g~q(0) =
(~qRe)2

144
+O

(
(~qRe)

4
)

. (3.130)

I consider the correction factor h1/2(t) as discussed before and compute with Equation 3.86

for small qRe

g̃~q,1/2(ω)− 1
4

g̃~q(ω) ≈ 2(~qRe)2

3π4 ∑
p odd

1

p4(~q2D + p2

τR
+ iω)

. (3.131)

Inserting this into Equation 3.116, the frequency-dependent Onsager coefficient for symmetric

diblock copolymers is obtained

Λ̃~q(ω) ≈ π6D
4608

 1

∑p odd
1

p4(~q2DτR+p2+iωτR)

− iωτR

 . (3.132)

This Onsager coefficient does not diverge for (~qR)2 → 0 implying the relaxation is dominated

by internal modes. For the limit (~qRe)2 → 0 and ωτR → 0, it is Λ̃~q(ω) → 5D/24 or

Λ~q(t)→ 5Dδ(t)/24.
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Chapter 4

Collective short-time dynamics:

Simulation results

Some content of this chapter 4 has been published in Macromolecules with the title “Collective

Short-Time Dynamics in Multicomponent Polymer Melts” [39]. Some parts of this chapter

are results of close collaboration with Marcus Müller.

Three analytical models, D-SCFT, D-RPA and generalized model-B, were introduced in

the last chapter. Among the three approaches, D-SCFT suggests very different dynamics at

small time scales compared to D-RPA. Their predicted time evolution of the density field

differ in evolution speed as well as in~q dependence. Meanwhile, generalized model-B was

derived by matching the D-RPA result in the linear regime. In order to validate the three

models, I test their predicted time evolution of the density field against the results from

the particle-based simulation of a soft, coarse-grained model. In this chapter, the following

scenarios are discussed:

• Density fluctuation decay in symmetric homopolymer blends section 4.1

• Density fluctuation decay in dynamic asymmetric homopolymer blends section 4.2

• Spinodal decomposition in symmetric homopolymer blends: Single density mode

section 4.3

• Spinodal decomposition in symmetric homopolymer blends: Collective structure factor

section 4.4
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• Density fluctuation decay in symmetric diblock copolymer melts section 4.5

• Response to external field in symmetric diblock copolymer melts section 4.6

All simulation configurations in this study have an invariant degree of polymerization of
√
N̄ = 128. Periodic boundary condition is applied for all systems. The Rouse time τR is

used as a reference to translate MC-steps into physical time scales.

4.1 Decay of density fluctuations in symmetric binary ho-

mopolymer blends

I consider a binary homopolymer blend in a small cubic simulation box with geometry

1× 1× 1 Re
3. A large chain discretization of N = 256 is used to achieve a large relaxation

time (τR ∝ N2), which allows a finer resolution of the dynamics. The number of A-type

homopolymers is set equal to B-type homopolymers, i.e. the normalized density is φ̄A = 1
2 and

φ̄B = 1
2 . In a symmetric binary system, the dynamics of A and B particles are identical. The

spatial discretization is set to ∆L = 1/64Re. The incompressibility parameter is κN = 100

to suppress density fluctuations and the Flory-Huggins parameter is χN = 0. For t < 0, the

A segments in the system are exposed to an external field

H(~r)
2

= λ cos
(

2π

L
ix
)

with i = 1, 4 (4.1)

and the B segments are exposed to the opposite field −H(~r)
2 .

The initial spatially modulated morphology φ
(−)
~q,A and φ

(−)
~q,B is enforced by the given

external fields. According to static RPA (see section 3.2), the equilibrium density field at

χN = 0 can be expressed as

〈
φ~q,A

〉
RPA = −S(0)

~q H~q (4.2)〈
φA(x)

〉
RPA −

〈
φB(x)

〉
RPA = −λNg~q cos

(
2π

L
ix
)

. (4.3)
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At t = 0, the external field responsible for the initial density variation is switched off.

As a consequence of this, the amplitude of density fluctuations starts to decay towards a

homogeneous state. I define the density fluctuation amplitude as

a(t) ≡
〈
φA(x, t)

〉
−
〈
φB(x, t)

〉
cos

(2π
L nx

) . (4.4)

and monitor the temporal decay of a(t)/a(0) with a(0) = −λNg~q.

For symmetric homopolymer blends, the cross-correlation vanishes and the dynamical

structure factor of A-type homopolymers is equal to that of B-type homopolymers, i.e.

S~q,AB(t) = 0 and S~q,AA(t) = S~q,BB(t). (4.5)

For χ = 0, this symmetry simplifies the D-RPA equation in Equation 3.45 to

2χ̃~q,AAφ̃~q,A(ω) =
−iω2S̃2

~q,AAS~q,AA + 2S̃~q,AAS2
~q,AA

S2
~q,AA

φ
(−)
~q,A

=
(
− iω

S̃2
~q,AA

S~q,AAχ̃~q,AA
+

S̃~q,AA

χ̃~q,AA

)
φ
(−)
~q,A . (4.6)

One should remember that S̃ indicates the explicit (ω) dependence and S~q,αβ without further

specification denotes the static quantities i.e. S~q,αβ is equivalent to S~q,αβ(t = 0). From the

previous chapter, the following relations are known for homopolymers

S̃~q,AA

S~q,AA
=

g̃~q(ω)

g~q
, (4.7)

χ̃~q,AA =

(
−iω

g̃~q(ω)

g~q
+ 1

)
S~q,AA. (4.8)

Inserting this into Equation 4.6, I obtain within D-RPA

φ~q,A(t) =
g~q(t)

g~q
φ
(−)
~q,A

a(t)
a(0)

=
g~q(t)

g~q
.

(4.9)

(4.10)



60 Chapter 4. Collective short-time dynamics: Simulation results

For this system, D-SCFT predicts an exponential density fluctuation decay

a(t)
a(0)

= exp(−~q2Dt) = exp
(
− (~qRe)2

3π2
t

τR

)
. (4.11)

The D-SCFT and D-RPA predictions are tested against simulation results for qRe = 2π

and qRe = 8π in Figure 4.1 and Figure 4.2. In both cases, the density evolution differs

from an exponential decay. Thus, D-SCFT fails to predict the basic kinetics of fluctuation

relaxation. Furthermore, the pure sub-diffusive decay with a square-root approximation as

suggested in Equation 3.74 fails to describe the data as well. On the other hand, the D-RPA

prediction matches the simulation data very well without using adjustable parameters.

0 1 2 3 4
(qRe)

2t/3π2τR

10-3

10-2

10-1

100

a(
t)/

a(
0)

qRe=2π

gq
(0)(t)/gq

(0)

exp(-q2Dt)

e-(qRe)
2(t/9π3τR)1/2

sim

0.0 0.5 1.0x/Re

0.2

-0.2

φ A-φ
B

t=0
t=0.28τR
t=0.56τR
t=0.56τR
t=1.12τR

FIGURE 4.1: The density fluctuation relaxation of a symmetric homopolymer
blend at χN = 0 is shown for qRe = 2π. The amplitude of density modu-
lation a(t) as a function of time is calculated analytically from the numerical
expression of g~q(t) and compared with the measurement from SOMA (black
dots). The asymptotic behaviors in short (dashed-dotted blue line) and long
time limit (dashed blue line) are also shown. The inset shows the corresponding
density profile measured in the simulation for various t. The strength of the
external field is set to λN = 0.7. The figure is reprinted with permission from

[39]. Copyright 2021 American Chemical Society.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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a(
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a(
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(0)(t)/gq

(0)

exp(-q2Dt)

e-(qRe)
2(t/9π3τR)1/2

sim
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FIGURE 4.2: The same study as in Figure 4.1 for qRe = 8π with λN = 10.
The inset of this figure shows the decay of the amplitude for longer times.
The figure is reprinted with permission from [39]. Copyright 2021 American

Chemical Society.

4.2 Decay of density fluctuations in asymmetric homopoly-

mer blends

In addition to the study on the dynamics of symmetric homopolymers, I now consider the

density fluctuation decay in more sophisticated dynamically asymmetric homopolymer blends.

This means that the diffusion coefficient of A-type and B-type homopolymers, denoted by

DA and DB, are different. In an asymmetric binary mixture, the structure factors S~q,AA(t)

and S~q,BB(t) are no longer equal for t > 0. For χ = 0 and S~q,AB(t) = 0, Equation 3.45 can

be simplified to

χ̃~q,AA + χ̃~q,BB

χ̃~q,AAχ̃~q,BB
φ̃~q,A(ω) = (4.12)− iωS̃~q,AAS̃~q,BB

[
S~q,AA + S~q,BB

]
χ̃~q,AAχ̃~q,BBS~q,AAS~q,BB

+
S̃~q,AAS2

~q,BB + S̃~q,BBS2
~q,AA

χ̃~q,AAχ̃~q,BBS~q,AAS~q,BB

 φ
(−)
~q,A .
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Since the two polymer types have identical chain architecture and differ only in their chain

mobility, the equality of their static structure factor is still valid, i.e. S~q,AA = S~q,BB. I define

ϕ̃~q,α(ω) =
S̃~q,αα

S~q,αα
(4.13)

and obtain

φ̃~q,A(ω) =

1
2

[
ϕ̃~q,A (ω) + ϕ̃~q,B (ω)

]
− iωϕ̃~q,A (ω) ϕ̃~q,B (ω)

1− iω 1
2

[
ϕ̃~q,A (ω) + ϕ̃~q,B (ω)

] φ
(−)
~q,A . (4.14)

An accurate decay rate can be obtained by solving Equation 4.14. First, I approximate

the dynamical structure factor by an exponential decay i.e. ϕ~q,α(t) ≈ exp(−Dα~q2t) for

simplicity. Inserting

ϕ̃~q,α(ω) =
1

Dα~q2 + iω

into Equation 4.14, an exponential decay of the density field with an effective diffusion

coefficient D̄ is obtained

φ̃~q,A(ω) ≈ 1
D̄~q2 + iω

φ
(−)
~q,A

φ~q,A(t) ≈ exp(−D̄~q2t) φ
(−)
~q,A

with D̄ = 2
DADB

DA + DB
. (4.15)

As discussed before, this exponential Ansatz is only valid in the classical regime, namely

for qRe � 1. For this reason, I have to test whether the idea of an effective diffusion

coefficient D̄ can be generalized to other length scales in the simulation. The simulation setup

is, except for the diffusion coefficient, the same as in section 4.1 with N = 256, L = 1Re and

∆L = 1/64Re. The strengths of the non-bonded energy are set to κN = 100 and χN = 0.

For t < 0, the segments in the system are exposed to an external field that enforces the starting

morphology. The diffusion coefficients are set so that DA/DB ≈ 8.5.

As one can see in Equation 4.15, increasing the diffusion coefficient by a factor is

equivalent to reducing t by the same factor. Scaling down t leads to a rescaled time for

A polymers t′ = D̄
DA

t ≈ t/4.75. The rescaled dynamical single-chain structure factor is
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compared with the simulation results of an asymmetric homopolymer blend for qRe = 2π

in Figure 4.3. The dynamics derived from D-RPA with a rescaled t dependence match

the simulation data very well. This result suggests that the dynamics of an asymmetric

homopolymer blend can be captured by an effective diffusion constant. With this, the

underlying dynamics of asymmetric binary homopolymers can be computed analogously to

that of symmetric binary homopolymers within the framework of D-RPA or D-SCFT.

FIGURE 4.3: The density fluctuation relaxation of an asymmetric homopolymer
blend is shown for qRe = 2π. The simulation data (black points) are com-
pared with the analytical predictions calculated assuming an effective diffusion
constant D̄. The time evolution is measured in units of relaxation time τA
of A-type homopolymers. The figure is reprinted with permission from [39].

Copyright 2021 American Chemical Society.

4.3 Spinodal decomposition in binary homopolymer blends:

single density mode

In this section, I study the spinodal decomposition in a symmetric binary homopolymer blend.

I will only consider the structure evolution of two modes qRe = 2π and qRe = 8π. The

phase separation is triggered by a sudden change of the incompatibility χN from 0 to a
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finite value. The D-SCFT prediction for the temporal growth of density fluctuations after the

quench is

φ~q,A(t) = φ
(−)
~q,A erD−SCFT

~q
t

τR

with rD−SCFT
~q = − (~qRe)2

3π2

(
1− 2φ̄Aφ̄BχNg~q(0)

)
. (4.16)

D-SCFT predicts an exponential growth of density inhomogeneity for sufficiently large χ.

I continue to calculate the dynamics in the early stage of the spinodal decomposition with

D-RPA. For homopolymers, the structure factor is given by

S~q,αα(t) = φ̄αNg~q(t) , S̃~q,αα(ω) = φ̄αNg̃~q(ω) (4.17)

χ̃~q,αα = φ̄αN
[

g~q(0)− iωg̃~q(ω)
]

. (4.18)

This simplifies Equation 3.45 to

φ̃~q,A(ω) =
g̃~q(ω)

g~q(0)
(

1− 2φ̄Aφ̄BχFHN
[

g~q(0)− iωg̃~q(ω)
])φ

(−)
~q,A . (4.19)

For a binary homopolymer blend at χN = 0, the result in section 4.1 is recovered

φ~q,A(t) =
g~q(t)
g~q(0)

φ
(−)
~q,A . (4.20)

For χN > 0, Equation 4.19 can be solved using approximations for g~q(t).

I restrict the study to short length and time scales and apply the scaling behavior

g~q(t) = g~q(0) ϕ

(
(~qRe)4t
36π2τR

)
(4.21)

to rewrite Equation 4.19 and obtain the D-RPA prediction

φ̃~q,A(ω) =

36π2τR
(~qRe)4 ϕ̃(Ω)

1− 2φ̄Aφ̄BχFHNg~q(0) [1− iΩϕ̃(Ω)]
φ
(−)
~q,A

with Ω =
36π2ωτR

(~qRe)4 . (4.22)
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The time dependence of the density field is then obtained by a numerical, inverse Laplace

transformation of Equation 4.22.

In the ultimate short time limit, the approximation φ̃(Ω) ≈ 1/(1 + iΩ) is valid. In this

case, the density field obeys

φ̃q,A(ω) =
φ
(−)
~q,A

iω + (qRe)4

36π2τR

(
1− 2φ̄Aφ̄BχFHNg~q

) (4.23)

φ~q,A(t) = φ
(−)
~q,A exp

[
− (~qRe)4

36π2

(
1− 2φ̄Aφ̄BχFHNg~q

) t
τR

]
. (4.24)

In this case, the growth rate of the structure is by a factor

(~qRe)2

12
= 1/g~q

faster than the D-SCFT result.

In the intermediate short time regime, the approximation in Equation 3.76 can be applied

which leads to

φ̃~q,A(ω) =
1

iω + (~qRe)4

36π2τR

[
1− 2φ̄Aφ̄BχFHNg~q(0)

] [
1− Ω0(ϕ̃(0)−1)

ϕ̃(0)[iΩ+Ω0]

]φ
(−)
~q,A . (4.25)

In the limit Ω� Ω0, Equation 4.25 can be further approximated by

φ̃~q,A(ω) =
1

iω + (~qRe)4

36π2τR

[
1− 2φ̄Aφ̄BχFHNg~q(0)

] [
1

ϕ̃(0)

]φ
(−)
~q,A . (4.26)

This gives rise to an exponential growth of the density field within the framework of D-RPA

φ~q,A(t) = φ
(−)
~q,A exp

[
− (~qRe)4

36π2 ϕ̃(0)

(
1− 2φ̄Aφ̄BχFHNg~q(0)

) t
τR

]
. (4.27)

The density growth in D-RPA is faster than the D-SCFT result by a factor of

(~qRe)2

[12ϕ̃(0)]
=

1
[g~q(0) ϕ̃(0)]

.
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I test the analytical prediction of D-SCFT (Equation 4.16) and D-RPA (Equation 4.22)

against SOMA simulation results. The simulation setup with N = 256 and a cubic simulation

box with geometry 1× 1× 1Re
3 is used. The spatial discretization is ∆L = 1/64Re. Two

simulations focusing on the time evolution of the density field at qRe = 2π and qRe = 8π

are performed. For qRe = 2π, the system is quenched to χN = 32 and, for qRe = 8π,

χN is increased to 160 (κN is also increased in this case). The time evolution of density

amplitude at qRe = 2π and qRe = 8π predicted by different models are compared with

simulation results in Figure 4.4.

FIGURE 4.4: The density variation growth after increasing χN to 160 and
32 (inset) are shown for qRe = 8π and qRe = 2π (inset). The simulation
results for qRe = 8π (black dots) are compared with the exponential growth
predicted by D-SCFT (Equation 4.16), the prediction of the generalized model-
B (Equation 4.27), D-RPA (the numerical, inverse Laplace transformation of
Equation 4.22) and the D-SCFT result with the “local" Onsager coefficient.
The figure is reprinted with permission from [39]. Copyright 2021 American

Chemical Society.

I restrict the study to small density fluctuations because the linear response theory, which

is the assumption in D-RPA, is only valid in this regime. D-SCFT underestimates the growth

rate in both cases, and its deviation is much larger on small length scales (qRe = 8π) than

on intermediate length scales (qRe = 2π). On short time scales, D-SCFT using a “local”
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Onsager coefficient (as given in Equation 4.26) successfully captures the fast increase of the

density variation at qRe = 8π. In this case, the temporal decay for t < 0.01/(q2D) can

be well described by a sub-diffusive motion, which is captured by the intermediate short

time approximation. For qRe = 2π, the sub-diffusive approximation is only modified by

a factor of 1/
[
q(0)~q ϕ̃(0)

]
≈ 0.9 compared to the original D-SCFT resulting in a similar

growth rate in both models. Their predictions deviate considerably from the observation in

the simulation indicating that the qRe � 1 condition for a scale-free behavior is not fulfilled

on this length scale. D-RPA again provides a good match with simulation results without

any tunable parameters. However, the D-RPA results were only obtained with a numerical

inverse Laplace transformation and a closed analytical expression for the time dependence of

the dynamics could not be obtained. The generalized model-B dynamics using a modified

Onsager coefficient also provides a qualitative appropriate prediction.

4.4 Growth rate during spinodal decomposition in binary

homopolymer blends: Collective structure factor

In this section, I continue the study on spinodal decomposition in homopolymer blends and

study the growth rate over the whole wavevector spectrum. Unlike in the previous section, the

time resolution of the dynamics of each single mode qRe is less important and I will focus on

the general qRe dependence of the growth rate. The analytical predictions of different models

have already been derived in the previous section.

I perform simulations with SOMA on A-type and B-type homopolymer mixture with

N = 256 in a simulation box with geometry 3 × 3 × 3Re
3. The grid discretization is

∆L = 1/64 and the incompressibility parameter is set to κN = 100. At time t = 0, the

disordered system is quenched from χN = 0 to χN = 70. Since this study is restricted to the

linear response regime, the density variations must remain small. This is demonstrated by the

snapshot in Figure 4.5 showing the density variation of the latest snapshot at t = 0.0263τR,

which is far below the saturation value of the two coexisting phases φA ≈ 0 or 1.

