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Preface

In various applications in biochemistry, computer vision and machine learning, it is of great interest

to compare general objects in a pose invariant manner. Recently, the following approach has received

increased attention: Model the objects considered as metric measure spaces and compare them with

the Gromov-Wasserstein distance. While this distance has many theoretically appealing properties

and is a natural distance concept in numerous frameworks, it is NP-hard to compute. In consequence,

several alternatives to the precise determination of this distance have been proposed. On the one

hand, it is possible to approximate local optima of the minimization problem corresponding to

the calculation of the Gromov-Wasserstein distance by conditional gradient descent. On the other

hand, one can work with efficiently computable surrogates and lower bounds for the previously

mentioned distance. In this PhD-thesis, we follow the second approach and investigate the statistical

potential of some of the meaningful known lower bounds and propose a new surrogate for comparing

ultrametric measure spaces.

This dissertation is a compilation of the results of the three articles Weitkamp et al. (2020), Mémoli

et al. (2021a) and Weitkamp et al. (2022) which can be found in Chapter A, B and C in the addenda.

In Chapter 1, we concisely illustrate the ideas leading to the definition of Gromov-Wasserstein

distance and detail several meaningful, polynomial time computable lower bounds that are related

to other approaches for pose invariant object matching proposed in the literature. Chapter 2 briefly

summarizes the results of Weitkamp et al. (2020) and discusses related work. Chapters 3 and 4 are

structured analogously and present the results of Mémoli et al. (2021a) and Weitkamp et al. (2022),

respectively.

Own Contributions

• Weitkamp et al. (2020) (Addendum A) was written jointly with K. Proksch, C. Tameling and

A. Munk. The limit behavior of the test statistic under the hypothesis was derived in close

collaboration with K. Proksch and mostly by me under the alternative. C. Tameling and A.

Munk contributed with helpful suggestions concerning the manuscript.

• Mémoli et al. (2021a) (Addendum B) is the joint work of all authors. The main ideas were

developed by F. Mémoli, A. Munk and me during a meeting in Göttingen. The precise

derivation of the results and the preparation of the manuscript was mostly done by Z. Wan
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and me with helpful comments and suggestions from F. Mémoli and A. Munk.

• Weitkamp et al. (2022) (Addendum C) is based on equal contributions of K. Proksch and me.

Some technical details in the proof of the main statement were thoroughly discussed with T.

Staudt. B. Lelandais and C. Zimmer significantly improved the application part of the paper.
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CHAPTER 1

Introduction

Over the last two decades the acquisition of complex data, structures and shapes has increased

drastically. In order to analyze the ever growing collections of data, meaningful methods for

comparing general objects are needed. In various fields, e.g., computer vision (Jain and Dorai, 2000;

Lowe, 2001) electrical engineering (Papazov et al., 2012; Kuo et al., 2014) and biochemistry (Holm

and Sander, 1993; Kufareva and Abagyan, 2011; Brown et al., 2016), one aims to differentiate

between objects in a pose invariant manner, i.e., instances of the same object in different spatial

orientations should be considered as equal. Furthermore, the need to compare more general,

non-Euclidean objects such as graphs, trees, ultrametric spaces and networks, where only the

connectivity structure matters, has become apparent (Chen and Safro, 2011; Dong and Sawin, 2020).

Numerous approaches to these problems have been studied in the literature and the majority of them

is signature based. This means that a given point cloud, object or graph is reduced to a comparatively

simple signature that is then used for the comparison (see Bustos et al. (2005); Veltkamp and Latecki

(2006); Wills and Meyer (2020) for an overview). Examples for signatures used for pose invariant

object discrimination are the shape distributions that are distributions of angles, volumes and lengths

(Osada et al., 2002) or reduced size functions (d’Amico et al., 2010), that count the connected

components of certain lower level sets. A popular signature for the comparison of graphs are the

spectral distances (Wilson and Zhu, 2008) that compare the eigenvalues of graph Laplacians. It

is important to note that while these signature based approaches often perform reasonably well in

applications, the reduction to a specific feature is usually not injective, i.e., different objects are

potentially mapped to the same feature and hence cannot be distinguished.

1.1 The Gromov-Hausdorff Distance

One possibility to circumvent the distinguishability problem and to compare objects in a pose

invariant manner is to model them as metric spaces X = (X, dX) and Y = (Y, dY) and to consider

them as elements of the set of isometry classes of compact metric spacesM (two compact metric

spaces are in the same class if and only if there exists an isometry between them). It is well known

that M can be turned into a metric space by equipping it with the Gromov-Hausdorff distance
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(Gromov et al., 1999), which is for X,Y ∈ M defined as

dGH(X,Y) := inf
Z,φ,ψ

d(Z,dZ)
H (φ(X), ψ(Y)), (1.1)

where φ : X → Z and ψ : Y → Z are isometric embeddings into a metric space Z = (Z, dZ) and

d(Z,dZ)
H denotes the Hausdorff distance in Z. The Hausdorff distance is a metric on the collection of

compacts sets in a given metric space (Z, dZ) which is denoted as S(Z) throughout the following.

For A, B ∈ S(Z), this metric is defined as

d(Z,dZ)
H (A, B) := max

(
sup
a∈A

inf
b∈B

dZ(a, b), sup
b∈B

inf
a∈A

dZ(a, b)
)
. (1.2)

There is an alternative formulation of the Gromov-Hausdorff distance that is slightly more practical.

It has been shown that dGH(X,Y) can be rewritten as an optimization problem over R(X,Y), which

stands for the set of correspondences of X and Y. The set R(X,Y) contains all R ⊂ X × Y such that

1. For all x ∈ X there exists y ∈ Y such that (x, y) ∈ R;

2. For all y ∈ Y there exists x ∈ X such that (x, y) ∈ R.

It is important to note that R(X,Y) , ∅, since we always have that X × Y ∈ R(X,Y). By Burago

et al. (2001, Sec. 7), we obtain that

dGH(X,Y) =
1
2

inf
R∈R(X,Y)

sup
x1,x2∈X
y1,y2∈Y

s.t. (xi,yi)∈R

|dX(x1, x2) − dY(y1, y2)| (1.3)

=
1
2

inf
R∈R(X,Y)

‖dX(·, ·) − dY(·, ·)‖L∞(R×R) . (1.4)

While the Gromov-Hausdorff distance has been successfully applied for specific shape and data

analysis tasks (Mémoli and Sapiro, 2004; Bronstein et al., 2006a,b, 2009a,b; Chazal et al., 2009;

Bronstein et al., 2010; Carlsson and Mémoli, 2010), its widespread usage is severely hindered

by two facts. On the one hand, the practical computation of the Gromov-Hausdorff distance is

extremely complicated (Mémoli, 2007) and procedures for estimating it based on point clouds have

only been developed under certain smoothness conditions on the underlying objects (Mémoli and

Sapiro, 2005; Bronstein et al., 2006a). On the other hand, it is not clear to
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Figure 1.1: Metric Measure Spaces I: Two metric measure spaces that are isometric but not
isomorphic.

what extend the similarity/dissimilarity captured by the Gromov-Hausdorff distance coincides with

the human intuition, as it is sensitive to noise (due to the use of the L∞-norm in (1.4)) and has not

been related to many other approaches based on signatures. In consequence, other representations

of objects and metrics have been studied.

1.2 The Gromov-Wasserstein Distance

It turns out that it is generally more convenient to model objects with more structure and to consider

them as metric measure spaces. A metric measure space X = (X, dX, µX) is a triple, where (X, dX)

stands for a compact metric space and µX denotes a probability measure that is fully supported on

X. The additional probability measure can be interpreted as marker for the importance of various

regions of the considered object. In order to apply this representation for pose invariant object

matching, it is important to identify metric measure spaces in a meaningful way. Two metric

measure spaces X = (X, dX, µX) and Y =
(
Y, dY, µY

)
are isomorphic (i.e., equal), denoted as

X � Y, if there there exists an isometry φ : X → Y such that φ#µX = µY. Here, φ#µX denotes the

pushforward measure. Figure 1.1 illustrates an example of two isometric but non-isomorphic metric

measure spaces. Throughout the following,Mw denotes the collection of isomorphism classes of

metric measure spaces.

The additional probability measure allows us to regard objects as compactly supported probability

measures instead of compact sets. Thus, it is possible to replace the Hausdorff metric in (1.1) with

a relaxed notion of proximity, namely the Wasserstein distance (Vaserstein, 1969). This distance

is fundamental to various mathematical developments and also known as Kantorovich-Rubinstein

distance (Kantorovich and Rubinstein, 1958), Mallows distance (Mallows, 1972) or as the Earth

Mover’s distance (Rubner et al., 2000). Given a metric space (Z, dZ), let P(Z) denote the set of

probability measures on Z. Then, the Wasserstein distance of order 1 ≤ p < ∞ between µ, ν ∈ P(Z)

is defined as

d(Z,dZ)
W,p (µ, ν) =

(
inf

π∈C(µ,ν)

∫
Z×Z

dp
Z(z, z′) dπ(z, z′)

) 1
p

, (1.5)

and for p = ∞ as

d(Z,dZ)
W,∞

(µ, ν) B inf
π∈C(µ,ν)

sup
(z,z′)∈supp(π)

dZ(z, z′), (1.6)

where supp (π) denotes the support of the measure π and C(µ, ν) denotes the set of all couplings of

µ and ν, i.e., the set of all measures π on Z × Z such that

π (A × Z) = µ (A) and π (Z × B) = ν (B)
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for all measurable subsets A and B of Z. For 1 ≤ p < ∞, the Wasserstein distance of order p defines

a metric on

Pp (Z) =

{
µ ∈ P(Z)

∣∣∣∣ ∫
Z

dp
Z(z0, z) dµ(z) < ∞, z0 ∈ Z arbitrary

}
and metrizes weak convergence together with convergence of moments of order p (Villani, 2008,

Chap. 6).

Sturm (2006) demonstrates that replacing the Hausdorff distance d(Z,dZ)
H in (1.1) by the Wasserstein

distance yields a meaningful metric onMw, namely Sturm’s Gromov-Wasserstein distance. Let

X = (X, dX, µX) and Y =
(
Y, dY, µY

)
be two metric measure spaces. Then, Sturm’s Gromov-

Wasserstein distance of order 1 ≤ p ≤ ∞ between X and Y is given by

dsturm
GW,p(X,Y) B inf

Z,φ,ψ
d(Z,dZ)

W,p (φ#µX, ψ#µY), (1.7)

where φ : X → Z and ψ : Y → Z are isometric embeddings into the metric space (Z, dZ).

Mémoli (2007, 2011) observed that the alternative formulation of the Gromov-Hausdorff distance in

(1.4) can also be used to define a metric onMw. By replacing the set of correspondences R(X,Y)

by the set of couplings C(µX, µY) and the L∞- by an Lp-norm, the aforementioned author derives a

metric onMw that is topologically equivalent to dsturm
GW,p, but computationally more tractable, namely

the Gromov-Wasserstein distance. The p-distortion, 1 ≤ p ≤ ∞, of a coupling π ∈ C(µX, µY) is

given for 1 ≤ p < ∞ as

disp(π) B
("

X×Y×X×Y

∣∣∣dX(x, x′) − dY(y, y′)
∣∣∣p π(dx × dy) π(dx′ × dy′)

)1/p

(1.8)

and for p = ∞ it is given as

dis∞(π) B sup
x,x′∈X, y,y′∈Y

s.t. (x,y),(x′,y′)∈supp(π)

∣∣∣dX(x, x′) − dY(y, y′)
∣∣∣.

Based on this, the Gromov-Wasserstein distance of order p, 1 ≤ p ≤ ∞, is defined as

dGW,p(X,Y) B
1
2

inf
π∈C(µX,µY)

disp(π). (1.9)

In general it holds that dGW,p ≤ dsturm
GW,p and in particular there are instances where the inequality is

strict (Mémoli, 2011).

In order to illustrate, why the calculation of the distance dGW,p is in many situations more practical

than the calculation of dsturm
GW,p consider two finite metric measure spaces (X, dX, µX) and

(
Y, dY, µY

)
with X = {x1, . . . , xm} and Y = {y1, . . . , yn}. Then, it follows (see Mémoli (2011, Rem. 7.1)) that

the calculation of dsturm
GW,p boils down to solving

min
(π,d)∈C(µX,µY)×D(dX,dY)

m∑
i=1

n∑
j=1

dp
i jπi j, (1.10)
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where

C(µX, µY) =

π ∈ Rm×n
≥0

∣∣∣∣∣∣∣∣∣∣ 0 ≤ πi j ≤ 1, where

∑
j πi j = µX(xi) for all 1 ≤ i ≤ m

and∑
i πi j = µY(y j) for all 1 ≤ j ≤ n


and

D(dX, dY) =

d ∈ Rm×n
≥0

∣∣∣∣∣∣∣∣∣∣
|di j − di′ j| ≤ dX(xi, xi′) ≤ di j + di′ j for all 1 ≤ i, i′ ≤ m

and

|di j − di j′ | ≤ dY(y j, y j′) ≤ di j + di j′ for all 1 ≤ j, j′ ≤ n

 .
In consequence, the calculation of dsturm

GW,p boils down to solving a bilinear program (which is a special

case of a nonconvex quadratic program). We note that the number of variables of this program

is given by 2mn and the number of constraints by 2
(
m
(
m
2

)
+ n

(
n
2

))
+ m + n. On the other hand,

the determination of dGW,p is in the current setting equivalent to solving the following quadratic

program

min
π∈C(µX,µY)

m∑
i,i′=1

n∑
j, j′=1

|dX(xi, xi′) − dY(y j, y j′)|pπi jπi′ j′ . (1.11)

It is clear that solving (1.11) only requires mn variables and m + n constraints which makes dGW,p

from a practical point of view the more convenient choice.

We stress that both the bilinear problem defined in (1.10) as well as the quadratic program defined in

(1.11) constitute non-convex optimization problems that are in general NP-hard to solve (Pardalos

and Vavasis, 1991). However, it is possible to approximate local minima of (1.11) by conditional

gradient descent (Mémoli, 2011; Peyré et al., 2016, see Algorithm 1 for a simple variant of this

approach). This has led to various applications of the Gromov-Wasserstein distance in biochemistry

(Nitzan et al., 2019; Demetci et al., 2020) and machine learning (Alvarez-Melis and Jaakkola, 2018;

Bunne et al., 2019) as well as to numerous extensions of this distance (Vayer et al., 2019; Chapel

et al., 2020; Chowdhury and Needham, 2021; Scetbon et al., 2021; Séjourné et al., 2021).

Algorithm 1 Conditional gradient descent for the approximation of dGW,p

input: Two finite metric measure spaces (X, dX, µX) and
(
Y, dY, µY

)
π(0) = µX ⊗ µY
for j = 1, 2 . . . do

J
(
π( j−1)

)
= 1

2∇πdisp
(
π( j−1)

)
π̃( j)= Optimal coupling of the Optimal Transport problem with ground loss J

(
π( j−1)

)
γ( j) = 2

j+2 //Alt. find γ ∈ [0, 1] that minimizes disp
(
π( j−1) + γ

(
π̃( j) − π( j−1)

))
π( j) =

(
1 − γ( j)

)
π( j−1) + γ( j)π̃( j)

end for
return 1

2 disp
(
π( j)

)
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1.3 Lower Bounds

There exist a number of lower bounds of dGW,p that are closely related to signatures used for

pose invariant object matching. On the one hand, this suggests that the similarity captured by the

Gromov-Wasserstein distance is more natural than that of the Gromov-Hausdorff distance. On the

other hand, this yields an alternative to the approximation of (local minima of) dGW,p via conditional

gradient descent: Directly working with one of the polynomial time computable lower bounds. This

approach has for example been pursued in Gellert et al. (2019) to compare the isosurfaces of various

proteins. In what follows, we restrict ourselves to 1 ≤ p < ∞ and present three meaningful and

efficiently computable lower bounds.

First Lower Bound (FLB): The p-eccentricity function of a metric measure space X, denoted as

sX,p, is defined as

sX,p : X → R+, x 7→
(∫
X

dp
X

(x, x′) dµX(x′)
)1/p

. (1.12)

It is shown in Mémoli (2011, Prop. 6.1) that p-eccentricity functions can be used to lower bound

the Gromov-Wasserstein distance as follows

dGW,p(X,Y)≥ FLBp (X,Y) B
1
2

inf
π∈C(µX,µY)

(∫
X×Y

∣∣∣sX,p(x) − sX,p(y)
∣∣∣p dπ(x, y)

)1/p

.

Remarkably, it is possible to rewrite FLBp in terms of the Wasserstein distance between to measures

on the real line. Let S −1
X,p denote the quantile function corresponding to µsX,p = sX,p#µX and let

S −1
Y,p as well as µsY,p be defined analogously. Then, Theorem 24 in Chowdhury and Mémoli (2019)

yields that

FLBp (X,Y) =
1
2

d(R,| · |)
W,p

(
µsX,p , µsY,p) =

1
2

(∫ 1

0

∣∣∣∣S −1
X,p(t) − S −1

Y,p(t)
∣∣∣∣p dt

)1/p

. (1.13)

We observe that the eccentricity functions of the spaces X and Y are closely related to the geodesic

shape distribution which is a signature for pose invariant object matching proposed by Hamza

and Krim (2003). Furthermore, it has been shown in Weitkamp et al. (2020) that FLB1 coincides

with the Wasserstein distance between the Distance-to-Measure signatures of X and Y (with mass

parameter one) proposed by Brécheteau (2019).

Second Lower Bound (SLB): Proposition 6.2 in Mémoli (2011) yields that

dGW,p(X,Y)≥ SLBp (X,Y) B
1
2

inf
π∈C̃

(∫
X2×Y2

∣∣∣dX(x, x′) − dY(y, y′)
∣∣∣p dπ(x, x′y, y′)

) 1
p

,

where C̃ B C(µX ⊗ µX, µY ⊗ µY). Let µU = dX# (µX ⊗ µX) and let µV = dY#
(
µY ⊗ µY

)
. Then, we

call µU and µV the Distribution of the (pairwise) Distances (DoD) of (X, dX, µX) and
(
Y, dY, µY

)
,
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respectively. Chowdhury and Mémoli (2019, Thm. 24) prove that

SLBp (X,Y) =
1
2

d(R,| · |)
W,p

(
µU , µV

)
=

1
2

(∫ 1

0

∣∣∣U−1(t) − V−1(t)
∣∣∣p dt

)1/p

, (1.14)

where U−1 and V−1 are the quantile functions of µU and µV , respectively. Indeed, the distribution of

pairwise distances was proposed as a signature itself for pose invariant object matching and was

shown to work well in various examples (Osada et al., 2002; Brinkman and Olver, 2012; Berrendero

et al., 2016; Gellert et al., 2019). Furthermore, the discriminative abilities of this signature are well

investigated theoretically (Boutin and Kemper, 2004; Mémoli and Needham, 2021).

Third Lower Bound (TLB): Let Ωp : X ×Y → R be given as

Ωp(x, y) B inf
π∈C(µX,µY)

(∫
X×Y

|dX(x, x′) − dY(y, y′)|p dπ(x′, y′)
)1/p

.

Then, it follows by Proposition 6.3 in Mémoli (2011) that

dGW,p(X,Y) ≥ TLBp(X,Y) B
1
2

inf
π∈C(µX,µY)

(∫
X×Y

Ω
p
p(x, y) dπ(x, y)

)1/p

.

It is important to note that this lower bound can be reformulated in terms of the local distribu-

tion of distances of the metric measure spaces X and Y, i.e., in terms of the sets of measures

{dX(x, ·)#µX}x∈X and {dY(y, ·)#µY}y∈Y. More precisely, let F−1
x denote the quantile function of

dX(x, ·)#µX, x ∈ X, and Gy the one of dY(y, ·)#µY, y ∈ Y. Then, it follows by Theorem 24 in

Chowdhury and Mémoli (2019) that

TLBp(X,Y) =
1
2

inf
π∈C(µX,µY)

(∫
X×Y

∫ 1

0

∣∣∣F−1
x (t) −G−1

y (t)
∣∣∣p dt dπ(x, y)

)1/p

. (1.15)

The local distributions of distances are closely related to a signature called shape context that has

been investigated empirically in Shi et al. (2007) and Ruggeri and Saupe (2008). Further, the local

distributions of distances of various structures are studied theoretically in Mémoli and Needham

(2021).
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Figure 1.2: Metric Measure Spaces II: Illustration of two finite, non-isomorphic metric measure
spaces X (red) and Y (blue) with TLBp(X,Y) = 0. The numbers represent the mass assigned to
each node and the length of all edges is 1

2 . Note that by construction, the sum of mass of any three
nodes in a branch is 1

3 .

All in all, we obtain the following relation between dsturm
GW,p, dGW,p and the lower bounds introduced

in this section

dsturm
GW,p(X,Y) ≥ dGW,p(X,Y) ≥ TLBp(X,Y) ≥

SLBp(X,Y)

FLBp(X,Y)
,

where all inequalities are strict (Mémoli, 2011; Mémoli and Needham, 2021). While the computation

of the lower bounds presented boils down to solving various optimal transport problems and can be

done in polynomial time (Mémoli, 2011), it is important to note that they are not able to discriminate

between all elements ofMw, i.e., there exist metric measure spaces X and Y with TLBp(X,Y) = 0

but dGW,p(X,Y) > 0. One example for such a pair of spaces is illustrated in Figure 1.2.

In conclusion, we have seen that both versions of the Gromov-Wasserstein distance constitute

topologically equivalent metrics on the collection of (isomorphism classes of) metric measure

spaces. They admit several lower bounds that are strongly connected to signatures for pose invariant

object matching proposed in the literature. This suggests that the distances captured by both metrics

are natural. Unfortunately, both dsturm
GW,p and dGW,p are NP-hard to compute. In applications, it is

possible to either approximate dGW,p by conditional gradient descent or to directly work with one

of its lower bounds.



CHAPTER 2

Distribution of Distances based Object Matching

In this chapter, we summarize and discuss the main results of Paper A. To this end, we first recall

the aim and setting of the paper.

In many applications, it is of great interest to decide on the basis of random samples, whether two

objects considered are equal or not. By modeling the objects considered as metric measure spaces

this problem can be reformulated as follows: Given independent samples Xn = {X1, . . . , Xn} and

Ym = {Y1, . . . ,Ym} from two metric measure spaces X = (X, dX, µX) and Y =
(
Y, dY, µY

)
, we aim

to test the null hypothesis that X and Y are isomorphic against the alternative that they are not, i.e.,

H∗0 : X � Y vs H∗1 : X � Y. (2.1)

Due to the computational complexity of dGW,p, it is not possible to construct a computationally

feasible test for H∗0 based on the Gromov-Wasserstein distance. Hence, we propose in Paper A to

consider the lower bound SLBp(X,Y), 1 ≤ p < ∞, for constructing such a test. More precisely, we

propose to work with

DoDp(X,Y) B 2SLBp
p(X,Y) =

∫ 1

0

∣∣∣U−1(t) − V−1(t)
∣∣∣p dt, (2.2)

where U−1 and V−1 are defined as in (1.14). As already discussed in Section 1.3, SLBp is not able

to discriminate between all metric measure spaces inMw. Hence, the testing problem

H0 : DoDp(X,Y) = 0 vs H1 : DoDp(X,Y) > 0 (2.3)

is not equivalent to the one defined in (2.1). However, it is important to note that if DoDp(X,Y) > 0

the same holds for dGW,p(X,Y). Consequently, any level α test for H0 automatically provides a

level α test for H∗0.

A natural, efficiently computable test statistic for the hypothesis H0 is given by

D̂oDp = D̂oDp (Xn,Ym) B
∫ 1

0

∣∣∣U−1
n (t) − V−1

m (t)
∣∣∣p dt, (2.4)
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where, for t ∈ R, Un and Vm are defined as the empirical c.d.f.’s of all pairwise distances of the

samples Xn and Yn, respectively, i.e.,

Un(t) B
2

n(n − 1)

∑
1≤i< j≤n

1{dX(Xi,X j)≤t} and Vm(t) B
2

m(m − 1)

∑
1≤k<l≤m

1{dY(Yk ,Yl)≤t}. (2.5)

Furthermore, U−1
n and V−1

m denote the corresponding empirical quantile functions. It is important to

note that the calculation of D̂oDp boils down to calculating and sorting the distances {dX(Xi, X j)}ni, j=1

and {dY(Yk,Yl)}mk,l=1 and no formal integration is necessary. The computational complexity of D̂oDp

is, up to log factors, given as O
(
(n ∨ m)2

)
.

2.1 Main Results

The main contributions of Paper A are distributional limits for (trimmed variants of) the statistic

D̂oD2 under the hypothesis H0 as well as under the alternative H1 (see (2.3)), i.e., we focus on the

asymptotic behavior of

D̂oD(β) B

∫ 1−β

β

(
U−1

n (t) − V−1
m (t)

)2
dt, (2.6)

where β ∈ [0, 1/2) denotes a trimming parameter. It is important to note that many of our arguments

and derivations can be generalized to p ∈ [1,∞). Based on the distributional limits derived, we

design an asymptotic test for H0 which we study empirically and successfully apply for protein

structure comparison.

Assumptions: Before we come to the statements of the distributional limit theorems, we briefly

discuss the corresponding assumptions. The first assumption we make is that the distributions of

distances µU and µV admit Lebesgue densities u and v. Considering (2.6), we realize that D̂oD(β)

is based on empirical U-quantile functions. It is well known that trimming generally simplifies

the derivation of the asymptotics of quantile processes (Czado and Munk, 1998; Alvarez-Esteban

et al., 2008). Hence, we distinguish between the cases β ∈ (0, 1/2) and β = 0 in the following. The

subsequent assumptions imply Hadamard differentiability of the inversion functional φinv : F 7→ F−1

as a map from the set of restricted distribution functions into the space of all bounded functions on

[β, 1 − β].

Condition 2.1. Let β ∈ (0, 1/2) and let U be continuously differentiable on an interval [C1,C2] =

[U−1(β) − ε,U−1(1 − β) + ε] for some ε > 0 with strictly positive derivative u and let the analogous

assumption hold for V and its derivative v.

Figure 2.1 illustrates the densities of the distributions of distances for several different metric

measure spaces. We observe that these densities vanish at the boundaries of their support. Hence,

it is not possible to derive the asymptotics of D̂oD(0) via the Hadamard differentiability of the

inversion functional as done in the trimmed case. Instead, it is important to control how fast the

densities u and v of U and V , respectively, vanish. This is achieved by the subsequent assumptions



2.1. Main Results 11

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

D
en

si
ty

 

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

D
en

si
ty

 

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
x

D
en

si
ty

 

Figure 2.1: Distribution of Distances: The densities of the distribution of distances of (X, dX, µX)
(red), where X denotes the disc in R2 with radius 0.5, dX the Euclidean distance and µX the uniform
distribution on X,

(
Y, dY, µY

)
(blue), whereY = [0, 1]2, dY corresponds to the supremum norm and

µY is the uniform distribution on Y, and
(
Z, dZ, µZ

)
(green), whereZ = [0, 1]2, dZ corresponds

to the Euclidean distance and µZ denotes the uniform distribution onZ.

which are reminiscent of the ones employed in Mason (1984).

Condition 2.2. Let U be continuously differentiable on its support. Further, assume there exist

constants −1 < γ1, γ2 < ∞ and cU > 0 such that
∣∣∣(U−1)′(t)

∣∣∣ ≤ cU tγ1(1 − t)γ2 for t ∈ (0, 1) and let

the analogous assumptions hold for V and (V−1)′.

Limit Distribution under H0: Recall that the null hypothesis H0 implies µU = µV . Under

Condition 2.1 we obtain for β ∈ (0, 1/2) (resp. under Condition 2.2 for β = 0) and n,m→ ∞ that

nm
n + m

D̂oD(β)  Ξ = Ξ(β) B
∫ 1−β

β

(G(t))2 dt, (2.7)

where “ ” denotes weak convergence in the sense of Hoffman-Jørgensen (see Van der Vaart

and Wellner (1996, Part 1)) and G denotes a centered Gaussian process with covariance given for

t, t′ ∈ (0, 1) by

Cov
(
G(t),G(t′)

)
=

4
(u ◦ U−1(t))(u ◦ U−1(t′))

ΓdX(U−1(t),U−1(t′)).

Here,

ΓdX
(
t, t′

)
=

∫ ∫
1{dX(x,y)≤t} dµX(y)

∫
1{dX(x,y)≤t′} dµX(y) dµX(x)

−

∫ ∫
1{dX(x,y)≤t} dµX(y) dµX(x)

∫ ∫
1{dX(x,y)≤t′} dµX(y) dµX(x). (2.8)

Limit Distribution under H1: Given Condition 2.1 we obtain for β ∈ (0, 1/2) (resp. given

Condition 2.2 for β = 0) and m, n→ ∞ with n
n+m → λ ∈ (0, 1) that√

nm
n + m

(
D̂oD(β) − DoD(β)

)
 N(0, σ2

U,V,λ), (2.9)
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where

σ2
U,V,λ =16λ

U−1(1−β)∫
U−1(β)

U−1(1−β)∫
U−1(β)

(x − V−1(U(x)))(y − V−1(U(y)))ΓdX (x, y) dxdy

+16(1 − λ)

V−1(1−β)∫
V−1(β)

V−1(1−β)∫
V−1(β)

(U−1(V(x)) − x))(U−1(V(y)) − y)ΓdY (x, y) dxdy.

Here, ΓdX (x, y) is defined as in (2.8) and ΓdY (x, y) is defined analogously. It is important to note

that this normal distribution is degenerate if

DoD(β) B

∫ 1−β

β

(
U−1(t) − V−1(t)

)2
dt = 0. (2.10)

In this case, the asymptotic behavior of D̂oD(β) is given by (2.7).

Application: From (2.7) it immediately follows that the decision rule given by rejecting H0 (see

(2.3)) if
nm

n + m
D̂oD(β) > ξ1−α, (2.11)

where ξ1−α denotes the (1− α)-quantile of Ξ, defines a robust, asymptotic level α test for H0 against

H1. In Paper A, we empirically illustrate its power in various settings. In particular, we showcase

that it can be applied for 3D protein structure comparison, which is fundamental for developing

an understanding of the functional and evolutionary relationships among proteins (Kolodny et al.,

2005; Srivastava et al., 2016).

2.2 Discussion and Related Work

The idea to construct a test for the hypothesis H∗0 defined in (2.1) based on a polynomial time

computable lower bound has already been pursued by Brécheteau (2019). In this work, the author

defines the Distance-to-Measure signature (DTM-signature) as follows: Consider a metric measure

space X = (X, dX, µX) and define Gx(t) = P (dX(x, X) ≤ t), where x ∈ X and X ∼ µX. Then, its

Distance-to-Measure function (DTM-function) with mass parameter κ ∈ [0, 1] is for x ∈ X given as

dX,κ(x) B
1
κ

∫ κ

0
G−1

x (l) dl. (2.12)

To give some intuition, we remark that the value of the DTM-function can be interpreted as the

mean distance of x to its “100 · κ% nearest neighbors” in X. Based on this, the DTM-signature of
(X, dX, µX) is defined as the random variable

DX,κ(µX) = DX,κ B dX,κ(X),
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where X ∼ µX. Consequently, the DTM-signature corresponds to a distribution of mean distances

and the parameter κ can be interpreted as a scale parameter. For small κ the signature DX,κ only

incorporates local information whereas for κ = 1 also global distances are considered.

It turns out that also the DTM-singature is stable with respect to dGW,1. More precisely, we

demonstrate in Section B.7 in the supplement of Paper A that

2
κ

dGW,1(X,Y) ≥
2
κ

TLB1(X,Y) ≥ Tκ(X,Y) B d(R,| · |)
W,1 (DX,κ,DY,κ).

Furthermore, we prove that the lower bound Tκ is closely related to FLB1 and in particular that

T1(X,Y) = 2FLB1(X,Y) (see Sec. B.7 in the supplement of Paper A). Given two samples

Xn = {X1, . . . , Xn} and Yn = {Y1, . . . ,Yn} from the spaces X and Y, Brécheteau (2019) derives the

distributional limit of

√
nS T̂κ(Xn,Yn) B

√
nS d(R,| · |)

W,1

 1
nS

nS∑
i=1

δd̂X,κ(Xi)
,

1
nS

nS∑
i=1

δd̂Y,κ(Yi)

 ,
under H∗0 as n→ ∞, where nS ∈ o(n),

d̂X,κ(x) B
1
κ

∫ κ

0
Ĝ−1

n,x(l) dl (2.13)

and d̂Y,κ is defined analogously. Here,

Ĝn,x(t) =
1
n

n∑
i=1

1{dX(x,Xi)≤t}.

In Paper A, we demonstrate that, while the additional subsampling simplifies the derivations of

the asymptotics of T̂κ, it reduces the power of the corresponding test. In particular, we showcase

empirically that the test based on (2.7), where we handle the occurring dependencies carefully,

obtains more power in various settings. From a more practical side, Paper A is strongly related to

Gellert et al. (2019). In their paper, the authors successfully apply the lower bounds FLBp, SLBp

and TLBp defined in Section 1.3 for the comparison of the isosurfaces of various proteins.

Reconsidering the definition of D̂oD(β) in (2.6), we observe that the proposed test statistic can also

be interpreted as one dimensional (trimmed) Wasserstein distance between the empirical measures

µUn and µVm based on {dX(Xi, X j)}1≤i< j≤n and {dY(Yk,Yl)}1≤k<l≤m, respectively. Distributional limits

for the one dimensional empirical Wasserstein distance have already been derived in a variety of

settings (Munk and Czado, 1998; del Barrio et al., 1999, 2005; Dede, 2009; Bobkov and Ledoux,

2019; Dedecker and Merlevede, 2017; Hundrieser et al., 2022). However, it is important to note that

the random variables in the samples {dX(Xi, X j)}1≤i< j≤n and {dY(Yk,Yl)}1≤k<l≤m exhibit a specific

dependency structure that has, to the best of our knowledge, so far not been considered in the context

of empirical Wasserstein distances. This dependency structure is related to U- and U-quantile

processes (Nolan and Pollard, 1988; Arcones and Giné, 1994; Wendler, 2012). Indeed, the theory
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developed by Nolan and Pollard (1988) allows to immediately derive the asymptotics of D̂oDp in

the special case p = 1. Furthermore, the results of Wendler (2012) on U-quantile processes can be

used to derive the asymptotics of D̂oD(β) for β > 0 under slightly stronger assumptions. For the

theoretically more involved case β = 0, the results derived by Wendler (2012) are not applicable

and we pursue completely different approaches for the derivation of (2.7) and (2.9).

Conclusion: We study the asymptotic behavior of D̂oD(β), β ∈ [0, 1/2), under the hypothesis H0

as well as under the alternative H1. This leads to the construction of an asymptotic level α test for

H∗0 against H∗1 (see (2.1)). This test is studied empirically and shows promising performance. Our

findings suggest that, in many applications, it is sufficient to work with the computationally more

tractable lower bounds of the Gromov-Wasserstein distance instead of said metric. This opens many

possible directions of research. In particular, it might be of interest to investigate the asymptotics

of the slightly stronger (but computationally more demanding) lower bound TLBp, to use them to

construct a test for H∗0 and to compare the practical performance of this test to the one proposed in

(2.11).



CHAPTER 3

The Ultrametric Gromov-Wasserstein Distance

The main results of Paper B are discussed in this chapter. For this purpose, we briefly recall and

motivate the issues considered.

As mentioned in Section 1.2, the Gromov-Wasserstein is a useful tool for various data analysis

tasks. Unfortunately, its precise determination is in general infeasible. However, the collection

of all isomorphism classes of metric measure spacesMw contains a huge variety of spaces and

there might be a subclass Ow ⊂ Mw for which it is possible to determine (variants of) dsturm
GW,p or

dGW,p in polynomial time. Further, it might be possible to adjust the definitions of Sturm’s/the

Gromov-Wasserstein distance to Ow in order to obtain more informative metrics on this subclass.

Naturally, it is of great interest to identify such subclasses and adjustments.

Similar ideas have been applied in the study of the Gromov-Hausdorff distance and led to the

definition of the ultrametric Gromov-Hausdorff distance on the collection of compact ultrametric

spaces (Zarichnyi, 2005; Qiu, 2009; Mémoli et al., 2021b). Recall that a metric space (X, uX) is

denoted as ultrametric, if for all x, x′, x′′ ∈ X the subsequent relation is fulfilled

uX(x, x′′) ≤ max(uX(x, x′), uX(x′, x′′)). (3.1)

Throughout the following,U denotes the isometry classes of compact ultrametric measure spaces.

Ultrametric spaces arise naturally in various applications, for instance as metric encodings of

dendrograms (Jardine and Sibson, 1971; Carlsson and Mémoli, 2010), in the context of phylogenetic

trees (Semple et al., 2003), in the probabilistic approximation of finite metric spaces (Bartal, 1996;

Fakcharoenphol et al., 2004) or in the context of a mean-field theory of spin glasses (Mézard et al.,

1987; Rammal et al., 1986).

Reconsidering the definition of the Gromov-Hausdorff distance in (1.1) it is clear that the ultrametric

structure of two ultrametric spaces is lost, if we minimize over all possible embeddings into a general

metric space (Z, dZ). In order to preserve this structure, the ultrametric Gromov-Hausdorff distance

only considers embeddings into a common ultrametric space (Z, uZ), i.e., for two ultrametric spaces
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(X, uX) and (Y, uY) it is defined as

uGH(X,Y) := inf
Z,φ,ψ

d(Z,uZ)
H (φ(X), ψ(Y)), (3.2)

where φ : X→ Z and ψ : Y→ Z are isometric embeddings into a common ultrametric space (Z, uZ)

and d(Z,uZ)
H denotes the Hausdorff distance on Z. Similar as for dGH it is possible to prove that uGH

constitutes an ultrametric on the spaceU. Furthermore, it is important to note that it is possible to

reformulate uGH, just as dGH, as an optimization problem over the set of metric couplings (Mémoli

et al., 2021b). More precisely, define for a, b ∈ R

Λ∞(a, b) B

max(a, b) if a , b,

0 if a = b.
(3.3)

Then, an equivalent formulation of uGH between the compact ultrametric spaces X and Y is given as

uGH(X,Y) = inf
R∈R(X,Y)

sup
x1,x2∈X
y1,y2∈Y

s.t. (xi,yi)∈R

Λ∞ (uX(x1, x2), uY(y1, y2)) . (3.4)

Based on this reformulation it is possible to derive a polynomial time algorithm for the computation

of uGH (Mémoli et al., 2021b).

Inspired by the results on the ultrametric Gromov-Hausdorff distance and the relation between dGH

and dsturm
GW,p as well as dGW,p, we aim to study ultrametric variants of these distances on the collection

of the isomorphism classes of ultrametric measure measure spacesUw ⊂ Mw. Here, an ultrametric

measure space X = (X, uX, µX) is a metric measure space, where the corresponding metric space

(X, uX) is ultrametric. Reconsidering the definition of the ultrametric Gromov-Hausdorff distance

in (3.2), we propose to mimic its construction and to only infimize over ultrametric spaces (Z, uZ)

instead of all possible metric spaces in (1.7). Thus, we define for p ∈ [1,∞] Sturm’s ultrametric

Gromov-Wasserstein distance of order p as

usturm
GW,p(X,Y) B inf

Z,φ,ψ
d(Z,dZ)

W,p (φ#µX, ψ#µY), (3.5)

where φ : X → Z and ψ : Y → Z are isometric embeddings into an ultrametric space (Z, uZ).

Furthermore, we realize that it is also possible to redo the construction of the Gromov-Wasserstein

distance based on the equivalent formulation of uGH in (3.4) (see Section 1.2 for an illustration of

this construction). This leads to the definition of the p-ultra-distortion of a coupling π ∈ C(µX, µY)

that is for 1 ≤ p < ∞ given as

disult
p (π) B

("
X×Y×X×Y

(
Λ∞(uX(x, x′), uY(y, y′))

)p π(dx × dy) π(dx′ × dy′)
)1/p

(3.6)
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and for p = ∞ as

disult
∞ (π) B sup

x,x′∈X, y,y′∈Y
s.t. (x,y),(x′,y′)∈supp(π)

Λ∞(uX(x, x′), uY(y, y′)).

Based on this, the ultrametric Gromov-Wasserstein distance of order p ∈ [1,∞], is defined as

uGW,p(X,Y) B inf
π∈C(µX,µY)

disult
p (π). (3.7)

3.1 Main Results

The main contributions of Paper B are the proofs that both Strum’s ultrametric Gromov-Wasserstein

distance and the ultrametric Gromov-Wasserstein distance constitute metrics onUw, the derivation

of several properties of these metrics, a polynomial time algorithm for the calculation of usturm
GW,∞

=

uGW,∞, the derivation of polynomial time computable lower bounds for uGW,p, 1 ≤ p < ∞, as well

as an empirical illustration of the distance captured by uGW,p for synthetic and real data.

Properties of the Metrics: Recall that a metric space (X, dX) is called p-metric space for p ∈

[1,∞) if it fulfills the subsequent stronger version of the triangle inequality:

dX(x, x′′) ≤
(
dX(x, x′)p + dX(x′, x′′)p)1/p ,

for all x, x′, x′′ ∈ X. Note that ultrametric spaces can be understood as a limit case of p-metric

spaces (p → ∞). Our first main result is the fact that both usturm
GW,p and uGW,p are p-metrics onUw

that induce different topologies than dsturm
GW,p and dGW,p. Further, we show that 2−1/puGW,p ≤ usturm

GW,p,

that usturm
GW,p and uGW,p are topologically equivalent for 1 ≤ p < ∞ and that usturm

GW,∞
= uGW,∞.

Computational Aspects: Similar as for the ultrametric Gromov-Hausdorff distance, we derive

a polynomial time computable algorithm for the calculation of uGW,∞ (= usturm
GW,∞

) based on the

weighted quotients of the considered ultrametric measure spaces. Let X = (X, uX, µX) be an

ultrametric measure space. Then, it is possible to define for any t > 0 an equivalence relation ∼t

on (X, uX) as follows: x ∼t x′ if and only if uX(x, x′) ≤ t. For x ∈ X, the equivalence class of x

with respect to ∼t is denoted as [x]Xt (or simply [x]t if the corresponding ultrametric measure space

is clear from the context). Further, let Xt denote the collection of equivalence classes of X under

∼t. There is a canonical way to turn Xt into an ultrametric measure space: We observe that the

subsequent definition yields an ultrametric on Xt

uXt ([x]t, [x′]t) B

uX(x, x′), [x]t , [x′]t

0, [x]t = [x′]t.

Furthermore, denote by Qt : (X, uX)→ (Xt, uXt ) the quotient map sending x ∈ X to [x]t and define

µXt = Qt#µX. Then, the ultrametric measure space Xt = (Xt, uXt , µXt ) is the weighted quotient of X

at level t. Figure 3.1 illustrates the weighted quotient in a simple example. Let X = (X, uX, µX) and
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Figure 3.1: Weighted Quotient: An ultrametric measure space (black) and its weighted quotient at
level t (red).

Y =
(
Y, uY, µY

)
denote two compact ultrametric measure spaces. Then, it follows that

uGW,∞(X,Y) = min {t ≥ 0 | Xt � Yt} ,

which can be used to define a polynomial time algorithm for the computation of uGW,∞ on the basis

of tree isomorphisms (see Section 5 in Paper B for more details).

Unfortunately, the computation of usturm
GW,p and uGW,p for 1 ≤ p < ∞ requires solving complicated

(combinatorial) optimization problems that are closely related to various NP-hard problems. Never-

theless, it is possible to approximate local minima of the optimization problem underlying uGW,p

via conditional gradient descent. Furthermore, we derive two lower bounds for uGW,p that are

structurally extremely similar to the ones of dGW,p. More precisely, we show that for two ultrametric

measure spaces X = (X, uX, µX) and Y =
(
Y, uY, µY

)
it holds that

uGW,p(X,Y) ≥ TLBult
p (X,Y) ≥ SLBult

p (X,Y),

where

TLBult
p (X,Y) = inf

π∈C(µX,µY)

(∫
X×Y

(
d(R≥0,Λ∞)

W,p
(
uX(x, ·)#µX, uY (y, ·)#µY

))p
dπ(x, y)

)1/p

(3.8)

and

SLBult
p (X,Y) = d(R≥0,Λ∞)

W,p
(
(uX)#(µX ⊗ µX), (uY)#(µY ⊗ µY)

)
. (3.9)

Comparing the lower bounds TLBult
p and TLBp as well as SLBult

p and SLBp, we realize that for

both cases the Wasserstein distance on the metric space (R, | · |) is replaced by the one on the

ultrametric space (R≥0,Λ∞). Since also d(R≥0,Λ∞)
W,p has an explicit representation (see Section 2 in

Paper B), it is possible to calculate TLBult
p and SLBult

p efficiently.

Application: In a simulation study we empirically showcase that dGW,1 and uGW,1 react very

differently to various disturbances of the considered ultrametric measure space. In particular,

we find that the ultrametric Gromov-Wasserstein distance is much more sensitive to large scale

disturbances, e.g., changes in the diameter, than dGW,p.

Moreover, we asses the lower bounds SLB1 as well as SLBult
1 for the comparison of phylogenetic
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tree shapes, i.e., the comparison of the trees’ connectivity structures without referring to their labels

or the length of their branches. It is well known that these shapes carry important information

about macroevolutionary processes (Mooers and Heard, 1997; Blum and François, 2006; Dayarian

and Shraiman, 2014; Wu and Choi, 2016) and can be used to study and compare the evolution of

different pathogens. More precisely, we repeat a comparison from Colijn and Plazzotta (2018) and

compare two sets of different phylogenetic tree shapes based on HA protein sequences from human

influenza A (H3N2) from different regions. The results show that SLBult
1 as well as SLBp are well

suited for this kind of task.

3.2 Discussion and Related Work

By construction usturm
GW,p and uGW,p are closely related to dsturm

GW,p and dGW,p as well as the ultrametric

Gromov-Hausdorff distance uGH. Sturm’s Gromov-Wasserstein distance is studied in Sturm (2006,

2012) and the Gromov-Wasserstein distance is investigated by Mémoli (2007, 2011); Chowdhury

and Mémoli (2019). Furthermore, the ultrametric Gromov-Hausdorff distance uGH is introduced

in Zarichnyi (2005), its theoretical properties are studied in Qiu (2009) and a polynomial time

algorithm for its computation is devised in Mémoli et al. (2021b). Additionally, Mémoli and Wan

(2019) study a variant of the Gromov-Hausdorff metric on the collection of all p-metric spaces,

1 ≤ p ≤ ∞, that coincides for p = ∞ with uGH.

Similar in spirit to our work are Evans (2007), who describes some variants of the Gromov-Hausdorff

distance between metric trees, and Greven et al. (2009), who introduces metric measure space

representations of trees and a certain Gromov-Prokhorov type of metric on the collection of these

representations.

In Kloeckner (2015), the author derives an explicit formulation of the Wasserstein distance on a

given ultrametric space. This has been another motivation for studying Sturm’s ultrametric Gromov-

Wasserstein distance. Furthermore, it allows us to obtain an explicit formulation of d(R≥0,Λ∞)
W,p (it is

easy to check that the space (R≥0,Λ∞) is ultrametric) which we use to reduce the computational

complexity of the lower bounds SLBult
p and TLBult

p .

From a practical point of view our work is related to Poon et al. (2013); Lewitus and Morlon (2016);

Colijn and Plazzotta (2018); Liu et al. (2020); Kim et al. (2020), where the authors propose and

study different metrics and dissimilarities on the collections of phylogenetic tree shapes. Recall that

we have empirically compared our approach with the one proposed by Colijn and Plazzotta (2018).

Conclusion: In this work, we introduce and study Sturm’s ultrametric Gromov-Wasserstein

distance usturm
GW,p as well as the ultrametric Gromov-Wasserstein distance uGW,p, 1 ≤ p ≤ ∞. In

particular, we showcase that these metrics induce equivalent typologies onUw that differ from the

one induced by dGW,p (which is equivalent to the one induced by dsturm
GW,p). Moreover, we demonstrate

that it is possible to calculate uGW,∞ (= usturm
GW,∞

) in polynomial time and explore the potential of SLBp

and SLBult
p for the comparison of phylogenetic tree shapes. Due to its computational complexity,
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the search for classes of metric measure spaces, where (a variant of) the Gromov-Wasserstein

distance admits a polynomial time algorithm or an explicit solution remains an interesting question

for research.



CHAPTER 4

Distance-to-Measure Density based Geometric Analysis of
Complex Data

In this last chapter of the main part, we illustrate the approach pursued in Paper C and outline the

main results.

In numerous applications it is of great interest to analyze and classify noisy point clouds on the

basis of their small scale characteristics without taking large scale information (such as the over

all shape of the point cloud) into account (Vosselman et al., 2004; Hayakawa and Oguchi, 2016;

Libeskind et al., 2017). This is particularly true for the analysis of human chromatin loops based on

3D single molecule localization microscopy (SMLM) data, where the goal is to track the degrading

of naturally appearing chromatin loops (Hao et al., 2021). We propose a signature based on (a

version of) the Distance-to-Measure signature (see Section 2.2) to tackle this type of problems.

More precisely, we suggest to consider the point clouds in Rd as a random sample from a Euclidean

metric measure space X = (X, || · ||, µX), i.e., a metric measure space where X ⊂ Rd and || · || stands

for the Euclidean distance. Then, it is possible to map each point cloud considered to an estimate

of the density of the corresponding DTM-signature (in the following referred to as DTM-density)

which then can be used for many analysis tasks (e.g., classification).

For the sake of completeness, we introduce the DTM-function of an Euclidean metric measure

space next. Let X be an Euclidean metric measure space. We define the Distance-to-Measure

(DTM) function with mass parameter κ ∈ (0, 1] corresponding to X for x ∈ Rd as

dX,κ(x) =
1
κ

∫ κ

0
F−1

x (u) du, (4.1)

where Fx(t) = P
(
‖X − x‖2 ≤ t

)
, X ∼ µX, and F−1

x stands for the quantile function of Fx. It is

important to note that the above definition differs slightly from (2.12), as we consider squared

Euclidean distances (i.e., we use the definition of the DTM-function considered in Chazal et al.

(2017)). We recall that the DTM-signature is built upon the DTM-function, which has to be
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estimated from the data in practice. Let X1, . . . , Xn
i.i.d.
∼ µX, let

F̂x,n(t) =
1
n

n∑
i=1

1{||x−Xi ||2≤t}

and denote by F̂−1
x,n the corresponding quantile function. Then, it is possible to define (similar as in

Section 2.2) a plug-in estimator for dX,κ(x) by replacing F−1
x with F̂−1

x,n. This yields

d̂X,κ(x) =
1
κ

∫ κ

0
F̂−1

x,n(u) du. (4.2)

For κ = k
n , we can rewrite d̂X,κ as a nearest neighbor mean as follows

d̂X,κ(x) =
1
k

∑
Xi∈Nk(x)

||Xi − x||2, (4.3)

where the set Nk(x) consists of the k nearest neighbors of x among the data points X1, . . . , Xn. Recall

that the DTM-signature is given as dX,κ(X), where X ∼ µX. Throughout the following, we will

assume that dX,κ(X) admits a Lebesgue density fdX,κ . In Section 2.2 we have seen that κ can be

viewed as a scale parameter: Choosing κ small corresponds to considering only local neighborhoods,

whereas κ = 1 also incorporates global information (this is also highlighted by (4.3)). As previously

mentioned, we propose to apply the density of dX,κ(X) as a signature for data analysis. If dX,κ was

known, we could estimate this density via the kernel density estimator

f̂dX,κ(y) =
1
nh

n∑
i=1

K
(
dX,κ(Xi) − y

h

)
. (4.4)

However, we have already argued that also dX,κ has to be estimated from the data, as it is usually

unknown. Replacing dX,κ with d̂X,κ in (4.4) yields the following estimator for fdX,κ

f̂d̂X,κ(y) =
1
nh

n∑
i=1

K

 d̂X,κ(Xi) − y
h

 . (4.5)

An important observation to make is the fact that the random variables d̂X,κ(Xi) and d̂X,κ(X j) are

stochastically dependent for each i , j, i.e., f̂d̂X,κ is, different from f̂dX,κ , based on dependent data.

4.1 Main Results

Since the kernel density estimator f̂dX,κ is based on independent data, it is well known that (given

some standard assumptions) for n→ ∞ and h = o
(
n−1/5

)
with nh→ ∞

√
nh

(
f̂dX,κ(y) − fdX,κ(y)

)
⇒ N

(
0, fdX,κ(y)

∫
R

K2(u) du
)
,
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where “⇒” stands for the usual weak convergence. In Paper C, we derive an analogous statement for

f̂d̂X,κ . Furthermore, we illustrate that (estimates of) DTM-densities can be used as stable signatures

for pose invariant object discrimination and that they are particularly useful for the analysis and

comparison of small scale characteristics.

Assumptions: Before we illustrate the pointwise limit theorem for the kernel density estimator

f̂d̂X,κ , we briefly discuss the corresponding assumptions. It is noteworthy that the assumption that

the DTM-signature dX,κ(X), X ∼ µX, admits a Lebesgue density is for κ < 1 slightly restrictive. If

the considered metric measure space X has little to no local structure, it is possible that the measure

corresponding to dX,κ(X), X ∼ µX, admits a pure point component if κ is too small. For instance,

if X = (X, || · ||, µX), where X denotes the unit disc in R2 and µX the uniform distribution on X,

then only dX,1(X) is absolutely continuous with respect to the Lebesgue measure. Exemplarily, we

highlight in Paper C that these cases are rather pathological and of little practical relevance.

Furthermore, it is obvious that the sole existence of fdX,κ is not sufficient to derive the asymptotics

of
√

nh
(

f̂dX,κ(y) − fdX,κ(y)
)
. Additional to some standard assumptions on fdX,κ as well as the corre-

sponding kernel, we require some regularity of the level sets of dX,κ as well as the underlying set

X. Before we state these assumptions, we recall some properties of level sets and introduce the

Hausdorff measure.

Let U ⊂ Rd be open and g : U → R be k-times continuously differentiable. Suppose that c ∈ R

such that g−1({c}) , ∅ and ∇g , 0 on g−1({c}). Then, g−1({c}) is a Ck-manifold of dimension d − 1

(Rudolph and Schmidt, 2012, Thm. 1.2.1). The intrinsic volume of g−1({c}) can be determined via

the (d − 1)-dimensional Hausdorff measure. This outer measure can be defined for all subsets of

Rd and is fundamental to various areas of geometric measure theory (for more information on the

subject see Federer (1969); Morgan (2016)). Given a set A ⊂ Rd, the k-dimensional Hausdorff

measure H k(A) is given by

H k(A) B lim
δ→0

inf
A⊆

⋃
S i,

diam(S i)≤δ

∑
αk

(
diam (S i)

2

)k

,

where the infimum is taken over all countable coverings S i of A with diam (S i) < δ and αk stands

for the volume of the unit ball in Rk. We note that the restriction of H k to the Borel sets of Rd

yields a Borel measure (Morgan, 2016, Sec.2).

The final fact about level sets stated here concerns the relation of g−1({y}) and g−1({y + v}) for v

small. Suppose that there exists an open set U and h′0 > 0 such that g−1([y − h′0, y + h′0]) ⊂ U and

such that the function

ϕ(u) : U ⊂ Rd → Rd, u 7→
∇g(u)
||∇g(u)||2

is continuously differentiable. By Cauchy-Lipschitz’s theory (Hirsch and Smale, 1974; Amann,
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2011) there exists 0 < h0 ≤ h′0 such that one can construct a flow Φ : [−h0, h0] ×W → Rd with
∂
∂t Φ(t, x) =

∇g(Φ(t,x))
||∇g(Φ(t,x))||2

Φ(0, x) = x,

where W ⊂ Rd is an open set that contains g−1([y − h0, y + h0]). Differentiating the function t 7→

g(Φ(t, x)) immediately shows that g (Φ(t, x)) = g(x)+t. This implies that Φ(t, g−1({y})) = g−1({y+t}).

In particular, {Φ(v, ·)}v∈[−h0,h0] constitutes a one parameter family of C1-diffeomorphisms between

g−1({y}) and g−1({y + v}), v ∈ [−h0, h0]. This family is in the following referred to as canonical level

set flow of g−1({y}).

Condition 4.1. Let fdX,κ be supported on [D1,D2] and let y ∈ [D1,D2]. Assume that there exists

ε > 0 such that fdX,κ is twice continuously differentiable on (y − ε, y + ε). Further, suppose that the

function dX,κ : Rd → R is C2,1 on an open neighborhood of the level set

Γy B dX,κ−1({y}) = {x ∈ Rd : dX,κ(x) = y},

that ∇dX,κ , 0 on Γy and that there exists h0 > 0 such that for all −h0 < v < h0,

IX(y; v) :=
∫

Γy

∣∣∣1{x∈X} − 1{Φ(v,x)∈X}
∣∣∣ dH d−1(x) ≤ Cy|v|, (4.6)

where {Φ(v, ·)}v∈[−h0,h0] denotes the canonical level set flow of Γy and Cy denotes a finite constant

that depends on y and dX,κ. Suppose that the kernel K : R → R+, is an even, twice continuously

differentiable function with supp (K) = [−1, 1]. If κ < 1, we assume additionally that there are

constants Cκ > 0 and 1 ≤ b < 5 such that for u ∈ (0, 1) it holds

ωX(u) B sup
x∈X

sup
t,t′∈(0,1)2,|t−t′ |<u

∣∣∣F−1
x (t) − F−1

x (t′)
∣∣∣ ≤ Cκu1/b. (4.7)

Limit Distribution: Given the assumptions discussed in the previous paragraph, we prove for

n→ ∞, h = o
(
n−1/5

)
and nh→ ∞ that

√
nh

(
f̂d̂X,κ(y) − fdX,κ(y)

)
⇒ N

(
0, fdX,κ(y)

∫ 1

−1
K2(u) du

)
. (4.8)

Consequently, the kernel density estimator f̂d̂X,κ behaves pointwise asymptotically just as the kernel

density estimator f̂dX,κ that is based on independent data.

Application: We employ the DTM-densities estimates with κ = 1 to distinguish between different

metric measure spaces in order to illustrate the potential of this signature for pose invariant object

discrimination. Furthermore, we apply the proposed signature with small κ for chromatin loop

analysis. Chromatin fibers form chromosomes that are essential parts of cell nuclei and carry
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important genetic information. The investigation of “topologically associating domains” (TADs),

which are self-interacting genomic regions and closely related with loops in the chromatin fibers,

are of particular interest (Nuebler et al., 2018). With the help of synthetic, noisy SMLM-data

we illustrate that DTM-densities can be used to classify the data according to their inherent loop

frequencies (a small scale characteristic) without considering the global shape of the corresponding

point clouds.

4.2 Discussion and Related Work

As already discussed in Section 2.2, the DTM-signature is introduced in Brécheteau (2019) (based

on a slightly different DTM-function, compare (2.12) and (4.1)) and we refer to said section for a

discussion of the results of this paper. However, we stress that we, different from Brécheteau (2019),

do not need to subsample to derive the asymptotics of the signature proposed.

Additionally, we have already illustrated in Section 2.2, the relation of the DTM-signature to

the Gromov-Wasserstein distance and particularly the relation to the lower bound FLB1. For a

discussion of the usage of lower bounds (and the corresponding distance based signatures) in

practice, we refer to Section 1.3 and Section 2.2.

Clearly, the DTM-function defined in (4.1) (or alternatively defined in (2.12)) is fundamental to the

definition of the DTM-signature. This function is proposed for geometric inference in Chazal et al.

(2011) and has been investigated in the context of topological data analysis and support estimation

(Chazal et al., 2013; Buchet et al., 2014). However, not only dX,κ but also d̂X,κ is thoroughly studied

in the literature. In particular, many consistency properties of d̂X,κ, that are central to our derivation

of (4.8), are proven by Chazal et al. (2016, 2017).

The alternative formulation of d̂X,κ in (4.3) showcases the connection of dX,κ to nearest neighbor

distributions. Data analysis based on nearest neighbor distributions is quite common in various

applications in biology (Zou and Wu, 1995; Meng et al., 2020) and physics (Torquato et al., 1990;

Bhattacharjee, 2003; Hsiao et al., 2020). In a certain sense, the DTM-signature is an adaptation of a

nearest neighbor distribution to a setting, where the samples stem from a continuous probability

distribution, and it is noteworthy that taking the mean over a percentage of the nearest neighbors

seems to robustify the method making it applicable in settings with relative high levels of noise.

We point out that the kernel density estimator fdX,κ defined in (4.5) is based on dependent data.

Indeed, kernel density estimation based on dependent data is investigated in a variety of settings

in the literature. It is considered for various mixing and linear processes connected to weakly

dependent time series (Castellana and Leadbetter, 1986; Robinson, 1983; Liebscher, 1996; Lu,

2001; Wu and Mielniczuk, 2002). Further, the behavior of kernel density estimators of symmetric

functions of the data as well as undirected dyadic data are studied (Frees, 1994; Graham et al.,

2019). For these settings, a dependency structure that is reminiscent of U-statistics has to be treated

carefully. However, it is easy to verify that none of these dependency frameworks applies to our

setting.
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Conclusion: We verify that, given technical but practically mild assumptions, the DTM-density

estimate f̂d̂X,κ behaves asymptotically pointwise just as a usual kernel density estimator based on

independent random variables. Furthermore, we illustrate empirically that (estimates of) the DTM-

density are a natural, powerful signature for the analysis of small scale differences in chromatin loop

analysis. Potential further directions for research are the study of regularity of the DTM-density

given a set X as well as the construction of a statistical test for comparing different DTM-densities.
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Addenda

The following addenda contains the three articles A, B and C that form the basis of this thesis. An

introductory summary lists each article’s reference and abstract.

Distribution of Distances based Object Matching: Asymptotic Inference
Christoph Alexander Weitkamp, Katharina Proksch, Carla Tameling and Axel Munk

Preprint available, arXiv:2006.12287 (2020)

Abstract In this paper, we aim to provide a statistical theory for object matching based on a lower

bound of the Gromov-Wasserstein distance related to the distribution of (pairwise) distances of the

considered objects. To this end, we model general objects as metric measure spaces. Based on this,

we propose a simple and efficiently computable asymptotic statistical test for pose invariant object

discrimination. This is based on a (β-trimmed) empirical version of the afore-mentioned lower

bound. We derive for the trimmed and untrimmed case the distributional limits of this test statistic.

For this purpose, we introduce a novel U-type process indexed in β and show its weak convergence.

The theory developed is investigated in Monte Carlo simulations and applied to structural protein

comparisons.

The ultrametric Gromov-Wasserstein distance
Facundo Mémoli, Axel Munk, Zhengchao Wan and Christoph Alexander Weitkamp

Preprint available, arXiv:2101.05756 (2021)

Abstract In this paper, we investigate compact ultrametric measure spaces which form a subset

Uw of the collection of all metric measure spacesMw. In analogy with the notion of the ultrametric

Gromov-Hausdorff distance on the collection of ultrametric spacesU, we define ultrametric ver-

sions of two metrics onUw, namely of Sturm’s Gromov-Wasserstein distance of order p and of the

Gromov-Wasserstein distance of order p. We study the basic topological and geometric properties of

these distances as well as their relation and derive for p = ∞ a polynomial time algorithm for their

calculation. Further, several lower bounds for both distances are derived and some of our results are

generalized to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between

the Gromov-Wasserstein distance and its ultrametric version (as well as the relation between the
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corresponding lower bounds) in simulations and apply our findings for phylogenetic tree shape

comparisons.

From Small Scales to Large Scales: Distance-to-Measure Density based Geometric Analysis
of Complex Data
Katharina Proksch, Christoph Alexander Weitkamp, Thomas Staudt, Christophe Zimmer and Benoît

Lelandais

Preprint available, arXiv:2205.07689 (2022)

Abstract How can we tell complex point clouds with different small scale characteristics apart,

while disregarding global features? Can we find a suitable transformation of such data in a way that

allows to discriminate between differences in this sense?

In this paper, we consider the analysis and classification of complex point clouds as they are

obtained, e.g., via single molecule localization microscopy. We focus on the task of identifying

differences between noisy point clouds based on small scale characteristics, while disregarding

large scale information such as overall size. We propose an approach based on a transformation of

the data via the so-called Distance-to-Measure (DTM) function, a transformation which is based on

the average of nearest neighbor distances. For each data set, we estimate the probability density of

average local distances of all data points and use the estimated densities for classification. While the

practical performance of the proposed methodology is very good, the theoretical study of the density

estimators is quite challenging, as they are based on non-i.i.d. observations that have been obtained

via a complicated transformation. In fact, the transformed data are stochastically dependent in a

non-local way that is not captured by typical dependence measures. Nonetheless, we show that

the asymptotic behaviour of the density estimator is driven by a kernel density estimator of certain

i.i.d. random variables by using theoretical properties of U-statistics, which allows to handle the

dependencies via a Hoeffding decomposition. We show via a numerical study and in an application

to simulated single molecule localization microscopy data of chromatin fibers that unsupervised

classification tasks based on estimated DTM-densities achieve very good separation results.
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Distribution of Distances based Object Matching: Asymptotic

Inference

Christoph Alexander Weitkamp∗ Katharina Proksch † Carla Tameling ∗

Axel Munk ∗‡

March 31, 2022

Abstract

In this paper, we aim to provide a statistical theory for object matching based
on a lower bound of the Gromov-Wasserstein distance related to the distribution of
(pairwise) distances of the considered objects. To this end, we model general objects as
metric measure spaces. Based on this, we propose a simple and efficiently computable
asymptotic statistical test for pose invariant object discrimination. This is based on
a (β-trimmed) empirical version of the afore-mentioned lower bound. We derive for
the trimmed and untrimmed case the distributional limits of this test statistic. For
this purpose, we introduce a novel U -type process indexed in β and show its weak
convergence. The theory developed is investigated in Monte Carlo simulations and
applied to structural protein comparisons.

Keywords Gromov-Wasserstein distance, metric measures spaces, U-processes, distri-
butional limits, protein matching

MSC 2010 subject classification Primary: 62E20, 62G20, 65C60 Secondary: 60E05

1 Introduction

Over the last decades, the acquisition of geometrically complex data in various fields of
application has increased drastically. For the digital organization and analysis of such
data it is important to have meaningful notions of similarity between datasets as well
as between shapes. This most certainly holds true for the area of 3-D object matching,
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†Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Hallenweg 19,
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Fig. 1: Illustration of the proteins to be compared: Cartoon representation of the DEAH-box RNA-
helicase Prp43 from chaetomium thermophilum bound to ADP (PDB ID: 5D0U [65]) in two different poses.
The DEAH-box helicase Prp43 unwinds double stranded RNA and rearranges RNA/protein complexes. It
has essential roles in pre-mRNA splicing and ribosome biogenesis [4, 40].

which has many relevant applications, for example in computer vision [67, 70], mechanical
engineering [5, 30] or molecular biology [39, 50]. In most of these applications, an important
challenge is to distinguish between shapes while regarding identical objects in different
spatial orientations as equal. A prominent example is the comparison of 3-D protein
structures, which is important for understanding structural, functional and evolutionary
relationships among proteins [38, 62]. Most known protein structures are published as
coordinate files, where for every atom a 3-D coordinate is estimated based on an indirect
observation of the protein’s electron density (see Rhodes [53] for further details), and stored
e.g. in the protein database PDB [8]. These coordinate files lack any kind of orientation
and any meaningful comparison has to take this into account. Figure 1 (created with
PyMOL [58]) shows two cartoon representations of the backbone of the protein structure
5D0U in two different poses. These two representations obtained from the same coordinate
file highlight the difficulty to identify them from noisy measurements.

Consequently, many approaches to pose invariant shape matching, classification and recog-
nition have been suggested and studied in the literature. The majority of these methods
computes and compares certain invariants or signatures in order to decide whether the con-
sidered objects are equal up to a previously defined notion of invariance. In the literature,
these methods are often called feature (or signature) based methods, see Cárdenas et al.
[18] for a comprehensive survey. Some examples for features are the shape distributions
[51], that are connected to the distributions of lengths, areas and volumes of an object, the
shape contexts [7], that rely in a sense on a local distribution of inter-point distances of the
considered object, and reduced size functions [29], which count the connected components
of certain lower level sets.
As noted by Mémoli [44, 45], several signatures describe different aspects of a metric be-
tween objects. In these and subsequent papers, the author develops a unifying view point

2
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by representing an object as metric measure space (X , dX , µX ), where (X , dX ) is a compact
metric space and µX denotes a Borel probability measure on X . The additional probability
measure, whose support is assumed to be X , can be thought of as signaling the importance
of different regions of the modeled object. Based on the original work of Gromov [33],
Mémoli [45] introduced the Gromov-Wasserstein distance of order p ∈ [1,∞) between two
(compact) metric measure spaces (X , dX , µX ) and (Y, dY , µY) which will be fundamental
to this paper. It is defined as

GWp(X ,Y) = inf
π∈M(µX ,µY )

Jp(π), (1)

where

Jp(π) :=
1

2

(∫

X×Y

∫

X×Y

∣∣dX (x, x′)− dY(y, y′)
∣∣p π(dx× dy)π(dx′ × dy′)

) 1
p

.

Here, M(µX , µY) stands for the set of all couplings of µX and µY , i.e., the set of all
measures π on the product space X × Y such that π (A× Y) = µX (A) and π (X ×B) =
µY (B) for all measurable sets A ⊂ X and B ⊂ Y. In Section 5 of Mémoli [45] it is
ensured that the Gromov-Wasserstein distance GWp is suitable for pose invariant object
matching by proving that it is a metric on the collection of all isomorphism classes of metric
measure spaces.1 Hence, objects are considered to be the same if they can be transformed
into each other without changing the distances between their points and such that the
corresponding measures are preserved. For example, if the distance is Euclidean, this leads
to identifying objects up to translations, rotations and reflections [41]. This makes the
Gromov-Wasserstein distance theoretically well suited for a variety of shape matching tasks,
including protein structure comparisons. However, the practical usage of the Gromov-
Wasserstein approach is severely hindered by its computational complexity: Already for two
finite metric measure spaces X and Y with metrics dX and dY and probability measures µX
and µY , respectively, the computation of GWp (X ,Y) boils down to solving a (non-convex)
quadratic program [45, Sec. 7]. This is in general NP-hard [52]. To circumvent the precise
determination of the Gromov-Wasserstein distance in practice, it can be approximated
by conditional gradient descent [44, 45]. The result of this numerical scheme, however,
is difficult to interpret, as it does not come with any guarantee how close it is to the
minimum in (1). Nevertheless, this approach has been used in various applications and
led to several extensions of the Gromov-Wasserstein distance [19, 20, 60], especially in the
area of machine learning [2, 17, 66, 72]. Gellert et al. [32] pursued a different route to
approximating the Gromov-Wasserstein distance by applying certain lower bounds of the
Gromov-Wasserstein distance derived in [44, 45] for the comparison of the isosurfaces of

1Two metric measure spaces (X , dX , µX ) and (Y, dY , µY) are isomorphic (denoted as (X , dX , µX ) ∼=
(Y, dY , µY)) if and only if there exists an isometry φ : X → Y such that φ#µX = µY . Here, φ#µX denotes
the pushforward measure.
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various proteins. Among other things, the authors used that

GWp(X ,Y)≥ 1

2
(DoDp (X ,Y))

1
p :=

1

2

(
inf
π∈M̃

∫

X 2×Y2

∣∣dX (x, x′)− dY(y, y′)
∣∣p dπ(x, x′y, y′)

) 1
p

,

where M̃ := M(µX ⊗ µX , µY ⊗ µY) and that DoDp can be reformulated in terms of
the distribution of (pairwise) distances. Let µU be the probability measure of the random

variable dX (X,X ′), where X,X ′ i.i.d.∼ µX , and let µV be the one of dY(Y, Y ′), with Y, Y ′ i.i.d.∼
µY . Then, we call µU and µV the distribution of the (pairwise) distances of (X , dX , µX )
and (Y, dY , µY), respectively. It is shown in Chowdhury and Mémoli [19, Thm. 24] that

DoDp (X ,Y) =

∫ 1

0

∣∣U−1(t)− V −1(t)
∣∣p dt, (2)

where U−1 and V −1 are the quantile functions of µU and µV , respectively. Thus, this
bound quantifies the differences between the distributions of pairwise distances of the
metric measure spaces (X , dX , µX ) and (Y, dY , µY) in terms of the Kantorovich distance
(see e.g. Villani [69]).

In this paper, we investigate the statistical properties of the sample counterpart of DoDp

in (2), which is on the one hand extremely simple to compute in a quadratic number
of elementary operations (see Section 1.1) and on the other hand statistically accessible
and useful for inference tasks such as object discrimination when the data are randomly
sampled or the data set is massive and subsampling becomes necessary. Generally, DoDp

is a simple and natural measure to compare distance matrices. Such distance matrices
underlie many methods of data analysis, e.g. various multidimensional scaling techniques
(see Dokmanic et al. [28]). Hence, we believe that our analysis is of quite general statistical
interest beyond the described scenario.

1.1 The Proposed Approach

Given two metric measure spaces, denoted as (X , dX , µX ) and (Y, dY , µY), we aim to
construct an (asymptotic) test based on DoDp(X ,Y) for the hypothesis testing problem

H0 : DoDp(X ,Y) = 0 vs H1 : DoDp(X ,Y) > 0. (3)

As DoDp is a lower bound of the Gromov-Wasserstein distance, if DoDp(X ,Y) is positive,
the same holds for GWp(X ,Y). Thus, we infer that (X , dX , µX ) is not isomorphic to
(Y, dY , µY), if DoDp(X ,Y) > 0. Hence, it is possible (as done in the following) to employ
an (asymptotic) level α test for H0 for pose invariant object discrimination, i.e., to test
H∗0 : X ∼= Y, against the alternative H∗1 : X � Y at significance level 1 − α. It is well
known that the distribution of distances does not uniquely characterize a metric measure
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space [45], i.e., there are metric measure spaces X and Y such that DoDp(X ,Y) = 0,
although GWp(X ,Y) > 0. In consequence, a test for H0 applied to test for H∗0 cannot
develop power for every alternative in H∗1 . However, this seems to be a minor issue for
many practical applications. Indeed, the distribution of distances was proposed as a feature
itself for feature based object matching and was shown to work well in various examples
[9, 16, 32, 51]. Furthermore, the discriminative abilities of the distribution of distances are
well studied theoretically [14, 46], see also Section 2 and Section 4.

To set up our statistical framework, let X1, . . . , Xn
i.i.d.∼ µX and Y1, . . . , Ym

i.i.d.∼ µY be two
independent samples and let Xn = {X1, . . . , Xn} and Ym = {Y1, . . . , Ym}. The sample
analog to (2) is to be defined with respect to the empirical measures and we obtain the
DoD-statistic as

D̂oDp = D̂oDp (Xn,Ym) :=

∫ 1

0

∣∣U−1
n (t)− V −1

m (t)
∣∣p dt, (4)

where, for t ∈ R, Un and Vm are defined as the empirical c.d.f.’s of all pairwise distances
of the samples Xn and Yn, respectively, i.e.,

Un(t) :=
2

n(n− 1)

∑

1≤i<j≤n
1{dX (Xi,Xj)≤t} and Vm(t) :=

2

m(m− 1)

∑

1≤k<l≤m
1{dY (Yk,Yl)≤t}.

(5)
Besides, U−1

n and V −1
m denote the corresponding empirical quantile functions. We stress

that the evaluation of D̂oDp boils down to the calculation of a sum and no formal integra-
tion is required. Let dX(i) denote the i-th order statistic of the sample {dX (Xi, Xj)}1≤i<j≤n
and let dY(i) be defined analogously. Let N := n(n− 1)/2 and M := m(m− 1)/2. Then,

D̂oDp =
N∑

i=1

M∑

j=1

λij

∣∣∣dX(i) − dY(j)
∣∣∣
p
,

where λij =
(
i
N ∧

j
M − i−1

N ∨
j−1
M

)
1{iM∧jN>(i−1)M∨(j−1)N}. Here, and in the following,

a ∧ b denotes the minimum and a ∨ b the maximum of two real numbers a and b. Hence,
the representation (2) admits an empirical version which is computable in O

(
(m ∨ n)2

)

elementary operations, if the computation of one distance is considered as O(1).

1.2 Main Results

The main contributions of the paper are various upper bounds and distributional limits
for the statistic defined in (4) (as well as trimmed variants). Based on these, we design
an asymptotic test for the hypothesis H0 defined in (3). Other statistical applications
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such as confidence intervals for DoDp or multi-sample extensions are straight forward and
omitted for simplicity. We focus, for ease of notation, on the case p = 2 (see Section 2.3
for p ∈ [1,∞)), i.e., we derive for β ∈ [0, 1/2) the limit behavior of the statistic

D̂oD(β) :=

∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt (6)

under the hypothesis as well as under the alternative in (3). While in many applications
β = 0 in (6) is a natural choice, the introduced trimming parameter β can be used to
robustify the proposed method [1, 21]. Furthermore, it gives the possibility to focus the
comparison on specific areas of the considered distributions of distances when additional
information about their shapes is available. In Section 4, we illustrate the influence of this
parameter empirically. Next, we briefly summarize the setting in which we are working
and introduce the conditions required.

Setting 1.1. Let (X , dX , µX ) and (Y, dY , µY) be two metric measure spaces and let µU

and µV denote the distributions of (pairwise) distances of the spaces (X , dX , µX ) and
(Y, dY , µY), respectively. For U the c.d.f. of µU , assume that U is differentiable with
derivative u and let U−1 be the quantile function of U . Let V , V −1 and v be defined analo-

gously. Further, let the samples X1, . . . , Xn
i.i.d.∼ µX and Y1, . . . , Ym

i.i.d.∼ µY be independent
of each other and let U−1

n and V −1
m denote the empirical quantile functions of Un and Vm

in (5).

Since the statistic D̂oD(β) in (6) is based on empirical quantile functions, or more precisely
empirical U -quantile functions, we have to ensure that the corresponding U -distribution
functions are well-behaved. In the course of this, we distinguish the cases β ∈ (0, 1/2) and
β = 0. The subsequent condition guarantees that the inversion functional φinv : F 7→ F−1

is Hadamard differentiable as a map from the set of restricted distribution functions into
the space of all bounded functions on [β, 1− β], in the following denoted as `∞[β, 1− β].

Condition 1.2. Let β ∈ (0, 1/2) and let U be continuously differentiable on an interval
[C1, C2] = [U−1(β) − ε, U−1(1 − β) + ε] for some ε > 0 with strictly positive derivative u
and let the analogous assumption hold for V and its derivative v.

When the densities of µU and µV vanish at the boundaries of their support, which com-
monly happens (see Example 2.1), we can no longer rely on Hadamard differentiability to

derive the limit distribution of D̂oD(β) under H0 for β = 0. In order to deal with this case
we require stronger assumptions. The following ones resemble those of Mason [42].

Condition 1.3. Let U be continuously differentiable on its support. Further, assume there
exist constants −1 < γ1, γ2 < ∞ and cU > 0 such that

∣∣(U−1)′(t)
∣∣ ≤ cU t

γ1(1 − t)γ2 for
t ∈ (0, 1) and let the analogous assumptions hold for V and (V −1)′.
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Both, Condition 1.2 and Condition 1.3 are comprehensively discussed in Section 2.1 and
various illustrative examples are given there.

Limit distribution under H0: Here, we have that the distributions of distances of the
considered metric measure spaces, µU and µV , are equal, i.e., U(t) = V (t) for t ∈ R. Given
Condition 1.2 we find that for β ∈ (0, 1/2) (resp. given Condition 1.3 for β = 0) and
n,m→∞

nm

n+m
D̂oD(β)  Ξ = Ξ(β) :=

∫ 1−β

β
(G(t))2 dt, (7)

where G is a centered Gaussian process with covariance depending on U (under H0 we
have U = V ) in an explicit but complicated way, see Theorem 2.6. Further, “ ” denotes
weak convergence in the sense of Hoffman-Jørgensen (see van der Vaart and Wellner [68,

Part 1]). Additionally, we establish in Section 2 a simple concentration bound for D̂oD(β)

and demonstrate that for β ∈ (0, 1/2) and α ∈ (0, 1) the corresponding α-quantile of Ξ,
which is required for testing, can be obtained by a bootstrap scheme, see Section 3.

Limit distribution under H1: Under the additional assumption (which is only required for
β > 0) that

DoD(β) :=

∫ 1−β

β

(
U−1(t)− V −1(t)

)2
dt > 0,

we can prove (cf. Theorem 2.7) that given Condition 1.2 it holds for n,m → ∞ and
β ∈ (0, 1/2) (resp. given Condition 1.3 for β = 0) that

√
nm

n+m

(
D̂oD(β) −DoD(β)

)
 N(0, σ2

U,V,λ), (8)

where N(0, σ2
U,V,λ) denotes a normal distribution with mean 0 and variance σ2

U,V,λ depend-
ing in an explicit way on U , V , β and λ = limn,m→∞ n/(m+ n).

1.3 Applications

From our theory it follows that for any β ∈ [0, 1/2) a (robust) asymptotic level α test for
H0 against H1 is given by rejecting H0 in (3) if

nm

n+m
D̂oD(β) > ξ1−α, (9)

where ξ1−α denotes the (1 − α)-quantile of Ξ. This has many possible applications. Ex-
emplarily, in Section 5, we model proteins as metric measure spaces by assuming that
the coordinate files are samples from (unknown) distributions (see Rhodes [53]) and apply
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Fig. 2: Illustration of the proteins to be compared: Cartoon representation of the DEAH-box RNA-
helicase Prp43 from chaetomium thermophilum bound to ADP (purple, PDB ID: 5D0U [65]) in alignment
with Prp43 from saccharomyces cerevisiae in complex with CDP (cyan, PDB ID: 5JPT [54], left) and in
alignment with the DEAH-box RNA helicase Prp2 in complex with ADP (orange, PDB ID: 6FAA [57],
right). Prp2 is closely related to Prp43 and is necessary for the catalytic activation of the spliceosome in
pre-mRNA splicing [37].

the theory developed to compare the protein structures depicted in Figure 2. Our major
findings can be summarized as follows:

5D0U vs 5JPT: 5D0U and 5JPT are two structures of the same protein from different
organisms. Consequently, their secondary structure elements can almost be aligned per-
fectly (see Figure 2, left). Only small parts of the structures are slightly shifted and do not
overlap in the alignment. Applying (9) for this comparison generally yields no discrimina-
tion between these two protein structures, as DoD(β) is robust with respect to these kinds
of differences. This robustness indeed makes the proposed method particularly suitable for
protein structure comparison.

5D0U vs 6FAA: 5D0U and 6FAA are structures from closely related proteins and thus
they are rather similar. Their alignment (Figure 2, right) shows minor differences in the
orientation of some secondary structure elements and that 5D0U contains an α-helix that
is not present in 6FAA. We find that DoD(β) is highly sensitive to such a deviation from
H0, as the proposed procedure discriminates very well between both structures already for
small sample sizes.

Besides of testing H0, we mention that our theory immediately allows to perform tests for
relevant differences, i.e., to test H : DoD(β) ≤ ε vs K : DoD(β) > ε for some specified ε > 0
(see e.g. Munk and Czado [48] or Dette et al. [27] for a discussion). Further, k-sample
comparisons and asymptotic confidence intervals for DoD(β) can be obtained analogously.
Our results also justify subsampling (possibly in combination with bootstrapping) as an
effective scheme to reduce the computational costs of O

(
(m ∨ n)2

)
further to evaluate

8
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D̂oD(β) for large scale applications.

1.4 Related Work

First, we note that Un and Vm can be viewed as empirical c.d.f.’s of the N := n(n − 1)/2
and M := m(m − 1)/2 random variables dX (Xi, Xj) , 1 ≤ i < j ≤ n, and dY(Yk, Yl),
1 ≤ k < l ≤ m, respectively. Hence, (4) can be viewed as the one dimensional empirical
Kantorovich distance with N and M (dependent) data, respectively. There is a long stand-
ing interest in distributional limits for the one dimensional empirical Kantorovich distance
[13, 24, 25, 48, 61, 64] as well as for empirical Kantorovich type distances with more general
cost functions [11, 12]. Apparently, the major difficulty in our setting arises from the de-
pendency of the random variables {dX (Xi, Xj)} and the random variables {dY(Yk, Yl)}, re-
spectively. Compared to the techniques available for stationary and α-dependent sequences
[22, 23], the statistic D̂oD(β) admits an intrinsic structure related to U - and U -quantile
processes [3, 49, 71]. Note that for β > 0 we could have used the results of Wendler [71] to

derive the asymptotics of D̂oD(β) as well, as they provide almost sure approximations of
the empirical U -quantile processes U−1

n :=
√
n
(
U−1
n − U−1

)
and V−1

m :=
√
m
(
V −1
m − V −1

)

in `∞[β, 1− β], however at the expense of slightly stronger smoothness requirements on U
and V . In contrast, the more interesting case β = 0 is much more involved as the processes
U−1
n and V−1

m do in general not converge in `∞(0, 1) under Condition 1.3 and the technique
in Wendler [71] fails. Under the null hypothesis, we circumvent this difficulty by targeting
our statistic for β = 0 directly, viewed as a process indexed in β. Under the alternative,
we show the Hadamard differentiability of the inversion functional φinv onto the space of
R-valued, integrable functions on (0, 1) (denoted as `1(0, 1)) and verify that this is sufficient
to derive (8).
Notice that tests based on distance matrices appear naturally in several applications, see,
e.g., the recent works by Baringhaus and Franz [6], Montero-Manso and Vilar [47], Se-
jdinovic et al. [59], where the two sample homogeneity problem, i.e., testing whether two
probability measures µ, ν ∈ P(Rd) are equal, is considered for high dimensions. Most sim-
ilar in spirit to our work is Brécheteau [15] who also considers an asymptotic statistical
test for a different lower bound of the Gromov-Wasserstein distance. This is based on a
nearest neighbor-type approach and subsampling. However, the subsampling scheme is
such that asymptotically all distances considered are independent, while we explicitly deal
with the dependency structures present in the entire sample of the n(n − 1)/2 distances.
In Section 4.2 and Section 5.1 we empirically demonstrate that this leads to an increase
of power and compare our test with the one proposed by Brécheteau [15] in more detail.
Closely related from a practical point of view is also the work of Gellert et al. [32], who
used and empirically compared several lower bounds of the Gromov-Wasserstein distance
for clustering of various redoxins including our lower bound in (2). In fact, to reduce the
computational complexity they heuristically employed a bootstrap scheme related to the
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one investigated in this paper and reported empirically good results. Finally, we mention
that permutation based testing for U -statistics (see e.g. Berrett et al. [10]) is an interesting
alternative to our bootstrap test and worth to be investigated further in our context.

