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1 Introduction

1.1 Motivation
The miracle of life not only keeps us researchers fascinated and mesmerized, it drives our passion
to understand the underlying molecular complexity that forms the basis of our human existence. In
the same way it haunts us when the miracle tends to vanish, and death becomes the imminent,
inevitable consequence. The changes in the molecular patterns that cause this fatal shift seem to
remain a mystery, not eager to unfold and reveal themselves to us. Almost.

It has been almost 70 years since the helical structure of DNA (1) was uncovered, and close to 50
years later the first human genome was sequenced  (2). Since then, next-generation sequencing
technology altered the landscape of research sustainably and has had remarkable impact on the
understanding of fundamental coherences in genetics and biology (3,4). Single-cell RNA sequencing
(scRNA-Seq)  techniques  provide  transcriptomic  insight  on  tissue  composition,  transcriptional
dynamics, regulatory relationships between gene, and cancer evolution (5,6). With that, experiments
that were previously technically not feasible or affordable now pave their way into clinical diagnostics
(7–9). 

Meanwhile,  cancer has remained a burden to mankind even before its first  depiction in ancient
Egyptian  manuscripts  around  3600  years  ago  (10),  and  yet  was  crowned  “the  emperor  of  all
maladies”  in  literature  (11).  Cancer  exceeded  cardiovascular  diseases  as  leading  cause  of
premature death by noncommunicable diseases in many high-income countries, while both still are
responsible for two-thirds of all premature deaths from noncommunicable diseases worldwide (12).

In the last decades, biomedical fields have seen an on-going and extensive rise in data availability.
In particular, high-throuput technologies have allowed researchers to explore the huge collections on
genetic  variability  (13).  The  data  ranges  from not  only  all  types  of  omics  data  like  genomics,
transcriptomics, proteomics, and metabolomics, but also on annotations, and links between data
types. The large amount of data offers to opportunity for powerful advancements in biological and
medical research. Public databases provide access to this omics resources, and thus enable more
advanced analyses to uncover relevant actors and subnetworks which otherwise remained hidden.
Biomedical knowledge, like biological profiles, presence or harmful markers, or missing interactions
between proteins, provide medically relevant information to clinicians and scientists. 

However,  the  data  access  in  biological  databases  is  often  non-standardized  and  highly
heterogeneous.  Furthermore,  these  databases  reveal  extensive  inter-connectivity  between  each
other which cause knowledge representations to be complex and difficult to achieve. Still, for data
exploration, comprehension, or integration into other processes, standardized and well-documented
instruments for data exchange are crucial. This issue hinders not only the interoperability between
research institutes, but also the integration capabilities into clinical applications.

This  work  outlines  my  contributions  on  solving  this  issue:  Through  the  following  presented
publications, it was possible to push forward the scientific fields of data integration and visualization,
and  providing  interoperability  for  biological  data  in  medicine  (Figure  1).  Thereby the  utilized
biomedical  data  and  their  representation  through  biological  networks  acts  as  the  base  for  the
generation or patient-specific subnetworks. Furthermore, my contribution to fields of reproducibility
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on network data integration and interoperability with clinical systems, including their current open
issues are elaborated.

Figure 1: Integration of publicly available pathway knowledge and patient data to generate patient-specific
pathways
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1.2 Biological Data in Medicine

1.2.1 Gene Expression
Long before the invention of modern biotechnology, studies were done on observable characteristics
of organism (also called phenotype). These early observation studies revealed that some kind of
information is hidden in an organism which defines the outcome of the phenotype and is passed
over  generations,  which  was  formulated  as  the  principles  of  Mendelian  inheritance.  As  later
discovered, the origin of such characteristics is hidden in complements of the DNA (deoxyribonucleic
acid), which are called genotypes. The process of a phenotype becoming observable is determined
by specific environmental conditions influencing the genotype (14).

In the last 7 decades, various accomplishments in biology were achieved and set the foundation for
modern genetics, ranging from the discovery of the helical structure of DNA to the industrialization of
next-generation  sequencing  technology.  These  methods  and  theories  altered  the  landscape  of
biological research and application. As a result, DNA, genes, mRNA and proteins were defined as
key components in genetics. Whereas DNA, RNA and proteins were introduced as molecular units in
a cell, genes established a basic concept of heredity through nucleotide encoding in the DNA which
results in gene product synthesis represented by RNA or proteins. Thus, the term ‘gene expression’
can be defined as “production of an observable phenotype by a gene — usually by directing the
synthesis of a protein”, according to Bruce Alberts et al. (15).

Gene expression is a complex mechanism that consists of multiple processes on different levels. A
gene located on the DNA contains genetic instructions producing a gene product  which can be
responsible  for  development,  functionality,  growth  or  reproduction  of  a  cell.  These  genetic
instructions are transcribed into RNA by creating a complementary copy of the template strand. This
process (also called transcription) results commonly in messenger RNA (mRNA) and represents a
critical role of gene expression, protein coding, and regulation. Afterwards, mRNA is translated into a
Protein.  The protein  translation  is  a  complex  process  consisting  of  multiple  steps  as  ribosome
initiation and elongation,  folding as well  as translocation to  the target  localization in  the cell.  In
consequence of translation, the final protein is assembled out of amino acids. The resulting protein
reaction as enzyme, receptor, structure unit or transporter and its interaction with other proteins or
molecules effect the phenotype.

Figure 2: Overview of the gene expression pathway. Figure was obtained from Buccitelli et al. (14)

The  gene  expression  can  be  measured  on  different  levels  providing  distinct  insights  into  the
described  multi-step  process.  The  analysis  of  the  transcriptome  is  the  most  widely  performed
procedure for gene expression quantification,  which is why, gene expression is often treated as
synonym for mRNA measurement in bioinformatical research  (14). Consequently, the majority of
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gene expression analysis studies are based exclusively on mRNA data.  Even so, these studies
presume for simplicity that a single gene results into a single gene product (14). However, this theory
(called the central dogma of molecular biology) has been falsified decades ago, because a single
gene can be the origin of various transcripts or proteins (16,17). Therefore, a comprehensive gene
expression  analysis  requires  not  only  mRNA  quantification,  but  also  genomic  and  protein
measurement for obtaining insights on each level of the gene expression. Through next-generation
sequencing techniques, the transcriptomic level is commonly profiled by RNA sequencing (RNA-seq)
(18) and the genome by chromatin immunoprecipitation based sequencing (ChIP–seq) as well as
assay for transposase-accessible chromatin sequencing (ATAC-seq)(19). Next to the quantification
of gene expression intermediates, the localization can also be determined which allows additional
information about spatial context (14).

Today,  the  improvements  of  omics  technologies  allow  scientists  gene  expression  analyses  on
various levels on an unprecedented scale. Despite that, the high-dimensional data provides not only
unthinkable research and medical possibilities, but also creates new challenges in representation
and integration through its exponentially increasing complexity.

1.2.2 Biological Networks
The ability for all living creatures to perform certain tasks depends on various interactions involved
on different levels of the organism. The single cells of an organism constantly receive signals from
the inside and outside and proteins and other  molecules  have to  collaborate in  processing the
stimuli. The different entities must work together to perform properly, and slight alterations can effect
the  collapse  of  the  whole  system with  diseases  like  cancer  (20) or  Alzheimer  disease  (21) as
possible consequences.

The series of molecule involved in a process performing a certain task is referred to as biological
pathway,  with  varying scope of  the  level  of  their  involvement  from metabolic  interactions,  gene
regulation,  or  signal  transduction  just  to  name  the  most  common.  Signal  transduction  or  cell
signaling pathways are address the single steps involved in passing signals from the outside of cells
to the inside to trigger particular action within cell. Receptors on the outside of the cell receive these
signals and pass the message further using specialized proteins until a specific action is triggered or
particular reactions are activated. This might be the activation of special genes to produce proteins
which then again affect other actions. The mutual influence on gene activation and inhibition, and
thus the change in the functions taking place through the encoded proteins is captured by gene
regulatory pathways. Molecular pathways on the other hand portray the chemical reaction in which
the proteins, and other molecules are involved. 

However, the interaction across biological pathways are more complicated and need to broaden the
focus to the entire biological networks containing the collection of all kinds of interactions proceeding
within living systems (22). Curated in publicly available databases, biological networks comprise a
valuable resource for capturing associations between any types of biological entities such as genes,
transcripts, proteins, metabolites, ligands, diseases or drugs. 
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1.3 Integration of Biomedical Data
Biological  networks  are  a  powerful  and  flexible  resource  of  biological  knowledge  and  allow  to
express  complex  association  valuable  for  subsequent  analyses  but  only  their  integration  with
additional information allows their full potential to be exploited. Only the combination of biological
network data and real-live patient information enables a deeper insight into underlying aberrations.

A large number of public databases make their biological knowledge available in domain-specific
exchange  formats.  In  subsequent  analyses,  these  networks  will  be  further  enriched  with
heterogeneous data and therefore require a more flexible format for capturing their content. Albeit
the many benefits  of  network formats,  sharing,  collaboration,  and curation,  including tracking of
changes between different network versions, and detection different versions in general, still is a
major problem in network biology.

Classically analysis workflows of transcriptomic data from high-throughput experiments to determine
the gene expression, as well as subsequent analyses are often done in R. Integration of the results
with biological networks calls for the establishment of a robust data model for storing and distribution
the integrated results. Public online commons like the NDEx platform can thereby play the role of a
knowledge base for the simple management of the results. However, this requires an equally strong
interface to the database as well as seamless integration and support of the network models on both
sides. For use in a clinical context, additional established standards for data exchange must also be
taken into account (23).

At the same time, the visualization of this integrated data is absolutely necessary for communication
and understanding of  the findings,  which makes it  all  the more important  that  visualization and
integration go hand in hand. Instead of seeing the visualization only as an additional application to
the results, it must itself be seen as part of the analysis and ideally become part of the integrated
network data.

Goal of this work is to build a basis for handling the knowledge from various resources, integrate the
the data, and subsequently generate patient-specific pathways. This knowledge base then can be
used  in  clinical  applications  to  provide  patient-specific  recommendation  to  clinicians  supporting
treatment decisions for better prognosis.
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2 Materials and Methods

2.1 Web Standards and Development
Since its invention in 1989 the world wide web underwent great advancements in its technology and
changed the communication of data and information, and ultimately mankind itself. In its beginning it
was  developed  for  the  sharing  and  management  of  documentation  (24) but  rapidly  evolved  to
distribute information of any kind. The underlying technology advanced with the new demands from
static propagation of information as documents in the HyperText Markup Language (HTML) towards
to  enable  interaction  from the  client  side  introducing  forms  and  servers  that  could  handle  the
requests. Cascading Style Sheets (CSS) separate the content from the visualization by applying
generalized, hierarchical rules to the elements of the documents to adjust colors, fonts, and layouts.

An increasing amount of the interactive functionality began to move from server side processing to
be handled within  the web-browser.  The retrieval  of  requested information as whole HTML
documents changed the same way to supplying only updated fragments up to solely the data
necessary to construct its representation. Also the perspective on the data changed in the way
that  it  is   seen as a  resource that  can be interacted with,  modified,  and linked with  other
resources, even on distributed servers.

Web  development  is  a  broad  and  constantly  emerging  field  ranging  from  client-server
communication,  front-  and  back-end  scripting,  web  design,  and  application  and  database
development. This work depends on a variety of established web-standards and technologies,
methods and frameworks for development. An overview of the concepts that are referenced
within this work and essential for it understanding is provided in the following.

2.1.1 JavaScript
The  programming  language  JavaScript  is  one  of  the  core  components  of  modern  days  web-
technologies  (25). While HTML provides the content and CSS define the visualization, JavaScript
adds  the  functionality  to  the  website.  Although  the  name  suggest  a  relation  with  the  Java
programming language both only share marginal similarities, mostly in syntax and standard libraries.
One of the main differences is the weak and dynamic typing of JavaScript:  The initial type of a
variable can be reassigned with  another  type which leads to  implicit  typecasts.  Therefore,  type
checks are required to be implemented to ensure the expected behavior. 

JavaScript is a multi-paradigm language, meaning it integrates features from different programming
paradigms:  Mainly  it  follows  an object-oriented  principle  where  objects  contain  the  data  and
functions  form modification  and interaction.  Thereby,  In  contrast  to  the  in  Java used class  and
inheritance  model,  JavaScript  follows  the  instance based  approach  in  which  objects  serve  as
prototypes that are cloned and extended. Functions assigned to the prototype then are accessible to
the instances, and in general there is no differentiation between static functions and object methods.
Additionally, the functions can be passed to other functions illustrating the functional character of the
programming language.
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These feature are often used within external packages. The rather small set of functionality included
by default library is mainly extended by third-party libraries which not necessarily need to be hosted
at the same server. Specialized Contend Delivery Networks (CDN) are used to distribute JavaScript
libraries and use them on several websites. Cashing these libraries in the browser supersedes the
reload of these and thus reduces network traffic and speeds up website loading.

JavaScript also incorporates event driven features using events and callback functions to determine
the  script execution.  This enables the parallel processing of user interaction and program input
and output, for example mouse clicks can be handled while simultaneously data is retrieved from an
online resource.  The concurrency  can be implemented either  as  promises  that  are resolved by
callback functions or using an Async/await pattern.

The most important feature of JavaScript is the interaction with the Document Object Model (DOM),
the tree representation of HTML document. Manipulation of the DOM not only allows the  validation
of contained form data, or animation of website components but also replacement of specific parts.
Asynchronous calls can be used to retrieve HTML fragment without reloading of the whole website
to update its content (Asynchronous JavaScript and XML, AJAX). 

Web-development is generally divided in server- and client-side  implementation of  project logic,
historically realized in different programming languages. This leads to the problems that the same
parts have to be adapted several times, which raises costs, requires the programmers to be familiar
with multiple programming languages, and is potentially error prone. Therefore, different attempts
have been made using the same programming language for both back-end and front-end.  In the
Java world, as major language for the back-end, the framework Vaadin (26) enables the creation of
HTML based front-ends in the same language. In R it is possible to build interactive web applications
and HTML widgets with  the Shiny  (27) package.  The JavaScript  runtime node.js  (28) goes the
opposite way and brings the language to the web-server. The open-source, cross-platform software
allows exchangeability of code and data models between both stacks and founds as base many
current frameworks for web-development build upon.

2.1.2 JavaScript Object Notation
JavaScript Object Notation (JSON) is a file format derived from JavaScript data types and is an
established standard for data exchange. Although its origin lies in its usage within scripts on web-
pages it  is  widely adapted by many software and programming languages.  It  makes use of  the
standard JavaScript data types like strings, numbers and booleans, and allows with the help of lists
and  maps  (called  objects)  the  construction  of  complex  nested  data  structures  and  serializable
objects. An example of a real-life JSON object for a FHIR Patient resource used in Chapter  3.7 is
shown in Code 1.

JSON provides a syntactic framework for the definition of data structures. Definition and validation of
specific  schemes for  custom data structures can be implemented using vocabularies like JSON
Schema (29). With that the expected data structure of applications can be specified and checked to
ensure data quality. However, the most validation schemes and validators are limited to structural
elements and cannot handle references across  or within objects. Also for serialized objects the
schemes require a specific order of the objects.
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Code 1: Exemplary JSON object retrieved from a FHIR server for a Patient resource

{
"fullUrl": "http://localhost:8080/fhir/Patient/1",
"resource": {
  "resourceType": "Patient",
  "id": "1",
  "meta": {

"versionId": "1",
"lastUpdated": "2022-02-10T21:13:49.350+00:00",
"source": "#waYE0EueRQyUFd0r"

  },
  "text": {

"status": "generated",
"div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><div 

class=\"hapiHeaderText\">Yong <b>HUEL </b></div></div>"
  },
  "identifier": [ {

"system": "study_internal_id",
"value": "Patient 1"

  } ],
  "name": [ {

"family": "Huel",
"given": [ "Yong" ]

  } ],
  "telecom": [ {

"system": "phone",
"value": "999-43-6884"

  } ],
  "gender": "female",
  "birthDate": "2007-10-28",
  "address": [ {

"line": [ "1077 Zemlak Annex" ],
"city": "Chelmsford",
"district": "Middlesex County",
"state": "Massachusetts",
"postalCode": "1851"

  } ],
  "maritalStatus": {

"coding": [ {
  "system": "http://terminology.hl7.org/CodeSystem/v3-

MaritalStatus",
  "code": "UNK"
} ],
"text": "unknown"

  }
}
}

With Extensible Markup Language (XML) there exists an other established and widely used data
format besides JSON for data exchange. XML is more powerful in terms of expressiveness and
mostly used in applications with more complex requirements than data interchange. However,
both contributes to greater efforts in data handling and validation, thus XML is commonly used
for  the  transmission  of  large  scale  data  collections  while  JSON  is  preferred  within  web-
applications.
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2.1.3 TypeScript
TypeScript  originated  from  the  shortcomings  of  JavaScript  is  a  syntactical  superset  of  it,
meaning it builds upon it and adds features to the language. The TypeScript code is usually not
run directly but transpiled to JavaScript which then is deployed to server or web applications. 

Code 2: TypeScript adaptation of the FHIR Patient resource

import {Identifier} from './identifier';

export class Patient {
  private id: number;
  private identifier: Identifier;
  private name: PatientName;
  private telecom: PatientTelecom;
  private gender: string;
  private birthDate: string;
  private address: PatientAddress;
  private maritalStatus: MaritalStatus | undefined;

  constructor(data: any){
    this.id = Number(data.id);
    this.identifier = new Identifier(data.identifier[0]);
    this.name = new PatientName(data.name[0]);
    this.gender = data.gender;
    this.birthDate = data.birthDate;
    this.telecom = new PatientTelecom(data.telecom[0]);
    this.address = new PatientAddress(data.address[0]);
    this.maritalStatus = new MaritalStatus(data.maritalStatus);
  }

  getName(): string {
    return this.name.given.join(' ') + ' ' + this.name.family;
  }
}

The  dynamic  typing  and  flexible  inheritance  mechanism  can  cause  huge  problems  in
development, especially in larger projects. Type safety cannot be ensured in JavaScript without
rigorous type checks, which even worsens considering the data loaded via JSON. TypeScript
implements strict  typing of  variables  and enforces it  on  compile  time.  It  introduces a class
system similar  to Java which can be used for the formal definition of data loaded in JSON
format. To prove the validity of the above FHIR Patient data (Code 1) and be able to use it
safely  within  application  a  corresponding  class  can  be  implemented  as  shown  in  Code  2.
Objects  of  this  class  are  created  from  the  loaded  data  and  type  checks  are  performed
automatically. Furthermore, default values can be set and the data modified in the constructor to
fit the data best to its intended use case.

TypeScript  was  widely  adapted  by  projects  and  frameworks  for  web  development  since  it
heavily  reduces  the  effort  for  ensuring  data,  type  and  code  consistency.  Many  third-party
libraries  originally  developed  in  JavaScript  provide  TypeScript  headers  for  their  seamless
integration.  Even large frameworks like Angular  were rewritten in  TypeScript  because of  its
advantages in expressiveness, maintainability, and usefulness (30). 
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2.1.4 Representational State Transfer
Web resources are the documents and files available on the World Wide Web and  rely certain
design  and  architectural  style  guidelines  and  constrains  for  practical  usage.  Network-based
applications  such as  in  client-server  architectures  build upon simple  interfaces  and a  layer   of
abstraction decoupling usable entities from the underling implementation.  A solution brings the
Representational  State Transfer  (REST)  (31),  a widely  accepted software architecture style with
focus  on  scalability,  simplicity,  uniform  interfaces,  independent  components,  enforcing  security,
encapsulating legacy systems, and the creation of layered architectures  (32). In contrast to other
common approaches like the Simple Object Access Protocol (SOAP) REST is considered easier to
use and implement contributing to it popularity.

APIs following the REST guideline have to conform to some criteria:

● Client-server design pattern to separate data storage from user interface concerns (separation
of concerns)

● The server implementation and structure is hidden from the client (layered architecture)

● The requests of resources have to be managed by the Hypertext Transfer Protocol (HTTP)

● Each  request  is  separate  and  unconnected,  i.  e.  no  client  information  is  stored  between
requests (stateless client-server communication)

● Requested data is cacheable to reduce or even eliminate unnecessary client-server interactions

● Uniformity of the interface with standardized transmission, which includes:

— Identification of the resources in requests

— Manipulation  of  the  resources  through  their  representation  (including  modification  and
deletion)

— Each  message  contains  enough  information  about  how  to  be  processed  (self-
descriptiveness)

— Hypermedia as the engine of  application state (HATEOAS),  meaning after  access of  a
resource the client  is  able to use provided hyperlinks to dynamically discover all  other
available and required resources

● Optional: Temporal extension or customization of the client functionality (Code on demand) for
example with JavaScript

Within network-based architectures the Application Programming Interface (API) provides a set of
protocols and definitions for building and accessing information resources. APIs obeying the REST
principles  are  commonly  referred  to  as  RESTful  (33).  It  is  noteworthy  that  APIs  described  as
RESTful not always fulfill all constrains, especially the uniformity of the interface may lack in at least
one constrain.

Web-services  designed  with  HTTP-based  RESTful  APIs  allow  the  interaction  with  the  provided
resources, or more precisely the representation of those. These resources must be reachable on
web-servers by a Uniform Resource Identifier (URI), thereby, the Uniform Resource Locator (URL)
contains  the  resource  name  and  a  unique  identifier  or  query  parameters  (Figure  3).  Basic
persistence operations (as  for databases) can be performed on the resources like create, read,
update, and delete (CRUD). For each of those operations exists at least one corresponding HTTP
method (Table 1) for programmatic interaction with the API. However, not all of these operations
must be supported by all resources, only reading of the resource is essential.
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Working  with  resources  on  RESTful  APIs  generally  works  as  follows:  Firstly  a  GET request  is
performed to the resource endpoint, mostly including parameters for querying or pagination. The
returned list contains either a list of resources or simply links to the single entities. In the latter case
the included links, or only the IDs if necessary can be used to access specific resources. Those can
either modified with PUT or PATCH, used to create new instances with POST, or simply deleted with
the correspondingly named operation.

Table 1: Overview of CRUD and HTTP operations for RESTful APIs

CRUD HTTP Description

Read GET Retrieval of a single resource, or list of resources for queries

Create POST Creation of a new resource object

Update PUT Replace or create a resource with the defined state

PATCH Partially update a resource only with the defined properties

Delete DELETE Delete the targeted resource

RESTful  web-interfaces  have  made  great  impact  to  the  shape  and  interaction  of  current
applications.  Much  of  its  success  can  be  attributed  to  its  simplicity  and  that  it  founds  on
established technology standards. Since the used methods are agnostic to the project specific
programming  languages  it  has  fostered  data-driven  development  in  many  fields  and  was
adopted by major development frameworks.

2.1.5 Angular
The world wide web has a growing impact on our every days life which was also influence through
the wide availability of mobile devices. This also lead to a shift in the development of applications
from native software towards to be run within web browsers. With that also the complexity of these
applications  increased  and  larger  projects  face  the  same  problems  as  classical  software
development. Specialized frameworks for the development of browser-based web-applications filled
this growing gap, with Angular (34) as one of the most prominent representatives.
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Figure 3: Composition of URLs illustrated in the example of a FHIR endpoint for a patient resource with
ID or query parameters.
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Angular  is  a  component-based  framework  written  in  TypeScript  for  building  modular  web-
applications.  It  provides  built-in  libraries  for  routing,  client-server  communication,  and  form
management, as well as tools to develop, test and build scalable applications. It was developed
by Google as a free and open-source software framework to build complex single-page web-
applications and progressive web apps.

A core concepts of the Angular architecture (Figure 4) is its modularity. The different modules are
associated with specific views, meaning a certain part within the application that has a specific topic,
functionality, and visual representation (rendering). The modules are typically arranged hierarchical,
therefore encapsulating different parts of the application. On the one hand this promotes security
because objects can only be shared with the children of the modules. On the other hand it enables
reuse  of  the  modules  as  templates  in  the  classical  sens,  meaning  as  composition of  Angular
components and templates. Angular consist of the following connected entities with their individual
purpose:

● Components: Contain the application data and logic

● Templates: HTML  templates  combined  with  Angular  markup  to  render  the  data  of  the
component (view)

● Directives: Functions that change the structure and attributes dynamically while rendering the
templates

● Services: Data and logic that is shared across components and is therefore not associated with
a specific view

Components and templates are linked to each other by a two-way binding, meaning that on the one
side changes in the data, e. g. loaded data from a web-resource affects the rendering of the data.

Florian J. Auer 13

Figure  4: Architecture of  Angular applications.  The main building blocks are Components,  Templates,
Services, and Directives, all separated into individual modules.
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On the other side, changes in the DOM, such as user input and actions impact the program data in
the components.

Services help in structuring the application to separate common jobs from the specialized tasks of
the  components.  Dependency injection provide the services when need, for example performing
server requests, form validation, or logging.  Moreover, the routing module provides a service to
define the navigation path based on the URL to the different states of the application. It emulates the
browser navigation and allows to assign sub-paths to a specific component hierarchy, including IDs
similar to resource IDs in RESTful APIs.

Data retrieval from web-resources requires time to process, thus asynchronous handling of requests
is necessary to avoid blocking and freezing of the application. Therefore, Angular implements the
observer pattern as  Observables with a  subject  that maintains a list of  subscribed observers and
notifies them on state changes.  Observables are used extensively withing Angular and handle
different types of data like literals, messages, or events. The application logic can focus on its
actual tasks and only need to subscribe to retrieve the data and unsubscribe afterwards. 

With  the Reactive  Extensions for  JavaScript  (RxJS)  library  (35) Angular  makes use of  the
asynchronous programming paradigm and enables reactive programming using Observables. A
practical example for its usage is the retrieval, handling, and processing of data from several
web-resources:  Asynchronous loaded data is steamed through different  steps to be filtered,
mapped, composed, or iterated over, and finally returned as Observable. Subscribe consumers
are simply called after data is loaded and all processing steps are performed and can continue
to work with the results.

Angular  is  a  powerful  framework  which  gained  its  popularity  by  providing  a  huge  tool  set
facilitating the development of complex web-applications.  Based on established methods an
paradigms for web- and asynchronous development it simplifies structuring and implementing of
large  projects.  Furthermore,  it  is  extensible  and  customizable  through  a  vast  amount  of
available third-party libraries.

2.2 Data Structures and Formats in Network Biology

2.2.1 Adjacency Matrix
An adjacency matrix is a square matrix with both dimensions representing the nodes. The values of
the matrix can simply indicating a connection between two nodes, or also weight the  interaction.
Self loops, i. e. an edge from one node to itself, can be possible, but multiple edges between two
nodes  (multi-edges)  can  be  expressed  to  some  extent.  Since  the  nodes  are  present  in  both
dimension it is possible to indicate and weight the edges in two directions.

