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Abstract

Allostery is the key mechanism enabling a “remote” regulation of the activity of proteins
and other biological macromolecules. It forms the basis for controlling various inter- and
intracellular processes. Allosteric proteins accommodate changes at their active site as a
result of ligand binding at a second, often spatially distant binding site—the allosteric site.

Despite the ubiquity and fundamental role of allostery in proteins, the general physical
principle underlying the efficient and precise long-range transmission of mechanical sig-
nals from the allosteric to the active site remains elusive. In addition to contributing to the
unraveling of fundamental processes essential for sustaining life, the elucidation of a gen-
eral mechanism holds a significant practical potential: It allows the prediction of allosteric
sites in proteins based on single structures and hence addresses the current bottleneck for
allosteric drug design.

Here, building on the previous success of spectral methods in explaining the dynamics of
proteins, we hypothesize a simple physics-based principle that unifies allosteric behavior in
trained artificial and protein-derived elastic networks. The mechanism rests on the concept
of a collective lever that couples the interaction of stiff and soft modes in a sophisticated
way. Input displacements at allosteric source pockets efficiently load collective stiff springs
while the response occurs via soft modes, which convert the stored energy into large, non-
local but specific displacements at the target pocket.

To test this hypothesis, we develop a fast and accurate algorithm for determining the
full (nonlinear) response of elastic networks to perturbations caused by displacements at
the source pockets and employ it to evolutionarily train networks to display allosteric re-
sponses. We observe nonlinear and non-reciprocal behavior during the responses and dis-
cuss the origin and the implications this may have for allostery.

Using spectral and perturbative approaches, we find convincing evidence confirming the
predicted properties that characterize the uniqueness of the real source compared to other
possible binding pockets in protein-derived and artificial, trained networks.

Finally, we demonstrate the applicability of the concept in drug design by using it to predict
allosteric source pockets in proteins—with remarkable success, considering that only the
initial structure and a single-parameter model is employed.

These findings shift the paradigm of allosteric signal propagation in networks and
proteins from a purely soft-mode based interpretation towards a two-step thinking, which
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differentiates strongly between the allosteric in- and output. We conclude that allostery is
only fully comprehensible if viewed as what it actually is—a non-equilibrium effect that
requires the perturbation to be accounted for explicitly in the spectral interpretation.

Keywords allostery, proteins, conformational motion, elastic network, collective modes,
mode-coupling, nonlinearity, non-reciprocity, evolutionary optimization, network design, drug
design
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Zusammenfassung

Allosterie ist der Mechanismus, der es ermöglicht, die Aktivität von Proteinen und anderen
biologischen Makromolekülen ferngesteuert zu regulieren und bildet somit die Grundlage
für die Regulierung verschiedener inter- und intrazellulärer Prozesse. Allosterische Pro-
teine erlauben, dass Veränderungen an ihrem aktiven Zentrum durch das Binden eines
Liganden an einer zweiten, oft räumlich entfernten Bindungsstelle—dem allosterischen
Zentrum—induziert werden.

Trotz der Allgegenwärtigkeit und der fundamentalen Bedeutung der Allosterie in Proteinen
ist das allgemeine physikalische Prinzip, das der effizienten und präzisen langreichweiti-
gen Weiterleitung mechanischer Signale zu Grunde liegt, noch immer ein Rätsel. Die Ent-
deckung eines allgemeinen Mechanismus würde nicht nur zum Verständnis grundlegender
Prozesse beitragen, die für die Aufrechterhaltung des Lebens entscheidend sind, sondern
birgt auch ein signifikantes praktisches Potenzial, ermöglicht es doch die Vorhersage von
allosterischen Zentren in Proteinen und damit die Adressierung des derzeitigen Engpasses
bei der Entwicklung allosterischer Arzneimittel.

Aufbauend auf dem Erfolg, den spektrale Methoden für das Verständnis der Proteindy-
namik bisher gezeigt haben, stellen wir hier eine Hypothese für ein einfaches physikali-
sches Prinzip vor, das allosterisches Verhalten in aus Proteinen generierten und in trainier-
ten, künstlichen elastischen Netzwerken einheitlich erklärt. Das Prinzip beruht auf dem
Konzept eines kollektiven Hebels, der die Kopplung zwischen steifen und flexiblen Moden
koordiniert. Dabei spannen die durch Binden eines Liganden induzierten Deformationen
kollektive steife Federn um das allosterische Zentrum herum an. Die Reaktion darauf hin-
gegen verläuft entlang weicher Moden, welche somit die gespeicherte Energie effizient in
nicht-lokale Deformationen am aktiven Zentrum umwandeln.

Um diese Hypothese zu überprüfen, entwickeln wir ein schnelles und genaues Verfahren
zur Bestimmung der vollständigen (nichtlinearen) Antwort elastischer Netzwerke auf Stö-
rungen, die durch Deformationen an den allosterischen Zentren verursacht werden, und
verwenden es um Netzwerke evolutionär so zu trainieren, dass sie allosterische Antworten
aufweisen. Wir beobachten nichtlineares und nicht-reziprokes Verhalten in den allosteri-
schen Antworten und diskutieren dessen Ursprung sowie die Auswirkungen, die daraus für
Allosterie im Allgemeinen folgen mögen.
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Mit spektralen und störungstheoretischen Ansätzen finden wir überzeugende Belege und
bestätigen die vorhergesagten Charakteristika, die die Besonderheit der echten Bindungs-
tasche im Vergleich zu anderen möglichen Bindungsstellen in von Proteinen abgeleiteten
und künstlich trainierten Netzwerken ausmachen sollen.

Schließlich demonstrieren wir die Anwendbarkeit des Prinzips für die Entwicklung von Arz-
neimitteln, indemwir es zur Vorhersage allosterischer Zentren in Proteinen einsetzen—mit
bemerkenswertem Erfolg.

Diese Erkenntnisse verschieben das Paradigma der allosterischen Signalausbreitung in
Netzwerken und Proteinen von einer rein auf weichen Moden basierenden Interpre-
tation hin zu einem zweistufigen Denken, das stark zwischen dem allosterischen In-
und Output differenziert. Wir kommen zu dem Schluss, dass die Allosterie nur dann
vollständig begreifbar ist, wenn sie als das betrachtet wird, was sie tatsächlich ist—ein
Nicht-Gleichgewichtseffekt, bei dem die Störung in der spektralen Interpretation explizit
berücksichtigt werden muss.

Schlagwörter Allosterie, Proteine, Konformationsänderungen, elastisches Netzwerk, kol-
lektive Moden, Modenkopplung, Nichtlinearität, Nichtreziprozität, evolutionäre Optimierung,
Netzwerkdesign, Arzneimittelentwicklung
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Chapter 1

Introduction

1.1 Second secret of life
A single living cell contains thousands of proteins that catalyze chemical reac-
tions. Multiple of these reactions occur in close proximity, both temporal and
spatial. The product of one reaction often resembles the substrate of another,
such that a complex network of metabolic pathways emerges [Alberts et al., 2020].

Figure 1.1: Feed-
back inhibition of
a biochemical re-
action pathway.

Evolution equipped the cell with sophisticated tools allowing for pre-
cise control of these networks, enabling it to respond to changes in
its environment and thus maintain homeostasis. Aside from compart-
mentalization and other ways of varying the local concentration of
proteins, the most general and widespreadmethod of regulating these
reactions takes place in form of control loops. The principle is depicted
in Fig. 1.1. Such feedback inhibition (or activation) manifests itself ei-
ther indirectly via modulation of the gene expression of the protein
associated with the regulation reaction, or directly by modification of
the corresponding protein in the pathway itself.

Allostery, termed the second secret of life 1 [Fenton, 2008], provides
the underlying basis for this by rendering proteins molecular switches.
Allosteric proteins exhibit a change (not necessarily a conformational
one) at their active site in response to binding a ligand at another, often spatially distant
site—the allosteric site. Allosteric inhibition stands in direct contrast to competitive inhi-

1Directly following the genetic code.
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Chapter 1. Introduction

bition, where the inhibitor binds to the same site as the substrate does. This fact was also
key for coining the term allostery, as it describes a form of inhibition where the inhibitor is
not a steric analogue of the substrate [Changeux, 2013]. The two ancient Greek words that
are combined to form allostery [Monod and Jacob, 1961], ἄλλος (allos) στερεὀς (stereos),
translate to other and object.

Allosteric effects, however, are neither limited to occur in proteins alone nor do they con-
trol only biochemical reactions. Macromolecules such as of DeoxyriboNucleic Acids (DNAs)
[Garcia et al., 2012, Kim et al., 2013], RiboNucleic Acids (RNAs) [Peselis et al., 2015,
Peselis and Serganov, 2021] and complexes of protein and RNA [Walker et al., 2020,
Williams and Hall, 2014] are also known to exhibit allostery. Allostery is furthermore an
important mechanism utilized in signaling [Bu and Callaway, 2011], e g. neurotransmit-
ter receptors such as ligand-gated ion channels undergo allosterically controlled confor-
mational changes in order to initiate action potentials along neurons [Changeux, 1966,
Fealey and Hinderliter, 2013, Neuroscience, 2008].

1.2 Molecular switches
The first evidence for a switch-like behavior in cells came in the form of measure-
ments of Christian Bohr [Bohr et al., 1904], showing that the oxygen-haemoglobin bind-
ing curve was not, as previously proposed [Hüfner, 1890], hyperbolic but instead a sig-
moidal shape, demonstrating positive cooperativity, as shown in Fig. 1.2 (a). The regu-
latory role of cooperation in metabolic pathways was first correctly assigned to the ef-
fect in 1954 [Boell et al., 1954]. As similar observations accumulated [Umbarger, 1956,
Yates and Pardee, 1956] the need for an explanation of the new class of feedback-inhibited
enzymes became stronger.

At this time, there was neither structural information of the enzymes nor biochemical
insight about the binding sites available. For this reason, the interpretation of the ac-
tion at a distance phenomenon, shown in Fig. 1.2 (b) deserves considerable apprecia-
tion [Motlagh et al., 2014].

1.3 Early phenomenological models
Structure determination using x-ray crystallography allowed access to protein structures
in both conformations, free and ligand bound [Perutz et al., 1960]. This initiated the
development of phenomenological models which have proven successful in quantify-
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1.3. Early phenomenological models

ing the thermodynamics and kinetics of allostery in various proteins [Changeux, 2012].
Two different conceptual themes have been established early on and continued to in-
fluence the field until today [Ravasio et al., 2019]. The so called population shift or
Monod-Wyman-Changeux [Monod et al., 1965] and induced fit or Koshland-Némethy-
Filmer [Koshland Jr et al., 1966] models both assume the protein to exist in two distinct
conformational states, tense or relaxed, with a higher binding affinity for the substrate
in the latter. They differ mainly in their assumption of the pre-accessibility of the two
states. As the name suggests, both states are accessible simultaneously in the population
shift mechanism and it is their relative population that is changed upon binding of the
fist ligand. In contrast, there is only one state accessible in the induced fit model and it is
the ligand binding that induces the conformational change of state, thereby modifying the
affinity for the other ligand. Despite their differences, Eigen developed a general scheme
that covers both models [Eigen, 1968].

These early models of allostery were strongly influenced by the first available crys-
tallographic structures of proteins, in particular the overall quite symmetric tetramer
hemoglobin [Perutz et al., 1960]. Over time the concepts have developed further, along

Figure 1.2: On the left (a) the sigmoidal binding curves of haemoglobin that initiated
the quest for understanding allostery. The curve shows the partial pressure of oxygen in
blood (abscissa) vs. the fraction of saturated, oxygen-bound hemoglobin. On the right (b)
the original drawing depicting the two models considered to explain feedback inhibition
in L-threonine deaminase (showing similar sigmoidal binding curves). Model 1 refers to
competitive inhibition at the orthosteric site which could not explain the shape described
by the data, while model 2, later termed allosteric, assumed coupling between distinct
binding sites and was in agreement with the data. Figures taken from [Bohr et al., 1904,
Changeux, 2011], respectively.
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Chapter 1. Introduction

with the improvement of experimental techniques. The focus shifted away from static
structures alone [Perutz, 1970] and more towards the role of dynamics of proteins, es-
pecially with the advancing deployment of Nuclear Magnetic Resonance (NMR) meth-
ods [Wand, 2013]. While first only multimeric proteins were thought to display allostery,
it was later also found in monomeric proteins [Ascenzi and Fasano, 2010].

Numerous conceptual models have been proposed, ranging from landscape models incor-
porating multiple conformational states [Cuendet et al., 2016] to models that address al-
losteric effects even in intrinsically disordered proteins [Hilser et al., 2012], or in cases
where there is no apparent conformational change [Motlagh et al., 2014].