Figure 4.6 shows the growth of the collective structure factor S~q(t), obtained as the Fourier
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FIGURE 4.5: Snapshot of one configuration at t = 0.0263τR after a quench to
χN = 70. The normalized density fluctuation remains around 0.2 for most of
the regions. The figure is reprinted with permission from [39]. Copyright 2021

American Chemical Society.

transformation of the density field, after a deep quench from χN = 0 to 70. In Figure 4.7, the

corresponding growth rate of S~q(t) is presented. In the simulation, the~q-dependent growth

rate is measured according to

2r~q =
ln
[
S~q(t)/S~q(0)

]
t/τR

. (4.28)

The density variation growth is fast at first and slows down over time. In Figure 4.7, a

maximum of growth rate around qRe ≈ 6π is measured at very early stage. The peak of

the growth rate shifts to lower qRe with time which is in agreement with prior experiments

[70–74] and simulation [46, 75, 76].

The collective structure factor before the quench at t = 0 in the disordered state can be

obtained with static RPA

S~q(t)
N
≡
√
N̄ V

Re
3

〈
|φ~q,A(t)|2

〉
=

1
N

S(0)
~q

− 2χN
χ=0; φ̄A=

1
2=

g~q(0)
4

. (4.29)

This is plotted as the green dashed line in Figure 4.6. The RPA calculation for the disordered

initial state matches the simulation data very well. Starting from the disordered state, the time

dependence of the dynamical structure factor according to D-SCFT (see Equation 4.16) is
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FIGURE 4.6: The collective structure factor S~q(t) after a quench from the
disordered phase to χN = 70 is shown for multiple timesteps. The data is
obtained by averaging over 4− 8 independent simulation runs. The figure
is reprinted with permission from [39]. Copyright 2021 American Chemical

Society.

given by

S~q(t) = S~q(0) e2rD−SCFT
~q

t
τR . (4.30)

In the theory, the growth rate can be calculated with Equation 4.16

rD−SCFT
~q = − (~qRe)2

3π2

(
1− 2φ̄Aφ̄BχNg~q(0)

)
.

For 1− 2φ̄Aφ̄BχNg~q(0) < 0, the growth rate is positive suggesting an exponential growth

of density variations. For 1− 2φ̄Aφ̄BχNg~q(0) > 0, the theory predicts a negative growth

rate i.e. the density variation decreases. For the given parameters, this transition occurs at

qRe ≈ 20.5. I do not expect to observe this effect in this simulation because of the presence

of thermal fluctuations. To avoid the influence of such an effect, I only analyze the result

for qRe < 20.5. D-SCFT predicts a constant growth rate independent of time (shown as the

blue dashed line in Figure 4.7). However, the simulation data in Figure 4.7 suggests a clearly

time-dependent growth rate. On top of that, the growth rate measured in the simulation is
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FIGURE 4.7: The measured growth rate of S~q(t) as a function of qRe is shown
for different times after the quench. The simulation data is compared with
predictions of D-SCFT, generalized model-B and D-SCFT with the “local" On-
sager coefficient. The figure is reprinted with permission from [39]. Copyright

2021 American Chemical Society.

significantly larger than the D-SCFT prediction for all qRe. The reason for a smaller growth

rate in D-SCFT is the assumption of diffusive dynamics in Rouse-like dynamics. As discussed

before, the sub-diffusive motion of segments on length scales much shorter than the extent

of the macromolecule is important for large qRe and leads to faster structure growth than

the D-SCFT prediction. In Figure 4.7, the D-SCFT prediction for very short time scales

t/τR ≈ 0 with the “local” Onsager Coefficient is plotted as well.

4.5 Decay of density fluctuations in symmetric diblock copoly-

mer melts

I proceed to study on structure evolution with symmetric diblock copolymer melts. First, I

explore the time dependence of the decay of enforced density fluctuations. In this simulation,

I set N = 256, N̄ = 51 200 and keep χN = 0. The system geometry is set to 6× 1× 1Re
3
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and periodic boundary conditions are applied. For t < 0, the system is exposed to an external

field that generates initial configurations with a density variation on the length scale of

qRe =
2π
L n with L = 6Re and n = 1, 2. The external field is switched off at t = 0 after the

system is equilibrated. The temporal decay of the amplitude a(t) at target qRe is recorded.

D-SCFT predicts an exponential decay:

a(t) = a(0) exp(−D~q2t). (4.31)

I also apply D-RPA to describe this decay process. For fA = 1/2, earlier results for the

dynamical structure factor of a block of a chain gives

S~q,AA(t) = S~q,BB(t) = Ng~q,1/2(t)

S~q,AB(t) =
N
2

[
g~q(t)− g~q, f (t)− g~q,1− f (t)

]
χ̃~q,AA = χ̃~q,BB = N

[
g~q,1/2(0)− iωg̃~q,1/2(ω)

]
2χ̃~q,AB = N

[
g~q(0)− 2g~q,1/2(0)− iωg̃~q(ω) + 2iωg̃~q,1/2(ω)

]
. (4.32)

Inserting the above equalities into the D-RPA formalism in Equation 3.45 leads to

φ̃~q,A(ω) =
S̃~q,AA(ω)− S̃~q,AB(ω)(

S~q,AA(0)− S~q,AB(0)
) (

1− χFH[χ̃~q,AA(ω)− χ̃~q,AB(ω)]
)φ

(−)
~q,A , (4.33)

which can be simplified to

φ~q,A(t) =
[

g~q,1/2(t)−
g~q(t)

4

]/[
g~q,1/2(0)−

g~q(0)
4

]
φ
(−)
~q,A . (4.34)

For large length scales qRe � 1, the temporal dependency of the dynamical structure factor

of a block of a chain can be approximated by

g~q, f (t) = f 2
[

1− f (~qRe)2

18
− (~qRe)

2h f (t) +O
(
(~qRe)

4
)]

e−~q
2Dt

≈ g~q, f (0)e
−~q2Dt−(~qRe)2h f (t). (4.35)
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Inserting Equation 4.35 into Equation 4.34, the D-RPA prediction for the density fluctuation

decay is obtained

φ~q,A(t) ≈
[

1− h1/2(t)
h1/2(∞)

]
e−~q

2Dtφ
(−)
~q,A +O

(
(~qRe)

2
)

, (4.36)

with the long time plateau value h1/2(∞) = 1
36 .

I continue to study the same problem with generalized model-B dynamics. In the limit

qRe → 0 and ωτR → 0, Equation 3.132 suggests for symmetric diblock copolymers an

Onsager coefficient of the form

Λq =
5D
24

δ(t). (4.37)

Implementing the above expression into the equation of motion of generalized model-B

leads to an exponential decay

a(t) = a(0) exp
(
− 10t

π2τR

)
. (4.38)

The simulation results are compared with analytical predictions provided by D-SCFT,

D-RPA and modified D-SCFT for qRe =
2π
3 and qRe =

2π
6 in Figure 4.8.

The original D-SCFT fails to provide a qualitative prediction for the time evolution of

the density fluctuation decay. D-RPA and generalized model-B, on the other hand, predict a

temporal decay that matches the simulation data very well.

4.6 Response to external fields in symmetric diblock copoly-

mer melts

I continue the study on symmetric diblock copolymers and investigate how the density field

responds to external fields. The geometry of the simulation system is set to 1.32× 1× 1Re
3.

The system length in x-direction Lx = 1.32Re corresponds to the maximum of the collective

structure factor qRe = 4.76 ≈ 2πRe/Lx at χN = 0. Periodic boundary conditions are
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FIGURE 4.8: The decay of density fluctuations at qRe = 2π/6 and 2π/3
are shown for a symmetric diblock copolymer melt. The simulation results
(circles, squares) are compared with the results of D-RPA, D-SCFT as well
as the generalized model-B for the limit qRe → 0 and ωτR → 0. The figure
is reprinted with permission from [39]. Copyright 2021 American Chemical

Society.

applied in all directions. For t < 0, the diblock copolymer melt is in a disordered state. For

t > 0, I switched on an external field H(x) for A-type monomers and −H(x) for B-type

monomers with
H(x)

2
=

 +λ for 0 ≤ x < Lx/2

−λ for Lx/2 ≤ x < Lx

. (4.39)

In this study, the strength of the external field is set to λN = 2. The Fourier representation of

the external field reads

H~q = ±
4λi
πn

(4.40)

for ~q = (±2πn/L)~ex and n = ±1,±3,±5, .... The time dependency of the composition

〈φA(x, t)〉 − 〈φB(x, t)〉 is recorded with the average computed over multiple simulation runs.
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Within D-RPA, the temporal evolution of the structure formation is described by Equa-

tion 3.45. For symmetric diblock copolymers ( fA = 1/2), it can be simplified to

φ̃~q,A(ω) = −
χ̃~q,AAχ̃~q,BB − χ̃2

~q,AB

χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB
H̃~q

= −
χ̃~q,AA − χ̃~q,AB

2
H̃~q(ω), (4.41)

with H̃~q(ω) = H~q/(iω). From Equation 4.32 follows the D-RPA prediction for the density

field response of symmetric diblock copolymers to external fields:

φ̃~q,A(ω) = −
[

g~q,1/2(0)
iω

−
g~q(0)
4iω

− g̃~q,1/2(ω) +
g̃~q(ω)

4

]
NH~q

φ~q,A(t) = −
[

g~q,1/2(0)

(
1−

g~q,1/2(t)
g~q,1/2(0)

)
−

g~q(0)
4

(
1−

g~q(t)
g~q(0)

)]
NH~q. (4.42)

I also calculate the D-SCFT prediction for this case. The time evolution according to

D-SCFT is

φ~q,A(t) = φ~q,A(∞)

1− e
−

~q2ΛD−SCFT
~q N

S~q
t


= φ~q,A(∞)

[
1− e−~q

2Dt
]

(4.43)

with φ~q,A(∞) the static RPA prediction of the equilibrium density field given by

φ~q,A(∞) = −S~qH~q = −
[

g~q,1/2(0)−
g~q(0)

4

]
NH~q. (4.44)

The density field profile obtained from the simulation for various times is shown in

Figure 4.9. For small t, a novel saddle-shaped profile with two minima and two maxima can

be observed. The D-SCFT result is shown as the blue curves in Figure 4.9. It fails to describe

the shape of the density profile and predicts a much slower dynamics in general. The D-RPA

result is shown in Figure 4.9 as red curves. It agrees with the simulation results very well and

successfully captures the characteristic saddle-shape of the density profile.
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FIGURE 4.9: The density profile growth of a symmetric diblock copolymer
melt in an external field is shown for χN = 0. Symbols represent the simulation
results with error bars. The measured data is compared with predictions from
D-RPA (Equation 4.42, red curves) and D-SCFT (Equation 4.43, blue curves).
The figure is reprinted with permission from [39]. Copyright 2021 American

Chemical Society.

4.7 Summary

I investigated the early stage dynamics in multicomponent polymer systems from an unstable

initial state to the next (meta)stable state. Two analytical approaches, D-RPA and D-SCFT,

were employed to describe the collective kinetics of the structure formation at short length and

time scales. D-SCFT makes use of the accurate free-energy functional derived from SCFT

and relates the dynamics of the density fields to the exchange chemical potential. D-RPA

associates the spatiotemporally dependent density with the external fields via a linear-response

function, which can be derived from the dynamic, single-chain structure factors. For diblock

copolymers, I introduced a correction term to the dynamic, single-chain structure factor of an

entire chain in order to accurately describe the dynamics of a block of the chain. Since D-RPA

is only valid in the linear regime, I restricted the scope of this study to early times with small

density fluctuations. For binary homopolymer blends, I calculated the structure evolution in

the following three scenarios: (i) the decay of the preimposed density fluctuation at χN = 0,
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(ii) the density field growth in response to external fields and (iii) the spinodal decomposition

after a deep quench from the disordered state. For symmetric diblock copolymer melts, I

studied (i) the decay of preimposed density fluctuations at χN = 0 and (ii) the density field

growth in response to external fields.

Then, I simulated the systems mentioned above using the particle-based simulation

program SOMA. The time dependence of the structure formation and relaxation on various

length scales was recorded. The measured collective structure factor as a function of time

after a quench from the disordered state as well as the time-dependent response of the density

field to external fields suggest a fast, sub-diffusive motion in the short-time limit. I compared

the simulation data with the analytical predictions. On short time and length scales, D-RPA

successfully captures the qRe dependence and the time dependence of the structure evolution,

whereas D-SCFT underestimates the growth rate of the structure formation as a result of not

accounting for the fast, sub-diffusive dynamics.

To overcome the shortcomings of D-SCFT, a generalized model-B was developed utilizing

a time-dependent Onsager coefficient Λ~q(t). This is achieved by matching the dynamic equa-

tions derived in D-RPA and generalized model-B such that generalized model-B reproduces

the results of D-RPA in the linear regime. Accurate expressions for Λ̃~q(ω) were computed

from the structure formation responding to external fields and the self-assembly during the

spinodal decomposition. Both processes yield the same expression

iω
~q2Λ̃~q

=
χ̃~q,AA + 2χ̃~q,AB + χ̃~q,BB

χ̃~q,AAχ̃~q,BB −
(

χ̃~q,AB

)2 −
S~q,AA + 2S~q,BA + S~q,BB

S~q,AAS~q,BB −
(

S~q,AB

)2 .

The advantage of generalized model-B over D-RPA is its usage of the accurate exchange

chemical potential with validity extended to the nonlinear regime, where D-RPA breaks down.
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Part II

Structure formation in copolymer

networks
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Chapter 5

Structure and structure formation in 2D,

regular polymer networks

Some content of this chapter 5 has been published in Macromolecules with the title “Phase

Separation of Regular, Quasi-Two-Dimensional AB Copolymer Networks” [77]. Some parts

of this chapter are results of close collaboration with Marcus Müller.

In the previous part, I focused on the interplay between chain architecture, dynamics

and structure formation of linear chains. I will continue the study on structure and structure

formation for topologically more complicated polymers networks. Polymer networks are

popular subjects of contemporary polymer science [78–81]. Among them, novel class of

innovative materials such as interpenetrating polymer networks [82–86] and liquid crystalline

polymers [87–91] have drawn much attention because of their promising potential in industrial

and biomedical applications [10, 92–95].

Polymer networks are percolating macromolecules obtained by crosslinking linear polymer

chains via chemical bonds. They exhibit a large number of unique intrinsic features, such

as mechanical elasticity and complex secondary structure (folding). Responsible for these

properties is the connectivity of the network brought in by the irreversible crosslinks. This

new dimension of varieties of polymer architectures offers a large number of possibilities in

the design of polymers with novel properties. Also because of the connectivity, the dynamics

and the structure formation of polymer networks are highly non-trivial and must be handled

with special attention. How network structure essentially determines physical properties is
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important in order to understand the underlying physics of polymer networks and to guide the

synthesis of polymer networks with desired properties. Obtaining a detailed understanding

and modeling of the structure and structure formation of polymer networks (with or without a

fixed topology) has been an active field of research in polymer physics for decades [96–104].

In this part of the thesis, I will concentrate on polymer networks with a fixed topology. To

keep the analytical calculations simple and to speed up the simulations in order to reach large-

scale networks, the study is performed on 2D networks composed of square shaped repeating

units. The repeating units (also called unit cells) are ordered in two perpendicular spatial

dimensions x and y, resulting in a quasi two-dimensional network with a planar topology.

The exact behaviors of the networks depend on their topology and on their dimensionality.

Earlier studies have shown that the physics describing them is qualitatively similar [105].

In this study, the particle-based coarse-grained Monte-Carlo simulation SOMA is applied

to carry out the simulation study on the polymer networks made of symmetric diblock

copolymers. In SOMA, a multiple number (10− 700) of quasi 2D molecules are embedded

in a 3D simulation box with side length Lx = Ly = L and Lz = 2Rdb. To assure a two

dimensional topology and a homogeneous non-bonded energy in the z-direction, only one

simulation grid layer is used in the z-direction. The side length L will be varied during the

study to enforce different degrees of stretching. The grid discretization in x- and y-direction

is set to ∆L = 0.1Rdb. Periodic boundary conditions are applied on the xy-plane for all

sub-projects of this study. The networks extend throughout the whole simulation box and the

opposite side are connected via bonds that cross the periodic boundary conditions. In other

words, the network is constructed on the surface of a torus. In this way, the molecules are

fixed on the length scale given by the geometry of the simulation box. The incompressibility

parameter κNdb is set to 30 if not stated otherwise. The repulsive interaction between

unlike species is controlled by the Flory-Huggins parameter χ and will be varied during the

simulation. In addition, I perform the same study with a crudely simplified MC simulation that

takes only the junction points into account. The simplified MC simulation is constructed truly

two dimensional without extension in the z-direction. A- and B-crosslinks are connected via

effective harmonic springs, which are equivalent to the 2D projection of the diblock strands in
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SOMA. The statistical segment length of the effective springs is given by

B2 =
2
3

R2
db.

The only interaction in the simplified MC simulation is the bonded interaction given by the

harmonic springs. The difference between the simplified MC simulation and SOMA is the

monomer discretization and the incompressibility constraint.

I consider square-shaped polymer networks with nu unit cells arranged in x- and y-

directions. The imposed side length of the unit cells is denoted by lu = L
nu

. The networks are

generated by end-crosslinking unit cells as illustrated in Figure 5.1 (A). In SOMA simulations,

a minimum particle density is required. To fulfill this requirement, several identical networks

are overlapped in the z-direction. The number of molecules nm contained in the system

depends on the unit-cell size lu and is determined so that the total density is constant in all

systems. Due to the minimum density requirement, real configurations in the simulation are

dense as shown in Figure 5.1 (B).

(A)
(B)

FIGURE 5.1: (A) Illustration of a 2D, regular network with nu = 4 mesh cells
in x- and y-direction A and B segments are colored red and blue. The circles
represent the junction points. (B) Snapshot of 16 overlapped 2D copolymer
networks from real simulation with mesh size lu = 0.5 and incompatibility
χNdb = 8. The enlargement shows three overlapped networks. The figure
is reprinted with permission from [77]. Copyright 2022 American Chemical

Society.
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The main interest of this study is to investigate the structure and structure formation of 2D

networks, as well as to describe their phase behavior as a function of lu and nu. In this chapter,

I will first give a brief summary of the theoretical background of this field in section 5.1.

Then in section 5.2, I will provide analytical models that describe the structure of 2D regular

networks based on two different approximations. The crosslink distributions derived from the

analytical models will be tested against simulations in section 5.3. Then in subsection 5.4.2,

the structure factor of 2D networks is studied. At the last, the order-disorder phase transition

of 2D polymer networks will be investigated as a function of lu and nu in subsection 5.5.2.

5.1 Theoretical background of polymer networks

Crosslinked polymers are macromolecules with extremely complicated molecular architecture

if all monomers are considered. Hence, an appropriate model needs to simplify the network

conformation in order to reduce the degrees of freedom in the molecular structure. The origin

of many universal scaling behaviors of linear polymers is the fractal nature of the polymer

chains. This fundamental assumption can be generalized to polymers of arbitrary dimension

with fractal connectivity and lead to generalized description on their statistical properties and

dynamics [105] without considering local binary interactions such as the excluded volume.

Two of the most important classical models for polymer networks are the affine network

model [106–108] and the phantom network model [109–111], providing the most simple

approaches to describe network’s mechanical properties e.g. elasticity. More detailed aspects

on elasticity models of polymer networks can be found in [98, 112, 113].

The affine model applies a single-chain approximation where the free energy is simply

a linear sum over the contributions from each individual chain. This model assumes that

the end-to-end vector of strands deforms in the same way as the macroscopic molecule.