2.2.2 Edge List
A graph can be described by simply  enumerating the edges between the vertices.  An edge list
therefore is a list of pairs of nodes defining the start and the end of the edge. Self loops and multi-
edges can be formulated. If the edge is weighted an additional number for the weight is given, but
whether the edge is directed is dependent on the reader.
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2.2.3 Simple Interaction Format
The simple interaction format (SIF) could be considered an extension to the edge list: It is composed
of the source node, the interaction type, and a single or list of target edges. A simple example look
as follows:

node1 relation node2 node3 node4

Self loops and multi-edges are possible in this format.

2.2.4 Graph Modeling Language
The Graph Modeling Language (GML) is a text based format for describing graphs  with a simple
syntax. The graph, nodes and edges are defined as objects with specific attributes (Code 3). There
is an XML adaptation of GML called eXtensible Graph Markup and Modeling Language (XGMML),
which simply expresses the objects as XML elements with its attributes. 

Code 3: Exemplary definition of a network using the graph modeling language

graph  [ 
      node  [ 
        id  0  
        label “node A” 
    ]  
    node [
        id  1  
        label “node B”
    ]  
    edge [
        source  1  
        target  0  
        label “connects”  
    ]   
]  

2.2.5 Cytoscape Exchange Format
Previously presented network formats are primarily designed for the storage of network information.
Therefore, sharing and usage of networks in this format brings the same issues as other file-based
data  management  approaches.  With  the  rise  of  web  based  technologies   formats  for  network
encoding underwent a re-thinking, away from storage and towards transmission of the data. Also the
similarity of GML to the object focused style of JSON might have inspired the further development
through the adaptation of established web technologies.

The result of these developmental advancements is the Cytoscape Exchange format (CX),  a JSON-
based  format  specifically  tailored  to the  transmission  of  networks.  It  was  developed  by  the
Cytoscape consortium especially for this purpose to exchange networks from within the visualization
software Cytoscape (see 2.4.1) with a web-based storage platform (see 2.3.2). It follows an aspect-
oriented design, meaning the network is seen as individual interlinked components. A separation of
the  different  concerns  as single  aspects  provides  a  flexible  framework  for  the  incorporation  of
networks  from any domain.  Moreover,  the segmentation of  network  data allows to  request  and
dynamically load only specific excerpts of the the network, based on the intended usage. The format
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was developed with thought to streamline the network data, meaning the processing of networks can
be consecutively chained so that the output of one program can form the input of the next. Thereby,
the different programs can focus on only specific aspects and pass through others leaving them to
remain opaque to the processor. 

Table 2: Official aspects defined for the Cytoscape Exchange (CX) format. Optional aspects are marked in 
italic font, aspects with IDs are marked with an asterix.

Meta information Core Cytoscape

metaData nodes* cySubNetworks*

numberVerification edges* cyGroups*

status nodeAttributes cyHiddenAttributes

edgeAttributes cyNetworkRelations

networkAttributes cyTableColumn

cartesianLayout cyVisualAttributes

The CX format provides a collection of predefined aspects (Table 2) that can be categorized into
three groups: 

● core aspects define the structure, attributes and layout of the network

● aspects  inherited from Cytoscape specifying the network visualization (e. g. color and size of
nodes and edges depending on their attributes)

● meta information necessary for the transmission of the network data

The aspects consist of different mandatory and optional properties, even most of the aspects are
optional for  building valid networks. For example, a node consists of an unique  ID, and optional
name and reference (a simple gene name or link to external database, called represents). The IDs
are simple integers,  only  unique within  one aspect  that  can be used to  reference the aspect’s
elements within other aspects and therefore link the different component of the network (Figure 5).
This principle applies to all aspects of the network: the elements of the edges aspect connect two
nodes and define the interaction between both,  the  cartesianLayout aspect  positions the single
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Figure 5: Relation between aspects in the CX format. The nodes aspect is the main entity which is referenced
by other aspects to assign a position (cartesianLayout) to the nodes, connect them (edges), or apply visual
styles (cyVisualProperties).  The metaData aspect aggregates information about the contained aspects in the
CX network.
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nodes in two- or three-dimensional space, and the cyVisualProperties aspect applies a mapping of
the contained data to create a visual representation. The latter is a special feature of the CX network
format: the visualization not only applied to the network but even part of it and linked with its other
aspects.

To construct valid networks only at least one node has to be defined and the aspects involved for
transmission (Code 4), and those in a specific order. Thereby, numberVerification has to be the first
aspect  present,  defining  the  maximal  integer  manageable  by  the  client  system,  thus  ensuring
following data can be processed. Next aspect must be the metaData aspect, describing the in this
network contained aspects, including their number of elements and, if applicable, the highest used
id.  Updating different  aspects  individually  should be reflected by increasing the version number
correspondingly. Eventually occurring deletions or changes of elements with own IDs are therefore
marked and can responded to with checking the dependent (i. e. referencing) aspects, update them
as the circumstances require, and adjust their version accordingly. In the case of streamlining this
steps then can be delegated to the successors. The last element must be the status aspect which
simply  indicates the success of the transmission or processing of the network, or encloses an
according error message.

Code 4: Example for a minimal valid network in CX format: The network only consists of one nodes and 
necessary meta data for transmission. The names of the aspects are highlighted.

[
{"numberVerification": [{"longNumber": 281474976710655}]},
{"metaData": [{

"name": "nodes",
"elementCount": 1,
"idCounter": 1,
"version": "1.0"
}]},

{"nodes": [{"@id": 0}]},
{"status": [{"error": "", "success": true}]}

]

Additional data of the networks is  integrated as attributes of either nodes, edges, or the network
itself. The data follows a key-value pair structure, but with both provided as values for the predefined
keys n (name) for the key and v (value) for the corresponding value respectively. Thereby, there is
no distinction between the type of the data: By default the values are treated as strings, except it is
stated otherwise explicitly as either boolean, integer, double, or a list of those. For example, Code 5
show the attributes for the network used to describe the RCX data structure (see Chapter 3.1). As by
convention the NDEx platform (see Chapter  2.3.2) uses the attributes  name,  description,  author,
rightsHolder, and version as specially treated meta information for display on the web-application.

Additionally to the officially specified aspects it is possible to define own ones. This enable to include
additional data if needed in a suitable format. NDEx and other applications will treat those aspects
the same way opaquely as applications in the streamline process. With this the CX data structure
provides a  great option of extensibility. However, to be able to use this efficiently it is recommended
to  provide  documentation  of  the  extension  or  even an implementation  for  potential  adoption  in
specialized clients. 
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Code 5: NodeAttributes taken as an excerpt from the network on NDEx with UUID ebdda4da-2ca5-11ec-
b3be-0ac135e8bacf and visualized in Figure 13.

{"networkAttributes": [
{"n": "name", "v": "RCX Data Structure"},
{"n": "description", "v":"Figure 13: An RCX object (green) is 

composed of several aspects (red), which themselves consist different 
properties (blue). Some properties contain sub-properties (light red) 
that also hold properties. Properties reference ID properties of other 
aspects."},

{"n": "version", "v": "1.0"},
{"n": "author", "v": "Florian J. Auer"},
{"n": "rightsHolder", "v": "Florian J. Auer"},
{

"n": "references", 
"v": [

"https://bioconductor.org/packages/RCX",
"https://github.com/frankkramer-lab/RCX", 
"https://home.ndexbio.org/data-model/"

],
"d": "list_of_string"

},{
"n": "referencesProvideSourceCode", 
"v": [

"true",
"true", 
"false"

],
"d": "list_of_boolean"

}
]}

2.3 Databases for Biological Networks

2.3.1 Human Protein Reference Database
The Human Protein Reference Database (HPRD)  provides literature derived protein annotations,
including  protein-protein  interactions  (PPI),  posttranslational  modifications,  enzyme/substrate
relationships, disease associations, tissue expression, and subcellular localization (36–38). 

Contrary to other reference databases, HPRD focuses only on the human proteome, and therefore
excludes entries  from different  species  and references  to  those even if  interaction  with  human
proteins were verified. The database is available for download in tab delimited, XML, and Proteomics
Standard Initiative-Molecular Interaction (PSI-MI) (39) format, with options for downloading solely the
binary  PPI  data  or  additional  protein  features  included such as  post-translational  modifications,
tissue expression, subcellular localization.

The latest  release of  the database dates  back  to  2010,  and therefore  omits  over  ten years  of
scientific  insights.  Nevertheless,  this  manually  curated information about  30,000 human proteins
makes HPRD a comprehensive resource for studying the human proteome.
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2.3.2 The Network Data Exchange
The Network Data Exchange (NDEx) platform (40–42) is an online commons for biological networks
of any kind, where users can store and manage their networks, and share it with others. In simple
terms, it can be described as Dropbox or Google Drive for networks, but with a specialized focus on
the  community concept in particular. Researchers, scientists and organizations are encouraged to
contribute their network data to build up a shared collection of biological knowledge. The intention is
not  compete with existing pathway and interaction databases,  but  rather to establish an access
point,  platform and distribution channel  for  users and groups.  NDEx also replaces the Pathway
Interaction Database (PID)  (43), a curated and peer-reviewed collection of human signaling and
regulatory pathways and cellular processes. The original data was included into NDEx and is still
available for analyses.

The web portal of the NDEx platform serves as contact point for the community and shows recent
news and highlight in network biology. For first time visitors a selection of featured and exemplary
networks are listed to facilitate to getting started, as well as an comprehensive guide to use the
platform. There are several options to query the database: A simple search returns all networks for a
given term that matches in the name or description.  More sophisticated can be formulated using
keywords, wildcard, logical conjunctions and ranges to limit the search spaced. For example the
expression

name:bre* AND owner:ccmi AND nodeCount:[500 TO 600]

allows to  search  for  networks,  that  start  with  “bre”,  are  owned by  the  user  “ccmi”  and contain
between 600 and 600 nodes.

The networks can also be searched for specific genes or proteins within the network by  providing a
list. A special feature is to automatically expand the list of gene and protein names to its synonyms,
which leads to more relevant  results  and removes the need to do this  manually.  However,  this
feature only works for human genes and proteins, and only for networks that are indexed.

The results of the search are returned in three categories: networks, users and groups. For each
category results provide more details about the single items in several columns that can be used to
filter the results further. For networks, not only its name is provided, but also information about its
owner, the number of nodes and edges it contains, its last date and time of modification, and if
available  the tissue it  refers  to,  the disease it  is  involved,  and a reference to  a  corresponding
publication. Furthermore the description of the network can be displayed by clicking on the NDEx
icon before its name, and it also can be downloaded directly. 

The above advanced query returns the breast cancer protein-protein interaction network by Minkyu
Kim (44) which can be opened in the web-application by clicking on its name. All networks uploaded
to NDEx are assigned with an internal Universally Unique Identifier (UUID) by that the network is
directly  reachable.  The  web-application  provides  further  information  about  the  network  and  its
properties along an interactive visualization of the network as shown in Figure 6. It is noteworthy that
all displayed information, including the visual properties necessary for its visualization are included
within the downloadable network.  With one click,  the network can also be opened directly  in  a
running Cytoscape instance and modified there (see 2.4.1). 
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The interactive visualization allows to explore and rearrange the network to acquire more insight on
the contained data. It can be explored by selecting several nodes and edges, for which the attributes
will be displayed in the corresponding tab. The network also can be searched in the bottom with
several options to define the sub-graph that should be returned. This can be simply be a graph
spanned by the matching elements, their first or second step neighborhood or adjacency, or only the
interconnected nodes.  A visualization of  the sub-graph then will  be  displayed bellow the actual
network visualization.

NDEx is a community driven platform, which means that single users and groups can contribute with
their own networks. After creating an account, users are gifted with an 10GB free storage for their
network data. Uploading a network does not necessary mean, that it is intended to be available to
the public, therefore different access and visibility options can be set. A typical workflow is illustrated
in Figure 7: 

A newly uploaded network is set to private by the user and can not be accessed by anyone else. To
collaborate further on the network, it can be shared with other users or, even groups, whereat it can
be specified if the network is only visible to them or can be modified. After the work is finalized, and
the networks poses as supplemental information to a manuscript, a restricted link can be generated
and provided in  the  submission,  allowing  only  the  reviewers  to  access  the  network.  When the
manuscript has been accepted, the network then is set to be public. For long term availability and
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Figure 6: Breast cancer protein-protein interaction network visualized on NDEx. The network is reachable
at https://doi.org/10.18119/N9BS4B

https://doi.org/10.18119/N9BS4B
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reproducibility of subsequent research based on this network, a Digital Object Identifier (DOI) can be
requested,  which  then  can  be  used  for  referencing  the  network  in  publications.  The  network
becomes immutable by this, so that no further changes can be applied, with the only exception of
adding the publication reference to the network.

Until  this  point,  only  the  public  instance of  the  NDEx  platform was mentioned,  but   the  NDEx
consortium  provides  the  whole  platform  in  open-source  to  enable  private  installations.  This  is
particularly useful in cases where NDEx is used on an institutional level and privacy concerns limit
the use, or even block access of the public instance. 

Besides the web front-end,  private and public instances provide programmatic access using the
RESTful API. The web front-end of the NDEx platform uses this interface to communicate with the
data storage back-end and an official python client is also available. Additionally a comprehensive
documentation  of  the  API  is  provided  on  the  NDEx  website,  along  with  a  machine  reachable
OpenAPI Specification (OAS; previously known as Swagger) describing the service.
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Figure  7:  Workflow for sharing networks on the NDEx platform. Uploaded networks can be privately
shared with certain people or groups to collaborate on. A protected link to the network can be provided to
reviewers along a manuscript submission. Afterwards the network can be made public and a digital object
identifier can be requested.
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2.4 Tools for Framework Development

2.4.1 Cytoscape 
Cytoscape  (45) is the leading and most powerful software for network visualization. It is an Java
based open-source software developed and maintained by the Cytoscape Consortium. Initially it was
designed for the visualization, data integration and analysis of biological networks, but evolved into a
general purpose platform for the  handling of complex networks of any kind. It provides  integrated
interfaces to  the major  database for  biological  networks  and additional  molecular  genetics data
(Table 3). Additionally, integration with the NDEx platform is natively included.

Table 3: Cytoscape built-in import interface to public databases.

Database Description

bhf-ucl GO annotation of cardiovascular disease-relevant proteins and microRNAs

ChEMBL Manually curated database of bioactive molecules with drug-like properties

HPIDb Host-pathogen interactions

IMEx Non-redundant set of physical molecular interactions

IntAct Free and open-source molecular interaction database (EMBL-EBI)

iRefIndex Index  of  protein  interactions  available  in  other primary  interaction
databases

MBInfo Fundamental information on mechanobiology

MINT Experimentally verified protein-protein interactions  manually curated  from
scientific literature (ELIXIR)

MPIDB Physical microbial protein interactions

NDEx Online commons for biological networks

Reactome Free, open-source, curated and peer-reviewed pathway database

UniProt Protein sequence and function derived from literature

VirHostNet Virus-host protein-protein interactions

In  contrast  to  other  visualization  tools,  Cytoscape nodes and edges  are  not  styled  individually,
instead visualizations  are  generated  by  mapping the data  to  visual  properties.  These so called
attribute-to-visual-mappings  allow a general  definition  of  the visual  representation  and therefore
provide more flexibility to changing data. Once the visual properties are defined, they can easily
applied  to  different  networks.  Instead  of  repeating  the  single  visualization  steps  on  every  new
network, simply the attributes on which the visual representation is base can be adjusted in the
mapping. 

The single attributes are accordingly organized in different tables for nodes, edges and the network
itself. The applied mappings thereby depend on the contained data, thus enabling different types of
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mappings  of  the  data  (Figure  8).  Discrete  mappings  assign  a  new  value  to  the  different
manifestations of the attribute, e. g. nodes that hold the attribute value “DNA” or “RNA” are assigned
to represented by  rhombuses and hexagons respectively.  Missing values are caught  by  default
settings that apply generally as circles in the here presented example. 

Another  simple  mapping  can  be  created  by  simply  passing  the  attribute  values  to  the  visual
properties. This can be done for color set within the attribute data bur also for explicit node size or
the displayed node label, just to name a few. Continuous mappings are a more complex mapping in
which several threshold and corresponding values can be set. The resulting values for the attribute
then are interpolated accordingly. Thereby the mapping is not limited to numerical values but also
colors, creating gradient between the set threshold color values.  

Cytoscape has a large set of layout algorithms built-in allowing the network to be presented using
standard grid, circular, or hierarchical layouts, or using even more sophisticated, data-dependent
algorithms like force-driven or heat diffusion based layouts. Also a comprehensive set of network
analysis tools is provided, including investigation of subnetwork and pathway modules, or highly
interconnected regions, or clustering algorithms. 

A further feature of Cytoscape is the possibility to automate its usage through a provided REST API
called CyREST (Figure 9). Using simple bash scripts or corresponding implementations in different
programming  languages  allows  to  control  Cytoscape  to  perform  the  same  tasks  as  possible
interactively. Furthermore, missing feature can be integrated into Cytoscape as apps developed by
the community, from which already many are available at the integrated app store.

2.4.2 Cytoscape.js
For  the  web-based visualization  of  networks  the Cytoscape consortium provides  the  JavaScript
library Cytoscape.js  (46),  a successor of  Cytoscape Web. The framework contains functions for
network visualization and analysis that can easily integrated on websites or used for server-side
rendering. Both, Cytoscape and Cytoscape.js share the same design concepts based on attribute-
to-visual-mappings and can therefore easily adapted. Cytoscape even provides an export of network
visualizations as interactive web application using Cytoscape.js.
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Figure 8: Attribute mapping types used in Cytoscape.



CHAPTER 2

However, although Cytoscape.js and the CX data format are related to Cytoscape, or even derived
from the underlying data structure they are not natively compatible. Cytoscape.js is used to display
the networks in CX format on the NDEx platform but to achieve an additional JavaScript library is
necessary, which is provided in the official repositories (47).

2.4.3 The R Statistical Programming Language
R  (48) is  a  functional  programming language widely  adapted in  the  field  of  statistics  and data
science for  data analysis  and visualization,  and statistical  computing.  In contrast  to  many other
languages it evolves around the data and reflects this by it vector and table-based data types. A vast
amount  of  freely  available  packages  provided  for  extensions  for  specialized  data  structures,
implementations state of the art statistical analyses, and interfaces to public data repositories. R
provides an interface for the integration of C libraries which enables the usage of established and
highly  performant  third-party  libraries  for  native  use within  the  language.  Additional  scripts  and
libraries  can  directly  loaded  from  public  code  repositories,  or  from  specialized  and  curated
distribution systems like the Comprehensive R Archive Network (CRAN) (49) or Bioconductor  (50)
for the biological domain. Both require a comprehensive documentation and testing of the offered
functionality,  as  well  as active  maintenance  of  the  libraries. Because  of  this  versatile  software
support researcher and data analysts use R as standard tool for data retrieval, cleaning, integration
and visualization. Furthermore, various libraries offer visualization of their results using one of the
standard libraries for graphs and networks.

a) igraph

The most prominent library for graph and network analysis is the  igraph (51) collection which is
natively written in C. It provides built-in methods for graph manipulation, analysis, and visualization
and is supported by many additional packages extending its functionality. Its great advantages lie in
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Figure  9:  Interfaces  for  automated  visualization  in  Cytoscape.  Modified  version  from  Cytoscape
tutorials/train-the-trainers (77)
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the  comprehensible  functions  for  graph  analysis,  while  its  capabilities  for  network  visualization,
although sufficient in most cases, could need improvements. 

The visualization of networks using igraph follows the same scheme as plotting data in R in general
(Figure 10). In contrast to Cytoscape the visualization of the graph depends on the manual definition
of the visual representation for each node and edge individually. On the one hand, this simplifies the
process because no abstraction is needed for its creation but therefore limits the application of the
same visualization to different networks to sharing the corresponding source code or by providing
custom functions implemented in specific packages.

b) Bioconductor graph

As complement of the igraph library in CRAN, Bioconductor provides its own native graph analysis
and manipulation library called graphNEL, or simply graph. It is thought as addition to igraph with the
purpose  of  enabling  simple  graph  modeling  within  Bioconductor  packages,  but  also  provides
functions for the lossless conversion between both. For admission to Bioconductor new packages
are required to implement the graph model in addition to enclosed igraph functionality.
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Figure 10: Network visualization with the plot function of the igraph packge.
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c) RCy3

As before-mentioned, Cytoscape provides the CyREST interface for automation of the visualization
tasks. The RCy3 (52) package provides and implementation on top of CyREST (Figure 9) and allows
to control  Cytoscape in this way.  RCy3 is available on Bioconductor and thus implements both,
igraph and graph for the network data exchange.

2.5 HL7 FHIR Standard
Beside the more recent efforts in interoperability within bioinformatics, the exchange of medical data
in clinical environments always has been under strong aspiration. Commonly, the various modules
and  systems  in  a  hospital  communicate  with  “different  languages”,  varying  in  formats,  or  even
concepts.  Thus,  integration of  new tools  into  existing systems often involves  a great  effort  and
expense. 

Out of this reason, the international organization HL7: Health Level Seven was founded in the year
1987, which focuses on the development for data exchange standards in health care (53). The aim
of this organization is to standardize communication in hospitals and the entire healthcare system.

The  popular  HL7  FHIR  standard,  which  is  the  abbreviation  for  Fast  Healthcare  Interoperability
Resources,  was released in  2018 and is  strongly  pushed into deployment  from various leading
health care organizations in the world (53). The standard is build on top of the previous HL7 versions
with lessons learned from the flexibility but non-uniformness of version 2, and the over-complicated
version 3. The principles behind FHIR are a strong focus on implementation simplicity, extensive tool
sets  composed of  modular  components,  free-for-use specification,  building  on  established web-
technologies like REST, XML and JSON (Code 6), a human-readable serialization format, stability
and concise as well as intuitive specifications (54). Furthermore, it follows the 80% rule for the wide
variability caused by diverse healthcare processes, which can be defined as providing specification
only for elements present in the most implementations (80%), whereas the remaining elements are
covered by extensions (20%).
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Figure 11: Composition of FHIR elements:  All resources contain metadata about the resource, a human
readable narrative, a declaration of implemented extensions, and the actual resource data using defined
data types. Bundles collect several resources for retrieval.
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The central building blocks of the FHIR standard are the FHIR resources. A FHIR resource is a
compact, logically discrete unit for data exchange, which has a clearly defined structure (Figure 11),
behavior and an unambiguous semantic. Also based on the 80% rule, the core specification of a
resource consists only of data elements that are commonly prevalent. The data elements of a FHIR
resource can range from structured data like simple values,  modifiers  or terminologies, to more
dynamic  narrative  variables.  Core  examples  for  FHIR  resources  are  patients,  organizations,
procedures and medications ( Figure 12).

Code 6: Example of a FHIR Observation resource with Observation-genetics extension. The background is 
highlighted according to its association in Figure 11.

{
"resourceType": "Observation",
"id": "21289",

"meta": {
"versionId": "1",
"lastUpdated": "2022-02-10T21:18:28.953+00:00",
"source": "#87WWr5xOwKcSGDEk"

},

"text”: "<div xmlns=\"http://www.w3.org/1999/xhtml\">
<p><b>Observation genetics - Gene</b></p><p><b>id</b>: 21289</p>
<p><b>code</b>: BAD </p>
<p><b>system</b>: https://www.genenames.org </p>
<p><b>subject</b>: Patient/1 </p>
<p><b>specimen</b>: <a>Molecular Specimen ID: 14</a></p></div>",

"extension": [ {
"url": "http://hl7.org/fhir/StructureDefinition/observation-

geneticsGene",
"valueCodeableConcept": {
"coding": [ {

"system": "https://www.genenames.org",
"code": "BAD", "display": "BAD"

} ] } } ],

"identifier": [ {
"system": "study_internal_id",
"value": "Mucositis-BREN11:ENSG00000002330"

} ],
"status": "final",
"code": {

"coding": [ {
"system": "http://hl7.org/fhir/ValueSet/observation-codes",
"code": "48018-6",
"display": "Gene studied"
} ] },

"subject": { "reference": "Patient/1" },
"valueInteger": 6081077,
"specimen": { "reference": "Specimen/14" },
"derivedFrom": [ { "reference": "MolecularSequence/3487" } ]

}
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For high-throughput biological data, FHIR provides the Genomics extension. Through the up-rising
application  of  next-generation  sequencing  based  tests  in  the  clinical  routine,  the  Genomics
extension  started  to  establish  basic  FHIR resources  for  encoding  distinct  genetic  variants  from
sequence  analyses  (55).  However,  through  the  extension  focus  on  only  sequence  variation
representation, expression profiles are neglected, which prevents molecular profile interoperability
like gene expression results as well as integration of clinical decision support systems. 
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Figure  12: Overview of the FHIR specification including its different modules (Levels). Image retrieved
from the official documentation (54).



CHAPTER 3

3 Cumulative Publications

3.1 RCX – an R package adapting the Cytoscape Exchange 
format for biological networks

Florian Auer, Frank Kramer

This paper was published in Bioinformatics Advances in March 2022:

– Bioinformatics Advances, Volume 2, Issue 1, 2022, vbac020 
– doi: https://doi.org/10.1093/bioadv/vbac020

Supplementary data:

– 01. RCX - an R package implementing the Cytoscape Exchange (CX) format
– 02. Creating RCX from scratch
– 03. Extending the RCX Data Model
– Appendix - The RCX and CX Data Model
– RCX Reference Manual
– RCX Cheat Sheet

Software availability:

Bioconductor: https://bioconductor.org/packages/RCX 

Github: https://github.com/frankkramer-lab/RCX

3.1.1 Summary and discussion
Data formats, and their representation differ by the domain for which they were designed, and
thus evoke incompatibilities in their usage. A clear example where this takes effect is when
established  web  development  patterns  meet  with  data-centric  perspective  of  R.  JSON  as
standard  transmission  format  focuses  on  a  dynamic  object-oriented  structure  with  nested
elements while R data structures consider data in a strict column- and table-like manner. With
the  continuous  trend  of  integrating  web-based  resources  and  services  into  classical  data
science and statistical workflows major conflicts are inevitable.

