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“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the
world. Nearly everything is really interesting if you go into it deeply enough.”

— Richard P. Feynman.
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Abstract

The perplexing and intriguing world of biological systems has inaugurated a new
research field in statistical physics: out-of-equilibrium systems, known as active matter
that mimic systems in the biological world around us from a statistical mechanical
point of view. These systems exhibit captivating collective dynamics such as self-
sustained pattern formation. Self-organization of motors and microtubules within the
cell, swarming colonies of bacteria, and starling murmuration are some fascinating
patterns in nature that organize themselves independently, without external control.
Numerous computational, theoretical, and experimental models have been developed
to unravel the physics of active matter system.

In this thesis, we employ several agent-based minimal models to study self-propelled
particles to explore the key parameters that play a significant role in their dynamics
and self-organization.

We develop a hexagonal lattice model to study the dynamics of passive "tracers' in
the presence of active crowders where the tracer is pushed by the active particles, which
leads to enhanced diffusion. We show that the degree to which this diffusion is enhanced
depends crucially on the activity and the density of the crowders. Furthermore, we show
that a decrease in the diffusion coefficient of passive particles is an explicit consequence
of the local accumulation of active crowders in the system.

We employ Brownian dynamics simulation for spherical particles in continuous

space to explore the strong velocity correlation in a mixture of active and passive



particles in the absence of explicit alignment interaction. We decouple the effect caused
by a high density of the medium from the one caused by the persistent activity of the
self-propelled particles and show that a dopant of active particles can produce a strong
velocity correlation in a sufficiently dense system of passive particles.

We extend Brownian dynamics simulation to long, semiflexible active filaments to
explore the various dynamical states in the system. We show that the self-propulsion
force and the bending stiffness are two indispensable parameters in the systems that
control the size and shape of the emergent clusters and the dynamical steady states
in the system. Moreover, we add a direction reversal mechanism to the polymers to
mimic the stochastic direction switching motion of filaments. The stochastic direction
reversal rate is the third crucial parameter that controls the emergence of clusters and
spirals in the system and provides an additional mechanism to either unwind spirals or
to resolve clusters.

We employ our overdamped Brownian dynamic simulation to study the self-buckling
of an individual active filament to infer essential parameters for studying the pattern
formation of colonies of filamentous Cyanobacteria in the next chapter. We confirm that
a critical length of Cyanobacteria is required for self-buckling which is in perfect agree-
ment with the theoretical model that was developed recently in Dr. S. Karpitschka’s
lab.

Finally, by using inferred parameters from our self-buckling simulation, we investi-
gate the pattern formation of filamentous Cyanobacteria at high density. Using the
critical length from the self-buckling study as well as a length below and above this
critical length, the polar and nematic long-range order in the system is investigated.
The active filaments without stochastic direction reversal show a longer-range polar and
nematic order in the system. We then incorporate the direction reversal mechanism:

Increasing the reversal rate decreases the polar order in the system, but simultaneously
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increases the nematic order. Remarkably, the critical aspect ratio for the given reversal
rates exhibits the strongest polar order in the tangential direction of the filament and

the strongest nematic order in both normal and tangential directions of the filaments.
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Chapter 1

Introduction

1.1 Active Matter

Active matter system is of a novel class of soft matters that has drawn a lot of interest
in recent years. Active matter is ubiquitous in nature across many scales: cytoskeletal
filaments [1-3], motile cells [4-6], fish schools [5], and bird flocks [7-9]. These systems
are inherently out of equilibrium and consist of a large number of active "agents',
each of which continuously and autonomously harvests energy (from within their own
body or from their surroundings) to fuel their systematic movement. One fundamental
difference between these kinds of systems and driven systems (i.e. granular matter,
sheared complex fluids, etc.) is that for active matter systems both driving and
dissipation occur at the level of the constituent particles, whereas for driven systems
the dissipation happens at the scale of the constituents but driving is implemented at
the scale of the whole system, in most cases through the boundaries.

Active materials have exotic characteristics that make them fundamentally different
from the everyday materials we deal with: fabric, plastics, liquids, metals, and glasses
etc. For example, they can execute tasks such as self-motility [10-12], self-organization

[2, 10, 12], and self-healing [13, 14] to name a few.
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Figure 1.1 — (a) High-resolution electron microscopy of Myosin taken from [26] (b)
Bacterial “turbulence” in a sessile drop of Bacillus subtilis viewed from below through
the bottom of a petri dish taken from [6] (d) Image of a sardine school showing some
polar order taken from [10] (c¢) Photographs of starlings taken from [8]

Beyond biological systems, active matter has also been a source of inspiration
for artificial systems. Scientists have made great efforts to develop artificial systems
that can adapt and mimic the dynamical properties of biological active materials,
for instance, engineered synthetic colloids which are capable of converting energy
into motion [15, 16] like a bacterium or phoretic microswimmers [17-19] that have
proven to be essential for some systems [20] . Apart from the material design aspect,
these artificial systems are poised to transform material science by designing micro-
and nano-machines capable of autonomous movement, using the energy sources in
the environment to mimic the capabilities of living organisms [21, 22]. In addition,
artificial swimmers have been associated with a wide range of practical applications,
ranging from drug delivery [23], cancer therapy [24] to soil remediation [25]. Now, to
have a better understanding of these kinds of out-of-equilibrium soft matter systems

we will categorize them into different classes in the next section.



1.2 Classification of Active Matter

1.2 Classification of Active Matter

There are different approaches of categorizing active matter systems into sub-classes.
The two most commonly used ones, based on fundamental principles of physics, are
the classification of active matter systems considering (a) conservation laws of the
dynamics and (b) the geometry of the constituent particles. Here we describe them

with appropriate details.

1.2.1 Classification based on conservation laws

In this subsection, we divide the active matter systems into two different sub-classes
by considering the conservation of momentum, and for this, friction will be the most
relevant factor. The sub-classes are termed as (a) wet and (b) dry. In general, a
given active material lies between these limiting cases (a) and (b) with the relative
magnitudes of frictional and dissipative damping controlling its position in the wet-dry
spectrum. Hence, just using friction, one would be able to differentiate and categorize

between these two sub-classes.

1.2.1.1 Wet active matter

Typically, wet active systems are embedded in an ambient fluid (which dampens the
active system through viscous friction) and the constituent particles can interact via
the ambient fluid i.e. through hydrodynamic interaction. Therefore, if solvent-mediated
hydrodynamic interactions are important in a given active system it is characterized as
wet active matter. In this case, the dynamics of the suspending fluid must be included
in the model, and a description of the suspension of active particles and the surrounding
fluid must be developed together while preserving the overall momentum. For instance,
while considering the physics of micro-swimmers in bulk fluid, the hydrodynamic flow

fields generated by the microswimmers should be taken into account as well as damping



Introduction

effect of the surrounding fluid on the relative motion of the neighboring particles.
Hence, the total momentum (which is the sum of the momentum of the constituent
particles and the ambient fluid) of the system is conserved.

Inclusion of the description of the surrounding fluid is not a simple extension. In
most cases, the introduction of the fluid description and the coupling of the density and
orientational degrees of freedom of the active particles to the fluid flow lead to complex
spatio-temporal dynamics. Typically, the hydrodynamic interactions are long-ranged
and combining them with the incompressibility of the fluid fundamentally changes the
physics of the problem and causes the appearance of turbulence-like vortical structures
[10, 27, 28] and topological defects [10, 29-31].

However, there are also many active materials that have alternative forms of
dissipation, such as wall friction which is the friction between the active particles and
a substrate without the above-mentioned complexity, as will be discussed in the next

sub-section.

1.2.1.2 Dry active matter

In systems where active materials are in contact with a substrate, or are confined
between two closely spaced walls, or move through a porous medium, the drag force
due to the friction of the substrate outweighs the friction due to the ambient fluid (if
there is any). This is a consequence of the coupling and decoupling of the components
of the system to the confining medium. The momentum of the active system is not
conserved and the substrate acts as a momentum sink.

The reason to ignore the aspect of the conservation of momentum is typically the fact
that hydrodynamic interactions are of less importance in such systems. The suppression
of hydrodynamic interactions can be due to several effects, such as fluctuations, volume

exclusion, and other short-range interactions. Examples of systems that lie in the dry
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spectrum include the Viesek model for mimicking migrating animal herds [32] and
assemblies of vibrating granular rods [33-35]. In this thesis, all works were performed

in different types of dry systems.

1.2.2 Classification based on the geometry of the constituent
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Figure 1.2 — Classification of colloidal particles with respect to their shape, image is
taken from [36]

Another popular way of classifying active matter systems is based on the shape of
the constituent particles [36]. It is quite known that the shape of the particles strongly

influences their motion and the formation of a pattern by a group of such particles.
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Both biological and artificial self-propelled particles often have a significant shape
asymmetry and they can give rise to a variety of new phenomena due to this shape
symmetry/ asymmetry (see figure. 1.2). We therefore classify active systems based on

their geometry, isotropic or anisotropic.

1.2.2.1 Isotropic

The simplest and at the same time completely symmetrical, i.e., isotropic, shape is
that of a sphere. This is the typical form for colloids studied in both experimental [37,
38] and theoretical [17, 18, 39, 40] soft matter physics because firstly, they are easy to
make and, secondly, due to the lack of ‘shape’ degrees of freedom, their behavior are
relatively easy to model and understand. Spheres have only translational degrees of
freedom, hence, they can only form perfectly isotropic state and the crystalline state
[41]. Note that, the self-propelled sphere still has an orientation, but in this case the
activity is responsible for the anisotropy, not the geometry of the particles. In chapters

2 and 3, the geometric shape of the active or passive particles is isotropic.

1.2.2.2 Anisotropic

Anisotropic particles have a non-spherical structure and are typically, either uniaxial
or biazial. They exhibit very different static and dynamical behavior than the spherical

particles.

« uniaxial particles have an axis of symmetry denoted by a unit vector 4. They
have rotational symmetry with respect to @ and this is the only degree of freedom
of their orientation in two spatial dimensions. Moreover, uniaxial particles can be
divided into polar and apolar particles. Polar particles have head-tail symmetry,
otherwise they are called apolar. A good example of the simplest anisotropic

particles are rod-shaped particles [42, 43|, which are an excellent model system
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for studying liquid crystals [44] and polymer systems [45-47]. In this thesis, we
used a rod-shaped model in Chapters 4 and 5 to mimic the dynamics of bacteria
and study their dynamical steady-state and self-organization with and without

external cues.

« biaxial particles either have discreet symmetries or no symmetry. Unlike uniaxial
particles, here we can no longer describe their orientational degrees of freedom
with a unit vector. Instead, we must use two perpendicular unit vectors or Euler

angles [48]. Examples are: Cube [49], Tetrahedron [50], etc (see figure. 1.2).

1.3 Modeling Active Matter Systems

Being diverse and complex, active matter systems pose a real challenge in terms
of modeling them using simple models. In this section, we focus on such modeling
approaches of active matter systems and give an overview of the main features of
different existing models. We also elaborate on where they are applicable/not applicable.
As mentioned before, there are several methodological approaches to describe active
matter. For a pedagogical discussion, we divide the possible descriptions into two
categories: (a) particulate or agent-based models (b) hydrodynamic or continuum

models.

1.3.1 Agent-based models

In the agent-based modeling approach, one seeks to understand the macroscopic
dynamical or mechanical properties of the system based on the interactions at the
level of the constituent elementary objects (known as ‘agent’). For example, while
modeling a polar active fluid using such an agent-based approach, the agents/particles

are typically considered as self-propelled entities moving at a certain speed along
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a body-fixed orientation (polarity axis), also undergoing rotational diffusion. The
interaction between the agents can be steric, aligning, etc., based on the target system
one seeks to mimic. This can include Weeks-Chandler-Andersen [51](WCA) or similar
soft repulsive contact interaction, which results in the explicit alignment of the polarity
axes (of both polar and nematic type). The equations for describing such agent-based
models can be in discrete space and time (lattice-based model) [39, 52, 53] or in a
continuous space-time domain (which is also discretized for the purpose of numerical
integration) [54, 55]. In Chapter 2, we discuss a lattice-based model and in chapters
3-6 we will use continuum models.

The prototypical example of the agent-based approach is the case of active Brownian
particles or ABP which has been developed to understand the collective behavior of
active colloids or self-propelled microbes. Below, we briefly discuss the salient features
of the ABP model.

Active Brownian particles (ABP) have served as phenomenological models for
studying the motion of self-propelled agents. Such agents in a biological context, e.g.
bacteria or other microbes, absorb chemical energy from the environment or from
within its own body and convert it into persistent motion to perform tasks necessary
for their survival. Now, in the ABP model, this self-propulsion or persistent motion is
modelled via a propulsion velocity vy with constant magnitude and a direction that
diffuses over time. For simplicity the frictional damping is modelled as —vyv, where v is
the velocity of the particle. The equation of motion can be written using the Langevin

approach as,

mit = —yv + V2D (t) + foia (1.1)

where {(¢) is a vectorial Gaussian white noise with ((;(¢)(;(t')) = (¢t — t')é;; and

D = kgT/~ (using Einstein relation, in which kg is the Boltzmann constant and
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T is the temperature). Note that the first two terms are used for representing the
friction and noise for a standard Brownian particle. The third term represents a
propulsion force in 2d, with a constant magnitude fy and a direction along which the
propulsion acts. fi can be represented as (cos(f),sin(f)) where 6 is the angle along
which propulsion works. The dynamics of this angle is modelled by simple rotational
diffusion,

6 = \/2Dgn(t) (1.2)

where 7)(t) is mean zero unit variance Gaussian white noise and Dp, is the rotational
diffusion coefficient. In the overdamped limit (ignoring inertia) one can rewrite the

equation of motion as,

v = \/2kgT/7¢(t) + void (1.3)

along with the Eq. 1.2 where vy = % We have used this model in Chapter 3 to describe

the dynamics in a mixture of active and passive particles.

1.3.2 Hydrodynamics approach

A hydrodynamic approach provides a continuum description of an active or passive
system in terms of the dynamics of the so-called slow variables, as these variables
change gradually over in both space and time. Typical examples of slow variables in
condensed matter systems are broken symmetry variables near the phase transition, and
density of conserved quantities. Using this approach, one can derive a set of equations
that describe the coarse-grained behavior of the slow variables of the system. This
derivation can be derived in multiple ways: (i) by coarse-graining the corresponding
microscopic dynamics, (ii) from conservation laws and symmetry principles. In the

process of establishing a general set of equations for a continuum system, the first task
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is to define a set of hydrodynamic variables. The general equations are based on an
expansion of the aforementioned variables and their spatial derivatives, with the only
constraint being the conservation laws and symmetries of the underlying microscopic
dynamics.

There are numerous examples of such hydrodynamic descriptions of active matter.
The two most famous examples in soft matter systems are the hydrodynamic theories
for the dynamics of passive fluids and momentum non-conserving active fluids, which
are known as the Navier-Stokes and Toner-Tu equations [56], respectively. For the
former, the hydrodynamic variables are the density and the velocity field of fluid
whereas for the latter, an additional polarity field of the active fluid is needed. These
kinds of descriptions typically fail at length scales of the order of the particle size or
smaller but are very useful to explore the behavior of the system at large length and

time scales.

1.4 Collective Behaviour

Active systems are idealized systems studied to better understand the mechanism
behind the collective behavior seen in various biological systems. Examples of collective
behavior in living active matter systems range from mammalian herds to flocking of
birds, and to pattern formation in bacterial colonies, which all stem from the far-from-
equilibrium dynamics and the complex interactions between the constituents. These
examples show that this type of collective behavior can be observed at the micron-scale
as in bacterial swarms as well as at over kilometers in animal herd. Similarly, their
timescale can also vary from microseconds to days. Note that this kind of ordered
dynamic structure or patterns forms in noisy environments and most importantly
without leaders or external fields that dictate any behavior.

In active systems, there are two predominant types of collective behavior. It has

10



1.4 Collective Behaviour

been found that motile creatures usually congregate and form flocks to exhibit swarming
behavior. Examples include swarm behavior in birds, tetrapods, and fish. Or, they
may simply accumulate where they move more slowly. At high densities, they may
also slow down for biochemical or steric reasons, leading to motility-induced phase
separation (MIPS) between dense and dilute phases.

The simplest single-particle-level model that elicits collective behavior of flocking
is the Vicsek model, proposed by Vicsek et al. [32, 57], which introduces an explicit
polar interaction among motile entities. In contrast, motility-induced phase separation
results in clustering without explicit alignment interaction and is due only to the high
density of the motile entities. We will elaborate on these two collective behaviors and
discuss how they emerge with and without explicit alignment interaction, in the next

subsections.

1.4.1 Physics of clustering: motility-induced phase separa-
tion

One of the indispensable ingredients that make matter "active" is its motility. A
prototypical example of active matter is therefore just a collection of self-propelled
particles. Motility in these systems leads to a number of nontrivial physical phenomena
which have no equivalent in a passive counterpart. One of the fascinating phenomena
recently discovered is motility-induced phase separation which refers to the spontaneous
phase separation in the system that arises due to the self-trapping of self-propelled
particles when both their density and motility are high enough.

To understand this phenomenon, one can assume a population of swimmers in d
dimensions, running for a time 7 with velocity v between two successive tumbles. The
hydrodynamic equation for a population of run and tumble swimmers can be written

as [11, 58] :

11
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Figure 1.3 — With increasing density, the velocity of the active particles slows down
due to self-trapping and phase separation occurs in the system.

vir _, )
(9tp = 7V P = DeﬁV P (14)
where p is the density field and D.g = ”%. Note that the velocity of the swimmer is
considered to be constant in this particular case. In the situation where velocity can

vary in space or v = v(x), we can rewrite 1.4 as [11]

Op = gv.[vV(pv)]. (1.5)

This equation is the most crucial one to understand the physics of self-trapping

1
v(x)”

and has some notable aspects. Solving this for steady-state (9;p = 0), we get p =
which means that the self-propelled particles accumulate (i.e. the density is higher)
where they move more slowly, as one can see in figure. 1.3, with increasing density
phase separation occurs in the system. This is an important feature of interacting
active Brownian particles which has no counterpart in a passive system and leads to
so-called motility induced phase separation (MIPS). Note that this phase separation is a
consequence of no-equilibrium dynamics and does not arise from attractive interaction.

MIPS implies a persistent heterogeneity in the density of self-propelled particles

and it can develop spontaneously when the effective velocity of the active particles goes

12
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down due to the increased density of particles in the system. In Chapter 2, we will
show how the active particles affect the dynamics of the passive particles in a mixed
system and how this emergent heterogeneity can in turn affect the effective diffusion
coefficient of passive particles.

The orientation of the self-propulsion forcing of these self-trapped particles in the
clusters is completely random as this clustering occurs without an explicit alignment
interaction in the system. However, recently Caprini et al. [59] and Henkes et al. [60]
have shown that MIPS is accompanied by a spontaneous alignment of the velocity of
the particles in the dense phase of an active solid system. In addition, Szamel et al. [61]
reported a strong velocity correlation (only parallel to the velocity) of self-propelled
particles at high density of an active fluid system as well. They found that the average
size of domains with aligned velocities grows with the square root of the persistence
time of the self-propulsion force. In Chapter 3, we generalize this idea to a mixture
of active and passive particles instead of a purely active system. We also answer the
question of whether we can obtain such a strong velocity correlation in a dense passive
system by doping it with a small fraction of active particles.

As mentioned earlier, during MIPS, clusters form without explicit alignment in-
teraction and this mechanism helps us to capture the collective behavior in living or
artificial active matter, such as colonies of bacteria or active Janus colloids. Outside the
domain of such examples, there is a huge class of active matter with explicit alignment
interactions between the agents, such as in flocks of birds or fish schools. In order to
understand their collective behavior, one must define an explicit alignment interaction
between the propulsion forces acting on each active particle. The most famous model
for studying such a system is the Vicsek model [32], which we will discuss in more

detail in the next subsection.

13
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1.4.2

Physics of flocks: The Vicsek model

An important ingredient for the formation of swarms is a mechanism for alignment of

the constituent particles or agents, usually with respect to the direction of neighbors.

As mentioned before, the canonical model that introduces such explicit alignment

among self-propelled particles is the Vicsek model, which provides a model for the

swarming of self-motile particles.
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Figure 1.4 — Panel (a) Different patterns of collective movement generated by the classic
Vicsek model (The image is taken form [32]). Panel (b) The Vicsek model is implemented
in a hexagonal lattice model (different colors show the direction of the active particles in

a hexagonal lattice) Panel(c) Flocking of birds

The original version of the Vicsek model [32] was defined in two dimensions, and

was based on the following set of rules. Each self-motile entity in the system is described

as a point-particle (no exclusion or steric interaction) with a direction 6; at time ¢; the

self-motile entity moves along this direction with velocity vy with a discrete time step
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1.4 Collective Behaviour

of size At = 1. At each time step and for each particle i, there is an alignment rule
that applies to the particles as follows: (¢) In the first step, one calculates the average
direction of all particles inside a circle of radius r whose center is the particle position
ri(t); (#i) then the direction of particle 6; is set equal to the angle corresponding to this
average direction, and in addition, some noise is added playing the role of rotational
diffusion. It stochastically changes the final direction of an angle Af by a randomly
chosen value in [—n,n],n € [0,7].

