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Summary 

Large-scale biodiversity data drive the research of the variation and inter-dependence among 

living organisms that sustain life. Taxonomic and point-occurrence validity of species, sample 

completeness, and consistency are essential aspects of these data. A convenient way to access 

biodiversity data is through digital specimen records stored with public data providers. 

However, recent evaluations of public provider data showed inconsistent quality derived from, 

e.g., misidentified species, incongruities in associating synonyms with their accepted species, 

coordinate errors, and missing values. Therefore, one should not assume that the quality of 

public provider data is suitable for immediate use. My thesis comprises two independent studies 

in which I examine taxonomic and spatial limitations in biodiversity data retrieved from two 

major public data providers.  

I. Developing data cleaning (DC) strategies and tools to reproducibly generate consistent data 

from global public provider data is a long-standing goal of biodiversity informatics. Coded 

instructions and R packages to retrieve, evaluate, format, and organize data are examples of 

such developments. While newly programmed and recently updated automated methods and 

tools are promising to support public data users, their effect on downstream macroecological 

diversity models remains poorly examined. 

In chapter 2, I introduce the first quantitative analysis of how data, processed in DC pipelines 

using popular DC methods and tools, influenced downstream species distribution models 

(SDM). I focused on two aspects. (1), I examined the standardization and error removal 

performance of six DC pipelines, using 46,384 North American Ephedra records as input from 

the Global Biodiversity Information Facility (GBIF). (2), I analyzed differences in the SDM 

and stacked SDMs (S-SDMs) of Ephedra species in North America (e.g., caused by retained 

errors in the pipeline data). To test the reliability of the results, I compared the pipeline data 

SDMs to corresponding expert data SDMs that represented the gold standard. (1) Depending 

on the pipeline, about one-third (GBIF-filtered) to two-thirds (R packages-processed) of the 

records were unsuitable for biodiversity analyses. While the R package-based pipelines offered 

automated data cleaning in a standardized and reproducible manner, the GBIF-filtered data still 

contained significant spatial and taxonomic errors. Major drawbacks emerged from the fact that 

no pipeline entirely discovered misidentified specimens without the assistance of expert 

taxonomic knowledge. These results support the hypothesis that different data cleaning 
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solutions provide different data qualities. (2) Differences in the pipeline data did not translate 

into significant differences in downstream SDMs and S-SDMs. However, the prediction that 

models and maps from public provider data would differ significantly from expert data was 

supported by respective correlations in the models and maps (using Pearson's r).  

II. Synonyms are a common part of scientific progression in taxonomy and nomenclature. They 

can emerge for different reasons, for example, because taxonomists interpret and classify 

interspecific variations differently. Synonyms may cause severe taxonomic uncertainties in 

biodiversity repositories (e.g., confusing taxonomy when it is challenging to recognize whether 

a species' name is an alias of a more common species). Recent studies showed that some taxa's 

synonymy level is quite substantial. In this context, several causes, in addition to splitting and 

lumping, were suggested to lead to variation in synonym numbers; for example, taxonomists 

might show preferences toward attractive taxonomic entities. 

In chapter 3, I present five drivers of synonym numbers I hypothesized to account for variation 

in global angiosperm synonym numbers. The drivers comprised higher taxa of a species (family 

and genus), the botanical continents where a species is present, the insularity of a species 

(defined as the occurrence on islands, the mainland, or both), a species' range size, and the age 

of its accepted name. Using multi-model inference, I quantified the relative importance of the 

drivers across 137,378 accepted names of 193 angiosperm families and 5,019 genera present in 

355 TDWG countries and regions worldwide using data from the World Checklist of Selected 

Plant Families (WCSP). The synonym number was used as the response variable in the models 

for explanations and predictions; the synonymy rate allowed for a relative ranking in groups 

(e.g., order of genera in angiosperm families). I identified range size, the age of an accepted 

name, and insularity as the core drivers that positively affected the global variation of synonym 

numbers. After accounting for these three factors, the residual differences in the number of 

botanical continents and the interaction of insularity and the range size were less significant. 

The combined multi-predictor model explained about 41% of the global variation in angiosperm 

synonymy (96%, including the random effects of the botanical continents, genera, and families).  

Two essential interpretations emerged from the studies. First, when consistent species 

information is critical, expert data unavailable, and public biodiversity providers are known for 

frequently storing data of poor quality, this should prompt users to improve the data within their 

control before use. However, this will usually happen locally at a user’s space using retrieved 

data from the providers. Second, when, in particular, taxonomic accuracy is essential, data from 

a public provider requires additional effort. In this case, the biodiversity data should be 
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thoroughly analyzed with expert help since dubious specimens can still hide even in the cleaned 

data. 
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Zusammenfassung 

Umfangreiche Biodiversitätsdaten treiben die Erforschung der Variation und gegenseitigen 

Abhängigkeit zwischen lebenden Organismen voran, die das Leben erhalten. Wesentliche 

Aspekte dieser Daten sind die Validität der Arten und Punktvorkommen, und die 

Vollständigkeit und Konsistenz von Zufallsstichproben zur Vermeidung von "Bias". Ein 

komfortabler Weg, auf Biodiversitätsdaten zuzugreifen, sind digitale Datensätze von 

Specimens, die bei öffentlichen Datenanbietern gespeichert sind. Jüngste Auswertungen von 

Daten öffentlicher Anbieter zeigten jedoch eine uneinheitliche Qualität, die z. B. falsch 

identifizierte Arten, Unstimmigkeiten bei der Zuordnung von Synonymen zu ihren akzeptierten 

Arten, Koordinatenfehler und fehlende Werten. Daher sollte man nicht davon ausgehen, dass 

die Datenqualität öffentlicher Anbieter für die sofortige Nutzung geeignet ist. Meine 

Dissertation umfasst zwei voneinander unabhängige Studien, in denen ich taxonomische und 

räumliche Mängel in Biodiversitätsdaten untersuche, die ich zwei großen öffentlichen 

Datenanbietern abgerufen habe.   

I. Die Entwicklung von Datenbereinigungs (DC) Strategien und Werkzeugen zur 

reproduzierbaren Generierung konsistenter Daten aus Datenbeständen globaler öffentlicher 

Anbieter ist ein langjähriges Ziel der Biodiversitätsinformatik. Codierte Anweisungen und R-

Pakete zum Abrufen, Auswerten, Formatieren und Organisieren von Daten sind Beispiele für 

solche Entwicklungen. Während neu programmierte und kürzlich aktualisierte, automatisierte 

Methoden und Werkzeuge vielversprechend sind, um die Nutzer öffentlicher Daten zu 

unterstützen, ist ihre Wirkung auf nachgelagerte makroökologische Diversitätsmodelle noch 

wenig untersucht.  

In Kapitel 2 stelle ich die erste quantitative Analyse vor, wie Daten, die in DC-Pipelines mit 

gängigen DC-Methoden und -Werkzeugen verarbeitet wurden, nachgelagerte Artenverteilungs-

modelle (SDM) beeinflussten. Ich habe mich auf zwei Aspekte konzentriert. (1) untersuchte ich 

die Standardisierungs- und Fehlerbeseitigungsleistung von sechs DC-Pipelines unter 

Verwendung von 46.384 nordamerikanischen Ephedra-Aufzeichnungen, abgerufen aus der 

Global Biodiversity Information Facility (GBIF). (2) analysierte ich Unterschiede in den SDMs 

und gestapelten SDMs (S-SDMs) von Ephedra-Arten in Nordamerika (z. B. verursacht durch 

zurückbehaltene Fehler in den Pipeline-Daten). Um die Zuverlässigkeit der Ergebnisse zu 

testen, habe ich die Pipeline-Daten-SDMs mit entsprechenden Expertendaten-SDMs verglichen 
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(Die Expertendaten repräsentierten den Goldstandard). (1) Je nach Pipeline waren etwa ein 

Drittel (GBIF-gefiltert) bis zwei Drittel (von R-Paketen verarbeitet) der Aufzeichnungen für 

Biodiversitätsanalysen ungeeignet. Während die auf R-Paketen basierenden Pipelines eine 

automatisierte Datenbereinigung auf standardisierte und reproduzierbare Weise boten, 

enthielten die GBIF-gefilterten Daten immer noch erhebliche räumliche und taxonomische 

Fehler. Große Nachteile ergaben sich aus der Tatsache, dass keine Pipeline vollständig die 

fehlbestimmten Specimen ohne die Unterstützung von taxonomischem Expertenwissen 

entdeckte. Diese Ergebnisse stützen die Hypothese, dass verschiedene Datenbereinigungs-

lösungen unterschiedliche Datenqualitäten liefern. (2) Unterschiede in den Pipelinedaten 

führten nicht zu signifikanten Unterschieden in nachgelagerten SDMs und S-SDMs. Die 

Vorhersage, dass sich Modelle und Karten aus Daten öffentlicher Anbieter signifikant von 

Expertendaten unterscheiden würden, wurde jedoch durch entsprechende Korrelationen in den 

Modellen und Karten (unter Verwendung von Pearson's r) gestützt. 

II. Synonyme sind ein üblicher Bestandteil der wissenschaftlichen Weiterentwicklung in 

Taxonomie und Nomenklatur. Sie können aus unterschiedlichen Gründen entstehen, zum 

Beispiel weil Taxonomen interspezifische Variationen unterschiedlich interpretieren und 

klassifizieren. Synonyme können schwerwiegende taxonomische Unsicherheiten in 

Biodiversitäts-Repositorien verursachen (z. B. eine künstliche Erhöhung der Anzahl von 

Artnamen, Verwechslungen in Taxonomien, wenn es schwierig ist zu erkennen, ob der Artname 

ein Alias einer häufigeren Art ist). Neuere Studien haben gezeigt, dass das Synonymieniveau 

einiger Taxa ziemlich beträchtlich ist. In diesem Zusammenhang wurden neben dem Aufteilen 

und Zusammenfassen mehrere Ursachen vorgeschlagen, die zu einer Variation der 

Synonymzahlen führen. Beispielsweise könnten Taxonomen Präferenzen gegenüber attraktiven 

taxonomischen Einheiten zeigen. 

In Kapitel 3 stelle ich fünf Synonymietreiber vor, von denen ich angenommen habe, dass sie 

die nicht-nomenklaturbedingten Variation in den globalen Angiospermen-Synonymzahlen 

erklären. Die Treiber umfassten höhere Taxa einer Art (Familie und Gattung), die botanischen 

Kontinente, auf denen eine Art vorkommt, die Insellage einer Art (definiert als das Vorkommen 

auf Inseln, dem Festland oder beiden), die Größe des Verbreitungsgebiets einer Art und das 

Alter seines akzeptierten Namens. Mittels Multi-Modell-Inferenz habe ich die relative 

Bedeutung der Treiber unter Verwendung von Daten aus der World Checklist of Selected Plant 

Families (WCSP) quantifiziert (für 137.378 akzeptierte Namen von 193 Angiospermenfamilien 

und 5.019 Gattungen, die in 355 TDWG-Ländern und -Regionen weltweit vorkommen). Als 
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Antwortvariable wurde in den Modellen die Synonymzahl verwendet (für "response" und 

"prediction"); die Synonymierate ermöglichte eine relative Rangfolge in Gruppen (z. B. für die 

Reihenfolge der Gattungen in Angiospermenfamilien). Ich identifizierte die Bereichsgröße, das 

Alter eines akzeptierten Namens und die Insellage als die Haupttreiber, die sich positiv auf die 

globale Variation von Synonymnummern auswirkten. Nach Berücksichtigung dieser drei 

Faktoren waren die verbleibenden Unterschiede in der Anzahl der botanischen Kontinente und 

der Wechselwirkung von Insellage und Verbreitungsgröße weniger signifikant. Das 

kombinierte Multi-Prädiktor-Modell erklärte etwa 41 % der globalen Variation der 

Angiospermen-Synonymie (96 % einschließlich der zufälligen Effekte der botanischen 

Kontinente, Gattungen und Familien).  

Zwei weitere wichtige Aspekte kristallisierten sich aus den Studien heraus. Erstens, wenn 

konsistente Arteninformationen kritisch und Expertendaten nicht verfügbar sind und öffentliche 

Biodiversitätsanbieter dafür bekannt sind, dass sie oft Daten von schlechter Qualität speichern, 

sollte dies die Benutzer dazu veranlassen, Daten unter ihrer Kontrolle vor der Verwendung zu 

verbessern. Dies geschieht jedoch in der Regel lokal bei abgerufenen Anbieterdaten. Zweitens, 

wenn es insbesondere auf taxonomische Genauigkeit ankommt, erfordern Daten eines 

öffentlichen Anbieters zusätzlichen Aufwand. In diesem Fall sollten die Biodiversitätsdaten mit 

Hilfe von Experten gründlich analysiert werden, da sich auch in den bereinigten Daten immer 

noch zweifelhafte Specimen verbergen können.  
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1 
Introduction 

Research background 

Anthropogenic transformations worldwide, including land degradation (Scholes et al., 2018), 

deforestation in the tropics (Myers, 1995), the loss of species (e.g., Koh et al., 2004, Powers & 

Jetz, 2019), and regional floristic uniqueness (Qiang et al., 2021), indicate a compelling need 

to study biodiversity. Biodiversity refers to the variation and the inter-dependence among living 

organisms from genes, traits, and species to ecosystem, as well as cultural processes that sustain 

life in a particular region or globally (Whittaker et al., 2005, Chandra & Idrisova, 2011, McGill 

et al., 2015). Biodiversity research reveals the services that intact ecosystems provide to all 

living organisms on earth (e.g., Morton & Hill, 2014). The services provide food and water, 

influence climate and diseases, nutrients and crop pollination, and enable many cultural services 

like recreational benefits (Morton & Hill, 2014). Thus, it is vital to intensify research and collect 

and preserve all attainable data of the organisms involved, i.e., their biodiversity data. 

Biodiversity data sit at the core of many knowledge areas, like taxonomy, ecology, and 

evolutionary biology, where they are used to describe organisms and the organisms' 

distributions, functions, and phylogenies (Soberón & Peterson, 2004, Hamilton, 2005). 

Digitally available specimen records are the most common representation of public biodiversity 

data, mainly stemming from field collections, herbarium inventories, and citizen scientist’s 

observations (Graham et al., 2004). Figure 1.1 presents the general data flow of transforming 

raw biodiversity data into biodiversity data fit for use. Significant data quality aspects are the 

validity of the species and point-occurrences and the completeness and consistency of sampling 

to avoid bias. The data’s timeliness is also essential, as historical specimen records are 

invaluable for tracking changes in biodiversity. The figure also shows where data errors can 

enter the data flow, which is particularly essential as it may trigger two questions by public data 

users: 1. are the retrieved data reliable, and 2. are they fit-for use? Answering the first question 

will lead to data evaluation. Answering the second question initiates customized data cleaning 

to standardize the data and correct errors (e.g., Araujo et al., 2019, Zizka et al., 2020).  
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The demand for high-quality biodiversity data is substantial (e.g., Guisan et al., 2017, Raes & 

Aguirre-Gutierrez, 2018, Araújo et al., 2019). However, high-quality data remain limited even 

when combining all available data from various sources. In recent years different and 

sometimes contradicting approaches were described to accomplish high-quality biodiversity 

data. One approach was based on experienced users' knowledge of the design and use of "gold 

standards" in field studies. Depending on the targeted biodiversity model, the chosen data 

standardizations and improvements should be implemented in userspace (Chapman, 2005, 

Araújo et al., 2019, Chapman et al., 2020). Other authors (e.g., Yesson et al., 2007, Mesibov, 

2013) expressed regularly improving biodiversity data at the data provider's sites, performed 

by experts, as their favored approach. It was also suggested to improve the biodiversity data by 

the data user community interacting with the global public data providers. Processing data that 

contain limitations to achieve biodiversity data fit for use would depend on the scrutiny of both 

data providers and expert data users (e.g., Belbin et al., 2013, Costello et al., 2013, Chapman et 

al., 2020). In addition, taxonomic experts were asked to improve data of their area of expertise 

at museums and global public data providers (e.g., Belbin et al., 2013, Ickert-Bond, 2003). 

Hereafter, I will apply the term "fit for use" (Chapman et al., 2020) to biodiversity data that 

were already explored, evaluated, standardized, and cleaned and are ready for downstream 

biodiversity analyses. The term "public biodiversity data provider" refers to sources accessible 

to anyone without particular qualifications or authorizations to retrieve the data.  

Global public provider data 

The Global Biodiversity Information Facility (GBIF) is a well-known global biodiversity data 

provider, funded by national governments (e.g., Australia, Brazil, Denmark, South Africa, and 

the United States). It presently comprises the most notable global infrastructure, storing more 

than 2.2 billion specimen records of many scientific sources (e.g., other data providers, herbaria, 

botanical gardens, and citizen scientists) in its data warehouses (GBIF.org, 2020). A second, 

and also important, example is the World Checklist of Selected Plant Families (WCSP, 

wcsp.science.kew.org), which is maintained by the Royal Botanic Gardens, Kew. The primary 

information in the WCSP records is the taxonomically assessed and standardized species names 

of currently 270 plant families, including their complete classification, the name status, 

description information, and the taxa's countries of occurrence. 

