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1 Introduction 
In most animals, the brain is the center for the integration of a wide range of sensory inputs, 

the cognitive processing of these inputs, and the rich variety of behaviors generated in 

response. The most essential cell type to generate these mental processes are neurons 

forming a wide-spanning, densely connected network. Information is transmitted in the 

network by short electrical impulses called action potentials. And while the mechanisms and 

functions of each individual neuron can be understood and described in simple 

electromechanical terms, the immense complexity that arises from the interactions of large 

networks of neurons is still far beyond our current understanding. 

However, ever since the recordings of the simultaneous activity of neural populations first 

became feasible, neuroscience has been searching for a basis of this complexity, for driving 

principles that would explain the dynamics of neural population activity. A major step 

towards that goal was the finding that the responses of single neurons are correlated and to 

a high degree redundant. The correlations and redundancy suggest that the activity of large, 

high-dimensional neural populations can be explained by the activity of a much smaller set 

of independent variables that can’t be observed directly, the so-called latent variables. A 

way to extract these low-dimensional variables are dimensionality reduction methods, a 

diverse group of mathematical algorithms. However, many dimensionality reduction 

methods have not been extensively examined with respect to their applicability to neural 

population activity. Such an evaluation is difficult, because we do not know the latent 

variables structuring the population response of recorded brain activity. Therefore, we 

cannot directly evaluate the performance and accuracy of any dimensionality reduction 

method.  

In this thesis, we therefore present a detailed simulation of neural population activity to 

evaluate the performance and accuracy of dimensionality reduction methods using this type 

of data. We model a real recording of the neural population response of two macaques to a 

visually cued delayed grasping task. First, we matched a large variety of population features 

of recorded data as accurately as possible in our model to maximize relevance to recorded 

data. Second, we use the model to evaluate the most widespread dimensionality reduction 

method, principal component analysis (PCA). Based on our model, the application of PCA to 
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neural data can result in (1) a mis-estimation of the true dimensionality of the dataset, (2) 

failure to capture latent variables of small amplitude and (3) principal components that 

consist of mixtures of individual latent variables and noise. For these reasons, prior 

information about the dynamics and features of the analyzed dataset is necessary to 

interpret the dimensionality, or the individual components recovered by PCA.  

1.1 History of recordings of neural population activity 

To understand the dynamics and interactions of a neural population, we first need to 

simultaneously record the activity of large numbers of neurons. Over the history of 

neuroscience, a number of different methods to capture the activity of neurons has been 

developed. In general, the approaches range from fine-scale recordings of individual 

neuronal activity to large-scale recordings of the activity of entire areas of the brain.  

The signal transfer between neurons is a complex electrochemical process, of which 

electrophysiological recording methods capture the electric component. Neuronal function 

is based on the variable voltage across the membrane of the neuron, which is regulated by 

the flow of electric current, in the form of ions, through protein channels and pumps that 

cross the membrane (Schwartz et al., 1991). Individual neurons receive excitatory or 

inhibitory inputs through chemical or electric synapses, typically situated at the dendrites 

and soma of a neuron. The inputs result in changes in the electric potential across the 

membrane of the cell. Once this post-synaptic potential crosses a certain threshold, the 

neuron “fires”. A strong depolarization of the neuronal membrane potential, called action 

potential, is evoked and travels in a self-propagating manner down the axon of a neuron, 

where it is passed through synapses to the next neuron (It is thus called the pre-synaptic 

potential). Action potentials are short, the membrane returns to its resting potential within 

one to two milliseconds (Whittingstall and Logothetis, 2013). The amplitude of the action 

potential is constant, and stronger excitation of the neuron is reflected in a higher firing 

frequency. 

The changes in the potential of the cell membrane result in currents flowing through both 

the cell and the extracellular medium. The currents within the cell can be measured by 

inserting an electrode directly into the cell, or attaching a patch clamp to the cell 

membrane. Such intra-cellular measurements can capture both presynaptic action 
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potentials and postsynaptic fluctuations of the membrane potential. However, intra-cellular 

recordings are more difficult to conduct than other recording methods, because the 

electrode needs to pierce the membrane and patch clamps need to be placed onto the 

membrane surface. Intra-cellular recordings are therefore mostly performed in vitro on 

single cell preparations (Perin et al., 2011).  

Neural activity can also be measured without piercing or attaching to a cell membrane, by 

placing an electrode in the proximity of a neuron. Such extracellular electrode recordings 

are significantly easier to conduct in vivo and multiple electrodes can be used 

simultaneously and chronically in an electrode array (Nicolelis et al., 1997; Musallam et al., 

2007). Each electrode captures the electric activity of multiple nearby neurons (multi-unit 

activity, MUA), however, with a much worse signal-to-noise ratio than intracellular 

recordings. The action potential of each neuron has a characteristic temporal and spatial 

(due to the position of the electrode relative to the neuron) profile that is different even 

between neurons of the same type. It is therefore possible to sort, to a degree, multi-unit 

activity of a single electrode into action potentials attributable to individual neurons and 

from background noise. This process of spike sorting is a difficult and computationally 

intensive process, that is often done at least in part manually (Wood et al., 2004; Pachitariu 

et al., 2016).  

The flow of ions through the membrane also results in a change of the potential outside of 

the neuron, called the Local Field Potential (LFP). Extracellular electrode recordings capture 

both LFP and MUA simultaneously. Changes in LFP are predominantly attributed to 

postsynaptic activity and LFP is assumed to capture the combined postsynaptic activity on a 

larger scale than MUA (Katzner et al., 2009; Whittingstall and Logothetis, 2013), in other 

words, more neurons contribute to the LFP recorded by an electrode than to the MUA 

recorded by the same electrode. LFP and spiking activity occupy different ranges of 

electromagnetic frequency band; MUA is high-frequency, while LFP activity is of lower 

frequency. Therefore, LFP and MUA can be separated by filtering the recorded signal with a 

high-pass or a low-pass frequency filter. When considering the LFP of a population of 

neurons, LFP reflects predominantly activity that is positively correlated across single 

neurons rather than uncorrelated activity (Einevoll et al., 2013). Therefore, we can’t record 

the part of the neural signal that is not correlated across neurons. 
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Another field of methods that is capable of simultaneously recording large numbers of 

single neurons is optical imaging technics. The changes in voltage across the cell membrane 

caused by changes in ion concentration can be made visible under a microscope, by using 

dyes that are sensitive to changes in voltage (Chemla and Chavane, 2012) or to calcium ion 

concentrations (two-photon calcium microscopy) (Stosiek et al., 2003). In either case, the 

dyes react to external excitation by photons of specific wavelength and emit photons with a 

wavelength that depends on the voltage across the membrane or the concentration of 

calcium ions. This fluorescence can be recorded by methods of optical microscopy, with high 

temporal and spatial resolution. It should be noted that the dyes used can be phototoxic 

and, together with the intensity of illumination needed for high-resolution microscopy, can 

be damaging to the recorded cells in the long term. 

Non-invasive methods are also widely used. Electroencephalography (EEG) measures the 

electric field of the brain through the skin, skull and dura mater with a high temporal 

resolution, but the spatial resolution is very poor and the signal-to-noise ratio is very low. 

Functional imaging methods, like positron emission tomography and functional magnetic 

resonance imaging, capture brain activity indirectly 

by measuring changes in blood flow in response to 

changing neural activity (Logothetis et al., 2001). The 

spatial resolution of functional methods can reach 

values of around a millimeter, but the temporal 

resolution is limited by the slow response of the 

blood flow to increased neural activity. 

Nevertheless, these methods can be used to record 

the entire brain at the same time (at least in 

rodents).  

In general, recording methods that capture the 

activity of larger neural populations do so with a 

worse resolution than single-neuron recording 

methods. An important effect was touched upon in 

the paragraph about LFP; The combination of the 

activity of multiple neurons into one measurement 

Figure 1: The Neuropixels probe is one of several 
novel recording methods that allow for a 
simultaneous recordings of large numbers of 
neurons. A: Illustration of the >900 recording 
sites in relation to the probe tip. B: Microscope 
image of the tip. C: The entire probe with 
headstage, cables and electrode shank. Adapted 
from (Jun et Al. 2017). 
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is effectively an average over the signals of individual neurons (Einevoll et al., 2013). Low 

and high neural signals measured simultaneously cancel each other out on average, thus, 

we lose the uncorrelated or negatively correlated signals of individual neurons. If we want 

to fully understand the dynamics of the brain, in single-spike resolution recordings of single-

neuron spiking activity are preferable. 

Recent developments of new single-neuron recording methods and improvements of 

existing methods allow the simultaneous recording of very large numbers of neurons with 

high temporal and spatial resolutions. Multielectrode arrays allow the simultaneous 

recording of large neural populations with an excellent temporal and spatial resolution 

(Rousche and Normann, 1998; Nicolelis et al., 2003; Musallam et al., 2007). By integrating 

more than 900 electrodes on a single silicon probe shaft, recording devices like the 

Neuropixel probe (Jun et al., 2017) (Fig. 1) or the NeuroSeeker (Raducanu et al., 2017) allow 

simultaneous recordings of hundreds to thousands of neurons. Resonance-scanning two-

photon calcium microscopy was used to record ~10,000 cells simultaneously in vivo 

(Stringer et al., 2018, 2019), but the temporal resolution was low, at only 0.7 Hz. Now that 

recordings of the activity of large neuronal populations are possible, the important question 

is how to analyze and comprehend the dynamics of the activity of such large populations.  

1.2 The neuron doctrine and the representational perspective  

The theory that individual neurons are the structural and functional units of the nervous 

system was formulated by Santiago Ramón y Cajal (y Cajal, 1888) which is now known as the 

neuron doctrine (Yuste, 2015). Research under the neuronal doctrine was the focused on 

biological, structural, and physiological and computational mechanisms of individual 

neurons, eventually resulting in a comprehensive mathematical model of how action 

potentials are generated and propagated (Hodgkin and Huxley, 1952). While such a model 

could explain how and when a neuron generates action potentials, it could not explain how 

information of many neurons is combined to perform computations relevant behavior and 

cognition . 

A first insight into the function of neurons was gained with the discovery of receptive fields. 

Studies of single neurons in the skin of dogs (Sherrington, 1906) and later in the visual 

cortex of cats (Hubel and Wiesel, 1962) revealed that their firing activity changed in 
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response to stimuli, but only if the stimulus was localized in specific areas, the receptive 

fields of the skin and the visual field of the eye. Furthermore, neurons in the visual cortex 

also responded specifically to parameters of the stimulus that are not captured by single 

specific receptors, like movement direction. The activity of single neurons was said to be 

tuned to a specific stimulus parameter, or conversely, a neuron represented some external 

sensory stimulus or behavioral parameter. Later studies even discovered neurons in the 

visual cortex in the monkey that responded to facial images of specific individuals 

(Desimone et al., 1984; Tanaka, 1996). Studies of motor-related areas also revealed 

representations of different movement parameters, like muscle activity (Georgopoulos et 

al., 1984; Kalaska et al., 1989) or joint angles (Evarts, 1968, 1969). These, and many similar, 

findings gave rise to what is now known as the representational view (Yuste, 2015). Under 

the representational view, the variability in the activity of single neurons was sought to be 

explained as encodings, or representations of external variables. 

Donald Hebb was among the first to suggest that brain function arises not from single 

neurons, but from “cell assemblies”, groups of neurons for which functional connections to 

each other would be stronger than to other neurons (Hebb, 1949; Buzsáki, 2010). The 

activity of a neuronal assembly would form the functional unit of cognition, and neurons 

would congregate into assemblies and disband again, as the functions of the brain 

demanded. The existence of discrete assemblies as Hebb described them was difficult to 

prove experimentally (Gerstein et al., 1989; Singer, 1999) but the idea that the function of 

neurons should be studied on the level of groups, or populations, of neurons persisted.  

The theory of single-neuronal task parameter representation was soon extended to 

population level representations. While macaques perform manual tasks, movement 

parameters like movement direction or velocity were encoded within the response of the 

neural population of hand-related areas of their brain. Such task parameters could be 

decoded more successfully from the simultaneous activity of the entire neural population 

than from single neurons (Georgopoulos et al., 1982; Schwartz et al., 1988). Neurons can 

contribute to multiple representations simultaneously. These findings suggested that the 

representation is present on the population level, rather than on the level of single neurons. 

Other more recent publications have found that task parameter representations were 

distributed randomly across the sampled neural populations (Machens et al., 2010; Raposo 



Introduction 

7 

et al., 2014), implying that at least a very large part of the neurons in the population 

contributes to the representation.  

However, the representational perspective has its own limitations. When examining the 

neural population response of macaques to tasks, like the before mentioned center-out 

reach task, both single neurons and the population as a whole were found to display rich 

temporal dynamics that could not be interpreted as representations of a limited number of 

task parameters (Fetz, 1994; Churchland and Shenoy, 2007; Shenoy et al., 2013). Finally, the 

representational perspective does not try to explain behavior is generated. A new 

perspective on neural population activity was necessary, one that could explain both the 

complex dynamics of the neural population response and the strategy by which these 

dynamics drive behavior. This approach came to be known as the dynamical systems 

perspective (Shenoy et al., 2013; Yuste, 2015).  

1.3 The dynamical systems perspective 

The dynamical systems perspective is an interpretational approach to neural population 

activity that is based on the mathematical theory of the same name (Shenoy et al., 2013). 

The focus of the perspective lies on understanding how output is generated by the neural 

population, rather than discovery of representations of external variables (Shenoy et al., 

2013; Yuste, 2015). Under the dynamical systems perspective, the evolution of the neural 

population activity can be understood as a function of the current activity, the inputs to the 

system and noise, in accordance to a set of dynamical rules. The dynamical rules also 

describe how population activity is transformed into the output of the dynamical system 

(Fig. 2).  
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It is useful to adopt a few terms 

and concepts from dynamical 

systems theory. Each neuron 

corresponds to a single 

dimension in the high-

dimensional state space of 

population activity. The 

momentaneous population 

activity corresponds to a point, 

or state, in space of all possible 

states, and the set of all states 

over a given timespan traces a 

continuous trajectory through 

the same space. For a given set 

of inputs and initial states, the dynamical rules uniquely describe the shape of the resulting 

trajectories.  

The dynamical systems perspective has developed simultaneously with the representational 

view and the two are not mutually exclusive. Representations of task variables can be 

interpreted as low-dimensional samplings of more complex, high-dimensional dynamics. 

However, as described before, the dynamical systems perspective can offer approaches to 

neural properties that can’t be interpreted under the representational view. One of the 

earliest phenomena that could not be described under the representational perspective 

were central pattern generators (CPGs), described by Graham Brown in 1914. Brown 

observed rhythmic activity patterns in the spinal cord that drove locomotive behavior 

(Brown, 1914, 1915) in the absence of external inputs and proposed CPGs as the 

mechanism. Later studies examined the role of CPGs in body processes like digestion and 

respiration (Selverston, 1999) and sought to uncover the mechanics behind CPGs (Kopell 

and Ermentrout, 2002; Grillner, 2006). Spontaneous, rhythmical activity like CGPs does not 

represent any external variables and can be best interpreted as dynamical oscillators. In 

addition to rhythmic patterns, many studies have pointed out that the neuronal response is 

frequently more complex than would be necessary for representations. Response properties 

Figure 2: Schematic illustrating the relationship between the dynamical 
perspective and the representational view. The representational view focuses 
on discovering representations encoded in the population, for example 
muscle activity (red trajectory) or hand velocity (black trajectory) during a 
reaching task in the motor cortex (top left). The dynamical systems 
perspective is instead focused on how the final output is generated from the 
dynamics of the cortex (blue trajectories). Adapted from (Shenoy et Al. 2013).
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of neurons in the motor cortex of macaques to movement parameters were not consistent 

across different movement conditions (Fetz and Cheney, 1980; Fetz, 1994; Churchland et al., 

2006; Churchland and Shenoy, 2007; Shenoy et al., 2013) or even different epochs of the 

same task (Elsayed et al., 2016), implying that representations themselves change in 

response to external variables. Since the discovery of these phenomena, the mechanisms of 

their generation and the role they play in the functions of the brain have been the subject of 

many studies progressing the dynamical systems perspective (Fetz, 1994; Scott, 2004; Yuste 

et al., 2005; Cisek, 2006; Grillner, 2006; Churchland et al., 2012; Kaufman et al., 2014a). 

The dynamical system perspective offers a framework to explain and conceptualize the 

complexity and heterogeneity of neural population activity. However, the neural spiking 

process is inherently noisy and the state space of population activity is extremely high-

dimensional, and current recording methods capture only a fraction of this space. 

Therefore, the observation of the dynamics of the activity and the extraction the of dynamic 

rules that govern their evolution is complicated. Fortunately, there are reasons to believe 

that the dynamics of neural population activity do not occupy the entire state space, as will 

be shown in the next chapter. 

1.4 The low-dimensional manifold of population activity 

The true underlying dimensionality of the neural population response is the topic of many 

publications and is still controversially debated (Ganguli and Sompolinsky, 2012; Gallego et 

al., 2017; Stringer et al., 2018, 2019). It is assumed that the underlying connectivity of the 

neural network and the dynamics of population activity restrict the space of observed 

activity to a fraction of the theoretically possible states (Tsodyks, 1999; Sadtler et al., 2014; 

Okun et al., 2015). Results from many recent studies suggest that the dynamics of the neural 

population response occupy only a low-dimensional slice of the full state space, (Churchland 

and Shenoy, 2007; Churchland et al., 2010b; Mante et al., 2013; Kaufman et al., 2014a; 

Sadtler et al., 2014). Other authors counter-propose that the population response might be 

high-dimensional and population activity follows a power-law distribution across 

dimensions (Stringer et al., 2018, 2019). But, in any case, not every possible state of neural 

population activity is observed (Yuste, 2015). It is therefore helpful to define the ‘manifold’ 

of the state space of neural population activity as the volume that encompasses all states 
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that are hypothetically observable (Yuste, 2015; Gallego et al., 2017). To borrow 

terminology from mathematics, the manifold is said to be embedded, or realized, in the 

state space of the population response. Of course, we can record only a comparatively low-

dimensional sampling of the entire high-dimensional population response. Even the before 

mentioned simultaneous recordings of the activity of over 10.000 neurons encompass only a 

tiny fraction of the total number of neurons of any given brain area. Furthermore, most 

recordings capture the response of the neuronal population to a trained, highly stereotyped 

task that does not necessarily engage the entire manifold (Gao et al., 2017).  

However, there are reasons to believe that 

this sampling is sufficient to draw 

conclusions about the dynamics of neural 

population activity as a whole. The dynamics 

of a neural population must be robust 

against disturbances and variability at the 

level of single neurons (Shenoy et al., 2013; 

Montijn et al., 2016). This necessitates a 

high degree of redundancy in the 

population, which in turn suggests that it is 

not necessary to capture the activity of 

every single neuron to obtain a complete portrait of the dynamics of the entire neural 

population. Additionally, as mentioned before, during sensory discrimination tasks, 

representations of task variables in the neural populations of macaques and rats were 

distributed randomly across individual neuron (Machens et al., 2010; Raposo et al., 2014). 

This can be, conversely, interpreted as evidence that single neurons are random samplings 

of the true structure of the state space of neural population activity. Theoretical studies of 

the geometry and dynamics of low-dimensional manifolds embedded in high-dimensional 

spaces show, that the shape and dynamics of such manifolds can be recovered from a small 

number of noisy, random samplings of the full space (Dasgupta and Gupta, 2003; Ganguli 

and Sompolinsky, 2012).  

In general, the manifold is assumed to not occupy the entire dimensionality of the neural 

population space. The space occupied by the manifold is called the embedding space, and 

Figure 3: Illustration of the embedding space and the 
extrinsic and intrinsic dimensionalities on the example of a 
ring-shaped manifold embedded in 3d space. The violet ring 
is a closed curve with an intrinsic dimensionality of 1; its 
extrinsic dimensionality is 2, because it occupies a two-
dimensional plane (green). The manifold is embedded in 3D 
space (black). 
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its dimensionality is the extrinsic dimensionality of the manifold. Put more simply, the 

extrinsic dimensionality is the number of linear, orthogonal dimensions needed to capture 

the manifold. In contrast, the intrinsic dimensionality describes the dimensionality of the 

manifold itself, or the number of dimensions the manifold has within it, independent of how 

it is embedded (Fig. 3). It is the number of independent variables, or coordinates, needed to 

define a basis on the manifold1. In the simple case of a linear manifold, that is, a manifold 

that has no ‘bends’ anywhere, the intrinsic and extrinsic dimensionalities are equal. 