Fluctuations are completely suppressed by the dense surrounding chains. The physical

properties of networks derived from this theory do not depend on their structure, e.g. the

crosslink functionality, etc.

In the phantom model, the strands are treated as Gaussian chains that are allowed to cross

through each other and the crosslink points interact via forces imparted by the strands between
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them. The trajectory of each strand depends only on the position of its ends without any

impact from the surrounding strands. This results in an affine mean junction point position

and a non-affine fluctuation around the mean position of junction points in the phantom model.

Their structure can be described by two simple facts:

• The mean position of the crosslink point is affine and depends only on the system’s

macroscopic overall length.

• The fluctuation of the chain vector connecting two crosslink points follows a normal

distribution and can be treated effectively as Gaussian springs as in the bead-spring-

model.

In [114], Eichinger studied statistical features of such a regular macroscopic network. The

relation between mean-squared fluctuation of the chain length and the second moment of the

equilibrium chain length and the crosslink functionality f reads (see also [115])

〈∆r2〉 = (2/ f )〈r2〉0. (5.1)

For tetra-functional crosslinks f = 4 (as in my case), the mean-squared distance between two

junction points is:

〈∆r2〉 = 1
2
〈r2〉0, (5.2)

with 〈r2〉0 the mean-squared end-to-end distance of a free chain. This shows that the strands

in the network are contracted and are clearly distinguishable from the 1D linear chains. The

source of this contraction is not only the existence of the direct connection between two

crosslink points but also the remaining strands inside the network serving as effective strings

that further constrain the fluctuation of junction points.

Up-to-date MC simulations are applied to investigate more realistic (yet more complicated)

self-avoiding 2D polymer networks [116–118]. Because of bending rigidity, the 2D polymer

sheets are, unlike collapsed linear chains, considered to be flat. Moreover, additional attractive

interactions are found to be able to overcome the bending rigidity and lead to crumpled states

of 2D polymer networks [119].
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5.2 Model and analytical considerations

The calculation in this study will be performed within the framework of phantom-type theories.

The unit cells are star polymers made of four end-linked symmetric diblock copolymers as

illustrated in Figure 5.2 (A) with a tetra-functional B-type crosslink in the center of each unit

cell. A tetra-functional A-type crosslink is attached to one diblock to allow the integration of

other star polymers into a network and to assure symmetry in A and B-type monomers. A

regular 2D polymer network with nu = 4 is demonstrated in Figure 5.2 (B).

(A)

(B)

FIGURE 5.2: (A) A star polymer with two junction points serves as the smallest
repeating unit in the regular network. (B) Schematic illustration of a 2D polymer

network with nu = 4.

In the following, the position distribution of the crosslinks will be derived analytically.

The calculation is performed for a general case of nx and ny unit cells in x-direction and

y-direction. The index difference M = (Mx, My) between two unit cells will be referred to

as the chemical distance. The block distance ~RM is defined as the spatial distance between

two crosslinks of the same type (I use the B-crosslinks in this study) separated by chemical

distance M = (Mx, My). The equilibrium positions of the B-crosslinks are homogeneously

distributed on the square lattice; thus, the mean block distance between two crosslinks is

proportional to their chemical distance. The block distance as a function of chemical distance
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will be used as a macroscopic measure for the global structure of the network. The lengths of

the diblock strands between the adjacent crosslinks will be referred to as diblock length rdb

and is determined by the overall parameters of the network. This must be distinguished from

the end-to-end distance of a free diblock denoted as Rdb which serves as the reference length

for the distance measurements in this study. The value of Rdb is given by R2
db = b2Ndb with

Ndb the monomer discretization of the diblock strands and b the statistical segment length of

the bonds between the monomers.

Two approaches are applied to calculate the static structural properties of the networks

at χNdb = 0: the mean-field model (originally introduced in [120], see also [121, 122])

and the phonon model [123]. In the mean-field approach, the fluctuations of the crosslink

points around their mean positions are assumed to be uncorrelated. It has the advantage of

decoupling a giant network into independent unit cells. The phonon model, on the other hand,

takes the correlation between the crosslinks into account. For this reason, the calculation

within the framework of the phonon model is far more demanding.

The calculation is performed for ds spatial dimensions. I use a two-dimensional index i as

illustrated in Figure 5.3 to label the crosslinks in the network regardless of their type. The two

axes of the indices (ix, iy) are aligned with the x- and y-direction of the spatial dimension.

Two junction points are directly connected if i− j = (−1,−1), (−1, 1), (1,−1), (1, 1).

5.2.1 Mean-field approximation

Within the mean-field approach, the simplification is achieved by neglecting the correlations

between fluctuation of junction points. The vectorial position of the i-th crosslink, regardless

of its type, is denoted as~̂ri. The indices of the four direct neighbors of crosslink i are denoted

by i↖, i↗, i↙ and i↘.

The partition function is:

Z = ∏
i

∫
d~̂ri exp

(
− ds

2R2
db

∑
i

[(
~̂ri↖ −~̂ri

)2
+
(
~̂ri↗ −~̂ri

)2
])

. (5.3)
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FIGURE 5.3: The definition of the 2D labels of the crosslinks in illustrated.

The crosslink density ρ̂i = δ(~r−~̂ri) (i.e. the probability that the i’th crosslink is found at

position~r) and the corresponding self-consistent field hi are related via

1 =
∫
D[hi, ρi] exp

(∫
d~rhi(~r) [ρi(~r)− ρ̂i(~r)]

)
. (5.4)

Rewriting (~̂ri↖ −~̂ri)
2 =

∫
d~rd~r′ρ̂i↖(~r′)ρ̂i(~r)[~r−~r′]2, the partition function becomes

Z = ∏
i

∫
D[hi, ρi] exp

{
− ds

2R2
db

∑
i

∫
d~rd~r′

[
ρ̂i↖(~r′) + ρ̂i↗(~r′)

]
×ρ̂i(~r)[~r−~r′]2 + ∑

i

∫
d~rhi(~r) [ρi(~r)− ρ̂i(~r)]

}
,

= ∏
i

∫
D[hi, ρi] exp

{
− F

kT

}
(5.5)
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where the free energy takes the form

F
kT

=
ds

2R2
db

∑
i

∫
d~rd~r′

[
ρi↖(~r′) + ρi↗(~r′)

]
ρi(~r)[~r−~r′]2 −

∑
i

∫
d~rhi(~r)ρi(~r)−∑

i
lnQi (5.6)

with

Qi =
∫

d~̂ri exp
(
−hi

(
~̂ri

))
. (5.7)

Now, the saddle point approximation is applied, which is justified by the vanishing correlation.

The mean-field equations read

δF
δρi(~r)

=
ds

2R2
db

∫
d~r′(~r−~r′)2 (ρi↖(~r′) + ρi↙(~r′) (5.8)

+ρi↗(~r′) + ρi↘(~r′)
)
− hi(~r) = 0

δF
δhi(~r)

= −ρi(~r) + exp (−hi (~r)) = 0. (5.9)

The following Ansatz for the crosslink distribution is applied

ρi(~r) =
1

(2πσ2
xlink)

ds/2
exp

[
−

(~ri −~r
(0)
i )2

2σ2
xlink

]
. (5.10)

Solving the two mean field equations for ds = 3, the mean and variance of the position of the

crosslink point i are obtained

~r(0)i =


ixLx/(2nx)

iyLy/(2ny)

0

 , σ2
xlink = R2

db/12. (5.11)

Since the crosslinks are assumed to be uncorrelated, the diblock length distribution follows

directly from the crosslink position distribution. Based on the diagonal square topology of the

network, the diblock length distribution reads

p(~rdb) =
1

(2πσ2
db)

3/2
exp

[
− (~rdb − 〈~rdb〉)2

2σ2
db

]
, (5.12)
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with

〈~rdb〉 =


Lx/(2nx)

Ly/(2ny)

0

 and σ2
db = R2

db/6. (5.13)

The block distance can be calculated analogously. For chemical distance M = (Mx, My) =

i−j
2 , the block distance reads:

p(~RM) =
1

(2πσ2
M)3/2

exp
[
− (~RM − 〈~RM〉)2

2σ2
M

]
, (5.14)

with

〈~RM〉 =


MxLx/(nx)

MyLy/(ny)

0

 and σ2
M = R2

db/6 (5.15)

the variance is independent of M.

In [120], a SCFT approach based on the mean-field result is developed. In the SCFT

approach, a unit-cell is constructed by placing end-crosslinked symmetric diblock copolymers

between the crosslinks (ideal chains with fixed ends) such that blocks of the same type are

joined. The positions of the crosslinks are assumed to be uncorrelated and fluctuate about their

mean position with the normal distribution given in Equation 5.11. In this way, a macroscopic

polymer network with a large number of degrees of freedom is simplified to individual unit

cells and the interactions between crosslinks are decoupled. This method will be called the

mean-field model in the following.

5.2.2 Phonon model

I define the connectivity matrix

Cij =

 1, i and j are directly connected

0, otherwise
.
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The bonded part of the Hamiltonian can be expressed as:

H =
ds

2B2 ∑
i

∑
j>i

Cij
(
~ri −~rj

)
=

ds

4B2 ∑
i

∑
j

Cij

(
~r(0)i −~r

(0)
j

)2
+

ds

4B2 ∑
i

∑
j

Cij
(
∆~ri − ∆~rj

)2

+
ds

2B2 ∑
i

∑
j

Cij

(
~r(0)i −~r

(0)
j

) (
∆~ri − ∆~rj

)
= H0 + ∆H. (5.16)

Here, the position~ri is separated into the equilibrium position~r(0)i and the fluctuation around

the equilibrium position ∆~ri. The last term in the penultimate step vanishes because 〈∆~ri −

∆~rj〉 = 0. The equilibrium position~r(0)i is determined by the overall system size according to

~r(0)i =


ix · Lx

2nx

iy ·
Ly

2ny

...

 . (5.17)

Thus, the constant part of the Hamiltonian becomes

H0 =
ds

4B2 nxnyd

((
Lx

2nx

)2

+

(
Ly

2ny

)2

+ . . .

)
, (5.18)

with d = ∑j Cij. The remaining fluctuation term ∆H = H−H0 reads:

∆H = ∑
i

∑
j

ds

2B2 Cij

(
∆~r2

i + ∆~r2
j − 2∆~ri∆~rj

)
=

ds

4B2

(
∑

i
2d∆~r2

i − 2 ∑
i

∑
j

Cij∆~ri∆~rj

)
=

ds

4B2 ∑
i

∑
j

Dij∆~ri∆~rj (5.19)

with

Dij = 2dδij − 2Cij.

The components of the connectivity matrix Cij are determined by the network architecture:

• Cij = 1, if |i− j| = (−1,−1), (−1, 1), (1,−1), (1, 1).
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FIGURE 5.4: The blue junction points (B-crosslinks) are integrated out from
the configuration.

• Cij = 0, else.

The fact that the summation over all indices i and j does not include all integer numbers (for

instance there exists not crosslink with index (0, 1) leads to difficulties in the calculation.

For this reason, I will first integrate out all B-crosslinks in the system. I demonstrate this

calculation on one unit cell as shown in Figure 5.4. The Hamiltonian of one unit cell is

Hunit cell =
ds

2B2

(
~r2

ns +~r2
ms +~r2

is +~r2
js

)
(with~rns =~rn −~rs),

=
ds

2B2

[
4
(
~rs −

~rn +~rm +~ri +~rj

4

)2

−1
4
(
~rn +~rm +~ri +~rj

)2
+
(
~r2

n +~r2
m +~r2

i +~r2
j

)]
=

2ds

B2

(
~rs −

~rn +~rm +~ri +~rj

4

)2

+ ∑
α,β=all pairs

ds

8B2

(
~rα −~rβ

)2 . (5.20)

In the last term, all pairwise combinations of n, m, i and j are summed up. The effective

connections between A-crosslinks after all B-crosslinks are integrated out are shown in

Figure 5.4. The strength of the effective bonds is ds
8B2 , smaller than the original bond strength

ds
2B2 . The components in the connectivity matrix of the A-crosslinks only network becomes

Cij = 2, if i− j = (1, 0), (0, 1), (−1, 0), (0,−1)

Cij = 1, if i− j = (1, 1), (−1, 1), (−1,−1), (1,−1)

Cij = 0, else. (5.21)
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One should note that the 2D index i is redefined to label only the remaining A-crosslinks.

The fluctuation part of the Hamiltonian ∆H reads

∆H =
n

∑
i

n

∑
j>i

ds

8B2 Cij

(
∆~r2

i + ∆~r2
j − 2∆~ri∆~rj

)
=

n

∑
i

n

∑
j

ds

16B2 Cij

(
∆~r2

i + ∆~r2
j − 2∆~ri∆~rj

)
=

ds

16B2

(
n

∑
i

24∆~r2
i − 2

n

∑
i

n

∑
j

Cij∆~ri∆~rj

)

=
ds

16B2

n

∑
i

n

∑
j

Dij∆~ri∆~rj (5.22)

with

Dij = 24δij − 2Cij.

I apply the plane-wave Ansatz ej(q) = exp (iq · j) for the eigenvector of the symmetric

real matrix Dij with

q =

 2π
Nx

kx

2π
Ny

ky


and kx = 0, 1, 2..., nx and ky = 0, 1, 2..., ny. Using the given eigenvectors, the corresponding

eigenvalues can be found:

λ(q) = 24− 8 cos (qx)− 8 cos
(
qy
)
− 8 cos (qx) cos

(
qy
)

. (5.23)

The beads position fluctuation can be written in the plane-wave basis ∆~rj = ∑q~a(q)ej(q).

∆H now reads

∆H =
ds

16B2

nxny

∑
i

nxny

∑
j

Dij ∑
q,q′

~a(q)~a(q′) exp
(
iq · i + iq′ · j

)
(5.24)

=
ds

16B2 ∑
q,q′

~a(q)~a(q′)
nx

∑
i

λ(q′) exp
(
iq · i + iq′ · i

)
=

ds

16B2 ∑
q

nxnyλ(q)|~a(q)2|

=
ds

16B2 ∑
q

nxnyλ(q)
{
< (ax (q))

2 += (ax (q))
2 +<

(
ay (q)

)2
+ ...

}
.
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Making use of the equipartition theorem

〈< (ax (q))
2〉+ 〈= (ax (q))

2〉 = ... =
16B2

2dsnxnyλ(q)
(5.25)

one obtains

〈~a (q)~a
(
q′
)
〉 = δq,q′

8dsB2

dsnλ(q)
. (5.26)

Then, I calculate the correlation function

〈∆~ri∆~rj〉 = Corr (i− j)

= ∑
q,q′
〈~a(q)~a(q′)〉 exp (iq · i + iq · j)

the real part becomes

= ∑
q

2dsB2

dsnλ
cos (q · i− q · j)

= ∑
q

8B2

nλ (q)
cos (q · i− q · j) . (5.27)

The second moment of the block distance reads

〈(~ri −~rj)
2〉 = 〈

(
~r(0)i + ∆~ri −~r

(0)
j − ∆~rj

)2
〉

=
(
~r(0)i −~r

(0)
j

)2
+ 〈∆~r2

i 〉+ 〈∆~r2
j 〉 − 2〈∆~ri∆~rj〉. (5.28)

The mean of the block distance is

〈~r(0)i −~r
(0)
j 〉 =


(ix − jx) · Lx

Nx

(iy − jy) ·
Ly
Ny

...

 . (5.29)

The B-crosslink position~rs can be calculated from the distribution of the A-crosslinks

according to Equation 5.20. The equilibrium position of~rs is given by the center of the four

surrounding A-crosslinks

~r(0)s =
~rn +~rm +~ri +~rj

4
. (5.30)
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For ds = 3, the variance of the fluctuation in each spatial dimension is given by Equation 5.20

σ2
x = σ2

y = σ2
z =

R2
db

2× 2× ds
= 1/12. (5.31)

Thus,~rs can be computed as

~rs =~r(0)s + ∆~rs with 〈∆~rs〉 = 0 , σ2(|∆~rs|) = 1/4. (5.32)

The variance of the length of a diblock strand~rs −~rn can also be computed as

σ2(|~rs −~rn|) =
〈
(~rs −~rn)

2〉− (~r(0)s −~r(0)n

)2
(5.33)

=
〈
(~r(0)s −~rn)

2〉− (~r(0)s −~r(0)n

)2
+ 〈∆~rs〉2

=
1

16

{〈
(~rm +~ri +~rj − 3~rn)

2〉− (~r(0)m +~r(0)i +~r(0)j − 3~r(0)n

)2
}

+〈∆~rs〉2

=
1

16

{〈 [
(~rm −~rn) + (~ri −~rn) +

(
~rj −~rn

)]2 〉−
[(
~r(0)m −~r(0)n

)
+
(
~r(0)i −~r

(0)
n

)
+
(
~r(0)j −~r

(0)
n

)]2
}
+ 〈∆~rs〉2

=
1

16

{〈
(~rm −~rn)

2
〉
+
〈
(~ri −~rn)

2
〉
+
〈(
~rj −~rn

)2
〉

−
〈(

~r(0)m −~r(0)n

)2
〉
−
〈(

~r(0)i −~r
(0)
n

)2
〉
−
〈(

~r(0)j −~r
(0)
n

)2
〉

+2 〈(~rm −~rn) (~ri −~rn)〉 − 2
〈(

~r(0)m −~r(0)n

) (
~r(0)i −~r

(0)
n

)〉
+2
〈
(~rm −~rn)

(
~rj −~rn

)〉
− 2

〈(
~r(0)m −~r(0)n

) (
~r(0)j −~r

(0)
n

)〉
+2
〈
(~ri −~rn)

(
~rj −~rn

)〉
− 2

〈(
~r(0)i −~r

(0)
n

) (
~r(0)j −~r

(0)
n

)〉}
+〈∆~rs〉2.
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Completing the square leads to

σ2 (|~rs −~rn|) =
1

16

{
σ2 (|~rm −~rn|) + σ2(|~ri −~rn|) + σ2(|~rj −~rn|)

}
(5.34)

+
1
8

{〈
(~rn −~ri)

2
〉
−
〈
(~ri)

2
〉
−
〈(

~r(0)n −~r(0)i

)2
〉
+
〈
(~r(0)i )2

〉
+
〈
(~rn −~rm)2

〉
−
〈
(~rm)2

〉
−
〈(

~r(0)n −~r(0)m

)2
〉
+
〈
(~r(0)m )2

〉
+
〈(
~rn −~rj

)2
〉
−
〈
(~r2

j )
〉
−
〈(

~r(0)n −~r(0)j

)2
〉
+
〈
(~r(0)j )2

〉
+ 〈(~rm~ri)〉+

〈(
~r(0)m ~r(0)i

)〉
+
〈(
~rj~ri

)〉
+
〈(

~r(0)j ~r(0)i

)〉
+
〈(
~rm~rj

)〉
+
〈(

~r(0)m ~r(0)j

)〉}
+ 〈∆~rs〉2

=
1
16

{
σ2(|~rm −~rn|) + σ2(|~ri −~rn|) + σ2(|~rj −~rn|)

}
+

1
8

{
σ2(|~rn −~rm|) + σ2(|~rn −~ri|) + σ2(|~rn −~rj|)

}
− 1

16

{
σ2(|~ri −~rm|) + σ2(|~ri −~rj|) + σ2(|~rm −~rj|)

}
+ 〈∆~rs〉2.