Despite their broad and successful application, phenomenological models have their
shortcomings. The underlying reason for the structural coupling between the al-
losteric and functional sites cannot be resolved with a purely thermodynamic ap-
proach [Cui and Karplus, 2008, Kar et al., 2010, Thirumalai et al., 2019]. Even though a
conformational change is inherently linked to the population shift and induced fit concepts,
a quantitative connection is still elusive [Tsai and Nussinov, 2014].

1.4 Structural insights

Insights into the allosteric mechanisms of individual proteins can been gained combin-
ing experimental, computational and theoretical methods. The following overview is
not exhaustive. Computational methods mainly employ physics based Molecular Dy-
namics (MD) simulations with up to atomistic resolution to gain insight into allosteric
communication [Laine et al., 2012, Weinkam et al., 2013, Dixit and Verkhivker, 2011,
Smith et al., 2016], an approach that is of course still limited by computational
power to sub-microsecond timescales [Hospital et al., 2015]. Evolutionary analy-
sis [Rodriguez et al., 2010] aims to find conserved residues that hint at important al-
losteric pathways and falls into the realm of computational biology. Theoretical approaches
cover graph theory [Amor et al., 2016, del Sol et al., 2006, Kaya et al., 2013], distance
geometry [Greener et al., 2017] and statistical structural analysis [Atilgan et al., 2007,
Mitternacht and Berezovsky, 2011, Tee et al., 2018].

Crystallographic and NMR experiments are able to decipher the various different mecha-
nisms of allostery in proteins [Selvaratnam et al., 2011]. For example, covariance analysis
of NMR chemical shifts revealed networks of coupled residues [Laskowski et al., 2009]. By
means of an analysis the strain differences between distinct crystal structures of proteins
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1.5. Pharmaceutical relevance

in the ligand bound and unbound states identified a network of residues connecting the
allosteric and active sites [Mitchell et al., 2016].

With growing numbers of biomolecular structures resolved with high resolution in different
conformations, the main method to describe allosteric transitions was to compare these and
to define the allosteric motion as the conformational change upon binding of the ligand at
the allosteric site. Systematic studies of these transitions found that most of the motion
happens in less constrained regions of the proteins with allosteric proteins undergoing far
more pronounced motions than non-allosteric proteins [Daily and Gray, 2007].

So far a plethora of different allosteric inputs has been disovered, ranging from binding
of small molecules or other proteins over phosphorylation to disulfide bond modification.
The responses are not less diverse, covering the opening, closing, or other rearrangements
of the active site, changes in rigidity or electrostatic properties of the active site, or the
modification of overall dynamic properties [Laskowski et al., 2009].

1.5 Pharmaceutical relevance
The fact that enzymes can be controlled remotely, that is via their allosteric site, is of great
practical importance in pharmacological applications. Traditionally, drugs are designed to
target the orthosteric pocket; allosteric drug design on the contrary optimizes ligands for
binding to the allosteric pocket.

This offers multiple advantages, starting with an increased potential to modulate proteins
that have proven to be undruggable at their active site [Chatzigoulas and Cournia, 2021].
The non-competitive binding of allosteric drugs allows a stronger modula-
tion effect at smaller concentrations due to the sigmoidal shape of the bind-
ing curve [Guarnera and Berezovsky, 2019]. As a result of a lower evolution-
ary pressure [Kar et al., 2010], the allosteric binding site may be more species-
specific [Nussinov and Tsai, 2013], allowing to selectively address subtypes within
families of otherwise similar receptors [Wenthur et al., 2014] and leading to far
less off-target effects, thus reducing or preventing side effects and drug toxic-
ity [Guarnera and Berezovsky, 2016]. Interactions between proteins are especially
challenging to modulate with drugs, a limitation that is lifted when targeting a potentially
existing allosteric site [Laskowski et al., 2009].

The main limiting factor in designing new allosteric therapeutics is the knowledge of
allosteric binding pockets. High-Throughput Screening (HTS) of an extensive library
of drug candidates for a given desired effect is frequently employed to provide ini-
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tial chemical leads in the early phases of pharmaceutical discovery 2; it is so far the
main driver for the identification of both the binding sites and the corresponding lig-
ands [Laskowski et al., 2009, Ni et al., 2021a].

A long list of other experimental techniques has been developed, but despite their strengths,
these techniques all have the major disadvantage of being time-consuming and expen-
sive. [Tee et al., 2018] In contrast, computer assisted search is much more economical, but
has its own shortcomings. Sequence-based techniques try to infer allosteric sites from co-
evolving amino acids, obtained via Multiple Sequence Alignment (MSA) of homologous
sequences [Teşileanu et al., 2015]. Their predictive power is strongly limited by the vari-
ability of the interactions between ligand and binding site even for proteins that have sim-
ilar sequences. Deducing binding pockets directly from the structure is another strategy,
as is the analysis of topological and/or physicochemical properties that leads to numerous
drug candidates [Tian et al., 2018, Huang et al., 2013].

Considering that most, if not all [Gunasekaran et al., 2004] proteins display allostery to a
certain degree, allosteric drug design opens a promising avenue, especially for proteins that
are not druggable at their active site. Understanding the mechanisms underlying allosteric
signal propagation can therefore represent a great support for discovering allosteric sites
in proteins and thus aid drug design.

1.6 Elusive general principle

As we have seen, allostery is of enormous interest from both, a basic scientific and a prac-
tical perspective. There is, on the one hand, the deep desire to unravel the fundamental
processes that are important for sustaining life, and on the other hand the tremendous
impact allostery implies for pharmaceutical applications.

However, although allostery is ubiquitously found in proteins and is exceedingly well un-
derstood in the case of a plethora of individual examples, the physical basis underlying
mechanical signal propagation is not clear. This is exemplified by review articles in the
field repeatedly throughout the last decade, stating e. g.

Although allosteric regulation is the ‘second secret of life’, the molecular mecha-
nisms that give rise to allostery currently elude understanding. [Fenton, 2008]

2An overview of recently approved drugs found via this route are given in [Macarron et al., 2011]
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In spite of individual successes in understanding the structural determinants of
allostery in well-documented systems, much less success has been achieved in iden-
tifying a set of quantitative and transferable ground rules that provide an under-
standing of how allostery works. [Hilser et al., 2012]

In spite of its importance, allosteric mechanisms in most instances remain a bio-
physical enigma, eluding a general, quantifiable and predictive atomic descrip-
tion. [Motlagh et al., 2014]

A fact that contributes to the difficulty of generalizing allosteric mechanisms is that,
although some allosteric responses are—with admittedly a significant portion of imag-
ination—classifiable into human understandable motions, e. g. hinge, shear, piston-
like, twist, rocking or combinations of these, many proteins resist such a classifica-
tion [Gerstein and Krebs, 1998, Taylor et al., 2014]. The reason for this is simply the
nonexistence of discrete categories; there is a continuum of different mechanisms avail-
able for proteins to choose from [Liu, 2021].

In recent years the trend has been to view allostery as a property that arises rather generally
inmechanical systems, which can be described in terms of networks of interactions between
the individual elements [Dokholyan, 2016]. For proteins, the model routinely used for this
purpose is the Elastic Network Model (ENM), a single-parameter network model which
describes interactions between amino acids with Hookean springs [Bahar et al., 2010]. In
this case, a local perturbation at one site of the network (e. g. , binding of a ligand at the
allosteric pocket) is then propagated through the network and elicits a specific response
at another site. The specific arrangement of amino acids in the protein provides for a
sophisticated interplay of interactions which channels the perturbation, normally decaying
as power law in elastic media [Landau and Lifshitz, 1986], instead over long distances to
the desired target.

This assumption is supported, first of all, by the fact that allostery is found in all combi-
nations of biomolecules, not limited to proteins. Moreover, effects very similar to allostery
have very recently been shown in artificial networks (both two- and three-dimensional),
which are highly similar to ENMs [Yan et al., 2017, Rocks et al., 2017, Flechsig, 2017,
Kim et al., 2019, Kim et al., 2022].

This similarity of effects in a wide variety of systems suggests a common, deeper origin
of allostery. The successful extension of allosteric concepts to (one-dimensional) flow net-
works has affirmed this emerging trend to view allostery as a property of complex networks
in general [Rocks et al., 2020, Rocks et al., 2021].
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Figure 1.3: A schematic depicting the set of open questions that we address in this thesis.

1.7 Scope and outline of the thesis

After we devoted this chapter so far to the relevance of understanding allostery and ac-
knowledged the need for a unifying principle, we will now outline the structure of this
work and formulate the questions we aim to answer.

Building upon the success of network descriptions in the understanding of protein motion,
and the ease with which artificial networks could be trained to show behavior that is re-
markably similar to allostery, we enqueue in the row of physicists trying to address complex
biological problems using minimal physics based-models.

This work aims to answer the following two main questions:

• What is the general physical principle underlying the propagation of displacements
in mechanical allosteric networks? Is it the same for protein-derived and artificial
networks and therefore responsible for the observed similarities?

• With drug-design applications design in mind, is there a difference between allosteric
source and target sites? Can we use this knowledge to predict possible allosteric
pockets?

These questions are visualized in Fig. 1.3. The structure of the thesis is as follows: We re-
view the theories and concepts important for describing the dynamics of Elastic Network
Models (ENMs) in Chapter 2. The reason for the equivalent or even superior performance
of Normal Mode Analysis (NMA) with ENMs over traditional force fields is discussed; the
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difference between soft and stiff eigenmodes and the current interpretation of their func-
tion is pointed out; possible methods for computing the effect of a binding perturbation
on networks are compared. As we will show there is controversy in the field in terms of
whether or not the response of proteins to the perturbation induced by ligand binding can
be described using linear approximations. The current state of designing artificial allosteric
networks is reviewed at the end of Chapter 2.

Based on physical intuition, in Chapter 3 we formulate a simple hypothesis that specifies
the general principle underlying the large-scale mechanical signal propagation in allosteric
structures. Unlike a simple physical lever, a collective lever based on the interplay of soft
and stiff modes is supposed to govern allostery.

In Chapter 4 we briefly discuss the structures that we analyze, in particular we describe
how we train a set of 30 ENMs to display a specific (generally nonlinear) response, and how
we determine possible candidates for binding pockets in both, the artificial networks and
14 allosteric protein-derived networks. Analytic expressions for the correlations between
distances in source and target pockets of trained and untrained networks are derived and
shown to be insufficient to distinguish between allosteric and random networks in equilib-
rium.

In Chapter 5we develop amethod to accurately evaluate the full, i. e. nonlinear response to
ligand binding events in a fast and simple manner. This algorithm is used to train our own
set of allosteric networks which we in turn analyze with respect to their ability to transport
mechanical information from their source to target sites. We observe nonlinearity and non-
reciprocity during the responses and discuss the implications this may have for allostery.

We thoroughly test the novel hypothesis in Chapter 6 and find it convincingly confirmed for
artificial (i. e. trained) and protein-derived networks. Applying the proposed principle, we
are able to predict allosteric source pockets with remarkable success, considering that only
the initial structure and a single-parameter model is employed. Our approach is therefore
suitable to serve as a screening tool in allosteric drug design, by ranking possible binding
sites which are to be then assessed with greater chemical detail with any of the much more
time and resource consuming computational HTS methods using e. g. MD simulations.

Finally in Chapter 7 we conclude with a short perspective and provide an outlook towards
possible extensions.
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Chapter 2

Background

2.1 Harmonic approximation

Problems involving the interaction of more than two bodies yield equations that are in
general not solvable analytically. Some famous examples, where an exact solution can
be derived even for systems with more than two bodies, are the ideal gas, the harmonic
crystal, and the two-dimensional Ising model. While nowadays computer simulations are
applied broadly to determine solutions to Newton’s equations of motion for molecular sys-
tems with many interacting particles, a lot can (still) be learned from approximations that
were employed before such numerical methods were available.

In systems, where deviations from the stable equilibrium are small enough, it is possible
to describe motions in terms of coupled harmonic oscillators. Assuming time-independent,
conservative systems, where the potential energy only depends on the particles’ positions,
a system is considered to be in a mechanical equilibrium if there are zero forces acting on
it. Using the coordinates r = {ri}, where i denotes both the particle and the cartesian
indices, we can write

∂U

∂ri

∣∣∣∣
r(0)

= 0 ∀i, (2.1)

indicating the equilibrium configuration with r(0). If the equilibrium is a (local) minimum
of the potential function, it represents a (locally) stable configuration. Small enough de-
viations δr = r − r(0) from this initial configuration can be conveniently described using
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an expansion of the potential U . Expanding the potential in a Taylor series around the
equilibrium positions r(0) up to the second order, we obtain

U(r) ≈ U(r(0)) +
∑
k

∂U

∂rk

∣∣∣∣
r(0)

δrk +
1

2

∑
k

∑
l

∂2U

∂rk∂rl

∣∣∣∣
r(0)

δrkδrl. (2.2)

Setting the arbitrary zero of the potential to be equal to the equilibrium potential, the
constant term can be dropped. Due to the equilibrium condition in equation 2.1 the linear
term in equation 2.2 vanishes, too. We are left with a pure quadratic form,

U(δr) =
1

2
δrTHδr, (2.3)

where we introduced the Hessian matrix H ∈ Rn×n as shorthand for the combined second
order derivatives. H is symmetric and positive semi-definite. A similar expansion can be
made for the kinetic energy, leading to

T (δṙ) = δṙTMδṙ, (2.4)

with M being the mass matrix containing the particle masses mi and δṙ denotes the time
derivative of the displacement.