1.5 Organization of the Paper

Section 2 states the main results and is concerned with the derivation of a simple finite
sample bound for the expectation of D̂oD(β) as well as the proofs of (7) and (8). In Sec-
tion 3 we propose for β ∈ (0, 1/2) a bootstrapping scheme to approximate the quantiles of

Ξ defined in (7). Afterwards in Section 4 we investigate the speed of convergence of D̂oD(β)

to its limit distribution under H0 in a Monte Carlo study. In this section we further study
the introduced bootstrap approximation and investigate what kind of differences are de-
tectable employing D̂oD(β) for H0 by means of various examples. We apply the proposed
test for the discrimination of 3-D protein structures in Section 5 and compare our results to
the ones obtained by the method of Brécheteau [15]. Our simulations and data analysis of

the example introduced previously (see Figure 2) suggest that the proposed D̂oD(β) based
test outperforms the one proposed by Brécheteau [15] for protein structure comparisons.
In part Part I of the supplement, we provide additional details for the examples consid-
ered and give the full, technical proofs of our main results. Furthermore, we include in
Supplement I.C a more general consideration of distributions of Euclidean distances of a
certain class of metric measure spaces and Supplement I.E contains additional material
on simulation results and examples. Part II of the supplement contains several technical
auxiliary results that seem to be folklore, but have not been written down explicitly in
the literature, to the best of our knowledge. An R package, that implements the test
proposed in Section 3 (see (15)), is available at https://anonymous.4open.science/r/

Distribution-of-Distances-67DC/.

2 Limit Distributions

In this section, we investigate the limit behavior of the proposed test statistic under the
hypothesis H0 in (3), where it holds µU = µV (see Theorem 2.6), and under the alternative
H1 in (3), where we have µU 6= µV (see Theorem 2.7).

2.1 Conditions on the distributions of distances

Before we come to the limit distributions of the test statistic D̂oD(β) under H0 and H1,
we discuss Condition 1.2 and Condition 1.3. We ensure that these conditions comprise
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reasonable assumptions on metric measure spaces that are indeed met in some standard
examples.

Example 2.1. Let X1 be the unit square in R2, dX1(x, y) = ||x − y||∞ for x, y ∈ R2

and let µX1 the uniform distribution on X1. Let X,X ′ i.i.d.∼ µX1 . Then, a straightforward
calculation shows that the density u1 of dX1(X,X ′) is given as u1(s) = 4s3 − 12s2 + 8s, if
0 ≤ s ≤ 1, and zero else. For an illustration of u1 see Figure 3. Obviously, u1 is strictly
positive and continuous on (0, 1) and thus Condition 1.2 is fulfilled for any β ∈ (0, 1/2) in
the present setting. Furthermore, we find that for t ∈ (0, 1) the quantile function of u1 is

given as U−1
1 (t) = −

√
1−
√
t+ 1. Since

∣∣(U−1
1 )′(t)

∣∣ =
1

4
√

1−
√
t
√
t
≤ t− 1

2 (1− t)− 1
2

for t ∈ (0, 1), the requirements of Condition 1.3 are satisfied.

Given two random point clouds in Rd, it is often natural to assume that they are uniform
samples from some compact set and to compare them based on their Euclidean distances,
which are easily computable. Even if both samples stem from a curve or a hypersurface,
this approach might be reasonable, since the corresponding (possibly more meaningful)
intrinsic distances are unknown in general. Hence, the distribution of distances of standard
Euclidean metric measure spaces (i.e. metric measure spaces (X , dX , µX ), where dX denotes
the Euclidean distance and µX the uniform distribution on X ) deserve special attention.
In the following, let Sd−1 be the unit sphere in Rd.

Example 2.2. Let X2 denote a disc in R2 with diameter 1 and let X3 denote a square in
R2 with diameter 1. Let X4 be the the sphere S1, X5 the sphere S2 and X6 the sphere S4.
Furthermore, let X7 = [0, 1]2∪ ([0, 1]× [4, 5]). Now, consider the standard Euclidean metric
measure spaces induced by the sets Xi and denote by ui the density of the distribution
of distances of the respective space, 2 ≤ i ≤ 7. All densities are illustrated in Figure 3.
In Section B.1 of the supplement, we carefully check which of the just defined metric
measure spaces meet the requirements of Condition 1.2 for all β > 0 and which meet the
requirements of Condition 1.3. Our findings show that only the distribution of distances
of X4 and X7 fail to meet the conditions of Condition 1.3 and that only X7 fails to meet
the requirements of Condition 1.2 for all β > 0 (indeed it does not meet the requirements
of Condition 1.2 for any β > 0).

Due to the importance of standard Euclidean metric measure spaces, we will provide simpler
conditions than Condition 1.2 and Condition 1.3 for these spaces in the following. However,
Example 2.2 already suggests that the distributions of distances of standard Euclidean
metric measure spaces based on curves or surfaces might be less regular and more complex
(X3 does not meet the requirements of Condition 1.3, the density u3 is unbounded) than
those of spaces based on sets with non-empty interior. Therefore, we concentrate in a first
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Fig. 3: Distribution of distances II: Representation of the densities u1 (left, red), u2 (left, green), u3

(left, blue), u4 (middle, red), u5 (middle, green), u6 (middle, blue) and u7 (right) calculated in Example 2.1
and Example 2.2.

step on spaces of the latter kind. We require some notation. Let λd denote the Lebesgue
measure in Rd and let A ⊂ Rd, d ≥ 2, be a bounded Borel set with λd(A) > 0. Recall
that y ∈ Rd is determined by its polar coordinates (t, v), where t = ‖y‖2 and v ∈ Sd−1

is the unit length vector y/t. Thus, we define the covariance function [63, Sec. 3.1] for
y = tv ∈ Rd as KA(t, v) = KA(y) = λd (A ∩ (A− y)) , where A− y = {a− y : a ∈ A}, and
introduce the isotropized set covariance function [63, Sec. 3.1]

kA(t) =
1

(λd(A))2

∫

Sd−1

KA(t, v) dv.

Furthermore, we define the diameter of a given metric space (X , dX ) as diam (X ) =
sup{dX (x1, x2) : x1, x2 ∈ X}.

Lemma 2.3. Let X ⊂ Rd, d ≥ 2, be a compact Borel set with λd(X ) > 0, dX the Euclidean
metric and µX the uniform distribution on X . Let diam (X ) = D.

(i) If kX is strictly positive on [0, D), then the induced metric measure space (X , dX , µX )
meets the requirements of Condition 1.2 for any β ∈ (0, 1/2).

(ii) If additionally there exists ε > 0 and η > 0 such that

1. the function kX is monotonically decreasing on (D − ε,D);

2. we have kX (t) ≥ cX (D − t)η for t ∈ (D − ε,D), for some 0 < cX <∞,

then (X , dX , µX ) also fulfills the requirements of Condition 1.3.

Remark 2.4. Let X ⊂ Rd1 with λd1(X ) > 0 and Y ⊂ Rd2 with λd2(Y) = 0, d1 ≤ d2, and
consider the standard Euclidean metric measure spaces (X , dX , µX ) and (Y, dY , µY) induced
by X and Y, respectively. Suppose that φ : X → Y is a measure preserving isometry (i.e.

φ#µX = µY) and let X,X ′ i.i.d.∼ µX independent of Y, Y ′ i.i.d.∼ µY . Then, it clearly holds
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that the distributions of distances of both spaces agree, i.e., dX (X,X ′) D
= dY(Y, Y ′). Hence,

Lemma 2.3 can be applied to Y as well.

The full proof of the above lemma is deferred to Section B.2 of the supplement. To conclude
this subsection, we remark that we investigate the distributions of distances of standard
Euclidean metric measure spaces based on various curves and hypersurfaces in Section C
of the supplement. There, we derive, under several technical assumptions, an analogue of
Lemma 2.3.

2.2 The Hypothesis

Throughout this subsection we assume that the distributions of distances of the two con-
sidered metric measure spaces (X , dX , µX ) and (Y, dY , µY) are equal, i.e., that µU = µV .

Further, assume that X1, . . . , Xn
i.i.d.∼ µX and Y1, . . . , Ym

i.i.d.∼ µY are two independent sam-

ples. In order to study the finite sample bias of the statistic D̂oD(β), the following bound
is helpful (for its proof see Section B.3 of the supplementary material).

Theorem 2.5. Let β ∈ [0, 1/2), let µU = µV and let Setting 1.1 be met. Further, let

J2

(
µU
)

=

∫ ∞

−∞

U(t)(1− U(t))

u(t)
dt <∞. (10)

Then it holds for m,n ≥ 3 that

E
[
D̂oD(β)

]
≤
(

8

n+ 1
+

8

m+ 1

)
J2(µU ).

The next theorem states that D̂oD(β), based on X1, . . . , Xn
i.i.d.∼ µX and Y1, . . . , Ym

i.i.d.∼
µY , converges, appropriately scaled, in distribution to the integral of a squared Gaussian
process. This will allow us to construct an asymptotic level α test using (estimates of) the
theoretical 1−α quantiles of Ξ, denoted as ξ1−α, in (9). The case β ∈ (0, 1/2) is considered
in part (i), whereas the case β = 0 is considered in part (ii).

Theorem 2.6. Assume Setting 1.1 and suppose that µU = µV .

(i) Let Condition 1.2 be met and let m,n→∞ such that n/(n+m)→ λ ∈ (0, 1). Then,

nm

n+m

∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt Ξ :=

∫ 1−β

β
G2(t) dt,

where G is a centered Gaussian process with covariance

Cov
(
G(t),G(t′)

)
=

4

(u ◦ U−1(t))(u ◦ U−1(t′))
ΓdX (U−1(t), U−1(t′)). (11)
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Here,

ΓdX
(
t, t′
)

=

∫ ∫
1{dX (x,y)≤t} dµX (y)

∫
1{dX (x,y)≤t′} dµX (y) dµX (x)

−
∫ ∫

1{dX (x,y)≤t} dµX (y) dµX (x)

∫ ∫
1{dX (x,y)≤t′} dµX (y) dµX (x).

(ii) If we assume Condition 1.3 instead of Condition 1.2, then the analogous statement holds
for the untrimmed version, i.e., for β = 0.

The full proof of Theorem 2.6 can be found in Section B.4 of the supplementary material.

2.3 The Alternative

In this subsection, we are concerned with the behavior of D̂oD(β) given that the distribu-
tions of distances of the metric measure spaces (X , dX , µX ) and (Y, dY , µY) do not coincide.
We distinguish the cases β ∈ (0, 1/2) and β = 0.

Theorem 2.7. Assume Setting 1.1.

(i) Assume that Condition 1.2 holds, let m,n → ∞ such that n
n+m → λ ∈ (0, 1) and let

DoD(β) > 0. Then, it follows that

√
nm

n+m

(
D̂oD(β) −DoD(β)

)

converges in distribution to a normal distribution with mean 0 and variance

16λ

U−1(1−β)∫

U−1(β)

U−1(1−β)∫

U−1(β)

(x− V −1(U(x)))(y − V −1(U(y)))ΓdX (x, y) dxdy

+16(1− λ)

V −1(1−β)∫

V −1(β)

V −1(1−β)∫

V −1(β)

(U−1(V (x))− x))(U−1(V (y))− y)ΓdY (x, y) dxdy.

Here, ΓdX (x, y) is as defined in Theorem 2.6 and ΓdY (x, y) is defined analogously.

(ii) If we assume Condition 1.3 instead of Condition 1.2, then the analogous statement
holds for the untrimmed version, i.e., for β = 0.

The proof of Theorem 2.7 is given in Section B.5 of the supplementary material.
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Remark 2.8. The assumptions of Theorem 2.7 (i) include that β is chosen such that
DoD(β) > 0. Suppose on the other hand that µU 6= µV , but DoD(β) = 0, i.e., their
quantile functions agree Lebesgue a.e. on the interval [β, 1 − β]. Then, the limits found
in Theorem 2.7 are degenerate and it is easy to verify along the lines of the proof of
Theorem 2.6 that D̂oD(β) exhibits the same distributional limit as in the case DoD(β) = 0.

Remark 2.9. As noted by a referee, it is possible to slightly relax the assumptions of
Theorem 2.7 (ii). It is sufficient to assume that U and V admit continuous densities
that are strictly positive on the interior of their respective support and that J2(µU ) (see
(10) for a definition) as well as J2(µV ) are finite (see Section B.5.2 of the supplement for
more information). These relaxed assumptions are related to those of Proposition 2.3 of
Del Barrio et al. [26].

Remark 2.10. An immediate application for Theorem 2.7 is testing for relevant differences
(or equivalence testing), i.e., testing H : DoD(β) ≤ ε vs K : DoD(β) > ε (or K vs H) for
some specified ε > 0 (see [27, 48]). In both cases, the quantiles required for testing are
quantiles of the limiting normal distribution. Hence, a consistent estimator for the limiting
variance (e.g. a plug-in estimator) yields consistent estimates for the quantiles required.

Remark 2.11. So far we have restricted ourselves to the case p = 2. However, most of our
findings transfer to results for the statistic D̂oDp, p ∈ [1,∞), in (4). Using the same ideas

one can directly derive Theorem 2.5 and Theorem 2.6 for (a trimmed version of) D̂oDp

(see Sections B.3 and B.4 of the supplement) under slightly different assumptions. Only
the proof of Theorem 2.7 requires more care (see Section B.4 in the supplement).

3 Bootstrapping the Quantiles

The quantiles of the limit distribution of D̂oD(β) under H0 depend on the unknown distri-
bution U and are therefore in general not accessible. One possible approach, which is quite
cumbersome, is to estimate the covariance matrix of the Gaussian limit process G from
the data and use this to approximate the quantiles required. Alternatively, we suggest to
directly bootstrap the quantiles of the limit distribution of D̂oD(β) under H0. To this end,
we define and investigate the bootstrap versions of Un, U−1

n and U−1
n :=

√
n
(
U−1
n − U−1

)
.

Let µn denote the empirical measure based on the sample X1, . . . , Xn. Given the sample
values, let X∗1 , . . . , X

∗
nB

be an independent identically distributed sample of size nB from
µn. Then, the bootstrap estimator of Un is defined as

U∗nB (t) :=
2

nB(nB − 1)

∑

1≤i<j≤nB
1{dX (X∗i ,X

∗
j )≤t},
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the bootstrap empirical U -process is for t ∈ R given as U∗nB (t) =
√
nB(U∗nB (t)−Un(t)) and

the corresponding (empirical) bootstrap quantile process for t ∈ (0, 1) as

(
U∗nB

)−1
(t) =

√
nB

((
U∗nB

)−1
(t)− U−1

n (t)
)
.

One can easily verify along the lines of the proof of Theorem 2.6 that for n → ∞ it also
holds for β ∈ (0, 1/2)

∫ 1−β

β

(
U−1
n (t)

)2
dt Ξ =

∫ 1−β

β
G2(t) dt. (12)

This suggests to approximate the quantiles of Ξ by the bootstrapped ones of

Ξ∗nB :=

∫ 1−β

β

((
U∗nB

)−1
(t)
)2

dt. (13)

Let β ∈ (0, 1/2), suppose that Condition 1.2 holds, let
√
nB = o(n) and let ξ

(R)
nB ,α denote

the empirical bootstrap quantile of R independent bootstrap realizations Ξ
∗,(1)
nB , . . . ,Ξ

∗,(R)
nB .

Under these assumptions, we derive (cf. Section D of the supplement) that for any α ∈
(0, 1),

lim
n,nB ,R→∞

P
(∫ 1−β

β

(
U−1
n (t)

)2
dt ≥ ξ(R)

nB ,α

)
= α. (14)

Because of (12) the statement (14) guarantees the consistency of ξ
(R)
nB ,α for n, nB, R→∞.

Hence, a consistent bootstrap analogue of the test defined by the decision rule (9) is for
β ∈ (0, 1/2) given by the bootstrapped Distribution of Distances (DoD)-test

Φ∗DoD(Xn,Ym) =

{
1, if nm

n+mD̂oD(β) > ξ
(R)
nB ,1−α

0, if nm
n+mD̂oD(β) ≤ ξ(R)

nB ,1−α.
(15)

4 Simulations

We investigate the finite sample behavior of D̂oD(β) in Monte Carlo simulations. To this

end, we simulate the speed of convergence of D̂oD(β) under H0 to its limit distribution (see
Theorem 2.6). Moreover, we showcase the accuracy of the approximation by the bootstrap
scheme proposed in Section 3 and investigate what kind of differences are detectable in
the finite sample setting using the bootstrapped DoD-test Φ∗DoD defined in (15). Based
on Theorem 2.7, it is further possible to test H : DoD(β) ≤ ε vs K : DoD(β) > ε for
some specified ε > 0 (see Remark 2.10). However, only few distributions of distances are
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known explicitly and hence the choice of ε is slightly problematic. Therefore and due to
page restrictions, we did not include this application in the paper. All simulations were
performed in R (R Core Team [43]). In order to increase the readability of this section,
several tables have been postponed to Section E.1 of the supplementary material.

4.1 The Hypothesis

We begin with the simulation of the finite sample distribution under the hypothesis and
consider the metric measure space (X , dX , µX ) from Example 2.1, where X denotes the
unit square in R2, dX the distance induced by the supremum norm and µX the uniform
distribution on X . We generate for n = m = 10, 50, 100, 250 two samples Xn and X ′n
of µX and calculate for β = 0.01 the statistic n

2 D̂oD(β). For each n, we repeat this
process 10,000 times. The finite sample distribution is then compared to a Monte Carlo
sample of its theoretical limit distribution (sample size 10,000). Kernel density estimators
(Gaussian kernel with bandwidth given by Silverman’s rule) and Q-Q-plots are displayed

in Figure 4. All plots highlight that the finite sample distribution of D̂oD(β) is already well
approximated by its theoretical limit distribution for moderate sample sizes. Moreover, for
n = 10 the quantiles of the finite sample distribution of D̂oD(β) are in general larger than
the ones of the sample of its theoretical limit distribution, which suggests that the DoD-
test will be rather conservative for small n. For n ≥ 50 most quantiles of the finite sample
distribution of D̂oD(β) match the ones of its theoretical limit distribution reasonably well.

4.2 The Bootstrap Test

We now investigate the finite sample properties of the bootstrap test Φ∗DoD (defined in (15)).
To this end, let µW1 denote the uniform distribution on a 3D-pentagon (inner pentagon
side length: 1, Euclidean distance between inner and outer pentagon: 0.4, height: 0.4) and
let µW6 denote the uniform distribution on a torus (center radius: 1.169, tube radius: 0.2)
with the same center and orientation (see the plots for t0 = 0 and t6 = 1 in Figure 5).
To interpolate between these spaces, we consider Π

µW6
µW1

(t), t ∈ [0, 1], the 2-Wasserstein
geodesic between µW1 and µW6 (see e.g. Santambrogio [56, Sec. 5.4] for a formal definition).
Figure 5 displays for ti ∈ {0, 0.1, 0.2, 0.4, 0.6, 1} the metric measure spaces (Wi, dWi , µWi),

where Wi = supp
(

Π
µW6
µW1

(ti)
)

, dWi denotes the Euclidean distance and µWi = Π
µW6
µW1

(ti),

discretely approximated based on 40,000 points with the WSGeometry-package [34].

Before we employ the bootstrap DoD-test with β = 0.01 to compare W1 to the spaces
{Wi}6i=1, we consider the bootstrap approximation proposed in Section 3 in this setting.
Therefore, we generate n = 100, 250, 500, 1000 realizations of µW1 and calculate for nB = n
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Fig. 4: Finite sample accuracy of the limit law under the hypothesis: Upper row: Kernel density

estimators of the sample of D̂oD(β) (in blue) and a Monte Carlo sample of its theoretical limit distribution
(in red, sample size 10,000) for n = 10, 50, 100, 250 (from left to right). Lower row: The corresponding
Q-Q-plots.

t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

Fig. 5: Different metric measure spaces: A graphical illustration of the metric measure spaces
{(Wi, dWi , µWi)}6i=1.
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Fig. 6: Bootstrap under the hypothesis: Illustration of the n out of n plug-in bootstrap approximation

for the statistic D̂oD(β) based on two samples from (W1, dW1 , µW1). Upper row: Kernel density estimators

of 1000 realizations of D̂oD(β) (in red) and its bootstrap approximation (blue, 1000 replications) for n =
100, 250, 500, 1000 (from left to right). Lower row: The corresponding Q-Q-plots.

based on these samples 1000 times

Ξ∗nB =

∫ 0.99

0.01

((
U∗nB

)−1
(t)
)2

dt

as described in Section 3. We then compare for the different n the obtained finite sample
distributions to ones of D̂oD(β)(W1,n,W ′1,n) (W1,n and W ′1,n denote two independent sam-
ples of µW1 of size n). The results are summarized as kernel density estimators (Gaussian
kernel with bandwidth given by Silverman’s rule) and Q-Q-plots in Figure 6. Both, the
kernel density estimators and the Q-Q-plots show that for n ≤ 250 the bootstrap quantiles
are clearly larger than the empirical quantiles leading to a rather conservative procedure
for smaller n, an effect that disappears for large n.

Next, we aim to apply Φ∗DoD for β = 0.01 at 5%-significance level for discriminating
between (W1, dW1 , µW1) and each of the spaces (Wi, dWi , µWi), i = 1, . . . , 6. To this end,
we bootstrap the quantile ξ0.95 based on samples from µW1 as described in Section 3
(R = 1000) and then we apply the test Φ∗DoD, defined in (15), with the bootstrapped

quantile ξ
(R)
nB ,α on 1000 samples of size n = 100, 250, 500, 1000 as illustrated in Section 3.

We find that the prespecified significance level (see t1 = 0) is never exceeded and the test is
rather conservative for smaller n. Concerning the power of the test Φ∗DoD, we observe that
it consistently increases with the increasing Wasserstein distance between the measures
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µWi , 1 ≤ i ≤ 6. For n ≥ 250 the differences between W1 and Wi, 4 ≤ i ≤ 6 (see Figure 5)
are clearly detected. If we choose n = 1000, even the spaces W1 and W3 (that correspond
to t1 and t3) are almost always discriminated, although in this case, the (approximated)
Wasserstein distance between µW1 and µW3 is smaller than 0.034. The test even develops
some power for the comparison ofW1 andW2 despite their strong similarity (see Figure 5).
The detailed results are summarized in Table E.1 in Section E.1 of the supplement.

In order to highlight how much power we gain in the finite sample setting by carefully han-
dling the occurring dependencies we repeat the above comparisons, but calculate D̂oD(β)

only based on the independent distances, i.e., on the distances {dX (X1, X2), dX (X3, X4),
. . . , dX (Xn−1, Xn)} and {dY(Y1, Y2), dY(Y3, Y4), . . . , dY(Ym−1, Ym)}, instead of all available
distances. From now on this statistic is denoted as D̂β,ind. Similarly, we construct an

asymptotic level α test ΦDind based on D̂β,ind. The results for comparing (W1, dW1 , µW1)
and {(Wi, dWi , µWi)}6i=1 using ΦDind with β = 0.01 are displayed in Table E.2 in Section E.1
of the supplementary material. Apparently, ΦDind keeps its prespecified significance level
of α = 0.05, but develops significantly less power than Φ∗DoD in the finite sample setting.

Furthermore, we investigate the influence of β on our results. To this end, we repeat the
previous comparisons with n = 500 and β = 0, 0.01, 0.05, 0.25. It highlights that the test
Φ∗DoD holds its level for all β. While the results are overall comparable, we observe some
slight differences for the various values of β. For instance, for β = 0.25 the test Φ∗DoD
develops slightly more power for the comparison of (W1, dW1 , µW1) and (W3, dW3 , µW3)
than for β = 0. Apparently, in this case the respective (true) distributions of distances
strongly resemble each other for small and large distances and the comparison of W1 and
W3 becomes to some degree more informative, if we do not consider these distances. All
results are summarized in Table E.3 in Section E.1 of the supplement.

To conclude this subsection, we remark that in the above simulations the quantiles required
for the applications of Φ∗DoD were always estimated based on samples of µV . Evidently,
this slightly affects the results obtained, but we found that this influence is not significant.

5 Structural Protein Comparisons

Next, we apply the DoD-test to compare the protein structures displayed in Figure 2.
First, we compare 5D0U with itself, in order to investigate the actual significance level of
the proposed test under H0 in a realistic example. Afterwards, 5D0U is compared with
5JPT and with 6FAA, respectively. However, before we can apply Φ∗DoD, we need to model
proteins as metric measure spaces. Thus, we briefly recap some well known facts about
proteins to motivate the subsequent approach. A protein is a polypeptide chain made up of
amino acid residues linked together in a definite sequence. Tracing the repeated amide, Cα

and carbonyl atoms of each amino acid residue, a so called backbone can be identified. It is
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well established that the distances between the Cα atoms of the backbone contain most of
the information about the protein’s structure [35, 36, 55]. In order to verify that the test
is able to compare protein structures based on subsamples (which might be important for
database queries), we randomly select n = 10, 50, 100, 250, 500 from the 650-750 Cα atoms
of the respective proteins and assume that the corresponding coordinates are samples of
unknown distributions {µXi}3i=1 supported on Borel sets Xi ⊂ R3 with λ3(Xi) > 0 that are
equipped with the Euclidean distance. We stress that although the backbone of a protein
is usually represented as a curve in R3 (see e.g. Figure 2), it is important to note that these
representations are extracted from indirect, noisy observations of the electron density (see
[53]). In consequence, it is more realistic to assume that positions are drawn from a tube-
like structure with non-empty interior. We choose β = 0.01, α = 0.05 and determine for

each n the bootstrap quantile ξ
(R)
nB ,0.95 based on a sample of size n from 5D0U (R = 1000,

nB = n) as illustrated in Section 3. This allows us to directly apply the test Φ∗DoD on the
drawn samples. The results of our comparisons are summarized in Figure 7. It displays the
empirical significance level resp. the empirical power of the proposed method as a function
of n.

5D0U vs 5D0U: In accordance with the previous simulation study this comparison (see
Figure 7, left) shows that Φ∗DoD is conservative in this application as well.

5D0U vs 5JPT: We have already mentioned in Section 1.3 that 5D0U and 5JPT are
structures of the same protein from two different organisms and thus highly similar (their
alignment has a root mean deviation of less than 0.59 Å). The empirical power for this
comparison (Figure 7, middle) stays for all n below α = 0.05. Thus, the test does not dis-
criminate between the two protein structures in accordance with our biological knowledge.

5D0U vs 6FAA: Although the protein structures 5D0U and 6FAA are similar at large
parts (their alignment has a root mean square deviation of 0.75 Å), the DoD-test is able
to discriminate between them with high statistical power. The empirical power (Figure 7,
right) is a strictly monotonically increasing function in n that is greater than 0.63 for
n ≥ 100 and approaches 1 for n = 500 (recall that we use random samples of the 650− 750
Cα atoms).

Finally, we remark that throughout this section we have always based the quantiles required
for testing on samples of the protein structure 5D0U. By the definition of Φ∗DoD it is evident
that this influences the results. If we compared the proteins 6FAA and 5D0U using Φ∗DoD
with quantiles obtained by a sample of 6FAA, the results would change slightly, but remain
comparable.

5.1 Comparison to the DTM-test

We investigate how the test proposed by Brécheteau [15], which is based on an empirical
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Fig. 7: Protein Structure Comparison: Empirical significance level for comparing 5D0U with itself
(left), empirical power for the comparison of 5D0U with 5JPT (middle) as well as the the empirical power
for comparing 5D0U with 6FAA (right). 1000 repetitions of the test Φ∗DoD have been simulated for each n.

version of another lower bound for the Gromov-Kantorovich distance, compares to Φ∗DoD.
To this end, we first briefly introduce the method proposed in [15], empirically study various
toy examples and analyze the differences of both tests for protein structure comparison.
We summarize the results of these comparisons here and give the tables with the precise
results in Section E.2 of the supplement.

Let (X , dX , µX ) denote a metric measure space with X1, . . . , Xn
i.i.d.∼ µX . Let Xn =

{X1, . . . , Xn}. For nS ≤ n the empirical distance to measure signature with mass pa-
rameter κ = k/n is then defined as

DXn,κ (nS) :=
1

nS

nS∑

i=1


1

k

k∑

j=1

dX
(
Xi, X

(j)
i

)
δXn,κ(Xi)


 , (16)

where X
(j)
i denotes the j’th nearest neighbor of Xi in the sample Xn (for general κ see

Brécheteau [15]). In particular, we observe that DXn,κ (nS) denotes a discrete probability
distribution on R. Let DYn,κ (nS) be defined analogously to (16). Then, given that nS

n =
o(1), Brécheteau [15] constructs an asymptotic level α test for H∗0 defined in Section 1.1
based on the 1-Kantorovich distance between the respective empirical distance to measure
signatures, i.e., on the test statistic

TnS ,κ(Xn,Yn) := K1 (DXn,κ (nS) , DYn,κ (nS)) . (17)

The corresponding test, that rejects if TnS ,κ(Xn,Yn) exceeds a bootstrapped critical value

qDTMα , is denoted as ΦDTM in the following. Brécheteau [15] proves that, similar to D̂oD(β),
the statistic TnS ,κ is a (subsampled) empirical version of a lower bound Tκ(X ,Y) of the
Gromov-Kantorovich distance (see [15, Sec. 1] for a formal definition). It is important
to note that there are metric measure spaces X and Y such that Tκ(X ,Y) = 0 although
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DoD(0)(X ,Y) > 0 and vice versa (see Section B.7 of the supplement detailed comparison
of Tκ(X ,Y) and DoD(0)(X ,Y)).

We now compare both methods in two simulated examples. To this end, we first repeat
the comparisons of (W1, dW1 , µW1) with the spaces {(Wi, dWi , µWi)}6i=1 (see Section 4.2 for
the definitions) with ΦDTM . Secondly, we simulate the empirical power of Φ∗DoD in the
setting of Section 4.2 of Brécheteau [15] for the comparison of different spiral types. For
both comparisons, we choose a significance level of α = 0.05. We remark that the test
ΦDTM is not easily applied in the finite sample setting. Although it is an asymptotic test
of level α, the parameters nS and κ have to be chosen carefully for the test to hold its
prespecified significance level for finite samples. In particular, choosing nS and κ large
violates the assumption of (asymptotic) independence underlying the results of Brécheteau
[15]. In both settings, we found comparable results. While the test ΦDTM (just like Φ∗DoD)
approximately holds his α level in both frameworks (κ ≤ 0.1 and nS ≤ n/15 for the
comparison of the spaces {(Wi, dWi , µWi)}6i=1/κ = 0.05 and nS = 20 for spiral comparison
of [15, Sec. 4.2]), the additional subsampling in the definition of TnS ,κ(X ,Y) in (17) leads
to a notable loss of power. The complete results of these comparisons can be found in
Table E.4 and Table E.5 of Section E.2 of the supplement.

Finally, we come to the protein structure comparison. We repeat the previous comparisons
of 5D0U, 5JPT and 6FAA for a significance level α = 0.05, n = 100, 250, 500, nS = N/5
and κ = 0.05, 0.1. The test ΦDTM approximately holds its significance level and is more
sensitive to small local changes such as slight shifts of structural elements for small mass
parameters κ compared to Φ∗DoD. However, the evident differences between 5D0U and
6FAA are detected much better by Φ∗DoD (see Figure 7). The complete results of this
numerical study are reported in Table E.6 (cf. Section E.2 of the supplement).

5.2 Discussion

We conclude this section with some remarks on the modeling of proteins as metric measure
spaces. So far, we have treated all Cα atoms as equally important, although it appears to
be reasonable for some applications to put major emphasis on the cores of the proteins.
Further, one could have included that the error of measurement is in general higher for
some parts of the protein by adjusting the measure on the considered space accordingly. We
remark that throughout this section we have considered proteins as rigid objects and shown
that this allows us to efficiently discriminate between them. However, it is well known that
proteins undergo different conformational states. In such a case the usage of the Euclidean
metric as done previously will most likely cause Φ∗DoD to discriminate between the different
conformations, as the Euclidean distance is not suited for the matching of flexible objects
[31]. Depending on the application one might want to take this into account by adopting a
different metric reflecting (estimates of the) corresponding intrinsic distances and to modify
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the theory developed. Conceptually, this is straightforward but beyond the scope of this
illustrative example.
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Part I

Supplement A: Additional Details

In the first part of the supplementary material we reconsider Example 2.2, give the full
proofs of the theorems of Section 2 and investigate the DTM-signature introduced in Sec-
tion 5.1 more closely. Furthermore, we study more general distributions of Euclidean
distances, validate the bootstrap scheme suggested in Section 3 for β > 0 and present our
simulation results in more detail.
Throughout this part of the supplementary material || · || denotes the Euclidean norm
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Tab. 1: Distribution of distances: A summary of the results of Section B.1 where we check which of
the metric measure spaces Xi, 2 ≤ i ≤ 7, defined in Example 2.2 meet the requirements of Condition 1.2
for all β > 0 and which meet the requirements of Condition 1.3.

X2 X3 X4 X5 X6 X7

Condition 1.2 3 3 3 3 3 7

Condition 1.3 3 3 7 3 3 7

on Rd and B(R) denotes the Borel sets on R. Further, “⇒” denotes the classical weak
convergence (see Billingsley [6]), “ ” stands for weak convergence in the sense of Hoffman-

Jørgensen (see van der Vaart and Wellner [40, Part 1]) and “
P 
M

” denotes weak convergence

for the bootstrap as introduced in Kosorok [23, Sec. 2.2.3] . Moreover, we assume that the
random variables X1, . . . , Xn, Y1, . . . , Ym defined in Setting 1.1 live on a common proba-
bility space (Ω,A). Let T ⊂ Rd be an arbitrary set. Then, the space `∞(T ) denotes the
usual space of all uniformly bounded, R-valued functions on T and `p(T ) the one of all
p-integrable, R-valued functions on T . Further, Cb(T ) stands for the space of all continu-
ous, bounded, R-valued functions on T . Let (X ,M, µ) denote a measure space. Similarly
to the previous definitions, we denote by `p(µ) the space of all real valued functions on X
that are p-integrable with respect to µ.

B Proofs of Section 2 and Section 5.1

In the following section, we provide additional details for Example 2.2 and prove the
statements from Section 2 as well as Section 5.1.

B.1 Missing Details from Example 2.2

We reconsider the metric measure spaces Xi = (Xi, dXi , µXi), 2 ≤ i ≤ 7, defined in Ex-
ample 2.2 and verify that their respective distributions of distances (do not) meet the
requirements of Condition 1.2 for all β > 0 and Condition 1.3. The results of our consider-
ations are concisely summarized in Table 1. Throughout this section, we make use of the

notation introduced in Section 2.1 of the paper. We briefly recall that for Xi, X̃i i.i.d.∼ µXi ,

we define Ui(t) = P
(
dXi(X

i, X̃i) ≤ t
)

and ui(t) = U ′i(t), 2 ≤ i ≤ 7. Further, recall that

kXi denotes the isotropized set covariance function of the set Xi, i ∈ {2, 3} (see e.g. (B.3)
for a formal definition).

The metric measure space X2: First of all, we consider the Euclidean metric measure space
(X2, dX2 , µX2) based on the disc with diameter one. It was shown (see e.g. Moltchanov
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[30]) that u2, is given as

u2(t) =

{
8t
(

2
π arccos(t)− 2t

π

√
1− t2

)
, if 0 ≤ t ≤ 1

0, else.

It is easy to verify that u2 is continuous and strictly positive on the interior of its support
(i.e. the requirements of Condition 1.2 are met for all β > 0). Furthermore, we see that u2

is monotonically decreasing on [0.9, 1] and that for t ∈ [0.9, 1] we have (using Lemma B.2)
that

kX2(t) =
u2(t)

t
≥ 16

π
(2− t)2.

In consequence, it follows by Lemma 2.3 that X2 also meets the requirements of Condi-
tion 1.3.

The metric measure space X3: Next, we investigate the distribution of distances of the
Euclidean metric measure space (X3, dX3 , µX3), where X3 denotes a square with diameter
one. It has been shown in Philip [34] that the density u3 is given as

u3(t) =





4t
(
π + 2t2 − 4

√
2t
)
, if 0 ≤ t < 1/

√
2

4t
(

4 arctan
(

1√
2t2−1

)
− 2t2 + 4

√
2t2 − 1− 2− π

)
, if 1/

√
2 ≤ t ≤ 1

0, else.

Once again, it is easy to verify that u3 is continuous and strictly positive on the interior
of its support. Hence, X3 meets the restrictions of Condition 1.2 for all β > 0. Again, we
observe that u2 is monotonically decreasing on [0.9, 1] and that for t ∈ [0.9, 1] we have that

kX3(t) =
u3(t)

t
≥ (1− t)4.

Thus, an application of Lemma 2.3 shows that X3 meets the requirements of Condition 1.3.

The metric measure space X4: Recall that X4 denotes the Euclidean metric measure space
based on the sphere S1 ⊂ R2. In this case it has been shown (see e.g. [24]) that

U4(t) =





0, if t < 0
2
π arcsin(0.5t), if 0 ≤ t ≤ 2

1, if t > 2

and u4(t) =

{
1
π

√
1

1−(0.5t)2 , if 0 ≤ t ≤ 2

0, else.

It is straight forward to verify that u4 is strictly positive, but not continuous for t = 2 (see
e.g. the visualization of u4 in Figure 3 of the paper). Thus, it is immediately clear that X4

does not meet the requirements of Condition 1.3, as u4 is not continuous on [0, 2] (however
it meets the requirements of Condition 1.2 for all β > 0).
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The metric measure space X5: Next, we reconsider the Euclidean metric measure space
(X5, dX5 , µX5), where X5 = S2 ⊂ R3. Then, it follows (see e.g. [37]) that

U5(t) =





0, if t < 0
t2

4 , if 0 ≤ t ≤ 2

1, if t > 2

and u5(t) =

{
t
2 , if 0 ≤ t ≤ 2

0, else.

Clearly, u5 is continuous on [0, 2] and strictly positive on the interior of its support. Hence,
X5 meets the requirements of Condition 1.2 for all β > 0. In order to verify that the same
is true for X5 and Condition 1.3, we need to verify that there exist θ1, θ2 > −1 such that

∣∣(U−1
5 )′(t)

∣∣ ≤ cU5t
θ1(1− t)θ2 . (B.1)

Fortunately, it is easy to verify (see e.g. Section B.2) that (B.1) is equivalent to

(U5(t))−θ1 (1− U5(t))−θ2 ≤ cU5 |u5(t)| . (B.2)

Since u5 is strictly positive on the interior of its support and continuous, it is sufficient to
verify that there exists ε > 0, θ1, θ2 > −1 and a constant cU5 > 0 such that (U5(t))−θ1 ≤
cU5u5(t) for all t ∈ [0, ε] as well as (1− U5(t))−θ2 ≤ cU5u5(t) for t ∈ [1 − ε, 1] (this is
illustrated in the proof of Lemma B.2, see Section B.2). It is possible to verify that
(U5(t))1/2 ≤ u5(t) for t ∈ [0, 0.1]. As we have additionally that u5(t) > 1/2 for t > 1,
it immediately follows that there exists θ2 > −1 such that (1− U3(t))−θ2 ≤ u3(t) for all
t ∈ [1.9, 2].

The metric measure space X6: Further, we reconsider the Euclidean metric measure space
X6 based on the sphere S4 ⊂ R5. It has been shown by Sidiropoulos [37] that

U6(t) =





0, if t < 0
3t4

16 − 3t6

96 , if 0 ≤ t ≤ 2

1, if t > 2

and u4(t) =

{
3
4 t

3
(
1− t2/4

)
, if 0 ≤ t ≤ 2

0, else.

Once again it is easily checked that the assumptions imposed by Condition 1.2 are met in
this setting. With the same argumentation as previously, it is sufficient to verify that there
exists ε > 0, θ1, θ2 > −1 and a constant cU6 > 0 such that (U6(t))−θ1 ≤ cU6u6(t) for all
t ∈ [0, ε] as well as (1− U6(t))−θ2 ≤ cU6u6(t) for t ∈ [1 − ε, 1]. In this particular case, we
find that (U6(t))3/4 ≤ 2u6(t) for t ∈ [0, 0.1] as well as (1−U6(t))2/3 ≤ 2u6(t) for t ∈ [1.9, 2].

The metric measure space X7: Finally, we come to the Euclidean metric measure space

(X7, dX7 , µX7), where X7 = [0, 1]2 ∪ ([0, 1]× [4, 5]). Let X,X ′ i.i.d.∼ µX7 . Since µX ([0, 1]2) =
µX ([0, 1]× [4, 5]) = 0.5, it follows that P(dX7(X,X ′)) ≤

√
2) = 0.5, P(

√
2 ≤ dX7(X,X ′)) ≤

3) = 0 and P(dX7(X,X ′)) ≥ 3) = 0.5. Hence, there exists no β ∈ (0, 1/2) such that u7 is
strictly positive on [C1, C2] = [U−1

7 (β) − ε, U−1
7 (1 − β) + ε]. Consequently, Condition 1.2
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cannot be satisfied in this setting. The same arguments show that neither does Condi-
tion 1.3. In general, we see that a metric measure space (X , dX , µX ) cannot meet the
requirements of Condition 1.2 for all β > 0, if the set X is disconnected in such a way that
the diameters of both connected parts are smaller than the gap in between them. In such
a case the cumulative distribution function of the corresponding distribution of distances
is not strictly increasing and thus Condition 1.2 cannot hold for all β > 0.

B.2 Proof of Lemma 2.3

We start by showing that at least the smoothness requirements of Condition 1.2 and Con-
dition 1.3 are usually met when equipping compact sets X ⊂ Rd (with λd(X ) > 0) with the
Euclidean metric and the uniform distribution. For the special case d = 2 this has been
proven in Berrendero et al. [5, Prop. 1]. In the following, we briefly recap their arguments
and verify that they are also valid for general d ≥ 2.

We start by recalling the definition of the covariance function (cf. Section 2.1). Let λd
denote the Lebesgue measure in Rd. The covariance function of a bounded Borel set A ⊂ Rd
with λd(A) > 0, d ≥ 1, is defined by

KA(y) := λd (A ∩ (A− y)) ,

where y ∈ Rd, A− y = {a− y : a ∈ A}. Alternatively, KA can be expressed in terms of a
convolution of two indicator functions

KA = 1A ∗ 1−A,

where −A denotes the symmetric set −A = {−x : x ∈ A} [25]. This relates KA to the
density function of X − X ′, where X,X ′ are independent random variables uniformly
distributed on A [5]. The following lemma summarizes some relevant properties of KA (cf.
Cabo and Baddeley [12, Lemma 1.3] and Galerne [21, Prop. 2]).

Lemma B.1. Let A ⊂ Rd be a bounded Borel set with λd(A) > 0 and covariance function
KA.

(i) For all y ∈ Rd, 0 ≤ KA(y) ≤ KA(0) = λd(A). Moreover, KA(y) = 0 whenever
||y|| ≥ diam (A) , KA(y) = KA(−y) for all y ∈ Rd and KA is uniformly continuous
on Rd.

(ii) For any integrable f : [0,∞)→ R,

∫

A

∫

A
f(||x− y||) dx dy =

∫

Rd
f(||w||)KA(w) dw.
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This is the so-called ”Borel’s overlap formula”. Two particularly interesting cases
are obtained for f ≡ 1 and f(x) = 1[0,t](x)/ (λd(A))2, leading respectively to

∫

Rd
KA(w) dw = (λd(A))2

and

P
(∥∥X −X ′

∥∥ ≤ t
)

=
1

(λd(A))2

∫

B(0,t)
KA(w) dw, for t ≥ 0,

where X,X ′ are independent random variables uniformly distributed on A and B(0, t)
denotes the Euclidean ball centered at the origin with radius t.

Next, we recall the definition of the isotropized set covariance function (see Section 2.1).
Let Sd−1 denote the unit sphere in Rd. Then, y ∈ Rd is determined by the polar coordinates
(t, v), where t = ‖y‖ is a real number and v ∈ Sd−1 is the unit vector y/t. We get

KA(y) = KA(t, v) = λd (A ∩ (A− tv)) .

The isotropized set covariance function is defined as follows (recall that λd(A) > 0 by
assumption)

kA(t) =
1

(λd(A))2

∫

Sd−1

KA(t, v) dv. (B.3)

Furthermore, let D = diam (X ). With Lemma B.1 at our disposal we can now show the
following.

Lemma B.2. Let X ⊂ Rd, d ≥ 2, be a compact Borel set with λd(X ) > 0, dX the Euclidean

metric and µX the uniform distribution on X . Let X,X ′ i.i.d.∼ µX . Then, the distribution
function U of dX (X,X ′) is for t ∈ [0, D] given as

U(t) =

∫ t

0
sd−1kX (s) ds.

Furthermore, the corresponding density

u(t) = td−1kX (t)

is continuous.

Proof of Lemma B.2. By Lemma B.1, we have that

P
(∥∥X −X ′

∥∥ ≤ t
)

=
1

(λd(X ))2

∫

B(0,t)
KX (w) dw.
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Next, we rewrite the above expression in spherical coordinates, i.e.,

w1 = r cos(φ1)

w2 = r sin(φ1) cos(φ2)

...

wd−1 = r sin(φ1) · · · sin(φd−2) cos(φd−1)

wd = r sin(φ1) · · · sin(φd−2) sin(φd−1),

where r ranges over [0, t], φd−1 over [0, 2π) and φ1, . . . φd−2 over [0, π). This gives

P
(∥∥X −X ′

∥∥ ≤ t
)

=
1

(λd(X ))2

∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ t

0
KX (~ϕr) r

d−1 sind−2(φ1) sind−3(φ2)

× sind−4(φ3) · · · sin(φd−2) dr dφ1 · · · dφd−2 dφd−1,

where ~ϕr = (r cos(φ1), r sin(φ1) cos(φ2), . . . , r sin(φ1) · · · sin(φd−1)). Obviously, the above
expression is bounded by one and thus the theorem of Tonelli/Fubini [6, Thm. 18.3] yields
that for t ∈ [0, D]

U(t) =

∫ t

0
rd−1kX (r) dr.

This shows that u = U ′ is given by

u(t) = td−1kX (t) =
1

(λd(X ))2

∫ 2π

0

∫ π

0
· · ·
∫ π

0
KX (~ϕt) t

d−1 sind−2(φ1) sind−3(φ2)

× sind−4(φ3) · · · sin(φd−2) dφ1 · · · dφd−2 dφd−1.

The continuity of KX on Rd (see Lemma B.1 (a)) induces the continuity of u and the proof
is complete.

Based on the above results we demonstrate Lemma 2.3.

Proof of Lemma 2.3. First Part: By Lemma B.2 we have that in the present framework the
density u exists and is continuous. Hence, the smoothness requirements of Condition 1.2
are met. It remains to show that for all β ∈ (0, 1/2) there exists some ε > 0 such that u is
positive on [U−1(β)− ε, U−1(1− β) + ε], i.e., that u is strictly positive on (0, D).

By Lemma B.2 we have that

u(t) =
1

(λd(X ))2

∫

Sd−1

td−1KX (t, v) dv = td−1kX (t).
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As td−1 > 0 for t > 0 and kX is strictly positive on [0, D) by assumption, we conclude that
u is strictly positive on (0, D). This yields the claim.

Second Part: By Lemma B.2 the smoothness requirements of Condition 1.3 are met. Let
θ1 = −d−1

d and θ2 = − η
η+1 . Clearly, we have that θ1 > −1 and θ2 > −1 and hence the

claim follows once we have shown that

∣∣(U−1)′(t)
∣∣ ≤ cU tθ1(1− t)θ2 (B.4)

for all t ∈ (0, 1). Here, cU > 0 denotes a finite constant.

Since (U−1)′ = 1/
(
u ◦ U−1

)
, (B.4) is equivalent to

(U(t))−θ1 (1− U(t))−θ2 ≤ cU |u(t)|

for t ∈ (0, D). This in combination with the representation of U and u given by Lemma B.2
yields that we have to verify that under the assumptions made

(∫ t

0
sd−1kX (s) ds

)−θ1 (
1−

∫ t

0
sd−1kX (s) ds

)−θ2
≤ cU

∣∣∣td−1kX (t)
∣∣∣ . (B.5)

for a constant cU > 0 and t ∈ (0, D). Reconsidering the above expression, we realize that
the left hand side is bounded for t ∈ [ε,D − ε] and the right hand side is bounded away
from zero for t ∈ [ε,D − ε] by assumption, i.e., we have

supt∈[ε,D−ε]
(∫ t

0s
d−1kX (s) ds

)−θ1 (
1−

∫ t
0s
d−1kX (s) ds

)−θ2

inft∈[ε,D−ε] |td−1kX (t)| <∞.

In consequence, it suffices to verify (B.5) for t ∈ (0, ε) as well as for t ∈ (D − ε,D). From
now on, cU,1 and cU,2 denote finite constants that may vary from line to line.

First, we verify (B.5) for t ∈ (0, ε). As θ1 = −d−1
d ∈ (−1, 0) and θ2 = − η

η+1 ∈ (−1, 0), we
have that

(∫ t

0
sd−1kX (s) ds

)−θ1 (
1−

∫ t

0
sd−1kX (s) ds

)−θ2
≤ cU,1

(∫ t

0
sd−1kX (s) ds

)−θ1

≤ cU,1 (kX (0))−θ1
(∫ t

0
sd−1 ds

)−θ1
= cU,1

(
td

d

)−θ1
.

Plugging in the definition of θ1 = −d−1
d yields that

cU,1

(
td

d

)−θ1
= cU,1t

d−1 ≤ cU,1td−1kX (t),
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where the last inequality holds as inft∈(0,ε) kX (t) > 0 by assumption.

Next, we demonstrate (B.5) for t ∈ (D − ε,D). Since θ1 = −d−1
d ∈ (−1, 0) and θ2 =

− η
η+1 ∈ (−1, 0), it holds

(∫ t

0
sd−1kX (s) ds

)−θ1 (
1−

∫ t

0
sd−1kX (s) ds

)−θ2
≤ cU,2

(
1−

∫ t

0
sd−1kX (s) ds

)−θ2

= cU,2

(∫ D

0
sd−1kX (s) ds−

∫ t

0
sd−1kX (s) ds

)−θ2
= cU,2

(
(s∗)d−1kX (s∗)(D − t)

)−θ2

for some s∗ ∈ (t,D) by the Mean Value Theorem. Since kX is monotonically decreasing
on (D − ε,D) by assumption, we find that

cU,2

(
(s∗)d−1kX (s∗)(D − t)

)−θ2 ≤ cU,2
(
Dd−1kX (t)(D − t)

)−θ2
.

Plugging in that θ2 = − η
η+1 and using that cX (D − t)η ≤ kX (t) for t ∈ (D − ε,D), we

obtain that

cU,2

(
Dd−1kX (t)(D − t)

)−θ2 ≤ cU,2 (kX (t))
η
η+1 (kX (t))

1
η+1 ≤ cU,2td−1kX (t),

where the last inequality follows as supt∈(D−ε,D)
cU,2
td−1 <∞. As previously argued, this yields

the claim.

B.3 Proof of Theorem 2.5

In this section, we will prove Theorem 2.5 as well as several auxiliary results required. The
key idea of the proof of Theorem 2.5 is to exploit the dependency structure of the sam-
ples {dX (Xi, Xj)}1≤i<j≤n and {dY (Yk, Yl)}1≤k<l≤m. Let us consider {dX (Xi, Xj)}1≤i<j≤n.
Since the random variables X1, . . . , Xn are independent, it follows that dX (Xi, Xj) is inde-
pendent of dX (Xi′ , Xj′), whenever i, j, i′, j′ are pairwise different. This allows us to divide
the sample into relatively large groups of independent random variables. This idea is rep-
resented in Figure 1. It highlights a possibility to divide the set {dX (Xi, Xj)}1≤i<j≤6 into
five sets of three independent distances. Generally, one can prove the following.

Lemma B.3. Let n ≥ 3 and let X1, . . . , Xn
i.i.d.∼ µX . If n is even, there exists a partition

{Πn
k}1≤k≤n−1 of {(i, j)}1≤i<j≤n such that |Πn

k | = n/2 for each k and such that the random
variables in the set {dX (Xi, Xj)}(i,j)∈Πnk

are independent, 1 ≤ k ≤ n− 1. If n is odd, there

exists a partition {Πn
k}1≤k≤n of {(i, j)}1≤i<j≤n such that |Πn

k | = (n− 1)/2 for each k and
such that the random variables in the set {dX (Xi, Xj)}(i,j)∈Πnk

are independent, 1 ≤ k ≤ n.
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Fig. 1: Partitioning the Distances: Illustration how to partition the set {dX (Xi, Xj)}1≤i<j≤6 succes-
sively into five set of independent distances of size three. Top row: Left: All pairwise distances between
six points. Middle: All distances (blue) that are independent of one chosen distance (red). Right: All
distances that are independent of two chosen, independent distances (same color code, right) are shown.
Bottom row: The same selection process for the set, where the independent distances displayed in the top
right plot were removed.

Proof of Lemma B.3. Let throughout this proof n ≥ 3. We have already realized that the
random variables g (Xi, Xj) and g (Xk, Xl) are independent if and only if i 6= j 6= k 6= l.
In consequence the problem of finding the independent groups of {g (Xi, Xj)}1≤i<j≤n is a
combinatorial one that is not depending on the considered function g.
In the following, we call A ⊆ {(i, j)}1≤i<j≤n independent, if for all (i, j), (k, l) ∈ A it
holds that i 6= j 6= k 6= l. Thus, we obtain the subsequent equivalent reformulation of the
statement.
If n is even, there exists a partition {Πn

k}1≤k≤n−1 of {(i, j)}1≤i<j≤n such that |Πn
k | = n/2

and Πn
k is independent, 1 ≤ k ≤ n − 1. If n is odd, there exists a partition {Πn

k}1≤k≤n of
{(i, j)}1≤i<j≤n such that |Πn

k | = (n− 1)/2 and Πn
k is independent, 1 ≤ k ≤ n.

We will prove this claim by induction. Let n = 3. Then, {(i, j)}1≤i<j≤3 can be represented
as

(1, 2) (1, 3)
(2, 3)

(B.6)

and possible choices for Π3
1,Π

3
2 and Π3

3 are

Π3
1 = {(1, 2)} , Π3

2 = {(1, 3)}, Π3
3 = {(2, 3)} . (B.7)

Suppose now, there exists an odd n ≥ 3 such that the statement is true, i.e., we have a
partition of {(i, j)}1≤i<j≤n consisting of n independent sets of size (n − 1)/2. Since each
Πn
k , 1 ≤ k ≤ n, is independent and has size (n − 1)/2, its tuples contain (n − 1) different
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numbers. In consequence for each Πn
k there exist a number mk ∈ {1, . . . , n} such that mk

is not contained in a tuple in Πn
k , 1 ≤ k ≤ n. From the symmetry of the considered setting

it is clear that ⋃

1≤k≤n
mk = {1, . . . , n} .

In order to obtain a partition of {(i, j)}1≤i<j≤n+1 with n independent sets of size (n+ 1)/2
(n+ 1 is even) we can just add the element (mk, n+ 1) to the set Πn

k , 1 ≤ k ≤ n. Thus,

Πn+1
k = Πn

k ∪ {(mk, n+ 1)} , 1 ≤ k ≤ n.

To make this step more illustrative, we present it in the small example n = 4, i.e.,

(1, 2) (1, 3) (1, 4)
(2, 3) (2, 4)

(3, 4).

We recall that for n = 3 we have found the following partition

Π3
1 = {(1, 2)} , Π3

2 = {(1, 3)}, Π3
3 = {(2, 3)} . (B.8)

Thus, m1 = 3, m2 = 2 and m3 = 1. In consequence, we obtain the new partition as

Π4
1 = {(1, 2), (3, 4)} , Π4

2 = {(1, 3), (2, 4)}, Π4
3 = {(2, 3), (1, 4)} .

Assume now, there exists an even n ≥ 4 such that the statement is true, i.e., we have a
partition Πn

1 , . . . ,Π
n
n−1 of {(i, j)}1≤i<j≤n consisting of n − 1 independent sets of size n/2.

At this point, we realize that the map

Φ : N× N→ N× N, (i, j) 7→ (i, j − 1)

maps the set M1 = {(i, j)}i+1<j,1≤i<j≤n+1 bijectively onto the set M2 = {(i, j)}1≤i<j≤n
in such a way that its dependency structure is maintained. Consequently, we can divide
M1 into n− 1 independent sets Πn+1

1 , . . . ,Πn+1
n−1 of size n/2 by the induction hypothesis. It

remains to handle the set {(1, 2), (2, 3), (3, 4), . . . , (n, n+1)}. However, it is easy to see that
the sets Πn+1

n = {(1, 2), (3, 4), . . . , (n− 1, n)} and Πn+1
n+1 = {(2, 3), (4, 5), . . . , (n, n+ 1)} are

independent sets of size n/2. In conclusion, we have found under the induction hypothesis
that the set {(i, j)}1≤i<j≤n+1 can be split into n+ 1 independent sets of size n/2.
Once again, we demonstrate this step by a short example. Let n = 5, then {(i, j)}1≤i<j≤5

is given as
(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)
(3, 4) (3, 5)

(4, 5).
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It is easy to see that the set
(1, 3) (1, 4) (1, 5)

(2, 4) (2, 5)
(3, 5)

has the same dependence structure as {(i, j)}1≤i<j≤4. Thus, we can partition the above set

into three sets Π5
1,Π

5
2 and Π5

3 of size two. Furthermore, the set {(1, 2), (2, 3), (3, 4), (4, 5)}
can be split into Π5

4 = {(1, 2), (3, 4)} and Π5
5 = {(2, 3), (4, 5)}.

The proof strategy for Theorem 2.5 is now to rewrite the problem at hand as a certain
assignment problem and then to restrict the assignments to assignments between groups
of independent distances. Before we come to this, we have to introduce some notation and
derive another auxiliary result. Let S(B) denote the set of all permutations of the finite
set B. In the special case B = {1, . . . , n}, we write Sn instead of S({1, . . . , n}). Let µ and
ν denote two Borel probability measures on Rd. Recall that the Kantorovich (transport)
distance of order p (also known as Wasserstein distance, see [42, Def. 6.1]) between µ and
ν is defined as

Kpp (µ, ν) := inf
π∈M(µ,ν)

∫

Rd×Rd
||x− y||p dπ(x, y),

whereM (µ, ν) denotes the set of couplings between µ and ν. For the proof of Lemma B.3
it is important to note that the Kantorovich distance between two empirical measures on
R can be bounded as follows.

Lemma B.4. Given two collections of real numbers x1, . . . , xn and y1, . . . , yn, let µn and νn
denote the corresponding empirical measures. Further, let {Pn

k}1≤k≤K denote a partition
of {1, . . . , n}, i.e.,

⋃

1≤k≤K
Pn
k = {1, . . . , n} and Pn

i ∩Pn
j = ∅ for i 6= j.

Then,

Kpp (µn, νn) ≤ 1

n


 inf
σ∈S(Pn1 )

∑

i∈Pn1

∣∣xi − yσ(i)

∣∣p + · · ·+ inf
σ∈S(PnK)

∑

i∈PnK

∣∣xi − yσ(i)

∣∣p

 .

Further, let
{
x
Pnk
(i)

}
1≤i≤|Pnk |

and
{
y
Pnk
(i)

}
1≤i≤|Pnk |

denote the ordered samples of {xi}i∈Pnk and

{yi}i∈Pnk , 1 ≤ k ≤ K, respectively. Then it holds

Kpp (µn, νn) ≤ 1

n


 ∑

1≤i≤|Pn1 |

∣∣∣xP
n
1

(i) − y
Pn1
(i)

∣∣∣
p

+ · · ·+
∑

1≤i≤|PnK |

∣∣∣xP
n
K

(i) − y
PnK
(i)

∣∣∣
p


 .
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Proof of Lemma B.4. In the proof of Lemma 4.2 of Bobkov and Ledoux [8] it is shown that

Kpp (µn, νn) =
1

n
inf
σ∈Sn

∑

1≤i≤n

∣∣xi − yσ(i)

∣∣p .

Since we have Pn
i ∩Pn

j = ∅ for i 6= j, it clearly follows that

1

n
inf
σ∈Sn

∑

1≤i≤n

∣∣xi − yσ(i)

∣∣p =
1

n
inf
σ∈Sn


∑

i∈Pn1

∣∣xi − yσ(i)

∣∣p + · · ·+
∑

i∈PnK

∣∣xi − yσ(i)

∣∣p



≤ 1

n


 inf
σ∈S(Pn1 )

∑

i∈Pn1

∣∣xi − yσ(i)

∣∣p + · · ·+ inf
σ∈S(PnK)

∑

i∈PnK

∣∣xi − yσ(i)

∣∣p

 ,

which yields the first part of the claim.

The second part follows by an application of Lemma 4.1 of Bobkov and Ledoux [8] with
V (x) = |x|p, which yields for 1 ≤ k ≤ K that

inf
σ∈S(Pnk)

∑

i∈Pnk

∣∣xi − yσ(i)

∣∣p =
∑

1≤i≤|Pnk |

∣∣∣xP
n
k

(i) − y
Pnk
(i)

∣∣∣
p
.

Let (S,S) be a measurable space, let x1, . . . , xn, y1, . . . , yn ∈ S and let g, h : S ×S 7→ R be
symmetric and measurable functions. Let for any A ∈ B(R)

µgn(A) =
2

n(n− 1)

∑

1≤i<j≤n
1{g(xi,xj)∈A}

and

νhn(A) =
2

n(n− 1)

∑

1≤i<j≤n
1{h(yi,yj)∈A}.

As it is notationally convenient, we define g(i,j) = g(xi, xj) and analogously h(i,j) =
h(yi, yj), 1 ≤ i < j ≤ n. Clearly, Lemma B.4 also holds in the setting just described.
The corresponding reformulation of said lemma is stated next.

Corollary B.5. Let Πn
1 , . . . ,Π

n
K be a partition of {(i, j)}1≤i<j≤n. Then

Kpp
(
µgn, ν

h
n

)
≤ 2

n(n− 1)




K∑

k=1

inf
σ∈S(Πnk)

∑

(i,j)∈Πnk

∣∣g(i,j) − hσ((i,j))

∣∣p

 .
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Further, let
{
g

Πnk
(l)

}
1≤l≤|Πnk |

and
{
h

Πnk
(l)

}
1≤l≤|Πnk |

denote the ordered samples of
{
g(i,j)

}
(i,j)∈Πnk

and
{
h(i,j)

}
(i,j)∈Πnk

, 1 ≤ k ≤ K, respectively. Then, it holds

Kpp
(
µgn, ν

h
n

)
≤ 2

n(n− 1)




K∑

k=1

∑

1≤l≤|Πnk |

∣∣∣gΠnk
(l) − h

Πn1
(l)

∣∣∣
p


 .

Now that we have derived all auxiliary results required, we come to the proof of Theo-
rem 2.5.

Proof of Theorem 2.5. We observe that for β ∈ [0, 1/2)

E
[
D̂oD(β)

]
≤ E




1∫

0

|U−1
n (t)− V −1

m (t)|2 dt


 = E

[
K2

2

(
µUn , µ

V
m

)]
,

where µUn and µVm are the empirical measures corresponding to Un and Vm, i.e., for A ∈
B(R)

µUn (A) =
2

n(n− 1)

∑

1≤i<j≤n
1{dX (Xi,Xj)∈A}

and

µVm(A) =
2

m(m− 1)

∑

1≤k<l≤m
1{dY (Yk,Yl)∈A}.

Since it holds µU = µV by assumption, we obtain by the triangle inequality

E
[
K2

2

(
µUn , µ

V
m

)]
≤ 2

(
E
[
K2

2

(
µUn , µ

U
)]

+ E
[
K2

2

(
µVm, µ

V
)])

.

Thus, it remains to show

E
[
K2

2

(
µUn , µ

U
)]
≤ 4

n+ 1
J2

(
µU
)
. (B.9)

In order to demonstrate (B.9), we will use Lemma B.3. Hence, it is notationally convenient
to distinguish the cases n even and n odd, although the proof is essentially the same in
both settings. In the following, we will therefore restrict ourselves to n odd.

The first step to prove (B.9) is to realize (cf. Bobkov and Ledoux [8, Sec. 4]), that

E
[
K2

2

(
µUn , µ

U
)]
≤ E

[
K2

2

(
µUn , ν

U
n

)]
, (B.10)

where νUn denotes an independent copy of µUn , i.e.,

νUn (A) =
2

n(n− 1)

∑

1≤i<j≤n
1{dX (X′i,X

′
j)∈A},
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for X ′1, . . . , X
′
n
i.i.d.∼ µX . By Lemma B.3, there exists a partition Πn

1 , . . . ,Π
n
n of the set

{(i, j)}1≤i<j≤n with |Πn
k | = (n − 1)/2, 1 ≤ k ≤ n, such that the random variables in

the sets {dX (Xi, Xj)}(i,j)∈Πnk
and the ones in the sets

{
dX (X ′i, X

′
j)
}

(i,j)∈Πnk

are indepen-

dent. Let
{
d

Πnk ,X

(i)

}
1≤i≤(n−1)/2

stand for the ordered sample of {dX (Xi, Xj)}(i,j)∈Πnk
and

the let
{
d

Πnk ,X
′

(i)

}
1≤i≤(n−1)/2

stand for the one of
{
dX
(
X ′i, X

′
j

)}
(i,j)∈Πnk

, 1 ≤ k ≤ n. The

application of Corollary B.5 with this partition yields that

E
[
K2

2

(
µUn , ν

U
n

)]
≤ 2

n(n− 1)
E




n∑

k=1

(n−1)/2∑

i=1

∣∣∣dΠnk ,X

(i) − dΠnk ,X
′

(i)

∣∣∣
2


 .

Furthermore, we realize that, as X1, . . . , Xn, X
′
1, . . . , X

′
n are independent, identically dis-

tributed, it holds for 1 ≤ k, l ≤ n that

(n−1)/2∑

i=1

∣∣∣dΠnk ,X

(i) − dΠnk ,X
′

(i)

∣∣∣
2 D

=

(n−1)/2∑

i=1

∣∣∣dΠnl ,X

(i) − dΠnl ,X
′

(i)

∣∣∣
2
.

Consequently, we have

E




n∑

k=1

(n−1)/2∑

i=1

∣∣∣dΠnk ,X

(i) − dΠnk ,X
′

(i)

∣∣∣
2


 = nE




(n−1)/2∑

i=1

∣∣∣dΠn1 ,X

(i) − dΠn1 ,X
′

(i)

∣∣∣
2


 .

We come to the final step of this proof. Let for any A ∈ B(R)

µ∗n(A) =
2

n− 1

(n−1)/2∑

i=1

1{
d

Πn1 ,X

(i)
∈A
}

and let ν∗n(A) be defined analogously. Then, Theorem 4.3 of Bobkov and Ledoux [8] implies
that

E
[
K2

2 (µ∗n, ν
∗
n)
]

=
2

n− 1
E




(n−1)/2∑

i=1

∣∣∣dΠn1 ,X

(i) − dΠn1 ,X
′

(i)

∣∣∣
2


 .

By construction, the samples
{
d

Πn1 ,X
i

}
1≤i≤(n−1)/2

and
{
d

Πn1 ,X
′

i

}
1≤i≤(n−1)/2

consist of in-

dependent random variables and are independent of each other. Furthermore, we have
E [µ∗n] = E [ν∗n] = µU . Since J2

(
µU
)
< ∞ by assumption, it follows by Theorem 5.1 of

Bobkov and Ledoux [8] that

2

n− 1
E




(n−1)/2∑

i=1

∣∣∣dΠn1 ,X

(i) − dΠn1 ,X
′

(i)

∣∣∣
2


 = E

[
K2

2 (µ∗n, ν
∗
n)
]
≤ 4

n+ 1
J2

(
µU
)
.

This yields (B.9) and thus concludes the proof.

16

84 Distribution of Distances based Object Matching



Remark B.6. To conclude this section, we point out how Theorem 2.5 can be generalized
to obtain a finite sample bound for

E
[
D̂oDp,(β) (Xn,Ym)

]
= E

[∫ 1−β

β

∣∣U−1
n (t)− V −1

m (t)
∣∣p dt

]
, (B.11)

where p ∈ [1,∞) and β ∈ [0, 1/2). To this end, let

Jp
(
µU
)

:=

∫ ∞

−∞

[U(t)(1− U(t))]p/2

(u(t))p−1
dt <∞.

Then, applying Theorem 5.3 of Bobkov and Ledoux [8] instead of Theorem 5.1 in the proof
above yields the analogous finite sample bound for the expectation defined in (B.11).

B.4 Proof of Theorem 2.6

In the first part of this subsection, we focus on the proof of Theorem 2.6 (i) and complete
the one of Theorem 2.6 (ii) afterwards.

B.4.1 First Part

An essential tool for the verification of Theorem 2.6 (i) are the distributional limits of the
empirical U -quantile processes U−1

n :=
√
n
(
U−1
n − U−1

)
and V−1

m :=
√
m
(
V −1
n − V −1

)
,

which we derive next. To this end, we ensure that Theorem F.10 on the weak convergence
of the empirical U -quantile process is applicable.

Lemma B.7. Assume Setting 1.1 and let Condition 1.2 be fulfilled. Then, as n,m → ∞
it holds that

U−1
n =

√
n
(
U−1
n − U−1

)
 G1 and V−1

m =
√
m
(
V −1
n − V −1

)
 G2

in `∞[β, 1− β], where G1 and G2 denote centered Gaussian processes with covariances

Cov
(
G1(t),G1(t′)

)
=

4

(u ◦ U−1(t))(u ◦ U−1(t′))
ΓdX

(
U−1(t), U−1(t′)

)

and

Cov
(
G2(t),G2(t′)

)
=

4

(v ◦ V −1(t))(v ◦ V −1(t′))
ΓdY

(
V −1(t), V −1(t′)

)
.
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Here,

ΓdX
(
t, t′
)

:=

∫ ∫
1{dX (x,y)≤t} dµX (y)

∫
1{dX (x,y)≤t′} dµX (y) dµX (x)

−
∫ ∫

1{dX (x,y)≤t} dµX (y) dµX (x)

∫ ∫
1{dX (x,y)≤t′} dµX (y) dµX (x)

and ΓdY is defined analogously.

Proof of Lemma B.7. We demonstrate the claim by applying Theorem F.10 to U−1
n and

V−1
m , respectively. Therefore, we have to ensure that both processes fulfill the requirements

of Theorem F.10. In the following, we concentrate on U−1
n and remark that V−1

m can be
handled analogously.

First, we observe that Un and U are (empirical) U -distribution functions (see Definition F.1)
with kernel function

h(x, y, t) := 1{dX (x,y)≤t}.

Clearly, h(x, y, t) has the correct form for applying Theorem F.10 and we can show that

F =
{

(x, y) 7→ 1{dX (x,y)≤t} : t ∈ [C1, C2]
}
,

is a permissible class of functions. To this end, we discern that F =
{
f̃(·, t) : t ∈ T

}
with

T = [C1, C2] and

f̃(x, y, t) = 1{dX (x,y)≤t}.

In order to check that f̃ : X ×X × [C1, C2] 7→ R is B (X × X )⊗B ([C1, C2])-measurable we
utilize Theorem H.7, i.e., we verify that f̃(x, y, ·) is right continuous for all (x, y) ∈ X ×X
(which is obvious) and that f̃(·, ·, t) is B(X × X )-measurable for all t ∈ [C1, C2]. Let
in the following f̃t = f̃(·, ·, t), t ∈ [C1, C2]. Then, for any t ∈ [C1, C2] we know that
f̃t is B (X × X )-measurable if and only if {dX (x, y) ≤ t} ∈ B (X × X ) [6, Sec. 13]. By
definition we have that the distance dX is a continuous map from X × X to R, i.e., in
particular B (X × X )-measurable. Clearly, it holds [0, t] ∈ B (R) for any t ∈ [C1, C2],
which implies that

{dX (x, y) ≤ t} = d−1
X ([0, t]) ∈ B (X × X )

for t ∈ [C1, C2]. Thus, we conclude that f̃t is B (X × X )-measurable for t ∈ [C1, C2]. Fur-
thermore, T = [C1, C2] is a compact, separable metric space and hence F is a permissible
class of functions.

Next, we show that F is a VC-subgraph class, i.e., we have to confirm that the following
class of sets

V = {subgraph(ft) : ft ∈ F} ,
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where

subgraph(ft) := {(x, y, s) ∈ X × X × R : 0 < s < ft(x, y) or 0 > s > ft(x, y)} ,

is a VC-class (cf. Definition F.5). Therefore, we show, that V does not shatter any set of
two points {V,W} with V,W ∈ X ×X ×R. Let V = (v1, v2, rv) and W = (w1, w2, rw) with
v1, v2, w1, w2 ∈ X and rv, rw ∈ R. Since all ft ∈ F are indicator functions, the values rv
and rw have no influence on the intersection of subgraph(ft) and W or of subgraph(ft) and
V , respectively, as long as they are in (0, 1). Therefore we can without loss of generality
assume that rv = rw = 0.5, i.e., the problem’s dimension can be reduced by one. Hence,
we denote by V ′ = (v1, v2) the natural projection from V onto X × X and analogously by
W ′ = (w1, w2) the projection of W onto X × X . Furthermore, we define

A = {(v, w) ∈ X × X : dX (v, w) = 0} = {(v, w) ∈ X × X : v = w} .

It is notable that A is a closed and convex subset of X × X . Thus, we can define the
distance between any V ′ (respectively W ′) and A uniquely, as follows

dAX (V ′) = inf
a∈A

dX
(
V ′, a

)
.

Let ft(x, y) = 1{dX (x,y)≤t} ∈ F and V = (v1, v2, rv). Then, it holds by construction that

subgraph(ft) ∩ {V } 6= ∅ and dAX (V ′) > t (B.12)

are equivalent. This means that we have to consider 3 cases in order to verify that V is a
VC-class:

1. dAX (V ′) = dAX (W ′):

(a) dAX (V ′) = dAX (W ′) = 0:
Thanks to (B.12) we know, that in this case

subgraph(ft) ∩ {V,W} = {V,W},

for all ft ∈ F (w.o.l.g. rv = rw = 0.5). Thus, V cannot shatter sets of this
form.

(b) dAX (V ′) = dAX (W ′) 6= 0:
In this case we can only pick out the sets ∅ and {V,W}. This is clear, as for ft
with t < dAX (V ′), we have

subgraph(ft) ∩ {V,W} = ∅,

and ft with for t ≥ dAX (V ′)

subgraph(ft) ∩ {V,W} = {V,W}.
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2. dAX (V ′) 6= dAX (W ′):
Suppose without loss of generality that dAX (V ′) < dAX (W ′). Then, V cannot pick out
the subset {W}, because for that to happen, we must choose ft such that

subgraph(ft) ∩ {W} = {W} and subgraph(ft) ∩ {V } = ∅,

which is equivalent to finding a t such that

dAX (W ′) ≤ t and dAX (V ′) > t.

This is not possible, as by assumption dAX (V ′) < dAX (W ′).

The above considerations prove that there does not exists a set of size two that is shattered
by V . Hence, V is a VC-class.

Finally, we realize that U is differentiable with strictly positive density u on [C1, C2] by
assumption. Thus, an application of Theorem F.10 yields that U−1

n  G1 in `∞[β, 1− β].

With Lemma B.7 available the proof of Theorem 2.6 (i) is straightforward.

Proof of Theorem 2.6 (i). We start the proof by recalling that under the assumptions made
we have V = U , i.e., U−1 = V −1. It follows that

nm

n+m

∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt

=

∫ 1−β

β

(√
nm

n+m

(
U−1
n (t)− U−1(t)

)
−
√

nm

n+m

(
V −1
m (t)− V −1(t)

))2

dt

=ϕ

(√
nm

n+m

(
U−1
n (t)− U−1(t)

)
,

√
nm

n+m

(
V −1
m (t)− V −1(t)

))
,

where ϕ : `∞[β, 1− β]× `∞[β, 1− β]→ R is defined as

ϕ (f, g) =

∫ 1−β

β
(f(x)− g(x))2 dx.

It is easily verified that ϕ is a continuous map.

Next, we realize that requirements for applying Lemma B.7 are assumed. Consequently,
we have that

√
n
(
U−1
n − U−1

)
 G1 and

√
m
(
V −1
n − V −1

)
 G2 in `∞[β, 1 − β], where

G1 and G2 are centered Gaussian processes with covariances as defined in Lemma B.7.
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As U = V , it follows that G1
D
= G2

D
= G. Since the processes

√
nm
n+m

(
U−1
n − U−1

)
and

√
nm
n+m

(
V −1
m − V −1

)
are independent and n/(n+m)→ λ, it follows that

(√
nm

n+m

(
U−1
n − U−1

)
,

√
nm

n+m

(
V −1
m − V −1

))
 
(√

1− λG1,
√
λG2

)

in `∞[β, 1 − β] × `∞[β, 1 − β]. By applying the continuous mapping theorem [40, Thm.
1.3.6], we obtain

ϕ

(√
nm

n+m

(
U−1
n − U−1

)
,

√
nm

n+m

(
V −1
m − V −1

))
 ϕ

(√
1− λG1,

√
λG2

)
,

which equals by definition

∫ 1−β

β

(√
nm

n+m

(
U−1
n (t)− U−1(t)

)
−
√

nm

n+m

(
V −1
m (t)− V −1(t)

))2

dt

 
∫ 1−β

β

(√
1− λG1(t)−

√
λG2(t)

)2
dt.

Finally, as G1 and G2 are independent and identically distributed, it holds that

G D
=
√

1− λG1 −
√
λG2,

which gives the claim.

Remark B.8. Since also the maps

ϕp : `∞[β, 1− β]× `∞[β, 1− β]→ R, (f, g) 7→
∫ 1−β

β
|f(x)− g(x)|p dx

are continuous for p ∈ [1,∞), we can employ the same strategy of proof to derive that
given Condition 1.2

(
nm

n+m

)p/2
D̂oDp,(β) :=

(
nm

n+m

)p/2∫ 1−β

β

∣∣U−1
n (t)− V −1

m (t)
∣∣p dt Ξp :=

∫ 1−β

β
|G(t)|p dt

under the hypothesis H0.

B.4.2 Second Part

Next, we come to the proof of Theorem 2.6 (ii). For notational convenience we restrict
ourselves from now on to the case n = m. However, the same strategy of proof also gives
the general case n 6= m (for some additional details on this issue see Remark B.15).
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First, we demonstrate that
{

ΞU,Vn (β) |β ∈ [0, 1/2]
}
n∈N
⊂ (C[0, 1/2], || · ||∞) , where

ΞU,Vn (β) =
n

2

∫ 1−β

β

(
U−1
n (t)− V −1

n (t)
)2
dt,

is tight. To this end, we process the subsequent steps:

1. We show that the sequence of real valued random variables
{

ΞU,Vn (0)
}
n∈N

is tight;

2. We establish under Condition 1.3 that for all 0 < β ≤ 1/2

√
nm

n+m

(
U−1
n − V −1

m

)
 G

in `∞[β, 1 − β], where G is the Gaussian process defined in the statement of Theo-
rem 2.6;

3. We verify that the sequence
{

ΞU,Vn
}
n∈N
⊂ (C[0, 1/2], || · ||∞) is measurable;

4. We control the following expectations for small β

E
[∫ β

0

(
U−1
n (t)− V −1

n (t)
)2
dt

]
and E

[∫ 1

1−β

(
U−1
n (t)− V −1

n (t)
)2
dt

]
.

In order to establish the first step of the above strategy, we prove that Condition 1.3 implies

J2

(
µU
)

=

∫ ∞

−∞

U(t)(1− U(t))

u(t)
dt <∞ and J2

(
µV
)

=

∫ ∞

−∞

V (t)(1− V (t))

v(t)
dt <∞.

This will allow us to conclude the tightness of
{

ΞU,Vn (0)
}
n∈N

by Theorem 2.5.

Lemma B.9. Assume Setting 1.1. Then, Condition 1.3 particularly implies that

J2

(
µU
)

=

∫ ∞

−∞

U(t)(1− U(t))

u(t)
dt <∞ (B.13)

as well as

J2

(
µV
)

=

∫ ∞

−∞

V (t)(1− V (t))

v(t)
dt <∞. (B.14)

Proof of Lemma B.9. By Corollary A.22 of Bobkov and Ledoux [8] it holds for all p ≥ 1
that

Jp
(
µU
)

=

∫ ∞

−∞

[U(t)(1− U(t))]p/2

(u(t))p−1
dt =

∫ 1

0

∣∣(U−1)′(t)
∣∣p (t(1− t))p/2 dt.
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In consequence, Condition 1.3 yields that

J2

(
µU
)
≤
∫ 1

0
cU t

2γ1+1(1− t)2γ2+1 dt
(i)
= cU

Γ(2γ1 + 2)Γ(2γ1 + 2)

Γ(2γ1 + 2γ1 + 2)
<∞,

where (i) follows as γ1, γ2 > −1 by assumption. This gives (B.13). Clearly, (B.14) follows
by the analogue arguments.

Next, we come to the second step of the afore mentioned strategy. The proof of the
convergence stated boils down to the observation that Condition 1.3 implies Condition 1.2
for all β > 0 and an application of Lemma B.7.

Lemma B.10. Let 0 < β < 1/2, assume Setting 1.1, suppose that Condition 1.3 is met,
let µU = µV and let m,n→∞ such that n

n+m → λ ∈ (0, 1). Then, it follows

√
nm

n+m

(
U−1
n − V −1

m

)
 G

in `∞[β, 1− β], where G is the Gaussian process defined in Theorem 2.5.

Proof of Lemma B.10. Since µU = µV , i.e., U−1 = V −1, it holds

√
nm

n+m

(
U−1
n − V −1

m

)
=

√
nm

n+m

(
U−1
n − U−1 + U−1 − V −1

m

)

=

√
nm

n+m

(
U−1
n − U−1

)
−
√

nm

n+m

(
V −1
m − V −1

)
.

Condition 1.3 implies that for all β > 0 there is an ε > 0 such that u is strictly positive
and continuous on [U−1(β) − ε, U−1(1 − β) + ε]. Further, U−1

n and V −1
m are independent

and hence this lemma is a direct consequence of Lemma B.7.

Now, we demonstrate the measurability of the stochastic process ΞU,Vn .

Lemma B.11. Assume Setting 1.1. Then, the random element

ΞU,Vn (β) =

∫ 1−β

β

∣∣∣∣
√
n

2
(U−1

n (s)− V −1
n (s))

∣∣∣∣
2

ds

is measurable for β ∈ [0, 1/2] and n ∈ N. Furthermore, the process ΞU,Vn is measurable as
a random element of (C[0, 1/2], || · ||∞) for n ∈ N.

Proof of Lemma B.11. We begin by proving the first statement. Since the process QU,V
n =√

n
2 (U−1

n −V −1
n ) is left-continuous for n ∈ N, it is measurable as a function from Ω×[0, 1]→
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R [13, Chap. 2]. Thus, Theorem 18.3 of Billingsley [6] induces that ΞU,Vn (β) is measurable
for β ∈ [0, 1/2] and n ∈ N.

The second statement is a direct consequence of the first [7, Sec. 7].

Finally, we come to the last step of the previously presented strategy. Using a technically
somewhat more involved variation of the partitioning idea of the proof of Theorem 2.5, we

can demonstrate the subsequent bounds for the expectations E
[∫ β

0

(
U−1
n (t)− V −1

n (t)
)2
dt
]

and E
[∫ 1

1−β
(
U−1
n (t)− V −1

n (t)
)2
dt
]
. In order to increase the readability of this section, we

postpone its proof to Section B.6.