Corr(mx − nx, my − ny) will be used to denote the variance σ2(|~rm −~rn|) in the following

equation. This variance can be obtained from Equation 5.28:

σ2(|~rs −~rn|) =
1
8
{Corr(1, 0) + Corr(0, 1) + Corr(1, 1)}+ 〈∆~rs〉2

=
1
8
{Corr(1, 0) + Corr(0, 1) + Corr(1, 1)}+ 3

12

≈ 1
8
(0.7266 + 0.6365 + 0.6365) + 0.25

= 0.25 + 0.25 = 0.5. (5.35)

Note that σ2(|~rs −~rn|) is the variance of the magnitude of the diblock length i.e.

σ2(|~rs −~rn|) = 3σ2
db
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and the variance in each independent spatial dimension is σ2
db = 1/6. The mean diblock

strand length is trivially given by the overall system size

〈~rdb〉 =


Lx/(2nx)

Ly/(2ny)

0

 . (5.36)

This result is in perfect agreement with Flory’s prediction for the strand length distribution in

regular polymer networks with crosslink functionality equal to four [115] (see Equation 5.2).

The phonon model and the mean-field model both predict trivial mean positions of

the crosslinks determined by the overall system parameters. The variance of the block

distance derived from the phonon model indicates a correlation between the fluctuations of

the crosslinks from their mean position, which is neglected by the mean-field model. The

strength of this correlation depends on the number of unit cells. In the following, its impact

on the crosslink distribution, the structure factor and the phase behavior will be investigated

in simulations for various nu and lu.

5.3 The structure of 2D polymer networks

Previously, the mean-field model and the phonon model were introduced to describe the

structure of the networks at χNdb = 0. The mean-field model assumes independent crosslinks

and predicts a block distance distribution independent of the chemical distance. The phonon

model, on the other hand, considers full correlation between the crosslinks and predicts a

non-trivial block distance distribution that can be computed numerically for a given nu. Here,

the analytical results will be compared with data measured in the crudely simplified MC

simulation and the SOMA simulation. The positions of the monomers in the diblock strands

between the crosslinks will not be considered.
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5.3.1 Diblock strand length

One important observable related to the structure of the network is the diblock strand length

~rdb = (xdb, ydb). In subsection 5.2.2, mean-field approach and the phonon model predicted

the same diblock strand length distribution of the form

p(xdb, ydb) =
1

2πσ2
db

exp

−
(

xdb − 〈xdb〉
)2

+
(

ydb − 〈ydb〉
)2

2σ2
db

 , (5.37)

with 〈xdb〉 = Lx/(2nu), 〈ydb〉 = Ly/(2nu)and σ2
db =

R2
db
6 .

FIGURE 5.5: The strand length distribution in x-direction measured in SOMA
matches the analytical predictions very well at κNdb = 0. At κNdb = 30, small
deviation can be observed. The figure is reprinted with permission from [77].

Copyright 2022 American Chemical Society.

The probability distribution of the strand length in x-direction is measured for lu =

0.1 Rdb and lu = 2 Rdb in SOMA and compared with the analytical predictions in Figure 5.5.

The mean-field model and the phonon model both successfully capture the strand length

distribution at κNdb = 0. The incompressibility constraint shows minor impact on the strand

length distribution.
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5.3.2 Block distance distribution

First, I measure the block distance distribution with the simplified MC simulation. A network

with nu = 140, lu = 0.0429 Rdb and 0.1 Rdb is generated according to the connectivity

matrix

• Cij = 1, if i− j = (1, 0), (1,−1), (−1, 0), (−1,−1) and ix is odd (A-crosslinks).

• Cij = 1, if i− j = (1, 1), (1, 0), (−1, 1), (−1, 0) and ix is even (B-crosslinks).

• Cij = 0, else.

The Hamiltonian of the system considering only the crosslinks is given by

H =
1

B2 ∑
i

∑
j>i

(
Cij
(
~ri −~rj

)2
)

. (5.38)

After equilibration, the block distance distribution is obtained by measuring the positions

of B-crosslinks as a function of the chemical distance M. This distribution is described by its

mean

〈~RM〉 =
〈
~ri+M −~ri

〉
=~r(0)i+M −~r

(0)
i (5.39)

and its variance

〈(
~ri+M −~ri

)2
〉
−
(
~r(0)i+M −~r

(0)
i

)2
=

〈(
xi+M − xi

)2
〉
−
(

x(0)i+M − x(0)i

)2

+
〈(

yi+M − yi
)2
〉
−
(

y(0)i+M − y(0)i

)2

= 2σ2
M. (5.40)

The average 〈...〉 in the above equation is performed over all B-crosslinks i. The index

summation i + M is performed across periodic boundary conditions in case iα + Mα > nu.

The data from the simplified MC simulation is compared with the analytical prediction

from the phonon model. The statistical segment length of the effective springs is set to

B2 = (2/3) R2
db to match the 2D projection of ~Rdb in 3D SOMA. The results for My = 0

are shown in Figure 5.6. The mean of the block distances is given by the overall parameter
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〈~RM〉 = (X0
M, Y0

M) = (Mx
L

nu
, My

L
nu
). The second moment, which characterizes the extent

of fluctuation of the crosslinks, provides a more informative comparison with the analytical

results. The data from the simplified MC simulation matches the analytical results from the

phonon model very well. As the phonon model already predicted, the variance of the block

distance is independent of lu. One can also make use of the result given by Equation 5.26 to

generate crosslinks that already have the correct distribution to avoid the equilibration of the

configuration. I also show the block distance distribution of one configuration generated with

the phonon modes formalism in Figure 5.6 (see Equation 5.26) to demonstrate the reliability

of this sampling technique.

FIGURE 5.6: Left: The mean of the block distance in x-direction is shown
as a function of Mx at My = 0. Right: The variance of the block distance
distribution measured in the simplified MC simulation is shown for two system
sizes. This is compared with the phonon model prediction (cyan dashed line)
from subsection 5.2.2. One configuration generated with the phonon modes

sampling technique (green dashed line) is also presented.

Next, I compare the block distance distribution measured in SOMA with the analytical

predictions. As mentioned before, the difference between SOMA and the simplified MC

simulation is the incompressibility constraint and the monomer discretization of the diblock

strands. The network is comprised of 80× 80 unit cells and the side length of the simulation

box is L = 8 Rdb (or lu = 0.1 Rdb). I show the variance of the block distance measured in

SOMA at κNdb = 0, κNdb = 30 and κNdb = 50 together with the phonon model prediction

and the mean-field prediction in Figure 5.6. The distances in SOMA are computed only with

contributions from the x- and y-direction.

The phonon prediction agrees with the simulation results at κNdb = 0. For systems
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FIGURE 5.7: The variance of the block distance measured in SOMA is com-
pared with the analytical predictions. The phonon model prediction matches the
simulation at κNdb = 0 very well but the fluctuation at large chemical distance
is clearly suppressed by κNdb. The mean-field predicts a constant variance

independent of the chemical distance and is proven to be wrong.

at κNdb = 30 and κNdb = 50, the presence of the incompressibility constraint leads to a

suppression of fluctuations of more than 30% at the largest length scale. The deviation grows

with increasing chemical distance. At small length scales for chemical distances < 5, the

block distance distribution is not affected by this deviation. Fortunately, as will become more

clear in the next section, the correlation is only important between nearby crosslinks separated

by a few unit cells. Thus, the phonon model is sufficiently good to describe the structure of

a 2D regular network at χNdb = 0. The mean-field approach, on the other hand, predicts

a constant variance of the block distance independent of the chemical distance. This is a

direct consequence of the assumption of uncorrelated crosslinks. The significant deviation

between the mean-field result and the simulation proves this simplification to be inappropriate

to describe networks with nu > 1.
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5.4 Structure factor

Two length scales are of particular importance for understanding the behavior of polymer

networks, the typical domain size of segregated constituent diblock strands dL ( the equilibrium

lamellar spacing of free diblocks is about dL ≈ 1.5 Rdb depending on χNdb [124–126]) and

the imposed unit cell size lu. In order to describe the networks’ novel behavior resulting from

the interplay between the two characteristic length scales, I compute the structure factors of the

networks with special attention to the two length scales. First, the network specific structure

factor around qu = 2π/lu is computed using only the positions of the A-crosslinks. This

will be referred to as crosslink structure factor SXLA and can be calculated analytically based

on the block distance distribution derived from the phonon model. Then, the contribution

from the diblock strands between the crosslinks is added to the description and provides the

total structure factor Snu .

5.4.1 Crosslink structure factor

The crosslink structure factor considering only the A-type crosslinks is defined as

SXLA(~q, nu) =
1

nunu
∑
c

∑
c′

exp
(

i~q
[
~rc −~r′c

] )
. (5.41)

~rc −~rc′ denotes the distance between the A-crosslinks labeled by the 2D indices c and c′.

This distance can be separated into their resting position distance (a deterministic part) and

the deviation from their resting position (a fluctuation part).

SXLA(~q, nu) =
1

n2
u

nu−1

∑
cx=0

nu−1

∑
cy=0

nu−1

∑
c′x=0

nu−1

∑
c′y=0

exp
(

i~q
[
~R0

cc′ + ∆~Rcc′
] )

(5.42)

with ~R0
cc′ the resting position distance and ∆~Rcc′ the fluctuation distance. Due to spatial

translation invariance, the chemical distance M = c− c′ is sufficient to parametrize the

A-crosslink pairs. The summation can be expressed in terms of chemical distance

SXLA(~q, nu) =
1

n2
u

n2
u

nu−1

∑
Mx=0

nu−1

∑
My=0

exp
(

i~q~R0
M + i~q∆~RM

)
. (5.43)
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In the above equation, I make use of the periodic boundary conditions, namely (cx − c′x, cy −

c′y) is equivalent to (cx − c′x + nu, cy − c′y + nu).

The expectation value of SXLA(~q, nu) can be calculated with the block distance distribu-

tion ~RM given by Equation 5.27

〈
SXLA(~q, nu)

〉
=

nu−1

∑
Mx

nu−1

∑
My

{
exp

(
i~q · ~R0

M

)

×
∫

d∆~RM

 1√
2πσ2

M

ds

exp
(

i~q · ∆~RM

)
exp

(
−

∆~R2
M

2σ2
M

)

=
(nu−1,nu−1)

∑
(Mx,My)=(0,0)

{
exp

(
i~q · ~R0

M

)
exp

(
−~q2 σ2

M
2

)}

= 1 +
(nu−1,nu−1)

∑
(Mx,My) 6=(0,0)

{
exp

(
i~q · ~R0

M

)
exp

(
−~q2 σ2

M
2

)}
. (5.44)

The variance of the block distance distribution σ2
M has been computed within the phonon

model as a function of the chemical distance M. As demonstrated in Figure 5.8 (left), σ2
M

increases with chemical distance and reaches a plateau value already for small M. Since σ2
M is

almost constant everywhere except for very small chemical distances, it can be approximated

by its plateau value denoted by σ2
p. The numerically calculated value of σ2

p is shown in

Figure 5.8 (right) as a function of nu.

FIGURE 5.8: Left: σ2
M is shown for polymer networks with nu = 30. Right:

σ2
p as a function of nu is shown.
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This approximation allows me to separate the fluctuation part of the crosslink structure

factor from the summation

〈SXLA(~q, nu)〉 = 1 +

{
(nu−1,nu−1)

∑
(Mx,My) 6=(0,0)

exp
(

i~q · ~R0
M

)}
exp

(
−~q2 σ2

p

2

)
. (5.45)

The summation term in Equation 5.45 is a system-length-dependent reciprocal lattice with

maximal intensity proportional to n2
u − 1 (number of scattering centers) at

qu
x =

2π

lu
kx and qu

y =
2π

lu
ky, kx, ky = 0, 1, 2, ....

The fluctuation part of the structure factor ∝ exp(−~q2 σ2
p

2 ) is independent of the system length.

It is an exponential decay with a decay constant that depends only slightly on the number of

unit cells nu.

In Figure 5.9, the analytically calculated SXLA(~q, nu) (left) is tested against the structure

factor measured in the simplified MC simulation (middle). The crosslink structure factor

measured in SOMA at κNdb = 30 (right) is presented as well in order to address the impact

of the incompressibility constraint. In the SOMA simulation, the networks are comprised

of 30× 30 unit cells. Each diblock strand contains 15 + 1/4 A-monomers and 15 + 1/4

B-monomers. The contribution 1/4 comes from the one A- and the one B-crosslink shared

by four strands. The reference number of beads is set to Ndb = 32. The spatial discretization

∆L is 0.1 Rdb in x-direction and y-direction. The simulation results are averaged over at

least 100 independent configurations for better statistics. I set the value at qx = qy = 0

manually to zero for better contrast in the rest of the Fourier space. The crosslink structure

factor calculated with the phonon model is in good agreement with the result of the simplified

MC simulation and with SOMA. The simulation results confirm the peaks at wavevector(
2πkx

lu
, 2πky

lu

)
with kx, ky = 1, 2, ... for lu = 1.5 Rdb and 3 Rdb.

Apart from ~q = (0, 0), the intensity of the crosslink structure factor has a maximum at

the smallest wavevector qu
x = 2π

lu
, qu

y = 0 (or equivalently qu
x = 0, qu

y = 2π
lu

). Assuming a

constant σ2
p of order one (σ2

p ≈ 0.4 for nu = 30), the intensity of the crosslink structure factor
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can be estimated as

SXLA(qu, nu) ≈ exp
[
− (

2π

lu
)2 ×

σ2
p

2

]
n2

u. (5.46)

For lu = 0.5 Rdb (nu = 30), the network’s size must be of the order nu > 107 to result in

an amplitude of order one. Because of this, the peaks are not visible in the simulations with

small lu.

(A) lu = 0.5 Rdb

(B) lu = 1.5 Rdb

(C) lu = 3 Rdb

FIGURE 5.9: The expectation value of the crosslink structure factor of
a 30 × 30 regular network at three system lengths L = 15 Rdb(lu =
0.5 Rdb), 45 Rdb(lu = 1.5 Rdb) and 90 Rdb(lu = 3 Rdb) is calculated analyti-
cally (left), measured in the simplified MC simulation (middle) and in SOMA

(right). The value at qx = qy = 0 is set to zero for visibility.

In all the three systems, the incompressibility constraint in SOMA shows no impact on

the amplitudes of the peaks. As demonstrated in Figure 5.7, the incompressibility constraint
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shows only a significant impact at length scales of the order of the system size and does not

affect the structure at the length scale of the unit cell size lu. Thus, the phonon model provides

a reliable description of the crosslink structure factor in the relevant region and predicts an

intensity growth given by n2
u.

5.4.2 Total structure factor

Now I consider the structure factor of the composition of a (or part of a) network molecule. I

measure the total structure factor accounting for all monomers in the (sub-)network defined as

Stotal(~q, n′u) =
1

4n′un′u(4Ndb − 2)

〈∣∣∣∑
n

γn × ei~q~rn
∣∣∣2〉. (5.47)

and analyze its dependency on lu and n′u. 0 < n′u ≤ nu is the number of mesh cells

in the sub-network, that are included when calculating the total structure factor. The 2D

index n runs over all monomers in the considered part of the network. The factor γn is

1 if the monomer n is of type A and 1 if B. In the following, I construct a much larger

network comprised of nu × nu unit cells and perform the measurements on sub-blocks of

n′u × n′u unit cells. I measure the structure factor in two systems. In SOMA, I build 30× 30

networks by assigning the crosslinks according to the given topology and equilibrate them.

This method allows only for studying of relatively small networks because the equilibration

of such giant macromolecules is time-consuming. In the second approach, I first generate

crosslink positions according to the phonon model and then construct the strands as Brownian

bridges between two fixed ends given by the crosslinks. This process is computationally less

expensive and the size of the network reaches 180× 180 unit cells. The structure factors are

measured using networks constructed with the phonon model unless stated otherwise.

The total structure factor as a function of qx at qy = 0 is presented for various n′u and

lu in Figure 5.10 (left). On the right-hand side, the most characteristic 2D total structure

factors are shown. As one can see in Figure 5.10, the profile of the total structure factor is a

result of the interplay between the structure at the length scale of the diblock strands (diblock

characteristics) and the long-range order imposed by the network connectivity at the length

scale of lu (crosslink characteristics) of the network. Although the structure factor of polymer
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networks is always dominated by the peak at qu = 2π
lu

above a certain n′u, qu is not always

important. This is because an idealized network with an overwhelming number of unit cells

is impractical, for structure irregularities (defects) in the network topology would affect the

long-range 2D order. The more realistic ones are networks with a moderate number of unit

cells n′u = O(1)−O(100). In this case, the diblock characteristics on the length scale of

dL become important. Whether the network is characterized by the diblock characteristics

or by the crosslink characteristics is crucially determined by lu and n′u. In Figure 5.11, the

peak position q∗ of the total structure factor Stotal(q, 30) is compared with qu. For small lu

below ≈ 1.3 Rdb, |q∗|Rdb ≈ 5 is nearly a constant corresponding to a length of 1.26 Rdb.

The length scale of the unit cell size is not of special importance and qu is not the dominant

wavevector. For lu > 1.3 Rdb, qu = 2π
lu

becomes the dominant wavevector i.e. q∗ = qu.

I separate the networks into three regimes according to their unit cell size. For compressed

networks with lu < 0.5 Rdb, the intensity of the structure factor increases only slightly with

growing n′u. The impact of the crosslink structure factor is insignificant for the range of nu that

is accessible for this simulation study. The length scale of the crosslink characteristics is much

smaller than that of the diblock characteristics. Thus, the ordered structure at periodicity lu

can be ignored here. The total structure factor is dominated by the diblock characteristics and

is isotropic as shown in Figure 5.10 (A). In addition to the total structure factor of the network

at lu = 0.33 Rdb, I present the radial averaged total structure factor for lu = 0.167 Rdb and

0.5 Rdb in the relevant region in Figure 5.12 (left). In Figure 5.12 (right), the intensity of the

peak of the total structure factor is demonstrated as a function of n′u for several lu. In this

regime, the structure factor increases first with n′u and reaches a plateau at about n′u = 5.

This demonstrates the importance of the correlation between nearby crosslinks and that the

correlation can only be neglected if the crosslinks are separated by more than five unit cells.

Above n′u = 5, the structure factor and thus the phase behavior of the networks can be

considered independent of n′u.

For intermediate 0.5 Rdb < lu . 1.5 Rdb, the diblock characteristics and the crosslink

characteristics are similarly important for the structure of the network for the range of n′u

studied in this simulation. As shown in Figure 5.10 (B) for lu = 1.167 Rdb, the diblock

characteristics dominate first at small n′u where a nearly isotropic structure factor with peaks

at |~q|Rdb ≈ 4.5 is observed. With increasing n′u, the total structure factor becomes more
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(A) lu = 0.33 Rdb, middle: n′u = 5, right: n′u = 30

(B) lu = 1.167 Rdb, middle: n′u = 1, right: n′u = 10

(C) lu = 1.5 Rdb, middle: n′u = 1, right: n′u = 5

(D) lu = 2 Rdb, middle: n′u = 1, right: n′u = 3

FIGURE 5.10: The total structure factor measured with data generated by the
phonon network model is presented for various lu and n′u. The size of the
network is nu = 180. In (A), Stotal(q, 5) measured in SOMA is provided to
demonstrate that the phonon model and SOMA provide the same results. One
should note that the ranges of the colorbars are not identical in the contour

plots.

anisotropic and the peak of the structure factor gradually shifts towards larger values until

it reaches ~qRdb ≈ (5.39, 0) and (0, 5.39) close to the length scale of lu = 1.167 Rdb. The

transition occurs at n′u ≈ 10, after which the profile of the total structure factor is dominated
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FIGURE 5.11: The peak position q∗ of the measured structure factor for
nu = 30 is compared with qu = 2π/lu.

