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Abstract

Over the last decade, Cryo Electron Microscopy (cryo-EM) has emerged as a powerful
and reliable technique to determine the three-dimensional (3D) structure of large macro-
molecular assemblies at near atomic resolution. Tens of thousands of two-dimensional
(2D) noisy images from copies of a macromolecule are captured at different unknown
orientations to characterize the 3D volume of biological complexes. The reconstruction
problem is typically formulated as a nonlinear, non-convex optimization task and multi-
modality causes many of the conventional reconstruction techniques that work based
on local optimization to become trapped in local modes with poor initialization. These
difficulties necessitate the development of adequate statistical models to describe the

whole reconstruction process.

At the core of all algorithms proposed in this thesis, we use grid-free coarse grained
representation of molecular densities rather than their atomic models in real space. To this
end, we employ radial basis functions with spherical Gaussian kernels. Each Gaussian

kernel is centered on a particle characterized by a 3D position and a non-negative weight.

The contribution of this dissertation can be divided into three major parts. The first
contribution is introducing a new ab initio reconstruction method for estimating an initial
model in cryo-EM based on a mixture of spherical Gaussian model. Here, we consider
the full reconstruction problem when structure as well as orientations are unknown. We
adopt Markov Chain Monte Carlo algorithms within a Bayesian framework to estimate
the parameters of the model. Sampling from the posterior distribution is challenging due
to the high-dimensionality and multi-modality. We address these difficulties by using
Hamiltonian Monte Carlo and a global rotational sampling approach.

As we mentioned earlier, there are two major challenges in the reconstruction problems,
unknown structure and unknown projection directions. If either of two quantities is
known, then the problem boils down into two simpler tasks, which we address as two

sub-problems in this thesis.

The first sub-problem is the tomographic reconstruction problem that occurs when in cryo-
EM reconstruction, the projection directions are known. The second contribution of the
thesis is the development of three kernel-based algorithms to characterize the 3D volume
from 2D tomographic images in real space. In our first method, the particle positions cab
be located at a fixed grid, such as a hexagonal grid and only updates their weights by

using an iterative non-negative least-squares algorithm. The other two algorithms are



mesh-free approaches in which for the first method, we use Expectation Maximization
to find the weighted particle positions and for the second method, we develop a fully
Bayesian framework by assigning equally weighted particles.

The second sub-problem is a rigid registration (pose estimation) problem, and it happens
when in cryo-EM reconstruction, the structure is known. The last contribution of the thesis
is dedicated to find a unifying framework for assessing the match between biomolecular
structures. We propose a kernel-correlation to compute the rigid-transformation between
two complexes. We use an upper bound method (sometimes augmented by a deterministic
annealing or a global search strategy), to solve the kernel-correlation.

Finally, we quantify our proposed approaches on various simulated and real datasets.

This thesis is based on the following publications and manuscripts, respectively:

e Vakili N, Habeck M. Bayesian Random Tomography of Particle Systems. Frontiers
in molecular biosciences. 2021 May 21;8:399.

e Vakili N, Habeck M. Kernel-based tomographic reconstruction on and off the grid,

in preparation.

e Vakili N, Habeck M. Matching biomolecular structures by registration of point

clouds, in preparation.
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Chapter 1

Introduction

1.1 Overview of single particle cryo-electron microscopy (cryo-
EM)

1.1.1 General remarks

Understanding how a protein behaves as an individual protein or as a complex which
interacts with other proteins or with membranes plays a key role in medical treatments
especially in processing of drug development. Determining the 3D atomic structure of
biomolecular assemblies from 2D images (acquired from different techniques such as
X-ray crystallography, NMR spectroscopy) can ease the research development and lead to
discover more efficient drugs. Over the last few years, cryo-electron microscopy (cryo-EM)
has established itself as an alternative powerful technique to characterize the structure of
large macromolecular assemblies (Frank| 2006; Cheng and Walz, 2009). Although develop-
ment of the technique initiated in the 1970s, due to recent advances in imaging hardware,
image processing software and improvements in sample preparation, cryo-EM nowadays
is able to determine the 3D structure of macromolecular assemblies at near-atomic resolu-
tion. Moreover, the ability to work with non-crystallized particles and large molecules
staying at their native hydrated state, distinguishes cryo-EM from standard structure de-
termination techniques like X-ray crystallography or nuclear magnetic resonance (NMR)
and renders cryo-EM a viable tool for studying macromolecular structures. In cryo-EM,
many copies of the desired specimen are absorbed onto a thin continuous carbon grid
(Thompson et al.||2016). To prevent the formation of ice crystals, the grid is rapidly frozen

3



Figure 1.1: Schematic of single-particle cryo-EM reconstruction, from data collection to 3D
volume generation of beta-galactosidase sample. While the blue arrows depict the forward
model, the red ones show the backward model or the reconstruction problem. Character-
izing the 3D volume from 2D projection images which involves the main contribution of
my thesis.

at a rate of 106°C'/s by plunging it into a cryogen (mostly liquid ethane or propane). The
frozen randomly orientated particles are imaged by electrons to generate thousands of
projection images of the specimen at random, unknown directions (called micrographs).
The crucial part in cryo-EM is to reconstruct the shape of biomolecular assemblies from its
two-dimensional projection images, and what makes it hard is that the relative orientation
of these particle images are unknown. Figl.1|depicts a quick schematic of generating 2D
images from a known density map (called forward model and indicated by blue arrows)
versus reconstructing a 3D volumetric shape of a density map from 2D projection images

(called backward model indicated by red arrows).
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1.1.2 2D image processing pipeline

In cryo-EM, the 2D projection images are convolved with the point spread function (PSF)
of the microscope and corrupted by noise with very low signal-to-noise ratio (SNR). The
PSF describes how aberrations of the lenses in a transmission electron microscope modu-
late the recorded image. Before a 3D structure can be estimated, these large micrograph
images must be pre-processed to select the subsections of the images that correspond
to the projections of the individual macromolecules. This process is called particle pick-
ing(Nicholson and Glaeser, 2001} Zhu et al.,|2004; Roseman, 2004). Particle images then
should be clustered based on their common projection directions (Scheres et al., 2005) and
finally, all the particle images in each cluster are aligned to remove in-plane rotations and
translations among cluster members. The preprocessing algorithm, in the end, results
in smaller set of around 10 to 100 class averages with higher SNR. Fig[I.2)illustrates the
diverse steps in cryo-EM data processing pipeline, starting from acquired micrographs to

inferring an initial 3D structure.

As we stated, 2D projection images are modified by the contrast transfer function (CTF) of
the microscope (The CTF is the Fourier transform of the PSF). The CTF is an oscillatory
function and the frequency of the oscillations depends on the spherical aberration constant
and the defocus. These oscillations affect contrast changes and spectrum amplitudes. An
additional envelope attenuates high-resolution frequencies. To obtain the best result from
the acquired images, estimation of the CTFEI is indispensable (Rohou and Grigorieff, 2015).

The image formation model describes how 2D projection images are generated from

macromolecular complexes. Mathematically, image formation can be formulated as,
gn(u) = hy / f(RLr)dz + "noise”, n=1,...,N (1.1)

where f(r) is a 3D volume for r € R? and f : R? — R, u € R? denotes a position in n-th
projection image, r is a position in the volume, R,, € SO(3) is a 3D rotation matrix and
finally, h,, denotes a PSF that convoluted with the z-direction projected rotated molecule.
The term "noise" is supposed to be i.i.d. Gaussian (sometimes, a Poisson distribution)
noise which leads to a least-squares solution.

The goal of cryo-EM reconstruction methods is to invert this process and the crucial

step is to reconstruct a volumetric representation of the assembly from the 2D images

150 far, we only use the class averages with a high SNR, but our model is able to be adopted easily with
the CTF term.
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Figure 1.2: Schematic of single-particle cryo-EM reconstruction, from data collection to
3D volume generation. The sample of interest is imaged tens of thousands of times by
collecting movie frames that are aligned for motion-correction. The acquired frames are
then averaged to gain higher resolution. Next step, individual particles are picked from
defocused CTF corrected images. To obtain class averages, particles are extracted, cleaned
and normalized, and then subjected to 2D classification and averaging. Class averages
with improved SNR are used to build an ab initio 3D structure.

i.e., estimating f(r) given ¢1,...,gn and hy, ..., hy. Lack of information regarding the
relative orientations of all particles (R, . . ., R,) and existence of noise in projection images
(to prevent radiation damage), make the reconstitution task prone to over-fitting which
mathematically can be classified as an ill-posed problem. In chapter 2] we will show how
to tackle the over-fitting problem by introducing a regularizer, which is called a prior
probability, in a Bayesian framework.
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1.1.3 3D reconstruction

The problem of determining the relative orientations of 2D projections of a 3D structure
can be approached using the so-called common-lines technique, also known as angular
reconstitution technique, which is based on the projection-slice theorem. The theorem
states that, in Fourier space, the 2D Fourier transform of a 2D projection of a 3D object
forms a central section of the object’s 3D Fourier transform. This technique has been
applied several times by (Penczek et al., 1996; |Van Heel, 1987; Elmlund et al., 2008; Singer
and Shkolnisky), [2011). To speed up the search process, the Single-particle IMage Pro-
cessing Linux Engine (SIMPLE) software (Elmlund and Elmlund, 2012) uses bijection
orientation search and other optimization techniques, such as simulated annealing and
differential evolution optimizers. Reconstruction methods based on common-lines mostly
suffer from either time-consuming calculations, noise sensitivity, initial model bias or even
suffering from how to model and report the errors. These kinds of difficulties necessitate
the development of statistical models to describe the data generation process and the 3D

structures.

Ab initio reconstruction methods do not rely on an input reference volume for approxi-
mating orientations. Most of the statistical methods for ab inition reconstruction that exist
to date have used a likelihood formulation to characterize the unknown 3D reconstruction.
Statistical approaches include maximum-likelihood methods (Scheres et al.| 2007} Scheres,
2010), maximum a posteriori (MAP) methods (Jaitly et al., 2010; Scheres, 2012), regular-
ized maximum likelihood (RELION) in a Bayesian framework with assumption that the
Fourier components of the signal are also independent, zero-mean and Gaussian dis-
tributed with unknown and resolution-dependent variance (Scheres| |[2012), Probabilistic
Initial 3D Model (PRIME) which scores the orientations by introducing weighted factors
proportional to the correlation (Elmlund et al., 2013), Bayesian method augmented by
deterministic annealing by (Jaitly ef al., 2010), and more recently a Bayesian approach
using stochastic gradient descent (SGD) with branch and bound maximum-likelihood
optimization steps (Punjani et al., 2017).

Almost all of the above discussed methods adopt iterative optimization algorithms to
reconstruct the unknown volume. However, using local optimization techniques critically
relies on the quality of initialization, which is in conflict with the idea of having an
unbiased ab initio reconstruction. Moreover, these methods are not able to report any
uncertainty quantification which can help better understanding of the result. Furthermore,
there exist many ad hoc parameters in most of these methods which need to be set by the
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user.

To address these difficulties, we propose a fully Bayesian method in real space by imposing
a physically realistic prior over model parameters. Our method is able to quantify the
uncertainties of the particle models. Moreover, it does not depend on the initial parameter
settings. At the center of our approach is a grid-free coarse grained representation of
the molecular complexes rather than their atomic models (called kernel representation).
We use radial basis functions with spherical Gaussian kernels. Each Gaussian kernel can
be interpreted as a weighted (non-negative) particle, such that the unknown volume is
modeled by a particle cloud (more details can be found in section[I.2). By introducing the
kernel representation of the unknown volume, the 3D reconstruction problem boils down
to finding point cloud configurations and rotations that match the cryo-EM images. To

this end, if our forward model is considered as,

Jnm = Qn + Vn Z d2(Upm; PRpxy + th, 02) + "notse” (1.2)
k

by assuming i.i.d Gaussian noise with variance %, we can build the likelihood function of

our model as,
o\ Mp /2 - 2
Pr(gn|m,Rn7tn7'Yn7anyTn):(ﬁ) n/ exp{ _7n Zi\,fil [gnm_an_ﬁ/n Zk ¢2(unm§Pank+tn702):| } (13)

where 7, > 0 denotes the precision of the image, © = {xx;k = 1,..., K} are particle
positions, P is the 2 x 3 projection matrix, a,, and v, are an offset and a scaling factor,
t, and R, are shifts and rotations respectively, the intensities are g,, = gn(unm) for
n =1,...,N images and m = 1,..., M, is the number of pixels in the n-th image and
finally, ¢ is the Gaussian kernel that we adopt for the volume representation (more
information can be found in section [1.2).

By denoting all 2D projection images by the symbol D and incorporating the prior beliefs
Pr(z, R, &) about our model where, £ = {(an, Yn, Tn, tn;n = 1,...,N)}, we derive the
posterior distribution based on Bayes’ law,

Pr(Dlz, R, §) Pr(z, R, §)

Pr(x, R,¢|D) = Pr(D)

~ Pr(D|z, R, &) Pr(x, R,§) (1.4)

In previous work, Joubert and Habeck| (2015) used a Bayesian formulation to obtain a
posterior distribution over the 3D volume (expressed as a mixture of Gaussians (more
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details can be found in[1.2)) and the unknown rotations. The component means of the
Gaussian mixture are interpreted as positions of coarse-grained particles that represent
the unknown atomic structure at a lower resolution. With the help of conjugate priors and
introducing latent assignment variables, they could derive analytical updates for Gibbs
sampler that infers the particle positions and rotations. The Gibbs sampler bears a high
resemblance with standard Gibbs sampling used in Gaussian mixture model estimation.
A serious drawback, however, is that Gibbs sampling suffers from slow convergence and
depends strongly on the initial conditions. Therefore, to locate the posterior mode, many
restarts of the Gibbs sampler from varying initial conditions were necessary. Another
limitation is that the likelihood is restricted to a Poisson model, otherwise the Gibbs
updates are no longer valid. However, the Poisson model is limited in that, ignores the
effect of the point spread function and correlations in the noise. Another problem is that
the prior over the component means (particle positions) must be conjugate, i.e. a Gaussian
distribution, which again is unrealistic for particle clouds representing biomolecular
structures, because excluded-volume effects are ignored. Later in chapter 2, we overcome

(a) initial (b) estimated (c) initial (d) estimated

Figure 1.3: Results for estimating the particle positions from GroEL/GroES dataset with
correct rotations. The transparent spheres show the true coarse-grained representation of
GroEL/GroES that was used to generate the projection data. Green solid spheres indicate
the particle positions in the initial and final stage of HMC sampling. Panels (a,c) show
side and top views of the inital particle configuration; panels (b,d) show the particle
configuration after 100 steps of HMC.

these limitations by developing a more general probabilistic model for particle systems
and their projection images. We no longer aim to develop analytical updates for the Gibbs
sampler, but explore the use of Markov chain Monte Carlo (MCMC) algorithms to infer
both the particle positions as well as the unknown rotations. Drawing conformations
of the particle system for fixed rotations can be reached with Hamiltonian Monte Carlo
(HMC)(Neal, 2011) (FigI.3). Inferring the rotations is more challenging because of the
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multi-modality of the conditional posterior over the rotational parameters. To sample
the rotations, we use a Metropolis-Hastings algorithm that explores the unit quaternions
parameterizing the unknown projection directions. Since Metropolis-Hastings samples a
probability distribution only locally, we occasionally run a global sampling step that is
computationally more expensive. We quantify our proposal on diverse simulated and real
experimental data sets and results show reliability of the method in 3D reconstructions.

In this section, we considered the full 3D reconstruction problem in which both the 3D
volume as well as projection directions are unknown. If either of the two quantities,
structure or orientations, are known, then the reconstruction problem can boil down into
two sub-problem which are easier to tackle. The first sub-problems is the tomographic
reconstruction problem. Consider the case in which, for given orientations (for example a
tilt series in tomography), the goal is to reconstruct the 3D structure. More details can be
found in section[I.3]and chapter[3} The second sub-problem is a rigid registration problem
(also known as pose estimation). This problem can be categorized either by 3D to 2D
pose estimation task, when we search for a rigid transformation that matches the cryo-EM
image and the projected 3D structure, or by 3D to 3D superimposing task, when we aim
to assess the match between two given structures. More details can be found through the

section[I.4and chapter 4]

1.2 Kernel representation of images and volumes

Usually, both the input images as well as the unknown 3D volume are represented on
grids: a pixel grid in case of 2D images, a voxel grid in case of the reconstructed 3D
structure. Here, we investigate the use of grid-free radial basis function (RBF) kernel for

representing the 2D projection data as well as the 3D structure.

K
Fr) = wpo(lr — ) (1.5)
k=1

where K is the number of basis functions, wy a weight (if w, > 0), ), € R3 a position
vector that specifies the center of the k-th kernel and finally, | - || is the Euclidean norm.
The kernel representation has been widely used in Machine Learning, computer vision,
image processing and medical imaging (Scholkopf et al., 2002; | Takeda et al., 2007;|Zhang
et al.,)2012; Rabbani et al., 2006; [Rusu et al., 2008; |Jin et al., 2014; |Joni¢ and Sorzano), 2015;
Nogales-Cadenas et al., 2013).
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Figure 1.4: Representation of GroEL/GroES by using pseudo-atomic particles (point
cloud). (left) atomic structure (PDB code laon).(right) The coarse-grained models 300
particles.

We propose to use a mixture of spherical Gaussian kernels to represent the 3D volume
rather than a voxel grid. This is a rational choice to simulate the unknown density volumes
with a smooth and blobby appearance. Moreover, using the RBF kernel can significantly
reduce the amount of computations by employing far fewer parameters than voxel based
algorithms require. Each Gaussian kernel is centered on a particle characterized by a
3D position and a non-negative weight. This is equivalent to using a grid-free particle
system or coarse-grained representation of the unknown structures rather that an atomic-
resolution model. Fig[1.4]depicts the pseudo-atomic representation of the GroEL/GroES
density with 300 particles.

There are many options for constructing the kernels, but in this thesis we use d-dimensional
spherical Gaussian RBF kernels.
1 1 )

2y .
¢a(r,x,0%) = (2m2)% exp{—ﬁ |r — ||

} (16)

where o > 0 is the bandwidth of the kernel. For 0 — 0, the kernel collapses to an atomic
measure and for o > 0, the kernel representation is particularly suited for smooth densities
such as molecular densities that do not exhibit sharp edges.

As a short notice, we propose two different likelihoods for our model in chapter 2| The
first likelihood model works directly with 2D images as inputs, while for the second
likelihood model, images should be first converted to the 2D point-cloud and then be used
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as inputs. To convert 2D grayscale images to weighted point clouds, we can either use
the Expectation Maximization algorithm to fit a finite mixture of 2D Gaussians with a pre-
chosen number of components to an image or, one can use the DP-means algorithm (Kulis
and Jordan, 2012) as an alternative, which requires choosing a resolution like parameter

specifying how many pixels should be represented by a single point.

1.3 Computational methods for tomographic reconstruction

In section we outlined the typical pipeline used in cryo-EM for reconstructing a
high-resolution 3D structure from projection images where the particle orientations are
unknown. In this section, as a sub-problem, we consider the simpler problem where the
particle orientations are given. This imaging modality is relevant to standard tomography
where a sample is imaged from different known projection directions.

Electron Tomography (ET) is a widely used technique for determining the 3D structure
of cellular samples from nanometer scale to atomic-resolution (Frank| 2006; |Herman,
2009; Midgley and Dunin-Borkowski, 2009; Saghi and Midgley, |2012; Leary et al., 2012;
Miao et al., [2016; Tian et al., 2020). Generally, in tomography a 3D model of an object
is characterized by a collection of 2D projection images (called tilt-series). These noisy
images are acquired by rotating the specimen at a limited range of angles, usually from
—70° to +70°. The missing wedge artifacts (refers to limits on the ET’s range of specimen
tilts) and the noisy images are two common problems in this field. The goal in tomography
is to reconstruct a 3D structure f(r) from the X-ray transform g,

o) = [ F(RTr)iz (17)

in which r € R3 is a position, u € R? is a position in the image plane, and R € SO(3) is
known rotation matrix.

The most widely used image reconstruction methods in tomography (Frank, 2008) are
analytical methods such as Weighted Back Projection (WBP) (Radermacher, 2007) and
Filtered Back Projection(FBP) (Kak and Slaney, 2001). Many of the conventional algorithms
in tomographic reconstruction use the Fourier slice theorem in reciprocal space (Penczek
et al., [1996; Van Heel, 1987; Elmlund et al., 2008). These methods mostly suffer from
existing the missing wedges or lack of enough projection images. To overcome these

difficulties, iterative reconstruction techniques were proposed. Generally, two types of
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iterative reconstruction methods have been proposed: 1-Real space approaches such as
Algebraic Reconstruction Technique (ART) (Gordon et al.,[1970) or its major refinement of
it, the simultaneous ART (SART) (Anishinraj et al.|, 2012) and the Simultaneous Iterative
Reconstruction Techniques (SIRT) which suffers from filling the missing wedge (Trampert
and Leveque, [1990). 2-Hybrid-space approaches, which iterate between real space and
reciprocal space such as Equal Slope Tomography (EST) (Miao ef al.,2005) or GENeralized
Fourier Iterative REconstruction (GENFIRE) (Pryor ef al., 2017). Very recently, (Pham et al.,
2020; |Yang et al| [2021) proposed REal Space Iterative Reconstruction Engine (RESIRE)
algorithm which solves the least square problem by a gradient descent method combined
with the Fourier slice theorem and variational calculus.