At each time step At, the equation leading to such an explicit alignment updates

the direction 6;, the velocity v;, and the position r; as follows:

0;(t + At) =< 6(t) >, +A0 (1.6)
vi(t + At) = (cos(0;(t + At)), sin(0;(t + At))) (1.7)
I‘i(t + At) = I'i(t) + Vi<t + At)At (18)

where A6 is the noise in the orientational dynamics of the system and plays the role of
thermal fluctuation and < 6 >, denotes the average direction of the velocities of the
particles inside a circle of radius r.

The Vicsek model has drawn the attention of many physicists in the field of
statistical mechanics and condensed matter as this model is able to show a transition
between order and disorder far from equilibrium, only by changing the noise strength 7.
If the strength of the noise is low, the particles tend to align their direction of motion
(similar to the ferromagnetic phase seen in equilibrium below 7.), causing the system
to enter into an ordered swarm state. With increasing 7, on the other hand, the order

decreases and after a point, the noise dominates and the particles move independently
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of one other; at that high noise value, there is no swarm. The order parameter which
can describe this out-of-equilibrium phase transition is defined as :
| Zz]\il eiei 1, n —0

<|v|>= =" — (1.9)
N 0, n—1

In the thermodynamic limit or N — oo, this shows a discontinuous transition. So
in some respect, it is analogous to a first-order phase transition seen in equilibrium.
In particular, near the criticality, the coexistence of two different phases is observed,
which leads to the formation of bands or stripes moving perpendicular to its "axis"
within a disordered background.

It is useful to remember that in a passive analog of the Vicsek model the particles
(or the spins) within the system are not able to move and can only align, corresponding
to the Vicsek model with v = 0. This model falls into the same universality class
as the XY spin model, which has a Kosterlitz-Thouless phase transition due to the
unbinding of topological defects without any symmetry-breaking transition from order
to disorder. This is the so-called "Mermin-Wagner theorem', according to which spins
with continuous symmetry, like the vectors of the XY model, can only undergo a
transition from order to disorder in a spatial dimension d > 2. On the other hand,
the Vicsek model can exhibit spontaneous symmetry breaking and an order-disorder
transition in d = 2, as it is driven out of equilibrium by activity (self-propulsion). This
means that if the system is out of equilibrium the Mermin-Wagner theorem can be
violated and one can see a long-range order even in dimension less than or equal to
two.

The Vicsek model introduces an explicit alignment interaction between particles
that underpins the collective motion of active particles in the system. However, the

alignment interaction can also be generated by the geometry of the particles in the
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system rather than invoking them by hand. Elongated particles, such as active polymers,
tend to align with each other as a result of collisions. When a binary collision occurs,
momentum transfer increases in the longitudinal direction, causing the two elongated
particles to align and move along each other. Depending on whether the collision is
parallel or anti-parallel (head to head or head to tail), they may form a stable group
of two, move together for a extended period of time, or just walk side by side until
they lose contact with each other. The average cluster size grows over time as other
active particles also can come and join them during additional collisions. There are
many physical parameters that can hinder or facilitate the formation of clusters in
the systems. Examples include the density of self-propelled rod-shaped particles, their
bending stiffness, activity and aspect ratio [62].

In Chapter 4, we will discuss the formation of clusters at a low density of active
filaments and examine the effects of physical parameters such as their bending stiffness,
activity, and reversal rate. In Chapter 5, we extend the study to a dense system of
active polymers to understand the collective behavior of filamentous bacteria observed
in experiments with gliding cyanobacteria to shed light on their orientational order by
varying the reversal rate, bending stiffness, and activity and compare the results with
the experimental data. Hence in both chapters, we study and analyze collective behavior
generated by activity and particle anisotropy, which results in aligning interactions

with invoking explicit Vicsek like interactions.

1.5 Scope of this thesis

In this thesis, we perform a computational study of dense systems of active particles
and their complex dynamics and self-organization. We start with studying the influence
of active particles in a passive/active mixture and then we investigate the pattern

formation dynamics in suspensions of elongated particles.
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In chapter 2, we investigate the dynamics of passive tracers in an active system
and also in a mixture of active and passive systems and show that the effective diffusion
coefficient of passive tracers increases before the motility phase separation of active
particles in the system and it diminished when the phase separation of active particles
emerges in the system.

In chapter 3, we study the velocity correlation of a dense passive system in the
presence of a small fraction of active particles (dopants). We show that a very small
fraction of active particles is sufficient to demonstrate a strong velocity correlation in
the system, as long as the density of the embedding passive medium is high enough.
We finally analyze how the velocity correlation in the system is affected by activity
parameters.

In chapter 4, we consider a system of active filaments at low density. We created
a state diagram of the self-organization of active filaments by modulating the self-
propulsive force and the bending stiffness of the filaments. Later, we added a reversal
mechanism to the filament’s driving direction to mimic the reversal seen in gliding
cyanobacteria and study the state diagrams as a function of self-propelling force and
bending stiffness for different reversal rates to understand the role of reversal.

In chapter 5, we performed simulations using flexible and self-propelled filaments to
understand the physics of buckling and to determine the bending stiffness and activity
of the bacteria. We also compared our results with the experimental observation
for a system of gliding filamentous cyanobacteria. By incorporating the measured
parameters in our non-equilibrium simulations we analyzed the pattern formation in
the next chapter.

In chapter 6, we used the parameters from the comparison of buckling simulations
and experiment, to explore the pattern formation observed in a dense colony of

filamentous cyanobacteria. We demonstrate that there is a long-range nematic order
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in the system. We also observe that the polar order of the filamentous cyanobacteria
decreases with increasing reversal rate, which is their spontaneous response to the
changes in light intensity.

In chapter 7, we summarize all the results presented in different chapters and
put them in a bigger context of Self-organization in active matter. We then finish the
thesis by discussing the future directions for this research and how current thesis can

be used as a guide to this aim.
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Chapter 2

Enhanced diffusion of a tracer

particle in a lattice model of a

crowded active system !

2.1 Abstract

Living systems at the sub-cellular, cellular, and multi-cellular level are often crowded
systems that contain active particles. The active motion of these particles can also
propel passive particles, which typically results in enhanced effective diffusion of the
passive particles. Here we study the diffusion of a passive tracer particle in such a
dense system of active crowders using a minimal lattice model incorporating particles
pushing each other. We show that the model exhibits several regimes of motility and
quantify the enhanced diffusion as a function of density and activity of the active

crowders. Moreover, we demonstrate an interplay of tracer diffusion and clustering

IThis chapter is based on a published paper , "Enhanced diffusion of a tracer particle in a lattice
model of a crowded active system " by L. Abbaspour and S. Klumpp in Physical Review E 103,
052601, 2021. Author contributions: L. Abbaspour performed simulations, data analyses and wrote
the manuscript, S. Klumpp supervised the project and wrote the manuscript.
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of active particles, which suppresses the enhanced diffusion. Simulations of mixtures
of passive and active crowders show that a rather small fraction of active particles is

sufficient for the observation of enhanced diffusion.

2.2 Introduction

The behavior of individual particles within a crowded environment is influenced by
the complex collective behavior of the surrounding particles [63—66]. Indeed, many
biological systems are densely packed. Molecular systems in the cytoplasm of cells [63,
67], colonies of bacteria [4], bio-films [68], and tissues [69] are a few examples. Often,
the crowded environment contains active particles that are driven out of equilibrium
due to the local injection and dissipation of energy. On the molecular scale these active
particles may be molecular motors pulling cargoes through cytoplasm and ’stirring it’
[70-72] or enzymes exhibiting enhanced diffusion [18, 73], on the cellular scale, these
could be self-propelled cells swimming in a suspension or moving through a tissue or
a colony of cells [74, 75]. This means that detailed balance is not fulfilled in these
systems, so they cannot be described by equilibrium statistical mechanics.

The observation of individual 'probe’ or ’tracer’ particles within such a system
provides a method to quantify crowding effects as well as to probe for the degree of
crowding if this is difficult to determine directly. Such probes include the diffusion
of the tracer particle [76, 77] as well as specific chemical reactions or conformational
changes such as the compaction of a polymer chain as measured by FRET-probes at
the two ends of the polymer [78, 79].

Diffusion of molecules and particles in complex environments has been studied on a
range of length scales and the complex environment can give rise to dynamic phenomena
such as anomalous diffusion [80, 81]. Specifically, diffusion of a passive tracer particle

in an active system has been studied in various experimental and theoretical model
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systems. Notably, Wu and Libchaber [82] studied the trajectories of polystyrene beads
in a suspension of swimming bacteria and observed enhanced diffusion of the beads.
Such enhanced diffusion has been studied extensively, both theoretically [83-90] and
experimentally [85, 91-97]. Extensions of the simplest system include 3 dimensional
systems [96], the presence of obstacles [94] and confinement, and effective interaction
between passive particles [98].

Interactions between particles in suspension can be complex and generally involve
hydrodynamic interactions in addition to simple excluded volume and particle-particle
collisions. Therefore, simplified minimal models systems can help to advance our
understanding of the role of active processes. Both continuum models [54] and lattice
models [52, 53] have been used for that purpose. Enhanced diffusion of a tracer in a
crowded active system has been observed in models with and without hydrodynamic
interactions [85, 99].

Specifically, lattice models provide a conceptually simple and often computationally
inexpensive approach to study complex phenomena based on particle-particle inter-
actions. In the case of active particle systems, lattice approaches have been used to
study clustering and phase separation [87, 100-103]. Specifically, modifications of the
dynamic rules can easily be implemented to investigate whether results are generic or
specific to given dynamics.

Following this approach and applying it to tracer diffusion, here we study a minimal
lattice model incorporating particle-particle collisions as well as different diffusion
coefficients of different particle types to investigate the effect of activity and density of
crowders on tracer diffusion, neglecting hydrodynamic interactions. Importantly, the
collision rule we introduce goes beyond the simple exclusion rule often used in lattice
models and allows for the pushing of one particle by another particle attempting to

move to the first one’s lattice site. We quantify the enhanced diffusion as a function
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Figure 2.1 — Lattice model of a dense system of active particles (blue) containing a
passive tracer particle (red). a) Overview of the model on a hexagonal lattice. b) Active
particles perform run and tumble motion and move persistently in the same direction
with probability 1 — o and randomize that direction (tumble) with probability « (i.e.,
a/6 for each direction). c) The passive tracer particle (red) performs a simple random
walk, its diffusion coefficient is modulated by the parameter . d) Collision rules among
particles.

of these parameters and relate the observed tracer diffusion to clustering of active

particles. Finally, we generalize our analysis to the case of a binary mixture of active

and passive particles. Our results indicate how the interplay between activity and

density of crowders can lead to significant enhancement of the diffusion of a tracer,

but also limits that enhancement through clustering of the active particles.

2.3 Model

We consider a hexagonal lattice (see Fig. 2.1(a)) in two dimensions, consisting of
M = 256 x 256 sites, with periodic boundary conditions (effects of the system size

are discussed in Appendix A). There are in total n particles on the lattice, of which
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2.3 Model

N, = xaN are active and can self-propel following a simplified run and tumble motion,
and the rest are passive and exhibit diffusive behaviour. We define p as the number
density of the system, which is defined as the total number of particles divided by the
number of lattice sites.

For updating the position of all particles at each time step, n random actions take
place in the system. A particle may be picked more than once in one single time step,
giving rise to fluctuation of its speed. On average, however, all particles are picked
equally often.

The active particles have run-and-tumble dynamics, where they move persistently in
one direction (initially chosen at random), and then reorient with a tumbling probability
«, resulting in long directed runs with abrupt turns. At each time step, the active
particle moves in the same direction as in its last step with probability 1 — o, and
tumbles to choose a new direction with probability «/6. For instance, for « = 0.001,
the active particle takes, on average, 1000 persistent steps in the same direction, and
then tumbles and chooses one out of the six possible directions with equal probability
(see Fig. 2.1(b)). In the case of passive particles we set o« = 1: the particle reorients at
each time step and therefore steps to each site with a probability of 1/6. Since our
aim is to study the effect of active particles on the overall motion of a passive particle,
we put (at least) one passive ‘tracer’ in the system, which in general has a different
Brownian diffusion coefficient set by a parameter 3. The tracer steps to each neighbour
site with probability (1 — 3)/6, with 0 < 5 < 1 as shown in Fig. 2.1(c). When 5 =0,
the tracer has the same dynamics as a ordinary passive particle, meaning it can move
in each time step. As [ increases, the tracer diffuses more slowly and in the limiting
case of § =1, it can only move by being pushed by its neighbors.

We now define collision rules among the particles. We use a modified exclusion

rule, which in addition to ensuring that each site is occupied by at most one particle
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also allows for particles pushing each other. In each stepping attempt of a particle,
we check whether the target site on the lattice is empty or occupied. If it is empty,
then the particle is allowed to update its position, as described above. If the site is
occupied, then there are two possibilities depending on the second neighbor site of
the particle in the same direction. If the latter site is empty, the stepping particle
pushes the particle in the target site to the second neighbor site and moves to the
target site itself. Otherwise, the update is rejected (see Fig. 2.1(d)). Note that there
is no alignment interaction between particles in the pushing process. All simulations
described in the following were run for 10° time steps with 1000 realizations of each

condition.

2.4 Results

2.4.1 Tracer in a purely active system
2.4.1.1 Mean square displacement

We first discuss the results for a passive tracer particle in the presence of only active
crowders (i.e., N, = N or x4 ~ 1). We considered densities in the range of 0.01 < p <
0.4 and the tumbling probability of active particles between 0.0001 < a < 1.

We begin our analysis by evaluating the mean square displacement (MSD) of the
tracer particles. We note that for Brownian motion, the MSD is given by, <(Ar)2> =
2dDt, where Ar is the displacement of a particle in a given time interval of ¢, d is
the spatial dimension (which is 2 in our case), D is the diffusion coefficient, and (-)
denotes an ensemble average. So-called anomalous diffusion is characterised by an
MSD <(Ar)2> ~ t7, where v # 1 is a real positive number that classifies the different
types of diffusion: sub-diffusion for 0 < v < 1, v = 1 is a typical diffusion process and,

super-diffusion for v > 1 (where v = 2 gives rise to ballistic motion).
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Figure 2.2 — Diffusion of tracer particles with different diffusion coefficients in a system
of active crowders. (a-c) The mean square displacement (thick blue lines) shows diffusive
motion for § = 0 and anomalous diffusion for § = 0.9,1. The red lines indicate the
diffusive motion of the tracer in an otherwise empty lattice in (a) and (b), in (c) the
tracer would not move in that case. The dashed lines indicate the scaling behavior of
the different regimes, by showing the power laws fitted to the mean square displacement.
(d-f) show trajectories (t; and ty indicate initial and final time, respectively in the
trajectory plots), the figures in the last row show the zoomed view of the trajectories
at the early stages. Each column corresponds to the value of § indicated above it. The
other parameters are p = 0.025, o = 0.0001.
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In Figs. 2.2(a)-(f), we have plotted the MSD and corresponding trajectories as a
function of time for the three cases of 5 =0, 0.9, and 1. In all three cases, the density
and the tumbling probability of crowders are the same: p = 0.025 and a = 0.0001. For
a purely passive Brownian tracer with § = 0 (Figs. 2.2(a) and (d)), the tracer shows
normal diffusion, with an MSD that is linear in time throughout the simulation. The
trajectory is erratic at both long and short time (Figs. 2.2(d) and its inset, respectively).

It is useful to compare the diffusion coefficient of the tracer in this system to that of
a passive tracer in the absence of active crowders. A general expression for the diffusion
coefficient of a single passive particle on an arbitrary isotropic lattice is Dy = (k/2d)a?),
where a is the lattice spacing (distance between neighboring lattice sites), d is the
spatial dimension, « is the coordination number (the number of neighbour sites allowed
for a jump), and A is the stepping rate to the nearest neighbour site [104]. In our
model a = 1 (i.e., all lengths are expressed in units of the lattice spacing), K = 6, d = 2,
and \ = %, leading to

Dy =——"—. (2.1)

Thus, for § = 0 we find Dy = 1/4. The corresponding MSD of a particle on an
otherwise empty lattice is shown as the red line in Fig. 2.2(a). A comparison of the
MSD without active crowders (red line) and the MSD in their presence (blue line) shows
that the diffusion of our tracer particle is strongly enhanced by the active crowders.
For § = 0.9 and § = 1, by contrast, we can identify several diffusive regimes
(indicated by the dashed lines, which show the scaling in the different regimes with
behavior ~ t7 and  obtained by fitting). A slow tracer with 8 = 0.9 initially undergoes
super-diffusion (Fig. 2.2(b)) as it remains in front of an active particle over an extended
period of time (see Fig. 2.3(a)). The tracer inherits the direction of an individual active
particle which drives it forward. This effect can also be seen in the inset of Fig. 2.2(e),

in which this directed motion yields a straight line. The observed diffusion exponent

28



2.4 Results

Figure 2.3 — Snapshots of the simulation for p = 0.1 and o = 0.0001: the active particles
are shown in blue and the tracer particle in purple. a) The tracer (purple) is next to an
active particle (blue), which pushes it. b) The tracer is trapped in empty space. c¢) The
tracer is trapped by active particles.
~ at short time is found to be 1.8, which is close to the ballistic regime with v = 2.
After a longer time, diffusive motion is recovered, with erratic trajectories similar to
those for 5 = 0. The data also suggest that there may be a subdiffusive regime for
very long times, see below.

Finally, Figs. 2.2(c) and (f) show the case where the passive tracer does not move by
itself and only moves when pushed by an adjacent active particle. Initially, the tracer
fully inherits the direction and the speed of the active particle that pushes it (Fig. 2.2(f)
inset). Since there is only self-propulsion, 7 is exactly 2. For an intermediate time,
diffusive behaviour is recovered. Then after some time, the motion becomes remarkably
less random, exhibiting long directed paths and pauses, as depicted in the trajectory
in Fig. 2.2(f). Correspondingly, the exponent of the MSD is reduced to v ~ 0.64,
indicating a sub-diffusive behaviour. Inspection of snapshots of the lattice (Figs. 2.3(b)
and (c)) show that during the pauses, the tracer is either trapped in an empty region of
the lattice and thus cannot be moved, or in a cluster of active particles, within which

it is also immobilized. This observation indicates that, in this case, the environment
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Figure 2.4 — Trapping analysis. a) The sketch shows the tracer (red) surrounded by
different number of active particles (blue). (b), (c) and (d) show the probability that n,
neighbor sites are occupied (for n = 0,...6). The red arrows indicate the numbers of
occupied neighbors most relevant for the different regimes in the MSD plots in Fig. 2.2.
The probabilities were determined by averaging over 1000 simulation steps (starting at
time 0 for the early state, at time 1000 for the intermediate state and 1000 steps before
time 108 for the late state) as well as over 1000 realizations of the simulation (with
random initial conditions).

in which the tracer diffuses through changes from a homogeneous environment, to

coexistence of a dilute phase and clusters of active particles. Cluster formation will be

discussed in more detail below.

2.4.1.2 Neighbour site occupation and trapping

To quantify the effect of trapping on the motion of a tracer, we define a trapping
parameter n, which characterizes the occupation of the six nearest neighbour sites of
the tracer (see Fig. 2.4 (a)). Thus, 0 < n < 6, with n = 0 indicating that the tracer
has no neighbouring particle and n = 6 is the fully trapped state. When n = 0, the
tracer with § = 1 is essentially trapped by the empty space and becomes immobile,
while tracers with § =0 and 8 = 0.9 diffuse on their own. In the fully occupied state
(n = 6), the tracer is immobile for all the cases. n = 1 results in persistent directed

motion of the tracer if the neighboring active particle moves to the site of the tracer
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and 1 — 8 < 1 — a, as the active particle then pushes the tracer for multiple steps.
For the two cases § = 0 and § = 0.9, the histograms of n do not vary significantly
over time, with the probability of having no neighbors being the largest (Figs. 2.4(b)
and (c)). As expected, the probability of having a single neighbor (n = 1) is higher for
£ = 0.9 than § = 0, in agreement with the observed directed motion. For § =1, n =1
is the most probable configuration at all times. However, the histogram remarkably
broadens over time and becomes bi-modal at long times, with n = 0 and n = 6 occurring
(almost) equally frequently. This means that the three most likely configurations are
those that lead to directed motion (n = 1), trapping in empty space (n = 0) or trapping
in a cluster (n = 6), which together explain the range of motion observed in Fig. 2.2(f).
This trapping appears to be the reason for the subdiffusion observed in this case for the
long-times regime. By contrast, no such trapping is clearly seen for the case 5 = 0.9.
We therefore hypothesize that the apparent transition to subdiffusion at long times in
this case may be due to more transient trapping of the tracer, e.g. between just two

active particles moving into opposite directions.