Closely related to the dimensionality of the manifold is the concept of latent variables 

(Cunningham and Yu, 2014), also called latent factors (Chethan Pandarinath, K Cora Ames, 

Abigail A Russo, Ali Farshchian, Lee E Miller, Eva L Dyer, 2018). A manifold of lower 

dimension than the embedding space suggests that the individual observed variables, in our 

case single neuron activities, are not independent. Sets of correlated observed variables can 

be modeled as a function of a smaller set of independent, hidden latent variables and noise. 

In such a model, the true dimensionality of population activity is equal to the dimensionality 

of the set of latent variables and the latent variables form a basis for the manifold.  

Per definition, latent variables are required to be independent of each other, but not 

necessarily to be linear combinations of observed variables. There are in general two 

different forms of latent variables (Fig. 4): In the case of nonlinear latent variables, the set of 

latent variables is the smallest set necessary to uniquely define every point on the manifold. 

Since this is also the definition of the intrinsic coordinates of the manifold, the set of latent 

variables forms a basis on the manifold and their number is equal to the intrinsic 

dimensionality of the manifold (Gallego et al., 2017). In the case of linear latent variables, 

the set of latent variables form a basis for the embedding of the manifold and the number 

of latent variables is equal to the extrinsic dimensionality of the manifold. In both cases, the 

set of latent variables is not unique; Any set of orthogonal variables that spans the same 

space is in itself again a set of latent variables2. This has an important implication: the 

 
1 You can imagine the nonlinear manifold as a part of a linear space that has been bent and deformed. The 
nonlinear latent variables form a basis on the original, non-deformed manifold. 
2 For non-linear latent variables, orthogonality is defined locally; any set of non-linear variables that spans the 
same non-linear manifold and is approximately orthogonal in the area around each point on the manifold is 
another set of latent variables on the manifold. 
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manifold itself has no canonical or ground-truth set of latent variables. If we want to 

distinguish specific dimensions, we need additional information about the dataset. 

 

Figure 4: Examples of a linear and a nonlinear manifold latent variables. The black curve is an example trajectory in the 

state space of three neurons N1, N2 and N3. Left: the trajectory is mostly confined to the two-dimensional manifold (grey 

plane) spanned by the linear latent variables u1 and u2. Right: The trajectory fits the non-linear manifold (light blue) better, 

but the latent variables form no linear subspace anywhere. Adapted from (Gallego et Al. 2017). 

A useful concept for distinguishing individual dimensions of the manifold are neural 

subspaces, also known as coding dimensions. Neural subspaces are dimensions, or groups of 

dimensions, of the neural manifold that can be associated with distinctly encoded aspects or 

features in the manifold, like cognitive and behavioral factors. For example, across several 

different wrist and grasping tasks, the population response of multiple macaques occupied 

two distinct subspaces, one capturing most of the activity related to temporal features of 

the task and the other containing a mapping of neural activity onto muscle activity (Gallego 

et al., 2018b). In another case, the neural population response of two macaques to a 

delayed center-out reaching task occupied two orthogonal subspaces, one containing 

activity during movement preparation and one during movement execution (Elsayed et al., 

2016). The subspaces were linear, orthogonal and temporally separated, but with 

movement goal positions arranged in space in the same way to each other, suggesting that 

the subspaces were linked. Several studies of macaque reaching and grasping movements 

have shown the existence of a “movement trigger” dimension, that was reliably predictive 

of movement onset (Kaufman et al., 2014b; Sussillo et al., 2015; Michaels et al., 2018; Ames 

and Churchland, 2019). 
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Another concept that is important for the description of neural population activity under 

the dynamical systems perspective is the nullspace (Kraskov et al., 2009; Kaufman et al., 

2014b); In the context of the output of a system, the nullspace describes activity that is 

reflected in the activity of most neurons, but cancels itself out at the level of the output. In 

terms of subspaces, the nullspace can be interpreted as a subspace of the manifold that is 

orthogonal to and independent of the output-related subspace. For example, activity in the 

motor cortex of a macaque during a reaching task was decomposed into two subspaces: one 

correlated to muscle activity during reaching and one independent. Muscle activity is 

considered the output of the motor cortex and therefore the independent activity that 

occupies the null space of muscle control (Kaufman et al., 2014b). The independent activity 

was assumed to be involved in the preparation and planning of movement execution.  

Under the assumption that the manifold is indeed low-dimensional, the obvious question is: 

How can we extract the slice of the manifold that is contained in a recorded sample of 

neural population activity? How can we separate the manifold into meaningful subspaces? 

The search for the answer to this question has led scientists to try out a wide range of 

dimensionality reduction methods. 

1.5 Dimensionality reduction methods 

Dimensionality reduction is a basic problem of high-dimensional data analysis. The goal of 

dimensionality reduction methods is to reduce a high-dimensional dataset to a lower-

dimensional representation that preserves some feature of interest, while discarding the 

remaining dimensions (Fig. 5). In the context of neural population activity, the feature that 

we ultimately seek to preserve is the manifold that was introduced in the previous chapter. 

To this end, most (but not all) of the approaches presented in this chapter aim to reduce the 

dimensionality of the recorded neural population response to the extrinsic dimensions of 

the manifold discarding the remaining dimensions.  

1.5.1 Singular-Value decomposition based methods 

Most approaches focus on a particular feature of the manifold and seek to extract 

dimensions that exhibit that feature. The simplest feature of the manifold is the variance 

along single dimensions in the space of neural population activity. The assumption made 

here is that the dimensions occupied by the manifold capture the greatest variance in the 
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data. Therefore, reducing the dataset to the dimensions of greatest variance will separate 

the manifold from the remainder.  

The most often-used approach for dimensionality reduction is principal component analysis 

(PCA) (Jolliffe, 2002; Cunningham and Yu, 2014). Because PCA can be calculated by applying 

singular value decomposition to the data matrix, PCA, and related methods, are often 

grouped under the term of ‘singular value decomposition-based methods’. PCA is applied to 

high-dimensional datasets that can be expressed in the form of a m × d matrix where m is 

the number of variables and d > m is the number of simultaneous, independent 

observations of all m variables. In the context of recordings of neural population response, 

variables are usually the recorded activities of single neurons or multi-units and 

observations are single time points. Note that although in the context of neural population 

recordings observations are usually sequential time points, and PCA can be used to analyze 

time series, this is not a necessary condition for PCA.  

Principal component analysis centers and rotates the dataset onto an ordered set of 

orthogonal basis vectors, called principal components. Each principal component is a linear 

combination of the initial variables and all principal components are pairwise orthogonal 

and each successive principal component captures the maximal variance among the 

remaining dimensions. Because PCA consists only of a centering and a rotation of the data, 

the covariance structure of the data is preserved. Principal component analysis is used as a 

dimensionality reduction method by retaining a number of the first principal components 

and discarding the rest (Jolliffe, 2002; Cunningham and Yu, 2014). A significant number of 

studies uses PCA either as the dimensionality reduction method of choice, or as a first step, 

preparing the data for further, more specialized analyses (Gao et al., 2017; Ni et al., 2018; 

Stringer et al., 2018, 2019; Ebitz and Hayden, 2021).  

SVD-based dimensionality reduction methods have a number of known issues that are 

relevant for their application to recordings of neural population activity. These issues have 

been first described in the context of PCA; Wood et Al. (Wood and McCarthy, 1984) and 

Beauducel et Al. (Beauducel and Debener, 2003) have applied PCA to models of event-

related potentials (ERP) and found that individual principal components resembled 

individual components of the modeled ERP signal, but also contained ‘misallocated’ variance 
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from other components. In studies where PCA was used to analyze time series (Möcks and 

Joachim, 1986; Lakshmanan et al., 2015), it was sensitive to latency in the analyzed dataset; 

In the presence of stable delays between individual variables, PCA captured additional, 

spurious principal components. The activity profiles of the spurious components resemble 

derivatives of the activity profiles of the ‘main’ components. Additionally, the low-

dimensional space identified by PCA captures both function-related neural variability and 

the random spiking and firing rate variability of single neurons (Cunningham and Yu, 2014). 

Finally, SVD-based methods do not offer a natural method for the estimation the extrinsic 

dimensionality of the manifold; The most common method of dimensionality estimation is 

to choose an arbitrary desired percentage of total variance that is to be retained and discard 

principal components beyond that percentage. 

Figure 5: Illustration of PCA applied to a two-dimensional linear manifold embedded in population response space. 
Bottom left: the population response is structured by the trajectories of two latent variables and added noise. The 
variables are orthogonal in state space and jointly assume one of eight trajectories (color-coded). Top: the manifold is 
rotated randomly in the space of neurons and each neuron is a linear combination of latent variables and noise. Bottom 
right: PCA rotates the manifold onto components of maximal variance, but those do not necessarily coincide with the 
original latent variables. 
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Because of the mathematical simplicity of PCA, the method can easily be adapted to 

different requirements by imposing different constraints on principal components than to 

maximize the captured variance. One such adaptation is jPCA (Churchland et al., 2012; 

Shenoy et al., 2013). Individual components recovered using jPCA maximize rotational 

tendency rather than variance captured, and the low-dimensional representation recovered 

using jPCA highlights rotational dynamics of the dataset. Another method closely related to 

PCA is factor analysis (FA) (Churchland et al., 2010a; Cunningham and Yu, 2014). Factor 

analysis can be considered as PCA with an explicit model of the independent variance of 

each individual neuron. Discarding this individual variance allows FA to obtain a low-

dimensional representation of the data that contains only variance that is shared across 

neurons. Because of this discarding step, and unlike the PCA variants presented so far, the 

underlying structure of the data is not preserved under FA. The method Gaussian process 

factor analysis (GPFA) (Yu et al., 2009) combines factor analysis with the additional 

constraint that the evolution of latent variables over time is to be a Gaussian process, 

smooth and continuous. This approach is based on the idea that processes in neural 

networks should be continuous, and latent variables are expected to change slowly and 

smoothly. 

1.5.2 Model-based dimensionality reduction methods  

A different approach to dimensionality reduction is chosen for model-based dimensionality 

reduction methods. In these methods, the activity of latent variables is explicitly modeled 

and a static function maps the activity of latent variables onto observed variables. A 

separate function models the independent noise of observed variables. The underlying 

model of latent variable activity, the mapping function and the noise function are estimated 

from observed variable activity. Unlike PCA, model-based methods are time-series based; 

The observations need to be sequential and continuous. Also, the number of latent variables 

for the model needs to be specified; Often, multiple models are constructed for different 

numbers of variables and the best-fitting model is selected. 

The latent variables are not explicitly assumed to be embedded in the space of observed 

variables. However, in the case of a linear relationship between latent and observed 

variables, the linear weights between observed and latent variables can be interpreted as 
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projection vectors in the space of observed variables. These projection vectors span a 

subspace that is analogous to the low-dimensional representation that is the result of SVD-

based methods. Thus, linear modelling of latent variables can be used as a dimensionality 

reduction method in the same manner as SVD-based methods. 

One of the simplest models to be used in model-based dimensionality reduction methods is 

the hidden Markov model (HMM) (Seidemann et al., 1996; Jones et al., 2007; Kemere et al., 

2008; Bollimunta et al., 2012; Ponce-Alvarez et al., 2012). In this model, latent variables 

form a vector that can assume discrete values, or states, and the current state depends only 

on the previous state and a transition probability. HMMs are comparatively easy to 

calculate, but the time-dependent trajectories of latent variables are not continuous, and 

thus HMMs can’t model smooth dynamics of observed variables well.  

A more complex family of models are the latent dynamical system models. In so-called 

linear latent dynamical system models (LDS) (Smith and Brown, 2003; Kulkarni and Paninski, 

2007; Paninski et al., 2010; Buesing et al., 2012; Pfau et al., 2013), the latent variables are 

modeled as states of a dynamical system that can take continuous values. The dynamical 

rules that govern the evolution of the latent variables are linear transformations that can be 

represented by a static transformation matrix. The non-linear latent dynamical system 

models (NLDS) (Byron et al., 2006; Petreska et al., 2011) allow for non-linear latent variable 

state transition functions. Such non-linear functions can fit complex data better at the cost 

of increased computational complexity and the risk of overfitting.  

1.5.3 Supervised dimensionality reduction methods 

Both the SVD-based and the model-based methods presented so far extract the low-

dimensional representation in an unsupervised fashion, utilizing only the matrix of observed 

values. The latent variables are estimated or discovered as part of the method. In contrast, 

supervised methods leverage external information to specify latent variables. In the context 

of neural population response to stereotypical tasks, external variables like task conditions, 

sensory cues or behavior are expected to have representations within the population 

response. These representations are used as latent variables (Churchland and Cunningham, 

2014). Known non-representational features of population activity such as the condition 

independent temporal structure of the response can be also used as latent variables. 
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The simplest supervised methods of dimensionality reduction are linear discriminant 

analysis (LDA) and support vector machines (SVM). If the observations can be assigned to 

discrete classes, for example the neural population response to reaches towards the left vs. 

reaches towards the right, LDA and SVM find dimensions that maximize the separation 

between the classes, with LDA targeting dimensions which minimize the variance within 

each class while simultaneously maximizing the distance between classes and SVM selecting 

dimensions along which the margin of separation between the classes is maximal. For both 

methods, the number of dimensions discovered is at most equal to the number of classes 

minus one.  

In cases where the external variables take continuous, rather than discrete, values, 

generalized linear models (GLM) (Mante et al., 2013; Cunningham and Yu, 2014; Raposo et 

al., 2014) are applicable instead. GLM are a form of multivariate linear regression, which 

estimates linear fits of all observed variables to each latent variable. Just as for the model-

based dimensionality reduction methods introduced earlier, the weigths of the linear fits 

can be expressed as vectors that each span a dimension in state space. Along these 

dimensions, the observed variables and the latent variables are maximally correlated, and 

together the dimensions span the low-dimensional representation that we are interested in.  

The three supervised dimensionality reduction methods presented so far share a weakness 

that, incidentally, mirrors the main weakness of the representational perspective: Not all 

neural population activity reflects some external variables (Shenoy et al., 2013; Kaufman et 

al., 2016). In fact, if we wish to understand the dynamics of the neural population response, 

we may be equally as interested in dimensions that contribute only to the dynamics without 

encoding any external variables. Demixed dimensionality methods, like the aptly-named 

demixed principal component analysis (dPCA) (Brendel et al., 2011; Kobak et al., 2016) 

combine supervised and unsupervised dimensionality reduction methods. dPCA first 

extracts representations of individual task parameters and interactions between task 

parameters from the population response in a supervised manner, then uses unsupervised 

SVD-based dimensionality reduction to discover dimensions of maximal variability for 

individual representations. However, dPCA fails to identify orthogonal subspaces that are 

occupied at different timespans over the course of the task.  
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Another method that does leverage temporal separation was presented by Elsayed et al. In 

their 2016 paper, the authors used the temporal structure of the neural population 

response to a center-out reach task to identify two orthogonal subspaces for reach 

preparation and execution (Elsayed et al., 2016). Elsayed et al. exploited the fact that the 

population response occupied the two subspaces during two successive epochs of the task, 

by constraining PCA to maximize variance for each epoch independently, but 

simultaneously. However, this approach requires prior knowledge about the structure of the 

neural population response and is less applicable in the case of overlapping subspaces. 

1.5.4 RNNs and non-linear dimensionality reduction methods 

As a contrast to linear dimensionality reduction methods, we should also briefly touch upon 

nonlinear methods. Nonlinear dimensionality reduction methods typically transform the 

nonlinear embedding of a manifold into a linear one, onto which linear dimensionality 

reduction methods can be applied. The two most common methods are isometric mappings 

(ISOMAP) (Tenenbaum et al., 2000)and locally linear embeddings (Roweis and Saul, 2000; 

Stopfer et al., 2003; Brown et al., 2005; Carrillo-Reid et al., 2008). Both methods analyze 

small neighborhoods of each observed state to estimate the intrinsic dimensionality of the 

nonlinear manifold, then take the manifold apart and reassemble the neighborhoods into a 

linear manifold, while preserving nearest-neighbor relations. However, such methods are 

susceptible to the presence of noise (Boots and Gordon, 2012) and require a dense sampling 

of the manifold (Cunningham and Yu, 2014) in order to preserve the structure of the 

manifold.  

In recent years, an increasing number of studies have also utilized artificial neural networks 

to investigate neural population response. Artificial neural networks like recurrent neural 

networks (RNNs) are inherently nonlinear and can be flexibly trained to perform a vast 

number of computations. Therefore, they are well-suited for the purpose of nonlinear 

dimensionality reduction. A recent dimensionality reduction method based on RNNs is 

latent factor analysis via dynamical systems (LFADS) (Sussillo et al., 2016; Chethan 

Pandarinath, K Cora Ames, Abigail A Russo, Ali Farshchian, Lee E Miller, Eva L Dyer, 2018; 

Pandarinath et al., 2018). LFADS is a so-called sequential auto-encoder: Two RNNs in 

sequence are simultaneously trained to first extract a low-dimensional latent factor 
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representation from a high-dimensional dataset, then reconstruct the original input from 

the latent factors as precisely as possible. The simultaneous training ensures that the low-

dimensional representation captures as much information about the structure of the high-

dimensional dataset as possible. LFADS can be applied to single-trial population responses, 

and because noise is not encoded in the low-dimensional representation, LFADS can be used 

to de-noise single-trial firing rates (Pandarinath et al., 2018). Note however, that unlike the 

representations obtained from the other methods presented so far, the low-dimensional 

representation generated by LFADS is not embedded in the state space of neural population 

response. Instead, if the set of latent factors discovered by LFADS is constrained to be as 

small as possible, the latent factors are analogous to the nonlinear latent variables that span 

the intrinsic dimensions of the manifold; both sets of variables form the minimum set of 

coordinates necessary to uniquely identify a point on the manifold. LFADS allows us to 

discover information about the dynamics of neural population activity that could not be 

obtained from linear methods. 

Another frequently used application of RNNs is to construct a model of a recorded neural 

population and train the model to reproduce the recorded population response from 

recorded stimuli. The noise-free and fully sampled simulated population response of the 

RNNs can then be analyzed in place of the noisy and strongly sub-sampled recorded 

response. RNNs were used to model decision-making in a visual discrimination task (Mante 

et al., 2013), muscle activity in a sequential reaching task (Sussillo et al., 2015) and muscle 

kinematics in a delayed grasping task (Michaels et al., 2020). In each case, the RNNs could 

reproduce key dynamics of the recorded population response. Even though such RNNs are 

significantly smaller and less complex than biological neural networks, they still showcase 

the potential of models of neural population response to provide new insights into the 

dynamics of neural population activity.  

Taken together, there are a variety of methods for dimensionality reduction, and each 

method has advantages and disadvantages. However, the performance of dimensionality 

reduction methods on neural data has not been systematically investigated so far. To 

evaluate the performance and success of any dimensionality reduction methods when 

applied to recordings of neural population activity, we would need to compare the low-

dimensional representation obtained from the results of the method to the ground-truth 
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manifold of the recorded population. Unfortunately, we can’t know the ground truth of the 

manifold; The presence of temporal delays between individual neurons, the inherent 

noisiness of the point process of spiking activity and the low signal-to-noise ratios of 

individual neural signals make it difficult to extract the dynamics of neural population 

response. However, we can use models of neural population response to draw conclusions 

about the modelled population, as long as the models are sufficiently accurate to reproduce 

key features of population activity. 