In chapter |3, we propose three kernel-based reconstruction methods in real space. All
the three algorithms are based on underlying probabilistic models. Besides, we use the
coarse-grained representation of the 3D structure as a collection of weighted spherical
particles (more details can be found in .

In our first method, we consider the particle positions to be located on a hexagonal grid
and only update their weights by employing an iterative non-negative least squares
algorithm.

The second reconstruction method is based on Expectation Maximization algorithm similar
to the one used in Gaussian mixture fitting. It involves a subsampling step in which a
chosen number of pixels is randomly selected from the projection images. Our statistical
model is,

K
Yom ~ > Wkd(Ynm — PRyri,0), m=1,... .M (1.8)
k=1
where y,,,, is m-th pixel position of the n-th image, r}, is the k-th particle position, P is the
projection matrix and R € SO(3) is known rotation matrices.

And finally, our thirt proposal is a fully Bayesian inference technique which is solved by
HMC method. The algorithm is similar to our Bayesian reconstruction approach, which
discussed in chapter [2]but with known orientations. Incorporating an excluded volume
term as a prior and the ability to determine the uncertainties in our Bayesian model,

distinguish this method from the other two approaches.

We demonstrate our method by using simulated and real data taken from cryo-ET and
scanning transmission electron microscopy (STEM) (Levin et al., 2016) and the results

depict reliability of our approaches in comparison with the other standard tomographic
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reconstruction methods.

1.4 3D Registration problem

In this subsection, we discuss the second sub-problem of cryo-EM reconstruction, namely
the estimation of projection directions when the 3D structure is known. This sub-problem
is a rigid registration or pose estimation problem, which is a very common task in computer
vision. It is a process of inferring the optimal transformation of a person or an object in an
given image or video from a reference position. Because of its fundamental importance, it
arises as a subtask in diverse applications, e.g., animation, robotics, gaming, medical image
alignment, structural bioinformatics, etc. In this thesis, we consider two versions of the 3D
rigid registration problem that are relevant to cryo-EM reconstruction and, more generally,
the analysis of biomolecular structures. First, finding a rigid transformation from 3D to
2D that matches the cryo-EM image and the projected 3D structure. Second, rigid docking
of biomolecular structures from 3D to 3D which is one of the basic application of pose
estimation in bioinformatics. More details can be found in chapter 4]

1.4.1 Rigid registration of biomolecular structures

Increasing in the amount of data sets provided daily by Electron Microscopy/Electron
Tomography necessitates to develop methods to compare and classify them. In this section,
we propose a kernel correlation method to find the match between two biomolecular
structures. Superimposing and comparing structures can play a key role in diverse
applications, from increasing the resolution of cryo-EM by fitting atomic models into
volume, to the study of conformational changes by comparing densities at different stages.
(Volkmann and Hanein)1999; Roseman, 2000; Villa and Lasker},[2014; Chacén and Wriggers)
2002; (Topf and Sali, 2005).

Except for the manual docking strategy, which is limited by the experience of the user
(Wriggers and Chacon, 2001} [Volkmann and Hanein, 2003), automated approaches in
superposition problems are typically based on search method. Search methods usually
optimize six degrees of freedom, three parameters for the rotation and three translation pa-
rameters. The simplest search method is an exhaustive search, in which all the parameters
are systematically searched using a given step size. The grid search is computationally
expensive, but many efforts have been made to accelerate it, from employing the Fast
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Fourier Transform (Roseman), 2000; Chacén and Wriggers|[2002) to stochastic sampling,
such as Monte Carlo and simulated annealing methods (Topf et al.,2005; Alber et al., 2007).
Garzon et al.| (2007) used spherical harmonic combined with a translational scanning
and Wriggers et al.| (1998) proposed the vector quantization method which used Root-
Mean-Square-Deviation (RMSD) as a scoring function. Moreover, some approaches use a
correlation coefficient between a given density map and a low-resolution density map of
atomic structures. A local cross-correlation measure was introduced to avoid the influence
of non-overlapping density. Roseman, (2000) uses computation over a local area, along
with a local normalization or using key vectors that capture local surface information
in (Ceulemans and Russell, 2004), comparisons of the cross-correlation function (CCF)
to other metrics like those borrowing from machine learning techniques, enable system-
atic and objective evaluation of scoring functions (Vasishtan and Topf, 2011) and adding
molecular contour information to the fitting criterion by (Chacén and Wriggers, 2002). A
major disadvantage of cross-correlation maximization of either density or structure factor
amplitude is the computational cost. GMfit (Kawabata, 2008) employs a representation
of the density map in terms of a Gaussian Mixture Model (GMM), a linear combination
of 3D anisotropic Gaussian distribution functions. A score based on the overlap of two
Gaussian mixtures is optimized to find the match.

In chapter 4, we develop a unifying probabilistic framework to assess the match between
biomolecular structures by applying ideas from computer vision. The structures, as we
discussed earlier, are represented by the coarse-grained model and compared by
measuring the overlap between the particle clouds. We employ the kernel correlation
to measure the overlap. We quantify our method in multiple examples, from protein
structural alignment to comparison of circularly permuted structures and rigid modeling

with EM maps.

Our strategy is to minimize the Gaussian kernel correlation (KC). The KC of two point
clouds represented by position matrices X and Y and weight vectors ¢ and 7, viewed as a
function of the rigid transformation is defined as (Isin and Kanade, 2004),

M N
KC(R,t) =Y > qp;jé(|@i — Ry; — t]) = ¢" (R, t)p (1.9)
i=1 j=1

where, || - || is the Euclidean norm and @ is the M x N kernel matrix with elements
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¢ij = ¢(x; — Ry, — t). Throughout this study, we use the Gaussian kernel,

bol) = We@{_ﬁ?ﬁ} (1.10)

where, the positive parameter o is the bandwidth of the kernel.

We develop an upper bound minimization technique to optimize the kernel correlation.
This is a local minimization problem which is prone to be trapped in a local mode.
To address this difficulty, we employ the deterministic annealing method or a global

rotational/translational search technique.

In the next sub-section[I.4.2} we will briefly talk about the ICP approach, which is widely
used in computer vision, especially in pose estimation. We then continue in sub-section
by explaining the quaternion representation, one of the common approaches to
parameterize the orientations in rigid docking.

1.4.2 Iterative Closest Point (ICP) method

One of the common algorithm used in rigid registration is the Iterative Closest Point
(ICP) method (Besl and McKay, 1992). In this section, we briefly describe the algorithm.
Consider X and Y as two point clouds. We are looking for the rigid transformation
with the best correspondence between these two clouds by solving the following Lo

minimization problem,
M

E(R,t) =) ||Rx; +t — y;-
1=1

2

(1.11)

where R € SO(3) is rotation, t € R? is translation, X = {@;i =1,...,M} and Vv —
{y;j.j=1,...,N}. Finally,

J* = argmin |Rx; +t — y;|| (1.12)
je{l,...N}
By giving initial transformation R and ¢, the algorithm iteratively solve the above mini-
mization problem. ICP suffers from local minima and its performance highly relies on the
quality of initialization. £ (R, t) can be minimized in closed form using a singular value
decomposition.
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1.4.3 Tessellation of SO(3) using unit quaternions

Quaternion provides a convenient representation for rotations of object in 3D space.
They offer a simple and compact representation of the rotational parameters in space. A
quaternion can be represented as either a scalar plus a 3-component vector or a vector
with four components or a complex number with 3 imaginary variables. A quaternion g is
defined as,

q=qo+ qi+qJ +qzk (1.13)

where qq is a scalar and 4, j, k are three imaginary numbers with the basic rules of,
=42 =k’=ijk=—1 (1.14)

In the following, we briefly review some properties of the quaternion presentation.
If ¢ be a quaternion, then the complex conjugate of g, is defined as,

¢ =q —qt—qJ — gk (1.15)
besides,
(@) =q
q"q=qq"
(1.16)
g+ q" = 2q
(pg)" =q*p"

The norm of a quaternion q is denoted by |q| = \/¢*¢ and a quaternion is called a unit
1_ g

— al?
= 1. And finally for unit quaternion, ¢~ = ¢*. We

quaternion if the norm is equal to 1. The inverse of a quaternion is defined as ¢~
and its clear that, ¢~ 'q = ¢q¢~*
represent rotations using the unit quaternions in S?, the four-dimensional sphere. A great
advantage using unit quaternions to represent rotations is that it leads to a clear idea of
simulating the space of rotations SO(3). We apply the idea of tessellating the rotational
space from computer vision (Straub ef al., [2017) which uniformly approximates SO(3).
This can be achieved with the 600-cell, a tessellation of the unit sphere using 4D tetrahedra.
To achieve a finer discretization, each tetrahedron can be split into eight tetrahedra whose
corners again lie on the unit sphere. By projecting the center of a tetrahedron onto the unit
sphere, we obtain a valid 3D rotation matrix. Using this method, we discretize the space or

rotations in a way that can be refined to increasingly higher precision. At the coarsest level,
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this construction results in 330 rotation matrices (only the upper half-sphere has to be
considered due to symmetry arguments). A finer representation comprises 8 x 330 = 2640
rotations. As we stated earlier, a challenging task in cryo-EM reconstruction problems is to
estimate the rotations. A brute force strategy for sampling the rotations is to choose a fixed
resolution of discretized rotation space, evaluate the conditional posterior for all rotations,
and sample a rotation from the discretized conditional posterior. This property provides

us possibility of sampling the space of rotations in a more efficient and systematic way.

1.5 Computational approaches used in this thesis

Due to high dimensionality and multi-modality, solving the Bayesian model that
we introduced in section[I.1.3} is numerically intractable. We use MCMC algorithms to
address these difficulties. In the following, we will concisely talk about MCMC algorithms
that are used in this thesis.

1.5.1 Markov Chain Monte Carlo algorithms

In this section, we give a brief overview of Markov Chain Monte Carlo (MCMC) algorithms.
More information can be found in (Bishop), 2006} Neal et al., 2011).

The posterior distribution derived from Bayesian inference is quite complex. High dimen-
sionality and existence of several local modes make solving the reconstruction problem
intractable and we need to resort to some form of approximation. In this thesis, we use
approximate inference methods based on numerical sampling techniques (Monte Carlo
techniques). Markov Chain Monte Carlo is a powerful framework to sample from a target

distribution. A Markov Chain is formed by a sequence of random variables z!, 22, ... T
which meets the following conditional independence property,
p(zt 2t .. 2t = p(atTat), for te{l,....,T—1} (1.17)

p(ztT1|x?) are called transition probabilities and a Markov Chain is homogeneous if the
transition probabilities are the same for all t. A homogeneous Markov chain with transition
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probabilities T', the distribution p*(x) is invariant if,

pi(z) =) T(a',2)p*(«) (1.18)

Our goal is to construct a Markov Chain for which the distribution we wish to sample from
is invariant. We also require that the Markov Chain be ergodic, which means for ¢ — oo,
the distribution p(z!) converges to the required invariant distribution p*(z) regardless the
choice of initial probabilities p(x°). An ergodic Markov Chain can only have on invariant
distribution which is called equilibrium distribution.

1.5.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings sampler is one of the most popular MCMC technique which
used to draw samples from complex probability distributions.The algorithm works by

t—1

proposing a new state z* based on a previous state °~* according to the proposal distribu-

tion g(x*|2'~!). An overview of the Metropolis-Hasting sampler is presented in algorithm

@

Algorithm 1 Metropolis Hastings sampler

Require: Define target density p and proposal density ¢
Require: Choose initial sample z°

fort=1,...,Tdo
t—1

r==x
e ~q(le)
e = min(1, BEFEES)
u ~ UJ[0,1]
if u <= cthen
ot =a!
else
l't =T
end if
end for

1.5.3 The Gibbs sampler

The Gibbs sampler is another popular MCMC technique. If we take p(x) = p(z1,...,2z7)

as the target distribution from which we want to sample, by choosing an initial state
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for the Markov Chain, each step of the Gibbs algorithm is to replace the value of one
variable by a value sampled from the distribution of that variable given on the values of

the remaining variables. The algorithm [2]depicts an overview of the method.

Algorithm 2 Gibbs sampler

Require: Define target distribution p
Require: Choose initial sample 2° = (29,29,...,29)
for t=1,...,Tdo
for k=1,...,ddo
zh ~ p(aglah, ... ,:cz__ll,x',;;ll, ... ,:cfl_l)
end for
end for

1.5.4 The Hamiltonian Monte Carlo algorithm

The Hamiltonian Monte Carlo (HMC) algorithm is another MCMC technique which is
based on analogy with physical systems (Hamiltonian dynamics) to exploit samples more
effectively. Using the gradient of the log probability distribution as well as the distribution
itself, make the Hamiltonian dynamics method more efficient and faster compared to the
other MCMC techniques. If we denote position z € R? and momentum r € R, the total
energy of the system (Hamiltonian) is,

H(z,7)=U(z)+ K(r) (1.19)

where U(z) is a potential term and K (r) is a kinetic energy term and a common choice

for that, is to use a zero-mean Gaussian distribution with unit variance, K(r) = ”TT’" To

describe how the system changes in time, Hamiltonian dynamics are characterized by,
822' 8H 873- 8H

ot or; ot 0% (1.20)

In order to simulate Hamiltonian dynamics numerically, it is necessary to approximate
the Hamiltonian equations by discretizing time. This is done by splitting the interval 7" up

into a series of smaller intervals of length e. We use the Leapfrog algorithm to this end

(see).
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Algorithm 3 Leapfrog integrator
for /=1,...,Ldo
rill + 5) =ill) = (5) 3 (2(0)
l

zi(l+€) = zi(l) +ery(I + §)
ri(l4+e) =ril+5)— (%)gg(z(l +¢€))
l=1+¢

end for

Generally, the Hamiltonian dynamical method is an iterating between a series of leapfrog
updates and a resampling of the momentum variables from their probability distributions.
An overview of the HMC approach is presented in Algorithm 4l

Algorithm 4 HMC sampler

Generate an initial position z(*)
fort=1,...,Tdo
t=t+1
2 = 21
ro ~ N(O, M)
update [z, o] through the leapfrog to obtain ¢*,7*
a = min(1,exp(=U(z") + U(zo) — K(r*) + K(ro)))
c~Unif(0,1)
if c < o then
2B = 2*
else
20 = (=1
end if
end for

1.6 Synopsis

This thesis comprises five chapters. In chapter[2, we introduce a fully Bayesian approach to
reconstruct the 3D structure of macromolecular assemblies by using 2D projection images
derived from Cryo-EM. There are two challenges in the reconstruction problem that we
have to deal with, unknown structure and unknown projection directions. Knowing either

of these two quantities results in simpler sub-problems that we tackle in chapters[3|and {4

In chapter 3} we assume that the orientation of projected images are given. To characterize
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the unknown structure, we propose 3 different kernel-based reconstruction methods
which the first one considers the particle positions on a regular grid and only updates the
weights but the other two methods are mesh-free approaches where the particle positions
can move freely during the reconstruction.

In chapter [} we assume that the structure is given, and the goal is to the find rigid
transformation (pose estimation) between two structures from 3D to 2D or from 3D to 3D.
To this end, we propose a mathematical expression based on kernel-correlation to find the
match between biomolecular structures.

Finally, we conclude our efforts in chapter 5| by summarizing our achievement and by

offering ideas for future research.



Chapter 2

Bayesian Random Tomography of
Particle Systems

This chapter is the first research result from my Ph.D. study. Here we present a probabilistic
model for 3D volume reconstruction of cryo-EM datasets. This chapter was published in
Journal: Frontiers in molecular biosciences, 2021. Cited as: Vakili, N., & Habeck, M. (2021).

Own contribution:
e Concept and implementation of the algorithm and the code.
o All figures, tables.

e Manuscript in parts.
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Bayesian Random Tomography of
Particle Systems

Nima Vakili'" and Michael Habeck "?*

Microscopic Image Analysis Group, Jena University Hospital, Jena, Germany, “Statistical Inverse Problems in Biophysics, Max
Planck Institute for Biophysical Chemistry, Géttingen, Germany

Random tomography is a common problem in imaging science and refers to the task of
reconstructing a three-dimensional volume from two-dimensional projection images
acquired in unknown random directions. We present a Bayesian approach to random
tomography. At the center of our approach is a meshless representation of the unknown
volume as a mixture of spherical Gaussians. Each Gaussian can be interpreted as a particle
such that the unknown volume is represented by a particle cloud. The particle
representation allows us to speed up the computation of projection images and to
represent a large variety of structures accurately and efficiently. We develop Markov
chain Monte Carlo algorithms to infer the particle positions as well as the unknown
orientations. Posterior sampling is challenging due to the high dimensionality and
multimodality of the posterior distribution. We tackle these challenges by using
Hamiltonian Monte Carlo and a global rotational sampling strategy. We test the
approach on various simulated and real datasets.

Keywords: 3D Reconstruction, random tomography, cryo-EM, bayesian inference, coarse-grained modeling,
markov chain Monte Carlo, inferential structure determination

1 INTRODUCTION

Many different imaging techniques acquire two-dimensional (2D) projection data of an unknown
three-dimensional (3D) object. If the projection directions are known, tomographic reconstruction
methods can be used to recover the 3D structure of the object (Natterer, 2001). An additional
complication arises, if the projection directions are unknown. This imaging modality is of particular
relevance to single-particle cryo-electron microscopy (cryo-EM). In recent years, cryo-EM has
emerged as a powerful technique to determine the structure of large biomolecular assemblies at near
atomic resolution (Frank, 2006). In cryo-EM, many copies of the particle of interest are first applied
to a carbon grid and then plunge-frozen to prevent the formation of ice crystals. The frozen randomly
orientated particles are imaged with electrons resulting in thousands to millions of noisy projection
images. Similar reconstruction problems arise in cryo-electron tomography as well as single-particle
diffraction experiments at free-electron lasers (von Ardenne et al., 2018). A completely different field
of application is in situ microscopy of various specimens such as mesoscopic organisms (Levis et al.,
2018).

The reconstruction problem common to all of these imaging methods is to recover a 3D
volume from 2D images acquired in random projection directions and has been termed random
tomography (Panaretos, 2009). Since the projection directions are unknown, we have to estimate
them in the course of the reconstruction. Moreover, to avoid model bias, the desired
reconstruction method should not rely on an initial guess of the volume (ab initio
reconstruction).

Frontiers in Molecular Biosciences | www.frontiersin.org 1
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Various ab initio reconstruction methods have been proposed
(Bendory et al., 2020) including maximum likelihood via
expectation maximization (Scheres et al., 2007) and maximum
a posteriori (MAP) estimation (Jaitly et al., 2010; Scheres, 2010,
2012a), regularized maximum likelihood (Scheres, 2012b),
stochastic gradient descent (Punjani et al., 2017), common
lines (Vainshtein and Goncharov, 1986; Van Heel, 1987;
Penczek et al, 1996; Elmlund et al, 2008; Singer and
Shkolnisky, 2011; Elmlund and Elmlund, 2012; Lyumkis et al.,
2013), the method of moments (Kam, 1980; Levin et al., 2018),
random-model methods (Yan et al., 2007; Sanz-Garcia et al.,
2010), methods using stochastic hill climbing (Elmlund et al,
2013) or nonlinear dimensionality reduction (Vargas et al., 2014)
and frequency marching (Barnett et al., 2017).

These approaches typically reconstruct the unknown volume
by solving an optimization problem. However, optimization
approaches do not offer any uncertainty quantification.
Another drawback is that many reconstruction algorithms are
iterative procedures that critically depend on the initialization,
which counteracts the idea of achieving an unbiased ab initio
reconstruction. Moreover, most algorithms employ a number of
ad hoc parameters that need to be tuned by the user and impact
the final result in a way that is not always obvious.

Our goal is to develop a fully Bayesian approach to 3D
reconstruction using a meaningful model of the unknown
structure (including a physically realistic prior) and utilizing
sampling algorithms for parameter estimation and uncertainty
quantification. In our previous work (Joubert and Habeck, 2015),
we already took the first step towards this goal. We considered the
reconstruction problem in random tomography as a density
estimation problem utilizing a mixture of Gaussians. With the
help of conjugate priors and the introduction of latent assignment
variables, we could derive analytical updates for a Gibbs sampler
that infers the unknown rotations and component means.

However, there are various problems with our previous Gibbs
sampling approach. First, Gibbs sampling suffers from slow
convergence and depends strongly on the initial conditions.
Therefore, to locate the posterior mode many restarts of the
Gibbs sampler from varying initial conditions are necessary.
Second, our Gibbs sampling algorithm is restricted to a
Poissonian likelihood. The Poisson model is limited in that it
ignores the effect of the point spread function and correlations in
the noise. Third, the prior over the component means (particle
positions) is chosen to be a conjugate, zero-centered Gaussian
distribution, which is not realistic for biomolecular structures,
because it ignores excluded-volume effects.

Here, we overcome these limitations by developing a more
general probabilistic model for particle systems and their
projection images. We no longer aim to develop analytical
updates for the Gibbs sampler, but use of Markov chain
Monte Carlo (MCMC) algorithms to infer both the particle
positions as well as the unknown rotations. Sampling
conformations of the particle system for fixed rotations can be
achieved with Hamiltonian Monte Carlo (HMC). To sample the
rotations, we use a Metropolis-Hastings algorithm that explores
the unit quaternions parameterizing the unknown projection
directions. Since Metropolis-Hastings samples a probability

Bayesian Random Tomography

distribution only locally, we occasionally run a global sampling
step that is computationally more expensive. Using simulated and
real experimental data, we demonstrate that our Bayesian
approach to random tomography is capable of estimating
physically plausible coarse-grained models.