Limitations in public provider data 

Evaluations of GBIF-hosted biodiversity data using characteristics of high-quality data for 

comparison showed that the GBIF data were of inconsistent quality (e.g., Wieczorek et al., 
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2012, Sousa-Baena et al., 2014, Meyer et al., 2016). For example, the circumstances and 

standards under which the data were collected and digitized were undocumented (e.g., Sterner 

& Franz, 2017). Thus, it can be assumed when, e.g., specimen records are retrieved from public 

data providers to userspace, their quality is generally not fit for use. Limitations in the public 

providers' data occur mainly along three dimensions: taxonomy, space, and time (Meyer et al., 

2016). They comprise, e.g., incorrect taxonomic hierarchies, misidentifications, implausible 

point-occurrences and taxon ranges. However, significant problems for analysis and model 

building that were difficult to resolve are rather of taxonomical or geographical nature, which 

I will discuss in detail below. 

The knowledge of species and their taxonomy are constantly progressing. Thus, taxonomic 

errors are difficult or impossible to identify or estimate, particularly in large amounts of data 

(commonly from global data providers). Such identifications usually involve labor-intensive 

re-evaluations of the original documentation and metadata (Belbin et al., 2013). Taxonomic 

errors comprise, e.g., misidentified or incompletely identified species (e.g., only to the genus), 

uncertainties whether the names are accepted or synonyms, incorrect linking of synonyms to 

the accepted name and incorrect spelling of taxon names (classification of errors, see Kutsch & 

Hall, 2010). It is unknown how often species are misidentified. Different authors estimated 

misidentification rates between < 1 and 17% (Bisang & Urmi, 1994, Scott & Hallam, 2002, 

Ahrends et al., 2011). Frequently quoted studies assumed that more than 50% of tropical 

specimens, on average, were likely incorrectly named (Goodwin et al., 2015) and that 

incorrectly named specimens in the Zoological Record database ranged from 5% to nearly 60% 

(Meier & Dikow, 2004). It was also found that taxonomic misidentification errors in differently 

determined specimens of the same origin were only visible when recognizing them as duplicates 

given to other institutes and handled in isolation from their parent specimens (Nicolson, 2019). 

Synonyms that are incorrectly or ambiguously linked to the parent species name cause 

inaccurate references in taxonomic checklists and can compromise floras and checklists. 

Unrecognized synonyms, orthographic variations, and incorrectly spelled names (Jansen & 

Dengler, 2010) lead to inflated species numbers, which may influence conservation efforts for 

species that do not exist or are more frequent than initially believed (Linnéan shortfall; 

Lomolino, 2004, Hortal et al., 2015, Ickert-Bond et al., 2019).  

Point-occurrences are spatially accurate when details of specimen locations are given with 

consistent accuracy (Yesson et al., 2007). Spatial errors in biodiversity data, including spatial 

biases, make views on species distribution difficult or unattainable (Mitchell et al., 2017). The 
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errors include invalid, inaccurate, and imprecise locations for specimens. For example, zeroes 

and missing values in coordinates cause invalid specimen locations. Still, whether such invalid 

specimen locations result from protecting sensitive species against exploitation ('dark' fields) 

or as a consequence of spatial errors is usually not indicated in the provided records (Anderson 

et al., 2016, Chapman et al., 2020). It is also unknown how often direction and distance to 

reference points were measured incorrectly and coordinates were incorrectly recorded from 

GPS devices (Murphey et al., 2004). Furthermore, coordinate values that, e.g., originated from 

species range maps instead of georeferencing drive inaccurate coordinates for locations (Zizka 

et al., 2019, 2020). In addition to spatial errors, geographic sampling inconsistencies, or 

sampling biases, are a common phenomenon in species distribution data. Sampling biases 

contribute to the lack of knowledge about the true geographical distribution of a species 

(Wallacean shortfall; Lomolino, 2004, Hortal et al., 2015). Geographical biases include species 

that are mistakenly thought to be present or absent, and presence records that rather reflect 

survey effort than occurrence (Hortal et al., 2007). Other important sources of bias are 

opportunistic collections (Pyke & Ehrlich, 2010; Ter Steege et al., 2011) that aim at maximizing 

taxonomic diversity in herbaria or botanical gardens rather than reflecting biogeographical or 

ecological reasons (e.g., the broad data gap in tropical countries: Prance, 1977; Collen et al., 

2008). The roadside bias is a well-studied case of opportunistic collecting behaviour (e.g., 

Reddy & Dávalos, 2003, Kadmon et al., 2004), where the frequency of observations near roads 

was consistently greater than expected from a spatially random distribution. Species with valid 

coordinates outside their native ranges are a particular case. They might be either misidentified 

specimens, or alien species artificially introduced into an atypical area. Frequent examples are 

coordinates of implausible and dubious sites (herbaria, botanical gardens, museums, herb shops, 

etc.) for implausible species or improbable specimens with no distribution status (native or non-

native species).  

The studies revealed that the limitations in the provider data represent a wide range of errors, 

constitute a significant challenge to users who require high-quality biodiversity data and that 

they also pose a central problem to knowledge areas that depend on high-quality data  (e.g., 

Kadmon et al., 2004, Araújo & Guisan, 2006, Despot-Belmonte et al., 2017). The limitations 

can increase the likelihood that the data will be misinterpreted. When used by decision-makers 

in, e.g., conservation, they are highly likely to lead to problematic management decisions. 

Examples of problematic decisions may be, e.g., duplication of efforts and accidental oversight 

(e.g., CBD, 2009) and conservation priorities that lack sufficient reliable information (CBD, 

2009, p. 39, Scholes et al., 2018). The following two chapters in the Research Background will 
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address important challenges to biodiversity data fit for use concerning taxonomic and spatial 

errors and data uncertainties and options to overcome them. 

Data cleaning (DC) solutions for macroecological diversity models 

Although significant limitations in the GBIF data were reported (e.g., Meyer et al., 2016), GBIF 

declines responsibility for the quality of the content and shifts potential problems related to the 

data users (Terms of use: Data agreement. GBIF, 2021c). For a data user, manually cleaning is 

time-consuming and often unfeasible, given that the data sets may contain thousands or millions 

of records. Therefore, powerful, automated, and locally implementable DC solutions that 

evaluate, standardize, and clean biodiversity data in high demand. The importance of 

comprehensive DC solutions is particularly the case if the data errors may hamper downstream 

analyses and diversity models.  

In recent years, standardizing and cleaning methods and tools were designed to support 

organizations and users in obtaining consistent and integrated biodiversity data. Key 

considerations when integrating biodiversity data included task-specific evaluation, 

standardization and cleaning rules as well as instructions (Chapman, 2005, Zizka et al., 2019). 

With their help, the user could, with the hardware and software that is in line with the 

requirements of the task, develop sound taxonomic, spatial, and temporal data for downstream 

analyses (e.g., Guralnick et al., 2018, Araújo et al., 2019, Hijmans & Elith, 2019). Yet, the 

majority of the methods and tools still comprise single solutions (e.g., Chapman, 2005, 

Chapman et al., 2020) like instructions and R packages supporting data cleaning (general data 

cleaning: Hijmans & Elith, 2019, Wickham et al., 2019; biodiversity data-specific data 

cleaning: Zizka et al., 2019). Only the web-based GBIF occurrence-search application to 

manually filter record subsets (GBIF.org, 2020) corresponds most closely to an end-to-end DC 

pipeline. Therefore, it is consequential to integrate already existing and ready-to-use DC tools 

into powerful pipelines to jointly achieve synergies.  

DC pipelines are significant in the scientific domains when, for example, biodiversity data from 

different sources such as herbarium vouchers, observations, and expert data need to be 

combined. Four steps are suggested for a pipeline (Gueta & Carmel, 2016, GBIF.org, 2020, 

Zizka et al., 2020): Data retrieval from the source (Local data), evaluation of data errors that 

might influence the quality of the downstream models, standardization of records (Data 

evaluation), and correction or removal of errors (Data cleaning). Figure 1.2 generically shows 

data evaluation and cleaning processes where task-specific methods and tools are used (e.g., 

suitable R packages such as the CoordinateCleaner, Zizka et al., 2019).  
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Figure 1.2. Overview of the data evaluation step and data cleaning pipeline to identify and address specific 

data limitations (Extract from Figure 1.1). Processual challenges comprise assessing how far the data can be 

trusted and the degree to which the biodiversity data are fit for use. Evaluating the trustworthiness of the data 

includes weighting taxonomic and spatial errors present in the data based on the specifications of the targeted 

biodiversity model. Moreover, it includes examining the possibly achievable quality level of the data. Judging 

whether the biodiversity data are fit for use primarily addresses how to resolve the inherent data issues (based on 

Araújo et al., 2019; red box in blue dashed box). 
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Data cleaning typically leads to the reduction of available records (Figure 1.2, Flagged records). 

However, errors may still remain in the analysis data set (Figure 1.2, Biodiversity data fit for 

use), which might influence the analyses and models. Spatial errors were investigated in 

tutorials of various R packages (e.g., Hijmans & Elith, 2019), and the importance of filters on 

the loss of data in DC pipelines (Zizka et al., 2020). In GBIF, it was found that more than 3.4 

million records (3.7%) have spatial errors which are potentially problematic (Zizka et al., 2019). 

Thus, independent data are also required to test the cleaned data against it to avoid such effects 

(expert data from field studies, herbarium voucher analyses, and distribution maps, or all 

combined). Biodiversity data evaluation and cleaning results were described for a wide variety 

of organisms (see section: Limitations in public provider data). Functionalities and capacity of 

available DC methods and tools were also described and tested (e.g., Hijmans & Elith, 2019, 

Zizka, 2020). To create effective and meaningful biodiversity models and assemble the right 

set of DC methods and tools for a pipeline providing biodiversity data fit for use, we must 

understand which details in the biodiversity data influence models. However, no study has 

systematically examined the influence of different data cleaning tools in pipelines on 

macroecological diversity models. Also, correlations between biodiversity models from data of 

different pipelines and expert data were not yet assessed. I hypothesize that different DC 

pipelines show (a) different cleaning performances, and (b) that this influences conventional 

species distribution models (SDM) of a model organism. In addition, I assume that (c) models 

from provider data will differ significantly from expert data. 

Ephedra as the model genus 

Ephedra is a popular study object due to interesting ecological and non-ecological traits, 

highlighted below. North American Ephedra which I present in more detail serve as the model 

group in the thesis. Ephedra is adapted to dry environments, it shows a relatively uniform 

morphology, but different dispersal syndromes which explain specific distributions and species 

ranges. Ephedra is also attractive for taxonomic and phylogenetic studies and pharmaceutical 

investigations of neuro-pharmaceutical secondary metabolites. Specimens are collected quite 

frequently, as shown by the record numbers of the public providers (e.g., GBIF, as of November 

18, 2021: 46,384 presence records worldwide), and high-quality expert data is available for the 

New World species (Ickert-Bond, 2003). Ephedra is the only genus of the family Ephedraceae. 

There are about 65 extant Ephedra species worldwide (Ickert-Bond & Renner, 2016). The 

plants are profusedly branched with green photosynthetic stems, mostly with only rudimentary 

leaves (Hunziker, 1949, Stevenson, 1993, Freitag & Maier-Stolte, 2003, Ickert-Bond & 
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Wojciechowski, 2004). Most Ephedra species grow as shrubs, and a few species are small trees 

and  climbers (Stapf 1889, Freitag and Maier-Stolte, 1994). About 40 species of Ephedra are 

found in the Old World extending westwards from Central Asia across southwest Asia and into 

Mediterranean Europe, up to the Swiss and Italian Alps, and North Africa (e.g., Freitag & 

Maier-Stolte, 1994, 2003, Kozhamzharova et al., 2013, Huang et al., 2005). In the New World, 

thirteen species occur in North America ranging from the southwestern United States to the 

central plateau of Mexico (e.g., Cutler, 1939, Stevenson, 1993, Ickert-Bond & Wojciechowski, 

2004). Twelve more species are found in South America occurring from Ecuador to Patagonia 

(e.g., Hunziker, 1949, Peinado et al., 2006). The genus Ephedra occupies a wide range of 

habitats, its distribution spans from narrow endemics to widely distributed species. The species 

are adapted to semiarid and desert conditions, as well as to seasonally dry habitats, such as 

Mediterranean-type evergreen or deciduous woodlands and subtropical thorn scrub (e.g., Ickert-

Bond, 2003, Loera et al., 2015, 2017). Ephedra ranges from depressions below sea level (Death 

Valley, Dead Sea area) to more than 5000 m above sea level (Andes of Ecuador, Himalayas) 

(Fu et al., 1999, Ickert-Bond, 2005, Ickert-Bond & Renner, 2016). The genus is absent in sub-

Saharan Africa and Australasia. 

The majority of the Ephedra species are dioecious and wind-pollinated, but a few monoecious 

taxa with bisexual organ complexes are known to be insect-pollinated (Endress, 1997, Rydin & 

Bolinder, 2015). The bracts of the female strobilus (s, strobili, pl) are described as succulent, 

papery, and coriaceous strobili (Figure 1.3, A to C). These strobilus types are related to 

particular seed dispersal syndromes: endozoochory (succulent, e.g., birds and less commonly 

lizards, and coriaceous, e.g., Rodriguez-Pérez et al., 2012, and seed-caching rodents, e.g., 

Hollander and VanderWall, 2009, Loera et al., 2015), and anemochory (papery, Stapf 1889). 

Recently, an intermediary type (papery/coriaceous) was defined, that is also dispersed by 

rodents but shares traits with wind-dispersed species, respectively (Hollander & VanderWall, 

2009, Loera et al., 2015). Dispersal by wind and frugivores occurs in both Old World as well 

as New World species, whereas seed-caching-rodent dispersal is restricted to the North 

American species. (Figure 1.3, D).  

Commercial applications of Ephedra extracts derive from the ephedrine alkaloids found in the 

dried stems in some Eurasian species (e.g., E. sinica, E. equisetina, E. intermedia, White et al., 

1997, Zhu, 1998, Caveney et al., 2001). The best-documented drug made from Ephedra is Ma-

huang, used in Chinese medicine for about 5000 years to treat fever, nasal congestion, and 

asthma (Zhu, 1998).  
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Figure 1.3. Ephedra global distribution overview, by strobilus type. Color keys: number of co-occurring 

species per strobilus type in a particular country. Strobilus types: A, fleshy (e.g., E. distachya); B, papery (e.g., E. 

torreyana); C, coriaceous (e.g.,: E. viridis); D, intermediary (papery/coriaceous) (e.g.,: E. funerea). Photos A–D 

show female specimens with seeds (C, D: photographs by M. Baker). E and F: Life form examples of Ephedra 

plants: nanophanerophyte (E. viridis, left), chamaephyte (E. distachya ssp. helvetica, right). The World Checklist 

of Selected Plant Families (WCSP, 2018) provided the Ephedra country occurrences. For the maps, I used R (R 

Core Team, 2013), a world shapefile (TDWG, 2021), and the R packages sp (Pebesma and Bivand, 2005), 

RcolorBrewer (Neuwirth and Brewer, 2014), and ggplot2 (Wickham, 2016).  
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All ephedrine-containing species are restricted to Old World Ephedra, which grow in the drier 

regions of China, North West India, and Pakistan. In New World Ephedra species, ephedrine 

alkaloids are not detectable (Caveney et al., 2001). 

Among seed plants, the phylogenetic position of the Ephedraceae and related families of the 

Gnetales is still contentious (Rydin, 2018, Zumajo-Cardona & Ambrose, 2021). According to 

morphological data, Gnetales were traditionally placed as a sister to angiosperms (Crane, 1985, 

Doyle & Donoghue, 1986, 1992, Loconte & Stevenson, 1990), but the molecular data do not 

support this hypothesis. Instead, Gnetales, seem to be sister to different groups of conifers, 

Pinaceae and non-Pinaceae (Ruhfel et al., 2014, Wickett et al., 2014, Zumajo-Cardona & 

Ambrose, 2021). 

Drivers of synonym numbers 

The principle of priority (Turland et al., 2018), important to naming organisms, states that the 

accepted name is the earliest validly published name for a given species (e.g., Nicolson, 1991, 

Rao, 2004, Mori, 2013). The younger names are considered synonyms if more than one name 

describes the same species. One of four reasons to change a species' name is synonymy; and 

synonyms may emerge for different reasons. Synonyms are defined if more than one published 

name describes the same species. Following the Principle of Priority, the first species described 

becomes the accepted species, and the synonyms are linked to it as aliases. Name changes from 

synonymy usually derive either from an improved understanding of taxonomic relationships, 

differently interpreted interspecies variations, and from recognizing that different scientists 

described the same species independently (e.g., Rao, 2004, Franz et al., 2008, Turland et al., 

2018). Due to improved understanding of taxonomic relationships, species are transferred from 

one genus to another. The reorganization resulted in a name change and a new synonym. It was, 

for example, diagnosed that the traits of South American Chytroma brancoensis R. Knuth were 

the same as those used to define the genus Lecythis (Lecythidaceae, Brazil nut trees; Mori, 

2013). Thus, he established the new combination Lecythis brancoensis (R. Knuth) S. A. Mori. 

Chytroma brancoensis is now a synonym of Lecythis brancoensis.  