This leads to the Lagrangian

L =
1

2
(δṙTMδṙ + δrTHδr). (2.5)

The corresponding equations of motion read

Mδr̈ +Hδr = 0, (2.6)

which is a system of n harmonic oscillators, coupled by the off-diagonal terms of the ma-
trices M and H. The general solution for this system is a linear combination of the general
solutions of the individual oscillator equations. However, M and H are typically not diago-
nal. The linear transformation that renders both matrices simultaneously diagonal returns
new coordinates, eigenmodes, which we will treat in the next section.

We must keep in mind however, that this approximation allows to describe motions that oc-
cur within the vicinity of this initial minimum only. Describing complex motions originating
from potentials exhibiting more structure requires sophisticated techniques that typically
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involve numerical approaches. Depending on how strong the deviation from the first min-
imum is, partially analytic methods can still be appropriate, as we will see in Chapter 5.

2.2 Spectral decomposition
Using an exponential Ansatz δr = ae−iωt, ω ∈ R, the coupled differential equations in
Eq. (2.6) can be turned into a linear system of equations. The decoupling works via solving
the corresponding general eigenvalue problem

(λνM−H) · aν = 0 ∀ν , (2.7)

with λν = ω2
ν . The transformation matrix V simultaneously diagonalizes H and M,

VTMV = 1 ∧ VTHV = Λ.

Λ is diagonal and contains the n eigenvalues λν . The columns ofV contain the eigenvectors
or eigenmodes of the system, linear combinations of which represent the general solutions
to Eq. (2.6):

δr (t) =
∑
ν

aνℜ{Cνe
−iωνt}, Cν ∈ C, (2.8)

with Cν following from the initial conditions of the system.

The transformation between the displacement δr in cartesian coordinates and normal co-
ordinates v, written in the basis of a, follows

δr (t) = Vv (t). (2.9)

This allows us to write the energy in normal coordinates:

U(v) = vTΛv =
∑
ν

λνv
2
ν . (2.10)

Each normal mode corresponds to the collective oscillatory motion of particles with exactly
one of the n eigenfrequencies ων , the inherent resonant frequencies of the system. These
correspond to the curvature of the potential energy along the direction of the associated
eigenvector. Depending on the dimensionality of the system, a certain number of the eigen-
values is always equal to zero. For tridimensional systems this number is six, corresponding
to the degrees of freedom of a rigid body, of which there are three for the translation and
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three for the rotation. A zero eigenvalue means there is no restoring force for the motion
of this eigenmode, indicating a flat potential along said direction. Mathematically this rep-
resents the condition of V being only positive semi-definite. The set of normal modes is
orthogonal and forms a complete basis in the n dimensional vector space.

If we embed the system in an aqueous environment, we need to account for the effect this
has on the dynamics. Motions inside fluids, on the one hand, experience drag, which dis-
sipates kinetic energy into the heat bath, and, on the other hand, undergo small and rapid
velocity changes caused by thermal fluctuations. For small (bio-)molecules this behavior is
known as Brownian motion, first observed by [Brown, 1828] and repeatedly shown to be an
appropriate description for proteins as well [Fenimore et al., 2002, Fenimore et al., 2004,
Hong et al., 2012]. The two effects, the viscous drag Γδṙ, with the friction coefficient ma-
trix Γ, and the erratic motion have the same origin: ξ(t), the random forces of the small
solvent molecules that constantly bombard the observed molecule. The thermodynamic
consistency relation between both is given by a Fluctuation-Dissipation Theorem (FDT),
which reads

⟨ξi(t)ξj(t′)⟩ eq = 2kBT Γijδ(t− t′), (2.11)

and was first described by [Einstein, 1905]. The forces are assumed to be uncorrelated,
stationary and Gaussian distributed. The effect of the solvents can thus be modeled implic-
itly via a stochastic and a viscous term in the otherwise explicit description of the system,
resulting in a Langevin Equation [Gardiner et al., 1985]:

Mδ̈r(t) = −Hδr − Γṙ(t) + ξ(t). (2.12)

Assuming the dynamics occurs along a path that lies in a single energy valley and no bar-
riers are crossed—an assumption we will thoroughly test and validate—we can accurately
describe the motion in terms of its thermal average ⟨δr⟩ eq and average out the random
force ⟨ξ(t)⟩ eq = 0. For the sake of brevity we switch the notation accordingly from here
on and refer by δr to its thermal average.

Another well-justified assumption in aqueous media is to drop the inertial termMδr̈ = 0, as
we are interested in timescales t ≫ mi/γi, where the momentum is completely dissipated.
We obtain the overdamped equation for coupled harmonic oscillators:

γδṙ +Hδr = 0, (2.13)

14



2.3. Normal modes in proteins

which describes dynamics falling into the regime of a low Reynolds number [Purcell, 1977].
The assumption of overdamped dynamics is not only valid concerning the medium which
surrounds the protein; the intramolecular dynamics is governed by the same physics, as the
protein interior is fluid-like[McCammon et al., 1977] with an internal friction comparable
to water [Ansari et al., 1992, Ansari, 1999].

This equation is solved by the same diagonalization as used for equation 2.6, the difference
being in the exponential Ansatz which is real in this case, δr (t) = aeλt, λ ∈ R, such that
1/λ represents a relaxation time instead of a squared frequency.

2.3 Normal modes in proteins
The aforementioned harmonic approximation and subsequent spectral decomposition
is fruitfully applied to study the motion of biomolecules. The method is called Nor-
mal Mode Analysis (NMA) in this context and, although in principle agnostic with re-
spect to the function describing the potential energy, in classical NMA one employs
the semiempirical Molecular Dynamics (MD) potentials [Levitt, 1983, Weiner et al., 1984,
Brooks et al., 1983], the analytic expression for which can be found in the Appendix,
Eq. (A.1). The routines for NMA have for quite some time been included in state
of the art MD software [Van Der Spoel et al., 2005, Hess et al., 2008, Pronk et al., 2013,
Abraham et al., 2015], often different potentials and solvent models are available.

The second ingredient of NMA is the initial structure of the molecule of interest. In the case
of proteins it is determined either by means of X-ray crystallography [Perutz et al., 1960],
NMR [Güntert, 2009] or cryo Electron Microscopy (cryo-EM) [Wu and Lander, 2020]. The
harmonic approximation (see Section 2.1) which NMA is based on demands this initial
structure to be at equilibrium, a condition which is generally not satisfied for potentials
used in MD simulations. Thus, in order to apply the formalism, an energy minimization
step is required, which is computationally demanding1 and can distort the original struc-
ture [Cui and Bahar, 2005].

However, as we will see, these distortions are small and do not strongly impart what we
can learn from NMA. The pairs of normal modes and accompanying frequencies describe
the motion of the atoms in a structure on different scales. Normal modes belonging to low
frequencies (small eigenvalues) describe highly collective, large-scale global motions. The

1Essentially, machine precision has to be reached for the eigenvalues to become non-negative,
which is computationally much more expensive than the energy minimization that renders struc-
tures stable enough for MD simulations. The calculation of the Hessian matrix is performed via
finite differences of the force function, resulting in additional computational effort.
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high frequency modes describe more localized motions, which tend to be smaller but faster,
like the oscillations of side-chains or other small groups of atoms. Often one keeps the bond
lengths fixed in classic NMA, allowing only for rotations around the joints [Go et al., 1983].
As the characteristics of the slow modes does not change with this approximation, it is
assumed that these oscillations involving large groups of atoms are governed by averaged
interactions and are independent of microscopic (aka chemical) details. This is supported
by the fact that, when the density of the spectrum is studied for different proteins, the
curves happen to collapse onto a universal curve [Ben-Avraham, 1993], indicating that
there must be the same physics governing this large scale behavior.

Quite early it has been observed that an albeit in this case phenomenologically found
and thus an imposed single global mode can bridge two enzyme conformations with
and without a ligand bound, which indicated that global modes are relevant for func-
tion [McCammon et al., 1976]. The connection to allostery can already be drawn
here as it was not the ligand that was bound to the catalytic site of the enzyme
but actually the inhibitor at the allosteric regulatory site. A hinge mode similar
the the one reported in [McCammon et al., 1976] could also be found using NMA
in [Marques and Sanejouand, 1995]. Low frequency motions, although not always
assignable to some human understandable mechanism, have been found to account for
up to 95% of the atomic displacements in proteins, when compared to full MD simula-
tions using the same potential [Levy et al., 1982]. An observation, that has ever since been
confirmed numerous times [Noguti and Gō, 1982, Go et al., 1983, Levitt et al., 1983] even
when NMA is performed in vacuum [Brooks and Karplus, 1983].

Note here that of course proteins do not exist in vacuum but are embedded in a solvent that
is mainly composed of water and ions. The expected overdamped and diffusive motions are
observed [Kitao et al., 1991] and the Langevin modes [Lamm and Szabo, 1986] recovered.
The respective study of eigenmodes in the overdamped setting is also termed Brownian
mode analysis [Hinsen et al., 2000].

Therefore, as anticipated in the last section, we must let go of the idea of harmonic pe-
riodic oscillations around the equilibrium structure and think more in terms of repeated,
solvent-induced perturbations away from—and subsequent returns toward—the equilib-
rium with a decay rate that is given by the eigenvalues [Togashi et al., 2010]. That of
course means that the ligand induced conformational motions must be described in an
overdamped setting as well. Solvent related effects, like the hydrophobicity of proteins,
can be taken into account to a certain degree using implicit solvent models in the MD
potentials [Lazaridis and Karplus, 1999].
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Collective modes can also be extracted from trajectories of MD simulations using e. g.
Principal Component Analysis (PCA). They are not limited to a single potential energy
well, directly take solvent effects into account, and due to the sampling nature incorporate
entropy directly. Of course, MD trajectories need to be simulated before these principal
modes are accessible, which comes with a major drawback; a large portion of timescales
relevant for proteins (> ms) are out of reach even for highly optimized, parallel algorithms
running on state-of-the-art specialized hardware [Shaw et al., 2010]. Reassuringly how-
ever, the soft modes from NMA often overlap substantially with the collective modes from
PCA of MD simulations [Hayward et al., 1993].

One popular early application of NMA was the refinement of crystallographic structures
via their B-factors which are directly proportional to the atomic mean square displace-
ments [Diamond, 1990, Kidera and Gō, 1992].

Thus, notwithstanding the caveat that the movements are assumed to occur only in the
initial minimum, a lot can be deduced from there.

2.4 Elastic network models
The Elastic Network Model (ENM) is a simple, physics based model aimed to describe the
long-timescale dynamics of proteins on a coarse-grained level. The networks’ nodes are
beads and the edges Hookean springs connecting the beads. Depending on the level of
coarse-graining, the beads can represent different chemical entities, ranging from atoms,
as used in the original publication [Tirion, 1996], over amino acids [Haliloglu et al., 1997]
up to capsomers of viruses [Tama and Brooks III, 2005]. In principle themethod is agnostic
with respect to length and time scales.2

The energy of a system of N beads is given by summing the energies of all of the pairs that
are connected by a spring:

U(r) =
1

2

N∑
i<j

Aij κij (rij − r
(0)
ij )2. (2.14)

Here r represents the positions of the beads, and the distance between two beads i and j

is rij =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2, with the superscript (0) indicating the initial

inter-bead distance. κ is the spring constant, often assumed to be identical for all con-
2Note that coarse-grained NMA on the amino acid level is not possible with the traditional po-

tentials [Hayward and Groot, 2008].
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Figure 2.1: A cartoon representation of a protein; overlayed is the ENM with springs
depicted by lines which connect amino acids closer than a certain cutoff. Figure taken
from [López-Blanco et al., 2014]

nections. The adjacency (or connectivity) matrix A represents the underlying graph and
encodes which beads are connected,

Aij =

1 for r(0)ij ⩽ rc

0 for r(0)ij > rc
. (2.15)

Despite the mathematical similarities to the early network models of Flory [Flory, 1944]
and Rouse [Rouse, 1953] the ENM of Tirion is conceptually different. While both types
of models employ springs to connect the chemical entities (nicely termed submolecules),
the harmonic potential in the earlier models is meant to describe the actual interaction
between the chemically or physically bonded units, while the Hookean potential in Tirion’s
version needs to be understood in an effective manner. As the early network models are
meant to describe flexible linear chains of polymers, they do not insert springs between
beads that are not bonded. Although Flory later extended his ideas to more general net-
work structures still only the cross-links, i. e. physical connections of polymers occur in
the connectivity matrix [Flory, 1976]. Flory and Rouse both neglect excluded volume ef-
fects and hydrodynamic interactions. The springs have a zero equilibrium length, only the
effect of the heat bath the system is immersed in prevents the positions to coincide. Con-
versely, Tirion’s model assumes all beads with an initial inter bead distance below a certain
cutoff length rc to be connected by harmonic springs with a non-zero equilibrium length.
Thereby even long range forces like electrostatics are taken into account to a certain de-
gree. The forces obviously are not valid for arbitrary constellations of the beads, but are
meant as restoring forces towards the initial structure. This restriction to describe motions
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only around a specific structure essentially includes excluded volume implicitly. The old
network models for flexible polymers are not limited to a single configuration.