2 PROBABILISTIC MODEL AND
POSTERIOR SAMPLING

We aim to reconstruct a 3D volume f(r) for re R3® and
f:R*>R,. We do not observe f(r) directly but only
projection images

g = [FE = [0 urb)de= Xolf]w) )

where R € SO(3) is a 3D rotation matrix whose last row 8 € R? is
a unit vector pointing into the projection direction, and 8* € R**2
is the matrix whose columns span the plane orthogonal to 8 such
that RT = [6*,0]. Throughout this article, u € R?> denotes a
position in the projection image, and r € R® a position in the
volume. The integral transform X'g[f] (Eq. 1) is known as the
X-ray transform or John transform (Natterer, 2001). In 2D, the
X-ray transform is identical to the Radon transform. The
reconstruction problem in random tomography is to estimate
f(r) from N random projection directions 8, or equivalently R,,,
such that

g (u) = X, [flw)+n(uw), n=1,...,N ()

where n(u) is the noise.

2.1 Kernel Expansion of Images and

Volumes

The standard discretization of images and volumes is based
on pixels and voxels placed on regular 2D and 3D grids.
Instead, we expand images and volumes into sums of basis
functions that can be centered at irregular positions (as in
meshless methods). We use a radial basis function (RBF)
kernel ¢ such that the kernel expansion of the volume
becomes

K
fr) =) we(r-x) (3)
k=1

where K is the number of basis functions, || - || is the Euclidean
norm, wy, a coefficient or weight (if wy > 0) and x; € R a position
vector that determines the center of the kth kernel. We can
represent members of a reproducing kernel Hilbert space using
this expansion. RBF representations are widely used in machine
learning (Scholkopf and Smola, 2002), image processing (Takeda
et al, 2007) and numerical applications (Schaback and
Wendland, 2006).

A physical interpretation of the kernel representation is that
we model the object as a collection of K particles at positions x
with mass wg > 0. The model (3) can then be interpreted as the
blurred version of a particle system:

Frontiers in Molecular Biosciences | www.frontiersin.org
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(right) show coarse-grained models using K = 50,300, and 1000 particles.

FIGURE 1 | Coarse-grained representation of GroEL/GroES using a varying number of particles (left) atomic structure (PDB code 1aon). Panels (middle left) to

; w AV
L

M
'- '. "
A% de%

—

K
fm=<w2m%>m (4)
k=1

where §,, is the delta function centered a x; and the particle
density, Y w0y, is blurred by a convolution (denoted by *) with the
RBE kefnel. The particle locations and weights {(xg, wi); k =
1,...,K} can also be viewed as a weighted point cloud. The
component means x; could be fixed to a regular 3D grid. But
we will consider particle systems that are not tied to a grid and
can be distributed in an irregular fashion (similar to meshless
or meshfree methods used in numerical analysis). Typically,
the particle system is a coarse-grained representation of
the unknown structure rather than an atomic-resolution
representation. Therefore, 3D
projection data provides a pseudo-atomic representation
whose resolution depends on the number of particles K
(Figure 1 for an illustration).

One motivation for our choice of the volume representation
(Eq. 3) are its efficient transformation properties. Rigid
transformations of f(r) involve a shift by the translation
vector ¢ and a reorientation brought about by the rotation
matrix R. Under the RBF expansion these transformations
reduce to rigid transformations of the particle positions:

reconstruction from 2D

f(n 'Igf(RT(r—t)) = ZquS(r—ka—t) = ZWk d(r—=x1) (5)
P P

where x}. = Rx; + t.
There are many options for ¢ (r). We will restrict ourselves to
Gaussian RBF kernels. The d-dimensional spherical Gaussian is

defined by
¢,(r;x,0°) = ¥exp{ - L||r - x"2 } (6)
da\ ’ (27102)d/2 20?2

where ¢>0 is the bandwidth of the kernel. The volume
representation that we will use throughout this paper is a
mixture of K spherical Gaussians:

K
F(r) = wi ¢y (r:%,0%) (7)
k=1

This representation is very common in statistics, in particular
in density estimation where x; are observed samples resulting
in a kernel density estimate of an unknown probability
density function. Indeed, our original motivation (Joubert
and Habeck, 2015) to choose this representation of f (r) was
mainly driven by viewing 3D reconstruction from random
projections as an instance of a density estimation problem.
Other examples for uses of (Gaussian) particle
representations in cryo-EM data analysis such as denoising
or the analysis of continuous conformational changes have
been proposed by Jin et al. (2014); Jonic et al. (2016); Jonic
and Sorzano (2016).

A convenient property of the spherical Gaussian kernel is its
behavior under the X-ray transform (Eq. 1):

Xo[¢,] (w) = J ¢,(0°u+0z;x,06°)dz = ¢, , (u; PRx,0*) (8)

where again R= [6%,0]" € SO(3) and the 2x3 projection

matrix P is
1 0 0
P= ( 01 0 ) ©)

Spherical Gaussians are closed under the X-ray transform, and
the projected volume (7) is again a K component mixture of
spherical Gaussians

K
Xo|f](w) = Zwk ¢, (u; PRxy, 0°) (10)
P

with centers xj = PRx; € R%. This fact motivates us to also
represent the input images as mixtures of spherical Gaussians
in 2D (see Representation of Projection Images by Point Clouds
for a concrete application).
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2.2 Probabilistic Model

The unknown parameters of our model are the particle positions
x and weights wy as well as the unknown rotation matrices R,,.
Since we interpret the Gaussian components as particles of equal
mass, we fix the weights: wy = K™!, such that the main inference
parameters are x; and R,,.

2.2.1 Likelihoods
We tested two probabilistic models for the input data. The first
model uses the input images {g,;n = 1,..., N} directly. For each
image, the intensities are g, = gn (Unm) at pixel positions uy,
where m = 1,..., M, with M, being the number of pixels in the
nth image. Typically, the number of pixels M, is identical for all
projection images.

A simple image model is to assume pixelwise identically and
independently distributed Gaussian noise in the image formation
(2), such that the likelihood of the nth image is

T MV,/Z
Pr (g"|x’ R”’ t,, Y Cn> Tn) = (2_n)
T

M, 2
eXp{ ‘% > [ wm = Q= ¥y ) 9 (s PR + tn,az)] }
m=1 k
11)

where 7, > 0 is the precision of the image, and &y, y,, are an offset
and a scaling factor (the constant weight wy = 1/K has been
absorbed by the scaling factor y,). The two-dimensional
translation t, accounts for a shift of the image. These three to
five nuisance parameters per image (depending on whether shifts
t,, are fitted or not) need to be estimated in addition to the particle
positions x={xi;k=1,...,K} and the rotations
R={R,;;n=1,...,N}. Model (11) is an idealized image
formation model. It ignores important effects such as the CTF
or correlated noise that are highly relevant for cryo-EM
applications.

The second model also uses a kernel expansion of the input
image motivated by the fact that ideally, according to our image
model, the projection image should also be a mixture of spherical
Gaussians (Eq. 10). In a preprocessing step, we fit a point cloud
Yo={ym € R%;m=1,...,M,} to the nth input image g, such
that

M,
g () = &y +7, Y ¢, (8 Yum> 0) (12)

m=1

Typically, we choose M, = M but this is not a requirement.
Again, model (12) does not account for the CTF or other
important effects in cryo-EM image formation. In each
projection direction, the 2D point cloud can be blurred to
a different degree captured by the width o, The
Supplementary Material details how projection images
can be converted to point clouds; Representation of
projection images by point clouds in Results shows a
practical example for further illustration.

As in Joubert and Habeck (2015), we model the 2D point
clouds as samples from the projected 3D volume:

Bayesian Random Tomography

Pr(Y,|x,R,, t,,0,) =

fembs

1 K
< > ¢, (P PR + 1,,07)  (13)
k=1

In the following, we will denote all nuisance parameters, i.e. all
parameters except particle positions and rotations, collectively
by & In case of the image likelihood (11), we have
E={(an Yy, Twts);n=1,...,N}. In case of the point cloud
likelihood (Eq. 13), we have &={(g,t,);n=1,...,N}
Moreover, we will denote both likelihoods as Pr(D|x, R, &)
where D are the data (projection images or 2D point clouds).

2.2.2 Priors

After incorporating our prior beliefs about the model parameters,
we are able to derive the posterior distribution by invoking Bayes’
theorem:

Pr(D|x, R, &) Pr(x, R, §)

Pr(x,R,&|D) = Pr(D) (14)

where Pr(x, R, ) is the prior which we assume to factor into
Pr(x, R, &) = Pr(x)Pr(R)Pr(§) (15)

The normalization factor Pr (D) is the model evidence, which
can be ignored if we are only interested in parameter estimation.

We use standard priors for the nuisance parameters: Jeffreys
priors for precisions 7, and 1/02. The prior for the scaling factors
and offsets are flat. Note that these priors are improper (i.e., not
normalizable). Since we are only interested in parameter
estimation, this does not pose a problem. The priors for the
scaling factor and offset could be improved. For example, cryo-
EM images are often normalized such that the mean intensity is
zero and the standard deviation is one. It is possible to express this
information as a prior on the offset and scaling factor. The
Supplementary Material provides more details about these
priors. For the image shifts t,, a zero-centered two-
dimensional Gaussian distribution is a reasonable choice.

Typically, biomolecules orient themselves randomly in the ice
layer that is imaged by cryo-EM. Therefore, we choose a uniform
distribution over SO(3):

N
Pr(R) = [ [ Pr(R,) o1 (16)

n=1

These priors are proper, because the rotation group is
compact.

In our previous work (Joubert and Habeck, 2015), we used a
zero-centered Gaussian prior for all particle positions xj to ensure
that prior and likelihood are conjugate, which enabled the
derivation of closed-form updates for the component means.
However, this prior is very unrealistic, if we think of the Gaussian
basis functions as massive particles that should not occupy the
same region in space (excluded volume), but rather repel each
other. Since the packing of biomolecular structures is reminiscent
of fluids (Liang and Dill, 2001), the prior should favor particle
configurations that show similar packing characteristics. To
model repulsive interactions between particles, we use a
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Boltzmann distribution over the positions x; involving a soft
repulsive interaction potential E (x):

Pr(x,...,xx) < exp{—BE(xy, ..., xx)} (17)

Furthermore, the particles are confined to a box with soft
boundaries (Habeck, 2017). Pairs of particles repel each other if
the distance is smaller than the particle diameter 2R where R is the
effective particle radius. We choose a quartic repulsion which is
commonly used in NMR structure calculation:

N
E(x1,...,x5) = Z [ka—xkaSZR] 1-— (18)

k<k' 2R

where [-] is the Iverson bracket. Given the total number of atoms
L of the system, the particle radius can be predicted for a desired
number of particles K by using the relation

R =~ 0.92 (L/K)*** A. (19)

Using a configurational temperature estimator (Mechelke and
Habeck, 2013), the inverse temperature is estimated to § = 175.
The estimates for R and f are based on an analysis of several
biomolecular structures at different levels of coarse graining. See
Supplementary Material for details.

Since the excluded-volume term (Eq. 18) is purely repulsive,
we add a radius of gyration term such that the overall prior for
particle positions is

Pr(xy,...,xx) <exp{—PE(xy,...,xx)} exp{—ocRg (x)} (20)

where Ry (x) is the radius of gyration of the coarse-grained
structure x and « a positive constant. The radius of gyration
term imposes a weak preference for compact structures and
prevents configurations with isolated particles that do not
contact another particle. In our experiments, we set a = 10 A;
in principle, we could estimate « by using techniques similar to
those used in the estimation of f. But since a does not have a
strong impact on the final structure, we restricted ourselves to a
single fixed value for a.

2.3 Inference

Bayesian random tomography employs MCMC sampling from
the posterior distribution (14). We use a Gibbs sampling strategy
(Geman and Geman, 1984) where each group of parameters, the
particle positions x, the rotations R and the nuisance parameters
&, is updated separately while clamping the other parameters to
their current values. To update the nuisance parameters, we use
standard samplers for generating Gamma variates and normally
distributed random variables (more details can be found in the
Supplementary Material). However, the conditional posteriors of
the particle positions x and the rotations R are not of a standard
form and need to be updated with more sophisticated algorithms.

2.3.1 Sampling Particle Positions With Hamiltonian
Monte Carlo

To sample the particle positions, we use Hamiltonian Monte
Carlo (HMC) (Neal, 2011). The conditional posterior distribution
over particle positions is

Bayesian Random Tomography

Pr(x|R, &, D) oc Pr(D|x, R, &) Pr(x)

In HMC, —logPr(x|R,&, D) defines a potential energy over
configuration space that is composed of an attractive term
—logPr (D|x, R, &) matching particle positions to the projection
data, and a repulsive contribution —logPr (x) stemming from the
excluded-volume term (18). For fixed rotations and nuisance
parameters, the particle positions undergo Hamiltonian
dynamics following the gradient of —Pr(x|R,§, D) during a
short leapfrog integration. The resulting configuration is
accepted or rejected according to the Metropolis criterion.

2.3.2 Sampling Rotational Parameters With
Metropolis-Hastings

A challenging problem is to estimate the rotations. Because the
projection images are statistically independent of each other, the
problem decomposes into N subproblems:

Pr(R,|x,§,D) o

M, K 2
exp{ —% z [ m — O — ynz% (tm; PRyxx + tn,az):| }

m=1 k=1
(21)
if projection images g, are fitted directly, or
M, K
Pr(R,|x, &, D) H Z &, (¥,,.; PRxy + t,,07) (22)
m=1 k=1

if we fit 2D point clouds. In Joubert and Habeck (2015), we
introduced assignment variables such that the conditional
posterior (22) is replaced by the matrix von Mises-Fisher
distribution, which can be simulated in a straightforward
fashion (Habeck, 2009). However, because the assignment
variables are highly coupled to the other parameters, this
strategy converges only slowly to the next local minimum.
Moreover, there is no flexibility regarding the likelihood function.

We use the Metropolis-Hastings (MH) algorithm (Liu, 2001)
to estimate the rotation matrices. We parameterize rotation
matrices using unit quaternions (Horn, 1987) and propose
new quaternions by adding a random perturbation that is
sampled from a uniform distribution. We run 10 MH steps to
update the quaternions representing each projection direction in
every Gibbs sampling iteration and adapt the step-size
automatically: Upon acceptance, the step-size increases by
multiplying it with a factor of 1.02; in case of rejection, the
step-sizes decreases by a factor of 0.98. This rule results in an
acceptance rate of approximately 50%. We use this sampling
algorithm to simulate both types of conditional posteriors (21)
and (22).

2.3.3 Global Sampling of Rotational

Parameters

Since the MH algorithm achieves only local sampling of
probability distributions, we occasionally scan all rotations
systematically. The unit quaternions are elements of the 3-
sphere, the unit sphere embedded in the four-dimensional
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FIGURE 2 | HMC sampling of particle positions with fixed rotations for a simulated data set of GroEL/ES. A Evolution of the log likelihood during HMIC sampling. The
larger the number of particles K, the higher is the final log likelihood. Increasing darkness indicates larger number of particles. Line annotations also indicate the number of
particles. B Average standard deviation (computed over all 35 input point clouds) vs. the size of the particle R. C RMSD between Carbon-alpha positions of the crystal
structure and the coarse-grained models inferred with HMC. As a reference, the RMSD between the Carbon-alpha positions and the coarse-grained versions of the
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space. To evenly cover rotation space, we discretize the 3-sphere
using the 600-cell (Coxeter, 1973). The 600-cell is composed of
even sized tetrahedra whose corners lie on the unit sphere. By
projecting the center of a tetrahedron onto the unit sphere we
obtain a unit quaternion parameterizing a valid rotation matrix.
Due to the degeneracy of the quaternions we only have to
consider the upper half of the 4D sphere that is covered by
330 tetrahedra at the coarsest level of discretization. To obtain a
finer tessellation of SO(3), we can split each tetrahedron into
eight tetrahedra whose corners again lie on the 4D unit sphere. By
default, we use a frequency of 0.1 to run a global rotation scan.
The conditional posterior is evaluated for all rotations and then
sampled from the discrete distribution.

The source code and scripts for reproducing the tests are
available at  github.com/michaelhabeck/bayesian-random-
tomography.

3 RESULTS
3.1 Sampling Tests

To test MCMC strategies for inferring particle positions and
rotations, we use the structure of the GroEL/GroES complex. This
system has been studied extensively with cryo-EM. Since our
focus is mainly on algorithmic aspects, we first use simulated data
that exactly follow our probabilistic model. To generate input
point clouds in 2D, we use the crystal structure of GroEL/GroES
(PDB code laon; 58,674 atom coordinates in total). The 2D point
clouds are generated by projecting the 3D positions of every 10th
Carbon-alpha atom (802 points in total) along 35 random
directions into 2D. We also generated corresponding
projection images by blurring the point clouds with a
Gaussian filter of width 5 A.

3.1.1 Sampling Particle Positions and Precisions With
Fixed Rotations

We first studied the performance of sampling particle positions
by fixing the rotations to the correct values and sampling only the
particle positions and the precisions of the projection data. HMC

sampling of particle positions started from a random initial
configuration for K ranging between 50 and 1,000 particles. In
all of our HMC experiments, the number of leapfrog steps was set
to 10, whereas the step-size was adjusted automatically. The
precisions 1/ follow Gamma distributions and can be
sampled directly.

Figure 2A shows the evolution of the log likelihood achieved
by the particle system during HMC. After roughly 200 to 500
HMC steps (depending on K), the particle cloud reproduces the
input data well, which is reflected in high values of the log
likelihood. The sampled particle configurations are very
similar to the true structure at the same level of coarse
graining. Successful sampling of Pr(x|R,&, D) with HMC is
observed reliably for many different initial particle
configurations.

It is clear that an increasing number of particles K results in a
higher goodness of fit, which is obvious from Figures 2A,B
showing the average standard deviation ¢, of the point cloud
likelihood (Eq. 13) as a function of particle radius: A higher
number of particles K results in more flexible models that result in
a better goodness of fit and higher precision. These findings
indicate that HMC is highly suited to sample particle
configurations.

Figure 2C shows the accuracy of the coarse-grained models
inferred from the projection data with HMC. The accuracy is
quantified by the root mean square deviation (RMSD) between
corresponding positions in a reference structure and a coarse-
grained model. Here, our reference structure is the atomic
structure of GroEL/ES reduced to the positions of
8,015 Carbon-alpha atoms listed in the PDB entry laon. To
compare this structure with a coarse-grained model, positions in
the atomic structure are assigned to positions in the coarse-
grained model that are closest in 3D space. There are two factors
that contribute to this measure of accuracy: the level of coarse
graining as well as the performance of posterior sampling based
on the 2D projection data. To disentangle both contributions, we
also show the accuracy between the crystal structure and its
coarse-grained versions (obtained with the DP-means algorithm
by Kulis and Jordan (2012); also see the Supplementary Material).

Frontiers in Molecular Biosciences | www.frontiersin.org

6 May 2021 | Volume 8 | Article 658269



Vakili and Habeck

Bayesian Random Tomography

cross-correlation
coefficient
o IS
[e] o

o
)

N

[

Frobenius distance

o

FIGURE 3 | Global vs. local sampling of orientational parameters. Shown are the cross-correlation coefficients (panel A) and Frobenius distances (panel B) for
each of the 35 input directions achieved with local sampling based on the MH algorithm and global sampling using a regular discretization of the 3-hemisphere. The blue
curve shows the results obtained with the coarsest covering based on 330 unit quaternions; the red curve shows the results obtained with a finer covering (2,460
quaternions). The box plots show the variability within 30 trials of MH starting from random rotations.
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This curve shows that coarse-grained models of GroEL/ES using
1,000 particles achieve an accuracy of about 4.6 A, whereas an
ultra coarse-grained model based on only 50 particles is on
average 15.5A away from any Carbon-alpha atom in the
crystal structure. For very high levels of coarse graining (small
K), the models inferred with HMC reach the maximum accuracy
that is possible at this level of coarse graining. With increasing
number of particles K, the gap in accuracy widens but is still
similar to the maximum attainable value. For example, with K =
1000 the model obtained with HMC achieves an RMSD of 5.7 A,
whereas the coarse grained model obtained directly from the
crystal structure achieves an accuracy of 4.6 A.

If we estimate particle configurations from projection images
instead of point clouds, we obtain similar results. Supplementary
Figure S4 shows the log likelihood and cross-correlation
coefficients obtained with different numbers of particles, again
ranging between 50 and 1,000. The evolution of the log likelihood
indicates that the HMC sampler seems to converge even faster
compared to a simulation based on point cloud data: within
20-150 HMC steps the log likelihood plateaus. The accuracy of
the structure after 500 HMC steps is similar to or better than the
accuracy of the particle models fitted against 2D point clouds and
almost reaches the accuracy of the coarse-grained models derived
from the crystal structure. Supplementary Figure S5 shows FSC
curves for all 3D models. For the same number of particles, the
FSC curves are similar with a slight preference for the image-
based models when using larger numbers of particles. The
resolution ranges from 12.2 A (50 particles) to 4.5 A (1,000
particles). Supplementary Table S1 shows resolution estimates
for all models.