This paper presents the R package RCX for the integration of the Cytoscape exchange format
into the statistical programming language by adapting the data structure to standard R data
types. The package therefore introduces the novel RCX data structure and provides functions
for conversion, handling, validation, and visualization of the network data, thus overcoming the
fundamental differences between data modeling in R and web-based data transmission.
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Figure 13: Structure of RCX with its aspects and corresponding properties. The aspects are categorized as
meta information, core and transmission aspects, and those derived from Cytoscape with corresponding sub-
aspects. IDs, referencing, and optional properties, as well as automatically generated entities are highlighted.
It is available on NDEx by the UUID ebdda4da-2ca5-11ec-b3be-0ac135e8bacf

https://www.ndexbio.org/viewer/networks/ebdda4da-2ca5-11ec-b3be-0ac135e8bacf
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The  RCX package implements an R data model of the same name composed of individual
models for corresponding aspects of the CX data structure (Figure 13). However, due to the
before-mentioned  structural  differences  some  adjustments  have  been  made  especially  for
aspects of the meta information and transmission categories, and the visual mappings defined
by the cyVisualProperties aspect.

The meta  information is  generated automatically  based  on the contained data  in  the  RCX
object.  Only  the versioning  and meta  data  properties  can  be updated  manually  to  prevent
inconsistencies in the converted CX model, and therefore rejection by other software like the
NDEx  platform.  Similarly,  aspects  for  transmission  are  created  on-the-fly.  The
cyVisualProperties aspect had to be split into several linked sub-aspects (Code 7) to efficiently
treat the data-dependent visual mappings. 

Code 7: Class hierarchy of the implementation of the cyVisualProperties aspects in the RCX package

CyVisualProperties
 ├──network = CyVisualProperty
 ├──nodes = CyVisualProperty
 ├──edges = CyVisualProperty
 ├──defaultNodes = CyVisualProperty
 └──defaultEdges = CyVisualProperty
 
 CyVisualProperty
 ├──properties = CyVisualPropertyProperties
 ┃                  ├──name
 ┃                  └──value 
 ├──dependencies = CyVisualPropertyDependencies
 ┃                    ├──name
 ┃                    └──value 
 ├──mappings = CyVisualPropertyMappings
 ┃                ├──name
 ┃                ├──type
 ┃                └──definition 
 ├──appliesTo = <optional reference to node or edge id>
 └──view = <optional reference to subnetwork id>

The package not only allows to define these visual properties, it also uses them to produce a
visualization of the network consistent with Cytoscape and on the NDEx platform. They are
implemented  by  integrating  Cytoscape.js  and  the  official  NDEx  JavaScript  library  (47) for
translation  of  CX  to  Cytoscape.js  compliant  format  into  R  functions.  Those  produce
visualizations in Rstudio and external web-browsers, or export the visualization as single-page
HTML visualizations that can be embedded in other applications. Usually visualization requires
the positions of the nodes provided, that means individually defined in cartesianLayout aspect.
The  visualization  functions  also  allow  to  apply  the  different  layout  algorithms  provided  by
Cytoscape.js, and even bypass stipulated coordinates to circumvent this limitations and enable
more flexibility in the network exploration.

To facilitate working with network in the RCX format the package includes functions to create
and update the data model, its aspects, and sub-aspects. Thereby many of the parameters of
the functions are optional and calculate the required properties automatically or derive them
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from provided data. For example the IDs for respective aspects are attached automatically or
continued when new data is added. All attribute aspects require a specification of the data type,
including list version of those, which both is inferred from the R data types if not set explicitly.

The usefulness of the data models heavily depends on it interoperability with other data formats,
mainly  the  CX  data  structure,  but  also  with  established  libraries  in  R  like  igraph and
Bioconductor  graph.  The  RCX package  implements  for  both  functions  for  the  lossless
conversion between the different formats. The interchangeability with the CX format furthermore
requires insurance of the data integrity, realized by validation functions on network and aspect
level. Not only the data structure and types are verified but also important semantics like ID and
property uniqueness,  completeness of  the contained elements,  and references between the
different components. 

The packages makes great use of generic functions, especially for printing, summarizing and
validating the network and aspects, or updating those. Moreover, the choice for this architectural
decision was made regarding the dynamic  aspect-oriented structure  of  CX,  and hence the
extensibility of RCX data model. All functions involved in creation, manipulation, representation,
and conversion are implemented generic and use method dispatch to delegate the tasks to the
appropriate functions of the RCX model or its aspects and subaspects. This way it is possible to
extend the RCX data model to custom aspects by implementing functions for the appropriate
generics (as demonstrated for MetaRelSubNetVis in Chapter 3.5) .

3.1.2 Declaration of contribution
Based on the CX format I  developed the architecture of  the package and implemented the
package from scratch using the above listed external R and JavaScript libraries.  Furthermore, I
wrote  the  package  documentation,  accompanying  vignettes,  supplementary  data  to  the
manuscript, and created the on the NDEx platform available network illustrating the RCX data
structure. Prof. Kramer offered guidance in software architectural ambiguities. The manuscript
was written and revised by me, while Prof. Kramer provided feedback on the initial draft and
approved the final version.
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3.2 ndexr—an R package to interface with the network data 
exchange

Florian Auer, Zaynab Hammoud, Alexandr Ishkin, Dexter Pratt, Trey Ideker, Frank Kramer

This paper was published in Bioinformatics in October 2017:

– Bioinformatics, Volume 34, Issue 4, 15 February 2018, Pages 716–717; 
– doi: https://doi.org/10.1093/bioinformatics/btx683

Supplementary data:

– A brief introduction to the data structures
– ndexr Reference Manual
– ndexr Cheat Sheet

Software availability:

Bioconductor: https://bioconductor.org/packages/ndexr

Github: https://github.com/frankkramer-lab/ndexr

3.2.1 Summary and discussion
Beside the availability of an adequate data format for conversion and handling of biological networks
from online resources within R, a potent, easy to use, and reliable interface with those is equally
essential.  Modern web-resources offer communication capabilities farther from serving as simple
online  storage  for  retrieval.  Accordingly,  the  possibilities  to  interact  with  the  NDEx  platform go
beyond basic search and access of available networks. Integration of the full potential of the platform
provided by its RESTful API enables to establish collaborative work in a programmatic manner.

The here presented paper exhibits the implementation of the above by ndexr — an R package to
interface with the network data exchange. The package straightforwardly enables CRUD operations
on networks in context with the NDEx platform but furthermore promotes associated administrative
actions. To take full advantage of both authentication against the NDEx platform is required. This
presupposes as user management, and NDEx also incorporates organization into groups, which all
is manageable by function from the ndexr package. 

ndexr allows to search the platform with the same capabilities as the web-interface including in
functions  incorporated  search  parameters.  After  users  login  at  the  NDEx  platform  with  their
credentials networks can be updated or even deleted, appropriate rights to the network presumed.
For network a user owns those rights can be adjusted by assigning read or write permissions to
individual users or groups. Moreover, even users and groups can be managed the same way as
networks: right for participation can be customize and revoked, and both can be created on demand.
The user management goes even one step further and allows to change and reset passwords by
email.

Despite these functionality for administration are networks the central element of the platform and
hence provide further configuration options. The public visibility of networks can be regulated to be
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accessible by its UUID or listed in search results of different users. Also the network properties used
for display in the NDEx web-application, that are also part of the network, e. g. name, description
and version, can be changed and set without retrieving the network beforehand. Furthermore, the
network ownership can be delegated to different users, all by functions provided by ndexr.

The initial network model included in  ndexr proved in practical applications to be  insufficient for
broad adoption and lead to the development of the previously presented RCX data model.  The
complexity  of  both  packages  required  efforts  to  assure  maintainability,  and  to  apply  good
developmental  practices,  both  packages,  RCX  and  ndexr, were  further  developed  distinctly  by
separating data modeling from exchange accordingly.

3.2.2 Declaration of contribution
The project was initialized by Dexter Pratt, Trey Ideker, and Alexandr Ishkin and a draft of the
package was started by  Alexandr  Ishkin.  I  took  over  the  development  of  the  package and
replaced the majority of the existing source code with my own implementation and adjusted the
remainder for consistency in function naming, used parameters, and usage of package internal
functions.  The  supplementary  data  to  the manuscript  was also  contributed by  me.  Zaynab
Hammoud supported in R related questions on implementation details and gave feedback on
the  manuscript.  The  manuscript  itself  was  written  and  revised  by  me,  while  Prof.  Kramer
provided feedback on the initial draft, approved and submitted the final version, and supervised
the review process. 
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3.3 Explaining decisions of graph convolutional neural 
networks: patient-specific molecular subnetworks 
responsible for metastasis prediction in breast cancer

Hryhorii Chereda, Annalen Bleckmann, Kerstin Menck, Júlia Perera-Bel, Philip Stegmaier, Florian
Auer, Frank Kramer, Andreas Leha, Tim Beißbarth

This paper was published in Genome Medicine in March 2021:

– Genome Med. 2021 Mar 11;13(1):42; 
– doi: https://doi.org/10.1186/s13073-021-00845-7

Software availability:

GLRP: http://mypathsem.bioinf.med.uni-goettingen.de/resources/glrp

https://gitlab.gwdg.de/UKEBpublic/graph-lrp

MetaRelSubNetVis: http://mypathsem.bioinf.med.unigoettingen.de/MetaRelSubNetVis

3.3.1 Summary and discussion
Cancer prognosis is generally difficult to predict and underlies various aspects,  and understanding
these  relations  allow  the  development  of  better  treatment  and  thus  foster  patient  survival .  By
measuring  the  molecular  conditions  we  try  to  derive  the  genetic  factors  responsible  for  tumor
progression and metastatic events. The high-dimensionality of measured gene expression makes it
challenging  to  attribute  the  reason  to  certain  genes.  To  improve  the  predictions,  available
background knowledge can be used to better understand the molecular relationships. 

Deep learning  methods have show great  successes in  all  domains  of  science,  and as  well  on
learning features from complex biological data. Convolutional neural networks (CNNs) have proven
their advantages on image data, have great potential for their application to molecular data, and
gene expression in particular. Graph convolutional neural networks (Graph-CNNs) (56) furthermore
are their extension to work on networks natively, and thus allow the integration of biological networks
into the model as prior knowledge. However,  deep learning models are generally considered as
black-box-models, in which the underlying decisions contributing to the outcome of a prediction can
not be back-traced to the those effecting entities. Estimation of the relevance of single genes to the
predicted metastatic events is essential for understanding the molecular nature, and thus develop
improved treatment strategies on this insights.

a) Generation of patient-specific gene relevance scores

The patient-specific relevance scores for the single genes are based on the deep learning model for
predicting the cancer progression in the first place. A Graph-CNN is trained on the gene expression
and molecular network data and the metastatic status predicted for every patient.  Convolutional
neural  networks  were  developed  for  image  data  but  gene  expression  data  does  not  contain
information of the connection between the genes. These linkages between neighboring pixels are
emulated by their distance in HPRD PPI network. The architecture of the Graph-CNN consisted of
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two graph convolutional layers containing 32 filters covering a neighborhood of 7 nodes, followed by
a maximum pooling of 2, and two hidden fully connected layers with 512 and 128 nodes respectively.

To estimate the predictive performance of the GraphCNN model a 10-fold cross validation over a
whole dataset was executed and compared to the performance of a Random Forest model without
any prior knowledge as baseline, and  a network-constrained sparse regression model using the
HPRD PPI network (R package glmgraph, (57)). The results on the performance for  the compared
models is presented in  Table 4 and shows similar great results on all  methods with Graph-CNN
leading.

Table 4: Performance of the different methods on predicting metastatic events in patients

Method AUC (%) Accuracy (%) F1-weighted (%)

Graph-CNN 82.57±1.25 76.07±1.30 75.82±1.33

Random Forest 81.27±1.66 74.23±1.73 73.47±1.84

glmgraph with standardized gene expression 82.16±1.25 76.18±1.36 75.86±1.35

To determine the relevance of the genes for the predictions the GLRP algorithm was developed and
applied to the patients’ prediction. The relevances represent relevant walks from the input gene to
the predicted outcome and are generated for each patient individually. To minimize the information
flow from previous prediction, the gene expression dataset was randomly split in training (90%) and
test (10%) set using manually selected hyperparameters from the previous 10-fold cross validation.
From the 97 patients in the test set only 79 patients with matching predicted and reported metastasis
were considered the generation of patient-specific subnetworks. Application of the GLRP method to
those patients then produces the relevance score of the genes to the prediction.

b) Patient-specific subnetworks

The genes of the breast cancer data set were mapped onto the PPI network from HPRD consisting
of a disconnected graph of 9,898 vertices.  This decreased  the network to 7,168 vertices in 207
connected  components,  from  which  only  the  main  connected  component  was  used  for  further
analysis. This component contains 6,888 vertices, in contrast to the remaining components with only
1 to 4 vertices. The Graph-CNN algorithm requires a connected graph as input which was the initial
reason for this pre-selection.

The 140 most relevant genes were used for each of the 79 patients to induce intermediate patient-
specific  subnetworks.  Those  subnetworks  were  combined  and  again  only  the  main  connected
component  used for  further  processing,  consisting  of  407 nodes.  The relevant  genes  from the
therein contained patient-specific subnetworks were used for subsequent analysis.

Actionable genes withing the patient-specific relevant were identified using the a modified version of
Molecular  Tumor  Board  (MTB)  report  (referred  to  as  “MTB  report”)  (58) method.  The  gene
expression levels served as proxy for gain and loss of function alterations by assuming high and low
expression respectively  for  both.  These were  derived from the gene expression throughout  the
whole patient cohort with the 75% and 25% quantiles as boundaries for high, normal and low levels
of expression.

The results of the MTB report were integrated into the combined subnetworks, together with the
relevance scores, gene expression values and levels, and information of patients survival, cancer
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types and subtypes.  These network then served as  basis  for  visualization in  the newly  for  this
purpose developed MetaRelSubNetVis web-app, and analysis of the results using this application.

c) Analysis of relevant genes

For evaluation of the gene relevance a pathway enrichment analyses was performed on annotated
signal  transduction  pathways  in  the  TRANSPATH® database  (version  2020.1)(59) using  the
upstream analysis  based  on  the  Fisher’s  exact  test  (60) provided  by  the geneXplain  platform
(version  6.1)(61).  The  generated  subnetworks  contained  common  potential  oncogenic  drivers
suggesting  the  extracted  pathways  to  be  fundamental to  cancer.  Their  biological  relevance  is
supported by findings in for specific subtypes: in estrogen receptor positive patients genes were
associated with hormone receptor-positive breast cancer (e.g. CD36, ESR1, GLUL, IL6ST, RASA1),
as well as LumA breast cancer genes associated with the basal-like subtype (e.g., AKT1, EGFR,
SOX4,  and high  levels  of  HNRNPK).  Additionally,  a  significant  enrichment  of  pathways  already
associated with cancer disease mechanisms has been detected, such as the EGF, ER-alpha, p53,
and TGFbeta pathways as well as Caspase and beta-catenin networks.

d) Patient-specific subnetwork visualization

MetaRelSubVis is an Angular based web-app for the visual exploration of the integrated patient-
specific  subnetworks.  The main feature of  the app is  that  the nodes of  the single subnetworks
remain positioned in place while different patients, thresholds, and data based styles for coloring and
sizing  are  applied  (Figure  14).  Thereby  the  single  nodes  can  be  arranged  and  highlighted  by
selection. The application was also used to produce the publication-ready network visualization.

MetaRelSubNetVis is also used for the comparison of metastatic and non-metastatic patients within
Basal  and  LumA breast  cancer  subtypes.  For  both  comparisons  are  the  nodes  highlighted  by
relevance, gene expression and gene expression level (Figure 15). The position of the same genes
is consistent in all subplots. Genes that are only present in one class of cancer progression are
colored in gray with the corresponding half.

e) Findings of subnetwork investigation

MetaRelSubVis allows the exploration of the breast cancer subnetworks of all correctly predicted
patients.  It  contributed  to  the  investigation  of  the  before-mentioned  selected  four  patients  and
revealed  interesting  patterns  in  the  gene  expression.  Figure  15 provides  a  visualization  of  the
comparison of the metastatic versus non-metastatic patient in both breast cancer subtypes. Each
comparison is highlighted by relevance, gene expression, and gene expression level to illustrate the
different effect. The findings are marked in the single visualizations and correspond to the gene lists
in Table 5.

Table 5: Genes relevant for cancer subtypes. The genes are listed by cancer subtype, namely BASAL and 
LumA. The table is arranged in the same order as Fig X. The gene lists are marked within the 
corresponding network visualizations.

BASAL LumA
GSM519217 vs. GSM615695 GSM615233 vs. GSM150990

relevance VIM CAV1, PTPN11, FTL
expression JUP, PCBP1, HMGN2 ESR1, VIM
level MCL1, CTNNB1, EGFR, SOX4 RASA1, IL6ST, KRT19, RPS14
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The sole protein relevant to all 79 correctly predicted and the remaining 18 patient is the eukaryotic
translation elongation factor EEF1A1, which protects tumor cells from proteotoxic stress. Figure 15
shows,  that  it  is  highly  expressed  and  highly  relevant  all  four  patients,  and  is  generally
overexpressed in a majority of breast cancers  (62). Another commonly shared gene between all
patients is VIM, which is an important marker for epithelial-to-mesenchymal-transition (EMT)(63). Its
high  expression   correlates  with  a  motile,  mesenchymal-like  cancer  cell  state,  and thus  drives
metastasis (64) This can be observed by the high expression in both selected metastatic patients,
and low expression in the selected non-metastatic patients, while being relevant for the prediction for
all four. The LumA subtype considered as estrogen receptor positive (65), which is consistent with
the appearance of  ESR1 in both  patients of this subtype. In this subtype also holds the genes
CAV1, FTL and PTPN11, which are known to be involved in aggressive tumor growth or therapy
resistance (66–68).
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Comparing the two cancer subtypes to each other reveals,  that  the generated subnetworks  are
capable to capture subtype specific features, meaning they only appear in one of the four selected
patients: The genes  EGFR, CTNNB1, MCL1 and SOX4 are often associated with poor prognosis in
Basal subtypes, and only found there for the metastatic patient. On the other side, genes linked with
better  prognosis  of  the  same  subtype,  namely  JUP,  HMGN2 and  PCBP1  (69–71),  and  IL6ST,
KRT19, and RASA1, RPS14  (72–75) for the LumA subtype are only found for the non-metastatic
patient. 

The biological relevance of the subnetworks is supported by findings in for specific subtypes: in
estrogen receptor positive patients genes were associated with hormone receptor-positive breast
cancer (e.g. CD36, ESR1, GLUL, IL6ST, RASA1), as well as LumA breast cancer genes associated
with the basal-like subtype (e.g., AKT1, EGFR, SOX4, and high levels of HNRNPK). This suggests
that  our  method successfully  identified relevant  key players with a general  role  in  breast  tumor
genesis.  Nevertheless,  resistance mechanisms in  breast  cancer  targeted therapies  still  found a
major challenge due to the high variability of the interconnections within the network and thus of
signaling pathways, that circumvent therapeutic target.

3.3.2 Declaration of contribution
Hryhorii Chereda and Prof. Beißbarth designed the study with Prof. Bleckmann, Prof. Kramer,
and Philip Stegmaier providing major contributions. Hryhorii Chereda implemented, trained and
evaluated the graph-based deep learning, as well as developed the graph layer-wise relevance
propagation, and applied both to the breast cancer data. He also evaluated the performance of
GCNN on  MNIST dataset.  Thereby,  Andreas  Leha provided  guidance  on  machine  learning
machine learning methods and its validation. Prof. Beißbarth supervised the development and
answered occurring questions on machine learning or related to the underlying biology within
the study.

Pathway  analysis  with  TRANSPATH  database  way  performed  by  Philip  Stegmaier  form
geneXplain. He also compared and evaluated the patient-specific subnetworks with results from
the weighted gene co-expression network analysis. 

I processed the results from the GCNN and consecutive GLRP and integrated them with the
source  networks,  and  the  breast  cancer  patient  and  gene  expression  data.  From  those  I
generated the patient-specific  subnetworks  for  individual  patients  and combined those to a
connected network. Júlia Perera-Bel adapted the MTB report analysis to transcriptomic data
and applied it to a by me provided list of relevant genes. The results then were added by me to
the single and combined subnetworks,  for  which I  generated the visualizations used in  the
publication. I also implemented MetaRelSubNetVis for the representation and investigation of
the network based results. Based on this application Kerstin Menck investigated and evaluated
the  gene  results  for  their  genetic  and  biological  significance  under  supervision  of  Prof.
Bleckmann.
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Figure 15: Comparison of the subnetworks of short vs. long survival of patients with  BASAL (GSM519217
vs. GSM615695) and LumA (GSM615233 vs. GSM150990) breast cancer subtypes visualized by relevance
score, and gene expression value and level.
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3.4 Data-dependent visualization of biological networks in 
the web-browser with NDExEdit

Florian Auer, Simone Mayer, Frank Kramer

This paper was published in PLOS Computational Biology in June 2022:

– PLOS Computational Biology 18(6): e1010205. 
– doi: https://doi.org/10.1371/journal.pcbi.1010205

Software availability:

source code: https://github.com/frankkramer-lab/NDExEdit

live version: https://frankkramer-lab.github.io/NDExEdit

3.4.1 Summary and discussion
In this paper, an application for the browser-based visualization of biological networks is introduced.
Networks in the CX format can be loaded directly from the NDEx platform and their visual attributes
adjusted, depending on the in the network included data. Integrated networks can contain complex
relations that is associated with the individual nodes and edges, and can go far beyond name and
type.  Complex  visualization  require  powerful  tools  to  represent  this  information  an  easily
comprehensible manner.

Application  of  visualizations  to  networks  usually  requires  additional  software  to  be  installed like
Cytoscape. This  is  often not  possible  for  security  reasons or  when internet  access is  restricted
limiting quick changes. The web application can be deployed on own servers to circumvent those
limitations. NDExEdit  is  a simple to use, but no less powerful tool to quickly visualize biological
networks within the web-browser. NDExEdit enables to enhance plain networks for presentation and
publication by applying  attribute-to-visual-mappings and explore the necessary data beforehand.
The  statistics  view  assists  by  selecting  appropriate  attributes  from  provided  distribution  and
coverage charts for each and allows investigation of the network, without applying any changes.
Additionally,  matching  criteria  on  the  data  can  applied  to  be  highlighted  within  the  network
visualization. 

All network visualization can be exported directly to the NDEx platform, as CX-file, or  as an image in
PNG-  or  JPEG-format.  The  NDExEdit  application  illustrates  the  great  potential  of  web-based
visualization solutions for integrated and collaborative workflows in biological research (Figure 16). It
narrows the gap between desktop clients to create, edit and beautify a network, and platforms to
distribute them. The aim is not to replace established visualization software like Cytoscape but rather
contribute to the community by closing this gap in working with biological networks.
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Figure  16:  Comparison  of  the  visualization  workflow  in  NDExEdit  and  Cytoscape.  The  different
visualization options for mappings and layouts are visually demonstrated.
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3.4.2 Declaration of contribution
Simone Mayer implemented a first  version of the application within the practical part  of  her
Bachelor  thesis  and improved it  afterwards in  her role as student  assistant,  both under my
supervision. I contributed for the implementation detailed insight on the CX data structure, the
NDEx API, the definition of the Cytoscape derived mappings, and the layout algorithms. Simone
Mayer was guided by me for the implementation of which she took over the majority, whereas I
further took care of testing, error correction and code review, and lead the incremental releases.

The  manuscript  was  written  by  me with  feedback  from Simone Mayer,  while  Prof.  Kramer
approved the final version. 
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3.5 MetaRelSubNetVis: Referenceable network 
visualizations based on integrated patient data with group-
wise comparison

Florian Auer, Simone Mayer, Frank Kramer

A preprint version is available at bioRxiv:

– bioRxiv 2022.04.18.488628; 
– doi: https://doi.org/10.1101/2022.04.18.488628

Software availability:

source code: https://github.com/frankkramer-lab/MetaRelSubNetVis

live version: https://frankkramer-lab.github.io/MetaRelSubNetVis

3.5.1 Summary and discussion
MetaRelSubNetVis is a web application that allows an interactive and comparative visualization of
networks integrated with data from several groups and individuals. Users can investigate the results
of preceding analysis with options to highly customize the view, as well as the selection options of
those. The group-specific information can be inspected, visualized, and finally exported as images,
or shared using custom links. A major aspect of MetaRelSubNetVis is that all nodes remain at the
same  position regardless the selected patients, layouts, thresholds, or highlighting. Furthermore,
results for different groups within the network can be investigated side by side, thus foster a more
comprehensible visual comparison of the contained data (Figure 17).

The networks  can be directly  loaded from the  NDEx platform,  not  only  promoting  collaborative
workflows through this platform but also prevent  problems of incompatibilities due to differing data
formats or finding individual hosting solutions for the created networks. By sharing a link to a specific
visualization with set layout configuration facilitates collaboration, communication and exchange of
network  visualizations  furthermore  (Figure  17).  These option  also  include specifications  to  hide
specific  parts  of  the  sidebar  or  even  the  sidebar  in  total.  This  allows  to embed  a  network
visualizations within  other  web applications sparing the users of  the development  of  proprietary
visualization applications.

Individual visualization of networks require the definition of the contained data and its attributes for
representation of the corresponding features within the application. This information is contained in a
custom aspect for the CX data model (see  Code 8) which will be treated opaquely by the NDEx
platform. For usage of the custom aspect within other applications, a corresponding implementation
extending the RCX data model (Chapter 3.1) is provided along the application. 

MetaRelSubNetVis has already proven its great potential by its application in Chapter 3.3, where it
was successfully used for the exploration, interpretation and visualization of the created patient-
specific subnetworks. Since its introduction it underwent further progression to simplified its usage
and  allowing  simple  adoption  for  distinct  integrated  networks.  Implementation  of  referable
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visualizations provides a key stone for collaborative work on integrated networks and a powerful
option to integrate network visualizations in further applications.