It was conjectured in earlier studies using classical NMA that the large collective motions
of proteins are independent of the chemical details [Ben-Avraham, 1993]. Based on this
assumption, Tirion replaced the sophisticated MD potentials with a number of springs that
represent the effective potential that she believed emerges from a combination of numerous
individual interactions. The specific form of these interactions is rendered irrelevant at
larger scales due to the mixing and averaging of multiple interactions. Tirion even relates
the specific form of the harmonic potential to the central limit theorem.

ENMs feature the beautiful property of giving access to collective motions of proteins from
their structure alone without much computational effort.3 Although initially meant to re-
place the traditionally employed potentials for NMA, they are now fruitfully deployed in
a wider range of setups, sometimes even replacing the standard potential in MD simu-
lations, e. g. when studying the effect of ligand binding [Flechsig, 2017], nonlinear re-
sponses to perturbations [Togashi and Flechsig, 2018] or in a pulling setup for unfolding
proteins [Poma et al., 2018].

Two different classes of ENMs exist: the Gaussian Network Model (GNM) and the
Anisotropic Network Model (ANM). They differ in their dimensionality, for a network of
N beads a GNM is a N dimensional, while a ANM is a 3N dimensional model. The for-
mer just deals with the amplitudes of motions while the latter also encodes directions. In
the GNM the Hessian matrix is reduced to an N dimensional matrix, closely related to the
Kirchhoff matrix from graph theory. We will deal only with ANMs in this work as we are
per se interested in the directionality of motions; we will further perform a coarse-graining
on the residue level.

2.5 Normal modes of elastic networks

As indicated in section 2.3, ENMs were first introduced to the world of pro-
teins by Tirion [Tirion, 1996], in order to replace the complicated, energy mini-
mization requiring, semiempirical potentials which were conventionally employed for
NMA [Marques and Sanejouand, 1995].

3This holds of course for other structures as well; the method is routinely applied in engineer-
ing. Instead of computationally demanding finite-element analyses, a so called lumped mass-spring
model gives a good initial approximation of the dynamics [Tian et al., 2010].
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Following directly from the way ENMs are set up, i. e. all springs are inserted relaxed,
at their equilibrium length, it can be anticipated that no energy minimization is required.
The HessianmatrixH can be evaluated analytically for this simple potential, its off-diagonal
super-elements read

Hkl =

(
1

rkl

)2


x2kl xklykl xklzkl

yklxkl y2kl yklzkl

zklxkl zklykl z2kl


∣∣∣∣∣∣∣∣
r=r(0)

, (2.16)

with rkl denoting the absolute distance between beads k and l, and xkl, ykl, zkl the respec-
tive entries along the three cartesian axes individually. The diagonal super-elements follow

Hkk = −
N∑

l=1,l ̸=k

Hkl. (2.17)

Thus, only the diagonalization of H requires numerical linear algebra.

In addition to the technical advantages in calculating ENMs, their low parameter require-
ments and simple analytical functions have methodological advantages as well. First, a
reduction of fitting parameters always yields a stronger predictive power of a model. To
underscore that point: The single free parameter in ENMs is the cutoff length rc.4 Sec-
ond, the fact that it is only the combination of a high number of interactions and not the
individual details that govern the large scale dynamics of proteins (around their current
configuration) allows for an easily understandable interpretation.

A typical example of a system exhibiting a conformational motion that is accessible by
ENM is the mechanism of force generation in the motor protein myosin, which has
been explained using NMA of ENM in [Zheng and Brooks, 2005a]. Even events usually
thought to be inaccessible to ENMs, such as protein unfolding, can be studied with NMA,
and the sequence and regions where local unfolding occurs could be predicted success-
fully [Su et al., 2008].

Solvent effects are hard to account for, but in principle, an implicit solvent extension of the
Hessian matrix is possible thanks to tedious work, where the second derivatives of the Gen-
eralized Born framework have been evaluated analytically [Brown and Case, 2006]. The
beauty of the simple ENM would however be lost with such an extension, both from a com-

4And indeed, even this parameter can be varied over a wide range of values without qualitatively
changing the dynamics of the structure studied. In the literature values between 7 and 16 Å are
reported [Sanejouand, 2013, Kondrashov et al., 2007, Kundu et al., 2002].
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putational and systematical point of view. The analytic expressions, filling pages, rely on
symbolic algebra programs and constructing the implicit solvent extended Hessian matrix
takes substantially longer than the standard one in Eq. (2.16) [Brown and Case, 2006].

ENMs are frequently applied to refine NMR [Gniewek et al., 2012] and
cryo-EM [Zheng, 2011, Tekpinar, 2018] structures. The number of applications of
ENMs is growing, a wealth of examples can be found in the following reviews:
[Eyal et al., 2006, Lezon et al., 2009, Sanejouand, 2013, López-Blanco et al., 2014,
Togashi and Flechsig, 2018].

The computational effort for NMA with ENM nowadays is negligible. At the end of the last
century it was possible to obtain normal modes of a system with about 50 residues in a
few minutes on standard desktop computers [Hinsen, 1998], for large systems containing
several hundreds to thousands of particles for a long time the limiting factor was mem-
ory [Hayward and Groot, 2008]. Today an equivalent calculation is performed on the order
of a second and memory is rarely a problem. Even the diagonalization of extremely large
matrices for systems containing several hundred thousand particles is feasible within min-
utes when optimized algorithms and hardware are employed [Lopez-Blanco et al., 2013].
With the increasing amount of automated webservers that are available (two examples
are [Bakan et al., 2011, Suhre and Sanejouand, 2004]) the input-output ratio of effort to
information is so low, that there are even voices proposing ENMs should become a routine
part of a structural investigation [Bauer et al., 2019] for biologists.

Soft modes

As Tirion found, the low frequency modes of the Hessian matrix of the elastic
network agree almost perfectly with those obtained by classical NMA. This ini-
tial finding was soon after supported by a study considering more than 300 pro-
teins [Bahar and Jernigan, 1997]. The assumption of Tirion thus was well justified, and her
model supports and extends the idea that similar physics governs soft vibrational modes of
macromolecules [Ben-Avraham, 1993].5 Other comparative studies have shown that these
soft, functional modes of proteins are conserved when different versions of ENMs where
used to obtain them [Nicolay and Sanejouand, 2006, Na et al., 2018]. The soft, function-
ally relevant modes exhibited great robustness against mutations [Zheng et al., 2006].

5Remarkably, although proteins are almost as densely packed as crystals [Liang and Dill, 2001],
their vibrational spectrum differs systematically [Ben-Avraham, 1993, Tirion, 1996] from the one
proposed for the latter[Debye, 1912] in that the density of states scales linearly instead of quadrat-
ically with the frequencies.
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Large-scale collective conformational motions induced by ligand binding often show signif-
icant overlap with the soft modes in a protein. The overlap however is not always greatest
with the softest mode, large overlaps within the first few tens of modes are not uncom-
mon [Zheng and Doniach, 2003]. For simple motions like the often reported hinge-mode,
these overlaps tend to be much higher when compared with the modes in the open struc-
ture rather than the closed one [Tama and Sanejouand, 2001]. When a conformational
motion spans multiple potential wells, the soft modes are able to describe the motion at
least at the beginning of a conformational change [Togashi et al., 2010].

Fig. 2.2 depicts an example of soft modes in a protein in the upper row.

Figure 2.2: The difference between soft, global (upper row) and stiff, local (lower row)
modes in an ENM of a protein. Figure taken from [López-Blanco et al., 2014]
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2.5. Normal modes of elastic networks

Stiff modes

Modes belonging to small eigenvalues are called soft because they require little energy to
be excited. In contrast to these are the intermediately high modes6 that we term stiff as
their corresponding entries in the Hessian represent stiffer combinations of springs. In
other words, stiff modes belong to higher eigenvalues which encode a steeper curvature of
the energy function, meaning they show higher resistance against displacements.

These modes have been far less studied. Nevertheless, they carry nontrivial and valuable
information. First of all, stiff modes are much more localized in the networks and thus
involve smaller groups of beads [López-Blanco et al., 2014]. The reason for this strong
localization can be traced back to inhomogeneities in the structure of proteins and com-
parable media [Bahar et al., 1998, McLeish et al., 2013]. As anticipated by Anderson, im-
purities can cause modes to localize within a few wavelengths, which is a general wave
phenomenon observed in different systems [Anderson, 1978, Anderson, 1958].

The regions where these stiff modes localize often represent the binding sites of en-
zymes [Sacquin-Mora et al., 2007], a finding that has been independently confirmed
by studies comparing NMR and X-ray structures using PCA [Yang et al., 2009]. In
such binding sites the residues are known to be more rigid, showing lower crys-
tallographic [Bartlett et al., 2002, Yuan et al., 2003] and theoretically determined B-
factors [Yang and Bahar, 2005]. The rigidity is also found to be tightly related to the local
packing density [Halle, 2002].

Fig. 2.2 clearly depicts the difference between soft, large-scale collective modes and stiffer,
more localized modes. It is widely accepted that soft modes are relevant for a protein’s
function due to their frequently observed large overlap with experimentally resolved con-
formational changes. However, stiff modes are also occasionally suspected to participate in
function (e. g. in electron transport proteins) and residues participating in stiff modes are
thought to be critical for stabilizing the folded structure [Bahar et al., 1998]. Later in this
work, we will expand on their responsibilities in appreciable detail.

2.5.1 Linear response

The framework of Linear Response Theory (LRT) allows the study of systems that are driven
(slightly) out of equilibrium by a weak external perturbation using only the knowledge of
the fluctuations at equilibrium [De Nittis and Lein, 2017].

6When using an all-atom ENM, the very high modes at the upper end of the spectrum require
knowledge of the chemical details and thus cannot be accurately described by a simplified low-
resolution model [Tirion, 1996].
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The setup perfectly lends itself to study the effect of a perturbation, e. g. ligand binding,
on the equilibrium fluctuations of the protein which can be understood as normal modes
in the unbound state of the protein.

The equilibrium probability7 written in terms of the eigenmodes and eigenvalues reads

Peq(v) =
1

Z

∫
e
− 1

2

∑
ν
λνv2

ν
dv, (2.18)

with the partition function being

Z =

∫
e−βU(v) dv = (2π)

n
2

n∏
ν

λ−1/2
ν . (2.19)

Then the fluctuations in equilibrium are given by

⟨v2
ν⟩ eq =

1

Z

∫
Peq(v)v2

ν dv =
1

λν
. (2.20)

This follows from solving the generalized Gaussian integral.

The fluctuations in cartesian coordinates thus are simply given by the inverse of the Hessian
matrix,

⟨rrT⟩ eq = H−1, (2.21)

allowing in turn to determine the response to an external force via

δr⃗i =
∑
j

⟨r⃗ir⃗Tj ⟩ eq f⃗j . (2.22)

A more direct and intuitive approach would be to see the quadratic approximation of the
potential energy as a linear approximation of the force, arriving at essentially the same
formula:

f = Hδr. (2.23)

This framework has been applied one-to-one in numerous studies. First, deriving the fluc-
tuations from both MD simulations and an ANM potential, the conformational changes
related to ligand binding determined in crystallographic studies could be very well re-

7We are throughout measuring energies in units of kBT and n is equal to 3N − 6, such that we
are only summing over the indices belonging to nonzero eigenvalues.
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2.5. Normal modes of elastic networks

produced for a set of three proteins. Interestingly, the authors reported that the re-
sponse does not agree with a single mode. Indeed, it is a combination of up to five soft
modes that is required in order to achieve high overlaps with the perturbation induced
response [Ikeguchi et al., 2005].