Lemma B.12. Suppose Setting 1.1 and Condition 1.3 are met. Let µU = µV , let n ≥ 100,
let 0 ≤ β = βn < 1/6 and let nβ > 8. Then, it follows that

E
[∫ β

0

(
U−1
n (t)− V −1

n (t)
)2
dt

]
≤ 2C1

n− 1

(
4β

(
1 + 2

√
log (n)√
n

))2γ1+2

+ o
(
n−1

)
(B.15)

as well as

E
[∫ 1

1−β

(
U−1
n (t)− V −1

n (t)
)2
dt

]
≤ 2C2

n− 1

(
4β

(
1 + 2

√
log (n)√
n

))2γ2+2

+ o
(
n−1

)
, (B.16)

where C1 and C2 denote finite constants that are independent of β.

Before we come to the tightness of
{

ΞU,Vn
}
n∈N
⊂ (C[0, 1/2], || · ||∞) , we use Lemma B.10

and Lemma B.12 to show one further technical lemma.

Lemma B.13. Under Condition 1.3, it holds for all ε > 0 that

lim
δ→0+

lim sup
n→∞

P
(
ω(ΞU,Vn , δ) > ε)

)
= 0,

where ω(·, ·) is defined for f : [0, 1/2]→ R and 0 < δ ≤ 1/2 as ω(f, δ) = sup|s−t|≤δ |f(s)−
f(t)|.
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Proof. Let 0 < δ < 1/20 and let 0 ≤ s, t ≤ 1/2. We have that

P
(
ω(ΞU,Vn , δ) > ε

)
= P

(
sup
|s−t|≤δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε

)

=P


 sup
|s−t|≤δ,
t<2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε or sup

|s−t|≤δ,
t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε




≤P


 sup
|s−t|≤δ,
t<2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε


+P


 sup
|s−t|≤δ,
t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε




= I + II. (B.17)

In the following, we consider both summands separately.

First Summand: Since ΞU,Vn (β) is monotonically decreasing in β,

I ≤P
(
ΞU,Vn (0)− ΞU,Vn (3δ) > ε

)

=P
(∫ 3δ

0
|QU,V

n (s)|2 ds+

∫ 1

1−3δ
|QU,V

n (s)|2 ds > ε

)
,

where QU,V
n =

√
n
2

(
U−1
n − V −1

n

)
. Further, we obtain that

P
(∫ 3δ

0
|QU,V

n (s)|2 ds+

∫ 1

1−3δ
|QU,V

n (s)|2 ds > ε

)

≤ 2

ε

(
E
[∫ 3δ

0
|QU,V

n (s)|2 ds
]

+ E
[∫ 1

1−3δ
|QU,V

n (s)|2 ds
])

.

As 3δ < 1/6, we can conclude with Lemma B.12 that

lim sup
n→∞

2

ε
E
[∫ 3δ

0

∣∣QU,V
n (s)

∣∣2 ds
]

≤ lim sup
n→∞

n

ε


 2C1

n− 1

(
6δ

(
1 + 2

√
log (n)√
n

))2γ1+2

+ o
(
n−1

)

 ≤ C2δ

2γ1+2.

Here, C1 and C2 denote finite constants that are independent of δ. Similarly,

lim sup
n→∞

E
[∫ 1

1−3δ
|QU,V

n (s)|2 ds
]
≤ C3δ

2γ2+2,
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where C3 denotes a finite constant independent of δ. Since we have by assumption that
γ1, γ2 > −1, i.e., 2γ1 + 2 > 0 and 2γ2 + 2 > 0, it follows that

lim
δ→0+

lim sup
n→∞

P


 sup
|s−t|≤δ,
t<2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε


 = 0.

Second Summand: In order to handle II in (B.17), we want to make use of the fact that for
δ > 0 the process QU,V

n =
√

n
2 (U−1

n − V −1
n ) converges to a Gaussian process in `∞[δ, 1− δ]

given Condition 1.3 (see Lemma B.10 in the supplement). To this end, we verify that the
function

Υ : `∞[δ, 1− δ]× `∞[δ, 1− δ]→ R,

(f, g) 7→ sup
|s−t|≤δ,
t≥2δ

∣∣∣∣
∫ 1−s

s
f2(x) dx−

∫ 1−t

t
g2(x) dx

∣∣∣∣

is continuous.

Let in the following || · ||∞ denote the norm of `∞[δ, 1 − δ]. Let ((fn, gn))n∈N ⊂ `∞[δ, 1 −
δ]× `∞[δ, 1− δ] be a sequence such that (fn, gn)→ (f, g) with respect to the product norm
||(f, g)|| := ||f ||∞ + ||g||∞. Then, the inverse triangle inequality yields

|Υ(fn, gn)−Υ(f, g)|

≤ sup
|s−t|≤δ,
t≥2δ

∣∣∣∣∣

∫ 1−s

s
f2
n(x)− f2(x) dx−

∫ 1−t

t
g2
n(x)− g2(x) dx

∣∣∣∣∣

≤ sup
|s−t|≤δ,
t≥2δ

∣∣∣∣
∫ 1−s

s
‖fn + f‖∞ ‖fn − f‖∞ dx+

∫ 1−t

t
‖g + gn‖∞ ‖g − gn‖∞ dx

∣∣∣∣

≤(1− δ) max {‖fn‖∞ + ‖f‖∞ , ‖gn‖∞ + ‖g‖∞} ‖(f − fn, g − gn)‖ n→∞→ 0.

Thus, we have shown limn→∞Υ(fn, gn) = Υ(f, g), i.e., that Υ is sequentially continuous.
Hence, a combination of Lemma B.10 and the Continuous Mapping Theorem [40, Thm.
1.3.6] yields that

Υ
(
QU,V
n ,QU,V

n

)
 Υ (G,G) ,

where G denotes the centered Gaussian process defined in Theorem 2.5. Further, Lemma
B.11 shows that ΞU,Vn (β) is measurable for β ∈ [δ, 1− δ] and n ∈ N. As ΞU,Vn is continuous

in β this induces the measurability of Υ
(
QU,V
n ,QU,V

n

)
for n ∈ N. Thus, we find that

Υ
(
QU,V
n ,QU,V

n

)
⇒ Υ (G,G) .
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Let A = [ε,∞) ⊂ R. Then, the set A is closed and (ε,∞) ⊂ A. Hence, an application of
the Portmanteau-Theorem [7, Thm. 2.1] yields that

lim sup
n→∞

P


 sup
|s−t|≤δ,
t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε


 ≤ lim sup

n→∞
P
(
Υ
(
QU,V
n ,QU,V

n

)
∈A
)

≤ P (Υ (G,G) ≥ ε) .
Next, we remark that

sup
|s−t|≤δ,
t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ = sup

|s−t|≤δ,
s≤t,t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ .

Hence, we can assume for the treatment of this summand that s ≤ t. With this, we obtain
that

lim sup
n→∞

P


 sup
|s−t|≤δ,
t≥2δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε




≤P


 sup
|s−t|≤δ,
t≥2δ

∣∣∣∣
∫ 1−s

s
G2(x) dx−

∫ 1−t

t
G2(x) dx

∣∣∣∣ ≥ ε




≤P


 sup
|s−t|≤δ,
t≥2δ

∫ t

s
G2(x) dx ≥ ε

2


+ P


 sup
|s−t|≤δ,
t≥2δ

∫ 1−s

1−t
G2(x) dx ≥ ε

2


 .

In the following, we focus on the first term. As 0 < δ < 1/20 and t ≤ 1/2, it holds

P


 sup
|s−t|≤δ,
t≥2δ

∫ t

s
G2(x) dx ≥ ε

2


≤P


 sup
|s−t|≤δ,
t≥2δ

(
sup

x∈[δ,1−δ]
G2(x)

)
(t− s) ≥ ε

2




=P

(
sup

x∈[δ,1−δ]
G2(x) ≥ ε

δ

)
≤
√
δ

ε
E

[
sup

x∈[δ,1−δ]
|G(x)|

]
.

By Lemma F.11 the Gaussian process G is continuous on [δ, 1− δ] under the assumptions
made, i.e., almost surely bounded on [δ, 1 − δ]. Thus, Theorem 2.1.1 of Adler and Taylor

[1] ensures that E
[
supx∈[δ,1−δ] |G(x)|

]
<∞. Hence, we find that

lim
δ→0+

P


 sup
|s−t|≤δ,
t≥2δ

∫ t

s
G2(x) dx ≥ ε

2


 ≤ lim

δ→0+

√
δ

ε
E

[
sup

x∈[δ,1−δ]
|G(x)|

]
= 0.
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Analogously,

lim
δ→0+

P


 sup
|s−t|≤δ,
t≥2δ

∫ 1−s

1−t
G2(x) dx >

ε

2


 = 0.

This concludes the treatment of the second summand in (B.17).

Combining the results for I and II, we find that

lim
δ→0+

lim sup
n→∞

P

(
sup
|s−t|≤δ

∣∣ΞU,Vn (s)− ΞU,Vn (t)
∣∣ > ε

)
= 0.

Thus, we have proven Lemma B.13.

Now, we obtain the tightness of the sequence
{

ΞU,Vn
}
n∈N

in C[0, 1/2] as a simple conse-

quence of the above results.

Corollary B.14. Under Condition 1.3, the sequence
{

ΞU,Vn
}
n∈N

is tight in the function

space (C[0, 1/2], || · ||∞).

Proof of Corollary B.14. By Theorem 7.3 in Billingsley [7] (and a rescaling argument) it

is sufficient to prove that the sequence
{

ΞU,Vn (0)
}
n∈N

is tight in R and that

lim
δ→0+

lim sup
n→∞

P
(
ω(ΞU,Vn , δ)) > ε)

)
= 0.

We have already noted that
{

ΞU,Vn (0)
}
n∈N

is tight (by Theorem 2.5, which is applicable

due to Lemma B.9) and thus Lemma B.13 yields Corollary B.14.

We conclude the proof of Theorem 2.6 (ii) by using the Skorohod Representation Theorem

[7, Thm. 6.7] to verify that the tightness of
{

ΞU,Vn
}
n∈N

induces that

n

2

∫ 1

0

(
U−1
n (t)− V −1

n (t)
)2
dt 

∫ 1

0
(G(t))2 dt.

Proof of Theorem 2.6 (ii). By Corollary B.14 the sequence

{
ΞU,Vn

}
n∈N =

{∫ 1−β

β

∣∣∣∣
√
n

2
(U−1

n (s)− V −1
n (s))

∣∣∣∣
2

ds

∣∣∣∣β ∈ [0, 1/2]

}

n∈N
. (B.18)

28

96 Distribution of Distances based Object Matching



is tight in (C[0, 1/2], || · ||∞). As tightness implies relative compactness [6, Thm. 5.1],

this means that every subsequence of
{

ΞU,Vn
}
n∈N

contains a subsequence that is weakly

convergent in C[0, 1/2]. Let
{

ΞU,Vnk

}
nk∈N

be such a convergent subsubsequence, whose

limit we denote by Ξ. Since the elements of the sequence
{

ΞU,Vnk

}
nk∈N

are measurable

by Lemma B.11 and (C[0, 1/2], || · ||∞) is a Polish space, it follows that there exists a

probability space (Ω̃, Ã, P̃ ) and random variables
(

ΞU,Vnk

)′ D
= ΞU,Vnk , nk ∈ N, and Ξ′ D= Ξ

such that
(

ΞU,Vnk

)′
→Ξ′ for every ω ∈ Ω̃, as nk → ∞ [7, Thm. 6.7]. By a slight abuse of

notation we will drop the additional prime in the following.

By construction we have that ΞU,Vnk converges to a limit in (C[0, 1/2], || · ||∞) as n → ∞.

This particularly implies that the sequences ΞU,Vnk (β) converge in R for β ∈ [0, 1/2] and
ω ∈ Ω̃. Under the assumptions made it follows for β ∈ (0, 1/2) by Theorem 2.5 (i) that

ΞU,Vnk =

∫ 1−β

β

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds→
∫ 1−β

β
|G(s)|2 ds,

as nk →∞ for all ω ∈ Ω̃. In the following, we aim to identify the limit of ΞU,Vnk (0).

Since

ΞU,Vnk (0) =

∫ 1

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

≥
∫ 1−β

β

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds = ΞU,Vnk (β),

we find

lim
nk→∞

ΞU,Vnk (0) = lim inf
nk→∞

ΞU,Vnk (0) ≥ lim inf
nk→∞

ΞU,Vnk (β) =

∫ 1−β

β
|G(s)|2 ds,

for all ω ∈ Ω̃. Now, letting β ↘ 0, monotone convergence yields

lim
nk→∞

ΞU,Vnk (0) ≥
∫ 1

0
|G(s)|2 ds.

If, for some ω ∈ Ω̃, we had that

lim inf
nk→∞

∫ 1

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds >

∫ 1

0
|G(s)|2 ds,
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this would imply

lim inf
nk→∞

{∫ β0

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds+

∫ 1

1−β0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

}

(B.19)

>

∫ β0

0
|G(s)|2 ds+

∫ 1

1−β0

|G(s)|2 ds,

for some β0 > 0. Assume that (B.19) holds for some ω ∈ Ω̃. Then, there exists ∆ =
∆(ω) > 0 such that

lim inf
nk→∞

{∫ β0

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds+

∫ 1

1−β0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

}

=

∫ β0

0
|G(s)|2 ds+

∫ 1

1−β0

|G(s)|2 ds+ ∆. (B.20)

At the same time, we have

lim inf
nk→∞

{∫ β1

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds+

∫ 1

1−β1

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

}

=

∫ β1

0
|G(s)|2 ds+

∫ 1

1−β1

|G(s)|2 ds+ ∆,

for any fixed 0 < β1 < β0 and therefore

inf
0<β≤β0

lim inf
nk→∞

∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds ≥ ∆, (B.21)

since inf0<β≤β0

{∫ β
0 |G(s)|2 ds+

∫ 1
1−β |G(s)|2 ds

}
≥ 0. We find that

E

[
inf

0<β≤β0

lim inf
nk→∞

∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]

=E

[
lim
β→0+

lim inf
nk→∞

∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]
,
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where the last equality holds due to monotonicity with respect to β. Further, it holds

E

[
inf

0<β≤β0

lim inf
nk→∞

∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]

(i)
= lim
β→0+

E

[
lim inf
nk→∞

∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]

(ii)

≤ lim
β→0+

lim inf
nk→∞

E

[∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]
.

Here, (i) follows by monotone convergence and (ii) by Fatou’s Lemma [6, Thm. 16.3]. We
have already considered the last limit in the proof of Lemma B.13. There, we have shown
that under the assumptions made

lim
β→0+

lim inf
nk→∞

E

[∫

[0,β]∪[1−β,1]

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds

]
= 0.

Hence, (B.19) can only hold on a set of measure zero. Thus, we have demonstrated that

∫ 1

0

∣∣∣∣
√
nk
2

(
U−1
nk

(s)− V −1
nk

(s)
)∣∣∣∣

2

ds⇒
∫ 1

0
|G(s)|2 ds.

The subsequence was chosen arbitrarily. Hence, we conclude that every subsequence of{
ΞU,Vn (0)

}
n∈N

has a subsequence that converges weakly to
∫ 1

0 |G(s)|2 ds. This induces

that ∫ 1

0

∣∣∣∣
√
n

2
(U−1

n (s)− V −1
n (s))

∣∣∣∣
2

ds⇒
∫ 1

0
|G(s)|2 ds

and thus we have demonstrated the claim.

Remark B.15. Reconsideration of the above proof and the ones of the auxiliary results
required highlights that only in the proof of Lemma B.12 we actually make use of the
assumption n = m. However, it is evident that with similar arguments as used in the proof
of Theorem 2.5 we can extend Lemma B.12 to the case n 6= m (see Section B.6). This
allows us to apply the same strategy of proof to establish Theorem 2.6 (ii) for the case
n 6= m.

Remark B.16. Finally, we comment on the implications of our results on the statistics

(
nm

n+m

)p/2
D̂oDp (Xn,Ym) :=

(
nm

n+m

)p/2 ∫ 1

0

∣∣U−1
n (t)− V −1

m (t)
∣∣p dt,

where p ∈ [1,∞). A careful reconsideration of the above arguments highlights that the
proof of Theorem 2.6 (ii) does depend on the choice of p = 2 via Lemma B.12. However, if
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we slightly change Condition 1.3, namely demand that there are constants −2/p < γ1, γ2 <
∞ and cU > 0 such that ∣∣(U−1)′(t)

∣∣ ≤ cU tγ1(1− t)γ2

for t ∈ (0, 1), then we can adapt the proof of Lemma B.12 and thus the one of Theorem 2.6
(ii) to p ∈ [1,∞).

B.5 Proof of Theorem 2.7

In this subsection, we derive Theorem 2.7. Its proof follows along the lines of the proof of
Theorem 2 of Munk and Czado [32], where the limit distribution of a (truncated) empirical
Kantorovich distance under the assumption that the underlying true measures are not equal
is derived. However, while Munk and Czado [32] work with classical empirical quantile
processes, we have to deal with empirical U -quantile processes in the present setting. As
in the previous subsection, we begin with the proof of the first part of Theorem 2.7 and
consider its second statement afterwards.

B.5.1 First Part

Just like the proof of Theorem 2.6 (i) (see Section B.4) the one of Theorem 2.7 (i) is based
on Lemma B.7. We start by establishing the subsequent theorem.

Theorem B.17. Let β ∈ (0, 1/2), assume Setting 1.1 and let Condition 1.2 hold. Let
DoD(β) 6= 0 and let n,m→∞ such that n

m+n → λ ∈ (0, 1). Then, it holds

√
nm

n+m

(∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt−

∫ 1−β

β

(
U−1(t)− V −1(t)

)2
dt

)

 2
√
λ

∫ 1−β

β
(U−1(t)− V −1(t))G1(t)dt− 2

√
1− λ

∫ 1−β

β
(U−1(t)− V −1(t))G2(t)dt, (B.22)

where G1 and G2 denote the centered, independent Gaussian processes defined in the state-
ment of Lemma B.7.

Proof of Theorem B.17. We will use the 3 following steps in order to prove the claim.

Step 1: Let G1 and G2 be the Gaussian processes defined in the theorem’s statement. We
show that for n→∞

√
n

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
U−1
n (t)− U−1(t)

)
dt

 
∫ 1−β

β

(
U−1(t)− V −1(t)

)
G1(t) dt
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as well as that for m→∞
√
m

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
V −1
m (t)− V −1(t)

)
dt

 
∫ 1−β

β

(
U−1(t)− V −1(t)

)
G2(t) dt.

Step 2: We prove that for n,m→∞ such that n
m+n → λ ∈ (0, 1) we have

√
nm

n+m

∫ 1−β

β

(
U−1
n (t)− U−1(t)

)2
dt

P→ 0

as well as √
nm

n+m

∫ 1−β

β

(
V −1
m (t)− V −1(t)

)2
dt

P→ 0.

Step 3: Finally, we demonstrate that
∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt−

∫ 1−β

β

(
U−1(t)− V −1(t)

)2
dt

=2

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
U−1
n (t)− U−1(t)

)
dt

−2

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
V −1
m (t)− V −1(t)

)
dt+ op

((
mn

n+m

)1/2
)
.

Step 1 essentially follows by Lemma B.7. An application of the former lemma gives that
for n→∞

U−1
n =

√
n
(
U−1
n − U−1

)
 G1 (B.23)

in `∞[β, 1 − β]. Further, as U and V are assumed to be continuous, U−1 and V −1 are
continuous as well. This means that

sup
t∈[β,1−β]

∣∣U−1(t)
∣∣ = C <∞ and sup

t∈[β,1−β]

∣∣V −1(t)
∣∣ = C ′ <∞.

With this it is straight forward to verify that the map φ1 : `∞[β, 1 − β] → R, f 7→∫ 1−β
β

(
U−1(t) − V −1(t)

)
f(t) dt is Lipschitz continuous. In consequence, the Continuous

Mapping Theorem [40, Thm. 1.3.6] yields that as n grows to infinity we have

√
n

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
U−1
n (t)− U−1(t)

)
dt = φ1(U−1

n )

 φ1(G1) =

∫ 1−β

β

(
U−1(t)− V −1(t)

)
G1(t) dt.

33

101



The analogous arguments give the corresponding result for

√
m

∫ 1−β

β

(
U−1(t)− V −1(t)

) (
V −1
m (t)− V −1(t)

)
dt.

This concludes Step 1.

In order to show Step 2, we will use similar arguments as in the previous step to verify
that

√
n

√
nm

n+m

∫ 1−β

β

(
U−1
n (t)− U−1(t)

)2
dt = Op(1). (B.24)

This in turn suggests that

√
nm

n+m

∫ 1−β

β

(
U−1
n (t)− U−1(t)

)2
dt = op(1).

We have already seen that under the assumptions made (B.23) holds. Moreover, it is easy

to verify that the function φ2 : `∞[β, 1− β]→ R, f 7→
∫ 1−β
β (f(t))2 dt is continuous. Thus,

the Continuous Mapping Theorem [40, Thm. 1.3.6] suggests that for n→∞ it holds

n

∫ 1−β

β

(
U−1
n (t)− U−1(t)

)2
dt = φ2(U−1

n ) φ2(G1) =

∫ 1−β

β
(G1(t))2 dt.

As R is separable and complete, the random variable φ2(G1) is tight [40, Lemma 1.3.2]. In
consequence, we have that

n

∫ 1−β

β

(
U−1
n (t)− U−1(t)

)2
dt = Op(1).

As m/(n+m)→ 1− λ for m,n→∞, this induces (B.24). The same arguments yield the

analogous statement for
√

nm
n+m

∫ 1−β
β (V −1

m (t)− V −1(t))2 dt.

In the end, we come to Step 3. For notational purposes we write in this step
∫
f instead

of
∫ 1−β
β f(t) dt. We have

∫ 1−β

β

(
U−1
n (t)− V −1

m (t)
)2
dt−

∫ 1−β

β

(
U−1(t)− V −1(t)

)2
dt

=

∫ [ (
U−1
n

)2 − 2U−1
n V −1

m +
(
V −1
m

)2 −
(
U−1

)2
+ 2U−1V −1 −

(
V −1

)2 ]

=2

∫ [
U−1
n U−1 + V −1

m V −1 −
(
U−1

)2 −
(
V −1

)2 − U−1
n V −1

m + U−1V −1
]

+

∫ [ (
U−1
n − U−1

)2
+
(
V −1
m − V −1

)2 ]
.
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By Step 2 we have ∫ (
U−1
n − U−1

)2
= op

((
mn

n+m

)−1/2
)

and ∫ (
V −1
m − V −1

)2
= op

((
mn

n+m

)−1/2
)
.

Continuing with our calculations leads to

=2

∫ [
U−1
n U−1 + V −1

m V −1 −
(
U−1

)2 −
(
V −1

)2 − U−1
n V −1

m + U−1V −1
]

+

∫ [ (
U−1
n − U−1

)2
+
(
V −1
m − V −1

)2 ]

=2

∫ [
U−1
n U−1 + V −1

m V −1 −
(
U−1

)2 −
(
V −1

)2 − U−1
n V −1

m + U−1V −1
]

+ op

((
mn

n+m

)−1/2
)

=2

∫ [
U−1

(
U−1
n − U−1

)
+ V −1

(
V −1
m − V −1

)
+ U−1

n

(
V −1 − V −1

m

)

+ V −1
m

(
U−1 − U−1

n

) ]
+ 2

∫ [ (
U−1 − U−1

n

) (
V −1 − V −1

m

) ]

+ op

((
mn

n+m

)−1/2
)
.

A combination of Step 2 and the Cauchy-Schwarz inequality induces

∫ [ (
U−1 − U−1

n

) (
V −1 − V −1

m

) ]
= op

((
mn

n+m

)−1/2
)
. (B.25)

With this in mind, we proceed with our calculations. Taking Equation (B.25) into account,
the last term becomes

2

∫ [ (
U−1 − V −1

m

) (
U−1
n − U−1

) ]
+ 2

∫ [ (
V −1 − U−1

n

) (
V −1
m − V −1

) ]

+ op

((
mn

n+m

)−1/2
)

=2

(∫ [ (
U−1 − V −1

) (
U−1
n − U−1

) ]
+

∫ [ (
V −1 − V −1

m

) (
U−1
n − U−1

) ]

−
∫ [ (

U−1 − V −1
) (
V −1
m − V −1

) ]
+

∫ [ (
U−1 − U−1

n

) (
V −1
m − V −1

) ])
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+ op

((
mn

n+m

)−1/2
)

=2

∫ [ (
U−1 − V −1

) (
U−1
n − U−1

) ]
− 2

∫ [ (
U−1 − V −1

) (
V −1
m − V −1

) ]

+ op

((
mn

n+m

)−1/2
)
,

where we used again (B.25) in the last step. This concludes Step 3.

The claim now follows as
√

nm

n+m

∫ [ (
U−1 − V −1

) (
U−1
n − U−1

) ]

and √
nm

n+m

∫ [ (
U−1 − V −1

) (
V −1
m − V −1

) ]

are independent and their distributional limits were calculated in Step 1.

We obtain Theorem 2.7 (i) once we have verified that the limit distribution in (B.22) is
normally distributed with mean zero and variance as stated.

Proof of Theorem 2.7 (i). Since the requirements of Theorem B.17 are given by assump-
tion, it only remains to show that the limit distribution in (B.22) is normally distributed
with correct mean and variance. This is a straightforward application of Theorem 8.17 of
Dümbgen [19].

First of all, T = [β, 1 − β] is a compact metric space and by Lemma F.11 the process G1

is continuous on T , i.e., G1 is uniformly continuous on T . Let now Qβ be the uniform
distribution on [β, 1− β] and let ζ(t) = U−1(t)− V −1(t) for t ∈ [β, 1− β]. It follows

∫ 1−β

β
(U−1(t)− V −1(t))Qβ(dt) =

1

1− 2β

∫ 1−β

β
ζ(t) dt <∞,

since the function ζ is continuous on T . Consequently, Theorem 8.17 of Dümbgen [19]
implies that

∫ 1−β

β
(U−1(t)− V −1(t))G1(t)Qβ(dt) =

1

1− 2β

∫ 1−β

β
ζ(t)G1(t) dt

is normally distributed with mean

1

1− 2β

∫ 1−β

β
ζ(t)E [G1(t)] dt = 0
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and variance

σ2
1 =

∫ 1−β

β

∫ 1−β

β
ζ(t)ζ(t′)Cov(G1(t),G1(t′))Qβ(dt)Qβ(dt′)

= C2

∫ 1−β

β

∫ 1−β

β

4ζ(t)ζ(t′)
(u ◦ U−1(t))(u ◦ U−1(t′))

ΓdX
(
U−1(t), U−1(t′)

)
dt dt′,

where C = 1/(1− 2β). Let x = U−1(t) and y = U−1(t′), then

dx

dt
=

d

dt
U−1(t) =

1

u ◦ U−1(t)
,

respectively
dy

dt′
=

d

dt′
U−1(t′) =

1

u ◦ U−1(t′)
.

As a consequence, the variance is given as

σ2
1 = 4C2

∫ U−1(1−β)

U−1(β)

∫ U−1(1−β)

U−1(β)
(x− V −1(U(x)))(y − V −1(U(y)))ΓdX (x, y) dx dy

From the above it now follows by multiplying with 2
√
λ(1− 2β), that the term

2
√
λ

∫ 1−β

β
(U−1(t)− V −1(t))G1(t) dt

is normally distributed with mean 0 and variance

16λ

∫ U−1(1−β)

U−1(β)

∫ U−1(1−β)

U−1(β)
(x− V −1(U(x)))(y − V −1(U(y)))ΓdX (x, y) dx dy.

The analogue arguments for

∫ 1−β

β
(U−1(t) − V −1(t))G2(t) dt

and the independence of G1 and G2 yield the claim.

B.5.2 Second Part

In order to prove Theorem 2.7 (ii) we will pursue a similar strategy as for the proof of
Theorem 2.7 (i), i.e., we will first derive the analog of Theorem B.17 for β = 0 and
afterwards verify that the limiting random variable is normally distributed with mean and
variance as stated.
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As already mentioned, the most important step of the proof of Theorem B.17 is to derive
the limit distributions of

∫ 1−β

β
(U−1(t)− V −1(t))U−1

n (t) dt and

∫ 1−β

β
(U−1(t)− V −1(t))V−1

m (t) dt, (B.26)

where U−1
n :=

√
n
(
U−1
n −U−1

)
and V−1

m :=
√
m
(
V −1
m −V −1

)
. Under Condition 1.2 these can

be derived via the distributional limits for the empirical U -quantile processes U−1
n and V−1

m

in `∞[β, 1−β]. However, as already argued, we cannot expect `∞(0, 1)-convergence of U−1
n

and V−1
m if the densities u and v vanish at the border of their support. Reconsidering (B.26),

we realize that `1(0, 1)-convergence of U−1
n and V−1

m is sufficient to derive the corresponding
limiting distributions. Convergence in `1(0, 1) is much weaker than convergence in `2(0, 1)
or `∞(0, 1). Indeed, it turns out that this convergence can quickly be verified. Given an
interval [a, b] ⊂ R let D[a, b] denote the space of cádlág functions on [a, b] (equipped with
the supremum norm) and D2 ⊂ D[a, b] the set of distribution functions of measures that
concentrate on (a, b]. Using ideas from Kaji [22] we can show the following.

Lemma B.18. Let F have compact support on [a, b] and let F be continuously differentiable
on its support with derivative f that is strictly positive on (a, b) (Possibly, f(a) = 0 and/or
f(b)) = 0). Then the inversion functional φinv : F 7→ F−1 as a map D2 ⊂ D[a, b]→ `1(0, 1)
is Hadamard-differentiable at F tangentially to C[a, b] with derivative α 7→ −(α/f) ◦ F−1.

Proof of Lemma B.18. Let hn → h uniformly in D[a, b], where h is continuous, tn → 0 and
F + tnhn ∈ D2 for all n ≥ 1 sufficiently large. Let ∇φinvF (α) = −(α/f) ◦F−1. We have to
demonstrate that

∥∥∥∥
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∥∥∥∥
`1(0,1)

→ 0,

as n→∞. We realize that for every ε > 0 there exist aε, bε ∈ [a, b] such that max{F (aε), 1−
F (bε)} < ε and f is strictly positive on [aε, bε]. It follows that

∥∥∥∥
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∥∥∥∥
`1(0,1)

≤
∫ F (bε)−ε

F (aε)+ε

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s) ds

+

∫ 2ε

0

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s) ds

+

∫ 1

1−2ε

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s) ds.
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Next, we treat the summands separately. The claim follows once we have shown that the
first summand vanishes for all ε > 0 as n → ∞ and the other two summands become
arbitrarily small for ε small and n→∞.

First summand: We start with the first summand. Since its requirements are fulfilled for
all ε > 0, we have by Lemma 3.9.23 of van der Vaart and Wellner [40] that

sup
s∈[F (aε)+ε,F (bε)−ε]

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s)→ 0, (B.27)

as n→∞. Thus, the same holds for

∫ F (bε)−ε

F (aε)+ε

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s) ds,

which is bounded by (B.27).

Second summand: We have

∫ 2ε

0

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn
−∇φinvF (h)

∣∣∣∣ (s) ds

≤
∫ 2ε

0

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn

∣∣∣∣ (s) ds+

∫ 2ε

0
|∇φinvF (h)| (s) ds. (B.28)

In the following, we consider both terms separately. For the first term, we find that

∫ 2ε

0

∣∣∣∣
φinv(F + tnhn)− φinv(F )

tn

∣∣∣∣ (s) ds

=
1

|tn|

∫ 2ε

0

∣∣(F + tnhn)−1(s)− F−1(s)
∣∣ ds.

Next, we realize that for G ∈ D2 ⊂ D[a, b] and s ∈ (0, 1), we have that

G−1(s) = −
∫ b

a
1{s≤G(x)} dx+ b.

Since F ∈ D2 and F + tnhn ∈ D2 for all n ∈ N, this yields that

1

|tn|

∫ 2ε

0

∣∣(F + tnhn)−1(s)− F−1(s)
∣∣ ds

≤ 1

|tn|

∫ b

a

∫ 2ε

0

∣∣1{s≤(F+tnhn)(x)} − 1{s≤F (x)}
∣∣ ds dx,
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where we applied the Theorem of Tonelli/Fubini [6, Thm. 18.3] in the last step. Let in the
following Ftnhn = F + tnhn. Then, we obtain that

∫ 2ε

0

∣∣∣1{s≤Ftnhn (x)} − 1{s≤F (x)}
∣∣∣ ds

≤
{
|F (x)− Ftnhn(x)| , if min {F (x), Ftnhn(x)} ≤ 2ε.

0, else.

Let now x ≥ F−1 (2ε+ ‖hntn‖∞), then it follows that

F (x) ≥ 2ε+ ‖hntn‖∞ ≥ 2ε

as well as
Ftnhn(x) ≥ 2ε+ ‖hntn‖∞ + tnhn(x) ≥ 2ε.

Combining these findings, we obtain that

1

|tn|

∫ 2ε

0

∣∣(F + tnhn)−1(s)− F−1(s)
∣∣ ds

≤ 1

|tn|

∫ F−1(2ε+‖hntn‖∞)

a
|(F + tnhn)(x)− F (x)| dx

≤‖hn − h‖`1(a,b) +

∫ F−1(2ε+‖hntn‖∞)

a
|h(x)| dx.

We realize that the first term goes to zero as n→∞ by construction. Further, since tn → 0
for n → ∞, we obtain that F−1 (2ε+ ‖hntn‖∞) → F−1(2ε). Thus, for n → ∞ the second
term can be made arbitrarily small by the choice of ε.

For the second term in (B.28), we obtain by a change of variables that

∫ 2ε

0
|∇φinvF (h)| (s) ds =

∫ 2ε

0

∣∣∣∣∣
h
(
F−1(u)

)

f (F−1(u))

∣∣∣∣∣ du =

∫ F−1(2ε)

a
|h(u)| du.

Thus, this term will be arbitrarily small for ε small.

Third summand: The third summand can be treated with the same arguments as the
second.

Based on Lemma B.18, it is straight forward to demonstrate that U−1
n  G1 as well

as V−1
m  G2 in `1(0, 1) (see Section F.2 for more information on weak convergence of

empirical U -quantile processes). Reconsidering the proof of Theorem B.17, it becomes
clear that in order to adapt the previous arguments we further only require that

√
nm

n+m

∫ 1

0

(
U−1
n (t)− U−1(t)

)2
dt = op(1) (B.29)
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as well as the analogous result for
√

nm
n+m

∫ 1
0

(
V −1
m (t)− V −1(t)

)2
dt. Based on these obser-

vations, we can show th following theorem.

Theorem B.19. Assume Setting 1.1 and let Condition 1.3 hold. Let DoD(0) 6= 0 and let
n,m→∞ such that n

m+n → λ ∈ (0, 1). Then, it holds

√
nm

n+m

(∫ 1

0

(
U−1
n (t)− V −1

m (t)
)2
dt−

∫ 1

0

(
U−1(t)− V −1(t)

)2
dt

)

 2
√
λ

∫ 1

0
(U−1(t)− V −1(t))G1(t) dt− 2

√
1− λ

∫ 1

0
(U−1(t)− V −1(t))G2(t) dt. (B.30)

Here, G1 and G2 denote centered, independent Gaussian processes with covariance struc-
tures as defined in Theorem B.17.

Proof of Theorem B.19. Let supp (U) = [0, D1]. By assumption we have that U is contin-
uously differentiable and that u(t) = U ′(t) > 0 for all t ∈ (0, D1). Furthermore, we have
shown in the proof of Lemma B.7 that the class

F =
{

(x, y) 7→ 1{dX (x,y)≤t} : t ∈ [0, D1]
}

meets the requirements of Theorem F.12. Thus, as all its assumptions are given, an appli-
cation of Theorem F.12 gives that

√
n(U−1

n − U−1) G1

in `1(0, 1).

It remains to demonstrate (B.29). In the following, let µUn denote the empirical measure
corresponding to Un, i.e., for A ∈ B(R)

µUn (A) =
2

n(n− 1)

∑

1≤i<j≤n
1{dX (Xi,Xj)∈A}.

By Lemma B.9 we have that under Condition 1.3

J2

(
µU
)

=

∫ ∞

−∞

U(t)(1− U(t))

u(t)
dt <∞

(alternatively this can be assumed directly, see Remark 2.9). Hence, it follows by (B.9) in
the proof of Theorem 2.5 (see Section B.3) that

E
[∫ 1

0

(
U−1
n (t)− U−1(t)

)2
dt

]
= E

[
K2

2

(
µUn , µ

U
)]
≤ 4

n+ 1
J2(µU ),
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which induces (B.29).

The analogous statements for V−1
m and

√
nm
n+m

∫ 1
0

(
V −1
m (t)− V −1(t)

)2
dt follow by the same

arguments. As already argued, this yields the claim.

We complete the proof of Theorem 2.7 (ii) by showing that (B.30) is normally distributed.

Proof of Theorem 2.7 (ii). In order to prove that the limit distribution defined in (B.30)
is normally distributed, we consider the summands

Ψ1 := 2
√
λ

∫ 1

0
(U−1(t)− V −1(t))G1(t) dt

and

Ψ2 := 2
√

1− λ
∫ 1

0
(U−1(t)− V −1(t))G2(t) dt.

separately. First of all, we observe that

Ψ1 = 2
√
λ

∫ 1

0
(U−1(t)− V −1(t))G1(t) dt

D
= 2
√
λ

∫ 1

0
(U−1(t)− V −1(t))

G3

(
U−1(t)

)

u(U−1(t))
dt,

where G3 denotes a mean zero Gaussian process with covariance

Cov(G3(t),G3(t′)) = 4ΓdX (t, t′).

In consequence, a change of variables (x = U−1(t)) yields that

Ψ1
D
= 2
√
λ

∫ DX

0
(x− V −1(U(x)))G3 (t) dt,

where supp (U) = [0, DX ]. It is important to note that metric measure spaces are compact
by definition and hence DX < ∞. Further, we observe that the empirical U -process
Un =

√
n (Un − U) converges in distribution against G3, i.e., Un  G3 in `∞[0, DX ].

Consequently, we obtain by Corollary F.8 that G3 is continuous (alternatively this can
be easily verified directly via [17, Thm. 7.1]). Further, we realize that T = [0, DX ] is
a compact metric space and hence G1 is uniformly continuous on T . Since the function
x 7→ x − V −1(U(x)) is integrable on [0, DX ], we can again apply Theorem 8.17 from
Dümbgen [19] in combination with the arguments used in the proof of Theorem 2.7 (i) to
derive that Ψ1 is normally distributed with mean zero and variance

σ1 = 16λ

DX∫

0

DX∫

0

(x− V −1(U(x)))(y − V −1(U(y)))ΓdX (x, y) dxdy.
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The analogous arguments yield that Ψ2 is normally distributed with mean zero and variance

σ2 = 16(1− λ)

DY∫

0

DY∫

0

(U−1(V (x))− x))(U−1(V (y))− y)ΓdY (x, y) dxdy,

where supp (V ) = [0, DY ]. Since Ψ1 and Ψ2 are independent, this yields the claim.

Remark B.20. Although one can try to adopt a similar strategy for the derivation of the
limit behavior of

D̂oDp,(β) (Xn,Ym) =

∫ 1−β

β

∣∣U−1
n (t)− V −1

m (t)
∣∣p dt

under the alternative H1, β ∈ [0, 1/2), p ∈ [1,∞), especially the calculations for the proof
of the auxiliary results Theorem B.17 and Theorem B.19 heavily rely on the fact that we
have chosen p = 2. Thus, Theorem 2.7 is not as easily generalized as Theorem 2.6.

B.6 Proof of Lemma B.12

In this section, we provide a full proof for Lemma B.12. Throughout the following let S(B)
denote the set of all permutations of the finite set B. In the special case B = {1, . . . , n},
we write Sn instead of S({1, . . . , n}). We begin this section with the verification of an
auxiliary result.

Lemma B.21. Let X1, . . . , Xm, Y1, . . . , Ym, m ∈ N≥2, be independent, identically dis-
tributed with differentiable distribution function F and let (FXm )−1 and (F Ym )−1 denote the
empirical quantile functions of X1, . . . , Xm and Y1, . . . , Ym, respectively. Let β ∈ (0, 1/2).
Assume that there exist constants −1 < γ1, γ2 <∞ and cF > 0 such that

∣∣(F−1)′(s)
∣∣ ≤ cF · sγ1(1− s)γ2 . (B.31)

Then, it holds

E
[∫ β

0

∣∣√m((FXm )−1(s)− (F Ym )−1(s))
∣∣2ds

]
≤ C1

m+ 2





(
β

(
1 +

√
log(m)√
m

))2γ1+2

+
C2

m2β2





as well as

E
[∫ 1

1−β

∣∣√m((FXm )−1(s)− (F Ym )−1(s))
∣∣2ds

]
≤ C1

m+ 2





(
β

(
1 +

√
log(m)√
m

))2γ2+2

+
C2

m2β2



,

where C1, C2 denote finite positive constants that are independent of β.
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Proof of Lemma B.21. In the following, we only prove the first inequality. The second
inequality follows by employing the analogous arguments.

Recall that

(FXm )−1(s) = X(k) for
k − 1

m
< s ≤ k

m
, k = 1, . . . ,m.

Hence, we have that

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]
≤ E


 1

m

dmβe∑

k=1

|X(k) − Y(k)|2

 .

Let U1, . . . , Um and V1, . . . , Vm be two independent i.i.d. U [0, 1] samples. Then

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]
≤ E


 1

m

dmβe∑

k=1

|F−1(U(k))− F−1(V(k))|2

 .

Since U(k)
D
= V(k)

D
= Beta(k,m− k + 1) and U(k) and V(k) are independent, we may write

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]

≤ 1

m

dmβe∑

k=1

∫ 1

0

∫ 1

0
|F−1(s)− F−1(t)|2 dBk,m−k+1(s) dBk,m−k+1(t).

An application of Proposition B.8 in Bobkov and Ledoux (2016) yields

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]

≤
(

10√
m+ 2

)2 1

m

dmβe∑

k=1

∫ 1

0
x(1− x)|(F−1)′(x)|2 dBk,m−k+1(x).

Next, we use that

dBk,m−k+1(x) = m

(
m− 1

k − 1

)
xk−1(1− x)m−k dx

and obtain

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]

≤ 100

m+ 2

dmβe∑

k=1

(
m− 1

k − 1

)∫ 1

0
x(1− x)|(F−1)′(x)|2xk−1(1− x)m−k dx.
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In a further step we split the integral into two parts, one for small x . β and one for
the remaining larger values of x. The maximum of the function x 7→ xk(1 − x)m−k+1 is
attained at k/(m+ 1), where

k

m+ 1
≤ dβme
m+ 1

≤ βm+ 1

m+ 1
≤ β +

1− β
m+ 1

.

In particular, for small values k � dβme, integration over x . β contains most of the
”mass” of the function x 7→ xk(1 − x)m−k+1, whereas the ”mass” for x & β becomes
negligible for fixed β > 0 as m→∞.

We resort to the following two observations:

dmβe∑

k=1

(
m− 1

k − 1

)
xk−1(1− x)m−k ≤ 1 for all x ∈ [0, 1], (B.32)

by the binomial formula and, for x > mβ
m−1

(
1 +

√
log(m)
m

)
,

P (Bin(m− 1, x) ≤ dmβe − 1) ≤ exp

(
−2

(mβ(1+
√

log(m)/m)−mβ)2

m

)
= m−2β2

, (B.33)

by Hoeffding’s inequality. This gives the estimate

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]

≤ 100
m+2

∫ βm
m−1

(
1+

√
log(m)√
m

)

0
x(1− x)|(F−1)′(x)|2 dx

+ 100
m+2

∫ 1

βm
m−1

(
1+

√
log(m)√
m

) x(1− x)|(F−1)′(x)|2 · P (Bin(m− 1, x) ≤ dmβe − 1) dx

≤ 100
m+2





∫ βm
m−1

(
1+

√
log(m)√
m

)

0
x(1− x)|(F−1)′(x)|2 dx+

1

m2β2

∫ 1

0
x(1− x)|(F−1)′(x)|2 dx



 .

In the remainder of this proof C1 and C2 denote finite, positive constants that are inde-
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pendent of β and may vary from line to line. Using (B.31) we obtain that

E
[∫ β

0
|(FXm )−1(s)− (F Ym )−1(s)|2 ds

]

≤ 100
m+2





∫ βm
m−1

(
1+

√
log(m)√
m

)

0
cFx

2γ1+1(1− x)2γ2+1 dx+
1

m2β2

∫ 1

0
cFx

2γ1+1(1− x)2γ2+1 dx





≤ 100
m+2





∫ βm
m−1

(
1+

√
log(m)√
m

)

0
C1x

2γ1+1 dx+
C2

m2β2





=
C1

m+ 2





(
β

(
1 +

√
log(m)√
m

))2γ1+2

+
C2

m2β2



 ,

where we used that 2γi + 1 > −1, i ∈ {1, 2}, by assumption and that m/(m − 1) ≤ 2 for
m ∈ N≥2. Thus, we have proven the claim.

With Lemma B.21 at our disposal and the ideas developed for proving Lemma B.3 (see
Section B.3), we can start the proof of Lemma B.12.

Proof of Lemma B.12. Here, we only derive (B.15). The statement (B.16) follows by the
analogue arguments.

Let X1, . . . Xn
i.i.d.∼ µX and Y1, . . . , Yn

i.i.d.∼ µX . Let m =
⌈
βn(n−1)

2

⌉
. Further, denote by

{
dX(i)

}n(n−1)/2

i=1
the ordered sample of {dX (Xi, Xj)}1≤i<j≤n and

{
dY(i)

}n(n−1)/2

i=1
the ordered

sample of {dY(Yi, Yj)}1≤i<j≤n. We have by Lemma 4.1 of Bobkov and Ledoux [8] that

E
[∫ β

0

∣∣U−1
n (t)− V −1

n (t)
∣∣2 dt

]
≤ E

[
m∑

i=1

2

n(n− 1)

∣∣∣dX(i) − dY(i)
∣∣∣
2
]

=
2

n(n− 1)
E

[
inf

σ∈Sm

m∑

i=1

∣∣∣dUi − dVσ(i)

∣∣∣
2
]
, (B.34)

where
{
dUi
}m
i=1

denotes the unordered sample of
{
dX(i)

}m
i=1

and
{
dVi
}m
i=1

is defined anal-

ogously. In order to further bound (B.34), we want to make use of similar ideas as in
the proof of Theorem B.5. Thus, we once again divide the random variables

{
dUi
}m
i=1

and{
dVi
}m
i=1

into groups of independent random variables which are easier to handle. Let

k = max

{
l ∈ {1, . . . , n} : m ≥

l∑

i=1

(n− i)
}
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and define

k∗ = m−
k∑

i=1

(n− i).

By the definition of k follows that

β(n− 1)

2

(i)

≤ k
(ii)

≤ βn.

Concerning (i): We have by definition that

k∑

i=1

(n− i) ≤ m⇔ kn− k(k + 1)

2
≤ m

Clearly, it follows for k ≥ βn that

kn− k(k + 1)

2
≥βn2 − βn(βn+ 1)

2
=
βn(n− 1)

2
+
βn2

2
(1− β)

(∗)
≥ βn(n− 1)

2
+

5βn

12

(∗∗)
>

βn(n− 1)

2
+ 1 ≥ m.

Here, (∗) follows as β < 1/6 and (∗∗) holds as nβ > 8.

Concerning (ii): We have that k ≥ β(n− 1)/2, since

βn(n− 1)

2
−

β(n−1)
2

(
β(n−1)

2 + 1
)

2
≤ βn(n− 1)

2
≤
⌈
βn(n− 1)

2

⌉
= m.

Additionally, we note that the assumptions nβ > 8 and β < 1/6 guarantee that k > 3 and
that

n− k ≥ n− βn = (1− β)n > βn ≥ k.

In order to prove the claim, we further have to distinguish the cases k even and k odd.

Case 1: Let k be odd. We show that we once again can divide
{
dUi
}m
i=1

into n groups of
independent variables. To this end, we consider a worst case scenario, in which the number
of dependencies between the considered number of random variables is maximized. Such
a worst case scenario is given by

{
dUi
}m
i=1

=
{
dX (X1, X2), . . . , dX (X1, Xn), dX (X2, X3), . . . , dX (X2, Xn), . . . , dX (Xk, Xn),

dX (Xk+1, Xk+2), . . . , dX (Xk+1, Xk+1+k∗)
}
.

We divide
{
dUi
}m
i=1

into two blocks

{dX (Xi, Xj)}1≤i<j≤k ∪ {dX (Xk+1, Xj)}k+2≤j≤k+1+k∗
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and
{dX (Xi, Xj)}1≤i≤k,k+1≤j≤n .

As k + 1 > 3 is even, it follows by Lemma G.2 that the first block can be partitioned into
k blocks of size (k + 1)/2 or (k + 1)/2− 1.

Due to its simple dependency structure the second block can be split into max {n− k, k} =
n− k groups of size min {n− k, k} = k.

Example B.22. Let n = 6 and k = 2. Then, we have

dX (X1, X4) dX (X1, X5) dX (X1, X6) dX (X1, X4) dX (X1, X5) dX (X1, X6)
dX (X2, X4) dX (X2, X5) dX (X2, X6) dX (X2, X4) dX (X2, X5) dX (X2, X6)
dX (X3, X4) dX (X3, X5) dX (X3, X6) dX (X3, X4) dX (X3, X5) dX (X3, X6).

We stress that this example is only used to highlight the simple dependency structure of
{dX (Xi, Xj)}1≤i≤k,k+1≤j≤n.

To summarize, if k is odd, we can divide
{
dUi
}m
i=1

in the worst case scenario into n groups
of (k + 1)/2, (k + 1)/2− 1 or k independent random variables. Thus, the same statement
holds true for any other scenario.

Case 2: Let k be even. We demonstrate that also in this case we can split
{
dUi
}m
i=1

into
n groups of independent variables. We consider the same worst case scenario as for the
previous case, i.e.,

{
dUi
}m
i=1

=
{
dX (X1, X2), . . . , dX (X1, Xn), dX (X2, X3), . . . , dX (X2, Xn), . . . , dX (Xk, Xn),

dX (Xk+1, Xk+2), . . . , dX (Xk+1, Xk+1+k∗)
}

and apply similar arguments. As previously, we divide
{
dUi
}m
i=1

into the two blocks

{dX (Xi, Xj)}1≤i<j≤k ∪ {dX (Xk+1, Xj)}k+2≤j≤k+1+k∗ (B.35)

and
{dX (Xi, Xj)}1≤i≤k,k+1≤j≤n .

As k+1 > 3 is odd it follows by Lemma G.2 that the first block can be partitioned into k+1
groups of k/2 or k/2−1 independent random variables and the same arguments as for Case
1 yield that the second block can be split into n−k blocks of independent random variables
of size k. This so far yields n + 1 groups of independent random variables. However, the
first part of the proof of Lemma G.2 indicates that we can pick one group of the partition
of {dX (Xi, Xj)}1≤i≤k,k+1≤j≤n and split it over the k + 1 groups that form (B.35) in such
a way that the resulting groups still consist of independent random variables.
In summary, we find that we can partition

{
dUi
}m
i=1

into n groups of at least k/2− 1 and
at most k elements.
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By the previous arguments there exist partitions (Pl)
n
l=1 of

{
dUi
}m
i=1

and (Ql)
n
l=1 of

{
dVi
}m
i=1

consisting of independent random variables with |Pl| = |Ql| =: pl for 1 ≤ l ≤ n.

Let
{
dU,Pli

}pl
i=1

denote the elements of Pl, 1 ≤ l ≤ n and let
{
dV,Qli

}pl
i=1

denote the ones of

Ql. By the first step of the proof of Lemma B.4 it follows

2

n(n− 1)
E

[
inf

σ∈Sm

m∑

i=1

(
dUi − dVσ(i)

)2
]
≤ 2

n(n− 1)
E

[
n∑

l=1

inf
σ∈Spl

pl∑

i=1

(
dU,Pli − dV,Qlσ(i)

)2
]

With this we get using Lemma 4.1 of Bobkov and Ledoux [8] that

2

n(n− 1)
E

[
n∑

l=1

inf
σ∈Spl

pl∑

i=1

(
dU,Pli − dV,Qlσ(i)

)2
]

=
2

n(n− 1)
E

[
n∑

l=1

pl∑

i=1

(
dU,Pl(i) − d

V,Ql
(i)

)2
]

=
2

n(n− 1)

n∑

l=1

E

[
pl∑

i=1

(
dU,Pl(i) − d

V,Ql
(i)

)2
]

Next, we connect the above expectations to a difference of two empirical quantile functions.
We once again distinguish the cases k odd and k even.

Case 1: Let k be odd. For 1 ≤ l ≤ n, we have that

(k + 1)/2− 1 ≤ pl ≤ k and
β(n− 1)

2
≤ k ≤ βn.

Additionally, as m =
⌈
βn(n−1)

2

⌉
, there are

⌊
(1−β)n(n−1)

2

⌋
distances that are greater than all

elements in Pl. Of these at least
⌊

(1− β)n(n− 1)

2

⌋
− npl ≥

(1− β)n(n− 1)

2
− 1− βn2

=
(1− 3β)n(n− 2)

2
+

(1− 5β)n

2
− 1

(iii)

≥ (1− 3β)n(n− 2)

2

are independent of the elements of Pl. Here, (iii) holds as β < 1/6 and n ≥ 100. In conse-

quence, we can find at least
⌊

(1−3β)(n−2)
2

⌋
more random variables in the set

{
dUi
}n(n−1)/2

i=m+1

that are independent of the ones in Pl. Thus, we can consider Pl as the first pl order
statistics of a sample with

(1− 2.5β)n

2
− 5− 5.5β

2
≤ pl +

⌊
(1− 3β)(n− 2)

2

⌋
≤ (1− β)n

2
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elements. Hence, we find that there exists Cl1 = Cl1(n, β) such that

Cl1n = pl +

⌊
(1− 3β)(n− 2)

2

⌋
.

with
4

15
≤ 7

24
− 5

200
≤ 1− 2.5β

2
− 5− 5.5β

2n
≤ Cl1 ≤

1− β
2
≤ 1

2
.

The analogous statement holds for Ql. Consequently, we obtain for 1 ≤ l ≤ n that

E

[
pl∑

i=1

(
dU,Pl(i) − d

V,Ql
(i)

)2
]

= Cl1nE

[∫ pl
Cl1

n

0

((
FPlCl1n

)−1
(t)−

(
FQlCl1n

)−1
(t)

)2

dt

]
,

where
(
FPlCl1n

)−1
denotes an empirical quantile function based on an i.i.d. sample of U of

size Cl1n and
(
FQlCl1n

)−1
is defined analogously. Using the previously derived bounds for

Cl1 and pl, we obtain

Cl1nE

[∫ pl
Cl1

n

0

((
FPlCl1n

)−1
(t)−

(
FQlCl1n

)−1
(t)

)2

dt

]

≤ n

2
E

[∫ 15β
4

0

((
FPlCl1n

)−1
(t)−

(
FQlCl1n

)−1
(t)

)2

dt

]
.

Applying now Lemma B.21 to the above expectation gives that

n

2
E

[∫ 15β
4

0

((
FPlCl1n

)−1
(t)−

(
FQlCl1n

)−1
(t)

)2

dt

]

≤ C1

(
15

4
β

(
1 +

√
15 log (n)

2
√
n

))2γ1+2

+ o(1),

where C1 denotes a finite constant that is independent of β.

In consequence, we obtain that

E
[∫ β

0

(
U−1
n (t)− V −1

n (t)
)2
dt

]
≤ 2

n(n− 1)
E

[
n∑

l=1

inf
σ∈Spl

pl∑

i=1

(
dU,Pli − dV,Qlσ(i)

)2
]

≤ 2

n(n− 1)

n∑

l=1

E

[
pl∑

i=1

(
dU,Pl(i) − d

V,Ql
(i)

)2
]

≤ 2C1

n− 1

(
15

4
β

(
1 +

√
15 log (n)

2
√
n

))2γ1+2

+ o
(
n−1

)
.
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Case 2: Let k be even. Then, we obtain with the same arguments as previously that

E

[
pl∑

i=1

(
dU,Pl(i) − d

V,Ql
(i)

)2
]

= Cl2nE

[∫ pl
Cl2

n

0

((
FPlCl2n

)−1
(t)−

(
FQlCl2n

)−1
(t)

)2

dt

]
,

where
(
FPlCl2n

)−1
and

(
FQlCl2n

)−1
denote empirical quantile functions based on an i.i.d.

sample of size Cl2n. Here, it holds for Cl2 = Cl2(n, β) that

1

4
≤ 7

24
− 6

200
≤ 1− 2.5β

2
− 6− 5.5β

2n
≤ Cl2 ≤

1− β
2
≤ 1

2
.

Thus, we find that

Cl2nE

[∫ pl
Cl2

n

0

((
FPlCl2n

)−1
(t)−

(
FQlCl2n

)−1
(t)

)2

dt

]

≤ Cl2nE
[∫ 4β

0

((
FPlCl2n

)−1
(t)−

(
FQlCl2n

)−1
(t)

)2

dt

]
.

Just as in the previous case an application of Lemma B.21 in combination with the derived
estimates yields that also in this case

E
[∫ β

0

(
U−1
n (t)− V −1

n (t)
)2
dt

]
≤ 2C1

n− 1

(
4β

(
1 + 2

√
log (n)√
n

))2γ1+2

+ o
(
n−1

)
,

where C1 denotes a finite constant that is independent of β.

Remark B.23. As mentioned previously, it is straight forward to extend Lemma B.12 to
the case n 6= m. In the present setting, we have µU = µV , i.e., U−1 = V −1. Hence, we can
employ similar arguments as in the proof of Theorem 2.5 (cf. Section B.3) to show that

E
[∫ β

0

(
U−1
n (t)− V −1

m (t)
)2
dt

]
≤2

(
E
[∫ β

0

(
U−1
n (t)− (U ′n)−1(t)

)2
dt

]

+E
[∫ β

0

(
V −1
m (t)− (V ′m)−1(t)

)2
dt

])
,

where (U ′n)−1 and (V ′m)−1 denote independent copies of U−1
n and V −1

m , respectively. Both
summands can now be bounded by an application of Lemma B.12.
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B.7 The DTM-Signature

As already illustrated in Section 5.1 of the main document, Brécheteau [9] has proposed
a statistical test, denoted as ΦDTM , for the comparison of two metric measure spaces
(X , dX , µX ) and (Y, dY , µY). While our test Φ∗DoD is based on an empirical version of
the statistic DoDp(X ,Y) defined in (2) of the paper, the test ΦDTM is based on an em-
pirical version of a quantity Tκ(X ,Y), which will be defined below. Both DoDp(X ,Y)
and Tκ(X ,Y) are different lower bounds of the Gromov-Wasserstein distance, as we will
elaborate in the following.

We start by defining the DTM-signature (as done in Brécheteau [9]). For x ∈ X let
BX (x, r) = {x′ ∈ X | dX (x, x′) ≤ r} and define

Fx(t) := µX (BX (x, t)) = P (dX (x,X1) ≤ t) ,

where X1 ∼ µX . Let F−1
x denote the quantile function of Fx. Then, the DTM-function

with mass parameter κ ∈ [0, 1] associated to (X , dX , µX ) is defined as

δX ,κ(x) :=
1

κ

∫ κ

l=0
inf {r > 0 |µX (BX (x, r)) > l} dl =

1

κ

∫ κ

0
F−1
x (l) dl.

Further, the DTM-signature of (X , dX , µX ) is given as

DX ,κ := δX ,κ(X2),

where X2 ∼ µX . It is important to note that DX ,κ is a real valued random variable. Let
Gy, G

−1
y , δY,κ(y), y ∈ Y, and DY,κ be defined analogously. Brécheteau [9] demonstrates

that

Tκ(X ,Y) := K1(DX ,κ, DY,κ) ≤ 2

m
GW1 (X ,Y) ,

where K1 denotes the Kantorovich (transport) distance of order one (see e.g. [42, Def. 6.1]
for a formal definition). The test ΦDTM is constructed based on a (subsampled) empirical
version of Tκ(X ,Y).

As the underlying signatures strongly influence the behavior of the corresponding test, we
will investigate how the signatures Tκ(X ,Y) and DoDp(X ,Y) relate to each other. By the
definition of DX ,κ, we see that Tκ(X ,Y) is sensitive to local changes. Hence, Tκ(X ,Y)
discriminates between the metric measure spaces in Figure 7 of Mémoli [27] for κ > 1/4,
whereas DoDp (X ,Y) is always zero for this example. On the other hand, for κ ≤ 1/2,
Tκ(X ,Y) cannot distinguish between the metric measure spaces displayed in Figure B.2
above, whereas DoDp(X ,Y) can become arbitrarily large, if the represented triangles are
moved further apart. More precisely, DoDp scales as the p’th power of the distance between
the triangles.
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Fig. B.2: Different metric measure spaces: Representation of two different, discrete metric measure
spaces that are both equipped with the respective uniform distribution. Left: Three points with the same
pairwise distances (dash-dotted lines). Right: Two translated copies that are further than one side length
apart.

B.7.1 Connections to other Lower Bounds

As it puts the lower bound Tκ(X ,Y) into a broader perspective, we will relate it to other
known lower bounds of the Gromov-Wasserstein distance in the remainder of this section.
For this purpose, we first show that, just like DoD1(X ,Y) [28, Sec. 2.2], κ

2Tκ(X ,Y) is a
lower bound for TLB1(X ,Y) (defined in the subsequent lemma), which is itself a lower
bound of the Gromov-Wasserstein distance [27, Sec. 6].

Lemma B.24. Let (X , dX , µX ) and (Y, dY , µY) be two metric measure spaces. Then, it
holds for κ ∈ [0, 1] that

Tκ(X ,Y) ≤ 2

κ
TLB1(X ,Y) :=

1

κ
inf

π∈M(µX ,µY )

∫

X×Y
Ω1(x, y) dπ(x, y), (B.36)

where

Ω1(x, y) = inf
π′∈M(µX ,µY )

∫

X×Y

∣∣dX (x, x′)− dY(y, y′)
∣∣ dπ′(x′, y′).

Proof. For any π ∈M(µX , µY) it holds that

K1(DX ,κ, DY,κ)

≤
∫

X×Y
|δX ,κ(x)− δY,κ(y)| dπ(x, y)

≤1

κ

∫

X×Y

∫ κ

0
|inf {r > 0 |µX (BX (x, r)) > l} − inf {r > 0 |µY (BY(y, r)) > l}| dl dπ(x, y)

=
1

κ

∫

X×Y

∫ κ

0

∣∣∣∣
∫ ∞

0

(
1{µX (BX (x,r))≤l} − 1{µY (BY (y,r))≤l}

)
dr

∣∣∣∣ dl dπ(x, y)

≤1

κ

∫

X×Y

∫ ∞

0

∫ κ

0

∣∣1{µX (BX (x,r))≤l} − 1{µY (BY (y,r))≤l}
∣∣ dl dr dπ(x, y)

≤1

κ

∫

X×Y

∫ ∞

0
|µX (BX (x, r)) ∧ κ− µY (BY(y, r)) ∧ κ| dr dπ(x, y)

≤1

κ

∫

X×Y

∫ ∞

0

∣∣∣∣
∫

X×Y

(
1{dX (x,x′)≤r} − 1{dY (y,y′)≤r}

)
dπ∗(x′, y′)

∣∣∣∣ ∧ κ dr dπ(x, y),
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where

π∗ ∈ arg min
π′∈M(µX ,µY )

∫

X×Y

∣∣dX (x, x′)− dY(y, y′)
∣∣ dπ′(x′, y′).

The minimum is attained, as the set M(µX , µY) is compact [41]. With this, we obtain

1

κ

∫

X×Y

∫ ∞

0

∣∣∣∣
∫

X×Y

(
1{dX (x,x′)≤r} − 1{dY (y,y′)≤r}

)
dπ∗(x′, y′)

∣∣∣∣ ∧ κ dr dπ(x, y)

≤1

κ

∫

X×Y

∫

X×Y

∫ ∞

0

∣∣1{dX (x,x′)≤r} − 1{dY (y,y′)≤r}
∣∣ dr dπ∗(x′, y′) dπ(x, y)

=
1

κ

∫

X×Y

(
inf

π′∈M(µX ,µY )

∫

X×Y

∣∣dX (x, x′)− dY(y, y′)
∣∣ dπ′(x′, y′)

)
dπ(x, y).

This gives the claim.

However, Tκ(X ,Y) is not only a lower bound of TLB1(X ,Y), but also (different from
DoD1(X ,Y)) strongly connected to the lower bound FLB1(X ,Y), defined in the following.
Let

sX : X → R+, x 7→ ||dX (x, ·)||`1(µX ) =

∫

X
dX (x, x′) dµX (x′)

and define SX : R → [0, 1] by t 7→ µX ({x ∈ X | sX (x) ≤ t}). Let sY and SY be defined
analogously. Then,

FLB1(X ,Y) =
1

2
inf

π∈M(µX ,µY )

∫

X×Y
|sX (x)− sY(y)| dπ(x, y) =

1

2

∫

R
|SX (t)− SY(t)| dt

defines a lower bound of TLB1(X ,Y), i.e., in particular of GW1(X ,Y) (see Mémoli [27,
Rem. 6.5] and Chowdhury and Mémoli [14, Thm. 3.1]).

Lemma B.25. Let (X , dX , µX ) and (Y, dY , µY) be two metric measure spaces. Then, it
holds for κ ∈ [0, 1] that

Tκ(X ,Y) ≤1

κ
inf

π∈M(µX ,µY )

∫

X×Y

∣∣∣∣s
(F−1
x (κ))

X (x)− s(F
−1
x (κ))

Y (y)

∣∣∣∣ dπ(x, y) (B.37)

+
1

κ
sup

x∈X ,y∈Y

∣∣∣∣∣

∫ G−1
y (κ)

F−1
x (κ)

Gy(t)− κ dt
∣∣∣∣∣ , (B.38)

where s
(F−1
x (κ))

X (x) = ||dX (x, ·)∧ F−1
x (κ)||`1(µX ) and s

(F−1
x (κ))

Y (y) is defined analogously. In
particular, we have for κ = 1 that

Tκ(X ,Y) = 2FLB1(X ,Y).
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Remark B.26. In the proof of Lemma B.25 below, we observe that the roles of F−1
x (κ) and

G−1
y (κ) in (B.37) and (B.38) are interchangeable, i.e., the same line of proof also implies

that

Tκ(X ,Y) ≤1

κ
inf

π∈M(µX ,µY )

∫

X×Y

∣∣∣∣s
(G−1

y (κ))
X (x)− s(G

−1
y (κ))

Y (y)

∣∣∣∣ dπ(x, y)

+
1

κ
sup

x∈X ,y∈Y

∣∣∣∣∣

∫ F−1
x (κ)

G−1
y (κ)

κ− Fx(t) dt

∣∣∣∣∣ .

Proof. We start with proving the first part of the statement. For any π ∈ M(µX , µY) it
holds that

K1(DX ,κ, DY,κ) ≤
∫

X×Y
|δX ,κ(x)− δY,κ(y)| dπ(x, y)

=
1

κ

∫

X×Y

∣∣∣∣
∫ κ

0
F−1
x (l) dl −

∫ κ

0
G−1
y (l) dl

∣∣∣∣ dπ(x, y)

=
1

κ

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0
Gx(l)− Fy(l) dl +

∫ G−1
y (κ)

F−1
x (κ)

Gy(l)− κ dl
∣∣∣∣∣ dπ(x, y),

where the last step follows by Lemma H.1. Consequently, we obtain that

K1(DX ,κ, DY,κ)

≤1

κ

(∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0
Fx(l)−Gy(l) dl

∣∣∣∣∣ dπ(x, y) + sup
x∈X ,y∈Y

∣∣∣∣∣

∫ G−1
y (κ)

F−1
x (κ)

Gy(t)− κ dt
∣∣∣∣∣

)
.

It remains to show that

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0
Fx(l)−Gy(l) dl

∣∣∣∣∣ dπ(x, y) ≤
∫

X×Y

∣∣∣s(κ)
X (x)− s(κ)

Y (y)
∣∣∣ dπ(x, y).

To this end, we observe that

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0
Fx(l)−Gy(l) dl

∣∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0

∫

X
1{dX (x,x′)≤l} dµX (x′)−

∫

Y
1{dY (y,y′)≤l} dµY(y′) dl

∣∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0

∫

X×Y
1{dX (x,x′)≤l} − 1{dY (y,y′)≤l} dπ

′(x′, y′) dl

∣∣∣∣∣ dπ(x, y)
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for any π′ ∈M(µX , µY). The theorem of Tonelli/Fubini [6, Thm. 18.3] yields that

∫

X×Y

∣∣∣∣∣

∫ F−1
x (κ)

0
Fx(l)−Gy(l) dl

∣∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣∣

∫

X×Y

∫ F−1
x (κ)

0
1{dX (x,x′)≤l} − 1{dY (y,y′)≤l} dl dπ

′(x′, y′)

∣∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫

X×Y

(
dY(y, y′) ∧ F−1

x (κ)
)
−
(
dX (x, x′) ∧ F−1

x (κ)
)
dπ′(x′, y′)

∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣s
(F−1
x (κ))

X (x)− s(F
−1
x (κ))

Y (y)

∣∣∣∣ dπ(x, y),

which gives the first part of the claim.

We come to the second part of the statement. Let κ = 1. We observe that for any
π ∈M(µX , µY) it follows that

∫

X×Y
|δX ,1(x)− δY,1(y)| dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫ 1

0
F−1
x (l) dl −

∫ 1

0
G−1
y (l) dl

∣∣∣∣ dπ(x, y)

=
1

κ

∫

X×Y

∣∣∣∣
∫ ∞

0
Fx(l)−Gy(l) dl

∣∣∣∣ dπ(x, y),

where the last step follows by Lemma H.1. Hence, we obtain

∫

X×Y
|δX ,1(x)− δY,1(y)| dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫ ∞

0

∫

X
1{dX (x,x′)≤l} dµX (x′)−

∫

Y
1{dY (y,y′)≤l} dµY(y′) dl

∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫ ∞

0

∫

X×Y
1{dX (x,x′)≤l} − 1{dY (y,y′)≤l} dπ

′(x′, y′) dl

∣∣∣∣ dπ(x, y),

for any π′ ∈ M(µX , µY). Since the spaces X and Y are compact, the Theorem of

56

124 Distribution of Distances based Object Matching



Tonelli/Fubini [6, Thm. 18.3] gives that

∫

X×Y
|δX ,1(x)− δY,1(y)| dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫

X×Y

∫ ∞

0
1{dX (x,x′)≤l} − 1{dY (y,y′)≤l} dl dπ

′(x′, y′)

∣∣∣∣ dπ(x, y)

=

∫

X×Y

∣∣∣∣
∫

X×Y
dX (x, x′)− dY(y, y′) dπ′(x′, y′)

∣∣∣∣ dπ(x, y)

=

∫

X×Y
|sX (x)− sY(y)| dπ(x, y).

Since by Lemma 28 in Chowdhury and Mémoli [14] it follows that

K1(DX ,1, DY,1) = K1(δX ,1#µX , δY,1#µY) = inf
π∈M(µX ,µY )

∫

X×Y
|δX ,1(x)− δY,1(y)| dπ(x, y),

minimizing over π ∈M(µX , µY) yields the claim.

C Distributions of Euclidean Distances on k-Ahlfors
Regular Sets

In Section B.2 we derived sufficient conditions for a metric measure space (X , dX , µX ),
where X ⊂ Rd has positive Lebesgue measure, dX denotes the Euclidean distance and
µX the uniform distribution, to fulfill Condition 1.2 and Condition 1.3. Naturally, it is
of interest to extend these results to metric measure spaces, where X is a curve or a
hypersurface. In the following, we focus on a simple class of hypersurfaces equipped with
the Euclidean distance and the uniform distribution and verify that the corresponding
metric measure spaces meet the requirements of Condition 1.2 and Condition 1.3 under
specific assumptions. To this end, we first concisely introduce some important concepts
from geometric measure theory in Section C.1 (see [20, 31] for more information) and derive
sufficient conditions for Condition 1.2 and Condition 1.3 if the metric measure space X
(equipped with Euclidean distance and the uniform distribution) is the image of a k-Ahlfors
regular set (see Definition C.6) under a sufficiently smooth diffeomorphism in Section C.2.

C.1 Preliminary Results

First of all, let us introduce the Hausdorff measure, which is a general area measure for
subsets of Rd.

57

125



Definition C.1 (Morgan [31, Sec. 2.3]). Given A ⊂ Rd, define the k-dimensional Haus-
dorff measure H k(A) by

H k(A) := lim
δ→0

inf
A⊆⋃Si,

diam(Si)≤δ

∑
αk

(
diam (Si)

2

)k
,

where the infimum is taken over all countable coverings Si of A with diam (Si) < δ and
αk = Γk

(
1
2

)
/Γ
(
k
2 + 1

)
denotes the volume of the unit ball in Rk.

Remark C.2. The Hausdorff measure is an outer measure, which is countably additive
on the Borel sets of Rd and gives the correct area for C1-manifolds of Rd (see [20, Chap.
3]).

The Hausdorff measure allows us to define probability measures on very general subsets
of Rd and can be used to define complex metric measure spaces. However, as already
mentioned, we restrict our considerations to the distribution of Euclidean distances on sets
equipped with a “uniform distribution”. This is made precise in the following definition.

Definition C.3. Let X ⊂ Rd be a Borel set such that there exists 0 < k ≤ d with
0 < H k(X ) < ∞. Then, the standard Euclidean metric measure space induced by X
denotes the triple (X , dX , µX ), where dX denotes the Euclidean distance and µX = H k|X

H k(X )
.

Given a standard Euclidean metric measure space, we denote by Fx, x ∈ X , the distribution
function

Fx(t) = P (||x−X|| ≤ t) ,
where X ∼ µX . Further, we recall that in this setting the distribution function U of

dX (X,X ′), X,X ′ i.i.d.∼ µX , is given as

U(t) =

∫
Fx(t) dµX (x) = P

(
||X −X ′|| ≤ t

)
. (C.1)

The basic area formula [20, Sec. 3.2.5] is a useful extension of the classical change of
variables formula and essential for our considerations. However, we will not apply it in its
full generality and mostly work with the following simple corollary.

Corollary C.4. Let W1 ⊂ Rk be an open set and A ⊆W1 a Borel set. Let h : W1 →W2 ⊂
Rd be bi-Lipschitz, k ≤ d. Then, the Jacobian matrix Jh of h exists almost everywhere and
the Gram determinant Gh : A→ [0,∞), defined by

Gh(z) = det(Jh(z)TJh(z)),

is bounded away from 0 and ∞. Furthermore, h is injective and the relation
∫

h(A)
g(x) dH k(x) =

∫

A
g(h(z))G

1/2
h (z) dλk(z)
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holds for any measurable function g : h(A)→ [0,∞].

Proof. The differentiability of h outside of a null set is subject to Rademacher’s theorem
[20, Thm. 3.1.6] and the claim follows by the area formula [20, Sec. 3.2.5] once we have
shown that there are constants c1, c2 such that 0 < c1 ≤ Gh(z) ≤ c2 < ∞ for z ∈ A. In
order to bound the Gram determinant, we consider a point z where h is differentiable and
assume that t > 0 and w ∈ Rk with ||w|| = 1. Since h is bi-Lipschitz continuous, there are
global constants 0 < c < C <∞ such that

ct ≤ ||h(z + tw)− h(z)|| ≤ Ct

holds for t sufficiently small (such that z + tw ∈ W1). Dividing by t and taking the limit
t→ 0 yields that

c ≤ ||Jh(z)w|| ≤ C,
which states that Jh(z)w is uniformly bounded for any unit vector w and point of differ-
entiability z ∈ W1. This lets us control the spectrum of the Gram matrix Jh(z)TJh(z) for
which

σmin = min
||w||=1

‖Jh(z)w‖2 ≥ c2 and σmax = max
||w||=1

‖Jh(z)w‖2 ≤ C2

are the smallest and largest eigenvalues. Hence, we find that

c2d ≤ det
(
Jh(z)TJh(z)

)
≤ C2d.

As already argued, this yields the claim.

The subsequent example shows, how we can use Corollary C.4 to calculate the cumulative
distribution function of the distribution of distances in some specific settings.

Example C.5. Let W1 ⊂ Rk be open and let h : W1 → W2 ⊂ Rd, k ≤ d, be bi-Lipschitz.
Let X = h(A) ⊂ Rd, where A ⊆ W1 is Borel and λk(A) > 0. Let 0 < H k(X ) < ∞ and
consider the standard Euclidean metric measure space induced by X . Further, let x ∈ X
and X,X ′ ∼ µX . Then, it follows by Corollary C.4 that

Fx(t) = P (||x−X|| ≤ t) =
1

H k(X )

∫

h(A)
1{||x−z||)≤t} dH

k(z)

=
1

H k(X )

∫

A
1{||x−h(z)||≤t}G

1/2
h (z) dλk(z).

A further application of Corollary C.4 yields that in this case

U(t) =P
(
dX (X,X ′) ≤ t

)

=
1

(H k(X ))2

∫

A

∫

A
1{||h(z1)−h(z2)||≤t}G

1/2
h (z1)G

1/2
h (z2) dλk(z1)dλk(z2).
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In Example C.5 we have assumed that X is the bi-Lipschitz image of a Borel set A.
However, as Borel sets can be quite general, it is clear that we need some more restrictions
on the set A (resp. h(A)) in order to ensure that Condition 1.2 and Condition 1.3 are met.
One useful regularity condition is to assume that the balls in the considered set roughly
behave like balls in a d-dimensional plane (see the subsequent definition).

Definition C.6 (David and Semmes [16, Sec.2]). A set X ⊂ Rd is called k-Ahlfors regular
for k > 0 if it is closed and there exists a constant CH > 1 such that

1

CH
rk ≤H k(X ∩B(x, r)) ≤ CHrk (C.2)

for all x in X . Here, B(x, r) denotes the open ball with center x and radius r.

Remark C.7. Classical examples of Ahlfors regular sets are balls, spheres, compact do-
mains with C2-boundary (or their boundaries). For more examples see [16, 35] and the
references therein.

The following lemma contains some useful facts about k-Ahlfors regular sets (see Troscheit
[39, Sec. 4.2] and Mattila and Saaranen [26, Sec.1]).

Lemma C.8. Let X ⊂ Rd be a bounded k-Ahlfors regular set. Then, it holds:

(i) H k(X ) <∞, i.e., µX = H k|X
H k(X )

is well defined;

(ii) Ψ(X ) is k-Ahlfors regular and bounded, if Ψ is a bi-Lipschitz map.

Remark C.9. In particular, Lemma C.8 implies that every bounded, k-Ahlfors regular
subset of Rd induces a standard Euclidean metric measure space and that the same is true
for bi-Lipschitz images of bounded k-Ahlfors regular sets.

The following lemma demonstrates that the assumption that X is k-Ahlfors, k ≥ 2, already
imposes some regularity for the distribution of distances of the induced standard Euclidean
metric measure space.

Lemma C.10. Let X be a bounded k-Ahlfors regular set, k ≥ 2, and consider the standard,
Euclidean metric measure space induced by X . Then, we obtain:

1. The function Fx(t) is differentiable at t = 0 with F ′x(0) = 0 and the same is true for
U(t).

2. Suppose there exists δ > 0 such that Fx(t) is differentiable and convex on [0, δ) for
µX -almost all x ∈ X . Further, assume that for each t ∈ [0, δ) there exists g ∈ `1(µX ),
ε > 0 and Xt ⊆ X with µX (Xt) = 1 and fx(s) = F ′x(s) ≤ g(x) <∞ for s ∈ (t−ε, t+ε)
and all x ∈ Xt. Then, it follows that U is differentiable on [0, δ) and that there exists
a constant cU such that ∣∣(U−1)′(t)

∣∣ ≤ cU t−
k−1
k (C.3)
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for t ∈ [0, δ).

Proof. We start by proving the first statement. Clearly, we have that Fx(t) = 0 and
U(t) = 0 for all t ≤ 0. Furthermore, it is easy to see that

Fx(t) =
H k(X ∩B(x, t))

H k(X )
.

As X is k-Ahlfors regular we obtain that

0 ≤ fx(0) = F ′x(0) = lim
h↘0

Fx(h)− Fx(0)

h
= lim

h↘0

H k(X∩B(x,h)
H k(X )

h
≤ lim

h↘0

CHh
k

H k(X )

h
= 0.

Since

0 ≤ u(0) = U ′(0) = lim
h↘0

∫
Fx(t) dµX (x)

h
≤ lim

h↘0

CHh
k

H k(X )

h
= 0,

the first statement follows.

Next, we prove the second statement. Let x ∈ X be such that Fx(t) is differentiable and
convex on [0, δ). The convexity of Fx on [0, δ) implies that

Fx(t) ≥ Fx(s) + fx(s)(t− s)

for all s, t ∈ [0, δ). In consequence, we find for t < s that

fx(s) ≥ Fx(s)− Fx(t)

s− t .

Let now t = s

(2C2
H)

1
k

, where CH is as in (C.2). Since CH > 1, we find that t < s and hence

fx(s) ≥
Fx(s)− Fx

(
s

(2C2
H)

1
k

)

(
1− 1

(2C2
H)

1
k

)
s

≥
sk

2H k(X )CH(
1− 1

(2C2
H)

1
k

)
s

= C1s
k−1, (C.4)

where we have used that Fx is monotonically increasing and C1 denotes some constant that
only depends on k, H k(X ) and CH . In consequence, we have for all s ∈ [0, δ) that

fx(s) ≥ C1s
k−1 ≥ C1

(
CHs

k
) k−1

k ≥ C2 (Fx(t))
k−1
k ,
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where C2 denotes some constant. In the last inequality, we have used that the set X is
k-Ahlfors regular and thus

Fx(t) =
H k(X ∩B(x, t))

H k(X )
≤ CH

H k(X )
tk. (C.5)

The next step in order to show the second claim is to demonstrate that for t ∈ [0, δ)

u(t) =

∫
fx(t) dµX (x). (C.6)

Since the requirements of Lemma H.3 are met by assumption for all t ∈ [0, δ), (C.6) follows
by the representation of U(t) in (C.1) and an application of the aforementioned theorem.
Since (C.6) in combination with (C.4) yields that

u(t) ≥
∫
C1t

k−1 dµX (x) = C1t
k−1

and by (C.1) and (C.5)

U(t) ≤
∫

CH
H k(X )

tk dµX (x) =
CH

H k(X )
tk,

we find that

u(t) ≥ C1t
k−1 ≥ C1

(
CHt

k
) k−1

k ≥ C2 (U(t))
k−1
k .

As already noted in Section B.2, this is equivalent to (C.3) and thus we have shown the
claim.

Remark C.11. The case of 1-Ahlfors regular sets is special, in the sense that the same
arguments as previously applied show that

lim
h↘0

Fx(h)− Fx(0)

h
≥ lim

h↘0

C−1
H h

H k(X )

h
=

1

CHH k(X )

and

lim
h↘0

Fx(h)− Fx(0)

h
≤ CH

H k(X )
.

This means that fx(0) (if it exists) is bounded and bounded away from zero. Furthermore,
we observe that the same holds true for u(0) = U ′(0). As discussed previously in Section 1,
this simplifies our asymptotic considerations (provided that we can verify the required
differentiability).
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We conclude the preliminaries with the introduction of one result on the differentiability
of general probability functions of the form

P (t) =

∫

φ(x)≤t
p(x) dλd(x),

where φ(x) : Rd → R denotes a Lipschitz continuous function and p a Lebesgue density.
The following theorem will be essential for verifying that Fx is differentiable in the setting
of Example C.5.

Theorem C.12. Let p : Rd → R be a Lebesgue density. Let φ : Rd → R be a Lipschitz
continuous function such that

g(x) =

{
p(x)

||∇φ(x)||1φ−1(R)(x), if p(x) > 0

0, else.

is in `1(Rd). Then, it follows that

P (t) =

∫

φ(x)≤t
p(x) dλd(x) =

∫ t

−∞

∫

φ−1(y)

p(x)

||∇φ(x)|| dH
d−1(x) dλ(y). (C.7)

Proof. The differentiability of φ outside a null set follows by Rademacher’s theorem [20,
Thm. 3.1.6]. In the following, we will verify (C.7) by an application of the Co-Area Formula
[20, Sec. 3.2.12]. To this end, let Z denote a random variable with density p and define
for B ∈ B(Rd)

gB(x) :=

{
p(x)

||∇φ(x)||1φ−1(B)(x), if p(x) > 0

0, else.

Obviously, |gB(x)| ≤ |g(x)| and hence gB ∈ `1(Rd) for any B. Consequently, the Co-Area
Formula [20, Sec. 3.2.12] yields that

P (φ(Z) ∈ B) = P
(
Z ∈ φ−1(B)

)
=

∫

φ−1(B)
p(x) dλd(x)

=

∫

Rd
gB(x)||∇φ(x)|| dλd(x)

=

∫

R

∫

φ−1(y)

p(x)

||∇φ(x)||1φ−1(B)(x) dH d−1(x) dλ(y).

If y /∈ B, we have that φ−1(y) ∩ φ−1(B) = ∅. Consequently, we find that

P (φ(Z) ∈ B) =

∫

B

∫

φ−1(y)

p(x)

||∇φ(x)|| dH
d−1(x) dλ(y).

Hence, the claim follows for B = (−∞, t].
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The subsequent example establishes that the above theorem can be applied to derive the
density fx of Fx(t) = P(dX (x,X) ≤ t) in the setting of Example C.5.