3.1.2 Sampling Rotational Parameters and Precisions
With Fixed Particle Positions

To test our rotational sampling approach, we fixed the particle
positions to an ultra coarse-grained structure (K =200) of
GroEL/ES. Although each rotation can be updated
independently of the other rotations, and each conditional
posterior (given either by Eqs. 21 or 22) is only a four-

dimensional probability distribution over the quaternions, the
sampling problem is still challenging due to its multimodality.
Since Metropolis-Hastings (MH) is a local sampling algorithm, it
tends to become trapped in subordinate modes of the conditional
posterior, which are typical for rigid registration problems. As a
result, running MH on the conditional posteriors is not sufficient
to reliably recover the rotation matrices.

Figure 3A shows the cross-correlation coefficients for the 35
projection images obtained with global rotational sampling in
comparison with MH runs starting from 30 random rotations.
Global rotational sampling was based on the first two
discretizations of the 3-hemisphere using 330 and 2,640
quaternions, respectively. The number of local sampling
attempts was set to 30 so as to match the speed of global
sampling at the finer level. That is, the coarse sampling based
on 330 quaternions is approximately 8 times faster than the 30
local sampling trials. As evidenced by Figure 3A, global sampling
is capable of finding rotation matrices that yield high cross-
correlation coefficients, whereas MH alone fails to do so in a
systematic fashion. Figure 3B shows the Frobenius distances
(ranging from 0 to a maximum of 2+/2) between the true rotation
matrix and the estimated rotation matrices. Again, global
rotational sampling achieves more accurate rotations, whereas
the distances scatter largely for the local MH trials. These findings
suggest that global rotational sampling is indispensable for
Bayesian random tomography in agreement with our previous
findings (Joubert and Habeck, 2015) where we had to resort to
repeated Gibbs sampling runs.

Before we study sampling of the full posterior distribution (all
parameters R, x and § are unknown), we will first outline how
experimental projection images can be converted to 2D point
clouds that are suitable for our approach to random tomography.

3.2 Representation of Projection Images by
Point Clouds

Experimental projection data are typically presented as projection
images rather than point clouds. In this subsection, we discuss
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coefficient increases to 99.6%.

FIGURE 4 | Representation of projection images by 2D point clouds (A) Class average of the 80S ribosome (B) Mask obtained by thresholding image intensities
greater than the median intensity. Black pixels are part of the mask (C) Clustering of pixels that are part of the mask. Pixels that form a connected component are grouped
together and shown in different grayscale colors (D) Pixels that form the most central connected components with shifted image intensities (E) 2D point cloud composed
of 1,000 particles obtained by running the Expectation Maximization algorithm (F) Model image according to Eq. 10. The cross-correlation coefficient between the
model and the original image is 95.8%. If only pixels are considered that are part of the mask indicating the central connected component, the cross-correlation

how to convert 2D projection images to 2D point clouds that are
suitable for our Bayesian random tomography approach. We
discuss this for a cryo-EM data set, but similar techniques are also
applicable to other data, as we will demonstrate later.

The projection properties of mixtures of spherical Gaussians
(Eq. 10) suggest to also represent the projection image as a
mixture of Gaussians. Our model can only capture nonnegative
intensities. Therefore, we first have to choose a suitable threshold
0 above which image intensities are considered real signal. The
threshold will be used to construct a binary mask: the intensities
of pixels that are part of the mask will be shifted by 6 such that
their shifted intensities are nonnegative; the intensities of pixels
that are not part of the mask will be set to zero (i.e., they will be
ignored in the construction of the point cloud). A simple choice of
0 for class averages from cryo-EM is the median intensity, but a
different choice might be more suitable for other types of images.

An example of the thresholding procedure is shown in
Figure 4B for a class average showing the projection of the 80S
ribosome (shown in Figure 4A). Black pixels indicate pixels with
intensity above the median. By looking at the mask, it is clear that
only the central pixels forming a connected component carry signal.

Next, we identify pixels that form connected components.
Again this applies to cryo-EM images; other types of images
might require a different treatment to construct a suitable mask.
To identify signal pixels that form a connected component, we
convert the thresholded image to an undirected graph G = (V, &)
where the pixels with intensities above the threshold are the
vertices V = {u,; g (uy) >0,m = 1,. .., M}. Edges are introduced

between all pairs of pixels that are nearest neighbors on the 2D
square lattice, i.e. their Euclidean distance is smaller than or equal
to one pixel:

E={Gf) el VPl wi—w || <1},

As shown in Figure 4C, multiple connected components are
typically found in the masked pixels. Since cryo-EM class
averages are often centered, we pick the connected component
whose center of mass is closest to the image center. The selected
pixels including their intensity (shifted by 6) are shown in
Figure 4D.

To obtain a particle-based representation of the central
connected component, we run the Expectation Maximization
algorithm (details in Supplementary Material). Figure 4E shows
the estimated point cloud using 1,000 particles. The estimated
standard deviation of the Gaussian is 1.34 pixels. The density
generated by the 2D particles is shown in Figure 4 and correlates
highly with the original image and the masked image.
Supplementary Figure S1 shows more examples of class
averages represented as 2D point clouds.

3.3 3D Reconstruction by Sampling the Full
Posterior Distribution

We applied Bayesian random tomography to three real datasets,
two cryo-EM datasets and one dataset from stochastic
microscopy experiments visualizing marine microorganisms.

Frontiers in Molecular Biosciences | www.frontiersin.org

May 2021 | Volume 8 | Article 658269



Vakili and Habeck

Bayesian Random Tomography

FIGURE 5| 2D projections of the 80S ribosome. First row: point clouds derived from class averages. Each projection image is represented by 1,000 points. Second
row: 2D projections of the coarse-grained model calculated with Bayesian random tomography based on 2D point clouds. Third row: Class averages. Bottom row: 2D
projections of the coarse-grained model calculated with Bayesian random tomography based on class averages.

substructures are better visible.

FIGURE 6 | 3D models of the 80S ribosome (Left) 1,000 particle model inferred with Bayesian random tomography (Right) Initial model computed with PRIME.
The particles are sorted such that spatially close particles have similar indices. By using Pymol’s chainbow command, we can then visualize the particle models such that

In these applications, we sampled the joint posterior distribution
of all unknown parameters, particle positions xi, rotations R, and
nuisance parameters & with the MCMC techniques discussed
above. We started our reconstruction simulations from spherical
random structures and random rotations and did not observe any
dependence on the initial values.

The first dataset is comprised of 400 2D class averages of the
80S ribosome computed with SIMPLE2 (Elmlund and Elmlund,
2012) from cryo-EM micrographs (EMPIAR-10028); the size of
the images is 80 x 80 pixels, the pixel size is 2.68 A. The class
averages are part of a SIMPLE2 tutorial and publicly available
at https://simplecryoem.com/SIMPLE3.0/0ld_pages/2.5/data/
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(left to right). Bottom row: 4,000, 8,000, 12,000 particles (left to right).

FIGURE 7 | Density maps of the 80S ribosome obtained with Bayesian random tomography using 50 class averages as input. Top row: 200, 1,000, 2000 particles

simple2.5tutorials.tgz. Figure 4 and Supplementary Figure S1
show some example images and the 2D point clouds that were
generated with the procedure outlined in subsection 3.2. Class
averages were converted to 2D point clouds each composed of
1,000 points. Because the dataset is highly redundant, we only
used the first 50 class averages and point clouds in the posterior
simulations.

We used K = 200 and K = 1000 particles with a radius of R =
16.4 and R = 8.4 A, respectively to fit the ribosome point clouds.
We ran 500 iterations of Gibbs sampling with the global strategy
for the rotational parameters and HMC for the particle positions.
Figure 5 shows five input point clouds and the projected model
after convergence. We observe a good agreement between the
experimental point clouds and the model point clouds with an
RMSD ranging between 6.4A and 9.8A and an average
of 7.7+ 0.7 A.

We also compared our 3D coarse-grained model of the 80S
ribosome with a structure obtained with PRIME (Elmlund et al.,
2008). To simplify the comparison, we converted the density map
obtained with PRIME to a structure made up of 1,000 particles.
The indices of the particle models were ordered such that spatially
close particles have similar particle indices (which can be
achieved, for example, by solving a traveling salesman problem
using the matrix of inter-particle distances as input). Both
structures show similar features (Figure 6); an FSC analysis
reveals a resolution of 15.5A using the 0.143 criterion
(Supplementary Figure S6).

We also ran simulations based on the first 50 class averages
rather than 2D point clouds using 200 up to 12,000 particles.
Again, we ran 500 steps of Gibbs sampling where the rotational

parameters were updated globally with a frequency of 0.1.
Projections of the 200 particle model are shown in the bottom
rows of Figure 5. The cross-correlation coefficient between the
class averages and the model images ranges between a minimum
and maximum value of 90%-96% with an average of 94 + 1%. For
comparison, we also report the RMSDs to the particle clouds
which range between 6.1A and 13.1A and an average
of 83 +3.0A.

Using the last 100 particle configurations, we also generated
density maps for each simulation and compared them to the
high-resolution reconstruction EMD-2660 (Wong et al., 2014).
The density maps are shown in Figure 7. To assess the quality of
the particle models, we computed the FSC between the high-
resolution map and the model maps (Supplementary Figure S6).
Based on the 0.143 criterion, the resolution of the particle models
ranges from 23.6 A (200 particles) to 10.6 A (12,000 particles).
For comparison, the reconstruction obtained with SIMPLE
reaches a resolution of 6.2 A based on 200 class averages.
More details about the quality of the reconstruction and
computation times can be found in the Supplementary
Material (Supplementary Tables S2, S3).

The posterior samples can be also used to assess the
uncertainty of the particle models in the form of structural
error bars. To carry out uncertainty quantification, the particle
models first need to be superimposed and a correspondence
between particles across different samples has to be
established. We solve these two tasks by using the Iterative
Closed Point (ICP) method followed by a linear assignment
step where particle distances between superimpose clouds are
used as a cost. Supplementary Figure S7 shows an example for
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calculated with Bayesian random tomography using 500 particles.

FIGURE 8 | 2D projections of beta-galactosidase. Top row: eight (out of 16) projection images (RELION class averages). Bottom row: Projection images

structure (PDB code 1jz8).

FIGURE 9 | 3D models of beta-galactosidase (Left) 2000 particle model inferred with Bayesian random tomography (Right) Coarse-grained model of the atomic

structures based on 200 and 2000 particles. The distribution of
uncertainties is inhomogeneous. Highly uncertain particles tend
localize on the surface of the 200-particle model. The 2000-
particle model shows smaller variations in the uncertainty of
particle positions. So the large variations in the uncertainties of
the 200-particle model might also be caused by the small number
of particles.

The second cryo-EM dataset comprises 16 class averages of
beta-galactosidase. These images are part of a RELION tutorial
and available at ftp://ftp.mrc-Imb.cam.ac.uk/pub/scheres/
relion31_tutorial_precalculated_results.tar.gz. The class average
based on the data from EMPIAR-10204. The size of the images is
60 x 60 pixels, the pixel size is 3.54 A. In this test, we inferred the
structure from the images directly using likelihood (11) without
converting the class averages to 2D point clouds.

Similar to the ribosome simulations we used 500 steps of Gibbs
sampling with occasional global sampling of the rotational
parameters to infer the coarse-grained structure of beta-
galactosidase. We inferred structural models for systems with
100 up to 2000 particles.

The top row of Figure 8 shows the first eight class averages
that were used as an input for particle-based random
tomography. The bottom row shows the projection images of
a model composed of 500 particles that was obtained with
sampling the full posterior distribution. Starting from a

random initial structure and rotations, our sampling algorithm
estimates a model structure and orientations that reproduce the
experimental images closely with cross-correlation coefficients
ranging between 94.7% and 97.5% and an average of
95.9 £ 0.01%.

We compared the structure inferred with Bayesian random
tomography against a high-resolution crystal structure (PDB
code 1jz8) and a near-atomic cryo-EM reconstruction (EMD-
5995). To enable this comparison, we converted the PDB
structure to a 3D point cloud composed of 2000 particles.
Correspondences between particles in our model and the
model based on the crystal structure were established as in the
calculation of the RMSD. Figure 9 shows both models. The
RMSD between our particle model and the Carbon-alpha
atoms of the high-resolution structure 1jz8 is 3.4 A. For
comparison, we also report the RMSD between 1jz8 and its
coarse-grained version (shown on the right of Figure 9) which
is 2.4 A. Bayesian random tomography achieves a similar
accuracy by inferring a 3D model from the class averages as
direct coarse graining of the high-resolution structure.
Supplementary Figure S8 shows density maps for all of the
five simulations. By comparison with the high-resolution
reconstruction (EMD-5995) we assess the resolution of the
models to range between 25A (100 particles) and 1154
(2000 particles). For comparison, the initial model from
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FIGURE 10 | Stochastic microscopy images of a plankton species. Top row: six (out of 16) projection images. Middle row: 2D point clouds representing the
image data. Bottom row: 2D projections of the particle model calculated with Bayesian random tomography.

FIGURE 11 | 3D model of Pyramimonas Longicauda using 100 particles
inferred from the point clouds shown in Figure 10.

RELION achieves a resolution of 9.8 A (Supplementary Figure
§9 shows the corresponding FSC curves).

To assess the impact of the Boltzmann prior (Eq. 17), we ran
two posterior simulations using 200 and 1,000 particles with the
inverse temperature set to zero (i.e. the repulsive inter-particle
energy is switched off). The quality of the reconstructed density
map is largely unaffected by this change. For the 200 particles
model, the average cross-correlation with Boltzmann prior is
94.7 + 1.1%; without the Boltzmann prior we have 95.7 + 0.9%.
For the 1,000 particles model, these averages are 95.5 + 1.5%
(with Boltzmann prior) and 95.9 + 1.5% (without Boltzmann
prior). A comparison of the FSC curves obtained with and
without  Boltzmann  prior  confirms  this  finding
(Supplementary Figure S11). The estimated resolution of the
200-particle model is 20.5 (19.4) A with (without) Boltzmann
prior; the 1000-particle model achieves a resolution of 12.0 (11.6)
A with (without) Boltzmann prior.

However, the Boltzmann prior has a strong effect on the
packing of particles as assessed by the radial distribution
functions (Supplementary Figure S11). With Boltzmann
prior, the radial distribution shows a prominent peak close to
the particle diameter, which is indicative of local order similar to a
fluid. Without the Boltzmann prior, this peak disappears and we
observe an enrichment of very short distances indicating a
physically unrealistic particle packing. If our goal is to
reconstruct a single 3D density from a homogeneous dataset,
introducing the Boltzmann prior is not harmful, but dispensable.

Turning the argument around, we find that the Boltzmann prior
is compatible with the data and does not result in a severe loss of
fitting quality. We expect that the prior will become essential in
more advanced 3D reconstruction tasks, in particular when facing
conformational heterogeneity.

Finally, we applied our random tomography approach to a
dataset that shows structures on length scales that are much larger
than the length scales imaged in cryo-EM. Following the work by
Levis et al. (2018), we downloaded in situ microscopy images of
the marine plankton species Pyramimonas Longicauda; the data
are available at https://darchive.mblwhoilibrary.org/handle/1912/
7341. These mesoscopic organisms are transparent and therefore
allow for 3D reconstruction from 2D microscopic images. Since
the organism seems to be quasi symmetric, we selected out of the
121 projection images recorded in 2013, 16 representative images.
The selected images cover most of the views that are present in the
dataset.

The intensity of microscopic images g, is proportional to the
transmissivity, which is related to the optical density of the object
via an exponential transform. Therefore, to convert the images to
2D point clouds, we use the expectation maximization approach
(see Supplementary Material) with weights proportional to
—logg, >0, since g, € (0,1). The six out of the 16 selected
images and their point cloud representations are shown in
Figure 10. Each microscopic image was converted to 2D cloud
composed of 1,000 points.

The fact that the magnification can vary from image to image
requires that we extend the likelihood for 2D point clouds (13)
(also Supplementary Equations S1, S2 in the Supplementary
Material). These variations are accounted for by an additional
factor that scales the coordinates of the projected model so as to
match the 2D point cloud derived from the microscopic image.
Moreover, we need to account for shifts in the image plane. These
extensions increase the number of unknown parameters per
image from four to eight: four quaternions parameterizing the
unknown orientation, two translation parameters accounting for
a shift, a scaling factor compensating variations in the
magnification and a precision.

Inference of a 3D particle model proceeded as before. We
estimated a model composed of 100 particles from the 16 2D
point clouds starting from a random structure and random
rotations (the initial values for the scaling factors and

Frontiers in Molecular Biosciences | www.frontiersin.org

12

May 2021 | Volume 8 | Article 658269



Vakili and Habeck

translations were one and zero, respectively). Figure 11 shows a
3D model of the plankton species inferred with Bayesian random
tomography.

4 DISCUSSION

We outlined a Bayesian approach to random tomography, the
problem of reconstructing a 3D structure from 2D views along
unknown random directions. At the core of our approach is a
representation of 3D volumes using a radial basis function kernel
whose centers are our main inference parameters. We interpret
the kernel centers as particle positions and use an excluded-
volume prior to ensure that estimated particle configurations
show a physically plausible packing. We demonstrated that
coarse-grained models can be inferred from projection data
(images or point clouds) with MCMC algorithms such as
HMC and global sampling of the rotations.

In cryo-EM applications, our approach can be used to generate
an initial model that can be refined further. So far, we tested the
method only an class averages that displayed a high SNR. In
future applications, we plan to explore the use of Bayesian random
tomography from raw cryo-EM images and include the effect of the
CTF into our model. Another route for extending the approach is
account for conformational heterogeneity, which is one of the major
bottlenecks in cryo-EM data processing. An interesting approach to
characterize conformational variability in the presence of continuous
flexibility has been proposed recently by Chen and Ludtke (2021)
who use an autoencoder network with a Gaussian mixture model to
represent conformational changes in a low dimensional latent space.

In all applications discussed in this paper, the number of
particles K was fixed. An interesting question for future research
is to estimate the number of particles based on the projection
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1 PROBABILISTIC MODEL AND INFERENCE ALGORITHMS

The likelihoods for both types of input data are detailed in the main text of the manuscript (Egs. 11 and
13). In case we have to account for an additional image-wise magnification factor s, such as in the in situ
microscopy application, these likelihoods generalize to

n M"/2 n oI
Pr(gn|z, Ry, &) = (;7) exp{_T Z [gnm —Qp —ITn Z¢2 (unm§ sn(PRyxi + tn), o’ )]2} (S
m k

for images where &, = (t,,, Sn, Yn, @n, 7) and
My, 1 K
Pr(Y,|z, Ry, &) = Hl K ; 2 (ynm; sn(P Ry, + tn), Jn2 ) : (52)
m= =

for 2D point clouds where &, = (t,,, sp, op)-

The Jeffreys’ priors for the precision parameters are
T~ 1)1,

where in case of the point cloud likelihood (Eq. S2) 7, = 1/02. The conditional posteriors of these
parameters are Gamma distributions:

Ty ~ Tr]Lwn/Q_l exp {—TnX%/Q} (S3)
where
My, )
X%z = Z [gnm — Oy — Yn Z ¢2(unm; Sn(PRnCIIk + tn)7 o2 )]
m=1 k

Efficient random number generators for Gamma-variates are offered by libraries such as numpy . random
from the Python array processing library NumPy. The conditional posterior of the offset and scale is a
two-dimensional Gaussian; to update these parameters, we generate a sample from the bivariate Normal
distribution by calling numpy . random.multivariate normal. The shifts t,, and magnification
factors s,, can be sampled with the Metropolis-Hastings algorithm.
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Figure S1. Representation of class averages by 2D point clouds. Top row: Class averages of the 80S
ribosome. Bottom row: Particle representations obtained by Expectation Maximization of the central
connected component.

2 FITTING POINT CLOUDS TO IMAGES WITH EXPECTATION MAXIMIZATION

Given a collection of pixels u; with associated intensities g; (¢ = 1,...,[), we aim to represent this
information by a 2D point cloud {y,,;m = 1,..., M }. The model to relate the image intensities and pixels
to a point cloud is a mixture of Gaussians (Eq. 12):

M
gimaty > do(uiym, o)

m=1

where « is a suitable background parameter, v is a scaling factor and o the width of the Gaussian
components. Using the approach described in subsection 3.2, we correct for the background by masking
out the intensities that are greater than a suitable threshold and subtracting the threshold from the intensity
such that o = 0. Without loss of generality we can set v = 1. So we are trying to fit y,,, and o such that the
shifted intensities g; at pixels u; are reproduced as closely as possible with the Gaussian mixture model:

M
gi = Z $2 (Wi Ym, 0°) .
m=1

This can be achieved with an Expectation Maximization (EM) algorithm that cycles over the following
updates:

e Soft assignment: Each pixel w; with associated intensity g; is assigned to a 2D point y,,, with probability
Pim: 9
d2 (Wi; Ym, 0°)
M
St @2 (Wi; Yy, 0%)

Pim =
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e Particle positions y,,, are the centers of mass of the assigned pixels weighted by the (positive) image
intensity g; and the assignment probabilities p;,,, computed in the previous step:

I
Zi:1 Pim gi

ym == I
22:1 Pim Gi

where the denominator is the total image intensity represented by the m-th particle.

e The width of the Gaussians is estimated by

1 I M
o= I—ZZ Pim Gi ||ui_ymH2

Zi:l 9i i=1 m=1

For the entire series of 400 class averages provided by SIMPLE, we fitted 1000 particles to each image.
The reasoning for choosing the same number of particles is that our model predicts the same total intensity
which is identical to the number of points that represent the projection images. Figure S1 shows five
representative class averages of the 80S ribosome and the their point cloud representation.
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Figure S2. Relation between the average number of atoms per particle (L/K') and the particle radius.