Proteins show highly anisotropic responses in single-molecule pulling experiments, i. e.
the resistance against the pulling force varies strongly depending on which residue the
force is applied to. This anisotropy could largely be reproduced in an equivalent setup
where the response to forces applied to an ENM was computed with LRT. The difference
in the deformations depending on where the forces acted was shown to be caused by the
participation of soft modes at the corresponding residues, which are easier to deflect than
stiff modes at other residues. However, they also discovered cases where the LRT breaks
down, indicating that barriers are crossed, and thus the original energy minimum is left
early during the response [Eyal and Bahar, 2008].

In a related study, a tool was developed that allows to scan over all residues of a protein,
observing the response that perturbations at different sites have on the whole structure.
The allosteric mechanism behind the efficient uptake and release of iron in an ferric binding
protein was unraveled this way [Atilgan and Atilgan, 2009].

In all of these studies, the ligand binding was mimicked by forces acting on a subset of the
beads. A different formulation also allows to calculate the linear response to closing a bind-
ing pocket: Interpreting the response of the elastic network as the new set of equilibrium
coordinates given a constraint on the positions of the perturbed beads, the linear response
problem can be rephrased as a constrained minimization problem [Rocks et al., 2017].
The minimum is then found demanding that the Lagrangian is extremal with respect to
both, the multipliers and the induced displacements. Quite similar to this idea is also
the formalism introduced in [Wyart, 2005] and used in [Yan et al., 2017]. The differ-
ence only lies in the implicit use of the constraint, i. e. no Lagrangian multipliers are
employed here explicitly. The first application of this method to proteins may be found
in [Zheng and Doniach, 2003].

2.5.2 Nonlinearities

The aforementioned method reaches the limits of validity when the real response of the
network starts to leave the original minimum. This, however can only be detected when
the full nonlinear response is available for comparison. In a computational study using the
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full (nonlinear 8) ENM potentials it has been shown that the range where NMA is applicable
can vary strongly between systems. Both of the studied motor proteins showed nonlinear
behavior in their relaxation to equilibrium after random perturbations were applied. The
last part of the relaxation trajectories does agree with a slowmode. However, the part of the
nonlinear relaxation trajectory that agrees with the slow modes is negligibly small in one of
the examples in [Togashi et al., 2010]. The authors point out that in order to describe the
nonlinear relaxation, a single harmonic approximation does not suffice, even if manymodes
are involved. Curiously, the same authors emphasized three years earlier in a similar study,
how remarkably well the linear normal mode description works for such relaxation studies
of ENM of proteins and artificial networks [Togashi and Mikhailov, 2007], emphasizing the
strong dependence on the protein actually studied.

One possible way to describe nonlinear transitions is to iteratively combine ENMs to pro-
vide a path that connects between the two known allosteric end states of a protein. The
high dimensional path is then constructed from consecutively choosing linear combinations
of up to three soft modes which showed the greatest overlap with the empirical conforma-
tional change. A further extension that allows for partial unfolding makes it possible to
approach the open conformation of the protein adenylate kinase, starting from the closed
structure. The reverse direction is generally simpler to reproduce with ENM. This study
confirms that only a part of the allosteric response is accurately described by the initial
energy minimum [Miyashita et al., 2003].

Thus, whenever the response occurs in a sequential manner that spans multiple dis-
tinct energy minima [Frauenfelder et al., 1991], as is known to be possible for pro-
teins [Daily and Gray, 2007, Formaneck et al., 2006], a nonlinear description is required
to fully describe allosteric transitions. We will address these issues in detail in Section 5.4.

2.6 Artificial allosteric networks

2.6.1 Fundamentals

Although ENMs were originally developed to describe proteins they can in fact be used
to model any mechanical system in which some underlying network of links imposes con-
straints on the position of nodes while allowing small fluctuations driven by thermal noise.

8The forces of the springs are linear in terms of their beads’ pairwise distances. Due to the
nonlinearity of the distance function however, the forces are nonlinear with respect to the positions
of the beads [Togashi and Flechsig, 2018].
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2.6. Artificial allosteric networks

Examples may include nano-machines such as piezoelectric actuators that move probe-tips
in atomic force microscopes [Tian et al., 2010, Sierra et al., 2005].

The interest in the motion or rather their suppression in structures strikingly similar to
ENMs dates back to Maxwell [Maxwell, 1864]. Although the applied principle was initially
derived in an earlier work [Clapeyron and Lamé, 1831], it was the first systematic study of
the flexibility of networks. These early studies lay the foundations of the theory of structural
rigidity [Crapo, 1979].

A network in three dimensions, back then termed frame, was defined as a system of lines
connecting a number of points. In a stiff or rigid frame, the distance between two points
can not be altered without simultaneously changing the length of at least one of the con-
necting lines.9 A structure that is not rigid exhibits one or more Inextensional Mecha-
nisms (IMs). Such a mechanism can emerge either trivially, when the network has too few
connections, or requires a more sophisticated analysis, e. g. when a particular arrangement
of links allows for it. If a redundant link exists in a structure it is said to exhibit a State
of Self-Stress (SSS). In special cases, elegantly observable in the tensegrity structures of
Buckminster Fuller, these SSS can impart stiffness to multiple IMs [Calladine, 1978].

Figure 2.3: A schematic representation of a rigid (left) and nonrigid (right) structure. The
unstable structure can display an inextensional mechanism. This alters only the distance
between the blue beads, which are not connected with each other. Figure produced by the
author and published in [Lapolla et al., 2021].

If j is the number of joints and b the number of links in a three-dimensional structure,
Maxwell’s well known condition for the stiffness of frames states

b = 3j− 6, (2.24)

9Such a rigid network is equivalent to an ENM of a protein and can still perform conformational
motions.
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with 6 indicating the rigid body motions. The number of rigid body motions in d dimension
is d(d+1)

2 . However, as already anticipated by Maxwell, in more complex settings, the pure
topology of the network does not suffice to classify the mechanics in frames and, who-
ever tries to do so, may end up in a state of confusion [Pellegrino and Calladine, 1986]. In
general, the full geometrical specification, i. e. the positions of all joints and directions of
all connections are needed to find hidden IM and SSS, of which there are m and s, re-
spectively [Tarnai, 1980]. Using linear algebra, Calladine was able to provide a complete
mathematical framework for this problem.

Through a Singular Value Decomposition (SVD) of the equilibriummatrix E both, the num-
bers and directions of the inextensional mechanisms and of the states of self-stress are ac-
cessible, respectively [Pellegrino and Calladine, 1986]. The matrix E connects the forces
f acting on the nodes with the tensions t in their links, via

Et = f . (2.25)

The rank r of thematrixE is intimately related to bothm and s, as s = b−r andm = 3j−6−r.
Maxwells rigidity condition is thereby extended to:

b− 3j + 6 = s−m. (2.26)

The two structures shown in Fig. 2.3 are the simplest illustration of this relation for the
existence vs. the absence of a mechanism in three dimensions. Both structures have j = 4

nodes and s = 0 states of self-stress. The rigid one with b = 6 bars has no inextensional
mechanism (6− 12− 6 = 0− 0), while the structure with b = 5 bars has exactly m = 1 of
these mechanisms (5−12−6 = 0−1). The matrix E is a linear map from the b-dimensional
space of tensions to the 3j − 6-dimensional space of forces or loads.10 The directionality
of the IM and SSS is encoded in the four fundamental vector subspaces associated with
the equilibrium matrix E [Calladine, 1978, Pellegrino and Calladine, 1986]. Any n × m

matrix like E has four subspaces related to it: The column space, the row space (which
is the columns space of ET), the (left) null space (which is the right null space of ET),
and the (right) null space [Strang, 1993]. The connection between the subspaces and the
IM and SSS becomes clear in Table 2.1. The column space and row space of E contain
base vectors defining the combinations of loads and tensions, respectively, which can be
supported by the structure. The vectors describing the loads are actually identical to the
eigenvectors of the corresponding Hessian matrix for the same system. Base vectors of the

10A related linear transformation is possible in the space of extensions e and displacements d:
ET d = e.
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2.6. Artificial allosteric networks

Table 2.1: The four vector spaces of E can be computed with a SVD and give access to
the the states of self-stress, the inextensional mechanism as well as the motions that would
require connections to be stretched.

Vectorspace dim Relation

edge space Rb

{
R(E) Rowspace
N (E) Nullspace

rE supported tensions
s states of self-stress

node space R3j−6

{
C(E) Columnspace
N (ET) left Nullspace

rE supported forces
m mechanisms

left nullspace of E represent the forces that the structure could not withstand, which are
exactly m IMs. Lastly the (right) null space of E contains the SSSs. This analysis goes one
step beyond a standard NMA. The SVD can also be interpreted as a generalization of the
eigendecomposition in Chapter 2.2 for non-square matrices:

E = UΣVT. (2.27)

Indeed, the left and right singular vectors of E, found in the columns of U and VT, are
the eigenvectors of EET and ETE, respectively. The singular values (non-zero diagonal
elements of Σ) are the square roots of the non-zero eigenvalues of ETE.

2.6.2 Bottom-up design

Figure 2.4: One- and two-
dimensional solution spaces
for IMs, left and right, re-
spectively. Figure taken
from [Kim et al., 2019].

The limit of the characterization of IMs based on lin-
ear algebra is that it can detect only the absence
of length changes of the connecting edges of first-
order, i. e. it cannot distinguish between finite and
infinitesimal motions. Going beyond this limitation
is the framework developed in [Kim et al., 2019],
which allows the full parametrization of the nonlin-
ear shape of IM and culminates in a rigorous design
principle for arbitrary motions in frameworks: By
fixing the positions and desired motions of a subset
of beads and assuming a bipartite network structure
(i. e. two groups of beads which are only connected
between groups, not within groups) it is possible to
solve for the positions and motions of the other sub-
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set of beads. The solution spaces—these correspond to the IMs but without the limitation
of infinitesimal motions only—are then characterized by the edge constraints between the
connected beads, and define hyper-surfaces on which the beads of the second set can be
placed. These beads and their solution spaces can be seen as blue beads and lines/surfaces,
respectively in Fig. 2.4, with the fixed beads and their motions in red and green, respec-
tively.

Incredibly complex nonlinear motions and resulting shapes can be generated with this de-
sign principle; compare Fig. 2.5. A crucial ingredient for the principle is, however, the ex-

Figure 2.5: Combining many simple four-bar linkages allows to formulate complicated
motions using a single parameter. Figure taken from [Kim et al., 2022].

istence of a bipartite graph structure within the framework. That means that some beads,
no matter how close their proximity is, must not be connected for the motion to happen,
which poses a strong limitation for applying the principle to understand conformational
motion in proteins. The effective nature of the physical interactions in ENMs of proteins
gives a strong reason for the implicit formulation of the connectivity, which strongly vio-
lates the bipartition assumption. Note that in proteins the only IMs are the 6 rigid body
motions, the Nullspace of ET, contains no further IM if the cutoff value is chosen cor-
rectly [Sanejouand, 2013]. The assumption of completely inextensional linkages is already
relaxed in the work itself in order to better describe cooperative effects in elastic networks,
the other constraint, an underlying bipartite graph, may possibly be lifted as well, render-
ing the applicability of the concept to proteins far less stretched. Notwithstanding there is
an enormous potential the principle has for applications where one has complete control
over the underlying connectivity like, e. g. in the design of robots [Detweiler et al., 2007].

2.6.3 Heuristic design

A completely different route for designing specific behaviors into random spring networks
is provided by the heuristic tunig by pruning concept introduced in [Goodrich et al., 2015].
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First applied in order to tune global properties like the Poisson ratio, it can also be used to
incorporate local responses inspired by allostery into the network: A pair of input nodes
(source) and output nodes (target) is selected and the structural change at the target site
is observed after an applied strain at the source. Calculating the effect that the removal
of a single bond has on the strain ratio between the target and source pair, it is possible,
by removing only a small set of bonds in the network, to train a long range correlated
deformation between the source and target site. The authors report a remarkably high
success rate in training the networks, reaching essentially 100% for small strain ratios, but
diminishing with higher input strains [Rocks et al., 2017].

Quite similar to this is the training for an allosteric response in another study, where springs
are allowed to swap between occupied and unoccupied links in aMonte Carlo (MC) scheme.
Two striking observations were made: The response seems to be almost absent in the bulk
of the (two-dimensional) networks and reappears at the active (target) site; the architec-
ture connecting source and target site (measured in mean coordination number) shows a
trumpet like shape, hinting towards a more rigid lever at the source and a softer, respon-
sive target site. [Yan et al., 2017]. Yan et al. only train two-dimensional networks but
assume their findings to be independent of the dimensionality. They base this assump-
tion on the observation that other effects based on microscopic elasticity of amorphous
materials are independent of the dimensionality and that this transfers to allosteric behav-
ior [Liu et al., 2011].