2.4.1.3 Effective diffusion coefficient at large times

We have observed above that diffusion of the tracer is enhanced in the bath of active
particles compared to the tracer on its own. To study this further, in Fig. 2.5, we
plot the diffusion coefficient at large times as a function of density, focusing on the
case § = 0.9. The simulation was performed for a system with x4 = 1, and different
values of . Remarkably, the effective diffusion coefficient has a 50-fold increase when
in the active bath, compared to the diffusion coefficient of an isolated tracer. Even
at a low density (p ~ 0.01) of active crowders, the diffusion coefficient of the tracer is
substantially greater than in the absence of active crowders, implying a strong effect of

being pushed by active particles.
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Figure 2.5 — The relative diffusion coefficient of a tracer with 8 = 0.9, normalized to
the diffusion constant Dg of an isolated tracer.

Since the diffusion coefficient of a single passive tracer is a small constant in the
absence of crowders and goes to zero in the presence of a high density of crowders,
the relative diffusion coefficient is expected to be a non-monotonic function of the
density. Furthermore, the form of this dependence should also vary with the tumbling
probability. The plots in Fig. 2.5 show a clear density dependence of the diffusion
coefficient. The diffusion coefficient is sharply enhanced when the density of active
particles is increased from zero, then decreases after a pronounced peak. Clearly, the
density of the system greatly affects the diffusion coefficient of the tracer. To further

investigate this effect, we come back to the observation of cluster formation. Additional
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Figure 2.6 — Cluster analysis: a) and b) Average cluster size as a function of time
(averaged over 1000 realizations) for different densities. The numbers above the curves
indicate the corresponding density. c¢) and d) Fraction of particles assembled in clusters
in the last snap shot of simulation for the same densities. The dashed lines mark the
density in which the tracer exhibits the maximum diffusion coefficient. Each column
corresponds to the value of « indicated above it.

analysis for the case § = 1.0 is provided in Appendix B.

2.4.1.4 Cluster formation

To analyze clustering, we define a cluster as a collection of at least six particles ’sticking
together’, i.e. being connected via mutual nearest neighbors. Particles without nearest
neighbor or connected to fewer particles are considered as belonging to the gas phase.

Clusters are identified with the data analysis framework Freud [105]. We measured
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the average cluster size, C, as the average number of particles in a cluster over 1000
different realizations of the simulation. Figs. 2.6(a) and (b) show the time evolution of
C; for different densities and for a = 0.001 and 0.0001, respectively. As can be seen
in Figs. 2.6(a) and (b), cluster formation is accelerated by increasing the density of
crowders.

In Fig. 2.6(c) and (d), we plotted the fraction of particles detected within clusters,
®., as seen in the last snapshot of the simulation which provides an estimate of the
fraction of particles assembled in the clusters. ¢. can be described by (N. x Cs)/N,
where N, is the average number of clusters. As a function of the density, ¢. shows
a clear transition from a state in which a very small fraction of particles are in the
clusters to a state where almost all particles are in clusters.

To relate clustering to the tracer diffusion discussed before, we indicate with the
vertical dashed lines the density at which the tracer’s diffusion coefficient for the
given tumbling probability is maximal. These lines fall near or slightly above the
transition, suggesting an intimate relation of the decline in diffusion to the onset of
phase separation. When the active crowders start to form clusters, there is coexistence
of a dilute gas phase and clusters of active particles and the probability of active
crowders being in the dilute phase decreases as long as the cluster size increases.
Consequently, the diffusion coefficient of the tracer decreases as there are fewer and

fewer active crowders in the dilute phase to push the tracer and enhance its diffusion.

2.4.2 Binary Mixture

Finally, we consider a binary mixture of active and passive crowders, with x4+ xp =1
where xp is the fraction of passive particles. We tracked the effect of the three control
parameters x4, a and p on the diffusion coefficient of a tracer particle with 5 = 0.9.

Adding passive particles into a purely active system changes not only the directionality
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Figure 2.7 — Cluster analysis for different fractions xa of active particles at fixed
p = 0.05. Cluster size and fraction of particles in clusters (inset) as in Fig. 2.6 for
different x 4 in a binary mixture of active and passive crowders. The numbers above each
curve indicate the fraction of active particles (xa).

imposed by collisions (due to pushing by the active particles), but also alters the global
dynamics in a subtle way, specifically the dynamics of clustering. In the example
shown in Fig. 2.7 with a fixed low density of crowders, an increase of the fraction of
active crowders above 0.5 leads to a strong clustering signature both in the average
cluster size Cs and in the fraction ¢. of particles within clusters (inset). The cluster
size (s shows biphasic growth for large fractions of active crowders with first rapid
increase in the cluster size and then a much slower second phase, which appears to be
more pronounced and slower for the largest active crowder fractions. Put differently,
replacing some of the active crowders with passive particles delays the phase separation
(compare the cases x4 = 1 and x4 = 0.75 in Fig. 2.7), likely because initially the rapid
directional change of the passive particles randomizes the motion of the active particles.

Eventually, however, clustering sets in. While clustering sets in later for x4 = 0.75
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Enhanced diffusion of a tracer particle in a lattice model of a crowded active system

than for x4 = 1, it reaches its stationary state faster.

Above we have shown a correspondence between the onset of clustering and a
decrease of the enhanced diffusion of a passive tracer (Fig. 2.5). Since clustering is
decreased by increasing the fraction of passive particles in the system, we expect that
the decrease in diffusion of the tracer is less pronounced when passive particles are
present. This is indeed the case, as shown in Fig. 2.8, where we plot the diffusion
coefficient as a function of the density for different combinations of the tumbling
probability o and the fraction of active crowders x 4: decreasing the fraction of active
crowders leads to a broader peak in the diffusion coefficient as a function of density.
We interpret this observation as reflecting the fact that at low x4, it is more likely
to find many of the active particles (which can push the tracer) in the gas phase
compared to higher x 4. At the same time, however, the value of the maximal diffusion
coefficient is also decreased, reflecting the fact that the total number of active particles
is reduced. Nevertheless, even for very low fractions of active particles (bottom row
in Fig. 2.8), the diffusion coefficient is still increased compared to the case with only

passive particles. For instance, for a = 0.1, x4 = 0.1, it is increased up to 5-fold.

2.5 Conclusion

In this study, we have analyzed the diffusion of a tracer particle in a crowded active
system using a minimal lattice model. We implemented the pushing of a passive tracer
by active crowder particles by a simple collision rule. A passive tracer in an otherwise
purely active system or in a binary mixture of active and passive particles exhibits
different motility regimes including significantly enhanced effective diffusion. Enhanced
diffusion of tracers in the presence of active particles has been observed in several
different systems such as in a bath of swimming microorganisms [82, 85, 93] and in

a suspension of actively diffusing enzymes [73]. The activity mechanisms and the
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Figure 2.8 — The diffusion coefficient of a tracer with § = 0.9 as a function of the
density p and of the fraction of active row x 4 in a binary mixture.

interaction in these systems are more complicated than those studied in our model,
but the results shown here and related results of others [99] demonstrate that simple
interactions are sufficient to generate such enhanced diffusion and can result in rich
dynamic behavior. Our results show that the extent to which diffusion is enhanced
depends on the activity of the crowder particles (modulated via their hopping rate
relative to the tracer’s hopping rate and via their tumbling probability, i.e. via the
persistence of their motion) and on their density. The interplay of activity and density

depends on the dynamics of the particles directly, but also indirectly via the phase

separation of the crowders into low-density (gas-phase) regions and dense clusters. The
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Enhanced diffusion of a tracer particle in a lattice model of a crowded active system

latter has a negative effect on the mobility of the tracer, both when the tracer becomes
trapped in a cluster and when the tracer moves in a low-density area, where it is not
pushed by active particles. Our findings thus point to an intricate interplay between
the local dynamics of enhanced tracer diffusion and the global dynamics of the system.

One feature of active particle systems that we have not considered here are hydro-
dynamic interactions, which are typically present. On the one hand, studies like our
present one or [106] show that phenomena such as enhanced tracer diffusion that are
often observed experimentally in systems, where hydrodynamic interactions are present,
are not dependent on those hydrodynamic interactions, but can also be found in reduced
models without them. However, in general, one can expect that the quantitative results
are modified by the inclusion of hydrodynamic interactions, both between the particles
and with the surfaces that confine the particles to a quasi-two-dimensional system
[107-109]. We hypothesize that the dominant effect of hydrodynamic interactions
would be due to the interactions of particles with the surface of a relatively rigid
clusters of particles and result in a rotation of the arriving particle similar to the case
of a rigid wall. Depending on the extent of the resulting torque, such interactions could
enhance or reduce cluster formation. One way of including such effects into a minimal
lattice model would be via an additional update rule that rotates particles near the
surface of a cluster.

Another aspect that could be of interest is whether the underlying lattice type
influences the dynamics of the tracer particle. Phase separation as observed here
has indeed been studied in models of active particles on different lattices [101, 103].
Specifically different lattices may allow different interaction rules, particularly if, as in
our case, lattice sites beyond the nearest neighbor have an influence. For example, one
recent study showed clustering and a hexatic phase in a system of passive particles on

a hexagonal lattice [102].

38



2.6 Effect of system size

Given the simplicity of our model, one can also extend it to other collision rules
among the particles as well as use it to study the impact of active crowding on physical

processes other than tracer diffusion.
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Appendix

2.6 Effect of system size

To check whether the size of the lattice affects the results presented here, we ran
simulations with different system sizes (L = 50, 100, 256, 512). Fig.2.9 shows the MSD
of the tracer particle for two different densities of active crowders (p = 0.02 and
p = 0.40). The results for different system sizes lie almost of top of each other, with
only some deviations at long times for the smallest system size (L = 100 in Fig.2.9a
and L = 50 in Fig.2.9d). Importantly, while the small values of & used in many of
our simulations in principle allow for persistent motion of the active particles over
distances exceeding the system size, due to the interactions between the particles this

is typically not the case except for very low densities.
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Figure 2.9 — MSD as a function of time plotted for different simulation box size (L = 50,
100, 256 and 512) for densities (a) p = 0.02 and (b) p = 0.4, both with a = 0.0001 (¢)
p =0.02 and (d) p = 0.4, both with = 0.9 and o« = 0.01. § = 0.9 in all cases. All the
plots are averaged over 1000 realizations for each box size.

2.7 Long-time dynamics for g = 1.0

The observation of trapping of the tracer in either clusters of active particles or in
empty areas of the lattice in the case where the tracer cannot move on its own (5 = 1)
suggests the question whether such trapping and the subdiffusion resulting from it
exhibits a sensitive dependence on the density, as a sufficient density may be required
for trapping. We therefore simulated tracer mobility over a wide range of densities

for f = 1 and four different values of a. «. As one can observe in Fig. 2.10 the
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Figure 2.10 — The mean square displacement of a tracer with 8 = 1.0 as a function of

time for different densities and tumbling probabilities (a) o = 0.0001 (b) a = 0.001 (c)

a=001(d) a=0.1.
tracer shows purely normal diffusion for the largest value of o, with non-monotonic
dependence of the diffusion coefficient on density similar to Fig.2.5. For the smaller
values of «, a subdiffusive regime appears for long times, as the active particles start
to form stable or transiently stable clusters and trapping of the tracer starts to play
a role. The transition to subdiffusion appears to occur at a critical density, which
depends on the tumbling probability which is p ~ 0.020 for o = 0.0001, p ~ 0.025 for
a = 0.001 and p ~ 0.060 for a = 0.01. In all cases, these values fall near to the onset
of phase separation as shown in Fig. 2.6 (c¢) and (d). There also appears to be a second

transition, clearly visible for a = 0.001 and a = 0.01, where for densities > 0.25 a
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plateau at intermediate times develops, likely also due to trapping.
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Chapter 3

Strong Velocity Correlation in
Suspensions of Passive Particles

generated by Active Dopants

3.1 Introduction

Active matter is a novel class of non-equilibrium systems consisting of motile compo-
nents, where energy is consumed and dissipated at the scale of the constituent units to
generate systematic motion. These systems extend across an enormous range of length
scales, from the cytoskeleton [1-3], bacterial colonies [4-6], and tissues [69] to bird
flocks and animal herds [8, 110]. Being out of equilibrium, these disparate systems can
exhibit exotic collective behavior which is absent in their equilibrium counterpart. For
instance, they are capable of self-organizing into fascinating and perplexing dynamical
patterns such as flocks, swarms, and vortices, to name just a few. One of the most
popular theoretical models to describe such a diverse class of collective behavior, namely
flocking, is the Vicsek model [32]. This model was introduced two decades ago to

describe a flocking transition assuming an ensemble of self-propelled point-like agents

43



Strong Velocity Correlation in Suspensions of Passive Particles generated by Active

Dopants
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Figure 3.1 — Panel (a) the spatial correlation function of the velocity orientation Q(r), for
the different values of D, has been plotted. Correlation length increases with decreasing
the rotational diffusion coefficient. Panel (b) shows the typical configurations for three
different values of D,.. With decreasing rotational diffusion, domains with aligned velocity
emerges in the system. Colors encode the direction of the velocity of each particle. Plots

are taken from [59].

with explicit mutual alignment interaction in the presence of external noise. One of the

most astounding observations made in this context is that the Vicsek model system

can give rise to a spectacular collective movement known as swarming which results in

long-range orientational order in two dimensions, unlike in equilibrium systems. Only

when driven out of equilibrium, this system can show discernible long-range order

which is impossible to attain in equilibrium systems as proven by the Mermin Wagner

theorem [111, 112].

Explicit alignment interactions are not always present in active matter systems.

Even in the absence of explicit alignment interactions, active systems display rich

phenomenology compared to their passive counterparts. Most remarkably, motile
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Figure 3.2 — A snapshot of the configuration of the active particles. They have self-
aggregated due to motion-induced phase separation. Panel (a) colors are associated with
polarity of particles. The particles within the clusters are uncorrelated. Panel (b) colors
encode the velocity direction of the particles. There is a strong correlation within clusters
of active particles. Both panels are the same snapshot, only the color codes are different.
The snapshot is realized with the density ~ 0.7 and D, = 0.001
entities with purely repulsive interactions can undergo phase separation (for large
activity characterized by Péclet number) which is impossible for passive systems without
attractive interactions. This phenomenon stems from the persistently non-equilibrium
nature of the particles and is known as motility-induced phase separation (MIPS) [11,
58, 113]. The simple reasoning is: when the speed of motile units decreases abruptly
with increasing local density, a homogeneous system becomes unstable, resulting in
a phase-separated system in which a dense liquid with significantly reduced motility
coexists with a dilute highly motile gas. Note that, although the system shows some
global structural order, motile entities in the dense fluid exhibit no orientational order
in the propulsion direction and those in the low-density state continuously join and

leave the boundary of the dense state again without showing any orientational order.

Even though, due to the lack of explicit alignment interactions, there exists no
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Figure 3.3 — Panel (a) shows the behaviour of Fourier space velocity correlation functions
for the soft disk model for different persistence time T in a solid/ glassy phase at
Terr = 0.005. Panel (b) describes Fourier velocity correlations for the self-propelled
Voronoi model (SPV), together with analytical prediction (dashed line). Plots are taken
from [60].
orientational ordering of the propulsion direction, also known as particle polarity, (see
figure. 3.2.a), very recently, some groups have found that there is a strong velocity
correlation in the dense limit of such systems of self-propelled particles. Caprini et
al. [59, 114] have reported spontaneous velocity alignment in a 2d system of repulsive
monodisperse, active Brownian particles which is associated with MIPS in the system
(see figure. 3.2.b). They found that having sufficiently high density (in the solid-like
state) of self-propelled particles is crucial for the emergence of spontaneous velocity
alignment. Added to that, as the persistence time of the self-propelled particles
increases the domains with aligned velocities grow (figure. 3.1.b). Moreover, the spatial
velocity correlation increases as rotational diffusion coefficient decreases (figure. 3.1.a).
In a recent work, Henkes et al. [60] have also observed similar velocity alignment in
the epithelial cell monolayers over several cell sizes and also showed that the domains
(with a finite bulk modulus) with aligned velocities grow as the square root of the
persistence time of the self-propelled particles. They confirmed this observation with

a simulation of a dense (solid-like) repulsive assembly of polydisperse over-damped
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Figure 3.4 — Panel (a-c) show the equal time velocity correlation functions at a fixed self
propulsion velocity (vo = 4) for a range of 7. Panel(a) the longitudinal correlation function
shows a rapid growth with increasing T and in Panel (b) the transverse correlation is
almost fixed. Panel(c) shows the longitudinal and transverse correlation length obtained
from panels (a) and (b), respectively. The longitudinal correlation length scales with the
square root of T and the transverse correlation length is almost unchanged. Plots are
taken from [61].

active Brownian particles (see figure. 3.3.a) as well as a self-propelled Voronoi model
(SPV) (see figure. 3.3.b). In figure . 3.3.a, they have shown that for a soft disk at
low Tog = 0.005, a dramatic 1/¢* slope has developed in the correlation function as 7
increases. Indeed, in figure. 3.3.b, they showed the same simulation result for the SPV
model. This observation is consistent with the findings of Caprini et al. [59, 114].
Later, Szamel et al. [61] showed that the velocity alignment is even present in a
dense fluid-like system of self-propelled particles. They derived a microscopic theory
to describe spatial velocity correlations in systems of active liquids and found that the
longitudinal velocity correlation (due to finite bulk modulus of liquid) is very large and

grows with persistence time (as reported by Caprini et al. [59] and Henkes et al. [60])
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even in a liquid state. In figure. 3.4.a, they have plotted the equal time longitudinal
velocity correlation, which shows a rapid growth with increasing 7, as well as the
transverse correlation function in figure. 3.4.b which is almost constant. By contrast, in
the absence of the shear modulus, the transverse velocity correlation is small and does
not grow with the persistence time of the self-propelled particles (see figure. 3.4.c).
These studies have revealed that velocity correlation is a ubiquitous property in
dense active matter systems, regardless the system being solid or fluid-like. The
indispensable elements for forming such a strong velocity correlation are a) high-density
assembly of self-propelled particles and b) persistent driving force. The question,
however, is whether we can decouple the effect caused by the high density from the
one caused by the activity/ persistence? To put it in another way, can a similar effect
emerge in a dense passive system in the presence of a small number of active particles?
In such a scenario, density and persistent activity are associated with and controlled
from two different sources. In this chapter, we address this question and show that
only a very small fraction of active particles is sufficient to demonstrate long-range
velocity correlation in the system as long as the density of the embedded passive
medium is high. We explore the effect of active forcing and persistence of this small
fraction of active dopants on such large velocity correlations generated in the passive
system by tuning the activity parameters. This study motivates and guides future
experimental work to observe and study such exotic non-equilibrium signatures in
simple tabletop experiments by adding a very small fraction of active Janus colloids in

a dense suspension of passive colloids.

3.2 Model

For the numerical realization of the above scenario, we consider a binary mixture of

N = N, + N, particles, where N, and N, denote the number of active and passive
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3.2 Model

Figure 3.5 — Schematic of the model employed in the simulation of the active/passive
mixture. The mixture consists of active (blue) and passive (red) particles where n
represents the self-propelling direction of each active particle.

7N, d?

N, d? :
5 and ¢, = "2 are the volume fractions of

particles, respectively. Hence, ¢, = 1

active and passive particles, respectively, where L = 1004/7 is the box size and d is
the particle diameter. The position, x; and orientation, #; of the i-th self-propelled

particle (undergoing an over damped motion) are given by these equations of motion:

VXZ = Fz + factni (31)

b = \/2D, ¢, (32)

where ¢ is the index of the active particle, ¢ = 1,.., Ny, fue is the self-propulsion
force, and n; = (cos(6;),sin(6;)) is the orientation vector. Here, D, is the rotational
diffusivity and (; is the rotational noise which is Gaussian and white, with zero mean
and correlations ((;(¢)(;(t')) = 0(t — t'). The persistence time of self-propulsion, 7, is
defined as the inverse of the rotational diffusion coefficient 7, = 1/D,. We use v = 1.0

as the constant drag coefficient in the system. In our model, active particles are not
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affected by any explicit translational noise. Now for the passive particles, in the absence

of rotational and translational noise, the overdamped equation of motion reads,

where x; is the position of the ¢-th passive particle and ¢ = N, +1,.., N. All particles in
the system interact only through the steric interactions caused by the force ¥; = =V U;;.
The potential energy Uy = >;.; U(ry;) and the purely repulsive pair-wise interaction

potential U(r;;) is given by:

4de |:(Tij)12 + (;;)6] + €, Tij <d

0, otherwise,

Ul(rij) = (3.4)
where r;; = x; — x; is the distance between particles 7 and j and d is an effective
diameter with d = 2'/65. ¢ and € are characteristic length and energy scales for the
Lennard Jones interaction, which is here truncated to its repulsive part, to this form,
also known as Weeks-Chandler-Andersen potential.