Code 8: Costom CX aspect metaRelSubNetVis with its own structure and properties

{“metaRelSubNetVis”: [{
    “highlight" : "#000000",
    "properties" : [
        {"property": "Occurrence", "label":"Occurrence", 
         "type":"continuous", "threshold":true, 
         "mapping":{"1":"#c7c7c7", "79":"#388eff"}},
        {"property":"qvalue", “label":"q-value",
         "type":"continuous", "threshold":true,
         "mapping":{"1.0":"#c7c7c7", "0.0":"#ff0000"}},
        {"property":"significant", "label":"significantly DE", 
         "type":"boolean", "mapping":{"true":"#00ff00"}}
        ],
    "individual_properties" : [
        {"property":"GE", "label":"Gene Expression",
         "type":"continuous", "threshold":true, 
         "mapping":{"8.5":"#599eff", 
                    "11.4":"#e8e857", 
                    "14.2":"#ff3d6a"}},
        {"property":"GE_Level", "label":"Gene Expression Level", 
         "type":"discrete", 
         "mapping":{"LOW":"#599eff", 
                    "NORMAL":"#e8e857", 
                    "HIGH":"#ff3d6a"}},
        {"property":"Score", "label":"Relevance", 
         "type":"continuous", "threshold":true, 
         "mapping":{"0.000298":"#599eff", 
                    "0.00061":"#e8e857", 
                    "0.000922":"#ff3d6a"}},
        {"property":"MTB", "label":"MTB results", 
         "type":"boolean", "mapping":{"true":"#00bb00"}}

]
}]}
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3.5.2 Declaration of contribution
The first implementation of MetaRelSubNetVis was done by me in the course of my contribution to
the work presented in Chapter 3.3. Simone Mayer helped in implementing the improvements made
afterwards  in  her  role  as  student  assistant  under  my  supervision.  For  the  advancements  I
contributed for the implementation detailed insight on the CX data structure, the NDEx API, and the
specialized  concentric  layout  algorithm.  Furthermore,  I  developed  the  custom  CX  aspect  and
implemented its  extension  for  the  RCX data  model.  Simone Mayer  was guided by  me for  her
implementation  tasks,  and  additionally  I  took  care  of  testing,  and  code  review,  and  lead  the
incremental releases. The manuscript was written by me with feedback from Simone Mayer, while
Prof. Kramer  approved the final version. 
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Figure  17: Comparative visualization of the patients GSM519266 and GSM519167 from the Combined
patient-specific  breast  cancer  subnetworks  reachable  through https://frankkramer-lab.github.io/
MetaRelSubNetVis?uuid=a420aaee-4be9-11ec-b3be-0ac135e8bacf&pa=GSM519266&
pb=GSM519167&th_GE=8.532345888264551&th_Score=0.00029828155&col=Score&size=GE&
all=false&shared=true&bool=MTB&sb=0&cP=1&cT=1&cN=1&cL=0&cD=1&cG=1&cIm=1

https://frankkramer-lab.github.io/MetaRelSubNetVis?uuid=a420aaee-4be9-11ec-b3be-0ac135e8bacf&pa=GSM519266&pb=GSM519167&th_GE=8.532345888264551&th_Score=0.00029828155&col=Score&size=GE&all=false&shared=true&bool=MTB&sb=0&cP=1&cT=1&cN=1&cL=0&cD=1&cG=1&cIm=1
https://frankkramer-lab.github.io/MetaRelSubNetVis?uuid=a420aaee-4be9-11ec-b3be-0ac135e8bacf&pa=GSM519266&pb=GSM519167&th_GE=8.532345888264551&th_Score=0.00029828155&col=Score&size=GE&all=false&shared=true&bool=MTB&sb=0&cP=1&cT=1&cN=1&cL=0&cD=1&cG=1&cIm=1
https://frankkramer-lab.github.io/MetaRelSubNetVis?uuid=a420aaee-4be9-11ec-b3be-0ac135e8bacf&pa=GSM519266&pb=GSM519167&th_GE=8.532345888264551&th_Score=0.00029828155&col=Score&size=GE&all=false&shared=true&bool=MTB&sb=0&cP=1&cT=1&cN=1&cL=0&cD=1&cG=1&cIm=1
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3.6 Reproducible data integration and visualization of 
biological networks in R

Florian Auer, Hryhorii Chereda, Júlia Perera-Bel, Frank Kramer

A preprint version is available at bioRxiv:

– bioRxiv 2022.04.15.488519
– doi: https://doi.org/10.1101/2022.04.15.488519

Software availability:

source code: https://github.com/frankkramer-lab/reproducible-network-visualization

documentation: https://frankkramer-lab.github.io/reproducible-network-visualization

3.6.1 Summary and discussion
This manuscript demonstrates the in Chapter 3.3 performed workflow for the generation of patient-
specific subnetworks for a large breast cancer data set in more detail, along with a collection of tools
to  perform network  data  integration  and  customized  visualization  of  group-  and  network-wise
attributes. To enable reproducibility of the all necessary steps the network model was updated to the
RCX data structure (Chapter  3.1) and the intermediate and final results were stored on the NDEx
platform using the  ndexr package (Chapter  3.2).  Also  several software tools for the visualization
were explained in detail with their individual usage or in combination to produce equivalent results.
Those mainly evolve around the NDEx platform which  allows the documentation of the performed
integration steps and serves as interface for the used web-based solutions.  The inclusion of the
visualization within the networks contributes to the comprehensibility of the results as well as fosters
compatibility and flexibility across the different tools. 

The illustrated  tools represent a broad range of possibilities of network visualization. A standard R
visualization  of  networks  is  shown  with  the  igraph package,  and  more  complex  options  are
demonstrated with the RCX package which natively includes the feature to store the visualization
within  the  networks.  The  visualization  is  based  on  the  attribute-to-visual-mappings used  by
Cytoscape and the NDEx platform in a congruent manner. The usage of Cytoscape to produce the
same visualization by being remotely controlled from within R with RCy3 is also demonstrated based
on the RCX data model. A equivalent visualization is also demonstrated using NDExEDIT (Chapter
3.4) with the NDEx platform as source for the networks and to store the styled results. Finally, the
fully integrated network stored on the NDEx platform can be used directly within MetaRelSubNetVis
(Chapter  3.5) to enable interactive comparison and visual exploration of the enriched network, as
well as to provide and platform for sharing specific visualizations of the data. Only the combination of
the  presented software  tools,  platforms  and  packages  promotes  an  integrated  environment  for
reproducibility of  integration, exploration, and visualization of integrated network data.
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3.6.2 Declaration of contribution
Hryhorii Chereda provided insight on the results of the preceding deep learning and relevance
propagation. I processed the results, integrated the data and generated lists of relevant genes
for  each  patient,  and  the  patient-specific  subnetworks  for  individual  patients  as  well  as  a
combined network. Júlia Perera-Bel adapted the MTB report analysis to transcriptomic data and
applied it to the generated list of relevant genes. Based on the collected results I created their
different visualizations and the documentation of them. However, for publication I also re-wrote
the MTB report scripts to work without downloading the additional required data, improved the
performance, and added documentation.
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3.7 Adaptation of HL7 FHIR for the exchange of patients’ 
gene expression profiles

Florian Auer, Zhibek Abdykalykova, Dominik Müller, Frank Kramer

This paper was published in Studies in Health Technology and Informatics in June 2022:

– Stud Health Technol Inform. 2022 Jun 29;295:332-335. 
– doi: https://doi.org/10.3233/shti220730

Software availability:

source code: https://github.com/frankkramer-lab/gene-expression-on-fhir

live version: https://frankkramer-lab.github.io/gene-expression-on-fhir/

3.7.1 Summary and discussion
For  clinical  application  integration  of  the  result  into  healthcare  systems  is  as  important  as  the
performed analysis itself. Therefore, this paper illustrates the exchange of gene expression profiles
using  FHIR resources  as established standard for sharing clinical information. Although the FHIR
definition already includes options  to  share patients’ genomic  features,  possibilities  to  represent
additional molecular omics data within the standard is currently missing. Adoption of this standard for
transcriptomic information allows to demonstrates its feasibility  for usage in a clinical setting, thus
promoting  its application within clinical decision support systems or for patient assessment. This
work  aims for closing this gap and enabling patient stratification through transcriptomic profiling in
multi-center clinical trials across health care institutions.

The work was demonstrated on the gene expression analysis data set that examines a dose-limiting
side effect in patients diagnosed with acute myeloid leukemia (AML) undergoing chemotherapy (76).
The choice for this data set was dependent on its comparably small  size, making it  suitable for
demonstrating the application in FHIR, in contrast to the large breast cancer dataset. A custom HAPI
FHIR server was deployed using docker container to provide an adequate FHIR endpoint.

A collection of FHIR resources were used to capture patient information, derived samples, and their
molecular conditions, namely Patient, Specimen, and Condition respectively.The analysis was based
on the GRCh38.p13 reference genome, which was included entirely as  MolecularSequence FHIR
resources, which then could be used as references for the single gene expression values. Those
were realized as Observation resources with the Observation-genetics extension and link patients
and their different samples with the corresponding genes. In total translated the data to 252,684
resources stored on our FHIR server, while for performance issues not all gene from the reference
genome (21,055 from 60,617 ensemble  entries  in  total)  were  encoded in  FHIR but  only  those
available in the gene expression data.

To demonstrate the practical application of the FHIR resources a web application was implemented
in Angular using the created resources directly form the FHIR server. The different resources were
retrieved from the  FHIR  server,  linked  and  combined into  a  visual  representation  of  the  gene
expression across the patient  samples.  The different  patients,  their  samples,  and corresponding
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expression profiles can be investigated individually, or as combined heatmap representation for all or
selected sets of genes.

3.7.2 Declaration of contribution
Zhibek Abdykalykova developed a first proof-of-concept including Patient, MolecularSequence, and
Observation resources  in  her  Bachelor  thesis  under  my  supervision.  Afterwards  I  extended the
python scripts  with  additional  background and study  related information  from the data set,  and
further cross-references to external databases, thereby adding Specimen and Condition resources. I
also added the bash scripts and configuration files for setting, and replaced the initial JQuery based
website with an own implementation as single-page web-application written with Angular.

Dominik  Müller  supported  the  supervision  of  the  Bachelor  thesis  and implementation  in  python
related issues, and assisted in the preparation of the manuscript. The manuscript was written by
myself with feedback from Dominik Müller, and approval by Prof. Kramer.
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4 Summary and Conclusion

The previous sections presented publications introducing a collection of tools, methodologies, and
workflows for the integration, analysis, and visualization of biological networks within a biomedical
context. The integration of omics and network data from various sources to generate patient-specific
subnetworks  is  the  superordinate theme of  this  thesis,  along with  a  combination of  the distinct
resources to establish a comprehensive knowledge base documenting the reproducibility and further
investigations.  In the following,  the focus rests  on the relation between the single chapters and
illustrates the interplay of the presented instruments to foster individualized treatment decisions in a
clinical setting (Figure 18).

Chapter 3.1 introduces the RCX package, which forms the cornerstone around which the following
network  data  integration  and  visualization  evolves.  The  basic  CX  focuses  on  the  exchange  of
biological networks through the web and therefore follows a dynamic object-oriented structure for
encoding  its  content.  This  contrasts  with  the  vector  and table-centric  view on data  within  R,  a
shortcoming resolved by the functions for the lossless conversion between both realms provided by
this package. Furthermore, the included RCX data model also captures the relations between the
different  components  of  the network,  which might  easily  be corrupted otherwise.  To ensure the
correctness of  the data model and its internal relations the package provides functions for their
validation,  either  for  a  network  as  a  whole  or  at  aspect  level.  This  is  particularly  useful  as
automatically included validation step during the modification of networks or while creating within the
package included functions.

A simple adaption to standard R data types would still  be insufficient  for  its  usability  with well-
established data models for graph and network analysis and visualization in R. Therefore the RCX
package includes functions for the conversion to and from iGraph and Bioconductor graph, and as a
result integrates with existing workflows. However, in contrast to these network data formats is the
visualization included within the  RCX  network and shared along with it. As a consequence is the
visual representation of the network congruent across the NDEx platform, Cytoscape, NDExEdit,
and the RCX package included visualization.

The  RCX data  model  is  also  used within  the  in  chapter  3.2 presented ndexr  package for  the
seamless data exchange with the NDEx platform. The package methods enable interaction with the
platform API  of  public  and private  instances.  The NDEx platform can be queried and available
networks, their single aspects, metadata, or additional network information retrieved from within R. It
also allows the upload of own networks and adjustment of their visibility on the platform and provides
an option for sharing them with certain users or groups. The  RCX  and the  ndexr  package were
implemented independently to separate the data model from the interface dealing with the server
communication, and thereby ease maintainability and promote robustness against changes in both.

Networks created and enriched with additional information using the RCX package and uploaded to
the NDEx platform, or already there publicly available networks do not necessarily contain a proper
visualization.  Moreover,  included  visualizations  may  not  be  sufficient  to  reflect  all  present
information. Even minor changes in the visualization require an additional tool for the adjustments
and, more importantly, profound knowledge of the contained data, its coverage of the network, and
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the distribution of its values. The in chapter 3.4 introduced web application NDExEdit integrates with
the NDEx platform and simplifies data exploration and adjustments to the visualization. Its data-
centric  perspective  on  networks,  together  with  its  online  availability  and  no  requirement  for
installation  distinguishes  NDExEdit  from  other  common  tools  like  Cytoscape.  Furthermore,  the
linkage to NDEx allows quick sharing of the results with collaborators, as well as the simple re-use of
the prepared visual properties within R using the RCX and ndexr packages.
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Figure  18: Interplay of the tools presented in this thesis. The tools are marked with the number of the
corresponding sub-chapter they have been introduced.
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All  the previous  tools  for  network  data handling,  integration,  and visualization have firstly  been
applied for the generation of patient-specific subnetworks in breast cancer patients. Chapter  3.3
demonstrates the application of graph-based deep learning algorithms for the prognosis of patient
survival  and  introduces  a  novel  method  for  the  attribution  of  the  predictions  to  the  individual
molecular conditions. The first part was realized by adapting convolutional neural networks to take
graphs as an additional input layer to the learning algorithm and allow in this way the usage of
biological networks for training and prediction. These graph convolution neural networks not only
take gene expression as the base for the prediction but also consider the context of the single genes
in the form of the interactions between them. Thereby the paper demonstrates that the performance
of the model is comparable to state-of-the-art machine learning algorithms like random forests.

Besides  the patients’ prognosis  for  the occurrence of  distant  metastases,  the information about
which genes promote these events is more significant for clinical applications and subsequently for
individualized treatment decisions. Extension of layer-wise relevance propagation technique to the
graph domain allows deriving the contribution of the single genes to a prediction. Application of the
GCNN and GLRP approach to  the  breast  cancer  data  set  revealed both  subtype-  and patient-
specific genes. Furthermore, these results could be shown to be in concordance with genes known
from the literature to be relevant for tumor progression and as targets in established therapies.

The  deducted  relevance  score  was  also  used  to  induce  patient-specific  subnetworks  by  only
considering  the  most  relevant  genes  to  the  prediction.  Therefore,  the  web-based  tool
MetaRelSubNetVis was developed to investigate the subnetworks in an interactive manner (Chapter
3.5).  Besides  exploring  the  patient-specific  subnetworks  the  MetaRelSubNetVis  enables
comparisons between the two groups of patients with and without metastasis. It allows the setting of
node size and color by the gene expression value and level, and relevance score while keeping the
node positions consistent  among all  changes.  Together with the adjustment of  the threshold for
relevant  genes it  enables  a more in-depth investigation of  the patient-specific  subnetworks  and
facilitates their interpretability in a biological context on the patient level.

The integration of omics data with biological networks, and concurrent visualizations need to be
documented simultaneously to enable reproducibility of the workflows. Chapter 3.6 examines the in
the previous chapter performed steps in detail: Starting with the HPRD protein interaction network
and the breast  cancer  gene expression  data set,  including information about  patient  metastatic
status, and the relevance scores as a result of the GLRP analysis, data integration is performed
incrementally and interim stages are captured in a reproducible manner. The visualization of the
integrated  network  data  at  the  various  steps  is  crucial  for  transparency,  quality  control,  and
reproducibility, and is built upon the tools presented in this thesis.

NDEx provides capabilities important for collaboration on intermediate results and sharing of the
final outcomes. Therefore, it serves as the central repository and acts as a knowledge base for the
performed tasks.  Biological  networks  from public  databases used as  an  initial  resource  for  the
analysis  are stored and published on NDEx. Subsequent integration and visualization steps are
documented as liked snapshots of  the enriched networks and are available as a supplement in
publications.

Creating network visualizations  manually  within  R is  a  complex  task,  especially  because of  the
structure and its dependencies used for storing the visual properties within the network. The desktop
software Cytoscape, from which the format is derived, provides with RCy3 an R package to remotely
control the application for the programmatic creation of visualizations. The paper demonstrates the
different tools to achieve the same visualization of the final results and highlights the advantages
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and drawbacks of the different approaches: a web-based visualization using NDExEdit, controlling
Cytoscape with RCy3, manually creation of the visual properties in RCX, and preparation of the final
network for the utilization in MetaRelSubNetVis.

The in chapter 3.7 presented work demonstrates the usage of FHIR resources for the exchange of
gene expression profiles within  a clinical  setting.  Integration of  the created resources within  an
Angular web application illustrates their potential application in decision support systems. This work
contributes to closing this gap for patient stratification through transcriptomic profiling across health
care institutions and within multi-center clinical trials.

The  further  incorporation  of  currently  missing  genomic  features  into  the  FHIR  standard  offers
additional  opportunities to develop a standard for  the aggregation of  various molecular  genetics
data. Currently there is no possibility to encode biological networks, or networks in general, within
the existing FHIR standard natively. A possible solution would entail the following: The inclusion of
networks  as  primitive  data  type,  including  nodes  and  edges,  the  definition  of  a  FHIR-
BiologicalNetwork resource, and profiling of an extension of the  Observation resource pointing to
this  new resource.  In  general  it  is  feasible  and enabled within  the FHIR specification to  define
custom resources and their usage at private servers. Some FHIR server, like the Firely server, can
even handle these resources when the appropriate structure definition is provided. However, the
usage then is limited to these servers, and the exchange of resources outside ones programming
control  boundaries  cannot  be  ensured.  A  wide-spread  adoption  among  working  groups  and
institutions could establish consistency but would cause a tremendous effort in maintenance and
coordination. A slight change in the data structure definition would effect incompatibility between
servers  with  different  versions  and thereby ruin  the  to  the  standard  eponymous interoperability.
Ultimately, only the integration into the FHIR core specification can guarantee consistency and long
term adaptation, but this is also a long-lasting process even within fast pace FHIR community.

This thesis illustrates, how the presented tools and techniques can be combined to establish and
maintain a knowledge base for the examination of enriched biological networks composted from
various sources. Since not only the single resources for molecular interactions and patients’ omics
data  are  publicly  available  but  also  documented along each performed analysis  step,  the  here
presented work significantly contributes to the reproducibility in network biology. The interface to
clinical systems using the FHIR standard for sharing patients’ omics data within a hospital setting
further  fosters  interoperability  between  bioinformatics  and  medical  informatics  approaches.
Moreover,  it  facilitates  the  traceability  of  findings  of  diagnostic  and  therapeutic  importance  by
narrowing the gap between both domains. With the here presented work, individualized treatment
decisions become to some extent more widely and easily available, and thereby support clinicians in
providing improved patient treatment.
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Abstract

Motivation: The Cytoscape Exchange (CX) format is a JSON-based data structure designed for the transmission of
biological networks using standard web technologies. It was developed by the network data exchange, which itself
serves as online commons to share and collaborate on biological networks. Furthermore, the Cytoscape software
for the analysis and visualization of biological networks contributes structure elements to capture the visual layout
within the CX format. However, there is a fundamental difference between data handling in web standards and R.
A manual conversion requires detailed knowledge of the CX format to reproduce and work with the networks.

Results: Here, we present a software package to create, handle, validate, visualize and convert networks in CX
format to standard data types and objects within R. Networks in this format can serve as a source for biological
knowledge and also capture the results of the analysis of those while preserving the visual layout across all
platforms. The RCX package connects the R environment for statistical computing with outside platforms for storage
and collaboration, as well as further analysis and visualization of biological networks.

Availability: RCX is a free and open-source R package, available on Bioconductor from release 3.15 (https://biocon
ductor.org/packages/RCX) and via GitHub (https://github.com/frankkramer-lab/RCX).

Contact: florian.auer@informatik.uni-augsburg.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Biological networks are a common and widely used resource to capture
associations between any types of biological entities such as genes, tran-
scripts, proteins, metabolites, ligands, diseases or drugs. Furthermore,
the data formats used for encoding the network information differ
heavily depending on the contained data and their intended use.

A variety of public databases provide their biological knowledge
in domain-specific exchange formats. In subsequent analyses, those
networks are further enriched with heterogeneous data and there-
fore require a more flexible format for capturing their content.
Additionally, the layout and visualization of networks are often not
considered as part of the network and omitted.

The Cytoscape exchange (CX) format covers the above short-
comings by following an aspect-based design: the network is split
into independent modules (aspects) with specific schemes for the in-
formation they contain. For example, the edges aspect comprises
the interactions between the nodes defined in the nodes aspect, and
the cartesianLayout aspect provides the coordinates to position the
nodes in space. The CX format was developed by the Network Data
Exchange (NDEx), an online commons for biological networks
(Pratt et al., 2015). The schemes for aspects responsible for storing
visual attributes are derived from Cytoscape (Shannon et al., 2003),

one of the most popular open-source software tools for the analysis
and visualization of biomedical networks. Both Cytoscape and
NDEx use the CX format for the exchange of the networks between
their platforms with consistent visualizations.

Users of the statistical programming language R (R Development
Core Team, 2008) can use existing packages like rBiopaxParser
(Kramer et al., 2013) to retrieve biological knowledge from public
databases and conduct further analyses. The ndexr package (Auer
et al., 2018) interfaces with the NDEx platform to store subsequent
results. However, the included data model is a simple conversion of
the JSON structure that conflicts with the table-oriented approach
in R. Consequently, constructing valid networks requires advance
knowledge and hinders the adoption of the software by a large user
base. The RCX package implements the aspect-oriented design
while allowing the user to focus on the networks instead of the
underlying data structure.

2 Features

The RCX package provides custom functions for the creation and
modification of aspects and networks in RCX format. Additional func-
tions are provided to validate data types, aspects properties and refer-
ences between the aspects, even after manual editing. The CX format
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also requires a meta-data aspect that provides an overview of the
included aspects (e.g. number of elements within the aspects). Within
RCX objects, this meta-data is created and updated automatically.

The RCX package not only provides accessibility of networks in
CX format, but it also provides conversion to and from objects of
iGraph (Csardi and Nepusz, 2006) and Bioconductor graph
(Gentleman et al., 2021), both widely used libraries for graph ma-
nipulation and network analysis (Fig. 1).

The R-based visualization of the networks is congruent with its rep-
resentation in both the NDEx platform and Cytoscape. It also can be
exported as an HTML file for further use. Since the visual representa-
tion is saved as an aspect within the network, it can easily be reused to
layout additional networks in the same style without modification.

A key feature of the aspect-oriented design of the CX format is
to allow the definition of custom aspects. Therefore, the RCX pack-
age was designed with a focus on extensibility with additional func-
tions for the creation, modification, conversion and validation of
custom aspects.

Detailed documentation and examples can be found in the pack-
age manual and vignettes. Supplementary Materials contain code
examples for working with RCX networks and their creation.

3 Implementation

The RCX package builds upon several R packages for data process-
ing and graph representation. The CX networks are read and writ-
ten with the readr package. The obtained JSON is transformed and
further processed using the jsonlite (Ooms, 2014) and tidyr packages
(Wickham, 2011).

The visualization was realized with the JavaScript library cyto-
scape.js (Franz et al., 2016) and a custom script to map the visual
properties between the in CX used Cytoscape properties to cytosca-
pe.js compatible layout definitions.

4 Conclusion

The RCX package is a freely available R software tool that enables
the lossless conversion between the object-oriented JSON format
of the CX data structure and the table-like paradigm of data in R.
The data model was designed to enhance usability and enrich func-
tionality by a better adjustment to fundamental R data structures
and adding high-level functions for data manipulation.

Integrated conversion to igraph and Bioconductor compatible
graph objects fosters the accessibility to advanced network analysis
tools. Furthermore, extensibility was increased by facilitating the
creation of custom aspects that cover specialized extensions to the
CX data model.

By implementing this software, we ease the task of handling net-
work data available via NDEx within the R Framework for
Statistical Computing. Enriched networks as results of investigations
and their visualizations can be easily created and translated to the
CX format that connects analysis, visualization and collaboration.
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Abstract

Motivation: Seamless exchange of biological network data enables bioinformatic algorithms to in-

tegrate networks as prior knowledge input as well as to document resulting network output.

However, the interoperability between pathway databases and various methods and platforms for

analysis is currently lacking. The Network Data Exchange (NDEx) is an open-source data commons

that facilitates the user-centered sharing and publication of networks of many types and formats.

Results: Here, we present a software package that allows users to programmatically connect to

and interface with NDEx servers from within R. The network repository can be searched and net-

works can be retrieved and converted into igraph-compatible objects. These networks can be modi-

fied and extended within R and uploaded back to the NDEx servers.

Availability and implementation: ndexr is a free and open-source R package, available via GitHub

(https://github.com/frankkramer-lab/ndexr) and Bioconductor (http://bioconductor.org/packages/

ndexr/).

Contact: florian.auer@med.uni-goettingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Networks are a convenient representation of complex relations and

interactions and are commonly used in a wide range of fields in biol-

ogy. The information represented in networks can range from

knowledge on molecular interactions and cellular pathways (Hucka

et al., 2003; Kohn, 1999) to the results of bioinformatic methods for

network reconstruction (Margolin et al., 2006).

Public databases Reactome (Fabregat et al., 2016) provide access to

the rapidly increasing body of biological pathway knowledge and are a

well-established source for hypothesis generation and testing. Existing

packages, like rBiopaxParser (Kramer et al., 2013), already enable users

of the statistical programming language R (R Development Core Team,

2008) to work with biological pathway data.

Researchers, however, still face challenges in dealing with network

complexity, diverse data formats, the integration of network analysis

tools and methods to share and collaborate on pathway data.

2 Network data exchange

The network data exchange (NDEx) is an open-source software

framework to manipulate, store and exchange networks of various

types and formats (Pratt et al., 2015).

The NDEx can be used to upload, share and distribute network

data, facilitating the creation and curation of networks by users and

communities. It can serve as both a source for networks consumed by

applications and a destination for the networks that they produce.

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 716
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The server can be accessed by end users via a web interface and

by programs using a relational state transfer application program-

ming interface (REST API) (Fielding and Taylor, 2002).

3 Features

This package provides an interface to NDEx installations from

within R and enables a seamless transition from data acquisition to

statistical analysis.

Using the NDEx REST API, this package provides an interface to

the public NDEx server, as well as private installations, enabling pro-

grams to upload, download or modify biological networks. The pack-

age also provides classes to implement the cytoscape cyberinfrastructure

(CX) format, a flexible, modular and extensible data structure for the

transmission of networks. Furthermore, it provides conversion to ob-

jects of the iGraph package (Csardi and Nepusz, 2006), a widely used

library for graph manipulation and network analysis.

A typical workflow illustrating the most important features of this

package is described in Figure 1 and might include following steps:

Browse, search and query NDEx to find a network of interest, ei-

ther as an authenticated user or as an anonymous visitor.

Download a network into R and convert it to built-in data struc-

tures resembling the CX structure or to an iGraph object.

1. Perform some network analysis (3a) or apply a typical bioinfor-

matics workflow by integrating additional data and subse-

quently selecting a subnetwork (3b).

2. Upload the newly created network to the NDEx server.

3. Share the preliminary network only with certain people (5a) or

groups of persons (5b).