Figure 2.6: Heuristically trained two-dimensional networks. Deleting (right) or swapping
(left) of bonds allows to incorporate allosteric behavior into networks with only few changes
needed. Figures taken from [Rocks et al., 2017] (left) and [Ravasio, 2020](right).

Both these works employed LRT to calculate the effect of an input displacement on the net-
work structure. Although they consist of beads connected with Hookean springs, the net-
works in [Rocks et al., 2017, Yan et al., 2017] do not represent ENMs as their connectivity
is decided a priori and and only once, thus removing and inserting bonds is straightforward
as no cutoff length must be considered.
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Figure 2.7: Possible emergence of a single soft mode in proteins by embedding struc-
ture exhibiting an Inextensional Mechanism (IM) in a soft elastic medium. Figure taken
from [Yan et al., 2018].

We concentrate here on networks that perform a single task but the framework is by no
means restricted to such scenarios. Multiple independent allosteric responses have been
trained in two-dimensional networks already in [Rocks et al., 2017], and the upper limit of
simultaneously performable tasks was shown to describe a phase transition, in mechanical
and flow networks [Rocks et al., 2019].

In a slightly more biological context, three-dimensional full-featured ENMs are evo-
lutionary trained from random initial configurations to show allosteric responses
in [Flechsig, 2017]. The algorithm was already used before to tune soft modes into net-
works in [Togashi and Mikhailov, 2007]. The beads’ equilibrium positions (and thereby
also the springs equilibrium lengths) are randomly perturbed in order to change the un-
derlying connectivity of the network, leading to a different response.11 These studies differ
mainly in their fitness function and the number of steps taken in the calculation of the ef-
fect of amutation. [Flechsig, 2017] optimized the full nonlinear allosteric response (several
thousand steps required) for a symmetric and an antisymmetric variant originating from
the same initial random structure. Conversely, [Togashi and Mikhailov, 2007] optimized
several thousand structures in terms of the spectral gap between the first and the second
mode—a single step procedure for the response.

An Inextensional Mechanism (IM) as described above in Section 2.6.2 was also discussed
as the underlying (presumably, general) principle of allosterically relevant soft modes
in proteins. Embedded in a soft elastic material such an IM would obtain a non-zero
frequency and could be able to transfer allosteric signals [Yan et al., 2018]. The exis-
tence of independent multifunctionality in artificial networks [Rocks et al., 2019] and pro-

11As we have adapted the evolutionary training procedure in our work, a more detailed descrip-
tion follows in 5.
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teins [Schlessinger, 1986, Light and Anderson, 2013], however, poses great challenges to
this explanation.

2.7 Complex networks

Attempts to describe proteins using established theories for other states of matter have
so far failed. Although the average packing density in proteins is as high as that in
crystalline solids, they rather appear to be liquids or glasses according to their free vol-
ume distribution [Liang and Dill, 2001]. Proteins are heterogeneous environments on
a single molecule basis but show strong structural and spectral similarities among each
other [Ben-Avraham, 1993]. They show percolation behavior that clearly reminds one of a
random network [Deb et al., 2009], but display distinct features like soft modes and long
ranging responses that differentiate them from the latter.

The existence of a specific long-range mechanical interaction in proteins is also not in-
tuitive at first. Considering that the response to a perturbation decays uniformly and
on a rather small lengthscale in media which are similarly densely packed as pro-
teins [Liang and Dill, 2001], the lengthscale over which an allosteric response is propa-
gated is surprisingly large. This reminds of the emergence of floppy modes in fully iso-
static systems (which have just enough constraints to maintain rigidity) [Liu et al., 2011],
where the lengthscale of elastic responses can reach the system size [Lerner et al., 2014,
Düring et al., 2013]. However, proteins can deviate from this critical point and show rigid,
isostatic, and flexible regions within a single molecule while still exhibiting long range
modes [Buhrow et al., 2012].

The ease with which allostery could be trained into random networks, using different
evolutionary schemes and different starting points [Rocks et al., 2017, Yan et al., 2017,
Flechsig, 2017] indicates that it must be a property that is somehow inherently in-
grained in networks. Almost every studied protein (with a stable fold) exhibits large-
scale motions that often overlap with the normal modes either obtained form traditional
or ENM based NMA. It is now further proposed that essentially every protein is al-
losteric [Gunasekaran et al., 2004], and even designing a new allosteric site into a protein
was realized [Zhang and Bishop, 2007].12 Apparently allosteric proteins constitute their
own class of systems that is best described by complex networks [Rocks, 2019].

12Inspired by allostery in biomolecules, work on implementing allosteric effects in small artificial
molecular systems has been successfully carried out in supramolecular chemistry for decades; more
than a hundred different mechanisms have been reported so far [Kremer and Lützen, 2013].
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We may conclude that the question of how to design allostery has largely been answered.
Taking the liberty to employ and extend the available methods, we generate in the upcom-
ing chapters our own allosteric networks and study the general underlying principles of
perturbation transmission, which we propose is the physical basis of allostery in proteins.
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Chapter 3

Hypothesis

3.1 Towards a mechanism of allostery

Considering that we expect allosteric proteins primarily to exert a switching effect, one can
anticipate that there must be a difference between the regulatory (allosteric) site and the
controlled (active) site. The mechanical signal should follow a one-way path to prevent the
switching effect from being immediately reversed by an action at the controlled site; hence,
the mechanism should in general not be reciprocal. More concretely, in the case of elastic
networks, we want the allosterically targeted region to be susceptible to motion, and the
regulatory site to be particularly good at receiving an input displacement and effectively
transmitting it through the network. That is, the source and target pockets should be
fundamentally different.

If we focus on the spatial distribution of the different modes in this specific context, we
notice that the soft modes appear predominantly at the active site, where the allosteric
response occurs; the allosteric site itself, however, which accepts the input, does not partic-
ipate in precisely these modes. We will quantitatively confirm this observation in artificial
and protein-derived networks in the beginning of Chapter 6.

A related observation is that the allosteric sites are often located in particularly rigid re-
gions, where only the more localized, stiffer modes participate. If we combine these obser-
vations with a simple energy conservation argument, we can formulate a general hypothesis
for the physical principle underlying the mechanics of allostery.
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In order to propagate a mechanical signal as far as possible through an elastic network and
translate it into a pronouncedmotion at another location, themechanical energy introduced
into the network with the signal must be transported in an efficient manner.

The most simple analogy for how this may happen is the classical lever. There, a certain
amount of energy is transferred via a short lever din arm into a large displacement at the
end of the long lever arm dout. The relationship between the energy and the lengths of the
arms involves the force, which is large at the first location (Fin) and small at the second
(Fout). Simple energy or torque conservation states that

Fin din = Fout dout. (3.1)

If we assume soft springs at the long and stiff springs at the short lever arm, respectively,
we can anticipate how the reciprocity vanishes; a fixed input displacement at the short
arm can still propagate, while the same input displacement at the long, soft arm would
immediately be absorbed by the soft springs.

The networks we are considering are certainly not simple levers. However, a very similar
principle is conceivable for those as well.

The local binding of a ligand and the associated closing of the pocket loads the springs
located at the source with mechanical energy. Elsewhere, and in particular at the distant
target site, where the allosteric effect emerges, this energy is converted into movement.
Analogous to the lever, there is also a force in the networks against which work is per-
formed, namely the collective spring constants from the Hessian matrix.

Thinking in terms of the collective normal modes, we remember that the energy can be
written as

U (δr({vν})) =
∑
ν

λνv
2
ν . (3.2)

The energy associated with an input displacement δc written in the diagonal basis reads

δU(δc) =
∑
ν

λν(v
T
ν δc)

2 (3.3)

and the corresponding response δs gives

δU(δs) =
∑
ν

λν(v
T
ν δs)

2. (3.4)
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Now it can be easily read off that for a strong transmission of the small and locally confined
input displacement, the energy uptake during the input should be as high as possible and
the resulting movement during relaxation as large as possible. This would allow for a non-
local response, involving larger displacements at the target site when the stored energy
is released via the collective soft springs. An allosteric network, therefore, establishes a
connection between the seemingly disconnected sites.

The collective lever could be described as conservation of energy related to the excitation
of different sets of modes, which are the stiff modes during the perturbation and soft modes
during the response:

δU(δc) ≈ δU(δs)

∑
ν∈stiff
modes

λν(v
T
ν δc)

2 ≈
∑
ν∈soft
modes

λν(v
T
ν δs)

2.
(3.5)

It becomes much clearer for the extremal case where only the stiffest mode is excited by
the input displacement and the softest mode relaxes the energy completely1, then

λstiff v2
stiff = λsoft v

2
soft. (3.6)

Now, as λsoft ≪ λstiff it follows that vsoft ≫ vstiff.

Finally, Eq. (3.5) allows us to predict two generic observables that are expected to show
distinct behavior for the allosteric coupling in the networks and proteins. First, the projec-
tions of the input displacement onto the eigenmodes should be small for soft modes, and
the projections of the response onto the modes should be high for soft modes and vice versa.
Second, for the real allosteric source beads, the energy uptake during the perturbation and
the energy release during the relaxation should be largest in magnitude as compared to
the other possible pockets.

We will now embark on testing this hypothesis in the remaining part of the thesis.

1Although in this case the coupling between the modes in the resting network is indeed impos-
sible due to their orthogonality [Goldstein et al., 2002]; thus we consult the extreme case only to
indicate the relation between the eigenvalues.
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Allosteric Structures

4.1 Protein-derived networks

4.1.1 Setup and parametrization

Building ENM of proteins is straightforward. For each protein of interest we retrieve the
corresponding file containing the positions and atomic assignments from the Protein Data
Bank (PDB) and extract the α-carbons.1 Then a cutoff value rc is chosen, assuring that
not more than exactly 6 eigenvalues of the Hessian matrix are zero. Springs with stiffness
κ = 12 are inserted in between beads which have pairwise distances smaller than the cutoff
distance. Whenever the corresponding entry in the PDB contains information about the ac-
tive and allosteric binding sites this information is used to designate the beads accordingly,
otherwise additional publications containing this information are taken into consideration.

4.1.2 Binding-pocket candidates

As a starting point a method is required that allows to find possible binding pockets. This
is a thoroughly investigated topic in structural biology, so we decided to adopt an existing
method that is acknowledged in the field and easily accessible.

1When characterizing a protein composed of a chain of amino acids, often one approximates the
position of the amino acids by the position of their respective α-carbon; it is the backbone carbon
where different substituents attach to.

2This simplification does not affect the qualitative picture of the results and an extension to
different values is straightforward.
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The algorithm proposed in [Tian et al., 2018] is based on a purely geometric approach, no
chemical details enter the procedure of predicting pockets. The basis of the algorithm is
the rolling ball algorithm [Shrake and Rupley, 1973] frequently used to define the Solvent
Accessible Surface (SAS) also called Connolly Surface [Connolly, 1983]. The surface is es-
timated with a probe of the size of the solvent which samples the molecule along the re-
spective van der Waals radii of the atoms. This is essentially equivalent to rolling a ball
along the surface. A Delaunay triangulation3 using the atoms positions is then compared
with the solvent accessible surface [Edelsbrunner and Mücke, 1994] and allows to define
the molecules’ pockets using discrete flows [Edelsbrunner, 1993], a method to discriminate
inner and outer cells of the Voronoi diagram [Liang et al., 1998a, Liang et al., 1998b]. It is
publicly available through a web interface and returns a list that contains for each pocket
found all the residues of the protein that participate.

We find that some of the larger pockets predicted by the algorithm are huge, encompassing
up to half of the proteins, see table A.1. To account for the numerous possible ways a
ligand could bind within these, we draw combinations of beads out of all the beads in the
pocket. These combinations consist of three beads, and per pocket up to a maximum of
one thousand are drawn randomly. For the total number of ligand-binding combinations
refer to Table A.1.

An example of binding pockets predicted by the webserver is shown in Fig. 4.1. The left
panel depicts the volumes of the pockets and the right one the corresponding residues in
the ENM.