We evaluate the velocity correlation in the system by analysing the spatial velocity

auto-correlation function defined as

00 =y —1 5 (r - 506 80 = I =) ) 35)

L,j7

where r is the spatial distance and 0;(r;) is unit vector of the velocity of the i-th
particle. Note that (...) represents an average over steady state velocity configurations.
This correlation function by construction starts from 1 and goes to 0 in the limit
r — 0o. Now, we also define the correlation length (§) over which the correlation
function decays substantially, through C(§) = % In the following sections, we analyse

this correlation function and the correlation lengths for different densities of active (¢,)
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Figure 3.6 — Snapshots of configurations of a purely active system for different area
fraction of active particles. Panel (a) ¢, = 0.1 , panel (b) ¢, = 0.375, panel (c)
¢a = 0.0.75, Panel (d) ¢, = 1.0. With increasing area fraction, clusters emerge in the
system due to the motility. There is a velocity alignment among particles within the
clusters. Colors encode the velocity direction of particles.

and passive (¢,) particles and also for different activity parameters f, and 7, (for a

fixed mixture component).

3.3 Velocity correlation in a purely active system

We start by considering a purely active system with ¢, = 0 and investigate the influence
of the density of active particles (¢,) on the velocity correlation. Since the density
of the active particles is low, the probability of collision between particles is also low;
hence, the velocity correlation is rather weak due to the lack of steric interactions (see
figure 3.6(a)). With increasing density, the probability of collision increases. Therefore,
a velocity correlation emerges in the system and this also seems to grow with increasing
density. At smaller densities, one can see small correlated colonies of particles (see
figure 3.6(b)) and with increasing density one observes bigger and bigger clusters of
particles with strong velocity correlation across the cluster (see figure 3.6(c)). Finally,
when the density is so high that the area fraction (¢,) goes to ~ 1 the correlation
length reaches the system size (see figure 3.6(d)).

Figure 3.7 shows the dependence of the velocity correlation on density. The color
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Figure 3.7 — The correlation length obtained from fitting C(r) in the inset figure as a

function of area fraction of active particles
represents the velocity direction of the particles. Note that there is a sudden jump
close to ¢, ~ 0.8 (see figure. 3.7) which is related to the rigidity percolation as at
this density, the system becomes mechanically rigid. The above observation (growth
of correlation with density) means that we need a system with a sufficiently high
density of active particles to observe such large velocity correlations. Once we reach
this density, rotational diffusion and activity start to play a significant role not only to
control the size of the clusters but also to generate and sustain velocity correlation.
This phenomenology is consistent with the previous studies. Caprini [59] showed that
at higher density the motility-induced phase separation (MIPS) is accompanied by
an inevitable velocity correlation. They found that the transition between hexatic
and solid phases at higher density initiates the alignment of particles, leading to a
quasi-long-range order in the system. The average size of the domains with aligned

velocities grows as ,/7,, where 7, is the persistence time of the self-propulsion force
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of active particles [59] . Now at first, we would like to explore whether we can see a

similar velocity correlation in an active-passive mixture.

3.4 Mixture of active and passive particles

In this section, we demonstrate that long-range velocity correlation can also be observed
in a mixture of active and passive particles. As mentioned in the model section, for
this we consider active particles with area fraction ¢, and passive particles with area
fraction ¢, in a fixed box of size L. Earlier studies have shown mixtures of active and
passive particles can exhibit non-trivial dynamical behavior e.g. as shown in Chapter 2,
at lower densities, the active particles can affect the dynamics of the passive particles.
Apart from the transport properties, there have been other studies involving phase
separation [115], fluidization of glassy systems [116], effective depletion-like attractions
between passive particles in an active particles medium [98, 117, 118], crystallization
of colloidal systems promoted by doping with self-propelling particles [119, 120], and
mesoscale turbulence mediated by passive particles [121] to name a few. However, to
the best of our knowledge, there is no study yet that addresses the velocity correlation
of an active-passive mixture in the dense limit.

For a purely active systems, as we showed in the previous section, a sufficiently high
density is required to first initiate phase separation and then in the phase separated
state it has been shown to increase with increasing density (see figure. 3.7). To explore
similar effects in a mixture, we combined active and passive particles with different area
fractions and examined the velocity correlation in the same way as before. Remarkably,
as shown in figure 3.8, a similar effect is present in the active/passive mixtures even
at low active particle fractions (~ 0.12) but only at high densities of passive particles.
In figure 3.8, one can see that for a smaller area fraction of both active and passive

particles, the system remains in a homogeneous state and there is practically no
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Figure 3.8 — Configuration of the system for the different area fractions of active,¢,
and passive ¢, particles. Colors encode the velocity direction of particles in the system.
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3.5 Velocity correlation between passive particles in the presence of active dopants

Figure 3.9 — Configurations of the system for different area fractions of passive particles
¢p at ¢, = 0.01. Panel (a): at ¢, = 0.15 the system remains in homogeneous state. Panel
(b): at ¢, = 0.5 small domains with velocity ordering emerges. Panel (c): at ¢, = 0.75
the velocity correlated domain are quite large. Panel (d) at ¢, = 0.99 the whole system
becomes correlated in terms of velocity orientation.

detectable signs of velocity correlation. As the area fraction of either of the components
starts to gradually increase, the average size of domains with aligned velocities grows
until the size of the domains with aligned velocity reaches the system size when the
box is almost full (¢ ~ 0.90).

Now, from the snapshots shown in figure. 3.8, it is clear that a mixture of active
and passive particles can also show strong velocity correlation as observed in a pure
active system. The question that naturally arises here is how far we can go by varying
the relative densities of each component before the strong correlation disappears. In
other words, would we see a similar effect in a mostly passive system just by adding a
very small number of active particles? In the next section, we would like to answer

this question.
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Figure 3.10 — Configuration of a system with ¢, = 0.5 and ¢, = 0.01. Active particles
(blue particles) make their own path (white area) among the passive particles (red
particles) by ploughing through the passive medium.

3.5 Velocity correlation between passive particles
in the presence of active dopants

We consider a very small area fraction (¢, ~ 1%) of active particles with fixed box
size and keep adding passive particles to the system (see figure 3.9). As we increase
the area fraction of passive particles, when ¢, ~ 0.2 the system still remains in the
homogeneous state and the active particles navigate freely in the medium without
causing any velocity correlation (see figure 3.9(a)). However, as the area fraction of
passive particles reaches ~ 0.5, the excluded volume interaction starts to play a role, so
that the interaction over short distances becomes important, and small domains with
aligned velocity emerge in the system. However, these domains do not grow and mostly
remain finite in size. Notably, it can be observed that the active particles also make
their own path among the passive particles (see figure. 3.10) by ploughing through the
passive medium [122, 123].

As we continue to increase the area fraction of the passive particles, we see an
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Figure 3.11 — Panel (a). The correlation as a function of distance r between particles
for different area fraction of passive particles at fixed area fraction of active particles
¢a ~ 0.01. Panel (b) The correlation length obtained from fitting C(r) in the panel (a)
as a function of area fraction of passive particles.

increase in the average size of domains with aligned velocities (see figure 3.9 (c)) which
means active particles start to push passive particles to move together coherently.
Finally, when the area fraction of passive particles in the system reaches ¢, ~ 0.99,
the whole system becomes correlated (see figure 3.9 (d)).

To quantify this spectacular strong velocity ordering, we calculate the velocity
correlation in the system as a function of distance. As can be seen in the figure 3.11
(a), the velocity correlation grows continuously. As the area fraction of passive particles
increase and after reaching ¢, ~ 0.85 the entire system becomes correlated. In figure.
3.11(b) it is demonstrated that velocity correlation increases slowly with the density of
passive particles at moderate density and then very rapidly as the density of passive

particles exceeds ~ 0.85, which is close to the threshold density for solidification.
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Figure 3.12 — Panel(a): the correlation length as a function of self-propulsion force (fact)
for different rotational diffusion values. Panel(b): the correlation function as function of
persistence time 1, = 1/D, for different self-propulsion force values.

3.6 Effect of persistence time and active force on
the velocity correlation

After observing that velocity correlation can be generated in a dense passive system
in the presence of a small fraction of active particles, we now ask how the correlation
depends on activity parameters like the self-propelling force f,. and the rotational
diffusion coefficient D = 1/7,. As can be seen in the figure 3.12, the correlation length
for a fixed value of the rotational diffusion is almost unchanged when one alters the
active forcing f,.. However, as the rotational diffusion decreases, corresponding to an
increase in the persistence time, the correlation length increases for a fixed value of
the self-propelling force. This means that rotational diffusion plays a very important
role in developing the velocity ordering in the system. When the rotational diffusion
constant decreases, the correlation length increases almost for all self-propulsion forces

regardless of their strength and it increases as the square root of the persistence time
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of the self-propulsion. Outstandingly, this is in agreement with the results obtained by
Caprini [59] , Henkes [60] and Szamel [61]. Moreover, after the rotational diffusion
reaches 0.001, the whole system becomes correlated in terms of velocity alignment.
This means that we can have a correlated system of non-motile particles just by adding
only a very small fraction of active particles and the degree of such velocity ordering

can also be manipulated by controlling the activity parameters such as 7,.

3.7 Conclusion

In summary, we have looked at the physics of velocity correlation in a mixture of active
and passive particles. First, we gave a brief review of the recent work [59-61] that
has reported a ‘hidden’ spontaneous velocity correlation in motility-induced phase
separation in both active solid-like and liquid-like systems. They have shown that
there are two indispensable elements for the formation of such a strong and strong
velocity correlation, namely (a) a high density of self-propelled particles and (b) a high
persistence time of the self-propulsive force. We extended this study to a dense passive
system with a small fraction of active particles, to investigate whether we can decouple
the effect caused by the high density from that caused by the activity or persistence
time of active particles.

We first explored a pure active system and identified a sufficiently high density
required to see the velocity correlation in the system. We then combined active and
passive particles with different area fractions and investigated the velocity correlation
in the same way as before. Most interestingly, we demonstrated that a similar effect
can be seen even for a low fraction (¢, ~ 0.125) of active particles at a high density of
passive particles.

Then, we considered a very small fraction of active particles (¢, ~ 0.01) in fixed box

size and kept adding passive particles to the system. We found that at intermediate
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area fraction of passive particles, active particles make their own path among the
passive particles by ploughing through the passive medium. Notably, the average
size of velocity-correlated regions grow rapidly with the density of passive particles
which results in global correlation in the system. In short, the velocity correlation can
be generated in a passive system by doping of active particles as long as the passive
medium is dense enough.

We finally investigated the dependence of the activity parameters such as self-
propulsion force f, and rotational diffusion D, = % on the correlation in the system.
It turned out that for fixed values of rotational diffusion, the correlation length is
almost unchanged when one changes the active force. On the other hand, for a fixed
value of f,. with decreasing rotational diffusion, the correlation length grows and
scales with the square root of the persistence time which is in agreement with the
purely active systems [59-61]. The insight from our study suggests that such exotic
velocity correlations can be generated in experiments by doping a small fraction of

active Janus particles in a dense suspension of passive colloids.
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Chapter 4

Effects of direction reversals on

patterns of active filaments !

4.1 Abstract

Active matter systems provide fascinating examples of pattern formation and collective
motility without counterpart in equilibrium systems. Here, we employ Brownian
dynamics simulations to study the collective motion and self-organization in systems of
self-propelled semi-flexible filaments, inspired by the gliding motility of Cyanobacteria.
Specifically, we investigate the influence of stochastic direction reversals on the patterns.
We explore pattern formation and dynamics by modulating three relevant physical
parameters, the bending stiffness, the activity, and the reversal rate. In the absence
of reversals, our results show rich dynamical behavior including spiral formation and
collective motion of aligned clusters of various sizes, depending on the bending stiffness

and self-propulsion force. The presence of reversals diminishes spiral formation and

! This chapter is based on a preprint , "Effects of direction reversals onpatterns of active filaments "
by L. Abbaspour, A. Malek, S. Karpitschka and S. Klumpp. arXiv preprint arXiv:2112.09188v1,
2021. Author contributions: L. Abbaspour performed simulations, data analyses and wrote the
manuscript, A. Malek performed simulations and data analyses, S. Karpitschka supervised the project
and wrote the manuscript, S. Klumpp supervised the project and wrote the manuscript.
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Effects of direction reversals on patterns of active filaments

reduces the sizes of clusters or suppresses clustering entirely. This homogenizing effect
of direction reversals can be understood as reversals providing an additional mechanism

to either unwind spirals or to resolve clusters.

4.2 Introduction

Active matter is a class of systems that are inherently out of equilibrium through
coupling to an internal process of energy consumption that results, for example in
self-propulsion or growth [10, 12]. Specifically, the case of self-propelled active particles
has received much attention in recent years, as it gives rise to intriguing dynamics and
mechanical behaviour at the collective level. Such systems are ubiquitous in nature,
examples include the cytoskeleton [1-3], swarming bacteria [4-6], tissues [69] ,and
biofilms [68]. Finding suitable tools to study active matter systems is a challenge for
non-equilibrium statistical physics in order to elucidate the dynamical behavior and
the physical properties of these systems.

Self-propelled particles self-organize into macroscopic structures with collective
dynamics like clustering, swarming, and swirling. This type of dynamical pattern
formation has been subject to intensive research in recent years, both from a theoretical
or computational viewpoint [39, 45-47, 124-134] and experimentally [55, 75, 135-140],
often using systems of bacteria either swimming in a solution or gliding on surfaces as
well as synthetic self-propelled particles systems [141].

On the theoretical side, most studies of collective effects in systems of self-propelled
particles have considered either spherical or point-like particles [39]or short and rigid
rod-like particles, as these are good approximations for the shape of the bacteria
typically used in experiments such as swimming Bacillus subtilis or Escherichia coli
[126, 133, 139] and as Myzococcus zanthus, gliding on surfaces [137]. The aspect ratio

of rod-like particles has a strong impact on the patterns, as high aspect ratios promote
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(nematic) alignment of the particles and swarming [62].

At very large aspect ratios, the the finite rigidity of the particles is expected to play
a role. Therefore several computational recent studies have addressed semi-flexible
filamentous particles or self-propelled polymers [47, 127]. Indeed, their collective
behavior is modulated by their bending rigidity. Moreover, flexibility even results
in new single-filament behavior, as individual flexible filaments are seen to curl into
spirals due to their self-propulsion [46].

Complicating the understanding of the behavior of the collective motion of microbes,
many of them in addition to active self-propulsion also perform active directional
changes such as the well-known run-and-tumble motion of Escherichia coli [142].
Typically, these active direction changes are an integral part of the mechanisms for
chemotaxis and other types of tactic behaviors, through a coupling of the rates of
directional change to the direction of motion relative to a (chemical, light, etc.) gradient
direction. Such active directional changes have occasionally been included in models
for the motility and collective behavior of self-propelled particles [130, 143-145] or
spreading of active polymers in porous media [146]. For bacteria, the simplest direction
change in a reversal, where the whole filament reverses its direction of motion by 180°,
as seen in the gliding motility of M. zanthus, a short rigid rod [137], as well as in
gliding filamentous Cyanobacteria [147, 148].

In this article, we use extensive simulations to address how such reversals affect
the collective behaviors of self-propelled semi-flexible filaments at overall relatively low
density. To that end, we first consider the reference case without reversals and analyze
the formation of spirals and swarms or clusters,

With that in mind, in this paper, we initially examine the self-assembly of active
filaments by modulating the bending stiffness and self-propulsion force of the filaments,

and then investigate how the introduction of reversals modifies the collective behavior.
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We focus on the interplay of the filaments’ self-propulsion force, bending stiffness,
and reversal rate as the control parameters that modulate the pattern formation process.
In the absence of reversals, the filaments form spirals for high self-propulsion force and
low bending stiffness, for larger bending stiffness coherently moving clusters dominate
the system. Introducing reversals reduces the rates for forming both types of patterns
and thus the system becomes gradually more isotropic with increasing reversal rate.
Both negative effects can be explained by the dynamical pathway of these structures:
First, reversal adds a second mechanism that interrupts the spooling of the filaments
and initiates unwinding. Second, a new mechanism is added for filaments to leave a

cluster, since filaments typically leave a coherently moving cluster during a reversal.

4.3 Model

4.3.1 Self-propelled filaments

We consider a system of N, self-propelled semi-flexible filaments. The individual
filament is described as a chain of N monomers located at position s (r1,7s, -+ ,Tx)
in space (see Fig. 4.1 (a) for a schematic). Two consecutive monomers in the chain
are connected by a harmonic spring. In addition, the angle between three consecutive
monomers along the chain are subject to a harmonic bending potential, which controls
the flexibility of the chain. In the over-damped regime, the equation of motion for each

monomer can be written as:

(i = —ViU, — VU, + F? + F" (4.1)

where 7; is the velocity of the i-th monomer, ( is the friction coefficient. The four force

contributions on the right hand side of this equation represent stretching and bending
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/v \f stochastic reversal
ol with constant rate \,.

Figure 4.1 — Model of a self-propelled filament. (a) Sketch of a self-propelled
filament composed of monomers with diameter o. The active force inducing their self-
propulsion acts tangentially along each bond. (Zoom) The flexibility of the chain is
modeled by a harmonic bending potential, where 0; is the angle formed by each successive
triplet of monomers i —1,i,i1+ 1. (b) Sketch of the reversal mechanism of a self-propelled
filament: Upon a stochastic reversal with rate \, a filament reverses the direction of its
self-propulsion force by 180°.

of the chain, the active force responsible for self-propulsion and volume exclusion,
respectively.

Us is the stretching potential due to the harmonic springs (each with an equilibrium

length of ry between consecutive monomers) with the form

N
Rs
S = 7 7”]7] 1— 7’0 . (42)

Jj=2

where 7, ;_1 = |r; — rj_1| is the distance between the j-th and j — 1-th monomer and

ks is the spring constant associated with stretching.
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Uy is the harmonic bending potential which controls the flexibility of the bonds.

Considering 6; as the angle formed by a consecutive triplet of monomers (i — 1,4, + 1),

T 1,iTiit1
[Pi1,illrsital

given by 6; = cos™! ( ), this potential is defined as

N—

=550, — )2 (4.3)

2 =~

H

where 7 is the equilibrium angle of between adjacent pairs of monomers, corresponding
to a straight chain, and k; is the spring constant associated with bending.

The self-propulsion is induced by the active force F'y,

F¢ = f.t;, (4.4)

where f, fixes the absolute value of the self-propulsion force and 7;, the unit vector
tangent to the chain at the position of i-th monomer, defines its direction. For a chain

consisting of discrete monomers, this vector can be approximated as:

P = % ( Tit1 I Tii-1 ) _ (4.5)

|7°z'+1,z'| ’rz’,i—l‘

Here a, € {—1,+1} specifies the state of the polarity (head-tail) for each chain
ce{l,---,N.} where N, is the number of chains in the system. This variable will be
important for the modelling of reversal events, as we will discuss below.

Finally the presence of the repulsive force F';* prevents overlaps of the monomers.

Such volume exclusion is implemented using the Week-Chandler-Anderson potential:

4e {(")12 + (0)6} +e <2

0, otherwise

Uezt(r) = (46)

where ¢ is the nominal interaction diameter and e is the energy scale of the interaction.
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In addition, adjacent monomers in the filament overlapped, resulting in a smooth

filament and rq = 0/2

4.3.2 Direction reversals

So far, our model agrees with previous models for self-propelled filaments [46, 47, 127].
In addition, we include spontaneous reversals of the direction of self-propulsion, as they
are often seen in the surface motion of bacteria [146, 149] including filamentous species
such as gliding filamentous Cyanobacteria [150-152]. Typically, the rates for such
reversals are modulated by various tactic behaviors such as chemotaxis, phototaxis,
etc. Here we consider the baseline case of spontaneous reversals in a homogeneous
environment.