3 CHOICE OF PARAMETERS IN BOLTZMANN PRIOR

To enforce a reasonable packing of particle structures, we use a Boltzmann distribution (Eq. 17) with a
repulsive pairwise distance potential (Eq. 18). The only parameters that need to be set are the particle
radius R and the inverse temperature 3 of the Boltzmann ensemble.

3.1 Particle radius

Biomolecules pack in a way that is reminiscent of fluids (Liang and Dill, 2001). To design a prior
distribution that favors particle configurations with similar packing characteristics, we analyzed a number
of biomolecular structures at different degrees of coarse graining. The coarse-grained models were derived
from atomic structures by running the DP-means algorithm (Kulis and Jordan, 2012) for different distance
cutoffs A = 4,5,6,7,8,9,10,12,14, 16, 18,20 A, rather than using a computationally more demanding
coarse graining approach proposed by us (Chen and Habeck, 2017).

The DP-means algorithm is a variant of the K-means clustering algorithm. DP-means assigns points to
cluster centers, if the Euclidean distance of a point from a center does not exceed a distance cutoff. If no
cluster exists that is close enough to a given point, a new cluster is created. This process is repeated multiple
times until the iterations converge. In contrast to K-means, the number of clusters varies and depends on
the cutoff value A, which is the only input parameter: smaller cutoffs result in a larger number of clusters.
The clusters centers form the particle positions; the distance cutoff A corresponds to the particle diameter.
We use the implementation of DP-means available at https://github.com/michaelhabeck/
DP-means.

The coarse-grained structures obtained with DP-means allow us to establish a relation between the number
of particles K and the distance cutoff A. In our implementation of Bayesian particle-based tomography, we
work with a fixed number of particles and want to choose the particle radius 2 such that volume-exclusion
observed in known biomolecular structures is enforced. Since different biomolecular structures pack
similarly, we expect that the average number of atoms per particle can be related to the particle radius
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Figure S3. Configurational temperature as a function of particle radius.

independent of the specific structure. If L denotes the total number of atoms in a biomolecular structure,
then L /K is the average number of atoms per particle. We use half the DP-means cutoff as a proxy for the
particle radius R = \/2. Figure S2 shows that there is indeed a high correlation between L /K and R that
can be captured with a linear relation between the logarithms of both quantities:

log R ~ —0.087 + 0.423log(L/K)
Mapping this back, we can predict a particle radius
R~ 0.92 x (L/K)%4

from the number of atoms L and the chosen number of particles /. For a given biomolecular system, we
compute L based on the amino acid sequence.

3.2 Inverse temperature

The inverse temperature [ is estimated from coarse grained structures using the configurational
temperature formalism (Mechelke and Habeck, 2013). For each coarse-grained model that was produced
to estimate the particle radii, we computed the configurational temperature. Figure S3 shows the relation
between particle diameter and the configurational temperature, which can be fitted with a straight line in
log space. The inverse temperature corresponds to the slope of the line and is set to 5 = 175.
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4 SAMPLING PARTICLE POSITIONS AND PRECISIONS WITH FIXED ROTATIONS

Particle positions are sampled with HMC. To test the performance of HMC, we fitted coarse-grained
models of GroEL/ES against 35 simulated projection images and 2D point clouds. For both types of data,
HMC generates high-quality reconstructions.

5 le5
| — 100' =@= images
f 5 7 15.01 -©= poinis clouds
0+ 'O ] coarse-grained
-§ § % 0.95 — 1000 12.51 - crystal structure
= -2 o8 0.90 — oo
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Figure S4. HMC sampling of particle positions with fixed rotations for a simulated class averages
of GroEL/ES. A Evolution of the log likelihood during HMC sampling. B Evolution of the average
cross-correlation coefficient. C RMSD between Carbon-alpha positions of the crystal structure and the
coarse-grained models inferred with HMC. As a reference, the RMSD between the Carbon-alpha positions
and the coarse-grained versions of the crystal structures is shown as red curve.
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Figure SS5. FSC curves for particle models of GroEL/ES obtained by fitting 2D point clouds (black curves)
and projection images (red curves).
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#particles resolution (FSC at 0.143) [A] RMSD [A]
point clouds images point clouds images
50 12.2 12.2 15.6 15.5
100 10.5 10.5 12.1 11.7
200 7.8 9.3 9.8 9.1
300 8.3 8.3 8.7 7.8
500 7.1 6.5 7.3 6.4
700 6.5 6.2 6.4 5.6
800 6.0 5.8 6.1 53
900 6.0 4.8 59 5.0
1000 5.8 5.0 5.7 5.0

Table S1. Resolution estimates and RMSD values for particle-based models of GroEL/ES using point clouds and projection images as input data.
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5 POSTERIOR SAMPLING BASED ON CLASS AVERAGES OF THE 80S
RIBOSOME

5.1 Resolution assessment

In addition to the tests based on 2D point clouds derived from the projection images, we also used the first
50 class averages themselves as an input. We assessed the accuracy of the particle models inferred from
both types of input data by computing the FSC correlating the high-resolution structure EMD-2660 with
the initial model generated by our method. Figure S6 shows the FSCs and Table S2 lists the resolutions
derived from these curves.
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Figure S6. FSCs of particle models inferred from 50 class averages (A) and 2D points clouds (B).

#particles diameter [A] resolution (FSC at 0.143) [A]

200 32.8 27.6
500 22.3 235
1000 16.7 19.7
2000 12.5 16.9
4000 9.3 12.5
8000 7.0 11.9
12000 5.9 10.6

Table S2. Resolution estimates for particle-based models of the 80S ribosome obtained with random tomography. The FSCs are computed by comparing the
high-resolution reconstruction (EMD-2660) with the density map generated from the last 100 sampled particle configurations.

5.2 Computation times

Computation times for 100 steps of Gibbs sampling using 50 class averages as input. Tests were run on
an intel 15 processor (1.6 GHz oct-core using a single thread only).
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#particles computation time [h]

200 0.1
1000 0.3
4000 0.9
6000 1.2
8000 1.6

10000 2.0
12000 24

Table S3. Computation times for a 3D reconstruction from 50 class averages of the 80S ribosome using 100 Gibbs sampling steps.

5.3 Uncertainty Quantification

Bayesian methods and posterior sampling allow for uncertainty quantification. Since particle models can
differ by a rigid transformation and a permutation of particle indices, we first need to superimpose the
configurations generated by posterior sampling and establish a correspondence between particle positions
across different samples. We do this by using the ICP (iterative closest point) method followed by linear
assignment. After these steps, we can compute the standard deviation of each particle position which
provides a structural error bar. Figure S7 shows a particle model where the error bar is encoded in the bead
radius.

Figure S7. Uncertainty quantification of the ribosome model. The size of the spheres is proportional to
the standard deviation of particle positions after superposition and assignment. The top row shows a model
based on 200 particles. The bottom row shows the structure based on 2000 particles. Shown are side views
of the 80S ribosome that differ by a 90-degree rotation about the z axis.

Frontiers 9



Supplementary Material

6 POSTERIOR SAMPLING BASED ON CLASS AVERAGES OF
BETA-GALACTOSIDASE

Figure S8. Density maps of beta-galactosidase obtained with Bayesian random tomography using 16
class averages as input. Top row: 100, 200, 500 (left to right), Bottom row: 1000, 2000, PDB code 1jz8
(left to right).

FSC

102 10!
resolution [A]

Figure S9. FSC curves comparing the high-resolution reconstruction EMD-5995 with Bayesian models
using 100 and 2000 particles, respectively, as well as an initial structure obtained with RELION.

10



Supplementary Material

7 IMPACT OF BOLTZMANN PRIOR

To assess the impact of the Boltzmann prior (Eq. 17), we ran simulations with the beta-galactosidase
images where the Boltzmann prior was switched on and off (3 = 0).

1 . OO 7 —— with prior (K=200)
=== Without prior (K=200)
with prior (K = 1000)
0.75 , without prior (K = 1000)
RELION
o 0.50-
wn
L
0.25
O .OO - N e e i R g e
_0.25 . 2| T T T T T T T T T
10 10%

resolution [A]

Figure S10. Impact of Boltzmann prior on the accuracy of the 3D reconstruction. FSC between high-
resolution reconstruction EMD-5995 and models calculated with and without Boltzmann prior for various
numbers of particles. The FSC curve for the RELION’s initial model is shown in yellow.

10 K =200 K=1000
ith ori
. w! prior | 30-
— without prior
" 6- w 201
a a
o 4- oc
10-
27 with prior
— without prior
0- 0-
0 20 40 0 10 20
inter-particle distance [A] inter-particle distance [A]

Figure S11. Impact of Boltzmann prior on particle packing. Shown are the radial distribution functions
computed from sampled particle models of beta-galactosidase with (light blue line) and without Boltzmann
prior (dark blue line).
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Chapter 3

Kernel-based tomographic
reconstruction on and off the grid

This chapter is the second research result from my Ph.D. study. Here we present three
grid-free probabilistic models for 3D volume reconstruction of tomography datasets which
the relative orientation of the particles are known. This manuscript is in preparation. Own

contribution:
e Concept and implementation of the algorithm and the code.
o All figures, tables.

e Manuscript in parts.
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Abstract

Tomography is a major technique in imaging science and has made wide-ranging
contributions to physics, material science, biology and medicine. Independent of
the specific application domain, the reconstruction problem in tomography is to
recover a 3D object from 2D projection images. Although a large array of recon-
struction methods has been proposed, there is a continued interest in developing
new algorithms. Here, we propose three reconstruction algorithms to character-
ize the 3D object from a limited set of projection images. At the core of all three
algorithms is a kernel-based representation of the 3D structure as a collection of
weighted spherical particles. This representation differs from the voxel grid rep-
resentation used by most of the existing methods. The particle representation is
a natural choice for smooth molecular densities, allows for fast and accurate pro-
jection, and has built-in positivity and sparsity. We benchmark the particle-based
reconstruction algorithms on simulated and real data sets.



1 Introduction

Tomography is a prominent imaging technique in the biological and physical sciences.
Thanks to advances in imaging hardware, it is now possible to record images with res-
olutions ranging from the nano to the atomic scale (Miao et al., 2016; Frank, 2006;
Herman, 2009; Midgley & Dunin-Borkowski, 2009; Saghi & Midgley, 2012; Leary et al.,
2012; Tian et al., 2020). A series of 2D projection images, also called a tilt series, is
acquired by rotating the specimen over a limited angular range. A 3D structure is com-
puted from the projection images with reconstruction algorithms. Two factors mainly
determine the quality of tomographic reconstructions: Radiation damage and the miss-
ing wedge caused by a limited angular sampling (notice that specimens cannot be tilted
beyond +70°).

Direct tomographic reconstruction methods include Back Projection (BP), Weighted
Back Projection (WBP) (Herman, 1980; Radermacher, 2007) and Filtered Back Pro-
jection (FBP) which involves several filtering steps on the projection data followed by
BP. Another approach is to use a common lines technique based on the Fourier slice
theorem in reciprocal space (Kak & Slaney, 2001). All of these algorithms suffer from
missing data and can produce severe artifacts as well as systematic deviations from
the ground truth.

Iterative reconstruction algorithms aim to overcome these shortcomings and can be
categorized into three classes: real-space, reciprocal-space and hybrid approaches.
Among the real-space methods, the Algebraic Reconstruction Technique (ART) (Gor-
don et al., 1970), its refined version Simultaneous ART (SART) (Andersen & Kak, 1984),
and the Simultaneous lterative Reconstruction Techniques (SIRT) (Gilbert, 1972) are
most widely used. These methods use multiplicative and additive updates to iteratively
solve a linear inverse reconstruction problem. A disadvantage of iterative methods are
their elevated computational costs that are roughly doubled compared to WBP per iter-
ation.

Fourier-based forward and back-projection methods reduce the computation time
considerably. In particular, approaches based on the Non-Uniform Fast Fourier Trans-
form (NUFFT) achieve a substantially lower approximation error (Fessler & Sutton,
2001; Matej et al., 2004; O’'Connor & Fessler, 2006). These methods mostly face chal-
lenges when reconstructing large multi-dimensional datasets and have high memory
demands.



Another family of reconstruction methods follows a hybrid approach by iterating be-
tween real and reciprocal space. Among the hybrid reconstruction methods is Equal
Slope Tomography (EST) (Miao et al., 2005) which is limited by the requirement that
the tilt angles need to be consistent with equal slope increments. GENeralized Fourier
Iterative REconstruction (GENFIRE) (Pryor et al., 2017) is a powerful hybrid method
that produces high-resolution reconstructions from a limited number of 2D projections.
The major drawbacks are a high memory usage due to an oversampling strategy and
numerical errors due to interpolation. Pham et al. (2020) as well as Yang et al. (2021)
propose REal Space lterative Reconstruction Engine (RESIRE) which combines gradi-
ent descent methods with the Fourier slice theorem to solve the reconstruction problem.

In this paper, we propose three kernel-based real-space algorithms to address the
aforementioned drawbacks. At the core of our algorithms is the representation of the
unknown structure as a weighted sum of Gaussian radial basis functions (RBFs) that
share the same smoothing parameter (the kernel bandwidth o). Each Gaussian ker-
nel can be interpreted as a particle characterized by a 3D position and a non-negative
weight (Vakili & Habeck, 2021). The patrticle positions can be located at fixed positions,
such as a regular grid, in which case the particle weights are the only free parameters.
Another interesting option is to also estimate the particle positions. In this case, the
particle positions are not tied to a regular grid, but can move freely during the recon-
struction process. The reconstruction method is then mesh-free and operates “off the
grid.” Mesh-free methods pay the prize of introducing non-linear model parameters, the
particle positions, whereas the weights are linear parameters.

We present three algorithms for kernel-based tomographic reconstruction operating
on and off the grid. Our first method places the particle positions on a hexagonal grid
and only updates the weights using an iterative non-negative least-squares algorithm.
The second reconstruction method is based on an Expectation Maximization (EM) al-
gorithm similar to the one used in Gaussian mixture fitting and updates both the particle
weights and positions, i.e. it is a mesh-free method. EM involves a subsampling step
in which a chosen number of pixels is randomly selected from the projection images.
The third method is a fully Bayesian approach that assigns equal weight to all particles
and fits the particle positions with Hamiltonian Monte Carlo. This approach is the most
flexible one in that it allows for the use of alternative fitting criteria and the incorporation
of prior information such as excluded volume. All reconstruction algorithms operate



in real space and do not require gridding or interpolation on a grid. To speed up the
reconstruction of particle positions, we can benefit from fast methods for nearest neigh-
bor search and efficient data structures such as KD-trees. Finally, we benchmark our
methods by using simulated and real data sets acquired from Cryo-ET and scanning
transmission electron microscopy (STEM).

2 Methods

2.1 Volume representation

The standard representation of a volume f(x) is based on gridding where the volume
is discretized using a regular cubic grid composed of voxels. Gridding renders the
reconstruction problem finite. The voxel grid offers a non-parametric representation of
the volume that can be very flexible, depending on the voxel size. This flexibility comes
at the cost that any natural feature such as blobbiness or differentiability is hard to
impose. Moreover, the representation is quite dense and typically involves many voxel
values (in the order of millions).

Our approach models the unknown volume f(x) by using the kernel representation

K K
f(x) = > wid((X — Xxk)/0) = > wi p(l| X — Xkl /o). (1)
k=1

k=1
The kernel function ¢ : R® — R, maps from a 3D position x € R3 to a non-negative
density value. Typically, the kernel function has a bump-shaped appearance and is
centered at positions x,. The scale parameter or bandwidth o serves as a unit for mea-
suring the extent to which a position deviates from the kernel center and determines
the smoothness of the volume: The smaller o, the rougher will be the representation
of the volume (1). In general, ¢ could exhibit any suitable shape, but here we restrict
ourselves to shapes of spherical symmetry by letting ¢(x) = p(||x||) where || - || de-
notes the Euclidean norm and p : R, — R, is a one-dimensional function that maps a
non-negative scalar argument, the distance from the kernel center, to a non-negative
density value. Due to the spherical symmetry of the kernel, it is also called a radial
basis function (RBF) kernel, and representation (1) is known as a RBF network (Bishop
et al., 1995). If we restrict the weights wy associated with each center x, to a positive
range, then the output of the RBF network will be non-negative and therefore suitable
for representing 3D densities.



The Gaussian RBF kernel ¢p ,(x) in RP is defined as
00,00 = (20?22 exp{ — L x2}, x RO, @)
) 202

That is, for the Gaussian RBF kernel we have p(r) o« exp(—r?/2). With our choice (2)
representation (1) is a mixture of K (isotropic) Gaussian densities located at centers
X, € R3:

K

f(X) =) Wi d3.0(X — Xg) (3)

k=1
This representation has a rich tradition in statistics where it is commonly used in density
estimation (Friedman et al., 2001).

Park & Sandberg (1991) have shown that the Gaussian RBF expansion has uni-
versal approximation capabilities. So the class of volumes that can be represented by
(3) is rather broad. For K — oo, we can approximate smooth 3D densities arbitrarily
closely. For o — 0, the kernel collapses to an atomic measure. For ¢ > 0, the kernel
representation is particularly suited for smooth densities such as molecular densities
that do not exhibit sharp edges.

A physical interpretation of model (3) is that we represent the volume as a blurry
density generated by K particles. The particles form a collection of points with masses
wx > 0 located at 3D positions x,. The atomic density is a sum of weighted point
sources positioned at xy:

K
D> wid,
k=1

and blurring is achieved by a convolution with the RBF kernel ¢.

The model parameters are the particle positions and weights {(x, wk)}f=1, known
in computer vision as a weighted 3D point cloud. A major difference to voxel-based
representations is that the particle locations can be off the grid. Therefore, the kernel
representation (3) can in principle achieve sub-pixel resolution whereas the resolution
of a voxel representation is limited by the Nyquist frequency. The kernel representation
(3) is linear in the weights wg, and nonlinear in the particle positions x,. For finite K
and o > 0, model (3) is hon-negative, smooth and sparse. Another advantage over
grid-based representations is that computation of projection images is straightforward
and efficient.



2.2 Modeling projection images

In our application of the grid-free kernel representation to tomographic data, we restrict
ourselves to tilt series recorded by parallel-beam projection, which is equivalent to the
X-ray transform (Natterer, 2001). The parallel-beam projection of the 3D Gaussian RBF
kernel is a 2D Gaussian RBF kernel:

/ $3.0(RX)dZ = 6o, (PRX) ()

where R € SO(3) is a rotation matrix and P the 2 x 3 projection matrix

100
P=(01o>' )

Property (4) is very convenient, because it allows us to evaluate the parallel-beam
projection of model (3) by performing a rigid transformation on the particle locations
Xy, omitting the last coordinate of the resulting 3D positions, and finally blurring the
projected 2D point cloud with a Gaussian kernel:

K
(PRf)(y) = > Wk ¢2,,(y — PRXy) (6)
k=1

where PRf denotes the rotated and projected model volume f and y € R? is a position

in the image plane.
A tilt series is composed of a set of images g, with associated rotation matrices
R, € SO(3). Each projection image is made up of pixels (enumerated by index m)
located at 2D coordinates y,,,, € R? and pixel values gnm. That is, a single projection

image g, is encoded by g, = {(y,,m,g,,m)}%g1 where M, is the number of pixels in the

N,Mp

n-th projection image. In total, we have N such projection images {(¥ ,m, 9nm)}p21 et

with associated rotation matrices {R,}N,.

2.3 Optimization of the particle weights by non-negative least squares

Let us first discuss the problem of estimating the particle weights {Wk},’f:1 for given
particle positions {x,}K_,. To estimate the weights, we match the projected model
(PRyf)(y,m) at pixel positions y ,,, against the pixel intensities g,m of the n-th projection



image. This can be achieved by minimizing the least-squares error:

2

k=1

N M, N M, K
(w) =" (Gom — (PRaOYpm)) = (gnm = > Wk b2.0(Vm — PRnxk))
(7)

For fixed particle positions, the elements K, of the M, x K kernel matrix K, encoding
the forward operator of the n-th parallel-beam projection are given by

Knmk = ¢2,cr(ynm - PRnxk) . (8)

To keep the kernel matrix K, sparse, we neglect entries involving distances ||y, —
PR.x,| > 50. The projection is a matrix-vector multiplication K,w where w is the
K-dimensional vector of particle weights. Using matrix notation, the least-squares cost
function simplifies to

¢(w) = wTAw — 2b"w + const. (9)

where the K x K normal matrix A and the K-size vector b are defined as:
N N
A=) KK, b=> K/g,
n=1 n=1

and g, is the My-size vector of pixel values in the n-th projection image. The normal ma-
trix A is element-wise non-negative because the Gaussian RBF kernel is non-negative.

Minimization of objective function (9) is a non-negative least-squares (NNLS) prob-
lem, because particle masses should be non-negative wy, > 0. We minimize 4(w)
under the non-negativity constraint by applying the majorization-minimization algorithm
proposed by Sha et al. (2007). Since A is element-wise non-negative, the multiplicative
update is very simple for our NNLS problem:

| by |

Wk<—Wk‘(Aw)k.