FIGURE 5.12: Left: The radially averaged structure factor (measured in SOMA)
for n′u = 1, n′u = 2 and n′u = 3 is shown for networks with lu = 0.167 Rdb
and 0.5 Rdb. Right: The intensity of the structure factor Smax

total as a function of
n′u (measured in the phonon model) is shown for small lu.

by the crosslink characteristics and the intensity of the structure factor grows according to

n′2u . Similar behavior is observed in Figure 5.10 (C) for lu = 1.5 Rdb. In this case, the

crosslink characteristics dominate the network’s structure factor already at much smaller n′u.

In this interesting regime, the structure factor is a result of the complex interplay between the

two characteristics that are, only for this range of lu, at the same length scale. As it can be

observed in the 2D structure factor in Figure 5.10 (B) and (C), the dominant wavevector is

slightly smaller than qu. This implies a lamellar spacing marginally above the unit cell size lu.

The intensity of the total structure factor and crosslink structure factor are shown as a
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function of n′u in Figure 5.13 for lu = 2 Rdb. The crosslink structure factor (Sxlink, measured

in the phonon model) dominates the total structure factor (Stotal , measured in SOMA) already

at n′u ≈ 1. Above n′u ≈ 30, the growth of the structure factor follows n′2u indicating that

the crosslink characteristics dominate. The maximum of the total structure factor is found at

qu = 2π/lu.

FIGURE 5.13: Left: The intensity of the total structure factor (measured in the
phonon model) is shown for intermediate lu. Right: The structure factor as a
function of n′u is presented for strongly stretched networks at lu = 1.5 Rdb and

2 Rdb. For n′u above 30, Smax grows like n′2u .

5.5 Phase behavior

In [120], the mean-field model was applied in the framework of the standard SCFT to study

the phase behavior of regular 2D networks with the topology fixed to a planar square lattice.

The main idea of the SCFT approach is to decouple the interaction between the crosslinks. The

condition of N̄ → ∞ in the SCFT approach is imitated by the large number of overlapping 2D

networks in SOMA simulations. In the mean-field model, the incompressible homopolymers

are found to behave very similar to phantom networks [120]. The key results of the SCFT

approach on the phase behavior of regular networks can be summarized as the follows:

• The free energy of the network system as a function of unit cell size lu possesses two

minima for 3 < χNdb < 10.235 suggesting a coexistence of two unit cells sizes. The

author interprets this as a macrophase coexistence of disordered and ordered state.
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• χcNdb of the first-order transition gradually decreases as the unit cell size is increased

and ends in a critical point at χNdb = 3.

In the following, I first test the predicted macrophase coexistence in subsection 5.5.1. Then,

in subsection 5.5.2, the ODT of 2D polymer networks is measured directly in the simulation

as a function of lu and nu. This will be compared with the RPA prediction making use of

the structure factor Stotal(q∗, nu = 30). For χNdb > 0, the side lengths of the unit cells

perpendicular to the lamellar orientation, denoted by l⊥u , are not necessarily equal to the

imposed average unit cell size lu. In the following, it is important to distinguish the two

quantities.

5.5.1 Macrophase coexistence

In this section, the macrophase coexistence predicted by the SCFT calculation [120] will be

tested. In Ref. [120], the free energy per strand is derived for a stretched symmetric diblock

copolymer network as a function of the imposed unit cell size lu for different χN. It is

basically the free energy of a deformed network. At χN = 0, the free energy has a minimum

at lu = 0 and increases monotonically with lu. With χNdb increasing above 3, a second local

minimum in the free energy apart from zero appears. In this case, the coexisting phases in

equilibrium can be obtained by performing the double-tangent construction. The intercepts

of the double-tangent line indicate a phase coexistence of two unit cell sizes. For a network

with a constant imposed average unit cell size lu, this suggests the appearance of a lamellar

structure with unit cell size l⊥u > 1.3 Rdb in addition to the disordered state with l⊥u < lu.

Above χN = 10.235, the second minimum apart from zero dominates, corresponding to a

microphase separation with lamellar spacing ≈ 1.33 Rdb.

In the following, I search for the predicted macrophase coexistence in the two-phase

region, also called the miscibility gap. I choose a relative small imposed unit cell size

lu = 0.5 Rdb(1.22 Rg). This is because the unit cell sizes l⊥u in this system possess the desired

bimodal distribution as in the case of the macrophase separation predicted by Ref. [120]. This

will become more clear later when I discuss Figure 5.15. The network is comprised of 30× 30

unit cells.
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I generate a macrophase-separated system by initializing the polymer networks in an

external field to obtain an initial configuration with half of the system equilibrated to the

lamellar phase and the other half to the disordered phase. The morphology of the initial

configuration is shown in Figure 5.14 (A), it confirms the enforced macrophase-separated state.

For lu = 0.5 Rdb, the macrophase coexistence is predicted for χNdb > 6. If macrophase coex-

istence is a stable state or a metastable state of the network system, the starting configuration

should be able to maintain its structure for a certain range of χNdb close to χN = 6. Because

of the presence of the fluctuations in the simulation, the coexistence could be found at a

slightly higher value than the prediction of SCFT. After the external potential is removed, I

keep lu constant and increase χNdb to 6, 6.5, 7.1, 7, 3 and 7.5. In Figure 5.14, the morphology

of the network system at various χNdb is shown. The typical unit cell size distribution can be

found in Figure 5.15. I distinguish between the unit cell size in the direction perpendicular to

the lamellar orientation l⊥u and parallel to the lamellar orientation l‖u.

For χNdb = 6− 7.1, the morphologies suggest isotropic configurations and there exists

no direction perpendicular to the lamellar orientation. Identical unit cell distributions are

observed in both x- and y-direction, characterized by a single peak center at lu = 0.5 Rdb. In

this range of χNdb, the morphologies and the unit cell size distribution indicate disordered

states. The macrophase coexistence dissolves after the external field is switched off.

For networks quenched to χNdb ≥ 7.3, the morphologies in Figure 5.14 (D) and Fig-

ure 5.19 (C) suggest an ordered lamellar structure without disordered regions. In this regime,

a bimodal l⊥u distribution is observed with one peak close to zero and the second peak at

the length scale of the equilibrium lamellar spacing ≈ 1.2 Rdb. The lamellar spacing of the

ordered structure at χNdb = 8 matches that of the initial configuration. This proves that

the lamellar structure in the enforced macrophase separated initial configuration possesses

the appropriate lamellar spacing. In the direction parallel to the lamellar orientation, the l‖u

distribution is very similar to that of a disordered state with one peak centered at lu. Although

the predicted simultaneous presence of two unit cell sizes is observed in ordered network

systems, there is no hint of macrophase coexistence within the explored range of χNdb. In

the following, the folded unit cells with l⊥u ≈ 0 will be called the loops and the unfolded unit

cells with l⊥u > lu will be called the bridges.
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(A) Initial configuration (B) χNdb = 6

(C) χNdb = 7.1 (D) χNdb = 7.3

FIGURE 5.14: Density morphologies of macrophase separated copolymer
networks with lu = 0.5 Rdb are shown for multiple χNdb around the predicted

macrophase coexistence.

In order to understand the observed simultaneous presence of two unit cell sizes, the spatial

correlation between the unit cell sizes is studied as a function of their chemical distance. I

consider only the case when the spatial unit cell size and the chemical distance are orthogonal.

For the correlation of l⊥u (l‖u), the chemical distance parallel (orthogonal) to the lamellar

orientation M‖ (M⊥) is counted. The autocorrelation is defined as the product of l⊥u (l‖u) of

two unit cells separated by M‖ (M⊥)

C⊥ =

〈
l⊥u (M0) × l⊥u (M0 + M‖)

〉
M0〈

l⊥u (M0) × l⊥u (M0)
〉

M0

(5.48)
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FIGURE 5.15: The unit cell side length distribution of networks with nu = 30
perpendicular (l⊥u ) and parallel (l‖u) to the lamellar orientation is shown for
lu = 0.5 Rdb, lu = 0.67 Rdb, lu = 1.5 Rdb and lu = 3 Rdb. For lu = 0.5 Rdb
and lu = 0.67 Rdb in the ordered state, the unit cells form loops and bridges
in the direction perpendicular to the lamellar orientation. At lu = 1.5 Rdb and
lu = 3 Rdb, the only peak of the unit cell side length matches the equilibrium
lamellar spacing. Two Gaussian distributions with means equal to 1.5 Rdb and
3 Rdb and with fitted variances are shown as well. The figure is reprinted with

permission from [77]. Copyright 2022 American Chemical Society.

or

C‖ =

〈
l‖u(M0) × l‖u(M0 + M⊥)

〉
M0〈

l‖u(M0) × l‖u(M0)
〉

M0

, (5.49)

where the average is calculated over all unit cells M0 in the networks. In the limit of large

chemical distance where the unit cells can be considered as uncorrelated, the correlation is

given by l2
u = 0.25 Rdb. In the disordered state, the autocorrelation can be calculated as a

function of the chemical distance M analytically

Cα(M) =
〈

lα
u(M0) × lα

u(M0 + M)
〉

M0

/
0.25Rdb

=
2R2

db
3π

∫ π/2

0
dq′

cos(2q′M)

1 + sin(q′)
, (5.50)

where α can be x or y.
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FIGURE 5.16: Top: The autocorrelation between unit cell sizes is shown as a
function of their chemical distance. Bottom: The unit cell sizes perpendicular to
the lamellar orientation are illustrated for one regular network with lu = 0.5 Rdb
at χNdb = 8. l⊥u > 0.5 Rdb are shown in red while l⊥u < 0.5 Rdb are shown
in green. The figure is reprinted with permission from [77]. Copyright 2022

American Chemical Society.

The correlations are shown in Figure 5.16 (top) for network systems at χNdb = 6

(disordered state) and 8 (lamellar state).

In the disordered state for χNdb = 6, the measured data in both spatial dimensions agrees
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with the prediction of the phantom network as given in Equation 5.50. For χNdb = 8 in the

ordered state, the networks structure parallel to the lamellar interfaces is unaffected by the

lamellae structure because there exists no domains and domain boundaries in this direction.

In this case, the autocorrelation function is identical to the disordered system and also agrees

with analytical prediction. The unit cell size distributions of these three systems (shown as

red square, blue circle and blue square in Figure 5.16 top) have only one peak at the imposed

unit cell size.

In the ordered state and in the direction perpendicular to the lamellar orientation (consider

l⊥u ), the unit cell size is characterized by a bimodal distribution with a much larger variance

than in the disordered state. Loops and bridges are formed in order to adjust the difference

between the imposed average unit cell size and the equilibrium lamellar spacing. According

to the simulation data, this autocorrelation also agrees with the data in the disordered state.

This indicates that microphase separation does not affect the range of the correlation. The

autocorrelation functions drop rapidly with increasing chemical distance and reaches a plateau

for M‖ > 4. This indicates that the typical domain size of the loop-rich area and bridge-rich

area is only a few unit cells, suggesting locally formed loops and bridges.

To further address the formation of loops and bridges as a local phenomenon, I show in

Figure 5.16 (bottom) the positions of the B-crosslinks as points. l⊥u connecting the neighboring

unit cells is colored green if it is a loop and red if it is a bridge. As one can see, the loops and

bridges are not distributed in macroscopically, spatially separated domains but can be found

everywhere with restricted correlation over only a few unit cells.

In addition, the l⊥u distributions of ordered networks with imposed unit cell size lu =

1.5 Rdb and lu = 3 Rdb are also shown in Figure 5.15. For lu = 1.5 Rdb and 3 Rdb, the

l⊥u distribution has only one peak at the length scale of lu. This suggests that the lamellar

structure is formed on the template of the imposed A and B-rich domains. Their ordered

phase is comprised of unfolded unit cells without the simultaneous presence of two unit cell

sizes. I fit the two measured l⊥u distributions by a Gaussian distribution

flu(l
⊥
u ) = a0 exp

(
− (l⊥u − lu)2

a1

)
.
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and obtain for

lu = 1.5 Rdb : f1.5(l⊥u ) = exp
(
− (l⊥u − 1.5)2

0.313

)
(5.51)

(5.52)

and

lu = 3 Rdb : f3(l⊥u ) = exp
(
− (l⊥u − 3)2

0.364

)
. (5.53)

In the case of lu = 1.5 Rdb, the measured l⊥u distribution deviates slightly from the Gaussian

distribution in the region close to zero. Its peak is found to be slightly above lu = 1.5 Rdb,

which is in good agreement with the peak position of the structure factor Stotal(q∗, nu = 30)

being slightly below 2π/lu as shown in Figure 5.10 (C). This indicates an equilibrium

lamellar spacing larger than lu and its implication will be discussed in the next section in

the context of ODT. For lu = 3 Rdb, the measured l⊥u can be well described by a Gaussian

distribution with mean at lu = 3 Rdb.

Combining these results, I conclude that the macrophase coexistence of ordered and

disordered state [120] is not a stable state of 2D regular polymer networks. Instead, I observe

the simultaneous presence of unit cells with different side lengths corresponding to locally

formed loops and bridges in ordered copolymer networks with small lu.

5.5.2 Order-disorder transition

Similar to block copolymer melts, copolymer networks microphase separate to avoid dis-

favored interfaces between A and B segments. Unlike copolymer melts, end-crosslinked

networks with the given topology possess an imposed checkerboard pattern with periodicity lu

in x- and y-direction even at χNdb = 0. Once the system undergoes ODT, a lamellar structure

with one preferred orientation forms and breaks the symmetry between the two directions.

In this section, the ODT of 2D networks with nu = 30 are directly measured in SOMA.

In the simulation, the number of network molecules involved in the simulation grows with

increasing lu to assure a constant density for all simulation systems. I start from configurations
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in disordered state and gradually increase the incompatibility in ∆χNdb = 0.1 steps. The

configuration is equilibrated at each χNdb stage for 106 MC-steps. The ODT in particle

simulations can be observed as a discontinuous change of the nonbonded energy per monomer

Enb and the composition morphology. An example of an identified ODT during ”cooling

down" is illustrated in Figure 5.17 for lu = 0.33Re.

  

FIGURE 5.17: The nonbonded energy per monomer as a function of MC-steps
together with corresponding composition morphologies for lu = 0.33Re close
to the ODT is shown. χcNdb is 7.3 in this example. The figure is reprinted with

permission from [77]. Copyright 2022 American Chemical Society.

χcNdb as a function of lu is presented in Figure 5.18. The intensity of the structure factor

of the networks can be used to predict χc of the ODT according to RPA via

χc =
1

2Stotal(q∗, nu)
. (5.54)

The SOMA result of ODT (black curve) is compared with the RPA prediction (red curve)

using Stotal(q∗, nu). The RPA prediction for nu = 30 is qualitatively in good agreement with

the simulation result. The measured χcNdb is slightly higher than the RPA prediction as a

result of the presence of the fluctuations. A reduction of χcNdb is observed with increasing

lu. This is caused by the increasing polarization of the system originating from the spatial

separation of distance lu/2 imposed between the A- and B-rich domains by end-crosslinking

A-blocks with A and B-blocks with B.
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In Figure 5.18, I also present the RPA prediction of the ODT using Stotal(q∗, 1) and

Stotal(qu, 1) to demonstrate the impact of neglecting correlations between unit cells as as-

sumed by the mean-field model. As shown, assuming nu = 1 results in considerably larger

values of χcN of the ODT for all studied lu. This deviation was already implied by the

underestimated structure factor for nu = 1, which corresponds to the case of a single unit

cell embedded in a 30× 30 network. One should note, that the ODT obtained with RPA in

the scenario of nu = 1 is still different from the spinodal curve provided by Ref. [120]. This

is because Ref. [120] considers the stability of the free energy with respect to stretching (it

is calculated as a function of lu), whereas in the RPA approach, the free energy is expanded

with respect to the composition φ.

FIGURE 5.18: χNdb of the ODT is measured in SOMA and compared with
analytical RPA predictions. The simulation data are obtained from the average
of five independent runs, which provide nearly identical results. This indicates

that the error range is smaller than ∆χNdb = 0.1.

The morphology of the networks in the ordered state varies with the unit cell size lu as a

result of the interplay between the diblock characteristics and the crosslink characteristics of

the network. The analytical models for phantom networks are not able to provide information

about morphologies in the ordered state, thus we rely on the SOMA simulation to investigate

the local structure underneath the lamellar structure. In accord with the three outlined regimes
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of the structure factor, three typical ordered morphologies depending on lu are shown in

Figure 5.19.

(A) lu = 0.167Rdb, χNdb = 8 (B) lu = 0.33Rdb, χNdb = 8 (C) lu = 0.5Rdb, χNdb = 8

(D) lu = 0.67Rdb, χNdb = 7 (E) lu = 1.5Rdb, χNdb = 5 (F) lu = 3Rdb, χNdb = 1

FIGURE 5.19: The composition of the 2D polymer network in ordered state is
shown for six unit cell sizes. For compressed polymer networks lu ≤ 0.5 Rdb,
the morphology in ordered state is similar to that of a multiblock copolymer melt.
For the intermediate range of 0.6 Rdb < lu ≤ 1.5 Rdb, a unique multidomain
structure is observed. For strongly stretched polymer networks lu > 2 Rdb, a

lamellar structure is present for any non-zero χNdb.

For lu ≤ 0.5 Rdb and nu = 30, the morphologies are presented in Figure 5.19 (A), (B)

and (C). The structure factor as well as the phase behavior of the network is dominated by the

diblock characteristics. As observed before, the structure factor of compressed networks at

χNdb = 0 is typically isotropic. This corresponds to the fact that the lamellar structure is not

necessarily aligned with the unit cell orientation in the network. The ordered morphology is

characterized by a lamellar spacing much larger than lu which leads to a number of lamellae

nL smaller than nu. The large mismatch between lu and the lamellar spacing is resolved by

the formation of loops and bridges. In this regime, the ordering process is similar to that

of a multiblock copolymer melt characterized by two important features [127–130]: (i) the

existence of loops and bridges in the ordered state and (ii) χcNdb of the ODT converges to

≈ 7.5 for large block numbers. χcNdb converges towards a value that is close to 7.5 for
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lu → 0 and thus confirms their similarity to multiblock copolymer melts. The bimodal l⊥u

distribution in Figure 5.15 confirms the loops and bridges in ordered polymer networks for

small lu. For the maxima at l⊥u = 0, the unit cells fold back onto themselves like loops in

ordered multiblock copolymer. For the bridges corresponding to the maxima at l⊥u = l∗u,

the unit cells are flat and stretched across a domain. Furthermore, the network system is

able to control the equilibrium lamellar spacing by adjusting the relative weight of loops and

bridges. An illustration of loops and bridges can be found in Figure 5.20 As one can see in

FIGURE 5.20: A loop and a bridge

Figure 5.15, loops are predominately formed for very small lu. With increasing lu, the loop

fraction decreases.