Differently interpreted interspecific variation (morphological, ecological, and geographical 

differences) by different botanists are another reason for name changes and synonymy (e.g., 

(Valdecasas et al., 2008, Mori, 2013). Hesperis matronalis L. (Brassicaceae, Dame's rocket) 

illustrates different color variants in even side-by-side growing plants that do not merit the 

variants being recognized as separate species. However, S.A. Mori in 2013 split Gustavia 

macarenensis Philipson subsp. paucisperma S. A. Mori (Lecythidaceae, Venezuelan 
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population) into two species. The first species included the populations from the Andean slopes 

of Colombia and Ecuador, G. macarenensis Philipson, and the second comprised the 

Venezuelan population, now known as G. paucisperma (S. A. Mori) S. A. Mori. The split was 

justified based on significant morphological trait differences (Mori, 2013).  

Synonyms may also emerge from different taxonomists interpreting and classifying 

interspecific variation differently; the two resulting philosophies are referred to as 'splitting' and 

'lumping'. Consequently, if splitters work during an earlier period, some of their created species 

will most likely be associated and joined if other botanists who work with the same taxonomic 

group are lumpers. This may create confusion when species once recognized as different 

become synonyms of a more widely circumscribed species. The opposite happens when a 

splitter separates a more broadly defined species into different species (e.g., Valdecasas et al., 

2008, Ickert-Bond et al., 2019).  If a splitter and a lumper classify species of the same genus, 

the former will usually recognize more species than the latter.  

The most common reason for changing a species name is that botanists described the same 

species more than once (Mori, 2013). For example, John Dwyer described Gustavia superba 

(Kunth) O. Berg var. puberula Dwyer in 1965. The same entity was described in 1974 as G. 

grandibracteata by Croat and Mori. The common characters of both specimen groups justified 

a rank change to species, the Principle of Priority did not apply due to rank differences, and 

consequently, G. grandibracteata Croat & S.A. Mori is the accepted name. Gustavia superba 

(Kunth) O. Berg var. puberula Dwyer is placed in synonymy. Likewise, Lecythis elliptica 

Kunth (published in 1825) is a synonym of the earlier published name L. minor Jacq. (Published 

in 1763).  

Recent studies suggest a greater variety of reasons other than taxonomy and nomenclature why 

a species was possibly described more than once. It was suggested that wide-ranging species 

might have higher synonym numbers, as such species are often described independently and 

unknowingly under different names (Explanatory variable: range size; Baselga et al., 2010, 

Fenneman, 2017). A study presented the synonym numbers for a range of newly updated 

angiosperm families (Lughadha et al., 2016). The authors showed that synonymy was unevenly 

distributed among the studied families, and high synonym numbers were only concentrated in 

a few families (e.g., in the daisy family, Asteraceae, the orchid family, Orchidaceae, and the 

grass family, Poaceae). They explained that the results might show scientists' preferences for 

appealing families and genera (Pillon & Chase, 2006, Lughadha et al., 2016). In other studies, 

it was argued that historically described seed plant species had more time to accumulate 
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synonyms than species that were described more recently (Explanatory variable: Age of an 

accepted name, as the proxy for the time passed since the publication of its publication; Alroy, 

2002, Baselga et al., 2010). Over time, when the taxonomic relationships were identified and 

ordered, the Principle of Priority dictated the accepted species and their aliases. As a result, the 

synonym number is the sum of the aliases that have become known during these identification 

and structuring processes. However, there might be as yet unidentified synonyms of evaluated 

species.  

Resulting from previous studies, and the varying number of already identified synonyms per 

species, I hypothesize that there are more factors than taxonomy and nomenclature which drive 

the variation of synonyms of species. Table 3.2 provides an overview of 15 angiosperm species 

that accumulated high numbers of names, and some potentially important drivers of synonym 

numbers (Family, economic significance, botanical continent, first published [year] to calculate 

the age of the accepted name). 

Angiosperms as the model group 

The Angiosperm Phylogeny Group (APG), a collaborating group of international systematic 

botanists established a taxonomy of flowering plants (angiosperms) reflecting the most current 

knowledge about the taxonomic relationships by continuously incorporating molecular data 

from phylogenetic studies into long-held views of relationships based on morphology, by expert 

consensus (Christenhusz et al., 2015, Stevens, 2016). The development of the present APG IV 

phylogeny started in 1998, where a set of experts were asked to re-classify the angiosperms 

with the aim of avoiding taxonomic confusion. In 2008, the APG could accomplish a significant 

pact. In the course of physical reorganizations and moves of major European herbaria (e.g., the 

Natural History Museum and the Royal Botanic Gardens of Kew, London, and the Muséum 

National d'Histoire Naturelle, Paris; Wearn et al., 2013), a committee established to lead this 

project decided to follow the then APG III phylogeny (Haston et al., 2009). The decision 

included organizing the collections at the member herbaria in accordance to the APG. Until 

present, the continuous and consent-based APG re-classifying approach resulted in common 

and homogenously structured data across the APG and major museums worldwide 

(Christenhusz et al., 2015). Because of the Royal Botanical Gardens, Kew, that participated in 

the 2008 reorganizations, this data situation, therefore, also applies to the World Checklist of 

Selected Plant Families (hereafter: WCSP), which I selected as the data provider for the 

angiosperm analyses. In February 2020, the WCSP maintained 530,000 APG-aligned, 

homogenously structured, and thoroughly scrutinized plant name records from 270 seed plant 
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families worldwide, including 200 angiosperm families, which I used for the synonymy driver 

analyses and models. 

My Ph.D. thesis comprises two independent studies in which I examine taxonomic and spatial 

limitations in biodiversity data retrieved from two major public data providers: I. Influence of 

different data cleaning solutions on downstream macroecological diversity models (Chapter 2), 

and II. Drivers of the variation in synonym numbers of angiosperm species names (Chapter 3). 

The main goals of my thesis were to 

1., provide the first quantitative analysis of how public provider data cleaned by different DC 

pipelines (pipeline data) influenced downstream species distribution models (SDM), 

2., understand how the downstream SDMs and stacked SDMs (S-SDM) from pipeline data 

differ from the respective models from expert data that represent the gold standard, (1&2: 

Chapter 2), and  

3., identify drivers affecting the variation in synonym numbers across angiosperm species, and 

the extent to which the drivers explain the synonymy in the employed angiosperm species (3: 

Chapter 3). 

Study outline 

In my thesis, I address causes, manifestations, and effects of taxonomic and spatial limitations 

(which are mainly, but not exclusively, data errors) in data from public providers. The 

individual studies include data analyses using data from the Global Biodiversity Information 

Facility (GBIF) and the World Checklist of Selected Plant Families (WCSP) as public 

providers. The different resulting datasets are applied in macroecological diversity models. 

In chapter 2, I focus on North American Ephedra from the GBIF to analyze two aspects of 

pipeline-cleaned biodiversity data from global public providers. (1), I examine provider data 

cleaning in different DC pipelines and, subsequently, analyze performance differences 

(measured as data cleaning steps processed and errors identified and removed). Each DC 

pipeline comprises different DC methods and tools. (2), I analyze how the differences in the 

retained taxonomic and spatial errors per pipeline data translates into differences in the 

macroecological biodiversity models (single species SDMs and S-SDM) and maps. 

In chapter 3, I focus on angiosperm species from the World Checklist of Selected Plant Families 

(WCSP) to analyze the role of five drivers of synonym numbers (higher taxa of species: families 
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and genera, the botanical continents where the species are present, insularity, range size of a 

species, and the age of their accepted name.  
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2 
Influence of different data cleaning solutions on downstream 

macroecological diversity models 

Abstract 

Digital point-occurrence records from the Global Biodiversity Information Facility (GBIF) and 

other data providers enable a wide range of research in macroecology and biogeography. 

However, data errors may hamper immediate use. Manual data cleaning is time-consuming and 

often unfeasible, given that the databases may contain thousands or millions of records. 

Automated data cleaning pipelines are therefore of high importance. Taking North American 

Ephedra as a model, we examined how different data cleaning pipelines (using, e.g., the GBIF 

web application and four different R packages) affect downstream species distribution models 

(SDMs). We also assessed how data differed from expert data. From 13,889 North American 

Ephedra observations in GBIF, the pipelines removed 31.7% to 62.7% false positives, invalid 

coordinates, and duplicates, leading to datasets between 9,484 (GBIF application) and 5,196 

records (manual-guided filtering). The expert data consisted of 704 records, comparable to data 

from field studies. Although differences in the absolute numbers of records were relatively 

large, species richness models based on stacked SDMs (S-SDM) from pipeline and expert data 

were strongly correlated (mean Pearson's r across the pipelines: 0.9986, versus the expert data: 

0.9173). Our results suggest that all R package-based pipelines reliably identified invalid 

coordinates. In contrast, the GBIF-filtered data still contained both spatial and taxonomic errors. 

Major drawbacks emerge from the fact that no pipeline fully discovered misidentified 

specimens without the assistance of taxonomic expert knowledge. We conclude that 

application-filtered GBIF data will still need additional review to achieve higher spatial data 

quality. Achieving high-quality taxonomic data will require extra effort, probably by 

thoroughly analyzing the data for misidentified taxa, supported by experts. 
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Introduction 

Digitally accessible species records from global data-sharing networks like the Global 

Biodiversity Information Facility (GBIF) provide the basis to address a wide range of 

biodiversity-related questions in ecology, biogeography, and other disciplines (e.g., Soberon & 

Peterson, 2004, Guralnick et al., 2007, Meyer et al., 2016). Such databases and data-sharing 

networks represent a valuable source of knowledge in which individual researchers and 

institutions worldwide invested considerable amount of time and resources (Wieczorek et al., 

2012, Baskauf et al., 2016, Guralnick et al., 2018). However, since the circumstances and 

standards under which these records were collected and digitized are usually unknown, a user 

must assess whether the data quality provided meets the requirements of the research question 

(Beck et al., 2013, Sterner & Franz, 2017). Consequently, this demands data cleaning tools 

(hereafter: DC tool) to standardize data and identify and remove data errors. Thus, developing 

appropriate DC tools is a long-standing goal of biodiversity informatics (e.g., Chapman et al., 

2000, Kadmon et al., 2004, Araújo & Guisan, 2006). 

Data errors occur mainly along three dimensions: taxonomy, space, and time (Meyer et al., 

2016). They may significantly affect common downstream analyses such as the accuracy of 

species distribution models (SDMs, e.g., Gueta & Carmel, 2016, Tessarolo et al., 2017, Hijmans 

& Elith, 2019, Zizka et al., 2019). In the taxonomic dimension, resolving misspellings 

(Zermoglio et al., 2016) and reconciling the synonymy of taxonomic names (Alroy, 2002, 

Wortley & Scotland, 2004) pose a significant challenge. The related widespread and 

particularly challenging problem is misidentified specimens, estimated at 50% for tropical plant 

specimens (Goodwin et al., 2015) and ranging from 5% to nearly 60% in the Zoological Record 

database (Meier & Dikow, 2004). In the spatial dimension, errors in and low precision of 

coordinates, e.g., from rounding of the decimal digits, swapped latitude and longitude, missing 

coordinates, or coordinates with zero-values are common data-quality problems (e.g., Yesson 

et al., 2007, Otegui et al., 2013, Topel et al., 2017). Lower geospatial accuracy is frequently 

assumed for older records than for those collected more recently (Tessarolo et al., 2017, Zizka 

et al., 2020). Stropp et al. (2016) showed, for instance, that conspicuous records of flowering 

plants collected in Africa before the 1960s were filtered out due to poor data quality. Another 

issue associated with older records is that the probability increases that populations no longer 

exist at a given sampling location over time due to natural or anthropogenic reasons (Meyer et 

al., 2016).  
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Even for experts, identifying and resolving data quality issues manually is in many cases 

unfeasible, given that datasets typically contain thousands to millions of records. Therefore, 

selective DC strategies based on well-explained instructions and automated DC tools that 

reproducibly generate high-quality data are especially in high demand for inexperienced users 

(Zizka et al., 2019). Downstream applications such as conventional SDMs depend on this data 

quality (e.g., Guisan et al., 2017, Raes & Aguirre-Gutierrez, 2018, Araújo et al., 2019). Data 

scientists and biodiversity informaticians approached the development of DC solutions from 

several angles: (1) DC tools that generally solve thematically limited requirements, like 

retrieving, evaluating, formatting, completing, and organizing data. This type of DC solution 

was implemented in the widely used Tidyverse "umbrella" package (Wickham et al., 2019). The 

solution was also included in specialized packages such as CoordinateClearer (Zizka et al., 

2019), rgbif (Chamberlain et al., 2020), and the GBIF web application (GBIF.org, 2020). (2) 

Manuals supporting the preparation of data for SDMs. Particular R packages are an integral part 

of such manuals (e.g., Chapman, 2005, Guisan et al., 2017, Hijmans & Elith, 2019). The 

manuals consist of verbal explanations and coded instructions, which the user can apply (e.g., 

per package dismo, Hijmans et al., 2020). While the newly developed and recently updated 

methods for automated cleaning of records are promising, their effect on commonly applied 

SDMs remains poorly examined (see Schmidt-Lebuhn et al., 2013, Hijmans et al., 2017, Zizka 

et al., 2020). 

Pipelines play an important role in the scientific domain when, for example, biodiversity data 

from different sources such as herbarium vouchers and observations need to be combined for 

analysis. In this study, we investigated the performance of six pipelines (P1 to P6) using various 

DC tools and how these pipelines affected downstream SDMs. We used North American 

Ephedra species as the model organisms (Ephedraceae, Gnetales; Cutler, 1939; Stevenson, 

1993, Figure 2.2, A to C; Appendix, Table A1) and GBIF as the data source. With over 2.1 

billion species records worldwide, GBIF is the largest and one of the most frequented public 

providers of biodiversity data. It is often the primary data source for many researchers 

(Guralnick et al., 2018, Hobern et al., 2019, Zizka et al., 2020). Thus, we selected the GBIF 

records as input to the pipelines. In this context, we address three questions:   

1. How do the pipelines differ in their performance? We expect that different DC tools will 

generate different result datasets. 
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2. How do differences in pipeline data affect downstream diversity models and maps (observed, 

predicted)? We expect the pipeline datasets to differ in the resulting models (single species- and 

stacked SDMs, hereafter: S-SDM) and maps. 

3. How does the pipeline data - after being cleaned by the pipelines – differ from the expert data 

(observed and predicted), assuming that the expert data represent the most accurate Ephedra 

environmental and geographical range? We expect the quality of the pipeline data to differ from 

the expert data. The differences will be measurable (occurrences and correlations) in the models 

and maps. 

We analyzed to which extent the data from the different pipelines led to different species 

constellations and numbers in the grid cells and visualized the differences in diversity maps 

created from S-SDMs. Finally, we discuss how realistic the results from GBIF data and expert 

data reflect the environmental or geographical extent of the Ephedra species' ranges. 

Material and methods 

In North America, Ephedra species are characteristic components of arid and semi-arid regions 

of the southwestern USA and Mexico (Hollander & VanderWall, 2009, Loera et al., 2015). 

They occur from the Death Valley to about 2,500 m in the Rocky Mountains (Stevenson, 1993). 

The species share a morphologically reduced, uniform growth habit with mostly leafless, 

photosynthetic stems (Ickert-Bond & Renner, 2016). Specimens are collected frequently, as 

shown by the record numbers of the public providers (e.g., GBIF: 46,384 records worldwide), 

and high-quality expert data is available for the New World species (Ickert-Bond, 2003). The 

coordinates served as the proxy for the Ephedra species' characteristic locations (response 

variables), from which we developed species SDMs and genus S-SDMs for North America.  

We monitored changes in similarities and correlations using the validated records from P1 to 

P6 and the expert data (observed occurrences, hereafter: L1; Table 2.2). From L1, we developed 

L2 and L3 data of the North American Ephedra species and their occupied grid cells (per 

pipeline and the expert data). L2 included the grid cell numbers an Ephedra species occupied, 

and L3 counted the concurrent Ephedra species per grid cell. L4 data comprised the correlations 

of the observed occupied grid cells. The L5 data (pipeline and expert) included the predicted 

distribution in S-SDMs across the pipelines and expert data (L2/L4, and L5: Spatial 

autocorrelation by Moran's I and correlation between two random variables by Pearson's r). 

(Figure 2.3).   



42 
 

 

Figure 2.1. Workflow of the pipelines and the downstream analyses. The pipelines' part comprised the 

following sections: Data Retrieval, Standardization, and Error Removal. The Downstream Analysis featured the 

Predictor Variables Extraction, the Model Fitting, the Model Building (SDMs, S-SDMs) and Evaluation, and the 

Correlation Analysis, developed from the pipeline data P1 to P6 and the expert data. R packages used in the course 

of the workflow are in italics. (a) Observed species distribution from GBIF P1 data. (b) Observed species 

distribution from expert data. Filter categories: DUP = Duplicate records, FPS = False-positives, REC = Recording 

Errors. 