1.6 The fronto-parietal grasping network 

In the context of this thesis, we construct a model based on real recordings of the neural 

population response of two macaques to a visually guided reach-to-grasp task. The large-

scale neural circuit in the macaque brain that the recordings were captured from is known 

as the fronto-parietal grasping network. This network, comprises the areas of F5 (the hand 

area of the ventral premotor cortex) and the area AIP (the anterior intraparietal area in the 

parietal lobe), shown in Fig 6. These areas are known to be strongly reciprocally connected 

(Luppino et al., 1999). 

The involvement of areas of the fronto-

parietal grasping network into grasping 

execution was shown in lesion studies. 

Temporary inactivation of the area of 

either F5 or AIP caused functional deficits 

in the pre-shaping of the hand during 

grasping movements (Gallese et al., 1994; 

Fogassi et al., 2001), showing that both 

areas are causally involved in the 

execution of grasping movements (Fluet et 

al., 2010).  

Areas of the fronto-parietal network are also involved in other functions. The parietal reach 

region (PRR, shown in Fig. 6) and the dorsal premotor area (PMd) were shown to be 

involved in reaching motions (Gail and Andersen, 2006; Churchland et al., 2010b, 2012). 

Neurons in the areas of F5 and AIP were modulated in response to visual object fixation and 

Figure 6: The locations of brain areas central to the fronto-
parietal grasping network in the macaque brain. Left: Hand 
area of the ventral premotor cortex F5. Right: Anterior 
intraparietal area (AIP), together with the neighboring areas of 
Lateral and Ventral Intraparietal (LIP, VIP) and the Parietal 
Reach Region (PRR).  
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discrimination (Murata et al., 1997, 2000; Janssen and Scherberger, 2015). The neighboring 

lateral intraparietal area (LIP, see Fig. 6) and frontal eyefield (FEF) are similarly involved in 

saccadic eye movements (Freedman and Assad, 2006; Siegel et al., 2015). Finally, in the 

areas of AIP and F5 the neural population activity persisted through delays between object 

presentation and movement execution even if the object was not visible during this delay. 

This could be interpreted as a memory-related or movement preparation-related activity 

(Murata et al., 1996; Baumann et al., 2009; Fluet et al., 2010). 

The presence of visual, preparatory and movement-related activity in the fronto-parietal 

network suggests an involvement in functional visuo-motor transformations, 

transformations of visual input into movement control signals (Janssen and Scherberger, 

2015). This theory is supported by findings that neural selectivity of neurons in AIP for visual 

information was stronger than in F5. Conversely, selectivity for motor signals was weaker in 

AIP and stronger in F5, though not as strong as in areas of the motor cortex (Schaffelhofer et 

al., 2015; Schaffelhofer and Scherberger, 2016). This implies that the transformation of 

visual data into movement control takes place down the stream from AIP towards F5 and 

later the motor cortex. 

The fact that the fronto-parietal grasping network is directly involved in reaching and 

grasping movements and that the neurons within the network are encoding visual 

information, movement preparation and movement execution in parallel makes the 

network an excellent candidate for the recording of the neural population response to 

visually cued, delayed reach-to-grasp tasks. We can reasonably expect the three different 

encodings to be independent of each other, and therefore to occupy three different, 

orthogonal subspaces of the full space of neural population activity (Kaufman et al., 2014b; 

Elsayed et al., 2016; Dann, 2017). 

1.7 Simulation-based evaluation of dimensionality reduction methods 

In this thesis, we present a simulation of neural population activity as a tool for the 

evaluation of dimensionality reduction methods. We design the simulation as a flexible 

toolbox, capable of generating single-trial recordings of spiking neural population activity 

and reproducing key properties of recorded neural population responses. The simulation 

can be used to evaluate a wide range of dimensionality reduction methods. Most 
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dimensionality reduction methods extract a linear representation, therefore our simulated 

population response is given structure by a low-dimensional, linear manifold. We do not 

simulate individual interneuron connections, as RNNs do, instead, correlations between 

neurons are explicitly and solely driven by the activity of latent variables.  

Our simulation is based on a previously published recording of neural population response 

(Michaels et al., 2015; Dann et al., 2016) of two macaques to a visually cued, delayed reach-

and-grasp task. The neural population response to this task was recorded from the fronto-

parietal grasping network, including part of the ventral premotor (F5) and anterior 

intraparietal (AIP) areas. A supervised dimensionality reduction method based on SVM was 

used to analyze the recording and identify three subspaces related to visual cue 

information, movement preparation and movement initiation execution. The identified 

subspace decomposition is in accordance with previous studies that analyzed the fronto-

parietal grasping network (Murata et al., 1996; Baumann et al., 2009; Fluet et al., 2010). This 

subspace structure is used as the ground truth of the simulation. We also ensured that the 

simulation accurately reproduces key population features of the recorded neural 

population, as explained in detail in the next chapter. 

Of all dimensionality reduction methods, PCA is both the simplest and the one that is found 

most frequently in literature. As the PCA is the basis for several other dimensionality 

reduction methods, we can expect many findings obtained from evaluations of PCA to be 

applicable to these methods. We use the simulation to evaluate the performance of PCA as 

a dimensionality reduction method when applied to recordings of neural population activity. 

We focus on three central topics: 

The first topic is the estimation of the true dimensionalities, both the intrinsic and extrinsic, 

of the manifold from the results of dimensionality reduction methods. SVD-based 

dimensionality reduction methods presented in literature are often accompanied by 

methods to estimate the dimensionality of the manifold (Jolliffe, 2002; Cunningham and Yu, 

2014). Very often the method entails selecting an arbitrary amount of variance to be 

retained in the low-dimensional representation and rejecting dimensions that exceed that 

number. It is difficult to evaluate whether the dimensionality was estimated correctly, 

because the true dimensionality of the manifold is unknown. 
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The second topic is the capture of the true manifold by the low-dimensional representation. 

If we can accurately estimate, or maybe even generously overestimate the dimensionality of 

the manifold, will all subspaces and dimensions, coding and non-coding, of the manifold be 

captured by the representation? If not, what information is lost?  

The final topic is the interpretation of the components discovered by SVD-based 

dimensionality reduction methods. As mentioned before, in the case of unsupervised 

dimensionality reduction methods the choice of latent variables is to a degree arbitrary. 

However, SVD-based methods return unique sets of components, like principal components 

in PCA or factor loadings in FA and these components are known to contain mixtures of 

activity from different subspaces (Möcks and Joachim, 1986; Lakshmanan et al., 2015). The 

extent of this mixing, and whether it can be reduced, has not been investigated yet. 



Methods 

25 

2 Methods 
2.1 Experiment 

The task described here was performed by Benjamin Dann and published before (Michaels 

et al., 2015; Dann et al., 2016; Dann, 2017). Two monkeys, S and Z, were trained to perform 

a delayed reach-and grasp task; The monkey was cued to grasp a handle with either a 

pinching precision grip or a full-hand power grip. The task was structured into four epochs: 

In the fixation epoch the monkey held its hand still on a hand rest, fixated a dot on a 

monitor for a variable period of time (800-1000ms). In the cue epoch (300ms) one of two 

disks were displayed on a monitor left or right of the fixation disk and instructed the 

monkey to plan and to perform one of two associated grip types. Next, in the planning 

epoch the cue was turned off and the monkey had to memorize and prepare the 

corresponding grip type for a variable amount of time (1300-1500ms). Finally, in the 

movement phase, the fixation dot vanished, cuing the monkey to execute the planned 

movement within a limited amount of time (max 750ms). Note that the task also included 

two other contexts. In the free-choice context, both cues were displayed and the monkey 

was free to choose between the two grip types. In the delayed instructed context, the 

monkey received a second cue during the memory period following a free-choice cue (in 

50% of cases), instructing the monkey to perform one of the two grip types. The free-choice 

and delayed instructed contexts were not used for all following analyses and are therefore 

not described in further detail here. For the analyses of this thesis, six recordings of monkey 

S and three recordings from monkey Z were used. The monkeys were successful in 95% and 

96% of trials on average, with 730±106 and 722±167 trials per recording day for S and Z, 

respectively. Only successful trials of the instructed context were used for all further 

analyses. 

2.1.1 Data recording and preprocessing 

All methods and procedures in this section were performed by Benjamin Dann (Dann, 2017). 

The neural population response to the task was recorded from the cortical areas F5 and AIP 

as part of the fronto-parietal grasping network. In each area two floating microelectrode 

arrays with 32 electrodes per array were implanted. For spike detection, the signal was first 

high-pass filtered (median filter, cutoff frequency: 333Hz) and then low-pass filtered (non-

causal Butterworth filter, 4th order, cutoff frequency: 5000Hz). Next, the common noise 
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sources were eliminated using principal component artifact cancellation (Musial et al., 2002; 

Dann et al., 2016). Offline spike sorting was performed using a modified version of the 

offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009; Dann et al., 2016). 

Only well-isolated neurons that had an average firing rate above 1Hz across all contexts 

(75±7% of all single units per recording) were used for further analysis. This corresponded to 

55±14 neurons per recording session (63±5 for monkey S, 37±4 for monkey z). Spike times 

were binned into time bins of 1ms width. 

The recorded single-neuron, single trial activity was smoothed by convolution with a 

Gaussian kernel, with a σ of 60 ms. Next, a square root filter (Yu et al., 2009; Afshar et al., 

2011; Michaels et al., 2015) was applied to normalize the distributions of firing rates under 

two aspects: First, to reduce the impact of neurons with high overall firing rates when 

compared to slow-firing neurons. Second, to account for non-linear changes in the firing 

rate of individual neurons (Yu et al., 2009; Buzsáki and Mizuseki, 2014). Neural activity was 

aligned to multiple behavioral events because of the variable length of the fixation and 

memory epoch and the variable reaction time of movement initialization. Neural activity 

was aligned to the cue onsets and movement onset (cue onset: -800 to 1500 ms; and 

movement onset: -300 to 500 ms) (Dann et al., 2016; Dann, 2017). Alignments were then 

recombined to produce continuous, fixed-length trials. 

2.1.2 Manifold identification 

The following dimensionality reduction method was developed and executed by Benjamin 

Dann (Dann, 2017). The method uses support vector machines to identify orthogonal 

subspaces in the population response to trials (Raposo et al., 2014; Kaufman et al., 2015). 

Single-trial data of the instructed context was subsampled by selecting time bins spaced in 

10 ms intervals. Due to the smoothing with a Gaussian kernel described before, each bin 

effectively corresponds to a Gaussian window with a σ of 60 ms. For every time bin, two 

support vector machines (SVMs) were trained independently; A condition-dependent SVM 

was trained to optimally separate the single-trial activity within the time bin that 

corresponded to different grasp conditions. Additionally, a condition-independent SVM was 

trained to separate the single-trial activity in each time bin from the baseline activity during 

pre-trial fixation.  
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In the next step, the SVMs were used to extract a low-dimensional representation from the 

high-dimensional population response in the following. A maximal random set of close to 

orthogonal SV-projections was selected and the low-dimensional representation was 

constructed as the space occupied by these SV-projections. As mentioned in the 

introduction chapter, low-dimensional representations are optimized to preserve a certain 

feature of the full space while reducing dimensionality. For continuous activity, such as trial-

averaged activity, variance is a useful feature to preserve. Not so for single trials spiking 

activity, which can be considered as a point process. For this reason, the independent 

variance of individual neurons is high, and would cause the low-dimensional representation 

to rotate onto neurons with high firing rates. Therefore, the correlation between the single-

trial activity captured by all SV-projections and the selected set of orthogonal SV-projections 

was optimized instead. First, the selection of close to orthogonal SV-projections was 

optimized up to a correlation of 𝑅ଶ = 0.95 with the full space of SV-projections. Second, if 

the correlation threshold was not reached, an additional SV-projection was added and the 

first step repeated. Note that only one additional SV-projection had to be added in all cases. 

The selected set of SV-projections was QR-orthogonalized to obtain a true basis for the low-

dimensional representation (Dann, 2017). The SV-projections could be grouped into three 

subspaces for visual, movement preparatory and movement execution related processing, 

shown in Fig. 8b and c. (visual subspace: one condition dependent and one condition 

independent projection; preparatory subspace: one condition dependent and one condition 

independent projection; movement execution subspace: one condition dependent and two 

condition independent projection) For the instructed context, occupancy of the three 

subspaces was separated over the time course of the task with brief transition periods. 

Individual subspaces are referred to as 𝑈௜ , 𝑖 = 1, 2, 3. The subspaces are spanned by the 

normal vectors of the hyperplanes of maximum separation 𝛽ௌ௏ெ,௝ (Dann, 2017). 

2.2 Simulation of a spiking neural population: Methods 

2.2.1 Low dimensional structure of population firing rates 

We want to simulate spiking neural population activity that is constrained to a low-

dimensional manifold in the high-dimensional space of all neurons. This simulation will later 

be used to evaluate the performance of PCA when applied to neural data. We simulate the 

simultaneous activity of a population of 𝐼 spiking neurons in response to the behavioral task 
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described in the last section. Each neuron is defined by its time-dependent firing rate 𝑛௜(𝑡). 

We use the firing rate to generate 𝑀 individual trials 𝑚 in 𝑇 time steps t of 1 ms each of 

spiking activity 𝑛ො௜,௠(𝑡). We do not simulate individual inter-neural connections like an 

artificial neural network would; rather, the activity of the high-dimensional set of observed 

neurons reflects the trajectories of a smaller set of orthogonal, linear latent variables (LVs) 

𝑙௝(𝑐, 𝑡), where c is the task condition.  

The latent variables completely describe the dependence of the neural population response 

on time 𝑡 and task conditions 𝑐 and are therefore the only variable that explicitly depends 

on the two variables. We model latent variables as products of a time-dependent profile 

𝑙௝(𝑡) and a condition-dependent scale factor 𝛾௝(𝑐) as follows: 

𝑙௝(𝑐, 𝑡) =  𝛾௝(𝑐) ∙  𝑙௝(𝑡) (1) 

In short, we use the temporal profiles of the projections of full activity onto individual 

subspaces, as described in the last section, and scale them differently for different conditions. 

E.g, for the recorded task  𝛾௝("𝑝𝑜𝑤𝑒𝑟") was equal to 1 and  𝛾௝("𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛") was equal to -1. 

The profiles 𝑙௝(𝑡) used in this thesis are shown in fig. 10d in the results section 3.1.3. The 

condition scaling factors 𝛾௝(𝑐) are shown in fig. 17 in section 3.1. To improve readability, we 

leave out the condition c from equations that do not directly concern themselves with 

different conditions. 

Each neuron has a fixed baseline firing rate 𝑛௜,଴ which reflects the probability of the neuron 

to spike at any given moment. The baseline firing rate 𝑛௜,଴ of each neuron is multiplicatively 

modulated by a linear sum of the weighted activity of each LV 𝑙௝ at time 𝑡 to obtain the 

time-dependent firing rate 𝑛௜(𝑡). The modulation strength is given by the constant linear 

coefficients 𝛽௜,௝. Each neuron 𝑛௜(𝑡) has an individual temporal delay Δ𝑡௜,௝ to each latent 

variable 𝑙௝(𝑡);  

𝑛௜(𝑡) = 𝑛௜,଴ ∙ ቌ1 + ෍ 𝛽௜,௝ ∙ 𝑙௝൫𝑡 + Δ𝑡௜,௝൯

௝

ቍ (2) 
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Out of the firing rates, we construct the population firing rate vector 𝑁ሬሬ⃗ (𝑡), which has the 

individual 𝑛௜(𝑡) as its entry in position 𝑖. This is represented by the union operator: 𝑁ሬሬ⃗ (𝑡) =

⋃ 𝑛௜(𝑡)௜ . Because the Δ𝑡௜,௝ are individual to each neuron and LV, the one-dimension latent 

variable trajectory 𝑙௝(𝑐, 𝑡) also needs to be expressed as a vector:  

𝑙௝(𝑐, 𝑡) =  ራ 𝑙௝൫𝑡 + Δ𝑡௜,௝൯

௜

 (3) 

 The entries of 𝑙௝(𝑡) are time-shifted copies of 𝑙௝(𝑡). ⊙ represents component-wise 

multiplication, also known as the Hadamard product. 

 ራ 𝑛௜(𝑡) = 𝑁ሬሬ⃗ (𝑡) = 𝑁ሬሬ⃗ ଴ ⊙ ቌ1 + ෍ 𝛽௝ ⊙ 𝑙௝(𝑡)

௝

ቍ (4) 

This is the same as equation 2, only expressed in terms of the population activity 𝑁ሬሬ⃗ (𝑡).  

2.2.2 Simulation of spiking neural activity  

We transform the firing rate 𝑛௜(𝑡) of each individual neuron into 𝑀 single trials 𝑚 of spiking 

activity, using a weighted inhomogeneous Poisson process. As spiking activity can’t be 

negative, only the non-negative firing rate 𝑛ା
௜(𝑡) is used: 

𝑛௜
ା (𝑡) = ൜

𝑛௜(𝑡), 𝑛௜(𝑡) ≥ 0

0, 𝑛௜(𝑡) < 0
(5) 

For each neuron i, each trial m is divided into T time bins 𝑡௡ of 1 ms length and the spiking 

activity is denoted 𝑛ො௜,௠(𝑡௡). Each bin n of trial m can contain either 0 or 1 spike, denoted as 

𝑛ො௜,௠(𝑡௡) = 0 and 𝑛ො௜,௠(𝑡௡) = 1 respectively. The probability of the n-th time bin 𝑡௡ to 

contain a spike is given by the squared average firing rate during that bin. 

𝑃൛𝑛ො௜,௠(𝑡௡) = 1ൟ = ቀ𝑛ప
ା ൫[𝑡௡, 𝑡௡ାଵ)൯തതതതതതതതതതതതതതതതതതതቁ

ଶ
(6) 

The time-dependent firing rate is squared here to better approximate the true log-normal 

distribution of firing rates, as explained in Methods 2.1. To simplify computations, we 

simulate the smooth firing rate 𝑛௜(𝑡) with the same resolution of 1 ms as the bins of spiking 

activity. This way, each bin corresponds to exactly one firing rate value: 𝑛ା
௜൫[𝑡௡, 𝑡௡ାଵ)൯ =
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 𝑛ା
௜(𝑡௡) In the limit of infinite trials 𝑚 → ∞, the averaged spiking activity is equal to the 

nonnegative firing rate. 

〈𝑛ො௜,௠〉ห
ெ→ஶ

=  𝑛௜
ା (7) 

If we want to simulate spiking activity without the nonlinear effect of the cut-off of firing 

rates at zero, we can simulate negative spikes by modifying eq. 5: 

𝑛௜
ି (𝑡) = ൜

0, 𝑛௜(𝑡) ≥ 0

−𝑛௜(𝑡), 𝑛௜(𝑡) < 0
(8) 

𝑃൛𝑛ො௜,௠
ି (𝑡௡) = 1ൟ = ቀ𝑛ప

ି ൫[𝑡௡, 𝑡௡ାଵ)൯തതതതതതതതതതതതതതതതതതതቁ
ଶ

 (9) 

2.2.3 Reconstruction of simulated PSTHs 

The spiking activity 𝑛ො௜,௠(𝑡௡) is averaged across trials and smoothed with a Gaussian kernel K 

(Eq. 10) with a σ of 60 ms, as was done for the recorded data (Chapter 2.1: Data 

preprocessing). The square root transform is applied to the smoothed, trial-averaged spiking 

activity to obtain the smoothed single-neuron spiking activity 𝑛෤௜(𝑡), which, in turn, is 

combined to form the smoothed spiking population response 𝑁෩(𝑡). 