Example C.13. Let W1 ⊂ Rk be open and let h : W1 → W2 ⊂ Rd, k ≤ d, be a C1-
diffeomorphism. Let X = h(A) ⊂ Rd, where A ⊆ W1 is bounded and k-Ahlfors regular
(this implies λk(A) > 0). Let (X , dX , µX ) denote the standard Euclidean metric measure
space induced by X . Fix x ∈ X . Then, it follows by Example C.5 that

Fx(t) =
1

H k(X )

∫

||x−h(z)||≤t
G

1/2
h (z)1A(z) dλk(z).

Additionally define Ψx(z) := ||x− h(z)|| and assume that the function

g(z) =





G
1/2
h (z)

H k(X )||∇zΨx(z)||1A∩Ψ−1
x (R)(z), if G

1/2
h (z)1A(z) > 0

0, else.

is contained in `1(Rk). In the following, we will demonstrate that it is possible to derive a
density for Fx under the assumptions made.

Since the function Ψx is Lipschitz continuous as the composition of two Lipschitz continuous
functions, it follows by Theorem C.12 it that

Fx(t) =

∫ t

0

∫

Ψ−1
x (y)

G
1/2
h (z)

H k(X )||∇zΨx(z)||1A(z) dH k−1(z) dλ(y).

Now, we observe that ∇zΨx(z) is well defined for all z ∈ A and x ∈ X such that h(x) 6= z
(i.e. z /∈ Ψ−1

x (0)). Further, Lemma C.10 suggests that for k ≥ 2 the choice fx(0) = 0 is
natural. Hence, we find that the density of Fx is given as

fx(t) =





∫
Ψ−1
x (t)

G
1/2
h (z)

H k(X )‖∇zΨx(z)‖1A(z) dH k−1(z), if t > 0

0, else.

Remark C.14. In the setting of Example C.13 with k = 1, the analogous arguments give
that

Fx(t) =

∫ t

0

∫

Ψ−1
x (y)

G
1/2
h (z)

H k(X )||∇zΨx(z)||1A(z) dH 0(z) dλ(y),

which means that also in this case a density fx exists. However, it is, different from the
case k ≥ 2, not clear that Fx is differentiable at 0 and hence the choice of fx(0) is not
obvious.
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C.2 Main Results

In the remainder of this section, we will derive sufficient assumptions for a standard Eu-
clidean metric measure space X , which is the image of a k-Ahlfors regular set, k ≥ 2, under
a sufficiently smooth diffeomorphism, to fulfill Condition 1.2 (see Theorem C.16) and Con-
dition 1.3 (Theorem C.18). Similar arguments hold for the images of 1-Ahlfors regular sets,
which are slightly different as pointed out previously, and we briefly comment on this issue
at the end of the section. However, before we come to that, we need to establish some
regularity properties of fx in the setting considered.

Lemma C.15. Let W1 ⊂ Rk be open and let h : W1 → W2 ⊂ Rd, k ≤ d, be a C2-
diffeomorphism. Let X = h(A) ⊂ Rd, where A ⊆W1 is bounded and k-Ahlfors regular (i.e.
λk(A) > 0). Let (X , dX , µX ) denote the standard Euclidean metric measure space induced
by X . Let Fx be supported on [0, Dx], x ∈ X . We recall that Ψx(z) := ||x − h(z)|| and
assume that the function

gx(z) =





G
1/2
h (z)

H k(X )||∇zΨx(z)||1A∩Ψ−1
x (R)(z), if G

1/2
h (z)1A(z) > 0

0, else.

is contained in `1(Rk).

(i) Suppose that there exists ε > 0 such that ||∇zΨx(z)|| is bounded and bounded away
from zero on Ψ−1

x (0, ε]. Further, assume that limt↘0 H k−1(A ∩ Ψ−1
x (t)) = 0. Then,

it follows that

lim
t↘0

fx(t) = 0.

(ii) Assume there exists 0 < t1 ≤ t ≤ t2 ≤ Dx such that ||∇zΨx(z)|| is bounded away
from zero on Ψ−1

x [t1, t2]. Further, assume that H k−1(Ψ−1
x (t) ∩ ∂A) = 0. Then, it

follows that fx is continuous at t.

Proof. Under the assumptions made, Example C.13 yields that for all t > 0

fx(t) =

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z). (C.8)

Based on this identity, we will prove the two statements.

We start by proving (i). It holds that

0 ≤ lim
t↘0

fx(t)= lim
t↘0

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z)dH k−1(z)≤ lim
t↘0

C

∫

Ψ−1
x (t)∩A

dH k−1(z),
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where C denotes a constant. The last inequality follows since there are constants C1, C2, C3

such that 0 < C1 ≤ Gh(z) ≤ C2 < ∞ (see Corollary C.4) and ‖∇zΨx(z)‖ ≥ C3 > 0 (by
assumption) for all z ∈ Ψ−1

x (0, ε]. Obviously,

lim
t↘0

C

∫

Ψ−1
x (t)∩A

dH k−1(z) = 0

and hence fx(t) is continuous at 0.

Next, we verify the statement (ii). To this end, we adapt some arguments from the proof
of Lemma 46 in Merigot and Thibert [29]. By Cauchy-Lipschitz’s theory (see [2, 38]) there
exist t1 ≤ t∗1 < t∗2 ≤ t2 and ε′ > 0 such that one can construct a flow Φ : [−ε′, ε′]×Ω→ Rk
with {

d
dsΦ(s, z) = ∇zΨx(Φ(s,z))

||∇zΨx(Φ(s,z))||2

Φ(0, z) = z,

where Ω ⊂ Rk is an open set that contains Ψ−1
x [t∗1, t

∗
2]. Differentiating s 7→ Ψx(Φ(s, z))

immediately shows that Ψx (Φ(s, z)) = Ψx(z)+s. This implies that Φ(s,Ψ−1
x (t)) = Ψ−1

x (t+
s). Furthermore, since z 7→ ∇zΨx(z)/||∇zΨx(z)||2 is in C1(Ψ−1

x [t1, t2]), it follows that Φ
is in C1 and that Φ(s, ·) converges pointwise in a C1 sense to the identity as s → 0. In
consequence, we find by a change of variables (see [29, Thm. 56]) that

lim
s∗→0

fx(t+ s∗) = lim
s∗→0

∫

Φ(s∗,Ψ−1
x (t))

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z)dH k−1(z)

= lim
s∗→0

∫

Ψ−1
x (t)

G
1/2
h (Φ(s∗, z))

H k(X ) ‖(∇zΨx) ◦ Φ(s∗, z)‖1A(Φ(s∗, z))JΦ(s∗,·)(z)dH
k−1(z),

where JΦ(s∗,·) denotes the Jacobian determinant of Φ(s∗, ·) (see Merigot and Thibert [29] for
a formal definition). We have by our previous considerations that there exists constants
C2, C3 such that Gh(z) ≤ C2 < ∞ (see Corollary C.4) and ||∇zΨx(z)|| > C3 > 0 (by
assumption) for all z ∈ Ψ−1

x [t1, t2]. Consequently, the Dominated Convergence Theorem
yields that

lim
s∗→0

fx(t+ s∗) = lim
s∗→0

∫

Ψ−1
x (t)

G
1/2
h (Φ(s∗, z))

‖(∇zΨx) ◦ Φ(s∗, z)‖1A(Φ(s∗, z))JΦ(s∗,·)(z) dH
k−1(z)

=

∫

Ψ−1
x (t)

G
1/2
h (z)

‖∇zΨx(z)‖1A(z) dH k−1(z) = fx(t),

where we have used that Φ(s, ·) converges pointwise in a C1-sense to the identity as s→ 0
and that we have by assumption H k−1(Ψ−1

x (t)∩ ∂A) = 0. In consequence, we have shown
that fx(t) is continuous at t under the assumptions made.
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With Lemma C.15 established, we can finally give sufficient requirements for metric mea-
sure spaces constructed as in Lemma C.15 to fulfill Condition 1.2.

Theorem C.16. Let W1 ⊂ Rk be open and let h : W1 → W2 ⊂ Rd, k ≤ d, be a C2-
diffeomorphism. Let X = h(A) ⊂ Rd, where A ⊆W1 is bounded and k-Ahlfors regular (i.e.
λk(A) > 0). Let (X , dX , µX ) denote the standard Euclidean metric measure space induced
by X . Let U be supported on [0, D] and recall that Ψx(z) := ||x − h(z)||, x ∈ X . Further,
assume that there exists X ′ ⊆ X with µX (X ′) = µX (X ) such that the function

gx(z) =





G
1/2
h (z)

H k(X )||∇Ψx(z)||1A∩Ψ−1
x (R)(z), if G

1/2
h (z)1A(z) > 0

0, else.
(C.9)

is contained in `1(Rk) for all x ∈ X ′.
Let

∫
X
∫

Ψ−1
x (t)∩A dH k−1(z) dµX (x) > 0 for all t ∈ (0, D), supx∈X ′ supz∈A ||∇Ψx(z)|| < ∞

and assume:

(i) There exists ε > 0, C > 0 and X0 ⊆ X ′ with µX (X0) = µX (X ′) such that it holds
for all x ∈ X0 that infz∈Ψ−1

x (0,ε] ||∇zΨ−1
x (z)|| > C, H k−1(Ψ−1

x (t) ∩ A) > 0 for all

t ∈ (0, ε] and limt↘0 H k−1(A ∩Ψ−1
x (t)) = 0.

(ii) For each 0 < t < D there exists g ∈ `1(µX ), ε > 0 with 0 < t − ε < t + ε < D and
Xt ⊆ X ′ with µX (Xt) = µX (X ′) such that for all x ∈ Xt it holds

∫

Ψ−1
x (s)

1

‖∇zΨx(z)‖1A(z) dH k−1(z) < g(x) (C.10)

for all s ∈ [t − ε, t + ε] and either ||∇zΨ−1
x (z)|| ≥ cx > 0 on Ψ−1

x [t − ε, t + ε] and∫
Ψ−1
x (t)∩∂A dH k−1(z) = 0 or Ψ−1

x (t− δx, t+ δx) ∩A = ∅ for some 0 < δx < ε, where
cx and δx may depend on x ∈ Xt.

(iii) There exits XD ⊆ X ′ with µX (XD) = µX (X ′) such that

lim
t↗D

sup
x∈XD

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z) = C <∞ (C.11)

and for all x ∈ XD we have either Ψ−1
x (D − δx, D) ∩ A = ∅ for some 0 < δx < D,

where δx may depend on x ∈ XD, or

lim
t↗D

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z) = fx(D).

Then, the metric measure space (X , dX , µX ) meets the requirements of Condition 1.2 for
all β ∈ (0, 1/2).
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Proof. First of all, we will establish the continuity of u. To this end, we recall that for
t ∈ R

U(t) =

∫
Fx(t) dµX (x)

and that the derivative fx of Fx exists under the assumptions made (see Theorem C.12
and Example C.13) for all t and x ∈ X ′ and is defined as

fx(t) =





∫
Ψ−1
x (t)

G
1/2
h (z)

H k(X )‖∇zΨx(z)‖1A(z) dH k−1(z), if t > 0

0, else.
(C.12)

We will verify the existence of u = U ′ by applying Lemma H.3 for each t and demonstrate
its continuity via the Dominated Convergence Theorem.

Let us consider t = 0. Since there are constants C,C1, C2, such that 0 < C1 < Gh(z) <
C2 <∞ for all z ∈ A (see Corollary C.4) and ‖∇zΨx(z)‖ > C > 0 for all z ∈ Ψ−1

x (0, ε] and
x ∈ X0, it follows that

|f(x, s)| ≤ C3

∫

Ψ−1
x (s)∩A

dH k−1(z) < C3 <∞,

for all x ∈ X0 and s ∈ [0, ε], where C3 denotes a constant. In consequence, we know that
|fx(s)| ≤ C3 for all s ∈ (−ε, ε) and x ∈ X0. Hence, Lemma H.3 yields that

u(0) =

∫
fx(0) dµX (x).

Furthermore, the Dominated Convergence Theorem in combination with Lemma C.15
yields that

lim
s↘0

u(s) =

∫
lim
s↘0

fx(s) dµX (x) =

∫
fx(0) dµX (x) = u(0).

Now, let t ∈ (0, D). Since 0 < C1 < Gh(z) < C2 < ∞, the combination of (C.10) and
(C.12) yields that there exists g∗ ∈ `1(µX ) such that |fx(s)| ≤ g∗(x) for all s ∈ (t− ε, t+ ε)
and x ∈ Xt. Hence, we obtain by Lemma H.3 that

u(t) =

∫
fx(t) dµX (x).

Next, we consider fx for one x ∈ Xt. If Ψ−1
x (t − δx, t + δx) ∩ A = ∅ for some δx > 0, then

it obviously follows that lims→t fx(s) = 0. Otherwise, we have that the assumptions of
Lemma C.15 are met and hence fx is continuous at t. Thus, the Dominated Convergence
Theorem yields that

lim
s→t

u(s) =

∫
lim
s→t

fx(s) dµX (x) =

∫
fx(t) dµX (x) = u(t),
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which means that u is continuous at t.

Now, we come to the case t = D. By Equation (C.11), it follows that there exist an ε > 0
such that for all s ∈ [D−ε,D] it holds supx∈XD fx(t) ≤ 2C4. Therefore, Lemma H.3 implies
that

u(D) =

∫
fx(D) dµX (x).

Further, the Dominated Convergence Theorem yields that

lim
s↗D

u(s) =

∫
lim
s↗D

fx(s) dµX (x) =

∫
fx(D) dµX (x) = u(D),

where we have use that by assumption either Ψ−1
x (t− δx, t+ δx) ∩ A = ∅ for some δx > 0

(i.e. lims↗D fx(s) = 0) or lims↗D fx(s) = fx(D) < ∞. This establishes the continuity of
u.

It remains to verify that u > 0 on (0, D). For this purpose, we realize that 0 < C1 <
Gh(z) < C2 <∞ for all z ∈ A (see Corollary C.4) and that supx∈X ′ supz∈A ||∇Ψx(z)|| <∞
by assumption. Consequently, there exists a constant C5 such that for all t ∈ (0, D)

u(t) =

∫ ∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z) dµX (x)

≥ C5

∫

X

∫

Ψ−1
x (t)∩A

dH k−1(z) dµX (x) > 0,

where the last inequality follows by the assumptions made. As already argued, this gives
the claim.

Remark C.17. While Assumption (i) of Theorem C.16 seems to be met in many simple
examples (see e.g. Example C.20), it is evident that this requirement can be slightly
relaxed. Reconsidering the above proof highlights that Assumptions (i) can be replaced
by the following:

(i′) There exits X0 ⊆ X ′ with µX (X0) = µX (X ′) such that

lim
t↘0

sup
x∈X0

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z) = 0. (C.13)

Finally, we come to the second main theorem of this section, which yields sufficient as-
sumptions for a standard Euclidean metric measure space that is constructed as described
in Theorem C.16 to fulfill Condition 1.3

Theorem C.18. Suppose that the assumption of Theorem C.16 are met. Additionally, let
there exist δ > 0 and η > 0 such that the following requirements are fulfilled:
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(i) The function

t 7→ 1

H k(X )

∫

Ψ−1
x (t)

G
1/2
h (z)

‖∇zΨx(z)‖1A(z) dH k−1(z)

is monotonically increasing for t ∈ (0, δ) and x ∈ X .

(ii) The function

t 7→ 1

(H k(X ))2

∫

X

∫

Ψ−1
x (t)

G
1/2
h (z)

‖∇zΨx(z)‖1A(z) dH k−1(z) dH k(x)

is monotonically decreasing (or bounded away from zero) for t ∈ [D − δ,D].

(iii) It holds for t ∈ [D − δ,D] that

∫

X

∫

Ψ−1
x (t)∩A

1

‖∇zΨx(z)‖ dH
k−1(z) dH k(x) ≥ cU (D − t)η.

Then, (X , dX , µX ) also fulfills the requirements of Condition 1.3.

Proof. By assumption (and the fact that fx(0) = 0), we have that fx(t) is monotonically
increasing on [0, δ), x ∈ X . We have also shown in the proof of Theorem C.16 that for
each t ∈ [0, D] there exists ε > 0, g ∈ `1(µX ) and a set Xt ⊆ X ′ such that fx(s) ≤ g(x) for
all s ∈ [t − ε, t + ε] and x ∈ Xt. Thus, we can apply Lemma C.10 and obtain that there
exists cU such that ∣∣(U−1)′(t)

∣∣ ≤ cU t−
k−1
k .

Further, we have already shown that under the assumptions made u(t) > 0 for all t ∈ (0, D).
Hence, the proof of Lemma 2.3 (see Section B.2) suggests that it is sufficient to verify that
for a (potentially different) constant cU

∣∣(U−1)′(t)
∣∣ ≤ cU (1− t)−

η
η+1 ⇔ u(t) ≥ cU (1− U(t))

η
η+1

for all t ∈ [D − δ,D]. We observe that

(1− U(t))
η
η+1 =

(∫ D

0
u(s) ds−

∫ t

0
u(s) ds

) η
η+1

= (u(s∗)(D − t))
η
η+1 ,

for some s∗ ∈ (t,D) by the Mean Value Theorem. Since

u(t) =
1

(H k(X ))2

∫

X

∫

Ψ−1
x (t)

G
1/2
h (z)

‖∇zΨx(z)‖1A(z) dH k−1(z) dH k(x),
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which is monotonically decreasing on [D − δ,D] by assumption, it follows that

(1− U(t))
η
η+1 ≤ cU (u(t)(D − t))

η
η+1 ,

where cU is a constant that may vary from line to line. Recall that there exists C1 > 0
such that Gh(z) ≥ C1 (cf. Corollary C.4). Hence, we find that

u(t) ≥ cU
∫

X

∫

Ψ−1
x (t)∩A

1

‖∇zΨx(z)‖ dH
k−1 dH k(x) ≥ cU (D − t)η,

where the last inequality makes use of our assumptions. Plugging in our findings yields
that

(1− U(t))
η
η+1 ≤ cU

(
u
η+1
η (t)

) η
η+1

= cUu(t),

which as already argued yields the claim.

Remark C.19. Carefully rereading the proofs of Theorem C.16 and Theorem C.18 high-
lights that the assumption k ≥ 2 is mainly made for convenience. If we make suitable
differentiability assumptions for Fx at 0, it will be possible to adapt the arguments made.
Since it follows in this case by Remark C.11, that u(0) > 0 we can even drop the first
assumption of Theorem C.18. However, it is important to note that there are some subtle
differences. For example, it is noteworthy that the measure H 0 is the counting measure
(i.e. for a finite set E it holds H 0(E) = |E|). This implies for example that

fx(t) =

∫

Ψ−1
x (t)

G
1/2
h (z)

H k(X ) ‖∇zΨx(z)‖1A(z) dH k−1(z)

is bounded on [t1, t2] if and only if infz∈Ψ−1
x [t1,t2]∩A ‖∇zΨx(z)‖ ≥ c > 0 for some constant

c. This is quite different for k ≥ 2.

Finally, we show that the assumptions of Theorem C.16, which are much easier to check
than the even more technical assumptions of Theorem C.18, are met in some simple exam-
ples.

Example C.20. In the following, we consider W1 = (0.9, 2.1) × (0.9, 2.1), A = [1, 2] ×
[1, 2] ⊂ R2 and

h : W1 ⊂ R2 → R3, (z1, z2) 7→ (z1, z2, z
2
2).

It is easy to check that h is a C2-diffeomorphism from W1 onto W2 = h(W1). In the
following, we consider the standard Euclidean metric measure space induced by X = h(A)
and verify that it meets the requirements of Theorem C.16. To this end, we observe
Ψx(z) =

√
(x1 − z1)2 + (x2 − z2)2 + (x2

2 − z2
2)2, x ∈ X , and that for z ∈ A ∩ (Ψ−1

x (0))c

∇zΨx(z) =




x1−z1√
(x1−z1)2+(x2−z2)2+(x2

2−z2
2)2

2z3
2+(1−2x2

2)z2−x2√
(x1−z1)2+(x2−z2)2+(x2

2−z2
2)2


 .
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Next, we will verify that there exists a constant C > 0 such that ||∇zΨx(z)|| ≥ C for all
z ∈ A ∩ (Ψ−1

x (0))c and x ∈ X . To this end, we observe that

1

||∇zΨx(z)||2 =
(x1 − z1)2 + (x2 − z2)2 + (x2

2 − z2
2)2

(x1 − z1)2 + (2z3
2 + (1− 2x2

2)z2 − x2)2

=
(x1 − z1)2 + (x2 − z2)2 + ((x2 − z2)(x2 + z2))2

(x1 − z1)2 + ((z2 − x2)(2x2z2 + 2z2
2 + 1))2

≤ (x1 − z1)2 + 17(x2 − z2)2

(x1 − z1)2 + 25(z2 − x2)2
≤ 1,

which implies the existence of C as described previously. Analogously to the above calcu-
lations, one can prove that it holds supx∈X supz∈A ||∇zΨx(z)|| <∞. Now, define for x ∈ X
the function gx as done in (C.9). Clearly, the previous calculations yield that gx ∈ `1(λk)
for all x. Calculating Ψ−1

x (t) is usually cumbersome. Fortunately, it is not strictly necessary
in order to check the conditions of Theorem C.16. Since

H k−1(Ψ−1
x (t) ∩A) =H k−1({z ∈ A : ||x− h(z)|| = t})

=H k−1({y ∈ X : ||x− y|| = t}), (C.14)

it is straightforward to verify that for all t ∈ (0, D) there exist a set X ′ ⊂ X with positive
measure such that H k−1(Ψ−1

x (t) ∩ A) > 0 for all x ∈ X ′. Further, (C.14) allows us to
demonstrate the existence of ε > 0 such that H k−1(Ψ−1

x (t) ∩ A) > 0 for all t ∈ (0, ε] and
x ∈ X . By (C.14), it additionally follows that limt↘0 H k−1(A∩Ψ−1

x (t)) = 0 for all x ∈ X
in this setting. Let [0, Dx] denote the support of Fx, x ∈ X . It is easily verifiable that Dx

is µX -almost surely unique. This in combination with the fact that ||∇zΨx(z)|| ≥ C > 0
for all z ∈ A and x ∈ X yields that Assumptions (i)-(iii) of Theorem C.16 are fulfilled.
In consequence, we find that Theorem C.16 is applicable and X meets the requirements of
Condition 1.2.

In the remainder of this section, we consider curves of the kind

h : A→ R2, z 7→ (z, ϕ(z)),

where A ⊂ R is a closed interval, and verify that the metric measure spaces induced by
these curves meet the requirements of Condition 1.2 if the function ϕ twice differentiable
and either monotone or a contraction.

Example C.21. Suppose that A = [a1, a2] ⊂ W1, where −∞ < a1 < a2 < ∞ and
W1 denotes an open interval. Further, assume that ϕ : W1 → R is a twice continuously
differentiable function that is either monotone or a contraction. Then, it is straight forward
to verify that

h : W1 → R2, z 7→ (z, ϕ(z))
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is a C2-diffeomorphism onto its image. Denote by (X , dX , µX ) the standard Euclidean
metric measure space induced by X = h(A). Clearly, X is a 1-Ahlfors regular set. Since ϕ
is twice continuously differentiable, it can easily be verified that the distribution function
Fx is continuously differentiable at 0 for µX -almost all x ∈ X . Hence, we can try to
apply Theorem C.16 in order to check that Condition 1.2 is met in this framework (see
Remark C.19, where 1-Ahlfors regular sets are addressed). Clearly, we have that Ψx(z) =√

(x− z)2 + (ϕ(x)− ϕ(z))2, x ∈ X and that for z ∈ A ∩ (Ψ−1
x (0))c

∇zΨx(z) = −(x− z) + ϕ′(z)(ϕ(x)− ϕ(z))√
(x− z)2 + (ϕ(x)− ϕ(z))2

.

In consequence, we find that for x ∈ X and z ∈ A ∩ (Ψ−1
x (0))c

∣∣∣∣
1

∇zΨx(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

|x− z|
√

1 +
(
ϕ(x)−ϕ(z)

x−z

)2

|x− z|
(

sign(x− z) + ϕ′(z)ϕ(x)−ϕ(z)
|x−z|

)

∣∣∣∣∣∣∣∣

Just as in Example C.20, we demonstrate that there exist a constant C1 < ∞ such that∣∣∣ 1
∇zΨx(z)

∣∣∣ < C1 for x ∈ X and z ∈ A ∩ (Ψ−1
x (0))c. Since ϕ is continuously differentiable, it

is sufficient to show that
∣∣∣∣sign(x− z) + ϕ′(z)

ϕ(x)− ϕ(z)

|x− z|

∣∣∣∣ > C2 > 0 (C.15)

for all x ∈ X and z ∈ A ∩ (Ψ−1
x (0))c, where C2 denotes some constant. For this purpose,

we consider three cases.

Case 1: Suppose that ϕ is a monotonically increasing function. Let x ∈ X . We observe
that ϕ′(z) ≥ 0 for all z ∈ A ∩ (Ψ−1

x (0))c. Since z 6= x (x ∈ Ψ−1
x (0)), it holds that either

x < z or z > x.

x < z: Here, we have sign(x− z) = −1, ϕ′ ≥ 0 and ϕ(x)− ϕ(z) < 0. In consequence,
∣∣∣∣sign(x− z) + ϕ′(z)

ϕ(x)− ϕ(z)

|x− z|

∣∣∣∣ ≥ |−1| = 1.

x > z: It holds that sign(x− z) = 1, ϕ′ ≥ 0 and ϕ(x)− ϕ(z) > 0. In consequence,
∣∣∣∣sign(x− z) + ϕ′(z)

ϕ(x)− ϕ(z)

|x− z|

∣∣∣∣ ≥ |1| = 1.

Since x ∈ X was arbitrary, we have shown (C.15). As already argued, this yields that∣∣∣ 1
∇zΨx(z)

∣∣∣ < C1 <∞ for z ∈ A ∩ (Ψ−1
x (0))c.
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Case 2: Suppose that ϕ is a monotonically decreasing function. This case can be treated
with the same arguments as Case 1.

Case 3: Suppose that ϕ is a contraction. In this case, we have that |ϕ′(z)| ≤ κ1 < 1 as well

as |ϕ(x)−ϕ(z)|
|x−z| ≤ κ2 < 1 for all x, z ∈ X . Hence, we find that for x ∈ X and z ∈ A∩(Ψ−1

x (0))c

∣∣∣∣sign(x− z) + ϕ′(z)
ϕ(x)− ϕ(z)

|x− z|

∣∣∣∣

=

∣∣∣∣sign(x− z) + sign(ϕ(z)− ϕ(x))sign
(
ϕ′(z)

)
|ϕ′(z)| |ϕ(x)− ϕ(z)|

|x− z|

∣∣∣∣
≥ |1− κ1κ2| > 0.

In consequence, we have proven (C.15).

Furthermore, we observe that we clearly have that
∣∣∣ 1
∇zΨx(z)

∣∣∣ > C > 0 for some constant

C and for all x ∈ X and z ∈ A ∩ (Ψ−1
x (0))c. This allows us to argue along the lines of

Example C.20 in order to verify that all requirements for an application of (a version of)
Theorem C.16 are met (see Remark C.19).

D Bootstrap Approximation

In this section, we use the general results on bootstrapping from Section G to prove that
bootstrapping the quantiles of the limit distribution of D̂oD(β) under H0 is viable for β ∈
(0, 1/2). To this end, we investigate the bootstrap empirical U -process and the bootstrap
empirical U -quantile process defined in Example G.1 with the specific kernel function
h(x, y, t) = 1{dX (x,y)≤t}.

First, recall that (X , dX , µX ) denotes a metric measure space and that the random variables

X1, . . . , Xn are defined on a probability space (Ω,A,P) such that X1, . . . , Xn
i.i.d.∼ µX .

Furthermore, we recall that U(t) = P(dX (X,X ′) ≤ t), X,X ′ i.i.d.∼ µX , that

Un(t) :=
2

n(n− 1)

∑

1≤i<j≤n
1{dX (Xi,Xj)≤t},

that U−1 denotes the quantile function of U and that U−1
n stands for the empirical quantile

function of Un. Let µn designate the empirical measure based on the sample X1, . . . , Xn.
Given the sample values, let X∗1 , . . . , X

∗
nB

be an independent, identically distributed sample
of size nB from µn. Then, the bootstrap empirical U -distribution, U∗nB (t), t ∈ R, considered
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in this section is defined as

U∗nB (t) :=
2

nB(nB − 1)

∑

1≤i<j≤nB
1{dX (X∗i ,X

∗
j )≤t},

the corresponding bootstrap empirical U -process is given as U∗nB =
√
nB
(
U∗nB − Un

)
and

the corresponding bootstrap U -quantile process as
(
U∗nB

)−1
=
√
nB

((
U∗nB

)−1 − U−1
n

)
. It

is important to note that it is possible to regard U∗nB (and thus also U∗nB and
(
U∗nB

)−1
) as

a functional depending on the sample Xn = {X1, . . . , Xn} and a random weight vector Mn

that is independent of Xn (see Section G and in particular Example G.1).

We can now formally state the goal of this section. Let β ∈ (0, 1/2) be fixed. We aim to
approximate the quantiles of Ξ = Ξ(β), where

Ξ =

∫ 1−β

β
(G(t))2 dt

is defined in (7) as the limit, after proper scaling, of the test statistic D̂oD(β) under the
hypothesis. Let Ξn and Ξ∗nB denote an empirical version and a bootstrap empirical version
of Ξ, respectively, i.e.,

Ξn =

∫ 1−β

β

(
U−1
n (t)

)2
dt,

and

Ξ∗nB =

∫ 1−β

β

((
U∗nB

)−1
(t)
)2

dt. (D.1)

Given a sample Xn = {X1, . . . , Xn}, we denote by Ξ
∗,(1)
nB ,. . . , Ξ

∗,(R)
nB different, independent

bootstrap empirical versions of Ξ, as defined in (D.1), where the corresponding bootstrap

empirical U -quantile processes
(
U∗,(i)n

)−1
, 1 ≤ i ≤ R, are based on independent bootstrap

samples of Xn.

We intend to demonstrate that the empirical α-quantile of the sample Ξ
∗,(1)
nB ,. . . , Ξ

∗,(R)
nB ,

denoted by ξ
(R)
nB ,α, can be used for testing as proposed in Section 3. As Ξ∗nB is a functional

of the bootstrap empirical U -quantile process, we require some regularity assumptions
on U to achieve this. The subsequent conditions comprise the regularity assumptions of
Condition 1.2 on U and they are restated for convenience only.

Condition D.1. Let β ∈ (0, 1/2) and let U be continuously differentiable on an interval

[C1, C2] = [U−1(β)− ε, U−1(1− β) + ε]

for some ε > 0 with strictly positive derivative u.
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In order to validate using ξ
(R)
nB ,α for testing as proposed in Section 3, we pursue the subse-

quent strategy:

1. We verify that given Condition D.1

U∗nB =
√
nB
(
U∗nB − Un

) P 
M

K

in `∞[C1, C2] (see Theorem D.2), where K is a centered Gaussian process with co-
variance Cov(K(s),K(t)) = 4ΓdX (s, t). Here, ΓdX is as defined in Lemma B.7.

2. Based on this, we prove that

(
U∗nB

)−1
=
√
nB

((
U∗nB

)−1 − U−1
n

)
P 
M

G

in `∞[β, 1 − β] (cf. Theorem D.3), where G is a mean zero Gaussian process with
covariance as defined in Theorem 2.6.

3. Finally, we demonstrate that (cf. Theorem D.4)

Ξ∗nB
P 
M

Ξ.

This induces (see e.g. [11, Sec. 4]) that

lim
n,nB ,R→∞

P
(∫ 1−β

β

(
U−1
n (t)

)2
dt ≥ ξ(R)

nB ,α

)
= α,

which shows that it is viable to use ξ
(R)
nB ,α for testing.

We begin with the first step of the presented strategy and recall that the general empirical
U -process indexed by certain function classes can be bootstrapped (cf. Theorem G.4).
Based on this and the observations collected in Remark G.3 we prove the following.

Theorem D.2. Let Condition D.1 be met and let
√
nB = o(n). Then, it follows that

√
nB
(
U∗nB − Un

) P 
M

K

in `∞[C1, C2]. Here, K is a centered Gaussian process with covariance Cov (K(t),K(t′)) =
ΓdX (t, t′) and ΓdX is as defined in Lemma B.7.

Proof. Let F = {ft(x, y) = 1{dX (x,y)≤t} : t ∈ [C1, C2]}. As we have already noted in
Remark G.3, we can consider Un(t), U(t) and U∗nB (t) as processes indexed by ft ∈ F .
With this observation the proof of the theorem’s statement is straight forward and follows
by an application of Theorem G.4. Therefore, we have to ensure F is a permissible function
class and that the requirements (i)-(iii) of Theorem G.2 are met.
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We begin by remarking that we have already shown in the proof of Lemma B.7 that F is
a permissible function class.

Next, we check the assumption (i). Since F is a is a VC-subgraph class, as seen in the
proof of Lemma B.7, we can conclude using Remark G.3 that requirement (i) is fulfilled.

The observations made in Remark G.3 are also helpful for the verification of (ii). Obviously,
we have that

sup
ft∈F

|ft(x, y)| ≤ 1

for all x, y ∈ X , i.e., F ≡ 1. Thus, Remark G.3 implies that also (ii) is given.

The final assumption (iii) is given by a combination of Remark F.7 and Corollary F.8,
whose requirements are fulfilled in this setting.

In consequence, Theorem G.4 is applicable, which gives

√
nB

(
U∗,FnB

− UF
n

)
P 
M

KF .

in `∞(F ). We have already observed (cf. Remark G.3), that this statement is equivalent
to √

nB
(
U∗nB − Un

) P 
M

K

in `∞[C1, C2]. Thus, we have proven the claim.

Next, we come to the second step of the previously presented strategy. Based on the
convergence of the process U∗nB , we derive the next theorem applying the delta method for
the bootstrap [23, Thm. 12.1] in combination with Lemma F.9.

Theorem D.3. Suppose that Condition D.1 is met and let
√
nB = o(n). Then, it follows

√
nB

((
U∗nB

)−1 − U−1
n

)
P 
M
− 1

u ◦ U−1
K ◦ U−1 D= G

in `∞ [β, 1− β], where G is a centered Gaussian process with covariance defined in (11) in
the paper.

Proof. Let D[C1, C2] denote the space of all cádlág functions on [C1, C2] and let D1 be
the set of all restrictions of distribution functions on R to [C1, C2]. We realize that the
statement follows by an application of the delta method for the bootstrap [23, Thm. 12.1]
with the inverse functional

φinv : D1 ⊂ D[C1, C2]→ `∞[β, 1− β], F 7→ F−1

to the bootstrap empirical process U∗nB . In order to apply the delta method [23, Thm.
12.1] in this setting, we have to verify that
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(i) the inverse functional φinv is Hadamard differentiable tangentially to C[C1, C2] with
derivative α 7→ −(α/f) ◦ F−1;

(ii) the empirical U -distribution Un and the bootstrap empirical U -distribution U∗nB take
values in D1;

(iii) it holds √
n (Un − U) K

in `∞[C1, C2], where K is the Gaussian process defined in Theorem D.2;

(iv) the Gaussian process K takes values in C[C1, C2] and is tight in the function space
`∞[C1, C2];

(v) the maps Mn 7→ h
(
U∗nB

)
are measurable for every h ∈ Cb (`∞ [C1, C2]) outer almost

surely (cf. Example G.1);

(vi) we have
√
n
(
U∗nB − Un

) P 
M

K

in `∞[C1, C2].

In the following, we check that all the above requirements are fulfilled.

Concerning the first point, we realize that the assumptions of Lemma F.9 are given. Thus,
we conclude that the inversion functional φinv is indeed Hadamard differentiable tangen-
tially to C[C1, C2] with the stated derivative.

The definitions of Un and U∗nB suggest that they are distribution functions. Thus, Un and
U∗nB are in D1 when restricted to [C1, C2], i.e., the second requirement is fulfilled.

We obtain (iii) by Corollary F.8, which is applicable as F = {ft(x, y) = 1{dX (x,y)≤t} : t ∈
[C1, C2]} is a permissible VC-subgraph class (see the proof of Lemma B.7).

The Gaussian process K is almost surely continuous under the assumptions made (cf. Corol-
lary F.8). This additionally guarantees that K is a tight random variable in `∞[C1, C2], as
it takes values in the Polish subspace C[C1, C2] [40, Lemma 1.3.2]. Hence, also the fourth
requirement is met.

Since all h ∈ Cb (`∞[C1, C2]) are continuous, i.e., Borel-measurable, (v) holds, if we can
show that the maps Mn 7→

√
nB(U∗nB − Un) are measurable outer almost surely for each

n ∈ N. Let n ∈ N be arbitrary but fixed. Considering the weights Mn, we realize that they
take values in the set

Mn =

{
Mn = (Mn1, . . . ) ∈ N∞ :

n∑

i=1

Mni = nB and Mni = 0 for i > n

}
,
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which is a finite subset of the countable space N∞. As usual N∞ is endowed with its
projection σ-field. In the following this σ-field is denoted by N∞. Now, as N∞ contains all
possible subsets of Mn, it follows that every function on Mn is measurable, i.e., particularly
the map Mn 7→

√
nB(U∗nB − Un). Since n ∈ N was arbitrary, we get that the maps

Mn 7→
√
nB(U∗nB − Un) are measurable outer almost surely for n ∈ N.

Finally, it follows under the assumptions made that
√
nB
(
U∗nB − Un

) P 
M

K in `∞[C1, C2]

(cf. Theorem D.2 ). This yields (vi).

As all its requirements are fulfilled, the delta method for the bootstrap [23, Thm. 12.1]
suggests that

√
nB

((
U∗nB

)−1 − U−1
n

)
=
√
nB
(
φinv

(
U∗nB

)
− φinv (Un)

) P 
M
−K ◦ U−1

u ◦ U−1

D
= G

in `∞[β, 1− β]. This yields the claim.

We come to the third and final step of the mentioned strategy. We process this step by
using a continuous mapping theorem for the bootstrap, namely Theorem 10.8 of Kosorok
[23].

Theorem D.4. Assume that Condition D.1 is fulfilled and let
√
nB = o(n). Then, it

follows

∫ 1−β

β

((
U∗nB

)−1
(t)
)2

dt
P 
M

Ξ.

Proof. The statement follows by a conjunction of Theorem D.3 and Theorem 10.8 of
Kosorok [23]. We remark that the conditions for Theorem D.3 are given by assumption,
i.e., we have that √

nB

((
U∗nB

)−1 − U−1
n

)
P 
M

G (D.2)

in `∞[β, 1 − β]. As shown by Lemma F.11, G takes almost surely values in C[β, 1 − β],
which is a separable subspace of `∞[β, 1 − β]. Thus, we can conclude that G is a tight
random variable [40, Lemma 1.3.2].

For the application of Theorem 10.8 of Kosorok [23] we have to further ensure that the
map

ϕ : `∞[β, 1− β]→ R, f 7→
∫
f(x)2 dx

is continuous and that the maps (cf. Example G.1)

Mn 7→ h
(√

nB

((
U∗nB

)−1 − U−1
n

))
(D.3)
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are measurable for every h ∈ Cb (`∞[β, 1− β]) outer almost surely. While the continuity
of ϕ is obvious, the measurability of the maps defined in (D.3) can be established with the
same arguments as in the proof of Theorem D.3. Consequently, we have by the conjunction
of [23, Thm. 10.8] and (D.2) that

∫ 1−β

β

(√
nB

((
U∗nB

)−1
(t)− U−1

n (t)
))2

dt = ϕ
((

U∗nB
)−1
)

P 
M
ϕ(G) =

∫ 1−β

β
(G(t))2 dt,

as claimed.

Remark D.5. Let β ∈ (0, 1/2). As the map

ϕp : `∞[β, 1− β]× `∞[β, 1− β]→ R, (f, g) 7→
∫ 1−β

β
|f(x)− g(x)|p dx

is continuous for any p ∈ [1,∞), we immediately obtain that

∫ 1−β

β

∣∣∣
(
U∗nB

)−1
(t)
∣∣∣
p
dt

P 
M

Ξp :=

∫ 1−β

β
|G(t)|p dt.

Hence, the quantiles Ξp of can be estimated consistently by the analogue bootstrap scheme.

E Detailed Simulation Results

In this section, we gather the detailed results of the numerical experiments performed in
Section 4.2 and Section 5.1 of the paper.

E.1 Details of Section 4.2

In the following, we state the full results of the comparison of the space (W1, dW1 , µW1)
with the spaces (Wi, dWi , µWi), 1 ≤ i ≤ 6, performed in Section 4.2. We recall that these
spaces are constructed based on the evaluations of a 2-Wasserstein geodesic between the
the uniform distribution on a 3D-pentagon and the uniform distribution on a torus at ti,
1 ≤ i ≤ 6 (for the precise construction see Section 4.2 and for an illustration see Figure 5
in Section 4.2 of the main document).

E.1.1 Empirical Power

First, we state the full results of our numerical study of the empirical power of the test
Φ∗DoD in this setting.
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Tab. E.1: Comparison of different metric measure spaces I: The empirical power of the DoD-test
Φ∗DoD (1000 replications, see Section 3 of the paper for a formal definition of the test) for the comparison
of the metric measure space (W1, dW1 , µW1) to the spaces {(Wi, dWi , µWi)}6i=1 (see Figure 5 in Section 4.2
of the paper for illustrations) for different n.

Φ∗DoD
Sample Size t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

100 0.007 0.012 0.033 0.289 0.774 0.998
250 0.018 0.076 0.335 0.952 1.000 1.000
500 0.038 0.236 0.763 1.000 1.000 1.000
1000 0.045 0.473 0.988 1.000 1.000 1.000

The results show that the test Φ∗DoD is conservative for small sample sizes and that it nev-
ertheless discriminates almost always between the metric measure spaces (W1, dW1 , µW1)
and {(Wi, dWi , µWi)}6j=3 for n ≥ 500.

E.1.2 Distribution of Independent Distances

We give the detailed results for the comparison of the spaces {(Wi, dWi , µWi)}6i=1, when
considering only the independent distances.

Tab. E.2: Comparison of different metric measure spaces II: The empirical power of the test based
on D̂β,ind (1000 applications, see Section 4.2 for a formal definition) for the comparison of of the metric
measure space (W1, dW1 , µW1) to the spaces {(Wi, dWi , µWi)}6i=1 (see Figure 5 in Section 4.2 of the paper
for illustrations) for different n.

ΦDind

Sample Size t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

100 0.039 0.042 0.054 0.073 0.118 0.227
250 0.045 0.045 0.066 0.139 0.270 0.738
500 0.046 0.061 0.090 0.248 0.548 0.991
1000 0.052 0.066 0.119 0.507 0.919 1.000

Table E.2 illustrates the additional power that we gain by considering all available distances
(instead of only the independent ones) and carefully handling the occurring dependencies.

E.1.3 Influence of β

Further, we state the complete result of our investigation of the influence of β.

81

149



Tab. E.3: The influence of β: The empirical power of the DoD-test Φ∗DoD (1000 replications, see
Section 3 of the paper for a formal definition of the test) for the comparison of the metric measure space
(W1, dW1 , µW1) to the spaces {(Wi, dWi , µWi)}6i=1 (see Figure 5 in Section 4.2 of the paper for illustrations)
for n = 500 and different β.

Φ∗DoD
β t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

0 0.029 0.218 0.766 0.965 1.000 1.000
0.01 0.038 0.214 0.758 0.960 1.000 1.000
0.05 0.040 0.231 0.793 0.972 0.999 1.000
0.25 0.027 0.235 0.808 0.980 1.000 1.000

As discussed in Section 4.2 of the main document, it is apparent that the choice of the
parameter β has a small but not significant impact on the comparison of the metric measure
spaces {(Wi, dWi , µWi)}6i=1.

E.2 Details of Section 5.1

In this subsection, we state detailed results of the comparison of the test Φ∗DoD (see Section 3
of the paper) with the test ΦDTM proposed by Brécheteau [9].

E.2.1 Torus-Pentagon Comparison

First, we give the complete results of the comparison of the spaces {(Wi, dWi , µWi)}6i=1 (see
Section 4.2 of the paper for a formal definition) based on ΦDTM .
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Tab. E.4: Comparison of different metric measure spaces III: The empirical power of the test
ΦDTM (1000 applications) for the comparison of of the metric measure space (W1, dW1 , µW1) to the spaces
{(Wi, dWi , µWi)}6i=1 (see Figure 5 in Section 4.2 of the paper for illustrations) for different n and κ (nS =
n/15).

κ = 0.05, α = 0.05

Sample Size t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

100 0.046 0.067 0.059 0.056 0.053 0.053
250 0.054 0.057 0.070 0.052 0.062 0.063
500 0.065 0.059 0.063 0.072 0.068 0.069
1000 0.067 0.089 0.080 0.087 0.111 0.118

κ = 0.1, α = 0.05

Sample Size t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 1

100 0.040 0.051 0.052 0.064 0.059 0.058
250 0.066 0.065 0.069 0.069 0.062 0.064
500 0.064 0.086 0.083 0.118 0.091 0.099
1000 0.078 0.085 0.092 0.165 0.207 0.189

In particular, we observe that while the test ΦDTM approximately holds its prespecified
significance level for both choices of κ, it develops next to no power in this setting.

E.2.2 Spiral Comparison

Brécheteau [9] illustrated the empirical power of ΦDTM for the comparison of different
spiral types (see Figure E.1). In order to compare the two tests, we have applied Φ∗DoD
in the same setting. For the ease of readability, we give the construction of the spirals
and additionally report the values of Brécheteau [9] for this framework (cf. Table E.5).

Let R ∼ U [0, 1] be uniformly distributed and independent of S, S′ i.i.d.∼ N(0, 1). Choose a
significance level of α = 0.05 and let β = 0.01. For v = 10, 15, 20, 30, 40, 100 we simulate
samples of

(R sin(vR) + 0.03S,R cos(vR) + 0.03S′) ∼ µv (E.1)

and consider these to be samples from a metric measure spaces equipped with the Euclidean
metric. We apply Φ∗DoD with quantiles based on µv in order to compare µv with µv (based
on different samples of size 2000) and µv with µ10, v = 15, . . . , 100. The results are
presented in Table E.5.
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Fig. E.1: Different metric measure spaces II: Representation of samples created by (E.1) for v =
10, 15, 20 (from left to right).

Tab. E.5: Spiral Comparison: Empirical significance level and power of Φ∗DoD and ΦDTM for the
comparisons the metric measure spaces represented in Figure E.1.

Φ∗DoD
v 15 20 30 40 100

Type-I error 0.036 0.051 0.051 0.054 0.048

Emp. power 1 1 1 1 1

ΦDTM

v 15 20 30 40 100

Type-I error 0.043 0.049 0.050 0.051 0.050

Emp. power 0.525 0.884 0.987 0.977 0.985

We observe that while both tests approximately hold their significance level, the test Φ∗DoD
differentiates more easily between the different spiral types.

E.2.3 Protein Structure Comparison

Finally, we state the full results of the protein structure comparison based on ΦDTM .
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Tab. E.6: Protein Comparison II: The empirical power of the test proposed by Brécheteau [9] (1000
applications) for the comparison of proteins represented in Figure 2 in Section 1.3 of the paper for different
n and κ (nS = n/5).

κ = 0.05, α = 0.05

n 5D0U vs 5D0U 5D0U vs 5JPT 5D0U vs 6FAA

100 0.055 0.068 0.109
250 0.049 0.080 0.297
500 0.037 0.090 0.690

κ = 0.1, α = 0.05

n 5D0U vs 5D0U 5D0U vs 5JPT 5D0U vs 6FAA

100 0.068 0.061 0.166
250 0.056 0.084 0.420
500 0.047 0.104 0.760

For the protein shape comparison, we observe that the test ΦDTM approximately holds its
significance level and is, for our choices of κ, more sensitive to the small local discrepancies
between the structures 5D0U and 5JPT in comparison to Φ∗DoD. However, it develops
significantly less power for the comparison of 5D0U and 6FAA than Φ∗DoD.

Part II

Supplement B: Auxiliary Results

In the second part of the supplement we gather several helpful, technical results and es-
tablish some apparently well known facts for which the the authors failed to find complete
proofs. More precisely, this part of the supplement consists of three sections. In the first
one, we derive distributional limits of the empirical U -quantile process, in the second one
we investigate the bootstrap for empirical U -processes and in the final one we gather sev-
eral technical result with a focus on measurability issues.
Throughout this part “E∗” designates outer expectation, “P∗” means outer probability and
“ ” stands for weak convergence in the sense of Hoffman-Jørgensen (see van der Vaart
and Wellner [40, Part 1]). Let T be an arbitrary set. Then, the space `∞(T ) denotes the
usual space off all uniformly bounded, R-valued functions on T and `1(T ) the one off all
integrable, R-valued functions on T . Moreover, C(T ) and Cb(T ) stand for the spaces of
real valued, continuous and real valued, continuous, bounded functions on T , respectively.
Let (X ,M, µ) denote a measure space. Similarly to the previous definitions, we denote by
`p(µ) the space of all real valued functions on X that are p-integrable with respect to µ.
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F U- and U-Quantile Processes

The connection of the statistic D̂oD(β) to empirical U - and empirical U -quantile processes
has already been pointed out in Section 1. In the following, we aim to establish the
distributional limit theorems that lay the foundation for the derivation of Theorem 2.6 and
Theorem 2.7 (see Section B).

We start with the introduction of the basic notation and concepts required to develop the
subsequent theory. Let X,Y,X1, . . . , Xn be an independent, identically distributed sample
from a probability distribution P with values in a space S.

Definition F.1. [33] We call a measurable and bounded function h : S × S × R → R,
which is symmetric in the first two arguments and non-decreasing in the third, a kernel
function if for all x, y ∈ S it holds limt→∞ h(x, y, t) = 1 and limt→−∞ h(x, y, t) = 0. For
t ∈ R we define the U -distribution function as

U(t) := E [h(X,Y, t)]

and the empirical U -distribution function as

Un(t) :=
2

n(n− 1)

∑

1≤i<j≤n
h(Xi, Xj , t).

Further, the empirical U -process is for t ∈ R given by

Un(t) =
√
n (Un(t)− U(t)) .

Remark F.2. For a measurable, symmetric function g : S × S → R one obtains the em-
pirical cumulative distribution function of (g (Xi, Xj))1≤i<j≤n as empirical U -distribution
by choosing h(x, y, t) := 1{g(x,y)≤t}. Although the definition is more general, we will focus
on empirical U -processes of this type.

In a short example we introduce the, at least in this note, most important kernel functions.

Example F.3. Let dS be a metric on the space S. Then, dS : S × S → R is a symmetric
function. Consequently, it follows by Remark F.2, that

h(x, y, t) = 1{dS(x,y)≤t}

is a kernel function,

U(t) = E
[
1{dS(X,Y )≤t}

]
= P (dS(X,Y ) ≤ t)

is a U -distribution function and

Un(t) =
2

n(n− 1)

∑

1≤i<j≤n
1{dS(Xi,Xj)≤t}

is the corresponding empirical U -distribution function.
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Just as for the classical empirical process we further define the empirical U -quantile process.

Definition F.4. [43, Sec. 6.1] Let h : S × S ×R→ R be a kernel function. Let U and Un
be the corresponding U - and empirical U -distribution functions. Then, for t ∈ (0, 1) the
t-U -quantile is defined as

U−1(t) = inf {s ∈ R : U(s) ≥ t}

and the empirical t-U -quantile as

U−1
n (t) = inf {s ∈ R : Un(s) ≥ t} .

The empirical U -quantile process is for t ∈ (0, 1) given as

U−1
n (t) =

√
n
(
U−1
n (t)− U−1(t)

)
.

The definitions of the empirical U -process and of the empirical U -quantile process essen-
tially correspond to the ones of the classical empirical process and the classical empirical
quantile process.

The goal of this part of the supplement is to verify that as n → ∞ it holds under certain
assumptions

U−1
n =

√
n
(
U−1
n − U−1

)
 G (F.1)

in `∞[p, q], 0 < p < q < 1, and under slightly different assumptions that

U−1
n =

√
n
(
U−1
n − U−1

)
 G (F.2)

in `1(0, 1). Here, G denotes a centered Gaussian process. In order to prove both state-
ments, we rely on the distributional limits of the empirical U -process Un [3, 33] as well as
the Hadamard differentiability of the inversion functional φinv : F → F−1 considered as
a function into `∞[p, q], 0 < p < q < 1, and into `1(0, 1), respectively. Combining these
results with the delta-method [40, Thm. 3.9.4] directly yields (F.1) and (F.2) . We remark
that, although this line of proof seems to be well known [43], the authors failed to find a
full proof of either (F.1) or (F.2). Thus, we demonstrate both statements in the following
sections.
In Section F.1 we briefly recall some results on the distributional convergence of the em-
pirical U -process and afterwards, in Section F.2, we prove the stated convergences via the
delta-method.

F.1 Distributional Limits for the Empirical U-Process

Let (S,S, P ) be a probability space and let X,Y,X1, . . . , Xn be independent, identically
distributed random variables with law P . Similar as the classical empirical process the
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empirical U -process has been considered as as indexed by function classes. Among other
things this has lead to very general convergence results. Before we can state an for our
purposes suitable result we have to introduce some notation.

In what follows F denotes a permissible class (cf. Definition H.4) of symmetric func-
tions f : S × S → R with envelope F , i.e., F is a measurable function with F (x1, x2)≥
supf∈F |f(x1, x2)| for all x1, x2 ∈ S. The U -distribution indexed by f ∈ F is given as

UF (f) = E [f(X,Y )] ,

and the empirical U -distribution indexed by f ∈ F as

UF
n (f) =

2

n(n− 1)

∑

1≤i<j≤n
f(Xi, Xj).

Further, we denote by UF
n =

√
n
(
UF
n − UF

)
the empirical U -process indexed by F .

Depending on F the process UF
n can be extremely general and hard to investigate. How-

ever, it turns out that, similar to the classical empirical process, also the empirical U -process
is easy to handle if it is indexed by a so called VC-subgraph class.

Definition F.5. [36, Chap. II]

1. We say a collection of subsets D of the sample space S picks out a certain subset of
the finite set {s1, . . . , sn} ⊂ S if it can be written as {s1, . . . , sn}∩D for some D ∈ D .
The collection D is said to shatter {s1, . . . , sn} if D picks out each of its 2n subsets.
If there exists a finite n such that no set of size n is shattered by D , D is a VC-class.

2. We denote F as VC-subgraph class, if the set V = {subgraph(f) : f ∈ F} , where

subgraph(f) := {(x, y, s) ∈ S × S × R : 0 < s < f(x, y) or 0 > s > f(x, y)} ,

forms a VC-class.

With the above notations and definitions we can finally state a basic convergence result
for UF

n derived by Arcones and Giné [3].

Theorem F.6. [3, Thm. 4.9] Let F be a permissible class of symmetric functions f :
S × S → R satisfying the following conditions:

(i) F is a VC-subgraph class with E
[
(F (X,Y ))2

]
<∞.

(ii) For all x1, x2 ∈ S it holds

sup
f∈F

∣∣∣∣
∫
f(x1, y) dP (y)− UF (f)

∣∣∣∣ <∞ and sup
f∈F

∣∣∣f(x1, x2)− UF (f)
∣∣∣ <∞.
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Then, it follows for n→∞ that

UF
n =

√
n
(
UF
n − UF

)
 KF

in `∞(F ), where KF is a centered Gaussian process with covariance

Cov
(
KF (f1),KF (f2)

)
= 4

(∫ ∫
f1(x, y) dP (y)

∫
f2(x, y) dP (y)dP (x)

−
∫ ∫

f1(x, y) dP (y)dP (x)

∫ ∫
f2(x, y) dP (y)dP (x)

)
.

Remark F.7.

1. The formulation of the above theorem differs slightly from the one in Arcones and
Giné [3]. We demand F to be permissible instead of image admissible Suslin. Image
admissibility Suslin is another regularity restriction on the class F that is slightly
weaker than permissibility (cf. Section H.3).

2. For F =
{
ft(x, y) = 1{g(x,y)≤t} : t ∈ [C1, C2] ⊆ R

}
we have a one-to-one correspon-

dence between t ∈ [C1, C2] and ft ∈ F , namely

t←→ ft(x, y) = 1{g(x,y)≤t}.

Thus, it is natural to identify the space `∞(F ) with the for our purposes more natural
space `∞[C1, C2]. Further, it holds

UF
n (ft) =

2

n(n− 1)

∑

1≤i<j≤n
1{g(Xi,Xj)≤t} = Un(t)

and

UF (ft) = E
[
1{g(X,Y )≤t}

]
= U(t).

3. Let supx1∈S,x2∈S |F (x1, x2)| ≤ C for a finite constant C > 0. Then, it obviously holds
that

E
[
(F (X,Y ))2

]
≤ E

[
C2
]
<∞.

Furthermore, the same argument yields that in this case the requirement (ii) of
Theorem F.6 is trivially fulfilled.

For F =
{

(x, y) 7→ 1{g(x,y)≤t} : t ∈ [C1, C2]
}

a combination of Theorem F.6, Remark F.7
and Theorem 7.1 of Dudley [17] (to establish the continuity of the limiting Gaussian pro-
cess) immediately yields the subsequent corollary.
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Corollary F.8. Let h(x, y, t) := 1{g(x,y)≤t} be a kernel function as in Remark F.2 such
that the function class F = {(x, y) 7→ h(x, y, t) : t ∈ [C1, C2]} is a permissible VC-subgraph
class and let the corresponding U -distribution function U be continuously differentiable on
[C1, C2]. Then, it follows for n→∞ that

Un =
√
n (Un − U) K

in `∞[C1, C2], where K is a centered, continuous Gaussian process with covariance

Cov
(
K1(t)K1(t′)

)
= 4ΓK(t, t′) := 4

(∫ ∫
h(x, y, t) dP (y)

∫
h(x, y, t′) dP (y) dP (x)

−
∫ ∫

h(x, y, t) dP (y) dP (x)

∫ ∫
h(x, y, t′) dP (y) dP (x)

)
.

F.2 Distributional Limits for the Empirical U-Quantile Processes

Next, we come to the distributional limits of the empirical U -quantile process. We consider
the inversion functional φinv : F 7→ F−1 as a map from the set of restricted distribution
functions into the space `∞[p, q], for given 0 < p < q < 1, and as a map from the set of
compactly supported distribution functions into the space `1(0, 1), respectively. In both
settings, we verify that φinv is Hadamard differentiable given certain (different) conditions.
Then, we employ the delta-method for Hadamard differentiable functionals [40, Theorem
3.9.4] to derive (F.1) and (F.2). Before we come to this, we recall Hadamard differentiability
and introduce some notation.

We recall: A map φ : Dφ ⊂ D → E, where D and E are normed spaces, is Hadamard-
differentiable at θ ∈ Dφ tangentially to a set D0 ⊂ D, if there exists a continuous linear
map φ′θ : D→ E such that

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h)

as n → ∞, for all converging sequences tn → 0 and hn → h ∈ D0, with hn ∈ D and
θ + tnhn ∈ Dφ for all n ≥ 1 sufficiently large [23, Sec. 2.2].

Given an interval [a, b] ⊂ R, let D[a, b] denote the space of cádlág functions on [a, b]
(equipped with the supremum norm), let D1 be the set of all restrictions of distribution
functions on R to [a, b] and let D2 be the subset of D1 of distribution functions of measures
that concentrate on (a, b]. First, we consider the inversion functional φinv as a map from
D1 ⊂ D[a, b]→ `∞[p, q], 0 < p < q < 1.

Lemma F.9. [40, Lemma 3.9.23] Let 0 < p < q < 1, and let F be continuously differen-
tiable on the interval [a, b] = [F−1(p)− ε, F−1(q) + ε] for some ε > 0, with strictly positive
derivative f . Then the inversion functional φinv : F 7→ F−1 as a map D1 ⊂ D[a, b] →
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`∞[p, q] is Hadamard-differentiable at F tangentially to C[a, b]. The derivative is the map
α 7→ −(α/f) ◦ F−1.

Under slightly different assumptions, we have already verified in Section B.5.2 that φinv is
Hadamard differentiable as a map from D2 ⊂ D[a, b]→ `1(0, 1). For the ease of readability,
we recall the corresponding lemma.

Lemma B.19. Let F have compact support on [a, b] and let F be continuously differentiable
on its support with derivative f that is strictly positive on (a, b) (Possibly, f(a) = 0 and/or
f(b)) = 0). Then the inversion functional φinv : F 7→ F−1 as a map D2 ⊂ D[a, b] →
`1(0, 1) is Hadamard-differentiable at F tangentially to C[a, b]. The derivative is the map
α 7→ −(α/f) ◦ F−1.

Now, we are able to verify (F.1) and (F.2), which are essential for proving Theorem 2.6
and Theorem 2.7 (cf. Section B).

Theorem F.10. Let h(x, y, t) := 1{g(x,y)≤t} be a kernel function as in Remark F.2 such
that the function class F = {(x, y) 7→ h(x, y, t) : t ∈ [C1, C2]} is a permissible VC-subgraph
class. Further, let the corresponding U -distribution function U be continuously differen-
tiable on the interval [C1, C2] = [U−1(p)−ε, U−1(q)+ε] for some ε > 0 with strictly positive
density u. Then, as the sample size n grows to infinity, it holds that

U−1
n =

√
n
(
U−1
n − U−1

)
 G

in `∞[p, q], where G is a centered Gaussian process with covariance

Cov
(
G(t),G(t′)

)
=

4

(u ◦ U−1(t))(u ◦ U−1(t′))
ΓK(U−1(t), U−1(t′)).

Here, ΓK is as defined in Corollary F.8

Proof. We realize that the statement follows by an application of Theorem 3.9.4 of van der
Vaart and Wellner [40] with the inverse functional

φinv : D1 ⊂ `∞[C1, C2]→ `∞[p, q], F 7→ F−1

to the empirical U -process Un. In order to apply it in this setting, we have to verify that

(i) the inverse functional φinv is Hadamard differentiable tangentially to C[C1, C2] with
derivative α 7→ −(α/f) ◦ F−1;

(ii) the empirical U-distribution Un takes values in D1;

(iii) it holds √
n (Un − U) K

in `∞[C1, C2], where K is the Gaussian process defined in Corollary F.8;
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(iv) the Gaussian process K takes its values in the subspace C[C1, C2] and is tight in
`∞[C1, C2].

In the following, we check that all the above requirements are fulfilled.

Concerning (i), we realize that the assumptions of Lemma F.9 (i) are given. Thus, we con-
clude that the inversion functional φinv is Hadamard-differentiable tangentially to C[C1, C2]
with the stated derivative.

The empirical U -distribution function is a distribution function by definition. Thus, Un is
in D1 when restricted to [C1, C2], i.e., (ii) is fulfilled.

We obtain (iii) by Corollary F.8, whose requirements are given by assumption.

Finally, we come to (iv). The Gaussian process K is almost surely continuous (cf. Corol-
lary F.8). This additionally guarantees that K is a tight random variable in `∞[C1, C2], as
it takes values in the Polish subspace C[C1, C2] [40, Lemma 1.3.2]. Hence, also the fourth
requirement is met.

As all its requirements are fulfilled, it follows by Theorem 3.9.4 of van der Vaart and
Wellner [40] that

√
n
(
U−1
n − U−1

)
=
√
n (φinv (Un)− φinv (U)) −K ◦ U−1

u ◦ U−1

D
= G

in `∞[p, q]. This yields the claim.

It is easily verified that the Gaussian process G is continuous on [p, q].

Lemma F.11. Assume the setting of Theorem F.10. Then, the process G is continuous
on I := [p, q].

Proof. Let K be a centered Gaussian process with covariance structure

Cov (K(s),K(t)) = ΓK(s, t).

Then, the Gaussian process K is continuous almost surely (cf. Corollary F.8). By as-
sumption the function g(t) = 1

u(t) is continuous and bounded on the interval [C1, C2].

Consequently, also the centered Gaussian proecess g(t)K(t), whose covariance is given as

Cov (g(s)K(s), g(t)K(t)) = g(s)g(t)Cov (K(s),K(s)) =
1

u(s)u(t)
ΓK(s, t),

is almost surely continuous. If we now time rescale g(t)K(t) with t = U−1(s) for s ∈ I ⊆
[p, q], the process

K̃(s) :=
1

(u ◦ U−1(s))
K
(
U−1(s)

)
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is a continuous Gaussian process, as U−1 is continuous and strictly increasing on I. To be
precise, K̃ is a centered Gaussian process continuous on I with covariance structure

Cov
(
K̃(s), K̃(s′)

)
= Cov(G(s),G(s′)).

Hence, there exists a version of G that is continuous on I.

Finally, we come to the proof of (F.2). By employing the analogous arguments as in the
proof of Theorem F.10 and using Lemma B.19 instead of Lemma F.9, we directly obtain
the subsequent result.

Theorem F.12. Let h(x, y, t) := 1{g(x,y)≤t} be a kernel function as in Remark F.2 such
that the function class F = {(x, y) 7→ h(x, y, t) : t ∈ [C1, C2]} is a permissible VC-subgraph
class. Further, let the corresponding U -distribution function U be supported on [C1, C2]
and continuously differentiable with density u. Let u be strictly positive on (C1, C2). Then,
as the sample size grows to infinity, it holds that

U−1
n =

√
n
(
U−1
n − U−1

)
 G

in `1(0, 1), where G is the Gaussian process defined in Theorem F.10.

G Introduction of the Bootstrap

In this section we gather various result about the bootstrap. In the first subsection, we
introduce the general bootstrap and recap the for our purposes most important results.
Afterwards, we concentrate on the specific resampling scheme for the empirical U -process
that we use in Section 3 to approximate the quantiles required for testing.

G.1 The General Bootstrap

It is a common statistical problem that the limiting distribution of a statistic of interest
is intractable. To carry out inference on the underlying quantity, one possibility consists
of using a bootstrap or resampling scheme. The generic setup considered in this subsection
is as follows. Let (D, d) be a metric space. Suppose that we are interested in approximat-
ing the limit distribution of the D-valued statistic Xn that is based on the observations
Xn = {X1, . . . , Xn} (i.e., Xn = Xn (Xn)). It is noteworthy that we only assume that
X1, . . . , Xn are measurable maps from the probability space (Ω,A,P) into some measur-
able space and that they may be dependent. A bootstrap replicate of Xn is denoted by
X∗n = X∗n(Xn,Mn), where Mn ∈ Rn is a random weight vector living on the probability
space (Π,F ,Q) independent of Xn. This set up is very general and it encompasses for
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example the resampling scheme for the empirical U -process presented in Example G.1 as
well as several more general ones introduced in Kosorok [23, Chap. 10].

Example G.1. Let (S,S, P ) be a probability space. Let X1, . . . , Xn
i.i.d.∼ P and let Pn

denote the corresponding empirical measure. Let h : S × S ×R→ R be a kernel function,
denote by U(t) the corresponding U -distribution function and by Un(t) the corresponding
empirical one as defined in Definition F.1. Draw nB times with replacement from the
set of sample values Xn = {X1, . . . , Xn} and denote the resampled (bootstrap) values by
X∗1 , . . . , X

∗
nB

. Then, conditionally on Xn, the X∗1 , . . . , X
∗
nB

are independent and identically
distributed with distribution Pn. The bootstrap empirical U -distribution U∗nB is given for
t ∈ R as

U∗nB (t) :=
2

nB(nB − 1)

∑

1≤i<j≤nB
h
(
X∗i , X

∗
j , t
)
, (G.1)

where the Xi’s in the definition of Un are replaced by their bootstrap replicates. Let
Mni be the number of times that Xi is ”redrawn” from the original sample such that the
vector Mn = (Mn1, . . . ,Mnn) is multinomial distributed on Xn with parameters nB and
(probabilities) 1/n, . . . , 1/n. Then, we can write

U∗nB (t) = U∗nB (t;Xn,Mn) =
2

nB(nB − 1)

( ∑

1≤i<j≤n
MniMnjh(Xi, Xj , t) (G.2)

+
∑

1≤i≤n

Mni(Mni − 1)

2
h(Xi, Xi, t)

)
.

The corresponding bootstrap empirical U -process is given as U∗nB =
√
nB
(
U∗nB −Un

)
. Fur-

thermore, the bootstrap empirical t-U -quantile is defined for t ∈ (0, 1) as

(
U∗nB

)−1
(t) =

(
U∗nB

)−1
(t;Xn,Mn) = inf

{
s ∈ R

∣∣ U∗nB (s) ≥ t
}

and the bootstrap empirical U -quantile process as
(
U∗nB

)−1
=
√
nB
( (
U∗nB

)−1 − U−1
n

)
.

Obviously, prior to the use of a resampling scheme, its consistency should be demonstrated.
In the introduced setting there are two sources of randomness, the observed data and the
resampling done by the bootstrap. Because of these two sources of randomness, convergence
of conditional laws is assessed in a slightly different manner than usual weak convergence.
We note that Xn  X in the metric space (D, d) if and only if

sup
f∈BL1

|E∗f(Xn)− Ef(X)| → 0,

where BL1 is the space of all real functions f on D with ‖f‖∞ ≤ 1 and |f(x)− f(y)| ≤
d(x, y) for all x, y ∈ D [40, Sec. 1.12]. Based on this alternative definition of weak conver-
gence one can define convergence of conditional limit laws for bootstrap replicates. Let X∗n
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be a sequence of bootstrap replicates with values in D and random weights Mn. For some

tight, D-valued random variable X, we use from now on the notation X∗n
P 
M

X to express

that

sup
h∈BL1

|E∗Mh(X∗n)− Eh(X)| P
∗
→ 0 and EM (h(X∗n))? − EM (h(X∗n))?

P∗→ 0,

for all h ∈ BL1 as n → ∞. Here, the subscript M indicates conditional expectation over
the weights Mn given the data and BL1 is defined as previously. Further, (h(X∗n))? and
(h(X∗n))? denote minimal measurable majorants and maximal measurable minorants with
respect to the joint data (Xn,Mn) (see Section H and Kosorok [23], van der Vaart and
Wellner [40] for further details).

G.2 The Bootstrap for the Empirical U-Process

Let (S,S, P ) be a probability space and let X,Y,X1, . . . , Xn be independent, identically
distributed random variables with law P . Let Pn be the empirical measure based on the
sample X1, . . . , Xn. Conditionally on the sample, let X∗1 , . . . , X

∗
nB

be an independent,
identically distributed sample from Pn. Further, denote by P ∗nB the empirical distribution
of X∗1 , . . . , X

∗
nB

and let G be a class of measurable function on S. Then, the bootstrap
empirical process indexed by g ∈ G is defined as

F∗nB (g) =
√
nB

(∫
g dP ∗nB −

∫
g dPn

)
.

It is well known that F∗nB indexed by G converges in `∞ (G ) to a tight Brownian bridge

process for almost all X1, X2, . . . , if G is a Donsker class and
∫ (∥∥f −

∫
f dP

∥∥2

G

)?
dP <∞

[40, Thm. 3.6.2]. Here, ‖H‖G = supg∈G |H(g)| for H ∈ `∞(G ) and ”?” denotes a maximal
measurable majorant.
Indeed one can define the bootstrap empirical U -process indexed by (a function class) F
in a similar manner and a comparable statement can be shown under stricter assumptions
on the indexing function class. This result is the foundation of the proofs in Section D.
However, before we can state it, we need to introduce some concepts and notation.

In what follows F denotes a permissible class (cf. Definition H.4) of symmetric func-
tions f : S × S → R with envelope F , i.e., F is a measurable function with F (x1, x2)≥
supf∈F |f(x1, x2)| for all x1, x2 ∈ S. Given a pseudometric space (T, d), the ε-covering
number N(ε, T, d) is defined as

N(ε, T, d) = min{n : There esists a covering of T by n balls of d-radius ≤ ε}.
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For a given probability measure µ on (S × S,S ⊗ S) and f1, f2 ∈ F we define the pseudo-
metric

||f1 − f2||L2(µ) =

√∫
(f1 − f2)2 dµ.

Based on this pseudometric and the previous definition of covering numbers we define the
quantity

N2(ε,F , µ) = N
(
ε,F , || · ||L2(µ)

)
.

The U -distribution indexed by f ∈ F is given as

UF (f) = E [f(X,Y )] ,

the empirical U -distribution indexed by f ∈ F as

UF
n (f) =

2

n(n− 1)

∑

1≤i<j≤n
f(Xi, Xj)

and the empirical V -distribution indexed by f ∈ F as

V F
n (f) =

1

n2

n∑

i=1

n∑

j=1

f(Xi, Xj).

We denote by U∗,FnB (f) the bootstrap empirical U -distribution indexed by f ∈ F that is
defined analogously to the bootstrap empirical U -distribution in (G.1). Moreover, we call

UF
n =

√
n
(
UF
n − UF

)
the empirical U -process and U∗,F ,U

nB =
√
n
(
U∗,FnB − UF

n

)
the the

bootstrap empirical U -process indexed by F .

Theorem G.2. [4, Thm. 2.1] Let F be a permissible class of symmetric functions f :
S × S → R satisfying the following conditions:

(i) There is a function λ : (0,∞) → [0,∞) with
∫∞

0 λ(v)dv < ∞ such that for each
probability measure µ with µF 2 =

∫
S×SF

2 dµ <∞ it follows

(
logN2

(
v(µF 2)1/2,F , µ

))1/2
≤ λ(v), v > 0.

(ii) For all 1 ≤ i1, i2 ≤ n we have

E |F (Xi1 , Xi2)|Card({i1,i2}) <∞,

where Card(A) denotes the cardinality of the finite set A.
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(iii) It holds that

UF
n =

√
n
(
UF
n − UF

)
 KF

in `∞(F ), where KF is a centered Gaussian process indexed by F with covariance

Cov
(
KF (f1),KF (f2)

)
= 4

(∫ ∫
f1(x, y) dP (y)

∫
f2(x, y) dP (y)dP (x)

−
∫ ∫

f1(x, y) dP (y)dP (x)

∫ ∫
f2(x, y) dP (y)dP (x)

)
.

Then, if n→∞ and nB →∞,

U∗,F ,V
nB

=
√
nB

(
U∗,FnB

− V F
n

)
P 
M

KF (G.3)

in `∞(F ).

Remark G.3.

1. The formulation of the above theorem differs slightly from the one in Arcones and
Giné [4]. We demand F to be permissible instead of image admissible Suslin. Image
admissibility Suslin is another measurability restriction on the class F that is slightly
weaker than permissibility (cf. Section H.3).

2. For F =
{
ft(x, y) = 1{dX (x,y)≤t} : t ∈ [C1, C2] ⊆ R

}
we have a one-to-one corre-

spondence between t ∈ [C1, C2] and ft ∈ F , namely

t←→ ft(x, y) = 1{dX (x,y)≤t}.

Thus, it is natural to identify the space `∞(F ) with the for our purposes more natural
space `∞[C1, C2]. Further, it follows

UF
n (ft) =

2

n(n− 1)

∑

1≤i<j≤n
1{dX (Xi,Xj)≤t} = Un(t).

Obviously, the analogue equalities hold for UF (ft) and U∗,FnB (ft).

3. The Assumption (i) is fulfilled if F is a VC-subgraph class, i.e., if
{

subgraph(f) : f ∈
F
}

is a VC-class (cf. Definition F.5). Here, subgraph(f) :=
{

(x, t) ∈ S × R : 0 <
t < f(x) or 0 > t > f(x)

}
.

Proof. This statement requires a short proof. If F is a VC-subgraph class, then there
are finite constants A and c such that for each probability measure µ with µF 2 <∞,

N2(ε,F , µ) ≤ A((µF 2)1/2/ε)−c (G.4)
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[36, Lemma II.36]. This implies that for v ≤ 1 we have

(
logN2

(
v(µF 2)1/2,F , µ

))1/2
≤
(

log

(
A

vc

))1/2

.

Since it holds that

∫ 1

0

(
log

A

vc

)1/2

dv =

∫ 1

0

(
logA+ log

1

vc

)1/2

dv

≤ (logA)1/2 +

∫ 1

0

(
log

1

vc

)1/2

dv

= (logA)1/2 +

√
π
√
c

2
<∞,

the bound (G.4) controls the covering numbers for v ≤ 1 as required. Obviously, this
is the difficult part, as for v increasing the covering number N2

(
v(µF 2)1/2,F , µ

)
is

monotonically decreasing. Thus, we find that the function λ : (0,∞)→ [0,∞)

λ(v) =





(
log
(
A
vc

))1/2
if v ≤ 1,

0 if v > 1.

meets the requirements of Assumption (ii).

4. Suppose that supx1∈S,x2∈S |F (x1, x2)| ≤ C for a finite constant C > 0. Then, for all
1 ≤ i1, i2 ≤ n it holds

E |F (Xi1 , Xi2)|Card({i1,i2}) ≤ E |C|Card({i1,i2}) <∞.

Thus, Requirement (ii) is fulfilled.

Theorem G.2 guarantees that the resampled process U∗,F ,V
nB =

√
nB
(
U∗,FnB − V F

n

)
indeed

converges to the limit, if it exists, of UF
n . However, regarding, for example, the delta-

method for the bootstrap [23, Thm. 12.1], we would rather have the same statement for

U∗,F ,U
nB =

√
nB

(
U∗,FnB − UF

n

)
. Fortunately, this result is a simple consequence of Theo-

rem G.2.

Theorem G.4. Let the assumptions of Theorem G.2 be met. Further, let |F (x1, x2)| ≤
C <∞ for all x1, x2 ∈ S and let

√
nB = o(n). Then, we have that

U∗,F ,U
nB

=
√
nB

(
U∗,FnB

− UF
n

)
P 
M

KF

in `∞(F ).

98

166 Distribution of Distances based Object Matching



Proof. We need to show that the empirical V -distribution in (G.3) can be replaced by the
empirical U -distribution. To this end, we demonstrate in a first step that for any given
X1, . . . , Xn we have that

sup
f∈F

∣∣∣U∗,F ,V
nB

(f)− U∗,F ,U
nB

(f)
∣∣∣

= sup
f∈F

∣∣∣√nB
(
U∗,FnB

(f)− V F
n (f)

)
−√nB

(
U∗,FnB

(f)− UF
n (f)

)∣∣∣→ 0

for n→∞. Afterwards, we verify that this indeed yields the claim.

Regarding the definitions of V F
n (f) and UF

n (f), we realize that for each X1, . . . , Xn given
and f ∈ F it holds

V F
n (f) =

1

n2

n∑

j=1

n∑

i=1
i 6=j

f(Xi, Xj) +
1

n2

n∑

i=1

f(Xi, Xi)

=
n− 1

n
UF
n (f) +

1

n2

∑

1≤i≤n
f(Xi, Xi).

Consequently, we obtain

∣∣∣UF
n (f)− V F

n (f)
∣∣∣ =

∣∣∣∣∣∣
UF
n (f)−


n− 1

n
UF
n (f) +

1

n2

∑

1≤i≤n
f(Xi, Xi)



∣∣∣∣∣∣

=

∣∣∣∣
1

n
UF
n (f)− 1

n2

∑

1≤i≤n
f(Xi, Xi)

∣∣∣∣

=

∣∣∣∣
2

n2(n− 1)

∑

1≤i<j≤n
f(Xi, Xj)−

1

n2

∑

1≤i≤n
f(Xi, Xi)

∣∣∣∣.

With this we can prove that the distance between U∗,F ,V
nB and U∗,F ,U

nB in `∞(F ) can be
bounded for any collection X1, . . . , Xn given. Therefore, we realize that for any X1, . . . , Xn
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it holds

sup
f∈F

∣∣∣√nB
(
U∗,FnB

(f)− V F
n (f)

)
−√nB

(
U∗,FnB

(f)− UF
n (f)

)∣∣∣

= sup
f∈F

∣∣∣√nB
(
UF
n (f)− V F

n (f)
)∣∣∣

= sup
f∈F

√
nB

∣∣∣∣
2

n2(n− 1)

∑

1≤i<j≤n
f(Xi, Xj)−

1

n2

∑

1≤i≤n
f(Xi, Xi)

∣∣∣∣

≤ sup
f∈F

√
nB

∣∣∣∣∣∣
2

n2(n− 1)

∑

1≤i<j≤n
f(Xi, Xj)

∣∣∣∣∣∣
+ sup
f∈F

√
nB

∣∣∣∣∣∣
1

n2

∑

1≤i≤n
f(Xi, Xi)

∣∣∣∣∣∣

≤ sup
f∈F

√
nB

∣∣∣∣∣∣
2

n2(n− 1)

∑

1≤i<j≤n
C

∣∣∣∣∣∣
+ sup
f∈F

√
nB

∣∣∣∣∣∣
1

n2

∑

1≤i≤n
C

∣∣∣∣∣∣
=

2C
√
nB

n
,

where we used in the last line that |f(x1, x2)| ≤ |F (x1, x2)| ≤ C < ∞ for all x1, x2 ∈ S
and f ∈ F by assumption. Since we demand that

√
nB = o(n), it follows for any given

X1, . . . , Xn that

sup
f∈F

∣∣∣√nB
(
U∗,FnB

(f)− V F
n (f)

)
−√nB

(
U∗,FnB

(f)− UF
n (f)

)∣∣∣ ≤ 2C
√
nB

n
→ 0 (G.5)

for n→∞. This concludes the first step.

Next, we demonstrate that this indeed yields
√
nB
(
U∗,FnB − UF

n

) P 
M

KF . Therefore, we

have to show that

sup
h∈BL1

∣∣∣E∗Mh
(√

nB

(
U∗,FnB

− UF
n

))
− Eh

(
KF
)∣∣∣ P∗→ 0 (G.6)

and

EM
(
h
(√

nB

(
U∗,FnB

− UF
n

)))?
− EM

(
h
(√

nB

(
U∗,FnB

− UF
n

)))
?

P∗→ 0 (G.7)

for any h ∈ BL1 as n → ∞. Recall that (h(·))? and (h(·))? denote minimal measurable
majorants and maximal measurable minorants with respect to the joint data (Xn,Mn) (see
Lemma H.10 and Lemma H.9) and BL1 designates the set of all real functions h on `∞(F )
with ‖h‖∞ ≤ 1 and |h(x)− h(y)| ≤ ‖x− y‖F := supf∈F |x(f)− y(f)| for all x, y ∈ `∞(F ).
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Concerning (G.6), we realize

sup
h∈BL1

∣∣∣E∗Mh
(√

nB

(
U∗,FnB

− UF
n

))
− Eh

(
KF
)∣∣∣

= sup
h∈BL1

∣∣∣∣E∗M
[
h
(√

nB

(
U∗,FnB

− UF
n

))
− h

(√
nB

(
U∗,FnB

− V F
n

))

+ h
(√

nB

(
U∗,FnB

− V F
n

)) ]
− Eh

(
KF
) ∣∣∣∣

≤ sup
h∈BL1

∣∣∣∣E∗M
[
h
(√

nB

(
U∗,FnB

− UF
n

))
− h

(√
nB

(
U∗,FnB

− V F
n

))] ∣∣∣∣

+ sup
h∈BL1

∣∣∣∣E∗Mh
(√

nB

(
U∗,FnB

− V F
n

))
− Eh

(
KF
) ∣∣∣∣.

Next, we consider both summands of the last inequality separately.

For the first summand it holds

sup
h∈BL1

∣∣∣∣E∗M
[
h
(√

nB

(
U∗,FnB

− UF
n

))
− h

(√
nB

(
U∗,FnB

− V F
n

))] ∣∣∣∣
(i)

≤ E∗M

[
sup
f∈F

∣∣∣√nB
(
U∗,FnB

(f)− UF
n (f)

)
−√nB

(
U∗,FnB

(f)− V F
n (f)

)∣∣∣
]

(ii)

≤ E∗M
[

2C
√
nB

n

]
=

2C
√
nB

n
→ 0,

for n → ∞. Here, (i) follows as all h ∈ BL1 are Lipschitz continuous with Lipschitz
constant 1 and (ii) is induced by (G.5).
Next, we come to the second term. Since all its requirements are fulfilled by assumption,
Theorem G.2 is applicable and we obtain

sup
h∈BL1

∣∣∣∣E∗Mh
(√

nB

(
U∗,FnB

− V F
n

))
− Eh

(
KF
) ∣∣∣∣

P∗→ 0

for n→∞. The conjunction of our findings yields (G.6).

Finally, we come to the verification of (G.7). By definition it holds that

EM
(
h
(√

nB

(
U∗,FnB

− UF
n

)))?
− EM

(
h
(√

nB

(
U∗,FnB

− UF
n

)))
?
≥ 0 (G.8)

almost surely. Thus, if we can bound the difference in (G.8) almost surely from above
with an expression that converges to zero in outer probability, then we can deduce (G.7).
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Therefore, we recognize that

EM
(
h
(√

nB

(
U∗,FnB

− UF
n

)))?

=EM
(
h
(
U∗,F ,U
nB

)
− h

(√
nB

(
U∗,FnB

− V F
n

))
+ h

(√
nB

(
U∗,FnB

− V F
n

)))?