Data pipelines 

Ensuring comparability across six pipelines, the process chain of filters provided identical 

conditions to optimize the provider data (See Table 2.1, the filters of the pipelines). The chain 

consisted of (1) selecting and retrieving data from GBIF, (2) standardizing the records by 

filtering, and (3) correcting or removing data errors (Figure 2.1, Table 2.2. At each pipeline 
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step, we employed one or more DC tools (e.g., Chapman, 2005, Hijmans & Elith, 2019, Zizka 

et al., 2019a). The selected tools (e.g., GBIF web application, written instructions, or R 

packages) or their most recent updates were released between 2005 and 2020 and are free of 

charge. In some pipelines, the three steps were performed by one ("three-in-one") DC tool. In 

the setup of the process chain, we followed the data cleaning recommendations given by the 

respective DC tool's authors and pertinent best-practice guidelines (Araujo et al., 2019, Guisan 

et al., 2017).  

We retrieved data from GBIF (gbif.org, 2020) on November 18, 2020, in four different ways: 

(1) The filter "Ephedra L." (hereafter: GBIF (I)) retrieved 46,384 records for P5, P6, and the 

P0 benchmark data using the "three-in-one" GBIF web application (GBIF, 2020a). (2) The filter 

set "Ephedra L. specimens of North America, from 1945 to 2019" (hereafter: GBIF (II)) 

selected 9,484 records for the P1 process chain using the web application (GBIF, 2020b). In 

both cases, the data were download with the web application. (3) rgbif, a "three-in-one" tool, 

employed its integrated functionality to standardize the P2 and P3 data and retrieved 6,687 

GBIF records into the userspace. (4) dismo selected 46,384 GBIF records for P4 and retrieved 

them into the userspace. (Details see Table 2.2).    

We created the P0 data for comparison. It served as the benchmark of standardization and errors, 

delivered by the GBIF data, which the DC tools could have removed in the pipelines. However, 

P0 was not itself a pipeline nor was it part of any pipeline. We performed an inventory of the 

dataset and the data errors that might influence the quality of the downstream models (Table 

2.2, P0 column). Using P0, we could identify questionable records and the degree of feasibility 

to which each pipeline removed such records. After data retrieval, further data cleaning was 

performed in P3, P4, P5, and P6 by basic R code, the dplyr package (of Tidyverse, Wickham et 

al., 2019), and the CoordinateCleaner (Zizka et al., 2019), in different combinations (Table 

2.2). We selected records of taxon rank "species" (Claridge et al., 1997, Reydon, 2019), filtered 

for North America (Mexico, USA) and collection years 1945 to 2020 (Zizka et al., 2020). As 

the basis of records, we selected specimens and observations. During error removal, we focused 

on taxonomic and spatial errors (Meyer et al., 2016), such as non-native specimens, missing or 

zero values, and sea coordinates. We also removed false-positive records reporting, e.g., 

occurrences at biodiversity institutions, and geographic outliers. From the P0 evaluation, we 

were aware of two false-positive occurrences (Figure 2.2, Marker 2) hidden in the data. We 

found these errors challenging to be recognized by any tool. Therefore, we removed one of 

these errors in P4, and two in P5 and P6, using basic R code. 
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Table 2.1. Pipeline filter summary for standardization and error removal.  

  Categories Filter Requirement Rationale 

     
  STD Country range Spatial North America: Mexico and the USA 
 

STD Infraspecific rank Taxonomic Required rank: species (Claridge et al., 1997, 
Reydon, 2019), infraspecific ranks (e.g., 
subspecies, hybrids) to be omitted. 

  STD Collection years Temporal 1945 to 2020, as older records are more likely to 
contain erroneous coordinates (Zizka et al., 2020). 

  STD Basis of record Consistency Specimens and observations. 

  STD Occurrence status Consistency Presence data. 

  FPS Non-North America-
native Ephedra species 

Taxon All non-native Ephedra species that are allocated to 
the North American countries either by mistake or 
are artificially introduced, e.g., to Botanical 
Gardens. 

  FPS/REC Zero or missing 
coordinates 

Spatial Zeroes and missing values may represent records 
with data entry errors. Missing values will cause 
error messages in ade4. 

  REC Longitude and latitude 
are equal 

Spatial Equal longitude and latitude may represent records 
with data entry errors. 

  DUP Duplicate records Consistency Duplicate records that may represent e.g., record 
copy errors. 

  FPS Country capitals Spatial Records that may contain the coordinates of the 
country capital. 

  FPS Country centroids Spatial Records that may contain the centroid coordinates 
of the country. 

  FPS GBIF headquarters Spatial Records that may contain the coordinates of the 
GBIF headquarters. 

  FPS Biodiversity institutions Spatial Records that may contain the coordinates of 
biodiversity institutions where the herbarium 
voucher is stored. 

  FPS Geographic outliers Spatial Geographic outliers that may represent 
misidentified specimens. 

  REC Urban areas Spatial Records from urban areas that may represent old 
data or vague locality descriptions. 

  REC dd.mm to dd.dd 
conversion errors 

Spatial Records with ddmm to dd.dd conversion error 
(misinterpretation of the degree sign as decimal 
delimiter). 

  REC Rasterized collections Spatial Records with a significant proportion of coordinates 
that might have a low precision. 

  FPS "Manual" removal of 
false-positives 

Consistency False-positives that have been overlooked by 
automatted error-removal, based on the knowledge 
that they are in the records. 

     

Categories: DUP, duplicate records; FPS, false-positives; REC, recording errors; STD, standardization. 
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As coordinates with three or fewer decimal places often indicate they were obtained from grid 

maps (Zizka et al., 2019), we permitted only validated coordinates with no less than four 

decimal places. However, this precision was not required for the modeling. The 

CoordinateCleaner identified specimens of urban areas and flagged them for scrutiny. We 

searched for duplicates based on the variables: species, coordinates, and collection date, 

respectively, and removed them. Finalizing the process chains, we excluded native species for 

which the sample size was lower than fifty occurrences to avoid biased models and maps 

(Guisan et al., 2017, Hijmans & Elith, 2019). (Usage of the tools in the pipelines, see Table 

2.2). At the end of the pipelines, we examined the retained records and errors in the pipelines' 

datasets in comparison to P0 (data at L1). 

Downstream analysis 

Data from examination of physical herbarium specimens and field studies (Ickert-Bond, 2003) 

represented the most realistic environmental and geographical range ("gold standard", Araujo 

et al., 2019) of the genus Ephedra in North America. The expert dataset comprised 4,081 

records of New World Ephedra specimens from herbaria with large holdings of Ephedra in 

both North and South America (e.g., ARIZ, ASU, HUH, NY, RM, SGO, SI, TEX, UC, UNAM, 

US; herbarium acronyms according to Thiers, 2022). 704 records of twelve Ephedra species 

(L1) were selected for North America; however, they were not processed in a pipeline. We 

applied standardization conditions only for comparability. The records contained confirmed 

taxa, examined coordinates, and detailed locality descriptions comparable to field-collected 

data. We considered an overlap of 90 records of 13,889 from GBIF and the expert dataset 

negligible. As Ephedra is adapted to dry environments, we imported nineteen temperature and 

precipitation variables from the CHELSA climatology (Karger et al., 2017), elevation data as a 

proxy for landscape heterogeneity (GMTED, 2020) and plant-available water data (Zhang et 

al., 2018). From their habitat description (e.g., Cutler, 1939, Stevenson, 1993), we assumed the 

selected environmental data being ecologically relevant. 

For the SDMs and S-SDMs, we created a grid of 4017 cells across Mexico and the USA (30 

arc minutes, WGS84) using wrld_simple (R package maptools, Bivand & Lewin-Koh, 2017) 

and raster (Hijmans et al., 2016). The grid size reasonably showed the co-occurring species, 

which was not the case on different scales. We aggregated the environmental data to the grid 

resolution (sp package, version 1.4-5, Pebesma & Bivand, 2005, Bivand et al., 2013) and 

extracted the values for each occurrence (raster). We built a presence-absence table, creating a 

random selection of pseudo-absences for each Ephedra species using the R package biomod2 
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(Thuiller et al., 2016). We tested the localities where Ephedra species were not recorded (R 

package ecospat, Di Cola et al., 2017). We anticipated environmental conditions to cause 

absence (Stevenson, 1993, Loera et al., 2015), making sure that the localities used for fitting 

the model represented the requirements of the species across North America (Training area, 

Guisan et al., 2017). We summed-up the species present in the grid cells as the number of co-

occurring species. (L2, L3). 

We identified the contributing predictors (using R packages ade4, Bougeard & Dray, 2018 and 

corrplot, Wei et al., 2017). From the 21 variables, we selected a subset of reasonably 

uncorrelated variables per species using biomod2 (Appendix, Table A2; Thuiller et al., 2014, 

Guisan et al., 2017). Reasonably uncorrelated refers to being below the recommended threshold 

of 0.7 (Dormann et al., 2013). As goodness-of-fit evidence we used the Akaike Information 

Criterion (AIC; Johnson & Omland, 2004), and Tjur's R2 (Coefficient of Discrimination for 

binary outcomes; R package performance, Lüdecke et al., 2021) to identify the variables with 

the highest impact (Table A2). Finally, we fitted logistic regression models for the Ephedra 

occurrences using glm as the model and "binomial" as the distribution family. The threshold 

value of a high-performance index (0.9, Guisan et al., 2017) was used to evaluate the predictive 

accuracy of the model, particularly the Receiver Operating Characteristic Curve (ROC) and the 

area under the curve (AUC) (R packages biomod2 and ROCR, Sing et al., 2005). We stacked 

the predictions of the twelve Ephedra species resulting from the different pipelines as well as 

the expert data to S-SDMs (without using thresholds; Calabrese et al., 2014, Guisan et al., 2017, 

Biber et al., 2020). The correlations between the observed and the predicted Ephedra 

occurrences informed how strongly the differences between the pipelines and the expert data 

affected the respective SDMs and S-SDMs (L5). 

We inspected spatial autocorrelation (L2/L4: grid occupation, L5: predicted distributions) using 

the Moran's I coefficient (R package spdep, Bivand et al., 2015). We computed the correlations 

of the observed and predicted Ephedra occurrences in two pipelines (the least-cleaned data, P1, 

and the most cleaned data, P6) and the expert data using Pearson's r (R package rstatix, 

Kassambara, 2020). Ultimately, we visualized them as map pairs (Figure 2.4); and to adequately 

represent the species richness in the maps, we chose eleven breaks (R package classInt, Bivand 

et al., 2015) for the maximum possible co-occurring species. 
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Results  

The GBIF web interface using GBIF (I) filters and dismo retrieved 46,384 unstandardized and 

uncleaned, globally distributed Ephedra records. The GBIF web interface using GBIF (II) 

filters retrieved 9,484 partially standardized Ephedra records from North America. rgbif 

retrieved 6,687 somewhat standardized specimen records from North America and already 

removed significant spatial errors. (Download results see Table 2.2). The three tools stopped 

after the data retrieval.  

P0 benchmark data 

13,889 P0 records represented the unstandardized and uncleaned GBIF North American 

Ephedra data. 1,979 specimens were collected or observed in Mexico (14.2%) and 11,910 in 

the USA (85.8%). The majority of species records consisted of North America-native E. viridis 

(19.0%), E. aspera (14.4%), E. californica (14.1%), E. nevadensis (13.3%), E. trifurca (11.9%), 

and E. torreyana (8.7%), a total of 81.4% for six species. Another six native species, E. 

antisyphilitica (4.4%), E. funerea (2.4%), E. fasciculata (1.8%), E. pedunculata (1.5%), E. 

compacta (1.3%), and E. cutleri (1.1%) totaled 12.5%. The remaining 6.1% were non-native 

(55 taxonomic false-positives of South American and Eurasian origin) or indeterminate 

specimens (499 specimens of genus Ephedra L.). Several standardization conditions and errors 

coincided in the same record. Thus, the number of removed records did not correspond to the 

sum of the identified errors. 5,187 records (37.3%) were flagged as fit for use for the 

downstream analyses. 8,702 records (63.7%) were marked for removal due to one or more 

significant errors. Missing coordinates (5,978 records, 43.1%) represented the majority of 

identified data errors, followed by the sampling year (4,329 records, 31.1%, were older than 

1945) and the duplicate records (3,584 records, 25.8%). 220 records showed coordinates in 

bodies of water. With two exceptions, the non-native Ephedra species were, e.g., found in 

botanical gardens and scientific institutes (e.g., Atlanta Botanical Garden; Figure 2.2D, locality 

markers 3, 4, 10, and 11). As a few non-native species contain medicinally active substances, 

they were reported with two records from a shop in Berkeley (E. sinica, Figure 2.2D, locality 

markers 8 and 9) and one record from an herbal product shop in Seattle (E. sinica, Figure 2.2D, 

locality marker 1). We detected E. nevadensis at the University of Connecticut (Figure 2.2D, 

locality marker 2), yet this species is native to the Southwestern United States. Three records 

revealed misplaced taxa by comparing the verbatim locality description with the coordinates. 

These errors were not identified by a tool, only by scrutiny.  
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Figure 2.2. A-C. North America-native Ephedra specimens (female specimens with seeds). E. antisyphilitica, 

E. nevadensis, and E. trifurca (left to right).  D. Representation of false-positive taxonomic and spatial errors 

in the Ephedra dataset (Examples). Markers 1, 8, and 9 were specimens from shops in Seattle and Berkeley. 

Markers 3, 4, 10, and 11 were non-native species from botanical gardens and scientific institutes. Marker 2 pointed 

to a North America-native species at the University of Connecticut, NY. Markers 5 to 7 showed coordinate errors 

that the verbatim locality description can only identify. The species at markers 12 and 13 were misidentified, as 

the documented species do not occur naturally at these localities. Data for the map: P1 (L3, number of co-occurring 

species). Color coding of the map: P1 observed distribution (Figure 2.4). 

Locality marker 12 referenced a misidentified specimen (E. distachya, Figure 2.2D) that does 

not naturally occur in Coahuila, Mexico. The specimen that locality marker 13 referenced (E. 

trifurcata, Figure 2.2D) might be a misspelling of E. trifurca (P0 results, see Table 2.2, Table 

A1). 

Expert data 

577 of 2,251 specimens were collected or reviewed from Mexico (25.3%) and 1,674 specimens 

from the US (75.4%). After standardization, 704 records remained (210 records of Mexican 

specimens, 494 records of US specimens). After standardization, the majority of records 
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(65.2%) were allocated to E. aspera (22.3%), E. trifurca (21%), E. fasciculata (11.4%), and E. 

antisyphilitica (10.5%). The other eight species, E. viridis (7.1%), E. californica (5.4%), E. 

torreyana (5.1%), E. funerea (4.5%), E. compacta (3.7%), E. pedunculata (3.3%), E. 

nevadensis (2.3%), and E. cutleri (1.4%) totaled 32.8% of the standardized records. The 

remaining 14 records (2%) were of other taxonomic ranks. 

Effects of differences in the pipeline data on diversity models 

P1and P2 were partly standardized in their process chain. GBIF (II) of P1 met four out of five 

standardization requirements. Explicit error removal did not occur; however, P1 implicitly 

removed 3,386 missing coordinate records as a side effect of the standardization. It left 2,592 

missing coordinates records, 296 indeterminate records, and 33 South American and Eurasian 

species in the P1 dataset. P2's rgbif met three standardization requirements but the resulting 

data still contained infraspecific ranks. rgbif standardized the P2 data partly, using the 

parametrized standardization criteria, and, in addition, the built-in error exclusion parameter of 

invalid coordinates was employed. Except for excluding missing values in the coordinates, P2 

removed no other spatial errors. P3, P4, P5, and P6 continued their respective process chains. 

The pipelines removed between 43.1% and 45.3% of all spatial error types (e.g., the complete 

subset of 5,986 missing coordinates records, see Table 2.2). P3 used the dplyr and 

CoodinateCleaner, providing 5,189 records to the downstream analyses. In P4, we fully 

standardized the data, using instructions explained in a tutorial (Hijmans & Elith, 2019) and 

basic R code. P4 provided 5,387 records to the downstream analyses. In P5, we standardized 

the data and removed errors, using basic R code and the dplyr. P5 provided 5,386 records to the 

downstream analyses. P6 used instructions from Chapman (2005) translated to basic R code 

and dplyr functionality to handle taxonomic errors. The CoordinateCleaner removed spatial 

errors. P6 identified 5,187 fit-for use records for the downstream analyses. Due to not meeting 

the sampling size criteria, we manually removed Ephedra coryi records from the pipelines. At 

the end of the pipelines, the records for the downstream analyses varied considerably and 

ranged from 9,484 (P1) to 5,187 (P6) (L1). (Table 2.2).  