𝐾(𝑡) =  ൭
1

𝜎௙௜௟௧௘௥√2𝜋
∙ 𝑒

௧మ

ଶ∙ఙ೑೔೗೟೐ೝ
మ
൱ ;  𝜎௙௜௟௧௘௥ = 60 (10) 

𝑛ො௦௠௢௢௧ ,௜,௠(𝑡) = 𝑛ො௜,௠(𝑡) ∗ 𝐾(𝑡) (11)  

𝑁෩(𝑡) = ራ 𝑛෤௜(𝑡) ; 𝑛෤௜(𝑡) =  ඨ
〈𝑛௦௠௢௢௧௛,௠(𝑡)〉

 
ቤ

 

𝑚
(12) 

Here, ∗ denotes convolution and 〈ேೞ೘೚೚೟ ,೘(௧)〉
 

ห  
௠

=  𝑁௦௠௢௢௧௛(𝑡)തതതതതതതതതതതതതത denotes averaging over 

trials. The square root transform reverses the earlier squaring of firing rates. 
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The variables have been chosen so that, similar to Eq. 7 and in the limit of large trial 

numbers 𝑚 → ∞, the trial-averaged PSTHs 𝑛෤௜(𝑡) are equal to the non-negative firing rates 

𝑛௜
ା (𝑡) smoothed by the same Gaussian smoothing kernel; 

lim
ெ →ஶ

𝑛෤௜(𝑡) = 𝑛௜
ା (𝑡) ∗ 𝐾(𝑡) (13) 

As a corollary of this equation, we can estimate the activity attributable to the Poisson noise 

of the spiking process 𝑁෩௡௢௜௦௘(𝑡) =  ⋃ 𝑛෤௜,௡௢௜௦௘௜  by subtracting the trial-averaged PSTHs from 

the firing rates: 

𝑛௜
ା (𝑡) ∗ 𝐾(𝑡) − 𝑛෤௜(𝑡) =   𝑛෤௜,௡௢௜௦௘ (14) 

2.2.4 Projection of activity onto subspaces of latent variables 

For every latent variable 𝑙௝(𝑡), the weight vector 𝛽௝  spans a dimension in the space of neural 

population activity that contains most of the activity related to that latent variable. We 

define the projection of the full smoothed and trial-averaged population space activity onto 

𝛽௝  as the projected latent variable trajectory 𝑙ሚ௝(𝑡): 

𝑙ሚ௝(𝑡) = 𝑁෩(𝑡) 𝛽௝ (15) 

We can successively expand eq. 15, using eqs. 2 and 5, to obtain the relationship between 

𝑙ሚ௝(𝑡) and 𝑙௝(𝑡): 

Figure 7. Left: Illustration of nonlinear distortion of spiking activity due to cutoff of firing rates of neuron 2 at 0. Right: Nonlinear 
distortion due to temporal delay. Neuron 1 peaks ahead of neuron 2, resulting in a distortion of the trajectory. 
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𝑙ሚ௝(𝑡) ≈ 𝐾(𝑡) ∗ ൥𝑁ሬሬ⃗ ଴ ⊙ ൭1 + ෍ 𝛽௞ ⊙ 𝑙௞(𝑡)

௞

൱൩

୒(୲)ஹ଴

∙ 𝛽௝ (16) 

Eq. 16 contains three nonlinearities; the first is the cutoff of firing rates at 0, represented by 

[… ]୒ஹ଴, the second is the vector of latent variables with temporal delays 𝑙௝(𝑡) and the third 

is the Poisson noise of spiking activity. If we assume the absence of cut-off and no temporal 

delay, we can cancel a few terms using the orthogonality between 𝛽:  𝛽′௜𝛽௝ = 𝛿௜௝. 

𝑁(𝑡) ≥ 0 ∀ 𝑁(𝑡), Δ𝑡௜,௝ = 0 ∀ 𝑖, 𝑗 ⟹  𝑙ሚ௝(𝑡) = 𝛽′௝ ∙ 𝐾(𝑡) ∗ 𝑁଴ ⊙ ൭1 + ෍ 𝛽௞𝑙௞(𝑡)

௞

൱ = 𝑁଴ + 𝐾(𝑡) ∗ 𝑙௝(𝑡) (17)

It is easy to see that in the absence of nonlinear effects the latent variable profiles can be 

recovered from the projection of population activity onto the weight vector: 

𝑁෩௜(𝑡) 𝛽௝ = 𝑙ሚ௝(𝑡) ≈ 𝐾(𝑡) ∗ 𝑙௝(𝑡) + 𝑁଴ (18) 

The nonlinearities are illustrated in fig. 7; the presence of temporal delays between 

observed variables shifts variability out of the mutually orthogonal subspaces (Wood and 

McCarthy, 1984; Beauducel and Debener, 2003; Lakshmanan et al., 2015) (Fig. 7, right). 

Additionally, the cut-off of spiking activity at zero introduces nonlinear distortions to neural 

population trajectories (Fig. 7, left). Poisson noise is independent of all other effects and 

variables; it is represented in the inequality sign in eq. 21. If we assume that the other two 

effects are small, we can represent them as linear vector terms: 

𝑁(𝑡)|ேஹ଴ = 𝑁(𝑡) + 𝜀௖௨௧௢௙௙(𝑡) (19) 

𝑙௝(𝑡) = 𝐼 ∗ 𝑙௝(𝑡) + 𝜀௝,ௗ௘௟௔௬(𝑡) (20) 

Where 𝐼 is the identity matrix. We can now expand Equation 16 into four terms: 

𝑙ሚ௝(𝑡) ≈ 𝛽′௝ ∙ 𝐾(𝑡) ∗ ቌ𝑁ሬሬ⃗ ଴ ⊙ ൭1 + ෍ 𝛽௞𝑙௞(𝑡) + ෍ 𝛽௞ ⊙ 𝜀௞,ௗ௘௟௔௬

௞

(𝑡)

௞

൱ + 𝜀௖௨௧௢௙௙(𝑡)ቍ (21) 

… = 𝛽′௝𝑁ሬሬ⃗ ଴ +  𝐾(𝑡) ∗ 𝑙௝(𝑡) + 𝛽′௝𝐾(𝑡) ∗ ෍ 𝑁ሬሬ⃗ ଴ ⊙ 𝛽௞ ⊙ 𝜀௝,ௗ௘௟௔௬(𝑡)

௞

+ 𝛽′௝ ∙ 𝐾(𝑡) ∗ 𝜀௖௨௧௢௙௙(𝑡)(22) 
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Of eq. 22, the first term is constant, the second is the original latent variable smoothed with 

a Gaussian kernel and the final two are nonlinearity-related terms. The Poisson noise is 

reflected in the approximal equality sign. We can assume that in the case where nonlinear 

effects are small, 𝑙ሚ௝(𝑡) is a smoothed approximation of the ground truth latent variable 

𝑙௝(𝑡).  

2.3 Matching of modeled with recorded biological parameters 

2.3.1 Matching of single-neuron distributions 

First, we matched a large variety of population parameters of recorded data as accurately as 

possible in our model to maximize relevance to recorded data. The first parameters 

matched is the distribution of average firing rates of recorded neurons from both areas 

during the task. Target firing rates 𝑁ሬሬ⃗ ௧௔௥௚௘௧ were randomly sampled from the recorded 

distribution. We constrain the weighted Poisson process to draw exactly the number of 

spikes necessary to fulfill the target firing rates 𝑁ሬሬ⃗ ௧௔௥௚௘௧  over the course of a trial of length 

𝑡௧௥௜௔௟. Additionally, we need Eq. 7 to be valid. We need to adjust firing rates so that the 

integral over the firing rate for all task conditions c is equal to the target firing rate. The 

condition to be fulfilled is:  

𝑛௜,௧௔௥௚௘௧ 𝑐 ∙ 𝑡௧௥௜௔௟ = ෍ න ൥𝑛௜,଴ ൭1 + ෍ 𝛽௜,௞𝑙௜,௞(𝑡)

௞

൱൩

୒ஹ଴

௧೟ೝ೔ೌ೗

଴

𝑑𝑡

௖

(23) 

In other words, if we concatenate the firing rates of a single neuron over all conditions, the 

area between the curve the zero line needs to be equal to the target firing rate multiplied by 

the length of the trial times the number of conditions. We can leave out the smoothing 

kernel 𝐾(𝑡); The integral function is invariant under convolutions if the convolution kernel 

has an area of 1. Due to the nonlinear firing rate cutoff at 0, we can’t simply scale the right 

side of the equation with a fixed number. We will instead iteratively adjust the scale 

together with the amplitudes of latent variables, as explained in detail in chapter 1.1.1. 

The distribution of firing rate variances as a function of firing rates does not need further 

matching; The multiplicative modulation of firing rates by latent variables is sufficient to 

ensure that the distributions match, as is shown in the results section, fig. 10b. 
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We will also match the distributions of the LV contributions of individual neurons. The 

interaction of each neuron 𝑖 to each LV 𝑗 is given by the weight 𝛽௜,௝, which corresponds to 

the contribution of each neuron to the activity of each LV, or in other words, the modulation 

of each neuron by each LV. The weight vectors 𝛽௝ for each LV are normal, and 𝛽௜,௝ can be 

positive or negative, corresponding to excitatory and inhibitory modulation. We thus 

consider the absolute values of 𝛽௜,௝, divided by the square root of the number of neurons √𝐼 

as the contribution strength of neuron 𝑖 to latent variable 𝑗: 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ: 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 → 𝐿𝑉 𝑗 =
ห𝛽௜,௝ห 

√𝐼
(24) 

Dividing by the square root of the number of neurons normalizes contribution strengths 

across recordings with different numbers of neurons. We also use the contribution strength 

of neuron 𝑖 to all LVs, given by the average of all individual contribution strengths: 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ: 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 → 𝑎𝑙𝑙 𝐿𝑉𝑠 =
∑ ห𝛽௜,௝ห௝  

𝐽 ∙ √𝐼
 (25) 

Here, 𝐽 is the number of latent variables 𝑗. 

2.3.2 Estimation of latent variable profiles and amplitudes 

Additionally to the before mentioned parameters, we want to match the temporal profiles 

𝑙௝(𝑡) of LV activity in the recording. However, for the recorded data, we can only estimate 

𝑙ሚ௥௘௖௢௥ௗ௘ௗ,௝(𝑡). The latent variables 𝑙௝(𝑡) also depend on the task condition 𝑐, as mentioned 

before and given by eq. 1; 𝑙௝(𝑐, 𝑡) =  𝛾௝(𝑐) ∙  𝑙௝(𝑡). By extension, the projected latent 𝑙ሚ௝(𝑡) 

also depends on c. We can expand eq. 15 to:  

𝛾௝(𝑐) ∙ 𝑙ሚ௝(𝑡) ≈ 𝑁෩(𝑐, 𝑡) 𝛽௝  (26) 

Eq. 26 is valid for every condition c separately. We can divide by 𝛾௝(𝑐) and average across all 

C’ conditions c’, for which 𝛾௝(𝑐) is not too small. We have chosen ห𝛾௝(𝑐ᇱ)ห > 0.3 as the 

arbitrary cutoff point. 

𝑙ሚ௝(𝑡) =
1

𝐶′
෍

𝑁෩(𝑐′, 𝑡) 𝛽௝

𝛾௝(𝑐′)
௖ᇱ

, 𝐶ᇱ ∋ 𝑐ᇱ →  ห𝛾௝(𝑐ᇱ)ห > 0.3 (27) 
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We only use conditions c where ห𝛾௝(𝑐) หis large, because dividing by small values will amplify 

the noise in the term 𝑁෩(𝑐′, 𝑡) 𝛽௝. For the condition-dependent variables in the recorded 

data, 𝛾௝(𝑐) assumes the values [-1, 1] and C is 2. Intuitively, we approximate 𝑙ሚ௝(𝑡) by flipping 

the trajectory for one of the conditions and averaging across both.  

Now, we want to use the LV profiles of recorded data 𝑙ሚ௥௘௖௢௥ௗ௘ௗ,௝(𝑡) as the ground truth 

profiles 𝑙௝(𝑡) in the simulation. However, the projections of population activity onto the 

individual subspace dimensions is based on data that has been filtered by two effects: For 

one, the activity of individual neurons has been smoothed by convolution with the Gaussian 

kernel K(t). Second, the presence of temporal delays between individual LVs and neurons 

results in additional filtering that can be approximated by convolution with a second 

Gaussian kernel, with a σ equal to the σ of the distribution of temporal delays. Therefore, 

we apply Richardson-Lucy deconvolution to the recorded LV profiles in order to obtain LV 

profiles for our simulation. Figure 9 shows, that the resulting projections of simulated LV 

activity closely resemble the recorded profiles. 

2.3.3 PAIRS test 

An important feature of neural population is the distribution of neural contributions to 

individual LVs across individual neurons. A random distribution is evidence against the 

existence of neural categories, and our model should reflect the distribution of recorded 

neural contributions. To test whether the contributions of individual simulated and 

recorded neurons to each LV are independently distributed, we used the PAIRS test (Raposo 

et al., 2014), using freely available code at: http://repository.cshl.edu/30912/. The PAIRS 

analysis tests for pairs of neurons in the neuronal population that would exhibit more 

similar response weights to their k nearest neighbors than expected by chance. For this 

purpose, PAIRS uses the per-neuron weights 𝛽௜, which are composed of the contribution 

weights of a single neuron to all latent variables. First, we construct a matrix where the 

columns are the latent variable weight vectors 𝛽௝, the per neuron weight vectors 𝛽௜ are the 

rows of that matrix. For each neuron weight vector 𝛽௜, PAIRS computes the average angle to 

the n nearest neighbors. Second, the distribution of all average nearest neighbor angles is 

compared against the same distributions of a large number of simulated surrogate datasets 

(10000 iterations) with the same number of neurons and dimensions. For the surrogate 
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datasets, the values of 𝛽௜ drawn randomly from a Gaussian distribution. The PAIRS statistic 

is calculated as a function of the median nearest-neighbor angles 𝜃෨ as (Raposo et al., 2014): 

𝑃𝐴𝐼𝑅𝑆 =  
𝜃෨௦௨௥௥௢௚௔௧௘ − 𝜃෨ௗ௔௧௔

𝜃෨௦௨௥௥௢௚௔௧௘

(28) 

PAIRS is equal to one if the median nearest-neighbor angle of the recorded data is equal to 

zero, equivalent to each weight vector having at least n collinear neighbors, and zero if the 

weight vectors are distributed randomly. PAIRS can be negative, if the vectors in the dataset 

are distributed more randomly than expected by chance. A two-sided p-value for the PAIRS 

statistic was obtained by calculating the proportion of median average nearest neighbor 

angles of the 10000 surrogate datasets that was larger and smaller than the corresponding 

median value of the corresponding recorded or modeled distribution. 

2.3.4 Procrustes Analysis-based Matching of Temporal Delays 

An important factor to be matched between the recorded and simulated neural population 

activities are the temporal delays between individual neurons and latent variables, 

expressed as Δ𝑡௜,௝ in eq. 3. The distribution of temporal delays cannot be inferred directly 

from the recorded data because of overlapping activity of different subspaces or latent 

factors, both in the population and for individual neurons. Instead, we assume a normal 

distribution with mean zero and distribution parameter σ, then find a value for σ to 

maximize the similarity between simulated and recorded population activity. To measure 

the similarity between simulated and recorded data, we used Procrustes analysis. 

Procrustes analysis is a similarity assessment method that shift and rotates one dataset onto 

another while minimizing the difference between pairs of data points. In our case, let our 

simulated population activity be expressed as a matrix 𝑋 ∈ ℜ ஼்,ே, where C are the task 

conditions, T are the time points of the task and N is the number of simulated neurons. X is 

the matrix of single neuron PSTHs concatenated across conditions. Similarly, let the 

recorded activity be 𝑌 ∈ ℜ ஼்,ெ, where M is the number of recorded neurons. Observations 

that correspond to the same value of CT are assumed to be “similar”, yet expressed in a 

different basis across the two matrices. Standard Procrustes analysis seeks a transformation 

𝑇𝑅(𝑋) = 𝑋 ∙ 𝑅 + 𝑏 = 𝑌 that optimally aligns 𝑋 and 𝑌. R does not need to be a square 
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matrix; Procrustes analysis can compare data of different dimensionality, as long as the 

number of observations in each dataset is equal. We go a step further, centering both 

matrices and normalizing them by the Frobenius norm, yielding the new matrices 𝑋෠ and 𝑌෠ . 

The normalization by the Frobenius norm allows to compare matrices of different scales and 

sizes. The transformation TR reduces to an orthogonal projection R and we quantify the 

alignment between 𝑋෠ and 𝑌𝑅෢  as:  

𝑟௦௜௠௜௟௔௥௜௧௬ = 1 − ฮ𝑋෠ − 𝑌෠ ∙ 𝑅ฮ (29) 

Here, ‖𝑋‖ denotes the Frobenius norm. 𝑟௦௜௠௜௟௔௥௜௧௬ is equal to 1 if the two matrices are 

aligned perfectly. Note that while this measure is conceptually related to the usually used 

mean squared error between Procrustes-matched datapoints, it is not mathematically 

identical.  

2.4 Methods for the evaluation of PCA 

In this chapter, we describe the methods used to analyze the performance of PCA when 

applied to simulated spiking activity of a neural populations in response to two behavioral 

tasks. We investigate, how well the true underlying dimensionality of the dataset can be 

estimated from the results of PCA, how well PCA captures individual subspaces of task-

related activity and how individual principal components capture variance related to 

different individual subspaces.  

2.4.1 PCA in general 

Before we analyze the performance of PCA in application to neural data in detail, we need 

to first define some basic concepts of PCA (Jolliffe, 2002). PCA is a dimensionality reduction 

method that is applied to a 𝑛 × 𝑖 data matrix, which is in our case the matrix of smoothed 

spiking population activity 𝑁෩. The rows n correspond to observations (time points) and 

columns i to individual observed variables (neurons). The covariance matrix of 𝑁෩ is a matrix 

with real eigenvalues 𝜆௜: 

𝐸𝑖𝑔൫𝑁෩் ∙ 𝑁෩൯ =  𝜆ଵ, 𝜆ଶ, … , 𝜆௜  𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆௜  (30) 

𝑁෩ must be column-mean subtracted; The mean of every column needs to be zero. PCA then 

finds a 𝑖 × 𝑖 rotation matrix W that rotates 𝑁෩ onto a new basis: 
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𝑇 = 𝑁෩ ∙ 𝑊;  𝑊 =  [𝑤ሬሬ⃗ ଵ 𝑤ሬሬ⃗ ଶ … 𝑤ሬሬ⃗ ௜], 𝑇 =  [𝑡ଵ 𝑡ଶ … 𝑡௜] (31) 

W is called the coefficient matrix, and the vectors 𝑤ሬሬ⃗ ௜ are the coefficient vectors, called 

principal components. T is called the score matrix, the columns of T are the principal 

component scores. The vectors 𝑤ሬሬ⃗ ௜ each span a dimension in the space of observed 

variables, and the principal component scores can be interpreted as projections of the full 

dataset onto the principal component. 

W and T fulfill the following conditions: All 𝑤ሬሬ⃗ ௜ are mutually orthogonal and unit length. All 

principal component scores are linear combinations of the original observations. The scores 

are furthermore mutually uncorrelated, the covariance matrix of the principal component 

score is a diagonal matrix whose entries are the eigenvalues of the original covariance 

matrix 𝜆௜. 

𝑇ᇱ ∙ 𝑇 = ൦

𝜆ଵ 0
0 𝜆ଶ

0

0
⋱

𝜆௜

൪ (32) 

The eigenvalues 𝜆௜ correspond to the variance of the corresponding score component: 

𝑣𝑎𝑟൫𝑡௣൯ = 𝑣𝑎𝑟(𝑁෩ ∙ 𝑤ሬሬ⃗ ௜)  = 𝜆௜ (33) 

Ordered by descending magnitude, the eigenvalues form the characteristic spectrum of 

variance per principal component.  

2.4.2 Spectrum of variance captured per component 

In figures 18 and 24a in the results section we show decompositions of the spectra of 

variance of the recorded and simulated datasets. The formula for variances per principal 

component is derived from Eq. 33: we divide the variance by the square root of the number 

of neurons in order to obtain the variance per neuron; this allows us to compare variances 

between populations of different sizes. 

𝜆௜,௉஼஺ =  
𝑣𝑎𝑟൫𝑁෩ ∙ 𝑤ሬሬ⃗ ௜൯

√𝐼
(34) 

Here, 𝐼 is the number of neurons.  
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For the variance captured by individual subspaces, we adapt this formula by using the base 

vectors of the LV-related subspaces 𝛽௝ instead of principal components: 

𝜆௝,௦௨௕௦௣௔௖௘ =  
𝑣𝑎𝑟൫𝑁෩ ∙ 𝛽௝൯

√𝐼
(35) 

Unlike principal components, projections of activity onto individual subspaces are not 

necessarily uncorrelated. To calculate the spectrum of variance of the part of the population 

activity that lies outside the LV-related subspaces, we construct a base of random vectors 𝜉௞ 

that are orthogonal and exclude the subspaces of LV-related activity and replace 𝛽௝ in eq. 