(10)

The NNLS algorithm is an iterative procedure reminiscent of the Richardson-Lucy algo-
rithm. If the initial weights are non-negative, then they will remain non-negative through-
out the iterations, because the correction factors | by |/(Aw) are non-negative. Typically,
we start with uniform weights. There is no algorithmic parameter except for the number
of iterations. Instead of fixing the number of iterations, we stop when the change in the
least-squares loss (9) is negligible.



2.4 Expectation maximization

The iterative NNLS solver assumes that the particle positions are known. We will next
discuss two grid-free methods that also estimate the particle positions. The observation
that our model (3) is a finite mixture of isotropic Gaussians suggests a simple algorithm
for learning the particle weights and positions as well as the kernel bandwidth. To do
S0, we approximately represent the information contained in the n-th projection image
by a 2D point cloud. The positions of the 2D points are the centers of M randomly se-
lected pixels. The image intensities gnm enter this subsampling process as probabilities
according to which pixels are selected. To account for a homogeneous background, we
also introduce a threshold 6 such that the probability of choosing the m-th pixel of the
n-th projection image is proportional to max{0, gnm — 0} (i.e. pixels with an intensity
smaller than # cannot be chosen).

Our statistical model for the 2D point cloud representing the n-th projection image
is the mixture of 2D spherical Gaussian densities (Eq. 6) obtained by projecting the
volume (3) using a parallel-beam geometry:

K

m~ > Wk b20(Ynm — PRaXK), m=1,..,M (11)
k=1

where M is a suitable number of representative pixels per projection image. When
choosing M, we have to trade-off accuracy and computational complexity. The repre-
sentation of a projection image by a cloud of M 2D points can be considered a subsam-
pling step similar to subsampling used in, for example stochastic gradient descent.

The log likelihood of all sampled pixels {y,,}*¥ ;is

n1m

N M
L({Xk},{Wk},O')=ZZ|OQZWk¢2U.Vnm PR:xy). (12)

n=1 m=1 k=1

Using standard arguments (Jensen inequality), we can derive an Expectation Maxi-
mization (EM) algorithm to iteratively learn the model parameters:

1. E-step: Compute the probability p,n« that pixel position y,,,, has been generated
from the k-th particle:

Wi ¢2,U(ynm - PRnXk)

= . 13
Prmk >k Wk $2,6(Ynm — PRnXkr) (13)




2. M-step: Compute the summary statistics y, € R® and A, € R3*3 according to
N M N M
yk=ZRr71-PTanmk.Vnmv AK=ZRZ)—PTPRHanmk
n=1 m=1 n=1 m=1

and update the model parameters as well as the bandwidth:

2
_a-1g _ Zn,mpnmk 2 Zn,m,k pnmkHynm - PRnXk”
Xe=A Vi We==jpy > 7= 2MN '

(14)

In each iteration, we resample the pixel positions y ,,, that are used in the E- and M-step.
This approach is reminiscent of stochastic optimization methods based on subsampling
such as stochastic gradient descent. The larger the number of representative pixels M,
the more faithful is the representation of the information of the projection images. We
typically start with a fairly small M and increase M in the course of the EM iterations
until M is in the order of K (number of basis functions / particles).

2.5 Bayesian refinement with Hamiltonian Monte Carlo

Finally, we apply a grid-free Bayesian reconstruction algorithm that aims to compute
reconstructions from random tomography images acquired under unknown projection
directions (Vakili & Habeck, 2021). Here, we are dealing with a simpler reconstruction
problem, because the projection directions are known in the parallel-beam setup. More-
over, we assume equal weights wy = 1 such that the particle positions {xk},’f=1 are the
only free parameters. The reconstruction is based on the posterior distribution

Pr({x}, ¢ | D) oc Pr(D [ {xk}, &) Pr({xk},¢) (15)

where ¢ denotes all additional parameters and D symbolizes all projection images
{gn}"_, and their associated rotation matrices {R.}M ;.

The posterior distribution (15) is composed of two factors, the likelihood function
Pr(D | {xx},&) and the prior Pr({x}, £). To assign the likelihood function, we first need
to establish a forward model for the projection images gx:

K
9nm = ap + ’Ynz ¢2,6(¥ nm — PRnXk) (16)
k=1

where «, is an unknown offset and ~, a scaling factor. Relation (16) holds only ap-
proximately due to noise and possible model mismatch. Here, we assume Gaussian
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1

pixel-wise independent noise of variance 7, '. The probability of observing the n-th

projection image is therefore

Mn K
Pr(gn [ {Xk}:vn» an, ) = (%)MH/Z eXp{_;n Z[Qnm—an—’m Z b2,6(¥Y nm — PRnXk)]z} .
m=1 k=1 47

There are three nuisance parameters per image: an, (offset), v, (scaling factor) and r,
(precision); these parameters are unknown and need to be estimated in addition to the
particle positions. We combine the nuisance parameters from all images in a single
symbol £. The likelihood function Pr(D | {xx}, £) is the product of all probabilities (17).

To set up the prior, we assume the factorization Pr({xx}, &) = Pr({xx}) Pr(¢) and use
uniform priors for log 7», v» and a,. To motivate the prior over the kernel centers xy,
we refer to our physical interpretation of the kernel representation according to which
the 3D structure arises from a cloud of particles. The particles have a finite size and
should not occupy the same regions in space (excluded volume). We implement these
restrictions via the Boltzmann distribution

Pr({x«}) o< exp{—BE({xx})} (18)
with a Lennard-Jones potential energy:
. 12 - 6
Ellxd) =4c 2, ()~ () (19

that imposes a long-range attraction between particles resulting in compact structures,
but enforces volume exclusion via a repellent term (Vakili & Habeck, 2021).

To sample the particle positions, we use Hamiltonian Monte Carlo (HMC) (Neal,
2011). The conditional posterior distribution over particle positions is

Pr({xk} [ £, D) o< Pr(D [ {xx}, &) Pr({xx}) .

In HMC, —log Pr({x«} | &, D) defines a potential energy over configuration space that
is composed of an attractive term —logPr(D | {xx},&) matching particle positions
to the projection data, and a repulsive contribution —log Pr({xx}) stemming from the
excluded-volume term (19). For fixed rotations and nuisance parameters &, the parti-
cle positions undergo Hamiltonian dynamics following the gradient of — Pr({xx} | £, D)
during a short leapfrog integration. The resulting configuration is accepted or rejected
according to the Metropolis criterion. More details can be found in Vakili & Habeck
(2021).

10
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Figure 1: FSC curves of reconstructions obtained from a complete, noise-free tilt series
of the vesicle structure.

3 Results

We tested our kernel-based reconstruction algorithms on simulated and real data and
compared it to other reconstruction methods.

3.1 Reconstruction from a complete noise-free tilt series of a biological vesicle

As a first test, we ran the reconstruction algorithms outlined in Methods on the simu-
lated tilt series of a biological vesicle. The phantom as well as the simulation of the
tilt series was obtained with the Python version of the GENFIRE package. The first
set of simulated data covers the entire range of angles between +90° sampled with an
angular increment of 2° (91 projection images in total) and is free of noise.

3D reconstructions from the complete, noise-free data set provide a baseline for the
reconstruction algorithms proposed in this article under perfect conditions. We first ran
the iterative NNLS algorithm using fixed kernel centers that we placed on a hexagonal
grid. The distance to the nearest neighbors was chosen to be identical to the pixel size.
The kernel bandwidth was set to o = 0.4 x pixel size.
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Figure 2: Central slices (thickness 10 voxels) of the reconstructions computed with a
complete, noise-free tilt series of a vesicle.

We assess the quality of the reconstruction via FSC curves (Fig. 1). The NNLS
approach achieves an accuracy that is comparable to the accuracy obtained with GEN-
FIRE for almost all frequencies. A slight decrease in the correlation with the ground
truth is only observed at high frequencies. Notice that GENFIRE was used to simu-
late the tilt series and therefore has an advantage in that it uses the correct forward
model, whereas our kernel-based approach uses a different forward model. The near
perfect quality of the NNLS reconstruction illustrates that the RBF model has the capac-
ity to represent 3D structures accurately. Moreover, the NNLS approach uses a total
of 112931 RBF kernels which is less than half the number of voxels (64° = 262144)
used by GENFIRE. Therefore, even though the number of adjustable parameters is
significantly reduced, NNLS achieves almost the same accuracy as GENFIRE.

We also ran the grid-free kernel approaches, EM and HMC, with K = 5000 par-
ticles. Compared to the NNLS approach with fixed RBF centers, the number of ad-
justable parameters (5000 x 4 = 20000) is reduced by a factor of 5/10 compared to
NNLS/GENFIRE. As shown by the FSC analysis, the reconstructions obtained with
the two mesh-free methods are not as accurate as the NNLS reconstruction, but still
of a very high quality. For comparison, we also computed a reconstruction with the
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Figure 3: FSC curves of reconstructions obtained from incomplete, noise-free tilt series
of the vesicle structure. Left panel: Results obtained with 71 projection images (angular
increment is 2°). Right panel: Results obtained with 41 projection images (angular
increment is 3.5°.

weighted back-projection (WBP) algorithm. The EM approach is less accurate than
WBP, whereas HMC clearly outperforms WBP, even though the number of adjustable
parameters is an order of magnitude smaller. Central slices of the reconstructions are
shown in Fig. 2.

3.2 Reconstruction from an incomplete noise-free tilt series suffering from a
missing wedge

Next, we looked at two tilt series that cover projection angles between +70° and are
therefore suffering from a missing wedge. The first series uses an angular increment of
2° resulting in 71 projection images. The second tilt series uses an angular increment
of 3.5° resulting in 41 projection images. Again, the projection images where generated
with the GENFIRE software.

We ran all reconstruction algorithms using the same settings as in the previous test.
The FSC analysis (Fig. 3) suggests that in the presence of a missing wedge, the kernel-
based reconstruction methods start to outperform existing methods. NNLS achieves a
slightly better accuracy than GENFIRE, and the gap widens at high frequencies with
increasing data sparseness. Both grid-free methods are more accurate than WBP in

13



NNLS GENFIRE

Figure 4: Central slices (thickness 10 voxels) of the reconstructions computed with an
incomplete, noise-free tilt series between +70° sampled with an angular increment of
3.5°.

the presence of a missing wedge, where the reconstruction by HMC reaches almost
the same accuracy as GENFIRE and NNLS.

The central slices of the reconstructions obtained with the sparser data set (41 pro-
jection images) are shown in Fig. 4. The central slice in the XY plane is only weakly
affected in all reconstructions, because the missing wedge points in the z-direction.
However, the central slices in the ZY and XZ plane show missing wedge artifacts for
WBP and to a small extent also for GENFIRE where the YZ slice appears to be slightly
blurred.

The analysis of a tilt series that suffers from an extended missing wedge is shown
in Fig. 5. The tilt series comprises 21 projection images that cover a tilt range of
+15° sampled with an angular increment of 1.5°. The FSC analysis shows all re-
construction methods fail to recover high-resolution details. The grid-based methods
GENFIRE and NNLS show the best FSC curves. The grid-free reconstruction obtained
with HMC is only slightly worse. WBP shows the worst FSC curve. However, the central
slices reveal that all grid-based approaches suffer from severe streak artifacts where the
kernel-based reconstruction obtained with NNLS seems be less affected than the struc-
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Figure 5: Reconstructions obtained from a noise-free tilt series suffering from a large
missing wedge. Left: FSC curves of reconstructions obtained from an incomplete and
noisy tilt series. Orientations between +15° were sampled with an angular increment
of 1.5°. Right: Central slices through tomographic reconstructions.

ture obtained with GENFIRE and WBP. Although the FSC curves favor the grid-based
reconstructions, the grid-free approaches do not exhibit an elongation in the missing
direction. This is clear from the volumetric representations shown in Fig. 6.

Figure 7 shows the particle models computed with the grid-free Bayesian approach
using HMC to sample particle positions. Notice that this representation is meaningful,
because all particles have the same weight (or occupancy). The particle models accu-
rately capture the shape of the vesicle phantom even with a restricted tilt range. We do
not observe streak artifacts arising from the missing wedge even for the model obtained
from a very narrow tilt range.

3.3 Reconstruction from a simulated noisy tilt series of a biological vesicle

We also studied the effect of noise by adding pixel-wise independent Gaussian noise
to the simulated tilt series covering a range of +70° sampled with an angular incre-
ment of 3.5° (41 projection images). The signal-to-noise ratio (SNR) was set to one.
Figure 8 shows the FSC curves and central slices. GENFIRE outperforms all other
reconstruction methods, because it incorporates a denoising step, whereas the other
reconstruction methods do not include such a step.
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Figure 6: Density maps obtained with various reconstruction algorithms from a tilt series
covering a range of +£15° sampled with an angular increment of 1.5°. Top row (from left
to right): reconstructions obtained with kernel-based methods NNLS, EM, and HMC.
Bottom row: The left panel shows the reconstruction obtained with GENFIRE. Middle
panel: WBP result. The right panel shows the ground truth (vesicle phantom).

Figure 7: Particle models computed with HMC. The 3D positions of 5000 particles
were adapted with HMC so as to match a simulated tilt series of a vesicle phantom.
Left: Complete tilt series (tilt range £90°, increment 2°). Center left: Tilt range +70°,
increment 2°. Center right: Tilt range +70°, increment 3.5°. Right: Tilt range +15°,

increment 1.5°.
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Figure 8: Left: FSC curves of reconstructions obtained from an incomplete and noisy tilt
series. Orientations between +70° were sampled with an angular increment of 3.5°; the
SNR is one. Right: Central slices of of the reconstructions obtained with kernel-based
reconstruction methods, WBP and GENFIRE.

3.4 Application to STEM data

We applied the kernel-based reconstruction algorithms to real STEM data measured on
Co,P nanocrystals.” The tilt range spans 150° with an angular increment of 2°. Each
of the 74 projection images has size 1157 x 1157 pixels; the pixel size is 0.71 nm. The
tilt axis points in y-direction and the specimen was rotated about the z-direction. We
resized the images to a size of 136 x 136 pixels. Again, we set the number of particles
to 5000.

Figure 9 shows particle models obtained with the kernel-based reconstruction meth-
ods. All reconstructions exhibit a star-shaped volume. In case of HMC, we observe
particles that are ejected from the main body of the reconstruction due to the repulsive
excluded-volume forces.

To assess our models, we compare them to a SIRT reconstruction (Levin et al.,
2016), which is available together with the tilt series. We down-sampled the reconstruc-
tion to a size of 136 x 136 x 136 and computed the cross-correlation coefficients (CCC)
between the SIRT reconstruction and our models. The NNLS approach achieves the
highest value with a cross-correlation of 95.7%. The grid-free methods show also a
high agreement with the SIRT reconstruction: 93.7% (EM) and 92.8% (HMC).

'The data set was downloaded from https://dx.doi.org/10.6084/m9.figshare.c.2185342.
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Figure 9: Density maps of a hyperbranched Co,P nanoparticle obtained with various
reconstruction algorithms from a STEM data set. Left to middle right panels: Recon-
structions obtained with kernel-based methods NNLS, EM, and HMC. Right panel: SIRT

reconstruction.
4 Conclusion

In this article, we propose three kernel-based algorithms for tomographic reconstruction
from a tilt series acquired in the parallel-beam setup. Our first reconstruction algorithm
uses fixed kernel centers that were placed on a hexagonal grid in our tests. The only ad-
justable parameters are the particle weights that are fitted with an iterative non-negative
least-squares approach. The other two reconstruction methods adjust the particle po-
sitions and are therefore grid-free methods. The first of the two grid-free methods is an
Expectation Maximization algorithm that estimates the particle positions and weights as
well as the bandwidth of the Gaussian kernel function. The second grid-free algorithm
uses a Bayesian formulation of the reconstruction problem and adjusts the particle po-
sitions with Hamiltonian Monte Carlo, whereas the weights are set to one. In addition
to a data fitting term (the likelihood function), the Bayesian model also incorporates a
prior that imposes excluded volume interactions between the particles by means of a
Lennard-Jones term.

The kernel representation has several advantages. It allows for a fast evaluation
of the forward model without any interpolation. Moreover, the kernel representation
can be interpreted as a particle system, which is particularly suited to model molecular
structures. When working with a small number of particles, the kernel representation
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has a built-in sparsity. Other constraints that are automatically enforced by the kernel
representation are smoothness and positivity.

We tested the kernel-based reconstruction algorithms on a simulated and real data
set. Our tests show that the kernel representation can achieve the same accuracy as a
voxel-grid representation. In the presence of a missing wedge, the grid-free reconstruc-
tions using a limited number of particles are less susceptible to streak artifacts along
the direction of the missing wedge. Reconstructions from noisy data are not as accu-
rate as structures obtained with state-of-the art methods such as GENFIRE. So there
is the need to make the kernel-based algorithms more robust. Other future directions
that could be pursued are the use of a multi-scale representation and a faster imple-
mentation. For the grid-free algorithms, it would be interesting to develop strategies for
estimating the number of particles from the data.
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Chapter 4

Matching biomolecular structures by
registration of point clouds

This chapter is the third research result from my Ph.D. study. Here we develop a kernel
correlation to compute the rigid transformation between two molecular structures. This

manuscript is in preparation. Own contribution:
e Concept and implementation of the algorithm and the code.
o All figures, tables.

e Manuscript in parts.

75



“paper2” — 2021/9/27 — 9:45 — page 1 — #1

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Research Article

Structural Bioinformatics

Matching biomolecular structures by registration
of point clouds

Nima Vakili 12 and Michael Habeck 1-2*

" Microscopic Image Analysis Group, Jena University Hospital, Jena, Germany and
2Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany.

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Assessing the match between two biomolecular structures is at the heart of many structural
analyses, including superposition, alignment and docking. These tasks are typically solved with specialized
structure-matching techniques implemented in software for protein structural alignment, rigid-body docking,
or rigid fitting into cryo-EM maps.

Results: This article presents a unifying framework to compare biomolecular structures by applying ideas
from computer vision. The structures are represented as three-dimensional point clouds and compared by
measuring the overlap of the point clouds. We use the kernel correlation to measure point cloud overlap,
and discuss local and global optimization methods for maximizing the kernel correlation over the space of
rigid transformations. We derive a majorization-minimization procedure that can be used to register two
point clouds without establishing a point-to-point correspondence. We demonstrate that the majorization-
minimization algorithms outperform the commonly used lterative Closest Point registration algorithm. We
illustrate the approach on various 3D fitting problems such as the comparison of circularly permuted
structures and rigid fitting of cryo-EM maps or bead models from small-angle scattering.
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction This assumes a least-squares criterion for assessing the match between two
structures.

Robust variants of the RMSD take account of the fact that the RMSD
will be less meaningful if the structures undergo large conformational
changes (Hirsch and Habeck, 2008; Mechelke and Habeck, 2010) or show
varying degrees of structural heterogeneity (Theobald and Wuttke, 2006).
Variants of the standard least-squares superposition such as the weighted
RMSD (Damm and Carlson, 2006) have been proposed to tackle more

Superposition and comparison of biomolecular structures are common tasks
in structural biology. Structures are compared and aligned to predict the
conformation and function of proteins, for example by homology modeling.
To assess the conformational diversity of structures revealed by NMR
or other structure determination methods, multiple conformations need
to be superimposed in a meaningful fashion. Rigid docking approaches

optimize the match between an experimental shape revealed by cryo- ) o
challenging superposition tasks.

electron microscopy or solution scattering with a known structure.
Optimization of the (weighted) RMSD is analytically feasible, but

Aside from manual superposition approaches requiring user

intervention, the standard approach to superimpose and compare different restricted to cases where the correspondence between the positions in

both structures is known. This requirement holds, for example, for NMR
ensembles. In the more general case, the correspondence between positions

conformations of the same biomolecule is to minimize their root-mean-

square deviation (RMSD). To compute the RMSD, six rigid degrees of X X . !
in both structures is unknown. Both problems, 3D superimposition and

establishing a correspondence between positions, are intertwined and
cannot be solved independently of each other.

freedom are determined by a singular value decomposition (Kabsch, 1976).

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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This situation occurs in structural alignment, where we need to solve
two problems: First, establish the correspondence between evolutionary
related amino acids. Second, find the best superposition of the three-
dimensional coordinates such that related amino acids are close in space.
However, the approach is restricted to situations where the correspondence
is consistent with the sequential order of the amino acids (such that dynamic
programming approaches can used to solve the alignment problem). Already
when dealing with circularly permuted structures, a standard alignment
approach is no longer applicable.

When working with reconstructions from cryo-electron microscopy
(cryo-EM), we need to dock high-resolution structures into 3D density
maps that might only achieve an intermediate or low resolution (Villa and
Lasker, 2014). Rigid docking could either work by using a voxel-based
representation of both structures (which is the standard representation of
3D reconstructions from cryo-EM), or a particle-based representation such
as an atomic structure or bead model. In the first case, the high-resolution
structure needs to be converted to a density map. In the second case, the
density map has to be converted to a (pseudo)-atomic structure. Kawabata
(2008) introduced a decomposition of cryo-EM density maps into a mixture
of anisotropic Gaussians that are characterized by a center position, a
weight and a covariance matrix (corresponding to a ellipsoidal shape).
Omokage search (Suzuki et al., 2016) uses this representation to rapidly
compare the overall shape of two or more structures obtained with X-ray
crystallography, cryo-EM or small-angle scattering (SAS).