We model random reversal events, where the gliding direction of a chain changes
instantaneously by 180deg, as generated from a Poisson process with a reversal rate A,
(see Fig. 4.1b). Mathematically, this means that the polarity (head-tail) state a. of a

chain ¢ follows a stochastic process

a=1 = a.=-1L (4.7)
Ar

In such a Poisson process, the distribution of waiting times 7 elapsed between two

consecutive reversals is an exponential distribution of the form

Py(1) = M. (4.8)

Hence to implement the reversals for a single chain, we draw a random waiting time
7o from the exponential distribution described in Eq.4.8 at time ¢, . Between tq and
t1 = to + 70, the chain evolves following Eq. 4.1. At t; the gliding direction of the

chain is reversed and another waiting time 7y is drawn from the same waiting time
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distribution. This process is done for each chain independently during the simulation
by drawing subsequent time intervals 7o, 73, ..., such that reversals of any chain in the

system is uncorrelated with the reversal of any other chains.

4.3.3 Simulations and parameters

All simulations presented here were run on GPUs using the simulation package HOOMD-
blue [153] with custom extensions for self-propulsion and for reversals, which were
compiled together with the whole software. The simulation integrates Eq.4.1 over
t = 10® time steps.

In these simulations, lengths are measured in units of the monomer radius ¢ and
the energy unit is kgT. We choose the time unit to be the self-diffusion time for a
single monomer 7p = ,;’Bi% where (, which determines the damping, is set to ( = 15.
Our system consists of Ny = 1666 filaments each having N,,, = 59 monomers.

We set the spring constant of the stretching spring to x, = 10%, i.e. to a relatively
high value to make sure that chains do not stretch too much along their axis. Hence
the distance between two successive monomers does not fluctuate strongly and is
approximately constrained to the fixed value ry. Furthermore, to obtain a smoother
filament, we also set the value ¢ = §. To investigate a large parameter space,
we varied kp in the range {1,1800} and f, between {1,100}. The packing fraction,
¢ = NyN,,roo/L?, is set to 0.1 in all simulations, where L denotes the box size and

L =167c

The aspect ratio, a dimensionless number representing the ratio between the contour

length and the diameter of the individual monomers a = %, is set to almost 30 and
Ly = (Ny, + 1)1 is the contour length of the filaments. The reversal rates A, are varied

between {0 — 0.1} and are same for all the filaments.
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4.4 Results

To address the effect of direction reversals on the collective dynamics of self-propelled
filament, we performed systematic simulations varying three key parameters, the
bending stiffness x;, the strength of self-propulsion f,, and the reversal rate \,. We
will show typical snapshots of these simulations below. We start with the case without
direction reversals (A, = 0), which has been studied before [47, 127] and which serves us
as a reference scenario here. In that case, it is known that a variety of non-equilibrium
patterns can be formed, for which we will present a detailed diagram of states below.

Later on, we add the reversal mechanism to the filaments, inspired by the reversal
dynamics (due to phototaxis) observed in Cyanobacteria to investigate the response
of the system to an abrupt and random reversal in gliding direction. We report a
dramatic change in the individual as well as collective dynamics in the state diagram

as we crank up the reversal rate eventually destroying the spiral state completely.

4.4.1 Non-reversing active filaments
4.4.1.1 Spiral formation

In the absence of direction reversals, the collective dynamics of the chains is dominated
by the interplay between self-propulsion, bending stiffness and confinements due to the
excluded volume effect. A key observation at low density of filaments is that flexible
filaments may form spirals while stiffer filaments tend to form clusters [47, 127].
Spirals form due to the self-interaction of an isolated active filament with high
self-propulsion and low bending stiffness. Spiral formation stands in contrast to the
relatively straight equilibrium structure of a semi-flexible filament and depends on the
self-propulsion. Spiral formation is initiated when the head of the filament collides

with a subsequent part of its own body, such that excluded volume interaction force

69



Effects of direction reversals on patterns of active filaments

(a) (b)

s=0
0.6
0.4
V)
- s=1

0.21

0.0/

109 10% 102 103

Figure 4.2 — Spiral ratio as a function of bending stiffness for different values
of self-propulsion force. (a) Sketch of different configuration of a single filament
characterised by the indicated spiral number indicated by s. (b) Quantification of spiral
formation by the spiral ratio §: An increase in bending stiffness decreases the probability
of spiral formation at a constant self-propulsion force. Different values for self-propulsion
are shown in different colors. With increasing self-propulsion force at low bending stiffness,
spiral formation is promoted. For high bending stiffness, spiral formation does not take
place regardless of the self-propulsion force. The aspect ratio of the filaments is a = 30
and the packing fraction is ¢ = 0.1.

the filament to wind onto itself. If the self-propulsion is strong enough, filaments twist
around their own body through this mechanism and form stable spirals. To characterise
the dynamical state with spiral formation we define a spiral number for each filament
in the system which quantifies how many times a filament is wound up around itself

and is defined as:
SINSE A,

z (4.9)

=

where 6; is the angle formed by the beads i —1,4,7+ 1. |..| denotes the absolute value of
the spiral number since they can be twisted either in the clockwise or counterclockwise

direction. s = 0 indicates an almost straight configuration (see Fig. 4.2 (a)) and s =1

70



4.4 Results

(a) (©) |
N o
(b)— —zo 4
/ . ] 2
o Te—— 0 o1 o2 o3

KRy

Figure 4.3 — Cluster ratio as a function of bending stiffness for different values
of self-propulsion force. (a) A binary collision of self-propelled filaments that results
in parallel alignment and coherent motion that initiates cluster formation. (b) A binary
collision of self-propelled filaments that results in anti-parallel alignment and transient
coherent motion. The red monomer shows the head of the filament in both cases. (c)
Increasing the bending stifiness promotes cluster formation in the system. Different
values for the self-propulsion force are shown in different colors. The aspect ratio of the
filaments is a = 30 and the packing fraction ¢ = 0.1.

a ring shape (see Fig. 4.2 (a)). We consider a filament to be in a spiral state if s > 1.2
(see Fig. 4.2(a)).
To distinguish global patterns of filaments, we introduce the spiral ratio as the

ratio of the number of filaments in the spiral state (i.e., with s > 1.2), Ny, to that in

the straight configuration, N:
N
Ngs

(4.10)

S =

The spiral ratio is plotted in Fig.4.2(b) as a function of the bending stiffness and the
self-propulsion force. The figure shows a pronounced decrease of the spiral ratio with
increasing bending stiffness, which reflects the fact that increasing bending stiffness
(kp) hinders the self-interaction needed for spiral formation. Fig.4.2(b) also shows
that, for fixed bending rigidity, spiral formation is promoted by an increase in the

self-propulsion force.
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4.4.1.2 Cluster formation

In the limit of high bending stiffness, filaments behave like rod-shaped agents. In this
regime, filaments move in the direction of their long axis direction and when they
undergo collisions, they rotate to align due to their steric interaction. At high bending
stiffness, collisions between filaments are dominant over self-interactions as the bending
required for the self-interaction is unfavourable. Dependent on the angle of incidence
in the collision event the two filaments align either parallel or anti-parallel (Fig. 4.3(a)
and (b), respectively). In the first case, they continue their motion together, in the
second case, they stay in contact transiently [10, 130]. Clusters of filaments form
when additional filaments collide with already aligned filaments, resulting in groups of
filaments that move coherently. The size and life-time of these clusters depends on
bending rigidity, activity as well as the density of the filaments in the system [10, 62,
133].

To characterise the clustering behaviour we identify clusters using the following
criteria: two monomers are considered to be part of the same cluster if their centers
are distanced less than 1.20. We note that this criterium automatically includes all
monomers of one filament in the same cluster. In addition, we only considered clusters
with at least Ny = 10 filaments to avoid counting micro clusters. Clusters are identified
with the data analysis framework Freud [105]. Finally, in analogy to the spiral ratio, we
define a cluster ratio as the ratio of number of filaments in clusters, N, to the number
of free filaments, ;.

= (4.11)

N,
Ny

Fig. 4.3 shows the cluster ratio as a function of the bending stiffness for different
values of the active force. The cluster ratio is seen to increase monotonically with

increasing bending stiffness (k;) and also with increasing self-propulsion force. One can
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Figure 4.4 — Average cluster size as a function of bending stiffness. The average

cluster size is shown in different colors for different self-propulsion forces.
also see that high values of the spiral number are associated with small clusters and vice
versa: the regions with higher values of spiral ratio in Fig. 4.2 correspond to the region
of low cluster ratio in Fig. 4.3. When the bending stiffness is low, spirals are formed
due to the self-interaction, when the bending stiffness increases, the deformation of
the filaments becomes unfavorable, which is why they usually have a straight, rod-like
conformation that promotes alignment and, thus, clustering.

We also define the average cluster size, CS,,, which is the average total number
of filaments belonging to clusters and this seems to increase with increasing bending
stiffness indicating (see Fig. 4.4) the fact that bending stiffness which suppress spiral
formation, promotes clustering.

Since both spiral ratio and cluster ratio show opposing trends as function of the
bending rigidity and of the self-propulsion force, we wondered whether the results
could be written as functions of a dimensionless parameter combination. A natural

candidate is the flexure number, the ratio of activity and bending rigidity [47, 127, 154,
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Figure 4.5 — (a) Spiral ratio S and (b) cluster ratio C' as functions of the flexure number
$: Data collapse for different self-propulsion forces and bending rigidities when these are
plotted as functions of a dimensionless combination, the flexure number. The color of
the points indicates the value of the self-propulsion force. The red lines indicate power
laws fitted to the curves, with exponents ¢ and ¢'.

155] can be written as:

o _ faL?
Kb

(4.12)

Figure 4.5 shows the spiral and cluster ratio as functions of the flexure number.
Indeed the data from simulations with different bending stiffness and self.propulsion
forces are seen to collapse onto one curve. Only for the largest flexure numbers, we see
systematic deviations for the spiral ratio. For smaller values of the flexure number, the
spiral ratio increase as a power law S ~ S with § ~ 0.7. Likewise, the decrease of the

cluster ratio also follows a power law C' ~ 3% with ¢ ~ —0.5.

4.4.1.3 State diagram

We performed systematic simulations varying the self-propulsion force f, and the
bending stiffness x; to explore the variety of patterns in the steady state of the system.

To distinguish different states of the system, we assign a state to all filaments in
a snapshot via the following criteria: A filament is considered as a spiral if its spiral

number is < 1.2. The filament is taken to be in the cluster category if it is not a
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Figure 4.6 — Non equilibrium state diagram of non-reversing self-propelled
filaments. The state diagram is drawn as a function of self-propulsion force f, and
the bending stiffness kp in the absence of reversals. The different states are indicated
by different symbols and the color of each symbol is matched to the corresponding
designation of the state. For details on the characterisation and identification of the
states, see text.

spiral and part of a cluster of > 10 filaments. Since this criterion does not capture
the diversity of cluster patterns, we further subdivide the cluster state by the size of
clusters and distinguish a small-cluster category for filaments in clusters with size > 10
and < 100 and a large-cluster category for filaments in clusters with > 100 filaments.
All other filaments are considered to be in the melt state.

Using this classification and averaging over 200 snapshots per condition, we classify
the state of the whole system as follows: We classify the system’s state as a large-cluster

state or as a small-cluster state if > 40% of the filaments are in large or small clusters,

respectively. As the two criteria are not mutually exclusive, coexistence of small and

75



Effects of direction reversals on patterns of active filaments

(a) (b) ()

\R) (%/ Y/ // \r/\\\ /\
7 /
AL ETPWA
200 / T \ X< l‘\}\ ;
) - 1\//‘ \7>%
T -
u \AQI 7 ’f”’ \“)2&;/’ % }1\9%%/ o
£ )
~100 \\ ‘& \ﬁ\/ét&%j
/\ \ - <\?V, A \/
- \ /\\/;N \\
a0 \/ * Q ﬁ/\i 0)4),
ﬂV‘Y —{
/17 7 L T 7t
(d)
/<// w
zoo ﬁ/ﬁ{m -
‘ \\ //&\ \
0 \ // \ \ \4_\\ ~ o
:\u/ \
-100 [ / / }/ﬁ\\
s }/ Vo
Wl s

Figure 4.7 — Snapshots of the simulation for different f, and k;. (a) snapshot
for ky = 10, fo = 10 in ‘melt’ state (b) ky = 5, fo = 100 in spiral+melt state (c) Close-up
view of spirals in plot (a) (d)k, = 600, f, = 82 (e) in small-cluster state k, = 1000,
fa = 24 (f) in large-cluster state kp = 1600, f, = 10 in large + small cluster state.
large clusters is identified if both are satisfied simultaneously. Likewise, a spiral state
is identified when more than 20% of the filaments form spirals (the threshold is chosen
lower than for the other states, as under the conditions simulated here, we ever see
40% of the filaments being spirals). Finally, the system state is classified as a melt
state if > 40% of the filaments fall into this category. Just like for small and large
clusters, coexistence of other states is possible and indeed seen frequently, e.g. between
melt and small clusters and melt and spirals. The diagram of states shown in Fig. 4.6
summarizes this classification. Simulation snapshots corresponding to the different
states are shown in Fig. 4.7, where the color code of the filament shows the classification

at the filament level.
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For low bending stiffness and low self-propulsion force, the filaments are mostly
in the melt (or isotropic) phase and move in all directions, as can be seen in Fig. 4.7
(a). We note that while the melt filaments are dominant, there are also some small
clusters. Increasing the self-propulsion force, while the bending stiffness is kept at a
small value, promotes spiral formation, as shown in Fig. 4.7 (b) and (c¢). Formation
of spirals is quite natural in this regime because the filaments are flexible enough to
bend onto themselves. Their self-propulsion then results in spiral formation and, once
formed, a spiral is typically stable until another filament collides with it.

Collisions with other filament seems to be the dominant (if not only) mechanism
that breaks up spirals, since we have not included explicit translational or rotational
noise in our simulations. Under the conditions we simulated, the spiral state typically
coexists with the melt phase, as casn be seen in the snapshots in Fig. 4.7 (b) and (c).
Consistent with this observation, a pure spiral state, the "gas of spirals" reported in
earlier studies [47] is only observed at even lower densities than used here.

As shown above (Figure 4.2), the fraction of spirals decreases with increasing bending
rigidity. For sufficiently large bending stiffness, collective behavior via the formation
of clusters becomes dominant over individual filament dynamics. In this regime, the
self-interaction is of lesser importance compared to inter-filament interaction, and when
filaments collide, they can bundle into small clusters with local alignment (nematic
order). Over time, the clusters grows as other filaments collide with them and join
them. At intermediate bending stiffness, there is a coexistence of the freely swimming
filaments and small clusters of the filaments (Fig. 4.7 (d)). As we increase the bending
stiffness (Fig. 4.6 (d-f)), the clusters become larger and the system state is classified as
a large-cluster state, in particular for low self-propulsion force.

These observations show that the collective behavior of filaments is modulated by

their bending stiffness and their self-propulsion force. In agreement with earlier work
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[47, 127], we distinguish several regimes, characterized by the formation of spirals and
of clusters of various sizes. Generally, we observed that, in the absence of direction
reversals, filaments with high self-propulsion force and low bending stiffness form
spirals, while filaments with high bending stiffness tend to form clusters. This general
picture will serve as a reference in the following section, where we will include direction
reversals and study how the variation of the reversal rate affects the patterns formed

by self-propelled filaments.

4.4.2 Reversing active filaments

Next, we consider active filament that exhibit reversals of their direction of motion.
Many microorganism show reversals of their motility direction (in swiming and surface
motility), often as part of the (chemo- or photo-)tactic strategy. Here we consider the
case of spontaneous, non-biased reversals. Active filaments are taken to change their
direction of motion abruptly by 180 °, these reversals occur according to a Poisson
process with rate \,. Varying the rate of the reversal process, we explored the effect of
reversals on the structures and the collective motion of the active filaments.

Fig. 4.8 shows snapshots of the system for two sets of parameters, in both cases
without reversals (left) and with a non-zero, but small reversal rate (right). The two
parameters sets chosen here correspond to the regime exhibiting spirals (f, = 100 and
Ky = 1, top) and to the regime dominated by small clusters (f, = 24 and &, = 1000,
bottom). In both cases, the patterns are seen to be changed by the introduction of the
small reversal rate, indicating a substantial influence of the reversals. In the case of
high f, and low k — b, spirals are very frequent in the absence of reversals (although
they co-exist with straight filaments). With the reversal rate A, = 0.1, spirals are
completely suppressed. In the case of low f, and high x;, the change is less dramatic

as collectively moving clusters are seen both in the presence and absence of reversals,
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Figure 4.8 — Snapshot of the simulation with reversal dynamics.
snapshots from the simulations keeping the bending stiffness, activity, density, and aspect
ratio same and changing the reversal rate. Applying reversal rate changes the pattern
formation drastically from its non-reversing counterpart. a,b in the presence of a nonzero
reversal rate, spiral formation has disappeared. c,d Likewise, in the presence of reversals,
the cluster sizes become smaller than the non-reversing case. The coloring of the filaments
indicates their classification as spirals (cyan), filaments in small clusters (red), large
clusters (grey) and a melt (blue).

We show

79



Effects of direction reversals on patterns of active filaments

however, the size of the clusters is considerably decreased by the reversals.
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Figure 4.9 — Spiral and cluster ratio for different reversal rates A, at an active force,
fa = 50.

4.4.2.1 Unwinding of spirals and declustering

To quantify these observations, we determined again the spiral and cluster ratio. In
Fig. 4.9, we plot the two quantities as functions of the bending stiffness, comparing
different reversal rates. These results confirms the qualitative observation from the
snapshots: Reversals reduce both spiral formation and cluster formation, for all values
of the bending stiffness. Higher reversal rates result in stronger reduction. As these
results show a clear reversal rate dependence of the pattern formed by the active
filaments, we next investigated the effects of the reversal rate A, on the state diagram
in the kp-f, space. The results are shown in Fig. 4.10 for four different values of the
reversal rate. Already for the smallest reversal rate considered (A, = 0.001), the spiral
state as well as the large-cluster state are strongly diminished. Increasing the reversal
rate further, also the small-cluster state get pushed towards larger bending stiffness
and larger self-propulsion force.

The suppression of spirals is rather straightforward: As mentioned earlier, in the

absence of reversals, spirals dissolve through collision with other filaments. Reversals
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Figure 4.10 — Diagram of state for reversing self-propelled filaments. The state
diagram is constructed as a function of the self-propulsion force f, and the bending
stiffness kp and shown for four different values of the reversal rate \,. States are marked
by different symbols and different colors as in Figure 6. When the reversal rate increases,
on the one hand the tendency of formation of large clusters decreases, on the other hand
the propensity of spiral formation in the system is progressively suppressed.

add a second mechanism for breaking up spirals, namely a change in the polarity
(head-tail direction) of the self-propelled filaments. When the reversal occurs, the self-
propelled filaments is not directed inward in the spiral any more, but rather outward,

and thus the spiral unwinds (see Fig. 4.11).

Likewise, reversals add an additional mechanism for filaments to leave a cluster, as
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| |

[~

Figure 4.11 — Unwinding of a spiral due to the reversal dynamics: Panel (a)
shows a filament in the spiral state in the center. In Panel (b) a reversal event takes
place. Panel (c): The spiral unwinds and the filament resumes the straight configuration.
The white monomer is the head of the filament, the green is the body and the purple is
the tail.

filaments in a cluster typically move collectively in one direction, so that any filament
that reverses is likely to move out of the cluster. This shifts the balance between
filaments joining a cluster and filaments leaving a cluster and results in smaller clusters
as observed. For very large reversal rates, clusters disappear entirely and the system
becomes isotropic again. In this limit, the filaments do not show active directed motion

any more, but rather move back and forth in a fashion similar to passive diffusion.

Thus a melt state like for passive polymers is indeed expected.

4.5 Summary and Conclusion

In this study, we have simulations of self-propelled filaments to study their pattern
formation and, specifically, the impact of direction reversal on these patterns. The
simulations mimic bacterial gliding motility on surfaces and their assembly into clusters
and swarms. In contrast to the well-studied spherical or rod-like self-propelled particles,
we considered long and flexible filaments.

First, we discussed the patterns that could form in the absence of direction reversals,

modulating the bending stiffness (k) and self-propulsion force (f,) of the filaments at
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a relatively low filament density. The results, in agreement with earlier work [47, 127],
reflect a competition between the self-interaction of filaments, possible due to their
flexibility, and the interaction between filaments. At low bending stiffness and high self-
propulsion force, the self-interactions are dominant, leading to the formation of spirals.
However, when the bending stiffness increases, the self-interaction is reduced and steric
interactions between filaments become more important. In that case, filaments form
clusters through collisions and move collectively in these clusters. Based on systematic
simulations, we have determined a diagram of states in the x,-f, space.