35: 

𝜉௞  ∙ 𝜉௟  = 0 ∀ 𝑘 ≠ 𝑙  𝜉௞ ∙ 𝛽௝ = 0 ∀ 𝑘, 𝑗 (36) 

𝜆క,௡௢௜௦௘ =  
𝑣𝑎𝑟൫𝑁෩ ∙ 𝜉௞൯

√𝐼
(37) 

2.4.3 Decomposition of LV-related activity 
To quantify the mixing of latent variables and noise in individual principal components, we 

would like to perform a linear decomposition of the activity captured by each PC into 

contributions attributable to individual latent variables 𝑗 (and noise). The quantity that is 

usually measured in the context of PCs is the variance of the population activity that is 

captured by the n-th principal component; 𝑣𝑎𝑟൫𝑁෩(𝑡)𝑤ሬሬ⃗ ௡൯. However, there is no natural 

linear decomposition of variance, as it is a non-linear measure; Instead, we measure 

individual amplitude contributions 𝜆መ௝,௡ of each LV and of noise to each PC and normalize 

them by the total variance of each PC. We impose the following conditions on the 

decomposition;  

1. Individual contributions to a PC should sum up to the variance along the PC: 

𝑣𝑎𝑟൫𝑁෩(𝑡)𝑤ሬሬ⃗ ௡൯ =   ∑ 𝜆መ௝,௜௜  

2. The proportion of each contribution 𝜆መ௝,௜ to the total variance 𝜆መ௜ should reflect the 

proportion of the activity of the single latent variable 𝐿𝑉௝ to all latent variables: 
ఒ෡ೕ,೔

ఒ෡೔
≔

 
௅௏ೕ௪ሬሬ⃗ ೔

∑ ௅௏ೕ௪ሬሬ⃗ ೔ೕ
.  
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We aim to decompose the variance of the projection of the simulated neural population 

activity 𝑁෩(𝑡). Eqs. [13] and [14] gives us a form for 𝑁෩(𝑡): that depends only on known fire 

rates 𝑁ା (𝑡) and measurable Poisson noise of the spiking process 𝑁෩௡௢௜௦௘(𝑡), both given here 

for the whole population: 

𝑁෩(𝑡) = 𝑁ା (𝑡) ∗ 𝐾(𝑡) + 𝑁෩௡௢௜௦௘(𝑡), 𝑁ା (𝑡) =  ራ 𝑛௜
ା(𝑡)

௜
, 𝑁෩௡௢௜௦௘(𝑡) =  ራ 𝑛௜,௡௢௜௦௘

ା (𝑡)
௜

(38) 

(Convolution with 𝐾(𝑡) is the smoothing step, see Eq. 10 ff). The population fire rates 𝑁ା (𝑡) 

are equal to the positive part of the sum of individual LV modulations (Eqs. 4 and 5). 

Unfortunately, the cut-off of fire rates at 0 (Eq. 5) is a nonlinearity that prevents us from 

constructing 𝑁ା (𝑡) as a linear sum of the pre-cutoff fire rates 𝑁௜(𝑡); Just as in the first 

paragraph of this section, we construct a representation 𝑁ା (𝑡) =  ∑ 𝑁௜
ା (𝑡)௜  where each 

𝑁௜
ା (𝑡) depends only on the individual activity of a single LV and the amplitude of 𝑁௜

ା (𝑡) in 

proportion of all 𝑁௜
ା (𝑡) is proportional to the amplitude of the corresponding 𝑁௜(𝑡): 

ே೔
శ (௧)

∑ ேೕ
శ (௧)ೕ

: =  
ே೔(௧)

∑ ே೔(௧)ೕ
. The following form fulfills both conditions: 

𝑁௜
ା (𝑡) =   

𝑁௜(𝑡)

∑ 𝑁௜(𝑡)௝
෍ 𝑁௝

ା (𝑡)

௝

= 𝑁௜(𝑡)
𝑁ା (𝑡)

∑ 𝑁௜(𝑡)௝

(39) 

 

Now, we can express the population PSTH 𝑁෩(𝑡) as a linear sum (Recall that convolution is a 

linear operation):  

𝑁෩(𝑡) =  ෍ 𝑁௜
ା (𝑡) ∗ 𝐾(𝑡)

௜

+ 𝑁෩௡௢௜௦௘(𝑡) = ෍ 𝑁௜(𝑡)
𝑁ା (𝑡)

∑ 𝑁௜(𝑡)௝
∗ 𝐾(𝑡) +

௜

𝑁෩௡௢௜௦௘(𝑡) (40) 

We use the formula for the variance of a sum of variables 𝑣𝑎𝑟൫∑ 𝑋௜௝ ൯ =  ∑ ∑ 𝑐𝑜𝑣൫𝑋௝, 𝑋௞൯௞௝  

to calculate the variance of the projection of the population PSTH 𝑁෩(𝑡) onto each individual 

PC 𝑤ሬሬ⃗ ௡; 
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𝑣𝑎𝑟൫𝑁෩(𝑡)𝑤ሬሬ⃗ ௡൯ = 𝑣𝑎𝑟 ൭෍ 𝑁௜
ା (𝑡)𝑤ሬሬ⃗ ௡ ∗ 𝐾(𝑡)

௜

+ 𝑁෩௡௢௜௦௘(𝑡)𝑤ሬሬ⃗ ௡൱ = ⋯

 ෍ 𝑣𝑎𝑟൫𝑁௜
ା (𝑡)𝑤ሬሬ⃗ ௡ ∗ 𝐾(𝑡)൯

௜

+ 𝑣𝑎𝑟൫𝑁෩௡௢௜௦௘(𝑡)𝑤ሬሬ⃗ ௡൯ + ⋯

෍ 𝑐𝑜𝑣 ቀ𝑁௝
ା (𝑡)𝑤ሬሬ⃗ ௡ ∗ 𝐾(𝑡), 𝑁௞

ା (𝑡)𝑤ሬሬ⃗ ௡ ∗ 𝐾(𝑡)ቁ

௝ஷ௞

+ ⋯

෍ 𝑐𝑜𝑣(𝑁௜
ା (𝑡)𝑤ሬሬ⃗ ௡, 𝑁෩௡௢௜௦௘(𝑡)𝑤ሬሬ⃗ ௡)

௜

(41)

 

 

It is reasonable to treat the terms related to noise in this equation in the same way as the 

terms related solely to LV-related activity because they are of the same form. We shall 

therefore append the noise term to the series of LV-related terms 𝑁௜
ା;   𝑁ூାଵ

ା  (𝑡) ≔

 𝑁෩௡௢௜௦௘(𝑡). We separate each of the nonlinear covariance term in the last two lines into two 

summands 𝐶௝|௞;  𝑐𝑜𝑣൫𝑁(𝑡)௝
ା ∗ 𝐾, 𝑁(𝑡)௞

ା ∗ 𝐾൯: = 𝐶௝|௞ + 𝐶௞|௝. As in the previous 

decompositions, each summand 𝐶௝|௞ is to be proportional to the contributions of the two 

individual projections 𝑁(𝑡)௜
ା𝑤ሬሬ⃗ ௡ to the covariance term. We calculate proportions using 

absolute values of 𝑁(𝑡)௝
ା𝑤ሬሬ⃗ ௜: 

ห𝐶௝|௞ห

ห𝐶௞|௝ห
≔

∑ ห𝑁(𝑡)௝
ା𝑤ሬሬ⃗ ௡ ∗ 𝐾 − 𝑁(𝑡)ఫ

ା𝑤ሬሬ⃗ ௡ ∗ 𝐾തതതതതതതതതതതതതതതതห௧

∑ ห𝑁(𝑡)௞
ା𝑤ሬሬ⃗ ௡ ∗ 𝐾 − 𝑁(𝑡)௞

ା𝑤ሬሬ⃗ ௡ ∗ 𝐾തതതതതതതതതതതതതതതതห௧

 (42) 

For sake of readability, we shall substitute 𝐾 ∗ 𝑁(𝑡)௝
ା𝑤ሬሬ⃗ ௡ = 𝑝௝(𝑡). A form for 𝐶௝|௞ that 

satisfies eqs.  and  is given by: 

𝐶௝|௞ = ෍ ቆ
ห𝑝௝(𝑡)ห

ห𝑝௝(𝑡)ห + |𝑝௞(𝑡)|
∙

ห𝑝௝(𝑡)𝑝௞(𝑡)ห

∑ ห𝑝௝(𝑡)𝑝௞(𝑡)ห௧

ቇ

௧

∙ 𝑐𝑜𝑣 ቀ𝑝௝(𝑡), 𝑝௞(𝑡)ቁ (43) 

𝐶௝|௞ represents the portion of the covariance of latent variables j and k that we attribute to 

latent variable k. We now can sum all 𝐶௝|௞  to obtain the portion of total variance that is 

attributable to latent variable j. However, because the covariance between two variables 

can be negative, 𝐶௝|௞ can be negative as well. In order to properly compare positive and 

negative contributions, we once again use absolute values: 
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𝜆መ௝,௜ = ෍ห𝐶௝|௞ห

௞

∙
ቚ∑ 𝑐𝑜𝑣 ቀ𝑝௝(𝑡), 𝑝௞(𝑡)ቁ௞ ቚ

∑ ቚ𝑐𝑜𝑣 ቀ𝑝௝(𝑡), 𝑝௞(𝑡)ቁቚ௞

(44) 

If j <=J, where J is the number of LVs, 𝜆መ௝,௜  is the portion of total variance captured by PC i 

that can be attributed to LV j after considering the mutual amplification and cancellation of 

individual LVs and Poisson noise and the cut-off of individual neural firing rates at 0. 

Similarly, for j = J+1,  𝜆መ௃ାଵ,௜ is the portion of variance attributable to the Poisson noise of the 

simulated spiking process.   
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3 Results  

3.1 Simulation of a Spiking Neural Population: Results 
3.1.1 Electrophysiological Basis of Simulated Population Response 

To systematically evaluate the accuracy of PCA in capturing the underlying population 

response structure, we need to know the ground truth of the structure of neural population 

response. Because we can’t know the ground truth of a real recording, we evaluated the 

accuracy of PCA on a simulation. We performed the following steps: First, we designed a 

spiking model of the fronto-parietal population activity in response to two visually guided 

delayed movement tasks. The population response was structured as a set of multiple 

orthogonal subspaces; this structure has been found in many studies before (Elsayed et al., 

2016; Dann, 2017; Michaels et al., 2018) Second, in order to increase the relevance of our 

model for recorded data, we matched a large number of neural population properties of the 

model to recorded population activity. Third, we generated a large variety of simulated 

neural population responses to cover a wide range of realistic recording conditions. For this 

purpose, we systematically varied the number of trials, neurons, and conditions. Finally, we 

compared the simulated population response structure with the corresponding response 

structure captured by PCA. Thereby we examined three aspects: (1) how well the 

dimensionality of the response structure can be estimated from the results of PCA, (2) how 

much of the activity of each subspace is lost when PCA is used to reduce the dimensionality 

of the dataset (see fig. 5) and (3) to what degree individual PCs are aligned with the 

subspaces of the simulated response structure.  

3.1.2 Model of spiking activity 

We modeled the neural population response to two commonly used visually guided 

movement tasks; The delayed reach-to-grasp task (Townsend et al., 2011; Michaels et al., 

2015; Dann et al., 2016) (Fig. 8a) and the center-out reach task (Georgopoulos et al., 1986; 

Shenoy et al., 2013; Sadtler et al., 2014; Gallego et al., 2018a)(Fig. 8d). The response to 

these tasks was structured into three orthogonal subspaces (Elsayed et al., 2016; Murray et 

al., 2017; Lara et al., 2018; Stringer et al., 2018), comprised of activity related to, 

respectively, visual cue information, movement preparation and movement execution. The 
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simulated population response structure is based on the observed population response 

structure of a dataset recorded in our lab. The dataset comprised multiple recordings of the 

neural response from the fronto-parietal network of two monkeys that were trained to 

perform three variants of a delayed grasping task. The monkey had to grasp a handle with 

Figure 8: Schematic illustration of the spiking model of neural population activity. A: The delayed two-condition reach-and-

grasp task. After an initial fixation period, the monkey was visually cued to reach out and grip a handle with one of two grip 

types. Next, the cue vanished, and the monkey prepared its motion. Finally, the monkey was cued to execute movement. B: 

Recorded single-trial population response to the task in panel A projected onto seven latent variables (LVs) that can be 

grouped into three subspaces The subspaces were chosen to maximize the correlation between the activity profiles of the 

activity captured by them and the full activity, with an 𝑅ଶ = 0.95. C: The recorded variables from B are used as the ground 

truth of the simulation The activity of each LV is distributed across neurons with random weights and temporal delays and 

preserving orthogonality between LVs, in the form of multiplicative firing rate modulations. The neuronal firing rates are 

fitted with a square non-linearity and used as weights in a weighted Poisson process to generate spiking activity. The 

spiking activity is then smoothed with a Gaussian kernel filter, the square nonlinearity is removed and the activity is 

averaged across trials to create Peri-Stimulus Time Histograms. D: The two-dimensional center-out reach task. The monkey 

is cued to reach towards one of eight goals. This task shares the temporal structure of the reach-and-grasp task. E: The LV 

structure of the response to the task in D. Each condition-dependent LV in the model of the previous task is replaced with 

two LVs that encode the horizontal and vertical position of the reach target.  
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either a power and precision grip (Fig. 8a). The task was performed in one of three contexts: 

In the instructed context monkeys were visually cued to perform the associated grip type 

after a delay (Fig. 8a, CF methods). The full behavioral task also comprised two other 

contexts that were not used for this study. We recorded from the fronto-parietal grasping 

network, including part of the ventral premotor (F5) and anterior intraparietal (AIP). In each 

area, recordings were obtained from two floating microelectrode arrays (FMAs), for a total 

of 64 channels (32 per microarray) per area. 55±14 well isolated neurons with average firing 

rates above 1Hz (see Methods) were captured per session. The dataset comprised 9 

recording sessions (6 and 3 sessions from monkey S and Z, respectively).  

The underlying population response structure was extracted using a dimensionality 

reduction method based on support vector machines (SVM) that leverages orthogonal parts 

of the population response over time (see Methods 2.1.2). The extracted structure was 

consistent with the structure described in the literature (Elsayed et al., 2016; Murray et al., 

2017; Lara et al., 2018; Stringer et al., 2018); We identified three subspaces for visual, 

preparatory, and movement information, each consisting of one condition-dependent and 

one condition-independent dimension (Fig. 8b). The subspace for movement execution 

comprised an additional condition-independent component preceding both other 

dimensions. In accordance with previous literature, this dimension was predictive of 

movement onset and is therefore also called “movement trigger” dimension (Kaufman et 

al., 2014b; Sussillo et al., 2015; Michaels et al., 2018; Ames et al., 2019). The seven identified 

subspace dimensions captured 79±1% of all task dependent linear separable variance.  

We used the identified subspace structure as a basis for our simulation (Fig. 8c, left and 8e). 

The contributions of modeled subspace dimensions to all neurons were chosen randomly in 

accordance with empirical findings (Machens et al., 2010; Raposo et al., 2014)(Fig. 10e); the 

time-dependent, noise-free firing rate of each individual neuron is a linear combination of 

the activity of all LVs (Fig. 8c mid left). Neural firing rates were modeled using a square 

nonlinearity (see Methods 2.2.2) that reflects the nonlinear firing dynamics of real neurons 

(Yu et al., 2009; Afshar et al., 2011; Buzsáki and Mizuseki, 2014; Michaels et al., 2015). Next, 

the neural firing rates were used as weights in a weighted Poisson process to obtain spiking 

activity. To simulate multiple repetitions of a trial, we repeated the Poisson process multiple 

times for the same condition. The spiking activity was smoothed using a Gaussian kernel 
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with a σ of 60 ms and then a square root filter was applied to correct for the square 

nonlinearity (see. Methods 2.2.2). The activity was then averaged across multiple trials to 

obtain peri-stimulus time histograms (PSTHs). We modeled the delayed center-out reaching 

task (Fig 8d) as an extension of the reach-and-grasp task. The simulated neural population 

response to the center-out reaching task was based on the temporal dynamics and 

subspace structure of the first task, with an additional condition-dependent LV in each 

subspace (Fig. 8d). The circular arrangement of reaching targets in the center-out-reach task 

was modeled by a circular dependence of the two condition-dependent LVs in each 

subspace. This is a conservative approximation of the true structure of the neural 

population response (Georgopoulos et al., 1982). 

3.1.3 Comparison of Biological Parameters between Recording and Simulation 

To increase the relevance of our model for recorded data, we match a large number of 

biological parameters between the simulation and the recorded population response: the 

distributions and variations of neural firing rates (Buzsáki and Mizuseki, 2014; Dann et al., 

2016), subspace contributions per neuron and across the population, the temporal profiles 

of subspace activity (Dann, 2017; Michaels et al., 2018), and the distributions of temporal 

delays between LV subspaces and individual neurons.

 

Figure 9: Recorded, de-convolved and simulated profiles of LV activity. Shown in black are the seven projections of 
population activity onto the LV subspaces. These projections are based on data that was, on the level of single neurons, 
filtered by convolution with a Gaussian Kernel and by the presence of temporal delays between neurons and LVs. The red 
profiles were obtained by applying Richardson-Lucy deconvolution to the black profiles to balance out the two 
aforementioned effects and setting secondary peaks in the profiles to zero. Using the secondary profiles as the ground truth 
LVs in an example simulation, we obtained the blue profiles as projections of simulated population activity onto the 
subspaces of LV-related activity.  
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We need to ensure that biological parameters are matched consistently across a wide range 

of simulated experimental parameters. We generate four sets of simulations with different 

simulation parameters and compare simulated and recorded parameters for each set. For 

the first set, we generate one simulation of the 7 LV reach-to-grasp task with the matching 

number of neurons and amplitudes of LV activity for each single recording (Fig. 10). This is 

the 7-LV single-recording matched set of simulations. For the second set, we average the 

amplitudes of LV activity across the nine recordings and generate 100 simulations of 100 

neurons that match these averaged LV amplitudes (Fig. 11). This is the 7-LV, 100-Neuron set. 

Finally, we generate both the single-recording matched set and the 100-neuron set for the 

10 LV center-out reach task (Figs. 12 and 13). 

3.1.4 Single-neuron statistics 

To match the distribution of individual firing rates, we sampled individual firing rates for 

every simulated neuron from recorded firing rates. This allowed us to accurately reproduce 

the firing rate distribution of the recording in all four sets of simulations (Figs. 10a, 11a, 12a 

and 13a). The distribution of firing rates against firing rate variances is the same in the 

recorded data and in all sets of simulations (Figs. 11b, 12b and 13b). 