≤EM
(
h
(√
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(
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− V F
n

)))?
+ EM

(
h
(
U∗,F ,U
nB

)
− h

(√
nB

(
U∗,FnB

− V F
n

)))?

almost surely, where we used in the last step that for any two real valued maps X and Y
it holds (X + Y )? ≤ (X)? + (Y )? (see Lemma H.11). Further, we have almost surely that

EM
(
h
(√

nB

(
U∗,FnB

− V F
n

)))?
+ EM

(
h
(
U∗,F ,U
nB

)
− h

(√
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(
U∗,FnB
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n

)))?

≤EM
(
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(
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nB

))?
+ EM
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(
U∗,F ,U
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(
U∗,F ,V
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≤EM
(
h
(
U∗,F ,V
nB

))?
+ EM

(
sup
f∈F

∣∣∣U∗,F ,U
nB

(f)− U∗,F ,V
nB

(f)
∣∣∣
)?

,

since h is Lipschitz continuous with Lipschitz constant one. Using (G.5) we conclude that

EM
(
h
(
U∗,F ,V
nB

))?
+ EM

(
sup
f∈F

∣∣∣∣U∗,F ,U
nB

(f)− U∗,F ,V
nB

(f)
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≤EM
(
h
(
U∗,F ,V
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+ EM

(
2C
√
nB

n

)?

=EM
(
h
(
U∗,F ,V
nB

))?
+

2C
√
nB

n

almost surely. On the other hand it holds almost surely that

EM
(
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(
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=EM
(
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(
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≥EM
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(√
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(
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− V F
n

)))
?
,

where the last inequality follows since for any two real valued maps X and Y we have
(X + Y )? ≥ (X)? + (Y )? (c.f. Lemma H.11). Moreover, we find that

EM
(
h
(√
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(
U∗,FnB

− V F
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+ EM
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(
U∗,F ,U
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)
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≥EM
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≥EM
(
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(
U∗,F ,V
nB

))
?
− EM

(
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?
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almost surely, where we used that h is Lipschitz continuous with Lipschitz constant one.
With (G.5) we deduce that

EM
(
h
(
U∗,F ,V
nB

))
?
− EM

(
sup
f∈F

∣∣∣U∗,F ,U
nB

(f)− U∗,F ,V
nB

(f)
∣∣∣
)

?

≥EM
(
h
(
U∗,F ,V
nB

))
?
− EM

(
2C
√
nB

n

)

?

=EM
(
h
(
U∗,F ,V
nB

))
?
− 2C

√
nB

n

almost surely.

In conjunction, the previous results yield that

EM
(
h
(√

nB

(
U∗,FnB

− UF
n

)))?
− EM

(
h
(√

nB

(
U∗,FnB

− UF
n

)))
?

(i)

≤EM
(
h
(
U∗,F ,V
nB

))?
+

2C
√
nB

n
−
(
EM

(
h
(
U∗,F ,V
nB
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?
− 2C

√
nB
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=EM
(
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(
U∗,F ,V
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))?
− EM

(
h
(
U∗,F ,V
nB

))
?

+
4C
√
nB

n

P∗→ 0,

as n→∞. Here, (i) holds almost surely and the last line follows by Theorem G.2 as well as
the observation we made in (G.5). Thus, we can conclude (G.7) and, as previously argued,
this yields the claim.

H Technical Results

In this final section we collect various results that find implicit or explicit usage in the
course of this part.

H.1 Integrated Difference of Quantile Functions

Here, we state a result on the integrated difference of quantile functions that has been used
multiple times in Section B.7.

Lemma H.1. Let X and Y be non-negative, real valued, compactly supported random
variables with distribution functions F and G. Let F−1 and G−1 denote the corresponding
quantile functions. Then, it holds for κ ∈ [0, 1) that

∫ κ

0
F−1(t)−G−1(t) dt =

∫ F−1(κ)

0
G(x)− F (x) dx+

∫ G−1(κ)

F−1(κ)
G(x)− κ dt. (H.1)
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In particular, for κ = 1, it follows that

∫ 1

0
F−1(t)−G−1(t) dt =

∫ ∞

0
G(x)− F (x) dx.

Remark H.2. It is noteworthy that the roles of G−1(κ) and F−1(κ) in (H.1) are inter-
changeable, i.e., by the same line of proof we could also obtain that

∫ κ

0
F−1(t)−G−1(t) dt =

∫ G−1(κ)

0
G(t)− F (t) dt+

∫ F−1(κ)

G−1(κ)
κ− F (t) dt. (H.2)

Proof. We start by showing the first part of the statement. We have that

∫ κ

0
F−1(t)−G−1(t) dt =

∫ κ

0

∫ ∞

0
1{x≤F−1(t)} − 1{x≤G−1(t)} dx dt

=

∫ κ

0

∫ ∞

0
1{F (x)≤t} − 1{G(x)≤t} dx dt =

∫ ∞

0

∫ κ

0
1{F (x)≤t} − 1{G(x)≤t} dt dx,

where the last step follows by the Theorem of Tonelli/Fubini [6, Thm. 18.3]. This yields
that

∫ κ

0
F−1(t)−G−1(t) dt =

∫ ∞

0
(G(x) ∧ κ)− (F (x) ∧ κ) dx

=

∫ F−1(κ)

0
G(t)− F (t) dt+

∫ G−1(κ)

F−1(κ)
G(t)− κ dt.

Here, the last equality is obvious if G−1(κ) > F−1(κ). However, it also holds for G−1(κ) <

F−1(κ), since we take
∫ b
a f(x) dx := −

∫ a
b f(x) dx when a > b.

Next, we come to the second part of the statement. By similar arguments as previously
(using that X and Y are compactly supported), we obtain

∫ 1

0
F−1(t)−G−1(t) dt =

∫ 1

0

∫ ∞

0
1{F (x)≤t} − 1{G(x)≤t} dx dt

=

∫ ∞

0

∫ 1

0
1{F (x)≤t} − 1{G(x)≤t} dt dx =

∫ ∞

0
G(x)− F (x) dx,

which gives the second part of the claim.
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H.2 Differentiation and Integration

The following lemma allows to pointwise interchange integration and differentiation.

Lemma H.3. Given a measure space (X,M, µ) and a real valued function f on X× (a, b)
such that f(·, t) ∈ `1(µ) for each t ∈ (a, b), let F (t) =

∫
Xf(x, t) dµ(x). Suppose that

the partial derivative ∂tf = ∂f/∂t exists and assume that there is a set X ′ ⊆ X with
µ(X ′) = µ(X) such that there exits g ∈ `1(µ) with |∂sf(x, s)| ≤ g(x) for all x ∈ X ′ and
s ∈ [t− ε, t+ ε] for some ε > 0. Then, F is differentiable at t with

F ′(t) =

∫

X
∂tf(x, t) dµ(x).

Proof. We observe that

lim
s→t

F (t)− F (s)

t− s = lim
s→t

∫

X

f(x, t)− f(x, s)

t− s dµ(x) = lim
s→t

∫

X′

f(x, t)− f(x, s)

t− s dµ(x).

Since f(x, ·) is differentiable at t for all x ∈ X ′, we obtain for |s− t| < ε that

f(x, t)− f(x, s)

t− s = ∂tf(x, ζ)

for some ζ ∈ [t − ε, t + ε]. By assumption, we have that there exists g ∈ `1(µ) with
|∂sf(x, s)| ≤ g(x) for all x ∈ X ′ and s ∈ [t − ε, t + ε]. In consequence, the Dominated
Convergence Theorem yields that

lim
s→t

F (t)− F (s)

t− s =

∫

X′
lim
s→t

f(x, t)− f(x, s)

t− s dµ(x) =

∫

X′
∂tf(x, t) dµ(x) =

∫

X
∂tf(x, t) dµ(x).

H.3 Measurability of Function Classes

Depending on the complexity of the indexing function class F , stochastic processes indexed
by F can be extremely general and difficult to handle. In the following we define two
possible regularity assumptions on F .

We begin with the introduction of the concept of permissible function classes.

Definition H.4. [36, Appendix C, Def. 1] Let (S,S) be a measurable space and let F
be a real valued function class on S that is indexed by a parameter t ∈ T , i.e., F ={
f̃(·, t) : t ∈ T

}
. Further, let T be a separable metric space and B(T ) the Borel σ-field on

T . We call the class F permissible if it is indexed by T in such a way that
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(i) the function f̃(·, ·) is S ⊗B(T )-measurable as a function from S × T into the real
line;

(ii) T is an analytic subset of a compact metric space T̄ (from which it inherits its metric
and Borel σ-field).

Another possibility is to assume that the indexing function F class is a image admissible
Suslin class.

Definition H.5. [18, Sec. 5.3] A separable, measurable space (Ω,A) is called a Suslin
space if and only if there exists a Polish space Ψ and a Borel measurable map from Ψ to
Ω.
If (S,S) is a measurable space and F a set, then a real-valued function Φ : S × F →
R, (s, f) 7→ Φ(s, f) is called image admissible Suslin via (Ω,A, V ) if (Ω,A) is a Suslin
measurable space, V is a function from Ω onto F , and (s, ω) 7→ Φ(s, V (ω)) is jointly
measurable on S × Ω.
A class of real-valued functions F on S is denoted as image admissible Suslin if for F = F
the map Φ(s, f) = f(s) is image admissible Suslin via some (Ω,A, V ) as defined above.

At a first glance, both introduced concepts seem similar. However, as shown by the next
lemma, if a function class is permissible in the sense of Definition H.4, then it is automat-
ically image admissible Suslin.

Lemma H.6. Let (S,S) be a measurable space and let F be a permissible function class
on (S,S). Then, F is image admissible Suslin.

Proof. Since F is permissible it admits a representation as

F =
{
f̃(·, t) : t ∈ T

}
,

where f̃ is S⊗B(T )/B(R)-measurable as a function from S×T to R, and T is an analytic
subset of a compact metric space T̄ . By the theorem of Heine-Borel for metric spaces [10,
Thm. 9.58] it follows that T̄ is separable and complete, i.e., a Polish space. As T ⊆ T̄ is
an analytic set it is the image of a Polish space under a continuous, i.e., Borel measurable,
mapping [15, Sec. 8.2]. Thus, (T,B(T )) is a Suslin space.
By assumption, the map f̃(·, ·) is S ⊗ B(T )-measurable. Consequently, the map Φ :
S ×F → R, Φ(s, f) = f̃(s, t) is image admissible Suslin via (T,B(T ), V ), where

V : T → F , t 7→ f̃(·, t).

In order to verify joint measurability of a function (as required to show permissibility of a
function class) the subsequent theorem is often helpful. This theorem is well known in the
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theory of stochastic processes (see e.g. Capasso and Bakstein [13, Sec. 2]) and a proof is
only added for the sake of completeness.

Theorem H.7. Let ([C1, C2],B ([C1, C2])) be a real, bounded interval endowed with the
Borel σ-algebra and let (S,S) be an arbitrary measurable space. Let f : S × [C1, C2] → R
be a function such that

1. t 7→ f(x, t) is right-/left-continuous for all x ∈ S;

2. x 7→ f(x, t) is measurable for all t ∈ [C1, C2].

Then, f is S ⊗B ([C1, C2])-measurable.

Proof. Since both cases can be treated analogously, we only show the claim under the
assumption t 7→ f(x, t) is right-continuous for all x ∈ S. Therefore, we define for t ∈
[C1 + k(C2 − C1)/2n, C1 + (k + 1)(C2 − C1)/2n), where k = 0, . . . , 2n − 1, the function
fn : S × [C1, C2)→ R as

fn(x, t) = f

(
x,C1 +

(k + 1)(C2 − C1)

2n

)
.

Further, we set for t = C2

fn(x, t) = f(x,C2).

Next, we verify that fn is for n ∈ N a S ⊗B ([C1, C2])-measurable function. Therefore, let
A ∈ B(R) and n ∈ N be fix. Then, we have

f−1
n (A) = {(x, t) : fn(x, t) ∈ A, C1 ≤ t ≤ C2}

=
2n−1⋃

k=0

[
C1 +

k(C2 − C1)

2n
, C1 +

(k + 1)(C2 − C1)

2n

)

×
{
f

(
x,C1 +

(k + 1)(C2 − C1)

2n

)
∈ A

}

∪ {C2} × {f (x,C2) ∈ A} .

We realize, that for 0 ≤ k ≤ 2n − 1 the set

Fk :=

[
C1 +

k(C2 − C1)

2n
, C1 +

(k + 1)(C2 − C1)

2n

)

belongs to B ([C1, C2]) and that the same holds for F2n = {C2}. Furthermore, the sets

Ek :=

{
f

(
x,C1 +

(k + 1)(C2 − C1)

2n

)
∈ A

}
, 0 ≤ k ≤ 2n − 1
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and E2n = {f (x,C2) ∈ A} are included in S as f(·, t) is measurable for t ∈ [C1, C2] by
assumption. This means that Ek × Fk ∈ S ⊗ B ([C1, C2]), 0 ≤ k ≤ 2n [6, Sec. 18].
Thus, for any A ∈ B(R) it holds that f−1

n (A) is a finite union of measurable sets, i.e.,
f−1
n (A) ∈ S ⊗B ([C1, C2]). Consequently, f−1

n is a measurable function for n ∈ N.
We have assumed that f(x, ·) is right continuous for all x ∈ S. Thus, by construction it
holds

lim
n→∞

fn(x, t) = f(x, t)

for all t ∈ [C1, C2]. We conclude that f is the pointwise limit of a sequence of measurable
functions and thus measurable itself [6, Thm. 13.4]. This yields the claim.

Remark H.8. The theorem’s claim can also be shown for [C1, C2] = R.

H.4 Further Measurability Issues

To overcome potential measurability issues we work in Section G.2 with minimal measurable
majorants and maximal measurable minorants, which we define next.

Lemma H.9. [23, Lemma 6.3] Let (Ω,A,P) be a probability space. For any map X : Ω→ R̄
there exists a measurable map (X)? : Ω→ R̄ with

(i) (X)? ≥ X;

(ii) For every measurable U : Ω → R̄ with U ≥ X almost surely, it holds (X)? ≤ U
almost surely.

The map (X)? is called minimal measurable majorant. Furthermore, the above lemma
suggests that if X and Y are two arbitrary maps from a probability space (Ω,A,P) to
R and X ≤ Y almost surely, then it holds (X)? ≤ (Y )? almost surely. Analogously the
following lemma holds.

Lemma H.10. [23, Lemma 6.4] Let (Ω,A,P) be a probability space. For any map X :
Ω→ R̄ there exists a measurable map (X)? : Ω→ R̄ with

(i) (X)? ≤ X;

(ii) For every measurable U : Ω → R̄ with U ≤ X almost surely, it holds (X)? ≥ U
almost surely.

The map (X)? is called maximal measurable minorant. It can be equivalently defined as
(X)? = (−(−X))? [23, Lemma 6.3]. Moreover, also the previous lemma implies that for
two arbitrary maps from a probability space (Ω,A,P) to R, it holds (X)? ≤ (Y )? almost
surely, if X ≤ Y almost surely. Some further, useful properties of these functions are
collected in the following lemma.
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Lemma H.11. [23, Lemma 6.6] Let (Ω,A,P) be a probability space. The following state-
ments are true almost surely for arbitrary maps X,Y : Ω→ R̄, provided that the statement
is well defined:

(i) (X + Y )? ≤ (X)? + (Y )?;

(ii) (X)? + (Y )? ≤ (X + Y )?.
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Abstract

In this paper, we investigate compact ultrametric measure spaces which form a
subset Uw of the collection of all metric measure spaces Mw. In analogy with the
notion of the ultrametric Gromov-Hausdorff distance on the collection of ultrametric
spaces U , we define ultrametric versions of two metrics on Uw, namely of Sturm’s
Gromov-Wasserstein distance of order p and of the Gromov-Wasserstein distance of
order p. We study the basic topological and geometric properties of these distances
as well as their relation and derive for p = ∞ a polynomial time algorithm for their
calculation. Further, several lower bounds for both distances are derived and some of
our results are generalized to the case of finite ultra-dissimilarity spaces. Finally, we
study the relation between the Gromov-Wasserstein distance and its ultrametric version
(as well as the relation between the corresponding lower bounds) in simulations and
apply our findings for phylogenetic tree shape comparisons.

Keywords Ultrametric space, Gromov-Hausdorff distance, Gromov-Wasserstein distance,
Optimal transport

1 Introduction

Over the last decade the acquisition of ever more complex data, structures and shapes
has increased dramatically. Consequently, the need to develop meaningful methods for
comparing general objects has become more and more apparent. In numerous applications,
e.g. in molecular biology [17, 43, 54], computer vision [45, 61] and electrical engineering
[55, 77], it is important to distinguish between different objects in a pose invariant manner:
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two instances of the a given object in different spatial orientations are deemed to be equal.
Furthermore, also the comparisons of graphs, trees, ultrametric spaces and networks, where
mainly the underlying connectivity structure matters, have grown in importance [21, 29].
One possibility to compare two general objects in a pose invariant manner is to model
them as metric spaces (X, dX) and (Y, dY ) and regard them as elements of the collection
of isometry classes of compact metric spaces denoted by M (i.e. two compact metric
spaces (X, dX) and (Y, dY ) are in the same class if and only if they are isometric to each
other which we denote by X ∼= Y ). It is possible to compare (X, dX) and (Y, dY ) via the
Gromov-Hausdorff distance [32, 41], which is a metric on M. It is defined as

dGH(X,Y ) := inf
Z,φ,ψ

d
(Z,dZ)
H (φ(X), ψ(Y )), (1)

where φ : X → Z and ψ : Y → Z are isometric embeddings into a metric space (Z, dZ)

and d
(Z,dZ)
H denotes the Hausdorff distance in Z. The Hausdorff distance is a metric on the

collection of compact subsets of a metric space (Z, dZ), which is denoted by S(Z), and for
A,B ∈ S(Z) defined as follows

d
(Z,dZ)
H (A,B) := max

(
sup
a∈A

inf
b∈B

dZ(a, b), sup
b∈B

inf
a∈A

dZ(a, b)

)
. (2)

While the Gromov-Hausdorff distance has been applied successfully for various shape and
data analysis tasks (see e.g. [12–16, 19, 20, 69]), it turns out that it is generally convenient
to equip the modelled objects with more structure and to model them as metric measure
spaces [66, 67]. A metric measure space X = (X, dX , µX) is a triple, where (X, dX) denotes
a metric space and µX stands for a Borel probability measure on X with full support. This
additional probability measure can be thought of as signalling the importance of different
regions in the modelled object. Moreover, two metric measure spaces X = (X, dX , µX)
and Y = (Y, dY , µY ) are considered as isomorphic (denoted by X ∼=w Y) if and only if
there exists an isometry ϕ : (X, dX) → (Y, dY ) such that ϕ#µX = µY . Here, ϕ# denotes
the pushforward map induced by ϕ. From now on, Mw denotes the collection of all
(isomorphism classes of) compact metric measure spaces.

The additional structure of the metric measure spaces allows to regard the modelled ob-
jects as probability measures instead of compact sets. Hence, it is possible to substitute
the Hausdorff component in Equation (1) by a relaxed notion of proximity, namely the
Wasserstein distance. This distance is fundamental to a variety of mathematical devel-
opments and is also known as Kantorovich distance [47], Kantorovich-Rubinstein distance
[48], Mallows distance [63] or as the Earth Mover’s distance [85]. Given a compact metric
space (Z, dZ), let P(Z) denote the space of probability measures on Z and let α, β ∈ P(Z).
Then, the Wasserstein distance of order p, for 1 ≤ p <∞, between α and β is defined as

d
(Z,dZ)
W,p (α, β) :=

(
inf

µ∈C(α,β)

∫

Z×Z
dpZ(x, y)µ(dx× dy)

) 1
p

, (3)

2
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and for p =∞ as

d
(Z,dZ)
W,∞ (α, β) := inf

µ∈C(α,β)
sup

(x,y)∈supp(µ)
dZ(x, y), (4)

where supp (µ) stands for the support of µ and C(α, β) denotes the set of all couplings of
α and β, i.e., the set of all probability measures µ on the product space Z × Z such that

µ(A× Z) = α(A) and µ(Z ×B) = β(B)

for all Borel measurable sets A and B of Z. It is worth noting that the Wasserstein distance
between probability measures on the real line admits a closed form solution (see [99] and
Remark 2.12).

Sturm [92] has shown that replacing the Hausdorff distance in Equation (1) with the
Wasserstein distance indeed yields a meaningful metric on Mw. Let X = (X, dX , µX)
and Y = (Y, dY , µY ) be two metric measure spaces. Then, Sturm’s Gromov-Wasserstein
distance of order p, 1 ≤ p ≤ ∞, is defined as

dsturm
GW,p(X ,Y) := inf

Z,φ,ψ
d

(Z,dZ)
W,p (φ#µX , ψ#µY ), (5)

where φ : X → Z and ψ : Y → Z are isometric embeddings into the metric space (Z, dZ).

Based on similar ideas but starting from a different representation of the Gromov-Hausdorff
distance, Mémoli [66, 67] derived a computationally more tractable and topologically equiv-
alent metric on Mw, namely the Gromov-Wasserstein distance: For 1 ≤ p < ∞, the
p-distortion of a coupling µ ∈ C(µX , µY ) is defined as

disp(µ) :=

(∫∫

X×Y×X×Y

∣∣dX(x, x′)− dY (y, y′)
∣∣p µ(dx× dy)µ(dx′ × dy′)

)1/p

(6)

and for p =∞ it is given as

dis∞(µ) := sup
x,x′∈X , y,y′∈Y

s.t. (x,y),(x′,y′)∈supp(µ)

∣∣dX(x, x′)− dY (y, y′)
∣∣.

The Gromov-Wasserstein distance of order p, 1 ≤ p ≤ ∞, is defined as

dGW,p(X ,Y) :=
1

2
inf

µ∈C(µX ,µY )
disp(µ). (7)

It is known that in general dGW,p ≤ dsturm
GW,p and that the inequality can be strict [67].

Although both dsturm
GW,p and dGW,p, 1 ≤ p ≤ ∞, are in general NP-hard to compute [67], it

is possible to efficiently approximate dGW,p via conditional gradient descent [67, 79]. This
has led to numerous applications and extensions of this distance [4, 18, 24, 87, 95].
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In many cases, since the direct computation of either of these distances can be onerous,
the determination of the degree of similarity between two datasets is performed via firstly
computing invariant features out of each dataset (e.g. global distance distributions [75])
and secondly by suitably comparing these features. This point of view has motivated the
exploration of inverse problems arising from the study of such features [11, 67, 68, 93].

Clearly, Mw contains various, extremely general spaces. However, in many applications it
is possible to have prior knowledge about the metric measure spaces under consideration
and it is often reasonable to restrict oneself to work on a specific sub-collections Ow ⊆Mw.
For instance, it could be known that the metrics of the spaces considered are induced by
the shortest path metric on some underlying trees and hence it is unnecessary to consider
the calculation of dsturm

GW,p and dGW,p, 1 ≤ p ≤ ∞, for all ofMw. The potential advantages of
focusing on a specific sub-collection Ow are twofold. On the one hand, it might be possible
to use the features of Ow to gain computational benefits. On the other hand, it might be
possible to refine the definition dsturm

GW,p and dGW,p, 1 ≤ p ≤ ∞, to obtain more informative
comparisons on Ow. Naturally, it is of interest to identify and study these subclasses and
the corresponding refinements. This approach has been pursued to study (variants of) the
Gromov-Hausdorff distance on compact ultrametric spaces by Zarichnyi [105] and Qiu [80],
and on compact p-metric spaces by Mémoli and Wan [70]. Here, the metric space (X, dX)
is called a p-metric space (1 ≤ p <∞), if for all x, x′, x′′ ∈ X it holds

dX(x, x′′) ≤
(
dX(x, x′)p + dX(x′, x′′)p

)1/p
.

Further, the metric space (X,uX) is called an ultrametric space, if uX fulfills for all
x, x′, x′′ ∈ X that

uX(x′, x′′) ≤ max(uX(x, x′), uX(x′, x′′)). (8)

In particular, note that ultrametrics can be considered as the limiting case of p-metrics
as p → ∞. In particular, Mémoli and Wan [70] derived a polynomial time algorithm for
the calculation of the ultrametric Gromov-Hausdorff distance uGH between two compact
ultrametric spaces (X,uX) and (Y, uY ) (see Section 2.2), which is defined as

uGH(X,Y ) := inf
Z,φ,ψ

d
(Z,uZ)
H (φ(X), ψ(Y )), (9)

where φ : X → Z and ψ : Y → Z are isometric embeddings into a common ultrametric

space (Z, uZ) and d
(Z,uZ)
H denotes the Hausdorff distance on Z.

A further motivation to study (surrogates of) the distances dsturm
GW,p and dGW,p restricted

on a subset Ow comes from the idea of slicing which originated as a method to efficiently
estimate the Wasserstein distance dR

d

W,p(α, β) between probability measures α and β sup-

ported in a high dimensional euclidean space Rd [85]. The original idea is that given any
line ` in Rd one first obtains α` and β`, the respective pushforwards of α and β under the
orthogonal projection map π` : Rd → `, and then one invokes the explicit formula for the

4
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Wasserstein distance for probability measures on R (see Remark 2.12) to obtain a lower

bound to dR
d

W,p(α, β) without incurring the possibly high computational cost associated to
solving an optimal transportation problem. This lower bound is improved via repeated
(often random) selections of the line ` [9, 53, 85].

Recently, Le et al. [58] pointed out that, thanks to the fact that the 1-Wasserstein distance
also admits an explicit formula when the underlying metric space is a tree [28, 34, 65],
one can also devise tree slicing estimates of the distance between two given probability
measures by suitably projecting them onto tree-like structures. Most likely, the same
strategy is successful for suitable projections on random ultrametric spaces, as on these
there is also an explicit formula for the Wasserstein distance [50]. The same line of of work
has also recently been explored in the Gromov-Wasserstein scenario [57, 98] and could be
extended based on efficiently computable restrictions (or surrogates of) dsturm

GW,p and dGW,p.
Inspired by the results of Mémoli and Wan [70] on the ultrametric Gromov-Hausdorff
distance and the results of Kloeckner [50], who derived an explicit representation of the
Wasserstein distance on ultrametric spaces, we study the collection of compact ultrametric
measure spaces Uw ⊆Mw, where X = (X,uX , µX) ∈ Uw, whenever the underlying metric
space (X,uX) is a compact ultrametric space.

In terms of applications, ultrametric spaces (and thus also ultrametric measure spaces)
arise naturally in statistics as metric encodings of dendrograms [19, 46] which is a graph
theoretical representations of ultrametric spaces, in the context of phylogenetic trees [90],
in theoretical computer science in the probabilistic approximation of finite metric spaces
[5, 35], and in physics in the context of a mean-field theory of spin glasses [71, 81].

Especially for phylogenetic trees (and dendrograms), where one tries to characterize the
structure of an underlying evolutionary process or the difference between two such pro-
cesses, it is important to have a meaningful method of comparison, i.e., to have a meaning-
ful metric on Uw. However, it is evident from the definition of dsturm

GW,p and the relationship

between dsturm
GW,p and dGW,p (see [67]), that the ultrametric structure of X ,Y ∈ Uw is not

taken into account in the computation of either dsturm
GW,p(X ,Y) or dGW,p(X ,Y), 1 ≤ p ≤ ∞.

Hence, we suggest, just as for the ultrametric Gromov-Hausdorff distance, to adapt the
definition of dsturm

GW,p (see Equation (5)) as well as the one of dGW,p (see Equation (7)) and
verify in the following that this makes the comparisons of ultrametric measure spaces more
sensitive and leads for p = ∞ to a polynomial time algorithm for the derivation of the
proposed metrics.

1.1 The proposed approach

Let X = (X,uX , µX) and Y = (Y, uY , µY ) be ultrametric measure spaces. Reconsidering
the definition of Sturm’s Gromov-Wasserstein distance in Equation (5), we propose to only
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infimize over ultrametric spaces (Z, uZ) in Equation (5). Thus, we define for p ∈ [1,∞]
Sturm’s ultrametric Gromov-Wasserstein distance of order p as

usturm
GW,p(X ,Y) := inf

Z,φ,ψ
d

(Z,uZ)
W,p (φ#µX , ψ#µY ), (10)

where φ : X → Z and ψ : Y → Z are isometric embeddings into an ultrametric space
(Z, uZ).

In the subsequent sections of this paper, we will establish many theoretically appealing
properties of usturm

GW,p. Unfortunately, we will verify that, although an explicit formula for
the Wasserstein distance of order p on ultrametric spaces exists [50], for p ∈ [1,∞) the
calculation of usturm

GW,p yields a highly non-trivial combinatorial optimization problem (see
Section 3.1.1). Therefore, we demonstrate that an adaption of the Gromov-Wasserstein
distance defined in Equation (7) yields a topologically equivalent and easily approximable
distance on Uw. In order to define this adaption, we need to introduce some notation. For
a, b ≥ 0 and 1 ≤ q <∞ let

Λq(a, b) := |aq − bq|1/q.
Further define Λ∞(a, b) := max(a, b) whenever a 6= b and Λ∞(a, b) = 0 if a = b.

Now, we can rewrite the p-distortion for µ ∈ C(µX , µY ) in the definition of dGW,p, 1 ≤ p <
∞, (see (6) and (7)) as follows

disp(µ) =

(∫∫

X×Y×X×Y

(
Λ1(dX(x, x′), dY (y, y′))

)p
µ(dx× dy)µ(dx′ × dy′)

)1/p

. (11)

Considering the derivation of dGW,p in [67] and the results on the closely related ultrametric
Gromov-Hausdorff distance studied in [70], this suggests to replace Λ1 in Equation (11)
with Λ∞ in order to incorporate the ultrametric structures of (X,uX , µX) and (Y, uY , µY )
into the comparison. Hence, we define the p-ultra-distortion of a coupling µ ∈ C(µX , µY )
for 1 ≤ p <∞ as

disult
p (µ) :=

(∫∫

X×Y×X×Y

(
Λ∞(uX(x, x′), uY (y, y′))

)p
µ(dx× dy)µ(dx′ × dy′)

)1/p

. (12)

and for p =∞ as

disult
∞ (µ) := sup

x,x′∈X , y,y′∈Y
s.t. (x,y),(x′,y′)∈supp(µ)

Λ∞(uX(x, x′), uY (y, y′)).

The ultrametric Gromov-Wasserstein distance of order p ∈ [1,∞], is given as

uGW,p(X ,Y) := inf
µ∈C(µX ,µY )

disult
p (µ). (13)

6
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Due to the structural similarity between dGW,p and uGW,p, we can expect (and later verify)
that many properties of dGW,p extend to uGW,p. In particular, we will establish that also
uGW,p can be approximated1 via conditional gradient descent and admits several polyno-
mial time computable lower bounds which are useful in applications.

It is worth mentioning that Sturm [93] studied the family of so-called Lp,q-distortion dis-
tances similar to our construction of uGW,p. In our language, for any p, q ∈ [1,∞), the
Lp,q-distortion distance is constructed by infimizing over the (p, q)-distortion defined by
replacing Λ∞ with (Λq)

q in Equation (12). This distance shares many properties with
dGW,p.

1.2 Overview of our results

We give a brief overview of our results.

Section 2. We generalize the results of Carlsson and Mémoli [19] on the relation between
ultrametric spaces and dendrograms and establish a bijection between compact ultrametric
spaces and proper dendrograms (see Definition 2.1). After recalling some results on the
ultrametric Gromov-Hausdorff distance (see Equation (9)), we use the connection between
compact ultrametric spaces and dendrograms to reformulate the explicit formula for the
p-Wasserstein distance (1 ≤ p < ∞) on ultrametric spaces derived by Kloeckner [50] in
terms of proper dendrograms. This allows us to derive a formulation of the∞-Wasserstein
distance on ultrametric spaces and to study the Wasserstein distance on compact subspaces
of the ultrametric space (R≥0,Λ∞), which will be relevant when studying lower bounds of
uGW,p, 1 ≤ p ≤ ∞.

Section 3. We demonstrate that uGW,p and usturm
GW,p, 1 ≤ p ≤ ∞, are p-metrics on the

collection of ultrametric measure spaces Uw. We derive several alternative representations
for usturm

GW,p and study the relation between the metrics usturm
GW,p and uGW,p. In particular, we

show that, while for 1 ≤ p < ∞ it holds in general that uGW,p ≤ 2
1
p usturm

GW,p, both metrics

coincide for p =∞, i.e., uGW,∞ = usturm
GW,∞. Furthermore, we show how this equality in com-

bination with an alternative representation of uGW,∞ leads to a polynomial time algorithm
for the calculation of usturm

GW,∞ = uGW,∞. Moreover, we study the topological properties of

(Uw, usturm
GW,p) and (Uw, uGW,p), 1 ≤ p ≤ ∞. Most importantly, we show that usturm

GW,p and
uGW,p induce the same topology on Uw which is also different from the one induced by
dsturm

GW,p/dGW,p, 1 ≤ p ≤ ∞. While we further prove that the metric spaces (Uw, usturm
GW,p) and

(Uw, uGW,p), 1 ≤ p <∞, are neither complete nor separable metric space, we demonstrate

1Here “approximation” is meant in the sense that one can write code which will locally minimize the
functional. There are in general no theoretical guarantees that these algorithms will converge to a global
minimum.
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that the ultrametric space (Uw, usturm
GW,∞), which coincides with (Uw, uGW,∞), is complete.

Finally, we establish that (Uw, usturm
GW,1) is a geodesic space.

Section 4. Unfortunately, it does not seem to be possible to derive a polynomial time
algorithm for the calculation of usturm

GW,p and uGW,p, 1 ≤ p < ∞. Consequently, based
on easily computable invariant features, in Section 4 we derive several polynomial time
computable lower bounds for uGW,p, 1 ≤ p ≤ ∞. Due to the structural similarity between
dGW,p and uGW,p, these are in a certain sense analogue to those derived in [66, 67] for
dGW,p. Among other things, we show that

uGW,p(X ,Y) ≥ SLBult
p (X ,Y) := inf

γ∈C(µX⊗µX ,µY ⊗µY )
‖Λ∞(uX , uY )‖Lp(γ) . (14)

We verify that the lower bound SLBult
p can be reformulated in terms of the Wasserstein

distance on the ultrametric space (R≥0,Λ∞) (we derive an explicit formula for d
(R≥0,Λ∞)
W,p

in Section 2.3). This allows us to efficiently calculate SLBult
p (X ,Y) in O((m∨ n)2), where

m stands for the cardinality of X and n for the one of Y .

Section 5. As the ultrametric space assumption is somewhat restrictive (especially in the
context of phylogenetic trees, see [90]), we prove in Section 5 that the results on uGW,p

can be extended to the more general ultra-dissimilarity spaces (see Definition 5.1). In
particular, we prove that uGW,p, 1 ≤ p ≤ ∞, is a metric on the isomorphism classes of
ultra-dissimilarity spaces (see Definition 5.5).

Section 6. We illustrate the behaviour and relation between uGW,1 (which can be ap-
proximated via conditional gradient descent) and SLBult

1 in a set of illustrative examples.
Additionally, we carefully illustrate the differences between uGW,1 and SLBult

1 , and dGW,1

and SLB1 (see Section 4 for a definition), respectively.

Section 7. Finally, we apply our ideas to phylogenetic tree shape comparison. To this end,
we compare two sets of phylogenetic tree shapes based on the HA protein sequences from
human influenza collected in different regions with the lower bound SLBult

1 . In particular,
we contrast our results in both settings to the ones obtained with the tree shape metric
introduced in Equation (4) of Colijn and Plazzotta [25].

1.3 Related work

In order to better contextualize our contribution, we now describe related work, both
in applied and computational geometry, and in phylogenetics (where notions of distance
between trees have arisen naturally).

8
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Metrics between trees: the phylogenetics perspective

In phylogenetics, where one chief objective is to infer the evolutionary relationship between
species via methods that evaluate observable traits, such as DNA sequences, the need to be
able to measure dissimilarity between different trees arises from the fact that the process
of reconstruction of a phylogenetic tree may depend on the set of genes being considered.
At the same time, even for the same set of genes, different reconstruction methods could
be applied which would result in different trees. As such, this has led to the development
of many different metrics for measuring distance between phylogenetic trees. Examples
include the Robinson-Foulds metric [84], the subtree-prune and regraft distance [42], and
the nearest-neighbor interchange distance [83].

As pointed out in [76], many of these distances tend to quantify differences between tree
topologies and often do not take into account edge lengths. A certain phylogenetic tree
metric space which encodes for edge lengths was proposed in [6] and studied algorithmically
in [76]. This tree space assumes that the all trees have the same set of taxa. An extension to
the case of trees over different underlying sets is given in [40]. Lafond et al. [56] considered
one type of metrics on possibly muiltilabeled phylogenetic trees with a fixed number of
leafs. As the authors pointed out, a multilabeled phylogenetic tree in which no leafs are
repeated is just a standard phylogenetic tree, whereas a multilabeled phylogenetic tree
in which all labels are equal defines a tree shape. The authors then proceeded to study
the computational complexity associated to generalizations of some of the usual metrics
for phylogenetic trees (such as the Robinson-Foulds distance) to the multilabeled case.
Colijn and Plazzotta [25] studied a metric between (binary) phylogenetic tree shapes based
on a bottom to top enumeration of specific connectivity structures. The authors applied
their metric to compare evolutionary trees based on the HA protein sequences from human
influenza collected in different regions.

Metrics between trees: the applied geometry perspective

From a different perspective, ideas from applied geometry and applied and computational
topology have been applied to the comparison of tree shapes in applications in probability,
clustering and applied and computational topology.

Metric trees are also considered in probability theory in the study of models for random
trees together with the need to quantify their distance; Evans [33] described some variants
of the Gromov-Hausdorff distance between metric trees. See also [39] for the case of metric
measure space representations of trees and a certain Gromov-Prokhorov type of metric on
the collection thereof.

Trees, in the form of dendrograms, are abundant in the realm of hierarhical clustering
methods. In their study of the stability of hierarchical clustering methods, Carlsson and
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Mémoli [19] utilized the Gromov-Hausdorff distance between the ultrametric representation
of dendrograms. Schmiedl [88] proved that computing the Gromov-Hausdorff distance
between tree metric spaces is NP-hard. Liebscher [59] suggested some variants of the
Gromov-Hausdorff distance which are applicable in the context of phylogenetic trees. As
mentioned before, Zarichnyi [105] introduced the ultrametric Gromov-Hausdorff distance
uGH between compact ultrametric spaces (a special type of tree metric spaces). Certain
theoretical properties such as precompactness of uGH has been studied in [80]. In contrast
with the NP-hardness of computing dGH, Mémoli and Wan [70] devised an polynomial time
algorithm for computing uGH.

In computational topology merge trees arise through the study of the sublevel sets of a
given function [1, 82] with the goal of shape simplification. Morozov et al. [74] developed
the notion of interleaving distance between merge trees which is related to the Gromov-
Hausdorff distance between trees through bi-Lipschitz bounds. In [2], exploiting the con-
nection between the interleaving distance and the Gromov-Hausdorff between metric trees,
the authors approached the computation of the Gromov-Hausdorff distance between metric
trees in general and provide certain approximation algorithms. Touli and Wang [96] de-
vised fixed-parameter tractable (FPT) algorithms for computing the interleaving distance
between metric trees. One can imply from their methods an FPT algorithm to compute
a 2-approximation of the Gromov-Hausdorff distance between ultrametric spaces. Mémoli
and Wan [70] devised an FPT algorithm for computing the exact value of the Gromov-
Hausdorff distances between ultrametric spaces.

2 Preliminaries

In this section we briefly summarize the basic notions and concepts required throughout
the paper.

2.1 Ultrametric spaces and dendrograms

We begin by describing compact ultrametric spaces in terms of proper dendrograms. To
this end, we introduce some definitions and some notation. Given a set X, a partition of X
is a set PX = {Xi}i∈I where I is any index set, ∅ 6= Xi ⊆ X, Xi ∩Xj = ∅ for all i 6= j ∈ I
and

⋃
i∈I Xi = X. We call each element Xi a block of the given partition PX and denote

by Part(X) the collection of all partitions of X. For two partitions PX and P ′X we say
that PX is finer than P ′X , if for every block Xi ∈ PX there exists a block X ′j ∈ P ′X such
that Xi ⊆ X ′j .
Definition 2.1 (Proper dendrogram). Given a set X (not necessarily finite), a proper
dendrogram θX : [0,∞)→ Part(X) is a map satisfying the following conditions:
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1. θX(s) is finer than θX(t) for any 0 ≤ s < t <∞;

2. θX(0) is the finest partition consisting only singleton sets;

3. There exists T > 0 such that for any t ≥ T , θX(t) = {X} is the trivial partition;

4. For each t > 0, there exists ε > 0 such that θX(t) = θX(t′) for all t′ ∈ [t, t+ ε].

5. For any distinct points x, x′ ∈ X, there exists Txx′ > 0 such that x and x′ belong to
different blocks in θX(Txx′).

6. For each t > 0, θX(t) consists of only finitely many blocks.

7. Let {tn}n∈N be a decreasing sequence such that limn→∞ tn = 0 and let Xn ∈ θX(tn).
If for any 1 ≤ n < m, Xm ⊆ Xn, then

⋂
n∈NXn 6= ∅.

When X is finite, a function θX : [0,∞) → Part(X) satifying conditions (1) to (4) will
satisfy conditions (5), (6) and (7) automatically, and thus a proper dendrogram reduces
to the usual dendrogram (see [19, Sec. 3.1] for a formal definition). Let θX be a proper
dendrogram over a set X. For any x ∈ X and t ≥ 0, we denote by [x]Xt the block in θ(t)
that contains x ∈ X and abbreviate [x]Xt to [x]t when the underlying set X is clear from
the context. Similar to [19], who considered the relation between finite ultrametric spaces
and dendrograms, we will prove that there is a bijection between compact ultrametric
spaces and proper dendrograms. In particular, one can show that the subsequent theorem
generalizes [19, Theorem 9]. Since its proof depends on several concepts not yet introduced,
we postpone it to Appendix A.1.1.

Theorem 2.2. Given a set X, denote by U(X) the collection of all compact ultrametrics
on X and D(X) the collection of all proper dendrograms over X. For any θ ∈ D(X),
consider uθ defined as follows:

∀x, x′ ∈ X, uθ(x, x′) := inf{t ≥ 0 |x, x′ belong to the same block of θ(t)}.

Then, uθ ∈ U(X) and the map ΥX : D(X)→ U(X) sending θ to uθ is a bijection.

Remark 2.3. From now on, we denote by θX the proper dendrogram corresponding to a
given compact ultrametric uX on X under the bijection given above. Note that a block
[x]t in θX(t) is actually the closed ball Bt(x) in X centered at x with radius t. So for each
t ≥ 0, θX(t) partitions X into a union of several closed balls in X with respect to uX .

2.2 The ultrametric Gromov-Hausdorff distance

Both dsturm
GW,p and dGW,p, 1 ≤ p ≤ ∞, are by construction closely related to the Gromov-

Hausdorff distance. In a recent paper, Mémoli and Wan [70] studied an ultrametric version
of this distance, namely the ultrametric Gromov-Hausdorff distance (denoted as uGH).
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Since we will demonstrate several connections between usturm
GW,p, uGW,p, 1 ≤ p ≤ ∞, and this

distance, we briefly summarize some of the results in [70]. We start by recalling the formal
definition of uGH.

Definition 2.4. Let (X,uX) and (Y, uY ) be two compact ultrametric spaces. Then, the
ultrametric Gromov-Hausdorff between X and Y is defined as

uGH(X,Y ) = inf
Z,φ,ψ

dZH (φ(X), ψ(Y )) ,

where φ : X → Z and ψ : Y → Z are isometric embeddings (distance preserving transfor-
mations) into the ultrametric space (Z, uZ).

Zarichnyi [105] has shown that uGH is an ultrametric on the isometry classes of compact
ultrametric spaces, which are denoted by U , and Mémoli and Wan [70] identified a struc-
tural theorem (cf. Theorem 2.5) that gives rise to a polynomial time algorithm for the
calculation of uGH. More precisely, it was proven in [70] that uGH can be calculated via
so-called quotient ultrametric spaces, which we define next. Let (X,uX) be an ultrametric
space and let t ≥ 0. We define an equivalence relation ∼t on X as follows: x ∼t x′ if and
only if uX(x, x′) ≤ t. We denote by [x]Xt (resp. [x]t) the equivalence class of x under ∼t
and by Xt the set of all such equivalence classes. In fact, [x]Xt = {x′ ∈ X|u(x, x′) ≤ t}
is exactly the closed ball centered at x with radius t and corresponds to a block in the
corresponding proper dendrogram θX(t) (see Remark 2.3). Thus, one can think of Xt as a
“set representation” of θX(t). We define an ultrametric uXt on Xt as follows:

uXt([x]t, [x
′]t) :=

{
uX(x, x′), [x]t 6= [x′]t
0, [x]t = [x′]t.

Then, (Xt, uXt) is an ultrametric space and we call (Xt, uXt) the quotient of (X,uX) at
level t (see Figure 1 for an illustration). It is straightforward to prove that the quotient of
a compact ultrametric space at level t > 0 is a finite ultrametric space (cf. [102, Lemma
2.3]). Furthermore, the quotient spaces characterize uGH as follows.

Theorem 2.5 (Structural theorem for uGH, [70, Theorem 5.7]). Let (X,uX) and (Y, uY )
be two compact ultrametric spaces. Then,

uGH(X,Y ) = inf {t ≥ 0 |Xt
∼= Yt} .

Remark 2.6. Let (X,uX) and (Y, uY ) denote two finite ultrametric spaces and let t ≥ 0.
The quotient spaces Xt and Yt can be considered as vertex weighted, rooted trees [70].
Hence, it is possible to check whether Xt

∼= Yt in polynomial time [3]. Consequently,
Theorem 2.5 induces a simple, polynomial time algorithm to calculate uGH between two
finite ultrametric spaces.

12

192 The Ultrametric Gromov-Wasserstein Distance



Fig. 1: Metric quotient: An ultrametric space (black) and its quotient at level t (red).

2.3 Wasserstein distance on ultrametric spaces

Kloeckner [50] uses the representation of ultrametric spaces as so called synchronized rooted
trees to derive an explicit formula for the Wasserstein distance on ultrametric spaces.
By the constructions of the dendrograms and of the synchronized rooted trees (see Ap-
pendix A.2.1), it is immediately clear how to reformulate the results of Kloeckner [50]
on compact ultrametric spaces in terms of proper dendrograms. To this end, we need to
introduce some notation. For a compact ultrametric space X, let θX be the associated
proper dendrogram and let V (X) :=

⋃
t>0 θX(t) = {[x]t|x ∈ X, t > 0}. It can be shown

that V (X) is the collection of all closed balls in X except for singletons {x} such that x
is a cluster point2 (see Lemma A.8). For B ∈ V (X), we denote by B∗ the smallest (under
inclusion) element in V (X) such that B $ B∗ (for the existence and uniqueness of B∗ see
Lemma A.1).

Theorem 2.7 (The Wasserstein distance on ultrametric spaces, [50, Theorem 3.1]). Let
(X,uX) be a compact ultrametric space. For all α, β ∈ P(X) and 1 ≤ p <∞, we have

(
dXW,p

)p
(α, β) = 2−1

∑

B∈V (X)\{X}
(diam (B∗)p − diam (B)p) |α(B)− β(B)| . (15)

While Theorem 2.7 is only valid for p <∞, it can be extended to the case p =∞.

Lemma 2.8. Let X be a compact ultrametric space. Then, for any α, β ∈ P (X), we have

dXW,∞(α, β) = max
B∈V (X)\{X} and α(B)6=β(B)

diam (B∗) . (16)

The proof of Lemma 2.8 is technical and we postpone it to Appendix A.1.2.

2A cluster point x in a topological space X is such that any neighborhood of x contains countably many
points in X.
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Fig. 2: Illustration of (R≥0,Λ∞): This is the dendrogram for a subspace of (R≥0,Λ∞) consisting of 5
arbitrary distinct points of R+.

2.3.1 Wasserstein distance on (R≥0,Λ∞)

The non-negative half real line R≥0 endowed with Λ∞ turns out to be an ultrametric space
(cf. [70, Remark 1.14]). Finite subspaces of (R≥0,Λ∞) are of particular interest in this
paper. These spaces possess a particular structure (see Figure 2) and the computation of
the Wasserstein distance on them can be further simplified.

Theorem 2.9 (d
(R≥0,Λ∞)
W,p between finitely supported measures). Suppose α, β are two prob-

ability measures supported on a finite subset {x0, . . . , xn} of (R≥0,Λ∞) such that 0 ≤ x0 <
x1 < · · · < xn. Denote αi := α({xi}) and βi := β({xi}). Then, we have for p ∈ [1,∞) that

d
(R≥0,Λ∞)
W,p (α, β) = 2

− 1
p



n−1∑

i=0

∣∣∣∣∣∣

i∑

j=0

(αj − βj)

∣∣∣∣∣∣
· |xpi+1 − x

p
i |+

n∑

i=0

|αi − βi| · xpi




1
p

. (17)

Let Fα and Fβ denote the cumulative distribution functions of α and β, respectively. Then,
for the case p =∞ we obtain

d
(R≥0,Λ∞)
W,∞ (α, β) = max

(
max

0≤i≤n−1,Fα(xi) 6=Fβ(xi)
xi+1, max

0≤i≤n,αi 6=βi
xi

)
.

Proof. Clearly, V (X) = {{x0, x1, . . . , xi}| i = 1, . . . , n} ∪ {{xi}| i = 1, . . . , n} (recall that
each set corresponds to a closed ball). Thus, we conclude the proof by applying Theorem 2.7
and Lemma 2.8.

Remark 2.10 (The case p = 1). Note that when p = 1, for any finitely supported
probability measures α, β ∈ P(R≥0),

d
(R≥0,Λ∞)
W,1 (α, β) =

1

2

(
d

(R,Λ1)
W,1 (α, β) +

∫

R
x |α− β|(dx)

)
.

The formula indicates that the 1-Wasserstein distance on (R≥0,Λ∞) is the average of
the usual 1-Wasserstein distance on (R≥0,Λ1) and a “weighted total variation distance”.
The weighted total variation like distance term is sensitive to difference of supports. For
example, let α = δx1 and β = δx2 , then

∫
R x |α− β|(dx) = x1 + x2 if x1 6= x2.
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Remark 2.11 (Extension to compactly supported measures). In fact, X ⊆ (R≥0,Λ∞)
is compact if and only if it is either a finite set or countable with 0 being the unique
cluster point (w.r.t. the usual Euclidean distance Λ1) (see Lemma A.2). Hence, it is
straightforward to extend Theorem 2.9 to compactly supported measures and we refer to
Appendix A.3 for the missing details.

Remark 2.12 (Closed-form solution for d
(R≥0,Λq)
W,p ). We know that there is a closed-form

solution for Wasserstein distance on R with the usual Euclidean distance Λ1:

d
(R,Λ1)
W,p (α, β) =

(∫ 1

0
|F−1
α (t)− F−1

β (t)|pdt
) 1
p

,

where Fα and Fβ are cumulative distribution functions of α and β, respectively. We have

also obtained a closed-form solution for d
(R≥0,Λ∞)
W,p in Theorem 2.9. We generalize these

formulas to the case d
(R≥0,Λq)
W,p when q ∈ (1,∞) and q ≤ p in Appendix A.3.1.

3 Ultrametric Gromov-Wasserstein distances

In this section we investigate the properties of usturm
GW,p as well as uGW,p, 1 ≤ p ≤ ∞, and

study the relation between them.

3.1 Sturm’s ultrametric Gromov-Wasserstein distance

We begin by establishing several basic properties of usturm
GW,p, 1 ≤ p ≤ ∞, including a proof

that usturm
GW,p is indeed a metric (or more precisely a p-metric) on the collection of compact

ultrametric measure spaces Uw.

The definition of usturm
GW,p given in Equation (10) is clunky, technical and in general not easy

to work with. Hence, the first observation to make is the fact that usturm
GW,p, 1 ≤ p ≤ ∞,

shares a further property with dsturm
GW,p: u

sturm
GW,p can be calculated by minimizing over pseudo-

ultrametrics instead of isometric embeddings.

Lemma 3.1. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be two ultrametric measure spaces.
Let Dult(uX , uY ) denote the collection of all pseudo-ultrametrics u on the disjoint union
X t Y such that u|X×X = uX and u|Y×Y = uY . Let p ∈ [1,∞]. Then, it holds that

usturm
GW,p(X ,Y) = inf

u∈Dult(uX ,uY )
d

(XtY,u)
W,p (µX , µY ), (18)

where d
(XtY,u)
W,p denotes the Wasserstein pseudometric of order p defined in Equation (34)

(resp. in Equation (35) for p =∞) in Appendix B.5.1 of the supplement.
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Proof. The above lemma follows by the same arguments as Lemma 3.3 (iii) in [92].

Remark 3.2 (Wasserstein pseudometric). The Wasserstein pseudometric is a natural
extension of the Wasserstein distance to pseudometric spaces and has for example been
studied in Thorsley and Klavins [94]. In Appendix B.5.1 we carefully show that it is
closely related to the Wasserstein distance on a canonically induced metric space. We
further establish that the Wasserstein distance and the Wasserstein pseudometric share
many relevant properties. Hence, we do not notationally distinguish between these two
concepts.

The representation of usturm
GW,p, 1 ≤ p ≤ ∞, given by the above lemma is much more accessible

and we first use it to establish the subsequent basic properties of usturm
GW,p (see Appendix B.1.1

for a full proof).

Proposition 3.3. Let X ,Y ∈ Uw. Then, the following holds:

1. For any p ∈ [1,∞], we always have that usturm
GW,p(X ,Y) ≥ dsturm

GW,p(X ,Y).

2. For any 1 ≤ p ≤ q ≤ ∞, we have that usturm
GW,p(X ,Y) ≤ usturm

GW,q(X ,Y).

3. It holds that limp→∞ usturm
GW,p(X ,Y) = usturm

GW,∞(X ,Y).

Moreover, we use Lemma 3.1 to prove that (Uw, usturm
GW,p) is indeed a metric space.

Theorem 3.4. usturm
GW,p is a p-metric on the collection Uw of compact ultrametric measure

spaces. In particular, when p =∞, usturm
GW,∞ is an ultrametric.

In order to increase the readability of this section we postpone the proof of Theorem 3.4
to Appendix B.1.2. In the course of the proof, we will, among other things, verify the
existence of optimal metrics and optimal couplings in Equation (18) (see Proposition B.1).
Furthermore, it is important to note that the topology induced on Uw by usturm

GW,p, 1 ≤ p ≤ ∞,

is different from the one induced by dsturm
GW,p. This is well illustrated in the following example.

Example 3.5 (usturm
GW,p and dsturm

GW,p induce different topologies). This example is an adap-
tation from Mémoli and Wan [70, Example 3.14]. For each a > 0, denote by ∆2(a) the
two-point metric space with interpoint distance a. Endow with ∆2(a) the uniform proba-
bility measure µa and denote the corresponding ultrametric measure space ∆̂2(a). Now, let
X := ∆̂2(1) and let Xn := ∆̂2

(
1 + 1

n

)
for n ∈ N. It is easy to check that for any 1 ≤ p ≤ ∞,

dsturm
GW,p(X ,Xn) = 1

2n and usturm
GW,p(X ,Xn) = 2

− 1
p (1 + 1

n) where we adopt the convention that

1/∞ = 0. Hence, as n goes to infinity Xn will converge to X in the sense of dsturm
GW,p, but not

in the sense of usturm
GW,p, for any 1 ≤ p ≤ ∞.
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Fig. 3: Common ultrametric spaces: Representation of the two kinds of ultrametric spaces Z (middle
and right) into which we can isometrically embed the spaces X and Y (left).

3.1.1 Alternative representations of usturm
GW,p

In this subsection, we derive an alternative representation for usturm
GW,p defined in Equa-

tion (10). We mainly focus on the case p < ∞, however it turns out that the results also
hold for p =∞ (see Section 3.3).

Let X ,Y ∈ Uw and recall the original definition of usturm
GW,p, p ∈ [1,∞], given in Equation (10),

i.e.,

usturm
GW,p(X ,Y) = inf

Z,φ,ψ
d

(Z,uZ)
W,p (ϕ#µY , ψ#µY ),

where φ : X → Z and ψ : Y → Z are isometric embeddings into an ultrametric space
(Z, uZ). It turns out that we only need to consider relatively few possibilities of mapping
two ultrametric spaces into a common ultrametric space. Exemplarily, this is shown in
Figure 3, where we see two finite ultrametric spaces and two possibilities for a common
ultrametric space Z. Indeed, it is straightforward to write down all reasonable embeddings
and target spaces. We define the set

A := {(A,ϕ) | ∅ 6= A ⊆ X is closed and ϕ : A ↪→ Y is an isometric embedding }. (19)

Clearly, A 6= ∅, as it holds for each x ∈ X that {({x}, ϕy)}y∈Y ⊆ A, where ϕy is the map
sending x to y ∈ Y . Another possibility to construct elements in A is illustrated in the
subsequent example.

Example 3.6. Let X ,Y ∈ Uw be finite spaces and let u ∈ Dult(uX , uY ). If u−1(0) 6= ∅, we
define A := πX(u−1(0)) ⊆ X, where πX : X × Y → X is the canonical projection. Then,
the map ϕ : A→ Y defined by sending x ∈ A to y ∈ Y such that u(x, y) = 0 is an isometric
embedding and in particular, (A,ϕ) ∈ A.

Now, fix two compact spaces X ,Y ∈ Uw. Let (A,ϕ) ∈ A and let ZA = X t (Y \ ϕ(A)) ⊆
X t Y . Furthermore, define uZA : ZA × ZA → R≥0 as follows:

1. uZA |X×X := uX and uZA |Y \ϕ(A)×Y \ϕ(A) := uY |Y \ϕ(A)×Y \ϕ(A);

2. For any x ∈ A and y ∈ Y \ ϕ(A) define uZA(x, y) := uY (y, ϕ(x));
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3. For x ∈ X \A and y ∈ Y \ϕ(A) let uZA(x, y) := inf{max(uX(x, a), uY (ϕ(a), y)) | a ∈
A};

4. For any x ∈ X and y ∈ Y \ ϕ(A), uZA(y, x) := uZA(x, y).

Then, (ZA, uZA) is an ultrametric space such that X and Y can be mapped isometrically
into ZA (see [105, Lemma 1.1]). Let φX(A,ϕ) and ψY(A,ϕ) denote the corresponding isometric
embeddings of X and Y , respectively. This allows us to derive the following statement,
whose proof is postponed to Appendix B.1.3.

Theorem 3.7. Let X ,Y ∈ Uw. Then, we have for each p ∈ [1,∞) that

usturm
GW,p(X ,Y) = inf

(A,ϕ)∈A
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
. (20)

Remark 3.8. Let X and Y be two finite ultrametric measure spaces. The representation of
uGW,p(X ,Y), 1 ≤ p ≤ ∞ given by Theorem 3.7 is very explicit and recasts the computation
of uGW,p(X ,Y), 1 ≤ p ≤ ∞, as a combinatorial problem. In fact, as X and Y are finite,
the set A in Equation (20) can be further reduced. More precisely, we demonstrate in
Appendix B.1.3 (see Corollary B.7) that it is sufficient to infimize over the set of all maximal
pairs, denoted by A∗. Here, a pair (A,ϕ1) ∈ A is denoted as maximal, if for all pairs
(B,ϕ2) ∈ A with A ⊆ B and ϕ2|A = ϕ1 it holds A = B. Using the ultrametric Gromov-
Hausdorff distance (see Equation (9)) it is possible to determine if two ultrametric spaces
are isometric in polynomial time [70, Theorem 5.7]. However, this is clearly not sufficient
to identify all (A,ϕ) ∈ A∗ in polynomial time. Especially, for a given, viable A ⊆ X, there
are usually multiple ways to define the corresponding map ϕ. Furthermore, we have for
1 ≤ p < ∞ neither been able to further restrict the set A∗ nor to identify the optimal
(A∗, ϕ∗). This just leaves a brute force approach which is computationally not feasible.
On the other hand, for p =∞ we are able to explicitly construct the optimal pair (A∗, ϕ∗)
(see Theorem 3.22).

3.2 The ultrametric Gromov-Wasserstein distance

In the following, we consider basic properties of uGW,p and prove the analogue of The-
orem 3.4, i.e., we verify that also uGW,p is a p-metric, 1 ≤ p ≤ ∞, on the collection of
ultrametric measure spaces.

The subsequent proposition collects three basic properties of uGW,p which are also shared
by usturm

GW,p (cf. Proposition 3.3). We refer to Appendix B.2.1 for its proof.

Proposition 3.9. Let X ,Y ∈ Uw. Then, the following holds:

1. For any p ∈ [1,∞], we always have that uGW,p(X ,Y) ≥ dGW,p(X ,Y).
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2. For any 1 ≤ p ≤ q ≤ ∞, it holds uGW,p(X ,Y) ≤ uGW,q(X ,Y);

3. We have that limp→∞ uGW,p(X ,Y) = uGW,∞(X ,Y).

Next, we verify that uGW,p is indeed a metric on the collection of ultrametric measure
spaces.

Theorem 3.10. The ultrametric Gromov-Wasserstein distance uGW,p is a p-metric on the
collection Uw of compact ultrametric measure spaces. In particular, when p = ∞, uGW,∞
is an ultrametric.

The full proof of Theorem 3.10, which is based on the existence of optimal couplings in
Equation (13) (see Proposition B.10), is postponed to Appendix B.2.2.

Remark 3.11 (uGW,p and dGW,p induce different topologies). Reconsidering Example 3.5,

it is easy to verify that in this setting uGW,p(X ,Xn) = 2
− 1
p
(
1 + 1

n

)
while dGW,p(X ,Xn) =

1
21/pn

, 1 ≤ p ≤ ∞. Hence, just like usturm
GW,p and dsturm

GW,p, uGW,p and dGW,p do not induce the
same topology on Uw. This result can also be obtained from Section 3.4 where we derive
that uGW,p and usturm

GW,p give rise to the same topology.

Remark 3.12. By the same arguments as for dGW,p, 1 ≤ p < ∞, [67, Sec. 7], it follows
that for two finite ultrametric measure spaces X and Y the computation of uGW,p(X ,Y),
1 ≤ p < ∞, boils down to solving a (non-convex) quadratic program. This is in general
NP-hard [78]. On the other hand, for p = ∞, we will derive a polynomial time algorithm
to determine uGW,∞(X ,Y) (cf. Section 3.2.1).

3.2.1 Alternative representations of uGW,∞

In the following, we will derive an alternative representation of uGW,∞ that resembles the
one of uGH derived in [70, Theorem 5.7]. It also leads to a polynomial time algorithm
for the computation of uGW,∞. For this purpose, we define the weighted quotient of an
ultrametric measure space. Let X = (X,uX , µX) ∈ Uw and let t ≥ 0. Then, the weighted
quotient of X at level t, is given as Xt = (Xt, uXt , µXt), where (Xt, uXt) is the quotient
of the ultrametric space (X,uX) at level t (see Section 2.2) and µXt ∈ P(Xt) is the push
forward of µX under the canonical quotient map Qt : (X,uX)→ (Xt, uXt) sending x to [x]t
for x ∈ X. Figure 4 illustrates the weighted quotient in a simple example. Based on this
definition, we show the following theorem, whose proof is postponed to Appendix B.2.3.

Theorem 3.13. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be two compact ultrametric
measure spaces. Then, it holds that

uGW,∞(X ,Y) = min {t ≥ 0 | Xt ∼=w Yt} .

19

199



Fig. 4: Weighted Quotient: An ultrametric measure space (black) and its weighted quotient at level t
(red).

Remark 3.14. The weighted quotients Xt and Yt can be considered as vertex weighted,
rooted trees and thus it is possible to verify whether Xt ∼=w Yt in polynomial time [3]. In
consequence, we obtain an polynomial time algorithm for the calculation of uGW,∞. See
Section 6.1.2 for details.

The representations of uGH in Theorem 2.5 and uGW,∞ in Theorem 3.13 strongly resemble
themselves. As a direct consequence of both Theorem 2.5 and Theorem 3.13, we obtain
the following comparison between the two metrics

Corollary 3.15. Let X ,Y ∈ Uw. Then, it holds that

uGW,∞(X ,Y) ≥ uGH(X,Y ). (21)

The inequality in Equation (21) is sharp and we illustrate this as follows. By Mémoli
and Wan [70, Corollary 5.8] we know that if the considered ultrametric spaces (X,uX)
and (Y, uY ) have different diameters (w.l.o.g. diam (X) < diam (Y )), then uGH(X,Y ) =
diam (Y ). The same statement also holds for uGW,∞

Corollary 3.16. Let X ,Y ∈ Uw be such that diam (X) < diam (Y ). Then,

uGW,∞(X ,Y) = diam (Y ) = uGH(X,Y ).

Proof. The rightmost equality follows directly from Corollary 5.8 of Mémoli and Wan [70].
As for the leftmost equality, let t := diam (Y ), then it is obvious that Xt ∼=w ∗ ∼=w Yt,
where ∗ denotes the one point ultrametric measure space. Let s ∈ (diam (X) , diam (Y )),
then Xt ∼=w ∗ whereas Y 6∼=w ∗. By Theorem 3.13, uGW,∞(X ,Y) = t = diam (Y ).

3.3 The relation between uGW,p and usturm
GW,p

In this section, we study the relation of usturm
GW,p and uGW,p, 1 ≤ p ≤,∞ and establish the

topological equivalence between the two metrics.
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3.3.1 Lipschitz relation

We first study the Lipschitz relation between usturm
GW,p and uGW,p. For this purpose, we have

to distinguish the cases p <∞ and p =∞.

The case p < ∞. We start the consideration of this case by proving that it is essentially
enough to consider the case p = 1 (see Theorem 3.17). To this end, we need to introduce
some notation. For each α > 0, we define a function Sα : R≥0 → R≥0 by x 7→ xα. Given an
ultrametric space (X,uX) and α > 0, we abuse the notation and denote by Sα(X) the new
space (X,Sα ◦uX). It is obvious that Sα(X) is still an ultrametric space. This transforma-
tion of metric spaces is also known as the snowflake transform [26]. Let X = (X,uX , µX)
and Y = (Y, uY , µY ) denote two ultrametric measure spaces. Let 1 ≤ p < ∞. We de-
note by Sp(X ) the ultrametric measure space (X,Sp ◦ uX , µX). The snowflake transform
can be used to relate uGW,p(X ,Y) as well as usturm

GW,p(X ,Y) with uGW,1(Sp(X ), Sp(Y)) and

usturm
GW,1(Sp(X ), Sp(Y)), respectively.

Theorem 3.17. Let X ,Y ∈ Uw and let p ∈ [1,∞). Then, we obtain
(
uGW,p(X ,Y)

)p
= uGW,1(Sp(X ), Sp(Y)) and

(
usturm

GW,p(X ,Y)
)p

= usturm
GW,1(Sp(X ), Sp(Y)).

We give full proof of Theorem 3.17 in Appendix B.2.4. Based on this result, we can
directly relate the metrics uGW,p and usturm

GW,p by only considering the case p = 1 and prove
the following Theorem 3.18 (see Appendix B.3.1 for a detailed proof).

Theorem 3.18. Let X ,Y ∈ Uw. Then, we have for p ∈ [1,∞) that

uGW,p(X ,Y) ≤ 2
1
p usturm

GW,p(X ,Y).

The subsequent example verifies that the coefficient in Theorem 3.18 is tight.

Example 3.19. For each n ∈ N, let Xn be the three-point space ∆3(1) (i.e. the 3-point
metric labeled by {x1, x2, x3} where all distances are 1) with a probability measure µnX such
that µnX(x1) = µnX(x2) = 1

2n and µnX(x3) = 1− 1
n . Let Y = ∗ and µY be the only probability

measure on Y . Then, it is routine (using Proposition B.23 from Appendix B.5.3) to check
that uGW,1(Xn,Y) = 2

n

(
1− 3

4n

)
and usturm

GW,1(Xn,Y) = 1
n . Therefore, we have

lim
n→∞

uGW,1(Xn,Y)

usturm
GW,1(Xn,Y)

= 2.

Example 3.20 (usturm
GW,p and uGW,p are not bi-Lipschitz equivalent). Following [67, Remark

5.17], we verify in Appendix B.3.2 that for any positive integer n

usturm
GW,p

(
∆̂n(1), ∆̂2n(1)

)
≥ 1

4
and uGW,p

(
∆̂n(1), ∆̂2n(1)

)
≤
(

3

2n

) 1
p

.
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Here, ∆̂n(1) denotes the n-point metric measure space with interpoint distance 1 and the
uniform probability measure. Thus, there exists no constant C > 0 such that the inequality
usturm

GW,p(X ,Y) ≤ C · uGW,p(X ,Y) holds for every input spaces X and Y. Hence, usturm
GW,p and

uGW,p are not bi-Lipschitz equivalent.

The case p = ∞. Next, we consider the relation between usturm
GW,∞ and uGW,∞. By taking

the limit p → ∞ in Theorem 3.18, one might expect that usturm
GW,∞ ≥ uGW,∞. In fact, we

prove that the equality holds (for the full proof see Appendix B.3.3).

Theorem 3.21. Let X ,Y ∈ Uw. Then, it holds that

usturm
GW,∞(X ,Y) = uGW,∞(X ,Y).

One application of Theorem 3.21 is to explicitly derive the minimizing pair (A, φ) ∈ A∗ in
Equation (31) for p =∞ (see Appendix B.3.4 for an explicit construction):

Theorem 3.22. Let X ,Y ∈ Uw. Let s := usturm
GW,∞(X ,Y) and assume that s > 0. Then,

there exists (A, φ) ∈ A defined in Equation (19) such that

usturm
GW,∞(X ,Y) = dZAW,∞(µX , µY ),

where ZA denotes the ultrametric space defined in Section 3.1.1.

3.3.2 Topological equivalence between uGW,p and usturm
GW,p

Mémoli [67] proved the topological equivalence between dGW,p and dsturm
GW,p. We establish

an analogous result for uGW,p and usturm
GW,p. To this end, we recall the modulus of mass

distribution.

Definition 3.23 (Greven et al. [39, Def. 2.9]). Given δ > 0 we define the modulus of mass
distribution of X ∈ Uw as

vδ(X ) := inf {ε > 0|µX ({x : µX (B◦ε (x)) ≤ δ}) ≤ ε} , (22)

where B◦ε (x) denotes the open ball centered at x with radius ε.

We note that vδ(X ) is non-decreasing, right-continuous and bounded above by 1. Further-
more, it holds that limδ↘0 vδ(X ) = 0 [39, Lemma 6.5]. With Definition 3.23 at hand, we
derive the following theorem.

Theorem 3.24. Let X ,Y ∈ Uw, p ∈ [1,∞) and δ ∈
(
0, 1

2

)
. Then, whenever uGW,p(X ,Y) <

δ5 we have
usturm

GW,p(X ,Y) ≤ (4 ·min(vδ(X ), vδ(Y)) + δ)
1
p ·M,

where M := 2 ·max(diam (X) , diam (Y )) + 54.
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Remark 3.25. Since it holds that limδ↘0 vδ(X ) = 0 and that 2−1/pusturm
GW,p ≥ uGW,p (see

Theorem 3.18), the above theorem gives the topological equivalence between uGW,p and
usturm

GW,p, 1 ≤ p <∞ (the topological equivalence between usturm
GW,∞ and uGW,∞ holds trivially

thanks to Theorem 3.21).

The proof of the Theorem 3.24 follows the same strategy used for proving Proposition 5.3
in [67] and we refer to Appendix B.3.5 for the details.

3.4 Topological and geodesic properties

In this section, we consider the topology induced by uGW,p and usturm
GW,p on Uw and discuss

the geodesic properties of both uGW,p and usturm
GW,p for 1 ≤ p ≤ ∞.

3.4.1 Completeness and separability

We study completeness and separability of the two metrics uGW,p and usturm
GW,p, 1 ≤ p ≤

∞, on Uw. To this end, we derive the subsequent theorem whose proof is postponed to
Appendix B.4.1.

Theorem 3.26. 1. For p ∈ [1,∞), the metric space (Uw, uGW,p) is neither complete
nor separable.

2. For p ∈ [1,∞), the metric space
(
Uw, usturm

GW,p

)
is neither complete nor separable.

3. (Uw, uGW,∞) = (Uw, usturm
GW,∞) is complete but not separable.

3.4.2 Geodesic property

A geodesic in a metric space (X, dX) is a continuous function γ : [0, 1] → X such that
for each s, t ∈ [0, 1], dX(γ(s), γ(t)) = |s − t| · dX(γ(0), γ(1)). We say a metric space is
geodesic if for any two distinct points x, x′ ∈ X, there exists a geodesic γ : [0, 1]→ X such
that γ(0) = x and γ(1) = x′. For any p ∈ [1,∞), the notion of p-geodesic is introduced
in [70]: A p-geodesic in a metric space (X, dX) is a continuous function γ : [0, 1] → X
such that for each s, t ∈ [0, 1], dX(γ(s), γ(t)) = |s − t|1/p · dX(γ(0), γ(1)). Similarly, we
say a metric space is p-geodesic if for any two distinct points x, x′ ∈ X, there exists a
p-geodesic γ : [0, 1] → X such that γ(0) = x and γ(1) = x′. Note that a 1-geodesic is a
usual geodesic and a 1-geodesic space is a usual geodesic space. The subsequent theorem

establishes (p-)geodesic properties of
(
Uw, usturm

GW,p

)
for p ∈ [1,∞). A full proof is given in

Appendix B.4.2.
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Theorem 3.27. For any p ∈ [1,∞), the space
(
Uw, usturm

GW,p

)
is p-geodesic.

Remark 3.28. Due to the fact that a p-geodesic space cannot be geodesic when p > 1 (cf.

Lemma B.15),
(
Uw, usturm

GW,p

)
is not geodesic for all p > 1.

Remark 3.29. Though the geodesic properties of
(
Uw, usturm

GW,p

)
, 1 ≤ p <∞ are clear, we

remark that geodesic properties of (Uw, uGW,p), 1 ≤ p <∞, still remain unknown to us.

Remark 3.30 (The case p = ∞). Being an ultrametric space itself (cf. Theorem 3.10),

(Uw, uGW,∞) (=
(
Uw, usturm

GW,∞
)

) is totally disconnected, i.e., any subspace with at least

two elements is disconnected [89]. This in turn implies that each continuous curve in
(Uw, uGW,∞) is constant. Therefore, (Uw, uGW,∞) is not a p-geodesic space for any p ∈
[1,∞).

4 Lower bounds for uGW,p

Let X = (X,uX , µX) and Y = (Y, uY , µY ) be two ultrametric measure spaces. The met-
rics usturm

GW,p and uGW,p respect the ultrametric structure of the spaces X and Y. Thus,

one would hope that comparing ultrametric measure spaces with usturm
GW,p or uGW,p is more

meaningful than doing it with the usual Gromov-Wasserstein distance or Sturm’s distance.
Unfortunately, for p < ∞, the computation of both usturm

GW,p and uGW,p is complicated and
for p = ∞ both metrics are extremely sensitive to differences in the diameters of the
considered spaces (see Corollary 3.16). Thus, it is not feasible to use these metrics in
many applications. However, we can derive meaningful lower bounds for uGW,p (and hence
also for usturm

GW,p) that resemble those of the Gromov-Wasserstein distance. Naturally, the
question arises whether these lower bounds are better/sharper than the ones of the usual
Gromov-Wasserstein distance in this setting. This question is addressed throughout this
section and will be readdressed in Section 6 as well as Section 7.

In [67], the author introduced three lower bounds for dGW,p that are computationally less
expensive than the calculation of dGW,p. We will briefly review these three lower bounds
and then define candidates for the corresponding lower bounds for uGW,p. In the following,
we always assume p ∈ [1,∞].

First lower bound Let sX,p : X → R≥0, x 7→ ‖uX(x, ·)‖Lp(µX). Then, the first lower
bound FLBp(X ,Y) for dGW,p(X ,Y) is defined as follows

FLBp(X ,Y) :=
1

2
inf

µ∈C(µX ,µY )
‖Λ1(sX,p(·), sY,p(·))‖Lp(µ) .

24

204 The Ultrametric Gromov-Wasserstein Distance



Following our intuition of replacing Λ1 with Λ∞, we define the ultrametric version of FLB
as

FLBult
p (X ,Y) := inf

µ∈C(µX ,µY )
‖Λ∞(sX,p(·), sY,p(·))‖Lp(µ) .

Second lower bound The second lower bound SLBp(X ,Y) for dGW,p(X ,Y) is given as

SLBp(X ,Y) :=
1

2
inf

γ∈C(µX⊗µX ,µY ⊗µY )
‖Λ1(uX , uY )‖Lp(γ) .

Thus, we define the ultrametric second lower bound between two ultrametric measure
spaces X and Y as follows:

SLBult
p (X ,Y) := inf

γ∈C(µX⊗µX ,µY ⊗µY )
‖Λ∞(uX , uY )‖Lp(γ) .

Third lower bound Before we introduce the final lower bound, we have to define several
functions. First, let Γ1

X,Y : X × Y ×X × Y → R≥0, (x, y, x′, y′) 7→ Λ1(uX(x, x′), uY (y, y′))
and let Ω1

p : X × Y → R≥0, p ∈ [1,∞], be given by

Ω1
p(x, y) := inf

µ∈C(µX ,µY )

∥∥Γ1
X,Y (x, y, ·, ·)

∥∥
Lp(µ)

.

Then, the third lower bound TLBp is given as

TLBp(X ,Y) :=
1

2
inf

µ∈C(µX ,µY )

∥∥Ω1
p(·, ·)

∥∥
Lp(µ)

.

Analogously to the definition of previous ultrametric versions, we define Γ∞X,Y : X × Y ×
X × Y → R≥0, (x, y, x′, y′) 7→ Λ∞(uX(x, x′), uY (y, y′)). Further, for p ∈ [1,∞], let Ω∞p :
X × Y → R≥0 be given by

Ω∞p (x, y) := inf
µ∈C(µX ,µY )

∥∥Γ∞X,Y (x, y, ·, ·)
∥∥
Lp(µ)

.

Then, the ultrametric third lower bound between two ultrametric measure spaces X and
Y is defined as

TLBult
p (X ,Y) := inf

µ∈C(µX ,µY )

∥∥Ω∞p (·, ·)
∥∥
Lp(µ)

.
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4.1 Properties and computation of the lower bounds

Next, we examine the quantities FLBult,SLBult and TLBult more closely. Since we have
Λ∞(a, b) ≥ Λ1(a, b) = |a− b| for any a, b ≥ 0, it is easy to conclude that FLBult

p ≥ FLBp,

SLBult
p ≥ SLBp and TLBult

p ≥ TLBp. Moreover, the three ultrametric lower bounds
satisfy the following theorem (for a complete proof see Appendix C.1.1).

Theorem 4.1. Let X ,Y ∈ Uw and let p ∈ [1,∞].

1. uGW,∞(X ,Y) ≥ FLBult
∞ (X ,Y).

2. uGW,p(X ,Y) ≥ TLBult
p (X ,Y) ≥ SLBult

p (X ,Y).

Remark 4.2. Interestingly, it turns out that FLBult
p is not a lower bound of uGW,p in

general when p < ∞. For example, let X = {x1, x2, . . . , xn} and Y = {y1, . . . , yn} and
define uX such that uX(x1, x2) = 1 and uX(xi, xj) = 2δi 6=j for (i, j) 6= (1, 2), (i, j) 6= (2, 1)
and i, j = 1, . . . , n. Let uY (yi, yj) = 2δi 6=j , i, j = 1, . . . , n, and let µX and µY be uniform
measures on X and Y , respectively. Then, uGW,1(X ,Y) ≤ 4

n2 whereas FLBult
1 (X ,Y) =

4n−4
n2 which is greater than uGW,1(X ,Y) as long as n > 2. Moreover, we have in this

case that FLBult
1 (X ,Y) = O

(
1
n

)
whereas uGW,1(X ,Y) = O

(
1
n2

)
. Hence, there exists no

constant C > 0 such that FLBult
1 ≤ C · uGW,1 in general.

Remark 4.3. There exist ultrametric measure spaces X and Y such that TLBult
p (X ,Y) =

0 whereas uGW,p(X ,Y) > 0 (examples described in [67, Figure 8] will serve the pur-
pose). Furthermore, there are spaces X and Y such that SLBult

p (X ,Y) = 0 whereas

TLBult
p (X ,Y) > 0 (see Appendix C.1.3). The analogous statement holds true for TLBp

and SLBp, which are nevertheless useful in various applications (see e.g. [37]).

From the structure of SLBult
p and TLBult

p it is obvious that their computations leads to
different optimal transport problems (see e.g. [99]). However, in analogy to Chowdhury and
Mémoli [23, Theorem 3.1] we can rewrite SLBult

p and TLBult
p in order to further simplify

their computation. The full proof of the subsequent proposition is given in Appendix C.1.2.

Proposition 4.4. Let X ,Y ∈ Uw and let p ∈ [1,∞]. Then, we find that

1. SLBult
p (X ,Y) = d

(R≥0,Λ∞)
W,p ((uX)#(µX ⊗ µX), (uY )#(µY ⊗ µY )) ;

2. For each x, y ∈ X × Y , Ω∞p (x, y) = d
(R≥0,Λ∞)
W,p (uX(x, ·)#µX , uY (y, ·)#µY ).

Remark 4.5. Since we have by Theorem 2.9 an explicit formula for the Wasserstein
distance on (R≥0,Λ∞) between finitely supported probability measures, these alternative
representations of the lower bound SLBult

p and the cost functional Ω∞p drastically reduce

the computation time of SLBult
p and TLBult

p , respectively. In particular, we note that this
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allows us to compute SLBult
p , 1 ≤ p ≤ ∞, between finite ultrametric measure spaces X

and Y with |X| = m and |Y | = n in O((m ∨ n)2) steps.

Proposition 4.4 allows us to direclty compare the two lower bounds SLBult
1 and SLB1.

Corollary 4.6. For any finite ultrametric measure spaces X and Y, we have that

SLBult
1 (X ,Y) = SLB1(X ,Y) +

1

2

∫

R
t |(uX)#(µX ⊗ µX)− (uY )#(µY ⊗ µY )| (dt). (23)

Proof. The claim follows directly from Proposition 4.4 and Remark 2.10.

This corollary implies that SLBult
p is more rigid than SLBp, since the second summand

on the right hand side of Equation (23) is sensitive to distance perturbations. This is also
illustrated very well in the subsequent example.

Example 4.7. Recall notations from Example 3.5. For any d, d′ > 0, we let X := ∆2(d)
and let Y := ∆2(d′). Assume that X and Y have underlying sets {x1, x2} and {y1, y2},
respectively. Define µX ∈ P(X) and µY ∈ P(Y ) as follows. Let α1, α2 ≥ 0 be such that
α1 + α2 = 1. Let µX(x1) = µY (y1) := α1 and let µX(x2) = µY (y2) := α2. Then, it is easy
to verify that

1. uGW,1(X ,Y) = SLBult
1 (X ,Y) = 2α1α2Λ∞(d, d′).

2. dGW,1(X ,Y) = SLB1(X ,Y) = α1α2Λ1(d, d′) = α1α2|d− d′|.

3. 1
2

∫
R t |(uX)#(µX ⊗ µX)− (uY )#(µY ⊗ µY )| (dt) = α1α2(d+ d′)δd 6=d′ .

From 1 and 2 we observe that both second lower bounds are tight. Moreover, since we
obviously have that (d+d′)δd6=d′+ |d−d′| = 2Λ∞(d, d′), we have also verified Equation (23)
through this example. Unlike SLB1(X ,Y) being proportional to |d−d′|, as long as d 6= d′,
even if |d−d′| is small, Λ∞(d, d′) = max(d, d′) which results in a large value of SLBult

1 (X ,Y)
when d and d′ are large numbers. This example illustrates that SLBult

1 (and hence uGW,1)
is rigid with respect to distance perturbation.

5 uGW,p on ultra-dissimilarity spaces

A natural generalization of ultrametric spaces is provided by ultra-dissimilarity spaces.
These spaces naturally occur when working with symmetric ultranetworks (see [91]) or
phylogenetic tree data (see [90]). In this section, we will introduce these spaces and briefly
illustrate to what extend the results for uGW,p can be adapted for ultra-dissimilarity mea-
sure spaces. We start by formally introducing ultra-dissimilarity spaces.
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Definition 5.1 (Ultra-dissimilarity spaces). An ultra-dissimilarity space (X,uX) is a cou-
ple that consists of a set X and a function uX : X × X → R≥0 satisfying the following
conditions for any x, y, z ∈ X:

1. uX(x, y) = uX(y, x);

2. uX(x, y) ≤ max(uX(x, z), uX(z, y));

3. max(uX(x, x), uX(y, y)) ≤ uX(x, y) and the equality holds if and only if x = y.

Remark 5.2. Note that when (X,uX) is an ultrametric space the third condition is triv-
ially satisfied.

In the following, we restrict ourselves to finite ultra-dissimilarity spaces to avoid technical
issues in topology (see [22, 23] for a more complete treatment of infinite spaces). One
important aspect of ultra-dissimilarity spaces is the connection with the so-called tree-
grams [70, 91], which can be regarded as generalized dendrograms. For a finite set X,
let SubPart(X) denote the collection of all subpartitions of X: Any partition P ′ of a
non-empty subset X ′ ⊆ X is called a subpartition of X. Given two subpartitions P1, P2,
we say P1 is coarser than P2 if each block in P2 is contained in some block in P1.