4. Collaborate with other people or groups to amend and complete

the network.

Reveal the network to the public and/or provide it as supplement

along a publication.

Detailed documentation and examples can be found in the package

vignettes and manual. The Supplementary Materials contain code ex-

amples for common procedures to interact with the public NDEx server.

4 Implementation

The ndexr package is based on several R packages for data process-

ing, internet communication and graph representation. Network

connections to the NDEx server APIs are handled using the httr

package. Network data is de- and encoded, as well as transformed

into the different interchangeable data structures using the jsonlite

package and the plyr and tidyr packages (Wickham, 2011).

This package also provides classes specifically tailored to cope

with NDEx and analysis: The package supports NDEx versions 1.3

and 2, and new features and API specifications will be included in

regular package updates. Additionally, it is possible to switch and

modify the API configuration manually.

5 Conclusion

The ndexr package is a freely available R software tool which enables

users to connect to and interact with NDEx servers. Package methods

enable networks to be found via queries, retrieved and be converted

into igraph compatible graph objects. These graphs can be used and

modified within R and uploaded to the NDEx servers. By implementing

this software, we ease the task of retrieving and using network data

available via NDEx within the R Framework for Statistical Computing.
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Background
Gene expression profiling by microarrays or next-
generation sequencing has played a significant role in
identifying predictive gene signatures and discovering
individual biomarkers in cancer prognosis [1]. High-
throughput sequencing produces huge amounts of gene
expression data that can potentially be used for deriving
clinical predictors (e.g., predicting occurrence of metas-
tases) and identifying novel drug targets. Breast cancer
is one of the paradigmatic examples of the utility of
high-throughput data to derive prognostic molecular sig-
natures (PAM50, MammaPrint, OncotypeDX) [2, 3] that
predict clinical outcome. Based on the expression of 50
genes, the PAM50 classifier is widely used to divide breast
cancers into four main molecular subtypes: luminal A,
luminal B, triple-negative/basal-like, and HER2-enriched
[4]. While the two luminal subtypes are characterized
by high hormone receptor expression and generally have
a better prognosis, the basal-like breast cancers are a
heterogeneous group of hormone receptor- and HER2-
negative breast cancers that are highly proliferative and
often metastasize early. MammaPrint and OncotypeDX
are 70- and 21-gene expression signatures that strat-
ify patients according to the likelihood of metastasis.
Although molecular signatures have prognostic impact,
a more complete analysis of the molecular characteris-
tics in the individual patient is required for personalized
breast cancer therapy [2]. We hypothesize that molecular
signatures can differ from one patient to another due to
the heterogeneity of breast cancers. Such molecular sig-
natures can be depicted as patient-specific subnetworks
that are parts of a molecular network representing back-
ground knowledge about biological mechanisms. Present-
ing interpretable patient-specific subnetworks to clini-
cians and researchers enables better interpretability of the
data for further medical and pharmaceutical insights, and
possibly, for extended treatment options.
From a machine learning (ML) perspective, the pre-

diction of a clinical outcome is a classification task, and
molecular signatures can be identified as discriminative
features. One drawback is that the search for molecular
signatures is based on high-dimensional gene expression
datasets, where the number of genes is much higher than
the number of patients. The “curse of dimensionality”
leads to instability in the feature selection process across
different datasets. Stability can be improved including
prior knowledge of molecular networks (e.g., pathways)
into ML approaches [5]. ML methods benefit from path-
way knowledge since neighboring genes are not treated
as independent but instead similarities among adjacent
genes, which should have similar expression profiles, are
captured [6].
The essence of our classification task is to predict

an occurrence of distant metastasis based on gene

expression data structured by a molecular network
(encoded as a graph) representing connections between
genes. The patients are represented as graph signals (gene
expression data) on a single graph. Since each vertex of a
molecular network has a corresponding gene expression
value as an attribute, we perform a graph signal clas-
sification task. Patients’ gene expression profiles create
different graph signal patterns that can be learned by the
means of deep learning.
In recent years, deep learning has been widely applied

on image data using convolutional neural networks
(CNNs). The CNNs exploit the grid-like structure of
images and cannot directly process data structured in
non-Euclidean domains. Examples of non-Euclidean data
domains include networks in social sciences and molec-
ular networks in biology. Recently, deep learning meth-
ods extended to domains like graphs and manifolds [7].
Graph-CNN [8] learns graph signal patterns and can be
applied to our graph signal classification task.
Deep neural networks are able to model complex inter-

actions between the input and output variables. This com-
plexity does not allow to track what role a particular input
feature plays in the output; thus, a neural network itself
as a black-box ML model does not provide interpretable
insights.
On the other hand, decisions proposed by neural net-

works have to be explained before they can be taken
into account in the clinical domain [9]. The Euro-
pean Union’s recent General Data Protection Regulation
(GDPR) restricted automated decision making produced
by algorithms [10]. Article 13 of [10] specifies that clin-
ics should provide patients with “meaningful information
about the logic involved”. Article 22 of [10] states that
a patient shall have the right not to be subject to an
automated decision unless the patient gives a consent
with it (paragraph 2.c). Therefore, the explainability of
deep neural networks becomes an imperative for clinical
applications.
Explanation methods aim at making classification deci-

sions of complex ML models interpretable in terms of
input variables. These methods use one of two avail-
able approaches [11]: functional or message passing. The
first group of methods produces explanations out of local
analysis of a prediction. It includes the sensitivity anal-
ysis, Taylor series expansion, and the model agnostic
approaches LIME [12] and SHAP [13]. The second group
[14, 15] provides explanations by running a backward
pass in a computational graph, which generates a predic-
tion as its output. The Layer-Wise Relevance Propagation
(LRP) method [15] combines through the framework of
deep Taylor decomposition [11] functional and message
passing approaches to generate relevances of each input
feature. For a fixed input feature, the relevance shows
how much this feature influences the classifier’s decision.



Chereda et al. GenomeMedicine           (2021) 13:42 Page 3 of 16

The relevances are generated for each data point (in our
application each patient) individually.
In image data, LRP exhibited promising results and has

been applied in cancer research to identify prognostic
biomarkers: Klauschen et al. [16] applied LRP for visual
scoring of tumor-infiltrating lymphocytes (TIL) on hema-
toxylin and eosin breast cancer images. Binder et al. [17]
used LRP to identify spatial regions (cancer cell, stroma,
TILs) on morphological tumor images that explained
predictions of molecular tumor properties (like protein
expression).
There are also some interpretation methods special-

ized for Graph Neural Networks (GNN). In [18–20], the
authors provided explanationmethods that are exclusively
based on and crafted only for Graph Convolutional Net-
work [21] utilizing a convolutional architecture which is a
simplified version of that of Graph-CNN [8] we use. Ying
et al. [22] suggested the model-agnostic GNNExplainer
that is suitable for node classification, link prediction, and
graph classification, but the authors did not consider an
application of their approach to graph signal classifica-
tion [23, 24], which is the problem at hand. The GNN-
LRP method [25] proposes explanations in the form of
scored sequences of edges on the input graph (i.e., rele-
vant walks). Such a sequence represents a path extracted
from the input to the output of GNN that brings insights
for GNN’s decision strategy. This is useful especially for
graph classification tasks, where each data point is rep-
resented as an individual graph. In our task, patients are
represented as graph signals on a single graph, so that this
method is not applicable.
Hence, there is still a lack of methods explaining individ-

ualized predictions in the context of graph signal classifi-
cation task. Here, we adapted an existing LRP technique
to graph convolutional layers of Graph-CNN [8] incor-
porating prior knowledge of a molecular network. Our
approach generates explanations in the form of relevant
subgraphs for each data point and allows to provide inter-
pretable molecular subnetworks that are individual for
each patient. According to the knowledge of the authors,
an explanation method that benefits from prior knowl-
edge and provides patient-specific subnetworks has not
been shown before. The novelty of our work consists
of two parts. First, we present the Graph Layer-wise
Relevance Propagation (GLRP) method delivering data
point-specific explanations for Graph-CNN [8]. Second,
we train Graph-CNN on a large breast cancer dataset to
predict an occurrence of distant metastasis and show how
patient-specific molecular subnetworks assist in personal-
ized precision medicine decisions: We interpret the clas-
sifier’s predictions by patient-specific subnetworks that
explain the differential clinical outcome and identify ther-
apeutic vulnerabilities.

Methods
Gene expression data andmolecular network
Protein-protein interaction network
We used the Human Protein Reference Database (HPRD)
protein-protein interaction (PPI) network [26] as the
molecular network to structure the gene expression data.
The database contains protein-protein interaction infor-
mation based on yeast two-hybrid analysis, in vitro and
in vivo methods. The PPI network is an undirected graph
with binary interactions between pairs of proteins. The
graph is not connected.

Breast cancer data
We applied our methods to a large breast cancer patient
dataset that we previously studied and preprocessed [27].
That data is compiled out of 10 public microarray datasets
measured on Affymetrix Human Genome HG-U133 Plus
2.0 and HG-U133A arrays. The datasets are available from
the Gene Expression Omnibus (GEO) [28] data repository
(accession numbers GSE25066, GSE20685, GSE19615,
GSE17907, GSE16446, GSE17705, GSE2603, GSE11121,
GSE7390, GSE6532). The RMA probe-summary algo-
rithm [29] was used to process each of the datasets, and
only samples with metadata on metastasis-free survival
were selected and combined together on the basis of HG-
U133A array probe names. Quantile normalization was
applied over all datasets. In the case of several probes
mapping to one gene, only the probe with the highest aver-
age value was considered. After pre-processing the dataset
contained 12,179 genes in 969 patients. The patients were
assigned to one of two classes: 393 patients with distant
metastasis within the first 5 years and 576 patients with-
out metastasis having the last follow-up between 5 and
10 years. Breast cancer molecular subtypes for the patient
samples were predicted in [27] utilizing genefu R-package
[30].
After mapping of 12,179 genes to the vertices of the

PPI, the resulting PPI graph consisted of 7168 vertices
(mapped genes) in 207 connected components. The main
connected component had 6888 vertices, and each of the
other 206 components had from 1 to 4 vertices. For fur-
ther analyses, we utilized only the main connected com-
ponent since the Graph-CNN requires the graph to be
connected. The preprocessed data is provided in [31].

Expression data of HUVECs before and after TNFα stimulation
For validation purposes, we analyzed gene expression data
from human umbilical vein endothelial cells (HUVECs)
treated or not treated with tumor necrosis factor alpha
TNFα [32]. The data, provided by the same authors
(GEO database series: GSE144803), containing 39 sample
pairs (treated and untreated), were suitable for a binary
classification task and balanced. The expression data were
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quantile normalized and mapped to vertices of HPRD
PPIs resulting in 7798 genes in the main connected com-
ponent.

Problem formulation
We focus on explaining classifier decisions of Graph-CNN
adapting existing LRP approaches for graph convolutional
layers. LRP should be applied as a postprocessing step
to a model already trained for the ML task. The task is
formulated as a binary classification of gene expression
data X ∈ Rn×m to a target variable Y ∈ {0, 1}n. n is the
number of data points (patients) and m is the number of
features (genes). The information of the molecular net-
work is presented as an undirected weighted graph G =
(V ,E,A), where V and E denote the sets of vertices and
edges respectively and A denotes the adjacency matrix.
The Graph-CNN was designed to work with weighted
graphs. We define weighted adjacency matrix A of dimen-
sionality m × m since in general molecular networks can
be weighted. For the unweighted HPRD PPI network, the
matrix A has only “0s” and “1s” as its elements. A row x
of the gene expression matrix X contains data from one
data point (patient) and can be mapped to the vertices of
the graph G. In such a way, values of x are interpreted as a
graph signal.
A trained neural network can be represented as a func-

tion f : Rm+ → [0, 1] mapping the input to the probability
of the output class. The input x is a set of gene expression
values x = {

xg
}
where g denotes a particular gene. The

function f (x) computes the probability that a certain pat-
tern of gene expression values is present w.r.t to the output
class. LRP methods apply propagation rules from the out-
put of the neural network to the input in order to quantify
the relevance score Rg(x) for each gene g. These relevances
show how much gene g influences the prediction f (x) :

∀x : f (x) =
∑

g
Rg(x). (1)

Equation (1) [11] demonstrates that the relevance scores
are calculated w.r.t every input data point x.

Graph Convolutional Neural Network and Layer-wise
Relevance propagation
Usual CNNs learn data representations on grid-like struc-
tures. The Graph-CNN [8] as a deep learning technique is
designed to learn features on weighted graphs. The con-
volution on graphs is used to capture localized patterns of
a graph signal. This operation is based on spectral graph
theory. The main operator to investigate the spectrum of
a graph is the graph Laplacian L = D − A, where D
is a weighted degree matrix, and A is a weighted adja-
cency matrix. L is a real symmetric positive semidefinite
matrix that can be diagonalized such that L = U�UT ,
where � = diag ([ λ1, . . . , λm] ) is a diagonal non-negative

real valued matrix of eigenvalues, matrix U is composed
of eigenvectors. Matrices U and UT define the Fourier
and the inverse Fourier transform respectively. Accord-
ing to the convolution theorem, the operation of graph
convolution can be viewed as a filtering operation:

y = hθ (L)x = hθ

(
U�UT

)
x = Uhθ (�)UTx, (2)

where x, y ∈ Rm, and the filter hθ (�) is a function of eigen-
values (graph frequencies). To localize filters in space, the
authors in [8] decided to use a polynomial parametriza-
tion

hθ (�) =
K−1∑

k=0
θk�

k , (3)

where θ ∈ Rk is a vector of parameters. The order of the
polynomial, which is equal to K−1, specifies the local K−
1 hop neighborhood. The neighborhood is determined by
the shortest path distance. The polynomial filter can be
computed recursively, as a Chebyshev expansion, which is
commonly used in graph signal processing to approximate
kernels [33]. The Chebyshev polynomial Tk(x) of order k
is calculated as Tk(x) = 2xTk−1(x) −Tk−2(x) with T0 = 1
and T1 = x. The Chebyshev expansion applies for val-
ues that lie in [−1, 1]; therefore, the diagonal matrix of
eigenvalues � has to be derived from a rescaled Laplacian
L = (D − A)/λmax − In. Thus, the filtering operation can
be rewritten as

y = hθ (�)x =
K−1∑

k=0
θkTk(L)x = [x̄0, . . . , x̄K−1] θ , (4)

where x̄k = 2Lx̄k−1 − x̄k−2 with x̄0 = x and x1 = Lx.
The transition in Eq. 4 is done according to the obser-
vation

(
U�UT)k = U�kUT . The filtering at the con-

volutional layer boils down to an efficient sequence of
K − 1 sparse matrix-vector multiplications and one dense
matrix-vector multiplication [8].
LRP is based on the theoretical framework of deep Tay-

lor decomposition. The function f (x) from Eq. (1) can be
decomposed in terms of the Taylor expansion at some
chosen root point x∗ so that f (x∗) = 0. The first order
Taylor expansion of f(x) is:

f (x) = f (x∗) +
m∑

g=1

∂f
∂x

∣∣∣
x=x∗ ·

(
xg − x∗

g

)
+ ε

= 0 +
m∑

g=1
Rg(x) + ε

(5)

where the relevances Rg(x) are the partial differentials of
the function f (x). The details of how to choose a good
root point are described in [11]. The f (x) represents an
output neuron of a neural network which consists of mul-
tiple layers and each layer consists of several neurons. A
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neuron receives a weighted sum of its inputs and applies a
nonlinear activation function. The idea of the deep Taylor
decomposition is to perform a first order Taylor expansion
at each neuron of the neural network. These expansions
allow to produce relevance propagation rules that com-
pute relevances at each layer in a backward pass. The rules
redistribute the relevance from layer to layer starting from
output until the input is reached. The value of the output
represents the model’s decision which is equal to the total
relevance detected by the model.
LRP is commonly applied to deep neural networks con-

sisting of layers with rectified linear units (ReLU) nonlin-
earities. In our experiments, we use only this activation
function. Let i and j be single neurons at two consecutive
layers at which the relevance should be propagated from j
to i. The activation function has this form:

aj = max
(

0,
∑

i
aiwij + bj

)

(6)

where ai, aj are neurons’ values, wij are weights, and bj is
bias. Noticeably, the layers of this type always have non-
negative activations. The relevance propagation rule is the
following:

Ri =
∑

j

aiw+
ij

∑
i aiw

+
ij + ε

Rj, (7)

where w+
ij corresponds to the positive weights wij and ε

stabilizes numerical computations [9]. We set ε to 1−10.
Equation (7) depicts the z+ rule coming from deep Tay-
lor decomposition [11]. The z+ rule is commonly applied
to the convolutional and fully connected layers. It favors
the effect of only positive contributions to the model deci-
sions. The first input layer can have other propagation
rules that are specific to the domain [34]. In our work, we
used the rule (7) for the input layer as well since the gene
expression data has positive values.
In order to propagate relevance through the filtering (4),

we rewrite it as follows:

y =
K−1∑

k=0
θkTk(L)x = [

L̄0, . . . , L̄K−1
]
θx = Wx, (8)

where matrix W ∈ Rm×m connects nodes y and
x. The computation of matrix W is done as: W =[
L̄0, . . . , L̄K−1

]
θ , where L̄k = 2LL̄k−1 − L̄k−2 with L̄0 =

I and L̄1 = L are the Chebyshev polynomials of the
Laplacian matrix.
Each convolutional layer has Fin channels

[
x1, . . . , xFin

] ∈ Rm×Fin+ (9)

in the input feature map and Fout channels
[
y1, . . . , yFout

] ∈ Rm×Fout (10)

of the output feature map. We consider the values of out-
put feature maps before applying ReLU non-linearities on
them. The Fin × Fout vectors of the Chebyshev coeffi-
cients θi,j ∈ Rk are the layer’s trainable parameters. The
input feature map can be transformed into a vector x̂ =[
xT1 , . . . , x

T
Fin

]T ∈ Rm·Fin+ . We adapt Eq. (8) to compute the
jth channel of the output feature map based on the input
feature map:

yj = [
L̄0, . . . , L̄K−1

] · [
θ1,j, . . . , θFinj

] ·
[
xT1 , . . . , x

T
Fin

]T

=
[
L̂1,j, . . . , L̂Fin,j

]
·
[
xT1 , . . . , x

T
Fin

]T

= Ŵj × x̂ ∈ Rm

(11)

where L̂i,j = [
L̄0, . . . , L̄K−1

]
θi,j ∈ Rm×m, Ŵj =[

L̂1,j, . . . , L̂Fin,j
]

∈ Rm×m·Fin

Since the jth channel of the output feature map is con-
nected through the matrix-vector multiplication with the
input featuremap, Ŵj can be treated as amatrix of weights
joining two fully connected layers. Therefore, the rele-
vance Rj

y ∈ Rm+ from the jth output channel can be
propagated to the input feature map relevance Rj

x̂ ∈ Rm·Fin+
according to the rule (7). Overall, the relevance propa-
gated from the output feature map to the input feature
map is:

Rx̂ =
Fout∑

j=1
Rj
x̂ ∈ Rm·Fin+ . (12)

For running LRP on graph convolutional layers, one
needs to compute huge and dense matrices Ŵj. It requires
K − 2 sparse matrix-matrix multiplications and one
sparse to dense matrix-matrix multiplication. The com-
putations for relevance propagation are heavier and much
more memory demanding compared to the filtering (4).
The code implementing our GLRP approach is available
in [35].

GLRP on gene expression data
To demonstrate the utility of GLRP, the Graph-CNNs
were trained on two gene expression datasets described
in the “Gene expression data and molecular network”
section. In our previous study [23], the gene expression
data were standardized for the training. But in this paper,
we did not standardize the data. The argument for it is
the following. For the non-image data, to standardize the
input features is the usual practice. However, in case of
standardization, the input features are treated indepen-
dently. For an image, the neighboring pixels are highly cor-
related. If the pixels as features are standardized across the
dataset, then this can distort the pattern of the image quite
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significantly and lead to misinterpretation. Analogically,
feature wise standardization of microarray data changes
expression patterns of genes located in the same neighbor-
hood of amolecular network (HPRD PPI in our case). This
might affect the explainability of the Graph-CNN that we
aim at. Therefore, we trained the Graph-CNN directly on
the quantile normalized data avoiding the additional stan-
dardization step. Instead, we subtracted theminimal value
(5.84847) of the data from each cell of the gene expression
matrix to keep the gene expression values non-negative.
If initially, GE data was lying in [5.84847, 14.2014], now it
is in the interval [0.0, 8.3529]. This transformation allows
Graph-CNN to converge faster, to apply the LRP prop-
agation rule (7) suitable for non-negative input values,
and to preserve original gene expression patterns in local
neighborhoods of the PPI network.
For each of the two gene expression datasets structured

by the same prior knowledge (HPRD PPI), we used a
10-fold cross validation over a whole dataset to estimate
the predictive performance of Graph-CNN. The hyper-
parameters such as the number of filters, the presence
of pooling, the learning rate, and decay were tweaked
manually on this 10-fold cross validation.
The architecture of the Graph-CNN trained on the

HUVECs dataset and its performance are given in the
“Comparison of subnetworks derived by GLRP to gene-
coexpression networks identified by WGCNA” section.
For the breast cancer dataset, the Graph-CNN architec-

ture consisted of two graph convolutional layers following

maximum pooling of size 2, and two hidden fully con-
nected layers with 512 and 128 units respectively. Each
graph convolutional layer contained 32 filters covering
the vertex’ neighborhood of size 7. For the performance
comparison, we trained a “glmgraph” method [36] imple-
menting network-constrained sparse regression model
using HPRD PPI network, and Random Forest without
any prior knowledge as baselines. The results on 10-fold
cross validations are presented in the “GLRP to deliver
patient-specific subnetworks” section.
Further we generated the patient-specific (data point

specific) subnetworks via GLRP. For that, each of the gene
expression datasets was randomly split again: 90% train-
ing and 10% test. We retrained the Graph-CNN on 90%
of data using manually selected hyperparameters from 10-
fold cross validation, and propagated relevances on test
data which was not “seen” by the model during train-
ing to make it more challenging. Since the LRP rule (7)
propagates only positive contributions, our Graph-CNN
had two output neurons for binary classification tasks
that showed the probability of these two classes. For each
patient in the test set, relevance was propagated by GLRP
from the predicted output neuron to the input neurons
representing genes (vertices) of the underlying molecu-
lar network. The workflow to deliver the patient-specific
subnetworks is depicted on Fig. 1. A patient-specific sub-
network explaining the prediction was constructed from
the 140 most relevant genes. Selecting more than 140 top
relevant vertices entailed visualization issues. The single-

Fig. 1 The workflow to obtain a data point-specific subnetwork. For clarity, a data point represented by a gene expression profile of a patient from
the breast cancer dataset. The molecular network (HPRD PPI) structures the genes and is the same for every patient. Patient’s gene-expression
values are assigned to every vertex of the HPRD PPI so that the patient is represented as a graph signal. Trained Graph-CNN performs graph
convolutions and as output classifies the patient as metastatic or non-metastatic. GLRP is applied as a post hoc processing, propagating the
relevance from the predicted label up to the input features (vertices of the molecular network). Top 140 highly relevant vertices constitute a
molecular subnetwork. Molecular subnetworks differ from one patient to another
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tons were deleted so that the subnetwork consistedmainly
of around 130 vertices. The same workflow was applied
to generate data-point-specific subnetworks for the data
described in the “Expression data of HUVECs before and
after TNFα stimulation” section.

Pathway analysis
Enrichment of signal transduction pathways annotated
in the TRANSPATH� database version 2020.1 [37] in
genes prioritized by GLRP were analyzed using the gen-
eXplain platform version 6.1 [38]. The analysis based on
the Fisher’s exact test [39] was carried out for gene sets
obtained for individual patients from the breast cancer
dataset as well as for their combination into subtype gene
sets.
The following calculations were applied to investigate

differences in pathway hits. Let P denote a set of path-
way genes and Si and Sk two subnetwork gene sets, so that
Pi = P ∩ Si and Pk = P ∩ Sk are the sets of pathway
genes matched by the two subnetworks. The difference
�Pi,k in matched pathway genes was then calculated as
|(Pi ∪Pk) \ (Pi ∩Pk)|/|Pi ∪Pk| with |Pi ∪Pk| > 0. For each
selected pathway, we calculated �Pi, k for each pair of
subnetworks and reported the median of examined pairs.

Comparison of subnetworks derived by GLRP to
gene-coexpression networks identified byWGCNA
To further examine the biological relevance of subnet-
work genes prioritized by GLRP and for the purpose
of comparison to an already available method that uses
expression and network information to prioritize gene
sets, we analyzed the gene expression data described
in “Expression data of HUVECs before and after TNFα
stimulation” section. We compared gene sets identified
in our subnetworks to gene modules and differentially
expressed genes in response to TNFα identified by Rhead
et al. [32]. Rhead et al. [32] reported gene modules
obtained by weighted gene co-expression network anal-
ysis (WGCNA). The method has been applied in many
studies and constructs a gene network based on expres-
sion measurements from which it can derive modules
of co-expressed genes [40]. We trained a Graph-CNN
on the gene expression data to classify the TNFα treat-
ment status of HUVECs. The Graph-CNN architecture
consisted of 2 convolutional layers with 4 and 8 filters
respectively followed by one hidden fully connected layer
with 128 nodes. The vertex’s neighborhood covered by
graph convolutions was of size 7. No pooling was used.
The performance of the Graph-CNN in 10-fold cross val-
idation: mean 100*AUC, accuracy, and F1-weighted were
99.49, 96.25% and 96.06%, respectively. A random for-
est achieved the same performance. We generated the
subnetworks according to the “GLRP on gene expression
data” section, retrained the Graph-CNN on 70 randomly

selected samples, and applied GLRP on 8 test samples
(4 treated and 4 not treated). The test samples were
predicted correctly. For each of the 8 test samples, we
constructed a subnetwork. Associations between subnet-
work genes sets and 16 gene modules defined by Rhead et
al. [32] as well as 589 upregulated genes (log-fold change
> 0.5, FDR < 0.01), 425 downregulated genes (log-fold
change <− 0.5, FDR < 0.01), and the combined set of 1014
DE genes were analyzed using the Functional classifica-
tion tool of the geneXplain platform [41]. Fisher test cal-
culations were carried out with a total contingency table
count corresponding to the number of genes in [32, file S1
of] after mapping to Ensembl [42] gene ids (10022 genes).
Rhead et al. [32] assigned a color code to the 16 gene
co-expression modules and denoted them as black, blue,
brown, cyan, green, greenyellow, grey, magenta, midnight-
blue, pink, purple, red, salmon, tan, turquoise, and yellow
which is maintained in results reported here.