Then, to understand the impact of stochastic direction reversals, we added a reversal
rate to the filaments’ dynamics, mimicking the run-reverse movement of bacteria, and
examined the effects of this additional control parameter on the formation of motility
patterns. In general, reversals counteract both clustering and spiral formation, thus
resulting in more isotropic structures. Both negative effects can be understood via
dynamical pathways these structures: First, reversals add a second mechanism to
interrupt the spooling of spirals and induce unspooling. Second, it also adds new
mechanisms for filaments to leave a cluster, as filaments typically leave a coherently
moving cluster upon reversal. The additional mechanism for leaving clusters results in
smaller clusters compared to the no-reversal reference case. Finally, high reversal rates
result in purely back-and-forth motion, similar to a passive scenario.

Our results show that the direction reversals have a great impact on the patterns
of microorganisms in the casting media or other systems. The direction reversals have
unpleasant effects (like the destruction of spirals and clustering) on the patterns formed
by the bacteria, which could also affect the dynamics of microorganisms in the system.
Since the direction reversal has a very unique effect on the self-assembly of active
filaments, it can also be extended to a higher density to study the effects of the reversal

rate on the pattern formed in that regime with/without obstacles in the system.
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Chapter 5

Self-Buckling of Filamentous

Cyanobacteria !

5.1 Introduction

Many species of filamentous cyanobacteria exhibit gliding motility when in contact with
solid surfaces or other filaments, but display no swimming motion. The mechanism
behind this motility appears to be distinct from myxobacteria, and remains debated
in the literature. Understanding the collective phenomena in colonies of filamentous
cyanobacteria is a key element in interpreting fossile structures, managing giant blooms,
or optimizing bioreactor efficiency. At the base of these phenomena lies the individual
filament itself, and predicitive models require, as an input, the active and passive
mechanical properties of the individuals.

Many techniques for measuring mechanical properties of microorganisms, like

!This chapter is based (with modifications) on a preprint "Self-Buckling of Filamentous Cyanobac-
teria" by M. Kurjahn, A. Deka, A. Girot, L. Abbaspour, S. Klumpp, M. Lorenz, O. Biumchen & S.
Karpitschka. arXiv preprint arXiv:2202.13658, 2022. Author contributions: M. Kurjahn performed
experiments, data analyses and wrote the manuscript, A. Deka performed experiments, data analyses
and wrote the manuscript, L. Abbaspour performed MD simulations, data analyses and wrote the
manuscript, S. Klumpp supervised the project and wrote the manuscript, S. Karpitschka supervised
the project and performed theoretical modeling, data analyses and wrote the manuscript.
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traction force microscopy [156], atomic force microscopy (AFM) [157], or microcapillary
force sensors (MFS) [158] have been developed in the past. Yet, resolving the forces
involved in the self-propulsion of a microorganism over a solid surface remains a
formidable task.

Our colleagues, in Dr. Stefan Karpitschka’s lab, show that gliding forces can
efficiently be quantified by making use of Self-Buckling, a concept which goes back to
the work of Leonhard Euler in 1778. Filaments that exceed a certain critical length
start to buckle once they encounter an obstacle. By recording numerous such events,
they obtained a comprehensive statistics to derive the critical length. Further, they
independently quantified the bending rigidity of numerous filaments by MFS. Using
non-linear Kirchhoff theory, they derive the propulsion force density from the critical
length and the bending rigidity.

In this chapter, we developed molecular dynamics simulations of self-propelled flexi-
ble particle chains to compare with continuum theoretical thresholds and experimental
data, and set the parameters such as the self-propelling force, the bending stiffness,
and the friction coefficient to study the pattern formation of cyanobacterial colonies in
the next chapter. The critical lengths obtained in the continuum-theoretical model are
close to the peak in the length distribution in freely growing colonies, indicating the
importance of this quantity for their self-organization.

In the classical self-buckling theory by Euler, the critical length for a vertical
column, clamped at its lower end and free to move at its upper end, of uniform bending
modulus B, cross-sectional area A, and density p, subjected to its own weight due to

gravitational acceleration g, is given by [159]

1/3
L.= (7.837) . (5.1)
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Figure 5.1 — Microfiuidic device with 40 ym wide channels.

Active filaments differ from these original considerations: the active force density
is (presumably) oriented tangentially instead of vertically, and the typical boundary
conditions are a supported front and a free end. Under the action of gravity, this is
an unstable situation: the column would simply fall to either side. For filaments that
exert active forces in tangential direction, however, this situation is indifferent until
buckling induces curvature. Then, the active forces no longer point to the support,

causing a net torque and a rotation. The buckling threshold in this case is given by

B\ /3
L = (30.5722 7) : (5.2)

i.e. by the same scaling with bending modulus and force as in Eq.5.1, but with a
different numerical prefactor. This prefactor was obtained by linear stability analysis
of Eq.5.1 by assuming three boundary conditions: (i) zero torque at the head of the
filament (ii) zero torque at the tail of the filament and (iii) zero force at the tail of the

filament (This equation was derived by Dr. Stefan Karpitschka).
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5.2 Buckling Experiment

In S. Karpitschka’s lab, they use microfluidic devices for the buckling experiments;
the standard procedure is given in [160]. Fig. 5.1 shows various designs used for the
analysis. The channels are between 20 pm and 40 pm wide and typically dead-end
where the filament hit (preferable orthogonal) the wall. The devices are prepared with
PDMS (polydimethylsiloxane) on silicon wafers and then plasma bonded on a glass
microscope slide. Through the flushing and loading sites that were added before the
bonding, the nutrient solution (BG11) as well as the bacteria are loaded into the device.
It is preferred to use fresh and healthy blue-green-looking bacteria and break them into
smaller pieces by mechanical stress. Then, microscopy pictures are taken at 6x- or
10x-magnification with time intervals of either 1s, 10s and 30s. For the data analysis,
the length of the filament, the gliding velocity just before hitting the obstacle, and
whether it buckles or not are determined by image analysis. In total, we collected 245
events (M 184:61 X)) for Oscillatoria lutea and 114 events (M 88:26 X)) for Kamptonema

animale.

5.2.1 Buckling Threshold

From these histograms (Fig. 5.2), one can extract the buckling frequency, i.e. the
number of buckling events per bin divided by the total number of events per bin. This
can be thought of as the buckling probability for a filament in a certain bin and is
shown in Fig. 5.2.b for Oscillatoria lutea and in Fig. 5.2.a for Kamptonema animale
as histograms.

The estimated parameters for this data set were found to be

Oscillatoria lutea L.=171.22um | AL, = 34.61 pm

Kamptonema animale | L, = 151.58 ym | AL, = 18.91 pm
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Figure 5.2 — Buckling frequency for Oscillatoria lutea (a) and Kamptonema animale
(b) determined as the ratio of buckling events to total number of events per bin as the
solid histogram. The logistic regression is denoted by the dashed line.

The corresponding boxplot with median, second and third quartile as well as the

whiskers with 5% and 95% of the distribution is shown in Fig.5.3.
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Figure 5.3 — Critical buckling length L. of Oscillatoria lutea and Kamptonema animale.
The median is denoted in orange, the second and third quartile by the box and the
whiskers show the 5% and 95% of the distribution.

Some extracted trajectories of filamentous Cyanobacteriaover time are shown in

Fig. 5.4.

5.3 MD Simulations

We consider a filament as a chain of N monomers located at positions (71,79, ,7y)

in space (Figure 5.5.a). Two consecutive monomers in the filament are connected by a
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Figure 5.4 — Trajectories of Kamptonema animale (a) and Oscillatoria lutea (b-d) over
time, shown as color code from dark blue (50 seconds before the event) to yellow (50
seconds after the first contact). The end points are depict as green dots. Space and
length is in pixels for 20x magnification. Note that the y-axis has a different spacing
than the x-axis.
harmonic spring. Additionally, the flexibility of the chain is controlled by a harmonic
bending potential, where the angle is determined by three successive monomers along

the filament. Using Brownian dynamics simulation in the over-damped regime, the

equation of motion for each monomer can be written as follows:

(i = —V,U, = ViU, + F + F3". (5.3)
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Panel(b) Geometry of the particle chains in MD simulations.

Figure 5.5 — Model of a self propelled filament Sketch of a self-propelled filament
composed of monomers of diameter o, where the bond length for each two successive
monomers is constant and equal to ro = o /2. The flexibility of the chain is introduced by
the harmonic bending potential, where 0; is the angle formed by each successive triplet
of monomers i — 1,41+ 1.
where 7; is the velocity of the ¢-th monomer, ( is the friction coefficient. Four forces
contribute to the equation of motion shown on the right hand side: the stretching force,
the bending of the chain, the active force, which is responsible for self-propulsion, and
the volume exclusion.

Us stands for the stretching force introduced by the harmonic springs (with an

equilibrium length of 7y = ¢/2)

N
Kg
SZEerjl_ro s (54)

where 7; ;_1 = |r; — r;_1] is the distance between the j-th and j — 1-th monomers and
ks 1s the spring constant associated with stretching.

The flexibility of the filament is controlled by the harmonic bending potential, Uj.
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Here 0; is the angle formed by a successive triplet of monomers (i — 1,4,7 + 1), given

by 6; = cos™! (M) This potential is defined as

[ri—1,5l74,i41]

_%Ze—w (5.5)

where 7 is the equilibrium angle of between adjacent pairs of monomers, corresponding
to a straight chain, and k; is the spring constant associated with bending.

The motility of the filament is induced by the active force f7,

f? = fati7 (56)

where f, is the magnitude of active force and #;, the unit vector tangent to the
filament at the position of i-th monomer, defines its direction. For a chain with discrete

monomers, t; can be defined as follows:

P 1 7 % 10—
u:2<rﬂﬂ+771>. (5.7)

Pival Tl
The repulsive force F§* that prevents the monomers from overlapping can be

implemented using the Week-Chandler-Anderson potential:

4e {(”)12 + (”)6} +e, <2

0, otherwise,

Uemt(r> = (58)

where ¢ is the nominal interaction diameter and e is the energy scale of the
interaction.

Finally, the obstacle, which has the V-shape with the opening angle 27/5, is
immobile and blocks the path of the filament moving towards the vertex. For the
implementation of the obstacle, we used spherical beads that overlap to get a smoother

shape (center-to-center distance of two consecutive beads = ¢/2). They were positioned

92



5.3 MD Simulations

in the box to so form a V-shape structure.

In order to relate MD simulations to the continuum buckling theory, we need to
translate the coefficients of the bond potential ;, and the active force f, from MD
simulations to the continuum material properties, bending modulus B and active force
density f, respectively. This is best done by comparing the total energy of a filament
that is bent to a constant radius R, or the total active force, respectively, between the
two representations.

From Figure 5.5.b, one can derive the geometric relations

L= %W - (5.92)
_ o o-r<1 o
= 4 sin (%(W — 9)) T 2m—6) (5.9b)

where N is the number of particles in the chain, ¢ is their diameter, o/2 their
equilibrium distance, and L is the contour length in both representations. The total
bending energy, Ej(gc) and Egl) in continuum and discrete representations, respectively,

are

« BL

EB = TR27 (510&)
BY = %(9 — )N —2). (5.10b)
Equating these energies, one obtains a relation between k; and B:
1 N -2 1
B=-0 Ry NgQ —0 Rp. (511)
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Similarly, the total active force generated by a filament is

FY9=7fL, (5.12a)
F\ = f.N, (5.12b)

such that
B 2f, N N3>1 2 fa

/ o N+1 o

(5.13)

The appearance of N in the exact equations points to discretization effects that should
vanish for large V.

The buckling threshold from continuum theory reads

B\ /3
LgC>:<3o.5722f> : (5.14)

Inserting the relations of geometry and material parameters, we obtain a critical particle

count N, for the discrete version:

o
2

0'2/<Lb N —2 13
i N) . (5.15)

(N, — 1) = (30.5722

Note that, dimensionally, this is correct since k;, has the dimension of an energy (per
square radian, which is a dimensionless quantity), and f, has the dimension of force
(which is energy per length). Instead of particle count N, the aspect ratio a = %(N +1)

is a convenient measure for the polymer shape. The critical aspect ratio becomes

N>2 ok \ /°
ca, & (30.5722 4fb> . (5.16)

Using the simulation parameters from Fig. 5.5 (¢ = 1, k, = 5000, f, = 0.1575),
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Figure 5.6 — MD simulation results for buckling particle chains, for k, = 5000 and
Foet = 0.1575 Panel(a-c)show snapshot of configuration of simulation for different time
Panel(d-f) show trajectories of the filament for aspect ratios 10,63,100 over time, shown
as color code from light blue(2 seconds before the hitting the vertex)to dark green (118
seconds after the first contact).

we obtain a. = 62.37. To confirm this value, we performed simulations for different
aspect ratios 60 — 65 (Fig. 5.6) and calculated the front-mid-end angle of each filament
as a function of time. Remarkably, we observed that there is a transition between
a = 62 and a = 63 that is in perfect agreement with theory and experiment (Fig. 5.7).
In Fig. 5.6(d-f), we plotted the trajectory of the filaments for a = 10 (below the
critical length), 63 (critical length), and 100 (above the critical length) fro given the
self-propulsion force and the bending stiffness , which clearly shows the buckling of the

filament at and above the critical length.

In chapter 6, we use another set of parameters in the MD simulations (f, = 1.26
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Figure 5.7 — Front-Mid-End angle of MD simulations as a function of time, for aspect

ratios 60-65.
and k, = 5000). These are close to the experimental parameters and were chosen by the
aspect ratio relative to the critical aspect ratio for buckling: using Eq. 5.16, we insert
fp = 1.26, and obtain a, = 31.185. In Fig. 5.8 also we observe a transition between
a = 31 and a = 32 in the simulation which is in perfect agreement with the results
for the longer filaments. We will use these parameters, o = 1, k;, = 5000, f, = 1.26,
a. = 32, in the next chapter to study pattern formation of filamentous Cyanobacteria

at high density to make a comparison with the experimental observation.

5.4 Conclusion

Using the critical length from theory, Eq. 5.16, the measured critical lengths, and the

measured bending moduli, one can calibrate the active force density of each species:

Oscillatoria lutea f=0.85nN/pm

Kamptonema animale | f = 0.88nN/pm
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Figure 5.8 — MD simulation results for buckling particle chains, for k; = 5000 and
fa = 1.26 Panel(a) Front-Mid-End angle of MD simulations as a function of time, for
aspect ratios 30-35. Panel(b) Trajectories of the filament for aspect ratios 10,32,100 over
time, shown as color code from light blue(2 seconds before the hitting the vertex)to dark
green (65 seconds after the first contact )

The values are remarkably similar. An error estimate using standard error propagation
and the inter-quartal distances of bending moduli and critical lengths would give errors
around 50 %. In order to relate MD simulations to the continuum buckling theory,
we translated the coefficients of the bond potential ;, and the active force f, from
MD simulations to the continuum material properties, bending modulus Band active
force density f, respectively. The buckling experiment provides us the force density
(active force per bead). Since we can also measure the velocity of the filament, this
also provides the friction coefficient, a quantity which is usually difficult to measure for
such gliding motion. Thus, we obtain a complete quantitative parametrization of the

filament properties, which we can use in our MD simulation in order to study pattern
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formation of filamentous Cyanobacteria in the next chapter.
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Chapter 6

Collective Dynamics of Gliding
Filamentous Cyanobacteria at High

Density

6.1 Introduction

In this chapter, we investigate dense layers of filaments as a new model system for active
matter. Due to their inherent non-equilibrium nature, active matter systems exhibit a
wealth of fascinating material properties and collective behaviors. Examples include
animal groups such as fish and birds or colonies and suspensions of microorganisms
such as bacteria, as well as synthetic self-propelled particles.

The bewildering collective behavior of active matter systems has led scientists in
recent decades to explore the collective dynamics of active systems at the cellular and
subcellular levels. A significant part of these studies deals with experimental work on
self-propelled particles in biological systems such as bacterial suspensions and molecular
motors. In addition, fundamental theoretical models such as the agent-based model of

Vicsek et al. [32, 57] and the hydrodynamic approach proposed by Toner & Tu [56]
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have shown that fundamental physical mechanisms are often sufficient to explain the
observed collective behavior in living systems.

Biological systems have inspired scientists to establish models that mimic their
motility strategies. In this study, in addition to the current models of worm-like
filaments, we add a reversal mechanism that mimics the movement of light-sensitive
bacteria which was missing in previous studies of long, flexible active filaments. This
mechanism allows us to control the movement of the filaments externally. A prototypical

biological example of such a system is Cyanobacteria.

6.2 Cyanobacteria

Cyanobacteria prosper in every illuminated aquatic environment. Given its importance
in the carbon and nutrient cycles, it has played a pivotal role in the composition of
oceans, and the atmosphere for billions of years. Cyanobacteria have also been used as
useful model organisms for understanding and improving photosynthetic productivity.

To modeling their dynamics, one should note that Cyanobacteria are an enormously
diverse group of prokaryotes and present in a wide range of habitats such as marine,
freshwater, soil, etc. The diversity of species and living conditions forces them to
use different strategies to move and function. In this chapter, we would like to
focus on genera such as Oscillatoria, Kamptonema, and Lyngbya. In these types
of cyanobacteria, the trichome length, i.e. the organization of independent cells
into multicellular filaments, varies greatly from a few tens to several thousand cells.
Their aspect ratio is usually greater than one and they are very flexible and can
move on surfaces. Moreover, they are photophobic and sensitive to changes in light
intensity. In the following, we will discuss these two essential behaviour of these types

of Cyanobacteria in more detail.
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6.2.1 Gliding motility

Gliding motility is a process of bacterial movement on a surface, carried out by several
bacterial species. It is an active movement exhibited by microorganisms in contact
with a solid substrate, with no evidence of organelle motility or conformational change.
Although the gliding displayed by blue-green algae has been extensively discussed in
the literature, there is still no comprehensive explanation for the causative mechanism.

The physical mechanism behind the gliding movement of prokaryotic cells at the
cellular level can be classified into three categories: surface-tension gradients, slime

extrusion, and traveling waves.

6.2.1.1 Surface-tension gradients

In 1923, Coupin [161] suggested that the movement of Oscillatoria sp. was due to
the the gradient of surface tension, but he did not provide any evidence to support
this idea. Later, in 1934, Burkhholder [162] restated this idea and provided some
observation in the behavior of cut filaments of Oscillatoria. Additionally, in 1983,
Keller et al. [163], developed a theoretical model to explain that surface tension is
the deriving force for gliding motility of M. zanthus and validated their model with
experimental observations [164].

Surface tension is the tension at the interface between two immiscible liquids as
a result of the changing forces on the molecules in this area. This force is exerted in
the plane of the interface and is omnidirectional so that an object suspended at the
interface experiences the same "pulling force" in all directions. Therefore, no net force
acts on the object and it remains motionless. The magnitude of the surface tension
depends on the nature of the two liquids in contact and is higher at liquid-gas interfaces
than at liquid-liquid interfaces. Indeed, Aqueous solutions have the highest surface

tension among biologically relevant liquids. A surfactant is a molecule that accumulates
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(a) L (c)
l

Surface Tension Force Lines

MOVEMENT

Figure 6.1 — Schematic representation of a myxobacterial cell at an interface Panel (a)
A uniform force in all directions results in no net force. Panel (b) A surfactant secreted
at one end of the cell results in a lower surfactant tension at the end and produces an
unbalanced force leading to directional motion. Panel (c) The side view of the cell at an
interface shows the gradient of the surfactant that causes the cell to move. The pictures
are taken from [163].

preferentially at the interface to lower the surface tension. If surfactant molecules are
uniformly distributed on the surface, the surface tension would be uniformly reduced
compared to the pure interface (Figure 6.1 .a). On the other hand, a non-uniform
surfactant concentration would lead to a gradient in surface tension and in turn give
rise to net directional forces (Figure 6.1 .b and c¢). These directional forces are capable
of propelling objects suspended in or near the interface. It is postulated that the
Muyzxobacteria can excrete a surfactant from sites near the ends of the cells. When the
excretion is largely or entirely from one of the sites, these surfactants lower surface
tension in the vicinity of that site causing an unbalanced force on the cell. Consequently,
the cell propels at the plane of the interface with a speed that results in a drag force,

on the cell body, equal to force generated by the surface tension gradient.
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Figure 6.2 — Secretion of slime by myxobacteria. Panel (a) Negatively stained electron
micrograph of an isolated M. xanthus cell envelope showing multiple ringlike structures
located predominantly at the poles of the cell. The inset shows a higher magnification of
the nozzle array in the region indicated by the long arrow. Panel (b) A gallery of electron
micrographs of negatively stained isolated nozzles. Panel (c) Electron micrograph of a
gliding cell. At higher magnification, it can be seen that the slime trails are composed of
several slime bands, which are secreted from the sites at the cell pole, where the nozzles
are located. The images are taken from [165]

6.2.1.2 Slime extrusion

A second mechanism for gliding motility involves the extrusion of slime from an
organelle called the "junctional pore complex". Slime extrusion has been identified as a
mechanism for thrust generation in gliding bacteria. Initially, this model was largely
discarded because it was unclear how slime excretion could generate sufficient thrust
force to propel the bacteria. In addition, estimation of the energetic costs of slime
production appeared to be excessively high. Note that slime is a polyelectrolyte gel,
i.e., a charged, cross-linked polymer network embedded in a liquid solvent. Such gels
are capable of swelling to many hundred times their dry volume, generating enormous
swelling forces. Wolgemuth et al. [165, 166] proposed a model for force generation based
on the hydration of slime and were able to show that the slime excursion could generate

a driving force sufficient to explain the observed gliding force of both myxobacteria
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and Cyanobacteria, and they were able to predict how the bacterial velocity depends
on the drag force.