The cleaned datasets differed by 4,288 (P1 versus P6), and the number of occupied grid cells 

by 26 grid cells (maximum). We observed similarly clustered occupancy patterns in the 

distribution maps regardless of the pipeline since most records were allocated to the same grid 

cells per species. The occupied grid cells in the stacked Ephedra range maps varied between 

636 and 610 (P1 versus P6 data).  
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Comparisons of highly correlated occupied grid cells (mean Pearson's r across the pipelines: 

0.9956) were confirmed by highly correlated maps of observed Ephedra distribution with well-

defined clusters (Figure 2.3, and Figure 2.4, P1 and P6 map pairs). Moran's I  confirmed the 

spatially clustered patterns of the Ephedra species (observed P1/P6 Moran's I: 0.144, observed 

expert data's Moran's I: 0.087, p-value: significant) (L2/L4). Ephedra californica occurrences 

occupied identical grid cells across all six pipelines; therefore, the Pearson correlation 

coefficient was 1. For the other eleven Ephedra species, the occupancy of the grid cells varied 

slightly across the pipelines, depending on the respective pipelines compared. For example, in 

E. fasciculata, P1 differed from P6 with 49 versus 53 occupied grid cells (92.5% identical 

occupancy), while the occupancy in P2 and P3 in E. antisyphilitica was again identical 

(Pearson’s r = 1). The evaluation of the S-SDMs showed that the grid cell occupancy patterns 

(observed occurrences) continued in the species distribution maps (predicted occurrences). 

Correlograms based on residual analysis are listed in Appendix Figure A4. 

 

Figure 2.3. Information-condensing pyramid of the pipelines and the expert data (L1 to L5: Condensing 

levels of the data). The data show an increasingly higher correlation from the bottom to the top of the pyramid, 

which results from data transformations into an increasingly higher-condensed species occurrence information 

state. The 704 expert data occurrences (L1) were allocated into 358 grid cells (L2, with a maximum of four co-

occurring species, L3). The correlation of 0.6536 (L4, mean Pearson's r of pairings (P1 to P6/expert)) was 

compared to the mean of the pairings P1 to P6. At this level (L4), the minimum Pearson's r-value of the occupied 

grid cells from pipeline data was 0.9920 (pair: P1/P6), and the maximum Pearson's r value was 0.9999 (pair: 

P4/P5). At the L5 level, the minimum Pearson's r value was 0.9951 (pair: P1/P6), and the maximum Pearson's r 

value was 1.0000 (pair: P4/P5). Dashed box: Expert data comparison numbers, L2 to L4. 
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Post-pipelines, we found that the ade4 indicated coordinates with missing values as invalid in 

records containing this error type, hence, may also be regarded as a testing point for missing 

values in the coordinates. (Note that we did not intervene in the data cleaning in P1 by GBIF 

(II). Thus, records with missing values in coordinates were preserved). 

The final number of predictors for the species ranged from four (Ephedra aspera) to ten 

(Ephedra viridis) (Table A2). The area-under-the-curve (AUC) scored from 0.9355 (Ephedra 

antisyphilitica) to 0.9990 (Ephedra nevadensis) (AUC mean: 0.9825). The AIC decreased to a 

stable minimum value in the variable's combination tests, indicating the best possible model 

performance compared to the other variable combinations. Therefore, we considered our 

models as adequately accurate to describe the distribution of the Ephedra species with the 

identified explanatory variables. The differences in the pipelines had a minor effect on the 

correlations, models, and maps at L4 and L5. At level L4, the mean Pearson's r of the occupied 

grid cells across the pipelines was 0.9956 (P1/P6 pair: 0.9920, minimum; P4/P5 pair: 0.9999, 

maximum). The high correlation led to maps of observed Ephedra distribution that showed also 

only insignificant differences (Figure 2.4, P1 and P6 observed distribution). Across the six 

pipelines, the predicted probability of occurrence from the S-SDMs indicated high correlations 

(mean Pearson's r = 0.9986, Figure 2.3, L5). Figure 2.4 displays the maps of the predicted 

distribution based on the S-SDMs.  

Differences between pipeline data and expert data 

The 704 expert data occurrences (L1) were allocated into 358 grid cells, with a maximum of 

four co-occurring species (L3). Across the pipelines, 294.5 of the average 630.5 grid cells 

(46.7%) showed occupancy by one species, compared to 265 of 358 grid cells (74.0%) of the 

expert data. 42.6 of the grid cells showed occupancy by four species (6.7%), compared to the 

maximum of four species (1.1%) of the expert data. Ten grid cells showed occupancy by the 

maximum of six species (1.6%) in the pipeline data (L2). The correlations differed clearly 

between the pipelines and the expert data. At level L4, the mean Pearson's r of the occupied 

grid cells for pipeline data correlated to the expert data was 0.6536 (L4: Figure 2.3). The 

correlation of the predicted occurrence probabilities in the S-SDMs showed a mean Pearson's r 

of 0.9173. Across the different pipelines and the expert data, the observed diversity in the maps 

from the S-SDMs showed a large Ephedra diversity center in Southern California. It continued 

to the North into Arizona and Nevada, and to the South into the states of Baja California and 

Sonora, Mexico with a predicted Ephedra diversity greater than seven species.  
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Figure 2.4. Stacked species distribution maps based on cleaned GBIF data from pipelines P1, P6, and expert 

data. Depicted are the maps of the least-cleaning P1 and the most-cleaning P6 that show only minor differences 

(the maps from the other pipeline data are close to P6). The control data map from the expert data shows differences 

to the pipelines. Left: Observed distribution (L2 data). Point-occurrences after passing the pipelines, allocated to 

grid cells of a stacked range map of all Ephedra species. The expert map shows less occupied grid cells (n = 358) 

than P1 (n = 636) resulting in a smaller range. Right: Map of the predicted probability of species from S-SDMs 

(L5 data). The colour keys show highly correlated patterns of each data quality (P1, P6, and expert data: 0 to 12 

species, Pearson's r = 0.9173). 
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A second diversity center emerged across the state of Texas, USA, and continued into the states 

of Chihuahua, Coahuila, Nuevo Léon, and Tamaulipas, Mexico, with a predicted Ephedra 

diversity of up to seven species. (L5). The diversity patterns in the expert data, although similar 

in shape, were less distinct (Figure 2.4). 

Discussion 

We analyzed the data cleaning performance of six different pipelines for digital point-

occurrence records and their effects on species distribution models, a common downstream 

application in macroecology. The six pipelines differed significantly in the number of accepted 

species, errors removed, and remaining records for analysis (Table 2.2, Table A1). For example, 

P6 removed the most significant number of records, approximately twice as many records as 

the least-cleaning pipeline P1. Data from P1 differed from the other group by hosting seventeen 

non-native species in addition to the twelve natives, all of which were removed by the other 

pipelines. P1 also retained false-positive coordinates (e.g., sea, country capitals and centroids, 

biodiversity institutions, herbal shops), geographic outliers, and duplicates, which were 

removed to different degrees by the pipelines of the other group (Table 2.2). (Question 1).    

Due to the low complexity of the data cleaning environment, P1 and P2 required only little 

effort to get their pipelines installed. Both pipelines did not achieve the standardization and 

error elimination anticipated to reduce unwanted effects in the downstream analyses. P1 

identified potential shortcomings in the data only in a few cases due to the limited options of 

the GBIF filter application. In contrast, P3 to P6 were more demanding in the required know-

how, mainly when using the R packages and preparing the respective user environments but 

offered a more substantial functionality (Table 2.2). The R packages performed the data 

cleaning well for coordinate errors that rendered records unusable for use in diversity models. 

Generalist packages like the dplyr and specialists like the CoordinateCleaner, especially in 

combination, reliably identified problematic records with missing values and false-positive 

occurrences such as biodiversity institutes or country centroids. Accurate distribution data are 

essential for any SDM and the many comparable downstream analyses (Chapman et al., 2000, 

Kadmon et al., 2004, Araújo and Guisan, 2006, Zizka et al., 2020). Therefore, the main aim of 

well-designed pipelines is to efficiently and automatedly generate cleaned data tailored to the 

specific research question (Zizka et al., 2020; Table 2.1). We mainly focused on comparing the 

outcomes of different pipelines that used well-known data retrieval or DC tools to answer this 

question. The standardization filters served to unify the record structure across the pipelines. 

Although older herbarium vouchers or observations are as valuable as recent vouchers since 



56 
 

they may document both a historical status and biodiversity changes over time (Meyer et al., 

2016), the "collection year, older than 1945" filter, for example, was implemented to 

standardize the data but also to reduce expected general coordinate imprecisions up-front. 

However, removing taxonomic and spatial errors was at the core of the pipeline data for the 

model-fitting and -building and the respective tools.     

Influence of different data cleaning solutions on downstream analyses  

Removing the non-native species, which consisted of only a few specimens, reduced the 

number of cleaned records only slightly (per species and overall). The non-native Ephedra 

species had no noticeable effect in the occupied grid cells as co-occurring species. They were 

concentrated in a few places and in small numbers of species only (P1, Figure 2.3, Figure 2.4: 

observed distribution). The low level of differences was confirmed by reasonably high 

correlation coefficients, which continued to even higher correlation coefficients regarding the 

predicted probability of species in S-SDMs (L1 to L5: Figure 2.3). Removing the missing value 

records in the pipelines was essential for the downstream analyses. The model fitting tool issued 

error messages when identifying any in the provided data (ade4). Although we included the 

duplicate records filter in determining the number of duplicate records in the data, duplicate 

records did not affect the fitted models. (Question 2). 

The tested pipelines offer automated data cleaning in a standardized and reproducible manner. 

Pipeline P1 supports all users but produces data that still contains serious taxonomic and spatial 

errors. In contrast, the pipelines P2 to P6, which help users with some programming experience 

(Zizka et al., 2019, Zizka et al., 2020), produce data qualities where many errors were 

eliminated and which seem suitable for diversity model use (SDMs and S-SDMs).   

Significant differences of the expert data and the GBIF data 

The P1 data differed noticeably from the expert data, e.g., in the species composition (P1 data: 

29 species versus expert data, and P2 to P6 data: 12 species), the number of records per species, 

the number of occupied grid cells after the observations were allocated to gridded range maps 

(Figure 2.3, L2), and the number of co-occurring species. P2 to P6 differed less from the expert 

data. (Question 3). The aim of collating data for SDMs is to avoid bias and inaccuracies in 

taxonomic and distribution data, and an effective means of overcoming bias and inaccuracies 

is to build data from field studies (Chapman, 2005, Araujo et al., 2019).  Well-maintained expert 

data support both the aims and provide an alternative to field studies. A less-maintained data 

alternative, biodiversity records from GBIF, are free of charge but with limitations in data 
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quality due to several known and unknown errors. Expert and GBIF data form the data layer 

(Vetter, 1990, Bakshi, 2012). However, the critical difference between expert data and GBIF 

data is that the expert data may be used unprocessed as input to the data modeling workflow as 

there are no data errors to be expected. For the GBIF data, an additional data cleaning process 

chain needs to be included in the workflow so that the data modeling can be meaningfully linked 

to the data layer. Consequently, a user of GBIF data always has to plan for an additional effort 

for the data cleaning design, which includes the functional structure of the target data that is fit 

for use, and a pipeline to obtain it (Wirth & Hipp, 2000, Zizka et al., 2019). 

A major issue: Misidentified specimens that still hide in the dataset 

Comparing the quantities of the GBIF pipelines' analysis data and the expert data shows that 

the expert data is roughly 11.8 % or about 1/8th of the GBIF data (mean). From this ratio, we 

may assume that there are still many errors in the pipeline data, hence, the visible differences 

in the maps (Figure 2.4). This point opens the question of how realistic the GBIF data is. No 

pipeline detected taxonomic issues such as misidentifications or false positives like non-native 

specimens in the data due to a lack of information about their distributional status. For 

differently determined specimens of the same origin, given to other institutes and handled in 

isolation from their parent specimens, Nicolson (2019) provided a technical solution. We used 

expert know-how to assess the likeliness of taxonomic identities in recorded localities as there 

presently is no tool that possesses this functionality (Appendix, Figure A3). Developing a tool 

that resolves this issue might be challenging considering the many names, from synonyms to 

misspellings (Zermoglio et al., 2016). A correction method that was already introduced is that 

a data owner directly changes false positives identified in individual cases by notifying the 

provider. Generally, with the present interfaces to GBIF, it cannot be avoided that misidentified 

taxa enter into the databases by, e.g., citizen scientists. Interfaces that prevent taxonomic or 

spatial errors before entering a public provider must be designed. 

Conclusion 

Our results suggest that the P1 data shows more differences from P2-P6 data than within this 

group. Depending on the pipeline, one-third (P1) to two-thirds (P6) of the GBIF records were 

classified as unsuitable for biodiversity analyses. Importantly, differences in the pipeline data 

did not translate into significant differences in downstream SDMs and S-SDMs, suggesting 

remarkable robustness of these analyses towards data cleaning differences. The increasingly 

condensed information from the occurrence data led to ever-stronger correlations across the 
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pipelines. Three aspects emerged from the study. First, data from the GBIF web application 

requires further cleaning. Second, the R packages reliably removed incorrect or dubious 

coordinates. Therefore, choosing the right DC tools depends on the researcher's skills. Third, it 

is challenging to detect misidentified specimens in the public data providers. To overcome this 

difficulty, we suggest new processes to detect misidentified specimens or prevent new 

misidentified specimens from being entered into the public data providers. Consequently, 

programmers developing new data cleaning packages should consider the functionalities 

required for data cleaning, notably as the CoordinateCleaner eliminates most spatial errors. 
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3 
Drivers of variation in synonym numbers of angiosperm species 

names 

Abstract 

Synonyms are part of the scientific progression in taxonomy and nomenclature and reflect the 

evolving knowledge about species based on revisionary systematics. However, synonyms 

frequently cause problems in biodiversity repositories, so understanding the causes of the 

variation of botanical synonyms is essential. Recent studies attribute variation in synonyms to 

intrinsic and extrinsic drivers, such as nomenclature, taxonomic group membership (e.g., of 

orchids), and the age of the accepted name. Here, we examine the drivers of the synonyms for 

a large global subset of all angiosperms. Across 137,378 accepted names of 193 angiosperm 

families and 5,019 genera present in 355 botanical countries and regions worldwide, range size, 

the age of the accepted name, and insularity (insular or mainland occurrence, or occurrence on 

both) emerged as drivers with a positive effect on angiosperm synonyms. After accounting for 

these three factors, the residual differences in the number of botanical continents and the 

interaction between insularity and the range size became less significant. The combined multi-

predictor model explained about 41% of the global variation in angiosperm synonymy (96%, 

including the random effects of the families, genera, and the presence patterns of accepted 

species on one or more botanical continents). We suggest that geographic distance between 

taxonomists enables wide-ranging species and species with insular distributions to accumulate 

more synonyms. Also, the age of an accepted name plays a vital role in synonym accumulation. 

Our results can help to set priorities in revising floras and checklists and to resolve synonymy 

problems in biodiversity databases, likely leading to more realistic global species numbers. As 

the drivers may also impact other plant taxa, the study likely has implications for a wider range 

of families and genera.  
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Introduction 

Taxonomy aims at identifying, characterizing, and classifying living organisms and thereby sets 

the foundation for hypothesis-driven research in ecology, biogeography, and conservation 

biology (e.g., Isaac et al., 2004, Wilson, 2004, Thomson et al., 2018). Taxonomists use 

morphological, genetic, behavioral, and biochemical characters to identify and describe taxa 

following specific nomenclatural principles and rules. The principle of priority (Turland et al., 

2018), essential to naming organisms, states that the accepted name is the earliest validly 

published name for a given species; younger names are considered synonyms if more than one 

name describes the same species. Synonyms may emerge for different reasons, for instance, 

from different taxonomists interpreting and classifying interspecific variation differently; the 

two resulting philosophies are referred to as 'splitting' and 'lumping'. If a splitter and a lumper 

classify species of the same genus, the former will usually recognize more species than the 

latter. 

It was suggested that if multiple names exist for the same species, these were not solely caused 

by altered taxonomic relationships, e.g., that the natural variation of a species was unknown, 

and various forms of the same species were given different names (e.g., Mori, 2013). For 

example, it was speculated that taxonomists might show preferences toward attractive taxa and 

that this would increase synonym numbers (Pillon & Chase, 2006, Lughadha et al., 2016). An 

uneven distribution of synonymy among families and high concentrations in a few large 

families like Asteraceae, Orchidaceae, and Poaceae was detected by Lughadha et al. (2016). 

Other studies explored cases of taxonomists describing unknowingly and independently the 

same species more than once (e.g., Valdecasas et al., 2008, Joppa et al., 2011, Ickert-Bond et 

al., 2019). For example, due to the geographic distance between taxonomists, wide-ranging 

species may accumulate more synonyms (e.g., Baselga et al., 2010, Mori, 2013, Fenneman, 

2017). This assumption might also be realistic for continents separated by large bodies of water 

that expand the range, like the Americas and Africa. Also, species with island distributions 

might accumulate more synonyms because of a higher number of endemic species (Kier et al., 

2009) and complex distributional ranges or because of a researcher's assumption that a species 

discovered on an island is endemic. Other studies proposed that the time passed since the 

original description of the accepted name plays a crucial role in the accumulation of synonyms 

(Alroy, 2002, Baselga et al., 2010, Joppa et al., 2011). Finally, some taxonomists noted that 

other taxonomists were creating species' names as if to 'retain a place in posterity' through 

authorship of taxa (Bruun, 1950, Pillon & Chase, 2006, Dubois, 2008, Evenhuis, 2008). 
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Synonyms are an integral part of the natural progression of taxonomy and nomenclature and 

reflect the ever-changing knowledge about species (Valdecasas et al., 2008, Mori, 2013). 