4.2 Trained artificial allosteric networks

4.2.1 “Growing” pseudo proteins

The structures subsequently trained to display allosteric responses are first “grown” to re-
semble folded coarse-grained proteins. After the first bead is positioned at the origin, the
following steps are iterated until the desired number of beads is reached. Each subsequent
bead is placed on a sphere around the previous one with a fixed distance dmin, assuring
that the distance to all other beads is also above that cutoff value. Two other constraints
have to be satisfied. First, all beads must lie within a large sphere of radius dbig such that
a globular shape is approached. Second, the volume enclosed by two smaller spheres of

3In simple terms, a Delaunay triangulation [Delanuay, 1934] is themost efficient way to partition
the convex hull of a set of points into triangles or tetrahedra, for two and three-dimensional system,
respectively.
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Figure 4.1: Predicted binding-pocket candidates in the proteins are determined geo-
metrically, based on an algorithm from [Tian et al., 2018]. The 9 largest out of 77 total
pockets shown. (Left) Cartoon representation of Human Serum Albumin (HSA, PDB ID
2BXD [Ghuman et al., 2005]) as an example protein. (Right) The beads (α-carbons) con-
stituting these pockets are colored accordingly in the ENM.

radius dsmall which overlap the large one is not populated by any bead, such that pockets on
both sides of the sphere emerge. The second condition is relaxed for a subset of structures.
For another subset of networks we combine two of the grown structures by merging them
and removing beads that are closer than dmin. Precise values are given in Table A.2. Manual
inspection is required to select the beads that represent the target and source pocket, re-
spectively. The source and target pockets are represented by combinations of two or three
beads.

4.2.2 Evolutionary training for an allosteric response

The grown structures are subjected to a training in which a long-range allosteric effect is
incorporated. The allosteric effect that is aimed for is specified as follows. It consists of an
input and an output; a ligand-binding event that closes the source pocket is mimicked by
pulling the source pockets’ beads towards their local center of mass. This is what we refer
to as the input. The output refers to the opening or closing of the target binding pocket,
depending on the variant being trained. The formalism to compute the full nonlinear re-
sponse to closing the source pocket and thereby also the closing of the target pocket is
discussed in detail in Section 5.1, and resembles the observable that is optimized during
the training. We describe the two observables belonging to the pocket closing with their
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(a) Pocket spheres (b) Outer sphere

Figure 4.2: Growing scheme slightly modified from [Flechsig, 2017]. The structures are
designed to resemble artificial proteins.

respective radii of gyration defined by r2gyr(A) = 1
NA

∑
i∈A r2i , where A = T for the target

and A = S for the source pocket.

The evolution of the networks happens in an open-system Monte Carlo (MC) fashion, that
is, beads can change their position and new beads can be created or existing ones re-
moved. This algorithm is inspired by the natural principle of evolution, corresponding to
mutations that change amino acids at a given position in the sequence, or more drastic
insertions [King and Jukes, 1969] and deletions [Kimura et al., 1968], respectively.4 First,
one of the three possible steps (move, delete, insert) is randomly chosen with probabil-
ities (1/2, 1/4, 1/4)5 respectively and the response of the mutated network calculated.
If the response at the target site has improved according to the variant trained, the mu-
tation is kept with probability one, otherwise with probability exp(−|∆rgyr(T )|), where
∆rgyr(T )|) = rinitgyr (T ) − rfinalgyr (T ) is the change in pocket size during the response. The
exponent prevents too big steps backwards while allowing for the circumvention of local
minima. Less than a thousand MC steps were required to incorporate the desired effect
into the networks.

4Depending on the number of deletions and insertions on the DNA level these can cause
either frameshift mutations [Bock et al., 2019] (which would change all subsequent amino
acids, something we do not account for in our training scheme) or introduce new amino
acids [Alberts et al., 2020].

5This decision is based on empirical evidence.
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(a) Symmetric variant (b) Antisymmetric variant

Figure 4.3: Increase in the relative change of the radii of gyration of source and target
pocket during the training for two examples of different variants. The radius of gyration of
the target changes while the one of the source stays the same.

We provide two examples for a symmetrically and asymmetrically trained network in
Fig. 4.3. Upon closing the source pocket a symmetric network closes its target pocket and
an asymmetric network responds by opening the target pocket. Both networks are trained
from the same initial structure and show essentially zero allostery at the beginning of the
training.

4.2.3 Novelty and delineation from previous work

Many methods are available for creating and training allosteric networks. Most closely re-
lated to biology (at least to our judgment) is the one described by Flechsig [Flechsig, 2017].
We adopted the method but adapted and optimized it where we saw the need. Briefly sum-
marizing the differences, most of the parameters are re-parametrized and the training of
monomeric networks is entirely new. The original publication considered only networks
consisting of two of the above described units. Moreover the formulation and evaluation
of the response is different and considerably faster. The extension to open MC is also new
and deletion and insertion were not accounted for previously.

To remove a possible bias we also considered networks derived from a random “dense
packed-spheres” algorithm published by [Baranau and Tallarek, 2017]. These are indi-
cated in Table A.2. This yields structures that are closer to those in [Yan et al., 2017,
Rocks et al., 2017]. However, we subjected these structures to the same evolutionary train-
ing, as simple flipping or pruning of bonds is not possible within the standard ENM frame-
work following Tirion.
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Figure 4.4: We define the surface beads of a network (a) as those beads that contribute to
the shared surface after growing the radii of the beads (b). Potential binding pockets are
selected from this set of beads.

4.2.4 Determination of pockets on the surface

In particular, in the context of drug design, where we aim to find the unknown allosteric
source pocket, a means to find binding pocket candidates is required. We tried to come up
with such a method for the artificial networks, where two or three beads resemble a simple
approximation of a simple binding pocket.

The constraint that we impose on pocket candidates is that that they are accessible to
possible ligands, which means they lie on the surface of the network. Another constraint is
that they actually represent a pocket, that is the lines connecting them do not cut through
the volume of the network. Both these constraints rely on a definition of a surface of the
network. Defining the surface of a network (i. e. the concave hull of a cloud of points in 3
dimensions) is neither mathematically nor intuitively well defined. Many possible different
shapes would envelop the respective structures. The method we chose to determine a
unique surface is to grow a sphere around each of the beads such that a coherent solid
body emerges. This fused spheres object6 defines a possible surface of the network that
actually is quite similar to the definition of the SAS area for proteins. We declare beads
that belong to spheres that participate in this outer shared surface as surface beads and the
remaining ones as interior beads. The method is visualized in Fig. 4.4.

Pocket pairs and triplets are now selected from the set of surface beads. The condition
mentioned above that binding pockets lie on the outer surface of the network and rep-

6The numerical implementation was kindly made available by Lukas Engelke [Engelke, 2021]
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resent pockets, rules out implausible ligand effects. It is enforced as follows. Out of all
possible combinations of surface bead pairs and triplets we only consider those whose di-
rect connecting lines do not cut any of the interior beads. In addition, there are two more
constraints reducing the overall number of bead pairs to scan. We omit pairs if they are
direct neighbors, or if their distance is above a certain threshold value.

4.3 Correlations at equilibrium

From MD simulations it is well known that the local motions within orthosteric and al-
losteric sites are highly correlated [Ma et al., 2016, VanWart et al., 2012]. Especially for
allosteric networks it might thus be instructive to evaluate the correlation function between
the state of the target pocket dt and the source pocket ds.

In the following we derive analytic expressions for the single-point and two-point proba-
bility densities, which give access to the correlations between distances in equilibrium.

We recall the harmonic approximation of the energy function in Eq. (2.3),

U(δr) =
1

2
δrTHδr. (4.1)

This formulation of the energy allows to describe the dynamics in terms of small deviations
from equilibrium positions, δr = r − r(0) and is thus equivalent to a 3N dimensional
Ornstein-Uhlenbeck Process (OUP). Switching to normal coordinates allowed for a simpler
formulation of the energy (Eq. (2.10))

U(v) =
∑
ν

λνv
2
ν . (4.2)

The partial differential equation that describes the time evolution of the probability den-
sity function of the positions’ deviations is the overdamped version of the Fokker-Planck
equation, also known as the Smoluchowski equation [Gardiner et al., 1985] and reads

∂P

∂t
=

3N∑
k=1

∂2P

∂v2ν
+

∂

∂vν
2λ2

νvνP. (4.3)
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The solution in equilibrium is given by a multivariate Gaussian distribution:

Peq(v) =
3N∏
ν=1

[(
λ2
ν

π

)1/2

e−λ2
νv

2
ν

]
(4.4)

This allows us to write the probability density function of the fluctuations of distances in
the network as the single point density, and the expectation value of a certain distance d

is given by
P (d ) = lim

t→∞
⟨δ(δr(t)− d)⟩eq, (4.5)

where δ(·) is the Dirac delta. We switch now to three dimensional vectors, such that d⃗ij =
r⃗j − r⃗i =

∑3N
ν=1(Vjν −Viν)vν = Vij

ν vν , i and j each denoting the three corresponding rows
of the matrix V. We further introduce the abbreviation

γ =

3N∑
ν=1

V2
ν

2λ2
ν

. (4.6)

d⃗0 is the distance in the reference structure. Then the probability density for a specific
distance vector is

P ( d⃗ ) =

∫
dv Peq(v) δ

(
N∑
ν=1

Vij
ν vν + r⃗ij − d⃗

)

=
1

(2π)3

(
π

γ

)3/2

e
− (d⃗−d⃗0)

2

4γ ,

(4.7)

where we have used a forward and inverse Fourier transformation to evaluate the integral.
If we are only interested in the distance d = |d⃗| irrespective of the orientation of the vector,
we have to integrate over all possible orientations. Choosing without loss of generality the
frame of reference along the z-axis, yields:

P (d) =

2π∫
0

dϕ

∞∫
0

dρ

1∫
−1

d cos(θ)P (d⃗)δ(|d⃗| − ρ)

=
1

√
πγ

d

d0
exp

[
−d2 + d20

4γ

]
sinh

[
dd0
2γ

]
.

(4.8)

46



4.3. Correlations at equilibrium

The evaluation of the two point density, that is the joint probability density of two distances,
is slightly more involved. We introduce the following abbreviations

A =
3N∑
ν=1

(
Viν

2λν

)2

, B =
3N∑
ν=1

(
Vjν

2λν

)2

, C =
3N∑
ν=1

ViνVjν

2λ2
ν

, D = 4(AB − C2). (4.9)

Again we have for the distance vectors d⃗i and d⃗j:

P (d⃗i, d⃗j) =

(
1

2π

)3( 1

D

) 3
2

exp

[
− 1

D

(
Ad⃗2j +Bd⃗2i + Cd⃗j · d⃗i

)]
. (4.10)

The marginalization over the possible orientations of both vectors gives the probability
density for di = |d⃗i| and dj = |d⃗j |, which reads

P (di, dj) =
1

π

(
1

D

) 1
2 didj

C
exp

[
− 1

D

(
Ad2j +Bd2i

)]
sinh

[
C

D
djdi

]
. (4.11)

We can use the joint density and the marginals to calculate the correlation func-
tion [Papoulis and Pillai, 2002] of a pair of distances in the network

P (ds, dt)− P (ds)P (dt) (4.12)

To test whether this observable is a good descriptor for allosteric long-range interac-
tions we determined the correlation function for an untrained (random) network and two
trained derivatives of this network, trained for a symmetric and an antisymmetric effect
from the source to the target pocket. We used the networks that are readily available
from [Flechsig, 2017]. The data is shown in Fig. 4.5.

We can directly observe that there are large correlations between the source and the target
distance in all networks. However, there is no qualitative difference between the trained
and the untrained network. Therefore, we can conclude that the equilibrium correlations
between the fluctuations of the source and target distance are not a descriptor that should
be used to quantify allostery. We therefore decided to take one step back and first solve for
the minimum-energy path before coupling the system to a heat bath.

A comparison of the impact of the fluctuations caused by the heat bath and the actual
allosteric changes in distance is given in Appendix A.7.
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Figure 4.5: Joint and individual probability densities as well as the correlation function
of the distances between source and target pocket beads for the three different networks
in [Flechsig, 2017]. No qualitative difference between the trained and untrained networks
is observable.
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There are many different ways to define and determine the response of an ENM to an
external stimulus. A first order approximation to calculate the effect of binding is Linear
Response Theory (LRT), as described in Section 2.5.1.

The probably most intuitive method, however, is to simply integrate Newton’s equations
of motion with an additional external force mimicking the effect of a ligand binding
event [Flechsig, 2017]. In the overdamped limit with friction γ and spring κ constants
set to unity1 the equations of motion read

˙⃗ri = −∇r⃗U + f⃗

= −
∑
j ̸=i

Aij

(
1−

r
(0)
ij

|r⃗i − r⃗j |

)
(r⃗i − r⃗j) + f⃗i

(5.1)

Another straightforward approach would be to apply gradient descent with the full ENM
potential (Eq. (2.14)) to find equilibrium positions after a subset of them has been con-
strained to new positions. We can discretize time for small step sizes ϵ, and iteratively
obtain new positions as follows:

ri+1 = ri − ϵ
∑
j ̸=i

Aij

(
1−

r
(0)
ij

|r⃗i − r⃗j |

)
(r⃗i − r⃗j) , (5.2)

1The explicit dependence on γ and κ can also be removed when switching to natural units, where
the rescaled time would read (κ/γ)t.
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noting that absolute times are irrelevant here as we are interested only in the new config-
urations.