Definition 5.3 (Treegrams). A treegram TX : [0,∞)→ SubPart(X) is a map parametriz-
ing a nested family of subpartitions over the same set X and satisfying the following con-
ditions:

1. For any 0 ≤ s < t <∞, TX(t) is coarser than TX(s);

2. There exists tX > 0 such that for any t ≥ tX , TX(t) = {X};
3. For each t ≥ 0, there exists ε > 0 such that TX(t) = TX(t′) for all t′ ∈ [t, t+ ε];

4. For each x ∈ X, there exists tx ≥ 0 such that {x} is a block in TX(tx).

Similar to Theorem 2.2, which correlates ultrametrics to dendrograms, there exists an
equivalence relation between ultra-dissimilarity functions and treegrams on a finite set (see
Figure 5 for an illustration).

Proposition 5.4 (Smith et al. [91]). Given a finite set X, denote by Udis(X) the collection
of all ultrametric dissimilarity functions on X and by T (X) the collection of all treegrams
over X. Then, there exists a bijection ΥX : T (X)→ Udis(X).

An ultra-dissimilarity measure space is a triple X = (X,uX , µX) where (X,uX) is an ultra-
dissimilarity space and µX is a probability measure fully supported on X. Just as for metric
spaces or metric measure spaces, it is important to have a notion of isomorphism between
ultra-dissimilarity spaces.

Definition 5.5 (Isomorphism). Given two ultra-dissimilarity measure spaces X and Y, we
say they are isomorphic, denoted X ∼=w Y, if there is a bijective function f : X → Y such
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Fig. 5: Treegrams: Relation between ultra-dissimilarity functions and treegrams

that f#µX = µY and for any x, x′ ∈ X it holds uY (f(x), f(x′)) = uX(x, x′). The collection
of all isomorphism classes of ultra-dissimilarity spaces is denoted by Uwdis.

Given the previous results it is straightforward to show that uGW,p, 1 ≤ p ≤ ∞, is a metric
on the isomorphism classes of Uwdis. For the complete proof of the subsequent statement,
we refer to Appendix D.1.1.

Theorem 5.6. The ultrametric Gromov-Wasserstein distance uGW,p is a p-metric on Uwdis.

Remark 5.7. Since uGW,p translates to a metric on Uwdis, it is clear that it admits the
lower bounds introduced in Section 4.

6 Computational aspects

In this section, we investigate algorithms for approximating/calculating uGW,p, 1 ≤ p ≤ ∞.
Furthermore, we evaluate for p <∞ the performance of the computationally efficient lower
bound SLBult

p introduced in Section 4 and compare our findings to the results of the
classical Gromov-Wasserstein distance dGW,p (see Equation (7)). Matlab implementations
of the presented algorithms and comparisons are available at https://github.com/ndag/
uGW.

6.1 Algorithms

Let X = (X,uX , µX) and Y = (Y, uY , µY ) be two finite ultrametric measure spaces with
cardinalities m and n, respectively.
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6.1.1 The case p <∞

We have already noted in Remark 3.12 that calculating uGW,p(X ,Y) for p < ∞ yields a
non-convex quadratic program (which is an NP-hard problem in general [78]). Solving this
is not feasible in practice. However, in many practical applications it is sufficient to work
with good approximations. Therefore, we propose to approximate uGW,p(X ,Y) for p <∞
via conditional gradient descent. To this end, we note that the gradient G that arises from
Equation (12) can in the present setting be expressed with the following partial derivative
with respect to µ ∈ C(µX , µY )

Gi,j = 2
m∑

k=1

n∑

l=1

(Λ∞(uX(xi, xk), uY (yj , yl)))
pµkl, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n. (24)

As we deal with a non-convex minimization problem, the performance of the gradient
descent strongly depends on the starting coupling µ(0). Therefore, we follow the suggestion
of Chowdhury and Needham [24] and employ a Markov Chain Monte Carlo Hit-And-Run
sampler to obtain multiple random start couplings. Running the gradient descent from
each point in this ensemble greatly improves the approximation in many cases. For a
precise description of the proposed procedure, we refer to Algorithm 1.

Algorithm 1 uGW,p(X,Y, p,N,L)

//Create a list of random couplings
couplings =CreateRandomCouplings(N)
stat points = cell(N)
for i=1:N do
µ(0) =couplings{i}
for j=1:L do
G = Gradient from Equation (24) w.r.t. µ(j−1)

µ̃(j) = Solve OT with ground loss G
γ(j) = 2

j+2

//Alt. find γ ∈ [0, 1] that minimizes disult
p

(
µ(j−1) + γ

(
µ̃(j) − µ(j−1)

))

µ(j) = (1− γ(j))µ(j−1) + γ(j)µ̃(j)

end for
stat points{i}= µ(L)

end for
Find µ∗ in stat points that minimizes disult

p (µ)

result =disult
p (µ∗)
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6.1.2 The case p =∞

For p =∞, it follows by Theorem 3.13 that

uGW,∞(X ,Y) = inf {t ≥ 0 | Xt ∼=w Yt} . (25)

This identity allows us to construct a polynomial time algorithm for uGW,∞(X ,Y) based
on the ideas of Mémoli and Wan [70, Sec. 8.2.2]. More precisely, let

spec (X) := {uX(x, x′) |x, x′ ∈ X}

denote the spectrum of X. Then, it is evident that in order to find the infimum in Equa-
tion (25), we only have to check Xt ∼=w Yt for each t ∈ spec (X) ∪ spec (Y ), starting from
the largest to the smallest and uGW,∞ is given as the smallest t such that Xt ∼=w Yt. This
can be done in polynomial time by considering Xt and Yt as labeled, weighted trees (e.g.
by using a slight modification of the algorithm in Example 3.2 of [3]). This gives rise to a
simple algorithm (see Algorithm 2) to calculate uGW,∞.

Algorithm 2 uGW,∞(X ,Y)

spec = sort(spec (X) ∪ spec (Y ), ’descent’)
for i = 1 : length(spec) do
t = spec(i)
if Xt �w Yt then

return spec(i− 1)
end if

end for
return 0

6.2 The relation between uGW,1, uGW,∞ and SLBult
1

In order to understand how uGW,p (or at least its approximation), uGW,∞ and SLBult
p are

influenced by small changes in the structure of the considered ultrametric measure spaces,
we exemplarily consider the ultrametric measure spaces Xi = (Xi, dXi , µXi), 1 ≤ i ≤ 4,
displayed in Figure 6. These ultrametric measure spaces differ only by one characteristic
(e.g. one side length or the equipped measure). Exemplarily, we calculate uGW,1(Xi,Xj)
(approximated with Algorithm 1, where L = 5000 and N = 40), SLBult

1 (Xi,Xj) and
uGW,∞(Xi,Xj), 1 ≤ i, j ≤ 4. The results suggest that SLBult

1 and uGW,1 are influenced by
the change in the diameter of the spaces the most (see Table 2 and Table 3 in Appendix E.1
for the complete results). Changes in the metric influence SLBult

1 in a similar fashion as
uGW,1, while changes in the measure have less impact on SLBult

1 . Further, we observe that
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Fig. 6: Ultrametric measure spaces: Four non-isomorphic ultrametric measure spaces denoted (from
left to right) as Xi = (Xi, dXi , µXi), 1 ≤ i ≤ 4.

uGW,∞ attains for almost all comparisons the maximal possible value. Only the comparison
of X1 with X3, where the only small scale structure of the space was changed, yields a value
that is smaller than the maximum of the diameters of the considered spaces.

6.3 Comparison of uGW,1, SLBult
1 , dGW,1 and SLB1

In the remainder of this section, we will demonstrate the differences between uGW,1, SLBult
1 ,

dGW,1 and SLB1. To this end, we first compare the metric measure spaces in Figure 6
based on dGW,1 and SLB1. We observe that dGW,1 (approximated in the same manner as
uGW,1) and SLB1 are hardly influenced by the differences between the ultrametric measure
spaces Xi, 1 ≤ i ≤ 4. In particular, it is remarkable that dGW,1 is affected the most by the
changes made to the measure and not the metric structure (see Table 4 in Appendix E.2
for the complete results).

Next, we consider the differences between the aforementioned quantities more generally.
For this purpose, we generate 4 ultrametric spaces Zk, 1 ≤ k ≤ 4, with totally different
dendrogram structures, whose diameters are between 0.5 and 0.6 (for the precise construc-
tion of these spaces see Appendix E.2). For each t = 0, 0.2, 0.4, 0.6, we perturb each Zk
independently to generate 15 ultrametric spaces Zik,t, 1 ≤ i ≤ 15, such that (Zik,t)t ≡ (Zk)t
for all i. The spaces Zik,t are called pertubations of Zk at level t (see Figure 7 for an il-

lustration and see Appendix E.2 for more details). The spaces Zik,t are endowed with the

uniform probability measure and we obtain a collection of ultrametric measure spaces Z ik,t.
Naturally, we refer to k as the class of the ultrametric measure space Z ik,t. We compute for

each t the quantities uGW,1, SLBult
1 , dGW,1 and SLB1 among the resulting 60 ultramet-

ric measure spaces. The results, where the spaces have been ordered lexicographically by
(k, i), are visualized in Figure 8. As previously, we observe that uGW,1 and SLBult

1 as well
as dGW,1 and SLB1 behave in a similar manner. More precisely, we see that both dGW,1

and SLB1 discriminate well between the different classes and that their behavior does not
change too much for an increasing level of perturbation. On the other hand, uGW,1 and
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SLBult
1 are very sensitive to the level of perturbation. For small t they discriminate better

than dGW,1 and SLB1 between the different classes and pick up clearly that the perturbed
spaces differ. However, if the level of perturbation becomes too large both quantities start
to discriminate between spaces from the same class (see Figure 8).
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Fig. 7: Randomly sampled ultrametric measure spaces: Illustration of Zk for k = 2, 3, 4, 5 (top
row) and instances for perturbations of Z4 with respect to perturbation level t ∈ {0, 0.2, 0.4, 0.6} (bottom
row).

In conclusion, uGW,1 and SLBult
1 are sensitive to differences in the large scales of the con-

sidered ultrametric measure spaces. While this leads (from small t) to good discrimination
in the above example, it also highlights that they are (different from dGW,1 and SLB1)
susceptible to large scale noise.

7 Phylogenetic tree shapes

Rooted phylogenetic trees (for a formal definition see e.g., [90]) are a common tool to
visualize and analyze the evolutionary relationship between different organisms. In com-
bination with DNA sequencing, they are an important tool to study the rapid evolution
of different pathogens. It is well known that the (unweighted) shape of a phylogenetic
tree, i.e., the tree’s connectivity structure without referring to its labels or the length of
its branches, carries important information about macroevolutionary processes (see e.g.,
[8, 27, 72, 104]). In order to study the evolution of and the relation between different
pathogens, it is of great interest to compare the shapes of phylogenetic trees created on
the basis of different data sets. Currently, the number of tools for performing phylogenetic
tree shape comparison is quite limited and the development of new methods for this is an
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Fig. 8: uGW,1/SLBult
1 and dGW,1/SLB1 among randomly generated ultrametric measure

spaces: Heatmap representations of SLBult
1 (Zin,t,Zi

′
n′,t) (top row), uGW,1(Zin,t,Zi

′
n′,t) (second row),

SLB1(Zin,t,Zi
′
n′,t) (third row) and dGW,1(Zin,t,Zi

′
n′,t) (bottom row), k, k′ ∈ {2, . . . , 5} and i, i′ ∈ {1, . . . , 15}.

active field of research [25, 49, 60, 73]. It is well known that certain classes of phylogenetic
trees (as well as their respective tree shapes) can be identified as ultrametric spaces [90,
Sec. 7]. On the other hand, general phylogenetic trees are closely related to treegrams (see
Definition 5.3). In the following, we will use this connection and demonstrate exemplarily
that the computationally efficient lower bound SLBult

1 has some potential for comparing
phylogenetic tree shapes. In particular, we contrast it to the metric defined for this appli-
cation in Equation (4) of Colijn and Plazzotta [25], in the following denoted as dCP,2, and
study the behavior of SLB1 in this framework.

In this section, we reconsider phylogenetic tree shape comparisons from Colijn and Plaz-
zotta [25] and thereby study HA protein sequences from human influenza A (H3N2) (data
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phylogenetic tree shape treegram

Fig. 9: Transforming a phylogenetic tree shape into an ultra-dissimilarity space: In this figure,
we illustrate the treegram corresponding to the ultra-dissimilarity space generated by Equation (26) with
respect to the phylogenetic tree shape on the left. Note that the treegram preserves the tree structure and
the smallest birth time of points is exactly 0.

downloaded from NCBI on 22 January 2016). More precisely, we investigate the relation
between two samples of size 200 of phylogenetic tree shapes with 500 tips. Phylogenetic
trees from the first sample are based on a random subsample of size 500 of 2168 HA-
sequences that were collected in the USA between March 2010 and September 2015, while
trees from the second sample are based on a random subsample of size 500 of 1388 HA-
sequences gathered in the tropics between January 2000 and October 2015 (for the exact
construction of the trees see [25]). Although both samples of phylogenetic trees are based
on HA protein sequences from human influenza A, we expect them to be quite different.
On the one hand, influenza A is highly seasonal outside the tropics (where this seasonal
variation is absent) with the majority of cases occurring in the winter [86]. On the other
hand, it is well known that the undergoing evolution of the HA protein causes a ‘ladder-
like’ shape of long-term influenza phylogenetic trees [51, 62, 101, 103] that is typically less
developed in short term data sets. Thus, also the different collection period of the two
data sets will most likely influence the respective phylogenetic tree shapes.

In order to compare the phylogenetic tree shapes of the resulting 400 trees, we have
to transform the phylogenetic tree shapes into ultra-dissimilarity measure spaces Xi =
(Xi, uXi , µXi), 1 ≤ i ≤ 400. To this end, we discard all the lables, denote by Xi the tips of
the i’th phylogenetic tree and refer to the corresponding tree shape as Ti. Next, we define
the ultra-dissimilarities uXi on Xi, 1 ≤ i ≤ 400. For this purpose, we set all edge length in
the considered phylogenetic trees to one and construct uXi as follows: let xi1, x

i
2 ∈ Xi and

let ai1,2 be the most recent common ancestor of xi1 and xi2. Let dia1,2 be the length of the

shortest path from ai1,2 to the root, let di1 be the length of the shortest path from xi1 to the

root and let di be the length of the longest shortest path from any tip to the root. Then,
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we define for any xi1, x
i
2 ∈ Xi

uXi(x
i
1, x

i
2) =

{
di − dia1,2 if xi1 6= xi2
di − di1 if xi1 = xi2,

(26)

and weight all tips in Xi equally (i.e. µXi is the uniform measure on Xi). This naturally
transforms the collection of phylogenetic tree shapes Ti, 1 ≤ i ≤ 400, into a collection
of ultra-dissimilarity spaces (see Figure 9 for an illustration), which allows us to directly
apply SLBult

1 to compare them (once again we exemplarily choose p = 1).

In Figure 10 we contrast our findings for the comparisons of the shapes Ti, 1 ≤ i ≤ 400, to
those obtained by computing the metric dCP,2 described in [25]. The top row of Figure 10
visualizes the dissimilarity matrix for the comparisons of all 400 phylogenetic tree shapes
(the first 200 entries correspond to the tree shapes from the US-influenza and the second
200 correspond to the ones from the tropic influenza) obtained by applying SLBult

1 as heat
map (left) and as multidimensional scaling plot (right). The heat map shows that the
collection of US trees is divided into a large group G1 := (Ti)1≤i≤161, that is well separated
from the phylogenetic tree shapes based on tropical data G3 := (Ti)201≤i≤400, and a smaller
subgroup G2 := (Ti)162≤i≤200, that seems to be more similar (in the sense of SLBult

1 ) to the
tropical phylogenetic tree shapes. In the following G1 and G2 are referred to as US main
and US secondary group, respectively. This division is even more evident in the MDS-plot
on the right (black points represent trees shapes from the US main group, blue points trees
shapes from the US secondary group and red points trees shapes based on the tropical
data).

We remark that in order to highlight the subgroups the US tree shapes have been
reordered according to the output permutation of a single linkage dendrogram (w.r.t.
SLBult

1 ) based on the US tree submatrix created by MATLAB [64] and that the tropical
tree shapes have been reordered analogously.

The second row of Figure 10 displays the analogous plots for dCP,2. It is noteworthy, that
the coloring in the MDS-plot of the left is the same, i.e., T1 ∈ G1 is represented by a black
point, T2 ∈ G2 by a blue one and T3 ∈ G3 by a red one. Interestingly, the analysis based
on these plots differs from the previous one. Using dCP,2 to compare the phylogenetic tree
shapes at hand, we can split the data into two clusters, where one corresponds to the US
data and the other one to the tropical data, with only a small overlap (see the MDS-plot
in the second row of Figure 10 on the right). In particular, we notice that dCP,2 does not
clearly distinguish between the US groups G1 and G2.

In order to analyze the different findings of SLBult
1 and dCP,2, we collect and compare

different characteristics of the tree shapes in the groups Gi, 1 ≤ i ≤ 3. More precisely, we
concentrate on various “metric” properties of the considered ultra-dissimilarity spaces like
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Fig. 10: Phylogenetic tree shape comparison: Visualization of the dissimilarity matrices for the
comparison of the phylogenetic tree shapes Ti, 1 ≤ i ≤ 400, based on SLBult

1 (top row) and dCP,2 (bottom
row) as heat maps (left) and MDS-plots (right).

1
5002|Gi|

∑
Ti∈Gi

∑
x,x′∈Xi uXi(x, x

′) (“mean average distance”) or 1
|Gi|
∑
Ti∈Gi max{uXi(x, x′)|

x, x′ ∈ Xi} (“mean maximal distance”), 1 ≤ i ≤ 3, (these influence SLBult
1 strongly) as well

as the mean numbers of certain connectivity structures, like the 4- and 5-structures (these
influence dCP,2, for a formal definition see [25]). Theses values (see Table 1) show that the
mean average distance and the mean maximal distance differ drastically between the two
groups of the US tree shapes. The tree shapes in these two groups are completely different
from a metric perspective and the values for the secondary US group strongly resemble
those of the tropic tree shapes. On the other hand, the connectivity characteristics do
not change too much between the US main and secondary group. Hence, the metric dCP,2

does not clearly divide the US trees into two groups, although the differences are certainly
present. When carefully checking the phylogenetic trees, the reasons for the differences
between trees in the US main group and US secondary group are not immediately apparent.
Nevertheless, it is remarkable that trees from the secondary US cluster generally contain
more samples from California and Florida (on average 1.92 and 0.88 more) and less from
Maryland, Kentucky and Washington (on average 0.73, 0.83 and 0.72 less).

To conclude this section, we remark that using SLB1 instead of SLBult
1 for comparing the

ultra-dissimilarity spaces Xi, 1 ≤ i ≤ 400, gives comparable results (cf. Figure 11, coloring
and ordering as previously). Nevertheless, we observe (as we already have in Section 6) that
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Tab. 1: Tree shape characteristics: The means of several metric and connectivity characteristics of the
ultra-dissimilarity spaces Xi and the corresponding phylogenetic tree shapes Ti, 1 ≤ i ≤ 400, for the three
groups Gi, 1 ≤ i ≤ 3.

USA (main group) USA (secondary group) Tropics

Mean Avg. Dist. 36.16 61.88 53.45
Mean Max. Dist. 56.12 86.13 94.26

Mean Num. of 4-Struc. 15.61 14.08 7.81
Mean Num. of 5-Struc. 28.04 27.97 35.82

SLBult
1 is more discriminating than SLB1. Furthermore, we mention that so far we have

only considered unweighted phylogenetic tree shapes. However, the branch lengths of the
considered phylogenetic trees are relevant in many examples, because they can for instance
reflect the (inferred) genetic distance between evolutionary events [25]. While the branch
lengths cannot easily be included in the metric dCP,2, the modeling of phylogenetic tree
shapes as ultra-dissimilarity spaces is extremely flexible. It is straightforward to include
branch lengths into the comparisons or to put emphasis on specific features (via weights on
the corresponding tips). However, this is beyond the scope of this illustrative data analysis.
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Fig. 11: Phylogenetic tree shape comparison based on SLB1: Representation of the dissimilarity
matrices for the comparisons of the ultra-dissimilarity spaces Xi, 1 ≤ i ≤ 400, based on SLB1 as heat maps
(left) and MDS-plots (right).

8 Concluding remarks

Since we suspect that computing uGW,p and usturm
GW,p for finite p leads to NP-hard problems,

it seems interesting to identify suitable collections of ultrametric measure spaces where
these distances can be computed in polynomial time as done for the Gromov-Hausdorff
distance in [70].
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[87] M. Scetbon, G. Peyré, and M. Cuturi. Linear-time Gromov-Wasserstein distances using low rank
couplings and costs. arXiv preprint arXiv:2106.01128, 2021.

[88] F. Schmiedl. Computational aspects of the Gromov-Hausdorff distance and its application in non-
rigid shape matching. Discret. Comput. Geom., 57(4):854–880, 2017. doi: 10.1007/s00454-017-9889-4.
URL https://doi.org/10.1007/s00454-017-9889-4.

[89] S. Semmes. An introduction to the geometry of ultrametric spaces. arXiv preprint arXiv:0711.0709,
2007.

[90] C. Semple, M. Steel, et al. Phylogenetics, volume 24. Oxford University Press on Demand, 2003.
[91] Z. Smith, S. Chowdhury, and F. Mémoli. Hierarchical representations of network data with optimal

distortion bounds. In 2016 50th Asilomar Conference on Signals, Systems and Computers, pages
1834–1838. IEEE, 2016.

[92] K.-T. Sturm. On the geometry of metric measure spaces. Acta mathematica, 196(1):65–131, 2006.
[93] K.-T. Sturm. The space of spaces: Curvature bounds and gradient flows on the space of metric

measure spaces. arXiv preprint arXiv:1208.0434, 2012.
[94] D. Thorsley and E. Klavins. Model reduction of stochastic processes using Wasserstein pseudometrics.

In 2008 American Control Conference, pages 1374–1381. IEEE, 2008.
[95] V. Titouan, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for structured data with

application on graphs. In International Conference on Machine Learning, pages 6275–6284, 2019.
[96] E. F. Touli and Y. Wang. FPT-algorithms for computing Gromov-Hausdorff and interleaving distances

between trees. arXiv preprint arXiv:1811.02425, 2018.
[97] S. S. Vallender. Calculation of the Wasserstein distance between probability distributions on the line.

Theory of Probability & Its Applications, 18(4):784–786, 1974.
[98] T. Vayer, R. Flamary, R. Tavenard, L. Chapel, and N. Courty. Sliced Gromov-Wasserstein. arXiv

preprint arXiv:1905.10124, 2019.
[99] C. Villani. Topics in optimal transportation. American Mathematical Soc., 2003.

[100] C. Villani. Optimal transport: Old and new, volume 338. Springer Science & Business Media, 2008.
[101] E. M. Volz, K. Koelle, and T. Bedford. Viral phylodynamics. PLoS Comput Biol, 9(3):e1002947,

2013.
[102] Z. Wan. A novel construction of Urysohn universal ultrametric space via the Gromov-Hausdorff

ultrametric. arXiv preprint arXiv:2007.08105, 2020.
[103] K. B. Westgeest, M. de Graaf, M. Fourment, T. M. Bestebroer, R. van Beek, M. I. Spronken, J. C.

de Jong, G. F. Rimmelzwaan, C. A. Russell, A. D. Osterhaus, et al. Genetic evolution of the neu-
raminidase of influenza a (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin
evolution. The Journal of general virology, 93(Pt 9):1996, 2012.

[104] T. Wu and K. P. Choi. On joint subtree distributions under two evolutionary models. Theoretical
population biology, 108:13–23, 2016.

[105] I. Zarichnyi. Gromov-Hausdorff ultrametric. arXiv preprint math/0511437, 2005.

43

223



A Missing details from Section 2

A.1 Proofs from Section 2

In this section we give the proofs of various results form Section 2.

A.1.1 Proof of Theorem 2.2

Recall that for a given θ ∈ D(X), we define uθ : X ×X → R≥0 as follows

uθ(x, x
′) := inf{t ≥ 0|x and x′ belong to the same block of θ(t)}.

It is straightforward to verify that uθ is an ultrametric. For any Cauchy sequence {xn}n∈N
in (X,uθ), let Di := supm,n≥i uθ(xm, xn) for each i ∈ N. Then, each Di < ∞ and
limi→∞Di = 0. By definition of uθ, we have that for each i ∈ N the set {xn}∞n=i is
contained in the block [xi]Di ∈ θ(Di). Let Xi := [xi]Di for each i ∈ N. Then, obviously
we have that Xj ⊆ Xi for any 1 ≤ i < j. By condition (7) in Definition 2.1, we have
that

⋂
i∈NXi 6= ∅. Choose x∗ ∈

⋂
i∈NXi, then it is easy to verify that x∗ = limn→∞ xn

and thus (X,uθ) is a complete space. To prove that (X,uθ) is a compact space, we need
to verify that for each t > 0, Xt is a finite space (cf. Lemma A.7). Since θ(t) is finite
by condition (6) in Definition 2.1, we have that Xt = {[x]t|x ∈ X} = θ(t) is finite and
thus X is compact. Therefore, we have proved that uθ ∈ U(X). Based on this, the map
ΥX : D(X)→ U(X) defined by θ 7→ uθ is well-defined.

Now given u ∈ U(X), we define a map θu : [0,∞) → Part(X) as follows: for each t ≥ 0,
consider the equivalence relation ∼t with respect to u, i.e., x ∼t x′ if and only if u(x, x′) ≤ t.
This is actually the same equivalence relation defined in Section 2.2 for introducing quotient
ultrametric spaces. We then let θu(t) to be the partition induced by ∼t, i.e., θu(t) = Xt.
It is not hard to show that θu satisfies conditions (1)–(5) in Definition 2.1. Since X is
compact, then θu(t) = Xt is finite for each t > 0 and thus θu satisfies condition (6) in
Definition 2.1. Now, let {tn}n∈N be a decreasing sequence such that limn→∞ tn = 0 and
let Xn ∈ θX(tn) such that for any 1 ≤ n < m, Xm ⊆ Xn. Since each Xn = [xn]tn for
some xn ∈ X, Xn is a compact subset of X. Since X is also complete, we have that⋂
n∈NXn 6= ∅. Therefore, θu satisfies condition (7) in Definition 2.1 and thus θu ∈ D(X).

Then, we define the map ∆X : U(X)→ D(X) by u 7→ θu.

It is easy to check that ∆X is the inverse of ΥX and thus we have established that ΥX :
D(X)→ U(X) is bijective.
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A.1.2 Proof of Lemma 2.8

First of all, we show that the right hand side of Equation (16) is well defined. More
precisely, we employ Lemma A.7 to prove that the supremum

sup
B∈V (X)\{X} and α(B)6=β(B)

diam (B∗)

is attained. For arbitrary B0 ∈ V (X)\{X} such that α(B0) 6= β(B0), we have that
diam (B∗0) > 0. By Lemma A.7 the spaces Xt are finite for t > 0. Since V (X) = {[x]t|x ∈
X, t > 0} =

⋃
t>0Xt, there are only finitely many B ∈ V (X)\{X} such that diam (B) ≥

diam (B∗0) and thus diam (B∗) ≥ diam (B∗0). This implies that the supremum is attained
and thus

sup
B∈V (X)\{X} and α(B) 6=β(B)

diam (B∗) = max
B∈V (X)\{X} and α(B)6=β(B)

diam (B∗) . (27)

Let B1 denote the maximizer in Equation (27) and let δ := diam (B∗1). It is easy to see
that for any x ∈ X, α([x]δ) = β([x]δ).

By Strassen’s theorem (see for example [31, Theorem 11.6.2]),

dW,∞(α, β) = inf{r ≥ 0| for any closed subset A ⊆ X, α(A) ≤ β(Ar)}, (28)

where Ar := {x ∈ X|uX(x,A) ≤ r}.

Since α(B1) 6= β(B1), we assume without loss of generality that α(B1) > β(B1). By
definition of B∗1 , it is obvious that (B1)δ = B∗1 (recall: δ := diam (B∗1)) and (B1)r = B1

for all 0 ≤ r < δ. Therefore, α(B1) ≤ β((B1)r) only when r ≥ δ. By Equation (28), this
implies that dW,∞(α, β) ≥ δ. Conversely, for any closed set A, we have that Aδ =

⋃
x∈A[x]δ.

For two closed balls in ultrametric spaces, either one includes the other or they have no
intersection. Therefore, there exists a subset S ⊆ A such that [x]δ ∩ [x′]δ = ∅ for all
x, x′ ∈ S and x 6= x′, and that Aδ =

⊔
x∈S [x]δ. Then, α(A) ≤ α(Aδ) =

∑
x∈S α([x]δ) =∑

x∈S β([x]δ) = β(Aδ). Hence, dW,∞(α, β) ≤ δ and thus

dW,∞(α, β) = max
B∈V (X)\{X} and α(B) 6=β(B)

diam (B∗) .

A.2 Technical issues from Section 2

In the following, we address various technical issues from Section 2.
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A.2.1 Synchronized rooted trees

A synchronized rooted tree, is a combinatorial tree T = (V,E) with a root o ∈ V and a height
function h : V → [0,∞) such that h−1(0) coincides with the leaf set and h(v) < h(v∗) for
each v ∈ V \{o}, where v∗ is the parent of v. Similar as in Theorem 2.2 that there exists
a correspondence between ultrametric spaces and dendrograms, an ultrametric space X
uniquely determines a synchronized rooted tree TX [50].

Now given a compact ultrametric space (X,uX), we construct the corresponding sychro-
nized rooted tree TX via the dendrogram θX associated with uX . Recall from Section 2.3
that V (X) :=

⋃
t>0 θX(t). For each B ∈ V (X)\{X}, denote by B∗ the smallest element in

V (X) such that B $ B∗, whose existence is guaranteed by the following lemma:

Lemma A.1. Let X be a compact ultrametric space and let V (X) =
⋃
t>0 θX(t), where θX

is as defined in Remark 2.3. For each B ∈ V (X) such that B 6= X, there exists B∗ ∈ V (X)
such that B∗ 6= B and B∗ ⊆ B′ for all B′ ∈ V (X) with B $ B′.

Proof. Let δ := diam (B). Let x ∈ B, then B = [x]δ. By Lemma A.7, Xδ is a finite
set. Consider δ∗ := min{uXδ([x]δ, [x

′]δ)| [x′]δ 6= [x]δ}. Let B∗ := [x]δ∗ , then B∗ is the
smallest element in V (X) containing B under inclusion. Indeed, B∗ 6= B and if B ⊆ B′

for some B′ ∈ V (X), then B′ = [x]r for some r > δ. It is easy to see that for all
δ < r < δ∗, [x]r = [x]δ. Therefore, if B′ 6= B, we must have that r ≥ δ∗ and thus
B∗ = [x]δ∗ ⊆ [x]r = B′.

Now, we define a combinatorial tree TX = (VX , EX) as follows: we let VX := V (X); for
any distinct B,B′ ∈ VX , we let (B,B′) ∈ EX iff either B = (B′)∗ or B′ = B∗. We choose
X ∈ VX to be the root of TX , then any B 6= X in VX has a unique parent B∗. We define
hX : VX → [0,∞) such that hX(B) := diam(B)

2 for any B ∈ VX . Now, TX endowed with
the root X and the height function hX is a synchronized rooted tree. It is easy to see that
X can be isometrically identified with h−1

X (0) of the so-called metric completion of TX (see
[50, Section 2.3] for details). With this construction Theorem 2.7 follows directly from [50,
Lemma 3.1].

A.3 d
(R≥0,Λ∞)

W,p between compactly supported measures

Next, we demonstrate that Theorem 2.9 extends naturally to the case of compactly sup-
ported probability measures in (R≥0,Λ∞). For this purpose, it is important to note that
compact subsets of (R≥0,Λ∞) have a very particular structure as shown by the subsequent
lemma.
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Lemma A.2. Let X ⊆ (R≥0,Λ∞). X is a compact subset if and only if X is either a
finite set or a countable set with 0 being the unique cluster point (w.r.t. the usual Euclidean
distance Λ1).

Proof. If X is finite, then obviously X is compact. Assume that X is a countable set with
0 being the unique cluster point (w.r.t. the usual Euclidean distance Λ1). If {xn}n∈N ⊆ X
is a Cauchy sequence with respect to Λ∞, then either xn is a constant when n is large or
limn→∞ xn = 0. In either case, the limit of {xn}n∈N belongs to X and thus X is complete.
Now for any ε > 0, by Lemma A.7, Xε is a finite set. Denote Xε = {[x1]ε, . . . , [xn]ε}.
Then, {x1, . . . , xn} is a finite ε-net of X. Therefore, X is totally bounded and thus X is
compact.

Now, assume that X is compact. Then, for any ε > 0, Xε is a finite set. Suppose Xε =
{[x1]ε, . . . , [xn]ε} where 0 ≤ x1 < x2 < · · · < xn. Further, we have that Λ∞(xi, xj) = xj
whenever 1 ≤ i < j ≤ n. This implies that

1. xi > ε for all 2 ≤ i ≤ n;

2. [xi]ε = {xi} for all 2 ≤ i ≤ n.

Therefore, X ∩ (ε,∞) = {x2, . . . , xn} is a finite set. Since ε > 0 is arbitrary, X is an at
most countable set and has no cluster point (w.r.t. the usual Euclidean distance Λ1) other
than 0. If X is countable, then 0 must be a cluster point and by compactness of X, we
have that 0 ∈ X.

Based on the special structure of compact subsets of (R≥0,Λ∞), we derive the following
extension of Theorem 2.9.

Theorem A.3 (d
(R≥0,Λ∞)
W,p between compactly supported measures). Suppose α, β are sup-

ported on a countable subset X := {0}∪{xi| i ∈ N} of R≥0 such that 0 < . . . < xn < xn−1 <
. . . < x1 and 0 is the only cluster point with respect to the usual Euclidean distance. Let
αi := α({xi}) for i ∈ N and α0 := α({0}). Similarly, let βi := β({xi}) and β0 := β({0}).
Then for p ∈ [1,∞),

d
(R≥0,Λ∞)
W,p (α, β) = 2

− 1
p



∞∑

i=2

∣∣∣∣∣∣

∞∑

j=i

(αj − βj)

∣∣∣∣∣∣
· |xpi−1 − x

p
i |+

∞∑

i=1

|αi − βi| · xpi




1
p

. (29)

Let Fα and Fβ denote the cumulative distribution functions of α and β, respectively. Then,
we obtain

d
(R≥0,Λ∞)
W,∞ (α, β) = max

(
max

2≤i<∞,Fα(xi)6=Fβ(xi)
xi−1, max

1≤i<∞,αi 6=βi
xi

)
.
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Proof. Note that V (X) = {{0} ∪ {xj | j ≥ i}| i ∈ N} ∪ {{xi}| i ∈ N} (recall that each set
corresponds to a closed ball). Thus, we conclude the proof by applying Lemma 2.7 and
Lemma 2.8.

A.3.1 Closed-form solution for d
(R≥0,Λq)
W,p

In the following, we will derive the subsequent theorem.

Theorem A.4. Given 1 ≤ p, q < ∞ and two compactly supported probability measures α
and β on R≥0, we have that

d
(R≥0,Λq)
W,p (α, β) ≤

(∫ 1

0
Λq(F

−1
α (t), F−1

β (t))pdt

) 1
p

.

When q ≤ p, the equality holds whereas when q > p, the equality does not hold in general.

One important ingredient for the proof of Theorem A.4 is Lemma 3.2 of Chowdhury and
Mémoli [23] which we restate here for convenience.

Lemma A.5 (Chowdhury and Mémoli [23, Lemma 3.2]). Let X,Y be two Polish metric
spaces and let f : X → R and g : Y → R be measurable maps. Denote by f×g : X×Y → R2

the map (x, y) 7→ (f(x), g(y)). Then, for any µY ∈ P(X) and µY ∈ P(Y )

(f × g)#C(µX , µY ) = C(f#µY , g#µY ).

Based on Lemma A.5, we can show the following auxiliary result.

Lemma A.6. Let 1 ≤ q ≤ p < ∞. Assume that α and β are compactly supported
probability measures on R≥0. Then,

(
d

(R≥0,Λq)
W,p (α, β)

)p
=

(
d

(R≥0,Λ1)

W, p
q

((Sq)#α, (Sq)#β)

) p
q

,

where Sq : R≥0 → R≥0 taking x to xq is the q-snowflake transform defined in Section 3.3.
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Proof.

(
d

(R≥0,Λq)
W,p (α, β)

)p
= inf

µ∈C(α,β)

∫

R≥0×R≥0

(Λq(x, y))pµ(dx× dy)

= inf
µ∈C(α,β)

∫

R≥0×R≥0

|Sq(x)− Sq(y)|
p
q µ(dx× dy)

= inf
µ∈C(α,β)

∫

R≥0×R≥0

|s− t|
p
q (Sq × Sq)#µ(ds× dt)

=

(
d

(R≥0,Λ1)

W, p
q

((Sq)#α, (Sq)#β)

) p
q

,

where we use p
q ≥ 1 and Lemma A.5 in the last equality.

With Lemma A.6 at our disposal, we can demonstrate Theorem A.4.

Proof of Theorem A.4. We first note that d
(R≥0,Λq)
W,p (α, β) = inf(ξ,η)

(
E(Λq(ξ, η)p)

) 1
p , where

ξ and η are two random variables with marginal distributions α and β, respectively. More-
over, let ζ be the random variable uniformly distributed on [0, 1], then F−1

α (ζ) has distri-
bution function Fα and F−1

β (ζ) has distribution function Fβ (see for example Vallender

[97]). Let ξ = F−1
α (ζ) and η = F−1

β (ζ), then we have

d
(R≥0,Λq)
W,p (α, β) ≤

(
E(Λq(ξ, η)p)

) 1
p =

(∫ 1

0
Λq(F

−1
α (t), F−1

β (t))pdt

) 1
p

.

Next, we assume that q ≤ p. By Lemma A.6, we have that

(
d

(R≥0,Λq)
W,p (α, β)

)p
=

(
d

(R≥0,Λ1)

W, p
q

((Sq)#α, (Sq)#β)

) p
q

.

Then, (
d

(R≥0,Λ1)

W, p
q

((Sq)#α, (Sq)#β)

) p
q

=

∫ 1

0
|F−1
α,q(t)− F−1

β,q (t)|
p
q dt,

where Fα,q and Fβ,q are distribution functions of (Sq)#α and (Sq)#β, respectively. It is
easy to verify that Fα,q(t) = (F−1

α (t))q and Fβ,q(t) = (F−1
β (t))q. Therefore,

d
(R≥0,Λq)
W,p (α, β) =

(∫ 1

0
Λq(F

−1
α (t), F−1

β (t))pdt

) 1
p

Finally, we demonstrate that for q > p the equality does not hold in general. We first
consider the extreme case p = 1 and q =∞ (though we require q <∞ in the assumptions
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of the theorem, we relax this for now). Let α0 = 1
2δ1 + 1

2δ2 and β0 = 1
2δ2 + 1

2δ3 where δx
means the Dirac measure at point x ∈ R≥0. Then, we have that

d
(R≥0,Λ∞)
W,1 (α0, β0) =

3

2
<

5

2
=

∫ 1

0
Λ∞(F−1

α (t), F−1
β (t))dt.

It is not hard to see that both d
(R≥0,Λq)
W,p (α0, β0) and

(∫ 1
0 Λq(F

−1
α (t), F−1

β (t))pdt
) 1
p

are con-

tinuous with respect to p ∈ [1,∞) and q ∈ [1,∞]. Then, for p close to 1 and q < ∞ large
enough, and in particular, p < q, we have that

d
(R≥0,Λq)
W,p (α0, β0) <

(∫ 1

0
Λq(F

−1
α (t), F−1

β (t))pdt

) 1
p

.

A.3.2 Miscellaneous

In the remainder of this section, we collect several technical results that find implicit or
explicit usage throughout Section 2.

Lemma A.7. Let X be a complete ultrametric space. Then, X is compact ultrametric
space if and only if for any t > 0, Xt is a finite space.

Proof. Wan [102, Lemma 2.3] proves that whenever X is compact, Xt is finite for any
t > 0.

Conversely, we assume that Xt is finite for any t > 0. We only need to prove that X is
totally bounded. For any ε > 0, Xε is a finite set and thus there exists x1, . . . , xn ∈ X
such that Xε = {[x1]ε, . . . , [xn]ε} . Now, for any x ∈ X, there exists xi for some i = 1, . . . , n
such that x ∈ [xi]ε. This implies that uX(x, xi) ≤ ε. Therefore, the set {x1, . . . , xn} ⊆ X
is an ε-net of X. Then, X is totally bounded and thus compact.

Lemma A.8. V (X) is the collection of all closed balls in X except for singletons {x} such
that x is a cluster point in X. In particular, X ∈ V (X) and for any x ∈ X, if x is not a
cluster point, then {x} ∈ V (X).

Proof. Given any t > 0 and x ∈ X, [x]t = Bt(x) = {x′ ∈ X|uX(x, x′) ≤ t}. Therefore,
V (X) is a collection of closed balls in X. On the contrary, any closed ball Bt(x) with
positive radius t > 0 coincides with [x]t ∈ θX(t) and thus belongs to V (X). Now, for
any singleton {x} = B0(x). If x is not a cluster point, then there exists t > 0 such that
Bt(x) = {x} which implies that {x} ∈ V (X). If x is a cluster point, then for any t > 0,
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{x} $ Bt(x) = [x]t. In particular, this implies that {x} 6= [x]t for all t > 0 and thus
{x} /∈ V (X). In conclusion, V (X) is the collection of all closed balls in X except for
singletons {x} such that x is a cluster point in X.

If X is a one point space, then obviously X ∈ V (X) = {X}. Otherwise, let δ := diam (X) >
0, then for any x ∈ X we have that X = [x]δ ∈ V (X). As for singletons {x} where x ∈ X
is not a cluster point, we have proved above that {x} ∈ V (X).

B Missing details from Section 3

B.1 Proofs from Section 3.1

Next, we give the missing proofs of the results stated in Section 3.1.

B.1.1 Proof of Proposition 3.3

1. This directly follows from the definitions of usturm
GW,p and dsturm

GW,p (see Equation (10) and
Equation (5)).

2. This simply follows from Jensen’s inequality.

3. By (2), we know that {usturm
GW,n(X ,Y)}n∈N is an increasing sequence with a finite up-

per bound usturm
GW,∞(X ,Y). Therefore, L := limn→∞ usturm

GW,n(X ,Y) exists and L ≤
usturm

GW,∞(X ,Y).

Next, we come to the opposite inequality. By Proposition B.1, there exist un ∈
Dult(uX , uY ) and µn ∈ C(µX , µY ) such that

(∫

X×Y
(un(x, y))nµn(dx× dy)

) 1
n

= usturm
GW,n(X ,Y).

By Lemma B.19 and Lemma B.21, the sequence {un}n∈N uniformly converges to some
u ∈ Dult(uX , uY ) and {µn}n∈N weakly converges to some µ ∈ C(µX , µY ) (after taking
appropriate subsequences of both sequences). Let M := sup(x,y)∈supp(µ) u(x, y). Let
ε > 0 and let U = {(x, y) ∈ X × Y |u(x, y) > M − ε}. Then, µ(U) > 0. Since U is
open, it follows that there exists a small ε1 > 0 such that µn(U) > µ(U)−ε1 > 0 for all
n large enough (see e.g. Billingsley [7, Thm. 2.1]). Moreover, by uniform convergence
of the sequence {un}n∈N, we have |u(x, y)−un(x, y)| ≤ ε for any (x, y) ∈ X×Y when
n is large enough. Therefore, we obtain for n large enough
(∫

X×Y
(un(x, y))nµn(dx× dy)

) 1
n

≥ (µn(U))
1
n (M − 2ε) ≥ (µ(U)− ε1)

1
n (M − 2ε).
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Letting n → ∞, we obtain L ≥ M − 2ε. Since ε > 0 is arbitrary, we obtain
L ≥M ≥ usturm

GW,∞(X ,Y).

B.1.2 Proof of Theorem 3.4

In this section, we devote to prove Theorem 3.4. To this end, we will first verify the
existence of optimal metrics and optimal couplings in Equation (18).

Proposition B.1 (Existence of optimal couplings). Let X = (X,uX , µX) and Y =
(Y, uY , µY ) be compact ultrametric measure spaces. Then, there always exist an ultrametric
u ∈ Dult(uX , uY ) and µ ∈ C(µX , µY ) such that for 1 ≤ p <∞

usturm
GW,p(X ,Y) =

(∫

X×Y
(u(x, y))pµ(dx× dy)

) 1
p

and such that

usturm
GW,∞(X ,Y) = sup

(x,y)∈supp(µ)
u(x, y).

Proof. The following proof is a suitable adaptation from proof of Lemma 3.3 in [92]. We
will only prove the claim for the case p <∞ since the case p =∞ can be shown in a similar
manner. Let un ∈ Dult(uX , uY ) and µn ∈ C(µX , µY ) be such that

(∫

X×Y
(un(x, y))pµn(dx× dy)

) 1
p

≤ usturm
GW,p(X ,Y) +

1

n
.

By Lemma B.19, {µn}n∈N weakly converges (after taking an appropriate subsequence)
to some µ ∈ C(µX , µY ). By Lemma B.21, {un}n∈N uniformly converges (after taking an
appropriate subsequence) to some u ∈ Dult(uX , uY ). Then, it is easy to verify that

(∫

X×Y
(u(x, y))pµ(dx× dy)

) 1
p

≤ usturm
GW,p(X ,Y).

As a direct consequence of the proposition, we get the subsequent result.

Corollary B.2. Fix 1 ≤ p ≤ ∞. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be compact
ultrametric measure spaces. Then, there exist a compact ultrametric space Z and isometric
embeddings φ : X ↪→ Z and ψ : Y ↪→ Z such that

usturm
GW,p(X ,Y) = dZW,p(φ#µX , ψ#µY ).
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Before we come to the proof of Theorem 3.4, it remains to establish another auxiliary result.
We ensure that the Wasserstein pseudometric of order p on a compact pseudo-ultrametric
space (X,uX) is for p ∈ [1,∞) a p-pseudometric and for p =∞ a pseudo-ultrametric, i.e.,
we prove for 1 ≤ p <∞ that for all α1, α2, α3 ∈ P(X)

d
(X,uX)
W,p (µ1, µ3) ≤

((
d

(X,uX)
W,p (µ1, µ2)

)p
+
(
d

(X,uX)
W,p (µ2, µ3)

)p)1/p

and for p =∞ that for all α1, α2, α3 ∈ P(X)

d
(X,uX)
W,p (µ1, µ3) ≤ max

(
d

(X,uX)
W,p (µ1, µ2), d

(X,uX)
W,p (µ2, µ3)

)
.

Lemma B.3. Let (X,uX) be a compact pseudo-ultrametric space. Then, the p-Wasserstein

metric d
(X,uX)
W,p is a p-pseudometric on P(X) for 1 ≤ p ≤ ∞. In particular, when p = ∞,

it is an pseudo-ultrametric on P(X).

Proof. We prove the statement by adapting the proof of the triangle inequality for the
p-Wasserstein distance (see e.g., [99, Theorem 7.3]). We only prove the case when p < ∞
whereas the case p =∞ follows by analogous arguments.

Let α1, α2, α3 ∈ P(X), denote by µ12 an optimal transport plan between α1 and α2 and by
µ23 an optimal transport plan between α2 and α3 (see [100, Theorem 4.1] for the existence
of µ12 and µ23). Furthermore, let Xi be the support of αi, 1 ≤ i ≤ 3. Then, by the Gluing
Lemma [99, Lemma 7.6] there exists a measure µ ∈ P(X1 ×X2 ×X3) with marginals µ12

on X1 ×X2 and µ23 on X2 ×X3. Clearly, we obtain

(
d

(X,uX)
W,p (α1, α3)

)p
≤
∫

X1×X2×X3

upX (x, z) µ(dx× dy × dz)

≤
∫

X1×X2×X3

(
upX (x, y) + upX (y, z)

)
µ(dx× dy × dz).

Here, we used that uX is an ultrametric, i.e., in particular a p-metric [70, Proposition 1.16].
With this we obtain that
(
d

(X,uX)
W,p (α1, α2)

)p
≤
∫

X1×X2

upX (x, y) µ12(dx× dy) +

∫

X2×X3

upX (y, z) µ23(dy × dz)

=
(
d

(X,uX)
W,p (α1, α2)

)p
+
(
d

(X,uX)
W,p (α2, α3)

)p
.

With Proposition B.1 and Lemma B.3 at our disposal we are now ready to prove Theo-
rem 3.4 which states that usturm

GW,p is indeed a p-metric on Uw.
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Proof of Theorem 3.4. It is clear that usturm
GW,p is symmetric and that usturm

GW,p(X ,Y) = 0 if

X ∼=w Y. Furthermore, we remark that usturm
GW,p(X ,Y) ≥ dsturm

GW,p(X ,Y) by Proposition 3.3.

Since dsturm
GW,p(X ,Y) = 0 implies that X ∼=w Y ([93]), we have that usturm

GW,p(X ,Y) = 0 implies
that X ∼=w Y. It remains to verify the p-triangle inequality. To this end, we only prove the
case when p <∞ whereas the case p =∞ follows by analogous arguments.

Let X ,Y,Z ∈ Uw. Suppose uXY ∈ Dult(uX , uY ) and uY Z ∈ Dult(uY , uZ) are optimal
metric couplings such that

(
usturm

GW,p(X ,Y)
)p

=
(
d

(XtY,uXY )
W,p (µX , µY )

)p
and

(
usturm

GW,p(Y,Z)
)p

=
(
d

(Y tZ,uY Z)
W,p (µY , µZ)

)p
.

Further, define uXY Z on X t Y t Z as

uXY Z(x1, x2) =





uXY (x1, x2) x1, x2 ∈ X t Y
uY Z(x1, x2) x1, x2 ∈ Y t Z
inf{max(uXY (x1, y), uY Z(y, x2)) | y ∈ Y } x1 ∈ X,x2 ∈ Z
inf{max(uXY (x2, y), uY Z(y, x1)) | y ∈ Y } x1 ∈ Z, x2 ∈ X.

Then, by Lemma 1.1 of Zarichnyi [105] uXY Z is a pseudo-ultrametric on X t Y t Z that
coincides with uXY on X tY and with uY Z on Y tZ. With this we obtain by Lemma B.3
that

(
usturm

GW,p(X ,Z)
)p ≤

(
d

(XtY tZ,uXY Z)
W,p (µX , µZ)

)p

≤
(
d

(XtY tZ,uXY Z)
W,p (µX , µY )

)p
+
(
d

(XtY tZ,uXY Z)
W,p (µY , µZ)

)p

=
(
d

(XtY,uXY )
W,p (µX , µY )

)p
+
(
d

(Y tZ,uY Z)
W,p (µY , µZ)

)p

=
(
usturm

GW,p(X ,Y)
)p

+
(
usturm

GW,p(Y,Z)
)p

This gives the claim for p <∞.

B.1.3 Proof of Theorem 3.7

In order to proof Theorem 3.7, we will first establish the statement for finite ultrametric
measure spaces. For this purpose, we need to introduce some notation. Given X ,Y ∈ Uw,
let Dult

adm(uX , uY ) denote the collection of all admissible pseudo-ultrametrics on X t Y ,
where u ∈ Dult(uX , uY ) is called admissible, if there exists no u∗ ∈ Dult(uX , uY ) such that
u∗ 6= u and u∗(x, y) ≤ u(x, y) for all x, y ∈ X t Y .

Lemma B.4. For any X ,Y ∈ Uw, Dult
adm(uX , uY ) 6= ∅. Moreover,

usturm
GW,p(X ,Y) = inf

u∈Dult
adm(uX ,uY )

d
(XtY,u)
W,p (µX , µY ).

54

234 The Ultrametric Gromov-Wasserstein Distance



Proof. If {un}n∈N ⊆ Dult(uX , uY ) is a decreasing sequence (with respect to pointwise
inequality), it is easy to verify that u := infn∈N un ∈ Dult(uX , uY ) and thus u is a lower
bound of {un}n∈N. Then, by Zorn’s lemma Dult

adm(uX , uY ) 6= ∅. Therefore, we obtain that

usturm
GW,p(X ,Y) = inf

u∈Dult
adm(uX ,uY )

d
(XtY,u)
W,p (µX , µY ).

Combined with Example 3.6, the following result implies that each u ∈ Dult
adm(uX , uY ) gives

rise to an element in A.

Lemma B.5. Given finite spaces X ,Y ∈ Uw, for each u ∈ Dult
adm(uX , uY ), u−1(0) 6= ∅.

Proof. Assume otherwise that u−1(0) = ∅. Then, u is a metric (instead of pseudo-metric).
Let (x0, y0) ∈ X × Y such that u(x0, y0) = minx∈X,y∈Y u(x, y). The existence of (x0, y0) is
guaranteed by the finiteness of X and Y . We define u(x0,y0) : X t Y × X t Y → R≥0 as
follows:

1. u(x0,y0)|X×X := uX and u(x0,y0)|Y×Y := uY ;

2. For (x, y) ∈ X × Y ,

u(x0,y0)(x, y) := min (u(x, y),max(uX(x, x0), uY (y, y0))) ;

3. For any (y, x) ∈ Y ×X, u(x0,y0)(y, x) := u(x0,y0)(x, y).

It is easy to verify that u(x0,y0) ∈ Dult(uX , uY ). Further, it is obvious that u(x0,y0)(x0, y0) =
0 < u(x0, y0) and that u(x0,y0)(x, y) ≤ u(x, y) for all x, y ∈ X t Y which contradicts with

u ∈ Dult
adm(uX , uY ). Therefore, u−1(0) 6= ∅.

Theorem B.6. Let X ,Y ∈ Uw be finite spaces. Then, we have for each p ∈ [1,∞) that

usturm
GW,p(X ,Y) = inf

(A,ϕ)∈A
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
. (30)

Proof. By Lemma B.4 it is sufficent to prove that each u ∈ Dult
adm(uX , uY ) induces (A,ϕ) ∈

A such that

d
(XtY,u)
W,p (µX , µY ) ≥ dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
.

Let u ∈ Dult
adm(uX , uY ). We define A0 := {x ∈ X| ∃y ∈ Y such that u(x, y) = 0} (A0 6= ∅

by Lemma B.5). By Example 3.6, the map ϕ0 : A0 → Y defined by taking x to y such
that u(x, y) = 0 is a well-defined isometric embedding. This means in particular that
(A0, ϕ0) ∈ A.
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If u(x, y) ≥ uZA0

(
φX(A0,ϕ0)(x), ψY(A0,ϕ0)(y)

)
holds for all (x, y) ∈ X×Y , then we set A := A0

and ϕ := ϕ0. This gives

d
(XtY,u)
W,p (µX , µY ) ≥ dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
.

Otherwise, there exists (x, y) ∈ X\A0 × Y \ϕ0(A0) such that

u(x, y) < uZA0

(
φX(A0,ϕ0)(x), ψY(A0,ϕ0)(y)

)

(if x ∈ A0 or y ∈ ϕ0(A0), then u(x, y) ≥ uZA0

(
φX(A0,ϕ0)(x), ψY(A0,ϕ0)(y)

)
must hold). Let

(x1, y1) ∈ X\A0 × Y \ϕ0(A0) be such that

u(x1, y1) = min
{
u(x, y)| (x, y) ∈ X\A0 × Y \ϕ0(A0)

and u(x, y) < uZA0

(
φX(A0,ϕ0)(x), ψY(A0,ϕ0)(y)

)}
> 0.

The existence of (x1, y1) follows from finiteness of X and Y . It is easy to check that ϕ0

extends to an isometry from A0 ∪ {x1} to ϕ0(A0) ∪ {y1} by taking x1 to y1. We denote
the new isometry ϕ1 and set A1 := A0 ∪ {x1}. If for any (x, y) ∈ X × Y , we have that

u(x, y) ≥ uZA1

(
φX(A1,ϕ1)(x), ψY(A1,ϕ1)(y)

)
, then we define A := A1 and ϕ := ϕ1. Otherwise,

we continue the process to obtain A2, A3, . . . . This process will eventually stop since we
are considering finite spaces. Suppose the process stops at An, then A := An and ϕ := ϕn

satisfy that u(x, y) ≥ uZA
(
φX(A,ϕ)(x), ψY(A,ϕ)(y)

)
for any (x, y) ∈ X × Y . Therefore,

d
(XtY,u)
W,p (µX , µY ) ≥ dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
.

Since u ∈ Dult
adm(uX , uY ) is arbitrary, this gives the claim.

As a direct consequence of Theorem B.6, we obtain that it is sufficient, as claimed in
Remark 3.8, for finite spaces to infimize in Equation (30) over the collection of all maximal
pairs A∗ ⊆ A. Recall that a pair (A,ϕ1) ∈ A is denoted as maximal, if for all pairs
(B,ϕ2) ∈ A with A ⊆ B and ϕ2|A = ϕ1 it holds A = B.

Corollary B.7. Let X ,Y ∈ Uw be finite spaces. Then, we have for each p ∈ [1,∞] that

usturm
GW,p(X ,Y) = inf

(A,ϕ)∈A∗
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
. (31)
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By proving Theorem B.6, we have verified Theorem 3.7 for finite ultrametric measure
spaces. In the following, we will use Theorem B.6 and weighted quotients to demonstrate
Theorem 3.7. However, before we come to this, we need to establish the following two
auxiliary results.

Lemma B.8. Let X ∈ U be a compact ultrametric space. Let t > 0 and let p ∈ [1,∞).
Then, for any α, β ∈ P(X), we have that

(
dXtW,p(αt, βt)

)p
≥
(
dXW,p(α, β)

)p − tp,

where αt is the push forward of α under the canonical quotient map Qt : X → Xt taking
x ∈ X to [x]t ∈ Xt.

Proof. For any µt ∈ C(αt, βt), it is easy to see that there exists µ ∈ C(α, β) such that
µt = (Qt ×Qt)# µ where Qt ×Qt : X ×X → Xt ×Xt maps (x, x′) ∈ X ×X to ([x]t, [x

′]t).
For example, suppose Xt = {[x1]t, . . . , [xn]t}, then one can let

µ :=
n∑

i,j=1

µt(([xi]t, [xj ]t))
α|[xi]t
α([xi]t)

⊗
β|[xj ]t
β([xj ]t)

,

where α|[xi]t is the restriction of α on [xi]t.

For any x, x′ ∈ X, we have that (uX(x, x′))p ≤ (uXt([x]t, [x
′]t))

p + tp. Then,

(
dXW,p(α, β)

)p ≤
∫

X×X

(
uX(x, x′)

)p
µ(dx× dx′)

≤
∫

X×X

((
uXt([x]t, [x

′]t)
)p

+ tp
)
µ(dx× dx′)

=

∫

X×X

(
uX(Qt(x), Qt(x

′))
)p
µ(dx× dx′) + tp

=

∫

Xt×Xt

(
uXt([x]t, [x

′]t)
)p
µt(d[x]t × d[x′]t) + tp

Infimizing over all µt ∈ C(αt, βt), we obtain that
(
dXtW,p(αt, βt)

)p
≥
(
dXW,p(α, β)

)p − tp.

Lemma B.9. Let X ∈ Uw and let p ∈ [1,∞]. Then, for any t > 0, we have that

usturm
GW,p(Xt,X ) ≤ t.

In particular, limt→0 u
sturm
GW,p(Xt,X ) = 0.
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Proof. It is obvious that (Xt)t ∼=w Xt. In consequence, it holds by Theorem 3.13 that
usturm

GW,∞(Xt,X ) ≤ t. By Proposition 3.3 we have that for any p ∈ [1,∞]

usturm
GW,p(Xt,X ) ≤ usturm

GW,∞(Xt,X ) ≤ t.

With Lemma B.8 and Lemma B.9 available, we can come to the proof of Theorem 3.7.

Proof of Theorem 3.7. Clearly, it follows from the definition of usturm
GW,p (see Equation (10))

that

usturm
GW,p(X ,Y) ≤ inf

(A,ϕ)∈A
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)

Hence, we focus on proving the opposite inequality.

Given any t > 0, by Lemma A.7, both Xt and Yt are finite spaces. By Theorem B.6 we
have that

usturm
GW,p(Xt,Yt) = inf

(At,ϕt)∈At
d
ZAt
W,p

((
φXt(At,ϕt)

)
#

(µX)t,
(
ψYt(At,ϕt)

)
#

(µY )t

)
,

where

At := {(At, ϕt) | ∅ 6= At ⊆ Xt is closed and ϕt : At ↪→ Yt is an isometric embedding }.

For any (At, ϕt) ∈ At, assume that At = {[x1]Xt , . . . , [xn]Xt } and that ϕt([xi]t) = [yi]t ∈ Yt
for all i = 1, . . . , n. Let A := {x1, . . . , xn}. Then, the map ϕ : A → Y defined by xi 7→ yi
for i = 1, . . . , n is an isometric embedding. Therefore, (A,ϕ) ∈ A.

Claim 1:
(
(ZA)t, u(ZA)t

) ∼=
(
ZAt , uZAt

)
.

Proof of the Claim. We define a map Ψ : (ZA)t → ZAt by [x]ZAt 7→ [x]Xt for x ∈ X
and [y]ZAt 7→ [y]Yt for y ∈ Y \ϕ(A). We first show that Ψ is well-defined. For any x′ ∈
X, if uZA(x, x′) ≤ t, then obviously we have that uX(x, x′) = uZA(x, x′) ≤ t and thus
[x]Xt = [x′]Xt . Now, assume that there exists y ∈ Y \ϕ(A) such that uZA(x, y) ≤ t, i.e.,

[x]ZAt = [y]ZAt . Then, by finiteness of A and definition of ZA, there exists xi ∈ A such that
uZA(x, y) = max (uX(x, xi), uY (ϕ(xi), y)) ≤ t. This gives that

uZAt ([x]Xt , [y]Yt ) ≤ max
(
uXt

(
[x]Xt , [xi]

X
t

)
, uYt

(
[ϕ(xi)]

Y
t , [y]Yt

))
≤ t.

However, this happens only if uZAt ([x]Xt , [y]Yt ) = 0, that is, [x]Xt is identified with [y]Yt
under the map ϕt. Therefore, Ψ is well-defined.
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It is easy to see from the definition that Ψ is surjective. Thus, it suffices to show that Ψ is
an isometric embedding to finish the proof. For any x, x′ ∈ X such that uX(x, x′) > t, we
have that

u(ZA)t

(
[x]ZAt , [x′]ZAt

)
= uZA(x, x′) = uX(x, x′) = uXt

(
[x]Xt , [x

′]Xt
)

= uZAt
(
[x]Xt , [x

′]Xt
)
.

Similarly, for any y, y′ ∈ Y \ϕ(A) such that uY (y, y′) > t, we have that

u(ZA)t

(
[y]ZAt , [y′]ZAt

)
= uZAt

(
[y]Yt , [y

′]Yt
)
.

Now, consider x ∈ X and y ∈ Y \ϕ(A). Assume that uZA(x, y) > t (otherwise [x]ZAt =

[y]ZAt ). Then, we have that

uZA (x, y) = min
i=1,...,n

max (uX (x, xi) , uY (ϕ(xi), y)) > t.

This implies that

uZAt
(
[x]Xt , [y]Yt

)
= min

i=1,...,n
max

(
uXt

(
[x]Xt , [xi]

X
t

)
, uYt

(
ϕt([xi]

X
t ), [y]Yt

))

= min
i=1,...,n

max (uX (x, xi) , uY (ϕ(xi), y))

= uZA (x, y) = u(ZA)t

(
[x]ZAt , [y]ZAt

)
.

Therefore, Ψ is an isometric embedding and thus we conclude the proof.

By Lemma B.8 we have that
(
d
ZAt
W,p

((
φXt(At,ϕt)

)
#

(µX)t,
(
ψYt(At,ϕt)

)
#

(µY )t

))p

≥
(
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

))p
− tp

Therefore,

usturm
GW,p(Xt,Yt) = inf

(At,ϕt)∈At
d
ZAt
W,p

((
φXt(At,ϕt)

)
#

(µX)t,
(
ψYt(At,ϕt)

)
#

(µY )t

)

≥ inf
(A,ϕ)∈A

((
dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

))p
− tp

) 1
p

.

Notice that the last inequality already holds when we only consider (A,ϕ) corresponding
to (At, ϕt) ∈ At.
By Lemma B.9, we have that

usturm
GW,p(X ,Y) = lim

t→0
usturm

GW,p(Xt,Yt) ≥ inf
(A,ϕ)∈A

dZAW,p

((
φX(A,ϕ)

)
#
µX ,

(
ψY(A,ϕ)

)
#
µY

)
,

which concludes the proof.
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B.2 Proofs from Section 3.2

In the following, we give the complete proofs of the results stated in Section 3.2.

B.2.1 Proof of Proposition 3.9

1. This follows directly from the definitions of uGW,p and dGW,p (see Equation (13) and
Equation (7)).

2. By Jensen’s inequality we have that disult
p (µ) ≤ disult

q (µ) for any µ ∈ C(µX , µY ).
Therefore, uGW,p(X ,Y) ≤ uGW,q(X ,Y).

3. By (2), we know that {uGW,n(X ,Y)}n∈N is an increasing sequence with a finite upper
bound uGW,∞(X ,Y). Therefore, L := limn→∞ uGW,n(X ,Y) exists and it holds L ≤
uGW,∞(X ,Y).

To prove the opposite inequality, by Proposition B.10, there exists for each n ∈ N
µn ∈ C(µX , µY ) such that

(∫∫

X×Y×X×Y
Λ∞(uX(x, x′), uY (y, y′))nµn(dx× dy)µn(dx′ × dy′)

) 1
n

=uGW,n(X ,Y).

By Lemma B.19, {µn}n∈N weakly converges (after taking an appropriate subse-
quence) to some µ ∈ C(µX , µY ). Let

M = sup
(x,y),(x′,y′)∈supp(µ)

Λ∞(uX(x, x′), uY (y, y′))

and for any given ε > 0 let

U = {((x, y), (x′, y′)) ∈ X × Y ×X × Y |Λ∞(uX(x, x′), uY (y, y′)) > M − ε}.

Then, we have µ ⊗ µ(U) > 0. As µn weakly converges to µ, we have that µn ⊗ µn
weakly converges to µ ⊗ µ. Since U is open, there exists a small ε1 > 0 such that
µn ⊗ µn(U) > µ ⊗ µ(U) − ε1 > 0 for n large enough (see e.g. Billingsley [7, Thm.
2.1]). Therefore,

(∫∫

X×Y×X×Y
Λ∞(uX(x, x′), uY (y, y′))nµn(dx× dy)µn(dx′ × dy′)

) 1
n

≥(µn ⊗ µn(U))
1
n (M − ε) ≥ (µ⊗ µ(U)− ε1)

1
n (M − ε).

Letting n→∞, we obtain L ≥M − ε. Since ε > 0 is arbitrary, we obtain L ≥M ≥
uGW,∞(X ,Y).
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B.2.2 Proof of Theorem 3.10

One main step to verify Theorem 3.10 is to demonstrate the existence of optimal couplings.

Proposition B.10. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be compact ultrametric
measure spaces. Then, for any p ∈ [1,∞], there always exists an optimal coupling µ ∈
C(µX , µY ) such that uGW,p(X ,Y) = disult

p (µ).

Proof. We will only prove the claim for the case p <∞ since the case p =∞ can be proven
in a similar manner. Let µn ∈ C(µX , µY ) be such that

(∫∫

X×Y×X×Y
Λ∞(uX(x, x′), uY (y, y′))p µn(dx× dy)µn(dx′ × dy′)

) 1
p

≤ uGW,p(X ,Y) +
1

n
.

By Lemma B.19, {µn}n∈N weakly converges to some µ ∈ C(µX , µY ) (after taking an
appropriate subsequence). Then, by the boundedness and continuity of Λ∞(uX , uY ) on
X × Y × X × Y (cf. Lemma B.22) as well as the weak convergence of µn ⊗ µn, we have
that that

disult
p (µ) = lim

n→∞
disult

p (µn) ≤ uGW,p(X ,Y).

Hence, uGW,p(X ,Y) = disult
p (µ).

Based on Proposition B.10, it is straightforward to prove Theorem 3.10.

Proof of Theorem 3.10. It is clear that uGW,p is symmetric and that uGW,p(X ,Y) = 0 if
X ∼=w Y. Furthermore, we remark that uGW,p(X ,Y) ≥ dGW,p(X ,Y) by Proposition 3.9.
Since dGW,p(X ,Y) = 0 implies that X ∼=w Y (see [67]), we have that uGW,p(X ,Y) = 0
implies that X ∼=w Y. It remains to verify the p-triangle inequality. To this end, we only
prove the case when p <∞ whereas the case p =∞ follows by analogous arguments.

Now let X ,Y,Z be three ultrametric measure spaces. Let µXY ∈ C(µX , µY ) and µY Z ∈
C(µY , µZ) be optimal (cf. Proposition B.10). By the Gluing Lemma [99, Lemma 7.6],
there exists a measure µXY Z ∈ P(X × Y ×Z) with marginals µXY on X × Y and µY Z on
Y ×Z. Further, we define µXZ = (πXZ)#µ ∈ P(X ×Z), where πXZ denotes the canonical
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projection X × Y × Z → X × Z. Then,

(uGW,p(X ,Z))p ≤
∫∫

X×Z×X×Z

(
Λ∞(uX(x, x′), uZ(z, z′))

)p
µXZ(dx× dz)µXZ(dx′ × dz′)

=

∫∫

X×Y×Z×X×Y×Z

(
Λ∞(uX(x, x′), uZ(z, z′))

)p
µXY Z(dx× dy × dz)µXY Z(dx′ × dy′ × dz′)

≤
∫∫

X×Y×Z×X×Y×Z

(
Λ∞(uX(x, x′), uY (y, y′))

)p
µXY Z(dx× dy × dz)µXY Z(dx′ × dy′ × dz′)

+

∫∫

X×Y×Z×X×Y×Z

(
Λ∞(uY (y, y′), uZ(z, z′))

)p
µXY Z(dx× dy × dz)µXY Z(dx′ × dy′ × dz′)

=

∫∫

X×Y×X×Y

(
Λ∞(uX(x, x′), uY (y, y′))

)p
µXY (dx× dy)µXY (dx′ × dy′)

+

∫∫

Y×Z×Y×Z

(
Λ∞(uY (y, y′), uZ(z, z′))

)p
µY Z(dy × dz)µY Z(dy′ × dz′)

=(uGW,p(X ,Y))p + (uGW,p(Y,Z))p,

where the second inequality follows from the fact that Λ∞ in an ultrametric on R≥0 (cf.
[70, Remark 1.14]) and the observation that an ultrametric is automatically a p-metric for
any p ∈ [1,∞] [70, Proposition 1.16].

B.2.3 Proof of Theorem 3.13

We first prove that
uGW,∞(X ,Y) = inf {t ≥ 0 | Xt ∼=w Yt} (32)

and then show that the infimum is attainable.

Since X0
∼=w X and Y0

∼=w Y, if X0
∼=w Y0, then X ∼=w Y and thus by Theorem 3.10

uGW,∞(X ,Y) = 0 = inf {t ≥ 0 | Xt ∼=w Yt}
Now, assume that for some t > 0, Xt ∼=w Yt. By Lemma A.7, for some n ∈ N we can write
Xt = {[x1]t, . . . , [xn]t} and Yt = {[y1]t, . . . , [yn]t} such that uXt([xi]t, [xj ]t) = uYt([yi]t, [yj ]t)
and µX([xi]t) = µY ([yi]t). Let µiX := µX |[xi]t and µiY := µY |[yi]t for all i = 1, . . . , n. Let
µ :=

∑n
i=1 µ

i
X ⊗µiY . It is easy to check that µ ∈ C(µX , µY ) and supp(µ) =

⋃n
i=1[xi]t× [yi]t.

Assume (x, y) ∈ [xi]t × [yi]t and (x′, y′) ∈ [xj ]t × [yj ]t. If i 6= j, then uXt([xi]t, [xj ]t) =
uYt([yi]t, [yj ]t) and thus

Λ∞(uX(x, x′), uY (y, y′)) = Λ∞(uXt([xi]t, [xj ]t), uYt([yi]t, [yj ]t)) = 0.

If i = j, then uX(x, x′), uY (y, y′) ≤ t and thus Λ∞(uX(x, x′), uY (y, y′)) ≤ t. In either case,
we have that

uGW,∞(X ,Y) ≤ sup
(x,y),(x′,y′)∈supp(µ)

Λ∞(uX(x, x′), uY (y, y′)) ≤ t.
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Therefore, uGW,∞(X ,Y) ≤ inf {t ≥ 0 | Xt ∼=w Yt} .
Conversely, suppose µ ∈ C(µX , µY ) and let

t := sup
(x,y),(x′,y′)∈supp(µ)

Λ∞(uX(x, x′), uY (y, y′)).

By Mémoli [67, Lemma 2.2], we know that supp(µ) is a correspondence between X and Y .
We define a map ft : Xt → Yt by taking [x]Xt ∈ Xt to [y]Yt ∈ Yt such that (x, y) ∈ supp(µ).
It is easy to check that ft is well-defined and moreover ft is an isometry (see for example
the proof of Mémoli and Wan [70, Theorem 5.7]). Next, we prove that ft is actually an
isomorphism between Xt and Yt. For any [x]Xt ∈ Xt, let y ∈ Y be such that (x, y) ∈ supp (µ)
(in this case, [y]Yt = ft([x]Xt )). If there exists (x′, y′) ∈ supp(µ) such that x′ ∈ [x]Xt and
y′ 6∈ [y]Yt , then Λ∞(uX(x, x′), uY (y, y′)) = uY (y, y′) > t, which is impossible. Consequently,
µ([x]Xt × (Y \ [y]Yt )) = 0 and similarly, µ((X \ [x]Xt )× [y]Yt ) = 0. This yields that

µX([x]Xt ) = µ([x]Yt × Y ) = µ([x]Xt × [y]Yt ) = µ(X × [y]Yt ) = µY ([y]Yt ).

Therefore, ft is an isomorphism between Xt and Yt. Hence, we have that uGW,∞(X ,Y) ≥
inf {t ≥ 0 | Xt ∼=w Yt} and hence uGW,∞(X ,Y) = inf {t ≥ 0 | Xt ∼=w Yt} .
Finally, we show that the infimum of inf {t ≥ 0 | Xt ∼=w Yt} is attainable. Let δ := inf{t ≥
0 | Xt ∼=w Yt}. If δ > 0, let {tn}n∈N be a decreasing sequence converging to δ such that
Xtn ∼=w Ytn for all tn. Since Xδ and Yδ are finite spaces, we actually have that Xtn = Xδ
and Ytn = Yδ when n is large enough. This immediately implies that Xδ ∼=w Yδ. Now,
if δ = 0, then by Equation (32) we have that uGW,∞(X ,Y) = δ = 0. By Theorem 3.10,
X ∼=w Y. This is equivalent to Xδ ∼=w Yδ. Therefore, the infimum of inf {t ≥ 0 | Xt ∼=w Yt}
is always attainable.

B.2.4 Proof of Theorem 3.17

An important observation for the proof of Theorem 3.17 is that the snowflake trans-
form relates the p-Wasserstein pseudometric on a pseudo-ultrametric space X with the
1-Wasserstein pseudometric on the space Sp(X), 1 ≤ p <∞.

Lemma B.11. Given a pseudo-ultrametric space (X,uX) and p ≥ 1, we have for any
α, β ∈ P(X) that

d
(X,uX)
W,p (α, β) =

(
d
Sp(X)
W,1 (α, β)

) 1
p
.

Remark B.12. Since Sp ◦ uX and uX induce the same topology and thus the same Borel

sets on X, we have that P(X) = P(Sp(X)) and thus the expression d
Sp(X)
W,1 (α, β) in the

lemma is well defined.
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Proof of Lemma B.11. Suppose µ1, µ2 ∈ C(α, β) are the optimal couplings for dXW,p(α, β)

and d
Sp(X)
W,1 (α, β), respectively (see Appendix B.5.1 for the existence of µ1 and µ2). Then,

(
d

(X,uX)
W,p (α, β)

)p
=

∫

X×X
(uX(x, y))pµ1(dx× dy)

=

∫

X×X
Sp(uX)(x, y)µ1(dx× dy) ≥ dSp(X)

W,1 (α, β),

and

d
Sp(X)
W,1 (α, β) =

∫

X×X
Sp(uX)(x, y)µ2(dx× dy)

=

∫

X×X
(uX(x, y))pµ2(dx× dy) ≥

(
d

(X,uX)
W,p (α, β)

)p
.

Therefore, d
(X,uX)
W,p (α, β) =

(
d
Sp(X)
W,1 (α, β)

) 1
p
.

With Lemma B.11 at our disposal we can prove Theorem 3.17.

Proof of Theorem 3.17. Let µ ∈ C(µX , µY ). Then,

∫∫

X×Y×X×Y

(
Λ∞(uX(x, x′), uY (y, y′))

)p
µ(dx× dy)µ(dx′ × dy′)

=

∫∫

X×Y×X×Y
Λ∞
(
uX(x, x′)p, uY (y, y′)p

)
µ(dx× dy)µ(dx′ × dy′).

By infimizing over µ ∈ C(µX , µY ) on both sides, we obtain that

(uGW,p(X ,Y))p = uGW,1(Sp(X ), Sp(Y)).

To prove the second part of the claim, let u ∈ Dult(uX , uY ). By Lemma B.11 we have that

(
d

(XtY,u)
W,p (µX , µY )

)p
= d

(Sp(X)tSp(Y ),Sp(u))
W,1 (µX , µY ).

Finally, infimizing over u ∈ Dult(uX , uY ) yields

usturm
GW,p(X ,Y)p = usturm

GW,1(Sp(X ), Sp(Y)).

As a direct consequence of Theorem 3.17, we obtain the following relation between the

spaces (Uw, usturm
GW,1) and

(
Uw, usturm

GW,p

)
for p ∈ [1,∞).
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Corollary B.13. For each p ∈ [1,∞), the metric space (Uw, usturm
GW,1) is isometric to the

snowflake transform of
(
Uw, usturm

GW,p

)
, i.e.,

Sp
(
Uw, usturm

GW,p

) ∼=
(
Uw, usturm

GW,1

)

Proof. Consider the snowflake transform map Sp : Uw → Uw sending X ∈ Uw to Sp(X) ∈
Uw. It is obvious that Sp is bijective. By Theorem 3.17, we know that Sp is an isometry

from Sp

(
Uw, usturm

GW,p

)
to
(
Uw, usturm

GW,1

)
. Therefore, Sp

(
Uw, usturm

GW,p

)
∼=
(
Uw, usturm

GW,1

)
.

B.3 Proofs from Section 3.3

Throughout the following, we demonstrate the open claims from Section 3.3.

B.3.1 Proof of Theorem 3.18

First, we focus on the statement for p = 1, i.e., on showing

uGW,1(X ,Y) ≤ 2usturm
GW,1(X ,Y). (33)

Let u ∈ Dult(uX , uY ) and µ ∈ C(µX , µY ) be such that usturm
GW,1(X ,Y) =

∫
u(x, y)µ(dx× dy).

The existence of u and µ follows from Proposition B.1

Claim 1: For any (x, y), (x′, y′) ∈ X × Y , we have

Λ∞(uX(x, x′), uY (y, y′)) ≤ max(u(x, y), u(x′, y′)) ≤ u(x, y) + u(x′, y′).

Proof. We only need to show that

Λ∞(uX(x, x′), uY (y, y′)) ≤ max(u(x, y), u(x′, y′)).

If uX(x, x′) = uY (y, y′), then there is nothing to prove. Otherwise, we assume without
loss of generality that uX(x, x′) < uY (y, y′). If max(u(x, y), u(x′, y′)) < uY (y, y′), then
by the strong triangle inequality we must have u(x, y′) = uY (y, y′) = u(x′, y). However,
u(x′, y) ≤ max(uX(x, x′), u(x, y)) < uY (y, y′), which leads to a contradiction. Therefore,
Λ∞(uX(x, x′), uY (y, y′)) ≤ max(u(x, y), u(x′, y′)).
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By Claim 1, we have

∫∫

X×Y×X×Y
Λ∞(uX(x, x′), uY (y, y′))µ(dx× dy)µ(dx′ × dy′)

≤
∫∫

X×Y×X×Y
u(x, y)µ(dx× dy)µ(dx′ × dy′)

+

∫∫

X×Y×X×Y
u(x′, y′)µ(dx× dy)µ(dx′ × dy′)

=

∫

X×Y
u(x, y)µ(dx× dy) +

∫

X×Y
u(x′, y′)µ(dx′ × dy′) ≤ 2usturm

GW,1(X ,Y).

Therefore, uGW,1(X ,Y) ≤ 2usturm
GW,1(X ,Y).

Applying Theorem 3.17 and Equation (33), yields that for any p ∈ [1,∞)

uGW,p(X ,Y) = (uGW,1(Sp(X ), Sp(Y)))
1
p ≤

(
2usturm

GW,1(Sp(X ), Sp(Y))
) 1
p = 2

1
p usturm

GW,p(X ,Y).

B.3.2 Proof of result in Example 3.20

It follows from [67, Remark 5.17] that

dsturm
GW,p

(
∆̂n(1), ∆̂2n(1)

)
≥ 1

4
and dGW,p

(
∆̂n(1), ∆̂2n(1)

)
≤ 1

2

(
3

2n

) 1
p

.

Then, by Proposition 3.3, we have that

usturm
GW,p

(
∆̂n(1), ∆̂2n(1)

)
≥ dsturm

GW,p

(
∆̂n(1), ∆̂2n(1)

)
≥ 1

4
.

Let µn denote the uniform probability measure of ∆̂n(1). Since ∆̂n(1) has the constant
interpoint distance 1, it is obvious that for any coupling µ ∈ C(µn, µ2n),

disp(µ) = disult
p (µ)

This implies that

uGW,p

(
∆̂n(1), ∆̂2n(1)

)
= 2 dGW,p

(
∆̂n(1), ∆̂2n(1)

)
≤
(

3

2n

) 1
p

.
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B.3.3 Proof of Theorem 3.21

First, we prove that usturm
GW,∞(X ,Y) ≥ uGW,∞(X ,Y). Indeed, for any u ∈ Dult(uX , uY ) and

µ ∈ C(µX , µY ), we have that

sup
(x,y)∈supp(µ)

u(x, y) = sup
(x,y),(x′,y′)∈supp(µ)

max(u(x, y), u(x′, y′))

≥ sup
(x,y),(x′,y′)∈supp(µ)

Λ∞(uX(x, x′), uY (y, y′))

≥ uGW,∞(X ,Y),

where the first inequality follows from Claim 1 in the proof of Theorem 3.18. Then, by a
standard limit argument, we conclude that usturm

GW,∞(X ,Y) ≥ uGW,∞(X ,Y).

Next, we prove that usturm
GW,∞(X ,Y) ≤ min{t ≥ 0| Xt ∼=w Yt}. Let t > 0 be such that

Xt ∼=w Yt and let ϕ : Xt → Yt denote such an isomorphism. Then, we define a function
u : X t Y ×X t Y → R≥0 as follows:

1. u|X×X := uX and u|Y×Y := uY ;

2. for any (x, y) ∈ X × Y , u(x, y) :=

{
uYt(ϕ([x]Xt ), [y]Yt ), if ϕ([x]Xt ) 6= [y]Yt
t, if ϕ([x]Xt ) = [y]Yt .

3. for any (y, x) ∈ Y ×X, u(y, x) := u(x, y).

Then, it is easy to verify that u ∈ Dult(uX , uY ) and that u is actually an ultrametric. Let
Z := (X t Y, u). By Lemma 2.8, we have

usturm
GW,∞(X ,Y) ≤ dZW,∞(µX , µY ) = max

B∈V (Z)\{Z} and µX(B)6=µY (B)
diam (B∗) .

We verify that dZW,∞(µX , µY ) ≤ t in the following. It is obvious that Zt ∼= Xt
∼= Yt. Write

Xt = {[xi]Xt }ni=1 and Yt = {[yi]Yt }ni=1 such that [yi]
Y
t = ϕ([xi]

X
t ) for each i = 1, . . . , n. Then,

[xi]
Z
t = [yi]

Z
t and Zt = {[xi]Zt | i = 1, . . . , n}. Since ϕ is an isomorphism, for any i = 1, . . . , n

we have that µX([xi]
X
t ) = µY ([yi]

Y
t ) and thus µX([xi]

Z
t ) = µY ([yi]

Z
s ) = µY ([xi]

Z
t ) when µX

and µY are regarded as pushforward measures under the inclusion mapX ↪→ Z and Y ↪→ Z,
respectively. Now for any B ∈ V (Z) (cf. Section 2.3), if diam (B) ≥ t, then B is the union
of certain [xi]

Z
t ’s in Zt and thus µX(B) = µY (B). If diam (B) < t and diam (B∗) > t,

then there exists some xi such that B = [xi]
Z
s and [xi]

Z
s = [xi]

Z
t where s := diam (B). This

implies that µX(B) = µY (B). In consequence, we have that dZW,∞(µX , µY ) ≤ t and thus

usturm
GW,∞(X ,Y) ≤ d(XtY,u)

W,∞ (µX , µY ) ≤ t. Therefore, usturm
GW,∞(X ,Y) ≤ inf{t ≥ 0| Xt ∼=w Yt}.