Results
Sanity check of the implemented graph LRP
To initially validate our implemented LRP, we applied
Graph-CNN on the MNIST dataset [43] in the same way
as described in the paper [8]. The MNIST dataset con-
tains 70,000 images of hand-written digits each having a
size of 28 by 28 pixels. To apply Graph-CNN on the image
data, we constructed an 8 nearest-neighbors graph sim-
ilarly to the schema proposed in [8], with the exception
that all the weights are equal to 1. The weight 1 is more
natural for the graph connecting neighboring image pix-
els. Thus, each image is a graph signal represented by
node attributes—pixel values.We achieved high classifica-
tion accuracy (99.02%) on the test set for the Graph-CNN,
which is comparable to the performance of classical CNN
(99.33%) reported in [8]. The number of parameters was
the same for both methods.
Usually, to manage box-constrained pixel values, the

special pixel-specific LRP rule is applied for the input
layer. This pixel-specific rule highlights not only the digits
itself, but also the contours of the digits [34, Fig. 13 of]. In
contrast, the rule (7) highlights only those positively rel-
evant parts of the image where the signal of the digit is
present.We kept the propagation rule (7) for the input and
all other layers in all our experiments. Further, we visually
compared on the same digits how the heatmaps generated
by implemented GLRP correspond to the heatmaps gen-
erated by usual LRP procedure applied on classical CNN
(Fig. 2).
The heatmaps were rendered only for the classes pre-

dicted by classical CNN and Graph-CNN. In this case,
the classes are “6” and “3”. For the Graph-CNN, a bigger
part of the digit is relevant for the classification since the
covered neighborhood can be expanded up to 24 hops.
Graph-CNN’s filters are isotropic; thus, they tend to cover
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Fig. 2 From left to right: initial image, LRP on classical CNN and GLRP on Graph-CNN

roundish areas that concern rounded patterns (curves) of
the digit (Additional file 1: Fig. S1).

Genes selected by GLRP correlate with modules identified
by gene co-expression network analysis
In the analysis of TNF-induced gene expression changes
in HUVECs, our procedure prioritized in total 168 genes
of which 105 genes were found in subnetworks of all eight
test samples (Additional file 2). Remarkably, the green
gene module, which was the most strongly correlated one
with TNFα upregulation [32], showed significant associ-
ation (adjusted p value < 0.05) with the combined set of
subnetwork genes, with genes found in the majority of
subnetworks and also with 5 of the 8 subnetworks (Addi-
tional file 2). At the same significance level, the turquoise
gene module described in [32] was strongly associated
with 2 of 8 subnetworks and with genes found in all 8 sub-
networks. In addition, both the green and the turquoise
modules showed moderate association (adjusted p value
< 0.1) with the majority of gene sets defined on the basis
of the test subnetworks. Furthermore, we found strong
(adjusted p value < 0.05) or moderately (adjusted p value
< 0.1) significant overlap between upregulated genes and
some subnetwork gene sets. The gene modules cyan,
greenyellow, andmidnightblue did not overlap with GLRP-
derived subnetworks. These results demonstrate partial
agreement between gene sets suggested by GLRP, another
gene network analysis and classical differential expression
analysis. Hence, the GLRP-based subnetworks gathered
biologically meaningful genes and may even complement
other approaches in revealing important properties of
the underlying biological systems. Additionally, another
two gene sets were compared with WGCNA modules:
the intersection of subnetworks genes and genes that
occurred in more than in 4 test samples subnetworks.
Notably, the individual subnetworks shared more genes
with the green and turquoise WGCNA modules than

those described gene sets, pointing out the ability of GLRP
to identify sample-specific genes.

GLRP to deliver patient-specific subnetworks
We applied the GLRP to the Graph-CNN trained on gene
expression data from the “Breast cancer data” section. The
gene expression data was structured by a protein-protein
interaction network. The standardization of features was
not performed as described in the “GLRP on gene expres-
sion data” section. The prediction task performed by
the Graph-CNN was to classify patients into 2 groups,
metastatic and non-metastatic. The results of a 10-fold
cross validation are depicted in Table 1. While Graph-
CNN and glmgraph utilized the HPRD PPI network topol-
ogy, a random forest did not use any prior knowledge.
glmgraph was not evaluated on non-standardized data,
since it had convergence issues in this case. The metrics
were averaged over folds and the standard errors of their
means were calculated.
The GLRP was applied as described in the“GLRP on

gene expression data” section. We retrained the Graph-
CNN on 872 patients and generated relevances for 97
test patients. The relevances were propagated from the
Graph-CNN’s output node corresponding to the cor-
rectly predicted class. The most frequently selected fea-
tures are summarized in Additional file 1: Table S1. The
eukaryotic translation elongation factor EEF1A1, which
is overexpressed in the majority of breast cancers and
protects tumor cells from proteotoxic stress [44], was
the sole factor that was selected in all of the 97 test set
patients. Other frequently selected features in both non-
metastatic as well as metastatic patients included genes
such as the epithelial-to-mesenchymal-transition (EMT)-
related gene VIM (46/58 non-metastatic, 30/39metastatic
patients), the extracellularmatrix protein FN1 (43/58 non-
metastatic, 22/39metastatic patients), the actin cytoskele-
ton regulator CFL1 (7/58 non-metastatic, 7/39 metastatic
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Table 1 Performance of Graph-CNN on metastatic event
prediction, depending on normalization

Method Std 100*AUC Accuracy, % F1-weighted, %

Graph-CNN - 82.57±1.25 76.07±1.30 75.82±1.33

Random Forest - 81.27±1.66 74.23±1.73 73.47±1.84

Graph-CNN + 82.16±1.25 76.18±1.36 75.86±1.35

Random Forest + 81.40±1.76 74.74±1.67 74.00±1.82

glmgraph + 80.88±1.37 75.14±1.30 74.73±1.39

Std stands for standardization of features (genes)

patients), and the estrogen receptor ESR1 28/58 non-
metastatic, 10/39 metastatic patients) that are all known
to be linked with breast cancer development and progres-
sion [45–48]. This indicates that our method successfully
identified relevant key players with a general role in breast
tumorigenesis.
Additionally, we show individualized PPI subnetworks

delivered for four correctly predicted breast cancer
patients (Table 2) from the microarray data set. Two of
them had been assigned with the most common subtype
luminal A (LumA), while the other two suffered from the
highly aggressive basal-like subtype. In each group, one
patient with early metastasis was picked and one who did
not develop any within at least 5 years of follow-up.
The generated PPI subnetworks are displayed in Fig. 3.

The sequence of pictures in order ABCD is the same as in
the table.
Interestingly, the networks of both LumA patients con-

tained ESR1 which fits well since this subtype is con-
sidered as estrogen receptor positive [49]. In contrast,
genes often associated with the basal-like subtype and
a poor prognosis such as MCL1, CTNNB1, EGFR, or
SOX4 were found in the basal-like patient GSM519217
suggesting that the generated networks are capable of
extracting breast cancer subtype-specific features. The
comparison of the subnetworks of the non-metastatic
and the metastatic patients furthermore revealed some
patient-specific genes which might give valuable infor-
mation about specific mechanisms of tumorigenesis and
therapeutic vulnerabilities in the respective patient. In
general, it seemed that the subnetworks of the non-
metastatic patients contained more genes that have been

Table 2 Patients that the PPI subnetworks are generated for

Patient’s
ID

Subtype Metastatic
event

Time of
metastases,
years

Last
follow-up,
years

GSM519217 Basal 1 0.9 -

GSM615233 LumA 1 0.79 -

GSM615695 Basal 0 - 5.38

GSM150990 LumA 0 - 9.93

linked to better prognostic outcomes such as JUP, PCBP1,
and HMGN2 in GSM615695 [50–52] or RASA1, IL6ST,
KRT19, and RPS14 in GSM150990 [53–56], while the net-
works of both metastatic patients harbored genes that are
known to be involved in aggressive tumor growth or ther-
apy resistance which might explain the early metastatic
spread in these patients. Some examples are CDK1, SFN,
and XPO1 in GSM519217 [57–59] or CAV1, PTPN11, and
FTL in GSM615233 [60–62].
However, not only the presence of specific genes might

be important, but also their overall expression level. Our
analyses identified, e.g., the EMT-related gene VIM as
one of the most relevant nodes in the subnetworks of
both metastatic patients in which the gene was highly
expressed (> 75% quantile based on the gene expression
throughout the whole patient cohort). In contrast, VIM
was also present in the subnetworks of the two non-
metastatic patients, however, with a lower relevance and
a particularly low expression (< 25% quantile). VIM is an
importantmarker for EMT and high expression levels cor-
relate with a motile, mesenchymal-like cancer cell state,
thus making VIM an essential effector of metastasis [45].
A comparison of subnetwork genes of 79 correctly pre-

dicted test set patients to a database of signal transduction
pathways confirmed significant enrichment of pathways
that have previously been associated with cancer disease
mechanisms such as the EGF, ER-alpha, p53, and TGFbeta
pathways as well as Caspase and beta-catenin networks.
Comparisons were performed for each patient as well
as for subtype gene sets formed by combining subnet-
work genes of patients associated with a breast cancer
subtype. Results for the 238 signaling pathways from the
TRANSPATH� database that were significantly enriched
with subtype genes are visualized in Fig. 4. Differences in
enrichment significance may suggest that the importance
of some signaling pathways detected this way is subtype-
specific, e.g., for YAP ubiquitination or the VE-cadherin
network (orange heatmap, Fig. 4, see also Additional
file 1: Table S2 for details). The pattern of enrichment
found on the level of cancer subtypes coincided well with
the findings for subnetwork genes of individual patients
revealing several molecular networks with elevated sig-
nificance in both subtype and patient gene sets such as
the EGF pathway, although the patient-level visualiza-
tion did not suggest subtype-specific enrichment (green
heatmap, Fig. 4). One source of these observations can
be that patient subnetworks tend to be associated with
certain pathways but cover different pathway components
(genes). We therefore compared pathway genes in pairs
of patient subnetworks for the 33 largest pathways. In 18
pathways, the median pair of patient subnetworks differed
in 33% or more of the genes matched within a pathway
(see also Additional file 1: Table S3 for details). These
results demonstrate that the subnetworks obtained by
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Fig. 3 The PPI subnetworks for (1) metastatic patients a (GSM519217) and b (GSM615233) and (2) non-metastatic patients c (GSM615695) and d
(GSM150990). The coloring of the node is based on gene expression levels by 25% and 75% quantiles (blue=LOW, yellow=NORMAL, red=HIGH),
based on the gene expression throughout the whole patient cohort. The size of vertices corresponds to the relevance scores within one
subnetwork. All the subnetworks are highly relevant compared to the rest of the PPI network. Green circles highlight targetable genes

Graph-CNN were enriched with common signaling path-
ways relevant for the respective disease and can assign
patient-specific priorities to pathway components.
Finally, we tested whether the subnetworks can also

be used for finding potentially targetable genetic vulner-
abilities that could open new options for personalized
treatment decisions. We applied the “MTB report”

methodology described in [63] to identify actionable
genes present in the subnetworks. For that, we extended
the algorithm to match high expression with gain of func-
tion alterations, and low expression with loss of function
alterations. The results are summarized in Table 3.
Although information about the presence of actionable

genetic variants is missing from our patient microarray



Chereda et al. GenomeMedicine           (2021) 13:42 Page 11 of 16

Fig. 4 Signal transduction pathway analysis of subnetwork genes reported for 79 patients in 5 subtypes. (From left to right) Blue heatmap: 238
signaling pathways clustered according to proportion of shared subnetwork genes; Orange heatmap: Enrichment significance of pathways in
subnetwork genes combined from patients of given subtype. Darker orange indicates higher significance; Purple heatmap: Median difference in
matched pathway genes observed in pairwise comparisons of subnetwork gene sets from patients mapped to 33 pathways. Darker purple indicates
higher tendency of pairs of subnetwork gene sets to coincide with different pathway genes; Green heatmap: Enrichment significance of pathways
in subnetwork genes of 79 patients. Darker green indicates higher significance. Corresponding subtypes and metastatic status are shown by the
annotation above the heatmap. A detailed version of this figure capturing pathway and sample names is provided in Additional file 1: Fig. S2

data, the information generated by the PPI subnetworks
could be used to define specific panels for subsequent
sequencing. Indeed, the MTB reports highlighted spe-
cific genes that could be targeted therapeutically in each
of the four patients: In the non-metastatic LumA patient
GSM150990 ESR1 was proposed as therapeutic target

which is in line with current treatment regimens that use
hormone therapy as themain first-line treatment of choice
for this patient subgroup. In contrast, in the metastatic
LumA patient GSM615233 FOS and PTPN11 were iden-
tified as novel actionable alterations. In the often rapidly
relapsing basal-like patients HSPB1 and ERBB2 were

Table 3 Actionable genes identified by the MTB report workflow

Patient Gene Expression Known Var Predicts

615695 HSPB1 Normal expression Response to gemcitabine

ABL1 High GoF Response to ABL TK inhibitors (imatinib, desatininb, ponatinib, regorafenib. . .)

AKT1 High GoF Response to PI3K, AKT, MTOR inhibitors; resistance to BRAF inhibitors

ERBB2 High GoF Response to ERBB2, EGFR, MTOR, AKT inhibitors

MAPK3 High GoF Resistance to EGFR inhibition

519217 HSPB1 Normal expression Response to gemcitabine

CTNNB1 High GoF Response to everolimus + letrozole; resistance to Tankyrase inhibitors

EGFR High GoF Response to EGFR, ERBB2, HSP90 and MEK inhibitors

ERBB2 High GoF Response to ERBB2, EGFR, MTOR, AKT inhibitors

JUN High overexpr Response to irbesartan (angiotensin II antagonist)

MCL1 High GoF Resistance to anti-tubulin agents

PTPN11 High GoF Response to MEK inhibitors

615233 FOS High overexpr Response to irbesartan (angiotensin II antagonist)

PTPN11 High GoF Response to MEK inhibitors

150990 HSPB1 Normal expression Response to gemcitabine

ESR1 High GoF Response to novel ER degraders, fulvestrant, tamoxifen

Genes from the PPI subnetworks were matched to known genomic alterations (Known Var) that predict either response or resistance to drugs (Predicts). High and low gene
expression were matched to gain of function (GoF) and loss of function (LoF) genomic variants, respectively
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identified as common targets as well as MAPK3, AKT1,
and ABL1 for the non-metastatic patient GSM615695
or EGFR, MCL1, CTNNB1, PTPN11, and JUN for the
metastatic patient GSM519217, thereby suggesting novel
possibilities for combinatory or alternative treatments.
Taken together, GLRP provides subnetworks centered
around known oncogenic drivers that seem reasonable
in the context of cancer biology and can help to iden-
tify patient-specific cancer dependencies and therapeutic
vulnerabilities in the context of precision oncology.

Discussion
In our work, we focused on the interpretability of a deep
learning method utilizing molecular networks as prior
knowledge. We implemented LRP for Graph-CNN and
provided the sanity check of the developed approach on
the MNIST dataset. Essentially, the main aim of the paper
was to explain the prediction of metastasis for breast
cancer patients by providing an individual molecular sub-
network specific for each patient. The patient-specific
subnetworks provided interpretability of the deep learn-
ing method and demonstrated clinically relevant results
on the breast cancer dataset.
Supposedly, the performance of Graph-CNN can be

improved. The batch normalization technique [64] that is
used to accelerate the training of deep neural networks is
not seen to be available for the Graph-CNN, so this can
be the way to enhance its performance. The LRP rule for
batch normalization layers is yet another procedure to be
adapted for Graph-CNN.
Another possibility to identify genes (and construct sub-

networks out of them) influencing classifier decisions is
to apply model-agnostic SHAP and LIME explanation
methods. LIME method provides explanations of a data
point based on feature perturbations. The method sam-
ples perturbations from a Gaussian distribution, ignoring
correlations between features. It leads to the instabil-
ity of explanations that is not favorable for personalized
medicine. SHAP provides Shapley values for each fea-
ture of a data point as well but does not have such an
issue, so we attempted to derive patients-specific subnet-
works applying TreeExplainer and KernelExplainer from
SHAP python module on Random Forest and Graph-
CNN respectively. The subnetworks were build on the
basis of HPRD PPI utilizing positive Shapley values,
which were pushing prediction to a higher probability of
corresponding class (metastatic or non-metastatic). The
subnetworks obtained were mostly consisting from sin-
gle vertices. In contrast, the subnetworks from GLRP
and Graph-CNN were mostly connected. The SHAP’s
DeepExplainer approach suitable for convenient deep
learning models is not applicable for Graph-CNN. The
model-agnostic KernelExplainer computes SHAP values
out of a debiased lasso regression. Reevaluating the model

happens several thousands numbers of times specified by
a user as well as a small background dataset is needed for
integrating out features. Hence, the KernelExplainer is not
scalable and application of it on Graph-CNN resulted in
not connected subnetworks as well.
Furthermore, the sensitivity of Graph-CNN to the

changes of prior knowledge is still to be investigated.
Authors in [8] showed that for the MNIST images a ran-
dom graph connecting pixels significantly decreases the
performance destroying local connectivity. In our case,
the permutation of the vertices of the PPI network does
not influence the classifier performance on standardized
gene expression data. Yet, PPI network is a small world
network and its degree distribution fits to the power law
with the exponent α = 2.70. It implies great connectiv-
ity between proteins and means that any two nodes are
separated by less than six hops. The filters of convolu-
tional layers cover a 7-hop neighborhood of each vertex,
so we assume it still might be enough to capture the gene
expression patterns. In our future work, we will investi-
gate how the properties of the prior knowledge influence
the performance and explainability of Graph-CNN.
The subnetworks generated by GLRP contained com-

mon potential oncogenic drivers which indicates that
they can extract the essential cancer pathways. Indeed,
our analyses identified genes associated with hormone
receptor-positive breast cancer (e.g. ESR1, IL6ST, CD36,
GLUL, RASA1) in the networks from the patients with
estrogen receptor positive, LumA breast cancer and genes
associated with the basal-like subtype (e.g., EGFR, SOX4,
AKT1 as well as high levels of HNRNPK) in the basal-
like patients, underlining the biological relevance of the
networks. Next to subtype-specific genes, the networks
contained several oncogenes that were found in all four
patients and could thus represent common drivers of
breast cancer initiation and progression. One example
is the actin-binding protein cofilin (CFL1) that regulates
cancer cell motility and invasiveness [46]. Another inter-
esting candidate is STAT3 which is activated in more
than 40% of breast cancers and can cause deregulated
cell proliferation and epithelial-to-mesenchymal transi-
tion (EMT) [65]. Our graphs not only displayed patient-
specific PPI subnetworks, but also concisely visualized
the relevance of each node and its expression levels. This
information is potentially relevant to judge the biological
significance of the gene in a patient-specific context.
Next to the common genes found in all four net-

works, each network was characterized by several special,
cancer-associated genes which are of high interest because
they might represent patient-specific central signaling
nodes and therapeutic vulnerabilities. Some examples are
PTPN11 that is known to activate a transcriptional pro-
gram associated with cancer stem cells or the EMT-related
genes SOX4 or VIM that might be responsible for the high
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invasive capacity of the tumors and their early metasta-
sis formation [45, 61, 66, 67]. Interestingly, the network
of the metastatic patient GSM615233 harbored the genes
FABP4 and LPL which both have been shown to interact
with CD36, another highly expressed node in the net-
work, to support cell proliferation and counteract apop-
tosis [68–70]. In contrast, in the non-metastatic patient
GSM150990 especially the interleukin receptor IL6ST and
the Ras GTPase-activating protein 1 (RASA1) seem to be
interesting because for both high expression levels have
been linked with a favorable prognosis [53, 54]. In the
other non-metastatic patient GSM615695 high levels of
HMGN2 and PCBP1 were identified which both have
been shown to be able to inhibit cell proliferation [51, 52].
Although the experimental validation for the networks is
still missing, it is tempting to speculate that these genes
might contribute to the benign phenotype of the tumor in
these patients.
All patient-specific subnetworks contained relevant

drug targets that have been largely studied in breast cancer
(e.g., ERBB2, ESR1, EGFR, AKT1). Yet, resistance mecha-
nisms in breast cancer targeted therapies represent a big
challenge; many of the identified therapeutic approaches
have failed [71] due to the highly interconnected nature of
signaling pathways and potential circumvents. A promis-
ing way forward could involve the molecular character-
ization of the tumor with transcriptomics and a parallel
culture of patient-derived organoids. PPI networks could
elucidate the right combination strategy by identifying
central signaling nodes. Different therapeutic strategies
could be tested on organoids and confirm the best strat-
egy that synergistically blocks cancer cell escape routes
and minimizes the emergence of survival mechanisms.
Only the identification of relevant mechanisms of action
for cell survival as well as of the factors involved in resis-
tance for each patient, together with a more precise and
personalized characterization of each cancer phenotype,
may provide useful improvements in current therapeutic
approaches.

Conclusions
We present a novel Graph-CNN-based feature selec-
tion method that benefits from prior knowledge and
provides patient-specific subnetworks. We adapted the
existing Layer-wise Relevance Propagation technique to
the Graph-CNN, demonstrated it on MNIST data, and
showed its applicability on a large breast cancer dataset.
Our new approach generated individual patient-specific
molecular subnetworks that influenced the model’s deci-
sion in the given context of a classification problem. The
subnetworks selected by the developed method utiliz-
ing general prior knowledge are relevant for prediction
of metastasis in breast cancer. They contain common
as well as subtype-specific cancer genes that match the

clinical subtype of the patients, together with patient-
specific genes that could potentially be linked to aggres-
sive/benign phenotypes. In the context of a breast cancer
dataset GLRP provides patient-specific explanations for
the Graph-CNN that largely agree with clinical knowl-
edge, include oncogenic drivers of tumor progression,
and can help to identify therapeutic vulnerabilities. We
therefore conclude that our method GLRP in combina-
tion with Graph-CNN is a new, useful, and interpretable
ML approach for high-dimensional genomic data-sets.
Generated classifiers rely on prior knowledge of molec-
ular networks and can be interpreted by patient-specific
subnetworks driving the individual classification result.
These subnetworks can be visualized and interpreted in
a biomedical context on the individual patient level. This
approach could thus be useful for precision medicine
approaches such as for example the molecular tumor-
board.
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Abstract

Networks are a common methodology used to capture increasingly complex associations

between biological entities. They serve as a resource of biological knowledge for bioinfor-

matics analyses, and also comprise the subsequent results. However, the interpretation of

biological networks is challenging and requires suitable visualizations dependent on the

contained information. The most prominent software in the field for the visualization of bio-

logical networks is Cytoscape, a desktop modeling environment also including many fea-

tures for analysis.

A further challenge when working with networks is their distribution. Within a typical col-

laborative workflow, even slight changes of the network data force one to repeat the visuali-

zation step as well. Also, just minor adjustments to the visual representation not only need

the networks to be transferred back and forth. Collaboration on the same resources requires

specific infrastructure to avoid redundancies, or worse, the corruption of the data. A well-

established solution is provided by the NDEx platform where users can upload a network,

share it with selected colleagues or make it publicly available.

NDExEdit is a web-based application where simple changes can be made to biological

networks within the browser, and which does not require installation. With our tool, plain net-

works can be enhanced easily for further usage in presentations and publications. Since the

network data is only stored locally within the web browser, users can edit their private net-

works without concerns of unintentional publication. The web tool is designed to conform to

the Cytoscape Exchange (CX) format as a data model, which is used for the data transmis-

sion by both tools, Cytoscape and NDEx. Therefore the modified network can be directly

exported to the NDEx platform or saved as a compatible CX file, additionally to standard

image formats like PNG and JPEG.

Author summary

Relations in biological research are often visualized as networks. For instance, if two pro-

teins interact with each other during a certain process, the corresponding network would

show two nodes connected by one edge. But the fact that the interaction between the two

exists, may not be enough. With established software solutions like Cytoscape we can add

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010205 June 8, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Auer F, Mayer S, Kramer F (2022) Data-

dependent visualization of biological networks in

the web-browser with NDExEdit. PLoS Comput Biol

18(6): e1010205. https://doi.org/10.1371/journal.

pcbi.1010205

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: November 8, 2021

Accepted: May 15, 2022

Published: June 8, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010205

Copyright: © 2022 Auer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: A live demo is hosted

on GitHub Pages at https://frankkramer-lab.github.

io/NDExEdit and the corresponding source code for

deploying own instances is provided at https://

github.com/frankkramer-lab/NDExEdit.

https://orcid.org/0000-0002-5320-8900
https://orcid.org/0000-0002-7825-5738
https://orcid.org/0000-0002-2857-7122
https://doi.org/10.1371/journal.pcbi.1010205
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010205&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1371/journal.pcbi.1010205
https://doi.org/10.1371/journal.pcbi.1010205
https://doi.org/10.1371/journal.pcbi.1010205
http://creativecommons.org/licenses/by/4.0/
https://frankkramer-lab.github.io/NDExEdit
https://frankkramer-lab.github.io/NDExEdit
https://github.com/frankkramer-lab/NDExEdit
https://github.com/frankkramer-lab/NDExEdit


all the information we have about our nodes and their interaction to our data foundation.

Furthermore, we can change the visual appearance of our nodes and their interaction

based on this information.

For example, if our network contains 20 nodes, that all interact with each other, but the

strength of these interactions each range between 0 and 1, we can illustrate that by making

the edges wider for strong interactions and slimmer for weak interactions. Thus, our visu-

alization is enriched with valuable information. As of now these data-dependent modifica-

tions can only be made with a desktop client.

We introduce NDExEdit, a web-based solution for visualization changes to networks

that conform to the CX data format. It allows us to import networks directly from the

NDEx platform and apply changes to the visualization—including all types of mappings,

one of which was briefly described above.

This is a PLOS Computational Biology Software paper.

Introduction

Networks are well-established in a wide range of fields in biology [1–3], and are often used,

either as a source or result, in biological research. Information associated with the individual

nodes or edges can go far beyond name and type, thus increasing its complexity. Within com-

mon bioinformatics workflows data integration, network analysis, and visualization accom-

pany each other [4, 5], and comprise fundamental challenges of combining various tools.

The information-rich data contained in biological networks provide the opportunity for

comprehensive visualization but requires powerful tools to achieve. Cytoscape [6] is the most

prominent desktop software for biological network analysis and visualization. It employs a

data-dependent visualization strategy by applying so-called “attribute-to-visual-mappings”,

where a node’s or edge’s attribute translates to its visual representation. Besides its support for

large networks and its rich set of features, Cytoscape comes with overhead for quick results

and a steep learning curve.

A major challenge when working with networks is their distribution. Collaboration on the

same resources requires specific infrastructure to avoid redundancies, or worse, the corruption

of the data. A well-established solution is provided by the NDEx platform [7, 8] where users

can upload a network, share it with selected colleagues or make it publicly available. NDEx

also holds the feature to provide your private networks solely to the reviewers of a submitted

paper, to protect the data until publication.