Revealing synonyms helps to deepen our understanding of organisms by better understanding 

otherwise hidden properties of organisms (Holman, 1987). Recent studies, however, showed 

that the degree of synonymy is quite substantial for some taxa. In some insect groups, the 

observed ratio of synonyms to accepted names plus synonyms (synonymy rate) exceeds 50% 

(Gaston & Mound, 1993, Wells et al., 2019). Similarly, it was estimated that around 66% of all 

published seed plant names are synonyms (Wortley & Scotland, 2004).  

Taxonomic uncertainties resulting from the inconsistent treatment of species' delineation and 

synonymy represent a major challenge for integrating biodiversity data in public data 

repositories and may lead to erroneous results (Alroy, 2002, Gotelli, 2004, Dubois, 2008, Jansen 

& Dengler, 2010). For instance, unresolved synonyms artificially increase the number of names 

in biodiversity repositories. Synonyms also confuse taxonomy when, for example, it is difficult 

to recognize whether a species' name in a repository is simply an alias of a more common 

species (Gaston & Mound, 1993). The same applies to a synonym that cannot correctly relate 

to an accepted parent name. When taxonomic sources do not consistently identify a scientific 

name as a synonym, the likelihood for misinterpretation in checklists and other floristic and 

faunistic treatments increases (Gotelli, 2004, Jansen & Dengler, 2010, Meyer et al., 2016). As 

a result, thousands of floras and checklists used worldwide are rarely congruent in their 

taxonomy (Dubois, 2008, Jansen & Dengler, 2010).  

Here, we analyzed the variation of synonym numbers in angiosperm names worldwide and 

tested five competing but not mutually exclusive hypotheses contributing to synonymy (Table 

3.1). We examined the variation in synonym numbers across families and genera. Furthermore, 

we explored the variation in synonymy across botanical continents where the species were 

distributed, species' insularity (defined as a species occurrence on islands, the mainland, or 

both), and the species' range sizes. Finally, we tested the age of the accepted name as a proxy 

for the time passed since the description of an accepted name. Our results can be used to identify 

plant taxa that may have an increased probability of unidentified and unresolved synonyms, and 

to set priorities in revising checklists, floras, or biodiversity databases. The identified name 

discrepancies can also be further tracked for negative effects across related floras, checklists, 

and repositories. The outcome of this study likely has implications for a broader range of plant 

families and genera beyond those examined in the current study.  
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Material and methods 

Data cleaning and preparation of the analysis file 

On February 13, 2020, we retrieved 537,000 seed plant name records of 270 families from the 

World Checklist of Selected Plant Families (hereafter: WCSP; WCSP, 2020), including 

species’ accepted names, synonyms, and publication information. We removed 27,538 non-

angiosperm names (Stevens, 2016), 12,927 erroneous, and 7,974 unplaced names (both 

categories were already flagged by the WCSP). 161,392 accepted names and 340,271 synonyms 

from 193 angiosperm families remained. An additional 18,262 lower-level names (e.g., 

subspecies) with 27,453 synonyms were removed, leaving 143,130 accepted names and 

312,791 synonyms for a total of 455,921 angiosperm names. We also removed 24,542 

synonyms containing nonsensical publication year values (e.g., 0 (zero), 3- or 5-digit years, 

multiple years, and comments) that could not be matched to an accepted name. For 475 accepted 

names with nonsensical years (1,577 assigned synonyms), it was impossible to derive the age 

of the accepted names even from the oldest synonym. We used parent-dependant relationship 

information to link the remaining 279,694 synonyms (dependants) to their respective accepted 

parent names (142,655 records) and counted them (synonym number: synNum; hereafter, 

variable names in italics). The synNum served as the response variable during hypothesis 

testing. The publication year was unavailable for 3,694 accepted names (1.1%). In this case, we 

used the oldest synonym. The oldest publications date to 1753 (Linnaeus, 1753) and end in 

2019 (spanning a total of 267 years). Therefore, we calculated the age of an accepted name by 

subtracting the publication year from 2020. For further analyses, we used the full accepted 

name, family (predictor variable of hypothesis H1a, Table 3.1), genus (H1b), age of an accepted 

name (H5), and the synNum. 

In addition, we used occurrence information for 143,130 accepted seed plants at the species 

level (in one or more of the 378 TDWG countries and regions, hereafter: TDWG entity, level 

3, indicated by 1, presence, and 0, absence; Brummitt, 2001, WCSP, 2020a). From this, second, 

WCSP file (hereafter: occurrence file) and a spatial polygon (TDWG, 2021), we prepared the 

predictor variables botanical continent, where a species is present (hereafter: “BC”; H2a) and 

number of botanical continents on which a species occurs (hereafter: BCNum, H2b). In 

addition, we established the predictor variable insularity of a species and computed the range 

size by summing the areas of the respective TDWG units.    
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Table 3.1. Hypotheses summary: Drivers of synonym numbers, affecting the variation in synonym numbers 

and synonymy rates (synRate). Species which are affected by the drivers described in the hypotheses below are 

expected to accumulate synonyms more frequently.  

H1. Synonym number and synRate vary among families or genera. Species belonging to particular 

angiosperm families and genera – regardless of the higher taxonomic level’s species number – have an 

increased probability of being described as different species (Pillon & Chase, 2006, Lughadha et al., 

2016). Thus, we expected species of these families and genera to accumulate synonyms more frequently. 

Explanatory variables: family and genus (both categorical). 

H2a. Synonym number and synRate vary across the botanical continents / continent combinations. 

Species present in specific continents and continent combinations have an increased probability of being 

described as different species. We expected species being present in particular botanical continents and 

continent combinations to accumulate synonyms more frequently. 

Explanatory variable: occurrence on TDWG botanical continent(s) (except Antarctica) (eight-digit 

variable, binary: Y = 1 / N = 0). 

H2b. Synonym number and SynRate vary with the number of botanical continents where species 

are present. Species present on more than one botanical continent have an increased probability of being 

described as different species. We, thus, expected species present on many botanical continents to 

accumulate synonyms more frequently than species occurring on only one or few continents (extension 

of H4, below).  

Explanatory variable: number of botanical continents a species occurs (numerical: 1 to 8). 

H3. Synonym number and synRate vary with the insularity of a species. Species present on islands 

have an increased probability being described as different species than species occurring on the mainland. 

We expected species present on islands to accumulate synonyms more frequently than species occurring 

on the mainland only. 

Explanatory variable: insularity of a species, on islands only, on the mainland only, and both on islands 

& the mainland (using the TDWG classification of the respective botanical country as island or mainland).   

H4. Synonym number and synRate vary among species range sizes. Wide-ranging species are more 

likely to be described as different species (proxy for the geographic distance between taxonomists) than 

species with small ranges. We expected species with large ranges to accumulate synonyms more 

frequently than species with small ranges (Baselga et al., 2010, Fenneman, 2017). 

 Explanatory variable: range size, computed as the sum of TDWG countries where a species occurs 

(Source: TDWG shapefile data frame). 

H5. Synonym number and synRate vary with the age of a species' accepted name. Species' accepted 

names validly published a long time ago had more time to accumulate synonyms than recently published 

accepted names (Alroy, 2002, Baselga et al., 2010). We expected early published names to accumulate 

synonyms more frequently than recently published names. 

Explanatory variable: age of a species' accepted name or – if not available or younger than the first 

published synonym –  its oldest synonym.   
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We considered eight botanical continents (by TDWG Level 1 code, Brummitt, 2001), excluding 

Antarctica, to avoid the bias of a large continent with very few species (WCSP, 2020a). If a 

species was reported in a TDWG unit (given in the occurrence file for each accepted name), we 

marked the corresponding botanical continent ('1', presence and '0', absence). Furthermore, we 

summed up the BCNum. We concatenated the species' occurrences on the eight botanical 

continents into an eight-digit BC string (presence-absence patterns). The TDWG continent 

number was the position number in the string, determined from left to right. Examples for 

presence-absence patterns were, e.g., for the presence in South America only: '00000001', and 

presence in Europe, Africa, and South America: '11000001'. We determined the insularity of a 

species by their respective TDWG classification (Brummitt, 2001). For example, Australia and 

its continental subunits (e.g., Western Australia, Queensland) were classified as mainland, and 

Tasmania as an island. Depending on the determined species insularity type, we set insularity 

to 'I' (islands), 'M' (mainland), or 'A' (island and mainland) (factor with three levels). We 

regarded a species' range size as a proxy for the physical distance between taxonomists. As an 

estimate for range size, we computed the sum of all country areas where a species was reported.  

We merged the continent-related explanatory variables (the presence-absence string BC and 

BCNum), insularity, and the total range size to the initial part of the analysis file, achieving a 

final set of nine variants of five putative drivers of synonym numbers in angiosperms. Resulting 

from the merge, we identified 2,058 accepted names with 6,592 synonyms that were not 

associated with a TDWG unit or Antarctica. We also identified 3,219 records of accepted 

species with 11,278 synonyms that had not all predictor variables filled with values and 

therefore had to be removed. The data cleaning process resulted in 137,378 accepted 

angiosperm names with 261,824 synonyms.  

Statistical modelling 

Collinearity among predictor variables was tested using the R package rstatix (Kassambara, 

2020) and visualized using the GGally package (Schloerke et al., 2018; Appendix, Figures 

A1(a) to (f)). We examined skewness and kurtosis of the data using the package moments 

(Komsta et al., 2015, Appendix, Table B2), and nested, multilevel structures with lmerTest 

(Kuznetsova et al., 2017). Structural details of the data were visualized using ggplot2 

(Wickham, 2016, e.g., Appendix, Table B2) and the ggpubr function ggdensity (Kassambara, 

2020a, Appendix, Table B2(a), Density diagram).   
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We used generalized linear mixed effects models (GLMM) to examine the drivers of synonym 

numbers. We analyzed the linear relationships of synNum, including interactions of explanatory 

variables and assessed variable performances using R packages ROCR (Sing et al., 2015) and 

performance (Lüdecke et al., 2021). We natural log-transformed range size to approximate its 

observed distribution to a normal distribution. The explanatory variables were standardized (z-

transformation, using the rescale function) to improve the linearity and comparability of 

coefficient estimates. We analyzed the suitable error distribution for the count data and the 

appropriate link functions (Garson, 2013). Frequent issues to be handled in count data are zero-

inflation (e.g., Hartig, 2019) and overdispersion (causing incorrect standard errors, e.g., Bell & 

Grunwald, 2011, Meyer, 2021). In terms of error distribution, Poisson, Poisson/zero inflation, 

and negative binomial, Poisson/zero inflation, the employed logit link function provided the 

best-fitting models (Tlhaloganyang & Sakia, 2020, Appendix, Table B2).  

The variables range size and age of an accepted name, insularity, and BCNum were used as 

fixed factors in the GLMM model. The other variables, family (193 levels), genus (5,019 

levels), and BC (217 levels) were used as random factors (McGill, 2015, Appendix, Figure B3). 

All variables showed significant effects (SE < 0.013, p-values < 0.001) in the GLMM analyses, 

suggesting they were predictive (Bell et al., 2019). In addition to the single predictor variables, 

we tested how the interaction of species occurring on islands, the mainland, or both related to 

their range size (hypotheses H3 and H4) influences the accumulation of synonyms (Hox et al., 

2017, partial correlation analysis: R-package ppcor, Kim 2015; p = 0). 

We fitted multi-level regression models using the R package glmmTMB, which minimized 

overdispersion and zero inflation (Bolker, 2016; see: Table B2). We used three distinct 

goodness-of-fit measures for the model selection: the Akaike information criterion (AIC; 

Burnham & Anderson, 2004), the root-mean-square error (RMSE), and the marginal and 

conditional pseudo-R2 (Nagakawa & Schielzeth,  2013, Johnson, 2014, Schielzeth et al., 2020). 

We computed models of the individual predictors in all possible combinations (Stoffel et al., 

2021; predictors: four fixed factors, one interaction, and three random factors). The possible 

combinations were determined by the mandatory specifications of the used algorithm. At least 

one random factor was compulsory for glmmTMB. The computations delivered the R2 

proportions of the fixed and random factors for the models (as the conditional and marginal 

R2s). We decomposed the R2s per explanatory variable as described in the computation 

procedure of the R packages PartR2 (Stoffel et al., 2021) and rptR (Stoffel et al., 2017). We 

selected four models, all with an almost identical AIC at a stable minimum and a maximized 
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pseudo-R2 (model selection criteria; Myung, 2000. Appendix, Table B4(a) and (b)). We 

evaluated the model performances with the packages jtools (Long 2017), sjPlot (Lüdecke, 

2021), and residual information. We also analyzed the models with the DHARMa diagnostics 

package (Hartig, 2020). We performed a Kolmogorov-Smirnov (KS) test (normal distribution 

of the residuals), an overdispersion, and an outlier test. The p-values were calculated for each 

model (Appendix, Figure B5, Appendix, Table B4(a) based on 500 replications.    

While we counted synNum per accepted species, we computed a synonymy rate (synRate) from 

the sum of accepted species and their collective synNums (both from the counted, hereafter: 

observed, and predicted by the GLMM model) of a given group (synRate = (synNum/(sum of 

accepted names + synNum)) * 100 [%]; Lughadha et al., 2016). The predicted values were 

reverted from the natural log using the R exp function. The synRates allowed a species richness-

independent ranking of each categorical predictor level based on the observed or predicted 

synNum (predicted: from the model) they accumulated or computed for their accepted names 

(family, genus and BC). The predicted synNum were higher than the observed synNum. For 

example, we extracted the observed and predicted synonyms per botanical continent using the 

variable BC as a presence indicator. We summed the synonym numbers per botanical continent 

according and analyzed the variation between observed and predicted synonym numbers (a) per 

botanical continent and (b) across botanical continents (Figure 3.1). 

For the data retrievals, manipulations, analyses, and modeling in this study, we employed R 

Studio and R versions 3.0.2-3.2.1 (R core team, 2013). 

Results 

Data basis for model fitting  

The data cleaning exhibited out-of-scope species records, i.e., non-angiosperms (27,538 

records, including 12,928 erroneous records and 176 unplaced records, respectively marked by 

the WCSP; 5.1%, based on the initial 537,000 WCSP seed plant records), unplaced angiosperm 

names (7,799 records, 1.5%), subspecific angiosperm names including their synonyms (45,715 

records, 8.5%), and species, occurring on the continent of Antarctica (1,608 records, 0.3%). 

Among the species of interest, we also found records lacking correct values for essential 

variables. This category contained 2,052 accepted names and synonyms where no oldest name 

was available (leaving the publishing year and, subsequently, the age of an accepted name 

variable empty; 0.4%). This category comprised erroneous synonym records containing 

nonsensical data in variables essential for our study (24,542 records, 4.6%, e.g., zeroes, text in 
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the publication year) that could not be matched to an accepted name. This category also 

included 1,661 accepted names with 5,381 synonyms that were not assigned to a BC (1.3%) 

and 3,219 accepted names with 17,863 synonyms that were missing proper values in one or 

more of the relevant predictor variables (3.9%). During data cleaning, we removed a total of 

137,798 records (25.7%, summed from the individual percentages).  

Table 3.2. Summary of the fifteen accepted species names with the highest synonym numbers among the 

angiosperms studied. Images A to D show the four species with the highest synonym number per species name. 

(Images: A, Mentha arvensis; B, Sorghum bicolor; C, Pandanus tectorius; D, Oryza sativa). Column pubYear 

(Publication year: For each scientific name marked with *, the publication year was determined using the oldest 

synonym in the absence of the publication year of the accepted name. (Image credit: A: Ivar Leidus, B: Forest & 

Kim Starr. C: Judgefloro. D: C.T. Johansson. Creative commons licences: A, B, and D: CC BY-SA 3.0; C: CC 

BY-SA 4.0.) 

 

Family Scientific name  synNum pubYear  BotCont Human use 

Lamiaceae Mentha arvensis L.  377 1753 1 to 5,7,8 medicinal, spice 

Poaceae * Sorghum bicolor (L.) Moench 344 1753 1 to 8 staple food (crop) 

Pandanaceae Pandanus tectorius Parkinson ex Du Roi 321 1774 2 to 8 food, building 

Poaceae Oryza sativa L. 320 1753 1 to 8 staple food (crop) 

Lamiaceae Mentha aquatica L. 302 1753 1 to 3,7,8 medicinal, spice 

Asparagaceae * Cordyline fruticosa (L.) A.Chev. 233 1754 2 to 8 ornamental gardening 

Poaceae Festuca rubra L. 222 1753 1 to 8 ornamental gardening 

Euphorbiaceae Ricinus communis L. 212 1753 1 to 8 medicinal 

Poaceae Agrostis stolonifera L. 209 1753 1 to 8 ornamental gardening 

Rubiaceae Kadua affinis Cham. & Schltdl. 200 1829 6 ornamental gardening 

Oleaceae Phillyrea latifolia L. 187 1753 1 to 3 ornamental gardening 

Campanulaceae Campanula rotundifolia L. 179 1753 1,3,5,7,8 ornamental gardening 

Myrtaceae * Myrcia splendens (Sw.) DC. 170 1788 7,8 medicinal, fruits, timber 

Poaceae Festuca ovina L. 168 1753 1 to 4,7,8 - 

Cannaceae Canna indica L. 166 1753 1 to 8 ornamental gardening 

BotCont, botanical continent: 1 = Europe, 2 = Africa, 3 = AsiaTemperate, 4 = AsiaTropical, 5 = Australasia, 6 = Pacific  , 7 = 
Northern America, 8 = Southern America. 
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We ultimately obtained 137,378 accepted names (25.6%) with a total of 261,824 synonyms 

(48.8%) present in 355 TDWG units. The synNum varied strongly between zero and 377, mean 

synNum was 1.904, median synNum was 1, and the distribution was strongly right-skewed 

(skewness coefficient: 17.58) with a steep kurtosis (685.65). Natural log-transforming the 

synNum led to a slightly right-skewed, approximated normal distribution (skewness coefficient: 

1.33, kurtosis: 4.68, Appendix, Table B2(a)). 68,979 of 137,378 accepted angiosperm names 

(50.2%) had no synonyms, while five names accumulated more than three hundred synonyms 

each since 1753. The five accepted species with the highest synonym numbers were Mentha 

arvensis L. (377 synonyms), Sorghum bicolor (L.) Moench (344 synonyms), Pandanus 

tectorius Parkinson ex Du Roi (321 synonyms), Oryza sativa L. (320 synonyms), and Mentha 

aquatica L. (302 synonyms). Table 3.2 lists the top-fifteen accepted names with the highest 

synonym numbers among angiosperms available in the WCSP.  