Finally, by invoking Theorem 3.13, we conclude that usturm
GW,∞(X ,Y) = uGW,∞(X ,Y).
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B.3.4 Proof of Theorem 3.22

We prove the result via an explicit construction. By Theorem 3.21, we have

s = usturm
GW,∞(X ,Y) = uGW,∞(X ,Y).

By Theorem 3.13, there exists an isomorpism ϕ : Xs → Ys. Since s > 0, by Lemma A.7,
both Xs and Ys are finite spaces. Let Xs = {[x1]Xs , . . . , [xn]Xs }, Ys = {[y1]Ys , . . . , [yn]Ys } and
assume [yi]

Y
s = ϕ([xi]

X
s ) for each i = 1, . . . , n. Let A := {x1, . . . , xn} and define φ : A→ Y

by sending xi to yi for each i = 1, . . . , n. We prove that (A, φ) satisfies the conditions in
the statement.

Since ϕ is an isomorphism, for any 1 ≤ i < j ≤ n,

uY (yi, yj) = uYs([yi]
Y
s , [yj ]

Y
s ) = uYs(ϕ([xi]

X
s ), ϕ([xj ]

X
s )) = uXs([xi]

X
s , [xj ]

X
s ) = uX(xi, xj).

This implies that φ : A→ Y is an isometric embedding and thus (A, φ) ∈ A.

It is obvious that (ZA)s is isometric to both Xs and Ys. In fact, [xi]
ZA
s = [yi]

ZA
s in ZA

for each i = 1, . . . , n and (ZA)s = {[xi]ZAs | i = 1, . . . , n}. Since ϕ is an isomorphism, for
any i = 1, . . . , n we have that µX([xi]

X
s ) = µY ([yi]

Y
s ) and thus µX([xi]

ZA
s ) = µY ([yi]

ZA
s ) =

µY ([xi]
ZA
s ) when µX and µY are regarded as pushforward measures under the inclusion

maps X → ZA and Y → ZA, respectively. Now for any B ∈ V (ZA) (cf. Section 2.3),
if diam (B) ≥ s, then B is the union of certain [xi]

ZA
s ’s and thus µX(B) = µY (B). If

otherwise diam (B) < s and diam (B∗) > s, then there exists xi such that B = [xi]
ZA
t and

[xi]
ZA
t = [xi]

ZA
s where t := diam (B). This implies that µX(B) = µY (B). By Lemma 2.8,

we have dZAW,∞(µX , µY ) ≤ s and thus dZAW,∞(µX , µY ) = s since dZAW,∞(µX , µY ) is an upper

bound for s = usturm
GW,∞(X ,Y) due to Equation (10).

B.3.5 Proof of Theorem 3.24

In this section, we prove Theorem 3.24 by slightly modifying the proof of Proposition 5.3
in [67].

Lemma B.14. Let (X,uX) and (Y, uY ) be compact ultrametric spaces and let S ⊆ X × Y
be non-empty. Assume that sup(x,y),(x′,y′)∈S Λ∞(uX(x, x′), uY (y, y′)) ≤ η. Define uS : X t
Y ×X t Y → R≥0 as follows:

1. uS |X×X := uX and uS |Y×Y := uY ;

2. for any (x, y) ∈ X × Y , uS(x, y) := inf(x′,y′)∈S max (uX(x, x′), uY (y, y′), η) .

3. for any (x, y) ∈ X × Y , uS(y, x) := uS(x, y).

Then, uS ∈ Dult(uX , uY ) and uS(x, y) ≤ η for all (x, y) ∈ S.
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Proof. That uS ∈ Dult(uX , uY ) essentially follows by Zarichnyi [105, Lemma 1.1]. It re-
mains to prove the second half of the statement. For (x, y) ∈ S, we set (x′, y′) := (x, y).
This yields

uS(x, y) ≤ max(uX(x, x′), uY (y, y′), η) = max(0, 0, η) = η.

Proof of Theorem 3.24. Let µ ∈ C(µX , µY ) be a coupling such that
∥∥∥Γ∞X,Y

∥∥∥
Lp(µ⊗µ)

< δ5.

Set ε := 4vδ(X) ≤ 4.

By Mémoli [67, Claim 10.1], there exist a positive integerN ≤ [1/δ] and points x1, . . . , xN in

X such that mini 6=j uX(xi, xj) ≥ ε
2 , mini µX

(
BX
ε (xi)

)
> δ and µX

(⋃N
i=1B

X
ε (xi)

)
≥ 1− ε.

Claim 1: For every i = 1, . . . , N there exists yi ∈ Y such that

µ
(
BX
ε (xi)×BY

2(ε+δ)(yi)
)
≥ (1− δ2)µX

(
BX
ε (xi)

)
.

Proof. Assume the claim is false for some i and let Qi(y) = BX
ε (xi) ×

(
Y \BY

2(ε+δ)(y)
)

.

Then, as µ ∈ C(µX , µY ) it holds

µX
(
BX
ε (xi)

)
=µ
(
BX
ε (xi)× Y

)

=µ
(
BX
ε (xi)×BY

2(ε+δ)(y)
)

+ µ
(
BX
ε (xi)×

(
Y \BY

2(ε+δ)(y)
))

.

Consequently, we have that µ(Qi(y)) ≥ δ2µX
(
BX
ε (xi)

)
. Further, let

Qi :=
{

(x, y, x′, y′) ∈ X × Y ×X × Y |x, x′ ∈ BX
ε (xi) and uY (y, y′) ≥ 2(ε+ δ)

}
.

Clearly, it holds for (x, y, x′, y′) ∈ Qi that

Γ∞X,Y (x, y, x′, y′) = Λ∞
(
uX(x, x′), uY (y, y′)

)
= uY (y, y′) ≥ 2δ.

Further, we have that µ⊗ µ(Qi) ≥ δ4. Indeed, it holds

µ⊗ µ(Qi) =

∫

BXε (xi)×Y

∫

Qi(y)
1µ(dx′ × dy′)µ(dx× dy)

=

∫

BXε (xi)×Y
µ(Qi(y))µ(dx× dy)

=µX
(
BX
ε (xi)

) ∫

Y
µ(Qi(y))µY (dy)

≥
(
µX
(
BX
ε (xi)

))2
δ2

≥δ4.
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However, this yields that

∥∥Γ∞X,Y
∥∥
Lp(µ⊗µ)

≥
∥∥Γ∞X,Y

∥∥
L1(µ⊗µ)

≥
∥∥Γ∞X,Y 1Qi

∥∥
L1(µ⊗µ)

≥ 2δ · µ⊗ µ(Qi) ≥ 2δ5,

which contradicts
∥∥∥Γ∞X,Y

∥∥∥
Lp(µ⊗µ)

< δ5.

Define for each i = 1, . . . , N

Si := BX
ε (xi)×BY

2(ε+δ)(yi).

Then, by Claim 1, µ(Si) ≥ δ(1− δ2), for all i = 1, . . . , N .

Claim 2: Γ∞X,Y (xi, yi, xj , yj) ≤ 6(ε+ δ) for all i, j = 1, . . . , N .

Proof. Assume the claim fails for some (i0, j0), i.e.,

Λ∞(uX(xi0 , xj0), uY (yi0 , yj0)) > 6(ε+ δ) > 0.

Then, we have Λ∞(uX(xi0 , xj0), uY (yi0 , yj0)) = max(uX(xi0 , xj0), uY (yi0 , yj0)). We assume
without loss of generality that

uX(xi0 , xj0) = Λ∞(uX(xi0 , xj0), uY (yi0 , yj0)) > uY (yi0 , yj0).

Consider any (x, y) ∈ Si0 and (x′, y′) ∈ Sj0 . By the strong triangle inequality and the
fact that uX(xi0 , xj0) > 6(ε + δ) > ε, it is easy to verify that uX(x, x′) = uX(xi0 , xj0).
Moreover,

uY (y, y′) ≤ max(uY (y, yi0), uY (yi0 , yj0), uY (yj0 , y
′))

< max(2(ε+ δ), uX(xi0 , xj0), 2(ε+ δ)) = uX(xi0 , xj0) = uX(x, x′).

Therefore,

Γ∞X,Y (x, y, x′, y′) = uX(x, x′) = uX(xi0 , xj0) = Γ∞X,Y (xi0 , yi0 , xj0 , yj0) > 6(ε+ δ) > 2δ.

Consequently, we have that

∥∥Γ∞X,Y
∥∥
Lp(µ⊗µ)

≥
∥∥Γ∞X,Y

∥∥
L1(µ⊗µ)

≥
∥∥∥Γ∞X,Y 1Si01Sj0

∥∥∥
L1(µ⊗µ)

≥ 2δµ(Si0)µ(Sj0)

> 2δ
(
δ(1− δ2)

)2
.

However, for δ ≤ 1/2, 2δ
(
δ(1− δ2)

)2 ≥ 2δ5. This leads to a contradiction.
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Consider S ⊆ X × Y given by S := {(xi, yi)| i = 1, . . . , N}. Let uS be the ultrametric on
X t Y given by Lemma B.14. By Claim 2, sup(x,y),(x′,y′)∈S Γ∞X,Y (x, y, x′, y′) ≤ 6(ε + δ).
Then, for all i = 1, . . . , N we have that uS(xi, yi) ≤ 6(ε + δ) and for any (x, y) ∈ X × Y
we have that

uS(x, y) ≤ max(diam (X) ,diam (Y ) , 6(ε+ δ)) ≤ max(diam (X) ,diam (Y ) , 27) =: M ′.

Here in the second inequality we use the assumption that δ < 1
2 and the fact that ε =

4vδ(X) ≤ 4.

Claim 3: Fix i ∈ {1, . . . , N}. Then, for all (x, y) ∈ Si, it holds uS(x, y) ≤ 6(ε+ δ).

Proof. Let (x, y) ∈ Si. Then, uX(x, xi) ≤ ε and uY (y, yi) ≤ 2(ε+ δ). Then, by the strong
triangle inequality for uS we obtain

uS(x, y) ≤max{uX(x, xi), uY (y, yi), uS(xi, yi)}
≤max{ε, 2(ε+ δ), 6(ε+ δ)} ≤ 6(ε+ δ).

Let L :=
⋃N
i=1 Si. The next step is to estimate the mass of µ in the complement of L.

Claim 4: µ(X × Y \L) ≤ ε+ δ.

Proof. For each i = 1, . . . , N , let Ai := BX
ε (xi)×

(
Y \BY

2(ε+δ)(yi)
)

. Then,

Ai =
(
BX
ε (xi)× Y

)
\
(
BX
ε (xi)×BY

2(ε+δ)(yi)
)

=
(
BX
ε (xi)× Y

)
\ Si.

Hence,

µ(Ai) = µ
(
BX
ε (xi)× Y

)
− µ(Si) = µX

(
BX
ε (xi)

)
− µ(Si),

where the last equality follows from the fact that µ ∈ M(µX , µY ). By Claim 1, we have
that µ(Si) ≥ µX

(
BX
ε (xi)

)
(1− δ2). Consequently, we obtain

µ(Ai) ≤ µX
(
BX
ε (xi)

)
δ2.

Notice that

X × Y \ L ⊆
(
X
∖ N⋃

i=1

BX
ε (xi)

)
× Y ∪

(
N⋃

i=1

Ai

)
.
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Hence,

µ(X × Y \ L) ≤ µX
(
X
∖ N⋃

i=1

BX
ε (xi)

)
+

N∑

i=1

µ(Ai)

≤ 1− µX
(

N⋃

i=1

BX
ε (xi)

)
+

N∑

i=1

δ2µX
(
BX
ε (xi)

)

≤ ε+N · δ2 ≤ ε+ δ.

Here, the third inequality follows from the construction of xis in the beginning of this
section and from the fact that N ≤ [1/δ].

Now,
∫

X×Y
upS(x, y)µ(dx× dy) =

(∫

L
+

∫

X×Y \L

)
upS(x, y)µ(dx× dy)

≤ (6(ε+ δ))p +M ′p · (ε+ δ).

Since we have for any a, b ≥ 0 and p ≥ 1 that a1/p + b1/p ≥ (a+ b)1/p, we obtain

usturm
GW,p(X ,Y) ≤ (ε+ δ)

1
p

(
6(ε+ δ)

1− 1
p +M ′

)
≤ (ε+ δ)

1
p
(
27 +M ′

)

≤ (4vδ(X ) + δ)
1
p ·M,

where we used ε = 4vδ(X ) and M := 2 max(diam (X) ,diam (Y )) + 54 ≥ M ′ + 27. Since
the roles of X and Y are symmetric, we have that

usturm
GW,p(X ,Y) ≤ (4 min(vδ(X ), vδ(Y )) + δ)

1
p ·M.

This concludes the proof.

B.4 Proofs from Section 3.4

The subsequent section contains the full proofs of the statements in Section 3.4.

B.4.1 Proof of Theorem 3.26

1. We first prove that (Uw, uGW,p) is non-separable for each p ∈ [1,∞]. Recall notations

in Example 3.5 and consider the family {∆̂2(a)}a∈[1,2].

Claim 1: ∀a 6= b ∈ [1, 2], uGW,p

(
∆̂2(a), ∆̂2(b)

)
= 2

− 1
pΛ∞(a, b) ≥ 2

− 1
p , where we let

2−
1
∞ = 1.
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Proof of Claim 1 . First note by Theorem 4.1 that

uGW,p

(
∆̂2(a), ∆̂2(b)

)
≥ SLBult

p

(
∆̂2(a), ∆̂2(b)

)
.

It is easy to verify that SLBult
p

(
∆̂2(a), ∆̂2(b)

)
= 2

− 1
pΛ∞(a, b). On the other hand,

consider the diagonal coupling between µa and µb, then for p ∈ [1,∞)

uGW,p

(
∆̂2(a), ∆̂2(b)

)
≤
(

2 · Λ∞(a, b)p · 1

2
· 1

2

) 1
p

= 2
− 1
pΛ∞(a, b),

and for p =∞
uGW,∞

(
∆̂2(a), ∆̂2(b)

)
≤ Λ∞(a, b).

Therefore,

uGW,p

(
∆̂2(a), ∆̂2(b)

)
= 2

− 1
pΛ∞(a, b).

By Claim 1, we have that
{

∆̂2(a)
}
a∈[1,2]

is an uncountable subset of Uw with pairwise

distance greater than 2
− 1
p , which implies that (Uw, uGW,p) is non-separable.

Now for p ∈ [1,∞), we show that uGW,p is not complete. Consider the family
{∆2n(1)}n∈N of 2n-point spaces with unitary interpoint distances. Endow each space
∆2n(1) with the uniform measure µn and denote the corresponding ultrametric mea-
sure space by ∆̂2n(1). It is proven in [93, Example 2.2] that {∆̂2n(1)}n∈N is a Cauchy
sequence with respect to dGW,p without a compact metric measure space as limit. It
is not hard to check that

uGW,p

(
∆̂2m(1), ∆̂2n(1)

)
= 2dGW,p

(
∆̂2m(1), ∆̂2n(1)

)
, ∀n,m ∈ N.

Therefore, {∆̂2n(1)}n∈N is a Cauchy sequence with respect to uGW,p without limit in
Uw. This implies that (Uw, uGW,p) is not complete.

2. By Theorem 3.18 and (1), we have that
(
Uw, usturm

GW,p

)
is not separable. As for com-

pleteness, consider the subset X := {1 − 1
n}n∈N ⊆ (R≥0,Λ∞). By Lemma A.2, X is

not a compact ultrametric space. Let µ0 ∈ P(X) be a probability defined as follows:

µ0

({
1− 1

n

})
:= 2−n, ∀n ∈ N.

For each N ∈ N, let XN := {1− 1
n |n = 1, . . . , N}. Since each XN is finite, (XN ,Λ∞)

is a compact ultrametric space. Let µN ∈ P(XN ) be a probability defined as follows:

µN

({
1− 1

n

})
:=

{
2−n, 1 ≤ n < N

2−N+1 n = N
.
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Then, it is easy to verify (e.g. via Theorem 3.7) that {(XN ,Λ∞, µN )}N∈N is a usturm
GW,p

Cauchy sequence with (X,Λ∞, µ0) being the limit. Since the set X is not compact,

(X,Λ∞, µ0) /∈ Uw and thus
(
Uw, usturm

GW,p

)
is not complete.

3. That (Uw, uGW,∞) is non-separable is already proved in (1). Given a Cauchy se-
quence {Xn = (Xn, un, µn)}n∈N with respect to uGW,∞, we have that the underlying
ultrametric spaces {Xn}n∈N form a Cauchy sequence with respect to uGH due to
Corollary 3.15. Since (U , uGH) is complete (see [105, Proposition 2.1]), there exists a
compact ultrametric space (X,uX) such that

lim
n→∞

uGH(Xn, X) = 0.

For each n ∈ N, let δn := uGH(Xn, X). By Theorem 2.5, we have that (Xn)δn
∼= Xδn .

Denote by µ̂n ∈ P(Xδn) the pushforward of (µn)δn under the isometry. Furthermore,
we have by Lemma A.7 that Xδn is finite and we let Xδn = {[x1]δn , . . . , [xk]δn} for
x1, . . . , xk ∈ X. Based on this, we define

νn :=

k∑

i=1

µ̂n([xi]δn) · δxi ∈ P(X),

where δxi is the Dirac measure at xi. Since X is compact, P(X) is weakly compact.
Therefore, the sequence {νn}n∈N has a cluster point ν ∈ P(X).

Now we show that X := (X,uX , ν) is a uGW,∞ cluster point of {Xn}n∈N and thus the
limit of {Xn}n∈N since {Xn}n∈N is a Cauchy sequence. Without loss of generality,
we assume that {νn}n∈N weakly converges to ν. Fix any ε > 0, we need to show
that uGW,∞(X ,Xn) ≤ ε when n is large enough. For any fixed x∗ ∈ X, [x∗]ε is
both an open and closed ball in X. Therefore, ν([x∗]ε) = limn→∞ νn([x∗]ε) (see e.g.
Billingsley [7, Thm. 2.1]). Since δn → 0 as n→∞, there exists N1 > 0 such that for
any n > N1, δn < ε. We specify an isometry ϕn : (Xn)δn → Xδn that gives rise to
the construction of νn. Then, we let ψn : (Xn)ε → Xε be the isometry such that the
following diagram commutes:

(Xn)δn Xδn

(Xn)ε Xε

ϕn

ε-quotient ε-quotient

ψn

Assume that [x∗]Xε =
⋃l
i=1[xi]

X
δn

. Let xn∗ ∈ Xn be such that ψn([xn∗ ]
Xn
ε ) = [x∗]Xε and

let xn1 , . . . , x
n
l ∈ Xn be such that ϕn([xni ]Xnδn ) = [xi]

X
δn

for each i = 1, . . . , l. Then,
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[xn∗ ]
Xn
ε =

⋃l
i=1[xni ]Xnδn . Therefore,

νn([x∗]Xε ) =

l∑

i=1

νn([xi]
X
δn) =

l∑

i=1

µ̂n([xi]
X
δn) =

l∑

i=1

µn([xni ]Xnδn ) = µn([xn∗ ]
Xn
ε ).

Since Xn is a Cauchy sequence, there exists N2 > 0 such that uGW,∞(Xn,Xm) < ε
when n,m > N2. Then, by Theorem 3.13, (Xn)ε ∼=w (Xm)ε for all n,m > N2.
By Lemma A.7, (Xn)ε is finite, then (Xn)ε has cardinality independent of n when
n > N2. For all n > N2, we define the finite set An :=

{
µn([xn]Xnε )|xn ∈ Xn

}
.

An is independent of n since (Xn)ε ∼=w (Xm)ε for all n,m > N2. This implies
that µn([xn∗ ]

Xn
ε ) only takes value in a finite set An. Combining with the fact that

limn→∞ µn([xn∗ ]
Xn
ε ) = limn→∞ νn([x]Xε ) = ν([x∗]Xε ) exists, there exists N3 > 0 such

that when n > N3, µn([xn∗ ]ε) ≡ C for some constant C. This implies that

ν([x∗]Xε ) = µn([xn∗ ]
Xn
ε ), when n > max(N1, N2, N3).

Since Xε is finite, there exists a common N > 0 such that for all n > N and
∀[x∗]ε ∈ Xε we have

ν([x∗]Xε ) = µn([xn∗ ]
Xn
ε ),

where [xn∗ ]
Xn
ε = ψ−1

n ([x∗]Xε ) ∈ (Xn)ε. This indicates that νε = (ψn)#(µn)ε when
n > N . Therefore, Xε ∼=w (Xn)ε and thus uGW,∞(X ,Xn) ≤ ε.

B.4.2 Proof of Proposition 3.27

Next, we will demonstrate Theorem 3.27. However, before we come to this we recall some
facts about p-metric and p-geodesic spaces.

Lemma B.15 (Mémoli and Wan [70, Proposition 7.10]). Given p ∈ [1,∞), if X is a
p-metric space, then X is not q-geodesic for all 1 ≤ q < p.

Lemma B.16 (Mémoli and Wan [70, Theorem 7.7]). Let X be a geodesic metric space.
Then, for any p ≥ 1, S 1

p
(X) is p-geodesic, where Sα denotes the snowflake transform for

α > 0 (cf. Section 3.3).

For p = 1, the proof is based on the following property of the 1-Wasserstein space.

Lemma B.17 (Bottou et al. [10, Theorem 5.1]). Let X be a compact metric space. Then,
the space W1(X) := (P(X), dXW,1) is a geodesic space.

Based on the above results and Corollary B.2, the proof of Theorem 3.27 is straightforward.
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Proof of Theorem 3.27. Let X and Y be two compact ultrametric measure spaces. First,
we consider the case p = 1. By Corollary B.2, there exist a compact ultrametric space Z
and isometric embeddings φ : X ↪→ Z and ψ : Y ↪→ Z such that

usturm
GW,p(X ,Y) = dZW,p(φ#µX , ψ#µY ).

The space W1(Z) is geodesic (cf. Lemma B.17). Therefore, there exists a Wasserstein
geodesic γ̃ : [0, 1]→W1(Z) connecting φ#µX and ψ#µY . This induces a curve γ : [0, 1]→
Uw where for each t ∈ [0, 1], γ(t) := (supp(γ̃(t)), u|supp(γ̃(t))×supp(γ̃(t)), γ̃(t)). Note that
γ(0) ∼=w X and γ(1) ∼=w Y and hence we simply replace γ(0) and γ(1) with X and Y,
respectively. Now, for each s, t ∈ [0, 1], we have that

dsturm
GW,1(γ(s), γ(t)) ≤ dZW,1(γ̃(s), γ̃(t)) = |s− t|dZW,1(γ̃(0), γ̃(1)) = |s− t|dsturm

GW,1(X ,Y).

Therefore, γ is a geodesic connecting X and Y and thus (Uw, usturm
GW,1) is geodesic.

Next, we come to the case p > 1. By Corollary B.13, Sp

(
Uw, usturm

GW,p

)
∼=
(
Uw, usturm

GW,1

)
.

This implies that S 1
p
(Uw, usturm

GW,1) ∼=
(
Uw, usturm

GW,p

)
. Hence, by Lemma B.16, we have that

(
Uw, usturm

GW,p

)
is p-geodesic.

B.5 Technical issues from Section 3

In the following, we address various technical issues from Section 3.

B.5.1 The Wasserstein pseudometric

Given a set X, a pseudometric is a symmetric function dX : X ×X → R≥0 satisfying the
triangle inequality and dX(x, x) = 0 for all x ∈ X. Note that if moreover dX(x, y) = 0
implies x = y, then dX is a metric. There is a canonical identification on pseudometric
spaces (X, dX): x ∼ x′ if dX(x, x′) = 0. Then, ∼ is in fact an equivalence relation and we
define the quotient space X̃ = X/ ∼. Define a function d̃X : X̃ × X̃ → R≥0 as follows:

d̃X([x], [x′]) :=

{
dX(x, x′) if dX(x, x′) 6= 0

0 otherwise
.

d̃X turns out to be a metric on X̃. In the following, the metric space (X̃, d̃X) is referred
to as the metric space induced by the pseudometric space (X, dX). Note that d̃X preserves
the induced topology (see e.g. [44]) and thus the quotient map Ψ : X → X̃ is continuous.
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Analogously to the Wasserstein distance, which is defined for probability measures on met-
ric spaces, we define the Wasserstein pseudometric for measures on compact pseudometric
spaces as done in [94]. Let α, β ∈ P(X). Then, we define for p ∈ [1,∞) the Wasserstein
pseudometric of order p as

d
(X,dX)
W,p (α, β) :=

(
inf

µ∈C(α,β)

∫

X×X
dpX(x, y)µ(dx× dy)

) 1
p

(34)

and for p =∞ as

d
(X,dX)
W,∞ (α, β) := inf

µ∈C(α,β)
sup

(x,y)∈supp(µ)
u(x, y). (35)

It is easy to see that the Wasserstein pseudometric is closely related to the Wasserstein
distance on the induced metric space. More precisely, one can show the following.

Lemma B.18. Let (X, dX) denote a compact pseudometric space, let α, β ∈ P(X). Then,
it follows for p ∈ [1,∞] that

d
(X,dX)
W,p (α, β) = d

(X̃,d̃X)
W,p (Ψ#α,Ψ#β) (36)

and in particular that the infimum in Equation (34) (resp. in Equation (35) if p = ∞) is
attained for some µ ∈ C(α, β).

Proof. In the course of this proof we focus on the case p < ∞ and remark that the case
p = ∞ follows by similar arguments. The quotient map allows us to define the map
θ : C(α, β) → C(Ψ#α,Ψ#β) via µ 7→ (Ψ × Ψ)#µ. It is easy to see that θ is well defined
and surjective. Furthermore, it holds by construction that

∫

X×X
dpX(x, y)µ(dx× dy) =

∫

X̃×X̃
d̃pX(x, y) θ(µ)(dx× dy)

for all µ ∈ C(α, β). Hence, Equation (36) follows.

We come to the second part of the claim. By [100, Sec.4] there exists an optimal coupling
µ̃∗ ∈ C(Ψ#α,Ψ#β) such that

d
(X̃,d̃X)
W,p (Ψ#α,Ψ#β) =

(∫

X̃×X̃
d̃pX(x, y) µ̃∗(dx× dy)

) 1
p

.

In consequence, we find using our previous results that for any µ∗ ∈ θ−1(µ̃∗) it holds

d
(X̃,d̃X)
W,p (Ψ#α,Ψ#β) =

(∫

X̃×X̃
d̃pX(x, y) µ̃∗(dx× dy)

) 1
p

=

(∫

X×X
dpX(x, y)µ∗(dx× dy)

) 1
p

= d
(X,dX)
W,p (α, β).

This yields the claim.
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B.5.2 Regularity of the cost functionals of uGW,p and usturm
GW,p

In the remainder of this section, we collect various technical results required to demonstrate
the existence of optimizers in the definitions of usturm

GW,p (see Equation (10)) and uGW,p (see
Equation (13)).

Lemma B.19. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be compact ultrametric measure
spaces. Then, µ ∈ C(µX , µY ) ⊆ P(X × Y,max(uX , uY )) is compact with respect to weak
convergence.

Proof. The proof follows directly from Chowdhury and Mémoli [23, Lemma 2.2].

Lemma B.20. Let X ,Y ∈ Uw. Let D1 ⊆ Dult(uX , uY ) be a non-empty subset satisfying
the following: there exist (x0, y0) ∈ X × Y and C > 0 such that u(x0, y0) ≤ C for all
u ∈ D1. Then, D1 is pre-compact with respect to uniform convergence.

Proof. Let {un}n∈N ⊆ D1 be a sequence. Note that X × Y ⊆ X t Y × X t Y . Let
vn := un|X×Y . For any n ∈ N and any (x, y), (x′, y′) ∈ X × Y , we have that

|un(x, y)− un(x′, y′)| ≤ uX(x, x′) + uY (y, y′) ≤ 2 max (uX , uY )
(
(x, y), (x′, y′)

)
.

This means that {vn}n∈N is equicontinuous with respect to the ultrametric max{uX , uY }
on X × Y . Now, since un(x0, y0) ≤ C, we have that for any (x, y) ∈ X × Y ,

un(x, y) ≤ 2 max (uX , uY ) ((x, y), (x0, y0)) + un(x0, y0) ≤ 2 max(diam (X) , diam (Y )) + C.

Consequently, {vn}n∈N is uniformly bounded. By the Arzéla-Ascoli theorem ([52, Theorem
7 on page 61]), we have that each subsequence of {vn}n∈N has a uniformly convergent
subsequence. Hence, we can assume without loss of generality that the sequence {vn}n∈N
converges to v : X × Y → R≥0.

Now, we define u : X t Y ×X t Y → R≥0 as follows:

1. u|X×X := uX and u|Y×Y := uY ;

2. u|X×Y := v;

3. for (y, x) ∈ Y ×X, we let u(y, x) := u(x, y).

It is easy to verify that u ∈ Dult(uX , uY ) and that u is a cluster point of the sequence
{un}n∈N. Therefore, D1 is pre-compact.

Lemma B.21. Let X = (X,uX , µX) and Y = (Y, uY , µY ) be compact ultrametric measure
spaces. Let {µn}n∈N ⊆ C(µX , µY ) be a sequence weakly converging to µ ∈ C(µX , µY ). Let
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{un}n∈N ⊆ Dult(uX , uY ). Suppose that there exist a non-decreasing sequence {pn}n∈N ⊆
[1,∞) and C > 0 such that

(∫

X×Y
(un(x, y))pnµn(dx× dy)

) 1
pn

≤ C

for all n ∈ N. Then, {un}n∈N uniformly converges to some u ∈ Dult(uX , uY ) (up to taking
a subsequence).

Proof. The following argument adapts the proof of Lemma 3.3 in [92] to the current setting.
For any (x0, y0) ∈ supp (µ), there exist ε, δ > 0 and N ∈ N such that for all n ≥ N

C ≥
(∫

X×Y
(un(x, y))pnµn(dx× dy)

) 1
pn

≥
∫

X×Y
un(x, y)µn(dx× dy)

≥
∫

BXε (x0)×BYε (y0)
un(x, y)µn(dx× dy) ≥

∫

BXε (x0)×BYε (y0)
(un(x0, y0)− 2ε)µn(dx× dy)

≥ (un(x0, y0)− 2ε)
(
µ
(
BX
ε (x0)×BY

ε (y0)
)
− δ
)
.

Therefore, {un(x0, y0)}n≥N is uniformly bounded. By Lemma B.20, we have that {un}n∈N
has a uniformly convergent subsequence.

Lemma B.22. Let X,Y be ultrametric spaces, then Λ∞(uX , uY ) : X ×Y ×X ×Y → R≥0

is continuous with respect to the product topology (induced by max(uX , uY , uX , uY )).

Proof. Fix (x, y, x′, y′) ∈ X × Y × X × Y and ε > 0. Choose 0 < δ < ε such that δ <
uX(x, x′) if x 6= x′ and δ < uY (y, y′) if y 6= y′. Then, consider any point (x1, y1, x

′
1, y
′
1) ∈

X × Y ×X × Y such that uX(x, x1), uY (y, y1), uX(x′, x′1), uY (y′, y′1) ≤ δ. For uX(x1, x
′
1),

we have the following two situations:

1. x = x′: uX(x1, x
′
1) ≤ max(uX(x1, x), uX(x, x′1)) ≤ δ < ε;

2. x 6= x′: uX(x1, x
′
1) ≤ max(uX(x1, x), uX(x, x′), uX(x′, x′1)) = uX(x, x′). Similarly,

uX(x, x′) ≤ uX(x1, x
′
1) and thus uX(x, x′) = uX(x1, x

′
1).

Similar result holds for uY (y1, y
′
1). This leads to four cases for Λ∞(uX(x1, x

′
1), uY (y1, y

′
1)):

1. x = x′, y = y′: In this case we have uX(x1, x
′
1), uY (y1, y

′
1) < ε. Then,

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| = Λ∞(uX(x1, x

′
1), uY (y1, y

′
1))

≤ ε;
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2. x = x′, y 6= y′: Now uX(x1, x
′
1) < ε and uY (y1, y

′
1) = uY (y, y′). If uY (y, y′) ≥ ε >

uX(x1, x
′
1), then

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| = |uY (y, y′)− uY (y, y′)| = 0.

Otherwise uY (y, y′) < ε, which implies that Λ∞(uX(x1, x
′
1), uY (y1, y

′
1)) ≤ ε and

Λ∞(uX(x, x′), uY (y, y′)) = uY (y, y′) ≤ ε. Therefore,

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| ≤ ε;

3. x 6= x′, y = y′: Similar with (2) we have

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| ≤ ε;

4. x 6= x′, y 6= y′: Now uX(x1, x
′
1) = uX(x, x′) and uY (y1, y

′
1) = uY (y, y′). Therefore,

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| = 0.

In conclusion, whenever uX(x, x1), uY (y, y1), uX(x′, x′1), uY (y′, y′1) ≤ δ we have that

|Λ∞(uX(x1, x
′
1), uY (y1, y

′
1))− Λ∞(uX(x, x′), uY (y, y′))| ≤ ε.

Therefore, Λ∞(uX , uY ) is continuous with respect to the metric max(uX , uY , uX , uY ).

B.5.3 uGW,p and the one point space

It is possible to explicitly write down uGW,p, 1 ≤ p ≤ ∞, in some simple settings. In the
following, we derive an explicit formulation of uGW,p, 1 ≤ p ≤ ∞, between an arbitrary
ultrametric measure space X and the one point ultrametric measure space ∗. For this
purpose, we need to introduce some notation. Let X = (X , dX , µX) be a ultrametric
measure space. Let its p-diameter (see e.g., [67]) for 1 ≤ p <∞ be defined as

diamp(X ) :=

(∫∫

X×X

(
dX(x, x′)

)p
µX(dx)µX(dx′)

)1/p

and for p =∞ as
diam∞(X ) := sup

(x,x′)∈supp(µX)
dX(x, x′).

Then, one can show the subsequent proposition.

Proposition B.23. Let ∗ ∈ Uw be the one-point space. Then, it holds for any 1 ≤ p ≤ ∞
that

uGW,p(X , ∗) = diamp(X ).
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Proof. Denote by µ the unique coupling µX ⊗ δ∗ between µX and δ∗. Then, for any p <∞
we have

uGW,p(X , ∗) =

(∫∫

X×∗×X×∗

(
Λ∞(uX(x, x′), u∗(y, y′))

)p
µ(dx× dy)µ(dx′ × dy′)

)1/p

=

(∫∫

X×X

(
uX(x, x′)

)p
µX(dx)µX(dx′)

)1/p

= diamp(X ).

The case p =∞ follows by analogous arguments.

C Missing details from Section 4

C.1 Proofs from Section 4

In the following, we state the full proofs of the results from Section 4.

C.1.1 Proof of Theorem 4.1

We start by proving the first statement. To this end, we observe that for any point x in an
ultrametric space X, there always exists a point x′ ∈ X such that uX(x, x′) = diam (X)
(see [30]). By assumption µX is fully supported on X. Hence, sX,∞ ≡ diam (X) is a
constant function. Therefore,

Λ∞(sX,∞(x), sY,∞(y)) ≡ Λ∞(diam (X) ,diam (Y )), ∀x ∈ X, y ∈ Y.

This implies that FLBult
∞ (X ,Y) = Λ∞(diam (X) ,diam (Y )). By Corollary 5.8 of Mémoli

and Wan [70] and Corollary 3.15, we have that

uGW,∞(X ,Y) ≥ uGH(X,Y ) ≥ Λ∞(diam (X) ,diam (Y )) = FLBult
∞ (X ,Y).

It remains to prove the second statement. The proof for dGW,p(X ,Y) ≥ TLBp(X ,Y)
in [67, Sec. 6] can be used essentially without any change for showing uGW,p(X ,Y) ≥
TLBult

p (X ,Y). Hence, it only remains to show that TLBult
p (X ,Y) ≥ SLBult

p (X ,Y), i.e.,
the claim follows once we have established Proposition C.1.

Proposition C.1. Let X ,Y ∈ Uw and let p ∈ [1,∞]. Then,

TLBult
p (X ,Y) ≥ SLBult

p (X ,Y).

In order to prove Proposition C.1, we need the following technical lemma.
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Lemma C.2. Let X = (X, dX , µX) ∈ Uw. Then, spec (X) := {uX(x, x′) |x, x′ ∈ X} is a
compact subset of (R≥0,Λ∞).

Proof. By Lemma A.7, we have that for each t > 0, Xt is a finite set. Let {tn}∞n=1 be a
positive sequence decreasing to 0. Then, it is easy to see that

spec (X) =
∞⋃

n=1

spec (Xtn) .

Since each spec (Xtn) is a finite set, spec (X) is a countable set.

Now, pick any 0 6= t ∈ spec (X). Suppose t is a cluster point in spec (X). Then, there
exists infinitely many s ∈ spec (X) greater than t

2 . However, this will result in X t
2

being an

infinite set, which contradicts the fact that X t
2

is finite. Therefore, 0 is the only possible

cluster point of spec (X). By Lemma A.2, we have that spec (X) is compact.

With the above auxiliary result available, we can demonstrate Proposition C.1 and hence
finish the proof of Theorem 4.1.

Proof of Proposition C.1. We first prove the case when p <∞. Let dhX (x) := uX(x, ·)#µX
and let dhY(y) := uY (y, ·)#µY . Futher, define dHX := (uX)#(µX ⊗ µX) and dHY :=
(uY )#(µY ⊗ µY ). Lemma C.2 implies that the set S := spec (X) ∪ spec (Y ) is a compact
subset of (R≥0,Λ∞). It is easy to see that supp(dhX ), supp(dhY), supp(dHX ), supp(dHY) ⊆
S ⊆ R≥0. Now, recall that by Proposition 4.4

SLBult
p (X ,Y) = d

(S,Λ∞)
W,p (dHX , dHY)

and

TLBult
p (X ,Y) =

(
inf

π∈C(µX ,µY )

∫

X×Y

(
d

(S,Λ∞)
W,p (dhX (x), dhY(y))

)p
µ(dx× dy)

)1/p

.

Further, we observe for any x ∈ X and y ∈ Y that

d
(S,Λ∞)
W,p (dhX (x), dhY(y)) = inf

πxy∈C(dhX (x),dhY (y))

(∫

S×S
Λp∞(s, t)πxy(ds× dt)

) 1
p

.

For the remainder of this proof, the metric on metric on S ⊆ R≥0 is always given by Λ∞.
Additionally, P(S) denotes the set of probability measures on S and we equip P(S) with
the Borel σ-field with respect to the topology induced by weak convergence.

Claim 1: There is a measurable choice (x, y) 7→ π∗xy such that for each (x, y) ∈ X×Y , π∗x,y
is an optimal transport plan between dhX (x) and dhY(y).

82

262 The Ultrametric Gromov-Wasserstein Distance



Proof of Claim 1. It is easy to see that both Λ1 and Λ∞ induce the same topology and

thus Borel sets on S. This therefore implies that d
(R≥0,Λ1)
W,p and d

(R≥0,Λ∞)
W,p metrize the same

weak topology on P(S). By Mémoli and Needham [68, Remark 2.5], the following two
maps are continuous with respect to the weak topology and thus measurable:

Φ1 : X → P(S), x 7→ dhX (x)

and

Φ2 : Y → P(S), y 7→ dhY(y).

Since S is a compact space, the space
(
P(S), d

(S,Λ∞)
W,p

)
is separable [100, Theorem 6.18].

This yields that B (P(S)× P(S)) = B (P(S)) ⊗B (P(S)) [36, Proposition 1.5]. Hence,
the product Φ of Φ1 and Φ2, defined by

Φ : X × Y → P(S)× P(S), (x, y) 7→ (dhX (x), dhY(y))

is measurable [36, Proposition 2.4]. Since Φ is measurable, a direct application of Villani
[100, Corollary 5.22] gives the claim.

Now, we have that for every µ ∈ C(µX , µY ) that

∫

X×Y

(
d

(S,Λ∞)
W,p (dhX (x), dhY(y))

)p
µ(dx× dy)

=

∫

X×Y

∫

S×S
Λp∞(s, t)π∗xy(ds× dt)µ(dx× dy)

=

∫

S×S
Λp∞(s, t) sµ(ds× dt),

by Fubini’s Theorem, where sµ ∈ P(S × S) is defined as

sµ(A) :=

∫

X×Y
π∗xy(A)µ(dx× dy) (37)

for measurable A ⊆ S × S. We remark that by Claim 1 the measure sµ in Equation (37) is
well defined. Next, we verify that sµ ∈ C(dHX , dHY). For any measurable A ⊆ (S,Λ∞) we
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have

sµ(A× S) =

∫

X×Y
π∗x,y(A× S)µ(dx× dy)

=

∫

X×Y
dhX (x)(A)µ(dx× dy)

=

∫

X
dhX (x)(A)µX(dx)

(i)
=

∫

X

∫

X
1{dX(x,x′)∈A} µX(dx′)µX(dx)

=dHX (A),

where we have applied the marginal constraints for πxy and µ. Further, (i) follows by the
change-of-variables formula. The analogous arguments give that

sµ(S ×B) = dHY(B),

for any measurable B ⊆ S. Thus, we conclude that for every µ ∈ C(µX , µY )
∫

X×Y

(
d

(S,Λ∞)
W,p (dhX (x), dhY(y))

)p
µ(dx× dy) =

∫

S×S
Λp∞(s, t) sµ(ds× dt)

≥ inf
π∈C(dHX ,dHY )

∫

S×S
Λ∞(s, t)π(ds× dt)

=
(
d

(S,Λ∞)
W,p (dHX , dHY)

)p
.

This gives the claim for p <∞.

Next, we prove the assertion for the case p =∞. Note that for any p <∞

TLBult
p (X ,Y) = inf

µ∈C(µX ,µY )

∥∥∥d(S,Λ∞)
W,p (dhX (·), dhY(·))

∥∥∥
Lp(µ)

(38)

≤ inf
µ∈C(µX ,µY )

∥∥∥d(S,Λ∞)
W,∞ (dhX (·), dhY(·))

∥∥∥
L∞(µ)

(39)

= TLBult
∞ (X ,Y), (40)

where the inequality holds since d
(S,Λ∞)
W,p ≤ d(S,Λ∞)

W,∞ and ‖·‖Lp(µ) ≤ ‖·‖L∞(µ).

By Givens and Shortt [38, Proposition 3] we have that

SLBult
∞ (X ,Y) = d

(S,Λ∞)
W,∞ (dHX , dHY) = lim

p→∞
d

(S,Λ∞)
W,p (dHX , dHY) = lim

p→∞
SLBult

p (X ,Y).

Therefore,

SLBult
∞ (X ,Y) = lim

p→∞
SLBult

p (X ,Y) ≤ lim sup
p→∞

TLBult
p (X ,Y) ≤ TLBult

∞ (X ,Y).
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C.1.2 Proof of Proposition 4.4

We only prove the first statement for p ∈ [1,∞). The case p = ∞ as well as the second
statement can be proven in a similar manner.

By directly using the change-of-variables formula, we have the following:

SLBult
p (X ,Y)

= inf
γ∈C(µX⊗µX ,µY ⊗µY )

∫

X×X×Y×Y

(
Λ∞

(
uX(x, x′), uY (y, y′)

))p
γ(d(x, x′)× d(y, y′))

= inf
γ∈C(µX⊗µX ,µY ⊗µY )

∫

R≥0×R≥0

(Λ∞ (s, t))p (uX × uY )#γ(ds× dt),

where uX × uY : X ×X × Y × Y → R≥0 ×R≥0 maps (x, x′, y, y′) to (uX(x, x′), uY (y, y′)).
By Lemma A.5, we have that

(uX × uY )#C(µX ⊗ µX , µY ⊗ µY ) = C ((uX)#(µX ⊗ µX), (uY )#(µY ⊗ µY )) .

Therefore,

SLBult
p (X ,Y) = inf

γ∈C(µX⊗µX ,µY ⊗µY )

∫

R≥0×R≥0

(Λ∞ (s, t))p (uX × uY )#γ(ds× dt)

= inf
γ̃∈C((uX)#(µX⊗µX),(uY )#(µY ⊗µY ))

∫

R≥0×R≥0

(Λ∞ (s, t))p γ̃(ds× dt)

=d
(R≥0,Λ∞)
W,p ((uX)#(µX ⊗ µX), (uY )#(µY ⊗ µY )).

C.1.3 The relation between SLBult and TLBult

Next, we will demonstrate that there are ultrametric measure spaces X1 and X2 such
that SLBult

p (X1,X2) = 0, while it holds TLBult
p (X1,X2) > 0. To this end, consider the

three point space ∆3(1) = ({x1, x2, x3}, u) where u(xi, xj) = 1 whenever i 6= j. Let

µ1 := 2
3δx1 + 1

6δx2 + 1
6δx3 and let µ2 := 1

3δx1 +
(

1
3 − 1

2
√

3

)
δx2 +

(
1
3 + 1

2
√

3

)
δx3 . Both µ1 and

µ2 are probability measures on ∆3(1). We then let X1 := (∆3(1), µ1) and X2 := (∆3(1), µ2).
It is easy to check that

u#(µ1 ⊗ µ1) = u#(µ2 ⊗ µ2) =
1

2
δ0 +

1

2
δ1.

Then, by Proposition 4.4 we immediately have that SLBult
p (X1,X2) = 0 for any p ∈ [1,∞].

Now, note that

u(x1, ·)#µ1 =
2

3
δ0 +

1

3
δ1,
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which is obviously different from all u(xi, ·)#µ2 for i = 1, 2, 3. This implies (by Proposi-
tion 4.4) that we have TLBult

p (X1,X2) > 0 for any p ∈ [1,∞].

In fact, this example works as well for showing that TLBp(X1,X2) > SLBp(X1,X2) = 0.

D Missing details from Section 5

D.1 Proofs from Section 5

Next, we give the complete proofs of the results stated in Section 5.

D.1.1 Proof of Theorem 5.6

The first step to prove this is to verify the existence of an optimal coupling. To this end,
we make the following obvious observation.

Lemma D.1. Let X,Y be finite ultra-dissimilarity spaces, then Λ∞(uX , uY ) : X × Y ×
X × Y → R≥0 is continuous with respect to the discrete topology.

This allows us to verify the subsequent analogue to Proposition B.10.

Proposition D.2. Let X ,Y ∈ Uwdis. Then, for any p ∈ [1,∞], there always exists an
optimal coupling µ ∈ C(µX , µY ) such that uGW,p(X ,Y) = disult

p (µ).

Proof. The proof is essentially the same as the one for Proposition B.10. We only replace
Lemma B.22 with Lemma D.1. The details are left to the reader.

With Proposition D.2 available and Theorem 3.10 already proven, it is immediately clear
how to verify the symmetry and the p-triangle inequality for uGW,p on Uwdis. Hence it only
remains to demonstrate identity of indiscernibles.

Proof of Theorem 5.6. Due to the similarity between Theorem 5.6 and Theorem 3.10, we
only verify that uGW,p(X ,Y) = 0 if and only if X ∼=w Y. If X ∼=w Y, then obviously
uGW,p(X ,Y) = 0.

Next, we assume that uGW,p(X ,Y) = 0. By Proposition D.2 there exists µ ∈ C(µX , µY )
such that uGW,p(X ,Y) = disult

p (µ) = 0. Now, we define a map ϕ : X → Y as follows: For
any x ∈ X we have µX({x}) > 0, since µX has full support and X is finite. As a result,
µ({(x, y)}) > 0 for some y ∈ Y , then we let ϕ(x) 7→ y. This map is well-defined. Indeed, if
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there are x ∈ X and y, y′ ∈ Y such that µ({(x, y)}), µ({(x, y′)}) > 0, then by disult
p (µ) = 0

we must have that

∆∞
(
uX(x, x), uY (y, y′)

)
= ∆∞ (uX(x, x), uY (y, y)) = ∆∞

(
uX(x, x), uY (y′, y′)

)
= 0.

This implies that uY (y, y′) = uY (y, y) = uY (y′, y′) = uX(x, x). Since uY is an ultra-
dissimilarity, we have that y = y′ (cf. condition (3) in Definition 5.1). Essentially the same
argument gives that ϕ : X → Y is an injective map. As µ ∈ C(µX , µY ) and ϕ is injective,
it follows µX({x}) = µ({(x, ϕ(x))}) ≤ µY ({ϕ(x)}) for any x ∈ X. Since

1 =
∑

x∈X
µX({x}) ≤

∑

x∈X
µY ({ϕ(x)}) ≤ 1,

we have that µX({x}) = µY ({ϕ(x)}) for all x ∈ X. Since µY is fully supported, this implies
that ϕ is a bijective measure preserving map. Now, for any x, x′ ∈ X, disult

p (µ) = 0 implies
that ∆∞(uX(x, x′), uY (ϕ(x), ϕ(x′))) = 0 and thus uX(x, x′) = uY (ϕ(x), ϕ(x′)). Therefore,
ϕ is also an isometry and thus an isomorphism. In consequence, X ∼=w Y.

E Missing details from Section 6

E.1 Missing details from Section 6.2

Here, we list the precise results for the comparisons of the spaces Xi, 1 ≤ i ≤ 4, illustrated
in Figure 6. They are gathered in Table 2 and Table 3.

Tab. 2: Comparison of different ultrametric measure spaces I: The values of uGW,1(Xi,Xj) (ap-
proximated by Algorithm 1) and uGW,∞(Xi,Xj), 1 ≤ i ≤ j ≤ 4, where Xi, 1 ≤ i ≤ 4, denote the ultrametric
measure spaces displayed in Figure 6.

uGW,1 uGW,∞
X1 X2 X3 X4 X1 X2 X3 X4

X1 0.0000 0.9333 0.2444 0.7071 0.0000 2.1000 1.1000 2.000
X2 0.9333 0.0000 1.1778 1.5107 2.1000 0.0000 2.1000 2.1000
X3 0.2444 1.1778 0.0000 0.4493 1.1000 2.1000 0.0000 2.0000
X4 0.7071 1.5107 0.4493 0.0000 2.0000 2.1000 2.0000 0.0000
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Tab. 3: Comparison of different ultrametric measure spaces II: The values of SLBult
1 (Xi,Xj),

1 ≤ i ≤ j ≤ 4, where Xi, 1 ≤ i ≤ 4, denote the ultrametric measure spaces displayed in Figure 6.

SLBult
1

X1 X2 X3 X4

X1 0.0000 0.9333 0.2444 0.0778
X2 0.9333 0.0000 1.1778 1.4522
X3 0.2444 1.1778 0.0000 0.2764
X4 0.0778 1.5107 0.2764 0.0000

E.2 Missing details from Section 6.3

Here, we state more results for the comparison of the ultrametric measure spaces illustrated
in Figure 6 and give the precise construction of the ultrametric spaces Zik,t, 2 ≤ k ≤ 5,
t = 0, 0.2, 0.4, 0.4, 1 ≤ i ≤ 15.

The ultrametric measure spaces from Figure 6 First, we give the precise results
for comparing the ultametric dissimilarity spaces in Figure 6 based on dGW,1 and SLB1.
They are gathered in Table 4.

Tab. 4: Comparison of different ultrametric measure spaces III: The values of dGW,1(Xi,Xj)
(approximated by Algorithm 1) and SLB1(Xi,Xj), 1 ≤ i ≤ j ≤ 4, where (Xi, dXi , µXi), 1 ≤ i ≤ 4, denote
the ultrametric measure spaces displayed in Figure 6.

dGW,1 SLB1

X1 X2 X3 X4 X1 X2 X3 X4

X1 0.0000 0.0444 0.0222 0.2111 0.0000 0.0444 0.0222 0.0422
X2 0.0444 0.0000 0.0667 0.2556 0.0444 0.0000 0.0667 0.0867
X3 0.0222 0.0667 0.0000 0.2253 0.0222 0.0667 0.0000 0.0573
X4 0.2111 0.2556 0.2253 0.0000 0.0422 0.0867 0.0573 0.0000

Perturbations at level t Next, we give the precise construction of the ultrametric
measure spaces Zik,t, 2 ≤ k ≤ 5, t = 0, 0.2, 0.4, 0.4, 1 ≤ i ≤ 15. For each k = 2, 3, 4, 5 we
first draw a sample with 100× k points from the mixture distribution

k∑

i=0

1

k
U [1.5(k − 1), 1.5(k − 1) + 1],
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where U [a, b] denotes the uniform distribution on [a, b]. For each sample, we employ the
single linkage algorithm to create a dendrogram, which then induces an ultrametric on
the given sample. We further draw a 30-point subspace from each ultrametric space and
denote it by Zk. These four spaces have similar diameter values between 0.5 and 0.6. Each
space Zk is equipped with the uniform probability measure and the resulting ultrametric
measure spaces are denoted by Zk = (Zk, uZk , µZk), k = 2, 3, 4, 5. We remark that k can
be regarded as the number of blocks in the dendrogram representation of the obtained
ultrametric measure spaces (see the top row of Figure 7 for a visualization of three 3-block
spaces).
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Density based Geometric Analysis of Complex Data
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Abstract

How can we tell complex point clouds with different small scale characteristics
apart, while disregarding global features? Can we find a suitable transformation of
such data in a way that allows to discriminate between differences in this sense with
statistical guarantees?

In this paper, we consider the analysis and classification of complex point clouds as
they are obtained, e.g., via single molecule localization microscopy. We focus on the
task of identifying differences between noisy point clouds based on small scale charac-
teristics, while disregarding large scale information such as overall size. We propose an
approach based on a transformation of the data via the so-called Distance-to-Measure
(DTM) function, a transformation which is based on the average of nearest neighbor
distances. For each data set, we estimate the probability density of average local dis-
tances of all data points and use the estimated densities for classification. While the
applicability is immediate and the practical performance of the proposed methodology
is very good, the theoretical study of the density estimators is quite challenging, as they
are based on non-i.i.d. observations that have been obtained via a complicated trans-
formation. In fact, the transformed data are stochastically dependent in a non-local
way that is not captured by commonly considered dependence measures. Nonetheless,
we show that the asymptotic behaviour of the density estimator is driven by a kernel
density estimator of certain i.i.d. random variables by using theoretical properties of
U-statistics, which allows to handle the dependencies via a Hoeffding decomposition.
We show via a numerical study and in an application to simulated single molecule
localization microscopy data of chromatin fibers that unsupervised classification tasks
based on estimated DTM-densities achieve excellent separation results.

∗Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Hallenweg 19,
7522NH Enschede
†Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen
‡Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris
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Keywords Geometric data analysis, Distance-to-Measure signature, kernel density esti-
mators, nearest neighbor distributions

1 Introduction

The analysis and extraction of information from complex point clouds has become a main
task in many applications. Prominent examples can be found in geomorphology, where
structure in point-clouds obtained from laser scanners is investigated to infer on the shape
of the Earth [27, 54], or in cosmology, where the Cosmic Web is analysed based on a discrete
set of points from N -body simulations or galaxy studies [32]. Related questions also arise in
biology, when data from single molecule localization microscopy (SMLM), which is based
on the localization of fluorescent molecules that appear at different times, are analyzed
[31, 42]. Data obtained in SMLM are 2D or 3D point clouds, where the points correspond
to particular molecular localization events. In this paper, we consider a specific example
which is related to the analysis of super-resolution visualization of human chromosomal
regions as it has recently been investigated in Hao et al. [26]. In this application, the goal
is to better understand the 3D organization of the chromatin fiber in cell nuclei, which
plays a key role in the regulation of gene expression.
In all aforementioned examples, it is important to identify significant differences between
noisy point clouds, where a focus is on general structure and small scale information rather
than on global features such as the overall shape of a point cloud.

Fig. 1: Example Data: Four different simulated chromatin fibers in two different conditions: Condition
A (orange (far left) and blue-green (middle right)) and Condition B (pink (middle left) and green (far
right)) for the purpose of comparison.
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For illustration, Figure 1 shows four simulated chromatin fibers in two different condi-
tions. The displayed structures form loops of different sizes and frequencies, based on the
condition under which they were simulated, where the differences are very subtle. In the
application considered in this paper, we analyse noisy samples of such simulated structures.
The noise accounts for localization errors as they are present in real SMLM data. The loops
are of sizes comparable to the resolution of the images (see Section 4 and Hao et al. [26]
for more details), which makes the problem tractable but difficult. The aim is to classify
the point clouds based on their loop distribution (i.e. based on their small scale character-
istics), while disregarding their total size or large scale shapes. It is natural to transform
such complicated data prior to the analysis, in particular when one has a clear objective
in mind. In the above reference, the statistical analysis of the simulated and real data
was based on a transformation of each data cloud onto a set of two parameters, capturing
smoothness and local curvature of the point clouds. While this transformation provided
a clear discrimination between different groups, the amount of information preserved in a
two-dimensional parameter is not sufficient as a basis for point-by-point classification. In
this paper, we propose an approach which is similar in spirit, but which provides a trans-
formation into a curve, with different characteristics for the different conditions. In our
analysis, the whole curves are then used as features. To this end, we perform the following
two steps.

(i) A transformation of the data points in a point cloud based on the Distance-to-Measure
(DTM) signature [13, 14] to a one-dimensional data set,

(ii) The analysis of the distribution of the DTM-transformed data via their estimated
probability density.

The DTM signature is closely related to certain nearest neighbor distributions, which
makes this approach very intuitive. In particular, this framework allows for a compre-
hensive exploratory analysis of complex data, for which we might seek a simple graphical
representation that captures and summarizes the local structural information well.

1.1 The DTM-Density as a Representation for Local Features

We now introduce the statistical framework of the paper and carefully define the previously
mentioned DTM-signature. Throughout the following, we consider random point clouds
as samples from a Euclidean metric measure space X = (X , || · ||, µX ), i.e., a triple, where
X ⊂ Rd denotes a compact set, || · || stands for the Euclidean distance and µX denotes a
probability measure that is fully supported on the compact set X . If, additionally, µX has
a Lipschitz continuous density with respect to the d-dimensional Lebesgue measure, then
we call X a regular Euclidean metric measure space. For each metric measure space X , we
can define the corresponding Distance-to-Measure (DTM) function with mass parameter

3

275



m ∈ (0, 1] for x ∈ Rd as

d2
X ,m(x) =

1

m

∫ m

0
F−1
x (u) du, (1)

where Fx(t) = P (‖X − x‖2 ≤ t), X ∼ µX , and F−1
x denotes the corresponding quantile

function. The DTM function, which is essential for the definition of the DTM-signature, is
a population quantity that is generally unknown in practice and thus has to be estimated
from the data. In order to do so, we replace the quantile function in the definition (1)

by its empirical version as follows. Let X1 . . . , Xn
i.i.d.∼ µX and denote the corresponding

empirical measure by µ̂X . We define for t ≥ 0

F̂x,n(t) =
1

n

n∑

i=1

1{||x−Xi||2≤t} (2)

and denote by F̂−1
x,n the corresponding quantile function, giving rise to a plug-in estimator

for the Distance-to-Measure function d2
X ,m(x):

δ2
X ,m(x) =

1

m

∫ m

0
F̂−1
x,n(u) du. (3)

In the special case that m = k
n , it is possible to rewrite (3) as a nearest neighbor statistic

as follows

δ2
X ,m(x) =

1

k

∑

Xi∈Nk(x)

||Xi − x||2, (4)

where Nk(x) is the set containing the k nearest neighbors of x among the data points
X1, . . . , Xn.

As discussed previously, we require a good descriptor for the small scale behavior of our
data. Hence, in a similar spirit as Brécheteau [7], we reduce the potentially complex Eu-
clidean metric measure space to a one-dimensional probability distribution by considering
the Distance-to-Measure (DTM) signature d2

X ,m(X), where X ∼ µX . That is, the deter-

ministic point x ∈ X is replaced by the random variable X. The distribution of d2
X ,m(X)

captures the relative frequency of the mean of the distances of a random point in X to
its “m · 100% nearest neighbors”. We will empirically illustrate that the distribution of
d2
X ,m(X) is a good descriptor for the small scale behavior of the considered data for small

values of m and verify that it is well-suited for chromatin loop analysis. Furthermore, it
is easy to see that for m = 1 the random quantity d2

X ,1(X) is closely related to the lower
bound FLBp of the Gromov-Wasserstein distance defined in Mémoli [37] and is well suited
for object discrimination with a focus on large scale characteristics. Although this case is
not of interest in our specific data example, we include it in our analysis, since variants of
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d2
X ,1(X) have been proven very useful for pose invariant object discrimination [22, 25].

Since we propose to reduce (possibly complex) multi-dimensional metric measure spaces
to a one-dimensional probability distribution, the next step is to visualize and investigate
these distributions. It is well known that probability densities (if they exist) usually provide
a useful visual insight into the probability distributions considered. In this regard, they are
usually better suited than cumulative distribution functions (see, e.g., Chen and Pokojovy
[15]). Therefore, we focus on the estimation of the density of d2

X ,m(X) in this paper. A

natural estimator for the density of d2
X ,m(X), in the following denoted as DTM-density, in

case of a known DTM-function, is given by

f̂d2
X ,m

(y) =
1

nh

n∑

i=1

K

(
d2
X ,m(Xi)− y

h

)
. (5)

However, since µX is usually unknown, we cannot calculate d2
X ,m and consequently it is

generally not feasible to estimate fd2
X ,m

via f̂d2
X ,m

. Instead, we propose to replace d2
X ,m by

its empirical version δ2
X ,m and estimate fd2

X ,m
based on the plug-in estimator

f̂δ2X ,m
(y) =

1

nh

n∑

i=1

K

(
δ2
X ,m(Xi)− y

h

)
. (6)

It is important to note that, in contrast to f̂d2
X ,m

, the plug-in estimator f̂δ2X ,m
is based

on the non-i.i.d. observations δ2
X ,m(X1), . . . , δ2

X ,m(Xn). In fact, for each i 6= j, δ2
X ,m(Xi)

and δ2
X ,m(Xj) are stochastically dependent. The asymptotic behaviour of kernel density

estimators under dependence has been studied extensively in the literature for various
mixing and linear processes connected to weakly dependent time series [10, 34, 35, 45, 56].
In all these settings, results on asymptotic normality similar to the i.i.d. case can be derived.
Related results for spatial processes can be found, e.g., in Hallin et al. [24]. For long-range
dependent data, the asymptotic behaviour of kernel density estimators changes drastically.
Here, the empirical density process (based on kernel estimators of the marginal densities)
converges weakly to a tight limit (see Csorgo and Mielniczuk [16]). For the sequence
δ2
X ,m(X1), . . . , δ2

X ,m(Xn), however, a structure as in the above examples (in space or time)

is not given. For each i 6= j, δ2
X ,m(Xi) and δ2

X ,m(Xj) are stochastically dependent in a
way that is not captured by the dependency models considered in the literature discussed
above.
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1.2 Main Results

The main theoretical contribution of the paper is the distributional limit of the kernel
density estimator defined in (6). More precisely, we prove (cf. Theorem 2.12), given
certain regularity conditions on fd2

X ,m
, d2
X ,m(y) and X , (see Condition 2.2 in Section 2.1)

that for n→∞, h = o
(
n−1/5

)
and nh→∞

√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
. (7)

This means that, although the kernel density estimator f̂δ2X ,m
is based on transformed,

dependent random variables, asymptotically, it behaves precisely as the inaccessible kernel
density estimator f̂d2

X ,m
based on independent random variables. This entails that many

methods which are feasible for kernel density estimators based on i.i.d. data, can be applied
in this much more complex setting as well, with the same asymptotic justification.

1.3 Application

Chromosomes, which consist of chromatin fibres, are essential parts of cell nuclei in human
beings and carry the genetic information important for heredity transmission. It is known
by now that there are small scale self-interacting genomic regions, so called topologically
associating domains (TADs) which are often associated with loops in the chromatin fibers
[43]. As an application, we consider chromatin loop analysis, one aspect of which is to
study the presence or absence of loops in the chromatin (see Section 4).
The local loop structure is very well characterized by local nearest neighbor means as
illustrated on the right of Figure 2 and hence we propose to use DTM-signatures for
tackling this issue. Figure 2 shows the pipeline for the data transformation (left) and the
resulting kernel density estimators (m = 1/250, biweight kernel, bandwidth selection as in
Section 4) for the four data sets shown in Figure 1 (right, same coloring). It shows that the
kernel density estimators mainly differ between the different conditions and not between
the corresponding chromatin fibers and that the differences between the conditions are
clearly pronounced. This demonstrates that the transformation allows for a qualitative
analysis of the data.

1.4 Related Work

The use of the DTM-signature for the purpose of pose invariant object discrimination was
proposed by Brécheteau [7], who in particular established a relation between the DTM-
signature and the Gromov-Wasserstein distance (see Mémoli [37] for a definition). In the
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Fig. 2: Data analysis pipeline: Illustration of the different steps in the proposed data analysis (left). The
red dots in the details of the image represent data points, the red lines show the point-to-point distances,
whereas the underlying chromatin structure is depicted by a black line. Right: The resulting DTM-density
estimates of the point clouds illustrated in Figure 1 (same coloring).

aforementioned work, the author considers the asymptotic behavior of the Wasserstein dis-
tance between sub-sampled estimates of the DTM-signatures for two different spaces. One
big advantage of our method of estimating the DTM-densities over the former is that it
does not require sub-sampling and all data points can be used for the analysis.
As illustrated in Section 1.1, the DTM-signature is based on the DTM-function (see (1)).
This function has been thoroughly studied and applied in the context of support estima-
tion and topological data analysis [9, 11, 12] and for its sample counterpart (see (3)) many
consistency properties have been established in Chazal et al. [13, 14].

Distance based signatures for object discrimination have been applied and studied in a
variety of settings [2, 3, 8, 21, 44, 47]. Recently, lower bounds of the Gromov-Wasserstein
distance (see Mémoli [37]) have received some attention in applications [22] and in the
investigation of their discriminating properties and their statistical behavior [38, 55].

Furthermore, it is noteworthy that nearest neighbor distributions are of great interest in
various fields in biology [39, 57] as well as in physics [4, 30, 50]. In these fields it is quite
common to consider the (mean of the) distribution of all nearest neighbors for data analy-
sis. While this case corresponds to m = 1/n and is not included in our theoretic analysis,
we would like to emphasize that taking the mean over a certain percentage of nearest
neighbors makes our method a lot more robust against noise, which is why it performs so
well in the analysis of noisy point clouds.
In the analysis of SMLM images, methods from spatial statistics are often employed. Re-
lated to the global distribution of all distances is Ripley’s K, which is used to infer on
the amount and the degree of clustering in a given data set as compared to a point cloud
generated by a homogeneous Poisson point process (see, e.g., Nicovich et al. [42] for the
application of Ripley’s K in this context). Despite the connection via certain distributions
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of distances, the objectives and underlying models are quite different to the setting of this
paper, such that a direct comparison is not straightforward.

Kernel density estimation from dependent data is a broad and well investigated topic. In
addition to the references provided in Section 1.1, kernel density estimators of symmetric
functions of the data and dyadic undirected data have been considered [20, 23]. In these
settings, the summands of the corresponding kernel density estimators admit a “U -statistic
like” dependency structure that has to be accounted for. While this is more closely related
to the dependency structure which we are encountering in our analysis, the structure of
the statistics that appear in the decomposition of the kernel density estimator (6) is quite
different, such that those results cannot directly be transferred to our setting.

1.5 Organization of the Paper

In Section 2 we state the main results and are concerned with the derivation of (7) and
the assumptions required for this.

Afterwards, in Section 3 we illustrate our findings via simulations. In Section 4, we apply
our methodology to the classification within the framework of chromatin loop analysis.

Notation: Throughout the following, we denote the d-dimensional Lebesgue measure by
λd and the (d − 1)-dimensional surface measure in Rd by σd−1. We write B(x, r) for the
open ball in Rd (equipped with || · ||) with center x and radius r. Given a function f or
a measure µ, we write supp(f) and supp(µ) to denote their respective support. Let F be
a distribution function with compact support [a, b] and let F−1 denote the corresponding
quantile function. As frequently done, we set F−1(0) = a and F−1(1) = b. Let U ⊆ Rd1
be an open set. We denote by Ck(U,Rd2) the set of all k-times continuously differentiable
functions from U to Rd2 . Further, we denote by Ck,1(U,Rd2) the set of all k-times continu-
ously differentiable functions from U to Rd2 , whose k’th derivative is Lipschitz continuous.
For d2 = 1, we abbreviate this to Ck(U) and Ck,1(U). If the domain and range of a function
g are clear from the context, we will usually write g ∈ Ck or g ∈ Ck,1.

2 Distributional Limits

In this section, we state our main theoretical results, upon which our statistical method-
ology is based. We show that f̂δ2X ,m

is a reasonable estimator for the density of the DTM-

signature by proving the distributional limit (7). Before we come to this, we recall the

8
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setting, establish the conditions required and ensure that they are met in some simple
examples.

2.1 Setting and Assumptions

First of all, we summarize the setting introduced in Section 1.1.

Setting 2.1. Let (X , || · ||, µX ) denote a regular Euclidean metric measure space. For x ∈
X let d2

X ,m(x) denote the corresponding Distance-to-Measure function with mass parameter

m ∈ (0, 1]. Let X ∼ µX and assume that the Distance-to-Measure Signature d2
X ,m(X) has

a density fd2
X ,m

. Let X1, . . . , Xn
i.i.d.∼ µX and denote by f̂d2

X ,m
and f̂δ2X ,m

the kernel density

estimators defined in (6) and (5), respectively.

It is noteworthy that the assumption that d2
X ,m(X) admits a Lebesgue density is slightly

restrictive. The probability measure µd2
X ,m

of the DTM-signature can have a pure point

component µd2
X ,m,pp in addition to the continuous component µd2

X ,m,cont, if the spaces con-

sidered have very little local structure (for examples, see Section 2.2). That is,

µd2
X ,m

= µd2
X ,m,pp + µd2

X ,m,cont.

If we define fd2
X ,m

to be the Radon-Nikodym derivative of the absolutely continuous com-

ponent µd2
X ,m,cont, i.e., fd2

X ,m
dλ = dµd2

X ,m,cont, the pointwise asymptotic analysis of f̂δ2X ,m
performed in Section 2.3 (see Theorem 2.12) remains valid for all y with µd2

X ,m
({y}) = 0

that meet the corresponding assumptions. This guarantees that our analysis remains mean-
ingful even if parts of our space do not provide local structure that is discriminative.

In order to derive the statement (7), we require certain regularity assumptions on the
density fd2

X ,m
, the DTM function d2

X ,m and the kernel K. For the sake of completeness,

we first recall some facts about the relation of the level sets of a given function. Let
g : Rd → R and let y ∈ R be such that g−1({y}) 6= ∅. Suppose that the function g
is continuously differentiable in an open environment of g−1({y}). Assume further that
∇g 6= 0 on the level set g−1({y}). Then, it follows by Cauchy-Lipschitz’s theory that
there exists a constant h0 > 0, an open set W ⊃ g−1([y − h0, y + h0]) and a canonical
one parameter family of C1-diffeomorphisms Φ : [−h0, h0] ×W → Rd with the following
property:

Φ(v, g−1({y})) = g−1({y + v})
for all v ∈ [−h0, h0] (for the precise construction of Φ see the proof of Lemma D.4 in Section
D.1). Throughout the following, the family {Φ(v, ·)}v∈[−h0,h0] (also abbreviated to Φ) is
referred to as canonical level set flow of g−1({y}).
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Condition 2.2. Let fd2
X ,m

be supported on [D1, D2] and let y ∈ [D1, D2]. Assume that

there exists ε > 0 such that fd2
X ,m

is twice continuously differentiable on (y − ε, y + ε).

Further, suppose that the function d2
X ,m : Rd → R is C2,1 on an open neighborhood of the

level set
Γy := d2

X ,m
−1

({y}) = {x ∈ Rd : d2
X ,m(x) = y},

that ∇d2
X ,m 6= 0 on Γy and that there exists h0 > 0 such that for all −h0 < v < h0

IX (y; v) :=

∫

Γy

∣∣1{x∈X} − 1{Φ(v,x)∈X}
∣∣ dσd−1(x) ≤ Cy|v|, (8)

where {Φ(v, ·)}v∈[−h0,h0] denotes the canonical level set flow of Γy and Cy denotes a finite
constant that depends on y and d2

X ,m. Suppose that the kernel K : R → R+, is an even,
twice continuously differentiable function with supp(K) = [−1, 1]. If m < 1, we assume
additionally that there are constants κ > 0 and 1 ≤ b < 5 such that for u ∈ (0, 1) it holds

ωX (u) := sup
x∈X

sup
t,t′∈(0,1)2,|t−t′|<u

∣∣F−1
x (t)− F−1

x (t′)
∣∣ ≤ κu1/b. (9)

The satisfiability of Condition 2.2 is an important issue that is difficult to address in gen-
eral. Hence, in Section 2.2 we will verify that the requirements of Condition 2.2 are met
in several simple examples. Nevertheless, in order to put Condition 2.2 into a broader
perspective, we first gather some known regularity properties of d2

X ,m as well as {F−1
x }x∈X

and discuss the technical requirement (8) afterwards.

2.1.1 Regularity of d2
X ,m and {F−1

x }x∈X

We distinguish between the cases m < 1 and m = 1 for the presentation of known regularity
results. For m < 1, the smoothness of d2

X ,m has been investigated in Chazal et al. [11],
where the authors derived the following results.

Lemma 2.3.
1. Let (X , || · ||, µX ) denote an Euclidean metric measure space. Then, the function

d2
X ,m : Rd → R is almost everywhere twice differentiable.

2. If X = (X , || · ||, µX ) denotes a regular Euclidean metric measure space, then the
function d2

X ,m : Rd → R is differentiable with derivative

∇d2
X ,m(x) =

2

m

∫
[x− y] dµ̄x(y),

where µ̄x = µX |B(x,γµX ,m(x)) and γµX ,m(x) = inf{r > 0 : µX
(
B̄(x, r)

)
> m}.

10
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Another important point for the case m < 1 is the verification of inequality (9). This
corresponds to bounding a uniform modulus of continuity for the family {F−1

x }x∈X . An
application of Lemma 3 in Chazal et al. [13] immediately yields the subsequent result.

Lemma 2.4. Let (X , || · ||, µX ) be a regular Euclidean metric measure space. Suppose that
there are constants a, b > 0 such that for all r > 0 and all x ∈ X

µX (B(x, r)) ≥ 1 ∧ arb. (10)

Then, it holds that

ωX (u) ≤ 2

(
h

a

)1/b

diam (X ) .

Remark 2.5. Condition (10) is frequently assumed in the context of shape analysis. Mea-
sures that fulfill (10) are often called (a,b)-standard (see Chazal et al. [13], Cuevas [17], Fasy
et al. [18] for a detailed discussion of (a,b)-standard measures). In particular, we observe
that our assumption (9) is met, whenever b < 5.

In the case m = 1, it is important to observe that the DTM function admits the following
specific form:

d2
X ,1(x) =

∫ 1

0
F−1
x (u) du = E

[
||X − x||2

]
, (11)

where X ∼ µX . This identity allows us to derive the following lemma.

Lemma 2.6. Let X = (X , || · ||, µX ) denote a regular Euclidean metric measure space and
let X ∼ µX . Then, it holds that:

1. The function d2
X ,1 : Rd → R is given as

x = (x1, . . . , xd) 7→ (x1 − c1)2 + (x2 − c2)2 + · · ·+ (xd − cd)2 + ζ, (12)

where c = (c1, . . . , cd)
T = E [X] and ζ denotes a finite constant that can be made

explicit.

2. The function d2
X ,1 : Rd → R is three times continuously differentiable.

3. We have ∇d2
X ,1(x) = 0 if and only if x = E [X].

4. Consider the representation of d2
X ,1 in (12). Set Γy = d2

X ,1
−1

({y}) and suppose that(
y − E

[
||X − E [X] ||2

])
> 2h0 > 0. The canonical level set flow {Φ(v, ·)}v∈[−h0,h0]

of Γy considered as function from [−h0, h0] × d2
X ,1
−1

([y − h0, y + h0]) to Rd is for
x = (x1, . . . , xd) given as

(v, x) 7→
(
(x1 − c1)

√
1 +

v

||x− c||2 + c1, . . . , (xd − cd)
√

1 +
v

||x− c||2 + cd

)
. (13)
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In order to increase the readability of this section, the proof of Lemma 2.6 is postponed to
Section A in the Appendix.

2.1.2 Discussion of assumption (8) in Condition 2.2

To conclude this section, we consider the technical assumption (8). First of all, it is
obvious (if d2

X ,m is nowhere constant) that the assumption only comes into play for d ≥ 2.
Furthermore, we observe that it is trivially fulfilled if there exists some ε > 0 such that
Γy−ε ⊂ X , Γy ⊂ X and Γy+ε ⊂ X . Only if this is not the case, there might be points y ∈ X
for which (8) is not satisfied. However, the assumption will typically be satisfied for all
points of regularity of the density fd2

X ,m
. To provide some intuition on this matter, we will

consider the following example.

Example 2.7. Let X = [0, 1]2 and let µX stand for the uniform distribution on X . In this
case, using relation (11), we obtain for x = (x1, x2) ∈ X

d2
X ,1(x) = E

[
||X − x||2

]
=

(
x1 −

1

2

)2

+

(
x2 −

1

2

)2

+
1

6
.

The corresponding DTM-density is supported on [1/6, 2/3] and it is smooth everywhere
except for y = 5/12, where fd2

X ,m
has a kink (detailed computations are provided in Section

B.3 in the appendix). The level sets Γy (y ≥ 1/6), are concentric circles centered at
(1/2, 1/2) with radii

√
y − 1/6. For all y < 5/12 the level sets are fully contained in the

open cube (0, 1)2. For all y > 5/12, we have R2\[0, 1]2 ∩ Γy 6= ∅, i.e., the level sets are
at least partly outside of the cube [0, 1]2. This means that y = 5/12 is, in a sense, a
transition point. In order to check (8) for y ≥ 5/12, we observe that Lemma 2.6 implies
that for v > 0, y ∈ [5/12, 2/3] and each x ∈ X the equality 1{x∈Γy∩X} = 0 implies
1{Φ(v,x))Γy∩X} = 0, where Φ denotes the canonical level set flow of Γy. Consequently, it
follows that

IX (y; v) =

∣∣∣∣∣

∫

Γy

1{x∈X} − 1{Φ(v,x)∈X} dσ
1(x)

∣∣∣∣∣ = |L(Γy ∩ X )− L(Γy+v ∩ X )| ,

where L(Γy ∩ X ) stands for the length of the curve Γy in X and L(Γy+v ∩ X ) is defined
analogously. Using the above equality, it is easy to verify that the requirement (8) is
satisfied for all y ∈ [1/6, 2/3]\{5/12}. Figure 3 exemplarily illustrates the behavior of the
level sets in a neighborhood of (1/2, 1). The figure shows the level sets Γ5/12 in blue and
Γ5/12+v for some v > 0 as dotted line in black. We observe that for 0 ≤ v ≤ h0 for some h0

sufficiently small, the value of the integral IX (y; v) corresponds to 2πv minus four times
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Fig. 3: Tangential Level Set: Illustration of the behavior of the levels sets in a neighborhood of tangential
intersection point with the boundary of X in the setting of Example 2.7.

the length of the red line, which can be calculated explicitly using a well-known formula
for circular segments:

IX (y; v) =
∣∣∣2πv − 4 arcsin

(
2
√
v − v2

)∣∣∣ ≥
√
v.

This proves that for y = 5/12 the requirement (8) is not fulfilled.

We conclude this subsection by noting that the dimension of X heavily influences the
regularity of (8). While it seems to be problematic, if Γy intersects tangentially with the
boundary ∂X of X for d = 2, this is not necessarily the case for d ≥ 3. In particular, if
we consider X = [0, 1]3 equipped with the uniform distribution, we find that for y = 3/4
the level set Γy tangentially touches ∂X at 6 points. However, here, it does not cause any
problems. Following our considerations from Example 2.7, one can show that condition (8)
holds for all points y in the support of fd2

X ,m
.

2.2 Examples of DTM-Densities

In the following, we will derive d2
X ,m as well as fd2

X ,m
in several simple examples explicitly

and verify that in these settings Condition 2.2 is met almost everywhere. Since calculating
d2
X ,m and fd2

X ,m
explicitly is quite cumbersome (especially for m < 1), we concentrate on

one- or two-dimensional examples. In order to increase the readability of this section, we
postpone the the explicit, but lengthy representations of the derived DTM-functions and
densities (as well as their derivation) to Section B.

We begin our considerations with the simplest case possible, the interval [0, 1] equipped
with the uniform distribution.

Example 2.8. Let X = [0, 1] and let µX denote the uniform distribution on X . Further-
more, we consider two values for m, namely m1 = 1 and m2 = 0.1. In Section B.1, we
derive d2

X ,1, d2
X ,0.1, fd2

X ,1
(see Figure 4 for an illustration). For m = 1, the requirement (8)
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does not come into play as X is one-dimensional and d2
X ,1 nowhere constant. Further, we

point out that the density fd2
X ,1

is unbounded (however twice continuously differentiable

on the interior of its support). In the case m = 0.1 things are quite different. The function
d2
X ,0.1 is constant on [0.05, 0.95] and hence the random variable d2

X ,0.1(X), X ∼ µX , does
not have a Lebesgue density.

It is immediately clear that the DTM-signature can only admit a density with respect to
the Lebesgue measure, if the DTM-function defined in (1) is almost nowhere constant. In
Example 2.8 this is the case for m1 = 1 but not for m2 = 0.1. Recall that the DTM-
function considers the quantile function of the random variable ||X − x||2, X ∼ µX , on
[0,m] for each x ∈ X . In Example 2.8, µX denotes the uniform measure on X = [0, 1].
Hence, it is evident in this setting that the quantile functions of the random variables
{||X − x||}x∈[m/2,1−m/2] agree on [0,m]. Consequently, the corresponding DTM-signature
admits a Lebesgue density only for m = 1. In the next example, we equip X with another
distribution, whose density is not constant on X . In this case, we will find that also for
m < 1 the corresponding DTM-signature admits a Lebesgue density.

Example 2.9. Let X = [0, 1] and let µX denote the probability distribution on [0, 1] with
density f(x) = 2x. Let m = 0.1. In Section B.2, we derive d2

X ,0.1 explicitly and demonstrate

that the random variable d2
X ,0.1(X), X ∼ µX , admits a Lebesgue density in this setting

(see Figure 4 for an illustration). We observe that d2
X ,0.1 is continuously differentiable

everywhere and three times continuously differentiable almost everywhere. Further, the

density fd2
X ,0.1

admits one discontinuity for y = −683
60 +18

√
2
5 and is C2 almost everywhere.

We observe that the DTM-densities derived in Example 2.8 and Example 2.9 are both
unbounded. This has a simple explanation. Let (X , || · ||, µX ) be a regular Euclidean metric
measure space and denote the d-dimensional Lebesgue density of µX by gµX . Suppose that
fd2
X ,m

exists. Then, one can show (see e.g. Appendix C of Weitkamp et al. [55]) that

fd2
X ,m

(y) =

∫

{x∈X :d2
X ,m(x)=y}

gµX (u)

||∇d2
X ,m(u)|| dσ

d−1(u). (14)

Since dσ0 corresponds to integration with respect to the counting measure, the DTM-
density of a one-dimensional Euclidean metric measure space is unbounded if there are
u ∈ X with |∇d2

X ,m(u)| = 0 (this is the case in Example 2.8 and Example 2.9). However,
it is important to note that this behavior mainly occurs for one-dimensional Euclidean
metric measure spaces. For higher dimensional spaces, the area (w.r.t. dσd−1) of the set
A = {x ∈ X : ||∇d2

X ,m(u)|| = 0}, is usually a null set. Hence, it is possible that the
density fd2

X ,m
defined in (14) remains bounded even if A is non-empty (see Example 2.7

and Example 2.10).
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To conclude this section and in order to illustrate that the showcased regularity of the
DTM-function d2

X ,m and the DTM-density fd2
X ,m

does not only hold for one-dimensional

settings, we consider two simple examples in R2 next. As the derivation of the family
(F−1

x )x∈X can be incredibly time consuming, we restrict ourselves in the following to the
case m = 1.

Example 2.7 (Continued). Recall that X = [0, 1]2, µX stands for the uniform distribution
on X and that m = 1. Based on our previous considerations it is possible to derive fd2

X ,1
explicitly (see Section B.3 for the derivation). As illustrated in Figure 4, the density
fd2
X ,1

is continuous. Moreover, it is twice continuously differentiable inside its support for

y 6= 5
12 , which is also the only point where the requirements of (8) are not met, as discussed

previously.

We note that the density fd2
X ,1

derived in Example 2.7 is constant on [1/6, 5/12]. This

kind of behavior is also expressed when considering a disc in R2 equipped with the uniform
distribution (it is easy to verify that fd2

X ,1
is a constant function in this case). It is well

known that it is difficult for kernel density estimators to approximate constant pieces or
a constant function. However, it is not reasonable to assume that the data stems from
a uniform distribution over a compact set in many applications (such as chromatin loop
analysis). More often, it is possible to assume that the data generating distribution is
more concentrated in the center of the considered set. The final example of this section
showcases that in such a case the corresponding DTM-signature admits a density without
any constant parts even on the disk.