NDEx is tightly connected to Cytoscape, which reveals itself in the mutual integration of

both platforms. For the transmission of the networks the Cytoscape Exchange (CX) data struc-

ture [9] was developed, which not only includes the structural information of the networks but

also instructions for its visual representation.

There is a recent trend in software development towards web-based solutions. Desktop

applications require individual installations, which is not possible in all cases for various

reasons and also brings further expense for maintenance. Furthermore, accessibility across

different devices grows in importance, while web-based applications provide secure access to

centralized data. In the following, we illustrate how our lightweight web application NDExEdit

implements current web technologies and thereby facilitates the data-dependent visualization

of biological networks.
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Design and implementation

Network data model

CX is a JSON (JavaScript Object Notation) based data structure designed for the transmission

of biological networks between web applications and servers. The different types of informa-

tion within a network are organized into single aspects of the network. These modular compo-

nents separate the basic network structure from additional information and thus enable to

only load the parts of the network that are of interest for an application. Since CX is designed

as a transmission format, this reduces the amount of data needed to be transferred, but still

combines all data as one coherent network.

The aspects have a defined scheme for the elements they can contain that must be fol-

lowed. This includes definitions for core aspects, concerning the network topology and attri-

butes, and aspects contributed by Cytoscape handling the visual representation. They link to

each other by referencing the internal ID used in the aspects, for example, refer edges the IDs

of the nodes aspects they are connecting. Furthermore, it is possible to include own custom

aspects without a strict definition, that will be stored at the NDEx platform, but not pro-

cessed or validated.

Implementation details

The client-side visualization of networks is realized using Cytoscape.js [10]. It is a JavaScript

library for browser and server-based graph rendering, including layout algorithms for posi-

tioning nodes. One of its key features is the separation of data and its representation: style-

sheets are used to data-dependently select network elements and assign visual properties to

them.

Cytoscape.js does not natively support the handling of networks in CX format but is used in

the front-end of the NDEx platform to visualize the CX networks. Their mapping script was

incorporated into NDExEdit to assure a consistent visual representation in all software tools,

including Cytoscape. Therefore, modifications of the script were necessary to enable highlight-

ing and export of the networks.

The functionality of NDExEdit rests upon the Angular [11] platform, an open-source

framework for building single-page web applications. It follows the Model-View-Controller

(MVC) design pattern which reduces the code required for implementing the web application.

Angular is based on TypeScript [12] as the programming language, which brings advantages

for development in form of static typing and support of class-based object-oriented program-

ming (OOP).

The layout of the web application is realized using the Bootstrap [13] framework. It is an

open-source CSS framework for front-end development, containing design templates for

interface components.

Results

NDExEdit simplifies the visual adjustment of networks and illustrates the great potential of

web-based solutions for biological research: Users with any operating system can work with

NDExEdit without a requirement for installation or account. Since the installation of desktop

clients is often restricted due to security concerns, web-based applications can close this gap

and provide access through mobile devices. It runs only in the web browser, without any sup-

porting backend infrastructure, which ensures data privacy while still providing flexibility in

the visualization workflow. Those concerns can even be reduced further by setting up private

installations and securing their accessibility.
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The web application provides a lightweight interface to explore the contents of networks

and facilitates the quick defining of custom visualizations dependent on the data. Networks

can be layouted using a variety of built-in algorithms, and refined manually. With compliance

to the Cytoscape Exchange format, the network data and its visualization is contained within

the same resource, which representation also remains consistent between all tools. NDExEdit

narrows the gap between desktop software to create and edit a network, and web-based plat-

forms to decorate and distribute them.

Web-application

A typical workflow within NDExEdit starts with the import of networks, for which several

options are provided: The user can browse and query the publicly available, or by supplying

personal credentials also the own private networks on the NDEx platform, and load selected

ones directly into the app. Alternatively, networks can be loaded from a provided NDEx

UUID or URL, or a local CX file. All successfully imported networks become accessible in the

overview list and are ready for modification. The home button of any subordinate page leads

back to this page to be able to switch between networks.

By default, the breast cancer protein-protein interaction network by Minkyu Kim [14] is

provided for demonstration purposes. The network contains the interactome of all high-confi-

dence PPIs detected across the three breast cell lines MCF7, MDA-MB-231, and MCF10A.

Besides the valuable information contained in this network, it is also a great example of how

the visual representation (Fig 1) supports the comprehension of the underlying data. There-

fore, it will be used in the following to demonstrate the capabilities of NDExEdit to define and

edit the attribute mappings dependent on the network data.

When accessing a network in NDExEdit, general information about it will be shown next to

its visualization. This view can be customized by toggling the sides or moving the separating

border in any direction. The general information panel provides an overview of all node, edge,

and network attributes of the network. While the network attributes can be edited directly, the

remaining attributes can be explored for their distribution and the coverage of the nodes and

edges by this attribute. Additionally, the network can be inspected by creating rules on the val-

ues of the node and edge attributes to be highlighted in the graph.

The visualization of the network is interactive, which means that it can be zoomed and

shifted, and also the nodes and edges can be selected and moved. Detailed information about

the selected elements appears on top in the information panel to be able to compare its con-

tent. With the available buttons, the graph can be fit to the viewport and for better overview

and performance improvements, the labels in the network can be hidden.

Attribute mappings

A key feature within the data-dependent visualization in Cytoscape is the so-called “attribute-

to-visual-mappings” where the values of an attribute are processed by a specific function to

generate a new value for the visual representation. Thereby one attribute (or property in the

CX context) can be mapped to several visual properties. Cytoscape and the CX-file format dis-

tinguish between three kinds of mapping types that can be applied to nodes as well as edges:

discrete, continuous, and pass-through.

The values of a property can vary in its data type, which limits the types of mappings that

can be applied. For example, for string values, it is not possible to apply a continuous mapping,

since by its nature only discrete manifestations are given without any order.

On the other hand, the visual properties vary by type of the value to which they are mapped:
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• numerical values for example “NODE_SIZE” or “EDGE_WIDTH”

• colors (in hexadecimal format) for example “NODE_FILL_COLOR”

• string values as in “ELLIPSE” for a “NODE_SHAPE”

• font declarations, including font-family, -style, and -size, are used for example for

“NODE_LABEL_FONT_FACE”

NDExEdit limits the choices to select for visual mapping properties to only the applicable

types to assure, that only valid mappings can be created. Custom selection tools for colors and

fonts are included as well to facilitate the creation of new mappings. The highlighting of attri-

butes and modification of the mappings does not take effect immediately to prevent disruptive

errors in the data model and the visualization. Instead, the modification of other attributes is

Fig 1. Breast cancer protein-protein interaction network used as example network on NDExEdit. It shows the

interactome of the union of all high-confidence PPIs detected across breast cell lines MCF7, MDA-MB-231, and

MCF10A. This network is available on NDEx by the UUID: e89ad762-ab4b-11ea-aaef-0ac135e8bacf.

https://doi.org/10.1371/journal.pcbi.1010205.g001
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locked and visually indicated by warning signs on the superior elements and a surrounding

frame.

The mappings themselves are stored within the network in the “cyVisualProperties” aspect.

This ensures a consistent visual representation of the network on all three platforms, namely

NDExEdit, Cytoscape, and NDEx. Furthermore, the modification of the mappings can be con-

tinued on either NDEx or Cytoscape.

Discrete mapping. Discrete mappings are the most straightforward type of mappings: to

one discrete value of a property, a corresponding mapping value is explicitly assigned. This

way, all manifestations of the property can be set individually, but also left blank if no or a

default value should be used. Fig 2 shows the discrete mappings of the provided sample net-

work for the properties “Bait” and “BaitBoolean”. It shows that each property has only one pos-

sible value with already several mappings to visual properties of different data types.

The mapping for the “Bait” property is shown in editing mode with an additional visual prop-

erty already added using the green plus symbol next to it. The missing mapping value can easily

be added using the gray plus symbol or removed with the red “X” button. Also, the visual proper-

ties can be removed or restored to the initial value before editing via the provided buttons.

The applied changes can be tested by temporarily showing their effects in the graph by

using the magic wand button. All made adjustments can be omitted through the red “X” at the

bottom, which leads back to the network overview. Only by actively accepting the changes the

new mapping is applied and saved for export.

Fig 2. Discrete mapping for node properties. New discrete mappings can be created, existing mappings are shown

for the “Bait” property of several visual properties. This includes mappings to colors, numerical and concrete string

values.

https://doi.org/10.1371/journal.pcbi.1010205.g002
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Continuous mapping. Defining a discrete mapping for continuous values would be

tedious since for every value occurring in the attribute a corresponding value for the visual

property would be needed. Continuous mappings relieve one from this burden by defining a

function on which basis the values for the visual properties are generated. This function is sim-

ply characterized by thresholds for the attribute values with corresponding values for the visual

property. All values between two thresholds are then mapped linearly in-between.

Continuous mappings can be defined in NDExEdit similarly as discrete mappings, only

that the thresholds have to be defined first. Fig 3 shows the continuous mapping of the “diff_-

score” attribute to two visual properties of the edges. Although several thresholds are defined,

Fig 3. Edit continuous mappings. The score values of the edges are mapped using boundary values, to which colors

and numeric values can be assigned. Mapping properties and boundaries can be deleted or new ones added.

https://doi.org/10.1371/journal.pcbi.1010205.g003
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the visual properties may not specify all for every visual property. New mapped values can be

added using a gray plus button, which appears on moving the cursor over a blank field. Exist-

ing ones can not only be deleted but also moved within the visual property by the double-sided

arrow next to it.

New thresholds can be added with the green plus button at the bottom. This will lead to the

new value being attached at the end of the list, therefore the thresholds can be sorted by value.

The single thresholds, and corresponding mapping values, can be deleted by the trash bin but-

ton next to it. The addition and removal of the visual properties work as for discrete mappings.

To facilitate the definition of continuous mappings for an attribute, a histogram of the con-

tained data is displayed along with the editing form, as shown in Fig 4A) for the “diff_score”

attribute. It can be seen, that the values lie in the range of -1 and +1. The bin size can be

adjusted to get a better overview of the data. This histogram is also shown when the creation of

the mapping is finished. Additionally, the different visual properties can be selected to display

the resulting mapping. For mappings to colors this shows the corresponding color gradient

with marked thresholds (Fig 4B), while for numerical values a graph of the mapping function

is displayed (Fig 4C).

Pass-through mapping. Pass-through mappings, as the name suggests, only pass the val-

ues of a property through to the mapping attribute. A relatable example is the labels of nodes

that are displayed along. Although this mapping could be used to set other mapping properties,

such as the node size, this way, in most cases it would be more appropriate to create a continu-

ous mapping, which grants more flexibility afterward.

Default properties. Mappings can only be created based on the data, which limits the

visual representation of the network to the available data. Furthermore, general visual features

need to be defined, like the background color of the network. For nodes, edges, and networks

those properties can be set there, and then are consequently used as default values to decorate

the networks. They also serve as a fallback when nodes and edges are not covered by the data

used for the mappings.

Graph layout

Cytoscape saves the coordinates of the nodes within the network in a dedicated aspect. How-

ever, this aspect is only optional, and even not all nodes must have coordinates provided.

NDExEdit provides a variety of layout algorithms (Fig 5) to apply to a network, each with a

special focus on the networks:

• random: nodes are distributed randomly across the viewport which enables to roughly

explore the network and its content

• grid: nodes are arranged in a grid sorted by the node ids, which puts focus on the nodes

• circular: nodes are arranged in a circle so that the focus lies on the edges between the nodes

• concentric: nodes are arranged in concentric circles which is a more dense representation

than the circular layout

• hierarchical: breadth-first arrangement of the network illustrates the topology of the

network

• force-driven: cose (Compound Spring Embedder) layout [15] uses a physics simulation

to determine node distances and produces a more dense representation of the network

topology

• preset: initial layout saved within the network allows its restoration

PLOS COMPUTATIONAL BIOLOGY Data-dependent visualization of biological networks in the web-browser with NDExEdit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010205 June 8, 2022 8 / 13

https://doi.org/10.1371/journal.pcbi.1010205


Fig 4. Continuous mapping of values of the edge attribute “diff_score”. A) Histogram for the “diff_score” attribute

values. B) Continuous mapping of the values to a color gradient with marked boundary values. C) Mapping graph for

“diff_score” values to edge width.

https://doi.org/10.1371/journal.pcbi.1010205.g004
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The final network layout, including manual refinements, is saved in the cartesian-layout

aspect of the exported CX file and is therefore available for the subsequent usage of the

network.

Export

NDExEdit provides an option to export the modified networks, including their layout, and

visual properties, and mappings as a compatible CX file. With provided credentials the net-

works can be directly exported to the NDEx platform, either creating a new network or updat-

ing an existing one. Also, the network can be exported as a compatible CX file that can be used

by other applications.

Additionally, images in standard formats like PNG and JPEG can be created including a scal-

ing factor to produce more detailed versions than a simple screen capture would allow. Also,

the exported image can be set to only capture the viewport, or limited in its dimensions. For

images in PNG format, it is also possible to change the background color or leave it transparent.

Differentiation to Cytoscape

Cytoscape not only is a software tool for the visualization of networks, but moreover, it is a

platform for data integration and analysis, supported by many third-party plugins. The focus

of NDExEdit lies instead on the quick and simple visualization of networks based on the con-

tained data. After an analysis workflow, the networks typically contain all the integrated infor-

mation, and NDExEdit enables to explore its distribution and apply data-dependent mappings

to create different visualizations.

Before mentioned workflows are often performed by processing, analyzing, and integrating

the data in different tools, or programming languages like R or Python. Especially in the latter

Fig 5. Available graph layout options. Different layout algorithms determine the position of each node, and therefore

the overall representation of the network.

https://doi.org/10.1371/journal.pcbi.1010205.g005
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visualizing the networks is tedious to perform programmatically. NDExEdit, therefore, offers

a lightweight interface to generate visualizations. Furthermore, with the NDEx platform as a

repository for the networks, collaborators can contribute and refine the final layout simply in

the web browser.

Like many software, Cytoscape needs to be installed on local machines, which either

requires the administrative rights of the user or has to be managed by the administrator of the

institution, along with its software dependencies. This always causes security risks and vulner-

abilities, if not handled carefully. An alternative provides web-based solutions, which also can

be managed in a centralized manner. NDExEdit runs only in the web browser, without the

need for any backend for data processing. This simplifies maintenance of private installations,

which are indispensable within systems with limited internet access.

Future directions

While inspecting several public networks missing features for mappings in general appeared:

currently there is no elegant way of defining a mapping, that changes the color at a threshold

(Fig 6). Currently, networks resemble this feature by defining a continuous mapping with two

close, or even identical values as thresholds. The latter implicates further issues in the valida-

tion of the mapping.

On NDExEdit the specified mappings apply to the whole network, while it would be useful

to restrict the mapping to certain sub-networks. Consequently, different mappings could be

defined in general and switched on demand by the user. In the CX-format, as well as Cytoscape

there already exists a possibility to manage different mappings for sub-networks and views.

However, adaption on NDExEdit would require drastic adjustments to the used library for

mapping the CX-format to Cytoscape.js.

Taking the idea of managing different mappings even further, would be the possibility to

import existing mappings from other networks. This is possible in general, simply by manually

editing the CX file and switching the “cyVisualProperties” aspect, but to be able to do it within

NDExEdit would further improve the application. This also can be extended to an option to

apply predefined visualization templates, such as SBGN [16], STRING [17], or Reactome [18,

19] layouts to a network.

While NDExEdit is intended to be a web application to easily change the visualization of

the network dependent on the data, occasionally it would be beneficial to create additional

data. For example, if the node degree is not provided as a property, it must be created with

other tools to be available for mappings. More general, importing additional attributes from

tabular data, or even the option to create whole networks from it can further decrease the bar-

rier to create data-dependent visualizations of network data.
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Abstract 
Motivation: Networks are a common data structure to describe relations among biological entities. 
Enriched with information to specify the entities or their connections, they provide a solid foundation 
for data-dependent visualization. When such annotations overlap, for example in a protein-protein 
interaction network that is enriched with patient-specific expressions, visualization is reliant on user 
interaction. Thereby, effective and reliable exchange of visualization parameters between 
collaborators is crucial to the communication within workflows. 
Results: Here, we introduce MetaRelSubNetVis, a web-based tool that allows users to interactively 
apply group-wise visualizations to networks augmented with patient data. Our application can visually 
reflect patient-specific attributes for single patients or in a comparative context. Furthermore, we 
improved upon the exchange of network visualizations by providing unambiguous links that result in 
the same visual markup. Our work provides new prospects in interacting with and collaborating on 
network data, especially with respect to the exchange and integration of network visualizations. 
Contact: florian.auer@informatik.uni-augsburg.de 

 
 

1 Introduction  
Networks are a well-established data structure in systems biology and 
often enhanced with annotations and integrated with additional data for 
their use in clinical applications (Heo et al., 2021). Visual exploration of 
these enriched networks is crucial for the interpretability of the contained 

information. Moreover, comparing different properties of a network, or 
even different networks based on the same properties remains an 
ongoing issue. Those networks may be composed of several patient-
specific subnetworks based on preceding comparative analysis. An 
interactive investigation of these networks provides a more direct access 
to the information in contrast with static visualizations, the main purpose 
of which is mainly to communicate the results. Especially within a 
collaborative workflow individual investigations are required to gain 
necessary insights on the contained data. In turn this exchange of 

network data again requires specific infrastructure.  
One well-established platform, where users can upload a network, 

share it with selected colleagues or make it publicly available, is the 

NDEx platform (Pratt et al., 2015). For stored networks, an interface is 
provided to integrate NDEx related services into third-party applications. 
One of those is Cytoscape (Shannon et al., 2003), a well-established 

network analysis and visualization software focusing on biological 
applications, and enables the exchange of networks with the platform. 
Cytoscape enables the visual exploration by defining mappings based on 
attributes of the integrated data but is impractical for quick changes 
between patient groups and properties. Furthermore, in a collaborative 
workflow the communication of the used visualization features is 
determining to the reproducibility and referenceability of the correct 
network visualization. 

With MetaRelSubNetVis, we introduce a tool for the interactive 

group-wise visualization and comparison of integrated networks. In the 
following we elaborate on the example of patient-specific subnetworks, 
how our web-based application can facilitate the investigation of 
enriched networks in combination with the exchange of referenceable 
network visualizations. 
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2 Methods 
MetaRelSubNetVis works with networks that are stored on the NDEx 
platform and can be referenced by its unique UUID and loaded in their 
proprietary Cytoscape Exchange (CX) format. CX is a JSON based data 
structure and was specifically designed for the data transmission. It 
originated from NDEx’s close connection to Cytoscape, where CX is 
used for the exchange of visualized networks. 

The NDEx platform can be searched with MetaRelSubNetVis and the 
graph for the retrieved networks is rendered using the Cytoscape.js 
(Franz et al., 2016) library. The networks original layout and 

visualization are discarded during import and instead, a concentric layout 
is calculated and applied to provide a neutral visual markup. 
MetaRelSubNetVis is built upon Angular, an open-source framework for 
building single-page web-applications. The user interface was designed 
using Bootstrap, a well-established CSS-framework that provides a large 
set of front-end building blocks. 

A CX network is composed of multiple aspects, each of which relates 
to a specific property of the network, for instance, nodes and edges, and 
accompanying attributes, meta information, layouts, and visual styles. 

Integrated data and annotations are conventionally found in the 
nodeAttributes and edgeAttributes aspects, while the description of the 
origin and composition of the data is contained within the 
networkAttributes aspect. 

MetaRelSubNetVis requires detailed information about the enclosed 
integrated data to be able to use it for the creation of the data-dependent 
visualization and corresponding selectable options. This crucial 
information about patient data is stored within the networkAttributes 
aspect and involves their pseudonyms, group and subgroup affiliation, 

and for the exemplary network also patient survival details. 
The web-application allows node coloring, sizing, and filtering based 

on the integrated data stored in the nodeAttributes for network wide and 
group wise properties. This can be for example the number of 
occurrences of relevant genes across all patients and the relevance scores 
for the genes in one specific patient, respectively. MetaRelSubNetVis 
relies on the definition of these visualization options within a for this 
purpose created non-standard aspect of the same name.  

The formal requirements of the metaRelSubNetVis aspect are specified 

on the website, and additional scripts and documentation is provided as 
extension to the RCX library (Auer & Kramer, 2022) for the creation and 
handling within the statistical programming language R (R Development 
Core Team, 2008). The aspect allows the definition of continuous, 
discrete, and boolean mappings with their thresholds and corresponding 
color values. Furthermore, the included sample network hosted on the 
NDEx platform (UUID a420aaee-4be9-11ec-b3be-0ac135e8bacf) 
contains an implementation of the aspect and can provide guidance. 

The sample network resulted from the analysis of a breast cancer data 

set for metastasis prediction and generation of patient-specific 
subnetworks by Chereda et al. Thereby, the complete protein-protein 
interaction network from the Human Protein Reference Database 
(HPRD) (Keshava Prasad et al., 2009) was used together with a large 
breast cancer dataset (Bayerlová et al., 2017) to predict for single 
patients the occurrence of a metastatic event and calculate a gene-wise 
score of its relevance for the prediction. The 140 most relevant genes of 
each patient were used to induce subnetworks, which were further 
combined to a single network and integrated with the gene expression 

values, levels, relevance scores, and subsequent Molecular Tumor Board 
report (MTB) analysis (Perera-Bel et al., 2018). MetaRelSubNetVis was 
then used for the investigation and visualization of the combined 
network within the original publication. 

Fig. 1 Selection and visualization options in MetaRelSubNetVis. For a selected p

the threshold can be adjusted, specific nodes selected, coloring and size of nodes ch

and the visualization exported. 

d patient 

 chosen, 
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3 Results 

3.1 Group-wise selection and network visualization 

On the main page of MetaRelSubNetVis the user can select a network by 
searching the NDEx platform or continue with the provided sample 
network. The selected network is rendered with the default concentric 
layout and can be explored interactively by re-arranging its nodes. The 
position of the nodes will be kept even when the patient selection 
changes, or different layout setting are applied to facilitate the visual 
comparison of the subnetworks. 

In the sidebar the user can adjust multiple settings (Fig. 1), while 
group-wise selection is one of the key aspects for this application. In the 
following the visualization options and its settings will be illustrated 
based on the provided sample network. In the patient dropdowns the user 
can select one sample per group for which the rendered network is 
updated with the corresponding subnetwork. Simultaneous selection of 
two patients leads to a comparative visualization in which the nodes are 
split and display the values according to the side of the group (Fig. 3). 

With a selected patient, the user can now adjust the thresholds of 

nodes to show. Adjusting this setting will hide nodes with lower values 
for those attributes. The nodes setting contains a list of all currently 
visible nodes and is searchable and interactive: Selecting nodes within 
the list will mark the respective node within the network. When one or 
two patients are selected, the list is augmented with information about 
the selected patient’s cancer subtype and occurrence of the genes.  

The layout tab allows users to apply the in the metaRelSubNetVis 
aspect defined visualization options for the network. They can choose 
one of the predefined properties like gene expression level, gene 

expression or relevance score, to modify the coloring of the nodes. If 
only one patient is selected, they can adjust the size of each node with 
defined continuous mappings. Boolean properties as the MTB results 
allow to highlight corresponding nodes with a colored border. 
MetaRelSubNetVis offers options to export the visualized network as 
image in three available data formats, namely PNG, JPEG and SVG. The 
image can be scaled with a factor up to 10 for non-SVG images and 
allows setting a transparent background for the PNG export. 

3.2 Sharable visualization link 

One significant aspect of MetaRelSubNetVis is the ability to quickly 
share network visualizations via a custom URL (Fig. 3). In the link 
generator tab users can highly customize the view, they want to share 
(Fig. 2). The table at the beginning provides a summary of the previously 
defined visualization options, such as the UUID of the network, selected 
patients, defined threshold, and marked and highlighted nodes. 

There may not be the need to inspect a network in the browser but 
rather continue working directly with an image of the network. In that 
case the user can decide to use the generated link to immediately trigger 

an image download in the specified format. 
The rendering behavior of a network within MetaRelSubNetVis also 

includes customization of the sidebar. Each tab’s visibility, including the 
back button, and even the visibility of the whole sidebar can be defined 
in different stages. That opens exceptional possibilities, such as 
integrating a specific visualization of the network within an iFrame on a 
different web page. Hiding sidebar components that are not relevant or 
even the whole sidebar can be highly beneficial to direct the user’s focus 
on a particular aspect of the network. 

4 Discussion 
MetaRelSubNetVis was designed with focus on the visualization of 
group-wise comparison between the integrated data. Yet, this approach i
limited to two groups and for more than this it would also be difficult t
be represented in an easily comprehensible manner. Additionally, th
visualization is limited to the visualization of the same property withi

both groups. A potential extension could also be a comparativ
visualization of two properties for one selected patient. However, thi
would tremendously increase the dependency between visualization
options and the required definitions for the visualization properties that 
would be incompatible with the aim for simplicity of this application. 

Fig. 2  Options for creating a sharable link. Current settings for the visualization are 

listed and the behavior of the sidebar and its elements can be adjusted. 
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MetaRelSubNetVis: Referenceable network visualizations based on integrated patient data with group-wise comparison 

On a related note, MetaRelSubNetVis only considers varying attributes 
relating to nodes. Patient-specific differences in edges are not yet 

respected and would be a challenge to render, especially for comparative 
visualizations. Splitting a node visually to show the expressions for the 
two respective patients is intuitively comprehensible, while a split or 
duplicated edge is hardly attributable to the corresponding node and may 
be perceived as confusing. 

Providing information about the different groups and the data used for 
the integration of the network, as well as the definition of the 
visualization properties might be an obstacle to some users. However, 
the inclusion of meta-information should be a generally applied principle 

in network biology. Since the integration step already requires 
specialized knowledge, the effort required for the definition of the 
presumed visualization properties is negligible. 

5 Conclusion 
 

MetaRelSubNetVis is a web application that allows users to load a 
network enriched with group-specific information, inspect it and finally 
export or share the network. Retrieving the networks directly from 
NDEx not only promotes collaborative workflows through this platform 
but also circumvents the problems of finding individual hosting solutions 
for the used networks or incompatibilities due to different data formats. 

Throughout the user’s visualization efforts, the positions of the single 
nodes remain consistent and thus improve comparability of the different 
enclosed properties of an integrated network. The group-wise 

comparison of network attributes allows a more comprehensible 
investigation of the results of preceding, already comparative analyses. 