For strongly stretched networks, the morphology of the ordered state is shown for lu =

2 Rdb in Figure 5.19 (F). Only bridges are formed in this regime. The lamellar orientation is

found to be aligned with the unit cells orientation in the network. The crosslink characteristics

govern the phase behavior in this regime, resulting in a lamellar structure with periodicity lu.

The number of lamellae matches the number of unit cells. The squared shape, size and the

orientation of the unit cells retain in this case. The repulsion between A and B monomers

reduces the square symmetry of the checkerboard pattern of a single network to a stripe pattern

of the collective composition field of multiple networks as demonstrated in Figure 5.21.

Between the two limits 0.5 Rdb < lu < 2 Rdb, the ordered morphology is characterized

by a novel multidomain structure with perpendicular lamellar orientations. The compositions

are shown in Figure 5.19 (D) and (E) for lu = 0.67 Rdb and 1.5 Rdb. In the former case, the

two peaks of the bimodal l⊥u distribution have similar amplitude, indicating the loops and

bridges are formed with comparable probability. In the latter case, the probability of loops is

negligible.
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FIGURE 5.21: The incompatibility between unlike species drift overlapping
network molecules apart from each other and leads to the formation of A and B

stripes.

In this regime, the unit cells are, in addition to the occasional formation of loops and

bridges, slightly deformed with respect to the squared shape affine to the periodic boundary

conditions. The equilibrium lamellar spacing is slightly larger than the unit cell size lu. This

small mismatching between the imposed unit cell sizes and the lamellar spacing is resolved by

a deformation and rotation of the unit cells. Making use of the positions of the A-crosslinks,

the shape of the unit cells can be reconstructed. The measured unit cell shape averaged over

unit cells inside each domain is shown in Figure 5.22 (A) for domain P and H (as denoted

in Figure 5.19). The bottom figures illustrate the relation between unit cell shape and the

lamellar morphology. The geometry of the unit cells indicate an extension of the unit cell

FIGURE 5.22: (A): Geometry of the unit cell shape in two domains H and P.
(B): The underlying arrangement of the unit cells in the lamellar morphology.
The figure is reprinted with permission from [77]. Copyright 2022 American

Chemical Society.

size perpendicular to the lamellar orientation leading to a reduced number of lamellae and

lu . dL. The unit cells are compressed horizontally to the lamellar orientation enforced by

the incompressibility constraint. Because of the fixed square-shaped boundary conditions, this
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deformation cannot be built equally for all unit cells and this is the origin of the multidomain

structure. This observation is true for domains with different lamellar orientation.

At this point, I want to briefly address the similarity between the networks in Figure 5.19

(D,E) and liquid-crystalline elastomers. The latter one is a class of materials characterized

by unique properties resulting from the interplay between the network elasticity and the

liquid-crystalline degrees of freedom. During their ordering process, they deform and rotate to

form irregular stripe textures [131, 132]. This is similar to the observed unit cell deformations

during the microphase separation of regular networks in the presence of elasticity. Within a

universal description of nematic elastomers, the free energy of the system can be expressed as

a function of the deformation and rotation of the mesogens [133]. The free-energy expression

in Ref. [133] allows a direct comparison of the free energy of different possible morphologies

and thus the prediction of the number of domains as well as the orientations of the lamellar

domains.

5.6 Summary

The structure and structure formation in 2D regular networks made of symmetric diblock

copolymers were investigated applying two analytical approaches: (i) the 2D phonon model

and (ii) the mean-field model (originally introduced in Ref. [120]) and two particle-based

simulations. The first simulation program is a truly 2D MC simulation which only accounts

for the junction points connected via effective harmonic springs that are equivalent to the

polymer strands. The second simulation program is SOMA, where multiple overlapping,

quasi-2D polymer networks are embedded in a 3D simulation box. In SOMA, the monomer

discretization along the polymer strands as well as the incompressibility constraint are taken

into account. In both simulation programs, the opposite sides of the networks are connected

via bonds across the periodic boundary conditions.

The phonon model and the mean-field model were applied to compute the distribution of

the crosslinks in a 2D polymer network comprised of nu × nu square-shaped unit cells with

side length lu. The phonon model accounts for the full correlation between the crosslinks,

whereas the mean-field model assumes independent crosslinks. The advantage gained by the
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mean-field approximation is the decoupling of the interactions between different crosslinks.

I tested the accuracy of the strand length distribution and the block distance distribution as

a function of the chemical distance derived from the two analytical approaches against the

simulation results and found the following results: First, the comparison between SOMA

at κNdb = 0 and the MC simulation suggests that the monomer discretization has no effect

on the distribution of the crosslinks. Second, the phonon model and the mean-field model

predict the same strand length distribution which is also in agreement with my simulation

results and with theories [114]. Third, the mean-field model predicts a constant variance of

the block distance independent of the chemical distance which deviates significantly from

the simulation results for nu > 1, whereas the phonon model successfully describes the

non-trivial block distance variance as a function of the chemical distance in the absence

of the incompressibility constraint. Fourth, the incompressibility constraint suppresses the

amplitude of fluctuations at large length scales of the order of the simulation box size and has

only insignificant impact on length scales below five unit cells.

Then, I investigated the structure factor and the phase behavior of 2D networks. The

macrophase coexistence of disordered state and lamellar state predicted by the SCFT approach

in Ref. [114] was not observed in the simulation. I found that the observed simultaneous

presence of two different unit cell sizes for a fixed lu in fact corresponds to the locally

formed loops and bridges. I divided the structure factor into contributions from the crosslink

characteristics and the diblock characteristics that are important on two (typically different)

length scales. I first computed the crosslink structure factor using the crosslink positions

derived from the phonon model. The intensity of the crosslink structure factor was found to

be proportional to the number of scattering centers, i.e. n2
u. The total structure factor and the

ODT of 2D diblock copolymer networks were then measured. I found that χNdb of the ODT

predicted by RPA using the intensity of the total structure factor is in good agreement with the

SOMA simulation result. The ODT measured directly in SOMA is slightly higher than the

RPA prediction because of the presence of fluctuations. In general, the phase transition in 2D

regular networks is associated with the breaking of the square-shaped domains with periodicity

lu in x and y-direction and the formation of lamellae which have a smaller interfacial area

compared to the checkerboard pattern. According to their unit cell size lu, I divided regular

networks into three typical classes.
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(i) For small unit cell sizes, the diverging contribution (∝ n2
u) from the crosslinks to the

total structure factor is minor for the range of moderate nu covered by the simulations in this

study. The intensity of the total structure factor first increases slightly with nu and reaches a

plateau above nu > 5. In this regime, the total structure factor is dominated by the diblock

characteristics of the network resulting in a lamellar spacing much larger than lu and the

number of lamellae is much smaller than nu. The ODT is measured at χNdb ≈ 7.5 in SOMA

similar to the ODT of multiblock copolymer melts.

(ii) With increasing lu, the crosslink characteristics become important already at smaller

nu covered by the simulations in this work. In this case, the transition from the diblock

characteristics to the crosslink characteristics can be observed as a shift of the nearly isotropic

dominant wavevector towards larger values until it reaches the length scale of the imposed

unit cell size ~qu ≈ (2π
lu

, 0) and (0, 2π
lu
) (anisotropic). For the intermediate lu and nu = 30

studied here, the complex interplay between the two characteristics leads to an equilibrium

lamellar spacing slightly above the unit cell size. The difference between the lamellar spacing

and the unit cell size is adjusted by an expansion of the unit cells perpendicular to the

lamellar orientation and a compression along the lamellar orientation. This deformation

cannot be affine because of the fixed square-shaped boundary conditions. This results in

a novel multidomain structure of the ordered morphologies. As I pointed out, this unique

morphology bears a resemblance to nematic elastomers.

(iii) For strongly stretched networks, the total structure factor is dominated by the crosslink

characteristics already at nu = 1 and the intensity scales according to n2
u. An ordered lamellar

structure with periodicity lu is formed already for very small χNdb.
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Chapter 6

Phase behavior of random copolymer

networks

Some content of this chapter has been published in Macromolecules with the title “Phase

Separation of Randomly Cross-Linked Diblock Copolymers” [134]. Some parts of this chapter

are results of close collaboration with Marcus Müller and Annette Zippelius.

In the previous chapter, the structure and structure formation of end-crosslinked 2D

regular polymer networks was studied. I discussed interesting mechanical properties such

as the elasticity of 2D regular networks and investigated how they affect phase transitions in

2D copolymer networks. The unique structural specialties of copolymer networks studied

in the previous chapter are more or less universal. In this part of the thesis, I consider

randomly crosslinked 3D polymer networks formed by connecting symmetric diblock chains

via covalent bonds. Unlike regular 2D networks with fixed topology, the mechanical strength

of random networks can be varied by adjusting the number of crosslinks.

Numerous studies on network structure and elasticity can be found in the literature [81,

99, 101, 135–142]. In this study, I apply the particle-based Monte-Carlo simulation SOMA

to study gelation and microphase separation of randomly crosslinked symmetric diblock

copolymers for various crosslink densities and preparation conditions. In the simulations,

the process of crosslinking is achieved via a stochastic algorithm that assigns irreversible

connections to monomer pairs based on their geometrical distance. The added crosslinks

are equivalent to the bonds along the molecular backbones and are also described by the
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beads-spring model. In this study, the bonds are allowed to cross each other and thus the

entanglement effect is not included. The instantaneous formation of crosslinks follows

the Deam-Edwards distribution [142] i.e., the probability of a bond being formed between

segment i at position~ri and segment j at position~rj is given by

Pcrosslink = A exp
(
− 3

2b2

(
~ri −~rj

)2
)

(6.1)

with b the statistical segment length. The entirety of generated crosslinks will be described

as the crosslink configuration C. Because of the stochastic procedure of crosslinking, each

network realization is unique and is parametrized by one specific crosslink configuration. The

probability of a crosslink configuration can be expressed as

P(C) ∝ A exp

(
− 3

2b2 ∑
all pairs

(
~ri −~rj

)2

)
. (6.2)

Configurations with different crosslink density can be generated by varying the parameter

A. The crosslink density p is defined as the total number of crosslinked monomers divided by

the total number of polymers n, namely

p =
# crosslinked monomer

n
. (6.3)

One should note that one established bond is shared by two crosslinked monomers and

thus counts as two crosslinks. During crosslinking, the present molecular backbones in

the system will not be modified. The crosslinks are allowed to be formed between two

neighboring molecules as well as between monomers within the same molecule. The crosslink

configuration also depends on the randomly organized structure of the initial linear chains. In

the following, the initial crosslink configuration will be referred to as the preparation state.

Since the size of the simulation box is always finite, periodic boundary conditions are applied

to mimic a macroscopic system and avoid boundary effects. In such a system, chains percolate

if their extent reaches both opposing sides of the simulation box and the cluster is connected

to itself across periodic boundary conditions. In simulation studies with percolating clusters,

the bonds (i.e. the distance between monomers) must be evaluated in the minimum image

convention.
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The phase diagram of interest includes two phase transitions: Gelation, controlled by

the crosslink density p, and the ODT, directed by the Flory-Huggins parameter χ. The

Flory-Huggins parameter of the measurement ensembles will be referred to as χm. Depending

on χpN of the preparation state, the random crosslinks enhance the stability of the disordered

or the periodically ordered state over a larger range of incompatibilities χmN, because the

irreversible bonds impart a memory of the structure that existed at their formation. Knowing

the amount of crosslinking required to retain a microphase-separated or disordered structure

at thermal dynamical conditions that considerably differ from the preparation state is also

practically useful for stabilizing the preparation state, which may only be metastable without

crosslinks.

This chapter is arranged as follows: In section 6.1, a short summary of the background of

the two phase transitions is presented. Then I determine the percolation threshold with finite-

size analysis in section 6.2. The localization length ξ is measured in section 6.3 as a function

of the crosslink density and its critical behavior at the percolation threshold is examined.

Then, I study the stability of crosslinked structure against “warming up” in section 6.4. Lastly,

I provide a 3D diagram that shows critical χcN of the ODT as a function of the crosslink

density p and the Flory-Huggins parameter χpN in the preparation state in section 6.5.

6.1 Theoretical background

6.1.1 Sol-gel transition

The sol-gel transition or gelation describes the formation of a macroscopic network of

polymers which are randomly distributed in space. During this process, components that are

free to move in the liquid state (the sol phase) become connected across the entire system and

gain elasticity (the gel phase). This technique enables the synthesis of solid phase materials

through gelation instead of crystallization or glass formation.

Percolation models [143–146] have been introduced to describe connectivity in random

networks. The application of percolation theory can not only be found in polymer physics
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or structural chemistry but also in diverse areas such as sociology and information theory.

A network is called percolating (or macroscopic, infinite) if there exists a path that reaches

all sides of the system. The extent of clusters and thus the probability of the presence of an

infinite network grows with crosslink density. In the theory, there exists a critical crosslink

density (denoted by pc) below which the probability of finding an infinite network is 0 and

above which the probability is always 1. Since the clusters generated in this work are finite,

the measured sol-gel transition will be smeared out. This difficulty in the measurement of the

percolation threshold is known as the finite-size problem.

6.1.1.1 Finite-size problem

Generally, the finite-size problem [147, 148] describes the fact that many physical quantities

are size dependent in simulation studies. Only at the limit of infinitely large systems, the

measurement of the quantity becomes accurate. This introduces systematic errors in the

results since it is impossible to simulate infinitely large systems. This effect often has impact

on phase transition studies and causes shifting or scaling on phase transition phenomena.

The measurement of the percolation threshold in our particle-based simulation SOMA also

suffers from the finite-size problem, so that it is difficult to identify one critical point of

phase transition. One approach to extrapolate from finite system size to infinite system size

is to perform a finite-size scaling analysis [149, 150] and study the size-dependent scaling

behaviors. In the measurement of the percolation threshold, the scaling analysis consists of

measuring the percolation probability as a function of crosslink probability and repeating this

for several different system sizes. The percolation probability is defined as the probability of

a system with crosslink density p to contain at least one percolating cluster. For an infinitely

large system, the percolation probability is a step function with respect to the crosslink density.

Above pc, one is certain to have a percolating cluster. When the system size is decreased,

the threshold is smeared out. Instead of one critical value, the percolation transition takes

place within a range of crosslink densities. In the scaling analysis, the percolation probability

of different system sizes cross at a common point which is considered to be an accurate

estimation of the percolation threshold.
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6.1.1.2 Gel fraction

In the simulation, the gel fraction Q is defined as the fraction of monomers in the percolating

macroscopic cluster. In a crosslinked copolymer system, the fraction (1−Q) of monomers

is delocalized, and the remaining fraction of particles Q fluctuates following a Gaussian

distribution around a mean position. Especially for small crosslink densities, the fraction of

components in the free chains that are not connected to the percolating cluster is significant

and has large impact on the mechanical properties and the dynamics of the system. Since

the major interest of this study is the unique features of the network which is constrained

by the connectivity, the fraction of free chains must be measured in order to estimate their

influence on the structure formation. Below the percolation threshold, the gel fraction is zero.

In gel phase, the fraction of free chains decreases and the gel fraction grows with increasing

crosslink density. In the mean-field model of gelation, the gel fraction can be estimated with

the recurrence relation for the probability of a site not connected to the gel [19, 151]. For any

crosslink density p > pc, the gel fraction Q can be obtained by solving

1−Q = exp
(
− pQ

pc

)
. (6.4)

6.1.1.3 Localization length

For a weakly crosslinked system in the sol phase, there exists no percolating macroscopic

cluster and all monomers, even if small clusters of particles are formed, can diffuse freely in

space. For networks above the percolation threshold in the gel phase, monomers belonging

to the percolating cluster are localized because the crosslinks restrict their movement and

only allow fluctuations around a mean position. The impact of the crosslinks on the structure

and structure formation of the network can be outlined by their constraints on the particle

mobility captured by the localization length ξ. The localization length is defined as the extent

of fluctuations of segments. The localization length of a monomer is calculated in fully

equilibrated configurations as

2ξ2 = lim
t→∞

g1(t) = lim
t→∞

(
~r(t)−~r(0)

)2
, (6.5)



130 Chapter 6. Phase behavior of random copolymer networks

where g1(t) is the Mean-Squared Displacement (MSD). Since the center of mass of the entire

network can diffuse during the simulation as a result of its finite mass, the positions~r(t)

and~r(0) must be computed in their center-of-mass frame. The probability distribution of

ξ captures the kinematics of the monomers and thus reflects the deformation ability of the

crosslinked network. It is an important length scale for describing the structure formation of

polymer networks.

In the simulation, the localization length is computed taking only particles belonging to

the percolating chain into account. In percolating networks, the confinement of the monomers

results in a finite localization length. As for phantom networks, the strands are allowed to

pass through each other. For weakly crosslinked systems, the fraction of junction points is

small and the strands between junction points remain flexible with large fluctuations retained.

In the strongly crosslinked regime, the strands are short and have little possibility to fluctuate.

As a result, the localization length declines with increasing crosslink density as will become

clear later in this chapter.

Different realizations of random networks can have distinct crosslink configurations even

if they are generated with the same crosslink density. Although these networks are very

irregular on the length scale of crosslink blocks, they can be considered as homogeneous

and isotropic on macroscopic scale. Therefore, the localization lengths exhibit the same

distribution at a fixed crosslink density, and the mean localization length can be used to

parametrize the topological constraint in a random polymer network without paying attention

to the exact crosslink configuration. The measurements I perform will not be restricted to

a specific crosslink configuration, but averaged over several realizations at each crosslink

density. The exact amount of independent crosslink configurations differs and will be provided

in each subproject.

6.1.2 Order-disorder transition

The second phase transition of our interest is the ODT controlled by the Flory-Huggins

parameter χmN, which is inversely proportional to temperature. The microphase transition of

linear diblock, triblock and multiblock copolymers have been repeatedly studied [127, 128,
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152]. In the mean-field treatment, the ODT of symmetric diblock copolymers is known to be

a second-order transition at χdiblock
mf N ≈ 10.5. Including composition fluctuation increases

the ODT threshold and the phase transition becomes a first-order one [27].

Similar to block copolymer melts, the polymer network microphase separates to mitigate

the energetically unfavorable interfaces between A and B segments. The effect of crosslinks on

the phase separation of multicomponent polymer systems was first investigated by de Gennes

[153] on homopolymer blends. As he found out, the irreversible crosslinks generated in

the disordered state hinders macrophase separation and the homopolymer mixture forms

microphase-separated domains. Experimental studies [154] and simulation studies [155]

on crosslinked symmetric homopolymer blends revealed that the monomers in the network

can rearrange on a considerable length scale and the sizes of microdomains are typically

much larger than the extent of the constituent strands of the network. Wald [156] provided

a schematic phase diagram of the ODT of crosslinked symmetric homopolymer blends as

a function of crosslink density for a fixed preparation condition. His diagram of χcN of

the ODT qualitatively suggests the existence of four phases: disordered liquid, disordered

gel, ordered liquid and ordered gel. In [102], the properties of diblock copolymer melts

that are randomly crosslinked in the ordered state are studied at different χmN. The authors

point out that a disordered state can be found for a large range of crosslink densities above

the percolation threshold when decreasing χmN. The findings common to all these studies,

which are important for my study can be summarized as follows: (i) the crosslinks enhance

the stability of the structure that existed at their formation, (ii) crosslinks only partly fix the

structure of the preparation state, even for crosslink densities well above the percolation

threshold. Comparable phase states as suggested for homopolymer blends are expected for

randomly crosslinked diblock copolymers, but this has never been worked out precisely both

for homopolymers and for diblock copolymers. In this study, I aim to measure an accurate

phase diagram, quantitatively evaluating χcN of the ODT as a function of the crosslink

density and the preparation state.