Figure 10: Comparison of key parameters of the recording and simulation of the reach-to-grasp task. Unless stated 
otherwise, for each of the nine recordings a simulation with the same number of neurons was built. Each metric shown 
was calculated individually for each pair of recording and simulation, then averaged across the nine pairs. Data are shown 
with standard error. A: Histogram of firing rates of single neurons in simulation and recording. B: Scatter plot of variances 
of square-root transformed single-neuron firing rates plotted against the firing rates. C: Projections of the population 
response onto individual LVs. The recorded, smoothed spiking population activity (black) was projected onto dimensions 
discovered using SVM-based dimensionality reduction (see Methods 2.1.2). Simulated firing rate activity (red) and 
simulated smoothed spiking activity (green) are projected onto LV weight vectors 𝛽௝(see Methods 2.2.1). For condition-
independent LVs (top row), activity was averaged across all trials. For condition-dependent LVs, activity was averaged 
across trials for both conditions, then the conditions were subtracted to obtain the difference between conditions (see 
Methods 2.2.1, eq. 1). The projected activity was normalized by the square root of the number of neurons. D: Histogram of 
multiplicative firing rate modulation strengths in response to the activity of each LV for each individual neuron. The 
modulation strengths were normalized by the square root of the number of neurons for each recording and simulation. E: 
Distributions of nearest neighbor angles for recording and simulation, as well as chance level distributions, as calculated 
for the PAIRS test (See Methods 2.3.4). The distributions of the median nearest neighbor angles of the recorded (black) 
and simulated (green) neurons are plotted alongside the surrogate distribution (red). F: Mean Procrustes similarity of 
simulated to recorded neural population responses. The Procrustes similarity is plotted against different values of the 
temporal delay distribution parameter σ (see Methods 2.3.2). G: Four principal components of a single recording (black) 
plotted together with the Procrustes-matched components of two simulations with different σ. Both simulations were 
individually rotated onto the same recording, then all three were rotated onto the principal components of the recording. 
H: PSTHs of four individual recorded neurons (black) and four simulated neurons that were matched to the firing rates, lv 
contribution coefficients and LV amplitudes of the recorded neurons (green). I: Spectrum of variance captured per 
principal component of recording (green) and simulation (black). This spectrum is equivalent to the spectrum of 
eigenvalues of the covariance matrix. J: Decomposed spectrum of variance. Solid lines: Variance captured by the 
subspaces in recording (black) and simulation (green), sorted by magnitude. Dashed lines: Variance of the remainder 
space (see Methods 2.4.2). 
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The contributions of individual neurons to each subspace reflect to what degree each 

individual neuron is modulated by the activity of each LV, and were also sampled from a 

recorded distribution. To ensure that dimensions capture independent variance, we 

orthogonalized them using Gram-Schmidt orthogonalization. Note that the 

orthogonalization procedure had little to no effect on the individual and average LV 

contribution distribution because contributions were already close to orthogonal. 

Figure 11: Same as fig. 10, but the recorded parameters are averaged across all nine recordings. For all panels but F, we 
generate 100 simulated populations of 100 neurons each and average metrics across populations. All plots with standard 
error. A, B, C, D: as fig. 10 A,B,C,D. E: As fig. 10 E right half. F: As fig 10 F, except: For each σ, the activity of 20 populations 
of 100 neurons (top) and 200 Neurons (bottom) each was Procrustes-matched to each of the nine recordings and averaged 
across 180 pairings. G,H: As As fig 10 I,J. 
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The task-dependent modulations of individual neuron firing rates correspond to the 

contributions of that neuron to the subspace activity. To ensure that the dynamics of neural 

firing rates of the simulation resemble the recording on the population level, it is important 

to match the distributions of recorded and simulated contributions. We sampled the 

simulated contributions from a distribution of all recorded contributions to each individual 

subspace (cf. Eq.1, Methods X.x). The distributions of simulated contributions to each 

individual subspace resembles the recorded distributions for both tasks.(Figs. 10d, 11d, 12d 

and 13d).  

Our model accurately resembles the statistics of single-neuron contributions to individual 

latent variables. This does not yet tell whether the contributions are distributed randomly 

across the neural population, or whether categories of neurons with similar contributions 

Figure 12: Same as fig. 10, except we compare parameters of the simulated 10-LV center-out reach task (Fig. 8 D) to the 
recorded parameters. A, B, C as fig. 10 A,B,C. D, as fig. 10 D; The amplitudes of condition-dependent components were 
calculated using eq. X in the methods section X. For each subspace, the two simulated condition-dependent components are 
plotted against the same recorded component. E: As fig. 10 E right half. F,G: As fig 10 I,J. 
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exist; the randomness on population level will be tested using the PAIRS test in chapter 

3.1.6. This does however mean that the magnitudes of LV contributions are distributed 

equally in the recorded and simulated neural populations. 

We tested whether the individual firing rate dynamics of simulated neurons resembled 

recorded neurons; We matched both firing rates and LV contributions of several simulated 

neuron to several individual recorded neuron (Fig. 10h); Matching these two parameters 

and the latent variable profiles presented in the next section was sufficient to reproduce 

recorded single-neuron PSTHs. 

Figure 13: As fig.11, but for the simulated 10-LV center-out reach task. The recorded parameters are averaged across all 
nine recordings. We generate the response of 100 simulated populations of 100 neurons each to the center-out reach task. 
Metrics are averaged across 100 simulations. All panels otherwise as fig. 12.  
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3.1.5 Profiles of latent variable activity 

The recorded profiles of latent variable activity are projections of the smoothed, trial-

averaged spiking activity onto the main axes of the corresponding latent variables (Methods 

2.2.4, eq.15). The recorded profiles were deconvolved using Richardson-Lucy deconvolution 

to balance out the smoothing of single-neuron firing rates and the effect of temporal delay 

on the profiles of LV activity (Cf. Figure 9, Methods 2.3.2) and used as the LV profiles in the 

simulation. This was done simultaneously with the selection of the optimal temporal delays, 

as explained in detail in the paragraph after next. In all recording sets and for each LV, the 

amplitudes of the profiles of the simulated LVs either match or slightly exceed the profiles of 

the recording (Figs. 10c, 11c, 12c and 13c). This was done to ensure that the signal-to-noise 

ratio between variance explained by LVs and by Poisson noise is greater or equal in the 

simulation, and the conclusions we draw from analyses of the simulation are conservative.   

Figure 14: Results of the PAIRS test: Histograms of the median nearest neighbor angle for individual recordings (black) and 
simulations with the same number of neurons (green) plotted against 10 000 surrogate Histograms (red). Top half: the 7 LV, 
single-recording matched set of simulations. Bottom: 10 LV, single-recording matched set. Recordings are numbered 1-9. 



Results 

53 

3.1.6 Randomness of latent variable contributions on population level 

Latent variable contributions of individual neurons to individual LVs were distributed 

randomly across the recorded neural population. This was controlled using the PAIRS test 

(Raposo et al., 2014) (see Methods 2.3.3) We tested whether the same is true in the 

simulated population. The PAIRS test examines, whether neurons in a population have 

similar contribution coefficients more often than expected by chance. For each neuron, the 

contribution coefficients form a vector with a dimensionality equal to the number of LVs 

and similarity is defined by the angle between a vector and its k nearest neighbors. 

Displayed in Fig. 10e left in black is the distributions of nearest neighbor angles in the 

recording, averaged across recordings. The distribution of a set of the same number of 

random, uniformly distributed vectors, averaged across 10000 repetitions, serves as the 

chance level distribution (Fig. 10e left, red). The chance level is calculated on randomly 

distributed vectors; If the distribution of nearest neighbors of the simulated or recorded 

data is not significantly different from the chance level distribution, then it is also 

considered randomly distributed.  

We apply the PAIRS to each set of simulations (Fig. 10e right, Figs 11e, 12e and 13e). In all 

four simulated sets and in the recorded data, distributions of nearest neighbor angles 

showed no significant difference to chance level; the recordings showed a PAIRS index of 

0.01 ± 0.03 and a p-value of 0.45 ± 0.32, and the simulation a PAIRS index of -0.02 ± 0.03 

with a p-value of 0.27 ± 0.29.  

The distributions of nearest neighbor angles for each individual recording, and for each 

individual simulation from the 7-LV and 10-LV single-recording matched sets, are also not 

significantly different from chance distributions (Fig. 7). These results suggest that both 

recorded and simulated neural populations do not contain neurons that are categorical with 

respect to LV contributions, or alternatively, that LV contributions are distributed randomly 

across the neural population. This finding is consistent with results reported in the literature 

(Machens et al., 2010; Raposo et al., 2014). 

3.1.7 Influence of temporal delays on population response structure 

Changes in the activity of latent variables are not necessarily simultaneously reflected in the 

individual neurons. In neural populations, the activity of individual neurons can peak earlier 
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or later than the population average (Westendorff et al., 2010; Michaels et al., 2016). So far, 

several studies have investigated the effect of such delays on the results of dimensionality 

reduction methods (Möcks and Joachim, 1986; Yu et al., 2009; Lakshmanan et al., 2015; Kobak 

et al., 2016); The addition of temporal delays between observed and latent variables caused 

dimensionality reduction methods to capture additional components that resembled 

temporal derivatives of the latent variable profiles. 

 However, it is difficult to estimate the distribution of temporal delays between neurons and 

LVs in the recorded data. Instead, we estimated which temporal delay results in the highest 

similarity between simulated and recorded neural population responses. We assumed 

normally distributed temporal delays between individual neurons and individual LVs with 

mean of zero and scale parameter σ. σ was systematically variated between 0 and 270 ms for 

the simulated delayed reach-to-grasp task. To ensure that σ is estimated independently of 

population size, we estimated the optimal value for σ using several simulation datasets: the 

7-LV, single-recording matched set resembling the same numbers of neurons as each 

individual recording session, the 7-LV, 100-neuron set, and an additional set with 200 

neurons. Note that for each value of σ, we re-aligned the LV profiles of the simulation (Fig. 

10d, 11d) with the recorded profiles, as described earlier. Next, we used Procrustes analysis 

to optimally align the simulated and recorded neural populations. Finally, we computed the 

similarity between pairs of Procrustes-matched dimensions to estimate the value of σ that 

results in the maximal similarity between simulated and recorded population responses (see 

Methods 2.3.4). The correlation was highest for a σ of 90 ms for all three simulated datasets: 

7-LV, single-recording matched simulations (Fig. 10e) and for 7-LV simulations with a neural 

population size of 100 and 200 neurons (Fig. 11f). Therefore, we use σ = 90 ms throughout 

this paper, unless stated otherwise. 

To illustrate the effects that temporal delay has on the Procrustes match of simulated and 

recorded components, we displayed selected Procrustes-matched dimensions of a single 

recording and the corresponding simulation from the set of 7-LV single-recording matched 

simulations (Fig. 10f). The simulation was repeated with the same LV contribution 

coefficients and neural firing rates, for σ of 0 and 90 ms. The profiles of the Procrustes-

matched dimensions of the 90 ms simulation resemble the recorded components more than 

that of the 0 ms case (Fig. 10g). This was particularly pronounced in later components (Fig. 
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10g left). The effect of temporal delay on the latent variable structure of the simulated 

population activity is investigated in more detail in the next chapter and in Fig. 16. 

3.1.8 Spectra of variance 

Many studies have focused on the spectrum of variance of neural population responses 

such as variances captured per principal components in PCA (Jolliffe, 2002; Stringer et al., 

2018, 2019), which corresponds to the eigenvalues of the covariance matrix of the neural 

population response. We computed the spectra of eigenvalues of the covariance matrix for 

recorded and simulated neural populations. The shapes of the spectra are very similar for 

the single-recording matched and the recording-averaged simulated 7-LV datasets (Figs. 10i, 

11g). The spectra of the two corresponding simulated 10-LV datasets are still of similar 

shape (Figs. 12f and 13f). However, as expected, the total variance of the 10-LV datasets is 

higher. 
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In order to further compare the simulated with the recorded population activity, we 

separated the activity projected into the main dimensions of the 7 LVs from the activity 

outside of these 7 dimensions and studied the individual variance. Because we do not know 

the ground truth structure of the recorded population response, we can’t separate variance 

within individual dimensions into variance attributable to single LVs and noise. However, we 

know the main dimension of each individual LV; it is the dimension discovered by applying 

SVMs-based dimensionality reduction to the recorded dataset (Methods 2.1.2) and the 

dimension spanned by the LV weight vectors 𝛽௝ in the simulation. We project the full, 

simulated and recorded, population space activity onto the main dimensions of individual 

LVs (Note, that PCA is not applied in this step, we examine the unmixed projections onto 

individual LV dimensions). The resulting variance spectra, ordered by magnitude, were 

highly similar for the two simulated 7-LV and recorded datasets (Figs. 10j, 11h); The 

spectrum of variance of the main LV dimensions of the simulation resembled the recorded 

LV dimensions, regardless of the size of the simulated population. The distribution of the 
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variance along the main LV dimensions of the simulated 10-LV datasets was qualitatively 

similar (Figs. 12g and 13g). 

As a complement to the variance of the main LV dimension described in the last paragraph, 

we next examine variance outside of the main dimensions. Again, we do not apply PCA, we 

calculate the variance of random dimensions that are orthogonal to the main dimensions 

and to each other. The variances of these random dimensions are of the same shape for the 

recording and for all four simulated datasets (Figs. 10j, 11h, 12g and 13g), but the spectra of 

the simulations exhibit less variance in total. However, low frequent variations of overall 

firing rates due to global changes in attention, satiation or other factors were not 

considered in our model and could explain the differences in variance between simulations 

and recording. Importantly, the goal of PCA as a dimensionality reduction method is to 

separate the main LV dimensions from the other dimensions; variance in the main 

dimensions can be considered the signal, and the variance outside of these dimensions the 

Figure 16: The impact of individual non-linear effects on the spectra of variance of individual, isolated LVs. For each column, we 
simulated the activity in response to the 7-LV center-out reach task for 1000 populations of 100 neurons. The activity of 
individual LVs was isolated for each populations as per eq. X, methods section X. PCA was applied to each population activity and 
the spectra of variance per component were averaged across populations. Note, that the recovered principal component axes 
were different for each LV and simulated population; variance per component was averaged across components with the same 
ordinal number. Top: Linear plot of variance percentages per principal component with standard error. Bottom: Log-log plot of 
the absolute values of the same variances. A: No temporal delays, no cut-off of firing rates at zero and Poisson noise was 
suppressed by averaging over 10 000 trials: For each LV, variance was almost completely captured by a single component. B: The 
addition of temporal delays with σ = 90ms shifts 5% to 20% of variance out of the first component into the second and later 
components. C: introducing only the cut-off of firing rates at 0 changes the spectra only minimally. D: Increasing only Poisson 
noise by averaging over 20 trials instead of 10 000 results in variance being shifted out of the first PC and distributed across all 
PCs. E: All three nonlinear effects present, the plots are very similar to the plots in D, but with more variance in the second and 
third component. 
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noise. The ratio of signal to noise is greater in our simulation than in the recorded data, thus 

our simulation is conservative in that regard. 

We have shown in the last chapter (Results 3.1.7) that the inclusion of temporal delays 

between latent variables and neurons results in a greater similarity between recorded and 

simulated population responses to the 7-LV task. Now, we will examine the influence of 

temporal delays, as well as two other nonlinear effects on the spectra of variance of 

individual LVs. The set of latent variables is low-dimensional: each LV is a single dimension. 

When we embed LV activity in the spiking activity of a population of neurons, three non-

linear effects shift variance out of the LV subspaces: First, temporal delays between neurons 

and LVs, second, the cut-off of firing rates at zero and third, the Poisson noise of the spiking 

activity of individual neurons.  

We built five additional sets of simulated responses of a population of 100 neurons to the 7-

LV task; One without nonlinearities, one each with only a single nonlinearity and one with all 

three. Temporal delay was trivial to remove by setting σ = 0, Firing rate cutoff at zero was 

removed by simulating ‘negative’ spikes (see methods 2.2.2, eq. 9) and Poisson noise was 

reduced by simulating 10 000 trials and averaging. We decomposed the spiking population 

activity into latent variables (Methods 2.4.3, eq. ), then applied PCA to obtain variance 

spectra that correspond to the activity of individual LVs. The spectra are shown in fig. 16.  

In absence of nonlinear effects, the variance of each subspace is mostly contained in the 

first component. (Fig. 16a). Temporal delays reduces the variance of the first principal 

component, increasing the variance of the second and third components (Fig. 16b), whereas 

increasing Poisson noise increases variance across all PCs, reducing the relative amplitude of 

LV-related variance (Fig. 16d). The cutoff of firing rates at 0 results in very little changes to 

the spectra in comparison to the spectrum without nonlinearities (Fig. 16c). The increase of 

variance due to Poisson noise across all components can mask the additional components 

caused by temporal delays; components that are distinguishable from noise in the Poisson-

noise free spectrum (Third and later component in Fig. 16b) are not distinguishable anymore 

in the presence of noise (Fig. 16e). The presence of temporal delays between individual 

latent variables and neurons results in latent variable activity that occupies additional 
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dimensions of the space of population activity; this effect is more visible if the noise of the 

spiking Poisson process is reduced. 

In summary, despite not simulating individual connections between neurons, our simulation 

can accurately recreate important population features of a real recording. For the 

evaluation of the applicability of dimensionality reduction methods to recordings of neural 

population activity, the high similarity between the simulated and recorded population 

responses suggests that the results obtained by applying dimensionality reduction to the 

simulated data also relevant for the recorded data. 

 

3.2 Application of PCA to Simulated population response 

In this section, we use the simulation of neural population response to evaluate the 

performance of PCA as a dimensionality reduction method when applied to recordings of 

neural population activity. The simulation methods are described in chapter 2.2. 

As our basic set of simulation parameters, we analyze a simulated population of 100 

neurons that responds to the 7-LV reach-to-grasp task, with the response averaged over 20 

trials for each condition. The smoothed, trial-averaged population response is represented 

Figure 17: Arrangement of latent variable scaling factors for different conditions in the two tasks. Each circle or dot corresponds to 
one condition, and the values shown are multiplied onto the profiles shown in fig. 10D to scale the LV profiles for that condition. A: 
The 7-LV reach-to-grasp task. For each condition, corresponding to a single circle or dot, each of the three condition-dependent LV 
profiles is multiplied with the value on the x-axis. Leftmost: The two values for power and precision grip are -0.92 and 0.92. This 
values were chosen so that the average of the absolute value of all conditions is 0.92, no matter how many conditions are simulated. 
Other panels: additional conditions are distributed sinusoidally between and around the initial two. B: For the center-out reach task, 
condition scaling factors are distributed circularly, with one condition-dependent latent variable per epoch being scaled with the X-
value and the other with the Y-value. See also methods 2.2.1. 
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as a matrix 𝑁 ∈ ℝ௖௧×௡, where c are conditions, n are neurons and t are timepoints; Different 

conditions are concatenated behind each other. We apply PCA to 𝑁. We repeat this process 

100 times and calculate the mean and standard error of each metric presented in this 

chapter.  

We systematically varied individual parameters of this baseline simulation to show the 

effect of the parameters on the result of PCA: The first systematic variation is the simulation 

of the 10-LV center-out reach task. Second, for either task, the number of trials per 

condition is varied from 1 to 10 000. Next, for either task and 20 trials per condition, we 

vary the number of neurons in the population from 100 to 1000. Finally, we also model 

additional conditions; For the 2-condition reach-to-grasp task, the condition-dependent LVs 

assume sinusoidally distributed values between, and slightly exceeding, the two values of 

the two-condition case. For the center-out reach task, the addition conditions are arranged 

between the existing conditions (see Methods 2.2.1 eq. 1). See fig. 17 for an illustration. 
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3.2.1 Estimation of Dimensionality from the Spectrum of Variance 

Various methods have been developed to estimate the underlying dimensionality of neural 

population activity during performed tasks. For PCA, methods such as scree plot (Cattell, 

1966) and parallel analysis (Horn, 1965) have been developed, that use the spectrum of 

variance to estimate dimensionality. This spectrum is the spectrum of variance captured by 

individual principal components, sorted in descending order (Jolliffe, 2002). 

We plot the spectrum of variance of the simulated delayed reach-to-grasp and center-out 

reach tasks while varying the number of trials per condition and the number of simulated 

neurons. Displayed in Fig 18, in grey is the variance of each PC against the ordinal number of 

Figure 18: A: Spectra of variance of the response of a simulated population of 100 neurons to the 7-LV reach-to-grasp task. 
Gray: PCA spectra. Blue and orange: Decomposition of individual principal components into LV-related and noise-related 
variance (methods 2.4.3, eq. 63). Dotted lines: True LV and noise variances (eqs. 60 and 53). B: Spectrum of variance for 
varying population sizes, 7-LV task with 20 trials per condition. C: Time profile of selected principal components. Leftmost: 
While the profile of this PC is similar to the true profile of the trigger LV, it is of much higher amplitude. Fig. 20 shows that 
this PC captures a mixture of the trigger and the condition-independent movement component. Second from left: This PC 
captures a derivative-like component at 1500 ms. Other plots: further principal components increasingly capture noise, but 
still contain LV-related activity. D,E,F: same as A,B,C for the 10-LV center-out reach task. All plots averaged across 100 
repetitions, shown with standard error. 
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the PC (Methods 2.4.2, eq. 37). To study, whether LV-related variance and noise are mixed 

or separated in the spectrum of variance, we separate the variance into two portions: the 

variance attributable to the activity of all LVs (blue, see methods 2.4.3 eq. 44) and the 

Poisson noise (purple). We see for all sets of parameters a smooth transition from early 

components that are dominated by LV-activity over components that contain mixtures of 

LV-related variance and noise, to noise-dominated components. 