Furthermore, slime was still found to be secreted underneath the surface of M.
xzanthus mutant cells, which are nonmotile, thereby showing that the production of

slime does not necessarily lead to bacterial gliding [167].

6.2.1.3 Traveling waves

Figure 6.3 — Schematic representation of traveling tangential wave with a wave length
of about one-third of body length. The dark areas shows the region of contraction and
light areas are regions of expansion and eventually cell swims to the left. the picture is
taken from [168]

The third model, built at the scale of the entire cell, is based on waves propagating
on the surface of the bacteria, with the thin liquid acting as a lubricant. Initially, Brien
et al. [169] developed this model for a gliding bacterium, Flexibacter strain BHS3. The
model has been applied to myxobacteria with various complex rheological behaviors for
the slime in the presence of a rigid substrate [170-172] as well as a soft substrate [173]
to explain the mechanosensitivity as a feature of the gliding bacteria in experiments
and also in an agent-based model [174].

Traveling waves are surface oscillations. They can be either normal or tangential to
the surface or a combination of both. To model this mechanism, imagine the organism
as a sphere or ellipsoid with tangential waves traveling from one pole to the other,

where the wave amplitudes are constant along the latitudes as one can see in the figure
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6.3. The wavelength is denoted by A, and a denotes the amplitude of these traveling

surface waves. Therefore, the spherical organism swims with velocity V' [168]:

V= (4(%)%. (6.1)

This formula is only valid with the approximation of £ < 1. In deriving this
formula, it is assumed that the surface waves are axially symmetric, so that they are
constant at all times along the meridians, which implies that the organism moves in a
straight fashion. However, actual organisms often move in helical paths.

All the mechanisms presented in this section have been proposed to understand
the gliding mechanism of bacteria, including that of Cyanobacteria. In addition to the
gliding movement, Cyanobacteria have a severe need for light. In the next section, we

elaborate on this particular property of Cyanobacteria.

6.2.2 Photo-sensitive movement of Cyanobacteria

Light is a source of energy for Cyanobacteria. An insufficient amount of light can cause
inadequate energy production, whereas, an excessive amount of light has the potential
to severely cause cellular damage through several mechanisms such as decreasing photo-
synthesis efficiency and causing damage by bleaching. Photosynthetic microorganisms,
such as Cyanobacteria, are capable of phototactic migration towards environmental
niches in which light is bright enough to efficiently drive photosynthesis, while at the
same time being adequately filtered of harmful UV or excess light [151].

Filamentous Cyanobacteria can modulate their movement in response to the incident
light to find optimal lighting conditions in their environment. There are three types of

photo-movement: photokinesis, phototaxis, and photophobic responses.

« photokinetic microorganisms such as Phormidium autumnale adapt their sliding
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speed to the incident light intensity. The gliding speed increases linearly with

light intensity [175].

e phototactic microorganisms move towards the light source. The positive pho-
totactic species tend to move persistently towards the regions with higher light
intensity. However, there are other species, such as Phormidium autumnale that
cannot move directly to the light source, but rely on random collisions to align
themselves in the direction of the light. Others such as Anabaena variabilis can

steer by bending the trichome [176].

« photophobic organisms react to spatial and temporal light gradients. There
are some types of organisms that when moving from a darker area to a brighter
area, reverse movement direction to avoid the higher light intensity; a behavior
known as photophobic response. On the other hand, others do the opposite, that
is, when they go from a bright area to a dark area, they reverse their direction

to stay in the bright area, also known as a step-down response [150].

Although Cyanobacteria exhibit all three types of photo-motion, the most important
one, which plays an important role in pattern formation, is photophobia. This has
been a source of inspiration for us to use stochastic reversals of the movement direction
as one of the key parameters to control pattern formation in the system.

There is a fascinating cyanograph experiment by Hader on the pattern formation
of Cyanobacteria in vitro that describes the photo-movement, or more precisely the
photophobic property, of these bacteria (figure 6.4). He demonstrated that bacteria
can position themselves in the brighter area by moving away from darker area to form
a photographic positive on the bacterial culture.

Several theoretical and experimental model systems have been developed to study
pattern formation in such systems. The main goal is to mimic the behavior of such

agents in a controlled fashion to attain a better comprehension of the mechanism
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Figure 6.4 — Hider cyanograph experiment. A Petri dish with a culture of photophobic
filamentous Cyanobacteria (Phormidium uncinatum) onto which a photographic negative
is projected. Filamentous Cyanobacteria cover the brighter area and avoid the darker
area. The image is taken from [152]

at work. A well-known class of active matter which includes elongated bacteria and
active filamentous particles is a group of rod-shaped particles. This class of particles

resembles nematic liquid crystals, but because of their activity, a new concept was

introduced to study them: active nematics.

6.3 Active Nematic

As a result of the directional motion, the self-propelled particles have an inherent
polarity. Steric interactions in the elongated class of active matter systems cause
them to order their alignment, the so-called nematic order. The nematic ordering in
dense systems of active matter opened a new area of interest called active nematics
[10, 177, 178]. Nematic order is ubiquitous in dense systems of motor-driven actin
filaments [179], microtubules [3], bacterial colonies such as gliding bacteria [31] and

even non-living analogues, such as monolayers of vibrated granular rods [33-35]. The
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fascinating realization of nematic order is evident in structures such as flocks and swirls,
which have attracted much interest and attention in recent years. This interest has led
scientists to go beyond molecular systems and develop the concept of active nematics
at the mesoscopic level, for example, bacteria and neural stem cells.

In most known bacterial systems, such as the Cyanobacteria, spectacular patterns
have formed that exhibit nematic order and topological defects. Scientists have
endeavored to elucidate the mechanism behind these patterns to clarify the physical
parameters that play an essential role in the formation of such patterns [31].

Most theoretical and simulation studies have been performed for spherical active
particles or short rod-shaped particles that mimic experimental observations. In recent
years, a new model for mimicking the movement of bacteria has been proposed called
self-propelled worm-like filaments [46]. This model combines a worm-like chain model
for semi-flexible polymers with propulsion force to imitate the motion of bacteria.
The propulsion force acts tangentially along all bonds of a filament and when the
self-propulsion force approaches zero, this model reverts to a standard worm-like chain
model. The studies by Gompper’s group [46, 47, 133] show that a wide range of
collective behavior can occur in a system of active, semi-flexible filaments, ranging
from spirals to swarms of filaments. Our results in Chapter 4 also confirm these rich
behaviour in such systems. However, most of these studies have been at a low density
of short filaments. In this chapter, we investigate the opposite case: long, semi-flexible
filaments at high-densities. Cyanobacteria colonies provide a realization of the opposite

case: long semiflexible filaments at high density.

6.4 Model and parameters

We adapted the active filaments model in chapters 4 and 5. We parameterize all

variables such as bending stiffness, self-propelling force, friction coefficient, and aspect
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o

Figure 6.5 — The displacement vector r;; in the local frame of reference of particle i .
The tangential and normal vectors of particles i and j are indicated in green.

ratio of the filaments based on chapter 5.

6.5 Analysis Methods!

6.5.1 Particle reference

Each filament i is supposed to consist of particles j € {1,2,..., N;}, where N; is the
number of particles on filament 7. The particle location is @; ; and it has an orientation,
described by the tangent unit vector ¢; ;. m, ; shall be the normal vector, obtained by
a 90 degree counter-clockwise rotation of ¢, ;, such that t;; x n; ; = e..

Since we are not discriminating between particles on identical or different filaments,
we simplify the notation to a single index, using x;, t;, and n; for the position, tangent,

and normal unit vectors, where i € {1,2,..., N}, and N is the total number of particles.

IThis section is based on a manuscript in preparation with Dr. Stefan Karpitschka
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The density field ¢ of all particles is given by

o(x) = Z o —x;), (6.2)

and the orientational nematic order parameter tensor is

N
Okt
o) =3 ({600 (e = % ) oo ). (6.4
i=1
where the indices k and [ are for any direction x or y, e, and e, are the Cartesian unit
vectors, and Jy; is the Kronecker delta. ¢ is a traceless symmetric tensor that encodes

the nematic orientation 20 and amplitude Q):

Quz = —Qyy = Q cos 20 (6.5)

Qoy = @ sin 20 (6.6)

@ is the positive eigenvalue of g,. For a single particle i with orientation ¢;, S = 1/2.
Thus the amplitude of the nematic order should be 2Q), which takes values in [0, 1].

cot 6
The eigenvector corresponding to @ is , the eigenvector corresponding to —@Q)
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—tan 6
is . To obtain 26 and 2(Q) from qy;, we’ll use

2Q = \/(¢er — a)* + (202y)° = 2/ + &, (6.7)

20 = arctan (¢u. — Qyy, 2¢zy) = arctan (Gua, Guy) (6.8)

with the two-parameter version of the arcus tangent, arctan(Ax, Ay), to avoid ambi-
guities between quadrants.

The displacement vector between two particles ¢ and j is given by

We are interested in the density and orientation correlation in the particle frame
of reference, given by its unit tangent and normal vectors, {¢;,;}. The Cartesian
components of the displacement vector in this frame of reference are given by the dot
products of r;; with unit tangent and normal vectors of particle 7 :
rl) = (rij - ti) ex + (i - M) €y (6.10)

v

Equivalently, there is a polar representation with components

] 0 g

again, using the two-parameter version of the arcus tangent, arctan(Az, Ay), to avoid
ambiguities between quadrants. The particle density field, in the frame of reference of

particle ¢, is given by

i o(r—ry)). (6.12)

j=1
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We will use r for coordinates relative to a reference particle and x for absolute

coordinates.

6.5.2 Mean field

A local mean density field can be derived by convolving the density with a normalized

kernel K (x), for instance K () = —©O(R — |x|) where O(-) is Heaviside’s © and R

the radius of the (circular) kernel:

/dm2¢ K(x —x'). (6.13)

The same applies for mean polarization and mean nematic tensor:

— 1 2 / /

Pil@) = = [ p(@)K(@ — o), (6.14)
_ 1 9 / ,
(@) = = [0 qule) K (e ). (6.15)

Magnitude and orientation of Py (x) are straight forward. Magnitude and orientation

of Gy i (x) are calculated by

il =\ (Taae = Tyre) + ()’ = 2 (6.16)

20%{ = arctan <Q$JZ,K - ny,lﬂ 2@:1:3/,}() . (617)

6.5.3 Order parameter correlations

The density correlation in the particle reference frame is obtained by averaging the

density distributions for all particle reference frames,
S0 = 4 600 = S a(r - o). (6.18)
N N “ "
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A histogram representation of S(r), composed of finite local mean density values,
is obtained by integrating over the respective bin B, normalizing by its norm (area)

B[] = [sdr:
_ 1 > o (y
B) = W/Bdr S(r) (6.19)

The polar orientation correlation P is calculated equivalently, using the dot product

of the tangent vectors as weight:

if; ti-t;)o(r—r)). (6.20)

The mean polar orientation correlation P (B) is obtained by integrating over a bin B

and normalizing with the binned density correlation:

~ 1 9
P(B) = EEE /B dr? P(r) (6.21)

The nematic orientation correlation M must use a weight that is cyclic on 7 instead

of 27 in terms of the angle 0;; between the tangent vectors ¢;, t; of two particles ¢ and
J:

| NN "
NZZ cos (20;5) ( rij). (6.22)

The mean nematic orientation correlation M (B) is again obtained by integrating over

a bin B and normalizing with the binned density correlation:

— 1 9
B) = s /B dr? M(r) (6.23)

The angle between two vectors is unambiguously calculated by

91‘]' = arctan(tj . ti, tj : ’I’Ll) . (624)
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With standard trigonometric identities, one can show that

3 :( 1) _<tj'ni)2 — () — (£ )
cos (20;) (t, _ti)z Tt ni)2 (t; - t) (t;-mi)”, (6.25)

the last equality following from ¢ and m being defined as unit vectors.

In practice, S(B), P(B) and M(B) are obtained by calculating rg?, t; - t;, and
cos (20;;) for all 7 and j. Then, a histogram with a collection of bins B is computed
over the components (Cartesian or polar) of all the 7“2;). With unity weights, one then

obtains S. Using t; - t; as weight for 'rg-), and dividing the resulting histogram entries
by the corresponding entries of S , one obtains P. M analogously, using cos (26;;) as

weights.

6.6 Results

To study the pattern formation that has been observed in colonies of Cyanobacteria
in the experiment, we first infer the relevant parameters for our model (described in
Chapter 5) from the self-buckling experiments. The value of the relevant parameters
that we get are (in the dimensionless units described in 5.3): bending stiffness
kp = 5000, self-propulsion force f,; = 1.26 and the friction coefficient v = 1.26 at
sufficiently high density 0.7 for highly elongated bacteria with the aspect ratio of a = 32.
Note that the critical aspect ratio a. for Kamptonema animale species is a. ~ 32 where
the filamentous structure starts to buckle. To attain a better understanding of the

behavior seen in this system, we first performed simulations without direction reversals.
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(a)

100

Figure 6.6 — Panel (a) A snapshot of the simulation. Panel(b) describes the velocity of
the filaments where color encodes the direction of the filaments’ instantaneous velocity
and the magnitude is represented by saturation.

6.6.1 Pattern formation without direction reversal
6.6.1.1 Mean field analysis

As can be seen in Figure 6.6.a, for previously described parameter values, filaments
form large bundles in a steady-state and display spectacular collective motion. In
Figure 6.6.b, the direction of each monomer in a filament is encoded by a continuous
color map, and the magnitude of the velocity is represented by the saturation of the
colors. There are large bundles of filaments that point in the same direction and also
move together. In addition, some small bundles that come from the opposite direction
pass through larger bundles in the system.

Figure 6.7.a indicates the local density in the system, which is mostly nonzero and
varies heterogeneously in the system. Since there are large bands of the filaments in
the system, one can also look at the polar and nematic order of the filaments. Figure
6.7.b shows the polar bands in the system which appear to be very strongly ordered.
The colors encode the direction of the polar band, and the saturation represents their

magnitude. As can be seen in the middle of 6.7.b, there are small polar bands that
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000

Figure 6.7 — Panel (a) The local density field shows strong spatial heterogeneity in the
steady state. Panel (b) shows mean polarization. The colors encode the the direction
of the polarity and the saturation reflects the magnitude of the polarization. Panel (c)
shows mean nematic order. The colors encode the the direction of the nematic order
parameter and the saturation denotes their magnitude.

move in the opposite direction of a larger band. This means that when we look at the
system at the scale of the filaments we can see such lane-like structures. Figure 6.7.c

shows robust nematic ordering throughout the system, except for the points where

topological defects seem to appear.

6.6.1.2 The order parameter correlation in the local frame of reference

For a quantitative analysis of the degree of order in the system, we first calculate
both the polar and nematic order parameters. Next, we analyze the spatial correlation
functions (for both nematic and polar order) in the frame of reference of filaments.
Figure 6.8 shows the order parameter correlation calculated in the frame of reference
of a monomer of a filament. It tells us how the correlations decay or grow as we sit on
a typical monomer but look further away from it both in the parallel and perpendicular
direction. Figure 6.8.a indicates that filaments form a highly periodic structure
(crystalline order) in a normal direction due to the high packing fraction. Figure 6.8.b
indicates a strong polar correlation in the "west" (90°) and "east" (270°) directions

of the filaments. The strong polar correlation means that the filaments have a high
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Figure 6.8 — Order parameter correlation in the frame of reference of the monomers.
The north direction (0°) is the tangent vector in the gliding direction of the filament in all
plots. Panel (a) Density correlation S local Which shows a crystalline order in the normal
direction due to stacking of filaments parallel to each other. Panel (b) Polar orientation
correlation which shows a strong but anisotropic correlation. Panel (c¢) describes presence
of a strong nematic orientation correlation.

tendency to glide in the same direction, which is shown in figure 6.7.b by the large
clusters sharing similar color. Figure 6.8.c demonstrates a strong nematic correlation
of filaments which is present in both normal and tangential direction direction of the
filament.

To gain a better understanding of the correlation of the order parameters we
consider only the correlation in the normal and tangential directions. Figure 6.9 shows
the spatial correlations of the order parameters (polar and nematic) in the normal
( 6.9 (a-c)) and tangential ( 6.9 (e-f)) direction. Similarly, figure 6.9 (a,d) describe the
spatial density correlations in the normal and tangential directions, respectively. The
presence of sharp peaks in the density spatial auto-correlation 6.9 indicates a crystalline
structure in the normal direction of the filaments. This reveals the formation of a dense
stacking of filaments in the system. Panels 6.9 (b,e) describe strong polar correlation
in both normal and tangential directions. Similarly, one can also observe a strong
nematic orientational correlation in figure 6.9 (c,f) in both normal and tangential

directions.
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Figure 6.9 — Order parameter correlation in the reference frame of the monomers
for both normal (a-c) and tangential (d-f) directions. Panels (a,d) show the spatial
correlations in density, Panels(b,e) the polar spatial correlation and panels(c,f) the spatial
correlation of the nematic order.

Up to now, we have described different aspects of the static and dynamical features

observed in the steady-state of a self-propelled filament system. Now, we will explore

the effect of velocity reversal dynamics by analyzing similar variables of interest.

6.6.2 Pattern formation with direction reversal dynamics

In this section, we look at the pattern formation of self-propelled filaments with direction

reversal incorporated in the dynamics. As mentioned earlier, Cyanobacteria can change

their gliding direction when the intensity of light in a medium changes. To mimic

this behavior we used the same strategy as detailed in chapter 4 and add stochastic

reversal dynamics to the motion of the filaments. Under this scheme, filaments change

their direction of motion abruptly by 180 ° and these reversals occur according to a

Poisson process with rate A,. Run length for each filament is a stochastic quantity but
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Figure 6.10 — Panel(a-c) show mean polarization for different reversal rate (\,). The
colors encode the polar orientation of filaments and the magnitude is encoded by its
saturation. Panel (d-f) represents mean nematic order for different reversal rate. As
before, the colors encode the nematic order of the filaments and the saturation reflects
their magnitude.

averages to Ly, ~ ;\Li;
T

6.6.2.1 Mean field analysis

We again look at similar physical quantities that reflect the local order in the steady-
state generated under the reversal dynamics. Figure 6.10 shows the mean polarization
for the same set of parameters as described in the section 6.6.1 and the only difference
is the presence of a finite reversal rate in the dynamics of the self-propelled filaments.
The mean polarization is plotted in the panels 6.10 (a-c). As one can see in these

panels the big polarized bands become thinner as the reversal rate increases in the
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system. One can also observe an overwhelming presence of lane-like structures. Overall,
with increasing the reversal rate, the bands shrink to become thinner and move in the
opposite direction with respect to one another.

The nematic order is only weakly perturbed by the presence of slight reversal
dynamics; hence we observe almost equally strong nematic order in the system with
reversals compared to its non-reversing counterpart. With increasing reversal rate, to
our surprise, the nematic order even seems to grow; a feature completely opposite to
the trends seen in the polar order parameter.

Concomitant with an increase in the number of small polar bands, the nematic
orientation correlation increases. As the frequency of forward and backward motion rises
due to the higher reversal rate, the filaments lose their tendency for polar alignment.
However, mostly due to the parallel and antiparallel alignment, during collisions
between the filaments, the nematic order in the system grows. As can be seen in figure

6.10 (c,f), the nematic bands become wider with increasing reversal rate.

6.6.2.2 The order parameter correlation in the local frame of reference

Figure 6.11 shows the order parameter correlation in the local contour frame of reference
for different reversal rates. As the direction reversal increases, the polar correlation
becomes limited to self-correlation, i.e., a filament exhibits a strong correlation with
itself, and as the reversal rate increases, the self-correlation becomes stronger.