The synonym numbers differed significantly across families and genera. Synonym numbers per 

family varied from no synonyms (in sixteen out of 193 families) to more than 40,000 in the 

Poaceae (47,443 synonyms) and Orchidaceae (43,839 synonyms). Cannaceae exhibited the 

highest synRate (95.2%) of all families for the twelve accepted names and 238 synonyms 

(synNum [mean]: 19.83). The relatively small family Potamogetonaceae took second place 

(88.2%) with 106 accepted names and 790 synonyms (synNum [mean]: 7.19). Large families 

such as the Poaceae ranked 12th with a synRate of 80.4% (synNum [mean]: 4.11). The 

Orchidaceae ranked 99th with a synRate of 60.3% (synNum [mean]: 1.5). (Details: Table B6(a)). 

At the generic level, synNum varied by four orders of magnitude, ranging from zero synonyms 

(in a total of 578 genera out of 5,019) up to more than 4,000 (Carex L., synNum [mean]: 2.42) 

and 3,000 (Dendrobium Sw., synNum [mean]: 1.95, Euphorbia L., synNum [mean]: 2.46, and 

Cyperus L., synNum [mean]: 3.54). The highest synRates were found for Ricinus L. (R. 

communis L., one accepted name and 212 synonyms) and Phillyrea L. (two accepted names 

and 247 synonyms). Both had a synRate of more than 99% (Details: Table B6(b)).  

The synRates also varied among the botanical continents (Figure 3.1, Table 3.3). Europe, 

Pacific, and North America emerged as the continents with the highest synRates from observed 

synonym numbers (90.7%, synNum [mean]: 9.79; 85.6%, synNum [mean]: 5.96; 84.2%, 

synNum [mean]: 5.31). 
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Figure 3.1. Variation of synonym numbers across botanical continents (random factor), by synonymy rates 

(observed: blue, predicted: light blue). We extracted the observed and predicted synonym numbers per botanical 

continent using the BC (eight-digit presence-absence pattern) as a presence indicator. We summed the synonym 

numbers per botanical continent and analyzed the variation between observed and predicted (a) per botanical 

continent and (b) across botanical continents. Observed synonym numbers were counted when linking synonyms 

to their parent species name. Thus, the observed synonymy rates (synRate) are derived from this number for the 

synRate formula. The predicted synonym number is derived from the glmmTMB model. Thus, the predicted 

synRate is used in the formula. Both the observed and the predicted synRates were computed as: synRate = 

(synNum/(accepted names + synNum)) * 100 [%] (Lughadha et al. 2016). The synRates allowed for a relative level 

ranking independent of each continent's absolute synonym number. Europe (90.7%), Pacific (85.6%), and North 

America (84.2%) emerged as the continents with the highest synRates from observed synonym numbers. The 

predicted synRates were even higher. For Europe, a synRate of 96.5% was computed, followed by Pacific with 

94.6%, and North America with 93.9%. The observed synRate of South America increased from 67.8% to a 

predicted synRate of 86.7%, similar to Asia-Tropical, where the observed synRate increased from 69.9% to 87.6% 

(predicted).  

Drivers of synonym numbers 

Collinearity among the explanatory variables was generally low and highest between the 

numerical variables range size and age of the accepted name (absolute Pearson correlations of 

0.35). Repeated testing of different error distributions and the DHARMa diagnostics showed 

that the best model performances were obtained using the glmmTMB package, the Poisson/zero-

inflation error distribution, and the logit-link function (Appendix, Table B2). Iterative GLMM 

analyses resulted in four fitted models of very similar model parameters, performing nearly 
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equally well. As a result, the AIC values and the conditional and marginal R2s of the four models 

were also similar (Appendix, Table B4(a)), ranging from 4.880E+05 to 4.882E+05. The RSME 

of 4.005 revealed a high predictive accuracy with a quantified average error of 4%. The 

conditional R2s ranged from 0.958 to 0.964, and the share of the fixed factors (marginal R2) 

ranged from 0.396 to 0.414. Only Model 4 met the equidispersion requirement (conditional R2 

of 0.989, fixed factors: 0.414). According to DHARMa diagnostics (Appendix, Figure B5), the 

models did not show significant zero inflation (i.e., given the fitted model, the expected and 

modeled zeroes were in the same range, Hartig, 2019). Thus, we selected Model 4 as the final 

model to explain the combined drivers of synonym numbers.  

The combined multi-predictor GLMM model 4 explained about 41% of the global variation in 

angiosperm synonym numbers (96% including the random effects; Table 3.3). The model 

included the range size (explaining 21.0% of the variation in synonym numbers), the age of an 

accepted name (11.6%), and insularity (5.6%) as main predictors (Table 3.3). We observed 

root-mean standard errors (RMSE) between 4 to 5% suggesting that the variables were highly 

predictive.  

Table 3.3. Global model of angiosperm synonymy. Selection conditions of the model were: (1) AIC at a stable 

minimum, (2) maximized pseudo-R2, (3) DHARMa performance tests successful. Result of GLMM of a combined 

nine-predictor model, by random factors and fixed factors. H1 to H5: Hypotheses (see: Table 3.2). ***, p < 0.001. 

The table below is an extract of Table B4(b) (Appendix).  

Hypothesis Combined model R2 share RMSEmean z Variation 

 Random Factor R2 share 0.544 -  54.4% 

H2(a) Botanical continents (Presence on particular continents) 0.302 4.857 - 30.2% 

H1 Genus of species 0.223 4.404 - 22.3% 

H1 Family of species 0.019 4.930 - 1.9% 

 Fixed Factor R2 (Marg.) 0.414 -  41.4% 

H4 Range size 0.201 4.621    69.7 *** 21.0% 

H5 Age of accepted name 0.111 4.698  139.9 *** 11.6% 

H3 Insularity 0.054 4.800   -31.9 *** 5.6% 

H2(b) No. of botanical continents (a species is present) 0.029 4.763      3.6 *** 2.9% 

H3*H4 Range size * Insularity 0.019 5.078    17.8 *** 1.9% 

 Total R2 (Cond.) 0.958 4.005  95.8% 

Range size had a positive effect on the accumulation of synonym numbers. The larger the range 

size of an accepted species, the more synonyms it accumulated (Rank 1, Figure 3.2B – with 

insularity, Table 3.3). The age of an accepted species had a positive effect on the species’ 



72 
 

accumulated synonym numbers (Figure 3.2C): The more time had passed since the description 

of a species name, the more synonyms it accumulated. (Rank 2, Figure 3.2C, Table 3.3). The 

three insularity types showed a positive effect on species’ accumulated synonym numbers, 

albeit to different extents, as displayed in the regression lines with varying points of intersection 

and slopes (Rank 3, Figure 3.2B). Species found on islands had a significantly lower synRate 

than those found on the mainland or even both islands and the mainland (99 percent confidence 

interval: p < 2.2e-16). Species observed only on islands showed a synRate of 51.0% (synNum 

[mean]: 1.04), and species only present on the mainland showed a synRate of 58.2% (synNum 

[mean]: 1.39). Yet, species present in both showed a synRate of 89.0% (synNum [mean]: 8.09). 

The working residuals (Hardin & Hilbe, 2007) varied somewhat for the range size and the age 

of the accepted name, and they varied slightly within the insularity based on the range size 

(Figures B7a-c). For the age of an accepted name, the working residuals varied only slightly. 

We also found differences for the BCnum and the interaction of the range size and insularity 

(Table 3.3). The number of botanical continents on which a species is present had a positive 

effect on accumulated synonym numbers, but showed only weak effects on global synonym 

numbers (Rank 4, Figure 3.2A, Table 3.3). The interaction of insularity and the range size 

showed very weak effects (Rank 5, Figure 3.2B, Table 3.3). The botanical continent’s synRates 

(predicted synonym numbers from the patterns, split per botanical continent: BC) confirmed 

the ranking from the observed synonym numbers, but were higher. For Europe, a predicted 

synRate of 96.5% was computed, followed by Pacific with 94.6%, and North America with 

93.3%. The observed synRate of South America increased from 67.8% to a predicted synRate 

of 86.7%, similar to Asia-Tropical, where the observed synRate increased from 69.9% to 87.6% 

(Figure 3.1).  

Discussion 

In this study, we analysed geographical and taxonomical patterns and drivers of synonymy of 

137,378 accepted angiosperm names and 261,824 synonyms from 5,019 genera and 193 

families on eight botanical continents. We examined five competing but not mutually exclusive 

hypotheses of synonym numbers (Hypotheses H1 to H5, Table 3.1). We observed a large 

variation in synonym numbers in the used global subset of angiosperms ranging from zero 

(about 50% were accepted names without synonyms) to 377 synonyms. Variation in synonym 

numbers was associated with all drivers investigated, which positively affected the 

accumulation of synonym numbers, but range size, the age of an accepted name, and insularity 
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emerged as the primary drivers. Together, these three drivers explain about 41% of the global 

variation in angiosperm synonymy.  

Drivers of synonym numbers discussed in order based on their relative importance 

Among all analyzed factors, the range size (H4) emerged as the driver with the highest 

predictive power for the accumulation of synonyms among the three primary drivers. This 

finding supports the hypothesis that widespread angiosperm species collect more synonyms 

than range-restricted species as the geographical distance between taxonomists is large (Baselga 

et al., 2010, Fenneman, 2017, Figure 3.2B).  

The age of an accepted name (H5) served as the proxy for the time that passed since the 

publication of an accepted angiosperm name. This variable also positively affected synonym 

numbers and ranked second in predictive power. The result corroborates the "historical 

accumulation of names” hypothesis which states that the more time had passed since the 

description of a species' name, the more synonyms it accumulated (e.g., Baselga et al., 2010, 

Joppa et al., 2011, Figure 3.2C).  

In our analyses, the three insularity types positively affected the accumulated synonym numbers 

(H3: rank 3). However, we found differences between the types' accumulation extent (Figure 

3.2B). Computed from counted synNum, the synRate of species present on islands and the 

mainland show 89.0%, compared to the synRates of species restricted to islands (51.0%) and 

the mainland (58.2%). Computed from predicted synNum, the synRate of species present on 

islands and the mainland still shows 63.1%, while the synRates of islands and mainland species 

drop to 2.2% and 6.3%, respectively. The results are probably due to extended species' ranges, 

and the ranges increased complexity.    

Synonym numbers were unevenly distributed among the studied families and genera and 

differed significantly (Hypothesis H1). The rank positions of families and genera (by synRate) 

may hint at particular taxa being more notable than others. For example, some families are 

morphologically difficult (e.g., Poaceae), others tend to produce hybrids (e.g., Betulaceae). 

Also, the attractiveness of a taxon may have a decisive impact on taxonomists’ motivation in 

general (Henrich & Gil-White, 2000, Pimm & Joppa, 2015, Jensen, 2019). However, 

attractiveness is subjective and difficult to quantify. Thus, our results cannot support findings 

in previous studies which suggested that particular families, like Orchidaceae, accumulate more 

synonyms due to being more attractive to researchers than others (Pillon & Chase, 2006, 

Lughadha et al., 2016, Tables B6(a) and (b)).  
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Figure 3.2. Variation of synonymy rates (from the predicted fixed factor synonym numbers): A: Number of 

botanical continents, a species is present, rank 4. B: "Range size" and "Insularity" (H3/H4), individual predictor 

ranking: "Insularity", rank 5, "Range size", rank 1, interaction: rank 5. The working residuals vary by the species' 

insularity. C: "Age of an accepted name" (H5), rank 2. The plots were prepared using the effects package (Fox et 

al. 2016).      
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Yet, the attractiveness of taxonomic study objects in the selection process of researchers (e.g., 

due to specific pollination mechanisms, ecology, and horticultural value, Heß, 1990, Lughadha 

et al., 2016) may warrant a study on their consequences on research biases.  

The expectation that species in particular botanical continents and continent combinations will 

accumulate synonyms more frequently was confirmed. However, the botanical continent 

proved to be a contradicting driver when comparing the predictive power of the continent 

patterns to the number of continents a species is present. With almost 32%, the botanical 

continent accounted for a dominant proportion as a random effect (H2a, continent patterns: high 

conditional pseudo R2 share). The number of continents, a species is present, had a positive 

effect on the accumulation of synonyms, albeit with very low predictive power, accounting only 

for 3% of the global variation (H2b, number of continents: very low marginal pseudo R2 as a 

fixed effect). 

Synonym numbers varied systematically by botanical continent (Hypothesis 2a). Europe, 

Pacific, and North America emerged as the continents with the highest synRates based on 

observed synonym numbers (from nearly 85% to more than 90%). The synRates from predicted 

synonym numbers confirmed these results, although predicted synonym numbers were slightly 

higher (by about 10%) as compared to observed synonym numbers. Contrary to this overall 

trend, the observed synRate of South America and Asia-Tropical, however, increased by 15 to 

20% (Figure 3.1). Overall, these results are consistent with the notion that numbers of invalid, 

infraspecific, and hybrid names are significantly higher in Europe than in surrounding areas, 

which coincides with the high number of systematists working there (Pillon & Chase, 2006). 

(Hypothesis 2b). Also, for the Eupelmidae (family of parasitic wasps), it was found that the 

larger their species range size and the more western a Eupelmid species was located, the earlier 

a species was described both in Afrotropical and in the Palearctic biogeographical regions 

(Baselga et al., 2010). 

Considering species with high synonym numbers, it is striking that mostly their range is 

recorded across a higher number of botanical continents. In addition, some of these species are 

native only to one or a few continents. The botanical continent's predictive power was possibly 

influenced by such species introduced to new continents. The extension of species' range sizes 

due to cultivation or invasiveness may have created new opportunities for species to accumulate 

additional synonyms outside their native range. For example, Mentha arvensis with 377 

synonyms was a taxon in our analysis that accumulated the highest number of synonyms. The 
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species is native to Africa and Asia-Tropical, and was introduced to Europe in the 16th century 

as a pharmaceutical (Roy et al. 2020). Mentha arvensis was introduced to at least ten countries 

(GBIF, 2022), and recorded for seven out of eight continents by the WCSP (WCSP, 2020a). Its 

European relative M. aquatica (302 synonyms) is likewise pharmaceutically significant. It was 

introduced to at least seven countries (GBIF, 2022), and recorded for five out of eight continents 

by the WCSP (WCSP, 2020a). Today known as one of the most important crops worldwide 

(Dial 2012), Sorghum bicolor (344 synonyms) is an even more extreme example than M. 

arvensis, having been introduced to 54 countries or islands on eight out of eight continents 

(WCSP 2020a, GBIF 2022). S. bicolor originated in the savannahs of north-eastern Africa (De 

Wet & Harlan, 1971). Effects from such events were not considered in the models. Taking all 

findings into account, it may be interesting to investigate the role of the botanical continent on 

the accumulation of synonyms further. 

Conclusion 

In our study, we identified range size, the age of an accepted name, and insularity as the main 

drivers that positively affected the global variation of synonym numbers. Residual differences 

in the number of botanical continents and the interaction of insularity and the range size became 

less significant. Our combined multi-predictor model explained about 41% of the global 

variation in angiosperm synonymy. Four main interpretations emerged from the study. First, 

the geographic distance between taxonomists caused widespread and insular species to 

accumulate more synonyms. Also, the time passed since the publication of an accepted species 

played a dominant role – a trend that is expected by chance. Second, the rank positions of 

families and genera may hint at particular taxa being more appealing than others. Thus, the 

attractiveness of taxonomic study objects in the selection process of researchers and the 

associated research bias may warrant further study. Third, the predictive power of the continent 

patterns (high) and the number of continents a species is present (low) contradict each other. 