The communication and exchange of network visualizations is 
simplified with MetaRelSubNetVis by sharing a link to a specific layout 
configuration, facilitating collaboration furthermore. The options to hide 

specific parts of the sidebar or even the sidebar in total proves 
invaluable when embedding a network’s visualization within other
applications: Developers can highly customize the view withou
implementation of an own proprietary network visualization. 

MetaRelSubNetVis has already proven its potential by its applic

to the results of Chereda et al., where it was successfully used fo
exploration, interpretation and visualization of the created pa
specific subnetworks. 

6 Availability 
A live version is hosted on GitHub Pages at https://frankkra

lab.github.io/MetaRelSubNetVis and the corresponding source cod
deploying own instances is provided on https://github.com/frankkra
lab/MetaRelSubNetVis. 
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Abstract 
Motivation: Collaborative workflows in network biology not only require the documentation of the 
performed analysis steps but also of the network data on which the decisions were based. However, 
replication of the entire workflow or tracking of the intermediate networks used for a particular visuali-
zation remains an intricate task. Also, the amount and heterogeneity of the integrated data requires 
instruments to explore and thus comprehend the results. 
Results: Here we demonstrate a collection of software tools and libraries for network data integra-
tion, exploration, and visualization to document the different stages of the workflow. The integrative 
steps are performed in R, and the entire process is accompanied by an interchangeable toolset for 
data exploration and network visualization.  
Availability: The source code of the performed workflow is available as R markdown scripts at 
https://github.com/frankkramer-lab/reproducible-network-visualization. A compiled HTML version is 
also hosted on Github pages at https://frankkramer-lab.github.io/reproducible-network-visualization. 
Contact: florian.auer@informatik.uni-augsburg.de 

 
 

1 Introduction  
Scientific research faces the problem of the reproducibility of the meth-
ods used in its various domains, with the effect that the reported results 
could not be reconstructed (Goodman et al., 2016). Using a steadily 
growing number of tools and working in multidisciplinary teams increas-
ingly complicates replication, and necessitates to report not only the 
results but rather the entire workflow (Committee, 2021).  

Analyses performed in network biology are no exception and require 

networks and their visualizations not to be seen only as input or result of 
the process. Networks are gradually enriched with additional data from 
various sources and the attention is mainly set on the applied methods. 
Intermediate networks are omitted although those could be utilized to 
document the progress and illuminate the contained information. 

Furthermore, the visualizations of the integrated networks in any stage 
face the problem of choosing the appropriate attributes to focus on. Es-
pecially in a collaborative process this hampers the communication of 
relevant aspects in different steps of the workflow. Also, visual represen-

tations are subjective to the creator and may hide important features 
crucial for the understanding for collaborators and subsequent decisions 
for progression. An interactive exploration of the enriched networks can 
help to expose otherwise invisible characteristics but requires a seamless 
integration into the process. 

Here we present a collection of tools to construct a reproducible work-
flow for network data integration and visualization, including the docu-
mentation of intermediate and final results. We demonstrate the work-
flow on previous results for the generation of patient-specific 

subnetworks for a large breast cancer data set (Chereda et al., 2021). 
Thereby we point out several options of software tools for the visualiza-
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tion that can be used individually or in combination to foster the repro-
ducibility of the workflow.  

2 Methods 

2.1 Gene expression and molecular networks data 

2.1.1 Breast cancer data set 

The studied breast cancer data set is composed from 10 microarray data 
sets publicly available at the Gene Expression Omnibus (GEO) (Barrett 
et al., 2013) repository by the accession numbers GSE25066, GSE20685, 
GSE19615, GSE17907, GSE16446, GSE17705, GSE2603, GSE11121, 
GSE7390, GSE6532. The expression data was measured on Affymetrix 

Human Genome HG-U133 Plus 2.0 and HG-U133A arrays and previous-
ly preprocessed and studied (Bayerlová et al., 2017), including the pre-
diction of the molecular subtypes for the Breast cancer samples. Sample 
selection, filtering, combination and normalization was performed ac-
cording to previous work (Chereda et al., 2021) and resulted in a data set 
containing 12,179 genes in 969 patients. The patients` metastatic status 
were derived from the occurrence of distant metastasis within the first 5 
years (393 patients) or absence with the last follow-up between 5 and 10 
years (576 patients). 

2.1.2 Protein interaction networks 

The protein-protein interaction (PPI) network from the Human Protein 
Reference Database (HPRD) (Keshava Prasad et al., 2009; Mishra et al., 
2006; Peri et al., 2003) was used as basis for capturing the relations 
between the expressed genes. The information contained in molecular 
network is based on evidence from in vitro and in vivo yeast two-hybrid 

analyses and constitutes of undirected binary interactions between pairs 
of proteins.  

The disconnected graph consists of 9,898 vertices which decreased af-
ter mapping the genes of the breast cancer data set onto the PPI network 
to 7,168 vertices in 207 connected components. For further analysis only 
the main connected component was used, which consisted of 6,888 verti-
ces, while the remaining components only contained 1 to 4 vertices. The 
main reason for this choice was that the Graph-CNN algorithm requires a 
connected graph as input. 

2.2 Data processing 

2.2.1 Relevance score 

The computation of a patient-specific relevance score is a two-step
cess: Firstly, a Graph Convolutional Neural Network (Graph-CN
trained on the gene expression and molecular network data to predi
metastatic status for a patient. Secondly, the Graph Layer-wise 

vance propagation (GLRP) algorithm is applied to a patient’s pred
to determine the relevance of the genes to the predictive outc
(Chereda et al., 2021) 

The Graph-CNNs were trained on the gene expression dataset wi
HPRD PPI network as prior knowledge with a 10-fold cross valid
over a whole dataset to estimate the predictive performance of G
CNN. For the generation of the relevance scores, the gene expre
dataset was randomly split in training (90%) and test (10%) set
Graph-CNN was trained using manually selected hyperparameters 

10-fold cross validation, and subsequently used to predict meta
events for the test set consisting of 97 patients. 

For the subsequent analysis, meaning the generation of pa
specific subnetworks, only 79 patients were considered with mat
predicted and reported metastasis. The GLRP method was applie
those patients to determine the relevance of the genes to the predi
thus called relevance score. 

2.2.2 Molecular tumor board report analysis 

Actionable genes present in the patient-specific subnetworks were id
fied using the Molecular Tumor Board (MTB) report (referred 
“MTB report”) methodology described in Perera-Bel et al. Therefor
algorithm was extended by inferring gain of function alterations
high expression, and loss of function alterations from low expre
respectively. The gene expression levels were derived based on the
expression throughout the whole patient cohort with the 25% and

quantiles as boundaries for low, normal and high levels of expressio
Although information about specific gene variants is not present 

breast cancer gene expression data set due to the used quantific
method, the results can be used to define specific panels for subse
sequencing. 

Fig. 1  Network data integration and visualization workflow. HPRD and GEO serve as raw data resource for the generation of patient-specific subnetworks and used for calculati
the relevance scores. The networks are stored on the NDEx platform using ndexr and handled by RCX which was also used for the visualization, additionally to NDExEdit, 
MetaRelSubNetVis, and RCy3 and Cytoscape. 

tep pro-
NN) is 
dict the 
e Rele-

ediction 
utcome. 

with the 
lidation 
 Graph-
pression 
set. The 
rs from 

etastatic 

patient-
atching 
lied for 
diction, 

e identi-
d to as 

fore, the 
ns from 
pression 
the gene 
nd 75% 

sion. 
nt in the 
ification 
sequent 

lation of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.488519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.488519
http://creativecommons.org/licenses/by/4.0/


Reproducible data integration and visualization of biological networks in R 

2.3 Data integration and modeling 

2.3.1 The NDEx platform 

The distribution of biological networks is an important aspect in collabo-
rative workflows. Working on the same data basis can be challenging to 
be arranged, be it providing the networks used as resource for the initial 
analysis or sharing intermediate and final results. 

The Network Data Exchange (NDEx) (Pillich et al., 2017; Pratt et al., 

2015) is an online commons specifically designed for the exchange of 
and collaboration on biological networks. Networks can be uploaded and 
shared with individual persons or groups and remain visible only to this 
peer to prevent premature disclosure of this valuable information.  

For the publication of the results, NDEx then can be used to propagate 
the network data supplementary to manuscripts, and as possible re-
sources for further analyses. Furthermore, a comprehensible collection of 
networks is publicly available on the platform as for example the NCI 
Pathway Interaction Database (PID) (Schaefer et al., 2009) from which 

NDEx initially originated. 

2.3.2 ndexr 

Programmatic interaction with the NDEx platform from within R (R 
Development Core Team, 2008) is provided by the ndexr package (Auer 
et al., 2018). The package enables the search of public and private net-
works on the platform as well as the exchange of networks with the 

platform. Moreover, it provides functions to adjust the accessibility and 
visibility of the networks as well as options for sharing with specific 
users and groups. 

In this work we use ndexr to document the progress of the integrative 
network analysis. The HPRD PPI network available at the NDEx plat-
form was retrieved, and the intermediate stages from integration of the 

gene expression with the network to the creation of the single patient-
specific subnetworks are saved using this package. 

2.3.3 RCX 

The NDEx platform uses for the exchange of the network data their 
proprietary Cytoscape Exchange (CX) data format. It is an aspect orient-
ed and JSON based data structure tailored to the transmission of biologi-
cal networks. It utilized established web standards for the transmission 
and thereby encapsulates the different components of the network (i.e., 
nodes, edges, layout and visual representation, and associated attributes) 
into separated modules (aspects). The different aspects are independent 
by itself but can refer to each other, if necessary, for example edges refer 
to the nodes they connect, and the cartesian layout to the nodes to which 

they assign the position. 
CX originated from the cooperation with the Cytoscape consortium 

and consequently inherited aspects dedicated to capture the visual repre-
sentation of the network. Moreover, one remarkable feature of CX in 
contrast to other network formats is that the visual representation is a 
part of the network itself. 

The RCX package (Auer & Kramer, 2022) includes functions and 
models to facilitate working with biological networks in CX format 
within R. The RCX data model, including separate models for the single 

aspects, is thereby the adaptation of CX to standard R data types and 
structures. Due to the fundamental differences between the table-based 
view on data in R and the object-oriented composition in JSON, and 
hence CX, the RCX package offers specialized functions for conversion 
and handling of the networks. Besides the lossless conversion to the CX 
format also igraph (Csardi & Nepusz, 2006) and Bioconductor graph 
(Gentleman et al., 2021) are supported, both established libraries for 
graph analysis and visualization. Furthermore, RCX includes functions 
for the creation, modification and validation of networks in this format to 

facilitate usability. 

Fig. 2  Comparative visualization of patient GSM615368 and GSM615184 on MetaRelSubNetVis colored by gene expression. The visualization network is available at 
https://frankkramer-lab.github.io/MetaRelSubNetVis?uuid=a420aaee-4be9-11ec-b3be-0ac135e8bacf&pa=GSM615368&pb=GSM519380&th_GE=8.53234588826455& 
th_Score=0.00029828155&col=GE& size=GE&all=false&shared=false&bool=MTB&sb=0&cP=0&cT=1&cN=1&cL=0&cD=1&cG=1&cIm=1&bb=true  
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2.3.4 Generation of patient-specific subnetworks 

The ndexr package uses RCX as data model for the integration of the 
gene expression values and levels, and relevance scores with the HPRD 
PPI network to generate the subnetworks, as well as to capture and store 
the visualizations (Fig. 1). The resulting integrated network is available 
on the NDEx (UUID 833b1cee-42f6-11ec-b3be-0ac135e8bacf) and 
forms the basis for the subnetwork generation. 

For each of the 79 patients the 140 most relevant genes were used to 

induce the intermediate patient-specific subnetworks. Those subnetworks 
then were combined and again only the main connected component 
consisting of 407 nodes used. For these final patient-specific 
subnetworks the MTB report analysis was applied and the results inte-
grated into the combined network (UUID a420aaee-4be9-11ec-b3be-
0ac135e8bacf), which then was used as basis for the different visualiza-
tion approaches. The patient-specific subnetworks are also individually 
accessible at the NDEx platform within a network collection (UUID 
5d308fbb-42da-11ec-b3be-0ac135e8bacf). 

Since the single integration steps build upon each other it is necessary to 
track the preceding networks for reproducibility of the integration steps. 
Therefore, the source networks are listed by their UUID within the net-
work attributes of the current network model. 

3 Results 

3.1 MetaRelSubNetVis 

MetaRelSubNetVis is a web-based tool for the interactive exploration of 
integrated patient subnetworks and comparison of those networks be-
tween patient groups. The combined integrated subnetwork is directly 
loaded from NDEx and visualized within the web-browser with a con-
centric layout applied by default. The visual representation of the 
subnetworks can be adjusted to base on the integrated data. The included 
genes can be sized and colored using a gradient for expression or rele-

vance score values. Alternatively, different colors for the expression 
levels can be set. Additionally, the results of the MTB analysis can be 
highlighted within the graph as well as selected nodes. 

The different patient groups, i.e., metastatic and non-metastatic, can 
be visualized and compared within the same graph. For a selected patient 
of each group the nodes are split and colored by the value of the patient 
of the corresponding group (Fig. 3). Shared genes are sized greater than 
individual ones and to put even more emphasis on common nodes only 
those can be shown. 

The visualization can be explored interactively by moving nodes or 
adjusting the thresholds for relevance scores or gene expression to dis-
play the nodes. Thereby, the position of the nodes is preserved between 
visualization and patient selection changes to facilitate identification of 
the same entities across the different subnetworks. 

Furthermore, custom links can be generated that lead directly to the 
selected patients and their visualization. These links can be used to 
communicate and reference specific findings within the subnetworks. 
They can also be provided along publication for illustration and be em-

bedded on websites for reference or interactive exploration (Fig. 2). 

3.2 NDExEdit 

The visualization of networks, even only simple ones, often requires 
additional software to be installed on the local machine. NDExEdit is a 
web-based approach for the data-dependent visualization of networks 
where those can be loaded directly from the NDEx platform. For a load-

Fig. 3  Comparative visualization of patient GSM615368 and GSM615184 
colored by gene expression level and value, and relevance score. 
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ed network the single attributes, and their distribution, can be explored 
and visual attributes applied based on the contained data. The network 
can be arranged, different layouts applied, and the results saved within 
the network. This can be used to highlight for example the number of 
occurrences of the different genes across the combined network (Fig. 4), 

or to define the same visual styles for a single patient as demonstrated 
with MetaRelSubNetVis. Finally, the resulting networks with included 
visualization can directly exported to the NDEx platform, downloaded as 
CX file, or exported as publication-ready images in various formats. 

3.3 R based visualization 

3.3.1 igraph 

Within the R environment the most prominent software package for 
graph manipulation, analysis, and visualization is the igraph library. The 
package thereby follows the typical R methodology of defining the visu-

al attributes for each node and edge individually and explicitly before 
plotting the graph. This way similar visualizations can be created as with 
the above tools, but the attribute values for single nodes (and edges) 
must be set individually. Also, the sharing and exploration of networks 
in this format is rather inconvenient and especially the latter requires 
expertise with appropriate tools. 

3.3.2 Cytoscape and RCy3 

One of the most widely used software tools for the visualization of bio-
logical networks is Cytoscape (Shannon et al., 2003). It allows the im-
port of networks in various formats, including CX from file or directly 
from the NDEx platform. Besides the simple definition of visual proper-
ties Cytoscape offers plenty of tools for network analysis, that can be 
extended even further by custom plugins. 

In contrast to the igraph package where individual values are assigned to 
the nodes and edges, Cytoscape defines mappings based on attributes of 
those. This not only allows a more generalized definition of the visual 
properties, but also promotes the reuse of the created visual styles for 
different networks. 

Cytoscape provides a REST API which can be used with the R pack-
age RCy3 (Gustavsen et al., 2019) to access the software in a program-
matic manner. This allows to remotely control Cytoscape to reproduce 
the visualization of the patient-specific subnetworks with the same repre-
sentation as in NDExEdit. Since both tools allow the export of the visu-
alized networks to the NDEx platform the visualizations can be contin-
ued or refined in both tools interchangeably. 

3.3.3 RCX 

The RCX package was not only used for handling of the network data 
and integration steps, but also to define and apply layouts and visual 
attributes. Therefore, the package includes functions to produce visuali-
zations of the networks consistent with those on the NDEx platform, on 
NDExEdit and within Cytoscape. This consistency is based on the as-
pect-oriented structure of the RCX data model which includes the prop-
erties for the visual representation. We show how the aspect for the 

visual representation can be created from scratch, including the neces-
sary properties, mappings and dependencies for the nodes and edges. 

However, for users unfamiliar with the Cytoscape visual properties 
this approach is arduous. Therefore, we demonstrate a simpler strategy 
by reusing the visualization created with NDExEdit for a single patient. 
The visual properties of the downloaded network are adjusted for the 
remaining patients for mapping the corresponding patient data. Subse-
quently the patient-specific subnetworks including their visualizations 
are exported the NDEx platform. 

4 Discussion 
When working on data integration with biological networks in R the 
most straight forward approach is to use the most established igraph 
library, especially if it requires methods for graph and network analysis. 
However, visualization and distribution of the integrated network models 

is rather limited. Tools like Cytoscape simplify the visualization process 
of the created networks, but still require a solution for network import 
and distribution.  

The NDEx platform offers a solution for management and collabora-
tion and is already integrated into Cytoscape. Together with the RCy3 
package they provide an option to load, visualize and store and share the 
networks. Nevertheless, this may constitute an unnecessary detour, espe-
cially if the visualization is performed by another party. The usage of the 
RCX package for network integration, or through conversion from the 

igraph models provides in combination with ndexr a shortcut to the 
NDEx platform. 

The RCX package itself can be used for the visualization of networks 
but instead of manually defining the visual properties its greater benefit 
lies in the reuse and adjustment of those. Again, Cytoscape can be used 
for the creation of visual properties but NDExEdit on the contrary does 
not require installation of the software. Furthermore, it provides options 
to explore the contained data and adjust the visual mappings accordingly 
which supports especially users unfamiliar with the network. This though 

comes with the cost of NDExEDIT relying on the NDEx platform due to 
missing support of import options for other network formats. 

Although the NDEx platform promotes sharing and referencing the re-
sulting networks it still has its shortcomings in terms of the representa-

Fig. 4  Combined patient-specific subnetworks. The nodes are colored and sized by the 
number of occurence across the 79 patients. The network is available on the NDEx 
platform by the UUID a420aaee-4be9-11ec-b3be-0ac135e8bacf. 
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tion of integrated network data. MetaRelSubNetVis offers an addition to 
NDEx by allowing to interactively explore the networks with a con-
sistent network structure, a property-based visualization, and a group-
wise comparison. Furthermore, the specific visualization settings can be 
shared additionally to the network. However, this requires the infor-

mation about the visualization parameters to be included within the 
network. 

5 Conclusion 
Here we presented different approaches for the reproducible network 
data integration and visualization. The presented tools constitute of es-

tablished software and libraries each with its own advantages and use-
cases. They mainly evolve around the NDEx platform which enables 
storage and distribution of results of an analysis and allows the docu-
mentation of the performed steps. Together with the inclusion of the 
visualization within the networks it not only contributes to the compre-
hensibility of the results but also fosters their reproducibility. 

The application for the generation of patient-specific subnetworks il-
lustrates its applicability in a typical bioinformatics workflow. The pro-
posed solutions are not exclusive but rather complementary to estab-

lished methods and demonstrate their benefits especially through flexi-
bility in their usage. The visualization of intermediated network results 
brings additional insights to the performed integration steps. Only the 
combination of the here discussed software tools, platforms and packag-
es promotes an environment for the reproducibility network data integra-
tion and accompanying visualization. 
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Abstract. High-throughput technologies, especially gene expression analyses can 

accurately capture the molecular state in patients under different conditions. Thus, 
their application in clinical routine gains increasing relevance and fosters patient 

stratification towards individualized treatment decisions. Electronic health records 

already evolved to capture genomic data within clinical systems and standards like 
FHIR enable sharing within, and even between institutions. However, FHIR only 

provides profiles tailored to variations in the molecular sequence, while expression 

patterns are neglected although being equally important for decision making. Here 
we provide an exemplary implementation of gene expression profiles of a 

microarray analysis of patients with acute myeloid leukemia using an adaptation of 

the FHIR genomics extension. Our results demonstrate how FHIR resources can be 
facilitated in clinical systems and thereby pave the way for usage for the aggregation 

and exchange of transcriptomic data in multi-center studies. 

Keywords. FHIR, interoperability, omics, gene expression 

1. Introduction 

Measuring the gene expression in patient samples provides detailed insights into the 

molecular conditions of the underlying disease. Over the years, high-throughput 

technologies have evolved to be used in routine clinical diagnostics and foster 

individualized treatment. At the same time digitalization in healthcare systems advanced 

to electronic health records (EHR) capturing also genomic data. Interoperability and data 

sharing between systems and institutions gain more importance with commonly accepted 

standards like Fast Healthcare Interoperability Resources (FHIR) [1] as a foundation. 

FHIR divides the information into modular and extensible components, as well as 

adapts widely established web standards and the RESTful architecture principle for the 

sharing of EHRs. Included extensions for genomics data are tailored to cover only 

variations in the molecular sequence while expression patterns are neglected. Moreover, 

recommendations for the realization of gene expression results in FHIR are lacking. 

Nevertheless, these insights are important for decision support and translational research. 

Here we provide a feasible FHIR implementation for gene expression profiles from 

microarray analyses and demonstrate the interoperability of the resulting FHIR resources 

within an interactive web application. 

 
1  Corresponding Author: Florian Auer, IT Infrastructure for Translational Medical Research, Alter 

Postweg 101, 86159 Augsburg, Germany; E-mail: florian.auer@informatik.uni-augsburg.de. 

Advances in Informatics, Management and Technology in Healthcare
J. Mantas et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220730

332



2. Methods 

2.1.  Gene expression data 

The data set examines a dose-limiting side effect in patients diagnosed with acute 

myeloid leukemia (AML) that are treated with chemotherapy [2]. Mucositis, DNA 

damage within the oral mucosa caused by the chemotherapy is investigated based on the 

derived gene expression profiles. The samples are collected from punch buccal biopsies 

from five AML patients pre- and post-chemotherapy, and three healthy controls for 

comparison. Microarray analysis was performed using Human Genome U133 Plus 2.0 

Array (Affymetrix, Santa Clara, CA) with GRCh38.p13 (Genome Reference Consortium 

Human Build 38, Ensembl release 99) as a reference, followed by a Robust Multichip 

Average (RMA) normalization of the raw data. The authors made the data available at 

the EBI Expression Atlas [3] portal by the ID E-GEOD-10746. 

We chose this gene expression data set because the conducted analysis represents a 

typical bioinformatics workflow resulting in several gene expression profiles from the 

same and different individuals that enable disease classification and patient stratification 

into risk groups [4]. 

2.2.  Adaption in FHIR resources 

The central element within FHIR to capture real-world concepts is the Patient resource: 

A study evolves around patient treatment therefore all subsequent patient-specific results, 

and resources implementing those refer to this base element. Detailed information about 

the sample donors was not included in the original data set to preserve the anonymity of 

the participants, instead, we used artificially generated data using SyntheaTM [5] to create 

Patient resources as reference. The medical condition of the AML patients was captured 

by the Condition resource to distinguish them from the healthy donors. The single 

samples are captured by the Specimen resource and serve as a link to distinguish between 

samples collected from the same patient, namely pre- and post-chemotherapy. 

The gene expression values are generated based on the GRCh38.p13 reference 

genome and were measured for each sample. Since all gene expression profiles use the 

same reference, the single genes contained in the reference genome were included as 

MolecularSequence resources. The actual expression values are treated as single 

measurements realized as Observation resources with the Observation-geneticsGene 

extension referring to the corresponding gene symbol. Although the Patient resource is 

referenced directly within the Observation resource, the Specimen resource is still 

 
Figure 1. FHIR resources and their references between each other as well as to external databases. 
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required to differentiate between the different samples of the same patient. Using the 

MolecularSequence resource as a reference avoids redundancy of shared genomic 

information and simplifies the retrieval of the gene expression values for one particular 

gene across the different samples. An overview of the resources and their links to public 

databases, as well as references between the resources is shown in figure 1. 

An in-house installation of the dockerized HAPI FHIR server [6] was used for 

storing the created resources. Additionally, we developed a web application that uses the 

FHIR REST API to retrieve and display the FHIR resources to demonstrate a 

minimalistic decision support system. 

2.3.  Data and material availability 

All necessary software to reproduce the results is publicly available on GitHub at 

https://frankkramer-lab/gene-expression-on-fhir. This includes scripts to download the 

data sets from the official platforms, set up the dockerized HAPI FHIR server and import 

the data, host the web application, and corresponding source code (GPL-3.0 License). 

Additionally, a demonstration of the web application with hard-coded excerpts of the 

FHIR resource data is hosted as a static service using the GitHub pages functionality 

which can be accessed at https://frankkramer-lab.github.io/gene-expresssion-on-fhir. 

3. Results 

The original data translated to 252,684 resources stored on our FHIR server. For 

performance improvements, not all gene ids in the reference genome (60,617 ensemble 

entries) were encoded in FHIR but only those present in the gene expression data. A 

detailed overview of the created resources and the time requirements is shown in table 1. 

Table 1. Summary of FHIR resources and time required to upload to the FHIR server. 

FHIR resource Number of objects Time for creation 
Patient 8 ~1sec 
Condition 5 ~1sec 

Specimen 11 ~2sec 

MolecularSequence 21,055 ~5min 
Observation 231,605 ~45min 

The web application demonstrates the usage of the created resources: Those are obtained 

directly from the FHIR server, then linked and assembled into a visual representation of 

the gene expression across the patient samples (figure 2). 

4. Discussion 

Through our contribution to the FHIR Genomics extension, we were able to include 

genomic profiling) data. Since only excerpts of the molecular data are necessary for 

detailed investigation, FHIR encoded gene expression profiles are suitable for usage in 

web-based applications. Furthermore, we were able to demonstrate the integration 

capabilities of FHIR encoded genomic profiles in decision support systems. Further 

improvements could consist of consolidation of the outcome of the analyses, e.g., 
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significantly differentially expressed genes between samples, as DiagnosticReport 
resources. 

5. Conclusions 

Our results demonstrate how FHIR resources can be facilitated for the clinical exchange 

of expression profiles. The usage of the adopted resources within our web application 

demonstrates its feasibility for usage in decision support systems or patient assessment. 

The further incorporation of genomic features into the FHIR standard offers the 

opportunity to establish the currently missing standard for the aggregation of various 

molecular genetics data in a clinical setting. This work contributes to closing this gap 

and paves the way towards patient stratification through transcriptomic profiling even 

across health care institutions and within multi-center clinical trials. 
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Figure 2. Web application using the created FHIR resources to show the gene expression between the 
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