I apply particle-based simulation tool SOMA to carry out the simulation to determine the

ODT of the polymer network. The microphase separation of symmetric diblock copolymer

melts has been well investigated in SOMA. For N = 32, κN = 30 and
√
N̄ = 128,

χdiblock
c N of the ODT is measured to be≈ 14.6 which is in agreement with earlier studies [32].
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The equilibrium morphology of symmetric diblock copolymers is a lamellar structure with

a characteristic length scale called the lamellar spacing, which parametrizes the periodicity.

For crosslinked polymer networks, another important length scale, the localization length, is

present because of the connectivity. The interplay between the two length scales plays an

important role in the microphase separation of diblock copolymer networks.

In the simulation, I identify the ODT by a change of the non-bonded energy to a lower

value when the transition to the ordered phase occurs, as well as a change to a higher value at

the transition from ordered to disordered state. For non-zero χmN, the incompatibility part of

the free energy ∝ χmN
[
φ̂A (c)− φ̂B (c)

]2 decreases to strongly negative values if A/B-rich

domains are spatially separated.

6.2 Percolation threshold

To locate the sol-gel phase transition, the probability of a system containing percolated

molecules at various crosslink densities is measured. This probability will be referred to

as percolation probability in the following. In the simulation, the percolation probability

can be determined as the ratio between the number of configurations containing at least one

percolating chain and the total number of configurations. In infinite systems, the percolation

probability as a function of crosslink density is a step function with transition from zero

to one at the percolation threshold pc. As discussed in subsection 6.1.1, the percolation

threshold measurement in real simulations is strongly affected by the finite-size problem.

Because of this, the percolation probability curves measured in finite systems are not sharp

enough to locate one critical crosslink density pc. A finite-size analysis is performed to

eliminate the impact of the finite system size. This means, the percolation probability is

measured for several system sizes and their crossing point is located. I use three system sizes

in the simulation: 4× 4× 4 Re
3, 5× 5× 5 Re

3 and 6× 6× 6 Re
3. The invariant degrees of

polymerization for all systems are set to
√
N̄ = 128. For each system size, the percolation

probability is obtained with 100− 300 independent crosslink configurations.

I measure the intersection point of the three percolation probability curves and find the

percolation threshold is about pc ≈ 1.12. The percolation probability at this point is around
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1/2. In other simulation studies [139, 155, 157], a similar percolation threshold was estimated.

I will use the quantity p/pc to parametrize the crosslink density in the following.

FIGURE 6.1: The percolation probability measured in three different system
sizes is shown depending on the crosslink density. The three curves cross
at crosslink density p ≈ 1.12. The percolation probability at this point is
about 0.5. The figure is reprinted with permission from [134]. Copyright 2022

American Chemical Society.

6.3 Localization length

In percolating macroscopic molecules, the particles in the cluster are localized and their

motion are governed by fluctuations about an equilibrium position ~ri0. In the Gaussian

localization model, the probability distribution takes the form

P(~ri) ∝ exp

[
− 3

2ξ2
i
(~ri −~ri0)

2

]
. (6.6)

The extent of these fluctuations is described by the localization length ξ. According to the

theory, the localization distribution can be described by a universal function close to the

percolation threshold [136, 151, 158]. One should note that in the literature, the localization

length is sometimes defined by a factor three smaller than in our definition. In that case, the
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probability distribution of localized particles becomes

P(~ri) ∝ exp

[
− 1

2ξ2
i
(~ri −~ri0)

2

]
. (6.7)

In this study, we stick to the definition of ξ as in Equation 6.6 in accordance with the definition

of Re.

In this simulation study, the localization length is measured with individual monomers

connected to the percolating cluster. Since I aim to investigate the collective behavior

of random networks (such as the microphase separation), the quantity of interest is the

distribution of localization lengths of all monomers in a given polymer network.

Since the gel fraction of weakly crosslinked networks is typically much smaller than

one, the size of the networks in the simulation needs to be addressed as well. Close to the

percolation threshold, the gel fraction shrinks. Analytically, the gel fraction can be obtained

by numerically solving [151]

1−Q = exp
(
− pQ

pc

)
(6.8)

The gel fraction measured in the simulation as well as the analytical prediction are shown

as a function of p/pc in Figure 6.2. The simulation results match the theoretical prediction

very well. This agreement confirms the similarity between the simulated object and the one

described by the theory.

I measure the long-time limit of the MSD of segments, 2ξ2
i = limt→∞〈[ri(t)− ri(0)]2〉

in the center-of-mass reference frame. Close to the percolation threshold, the measurement of

the localization length distribution is very difficult because of the following reasons. Firstly,

the monomers in loosely crosslinked networks are more flexible and are allowed to move

in a larger region. This leads to a larger fluctuation of the localization length and a longer

evolution time before the maximal displacement is explored. Secondly, the limited amount

of monomers in the network results in a smaller sample size and thus further increases the

fluctuation of the measured ξ2 distribution. To overcome these two problems, the localization

length distribution is computed from the average of ten snapshots of each configuration.



6.3. Localization length 135

FIGURE 6.2: The gel fraction Q measured in the simulation is shown as a
function of p/pc and compared with the analytical prediction. The figure is
reprinted with permission from [134]. Copyright 2022 American Chemical

Society.

6.3.1 Universal scaling behavior around pc

In the vicinity of the percolation threshold pc, the localization length distribution is governed

by universal scaling behavior. According to the calculation in [136], the asymptotic expression

of the scaling function is

π(m) = 4.554 exp(−2m) for m� 1

π(m) =
3

m2 (1.678/m− 3/5) exp(−1.678/m) for m� 1. (6.9)

In the following, I will probe the universal scaling behavior for p & pc in the simulation.

The same system as in the previous section with system size 5× 5× 5Re
3, chain length

N = 32 and invariant polymer density
√
N̄ = 128 is used. In Figure 6.3, the ξ2 distribution

is shown for two crosslink densities at several time steps to illustrate that the profiles of the

distributions have already converged at the measurements. Here, the time is measured in the

unit of τR = Re
2/D, where D denotes the self-diffusion coefficient of the uncrosslinked

melt with the same system parameters.
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FIGURE 6.3: ξ2 distribution for p = 1.232 (left) and p = 1.27 (right) at several
time steps are shown to demonstrate their stability.

Then, the averaged ξ2 denoted as [ξ2] of each monomer is calculated from ten snapshots

and their distribution is computed. I test the scaling behavior of the ξ2 distribution without

making use of the percolation threshold. Instead, the probability distribution of ξ2 and its

first moment will be normalized to one as suggested in [158]. By doing so, a normalized

probability density for ξ2/[ξ2] can be obtained. Then I perform the same normalization on the

analytical prediction π(m). The two asymptotic expressions provided in Equation 6.9 cross

at m = 1.41 and their derivative is also the same at the crossing point. The two functions

can be joined at m = 1.41 and the corresponding asymptotic formula is used for m � 1

and m� 1. I compare the measured scale-free ξ2 distribution with the analytical prediction

in Figure 6.4. For crosslink densities close to pc, the measured ξ2/[ξ2] distributions match

the scaling function very well, implying the validity of the universal behavior of randomly

crosslinked polymers. At p = 1.27, the measured distribution deviates slightly from the

analytical prediction. This indicates that the networks with crosslink density above p = 1.14

do not fall under the description of the universal scaling behavior anymore.

6.3.2 Mean MSD as a function of p

The localization length reflects the length scale of monomer displacement in polymer networks

constrained by the spatial connectivity. This length scale is to be compared to the lamellar

spacing of unconnected diblock copolymer melts. The equilibrium lamellar spacing of

unconnected diblock melts is measured in SOMA to be dL ≈ 1.52Re. The measured [ξ2] is
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FIGURE 6.4: Normalized MSD distribution measured in the center-of-mass
frame compared with the analytical prediction. The figure is reprinted with

permission from [134]. Copyright 2022 American Chemical Society.

shown in the unit of d2
L as a function of crosslink density in Figure 6.5. As one would expect,

[ξ2] decreases with growing crosslink density. If [ξ2] is much larger than the length scale of

diblock lamellar spacing, the constraints introduced by the crosslinks are so small that the

network can still be considered flexible. With [ξ2] decreasing to the equilibrium lamellar

spacing of the constituent diblocks, the microphase separation of diblock polymer networks

into lamellar structure becomes more difficult and χcN of the ODT increases. Once [ξ2]

becomes smaller than the length scale of the lamellar spacing, the mobility of the particles

will be too small to allow segregation into domains separated by a distance dL. The crossover

point is measured to be p/pc ≈ 1.3.

6.4 Stability of ordered random networks upon heating

For random networks prepared in the lamellar state, the analytical model developed by

Annette Zippelius [134] predicts a non-vanishing frozen-in lamellar order for networks with a

gel-fraction Q larger than zero (i.e. all systems above the percolation threshold). At length

scales specified by the wavenumbers kRe, Annette Zippelius [134] predicts the amplitude of
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FIGURE 6.5: Left: [ξ2] is shown in units of d2
L. This ratio crosses one at about

p/pc ≈ 1.3. Right: d2
L/[ξ2] is plotted against the crosslink density p/pc. The

inset shows d2
L/[ξ2] close to the percolation threshold.

the frozen-in structure σk to be

σk =
p

4pc
χpNσ0

k Qe−k2ξ2/3sσ2Σ(k
2, k2), (6.10)

with σ0
k the amplitude of the corresponding structure in the preparation state. The lamellar

state, which was gradually “cooled down” to χpN = 25 during the preparation, has a

lamellar spacing dL = 1.52Re corresponding to kLRe = 4.13. The amplitude of the lamellar

modulation is found to be one.

In the above equation, sσ2Σ(k
2, p2) is the three point correlation function defined as

sσ2Σ(k
2, p2) ≡

∫ 1

0

∫ 1

0

∫ 1

0
ds1ds2ds3γ(s1)γ(s2)e−k2 Re2

6 |s2−s3|e−p2 Re2
6 |s1−s3|. (6.11)

The variables si in the above equation label the indices of monomers, γ(si) denotes the

particle type and is 1 for A-type monomers and −1 for B-type monomers. sσ2Σ(k
2, p2) can

be solved numerically as well as analytically. Laborious integral calculation provides an

analytical expression for the three point correlation function

sσ2Σ(k
2Re

2, k2Re
2) =

63

k6Re
6

{
e−k2 Re2

3

[
−1 + 4ek2 Re2

12 − 2ek2 Re2
6

(
6 + k2 Re

2

6

)
(6.12)

+4ek2 Re2
4

(
7 + k2 Re

2

6

)
+ e2k2 Re2

6

(
2k2 Re

2

3
− 19

)]}
.
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The analytical expression together with the numerically evaluated correlation function is

demonstrated in Figure 6.6. At the target wavenumber kLRe = 4.13, it is sσ2Σ(kLRe, kLRe) ≈

0.039.

FIGURE 6.6: The result of the analytical expression for sσ2Σ as well as the
numerically evaluated value is shown as a function of kRe. The target wavevec-
tor corresponds to the peak region of the three point correlation function. The
figure is reprinted with permission from [134]. Copyright 2022 American

Chemical Society.

In the following, I will estimate the amplitude of the frozen-in structure in the simulation.

Consider a polymer network in a simulation box with geometry 5× 5× 5Re
3, prepared in the

lamellar state at χpN = 25. I “warm up” the system directly to χmN = 0. After equilibration,

the amplitude of remaining lamellar order is measured. This amplitude is estimated as the

product of the normalized composition fields φ(c) =
[
φA(c)− φB(c)

]/[
φA(c) + φB(c)

]
of the preparation ensemble φp(c) and the measurement ensemble φm(c) averaged over all

simulation cells c

C =

[
1
V ∑

c
∆L3φ̄p(c)φ̄m(c)

]
C

(6.13)

The measured lamellar order amplitude is averaged over 10 temporal snapshots for each

crosslink configuration to reduce fluctuations. The temporal distance between two measure-

ments is set to 105 MC-steps, which is approximately 11τR. This time average is indicated by

an overbar. For each crosslink density, the result is averaged over five independent crosslink

configurations, C, for better statistics. The lamellar order amplitude C
/[

1
V ∑c ∆L3φ̄2

p(c)
]
C
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measured in SOMA is shown as the red curve in Figure 6.2 for multiple crosslink densities.

This is compared with the analytical prediction σkL /σ0
kL

(show as the blue dashed line) pro-

vided by Equation 6.10, with the gel fraction, the localization length and percolation threshold

measured in the particle-based simulations.

FIGURE 6.7: Networks with ordered preparation state are quenched directly to
zero. For large crosslink densities, the non-vanishing lamellar order amplitudes

indicate a preserved ordered structure even at χmN = 0.

Below p/pc ≈ 3, the amplitude of the preserved lamellar order is very close to zero.

Above p/pc ≈ 3, the amplitude of the remaining lamellar order at χmN = 0 grows rapidly.

Both the simulation result and the analytical prediction suggest that a noticeable part of the

preparation state is preserved. At p/pc = 6, around 7% of the original lamellar order can be

measured at χmN = 0. One should note that the analytical method applied here is only valid

near the percolation threshold p/pc ≈ 1. For p/pc < 3, both the theory and the simulation

yield a small lamellar-order amplitude which is difficult to distinguish from zero numerically

within the range of error. This makes a comparison between the simulation results and the

analytical prediction very difficult. Nevertheless, the simulation data is consistent with the

theoretical prediction and confirms a very small yet existing fraction of frozen structure in

percolating polymer networks.

In Figure 6.8, a network prepared at χpN = 25 with p/pc = 1.5 is gradually “warmed
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up” (black solid line) to χmN = 0 and then “cooled down” back to χmN = 20 (red triangles).

The intermediate steps in varying χmN is the same in both directions and is demonstrated by

the positions of the red triangles. The averaged non-bonded energy is drawn as a function

of χmN supplemented by the corresponding morphologies. At χmN = 0, the preserved

lamellar order is vanishingly small. As expected, an ordered lamellar structure can not be

visually recognized in the density field at χmN = 0. Nevertheless, “cooling down” the

system back to χmN = 20 recovers the original ordered structure. This can be seen in the

two morphologies at χmN = 20 recorded while decreasing χmN (the right one) and while

increasing χmN from 0 back to 20 (the left one). The recovered lamellar structure provides

an additional evidence for the preserved structure of the preparation state at χmN = 0 even

though the amplitude of the remaining lamellar order is very small. This observation is in

perfect agreement with the study of Lay [102]. For diblock copolymer networks crosslinked

in the ordered state, they observed that the lamellar structure is washed away if the repulsion

between unlike monomers is switched off but can be re-established once the interaction is

switched on again.

  

FIGURE 6.8: A network with p/pc = 1.5 and χpN = 25 is “warmed up” to
χmN = 0 and “cooled down” again to χmN = 20. The averaged non-bonded
energy and the corresponding density fields are shown as a function χmN.
The original ordered structure of the preparation state is recovered despite a
nearly disordered intermediate step at χmN = 0. The figure is reprinted with

permission from [134]. Copyright 2022 American Chemical Society.
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6.5 Order-disorder transition

In this section, I measure χcN of the ODT in random networks as a function of the preparation

χpN and the crosslink density p/pc. As discussed in the previous section, the irreversible

crosslinks impart a domain memory of the preparation state. I suggest to capture the impact

of the frozen-in structure by an effective field similar to the Ising model in an external field hi

with a Hamiltonian of the form

HIsing = −J ∑
〈i,j〉

sisj −∑
i

hisi. (6.14)

For networks prepared in the disordered state, the effect of the external field can be

understood within the framework of the random field Ising model [159, 160]. For such

a system in 3D, Ref. [161] showed that there exists an ordered phase. In the mean-field

calculation, the order of the phase transition from the ordered to the disordered state depends

on the form of the distribution of the random field. It is predicted to be a second-order one

for Gaussian distributed random fields [162] and becomes first-order for any random field

distribution with a minimum at zero [163]. In contradiction to the mean-field prediction, later

MC studies revealed the universality of the random field Ising model independent of the form

of the implemented random-field distribution [164]. The ODT is confirmed to be a first-order

transition independent of the form and the strength of the random field distribution [165].

In this scenario, the quenched disorder does not destroy the regular phase separation and a

first-order phase transition is expected.

For networks prepared in the lamellar state, the crosslinks are more likely to be formed

between monomers of the same species. The alternating A- and B-rich domains result in

an external field that is “aligned” with A-monomers in some regions and with B-monomers

in other regions. The strength of this external field can be estimated by the amplitude of

preserved lamellar order at χmN = 0 (see section 6.4). For networks crosslinked below the

percolation threshold, the strength of the external field is zero. In this case, a first-order ODT

can occur. If the network is crosslinked above the percolation threshold, the symmetry with

respect to the composition (which is the order parameter) is locally broken because of the

spatially modulated external field. In this regime, a lamellar order as well as a preferred
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1. Melt of symmetric diblock copolymers is equilibrated at
χp N = 0, 10 and 14, in the disordered phase.

2. Random crosslinks are generated with p =
0.42, 0.62, 0.84, 1.06, 1.26, 1.46, 1.68 and 1.88.

3. Starting from χp N, χm N is gradually increased to 14.5
in no more than three steps. Then, χm N is increased in
increments of 0.1. The system is equilibrated at each χm N
for 90τR. The non-bonded energy and the density field are
measured during time evolution until the disorder→order
transition takes place.

4. After the system has reached the ordered state, χm N
is decreased in 0.1 steps until the system undergoes an
order→disorder phase transition.

TABLE 6.1: Simulation protocol of systems with disordered preparation states.
The figures in this table are reprinted with permission from [134]. Copyright

2022 American Chemical Society.

orientation is present even at χmN = 0. Thus, the system can never enter the disordered

phase and there exists no phase transition.

I measure the phase transition of randomly crosslinked diblock copolymers in the particle-

based simulation program SOMA. The side length of the quadratic simulation box is L = 5Re,

the monomer discretization is set to N = 32 and the invariant degree of polymerization is
√
N̄ = 128. The incompressibility parameter κN is set to 50. To avoid confusion while

drawing the hysteresis in the following, I will explicitly indicate the direction of the simulation

process by an arrow, e.g. disorder→order. One should note that χpN and p/pc are system

parameters and only χmN is the tunable variable that is varied during the simulation. For

each set of χpN and p/pc, I study nine independent crosslink configurations to achieve better

statistics.

For systems with disordered preparation state, the hysteresis loop around the ODT is

obtained according to the simulation protocal described in Table 6.1. The simulation protocal

of networks with ordered preparation state can be found in Table 6.2. The average of the

hysteresis will be considered an accurate estimate for the ODT and the size of the hysteresis

loop provides an estimate for the error interval.

In the following, I will first show the non-bonded energy complemented with the cor-

responding density morphology to demonstrate the accuracy of the ODT measurement in

subsection 6.5.1 and subsection 6.5.2. Then in subsection 6.5.3, a diagram of χcN of the
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1. Melt of symmetric diblock copolymers is equilibrated at
χp N = 15 and 16, in the lamellar phase

2. Random crosslinks are generated with p =
0.42, 0.62, 0.84, 1.06 (only p < pc).

3. χm N is gradually decreased in steps of 0.1, and the sys-
tem is equilibrated at each χm N for 90τR. The non-bonded
energy and the density field are recorded until the lamellar
structure disappears.