The polar correlation decreases in both normal and tangential directions compared
to the non-reversing case. In the normal direction, it sharply decreases to zero, which

means that there is only a strong correlation between a filament and itself.
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Figure 6.11 — Panels (a-c) correlation of polar order parameter is plotted as a function of
distance r for the whole range of angles between 0 and 2w. The plot shows the correlation
is strong mostly against the monomers of the same filament along the tangential direction
(i.e. along 0 and 7). Nearest neighbors have small tendency to glide in the same direction
and the tendency rapidly decreases with increasing reversal rate. Panels (d-f) correlation
of nematic order parameter is plotted as a function of distance r for the whole range
of angles between 0 and 2mw. The figure shows the correlation increases with increasing
reversal rate this is in stark contrast to the trends we observed for polar order parameter.

6.6.3 Aspect Ratio

Another factor that may play an important role in both polar and nematic ordering is
the aspect ratio of the filaments. To investigate this factor, we varied the aspect ratio
a, keeping all other parameters in the simulation fixed. In addition to the aspect ratio
of 30 studied so far, we have simulated two more, one below the critical self-buckling
aspect ratio, a = 10, and one above a = 100.

In the absence of direction reversals , for the lower aspect ratio, a = 10, we still
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Figure 6.12 — Order parameter correlation in particle reference frame in normal (a-c)
and tangential (d-f) direction. Panels (a,d) density correlation, Panels(b,e) polarization
correlation, Panels(c,f) nematic orientational correlation for aspect ratio 32 at different
reversal rate.

observe a clear transition from a disordered to ordered state, and the system starts to
self-aggregate 6.13. We notice that at a lower aspect ratio, there is a nematic-smectic
transition as well which can be seen in Figure 6.13. b. There is a short-range positional
order of filaments in the tangential direction in addition to its normal direction. With
increasing aspect ratio there is an increase of polar clusters in the systems due to the
effective velocity alignment. These polar clusters can become large and even percolate
the system, forming the so-called polar bands. Within the bands, the filaments are
densely packed and point in the same direction which can be seen in the mean-field

representation of the system in the figure 6.14.
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Figure 6.13 — Snapshot of the configuration of filaments with an aspect ratio of a = 10.
Panel (a) Filaments develop a short-range positional order in the tangential direction
in addition to the normal direction. Panel (b) Magnified view of the snapshot. (Purple
illustrates the head of the filament, the direction of filament motion.)

6.6.3.1 Mean field analysis

We first look at the polar order parameter profiles across the system for different
reversal rates and also for different aspect ratios of the filaments. Figure 6.14 shows
that polar order (same density as before, p = 0.7) tends to decrease with an increase
in reversal rate and one can also observe the presence of lane-like structure when
both reversal rate and aspect ratio are high. In the case of non-reversed direction,
the average polarization increases with increasing aspect ratio. A high polarization in
the system also means the formation of large bands that point in the same direction
and move together. In the presence of direction reversal dynamics, the polar bands
shrink due to the stochastic switching of the direction of the filaments, and do not
remain as densely packed as in the non-reversing case. At a fixed reversal rate, the
local lane structures are more pronounced with increasing aspect ratio and there are

weak polar bands that move in the opposite direction (lane-like structure). We first
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Figure 6.14 — Polar order has been explored by colouring the particles according to
their orientation at different reversal direction rates for different aspect ratios of the
filaments. The plots show polar order tends to decrease with an increase in reversal rate
and one can also observe the presence of lane-like structure when both reversal rate and
aspect ratio are high.

observe that nematic order tends to increase strongly with an increase in reversal rate
for a small aspect ratio. For the intermediate aspect ratio, a = 32, the mean nematicity
increases with increasing reversal rate. The run length for higher reversal rate becomes

smaller ( Ly, ~ %ﬁj, — Lyyn ~ 1/)), therefore they often move forward and backward
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Figure 6.15 — Presence of nematic order has been demonstrated by colouring the angle of
the director at different reversal direction rates for different aspect ratios of the filaments.
The plots indicate nematic order tends to increase strongly with an increase in reversal
rate and this trend is quite opposite to the polar order. At a high aspect ratio density of
topological defects also seems to increase with an increase in reversal rate.

in coordinated fashion. Collision makes their direction more parallel (or antiparallel),
resulting in higher local nematic order. On the other hand, for a higher aspect ratio,
e.g. a = 100, nematic order decreases with increasing reversal rate. In short, the mean

nematic order becomes more localized as the run length of the filaments decreases due
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Figure 6.16 — Correlation of polar order parameter is plotted as a function of distance r
for the whole range of angles between 0 and 2w. The plot shows the correlation is strong
mostly against the monomers of the same filament along the tangential direction (i.e.
along 0 and 7). Nearest neighbors have small tendency to glide in the same direction
and the tendency rapidly decreases with increasing reversal rate.

to a higher reversal rate (Figure 6.15 lower right panel).

6.6.3.2 The order parameter correlation in the local frame of reference

Figure 6.17 indicates that in the absence of direction reversal dynamics, strong polar

order exists for all different aspect ratios we have studied. Moreover, the order becomes
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stronger with aspect ratio. In other words, with increasing aspect ratio, polar bands in
the system grow wider and move together more coherently. This can also be concluded
from the analysis of the correlation of the polar order parameter. As it can be seen in
figure 6.16, the polar correlations, in both normal and tangential directions, increase
with increasing aspect ratio in the absence of reversals. However, with increasing
reversal rate, the polar order seems to weaken significantly and is limited to the scale
of a few filaments. Increasing aspect ratio amplifies the polar and nematic correlation
in the system. However, as the reversal rate increases, the steady-state polar bands in
the system shrink in width in comparison to the bands for the non-reversal case.

In Figure 6.18 (b,c), we observe an abrupt change in the polar correlation in the
normal direction when the direction reversal dynamics is applied. As the reversal rate
increases, the polar correlation decreases for all aspect ratios and it is mostly limited to
just a few filaments. In comparison to the normal direction, the change in the tangential
direction is smooth and it decays gradually compared to the non-reversing case (see
figure 6.18 (e,f)). Surprisingly, the trend with increasing aspect ratio is non-monotonic
and for aspect ratio a = 32 which is the critical aspect ratio for self-buckling we get
the highest correlation in the tangential direction.

The nematic correlation in the normal direction (see figure 6.19 (b,c)) also increases
with increasing aspect ratio in the absence of direction reversal dynamics. In the
tangential direction (see figure 6.19 (e,f)), there is an increase from aspect ratio 10 to
aspect ratio 32 and it remains almost unchanged from aspect ratio 32 to 100. Compared
to the polar correlation, applying reversal direction doesn’t have an abrupt decrease
in the nematic correlation rather there is a signature of increasing correlation, most
visible for the critical aspect ratio a = 32.

To explore the applicability of our result we also compare our observations with

the experimental system developed in Dr. Stefan Karpitschka’s lab at the Max Planck
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Figure 6.17 — Correlation of nematic order parameter is plotted as a function of distance
r for the whole range of angles between 0 and 2w. The figure shows the correlation
increases with increasing aspect ratio. The correlation seems to increase (especially for
critical aspect ratio) with increasing reversal rate and this is in stark contrast to the
trends we observed for polar order parameter.

Institute for Dynamics and Self-Organization. We will discuss in the next section the
analysis of order parameters and other relevant quantities from the experimental data.
All the plots are taken from a preliminary draft with the permission of Dr. Stefan

Karpitschka.
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Figure 6.18 — Polar correlation in the reference frame of monomer in normal (a-c) and
tangential (d-f) direction at different aspect ratio and reversal rate. The colors encode
different aspect ratios and the corresponding reversal rate for each set is written at the
top of the respective column.

6.7 Evaluation of order parameters and mean fields
from experiments

Figure 6.20.a shows a snapshot of a monolayer experiment with Kamptonema animale
using brightfield transmission microscopy imaging technique. Panel 6.20.b shows the
filament velocity prediction for panel 6.20.a compared to the next frame, one second
later, where the colors indicate the orientation of the velocity vector. From the color
code, one can see that there is polar ordering where filaments in the polar bands move
collectively and coherently (Figure 6.21.b). The polar bands also move opposite to
each other and form lane-like structures that we also observed in the simulation, as
represented in figure 6.14.

As evident in the mean field analysis in figure 6.21 (c), the nematic order is

everywhere in the band. In the band structure, the mean density is nonzero and it
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Figure 6.19 — Nematic correlation in particle reference frame in normal (a-c) and
tangential (d-f) directions at different aspect ratios and reversal rates. The colors encode
the aspect ratio and the corresponding reversal rate for each chart at the top of the
respective column.

varies locally(Figure 6.21 (a)).

Figure 6.22 shows the correlation of the order parameters in the local contour frame.
Panel 6.22.a indicates that a crystalline order in the normal direction is formed by
the filaments. Panel 6.22.a demonstrates a strong polar correlation along the contour
of a filament which is the evidence for the strong correlation of a filament with itself.
This is similar to the polar correlation observed in the simulations of the case with
direction reversals (figure 6.14). This observation is associated with the capability
of the filamentous Cyanobacteria to do reversals which makes them form distinct
polar bands compared to the non-reversing bacteria. Remarkably, this shows that in
Cyanobacteria, in addition to their systematic movement, there is also a stochastic
reversal of direction.

The nematic correlation is also strong in the normal direction of the filaments,
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Figure 6.20 — a) Brightfield transmission micrograph of an experiment with Kamptonema
animale. b) Filament velocity prediction, color coded orientation, and the magnitude of
the velocity is represented by the saturation (full saturation corresponds to 3.5um/s).
The plots are taken from a preliminary draft of a paper, which is part of the experimental
data with permission from Dr. Karpitschka.

100 pum i
4

Figure 6.21 — Mean fields of an experiment with Kamptonema animale. a) Mean density.
The kernel for averaging is given on the top-left inset. b) Mean polarization. The color
indicates the orientation of the individual monomers on the filamenet, the saturation of
this color shows the strength of the polarization. The color code is given on the top-left
inset. ¢) Mean nematicity, analogous to (b). The plots are taken from a preliminary draft
of a paper, which is part of the experimental data with permission from Dr. Karpitschka.

indicating that the filaments are mostly in parallel and antiparallel orientations, forming
a monolayer.

Figure 6.23 shows the correlation length in the normal and tangential directions. The
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Figure 6.22 — Order parameter correlations in the local contour frame of reference for an
experiment with Kamptonema animale. The tangent vector in gliding direction is oriented
to the north (09°8) in the plots. a) Density correlation Sj,ca), showing crystalline order
in normal direction within ~ 20 neighboring filaments. b) Polar orientation correlation
Dlocal, Showing strong correlation of gliding direction only between a filament and itself.
¢) Nematic orientation correlation mjoca, showing the long-range nematic order of the
structure. The plots are taken from a preliminary draft of a paper , which is part of the
experimental data with permission from Dr. Karpitschka.

nematic correlation length (Figure 6.23.c) is larger in the normal direction compared

to the tangential direction in Figure 6.23.d.

Moreover, the polar order in Figure 6.23.b drops abruptly to zero in the normal
direction, in contrast to the tangential direction (Figure 6.23).e), which decreases
gradually to zero. This shows that the polar correlation in the system is strongly
limited to a filament. This is a consequence of the reversals of the direction of motion.
The filaments align through collisions, but this alignment strengthens their nematic

correlation rather than their polar correlation because of their random backward and

forward motion, which leads to the loss of polar order after alignment.

6.8 Conclusion

In summary, we employed an overdamped Brownian dynamics simulation to study
the pattern formation in a system of self-propelled semi-flexible filaments that mimic

Cyanobacteria colonies studied in the experiment. To attain a better understanding of
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Figure 6.23 — Order parameter correlations in the local contour frame of reference for
an experiment with Kamptonema animale, in normal (a-c) and tangential (d-f) directions.
(a,d): density correlation. (b,e): polarization correlation. (c,f): nematic orientational
correlation. Orange lines in (b) and (c) are the moving mean with a window that
corresponds to the width of one filament. The plots are taken from a preliminary draft of
a paper , which is part of the experimental data with permission from Dr. Karpitschka.

the pattern formation, we first simulated a dense assembly of active (self-propelled)
filaments with parameters that are obtained by the experiments: the critical aspect
ratio for self-buckling, the self-propulsion force, the friction coefficient, and also the
bending stiffness. The simulations were performed at a relatively high density where
steric interactions become important. We also include a stochastic direction reversal
mechanism which is one of the unique dynamical characteristics of Cyanobacteria and
can typically be observed due to local changes in the light intensity in the environment.

In the absence of the direction reversal dynamics, we first described different aspects
of the static and dynamical features observed in the steady-state. The steady-state
shows the appearance of spectacular giant polar clusters within which one can observe
densely packed filaments (with a highly periodic structure) that point towards the
same direction and move coherently. We also analyzed the nematic order along with

the polar order and showed that the system possesses a strong nematic order in the
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steady-state. We investigated the spatial correlation of the above-mentioned order
parameters in the » — 6 plane.

We then examined the effects of the velocity reversal dynamics by analyzing similar
variables of interest. As the velocity reversal rate increases, the polar bands shrink in
width and lane-like structures start to form locally. The polar correlation decays more
rapidly as a function of space with an increasing reversal rate, but quite surprisingly
the nematic order tends to increase with the faster reversal. To explore the role of
the filament structure we examined the effects of aspect ratio on such structural order
in a steady state. At a lower aspect ratio (a = 10), we observed a smectic phase.
As the aspect ratio increases, both the polar correlation and the nematic correlation
grow and the effect can be observed in both normal and tangential directions. In the
presence of direction reversal dynamics, the polar correlation decreases abruptly in the
normal direction of the filaments, whereas it decreases slowly and non-monotonically
in the tangential direction. The aspect ratio a = 32 (which is also the critical aspect
ratio for the filaments) displayed the largest correlation length compared to the other
two (a = 10,100) in each reversal rate. The nematic correlation decays slowly and
nonmonotonically in both the normal and the tangential directions, and like the polar
correlation, the aspect ratio a = 32 has the largest nematic correlation length.

Finally, we compared our results with experimental data obtained from Dr. Karpitschka’s
lab and observe excellent qualitative agreement for colonies of active filaments with
direction reversal dynamics. Similar to the simulations, there is an abrupt drop in
polar correlation in the normal direction and a slow decay in the tangential direction
in the experiments. Moreover, the existence of a large nematic correlation length has

also been confirmed in the simulations in the presence of reversal dynamics.
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Chapter 7

Discussion and Conclusions

In this thesis we have discussed a special class of out-of equilibrium system, known as
active matter that mimics systems in the biological world around us from a statistical
mechanical point of view. We discussed in details a few models of such active matter
systems with the aim to describe the spectacular dynamics and self organisation that
can be observed in such model systems. Below I discuss the key points and ideas that
we explored in a chapter wise format.

Non-equilibrium statistical mechanics has opened a new door to approach the
fascinating world of living matter physics. Despite remarkable advances in the physics
of living matter in recent decades, collective dynamics and emergent complex behaviour
of most biological systems still remains elusive. In the Introduction chapter I have
discussed the most popular models of active matter system, their classification and
characterisation. The dazzling and enigmatic nature of living systems has provoked
tremendous enthusiasm among scientists to endeavor to shed light on the mechanism
behind their collective behaviour such as swarming or motility induced phase separation.

In chapter 2, we have studied the diffusive motion of a “tracer" particle in a system
of using a simple (hexagonal) lattice model where the tracer is being pushed by active

particles and this leads to enhanced diffusion. We have shown that the degree to which
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this diffusion is enhanced depends crucially on two factors: (a) activity of the crowders
(b) density of the crowders. The change with respect to the density of the crowders
is non-monotonic. This non-monotonic response can be attributed to the formation
of clusters of active particles in the system which is revealed through analysis of the
cluster statistics. To put it simply, initially the diffusion constant of the tracer increases
as the tracer is subject to stronger fluctuations in the presence of a higher density
of pushing active particles, but at large density decreases again, as the formation of
clusters of active particles induces ‘caging’ of the tracer in the clusters and slows down
the dynamics outside the clusters. Overall our findings point to the intricate interplay
of fluctuations and crowding, both controlled by the density of active crowders and
reproduces an ‘enhanced diffusion with crowding’ scenario in a simple lattice based
model.

In chapter 3, we employed a Brownian dynamics simulation in continuous space
to explore the strong velocity correlation in a mixture of active and passive particles.
Caprini et al. [59] and Henkes et al. [60] have reported very recently that there is
a ‘hidden’ strong velocity correlation (in the absence of alignment interaction) in a
dense active-solid or liquid like system. Note that such systems do not show long range
polar order of the propulsion forces in the absence of alignment. The correlation length
reported in [59-61] scale with the square root of the persistence time of the particles
in the system. This motivated us to explore the question whether such correlations
can be induced in a dense passive system by a small fraction of active particles. This
study can potentially decouple the effect caused by high density of the medium from
the one caused by the persistent activity of the self-propelled particles. Surprisingly,
our results show that even a very tiny fraction of active particles in a dense medium
(which consists of a sufficiently high density of passive particles) plays a significant role

in forming domains with strong velocity-correlation of the particles. Moreover, the size
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of this domain grows with increasing area fraction of passive particles in the system
and finally saturates at the maximum length-scale available in the system i.e. the
system size. In addition to that, we have explored the effects of activity parameters,
i.e. (i) the self-propulsion force and (ii) the persistence time on such strong velocity
correlations generated in the passive system by introducing a tiny fraction of active
dopants. Incredibly,our results showed that the correlation length scales with the
square root of the persistence time of the active particles in the system, which is
consistent with other studies for purely active systems [59-61].

In chapter 4, we have tried to extend our understanding of pattern formation in an
active matter system by considering an assembly of anisotropic self-propelled objects
such as active polymers. We used an overdamped Brownian dynamic simulation
to explore the various dynamical states in the system. It has been demonstrated
that their self propulsion ability (f,) and bending stiffness (k;) are the key players
controlling the size and shape of the emergent clusters and the dynamical steady
states in the system. We also analysed the cluster size and spiral ratio and show
how these variables depend on the relevant parameters. Later, we added a direction
reversal mechanism to the polymers to mimic the stochastic direction switching motion
of filaments. The stochastic direction reversal rate is another key parameter that
controls the emergence of clusters and spirals in the system. Using extensive numerical
simulations we have shown that the reversal dynamics overall decreases both clustering
and spiraling tendencies.

In chapter 5, we explored the physics of buckling for individual self-propelled
filament to make a comparison with experimental data and theoretical model developed
in Dr. Stefan Karpitschka’s lab at the Max Planck Institute for Dynamics and Self-
Organization. We extracted parameters from this study to investigate the pattern

formation of filamentous Cyanobacteria in the next chapter.
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In chapter 6, similar to the previous chapter, we have employed a Brownian
dynamics simulation of active polymers at a high density and study the nematic
and polar order in the system. We also extracted relevant parameters for simulation
from experiments using the colonies of Cyanobacteria. We first confirmed that a
critical length of Cyanobacteria is required to for buckling of them. Using this critical
length as well as a length below and above this critical length, the polar and nematic
long-range order in the system is then investigated. The active filaments without
stochastic direction reversal show a longer-range orientation order compared to that
in the presence of reversals. Increasing the reversal rate lowers the polar order in the
system. Remarkably, filaments with an aspect ratio above the critical aspect ratio
for buckling show a stronger polar and nematic order in the system, compared to the
aspect ratio that is below it.

In conclusion, we have employed different models to explore the dynamics and
self-organization of isotropic active Brownian particles as well as rod-shaped active
filaments. We have reported a rich collective behavior and dynamics in each system
as a function of activity parameters and density. Considering all the works that we
have done in this thesis, my scientific curiosity has piqued my interest and passion
to understand more this bewildering field to leave no stone unturned to extend these
works.

Indeed several extensions of the work done in this thesis have already been initiated.
In this regard, using the hexagonal lattice model in chapter 2, we have already
implemented an aligning interaction between the active particles, similar to the Vicsek
model. We will study the effects of aligned active particles at different densities on the
dynamics of the passive particles in the system.

To deepen our understanding of strong velocity correlation in a dense passive system

generated by active dopants in chapter 3, we plan to construct a theoretical analysis
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in collaboration with Prof. Dr. Peter Sollich’s group at the Institute for Theoretical
Physics to see whether the velocity correlation function can be written as a function
of ¢4, ¢p, etc. It would be of tremendous interest to obtain experimental evidence of
such velocity correlations as well. An ideal system could be mixtures of equally sized
active and passive colloidal particles, with the active particles coated with a carbon
layer by sputtering from one side (Janus particles) [120, 180].

To acquire more insight into the captivating life of Cyanobacteria, we plan to
perform further analyses to identify and track the topological defects that emerge in
dense colonies of Cyanobacteria, to explore key parameters for controlling them and to

understand the potential role of these defects in the dynamics of bacterial colonies.
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