As a comparison to the variance of the projections of LV-related activity onto individual PCs, 

we also plot the true variances of individual latent variables (Fig. 18a, b, d and e, blue 

dashed line, see methods section 0, eq. ). Unlike the projections onto individual PCs 

described in the last paragraph, or the projections of population activity onto the main 

dimensions of LV-related activity described in section 3.1.5, these are not variances that are 

calculated along a single dimension. Rather, these variances are distributed across the 

entire space of neural population activity. The LVs are ordered by magnitude. Similarly, we 

plot the spectrum of the Poisson noise, obtained by simulating no LV activity and projecting 

the simulated neural activity onto random orthogonal axes of the population space. The 

projection of the noise onto random axes prevents random noise correlations from 

accumulating in the early components of the spectrum, as it does with PCA, The variance 

captured by these axes was, again, ordered by magnitude (Fig. 18a, b, d and e, red dashed 

line). The plots show, that for 20 trials per condition and above, the first seven PCs resemble 

the true spectrum of LV variances. After 7 PCs, the spectrum obtained from the results of 

PCA exhibits a smooth transition into a bump in the spectrum of noise-related variance. This 

bump is not present in the true spectrum of noise-related variance and can be attributed to 

random noise correlations. 

The number of trials recordable during experiments is limited, resulting in different levels of 

Poisson noise for different numbers of trials per condition. Additionally, we would like to 

see if increasing trials per condition to unrealistically high numbers can improve the 

estimation of dimensionality. Therefore, we vary the number of trials per condition between 

1 and 10 000 (Fig. 18a and d). Additionally, we test if varying the number of neurons in the 

simulated population (Fig. 18b and e) or task conditions (Fig 24a) has an effect on the 

spectrum of variance. As expected, the portion of variance attributable to Poisson noise is 

reduced with rising numbers of trial per condition (Fig. 18a and d). For reasonable numbers 
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of trials per condition (around 20), the first components of both the spectrum of total 

variance and the part attributable to LV activity closely reflect the true spectrum of variance 

per LV. However, there is no clear drop-off or “knee” between components that capture 

predominantly LV-related variance and components dominated by noise, as is described in 

the literature (Cattell, 1966). Instead, we see a smooth transition from LV-related variance 

to noise that does not depend on the number of trials per condition (Fig. 18a and d), the 

number of simulated neurons (Fig. 18b and e) or the number of task conditions (Fig. 24a). 

Thus, it is impossible to estimate the dimensionality of the underlying neural population 

activity from a drop-off in the spectrum of covariance eigenvalues. 

For both tasks, the simulation of larger numbers of neurons has no effect on the transition 

between LV-related variance and noise (Fig. 18b and e). With increasing numbers of 

simulated neurons, a bump in the spectrum of noise-related variance becomes more 

pronounced. One possible explanation for this bump are random noise correlations 

between neurons, which increase with increasing numbers of neurons; Because such 

correlations increase the variance of the components that contain them, PCA aggregates the 

variance of such random correlations at the beginning of the spectrum, after LV-related 

variance.  

To illustrate the transition from LV-related variance to noise, we examine a few individual 

example PCs (Fig. 18c and f). The profiles of individual PCs transition from what appear to be 

an isolated LV in the first PC, to a mixture of different LVs, to mixtures of LV and noise to, 

finally, completely noise-dominated components. While the first PC in each example 

appears to be a single LV from the movement epoch (Fig. 18c and f, leftmost panels), the 

amplitude of the component exceeds the highest amplitude among individual LVs, plotted in 

dashed blue in the same panel. A more detailed examination (Fig. 20c) reveals that this PC 

contains mixtures of the trigger and condition-independent movement components. 
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A frequently used criterion for the estimation of the dimensionality is the number of PCs 

needed to capture a certain percentage of variance. (Jolliffe, 2002; Stringer et al., 2019) In 

fig. 19, we plot the number of PCs needed to capture different percentages of total variance 

against varying numbers of trials per condition and simulated neurons. For all percentages 

and for both tasks, the number of PCs decreases with increasing numbers of trials per 

condition and decreases slightly less with increasing numbers of neurons. For large numbers 

of trials per condition at 100 neurons, the 90% criterion is the closest to the true number of 

latent variables, while for > 200 neurons at 20 trials per condition the 85% criterion is the 

closest. None of the criteria is reliable across the entire range of parameters and the true 

dimensionality of the set of latent variables can’t be reliably estimated from these criteria. 

Taken together, it is difficult to estimate the dimensionality of the set of latent variables 

from the spectrum of variance of a spiking, neural recording. The presence of temporal 

delays between latent variables and individual neurons and the Poisson noise of the spiking 

Figure 19: Plots of the number of principal components necessary to capture a percentage of total variance. A: Number of 
Principal components necessary to capture 80% 85% 90% 95% of the total variance of the simulated neural population 
response to the 7-LV reach-to-grasp task, plotted against the number of trials per condition. Population size was 100 
neurons. B: Same as A, plotted against varying numbers of neurons. 20 trials per condition were simulated. C, D: Same as A 
and B for the 10-LV center-out reach task. All plots averaged across 100 repetitions, shown with standard error. 
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process cause a smooth transition between components that capture predominantly LV-

related variance and components that capture noise, and this smooth transition is present 

regardless of the number of trials per condition, number of neurons in the simulated 

population or number of task conditions. 

3.2.2 Extraction of Dimensions of Task-Related Activity 

The goal of PCA as a dimensionality reduction method is to separate the manifold spanned 

by the main LV dimensions, which contain the most LV-related variance (Fig. 10d, 16), from 

Figure 20: A: The relative proportion of variance of the simulated population response of 100 neurons to the 7-LV reach-to-
grasp task captured by the first N principal components, plotted against N. In grey, the total variance, in color the variance 
of individual LVs. The vertical grey line is the true number of LVs. B: The proportion of variance captured by the first 14 PCs 
(Twice the number of LVs) for varying numbers of trials per condition. C: As B, for varying numbers of neurons. D: 
Decomposition of an example PC from a simulation of the 7-LV task, 20 trials per condition, 100 neurons, for a single 
condition. Blue: Projection of the full activity onto a single PC. Dark brown and brown: Projections of the portion of neural 
activity attributable to the movement trigger and the condition-independent movement components. These two 
components contributed the most variance to PC 1 and 3. E, F, G: As A, B, C, for the 10 LV center-out reach task. F and G 
display the proportion of variance captured by the first 20 PCs. All plots averaged across 100 repetitions, shown with 
standard error. 
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the other dimensions. Even if the first few PCs can capture a large percentage of the 

variance of the manifold, they do not necessarily capture all subspaces equally. To 

investigate this possibility, we decomposed the neural population activity into individual LV 

activities (methods section 2.4.3, eq. ). Next, we projected the individual LV activities onto 

individual principal components and calculated the variance captured. We systematically 

varied the number of considered principal components, trials per condition, conditions and 

simulated neurons to test, how the percentage of cumulative variance captured by the first 

condition changes.  

For every individual LV, as well as for the overall LV-related variance, we estimated the 

proportion of variance captured by the first N PCs against N (Fig. 20). We first explored the 

effect of considering different numbers of principal components based on our default 

simulation parameters (100 neurons and averaged each condition across 20 trials). For the 

simulated reach-to-grasp task, the population response was structured by seven LVs and the 

equal number of PCs captured more than 90% of the total LV-related variance (Fig. 20a). 

Furthermore, for all but one of the LVs, the percentage of variance captured was saturated 

and did increase only marginally with additional PCs. However, variance captured by the 

visual condition-dependent LV (bright red) started to rise only at 10 PCs and variance 

captured by both the visual condition-dependent LV and the condition-independent 

movement component (light brown) increased only slowly up to only slightly above 50% 

even when considering 40 PCs. For the simulated center-out reach task, the results are 

qualitatively similar (Fig. 20e). Ten PCs captured >90% total variance, but variance captured 

by both condition-dependent visual LVs started to rise only at around 15 PCs. In summary, 

to capture a sufficient amount of variance from all LVs, we needed between 1.5 and 2 

principal components for each LV in these tasks. 

To explore the effect of number of trials on the cumulative variance captured per LV, we 

held the number of considered PC constant at twice the number of LVs (14 for the reach-to-

grasp and 20 for the center-out reach task). We decided to use the conservative number of 

twice the number of LVs because at that number a substantial amount of variance is 

captured from all LVs default simulation parameters and only little additional variance is 

captured when considering additional components. For most LVs, variance captured was 

low for only 1 trial, but increased sharply to over 80% at 20 trials, then increased only slowly 
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until up to the unrealistic number of 10000 trials, for both tasks. The only exceptions were 

the visual condition-dependent LV for the reach-to-grasp task, for which more variance was 

captured with increasing number of trails, and the condition-independent movement LV; No 

more than 50% of variance was captured at any number of trails for both tasks (Fig. 20b and 

f) for the latter. To test the effect of the number of neurons on the amount of variance 

captured per LV, we additionally fixed the number of trials per condition at 20, and 

systematically varied the number of simulated neurons. Surprisingly, the number of 

simulated neurons had no observable effect on the amount of variance captured for any LV 

(Fig. 20c and g). These results suggest that even when recording large numbers of trials and 

neurons, a significant amount of variance of task-related LVs is lost during dimensionality 

reduction with PCA. 

From Fig. 20 it is apparent that the visual condition-dependent and movement condition-

independent LVs behave differently from the other components and from each other. The 

behavior of the visual condition-dependent LVs can be explained by the fact that this LV is of 

smaller amplitude and thus explains less variance than the other LVs (see Fig. 10 d and j). 

Therefore, PCA could not separate the activity of these LVs from noise. The movement 

condition-independent LV on the other hand is one of the largest LVs. A possible cause for 

the poor capture of this LV is, that the temporal activity profile of the movement condition-

independent LV is overlapping with the profile of the trigger LV, which is of even greater 

amplitude (Fig. 20c). PCA possibly rotates preferentially on the larger component and fails to 

capture the components smaller. 

Finally, we held the number of neurons and principal components fixed and varied the 

number of conditions for both tasks between 4 and 256 (Fig. 24b). The percentage of 

variance captured by the first 14 resp. 20 PCs changed very little with increasing numbers of 

conditions. 

Taken together, these results suggest that even when considering many PCs, or large 

amounts of variance captured, significant amounts of the variance of individual LVs can be 

lost. Thus, the activity occupied by the reduced space spanned by PCs may be a biased or 

incomplete reflection of the task-related population response. 
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3.2.3 Recovery of unmixed LV components 

Finally, we examined whether and to what degree individual PCs correspond to the ground 

truth LVs and subspaces. If PCs are aligned with the ground truth LVs or subspaces, PCA 

would be a useful method to investigate the population response structure of a neural 

population. In contrast, if PCs are rather random mixtures of the ground truth LVs or 

Figure 21: Decomposition of the full variance captured by each PC into portions attributable to each individual LV. Each plot 
shows the decomposition of the variance of a single simulated population response. Decomposition was performed 
according to eq. 70 in the methods section 2.2.4. A: Variance decomposition of the response of a 100 neuron-population to 
the 7 LV center-out reach task for each PC plotted against PC number. B:as a, but each column normalized to height 1. C, D: 
as A, B, but for varying numbers of neurons 
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subspaces, no direct conclusions should be drawn from individual or combinations of PCs 

and only the combined space of many PCs should be considered with the aforementioned 

restrictions. 

Previous work has shown that the projection of simulated event related potentials onto 

single PCs contained mixtures of the activity of single LVs, suggesting PCA as a non-ideal 

method for LV reconstruction (Wood and McCarthy, 1984; Beauducel and Debener, 2003). 

Figure 22: as fig. 21, for the 10-LV center-out reach task. 
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However, to which degree PCA mixes underlying LVs and subspaces of neural population 

activity has not been studied so far. Especially, the effect of Poisson noise on LV 

reconstruction remains elusive. We investigate to what degree individual PCs exhibit mixing 

and how mixing changes if we vary the number of recorded trials, neurons and task 

conditions. 

For all following analyses we used the same simulated datasets as in the previous section 

(Figs 18, 20 and 24a and b). First, to explore the effect of different numbers of trials on LV 

mixing, we used the simulated datasets of a population of 100 neurons for both tasks and 

applied PCA to the response. We decomposed the captured variance per PCs into the 

individual contributions of each individual LV and Poisson noise (See Methods 0). Displayed 

in Fig. 21a and b is the decomposition of the first 30 PCs of an example population for 

varying numbers of trials per condition and for both tasks. For visibility, we displayed both 

the absolute values of variance per LV and PC, as well as the relative variance normalized by 

the total variance per PC. For both tasks and all numbers or trials all PCs captured mixtures 

of the ground truth LVs as well as subspaces. With increasing number of trials per condition, 

the variance attributable to noise was reduced, but with no effect on the level of LV and 

subspace mixing. 

To quantify these observations, we first calculated the signal-to-noise ratio (nSNR; defined 

as the ratio of variance attributable to noise to the total variance of the PC) across all 100 

simulations of the datasets. As expected, the nSNR rose with greater numbers of trials per 

condition, but it rose faster in earlier PCs (Fig. 23a). Next, to test whether individual LVs are 

predominately captured by individual PCs, we computed the ratio of the largest LV 

contribution relative to all LV contributions across all 100 simulated populations (Fig. 21b 

and 22b). Apart from a slight predominance of individual LVs for the early PCs, the LV-mixing 

per PC was at chance level. The chance level of mixing is calculated by drawing random 

vectors in the space of neural population activity and calculating the ratio of the largest 

component to the sum of all components. Different numbers of trials had only a small effect 

on LV-mixing and LV-mixing changes very little for more than 20 trials per condition. 

Next, we examined the effect of different numbers of neurons on LV mixing. For this 

purpose, we varied the population size between 100 and 1000 neurons. As expected, the 
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absolute value of the variance captured by each PC increased approximately linearly with 

the number of neurons (Figs. 21c and 22c). Yet, The nSNR does not increase with larger 

number of neurons (Fig. 23c). For some PCs, the nSNR even decreased with larger 

population sizes (PC Nr.15 and greater in the 7LV case and PC Nr.25 and greater in the 10-LV 

case).  

The relative value of variance captured by individual PCs (Figs. 21d and 22d) show, that 

mixing between LVs does not qualitatively change for different population sizes and the 

proportion of noise contributions changes only marginally. To quantify this observation, we 

again calculated the ratio of the largest LV contribution relative to all LV contributions 

across all 100 simulated populations (Fig. 23d). The ratio was independent of the number of 

neurons. 

Finally, we examined the effect of different number of conditions for both tasks (Fig. 24c 

and d), for a population size of 100 and 20 trials per each individual condition fixed. When 

examining the response of a single simulated neural population to either task, the mixing 

between individual LVs and the mixing between LV activity and noise does not qualitatively 

Figure 23: Key values of fig. 21, averaged across 100 repetitions with standard error. A: The signal-to-noise ratio, here 
defined as the ratio of LV-related variance to total variance, plotted against PCs for different numbers of trials per condition. 
Top: for the 7-LV task, bottom for the 10-LV task. B: the ratio of the largest LV contribution, equivalent to the largest colored 
bar in the plots in fig. 21, to the other LV contributions. C, D: Same as A, B, but plotted for different numbers of neurons in 
the simulated population.  
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change with varying number of trials per condition. The average SNR (Fig. 24c left) changes 

only marginally with the number of conditions for either task and the largest LV contribution 

ratio (Fig. 24c right) does not change at all. 

In conclusion, individual PCs are essentially random mixtures of latent variables and noise. 

While the contribution of noise to individual PCs could be reduced by increasing the number 

of trials per condition, PCs contained mixtures of individual latent variables across all 

numbers of trials per condition, neurons and conditions. Therefore, individual PCs, or even 

combinations of PCs should not be interpreted as representations of latent variables. Given 

the results of previous subchapters, only the complete, combined space of a large number 

of principal components should ever be used to draw conclusions about the structure of the 

neural population response. 

3.2.4 Theory of principal component mixing 

In the previous section, we showed that Principal components contain mixtures of latent 

variables and noise. We can describe mixing mathematically, using the definition of principal 

components as eigenvectors of the covariance matrix of the dataset. We assume a two-

Fig. 24: A: as fig. 18, for varying number of conditions. B: Same, for fig. 20. C: Same, for fig. 23. D: Same, for figs. 21 and 22. 
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dimensional dataset with two orthogonal, uncorrelated latent variables, with a 2x2 diagonal 

covariance matrix V and variances 𝜆ଵ and 𝜆ଶ: 𝜆ଵ > 𝜆ଶ. 

V =  ൤
𝜆ଵ 0
0 𝜆ଶ

൨ (𝑋) 

The eigenvectors of V, and thus principal components of the dataset are ቂ1
0

ቃ and ቂ0
1

ቃ; the 

latent variables are unmixed. Now, we introduce a covariance term to the matrix:  

V′ =  ൤
𝜆ଵ 𝜀ଵଶ

𝜀ଵଶ 𝜆ଶ
൨ (𝑋) 

𝜀ଵଶ is the covariance between the temporal profiles of the two latent variables. In our model 

of neural population activity, 𝜀ଵଶ encompasses both the covariance between the temporal 

profiles of individual LVs and the random correlations due to noise. We can calculate the 

new eigenvalues 𝜆′ଵ and 𝜆′ଶ using the general formula for eigenvalues of a 2x2 matrix: 

𝜆ᇱ
ଵ,ଶ =

𝜆ଵ + 𝜆ଶ

2
± ඨ

(𝜆ଵ − 𝜆ଶ)ଶ

4
+ 𝜀ଵଶ

ଶ (𝑋) 

And the corresponding eigenvectors 𝑣⃗ଵ,ଶ: 

𝑣⃗ଵ =  ൤
𝜆ଶ − 𝜆ᇱ

ଵ

−𝜀ଵଶ
൨ = ൦

𝜆ଶ − 𝜆ଵ

2
− ඨ

(𝜆ଵ − 𝜆ଶ)ଶ

4
+ 𝜀ଵଶ

ଶ

−𝜀ଵଶ

൪ (𝑋) 

𝑣⃗ଶ =  ቂ
−𝜀ଵଶ

𝜆ଵ − 𝜆ᇱ
ଶ

ቃ = ൦

−𝜀ଵଶ

𝜆ଵ − 𝜆ଶ

2
+ ඨ

(𝜆ଵ − 𝜆ଶ)ଶ

4
+ 𝜀ଵଶ

ଶ
൪ 

Note, that 𝑣⃗ଵ,ଶ are not unit vectors. It is easy to control that for 𝜀ଵଶ → 0, ௩ሬ⃗ భ,మ

ห௩ሬ⃗ భ,మห
→ ቂ

1
0

ቃ , ቂ
0
1

ቃ and 

𝜆ᇱ
ଵ,ଶ = 𝜆ଵ,ଶ; in absence of correlations between LVs, the eigenvectors and eigenvalues are 

unchanged. If, on the other hand, 𝜀ଵଶ ≫  𝜆ଵ − 𝜆ଶ, 𝑣⃗ଵ,ଶ ≈ −𝜀ଵଶ ቂ
1
1

ቃ , 𝜀ଵଶ ቂ
−1
1

ቃ. The covariance 

between the latent variables drives mixing. 
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An important observation is that the new eigenvectors 𝑣⃗ଵ,ଶ depend only on the difference of 

original eigenvalues 𝜆ଵ − 𝜆ଶ, not on the amplitudes of the eigenvalues. Therefore, latent 

variables that explain similar variances mix more readily. 