4. After the order→disorder transition, χm N is in-
creased in increments of 0.1, until the system undergoes a
disorder→order phase transition.

TABLE 6.2: Simulation protocol of systems with ordered preparation states.
The figures in this table are reprinted with permission from [134]. Copyright

2022 American Chemical Society.

ODT resulting from extensive simulations will be provided and discussed.

6.5.1 Disordered preparation state

Networks with disordered preparation state experience a first-order transition, which can be

observed as a change of the non-bonded energy and the density fields. For large χmN . χcN,

a disordered solution of micelles [32] with a small characteristic length exists. During the

disordered→ordered phase transition, the non-bonded energy decreases to lower values as a

result of the minimized A/B interfacial area after long-range microphase separation. The

non-bonded energy of networks with χpN = 0 is demonstrated in Figure 6.9 for several

crosslink densities .

Then, the ordered final configuration from Figure 6.9 is used as the starting point

and χmN is decreased gradually in 0.1 intervals to determine the hysteresis loop. The

ordered→disordered phase transition is associated with the destruction of the periodic lamel-

lar structure and can be identified as a growth of the non-bonded energy to higher values

as well as by the corresponding density morphologies. In Figure 6.10, I demonstrate the

non-bonded energy during the phase transition into the disordered state.
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(A) p/pc = 0.375 (B) p/pc = 1.125

FIGURE 6.9: The disorder→order transition of random networks prepared at
χpN = 0 is associated with a decline of the non-bonded energy to a lower
value. Corresponding density field morphologies of the system before and after
the transition are presented as well. The figure is reprinted with permission

from [134]. Copyright 2022 American Chemical Society.

(A) p/pc = 0.375 (B) p/pc = 1.125

FIGURE 6.10: Order→disorder transition of random networks prepared at
χpN = 0 are shown. The end configurations from Figure 6.9 are now used as
initial configurations. χmN is gradually decreased until the periodic lamellar
structure is dissolved. The identified phase transitions are supported by the
corresponding density fields before and after the phase transition. The figure
is reprinted with permission from [134]. Copyright 2022 American Chemical

Society.

6.5.2 Ordered preparation state

In case of an ordered preparation state, only networks with crosslink densities below the

percolation threshold undergo a first-order phase transition. Examples of non-bonded energy

measured for networks with χpN = 16 as a function of time during the order→disorder

transition are shown in Figure 6.11.
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(A) p/pc = 0.375 (B) p/pc = 0.75

FIGURE 6.11: The non-bonded energy of a network with χpN = 16 experi-
ences a change during order→disorder transition. The corresponding density
fields also indicate phase transitions. The figure is reprinted with permission

from [134]. Copyright 2022 American Chemical Society.

The backwards disorder→order transition is measured in order to determine the hysteresis

loop. The end configurations from Figure 6.11 are used as initial configurations for this

measurement. The non-bonded energy measured during this process is shown in Figure 6.12.

(A) p/pc = 0.375 (B) p/pc = 0.75

FIGURE 6.12: The non-bonded energy recorded during the disorder→order
transition of networks prepared at χpN = 16 is presented. The corresponding
density fields are shown as well. The figure is reprinted with permission from

[134]. Copyright 2022 American Chemical Society.

6.5.3 Phase diagram

It is important to mention that the ODT of randomly crosslinked networks are measured at

fixed χpN and p/pc. The phase diagram is in fact one dimensional and depends only on
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χmN at the measurement. The diagrams provided here actually show the ODT of different

gels. The value of χmN of the ODT obtained following the simulation procedure described

above is shown in Figure 6.13, where the curves separate the ordered and disordered state for

specific χpN. According to the parameters χpN and p/pc, the results can be discussed as

four regimes.

  

lamellar
sol

isotropic
sol

lamellar
gel

isotropic
gel

  

lamellar
sol

isotropic
sol

lamellar
gel

FIGURE 6.13: Phase diagram of random networks in the χmN − p−plane for
several χpN. The left panel shows the results for networks prepared in the
disordered state, χpN < χdiblock

c N. The right panel shows the location of the
ODT for networks prepared in the lamellar state, χpN > χdiblock

c N. The figure
is reprinted with permission from [134]. Copyright 2022 American Chemical

Society.

(A) p/pc < 1, disordered preparation state: Additional AB contacts are inevitably gener-

ated in the polymer system during the stochastic crosslinking process in the disordered

preparation state. Since only finite clusters are formed in this region, the displacement of

the monomers is not constrained. The critical χcN increases slightly with the crosslink

density, indicating that large but finite clusters restrain composition modulations. A

hysteresis can be observed around the ODT which is strong evidence for a first-order

transition.

(B) 1 < p/pc, disordered preparation state: Monomers belonging to the percolating cluster

can only fluctuate around their equilibrium position and thus have a finite localization

length. The gel fraction grows and the mean localization length drops with growing

crosslink density. The limited mobility of the monomers and the frozen-in disorder

makes the formation of the lamellar structure more difficult. Nevertheless, a first-order

transition exists. In this regime, χcN grows rapidly with increasing crosslink density.

For a very large crosslink density, there exist several possible scenarios: (i) The ODT
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curve ends at a large p beyond which there is no phase transition, (ii) χcN diverges at a

large p or (iii) χcN increases with p but remains finite. Unfortunately, probing these

possibilities is beyond the capability of my simulation tool, and the phase behavior of

random networks crosslinked far above the percolation threshold will not be discussed

in this work.

(C) p/pc < 1, ordered preparation state: Since there is no frozen-in lamellar order, a first-

order phase transition to disordered state takes place. The majority of the crosslinks are

established between monomers of the same species. These bonds stabilize the ordered

structure over a larger range of χmN and lead to a decreasing χcN with growing

crosslink density. The curve that separates the ordered and disordered state ends at the

percolation threshold.

(D) p/pc > 1, ordered preparation state: The frozen-in lamellar order acts as an external

field that is beneficial for A(B)-monomers in the original A(B)-rich domains of the

preparation ensemble and thus prevents the phase transition. It is worth mentioning that

close to the percolation threshold and for small χpN, the ratio between the amplitude of

the preserved lamellar order is vanishingly small. Thus, a small region of second-order

phase transition between region (B) and (D) is possible. This is neither disproved nor

confirmed by the current simulation study and provides an interesting topic for future

research.

A 3D diagram with χpN and p/pc serving as x- and y-axes is shown in Figure 6.14 to

provide an overview. On the base plane, 4 different preparation states – multiblock liquid

with and without lamellar memory, and gel with and without frozen-in lamellar structure –

are indicated by colors.

In the 3D diagram, the location of χcN of the ODT is estimated as the average of the

hysteresis loop. The error bar indicates the size of hysteresis loop. The surface in the 3D

diagram separates the ordered state (above) from the disordered state (below). The irreversible

crosslinks enhance the stability of the preparation state over a large range of χmN resulting

in the distorted surface of the ODT.
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FIGURE 6.14: 3D diagram of the ODT of random networks as a function of
χpN and p/pc. The figure is reprinted with permission from [134]. Copyright

2022 American Chemical Society.

6.6 Summary

Using a particle-based simulation model in conjunction with its efficient and parallel GPU-

implementation SOMA, I studied the sol-gel transition and the order-disorder transition in

randomly, irreversibly crosslinked networks comprised of symmetric diblock copolymers.

The percolation threshold that separates the sol phase from the gel phase is determined

with a finite-scaling analysis. To this end, the percolation probability is measured for three

crosslinked systems with different sizes and the crossing point of their percolation probability

is considered as an accurate estimate of the percolation threshold, pc ≈ 1.12.

Then, I investigated the gel fraction and the localization length as a function of the crosslink

density p. The two quantities are of special importance because they contain information

about the size of the network and the extent of displacements of the monomers in the network.

With measurements of the localization length distribution close to pc, I confirmed that the

properties of the networks are governed by a universal scaling behavior in this region. Below

pc, the gel fraction is zero. With increasing p, the gel fraction grows monotonically and
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converges to one. At the same time, the mobility of the monomers is increasingly restricted

by the densely assigned crosslinks resulting in a decreasing localization length. Above

p/pc ≈ 1.3, the localization length drops below the length scale of the equilibrium lamellar

spacing of free diblocks, indicating that the formation of lamellar structure as in diblock

copolymer melts is strongly inhibited.

In general, the crosslinks impart a memory of the domain structure present at their time

of formation. Above the percolation threshold, this results in a frozen-in structure of the

preparation ensemble, which is preserved even at χmN = 0. I measured the preserved

lamellar order, originating from the preparation ensemble at χpN = 25, in the measurement

ensemble at χmN = 0. The amplitude of the preserved lamellar order is vanishingly small

(yet non-zero) for crosslink densities close to pc and grows rapidly above p/pc = 3.

Then, I studied the phase behavior of random networks. χcN of the ODT is found to

depend strongly on the crosslink density and the Flory-Huggins parameter of the preparation

state χpN. I obtained an accurate diagram for the ODT as a function of χpN and p from

extensive SOMA simulations. For p < pc, a first-order phase transition was observed,

independent of the preparation state. χcN of the ODT increases (decreases) slightly with

growing p in networks with disordered (ordered) preparation state. For p > pc, there exists no

order→disorder phase transition in networks with ordered preparation state as a consequence

of the frozen-in ordered lamellar structure. For networks with disordered preparation state

and p > pc, χcN increases rapidly with p because of the strongly restricted mobility of the

monomers and the increasing amount of frozen-in disorder.
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Chapter 7

Conclusion

The design and fabrication of multicomponent polymer materials requires comprehensive

understanding of their molecular structure and properties. This work investigated several

aspects regarding the structure formation in polymeric systems comprised of two incompatible

segment species. In this work, particle-based simulations as well as diverse analytical

approaches were applied to uncover the behavior of polymer systems on a broad spectrum of

length and time scales, ranging from short-time kinetics of early-stage structure formation in

linear chains to equilibrium states of percolating macromolecules.

7.1 Collective short-time dynamics in multicomponent poly-

mer melts

In the first part of this work, I focused on the kinetics of the structure evolution on short

time and length scales. I chose binary homopolymer blends and symmetric diblock copoly-

mer melts as subjects of this study because of their well studied equilibrium phase diagram

[25, 166]. In the (directed) self-assembly [40, 167, 168] of multicomponent polymer melts,

the early stage pattern provides a template for the eventual metastable or equilibrium mor-

phologies. This technique for directing the structure evolution can be applied to tailor the

subsequent process of structure formation and enables the fabrication of novel phase-separated

morphologies.
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I applied two well established theoretical models D-RPA [56, 57, 60] and D-SCFT [43,

44, 46, 63] on several typical cases of structure evolution from instable initial states and

worked out explicit spatiotemporal descriptions for the segment densities. I found that on

short time scales, D-RPA is in perfect agreement with the simulation results without the

usage of adjustable parameters, whereas D-SCFT underestimates the speed of structure

evolution because it does not account for the fast, sub-diffusive motions, which are important

on short time scales. Despite the exactness of D-RPA, its application is restricted to the

linear regime. To overcome ths limitation, a modified D-SCFT that utilizes a time-dependent

Onsager coefficient [58] was used to associate the dynamics of density fields with the accurate

free-energy functional. The modified D-SCFT reproduces the exact dynamical equations of

D-RPA in the linear regime and has the advantage to be a good approximation on all time

scales.

7.1.1 Future perspectives

The D-RPA formalism can also be generalized to describe systems with much more complex

molecular architectures such as binary polymer networks. For polymer networks with large

invariant degree of polymerization, the structure evolution towards equilibrium is protracted

and the short-time linear regime can be slowed down to a time scale that can be accurately

accessed in experiments. The advantage of the models developed in this work is that they

establish a relation between the computational less demanding single-chain properties and

the collective properties. For polymer networks, the system is comprised of only a few

macromolecules and the usage of single-chain properties is no longer advantageous. In this

case, I suggest to decouple the networks into smaller, uncorrelated blocks and perform the

calculation for the kinetics of each individual block in the network. The static aspects of this

decoupling scheme are discussed in the second part of this thesis. I expect the combination of

the dynamical models and the decoupling scheme demonstrated in this work to be applicable

to explore the kinetics of structure formation of various exciting materials with complex

architecture.
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7.2 Structure and structure formation in regular polymer

networks

Irreversibly crosslinked polymer networks are popular materials with applications ranging

from rubber industry to biomedical research. Diverse theoretical models have been proposed

to describe the structure and elasticity of polymer networks in the disordered state [98,

112]. In multicomponent networks consisting of segment species that repel each other, the

microphase-separated structure leads to unique tensile properties with the ability to absorb a

large amount of energy during deformation (see Ref. [169, 170] for application).

I focused on networks comprised of symmetric diblock copolymers, the simplest example

subjected to the interplay between microscopic domains and network elasticity. An SCFT

approach [120] was previously developed for the exact same model system where the in-

teractions of the crosslinks were decoupled. My simulation studies on the same systems

show significant deviations from the SCFT prediction in both distribution of crosslinks and

phase behavior for nu > 1, where nu is number of unit cells on each side of the network.

To accurately describe the properties of regular networks, I applied the phonon model [123],

which accounts for full correlations between the crosslinks, to describe the crosslink position.

The calculation was performed for phantom 2D networks but can be generalized to networks

with arbitrary dimension and topology. In the comparison to computer simulations, the

accuracy of the phonon model was proven for all nu in the absence of the incompressibility

constraint and for nu < 5 in incompressible systems.

Inspired by the results of the phonon model, I found an explanation for the phase behavior

of regular diblock copolymer networks by separating contributions to the structure factor into

diblock characteristics and crosslink characteristics that occur (typically) on different length

scales. The contribution from the respective characteristics, and thus the structure factor as

well as the phase behavior of the network system, is crucially determined by the unit cell size

lu and the number of strongly correlated unit cells. For a 2D regular network, the number

of correlated unit cells is simply nu × nu. For nu = 30, which is studied in this work, three

typical types of phase separation are observed. For lu . 0.5 Rdb, the network is dominated by

the diblock characteristics and χcNdb is about 7.5 depending only weakly on lu. The lamellar
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spacing ≈ 1.26 Rdb is much larger than lu. For 0.5 Rdb < lu < 1.5 Rdb, the contribution

from the two characteristics are comparable resulting in a novel multidomain structure with

perpendicular lamellar orientations and a lamellar spacing slightly larger than lu. For large

lu ≥ 1.5 Rdb, the crosslink characteristics dominate and a lamellar structure with spacing

lu is formed already for very small χcNdb. The phase transition of the 2D regular networks

is associated with the breaking of the symmetry of a square (with periodicity lu in x- and

y-direction) and the formation of the lamellar structure. In general, increasing lu separates

the A/B-rich domains imposed by the network topology and thus decreases χcNdb of the

ODT. According to the relation S(qu, nu) ∝ n2
u, increasing nu at a fixed lu leads to a larger

intensity of the structure factor at qu = 2π/lu and thus a higher significance of the crosslink

characteristics with periodicity lu.

7.2.1 Future perspectives

One obvious extension of this work is to apply the phonon model technique developed here

to 3D regular polymers. SCFT suggests, that the phase behavior of 2D and 3D networks are

qualitatively similar, but this should be quantitatively validated in future works.

One basic assumption of the phantom network model is that the strands are allowed to pass

through each other. However, the crossing of polymer backbones is impossible in experiments.

This important factor, the so-called entanglement, affects the properties of polymer networks

and was not discussed. Entanglements between polymer strands modify the fluctuation of

the crosslinks as well as the stress-strain relationships [171–173]. Their impact on the phase

behavior of regular polymer networks is expected to be similar to that of additional crosslinks

and should be investigated in future studies in order to make the simulation model better

comparable to experimental results.

Furthermore, the opposite sides of the network in the current study are connected via

bonds across periodic boundary conditions. This practically fixes the size of the networks

to the geometry of the simulation box, which is typically not the case in experiments. Free

boundary conditions allow more flexible rearrangement of the monomer positions during the

process of structure formation which is beneficial for the ordering process. The influence of
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the boundary conditions on the microphase separation behavior of copolymer networks offers

an interesting topic for future works.

7.3 Phase behavior of random copolymer networks

Earlier studies provided insights into the phase separation behavior of randomly crosslinked

multicomponent polymer melts [154, 156, 174, 175]. Their qualitative findings on the effect

of crosslinks in networks up to a crosslink density p well above the percolation threshold

suggest the existence of four phases: disordered liquid, disordered gel, ordered liquid and

ordered gel. In addition, it is commonly accepted that the crosslinks enhance the stability of

the structure at their time of formation and the crosslinked systems are able to maintain their

morphology over a larger range of χN.

In this work, I quantitatively studied the effect of crosslinks and the Flory-Huggins

parameter of the preparation state χpN on the microphase separation in symmetric diblock

copolymers. First, I computed the amplitude of the frozen-in structure originating from

preparation configurations at χpN = 25 which is maintained at χN = 0. I found this

amplitude to be larger than zero for all percolating networks. For small crosslink densities

p/pc < 3, the remaining lamellar order is vanishingly small compared to the original

amplitude of the density fluctuation. For strongly crosslinked networks above p/pc > 6, its

amplitude reaches 7% of the lamellar structure at χpN = 25 and is expected to grow further

for larger p.

Furthermore, I provided an accurate diagram, in which χcN of the ODT is shown as a

function of the crosslink density and χpN of the preparation state. A first-order transition was

identified using the non-bonded energy and the density morphology. For networks crosslinked

in the disordered state, χcN increases with p, whereas for networks with ordered preparation

state, χcN decreases with p below the percolation threshold. For networks prepared in

the ordered state with p > pc, an order-disorder transition is prevented by the frozen-in

periodic lamellar structure in contrast to the case of regular networks made from diblock

copolymers discussed in the previous chapter. This is because the ordered structure imposed

by end-crosslinking, as in the previous chapter, had a checkerboard pattern with periodicity lu
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in both x- and y-direction, which can transition into an energetically more favored lamellar

structure, whereas in this chapter, a fixed orientation of the lamellar structure was already

imposed by the frozen-in structure. The obtained phase diagram of randomly crosslinked

symmetric diblock copolymers serves as a groundwork for more detailed phase behavior

studies on polymer networks in the future.

7.3.1 Future perspectives

Further studies can be performed to search for a possible region of second-order transition for

χpN & χdN and p & pc, where a very small amplitude of the preserved lamellar order is

measured. For this region, I argued based on a consideration of the random field Ising model

that the order→disorder transition is prevented by the frozen-in lamellar order. Whereas this

is expected if a significant amount of lamellar order is present, the impact of a vanishingly

small (yet non-zero) frozen-in structure remains unclear.

Apart from that, one could stretch the network after the crosslinks are generated and study

the effect of expansion on the phase behavior of random networks. If the deformation of

the network was affine, the stretching would simply shift the peak position of the structure

factor. The intensity of the structure factor, and thus χN of the ODT would remain unchanged.

However, as calculations on structural properties in regular networks (see the phonon model

from the previous chapter) already suggested, the deformation of networks under expansion

is not affine. For this reason, the change of the intensity of the structure factor is non-trivial

and should be investigated in further works as well as compared with the ODT of stretched

random networks.
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