Here, we approach all of the mentioned comparison and superposition
tasks within a common framework. We use a particle-based representation
of biomolecular structures including atomic structures, cryo-EM density
maps, and bead models from SAS. To compare two biomolecular structures,
we use the kernel correlation which has been introduced in computer vision
to register point clouds. We discuss local and global strategies to optimize
the kernel correlation over rigid transformations of one structure against the
other structure. Finally, we illustrate our approach on various comparison
and superposition tasks.

2 Methods

2.1 Representation of biomolecular structures by weighted
point clouds

We first need to find a common representation for biomolecular structures
from different experimental sources. The most widespread and detailed
representation of a biomolecular structure is an array of three-dimensional
atomic positions that can be obtained from the PDB (Berman et al.,
2000), but other representations are also relevant. Cryo-EM typically
reconstructs three-dimensional volumes represented as voxelized density
values over a cubic grid. Structural manipulations of 3D volumes such as
rigid transformation necessitate the interpolation of density values, which
is time consuming and prone to artifacts. Therefore, we will represent
volumetric data as weighted point clouds (Vakili and Habeck, 2021).

A weighted point cloud comprises a collection of IV points in 3D space
at positions ;. The positions can be stored in an N x 3 matrix X whose
rows are the 3D coordinates of the points. Each point has an associated
weight p;; the weights form an N-dimensional vector p.

This representation is very natural for atomic structures where the
points are representative atoms such as alpha carbons and weights can
be chosen proportional to the atomic mass or occupancy. In case of large
structures such as multi-domain proteins or macromolecular complexes,
we may want to reduce the size of the point cloud by coarse graining. In
this case, a single point represents more than one amino acid.

A simple and powerful algorithm to obtain weighted point clouds from
atomic structures as well as cryo-EM reconstructions is DP-means (Kulis

and Jordan, 2012), a non-parametric variant of the K-means algorithm. In
DP-means, the radius of the bead particle is chosen by the user and the
optimal number of points is estimated automatically.

Point clouds derived from atomic structures are typically ordered in
the same fashion as the underlying sequence of residues. However, in case
of EM reconstructions or bead models from SAS there is no such order.
To establish an order, we solve the traveling salesman problem using the
distance matrix of the points as input. This will cause an ordering of the
points where spatially close points have similar indices. Ordering of point
clouds helps to compare them visually, but can also result in a speed-up of
registration algorithms (see e.g. Rusu ez al. (2009)).

2.2 Assessing the match between two point clouds by
kernel correlation

Let us now compare two point clouds represented by position matrices X
and Y and weight vectors g and p. The number of points in both clouds will
differ in general; let M denote the number of points in cloud (X, g) and N
the number of points in (Y, p). Both point clouds are typically represented
in different frames of reference. To allow for a meaningful comparison of
their shapes, we first need to find a common frame of reference by rigidly
transforming one of the two points in space (rigid registration). A rigid
transformation involves a rotation encoded by a 3 x 3 matrix R and a
translation represented by a vector ¢. To find the best pose (encoded by the
optimal R and t), we need a quantitative measure of how well two point
clouds match.

The kernel correlation (KC) between two point clouds viewed as a
function of the rigid transformation is defined as (Tsin and Kanade, 2004):

M N

KC(R,t) = aip; 6(|®:i — Ry; — ) = ¢" ®(R,t)p (1)
i=1j=1

where ¢ is a suitable kernel function, || - || the Euclidean norm and &
the M x N kernel matrix with elements ¢;; = ¢(||z; — Ry; — t||).
Throughout this paper, we will use the Gaussian kernel

¢o(r) = (2#02)73/2 exp {7#rz} 2)

for point cloud comparison, but in principle we could also use a different
kernel. The positive parameter o is the bandwidth of the kernel and
determines how tolerant the kernel correlation is against mismatches. For
larger values of o, KC(R, t) is rather indifferent against variations in the
transformation parameters, whereas small values of o focus on common
sub-structures that fit almost perfectly.

A convenient aspect of using the kernel correlation as a metric for point
cloud comparison is that it does not require a correspondence between
the points in both clouds. In fact, the kernel correlation is invariant under
permutation of both point clouds. By optimizing KC as a function of the
rigid body degrees of freedom, we can align two point clouds without
establishing a point-to-point correspondence.

The kernel correlation can be motivated in several ways. The auto-
correlation of the Gaussian kernel is

/%1 (le = pall) ¢oy (2 — p2ll) de = o (|11 — p2ll)

where o0 = ,/Jf + 0'% . Due to this self-reproducing property of the
Gaussian kernel, KC can be viewed as the inner product of two kernel

density estimators (KDEs):

M

N
a@) =Y aid=(le—zll), p@)=> pjéz(lz—yl).
i=1 =1
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The kernel correlation is the scalar product (or overlap) of both KDEs:

KC(R,t) = /q(:t:) p(RT(z —t)) de

where one of the two KDEs has been rigidly transformed. By maximizing
the kernel correlation, we minimize the L2 distance between both kernel
density estimates. The kernel correlation is also known as correntropy (Liu
et al., 2007) which has been used in various applications ranging from face
recognition, visual tracking, and data fusion.

The Kpax algorithm by Ritchie (2016) uses a related match criterion for
protein structure alignment. The major difference is that Kpax’s objective
function is not the total sum over all elements in the kernel matrix as in Eq.
(1), but reduced to the aligned pairs of points in X and Y. For general point
cloud alignment, establishing an alignment is no longer suitable (think of
circularly permuted protein structures or cryo-EM maps).

An important parameter is the kernel bandwidth ¢: The smaller o
the rougher will be the kernel correlation. However, a large value of o
will result in very ambiguous registrations. Larger values of o are more
suitable for global registration, whereas a small ¢ value allows us to
identify locally similar subsets of points in both clouds. In principle, o
is a free parameter that can be chosen by the user or by methods used
in kernel density estimation (e.g. Silverman’s rule or crossvalidation). In
our applications, we typically set o based on the fact that we are dealing
with biomolecular structures. For example, when working with cryo-EM
maps, the resolution of the map gives an estimate for the appropriate o.
For the comparison of alpha carbon clouds derived from atomic resolution
structures, we typically use o = 5 A based on the following reasoning:
We have 0 = 5 &~ /2 x 3.5A where 3.5 A is roughly the average
distance between alpha carbons. In contrast, Ritchie (2016) uses a smaller
bandwidth, o = v/2 x 1.4 A for aligning protein structures.

2.3 Local optimization of the kernel correlation by iterative
majorization-minimization (MM)

The negative logarithm of the kernel correlation, — log KC(R, t), can
be used as an objective function for finding the best rigid registration of
two point clouds by minimization. Minimization of — log KC is a six-
dimensional non-convex optimization problem with many local minima.
Global optimization of — log KC therefore involves heuristics such as
simulated annealing or branch-and-bound (Straub et al., 2017).

A simple local optimization of — log KC is achieved by constructing
an upper bound which can be optimized easily. By iterating over updating
the upper bound and subsequent upper bound minimization, we arrive at
a Majorization-Minimization (MM) algorithm (Hunter and Lange, 2004).
With the help of Jensen’s inequality we have

~logKC(R,t) = —log)_ aip; do(ll@i — Ry; —t|)

ij

¢o (| — Ry; —t
—IOngipj wij o ([l Yj I
ij

Wij

¢o(lzi — Ry; —t
< - g qi pj wij 1ogM
i wij
L 2
T 92 Zqipjwij\\wz — Ry; — t||* + const
ij

where the constant, Z” qipjwij logw;;, does not depend on the
parameters of the rigid transformation. The inequality is valid for all
weights w;; satisfying Zij qipjw;j = 1. If we choose the weights to
be proportional to the entries of the kernel matrix, w;; o ¢o (||z; —
Ry; — t||), the upper bound touches — log KC at R, t, and the inequality
becomes an identity.

This suggests an iterative scheme to locally optimize the kernel
correlation by cycling between updates of w;; for given R and ¢ followed
by updates of R and ¢ by minimizing the upper bound

1
URY) = 5~ > aipjwislle; — Ry; — ¢ )
ij

where the weights w;; are proportional to the entries of the kernel
matrix evaluated at the current transformation and normalized such that
245 4ipjwis = 1.
The solution of arg ming , U(R, t) is available in closed form. The
optimal translation is:
t=% - Ry (€]

with centers of mass

z = Z GpjwijTi, Y= Z qiPjWijY;j -
J k¥

The optimal rotation can be computed by solving the matrix nearness
problem

R= argmin |R— (X —12")TQKP(Y —15")|2 )
R€E SO(3)

where || - ||  indicates the Frobenius norm and Q, P are diagonal matrices
with diagonal elements g; and p, respectively. Problem (5) can be solved by
singular value decomposition of the 3x 3 matrix (X —1z7)TQK P(Y —
1g7) (Higham, 1989).

The following iterative MM procedure minimizes the negative logarithm
of the kernel correlation locally:

e Initialization: generate a random rotation matrix J and translation
vector t (alternatively, we can try to find good initial values by some
heuristic)

o Iterate until convergence (e.g. when changes in — log KC are no longer
significant) or unit a maximum number of iterations has been reached:

1. Evaluate the kernel matrix ®;; = ¢, (||¢; — Ry; — t||) at
the current pose (R, t) and compute the normalized weights
wij = Pij/ 3505 qirpjr Lisjr.

2. Minimize the upper bound U (R, t) by calculating the optimal
rotation R and translation £ according to equations (5) and (4).

This MM algorithm is analogous to Expectation Minimization where
updating w;; corresponds to the E-step and calculation of (R, )
corresponds to an M-step. Supplementary Figure S1 illustrates the MM
iterations for a specific example.

2.4 Deterministic annealing

Choosing the kernel width o should not be seen as a burden, but as a means to
incorporate prior knowledge and control the shape of the objective function
KC(R,t). One of the most widely used methods for rigid point cloud
registration is the Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992; Chen and Medioni, 1992). Like our upper bound minimization
approach, ICP is also an iterative algorithm, but lacks the bandwidth
parameter. In ICP, the procedure analogous to our first step establishes a
correspondence between points ¢ in X and points j in Y by matching
those pairs (i, j) whose distance ||&; — Ry; — t|| is smallest. ICP’s analog
of our second step solves the least-squares fitting problem for all pairs of
corresponding points. The only algorithmic parameter in ICP is the number
of iterations.

In our approach, we can use the kernel bandwidth o to gradually change
the objective function. Because the iterative MM algorithm is only a local
search strategy, it will strongly depend on the initial pose (the same is true
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Fig. 1. Box-plot showing the accuracy achieved with tessellations of SO(3) based on the
600-cell and its refinements. The accuracy is measured in terms of the matrix distances
between 1000 random rotations and the closest rotation in the partition of rotation space. At
the coarsest level of discretization, there are 330 rotations. At each higher level, the number
of rotations covering SO (3) increases eight-fold.

for ICP). To avoid getting trapped in the nearest pose, we propose a simple
modification of the algorithm reminiscent of deterministic annealing (Rose
et al., 1990). During the iterative minimization of the upper bound (3), we
decrease the kernel bandwidth gradually until we reach the desired o value.
The bandwidth acts as a parameter similar to a temperature: Large o values
(high temperatures) result in a flat cost function with shallow minima,
annealing (i.e. reduction of o) makes the cost function rougher, but also
more selective. In our tests, we chose a simple linear annealing schedule
starting at a large omax (typically 15 A or more generally 3¢) and decrease
the kernel bandwidth by a constant increment in each iteration. There are
many more options for the initial bandwidth and the progression of the
annealing iterations. We found that the simple linear annealing schedule
is sufficient for the registration problems considered in this article. We
will use the abbreviation DAMM to denote the combination of iterative
majorization-minimization and deterministic annealing.

2.5 Global optimization by a six-dimensional grid search

Maximization of the kernel correlation (1) over all six rotational and
translational degrees of freedom is a challenging non-concave optimization
problem. Also, the annealing strategy is not guaranteed to always find the
best registration. But thanks to the low dimensionality of the search space,
we can attempt to find the best pose in a systematic fashion by discretizing
the space of all rotations and translations.

A simple approach to discretize the space of all translations is to restrict
them to a cubic lattice of finite size. In principle, the search space for
translations is the entire Euclidean space R3. However, if translations
are larger than the sum of the maximum extensions of both point clouds,
the kernel correlation is close to zero (provided that o is not exceedingly
large). Moreover, if both point clouds are centered, we expect the optimal
translation to lie within in a cubic box centered at the origin. Therefore, we
typically restrict the grid search to a box [—L, L]® where L = 10 A In
general, a reasonably accurate spacing of the grid cells should be chosen
to depend on the bandwidth; in our tests, we use a spacing of o/2.

For a fixed rotation R, we can then scan all kernel correlations in a
systematic fashion by observing that we have to evaluate a mixture of M N
spherical Gaussians

f(@t) =Z%‘Pj do ([t — zi;ll) ©6)

¥

with component means z;; = x; — Ry;, weights g;p; and isotropic
covariance matrix o2 I. Since translations are restricted to a regular cubic
grid, f(t) can be evaluated very rapidly by limiting the support of each
Gaussian to 50, say, in all three spatial directions and/or by using Fourier
accelerations based on the Wiener-Khinchin theorem.

To discretize rotation space, we adopt a strategy proposed by Straub
et al. (2017). We parameterize rotations by unit quaternions (Horn, 1987)
and discretize 3-sphere, the unit sphere embedded in a four-dimensional
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Fig. 2. Testing local optimization strategies on various self-matching problems. A PDB
structure (indicated in panel titles) is fitted against a permuted and randomly transformed
version of itself. The top row shows the correlation coefficient (ratio of actual kernel
correlation and maximum achievable kernel correlation) obtained when starting local
optimization runs from 10 random initial poses. The bottom row shows the RMSD (defined

in equation 7) of corresponding points after striking the estimated pose.

space, by using the 600-cell, a 4D analog of the icosahedron. The 600-cell is
composed of even sized tetrahedra whose corners lie on the unit sphere. By
projecting the center of a tetrahedron onto the unit sphere, we obtain a unit
quaternion that parameterizes a valid rotation matrix. Due to the degeneracy
of the quaternions, we only have to consider the upper half of 3-sphere that
is covered by 330 tetrahedra at the coarsest level of discretization. To obtain
finer tessellations of the rotation group, we can split each tetrahedron into
eight tetrahedra whose corners again lie on the unit sphere. By repeating
this process, we can obtain finer and finer tessellations of the 3D rotation
group.

Figure 1 shows the accuracy that different tessellations of the 600-cell
can achieve. We generated 1000 random rotation matrices and measured
the distance between each random rotation and the closest rotation matrix
within the tessellation. As a distance measure, we used a multiple of the
squared Frobenius distance: 1 — tr[RY Ry]/3 for R1, Rz € SO(3).
This distance is restricted to values ranging from O to 4/3 for 3D rotation
matrices. As indicated by this test, a discretization based on 2640 rotations
and more achieves a very good coverage of the space of all rotations.

Our six-dimensional grid search proceeds as follows. For each rotation
R; obtained by a tessellation of the unit sphere, we scan all translations
by evaluating the mixture model (6) and pick the translation ¢; achieving
the largest value. This generates a list of poses (R;, ;) where 7 runs over
all tetrahedra that are part of the 600-cell or finer tessellations. Finally, the
solutions can be refined running the MM algorithm or ICP starting from
the pose that was found by the systematic search.

3 Results

In the following, we first report tests on the local and global optimization
strategies outlined in Methods. We then proceed by applying point cloud
registration techniques to various structure comparison and fitting tasks.

3.1 Matching a permuted and randomly transformed
structure against itself

To investigate the strengths and shortcomings of the local and global
optimization techniques detailed in Methods, we applied them to the
following test case: For a given crystal structure from the PDB, we first
extracted all alpha carbon positions and assigned a weight of one to each
position. This point cloud served as target against which a modified version
of the same point cloud was matched. Since the kernel correlation is
invariant under permutations of the point clouds that are compared against
each other, we should achieve the same kernel correlation with a permuted
version. Therefore, to modify the target point cloud (CA atom positions
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Fig. 3. Radius of convergence of the local registration methods. The TIM barrel structure
6HF2 was matched against itself starting from initial rotations that form a tessellation of
rotation space at a very fine level of discretization. The distance between the initial and the

correct rotation is plotted against the RMSD achieved by each registration method.

from PDB file), we applied a random permutation and random rotation. If
the rigid registration procedure is successful, it should then produce the
same kernel correlation that is achieved when matching the target point
cloud against itself without rotating or translating it, i.e. the maximum
achievable kernel coﬂrrelation is Zij ¢o (|lzi — x4]). In the following
tests, we set 0 = 5 A. We ran self-matching tests on crystal structures of
varying size (PDB codes: 6JC2 (212), 6HF2 (325), 10EL (524), 5G5D
(160), 6R4S (382) where the numbers in brackets indicate the number of
CA atom positions in each structure).

3.1.1 Testing local registration algorithms

We first tested the local registration techniques, i.e. the MM algorithm
outlined in subsection (2.3) and its annealed version DAMM (see subsection
2.4), and compared these with ICP. For each test structure, we generated
100 random matching problems by randomly shuffling the positions of
the target and transforming it by a random rotation and translation. For
each registration problem, 10 random initial poses were generated from
which each of the local optimization methods (MM, DAMM, and ICP) was
started. The maximum number of iterations for each registration approach
was set to 50.

For each algorithm, we started from the same initial poses and measured
the success of the registration method by comparing the kernel correlation
that was obtained by the optimization procedure with the maximum possible
value. Moreover, we assessed the quality of the registration by computing
the root mean square deviation (RMSD) between corresponding points in
both point clouds. For a given pose (R, t), we defined the RMSD in the
following way:

M
1
=, | — i P L tI2
RMSD m l§711g1§rlN{\\wl Ry; —t|?} M

For the self-matching tasks, the optimal RMSD is zero.
Figure 2 shows a summary of the self-matching benchmark of the
local registration methods. Both in terms of the correlation (which is

1AJK

Fig. 4. KC-based matching of circularly permuted structures 2AHY and 1AJK. (A) The
left panel shows both structures after registration by maximizing the kernel correlation
(Pymol’s chainbow coloring indicates the order of amino acids in each structure). (B) The
right panel shows the kernel matrix has a heatmap. The row indices correspond to the
amino acid sequence of 2AYH running from bottom (N-terminus) to top (C-terminus). The
column indices correspond to the sequence of 1AJK and run from left (N-terminus) to right
(C-terminus). The brightness of the heatmap is directly proportional to the entries in the

kernel matrix.

propotional to the objective function of MM and DAMM) as well as the
RMSD (which is the objective function of ICP), the deterministic annealing
approach performs best, reaching correlations near 100% and RMSDs
close to zero for most test cases. Also the plain MM approach without
annealing outperforms ICP, but not as clearly as DAMM. Nevertheless, all
approaches face difficulties with target 6HF2, a member of the TIM barrel
fold family. The likely reason for the problems with self-matching 6HF2
is to be found in the quasi-symmetry of the structure. Rotations about the
barrel axis achieve similar kernel correlations and RMSDs, which adds to
the severeness of the registration problem, because the chance of getting
trapped in a local optimum is increased. However, these difficulties can be
overcome by using a larger number of initial poses. For example, when we
increased the number of random initial poses from 10 to 50, the average
correlations improved to 99.9% (MM), 100.0% (DAMM), and 98.5% (ICP),
as do the average RMSDs: 0.2 A (MM), 0.1 A (DAMM), and 0.6 A (ICP).

3.1.2 Testing global registration algorithms

Both the MM algorithms as well as ICP are local optimization methods
and potentially suffer from getting trapped in a local minimum. Therefore,
we also tested the global optimization strategies outlined in subsection 2.5.

The first modification of the setup used to benchmark the local search
strategies was to generate the initial rotation randomly as before, but to
choose the initial translation systematically rather than randomly. The
initial translation was obtained by evaluating the spherical mixture model
(6) over a cubic grid of cell size 1 A. This adds negligible computational
cost, because a mixture of spherical Gaussians can be evaluated very rapidly
over a rectilinear grid. Again, we used 10 initial poses for each of the 100
test cases per target.

The optimized choice of the initial translation has only a minor impact
on the success of the registration methods tested here. For most of the five
targets, we see a slight but negligible improvement in the correlation and
RMSD with all registration algorithms (see Supplementary Figure S2).

Next, we also scanned the rotations systematically by using the
tessellation provided by the 600-cell. At the coarsest level, there are
330 rotations that need to be probed. For each rotation, we systematically
searched all translations by evaluating the spherical Gaussian mixture
model over a rectilinear grid of cell size 1 A. Because the number of
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rotations increased by a factor of 33, the computational costs are scaled
accordingly. Again, our test calculations did not show an improvement
in the performance of the registration algorithms that would justify the
increase in computation time.

Finally, we used the discretization of rotation space to estimate the
radius of convergence of the three registration algorithms. To do so, we
matched the TIM barrel structure 6HF2 against itself such that the correct
pose is (I, 0). Using a very fine tessellation of SO(3) based on 21120

rotations R;, we launched all three algorithms from initial poses (R;, 0).

The success of the registration algorithms was then measured by computing
the standard RMSD (not the RMSD defined in Eq. 7) between CA positions
in the target and its transformed state. As is evident from Figure 3, the
radius of convergence is highest for the MM methods, confirming our
findings from the previous tests. The MM algorithms find the correct pose
even, if the initial rotation has a distance smaller than 0.2 (MM) or 0.4
(DAMM) to the correct rotation. On the other hand, ICP starts to produce
suboptimal fits already at rotations as close as 0.1. Similar results were
obtained for the other target structures (see Supplementary Figures S3 and
S4).