In conclusion, mixing between latent variables is driven by the covariance between the 

temporal profiles of the LVs, and is independent of the actual variances captured by 

individual LVs; Only the difference between variances influences mixing, in that latent 

variables with similar variances mix more easily. 
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4 Discussion 

4.1 Summary 

We have presented a highly accurate model of the spiking population responses during two 

standard behavioral tasks in monkey motor neurophysiology. Based on this model, we 

evaluated the performance and accuracy of the most commonly used dimensionality 

reduction method PCA (Jolliffe, 2002; Cisek, 2006; Cunningham and Yu, 2014; Stringer et al., 

2018, 2019), which was missing so far. The simulated population activity occupied a low-

dimensional manifold that consisted of orthogonal latent variables. The LVs could be 

grouped into behavior related subspaces for visual, movement preparatory, and movement 

execution related processing, in agreement with previous results on recorded neural 

populations (Elsayed et al., 2016; Murray et al., 2017; Lara et al., 2018; Stringer et al., 2018). 

To increase the relevance of our model for recorded data, we matched a large number of 

biological parameters of our simulation to a recording of the neural population response of 

two macaques to a visually cued delayed grasping task. Despite not simulating individual 

connections between neurons, our simulation could accurately resemble key properties of 

recorded neural population responses (see Results 3.1). 

We used the model to evaluate the performance of principal component analysis for a very 

wide range of realistic task and recording conditions. Thereby, we focused on three 

important aspects: The first aspect is the estimation of the intrinsic and extrinsic 

dimensionalities of the manifold of population activity from the results of PCA. For this 

purpose, we varied the numbers of trials per condition, numbers of conditions and numbers 

of neurons for two widely used tasks in the community: the reach-to-grasp task and the 

center-out reach task.  

We first examined, whether the spectrum of variance captured per principal component 

could be used to estimate the dimensionality of the set of latent variables. However, for all 

sets of parameters, the spectrum of variance transitioned smoothly from early components 

dominated by LV-related variance to later components dominated by noise; This transition 

made the estimation of the dimensionality of the set of latent variables difficult.  
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The second aspect was the extraction of the manifold by the low-dimensional 

representation obtained from the results of PCA. We examined, how well principal 

components could capture individual subspaces under different task and recording 

conditions. We calculated the variance captured by the first N PCs for varying numbers of 

PCs N, trials per condition, numbers of conditions and numbers of neurons for both tasks. 

Surprisingly, only the number of trials per condition affected the amount of variance 

captured of latent variables. In contrast, the numbers of neurons and conditions had little 

effect on the amount of variance captured per LV. We varied the number of principal 

components N that had to be considered until further PCs did not capture any significant 

task-related activity. By this criterion, the number of PCs needed was approximately 1.5 to 2 

times as high as the number of latent variables, and even then only small amounts of 

variance were captured of some LVs. Very high numbers of PCs were required to capture a 

significant amount of the variance of every single LV. Additionally, LVs that had overlapping 

temporal profiles, which is expected for many task designs (Dann, 2017; Murray et al., 

2017), were only partially captured by even large numbers of PCs. Furthermore, the typically 

used criterion for the selection of the number of PCs to be retained is the percentage of 

cumulative total variance captured by the first PCs. This criterion proved unreliable in our 

simulation; For the typically used thresholds of variance captured, very little variance was 

captured from individual LV or even entire subspaces. 

Finally, we examined whether and to what degree individual PCs were mixtures of individual 

LVs and the Poisson noise of the spiking process. If PCs are random mixtures of the ground 

truth LVs or subspaces, no direct conclusions can be drawn from individual PCs, or combinations 

of PCs, and only the combined space of many PCs should be considered. We found that 

individual PCs were indeed random mixtures of latent variables and noise. We could reduce 

the contribution of noise to individual PCs by increasing the number of trials per condition, 

but not by increasing the number of conditions or neurons. More importantly, and 

regardless of increasing numbers of trials per conditions, numbers of neurons or task 

conditions, individual PCs captured mixtures of variance from different subspaces. 

Therefore, individual PCs, or combinations of PCs should not be interpreted as 

representations of latent variables. Therefore, these results suggest that if PCA is used as a 

dimensionality reduction method, only the combined space of all retained principal 
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components should be used to draw conclusions about the structure of neural population 

response. 

4.2 Simulation of fronto-parietal activity in response to a behavioral task 

We systematically evaluated the accuracy and performance of PCA in capturing the 

underlying response structure of simulated spiking neural population activity. To ensure 

that conclusions drawn from the evaluation of PCA on a simulation are relevant for recorded 

population activity, we matched a large number of biological parameters of the simulation to 

recorded population activity. In this section, we will compare our model to other relevant 

models of neural population activity that were used in literature. 

4.2.1 Overview of models of neural activity used in literature 

Recurrent neural networks (RNN) are one of the most frequently used models of neural 

population activity (Mante et al., 2013; Sussillo, 2014; Sussillo et al., 2015; Nayebi et al., 

2018; Michaels et al., 2020). Therefore, we should compare RNNs to our model. RNNs can 

reproduce some dynamics of neural population response, but they do not reproduce 

important population features (Bengio et al., 1994; Sussillo, 2014): RNN are most often non-

spiking firing rate models, the firing rates range between -1 and 1 (or 0 and 1) and the 

distributions of firing rates, firing rate variances and LV contributions are different from 

those observed in recordings. Our model accurately resembles features of recorded neural 

population data. Thus, our model is more suitable than RNN-based models for the goal of 

this thesis. 

Other studies have examined the performance of PCA or related methods on simulations 

before; we compare the models used in these studies to our model. Wood and McCarthy 

(Wood and McCarthy, 1984) and Beauducel and Debener (Beauducel and Debener, 2003) 

studied the misallocation of variance between principal components on a model of event-

related potentials. Möcks (Möcks and Joachim, 1986) studies the effects of temporal delay 

on the results of PCA on similar models. The models of event-related potentials are very 

simple and have little relevance to real dynamics of spiking population activity; Lakshmanan 

et al. (Lakshmanan et al., 2015) examines two dimensionality reduction method related to 

PCA, called GPFA (Yu et al., 2009) and TD-GPFA, and applies them to a model of population 

activity to evaluate the performance of the two dimensionality methods in the presence of 
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temporal delays. The model used by Lakshmanan et al. is a non-spiking model of population 

activity that does not recreate important features of real recordings of population activity. 

All the models presented so far are too simple to be relevant to spiking neural population 

activity, and should therefore not be used to draw detailed conclusions about the latter. Our 

model on the other hand accurately reproduces multiple features of spiking population 

activity and the results are applicable to real recordings. This thesis is therefore, to my 

knowledge, the first study to use a model of spiking population activity with high relevance 

to real recordings. We examine the performance of PCA when applied to recordings of 

spiking neural population activity, in detail and under realistic conditions. 

4.2.2 The ground truth structure of simulated population activity 

The ground truth structure of simulated population activity in our simulation is a low-

dimensional set of orthogonal latent variables. A low-dimensional population structure is in 

accordance with the result of many recent studies that argue for a low dimensionality of the 

underlying structure of neural population response (Churchland and Shenoy, 2007; 

Churchland et al., 2010b; Mante et al., 2013; Kaufman et al., 2014b; Sadtler et al., 2014; 

Gallego et al., 2017). Other publications suggest a population structure based on 

individually-tuned neurons, in accordance with the representational view (Georgopoulos et 

al., 1984; Kalaska et al., 1989; Yuste, 2015) or a high-dimensional manifold with a power-law 

distributed variance spectrum (Stringer et al., 2018, 2019). However, PCA is used as a 

dimensionality reduction method to extract a linear, low-dimensional representation from 

the neural population. Therefore, a low-dimensional set of LVs is the best-suited ground 

truth for the simulated population response.  

Another important feature of our simulation are the temporal delays between latent 

variables and neurons. The presence of temporal delays has been described in literature 

before (Baumann et al., 2009; Fluet et al., 2010; Westendorff et al., 2010). In the presence 

of temporal delays, individual LVs in our simulation occupy more than one dimension in the 

space of neural population activity (fig. 16). Because of the increased dimensionality, the 

manifold of neural population activity occupies dimensions outside of the subspaces of LV-

related activity. The distribution of temporal delays was matched to the recording using 

Procrustes analysis; the distribution of temporal delays estimated that way results in the 
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best fit between recorded and simulated datasets for different simulated population sizes, 

and the spectra of variance between simulation and recording are similar. The conclusion to 

be drawn here is, that the manifold of population activity also occupies further dimensions 

outside of the subspaces of LV-related activity. However, an increased dimensionality due to 

the presence of temporal delays is not the only possible explanation for the dimensionality 

of the recorded population response; The variance could also be caused by latent variables 

not considered in our model, for example low frequent variations of overall firing rates due 

to global changes in attention, satiation or other factors. Nonetheless, the inclusion of 

temporal delays in the simulation results in a better fit between simulated and recorded 

population activity. 

In summary, we designed our model and matched a large number of population features 

with the specific goal of the evaluation of linear dimensionality reduction methods. The high 

relevance of our model to real recordings of population activity allowed us to evaluate the 

performance of PCA under realistic conditions and draw conclusions about the applicability 

of PCA to neuronal recordings. 

4.3 Dimensionality of population response 

The true dimensionality of recordings of neural population response, specifically whether 

the underlying manifold of latent variable activity is low-dimensional or not, is still 

controversially debated (Ganguli and Sompolinsky, 2012; Gallego et al., 2017; Stringer et al., 

2018, 2019). There are different definitions of the dimensionality of the manifold; the 

intrinsic dimensionality is given by the smallest number of latent variables needed to 

uniquely define a point or a trajectory on the manifold. It can be argued that the 7-LV reach-

to-grasp task has an intrinsic dimensionality of one: there are two distinct, stereotypic 

trajectories that correspond to the two grip types, and distinguishing between the two grip 

types is sufficient to define the trajectory during a trial. However, we can discriminate 

additional dimensions from external information; The recorded response to the 7-LV task 

occupies three different subspaces over the course of a trial, which coincided with three 

different task epochs. Each task epoch is related to a function of the fronto-parietal 

network: visual processing (Murata et al., 1997, 2000; Janssen and Scherberger, 2015), 

movement preparation (Murata et al., 1996; Baumann et al., 2009; Fluet et al., 2010) and 
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movement execution (Gallese et al., 1994; Fogassi et al., 2001; Fluet et al., 2010). Each 

subspace is spanned by one linear condition-dependent and one condition-independent 

latent variable, plus one extra latent variable during movement execution that is related to 

movement onset (Kaufman et al., 2014b; Sussillo et al., 2015; Michaels et al., 2018; Ames 

and Churchland, 2019). 

The extrinsic dimensionality on the other hand is defined as the number of dimensions in 

the space of population activity occupied by the manifold. The extrinsic dimensionality is 

often estimated from the spectrum of variance of the dataset (Jolliffe, 2002; Cisek, 2006; 

Cunningham and Yu, 2014; Stringer et al., 2018, 2019). According to recent studies (Stringer 

et al., 2018, 2019), a high number of dimensions is needed to capture task-related variance; 

In the context of the recordings examined in these studies, the manifold of neural 

population activity appears not to be contained in the first few components of the 

spectrum, but is rather high-dimensional. 

Our model of spiking population activity reveals two effects that confounded the estimation 

of dimensionality from the spectrum of variance. The first effect is the presence of temporal 

delays between individual neurons and LVs: as mentioned in the previous section, the 

manifold of population activity also occupies further dimensions outside of the subspaces of 

LV-related activity in the presence of temporal delays. The second effect is the Poisson noise 

of the spiking process: If we increase Poisson noise in the simulated response, the variance 

increases across all dimensions (results, Fig. 16d). Random noise correlations are sorted 

towards the front of the spectrum where they form a bump in the spectrum of noise-related 

variance (Result figs. 18, 24a, purple) at the transition from LV-related variance-dominated 

to noise-dominated components. The overall increase in variance can mask the spurious 

components caused by temporal delays, as can be seen in fig. 8e. These two effects result in 

smooth transitions in the spectrum of variance, from LV-dominated components, to 

mixtures of LV-related variance and noise, to noise-dominated components (Figs 18, 24a). 

The spectra of variance are smooth for all numbers of trials per condition, neurons in the 

simulated population and conditions, and there is no fall-off point, or “knee” in the 

spectrum that would reveal the true dimensionality of the set of latent variables. There is 

also no saturation point, after which additional dimensions would not capture additional 

variance; In literature, such spectra that fulfill these conditions are said to correspond to a 
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high-dimensional manifold (Cattell, 1966; Jolliffe, 2002; Stringer et al., 2019). It is not 

possible to estimate the dimensionality of the set of latent variables from the shape of the 

spectrum of variance. 

Another commonly used way of estimating the dimensionality of a dataset from the 

spectrum of variance uses the percentage of variance captured by the first N principal 

components as a criterion (Jolliffe, 2002; Cunningham and Yu, 2014; Stringer et al., 2018, 

2019). This is one of the easiest methods of estimating the dimensionality of the dataset 

from the spectrum of variance, other methods like scree plot (Cattell, 1966) or parallel 

analysis (Horn, 1965) entail additional calculations. For different commonly-used variance 

percentages, the number of principal components varied strongly with the number of trials 

per condition (Results, fig. 20). This criterion, too, could not reliably estimate the 

dimensionality of the set of latent variables.  

In summary, the combined effects of temporal delays and Poisson noise makes the 

spectrum of variance unsuitable for the estimation of the dimensionality of the set of latent 

variables. The spectrum of variance is not a measure that is specific to PCA. It is a part of all 

singular value decomposition-based methods and the results that concern the spectrum of 

variance are likely to be relevant for all SVD-based dimensionality reduction methods. 

4.4 Extraction of dimensions of task-related activity 

We also have investigated how many principal components are necessary to extract the 

dimensions of the manifold. A sufficient number of principal components is reached, when 

further components do not capture significant LV-related variance (Stringer et al., 2019). For 

a realistic number of 20 trials per condition, we need approximately 1.5 to 2 times as many 

principal components as there are latent variables (~14 for the 7-LV task. ~20 for the 10-LV 

task) to fulfill this criterion (Results figs. 20a and e). In consequence, underestimating the 

number of PCs will cause very little variance to be captured from individual LVs or even 

entire subspaces. 

Additionally, the variance of the movement condition-independent LV was not captured 

well by a small number of PCs; the activity of that LV was rather distributed across all 

principal components. This does not mean that the activity of that LV is truly distributed 
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across all dimensions of the space of neural population activity in a non-linear manner; PCA 

simply failed to extract the dimension that contained most of the activity related to that LV. 

For 20 or more trials per condition, neither the number of task conditions nor the number of 

neurons had any significant effect on the capture of variance by the first N principal 

components. Increasing the number of trials from 20 to 100 or even a very generous 10 000 

trials per condition improved the capture of LVs that explained little variance, but did not 

improve the capture of other LVs. In conclusion, a large number of principal components is 

needed to extract a sufficient portion of task-related variance from the high-dimensional 

space of neural population activity, and even then, PCA is not guaranteed to extract all 

subspaces equally well. The activity that occupies the low-dimensional representation 

spanned by PCs should be considered a biased or incomplete representation of the task-

related population response. 

4.5 Mixing of latent variable activity in principal components 

Previous studies of PCA have described the misallocation of variance between principal 

components in the context of event-related potentials (Wood and McCarthy, 1984; 

Beauducel and Debener, 2003). This thesis is the first study to examine misallocation, or 

mixing, between principal components in detail in the context of spiking neural population 

activity. We found, that the activity captured by individual principal components consist of 

mixtures of activity attributable to individual LVs and Poisson noise (Results, figs 21, 22, 23 

and 24c and d). While the portion of variance attributable to Poisson noise could be reduced 

by increasing the number of trials per condition, mixing between latent variables did not 

change for any set of parameters. 

Mixing between latent variables is not completely random; A theoretical investigation of 

mixing (Results 3.2.4) shows that mixing is driven by the covariance, or correlation, between 

temporal profiles of LV activity. Principal components are sorted by the amount of variance 

they explain: Early PCs that contain mixtures of LV activity likely contain LV activities that are 

positively correlated, increasing the total variance of mixed LV activities. This is illustrated in 

Fig. 20d: The principal component is of higher amplitude than the constituent LVs, and the 

LVs are positively correlated. By extension, later PCs contain negatively correlated mixtures 

of LVs. This has an important consequence for the extraction of dimensions of task-related 
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activity, as described in the previous section: If the number of PCs is underestimated, PCA 

will retain components that contain correlated LV activity. Thus, the activity of latent 

variables in the low-dimensional representation obtained from PCA is biased to be more 

strongly correlated than the true latent variables. 

In conclusion, individual PCs, or even combinations of PCs should not be interpreted as 

representations of latent variables. The low-dimensional representation obtained from PCA 

should be regarded as a biased representation of the task-related population response, that 

does not accurately reflect the true variances or the correlations between temporal profiles 

of the set of latent variables. 

4.6 Outlook  

We have presented a highly accurate model of the spiking population activity and used it to 

evaluated the performance and accuracy of PCA as a dimensionality reduction method for 

recordings of neural population activity. This thesis has highlighted several effects that make 

the interpretation of the results of the application of PCA to spiking recordings of neural 

population activity difficult.  

PCA is the standard singular value decomposition-based dimensionality reduction method, 

and many results of this paper are likely relevant for other, SVD-based dimensionality 

reduction methods, such as dPCA (Brendel et al., 2011; Kobak et al., 2016), factor analysis 

(Churchland et al., 2010a; Cunningham and Yu, 2014), and maybe even to dimensionality 

reduction methods in general. Next, we should use the model of spiking population activity 

presented in this thesis to evaluate further dimensionality reduction methods. We should 

examine, whether other methods share the issues of PCA. We expect in particular the 

estimation of dimensionality to be difficult regardless of the method used. The high 

dimensionality of the manifold was a feature of the structure of neural population response, 

rather than a result of PCA. On the other hand, the dimensionality reduction method used 

by Dann (Dann, 2017) that was described in the methods part of this thesis (Methods 2.1.2) 

proves, that supervised dimensionality reduction methods can perform the capture of 

individual, unmixed LV components more successfully than PCA did. Our model can be used 

to evaluate these, and other, dimensionality reduction methods. 
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An important effect examined in this thesis was the presence of temporal delays between 

latent variables and individual neurons. Temporal delays are known to exist in real 

recordings of neural population activity (Westendorff et al., 2010; Michaels et al., 2016). In 

our simulation, temporal delays were shown to be the main cause of the increased 

dimensionality of the manifold of neural population response and complicated the 

estimations of dimensionality from the spectrum of variance. We can assume that temporal 

delays play the same role in recorded data, but it would be premature to assume that it is 

the main complicating effect in real recordings of neural population activity. Therefore, real 

recordings need to be studied to determine, whether temporal delays are the main factor 

that causes the perceived high dimensionality of the manifold of real recordings, or whether 

high dimensionality can be explained by other factors that were not part of our model. 

It could be possible to reduce or remove these effects from recordings of neural 

populations. The most impactful effect is the presence of temporal delay between LVs and 

neurons. A method for removal or mitigation of temporal delays could reduce the 

complexity of a recorded neural population activity. Lakshmanan et al presented time-delay 

gaussian-process factor analysis (TD-GPFA) (Lakshmanan et al., 2015). TD-GPFA is a 

modification of GPFA (Yu et al., 2009) that explicitly models temporal delays. Another 

important feature of spiking neural population activity is the Poisson noise of the spiking 

process. Poisson noise can be reliably reduced by increasing the number of trials per 

condition, which is an increased demand on the experimental procedure. The final feature is 

the correlation between the temporal profiles of individual LVs. Correlation between LV 

profiles causes PCs to contain mixtures of activities of different LVs. It can be avoided by de-

coupling individual subspaces and identifying the structure of single subspaces in isolation. 

This would require tasks designed specifically to engage individual subspaces. 

We have presented a highly accurate model of spiking neural population activity. Based on 

this model, we evaluated the performance and accuracy of PCA when applied to neural 

population activity. As the next step, we will make the simulation publicly available, in the 

form of a flexible toolbox for the evaluation of dimensionality reduction methods. 
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