Example 2.10. Let X denote a disk in R2 centered at (0, 0) with radius 1 and let µX
denote probability measure with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

In this framework, we derive d2
X ,1 and fd2

X ,1
in Section B.4. We observe that the level

sets Γy (of d2
X ,1) are contained in X for any y ∈ [1/3, 4/3], i.e., condition (8) is met for all

y ∈ (1/3, 4/3) in this setting. Further, we realize that fd2
X ,1

(see Figure 4 for an illustration)

is smooth and nowhere constant on the interior of its support.

2.3 Theoretical Results

In this section we study the asymptotic behavior of the kernel estimator of the DTM-
density (6). Clearly, standard methodology implies the following pointwise central limit
theorem for the kernel estimator f̂d2

X ,m
defined in (5).
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Fig. 4: Distance-to-Measure signature: Illustration of the densities calculated in Example 2.8-2.9,
Example 2.7 and Example 2.10 (from left to right).

Theorem 2.11. Assume Setting 2.1 and suppose that d2
X ,m(X1) admits a density that is

twice continuously differentiable in an environment of y. Suppose further that the kernel
K : R→ R+, is an even, twice continuously differentiable function with supp(K) = [−1, 1].
Then, it holds for n→∞, h = o

(
n−1/5

)
and nh→∞ that

√
nh
(
f̂d2
X ,m

(y)− fd2
X ,m

(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
.

Surprisingly perhaps, despite the complicated stochastic dependence of the random vari-
ables δ2

X ,m(Xi), asymptotically, f̂d2
X ,m

and f̂δ2X ,m
behave equivalently in the following sense.

Theorem 2.12. Assume Setting 2.1 and let Condition 2.2 hold. Then, it holds for n→∞,
h = o

(
n−1/5

)
and nh→∞ that

√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
.

As the the proof of Theorem 2.12 is lengthy and quite technical, it has been deferred to
Appendix C. There, we will write the density estimator f̂δ2X ,m

as a U-statistic plus remainder

terms. Then, using a Hoeffding decomposition, the dependencies can be handled. However,
showing that the remainder terms vanish is not trivial and requires the application of some
tools from geometric measure theory.

3 Simulations

In the following, we investigate the finite sample behavior of f̂δ2X ,m
in Monte Carlo sim-

ulations. To this end, we illustrate the pointwise limit derived in Theorem 2.11 in the
setting of Example 2.10 and exemplarily highlight the discriminating potential of f̂δ2X ,m

.

All simulations were performed in R (R Core Team [36]).
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3.1 Pointwise Limit

We start with the illustration of Theorem 2.11. To this end, we consider the Euclidean
metric measure space (X , || · ||, µX ) from Example 2.10. Recall that in this setting, X
denotes a disk in R2 centered at (0, 0) with radius 1 and that µX denotes the probability
measure with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

Now, we choose m = 1 and consider

f̂δ2X ,1
(y) =

1

nh1

n∑

i=1

KBi

(
δ2
X ,m(Xi)− y

h1

)
,

where KBi denotes the Biweight kernel, i.e.,

KBi(u) =

{
15
16

(
1− u2

)2 |u| ≤ 1,

0 else.
(15)

Since we have calculated d2
X ,1 explicitly (see (18)), it is of interest to compare the behavior

of f̂δ2X ,1
(y) to the one of

f̂d2
X ,1

(y) =
1

nh2

n∑

i=1

KBi

(
d2
X ,1(Xi)− y

h2

)
.

As discussed previously, f̂d2
X ,1

is different from f̂δ2X ,1
a kernel density estimator based on

independent data, whose limit behavior is well understood (see Theorem 2.11). Never-
theless, for y ∈ (1/3, 4/3), f̂d2

X ,1
(y) and f̂δ2X ,1

(y) admit the same asymptotic behavior

according to Theorem 2.12, whose requirements can be easily checked in this setting (see
Example 2.10). In order to illustrate this, we generate two independent samples {Xi}ni=1

and {X ′i}ni=1 of µX and calculate ∆n = {δ2
X ,1(Xi)}ni=1 as well as Dn = {d2

X ,1(Xi)}ni=1 for
n = 50, 500, 2500, 5000. We set

h1 = (1.06 min{s(∆n), IQR(∆n)/1.34)})5/4n−1/4

and
h2 = (1.06 min{s(Dn), IQR(Dn)/1.34)})5/4n−1/4,

where s is the usual sample standard deviation and IQR denotes the inter quartile range.
Based on ∆n and Dn, we choose a central value of y and calculate

√
nh1(f̂δ2X ,1

(y)− fd2
X ,1

(y)) and
√
nh2(f̂d2

X ,1
(y)− fd2

X ,1
(y)). (16)
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Fig. 5: Pointwise limit distribution: Kernel density estimators of
√
nh1(f̂δ2X ,1

(0.7) − fd2
X ,1

(0.7)) (in

red) and
√
nh2(f̂d2

X ,1
(0.7)− fd2

X ,1
(0.7)) (in green) for n = 50, 500, 2500, 5000 (from left to right, sample size

5,000) and the normal limiting density (blue).

For each n, we repeat this process 5,000 times. The finite sample distributions of the
quantities defined in (16) are compared to their theoretical normal counter part in Figure
5 (exemplarily for the specific choice of y = 0.7). The kernel density estimators displayed
(Gaussian kernel with bandwidth given by Silverman’s rule) highlight that the asymptotic
behavior of f̂δ2X ,1

(y) (red) matches that of f̂d2
X ,1

(y) (green). Further, we observe that even

for small samples sizes both finite sample distributions strongly resemble their theoretical
normal limit distribution (blue).

3.2 Discriminating Properties

In the remainder of this section, we will showcase empirically the potential of the DTM-
signature for discriminating between different Euclidean metric measure spaces. To this
end, let µY1 stand for the uniform distribution on a 3D-pentagon (inner pentagon side
length: 1, Euclidean distance between inner and outer pentagon: 0.4, height: 0.4) and
let µY7 denote the uniform distribution on a torus (center radius: 1.169, tube radius:
0.2) with the same center and orientation (see the plots for t1 = 0 and t7 = 1 in Figure
6). In order to interpolate between these measures, let Π

µY7
µY1 (t), t ∈ [0, 1], denote the

2-Wasserstein geodesic between µY1 and µY7 (see e.g. Santambrogio [46, Sec. 5.4] for a
formal definition). Figure 6 displays the Euclidean metric measure spaces Yi, 1 ≤ i ≤ 7,
corresponding to µYi = Π

µY7
µY1 (ti) for ti ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1} (the geodesic has been

approximated discretely based on 40,000 points with the the WSGeometry-package [28]).

In this example, we are not interested in only finding local changes, but we want to dis-
tinguish between Euclidean metric measure spaces that differ globally. Hence, m = 1
seems to be the most reasonable choice. At the end of this section, we will illustrate the
influence of the parameter m in the present setting. We draw independent samples of
size n from µYi , denoted as {Yj,n,i}nj=1, and calculate ∆n,i = {δ2

X ,1(Yj,n,i)}nj=1 and f̂δ2Yi,1
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t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 0.8 t7 = 1

Fig. 6: Metric measure spaces: Graphical illustration of the metric measure spaces {Yi}7i=1.

based on each of these samples for 1 ≤ i ≤ 7 and n = 500, 2500, 5000, 10000 (Biweight
kernel, hi = 1.06 min{s(∆n), IQR(∆n)/1.34)}n−1/5). We repeat this procedure for each
i and n 10 times and display the resulting kernel density estimators in the upper row of
Figure 7. While it is not possible to reliably distinguish between the realizations of f̂δ2Y0,1
(blue-green), f̂δ2Y1,1

(orange) and f̂δ2Y2,1
(blue) by eye for n = 500, this is very simple for

n ≥ 2500. Now, that we have estimated the densities, we can choose a suitable notion
of distance between densities (e.g. the L1-distance) and perform a linkage clustering in
order to showcase that the illustrations in the upper row are not deceptive and that it is
indeed possible to discriminate between the Euclidean metric measure spaces considered
based on the kernel density estimators of the respective DTM-densities. To this end, we
calculate the L1-distance between the kernel density estimators considered and perform
an average linkage clustering on the resulting distance matrix for each n. The results
are showcased in the lower row of Figure 7. The average linkage clustering confirms our
previous observations.

To conclude this section, we illustrate the influence of the choice of m. For this purpose, we
repeat the above procedure with n = 10, 000 and m = 0.2, 0.4, 0.6, 0.8 (this means that we
can use the alternative representation of d2

X ,m in (4) with k = 2000, 4000, 6000, 8000). The
resulting kernel density estimators are displayed in the upper row and the corresponding
average clustering in the bottom row of Figure 8 (same coloring as previously). As we
consider the transformation of µY1 into µY7 along a 2-Wasserstein geodesic, it is intuitive
that choosing m too small is not informative in this setting (the goal is to distinguish
between the whole spaces). Indeed, this is exactly, what we observe. For m = 0.2 the kernel
density estimators strongly resemble each other and in particular the Euclidean metric
measure spaces Y1 and Y2 are hardly distinguishable (see the corresponding dendrogram
in the lower row of Figure 8). Form ≥ 0.4 the kernel density estimators are better separated
and the corresponding dendrograms highlight that it possible to discriminate between the
spaces Yi based on the kernel density estimators f̂δ2Yi,m

, i = 1, . . . , 7 and m = 0.4, 0.6, 0.8.

It is noteworthy that although the form of the kernel density estimators drastically changes
between m = 0.4 and m = 1, the quality of the corresponding clustering only increases
slightly with increasing m.
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Fig. 7: Discriminating between Euclidean metric measure spaces: Upper row: Ten realizations of
the kernel density estimators f̂δ2Y1,1

(blue-green), f̂δ2Y2,1
(orange), f̂δ2Y3,1

(blue), f̂δ2Y4,1
(pink), f̂δ2Y5,1

(green),

f̂δ2Y6,1
(yellow) and f̂δ2Y6,1

(brown) for n = 500, 2500, 5000, 10000 (from left to right). Lower row: The results

of an average linkage clustering of the considered kernel density estimators based on the L1-distance (same
coloring).

4 Chromatin Loop Analysis

In this section, we will highlight how to use the DTM-density-transformation for chro-
mantin loop analysis. First, we briefly recall some important facts about chromatin fibers,
state the goal of this analysis and precisely describe the data used here.

For human beings, chromosomes are essential parts of cell nuclei. They carry the genetic
information important for heredity transmission and consist of chromatin fibers. Learning
the topological 3D structure of the chromatin fiber in cell nuclei is important for a better
understanding of the human genome. As discussed in Section 1.3, TADs are self-interacting
genomic regions, which are often associated with loops in the chromatin fibers. These
domains have been estimated to the range of 100–300 nm [43]. Hi-C data [33] allow
to construct spatial proximity maps of the human genome and are often used to analyze
genome-wide chromatin organization and to identify TADs. However, spatial size and form,
and how frequently chromatin loops and domains exist in single cells, cannot directly be
answered based on Hi-C data, whereas in 3D visualization of chromosomal regions via
SMLM with a sufficiently high resolution, this information might be more easily accessible
[26]. Therefore, in the above reference, such an approach is considered, in which two groups
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Fig. 8: The influence of m: Upper row: Ten realizations of the kernel density estimators f̂δ2Y1,m
(blue-

green), f̂δ2Y2,m
(orange), f̂δ2Y3,m

(blue), f̂δ2Y4,m
(pink), f̂δ2Y5,m

(green), f̂δ2Y6,m
(yellow) and f̂δ2Y7,m

(brown)

for n = 10000 and m = 0.2, 0.4, 0.6, 0.8 (from left to right). Lower row: The results of an average linkage
clustering of the considered kernel density estimators based on the L1-distance (same coloring).

of images of chromatin fibers were produced: Chromatin with supposedly fully intact loop
structures and chromatin, which had been treated with auxin prior to imaging. Auxin is
known to cause a degrading of the loops. Therefore, in the second set of images, the loops
are expected to be mostly dissolved. The obtained resolution in these images was of the
order of 150 nm, i.e., below the diffraction limit and comparable to the typical sizes of
TADs. This means that the analysis of chromatin loops based on these images is tractable
but difficult as we will not see detailed loops when zooming in.

In this paper we analyse simulated SMLM data of chromatin fibers that mimic the chro-
matin structure with loops as local features and compare them to simulated data that
mimic the progressive degradation of loop structures in five steps. The simulated struc-
tures mimic the first chromosome (of 23 in total) of the human genome, which is the longest
with approximately 249 megabases (Mb, corresponding to 249,000,000 nucleotides). Each
step corresponds to a loop density with a different parameter, which we denote by c. The
value of c is the number of loops per megabase. A value of c = 25 corresponds to a high
loop density with 2490 loops in total and corresponds to the setting without the application
of auxin. Values of c = 10, 6, 4, 2 correspond to decreasing states of resolved loops (1494,
996 and 498 loops) and c = 0 encodes the fully resolved state. These simulated images
provide a controlled setting in which we can investigate the applicability of our methods
and in which we can explore how small a difference in loop density our method can still
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pick up and when it starts to break down. Here, we only consider classification into the
different conditions based on the estimated DTM density. While it is clear from the results
described below that information on loop size and frequency is encoded in these densities,
a quantification of these parameters requires a deeper study of the proposed methods and
is beyond the scope of this manuscript.
In our study, we consider 102 synthetic, noisy samples of size 49800 of 6 different loop den-
sities each and denote the corresponding samples as Xi,c, c = 25, 10, 6, 4, 2, 0, 1 ≤ i ≤ 102.
These samples are created by first discretizing the chromatin structure such that the dis-
tance between two points along the chromatin structure corresponds to 45 nm. Then, we
add independent, centered Gaussian errors with covariance matrix

Σ =




45 0 0
0 45 0
0 0 90




to each point (see Figure 9 for an illustration of data obtained in this fashion). This
high level of noise is chosen to match the experimental data obtained in Hao et al. [26].
Throughout the following, we consider the data on a scale of 1:45. We stress once again
that the goal of our analysis is to distinguish between the respective loop conditions and
not between chromatin fibers from which the points are sampled (the overall form of the
chromatin fibers within one condition can be quite different). We demonstrate in the
following that the corresponding DTM-signatures, or more precisely the corresponding
kernel density estimators f̂δ2Xi,c,m

, 1 ≤ i ≤ 102, (m chosen suitably small) represent a useful

transformation of the data that allows discrimination between the different loop densities,
while disregarding the overall shape of the chromatin fiber. To this end, we follow the
strategy proposed in Section 1.3 and calculate ∆i,c = {δ2

X ,m(Xj,i,c) : Xj,i,c ∈ Xi,c} for
1 ≤ i ≤ 102, c ∈ {25, 10, 6, 4, 2, 0} and m ∈ {1/9960, 1/4980, 1/1245}. These particular
choices of m entail that in order to calculate δ2

X ,m(Xj,i,c) we need to take the mean over the
distances to the k = 5, 10, 40 nearest neighbors of Xj,i,c ∈ Xi,c (recall the representation

of δ2
X ,m in (4)). We determine f̂δ2Xi,c,m

based on each of the samples ∆i,c (Biweight kernel,

h = 1.06 min{s(∆n), IQR(∆n)/1.34)}n−1/5). The resulting kernel density estimators are
displayed in Figure 10. Generally, the kernel density estimators based on the different
samples with the same loop density strongly resemble each other and it is possible to
roughly distinguish between the different values of c. For all values of m considered, the
DTM-density estimators based on Xi,25, 1 ≤ i ≤ 102, (here the respective chromatin
fibers form many loops) are well separated from the other kernel density estimators and
the estimators based on the samples ∆i,2 and ∆i,0 (which correspond to the lowest loop
densities considered) are the most similar when comparing the different loop densities.
In order to make a more qualitative comparison between the estimators f̂δ2Xi,c,m

, we use

the strategy developed in Section 3.2 and perform an average linkage clustering based on
the L1-distance between the estimated densities. For clarity, we restrict ourselves to the

22

294 Distance-to-Measure Density based Geometric Analysis of Complex Data



Fig. 9: Chromatin Loops: Upper row: Illustration of a chromatin structure and the corresponding
sample with loop density c = 25. Lower row: Illustration of the same chromatin and the corresponding
sample with loop density c = 10.

comparison of the loop density c = 25 against c = 10 as well as c = 2 against c = 0 and
point out that the comparison between the setting c = 2 against c = 0 is very difficult as
the loop frequencies are very low. The dendrograms in the upper row of Figure 11 illustrate
the comparison of c = 25 and c = 10. It is remarkable that for each m the correct clusters
are obtained. The lower row of Figure 11 showcases the dendrograms for the comparison
of the estimators f̂δ2Xi,2,m

and f̂δ2Xi,0,m
, 1 ≤ i ≤ 102 and m ∈ {1/9960, 1/4980, 1/1245}. For

m ∈ {1/9960, 1/4980}, we obtain (up to one exception) the correct clusters, although they
are much closer (w.r.t. the L1-distance) than the clusters for the previous comparisons.
However, for m = 1/1245, it is no longer possible to reliably identify two clusters that
correspond to c = 2 and c = 0. It seems that in this case m is too large to yield a perfect
discrimination.

To conclude this section, we investigate whether classification based on the DTM-density
estimates f̂δ2Xi,c,m

is possible. Here, we restrict ourselves once again to the comparison of

c = 25 with c = 10 as well as of c = 2 with c = 0. For each comparison, we randomly select
5%/10% (rounded up) of the density estimates for each considered loop density and classify
the remaining ones according to the the majority of the labels of their k = 1, 3, 5 nearest
neighbors in the randomly selected sample. We repeat this procedure for both comparisons
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Fig. 10: Chromatin Loop Analysis I: Illustration of the DTM-density estimators f̂δ2Xi,c,m
, 1 ≤ i ≤ 102,

for c = 25 (blue-green), c = 10 (orange), c = 6 (blue), c = 4 (pink), c = 2 (green) and c = 0 (yellow) and
m ∈ {1/9960, 1/4980, 1/1245} (from left to right).
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Fig. 11: Chromatin Analysis II: Upper row: The results of an average linkage clustering of
the kernel density estimators f̂δ2Xi,25,m

(blue-green) and f̂δ2Xi,10,m
(orange), 1 ≤ i ≤ 102, for m ∈

{1/9960, 1/4980, 1/1245} (from left to right) based on the L1-distance. Lower row: The results of an aver-

age linkage clustering of the kernel density estimators f̂δ2Xi,2,m
(green) and f̂δ2Xi,0,m

(yellow), 1 ≤ i ≤ 102,

for m ∈ {1/9960, 1/4980, 1/1245} (from left to right) based on the L1-distance.

24

296 Distance-to-Measure Density based Geometric Analysis of Complex Data



10,000 times and report the relative number of misclassifications in Table 1. The upper
row of said table highlights that in the comparison of c = 25 and c = 10 the DTM-density
estimates are always classified correctly. Things change in the comparison of c = 2 with
c = 0. While for all m at least 90% of the classifications are correct, there is a noticeable
difference between the individual values of m. We observe that m = 1/4980 yields by far
the best performance in this setting. It is clear that the loop distributions of the respective
chromatin fibers for these two parameters are extremely similar (the chromatin admits
few to no loops). Hence, choosing m too large incorporates too much global (non-loop)
structure and makes it difficult to discriminate between these two loop densities. On the
other hand, choosing m too small seems to incorporate too little structure.

To conclude, we find that it is possible for a suitable choice of m to clearly distinguish
between the different loop densities based on the DTM-density estimators f̂δ2Xi,c,m

. We

have illustrated that these estimators yield a good summary of the data and can be used
to approach the (already quite difficult) problem of chromatin loop analysis for noisy
synthetic data.

k = 1 k = 3 k = 5

5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5

5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5

5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5

5% 0.029 0.049 0.069
10% 0.020 0.033 0.043

k = 1 k = 3 k = 5

5% 0.012 0.019 0.039
10% 0.001 0.007 0.012

k = 1 k = 3 k = 5

5% 0.029 0.064 0.100
10% 0.008 0.021 0.025

Tab. 1: Chromatin Analysis III: Upper row: The relative number of missclassifications of a k-nearest
neighbor classification (w.r.t. the L1-distance) based on the kernel density estimators f̂δ2Xi,25,m

and f̂δ2Xi,10,m
,

1 ≤ i ≤ 102, for m ∈ {1/9960, 1/4980, 1/1245} (from left to right). Lower row: The relative number of
missclassifications of a k-nearest neighbor classification (w.r.t. the L1-distance) based on the kernel density

estimators f̂δ2Xi,2,m
and f̂δ2Xi,0,m

, 1 ≤ i ≤ 102, for m ∈ {1/9960, 1/4980, 1/1245} (from left to right).
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A Proof of Lemma 2.6

In this section, we state the full proof of Lemma 2.6.
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Proof of Lemma 2.6. Let X = (X1, . . . , Xd) ∼ µX and x = (x1, . . . , xd) ∈ Rd.

1. We observe that

d2
X ,1(x) = E

[
||X − x||2

]
=

d∑

i=1

(
E
[
X2
i

]
− 2xiE [Xi] + x2

i

)

=

d∑

i=1

(
(xi − E [Xi])

2 + E
[
X2
i

]
− (E [Xi])

2
)
.

Setting ci = E [Xi] and ζ =
∑d

i=1

(
E
[
X2
i

]
− (E [Xi])

2
)

yields the claim.

2. This follows directly from the fist statement.

3. The fist statement implies that

∇d2
X ,1(x) = 2(x− E [X]).

Clearly, this is zero if and only if x = E [X].

4. By the second and third statement d2
X ,1 is three times continuously differentiable and

∇d2
X ,1 > 0 on d2

X ,1
−1

([y − 2h0, y + 2h0]). In consequence, there exists an open set

U ⊃ d2
X ,1
−1

([y − h0, y + h0]) such that the function

ϕ : U ⊂ Rd → Rd; x 7→
∇d2
X ,1(x)

||∇d2
X ,1(x)||2

is C2(U,Rd). By Theorem 2 in Chapter 15 of Hirsch and Smale [29] there is a unique
flow Φ∗ : [−h0, h0]×W → Rd with





∂
∂vΦ∗(v, x) =

∇d2
X ,1(Φ∗(v,x))

||∇d2
X ,1(Φ∗(v,x))||2

Φ∗(0, x) = x,
(17)

where W ⊂ Rd is an open set that contains d2
X ,1
−1

([y−h0, y+h0]). Differentiating the

function v 7→ d2
X ,1(Φ∗(v, x)) immediately shows that d2

X ,1 (Φ∗(v, x)) = d2
X ,1(x) + v.

This implies that Φ∗(v,d2
X ,1
−1

({y})) = d2
X ,1
−1

({y + v}). In consequence, it only
remains prove that Φ defined in the statement is a solution of the ordinary differential
equation (17). For this purpose, we observe that Φ(0, x) = x for all x. Furthermore,
we derive that

∂

∂v
Φ(v, x) =


 x1 − c1

2||x− c||2
√

v
||x−c||2 + 1

, . . . ,
xd − cd

2||x− c||2
√

v
||x−c||2 + 1



T
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By the first statement, it follows immediately that

∇d2
X ,1(x)

||∇d2
X ,1(x)||2 =

(
x1 − c1

2||x− c||2 , . . . ,
xd − cd

2||x− c||2
)T

.

In consequence, we find that

∇d2
X ,1(Φ∗(v, x))

||∇d2
X ,1(Φ∗(v, x))||2 =


 x1 − c1

2||x− c||2
√

v
||x−c||2 + 1

, . . . ,
xd − cd

2||x− c||2
√

v
||x−c||2 + 1



T

,

which proves the fourth statement.

B Additional Details on Example 2.7-2.10

In this section, we will provide additional details on the examples considered in Section 2.2.
For each example considered, we first briefly recall the setting and derive the corresponding
DTM-function and DTM-density.

B.1 Example 2.8

Let X = [0, 1] and let µX denote the uniform distribution on X . Furthermore, we consider
two values for m, namely m1 = 1 and m2 = 0.1.

First, we derive d2
X ,1 and fd2

X ,1
. To this end, we observe that for x ∈ X and X ∼ µX

d2
X ,1(x) =

∫ 1

0
F−1
x (t) dt = E

[
(X − x)2

]
=

1

3
− x+ x2.

This immediately gives that

Fd2
X ,1

(t) = P
(
d2
X ,1(X) ≤ t

)
=





0 t ≤ 1
12 ,√

4t− 1
3

1
12 ≤ t ≤ 1

3 ,

1 t > 1
3 .

Hence, fd2
X ,1

is given as

fd2
X ,1

(t) =

{
2
√

3√
12t−1

1
12 ≤ t ≤ 1

3 ,

0 else.
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Next, we come to m2 = 0.1. In order to calculate d2
X ,0.1 and fd2

X ,0.1
, it is necessary to derive

the family
(
F−1
x

)
x∈X explicitly. A short calculation yields that for 0 ≤ x ≤ 1/2

F−1
x (y) =

{
y2

4 0 < y ≤ 2x,

(y − x)2 2x < y < 1,

and for 1/2 < x ≤ 1

F−1
x (y) =

{
y2

4 0 < y ≤ 2(1− x),

(y − (1− x))2 2(1− x) < y < 1.

Therefore, we find that

d2
X ,0.1(x) =





x2 + 0.1x+ 1
300 0 ≤ x < 0.05,

1
1200 0.05 ≤ x ≤ 0.95,

(1− x)2 + 0.1(1− x) + 1
300 0.95 ≤ x ≤ 1.

Since d2
X ,0.1 is constant for x ∈ [0.05, 0.95] it is immediately clear that the corresponding

distribution function Fd2
X ,0.1

is not continuous. Indeed, we find that

Fd2
X ,0.1

(y) = P
(
d2
X ,0.1(X) ≤ y

)
=





0 y < 1
1200 ,

1
20

√
400y − 1

3 + 0.9 1
1200 ≤ y ≤ 1

300 ,

1 y ≥ 1
300 .

B.2 Example 2.9

Let X = [0, 1] and let µX denote the probability distribution on [0, 1] with density f(x) =
2x. Let m = 0.1. As previously, we have to explicitly calculate the family

(
F−1
x

)
x∈X . A

short calculation shows that for 0 ≤ x ≤ 1/2 we have that

F−1
x (y) =

{
y2

16x2
0 < y ≤ 4x2,

(
√
y − x)2 4x2 < y < 1,

and for 1/2 < x ≤ 1

F−1
x (y) =

{
y2

16x2
0 < y ≤ 4x(1− x),

(x−√1− y)2 4x(1− x) < y < 1.
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The integration of these function on [0, 0.1], shows that the corresponding DTM-function
is given as

d2
X ,0.1(x) =





x2 − 2
3

√
2
5x+ 1

20 0 ≤ x ≤
√

0.1
2 ,

1
4800x2

√
0.1
2 ≤ x ≤ 1

2 + 3
2
√

10
,

x2 +
(

18
√

2
5 − 40

3

)
x+ 19

20
1
2 + 3

2
√

10
< x ≤ 1.

It is obvious that in this case d2
X ,0.1 is almost nowhere constant. Furthermore, we can now

show that

Fd2
X ,0.1

(y) =





0 y≤ 4320
√

10−13661
180 ,

2
45

(
20
√

5− 27
√

2
)√

13661− 4320
√

10 + 180y 4320
√

10−13661
180 <y≤ 19−6

√
10

120 ,

y− 3
5

√
360y−8640

√
10+27322− 1

4800y
−48
√

10+ 27493
180

+ 4
9

√
900y−21600

√
10+68305

19−6
√

10
120 < y ≤ 1080

√
2
5
−683

60 ,

1− 1
4800y

1080
√

2
5
−683

60 <y≤ 1
120

−y + 1
45

√
360y − 2 + 173

180
1

120 <y≤ 1
20

1 y> 1
20 .

This allows us to derive that

fd2
X ,0.1

(y) =





80
√

5−108
√

2√
13661−4320

√
10+180y

4320
√

10−13661
180 < y ≤ 19−6

√
10

120 ,

1 + 40
√

5−54
√

2√
13661−4320

√
10+180y

+ 1
4800y2

19−6
√

10
120 < y ≤ 1080

√
2
5
−683

60 ,

1
4800y2

1080
√

2
5
−683

60 < y ≤ 1
120

−1 + 2√
− 1

2
+90y

1
120 < y ≤ 1

20

0 else.

B.3 Example 2.7

Let X = [0, 1]2 and let µX stand for the uniform distribution on X . Choose m = 1 and let
X ∼ µX . Then, it is possible to derive that for x = (x1, x2) ∈ X

d2
X ,1(x) = E

[
||X − x||2

]
= x2

1 + x2
2 − x1 − x2 +

2

3
.
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Hence, we find that

Fd2
X ,1

(y) =





0 y ≤ 1
6 ,

π
(
y − 1

6

)
1
6 < y ≤ 5

12 ,

1
3

(√
36y−15+(6y−1)arccot

(
2
√
y− 5

12

)

+(1−6y) arctan
(√

4y− 5
3

)) 5
12 < y ≤ 2

3 ,

1 y > 2
3 .

The corresponding density is given as

fd2
X ,1

(y) =





π 1
6 ≤ y ≤ 5

12 ,

2arccot
(

2
√
y − 5

12

)
− 2 arctan

(√
4y − 5

3

)
5
12 < y ≤ 2

3 ,

0 else.

B.4 Example 2.10

Let X denote a disk in R2 centered at (0, 0) with radius 1 and let µX denote probability
measure with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

In this case, it is for m = 1 straight forward to derive that for x = (x1, x2) ∈ X

d2
X ,1(x) = x2

1 + x2
2 +

1

3
. (18)

In consequence, we find that for X ∼ µX

Fd2
X ,1

(y) =





0 y ≤ 1
3 ,

−y2 + 8
3y − 7

9
1
3 < y ≤ 4

3 ,

1 else.

The corresponding density is given as

fd2
X ,1

(y) =

{
−2y + 8

3
1
3 < y ≤ 4

3 ,

0 else.
(19)
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C Proof of Theorem 2.12

In this section, we give the full proof of Theorem 2.12. The proof is composed of four steps,
each of which formulated as an independent lemma (see Section C.1).

Step 1: Replacement of δ2
X ,m(Xi) by d2

X ,m(Xi) (Lemma C.1).

We provide a decomposition of f̂δ2X ,m
in a sum of two leading terms in which δ2

X ,m(Xi)

is replaced by d2
X ,m(Xi) in the argument of the kernel K and we show that the

remainder terms are negligible.

Step 2: Introducing U-statistics (Lemma C.2).
It is shown that the leading terms obtained in Step 1 can be written as a (sum of
two) U-statistic(s) asymptotically.

Step 3: Hoeffding decomposition (Lemma C.4).
Applying a Hoeffding decomposition allows to derive a representation of the (sum
of two) U-statistic(s) of step 2 as a sum of a deterministic term (expectation), a
stochastic leading term consisting of a sum of independent random variables and a
remainder term.

Step 4: CLT for the leading term of Step 3 (Lemma C.7).
Since the leading term of Step 3 is a sum of centered independent random variables,
we can apply a standard CLT to show its asymptotic normality.

C.1 Auxiliary lemmas representing Step 1 - Step 4

Before we come to the proof of Theorem 2.12, we will establish several auxiliary results.
In order to highlight the overall proof strategy, the corresponding proofs are deferred to
Section C.3. We begin this section, by addressing Step 1.

Lemma C.1 (Step 1). Assume that Setting 2.1 holds and let Condition 2.2 be met. Then,
it follows that

f̂δ2X ,m
(y) =

1

n

n∑

i=1

[
1

h
K

(
d2
X ,m(Xi)− y

h

)
+

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
An(Xi)

]

+OP
(

1

nh3

)
+ oP

(
log(n)1/(2b)

n1/2+1/(2b)h

)
,

where

An(x) :=
1

m

∫ F−1
x (m)

0
Fx(t)− F̂x,n(t) dt.
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As a direct consequence of Lemma C.1, we find that for h ∈ o
(
1/n1/5

)
the statistic

Vn(y) =
1

n

n∑

i=1

1

h
K

(
d2
X ,m(Xi)− y

h

)
+

1

n

n∑

i=1

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
An(Xi)

=: V (1)
n (y) + V (2)

n (y) (20)

drives the limit behavior of
√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)

. Next, we will establish that the

statistic Vn(y) can, up to asymptotically negligible terms, be written as a U -statistic (see
e.g. Van der Vaart [52] for more information on U -statistics).

Lemma C.2 (Introduction of U-statistics, Step 2). Assume Setting 2.1 and let V
(1)
n and

V
(2)
n be as defined in (20). Then, we have

V (1)
n (y) =

2

n(n− 1)

∑

1≤i<j≤n
g

(1)
y,h(Xi, Xj),

where

g
(1)
y,h(x1, x2) =

1

2h

(
K

(
d2
X ,m(x1)− y

h

)
+K

(
d2
X ,m(x2)− y

h

))
.

Furthermore,

V (2)
n (y) =

2

n(n− 1)

∑

1≤i<j≤n
g

(2)
y,h(Xi, Xj) +OP

(
1

nh2

)
,

where

g
(2)
y,h(x1, x2) =

1

2mh2

[
K ′
(

d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0
Fx1(t)− 1{||x1−x2||2≤t} dt

+K ′
(

d2
X ,m(x2)− y

h

)∫ F−1
x2

(m)

0
Fx2(t)− 1{||x1−x2||2≤t} dt

]
.

Remark C.3. It is important to note that g
(1)
y,h and g

(2)
y,h are symmetric by definition,

i.e., V
(1)
n (x) is a U -statistic and V

(2)
n (x) can be decomposed into a U-statistic and an

asymptotically negligible remainder term.

Combining Lemma C.1 and Lemma C.2, we see that

f̂δ2X ,m
(y) = Un +OP

(
1

nh3

)
+ oP

(
log(n)1/(2b)

n1/2+1/(2b)h

)
, (21)
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where Un = Un(y) denotes the U -statistic with kernel function gy,h(x1, x2) := g
(1)
y,h(x1, x2)+

g
(2)
y,h(x1, x2). Before we use (21) to finalize the proof of Theorem 2.12, we establish two

further auxiliary results. Next, we rewrite Un using the Hoeffding decomposition (see
Van der Vaart [52, Sec. 11.4]), which is the key ingredient to handling the stochastic
dependencies introduced by the terms An(Xi).

Lemma C.4 (Hoeffding decomposition, Step 3). Assume Setting 2.1. Let Un be the U -

statistic with kernel function gy,h(x1, x2) = g
(1)
y,h(x1, x2) + g

(2)
y,h(x1, x2). Then, it follows

that

Un = Θy,h +
2

n

n∑

i=1

gy,h,1(Xi) +
2

n(n− 1)

∑

1≤i<j≤n
gy,h,2(Xi, Xj).

Here, we have that

Θy,h =

∫
K (v) fd2

X ,m
(x+ vh) dv.

Furthermore, let Z1, Z2
i.i.d.∼ µX . Then, it holds that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

where

Ψ(x1, x2) := ||x1 − x2||2 ∧ F−1
x2 (m)− EZ2

[
||Z2 − x2||2 ∧ F−1

x2 (m)
]
, (22)

and

gy,h,2(x1, x2) = gy,h(x1, x2)− gy,h,1(x1)− gy,h,1(x2)−Θy,h. (23)

Remark C.5. It is well known that the mean zero random variables (gy,h,2(Xi, Xj))1≤i<j≤n
are uncorrelated (see Van der Vaart [52, Sec. 11.4]).

For our later considerations it is important to derive a certain regularity for the function
Ψ defined in (22).

Lemma C.6. Assume Setting 2.1 and let Ψ be the function defined in (22). Then, the
function z 7→ Ψ(x1, z) is Lipschitz continuous for all x1 ∈ X and the corresponding Lips-
chitz constant does not depend on the choice of x1, i.e., it holds

|Ψ(x1, z1)−Ψ(x1, z2)| ≤ C||z1 − z2||,

for all z1, z2 ∈ X , where the constant 0 < C <∞ does not depend on x1.

The next step in the proof of Theorem 2.12 is to derive for n → ∞ and h → 0 the limit
distribution of

√
nh
(

2
n

∑n
i=1 gy,h,1(Xi)

)
.
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Lemma C.7. Assume Setting 2.1 and let Condition 2.2 be met. Let n → ∞, h → 0 such
that nh→∞ and recall that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

It holds

2
√
h√
n

n∑

i=1

gy,h,1(Xi)⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
. (24)

With all auxiliary results required established, we can finally come to the proof of Theorem

2.12. The proof strategy is to demonstrate that the limit of
√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)

coincides with the limit of 2
√
h√
n

∑n
i=1 gy,h,1(Xi).

C.2 Proof of Theorem 2.12

The proof of Theorem 2.12 is now a consequence of the lemmas provided in the previous
subsection.

Proof of Theorem 2.12. We find that

∣∣∣∣∣
√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)
−
√
nh

(
2

n

n∑

i=1

gy,h,1(Xi)

)∣∣∣∣∣

≤
√
nh

∣∣∣∣∣f̂δ2X ,m(y)−
(

2

n

n∑

i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣+
√
nh
∣∣∣fd2
X ,m

(y)−Θy,h

∣∣∣ . (25)

In the following, we consider both summands separately.

First summand: For the first summand, we obtain that

Sn(y) =
√
nh

∣∣∣∣∣f̂δ2X ,m(y)−
(

2

n

n∑

i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣

≤
√
nh

(∣∣∣f̂δ2X ,m(y)− Vn(y)
∣∣∣+|Vn(y)− Un(y)|+

∣∣∣∣∣Un(y)−
(

2

n

n∑

i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣

)
,
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where Vn(y) and Un(y) are defined in(20) and (21) respectively. By Lemma C.1 and
h = o

(
n−1/5

)
we obtain that

√
nh
∣∣∣f̂δ2X ,m(y)− Vn(y)

∣∣∣ = OP
(√

nh

nh3

)
+ oP

(√
nh log(n)1/(2b)

n1/2+1/(2b)h

)
= oP (1).

Similarly, we get by Lemma C.2 and h = o
(
n−1/5

)
that

√
nh |Vn(y)− Un(y)| = OP

(√
nh

nh2

)
= oP (1).

Hence, it remains to consider

√
nh

∣∣∣∣∣Un(y)−
(

2

n

n∑

i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣ =
√
nh

∣∣∣∣∣∣
2

n(n− 1)

∑

1≤i<j≤n
gy,h,2(Xi, Xj)

∣∣∣∣∣∣
,

where the last equality follows by Lemma C.4. Considering the definition of gy,h,2(x1, x2)
in (23), we recognize that gy,h,2(x1, x2) ∈ O

(
1
h2

)
, as h → 0. Let now g∗y,2(x1, x2) =

h2gy,h,2(x1, x2). Then, g∗y,h,2(x1, x2) = O(1), as h → 0. Furthermore, we have by Remark
C.5 that the random variables {gy,h,2(Xi, Xj)}1≤i<j≤n are uncorrelated, whence the same
holds for the random variables {g∗y,h,2(Xi, Xj)}1≤i<j≤n. In consequence, we obtain that

Var


 2

n(n− 1)

∑

1≤i<j≤n
g∗y,2(Xi, Xj)


 = O

(
n−2

)
.

This in turn implies by Chebyshev’s inequality that

2

n(n− 1)

∑

1≤i<j≤n
g∗y,2(Xi, Xj) = OP (n−1).

Therefore, we obtain with h = o
(
n−1/5

)
that

2
√
h√

n(n− 1)

∑

1≤i<j≤n
gy,h,2(Xi, Xj) =

√
nh

h2


 2

n(n− 1)

∑

1≤i<j≤n
g∗y,2(Xi, Xj)




=OP
(

1

n1/2h1.5

)
= oP (1).

Thus, we have shown that S(y) = oP (1).
Second summand: Finally, we come to the second summand in (25). First of all, we observe
that

Θy,h =

∫
K (v) fd2

X ,m
(x+ vh) dv = E

[
1

nh

n∑

i=1

K

(
d2
X ,m(Xi)− y

h

)]
,
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where {d2
X ,m(Xi)}ni=1 is a collection of i.i.d. random variables with density fd2

X ,m
. Since

fd2
X ,m

is assumed to be twice differentiable on (y − ε, y + ε) and K is symmetric, i.e.,∫
uK(u) du = 0, it follows by a straight forward adaptation of Proposition 1.2 of Tsybakov

[51] that ∣∣∣Θy,h − fd2
X ,m

(y)
∣∣∣ ≤ Ch2.

Here, C denotes a constant independent of n and h. We get that

√
nh
∣∣∣Θy,h − fd2

X ,m
(y)
∣∣∣ = OP (

√
nh5) = oP (1),

as h = o
(
n−1/5

)
.

In conclusion, we have shown that
∣∣∣∣∣
√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)
−
√
nh

(
2

n

n∑

i=1

gy,h,1(Xi)

)∣∣∣∣∣ = oP (1),

which yields that

√
nh
(
f̂δ2X ,m

(y)− fd2
X ,m

(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫

R
K2(u) du

)

as claimed.

C.3 Proofs of the Auxiliary Lemmas from Section C.1

In this section, we gather the full proofs of Lemma C.1-C.7.

C.3.1 Proof of Lemma C.1

In the course of this proof we have to differentiate between the cases 0 < m < 1 and m = 1.

The case 0 < m < 1: By assumption the kernel K is twice continuously differentiable.
Using a Taylor series approximation, we find that

K

(
δ2
X ,m(Xi)− y

h

)
=K

(
d2
X ,m(Xi)− y

h

)
+

1

h
K ′
(

d2
X ,m(Xi)− y

h

)
(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)

+
1

2h2
K ′′
(
ζ − y
h

)(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)2
,
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for some ζi between d2
X ,m(Xi) and δ2

X ,m(Xi). By Theorem 9 in Chazal et al. [14] (whose
conditions are met by assumption) it holds

sup
x∈X

∣∣δ2
X ,m(x)− d2

X ,m(x)
∣∣ = OP (1/

√
n). (26)

In consequence, we obtain that

f̂δ2X ,m
(y) =

1

nh

n∑

i=1

K

(
δ2
X ,m(Xi)− y

h

)

=
1

nh

n∑

i=1

[
K

(
d2
X ,m(Xi)− y

h

)
+

1

h
K ′
(

d2
X ,m(Xi)− y

h

)
(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)
]

+OP (1/(nh3)).

Furthermore, it has been shown (see the proof of Theorem 5 in Chazal et al. [14]) that for
any x ∈ X

δ2
X ,m(x)− d2

X ,m(x) =
1

m

∫ F−1
x (m)

0
Fx(t)− F̂x,n(t) dt+

1

m

∫ F̂−1
x,n(m)

F−1
x (m)

m− F̂x,n(t) dt

=: An(x) +Rn(x). (27)

In consequence, it remains to estimate supx∈X |Rn(x)|. Clearly, we have that

|Rn(x)| ≤ 1

m
|Sn(x)| |Tn(x)| , (28)

where
Sn(x) =

∣∣∣F−1
x (m)− F̂−1

x,n(m)
∣∣∣ and Tn(x) = sup

t

∣∣∣Fx(t)− F̂x,n(t)
∣∣∣ .

Claim 1: It holds that

sup
x∈X
|Sn(x)| = oP

((
log(n)

n

)1/(2b)
)

as well as sup
x∈X
|Tn(x)| = OP

(√
d

n

)
,

where 1 ≤ b < 5.

Combining Claim 1 with (28) yields supx∈X |Rn(x)| = oP

(
log(n)1/(2b)

n1/2+1/(2b)

)
, which gives the

statement for 0 < m < 1.

Proof of Claim 1: It has already been established in the proof of Theorem 9 in Chazal
et al. [14] that under the assumptions made

sup
x∈X
|Tn(x)| = OP

(√
d

n

)
.
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Hence, it only remains to demonstrate the first equality. For this purpose, let ξi
i.i.d.∼

Uniform(0,1), 1 ≤ i ≤ n, and denote by Hn their empirical distribution function. Define

k = mn. Then, it holds that F̂−1
x,n(m)

D
= F−1

x (ξ(k)) = F−1
x

(
H−1
n (m)

)
. Here, ξ(k) is the k-th

order statistic and
D
= denotes equality in deistribution. Hence, we have for any m > 0 and

x ∈ X that

P (|Sn(x)| > ε) =P
(∣∣F−1

x

(
H−1
n (m)

)
− F−1

x (m)
∣∣ > ε

)

≤P
(
ωx
(∣∣m−H−1

n (m)
∣∣) > ε

)
,

where ωx denote the modulus of continuity for F−1
x . This means that for u ∈ (0, 1)

ωx(u) := sup
t,t′∈(0,1)2,|t−t′|<u

∣∣F−1
x (t)− F−1

x (t′)
∣∣ .

By assumption, there exists a constant κ ∈ R such that ωX (u) = supx∈X ωx(u) ≤ κu1/b for
all u ∈ (0, 1). Hence, we find that

P
(
ωx
(∣∣m−H−1

n (m)
∣∣) > ε

)
≤P
(∣∣m−H−1

n (m)
∣∣ >

( ε
κ

)b)

≤2 exp


−n

(
ε
κ

)2b

m

1

1 +
2( εκ)

b

3m


 , (29)

where the last line follows from Shorack and Wellner [48] (Inequality 1 on Page 453 and
Proposition 1, page 455). Next, we observe that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤P
(

sup
x∈X

ωx
(
|m−H−1

n (m)|
)
> ε

)
≤ P

(
κ|m−H−1

n (m)|1/b > ε
)
.

Using (29), we find that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤2 exp


−n

(
ε
κ

)2b

m

1

1 +
2( εκ)

b

3m


 ≤ 2 exp

(
−n

(
ε
κ

)2b

m

1

1 + 2
3m

)
,

since ε/κ < 1 for epsilon small enough. As m ≤ 1, we find that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤ 2 exp

(
−3n

5

( ε
κ

)2b
)
.

Let now ε = τ
(

log(n)
n

)1/(2b)
. It follows that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤ 2 exp

(
−3

5

(τ
κ

)2b
log(n)

)
,
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and thus

sup
x∈X
|Sn(x)| = oP

(
log(n)

n

)1/(2b)

,

which yields Claim 1.

The case m = 1: Similar as for 0 < m < 1, we find that

K

(
δ2
X ,1(Xi)− y

h

)
= K

(
d2
X ,1(Xi)− y

h

)
+

1

h
K ′
(

d2
X ,1(Xi)− y

h

)
(
δ2
X ,1(Xi)− d2

X ,1(Xi)
)

+
1

2h2
K ′′
(
ζi − y
h

)(
δ2
X ,1(Xi)− d2

X ,1(Xi)
)2
,

for some ζi between d2
X ,1(Xi) and δ2

X ,1(Xi). By Lemma E.1 we obtain

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP (1/

√
n). (30)

Furthermore, we note that for x ∈ X

δ2
X ,1(x)− d2

X ,1(x) =

∫ Dx

0
Fx(t)− F̂x,n(t) dt, (31)

where [0, Dx] denotes the support of Fx. In combination with our previous considerations,
we find that

f̂δ2X ,1
(y) =

1

nh

n∑

i=1

[
K

(
d2
X ,1(Xi)− y

h

)
+

1

h
K ′
(

d2
X ,1(Xi)− y

h

)
An(x)

]
+OP

(
1

nh3

)
,

which yields the claim.
�

C.3.2 Proof of Lemma C.2

First, we consider V
(1)
n (x). Clearly, we have

V (1)
n (y) =

1

n

n∑

i=1

1

h
K

(
d2
X ,m(Xi)− y

h

)

=
2

n(n− 1)

∑

1≤i<j≤n

1

2h

(
K

(
d2
X ,m(Xi)− y

h

)
+K

(
d2
X ,m(Xj)− y

h

))

=
2

n(n− 1)

∑

1≤i<j≤n
g

(1)
y,h(Xi, Xj).
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Next, we come to V
(2)
n (y). We have that

V (2)
n (y) =

1

n

n∑

i=1

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
An(Xi)

=
1

n

n∑

i=1

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
1

m

∫ F−1
Xi

(m)

0
FXi(t)− F̂Xi,n(t) dt

=
1

n

n∑

i=1

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
1

m

∫ F−1
Xi

(m)

0
FXi(t)−

1

n

n∑

j=1

1{||Xi−Xj ||2≤t} dt

=
1

n2

n∑

i=1

1

h2
K ′
(

d2
X ,m(Xi)− y

h

)
1

m

n∑

j=1

∫ F−1
Xi

(m)

0
FXi(t)− 1{||Xi−Xj ||2≤t} dt.

Further, we obtain that

V (2)
n (y) =

1

n2

n∑

i=1

n∑

j=1

1

mh2
K ′
(

d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0
FXi(t)− 1{||Xi−Xj ||2≤t} dt

=
1

n2

∑

1≤i<j≤n

1

mh2

[
K ′
(

d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0
FXi(t)− 1{||Xi−Xj ||2≤t} dt

+K ′
(

d2
X ,m(Xj)− y

h

)∫ F−1
Xj

(m)

0
FXj (t)− 1{||Xj−Xi||2≤t} dt

]

+
1

n2

n∑

i=1

1

mh2

[
K ′
(

d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0
FXi(t)− 1 dt

]
.

We note that K is twice differentiable and X is compact, i.e.,
∣∣∣∣∣

∫ F−1
x1

(m)

0
Fx2(t)− 1{||x1−x2||2≤t} dt

∣∣∣∣∣ ≤ diam (X ) <∞

for all x1, x2 ∈ X . This yields that

V (2)
n (y)=

2

n2

∑

1≤i<j≤n

1

2mh2

[
K ′
(

d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0
FXi(t)− 1{||Xi−Xj ||2≤t} dt

+K ′
(

d2
X ,m(Xj)− y

h

)∫ F−1
Xj

(m)

0
FXj (t)− 1{||Xj−Xi||2≤t} dt

]
+OP

(
1

nh2

)

=
n− 1

n


 2

n(n− 1)

∑

1≤i<j≤n
g

(2)
y,h(Xi, Xj)


+OP

(
1

nh2

)
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=
2

n(n− 1)

∑

1≤i<j≤n
g

(2)
y,h(Xi, Xj) +OP

(
1

nh2

)
.

�

C.3.3 Proof of Lemma C.4

Since X1, . . . Xn
i.i.d.∼ µX , the claim follows by the Hoeffding decomposition [52, Lemma

11.11] once we have shown that

1. Θy,h = E [Un]

2. gy,h,1(x1) = E [gy,h(x1, Z1)]−Θy,h, where Z1 ∼ µX .

First equality: We start by verifying the first equality. Clearly,

E [Un] = E
[
g

(1)
y,h(X1, X2)

]
+ E

[
g

(2)
y,h(X1, X2)

]
.

Since X1, X2
i.i.d.∼ µX , we obtain that

E
[
g

(1)
y,h(X1, X2)

]
=E

[
1

2h

(
K

(
d2
X ,m(X1)− y

h

)
+K

(
d2
X ,m(X2)− y

h

))]

=E

[
1

h
K

(
d2
X ,m(X1)− y

h

)]
=

∫
1

h
K

(
d2
X ,m(z)− y

h

)
dµX (z)

=

∫
1

h
K

(
u− y
h

)
d(d2
X ,m#µX )(u).

Here, the last equality follows by the change-of-variables formula (d2
X ,m#µX denotes the

pushforward measure of µX with respect to d2
X ,m). By assumption the measure d2

X ,m#µX
possesses a density fd2

X ,m
with respect to the Lebesgue measure. Hence,

E
[
g

(1)
y,h(X1, X2)

]
=

∫
1

h
K

(
u− y
h

)
fd2
X ,m

(u) du

=

∫
K (v) fd2

X ,m
(y + vh) dv.
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As X1, X2
i.i.d.∼ µX , we obtain for the second summand that

E
[
g

(2)
y,h(X1, X2)

]
=E

[
1

2mh2
K ′
(

d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0
FX1(t)− 1{||X1−X2||2≤t} dt

]

+E

[
1

2mh2
K ′
(

d2
X ,m(X2)− y

h

)∫ F−1
X2

(m)

0
FX2(t)− 1{||X2−X1||2≤t} dt

]

=E

[
1

mh2
K ′
(

d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0
FX1(t)− 1{||X1−X2||2≤t} dt

]

Since X1 and X2 are independent, we further find that

E
[
g

(2)
y,h(X1, X2)

]
=EX1

[
1

mh2
K ′
(

d2
X ,m(X1)− y

h

)
EX2

[∫ F−1
X1

(m)

0
FX1(t)−1{||X1−X2||2≤t}dt

]]

(i)
=EX1

[
1

mh2
K ′
(

d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0
FX1(t)−EX2

[
1{||X1−X2||2≤t}

]
dt

]

=EX1

[
1

mh2
K ′
(

d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0
FX1(t)−FX1(t) dt

]

=0,

where (i) follows by the Theorem of Tonelli/Fubini [6, Thm. 18]. Combining our results,
we find that E [Un] = Θy,h.

Second equality: Recall that Z1 ∼ µX . We demonstrate that

gy,h,1(x1) = E [gy,h(x1, Z1)]−Θy,h = E
[
g

(1)
y,h(x1, Z1)

]
+ E

[
g

(2)
y,h(x1, Z1)

]
−Θy,h.

Once again, we consider the two summands separately. We observe that

E
[
g

(1)
y,h(x1, Z1)

]
=E

[
1

2h

(
K

(
d2
X ,m(x1)− y

h

)
+K

(
d2
X ,m(Z1)− y

h

))]

=
1

2h
K

(
d2
X ,m(x1)− y

h

)
+

1

2
Θy,h.

Here, the last equality follows by our previous considerations for E [Un]. For the second
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summand, it follows that

E
[
g

(2)
y,h(x1, Z1)

]
=E

[
1

2mh2
K ′
(

d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0
Fx1(t)− 1{||x1−Z1||2≤t} dt

]

+E

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)∫ F−1
Z1

(m)

0
FZ1(t)− 1{||Z1−x1||2≤t} dt

]

=:T1 + T2.

The Theorem of Tonelli/Fubini [6, Thm. 18] shows that

T1 =
1

2mh2
K ′
(

d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0
Fx1(t)− E

[
1{||x1−Z1||2≤t}

]
dt

=
1

2mh2
K ′
(

d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0
Fx1(t)− Fx1(t) dt = 0.

Furthermore, we obtain for Z2 ∼ µX independent of Z1 that

T2 =EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)∫ F−1
Z1

(m)

0
EZ2

[
1{||Z1−Z2||2≤t}

]
− 1{||Z1−x1||2≤t} dt

]

=EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)
EZ2

[∫ F−1
Z1

(m)

0
1{||Z1−Z2||2≤t} − 1{||Z1−x1||2≤t} dt

]]
,

where the last step follows by the theorem of Tonelli/Fubini [6, Thm. 18]. Moreover,
Lemma F.1 yields that

T2 =EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)
EZ2

[
||x1−Z1||2∧F−1

Z1
(m)−||Z1−Z2||2∧F−1

Z1
(m)

]]

=EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)(
||x1−Z1||2∧F−1

Z1
(m)−EZ2

[
||Z1−Z2||2∧F−1

Z1
(m)

])]
.

Combining all of our results, we finally get that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

as claimed.
�
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C.3.4 Proof of Lemma C.6

Let x1 ∈ X be arbitrary. We observe that for any z1, z2 ∈ X

|Ψ(x1, z1)−Ψ(x1, z2)| =
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]

−||x1 − z2||2 ∧ F−1
z2 (m) + EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

≤
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− ||x1 − z2||2 ∧ F−1
z2 (m)

∣∣
+
∣∣EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]
− EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

=:Ψ1(z1, z2)−Ψ2(z1, z2).

In the following, we consider Ψ1 and Ψ2 separately. We have that for z1, z2 ∈ X

Ψ1(z1, z2) =
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− ||x1 − z2||2 ∧ F−1
z2 (m)

∣∣
≤
∣∣||x1 − z1||2 − ||x1 − z2||2

∣∣+
∣∣F−1
z1 (m)− F−1

z2 (m)
∣∣

≤D
∣∣||x1 − z1|| − ||x1 − z2||

∣∣+ 2
√
D||z1 − z2||,

where the last inequality follows with D = diam (X ) < ∞ and Lemma 8 in Chazal et al.
[14]. In particular, note that in the current setting we have that

sup
t∈(0,1)

sup
x∈X

F−1
x (t) ≤ D <∞.

In consequence, we obtain that for z1, z2 ∈ X

Ψ1(z1, z2) ≤ D
∣∣||z1 − z2||

∣∣+ 2
√
D||z1 − z2|| ≤ C||z1 − z2||,

where C denotes a constant that only depends on X .

Next, we consider

Ψ2(z1, z2) =
∣∣EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]
− EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

≤EZ2

[∣∣||Z2 − z1||2 ∧ F−1
z1 (m)− ||Z2 − z2||2 ∧ F−1

z2 (m)
∣∣] .

Considering our previous calculation, we immediately obtain that

Ψ2(z1, z2) ≤EZ2 [C||z1 − z2||] = C||z1 − z2||,

where C denotes the same constant as previously. Combining our results, we find that

|Ψ(x1, z1)−Ψ(x1, z2)| ≤ C||z1 − z2||,

where the constant C only depends on X and not on x1. This yields the claim.
�

44

316 Distance-to-Measure Density based Geometric Analysis of Complex Data



C.3.5 Proof of Lemma C.7

Next, we derive (24) using Lyapunov’s Central Limit Theorem for triangular arrays [5,
Sec. 27]. To this end, we define zin := 2gy,h,1(Xi), z̄n = 1

n

∑n
i=1 zin and σ2

in := Var (zin).
Clearly, for n fixed the zin’s are independent and identically distributed. In order to check
the assumptions of Lyapunov’s Central Limit Theorem, it remains to find r > 2 such that

ρ1n := E [|z1n − E [z1n] |r] <∞ (32)

and
nρ1n

(nσ2
1n)r/2

→ 0, (33)

as n→∞.

Calculation of σ2
1n: The next step is to consider σ2

1n. As E [z1n] = 0 by construction, we
find that

σ1n =E
[
|z1n|2

]
= E

[
|2gy,h,1(X1)|2

]
= E

[
|T3 + T4|2

]
,

where

T3 :=
1

h
K

(
d2
X ,m(X1)− y

h

)
−Θy,h (34)

and

T4 := EZ1

[
1

mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]
. (35)

Here, Ψ(x1, x2) is the function defined in (22). Obviously, we obtain that

σ2
1n = E

[
T 2

3

]
+ E

[
T 2

4

]
+ 2E [T3T4] .

In the following, we treat each of these summands separately.

First summand: Considering the first term, we see that

E
[
T 2

3

]
= E



∣∣∣∣∣
1

h
K

(
d2
X ,m(X1)− y

h

)
−Θy,h

∣∣∣∣∣

2

 .

which is essentially the variance of the kernel density estimator of the real valued random
variable d2

X ,m(X1). Hence, one can show using standard arguments (see e.g. Silverman
[49, Sec. 3.3]) that

E
[
|T3|2

]
=
fd2
X ,m

(y)

h

∫
|K(u)|2 du+ o

(
1

h

)
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as h→ 0.

Second summand: Next, we consider E
[
|T4|2

]
. We have that

E
[
|T4|2

]
= E



∣∣∣∣∣EZ1

[
1

mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣

2

 .

Recall that Z1 ∼ µX and that µX has, by assumption, a Lipschitz continuous Lebesgue
density. Denote this density by gµX . Then, it follows that

EZ1

[
1

mh2
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]

=
1

mh2

∫

X
K ′
(

d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z) (36)

Next, we realize that
sup
x1,x2

|Ψ(x1, x2)| ≤ D

and hence there is a constant 0 < C <∞ such that

max

{
sup
x∈X

gµX (x), sup
x1,x2

|Ψ(x1, x2)|
}
< C. (37)

Further, it follows by Lemma C.6 that the function Ψ∗x1 : X → R, z 7→ Ψ(x1, z) is Lipschitz
continuous for all x1 ∈ X with a Lipschitz constant that does not depend on x1. This in
combination with the Lipschitz continuity of gµX and (37) implies that the function

ψx1 : X → R, z 7→ Ψ(x1, z)gµX (z)

is Lipschitz continuous for all x1 ∈ X with a Lipschitz constant that does not depend on
x1. We have that the function x 7→ d2

X ,m(x) is coercive, that d2
X ,m is C2,1 on an open

neighborhood of Γy = d2
X ,m

−1
(y) and that ∇d2

X ,m 6= 0 on Γy by assumption. By Condition
2.2, there exists h0 > 0 such that for all −h0 < v < h0

∫

Γy

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x) ≤ Cy|v|,

where Φ denotes the canonical level set flow of Γy and Cy denotes a finite constant that
depends on y and d2

X ,m. Furthermore, the kernel K is twice continuously differentiable and
supp(K) = [−1, 1]. Since K is also even, by assumption, it follows that K ′ is odd, i.e.

∫ 1

−1
K ′(z) dz = 0.

46

318 Distance-to-Measure Density based Geometric Analysis of Complex Data



Thus, we find by Theorem D.1 that there exists some constants cy > 0 and h0 > 0
(depending on d2

X ,m, y and X ) such that for any h < h0 we obtain that

∣∣∣∣∣EZ1

[
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣ ≤ cyh
2.

In consequence, we find that for h small enough

E
[
|T4|2

]
≤ E


 1

m2h4

∣∣∣∣∣EZ1

[
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣

2

 ≤ cy

m2
.

This in particular shows that E
[
|T4|2

]
= O(1) as h→ 0.

Third summand:. By Hölder’s inequality, we obtain that

E [T3T4] ≤ E [|T3T4|] ≤
(
E
[
|T3|2

])1/2 (E
[
|T4|2

])1/2
.

Plugging in our previous findings, we find that

E [T3T4] = O
(

1√
h

)
· O (1) = O

(
1√
h

)
.

as h→ 0. In consequence, we find that

σ2
1n =

fd2
X ,m

(x)

h

∫
|K(u)|2 du+ o

(
1

h

)
.

This concludes our consideration of σ2
1n.

Calculation of third moments: We choose r = 3 and consider ρ1n = E [|z1n − E [z1n] |r].
By construction E [z1n] = 0. Thus, we obtain

ρ1n =E
[
|z1n|3

]
= E

[
|gy,h,1(X1)|3

]
= E

[
|T3 + T4|3

]
,

where T3 and T4 denote the terms defined in (34) and (35), respectively. Furthermore, it
follows that

ρ1n ≤ E
[
(|T3|+ |T4|)3

]
≤ 8E

[
|T3|3

]
+ 8E

[
|T4|3

]
.

Considering the first summand, this yields that

E
[
|T3|3

]
= E



∣∣∣∣∣
1

h
K

(
d2
X ,m(X1)− y

h

)
−Θy,h

∣∣∣∣∣

3

 ,
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which is the third moment of the kernel density estimator of the real valued random variable
d2
X ,m(X1). In particular, one can show using standard arguments that

E
[
|T3|3

]
≤

8fd2
X ,m

(x)

h2

∫
|K(u)|3 du+ o

(
1

h2

)
.

It remains to consider

E
[
|T4|3

]
= E



∣∣∣∣∣

1

2mh2
EZ1

[
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣

3

 .

We have already shown that for h→ 0

∣∣∣∣∣
1

2mh2
EZ1

[
K ′
(

d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣ = O(1).

Consequently, this implies that
E
[
|T4|3

]
= O(1).

Hence, we obtain that

ρ1n ≤
8fd2

X ,m
(y)

h2

∫ 1

−1
|K(u)|3 du+ o

(
1

h2

)
.

Applying Lyapunov’s CLT: Now that we have calculated ρ1n and σ2
1n, we can verify

the remaining assumption of Lyapunov’s Central Limit Theorem for triangular array’s [5,
Sec. 26]. First of all, we observe that ρ1n < ∞, since K, K ′ and Ψ are continuous and
compactly supported. Furthermore, we obtain

nρ1n(
nσ2

1n

)3/2 ≤
8nf

d2X ,m
(x)

h2

∫
|K(u)|3 du+ o

(
n
h2

)
(
nf

d2X ,m
(x)

2h

∫
|K(u)|2 du+ o

(
n
h

))3/2

=O
( n
h2

)
· O
(
n−3/2

h−3/2

)

=O
(

(nh)−1/2
)
→ 0,

if nh → ∞. In consequence, Lyapunov’s Central Limit Theorem for triangular arrays is
applicable. It yields that

z̄n − E [z̄n]√
Var (z̄n)

D→ N(0, 1).
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This in turn implies that

√
nh

(
2

n

n∑

i=1

gy,h,1(Xi)

)
⇒ N

(
0, fd2

X ,m
(y)

∫ 1

−1
|K(u)|2 du

)

which gives the claim.

�

D Some Geometric Measure Theory

In the proof of Lemma C.7, we need to bound the term (36):

I(y) :=

∫

X
K ′
(

d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z),

where gµX denotes the Lebesgue density of µX (which exists by assumption) and X1 ∼ µX .
Since the kernel K and thus also its derivative K ′ are supported on [−1, 1] , we obtain

I(y) =

∫

Ah(y)
K ′
(

d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z),

where

Ah(y) :=
{
z ∈ X | y − h ≤ d2

X ,m(z) ≤ y + h
}

=
(
d2
X ,m

)−1
[y − h, y + h] ∩ X . (38)

In the following, we will show how to control such integrals over thickened level sets such
as Ah(y) for small h. More precisely, we prove the subsequent theorem that has already
been applied to bound the term I(y) in the proof of Lemma C.7.

Theorem D.1. Let X ⊂ Rd be a compact set. Let g : X → [−α, α] be α-Lipschitz continu-
ous and suppose that k : R→ [−α, α] for some α > 0. Assume that supp(k) = [−1, 1] and∫
k(s) ds = 0. Let d : Rd → R be a coercive function, i.e., lim||x||→∞ d(x) =∞, with level

sets Γy = d
−1{y} for y ∈ R. Call y ∈ R a C2,1-regular bounded value of d with respect to

X if

C.1 Γy has an open neighborhood on which d is C2,1,

C.2 ∇d 6= 0 on Γy.
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C.3 There exists h∗0 > 0 and such that for all −h∗0 < v < h∗0
∫

Γy

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x) ≤ Cy|v|,

where Φ denotes the canonical level set flow of Γy and Cy denotes a constant that
only depends on the function d, the variable y and the underlying space X .

If y is a C2,1-regular bounded value of d with respect to X , then

∣∣∣∣
∫

X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣ ≤ cyh2 (39)

for some cy > 0 and any 0 < h < h0, where cy and h0 > 0 only depend on d, y, α and X
(and not on k and g explicitly).

The proof of Theorem D.1 consists of three steps, each of which is formulated as an inde-
pendent lemma (see Section D.1).

Step 1: Splitting the integration (Lemma D.2).
We first note that integration over Ah(y) can be split into integrating first over the
surface (d2

X ,m)−1(v) ∩ X with respect to the (d − 1)-dimensional Hausdorff measure

H d−1 (see Federer [19], Morgan [41] for an introduction) and afterwards over v ∈
[y − h, y + h].

Step 2: Flow regularity (Lemma D.3).

Let W ⊂ Rd be open and let ϕ : W → Rd be C2,1. We show that the flow Φ
corresponding to the initial value problem

u′ = ϕ(u) (40)

is C2,1 on its domain (see Hirsch and Smale [29] for information about initial value
problems and flows).

Step 3: Local Lipschitz continuity (Lemma D.4).

We prove that the integral of a bounded, α-Lipschitz function g : X ⊂ Rd → [−α, α]
over the level set of a C2,1-regular bounded value d with respect to X , denoted as y,
is locally Lipschitz continuous in y. More precisely, we prove that there exists h0 > 0
such that for all −h0 < v < h0 it holds that

∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|,

where Cy > 0 denotes a constant that only depends on d, y, α and X .
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D.1 Auxiliary Lemmas Representing Step 1 - Step 3

Lemma D.2. Let f : Rd → R be a Lipschitz continuous function. Let h > 0, X ⊂ Rd a
compact space and g : Rd → R such that the function

x 7→ |g(x)|
||∇f(x)||1{x∈X : |f(x)|≤h} (41)

is integrable with respect to λd. Then, it follows that

∫

{x∈X : |f(x)|≤h}
g(x) dλd(x) =

∫ h

−h

∫

f−1(v)∩X

g(x)

||∇f(x)|| dH
d−1(x) dv,

where H d−1 denotes the (d− 1)-dimensional Hausdorff measure.

Proof. First of all, we observe that
∫

{x∈X : |f(x)|≤h}
g(x) dλd(x) =

∫

Rd

g(x)

||∇f(x)||1{x∈X : |f(x)|≤h}||∇f(x)|| dλd(x).

Since the function defined in (41) is integrable, it follows by the co-area formula (see
Federer [19, Thm. 3.2.12], where the k-dimensional Jacobian of f is ||∇f || in this setting)
that

∫

Rd

g(x)

||∇f(x)||1{x∈X : |f(x)|≤h}||∇f(x)|| dλd(x)

=

∫ ∞

−∞

∫

f−1(v)

g(x)

||∇f(x)||1{x∈Rd :−h≤f(x)≤h}1{x∈X} dH
d−1(x) dv

=

∫ h

−h

∫

f−1(v)∩X

g(x)

||∇f(x)|| dH
d−1(x) dv.

This yields the claim.

Lemma D.3. Let W ⊂ Rd be an open set and let ϕ : W → Rd be Cr,1, 1 ≤ 0 < ∞.
Consider the initial value problem

∂

∂t
u(t) = ϕ(u), u(0) = y (42)

Let Ω ⊂ R×W be defined as

Ω = {(t, y) ∈ R×W : t ∈ J(y)},

where J(y) ⊂ R denotes the maximal open interval on which the ODE defined in (42)
admits a solution. Then, the flow Φ : Ω→ Rd is also in Cr,1.
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Proof. This statement essentially follows by a combination of Theorem 8.3 and Theorem
10.3 in Amann [1] with the idea of proof of Theorem 2 in Chapter 15 of Hirsch and Smale
[29]. For the sake of completeness, we give the full argument here.

To prove the claim, we induct on r. The case r = 0 follows by combining Theorem 8.3
of Amann [1] with Theorem 10.3 of the same reference. Suppose as induction hypothesis,
that r ≥ 1 and that the flow of every differential equation

∂

∂t
ζ(t) = ϕ(ζ)

with ϕ ∈ Cr−1,1 is Cr−1,1. Consider the differential equation on Rd × Rd defined by the
vector field ϕ∗ : W × Rd → Rd × Rd, ϕ∗(u, v) = (ϕ(u), Dϕ(u)v), i.e.,

∂

∂t
(u, v) = ϕ∗(u, v)

or equivalently,

u′ = ϕ(u), v′ = Dϕ(u)v. (43)

Since ϕ∗ is in Cr−1,1, the flow Φ∗ of (43) is Cr−1,1 by the induction hypothesis. But this
flow is just

Φ∗(t, (u, v)) = (Φ(t, u), DΦt(u)v)

since the second equation in (43) is the variational equation (see Hirsch and Smale [29,
Chap. 15] for a definition) of the first equation. Therefore, ∂Φ/∂u is a Cr−1,1 function of
(t, u), since ∂Φ/∂u = DΦt(u). Moreover, ∂Φ/∂t is in Cr−1,1 since

∂

∂t
Φ = ϕ(Φ(t, u)).

It follows that Φ is Cr,1, since its first partial derivatives are Cr−1,1.

Lemma D.4. Let X ⊂ Rd be a compact set. Let g : X → [−α, α] be an α-Lipschitz
function for some α > 0. Let d : Rd → R be a coercive function and y ∈ R a C2,1-regular
bounded value of d with respect to X . Let Γy = d

−1{y}. Then, it holds that

∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|, (44)

for some Cy > 0 and any −h0 < v < h0, where Cy and h0 > 0 only depend on d, y, α and
X (and not on g explicitly).
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Proof. Before we prove (44), we ensure that the statement is well defined and prove that
under the assumptions made

∫

Γy∩X
|g(x)| dH d−1(x) ≤ α

∫

Γy∩X
dH d−1(x) <∞.

To this end, we observe that H d−1(d−1({y} ∩ X ) ≤ H d−1(d−1({y})). As d is coercive
it follows that the set d−1([0, y]) is bounded. Hence, the same holds true for d−1({y}).
Furthermore, as d is C2,1 in an open environment of the level set Γy and ∇d 6= 0 on Γy, it
follows that Γy is a compact C1-manifold of dimension d−1 [53, Thm. 9], which obviously
has finite volume (and hence finite (d− 1)-dimensional Hausdorff measure [19, 41]).

Now, we focus on proving the statement (44). By assumption, d is C2,1 on an open
environment U of Γy with ||∇d|| > 0 on Γy. In consequence, there exists h′0 > 0 such that
d
−1([y − h′0, y + h′0]) ⊂ U and ||∇d|| > 0 on d

−1([y − h′0, y + h′0]). This means that the
function

ϕ(u) : Rd → Rd, u 7→ ∇d(u)

||∇d(u)||2

is C1,1(d−1((y−h′0, y+h′0)),Rd). By Lemma D.3 (or more generally by Cauchy-Lipschitz’s
theory [1, 29]) there exists 0 < h0 ≤ h′0 such that one can construct a flow Φ : [−h0, h0]×
W → Rd with {

∂
∂tΦ(t, x) = ∇d(Φ(t,x))

||∇d(Φ(t,x))||2

Φ(0, x) = x,

where W ⊂ Rd is an open set that contains d−1([y − h0, y + h0]). Differentiating the
function t 7→ d(Φ(t, x)) immediately shows that d (Φ(t, x)) = d(x) + t. This implies
that Φ(t,d−1({y})) = d

−1({y + t}). In particular, Lemma D.3 yields that Φ is in C1,1.
Consequently, we find that

∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣

=

∣∣∣∣∣

∫

d−1({y})
g(x)1{x∈X}dH

d−1(x)−
∫

Φ(v,d−1({y}))
g(x)1{x∈X} dH

d−1(x)

∣∣∣∣∣

≤
∫

d−1({y})

∣∣g(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x),

where JΦ(v,·) denotes the Jacobian determinant of Φ(v, ·). The last line follows by a change
of variables (see e.g. Merigot and Thibert [40, Thm. 56]) and the fact that Φ(0, ·) is the
identity. By Kirszbraun’s Theorem [19, Thm. 2.10.43] we can extend g : X → [−α, α]
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to a Lipschitz continuous function g̃ : Rd → R, that has the same Lipschitz constant α.
Obviously, it holds that

∫

d−1({y})

∣∣g(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x)

=

∫

d−1({y})

∣∣g̃(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g̃(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x).

Therefore, we find that

∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣

≤
∫

d−1({y})

∣∣g̃(Φ(0, x))JΦ(0,·)(x)− g̃(Φ(v, x))JΦ(v,·)(x)
∣∣1{Φ(0,x)∈X} dH

d−1(x)

+

∫

d−1({y})

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ ∣∣g̃(Φ(v, x))JΦ(v,·)(x)

∣∣ dH d−1(x).

Since Φ is in C1,1([−h0, h0]×W ), it follows that (v, x) 7→ g̃(Φ(v, x)) and (v, x) 7→ JΦ(v,·)(x)
are Lipschitz continuous functions. We observe that for (v, x) ∈ [−h0, h0]×X

|g̃(Φ(v, x))| ≤ |g̃(Φ(0, x))|+ |g̃(Φ(v, x))− g̃(Φ(0, x))| ≤ α+ α||Φ(v, x)− Φ(0, x)||
≤ α+ αLΦh0,

where LΦ denotes the Lipschitz constant of Φ. This implies immediately that the function
(v, x) 7→ g̃(Φ(v, x))JΦ(v,·)(x) is Lipschitz continuous on [−h0, h0] × X with a Lipschitz
constant that only depends on d, y, α and X . Further, we realize that

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ > 0 (45)

implies that either x ∈ X or Φ(v, x) ∈ X (but not both). Given (45), our previous
calculations show that ∣∣g̃(Φ(v, x))JΦ(v,·)(x)

∣∣ ≤ Cy,

where Cy denotes a finite constant that depends only on d, y, α as well as X . For the
remainder of this proof, this constant may vary from line to line. We obtain that

∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣

≤
∫

d−1({y})
Cy |v|1{x∈X} dH d−1(x) + Cy

∫

d−1({y})

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x).
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Since y is a C2,1-regular value of d with respect to X , we find that (by potentially adjusting
h0) there exists h0 > 0 such that for all −h0 < v < h0∣∣∣∣∣

∫

Γy+v∩X
g(x) dH d−1(x)−

∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|H
d−1 (Γy) + Cy|v| ≤ Cy|v|.

This gives the claim.

D.2 Proof of Theorem D.1

By assumption, we have that ∇d 6= 0 on the level set Γy. Furthermore, we have assumed
that the function d is C2,1 on an open neighborhood of Γy. Thus, there exists h0 > 0 such
that ||∇d|| > 0 on

d
−1[y − h0, y + h0] = {x ∈ Rd : y − h0 ≤ d(x) ≤ y + h0}. (46)

Throughout the following let 0 < h < h0. We get that
∣∣∣∣
∫

X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣ =

∣∣∣∣∣

∫

{x∈X : y−h≤d(x)≤y+h}
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣∣

=

∣∣∣∣∣

∫

{x∈X : |d(x)−y|≤h}
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣∣ .

Since ||∇d(x)|| > 0 for x ∈ d−1[y − h0, y + h0] and |g(x)| ≤ α for all x, we obtain that

sup
x∈Rd

∣∣∣∣
g(x)

||∇d(x)||1{x∈X : |d(x)−y|≤h}

∣∣∣∣ < Cy, (47)

where Cy denotes a constant that only depends on d, y, α and X (in particular it can be
chosen independently from h). In the following, Cy may vary from line to line. Clearly,
(47) implies that the function

x 7→ |g(x)|
||∇d(x)||1{x∈X : |d(x)−y|≤h}

is λd-integrable for any 0 ≤ h ≤ h0. Therefore, it follows by Lemma D.2 in combination
with (47) that

∣∣∣∣
∫

X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣

=

∣∣∣∣∣

∫ h

−h

∫

{x∈X :d(x)−y=v}
k

(
d(x)− y

h

)
g(x)

||∇d(x)|| dH
d−1(x) dv

∣∣∣∣∣

=

∣∣∣∣∣

∫ h

−h
k
(v
h

)∫

{x∈X :d(x)−y=v}

g(x)

||∇d(x)|| dH
d−1(x) dv

∣∣∣∣∣ .
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We note that

{x ∈ X : d(x)− y = v} = d
−1(y + v) ∩ X = Γy+v ∩ X .

This yields that
∣∣∣∣
∫

X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣

≤
∣∣∣∣∣

∫ h

−h
k
(v
h

)∫

Γy∩X

g(x)

||∇d(x)|| dH
d−1(x) dv

∣∣∣∣∣

+

∣∣∣∣∣

∫ h

−h
k
(v
h

)(∫

Γy+v∩X

g(x)

||∇d(x)|| dH
d−1(x)−

∫

Γy∩X

g(x)

||∇d(x)|| dH
d−1(x)

)
dv

∣∣∣∣∣ =: T5 + T6.

Next, we consider both summands separately. First of all, we observe that the integral

∫

Γy∩X

g(x)

||∇d(x)|| dH
d−1(x)

does not depend on v. Consequently, we obtain that

T5

(i)

≤ Cy

∣∣∣∣
∫ h

−h
k
(v
h

)
dv

∣∣∣∣

∣∣∣∣∣

∫

Γy∩X
dH d−1(x)

∣∣∣∣∣
(ii)

≤ Cy

∣∣∣∣
∫ h

−h
k
(v
h

)
dv

∣∣∣∣ .

Here, (i) follows by (47) and (ii) follows since H d−1(Γy ∩X ) ≤ C <∞ for some constant
C, as already argued in the proof of of Lemma D.4. Setting u = v/h and using

∫
k(u) du = 0

gives that

T5 ≤ Cyh
∣∣∣∣
∫ 1

−1
k (u) du

∣∣∣∣ = 0.

Hence, it only remains to consider the second summand T6. Let X ∗ = X ∩d−1([y−h0, y+
h0]). Since h ≤ h0, we obtain that

T6 ≤
∫ h

−h

∣∣∣k
(v
h

)∣∣∣
∣∣∣∣∣

∫

Γy+v∩X ∗
g(x)

||∇d(x)|| dH
d−1(x)−

∫

Γy∩X ∗
g(x)

||∇d(x)|| dH
d−1(x)

∣∣∣∣∣ dv

We realize that the function

g∗ : X ∗ → R, x 7→ g(x)

||∇d(x)||

is Lipschitz continuous, as ||∇d(x)|| > 0 for x ∈ d−1([y−h0, y+h0]), the function ||∇d(x)||
is in C1,1(d(−1(y− h0, y+ h0)) and g is Lipschitz continuous and bounded by assumption.
As y is a C2,1-regular bounded value of d with respect to X , it is straight forward to verify

56

328 Distance-to-Measure Density based Geometric Analysis of Complex Data



that it is also one with respect to X ∗. Thus, the requirements of Lemma D.4 are met. By
potentially decreasing h0, we find for all h small enough that

T6 ≤ Cy
∫ h

−h

∣∣∣k
(v
h

)∣∣∣ v dv.

Setting u = v/h gives that

T6 ≤ Cyh2

∫ 1

−1
|k (u)|u du ≤ cyh2,

where cy > 0 depends only on d, y, α and X .

All in all, this gives

∣∣∣∣
∫

X
k

(
d(x)− y

h

)
g(z) dλd(z)

∣∣∣∣ ≤ T5 + T6 ≤ cyh2,

which yields the claim. �

E The Distance-to-Measure-Function

In this section, we derive further properties of the DTM-function.

First of all, we ensure that

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP (1/

√
n)

This is a minor extension of Theorem 9 in Chazal et al. [14], which considers only 0 < m < 1.
For this purpose, we need to introduce some notation. For a compact set A ⊂ Rd we define
the radius of the smallest enclosing ball of centered at zero as

r(A) = inf{r > 0 : A ⊂ B̄(0, r)},

where B̄(0, r) denotes a closed ball with radius r centered at the origin.

Lemma E.1. Let P be a measure with compact support and let X be a compact domain on
Rd. Further, suppose that for any x ∈ X the pushforward measure of P by ||x− ·||2, whose
distribution function is denoted by Fx, is supported on a finite closed interval [0, Dx] with

sup
x∈X

Dx ≤ D <∞.
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Suppose that there is a constant CX such that r(X ) < CX . Let X1, . . . , Xn
i.i.d.∼ P and

denote the corresponding empirical measure by Pn. Then, it follows that

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP

(
1√
n

)
.

Proof. Let F̂x,n be defined as in (2). Recalling (31), we find

√
n
(
δ2
X ,1(x)− d2

X ,1(x)
)

=
√
n

(∫ Dx

0
Fx(t)− F̂x,n(t) dt

)

=
√
n

(∫ Dx

0

∫
1{||x−z||2≤t} dP (z) −

∫
1{||x−z||2≤t} dPn(z) dt

)
.

Since P is compactly supported and supx∈X |Dx| < ∞ by assumption, the Theorem of
Tonelli/ Fubini [6, Thm. 18] yields

√
n
(
δ2
X ,1(x)− d2

X ,1(x)
)

=
√
n

(∫ ∫ Dx

0
1{||x−z||2≤t} dt dP (z) −

∫ ∫ Dx

0
1{||x−z||2≤t} dt dPn(z)

)

=− νn(gx),

where νn =
√
n (Pn − P ) denotes the empirical process and

gx(z) =

∫ Dx

0
1{||x−z||2≤t} dt = Dx − ||x− z||2.

Hence, the claim follows once we have shown that G = {gx : x ∈ X} is a Donsker class. To
this end, we observe that by Chazal et al. [14, Lemma 8] it holds that for x, x′ ∈ X

|Dx −Dx′ | ≤ sup
t∈(0,1)

|F−1
x (t)− F−1

x′ (t)| ≤ 2 sup
t∈(0,1)

[
sup
x∈X

F−1
x (t)

]
||x− x′||

≤ 2D||x− x′||.

Now, we have for any (x, x′) ∈ X 2 and any z ∈ supp(P ) that

|gx(z)− gx′(z)| ≤ |Dx −Dx′ |+ ||x− x′||
(
||x||+ ||x′||+ 2||z||

)

≤ 2 (CX +D + ||z||) ||x− x′||.

As P is compactly supported, it follows that G is a Donsker class (see Example 19.7 in
Van der Vaart [52]). As already argued this yields the claim.
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F Miscellaneous

Lemma F.1. Let x, y and κ denote non-negative real numbers. Then, it holds that

∫ κ

0
1{x≤t} − 1{y≤t} dt = y ∧ κ− x ∧ κ.

Proof. In order to show the claim, we have to distinguish several cases:

1. x ≤ y ≤ κ: In this case we have that

∫ κ

0
1{x≤t} − 1{y≤t} dt = y − x = y ∧ κ− x ∧ κ.

2. x ≤ κ ≤ y: Here, obtain that

∫ κ

0
1{x≤t} − 1{y≤t} dt = κ− x = y ∧ κ− x ∧ κ.

3. y ≤ x ≤ κ: It follows that

∫ κ

0
1{x≤t} − 1{y≤t} dt = −(x− y) = y ∧ κ− x ∧ κ.

4. y ≤ κ ≤ x: We get

∫ κ

0
1{x≤t} − 1{y≤t} dt = −(κ− y) = y ∧ κ− x ∧ κ.

5. κ ≤ x and κ ≤ y: In this case, the claim is trivial.
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