3.2 Comparison of circularly permuted structures

Circular permutation breaks the sequential order of the amino acids and
thereby poses a challenge to standard protein alignment methods. The
kernel correlation does not require a position-to-position correspondence
between both structures and is invariant under shuffling the order of points
in each cloud. Therefore, circularly permuted structures can directly be
superimposed and compared with KC-based registration methods.

To illustrate this point, we matched the two circularly permuted
structures 2AYH and 1AJK using the deterministic annealing approach
with o = 5 A. The aligned structures are shown in Figure 4A. The correct
alignment can be found very rapidly with DAMM. Out of 10 random initial
poses, 3 produced the correct structural fit. At the right (Fig. 4B), we show
the kernel matrix with elements ¢ (||¢; — Ry; — t||) as a heatmap. The
kernel matrix clearly delineates corresponding structural regions, which
are indicated by “hot” matrix elements that run parallel to the diagonal and
are “folded” due to circular permutation.

3.3 Rigid fitting of bead models from small-angle scattering

Our registration algorithms can also be used to dock structures into bead
models derived from small-angle scattering (SAS) curves. The bead models
were obtained from the Small Angle Scattering Biological Data Bank
(SASBDB) (Valentini e al., 2014). The first target is a bead model of

exportin CRM1 derived from a SAS curve (SASBDB code SASDAJ4).

We fitted the crystal structure 4HZK into the bead model by maximizing
the kernel correlation with ¢ = 5 A. Again, we used the deterministic
annealing approach to find the pose that maximizes KC. Figure 5 shows

the SAS bead model and a CA trace of the superimposed crystal structure.

The correlation between both point clouds is 75 %. More examples can be
found in Supplementary Figures S5 and S6.

3.4 Rigid fitting of cryo-EM maps

Next, we used the point-cloud registration methods to align two cryo-EM
maps. We superimposed three pairs of low-resolution maps after converting
them to weighted point clouds. All density maps were downloaded from
the EMDataBank (Lawson ef al., 2010) and converted to weighted point
clouds by running the DP-means algorithm (Kulis and Jordan, 2012). We
set the desired bead radius to 10 A for the first pair (two 80S ribosome
maps) and to 5 A for the second and third pairs (characterizing a motor
protein and RNA polymerase II). The first pair of medium-resolution maps
shows the 80S ribosome at 11.7 A (EMD-1067) and 9.7 A resolution

Fig. 5. Docking a crystal structure of exporting CRM1 into a bead model derived from
a SAS curve. The bead model obtained from SASBDB is shown on the left. The right
panel shows the high-resolution structure 4HZK that was docked into the bead model by
maximizing the kernel correlation.

(EMD-1343). DP-means generated weighted point clouds with 425/666
beads representing EMD-1067/EMD-1343. The second docking task is to
superimpose two low-resolution maps of axonemal dynein-c without and
with nucleotide bound. The low-resolution maps EMD-2155 (apo dynein-c
at19 A resolution) and EMD-2156 (dynein-c with bound nucleotide at 22
A resolution) are represented by 433 and 405 beads, respectively. The third
task is to superimpose bead models derived from EM maps EMD-2189
and EMD-2190 showing human RNA polymerase II at 25 A resolution in
complex with different RNAs. The bead models are composed of 889 and
951 particles. In each of the docking tasks, the kernel bandwidth o was
chosen to be twice as large as the bead radius.

Figure 6 shows the superpositions obtained with the deterministic
annealing approach. Visual inspection reveals that the 3D superpositions
found by DAMM are meaningful. To quantify this further, we also
investigated the correspondence between the negative log kernel correlation
(which is the target function of the MM algorithms) and more traditional
measures for assessing the overlap of two structures or 3D density maps.
The kernel correlation can serve as a surrogate of the cross-correlation
coefficient (CCC), which is typically maximized to superimpose two cryo-
EM maps using a voxel representation. Supplementary Figure S7 shows
that there is high correlation between both metrics. An advantage of the
kernel correlation compared to the CCC is that it can be evaluated very
efficiently and does not require the interpolation of the moving cryo-EM
structure over a voxel grid. Similarly, we also see a high agreement between
— log KC and the RMSD as defined in Eq. (7).

3.5 Rigid fitting of subunits into cryo-EM density maps of
symmetric assemblies

Finally, we used KC-based point cloud registration to dock a high-resolution
structure of a single subunit into a cryo-EM map of a symmetric assembly.
As is shown in the Supplementary Material, the kernel correlation as well
as the majorization-minimization strategy for finding the best superposition
can readily be adapted to the symmetric case.

We demonstrate the ability to dock structures into symmetric assemblies
for the high-resolution map of the capsaicin receptor TRPV1 (EMD-5778).
This assembly exhibits a four-fold cyclic symmetry and served as a target
for rigidly fitting a single subunit into the map. The map and the symmetry
operators were downloaded from the EMDataBank. We converted the map
to a weighted point cloud by applying DP-means using a bead radius of 5
A. The modeled structure of a single subunit (PDB code 3J5P) was docked
into the assembly by maximizing the symmetrized kernel correlation.

Figure 7 shows the cryo-EM map of the assembly and its point cloud
representation next to the assembly predicted by fitting the structure of the
subunit into the assembly. Visual inspection confirms that the subunit has
been docked correctly into the point cloud representing the assembly. The
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Fig. 6. Superposition of low-resolution cryo-EM maps by rigid point cloud registration. The colors indicate the weight of the particles ranging from blue (high weight) to red (low weight).
(A) Superposition of two bead models of intermediate-resolution maps of the 80S ribosome (EMD-1067, EMD-1343). (B) Two bead models of the free and nucleotide-bound structure of
axonemal dynein-c (EMD-2155, EMD-2156). (C) Two bead models of human RNA polymerase II (EMD-2189, EMD-2190) in complex with different RNAs.

correlation between both point clouds is 65 %. More examples of rigid fits
into symmetric assemblies are presented in Supplementary Figure S8.

4 Conclusion

3D superposition of biomolecular structure is a common task in structural
biology that is typically solved by specialized algorithms and software that
depend on the representation of a 3D structure. In this article, we aim to
address 3D fitting problems within a common framework based on the
registration of weighted point clouds. As a measure of similarity, we use
the kernel correlation, and introduce iterative algorithms for optimizing it
s0 as to superimpose two point clouds.

An advantage of the kernel correlation over RMSD-based approaches is
that KC does not require a point-to-point correspondence. This advantage
comes at the cost of having to deal with an objective function that exhibits
multiple optima and is therefore more difficult to optimize than the standard
RMSD or its modified versions. Local point-cloud registration algorithms
such as ICP therefore risk to get trapped in local optima. To overcome
these challenges, we introduced an iterative MM algorithm and its annealed
version, which both have a larger radius of convergence and thereby a lower

chance of getting trapped in suboptima than the commonly used ICP method.

Due to the generality of the representation, our rigid registration approach
can be applied to various 3D fitting problems including the comparison
of circularly permuted structures or the superposition of bead models and
density maps from cryo-EM.

There is still room to improve the efficiency of the registration algorithm.

Its current implementation is not fast enough for large-scale similarity
searches based on point clouds. Algorithmic improvements that we envision
include the use of data structures and algorithms for fast neighborhood
queries such as KD-trees or neighbor lists.

The computation time to evaluate the kernel correlation scales with
the size of both point clouds. Therefore, to improve the search over all

rigid transformation, we plan to pursue a multiscale approach based on a
hierarchical representation of point clouds. Coarser representations would
involve a smaller number of points thereby allowing us to evaluate the kernel
correlation more rapidly. Combined with a global grid search a multiscale
approach should enable us to exhaustively scan all rigid transformations
and further reduce the chance to miss the global optimum.

Another interesting direction is to fit multiple subunits into a point
cloud representing an assembly, and to fit 3D point clouds against 2D point
clouds derived from projection images obtained with electron microscopy
or tomography as well as other imaging methods.
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1 Iterative majorization-minimization (MM)

The figure below illustrates the majorization-minimization (MM) approach used in this
paper to minimize the negative log kernel correlation — log KC(R, t). Instead of minimiz-
ing — log KC(R, t) directly over all rotational and translational degrees of freedom, our
MM algorithms minimize an upper bound U(R, t) detailed in equation (3) of the main
article. The progression of the MM iterations is shown for a self-matching task where
PDB structure 6JC2 is fitted against itself. As is evidenced by the plot, the upper bound
U(R, t) is rather tight and becomes even tighter in the course of the MM iterations.

6JC2
—6.6 upper bound U
= —|ogKC

—6.81 min{—logKC}
g -7.0-
(@)]
o
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Figure S1: Evolution of the negative log kernel correlation — log KC, our objective func-
tion to superimpose two weighted point clouds, during the MM iterations. Instead of
—log KC(R, t) itself, each iteration minimizes a tight upper bound U(R, t) shown in yel-
low.



2 Self-match benchmark with random initial rotation and grid search of
the translation

The self-matching benchmark (subsection 3.1.1 of the main article) was modified as
follows. Instead of choosing the initial translation randomly, it was optimized by maxi-
mizing the kernel correlation over a regular cubic grid. The resulting average correlation
values and RMSDs can found in the following figure:
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Figure S2: Testing the impact of using an initial translation that is optimized over a cubic
grid of cell size 1 A. A PDB structure (indicated in panel titles) is fitted against a per-
muted and randomly transformed version of itself. The top row shows the correlation
coefficient (ratio of actual kernel correlation and maximum achievable kernel correla-
tion) obtained when starting local optimization runs from 10 random initial rotations
(and optimized translations). The bottom row shows the RMSD (defined in equation 7
of the main paper) of corresponding points after striking the estimated pose.



3 Radius of convergence of iterative registration methods

In addition to the example shown in Figure 3 of the main manuscript, we also assessed
the radius of convergence of three registration methods (ICP: iterative closest point;
MM: iterative majorization-minimization; DAMM: MM with deterministic annealing) using
four other examples. The setup is the same as described in the main paper.

In all tests, the MM methods have a larger radius of convergence than ICP (see Fig.
?2?).
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Figure S3: Radius of convergence. Distance between initial and true rotation versus
the RMSD of the final pose generated by the registration methods: MM (red), DAMM
(blue), ICP (yellow).

In most examples, we see the emergence of a second dominant cluster of solutions
with high RMSD values. These registrations correspond to an alternative 3D superpo-
sitions due to a quasi-symmetry of the point cloud. For example, in case of 6JC2 we
are dealing with a heterodimer where the two monomers are very similar to each other.
The bad fit with an RMSD of 41.6 A achieves a correlation 91% and is shown in Fig.



??(a). In case of 5G5D, we are dealing with a member of the Carbohydrate-binding
domain superfamily, which also exhibits a quasi-symmetry. If we ignore the sequence
information and only look at the spatial arrangement of CA atoms, the bad fit with an
RMSD of 28.2 A achieves a correlation of 97% and is shown in Fig. 22(b).

(a) 6JC2

(b) 5G5D

Figure S4: Left: target point cloud. Right: bad pose with a good correlation but high
RMSD.



4 Fitting of atomic structures into bead models derived from small-angle
scattering curves

The main article illustrates the ability to fit high-resolution structures into bead models
from small-angle scattering (SAS) curves for an exportin structure. Here, we demon-
strate this for two additional examples. The first example also involves exportin CRM1.
We fitted a bead model of free CRM1 (SASDAJ4) against CRM1 RanGTP (SASDAK4).
The figure ?? shows the final superposition found by maximizing the kernel correlation
with ¢ = 5 A. The correlation of the final fit is 80.3%.
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Figure S5: 3D superposition of SASDAK4 (CRM1 RanGTP, shown on the right) onto
SASDAJ4 (free CRM1, shown on the left).

The second example involves fitting a bead model of Human Chromatin Remodeler
CHD4 (SASBDB code SASDAAS) against two other SASBDB structures: the apo form
of full length ObgE (SASDBS6) and mitochondrial heat shock protein 70 (SASDBY®6).
The superposition is shown in figure ??.



Figure S6: Point cloud registration onto SASDAAS (grey top). Bead models SASDBS6
(red) and SASDBY6 (blue) were fitted onto SASDAA5 by maximizing the kernel corre-
lation using DAMM.



5 Kernel correlation as a proxy for the cross-correlation coefficient and
the RMSD

By construction, the kernel correlation is highly related to the cross-correlation coeffi-
cient (CCC) that is often used to measure the overlap of two cryo-EM density maps
represented on voxel grids. This is demonstrated in the figure below for one of the cryo-
EM docking targets discussed in the main text (superposition of two RNA polymerase |l
structures). We observe a high correlation between the negative log kernel correlation
(which is optimized by the MM algorithms introduced in Methods) and CCC between the
target map and the transformed map. Therefore, by minimizing — log KC we effectively
maximize the CCC between the two density maps.

A high correlation is also observed between the RMSD (as defined in equation 7
of the main article) and the negative log kernel correlation. The RMSD is optimized by
ICP.
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Figure S7: Kernel correlation as a proxy for RMSD and cross-correlation coefficient
(CCC). Left: High correlation between —log KC and CCC. Right: High correlation be-
tween —log KC and the RMSD (see equation 7 in main manuscript.)



6 Docking the high-resolution structure of a subunit into a cryo-EM map
of a symmetric assembly

The first point cloud, (X, q), represents the full assembly and is derived, for example,
from a cryo-EM map. The second point cloud, (Y, p), represents the subunit that will
be docked into the full assembly. We assume that the assembly is symmetric and the
symmetry mates can be generated from a single subunit by the action of C rigid trans-
formations {(R, tx)}¢_,. The subunit needs to be transformed by an unknown rigid
transformation (R, t) such that the overlap between the target and the full model struc-
ture is as large as possible. The coordinates of the k-th subunit after rigid transformation
are:
Yix = Bc(Ry; + 1) + t,

The kernel correlation between the point cloud representing the assembly and the struc-

ture of the assembly built by applying the symmetry operators is:
M N C

KCsym(R, 1) =D > > qipjso(lIX; — Re(Ry; + 1) — t]))

i=1 j=1 k=1
We can rewrite the kernel correlation of a symmetric assembly:

M N C
KCeym(R, 1) = qipj (| Rk (xi — t) — Ry; — t])
i=1 j=1 k=1
Upper bound:
N C
—logKCsym(R, 1) = Iog{ qupj¢o(xiﬁk(ﬁyj+t)tk)}
i=1 j=1 k=1

o(/|X; — Bx(Ry; +t) — t
Iog{Zq;ij,-,-k¢ (Ix; — Re(Ry; + 1) k)}

W..
ik Ik

1
S 5.2 Z qiPjWik | X; — Rk(Ry; + 1) — t,||® + const.
ik

where the weights
Wik X ¢o(||X; — Rk(Ry; + 1) — tk]|)
are normalized such that ;. gipjwi = 1.
More examples of 3D fitting into symmetric assemblies by maximizing KCsym are
shown in Fig. ??.



(c) EMD-6000

Figure S8: Rigid docking of a subunit into a symmetric assembly. EMD-6422: GroEL,
D7 symmetry. EMD-5995: beta-galactosidase, D2 symmetry. EMD-6000: Brome mo-
saic virus. In each row, the point cloud on the left shows the particle representation of
the cryo-EM map of the assembly obtained by running DP-means with a particle radius
of 5 A. The colors indicate the weight of the particles. The middle panel shows the fitted
structure of the subunit that was also coarse-grained by running DP-means. The struc-
ture in blue is the subunit; all other particles were generated on the fly by applying the
symmetry operators. The right panel is the high-resolution structure of the full assem-
bly obtained by transforming the high-resolution structure of the subunit rigidly by using
the estimated pose and by generating the symmetry mates by applying the symmetry

operators.
P 10
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Chapter 5

Conclusion and future works

51 Summary

A common feature of all algorithms proposed in this thesis is the use of an RBF network to
represent molecular densities than their atomic models in real space, a representation that
allows all the particles to be located off the grid. We model the molecular densities by using
the Kernel representation, the isotropic Gaussian radial basis function (RBF). This thesis
comprises three manuscripts. In chapter[2} the goal was to develop a probabilistic model in
a Bayesian framework to infer a volumetric shape from 2D projection images acquired by
cryo-EM. We represent the density using a radial basis function kernel (Gaussian mixture
model). Moreover, to ensure that estimated particle configurations show a physically
plausible packing, we adopt an excluded volume prior. We fit our model to the datasets
(images or point-clouds) by using MCMC algorithms, such as HMC and global sampling.
In chapter[3} we focus on the tomographic reconstruction problem which is simpler because
the relative orientations of the particles are assumed to be known. We propose three kernel-
based approaches for tomographic reconstruction problem in real space. The first approach
considers the particle positions to be located on a regular grid (hexagonal grid) while
estimating the particle weights by using an iterative non-negative least square method.
The second approach is a mesh-free method and employs Expectation Maximization
technique, and it involves a subsampling step in which a chosen number of pixels is
randomly selected from the projection images. Our third proposal is also a grid-free
approach that proposes a fully Bayesian method which incorporates a prior information
such as excluded volume and fits the particle positions with HMC. In chapter |4, we
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develop a mathematical expression to compute the assessing match between two volume
densities. We represent volumes by kernel representation and then superposition of
two particle clouds can be reached by minimizing our Kernel correlation equation. We
introduce an Upper Bound strategy for finding the minimum mode. Since this is a local
search method and there is a possibility of getting trapped in a local minima, we augment
our proposal by using either a deterministic annealing or a global rotational / translational

search methods.

5.2 Outlook

Our current version of the Bayesian random tomography uses only class averages with
high SNR. In the future, we plan to do the reconstruction from raw cryo-EM images by
adding the CTF term to our model.

Unfortunately, our current Bayesian implementation that underlines the reconstruction
task is computationally demanding. One direction for extending the research is to use
hardware accelerators like graphics processing units (GPUs) (Kimanius et al.,2016; Zhang,
2016). New implementation of our algorithm with GPU support can address the most

computationally intensive steps in the reconstruction workflow.

Another direction of research would be to increase the number of our pseudo atoms to
achieve higher resolution. It’s clear that increasing the number of particles is at the cost
of high computation expenses, but we can adopt some approaches to address this issue.
Like the one that we did in chapter [2| which we start with very few particles and while
the log-posterior converged, we increase the number of particles by fixing the rotational

parameters.

We have already applied in chapter 2] our proposal method on marine plankton species as
a different application. One of the great advantage of our method is its versatility to other
tomographic reconstruction areas. The method is not limited to application in cryo-EM
and it would be interesting to assess its efficiency in reconstruction problems arising in

optical tomography or thermoacoustic imaging.

Another route for extending the approach is to take conformational heterogeneity into
account, which is one of the major bottlenecks in cryo-EM data processing. The algorithm
would then produce multiple structures instead of only one and then their relation should
be considered as well.
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Another example is studying the dynamics of a macromolecular assembly and identify the
possible conformational changes in protein. This can be done by adopting Normal Mode
Analysis (NMA) which is a useful technique to analyze dynamics of large macromolecular
assemblies around an equilibrium structural conformation. (Nogales-Cadenas et al.,2013;
Jin et al., |2014) use pseudo-atomic representation of the atomic structures to explore
the conformational changes and this brought us curiosity how easily our point-cloud

representation can be adopted in this strategy.

In our RBF kernel representation, the number of particles K was fixed. Another direction
of research would be to estimate the number of particles based on the projection data,
which can be considered as an alternative way to measure the resolution of the input
data. Alternatively, we can estimate the number of particles by recruiting an extension of
MCMC algorithm i.e., Reversible Jump Markov Chain Monte Carlo (RIMCMC) (Green,
1995). The method provides moves between subsapaces of varying dimensionality and
can explore multi dimensional parameter spaces efficiently. Therefore, when the number
of model parameters is unknown, simulating the posterior distribution is still possible

and we can simultaneously update model indicator K as well as model parameters.

Many of the heuristic approaches that are available in cryo-EM for the particle picking are
designed based on template matching, computing the cross-correlation of the micrographs
against pre-calculated of the particle of interest (Nicholson and Glaeser, 2001} Roseman,
2004). In case of non-ideal datasets, when we face particles overlap, conformationally
heterogeneous, these methods are usually prone to failure. Adopting the deep convolu-
tional neural network (CNN) augmented with GPU support can be one of the interesting
extension for our per-processing reconstruction algorithm (Schmidhuber, 2015; Wang et al.}
2016; Rawat and Wang, 2017; Wagner ef al., 2019).

The other outlook would generalize our proposed kernel correlation approach (chapter [)
for the cases that someone needs to superimpose several sub-units simultaneously into
atomic structures. Besides, our method currently works for the rigid-transformation, it
would also very interesting to consider non-rigid transformation for the future or even the
cases when the target and the source structures lie in different spaces, i.e., one in R and
the other on lies in R"~!. In this scenario, we need to use a regularizer term which should

be added to the kernel equation.

Nowadays, point clouds are used in many areas of technical practice and one of the most
interesting area is autonomous driving. Light Detection And Ranging (LiDAR) sensors

(as one of the most important sensors in autonomous cars) collect 3D point clouds that
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precisely record the external surfaces of objects and scenes. By computing point clouds
registration problem, we can estimate the motion-planning or control decisions of the car.
This area would be a great opportunity to extend our research (chapter @) in the industrial
field.
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