Also, the artificial extension of species on the botanical continents due to cultivation or 

invasiveness needs more attention. Therefore, it may be interesting to further explore the 

botanical continent's role. Fourth and finally, the outcome of this study likely has implications 

for a wider range of plant families and genera and might also extend to other groups of 

organisms.  
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4 
Synopsis 

Introduction and methods 

Comprehensive global biodiversity data are an essential resource to biodiversity studies and, as 

such, must be clean, consistent, and complete. The required quality is usually obtained in the 

course of field studies (Chapman, 2005, Araujo et al., 2019). A more convenient way for 

scientists to access biodiversity data is through aggregated digital specimen records stored with 

public data providers. However, according to recent analyses, public provider data are generally 

heterogeneous and limited (e.g., Meyer et al., 2016, Nicolson, 2019, Zizka et al., 2020).  

Identified limitations comprise data errors mainly along three dimensions: taxonomy, space, 

and time (Meyer et al., 2016). Taxonomic errors include, e.g., misidentified species (e.g., 

Nicolson, 2019, Zizka et al., 2020), unrecognized synonyms or synonyms linked to the incorrect 

parent species (Dubois, 2008, Jansen & Dengler, 2010), outdated names, and orthographic 

variations (e.g., Jansen & Dengler, 2010). While the exact number of affected specimens is 

unknown, estimates range between <1 and 17% (Bisang & Urmi, 1994, Scott & Hallam, 2002, 

Ahrends et al., 2011) but also extend to more than 50% (incorrectly named tropical specimens: 

Goodwin et al., 2015; Zoological Record database: Meier & Dikow, 2004). Point-occurrences 

of misidentified specimens may lead to doubtful species ranges in macroecological diversity 

models (Nicolson, 2019, Zizka et al., 2020). Unrecognized synonyms, orthographic variations, 

and misspelled names result in non-existent species or inflated species counts (Linnéan 

shortfall: The discrepancy between formally described species and the number of species that 

actually exist; e.g., Lomolino, 2004, Hortal et al., 2015, Ickert-Bond et al., 2019). In the spatial 

dimension, missing locality data, low precision of coordinates, and false-positives pointing to 

dubious places were commonly found data quality problems (e.g., Yesson et al., 2007, Otegui 

et al., 2013, Töpel et al., 2017). More than 23% of their removed records contained invalid 

coordinates pointing to the sea (Meyer et al., 2016). Taking the analyses of the identified data 

limitations into account, my thesis aimed to  
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1., provide the first quantitative analysis of how public provider data cleaned by different DC 

pipelines (pipeline data) influenced downstream species distribution models (SDM), 

2., understand how the downstream SDMs and stacked SDMs (S-SDM) from pipeline data 

differ from the respective models from expert data that represent the gold standard, (1&2: 

Chapter 2), and 

3., identify drivers affecting the variation in synonym numbers across angiosperm species, and 

the extent to which the drivers explain the synonymy in the employed angiosperm species (3: 

Chapter 3) 

In Chapter 2, I focused on North American Ephedra. For this, I retrieved 46,384 records from 

the GBIF and processed them in pipelines. The metrics used quantified the ability of the 

pipelines to standardize and clean the input data (number of steps of the data cleaning process 

performed, and type and number of errors removed). In the subsequent steps, I compared the 

results of the pipeline data with the expert data. I analyzed the Ephedra species observed and 

predicted occurrences in North America using SDMs and S-SDMs. Here, the metrics quantified 

the number of grid cells occupied and the observed co-occurring species in the grid cells (Figure 

2.3, Figure 2.4). Pairwise correlations across the various pipelines and expert data were 

computed as Pearson's r and Moran's I to identify differences and similarities in the models and 

maps.   

In chapter 3, I focused on 399,202 angiosperm name records (accepted names and synonyms) 

from the World Checklist of Selected Plant Families (WCSP) to analyze the role of five drivers 

of synonym numbers (higher taxa of species (families and genera), the botanical continents 

where the species are present, insularity, range size of a species, and the age of their accepted 

name; hypotheses: Table 3.1). Using the name records, I tested the global variation in 

angiosperm synonym numbers related to these drivers of synonym numbers, including the 

drivers' relative importance. I combined name data, species range data, and independent 

distribution maps and computed synonym numbers per species and synonymy rates per driver. 

The combined data served as the input to the model fitting, assessment, and prediction steps.  

Results and discussion  

Chapter 2. 13,889 non-standardized and uncleaned North American Ephedra records from 

GBIF included 8,702 taxonomically and spatially erroneous records (63.7%), identified in an 

independent data analysis step (Table 2.2). Thus, the error proportion in the Ephedra data is 

substantially higher than that reported in previous studies for other taxa. The high error 
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proportion may be related to the fact that much of the study's time was explicitly dedicated to 

detecting errors. 

The pipeline data confirmed the hypothesis that different DC tools would generate result 

datasets, which differed significantly in the number of accepted species, errors removed, and 

remaining records for analysis. For example, P6 removed the most significant number of 

records, approximately twice as many as the least-cleaning pipeline, P1. P1 retained false-

positive coordinates (e.g., sea, country capitals, centroids, biodiversity institutions, herbal 

shops), geographic outliers, and duplicates that were removed to different degrees by P1–P6. 

The resulting models (single species- and stacked SDMs, hereafter: S-SDM) and maps were 

also expected to differ. But surprisingly, differences within the pipeline data did not translate 

into significant differences in downstream SDMs and S-SDMs. Correlations of the observed 

and predicted occurrences differed clearly between the pipelines and the expert data (based on 

the mean Pearson's r). For example, diversity patterns, although similar in shape, were less 

distinct in maps from expert data. 

Chapter 3. The analysis data resulted in 137,378 accepted angiosperm names with 261,824 

synonyms of 193 angiosperm families and 5,019 genera present in 355 TDWG units. The results 

showed range size, the age of an accepted name, and insularity as the main drivers which 

positively affected the global variation of synonym numbers. 

The combined multi-predictor model explained about 41% of the global variation in angiosperm 

synonymy (96% including the random effects of the botanical continents, genera, and families). 

Here, the geographic distance between taxonomists caused widespread and insular species to 

accumulate more synonyms. Also, the time passed since the publication of an accepted species 

played a dominant role – a trend that is expected by chance.  

Regarding the random effects, synonym numbers were unevenly distributed among the studied 

families and genera and differed significantly. However, the rank positions of families and 

genera may hint at particular taxa being more appealing than others. Synonym numbers varied 

systematically by botanical continent. Europe, Pacific, and North America emerged as the 

continents with the highest synRates based on observed and predicted synonym numbers. 

However, the predictive power of the continent patterns (32% as a random factor) and the 

number of continents a species is present (3% as a fixed factor) contradict each other.  
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Conclusion and outlook 

I aimed to address causes, manifestations, and effects of taxonomic and spatial limitations 

(mainly, but not exclusively, data errors) in data from public providers. I focused on 

manifestations of taxonomic and spatial errors (e.g., false-positive species and localities). 

Spatial errors were straightforwardly detected, particularly with automated evaluation. 

However, taxonomic errors needed laborious scrutiny and expert support. Remaining errors 

within the pipeline data did not translate into significant differences in downstream models. I 

discussed five drivers of synonym numbers which proved to influence global angiosperm 

synonymy. Although synonymy is not a limitation per se, it likely impacts public repositories 

and checklists adversely.  

Chapter 2. Three crucial aspects emerged from the study. First, the used R packages reliably 

removed incorrect or dubious coordinates. However, no package could identify misidentified 

specimens. Second, differences in the pipeline data did not translate into significant differences 

in downstream SDMs and S-SDMs. This suggests a remarkable robustness of these analyses 

towards data cleaning differences. Third, GBIF data requires further cleaning, and taxonomic 

data may need even more attention, possibly from experts, as detecting misidentified specimens 

in the public data providers proved to be challenging. However, automated detection of dubious 

taxa was recently started, using machine learning and artificial intelligence concepts (Nicolson, 

2019). In the course of these activities, we suggest developing new processes and tools to detect 

misidentified specimens.  

Chapter 3. Four essential interpretations came up from the study. First, the geographic distance 

between taxonomists caused widespread species and species with complex ranges to 

accumulate more synonyms. Also, the time passed since the publication of an accepted species 

played a significant role. Second, the rank positions of families and genera may hint at particular 

taxa being more appealing than others. Thus, the attractiveness of study objects in the selection 

process of researchers and the associated research bias may warrant further study. Third, the 

predictive power of the botanical continent patterns (high) and the number of continents a 

species is present (low) contradict each other. Therefore, it may be interesting to investigate the 

role of the botanical continent further. Fourth and finally, the outcome of this study likely has 

implications for a wider range of plant families and genera and might also extend to other 

groups of organisms.  
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Appendix A 
Supporting information to Chapter 2 
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Table A1. Summary of the Ephedra species at the end of the pipelines (L1, record numbers per species). We 

retained the North America native species (Stevenson, 1993) in the box for the downstream analyses and removed 

species outside the box, depending on exclusion criteria (Table 2.1). P0 data included all Ephedra records allocated 

to North America and served as the uncleaned control data to which we compared the other pipelines P1 to P6. 

Ephedra species sums   9,484 6,687 5,198 5,396 5,395 5,196 13,889 

Taxon GEO P1 P2 P3 P4 P5 P6 P0 

Ephedra antisyphilitica Berland. ex C.A. 
Mey. 

NAm 375 211 185 187 187 184 612 

Ephedra aspera S. Watson NAm 1,478 1,166 835 920 919 837 1,994 

Ephedra californica S. Watson NAm 1,325 1,045 846 854 854 846 1,959 

Ephedra compacta Rose NAm 152 128 117 119 119 117 183 

Ephedra cutleri Peebles NAm 116 96 64 64 64 64 158 

Ephedra fasciculata A. Nelson NAm 184 158 119 129 129 119 245 

Ephedra funerea Coville & C.V.Morton NAm 198 146 113 113 113 113 328 

Ephedra nevadensis S. Watson NAm 1,264 952 666 672 672 664 1,845 

Ephedra pedunculata Engelm. ex S.Watson NAm 103 75 66 70 70 66 211 

Ephedra torreyana S. Watson NAm 811 571 435 445 445 435 1,210 

Ephedra trifurca S. Watson NAm 1,094 849 683 731 731 682 1,658 

Ephedra viridis Coville NAm 1,857 1,281 1,060 1,083 1,083 1,060 2,632 

Ephedra coryi E. L. Reed NAm 53 9 9 9 9 9 93 

Ephedra miocenica Wodehouse (fossil)  NAm       2 

Ephedra L. (indeterminates) NAm 296      499 

Ephedra hybrid NAm       9 

Ephedra form and variety NAm 147      196 

Ephedra altissima Desf. EAs 2      4 

Ephedra distachya L. EAs 3      4 

Ephedra equisetina Stapf EAs 3      3 

Ephedra fedtschenkoae Paulsen EAs 1      1 

Ephedra fragilis Desf. EAs 1      3 

Ephedra gerardiana Wallich ex C. A. Mey. EAs 4      4 

Ephedra major Host EAs 1      1 

Ephedra monosperma J. G. Gmel. ex C. A. 
Mey. 

EAs 1      1 

Ephedra przewalskii Stapf EAs 2      2 

Ephedra regeliana Florin EAs 1      1 

Ephedra sinica Stapf EAs 3      8 

Ephedra americana Humb. & Bonpl. ex 
Willd. 

SAm 2      3 

Ephedra andina Poepp & Endl. SAm       2 

Ephedra chilensis C. Presl. SAm 2      2 

Ephedra frustillata Miers SAm 1      1 

Ephedra triandra Tul. SAm       2 

Ephedra trifurcata Zöllner SAm 3      11 

Ephedra tweedieana C. A. Mey SAm 1      2 

Geographies, GEO: EAs, Eurasia; NAm, North America; SAm, South America. 
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Table A2. Uncorrelated CHELSA climatology variables (Karger et al., 2017) and plant-available water 

(PAWM), used to fit and build the Ephedra diversity models (twelve NAm Ephedra species; L4 and L5 data).  
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Figure A3. Observed occurrences and predicted ranges of each North American Ephedra species, from L5 
expert data  
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Appendix B 
Supporting information to Chapter 3 
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Figure B3. Random Factor selection: Taxonomic Family and Genus, and Botanical Continents, a Species is 

Present. Each grouping factor per random factor has its own random intercept. We selected these predictor 

variables with high level numbers as random factor (McGill, 2015). The three variables also exhibited low standard 

errors and very low p-values (< 0.001), suggesting that they were predictive. 
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Table B6(a). 25 angiosperm families with the highest synRates. Listed are families with more than 10 accepted 

names. Large families such as Orchidaceae (28,899 accepted names, rank 99), Rubiaceae (10,796 accepted 

names, rank 94), and Myrtaceae (5,778 accepted names, rank 96) rank in the middle, due to their synRate. B6(b). 

25 angiosperm genera with the highest synRates. Notably, many of the genera in the table have only one or a 

few accepted species (names). Images: Angiosperm families (Table A6(a): A. Canna generalis, Pos. 1; B: 

Potamogeton gramineus, Pos.2) and genera (Table A6(b): C. Ricinus communis, Pos. 1; D: Phillyrea 

angustifolia, Pos. 2). Abbreviations: accNum: Number of accepted species. synNum: Number of synonyms. 

synRate: synonymy rate. 

 

 Table B6(a).     

Pos family accNum synNum synRate% Ratio: synnum/accnum 

1 Cannaceae 12 238 95.20% 19.8 

3 Potamogetonaceae 106 790 88.20% 7.5 

5 Ruppiaceae 11 69 86.30% 6.3 

7 Irvingiaceae 12 67 84.80% 5.6 

8 Paeoniaceae 36 187 83.90% 5.2 

10 Betulaceae 172 846 83.10% 4.9 

11 Stilbaceae 21 100 82.60% 4.8 

12 Juncaginaceae 22 99 81.80% 4.5 

13 Cornaceae 103 463 81.80% 4.5 

14 Typhaceae 62 272 81.40% 4.4 

15 Pontederiaceae 45 193 81.10% 4.3 

17 Alismataceae 138 583 80.90% 4.2 

19 Poaceae 11540 47443 80.40% 4.1 

20 Tofieldiaceae 28 114 80.30% 4.1 

24 Basellaceae 19 76 80.00% 4.0 

26 Fagaceae 958 3757 79.70% 3.9 

28 Oleaceae 619 2162 77.70% 3.5 

29 Plantaginaceae 57 198 77.60% 3.5 

31 Cymodoceaceae 18 61 77.20% 3.4 

36 Altingiaceae 15 48 76.20% 3.2 

37 Pandaceae 17 54 76.10% 3.2 

39 Juncaceae 470 1460 75.60% 3.1 

40 Bignoniaceae 874 2710 75.60% 3.1 

41 Melanthiaceae 184 554 75.10% 3.0 

46 Nothofagaceae 38 113 74.80% 3.0 
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 Table B6(b).     

Pos H1family genus recnum synNum synRate 

1 Euphorbiaceae Ricinus L. 1 212 99.5% 

2 Oleaceae Phillyrea L. 2 247 99.2% 

3 Poaceae Avenula (Dumort.) Dumort. 1 83 98.8% 

4 Arecaceae Cocos L. 1 56 98.2% 

5 Apocynaceae Nerium L. 1 45 97.8% 

6 Campanulaceae Platycodon A. DC. 1 41 97.6% 

7 Poaceae Arctophila Rupr. ex Andersson 1 41 97.6% 

8 Poaceae Molinia Schrank 2 77 97.5% 

9 Lamiaceae Mentha L. 24 889 97.4% 

10 Poaceae Apluda L. 1 36 97.3% 

11 Poaceae Taeniatherum Nevski 1 34 97.1% 

12 Poaceae Vulpiella (Batt. & Trab.) Burollet 1 34 97.1% 

13 Poaceae Sasaella Makino 11 341 96.9% 

14 Poaceae Oplismenus P. Beauv. 7 212 96.8% 

15 Myrtaceae Blepharocalyx O. Berg 4 120 96.8% 

16 Araceae Pistia L. 1 29 96.7% 

17 Poaceae Vahlodea Fr. 1 27 96.4% 

18 Potamogetonaceae Stuckenia Börner 7 176 96.2% 

19 Hydrocharitaceae Hydrilla Rich. 1 25 96.2% 

20 Asparagaceae Eustrephus R.Br. 1 25 96.2% 

21 Potamogetonaceae Groenlandia J. Gay 1 25 96.2% 

22 Apocynaceae Apocynum L. 4 97 96.0% 

23 Poaceae Trachypogon Nees 4 97 96.0% 

24 Poaceae Dupontia R. Br. 1 24 96.0% 

25 Poaceae Ampelodesmos Link 1 24 96.0% 

Image credit and licenses: A: Bob Dass, B: Krzysztof Ziarnek, C: Kurt Stueber, D: K. Vliet. Creative commons 
licences: A: CC-BY-2.0, B: CC-BY-SA-4.0, C: CC BY-SA 3.0-migrated, D: CC A-Share Alike 4.0 International. 
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Figure A7. Working residuals of the global model of angiosperm synonymy. (a) The working residuals vary 

with the number of botanical continents, a species is present (variable BCNum; (b), the working residuals vary 

within the different insularities and the range size, respectively, (c) The working residuals vary with the age of 

an accepted name. Details regarding the predictor rankings, see Table 3). All residual plots support the 

confidence intervals of the predicted regression lines. The plots were prepared, using the effects package (Fox et 

al. 2016). 
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