The advantage of these methods is their accuracy; with a small enough step size they have
been shown to accurately describe complex nonlinear behavior of proteins upon perturba-
tion [Togashi and Mikhailov, 2007, Togashi et al., 2010, Poma et al., 2018]. However, the
price one pays for this is speed.2 We therefore combine the advantages of both approaches
by applying the linear response formalism in an iterative fashion, extending the Hessian
matrix to describe correctly instantaneous conformations that have left the initial mini-
mum.

5.1 Iterative constrained quadratic optimization
We reformulate the LRT as a constrained minimization problem. Given a set of instanta-
neous coordinates r(0) which constitute a minimum of the corresponding energy function
U(r, r(0)) we are interested in new optimal coordinates r after a constraint is applied to a
subset of the coordinates.

For small deviations around the instantaneous coordinates, the energy function is a simple
quadratic form

U(r, r(0)) =
1

2
(r − r(0))TH(r − r(0)) + U (0)(r(0)), (5.3)

where U (0)(r(0)) is the constant term in the Taylor approximation that does not vanish for
extended springs. We now rewrite the quadratic optimization in such a way that it works
without explicit constraints in form of Lagrange multipliers and concurrently allows for
constraining multiple beads simultaneously.

We split the positions r into two subsets, the constrained fixed ones, c, and the ones sought-
for, s, such that

r =

(
c

s

)
. (5.4)

Similar for the instantaneous initial coordinates,

r(0) =

(
c(0)

s(0)

)
. (5.5)

2We see a strong speedup when employing a state of the art stochastic optimizer like
ADAM [Kingma and Ba, 2014], reducing the convergence time for the response of a ~200 bead
system from hours to minutes, which is still about two orders of magnitude slower than the itera-
tive method we propose in the next section.
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The Hessian matrix can analogously be split into four blocks,

H =

(
C BT

B S

)
. (5.6)

The quadratic form which is to be optimized now reads

U(s, c, s(0), c(0)) =
1

2
sTSs+

(
(cT − c(0)T)B− s(0)TS

)
s, (5.7)

where we dropped the constant term as it is irrelevant for the optimization.

Demanding that the gradient ∇sU is zero and switching from absolute positions to dis-
placements δc = c − c(0) and δs = s − s(0) for the free and fixed beads respectively, this
leads to the system of linear equations

δs = −S−1BTδc, (5.8)

that is simple to solve numerically.

We note that the splitting of the matrix is equivalent to the one used
in [Zheng and Brooks, 2005b] and the implicit formulation of the response in-
duced by deforming a binding pocket in Eq. (5.8) was also derived already
in [Zheng and Doniach, 2003].

In order to determine the response of the free beads to the perturbation of the fixed ones,
it is henceforth straightforward to apply the above mentioned quadratic optimization in an
iterative fashion. The input consists of both, the current positions and the new positions of
the constrained beads. A new Hessian matrix is calculated for the current positions, taking
into account the original equilibrium lengths of the springs, as described in Eqs. ( 5.10,
5.11, 5.12 and 5.13). The iterative protocol for obtaining new optimal coordinates then
reads

r(k + 1) = inf
r

[
rTHr|ri∈S(k + 1)

]
, (5.9)

where the Hessian matrix is evaluated at the positions of the k-th step r(k) and ri∈S(k+1)

corresponds to the constrained positions at the next step, c.
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5.2 Extended Hessian matrix

5.2.1 Extended springs

As soon as the initial minimum, where the springs are at equilibrium, is left, the approx-
imation of the potential with the Hessian matrix described in 2.1 becomes invalid. For
the derivation of the matrix super-elements in Eq. (2.16) the equivalence between the in-
stantaneous and the equilibrium spring lengths simplifies the entries dramatically. In the
following the general elements are given. We are expanding the potential energy function
here around the constrained minimum positions. The diagonal super-elements read

Hαβ
kl =

∂2U

∂α
k ∂

β
l

= −
r0kl
r3kl

rαk r
β
l (5.10)

and

Hαα
kl =

∂2U

∂α
k ∂

α
l

= −
[
1 +

r0kl
r3kl

(
(rαk )

2 − r2kl
)]
. (5.11)

where k, l are the indices of the beads and α, β the ones of the xyz- coordinates, respec-
tively. The diagonal super-elements are

Hαβ
kk =

∂2U

∂α
k ∂

β
k

=

N∑
l=1

r0kl
r3kl

rαk r
β
l = −

N∑
l=1

Hαβ
kl (5.12)

and

Hαα
kk =

∂2U

∂α
k ∂

α
k

=

N∑
l=1

[
1 +

r0kl
r3kl

(
(rαk )

2 − r2kl
)]

= −
N∑
l=1

Hαα
kl . (5.13)

If we set rkl to r
(0)
kl , the known formulas are recovered.

5.2.2 Repulsive beads

During the training of the networks (described in Section 4.2.2) we occasionally observed
nonphysical behavior; regions in the network that could be described by different “arms”
were passing through each other. This is an artifact that can not be prevented within a
representation confined only to springs as these arms are actually not connected to each
other. It represents an artifact caused by the emergence of large motions during the train-

52



5.2. Extended Hessian matrix

ing, which violate the excluded volume principle.3 In order to prevent parts of the network
to overlap we equip the beads with an additional repulsive potential, represented by the
Weeks-Chandler-Anderson (WCA) potential that is also used in the theory and computer
simulations of liquids [Chandler et al., 1983, Bishop, 1984, Deiters and Randzio, 1995].

It corresponds to the repulsive part of the Lennard-Jones (LJ) potential, shifted by the
energy well depth ε and truncated at the minimum, such that σ does not describe the zero-
crossing of the energy anymore. The distance between two beads i and j is rij = |r⃗ij | and
the pairwise LJ energy reads

ϕ(|r⃗ij |) =


4ε

[(
σ

|r⃗ij |

)12
−
(

σ
|r⃗ij |

)6]
+ ε for |r⃗ij | ⩽ 2

1
6σ

0 for |r⃗ij | > 2
1
6σ

, (5.14)

thus the full LJ energy is

ULJ(|r⃗ij |) =
3N∑
j>i

ϕ(|r⃗ij |). (5.15)

We will now derive the Hessian elements for an expansion of Eq. (5.15). The prefactors ϕ′
and ϕ′′ are the derivatives w.r.t the absolute of the vector rkl and read

ϕ′′(rkl) =
4ε

r2kl

[(
156

σ

rkl

)12

−
(
42

σ

rkl

)6
]

ϕ′(rkl) = − 4ε

rkl

[(
12

σ

rkl

)12

−
(
6
σ

rkl

)6
]
.

(5.16)

Then the off-diagonal super elements with different cartesian coordinates α, β read

∂2ULJ
∂α
k ∂

β
l

= −

[
ϕ′′

rαklr
β
ij

r2kl
− ϕ′

rkl

rαklr
β
ij

r2kl

]
(5.17)

and for the diagonal elements in the off-diagonal super elements it follows that

∂2ULJ
∂α
k ∂

α
l

= −

[
ϕ′′
(
rαkl
r2kl

)2

− ϕ′
rkl

((
rαkl
r2kl

)2

− 1

)]
. (5.18)

The diagonal super-elements obey the same symmetry as Eq. (2.17).

3This artifact does not occurr for protein-derived networks.
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We include the repulsive potential in the Hessian matrix H whenever beads that are not
connected by a spring come closer than rrep = 2

1
6σ. The values of rrep and ε are given in

the overview Table A.2

Notably, in the evaluation of the response of proteins these additional terms are not re-
quired, we only use them for self-trained networks.

5.3 Removing rigid body motions

The Hessian matrix is singular because it has a nullspace N (H) which is spanned by the
vectors describing infinitesimal rigid body motions. Depending on the number of con-
straints applied to the system the solution to Eq. (5.8) is not always unique, i. e. the system
is underdetermined. A simple algebraic trick solves this problem.

Consider the square matrix M ∈ Rm×m which does not have full rank, its nullity is n. Its
nullspace is N (M) ∈ Rm×n and its row space (or range) is R(MT) ∈ Rm×(m−d). All vectors
in N (M) are orthogonal to all vectors in R(M). If we add the matrix given by the outer
product of a basis vector from the nullspace to M, i. e.

M̃ = M+ x⊗ xT (5.19)

we increase the rank by one. Applying this for each of the basis vectors of N (M)4 gives
M full rank [Blázquez et al., 1996]. This however, will not change any result where the
matrix is applied to a vector from the row space, since

M̃y = My + (x⊗ xT)y

= My + (x · y︸︷︷︸
=0

)x ∀x ∈ N (M)

= My.

(5.20)

4Note that a standard eigendecomposition routine is not ideal for a fast calculation of the eigen-
vectors that correspond to the six zero eigenvalues of the Hessian matrix. Using a shift and invert
spectral transformation from ARPACK [Yang et al., 1997], where we choose the number of eigen-
values we are interested in and give a starting point for the search, is considerably faster. The
corresponding implementation in scipy [Virtanen et al., 2020] does not always converge for eigen-
values that are of the same magnitude as the numerical precision (zero eigenvalues). We overcome
this limitation by adding a small noise to the matrix whose nullspace is to be determined.
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5.3. Removing rigid body motions

In our case, we do not apply this rank extension to the Hessian matrix, but instead only
to the sub-block containing the free positions s in Eq. (5.8). Constraining the positions of
beads in c would otherwise conflict with the inhibited degrees of freedom.

The resulting matrix has full rank rendering the linear system (Eq. (5.8)) uniquely solvable.
The solution by construction does not contain any rigid body motions.

There is also a physical interpretation to the nullspace extension of the Hessian matrix. The
way the basis vectors of the nullspace are combined to span the additional matrix is similar
to how the dyades of eigenvectors (scaled with the eigenvalues) are summed for creating
the full matrix. Using the interpretation of the eigendecomposition of a Hessian matrix,
where the collective motions happen along high dimensional parabolae, we can argue that
we are confining the full system by parabolae.

It is indeed even possible to identify the basis vectors of the nullspace explicitly. In the
Cartesian basis with 3 dimensions the vectors generating the translation of a body with N

beads can be written conveniently as 3N dimensional vectors:

τ (x) =


e⃗x
...
e⃗x

 , τ (y) =


e⃗y
...
e⃗y

 , τ (z) =


e⃗z
...
e⃗z

 , (5.21)

with the three Cartesian basis vectors

e⃗x =


1

0

0

 e⃗y =


0

1

0

 e⃗z =


0

0

1

 . (5.22)

Given the positions of the beads

r =


r⃗1
...
r⃗N

 (5.23)

the basis vectors generating the (infinitesimal) rotation of this body can be constructed as
follows

ρ(α) =


e⃗α × r⃗1

...
e⃗α × r⃗N

 , (5.24)

where α indicates {x, y, z}.
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Both methods are implemented and show similar results. Notably, the second method is
faster. If we constrain more than two beads (essentially always true for the binding sites
in proteins) the removal of rigid body motions can be omitted completely, speeding up the
algorithm tremendously.

5.4 Nonlinearities

We discussed in Section 2.5.2 that the ENM is inherently nonlinear. Nevertheless, it is a
model that can only be valid for describing the conformations of a protein maintaining its
instantaneous fold. It is within these boundaries where the ENM, mainly used in hybrid MD
simulations in this regard, has been shown to describe complex nonlinear conformational
motions which can be responsible for the allosteric long-range effects [Togashi et al., 2010].

Using the iterative linear response algorithm developed in Section 5.1we now try to validate
that the constrained minimum energy path indeed reproduces such nonlinear behavior, and
thus represents a fast and accurate alternative for systems where a single-step LRT fails.

The perhaps simplest way to visualize nonlinear behavior is do depict the difference be-
tween the full and the linear solution to the same problem. We compute the response
for the same sequence of input perturbations by updating the Hessian matrix in each step
and using the initial Hessian matrix in all steps. With the response for the first step being
equivalent, we see a growing deviation for larger perturbations. Two examples are shown
in Fig. 5.1a and Fig. 5.1b. Especially for rotational motions (Fig. 5.1a) a description with a
single vector cannot be complete. Notice how the lower arm of the network, constituting
part of the target pocket, deviates from the linear response already for small inputs. Sim-
ilarly, the main difference between the linear and full response lies, (see Fig. 5.1b), in the
motion of beads exerting the allosteric response at the target pocket, where a precise rear-
rangement is actually required themost [Daily and Gray, 2007] This reinforces the demand
for a description that accurately resolves nonlinear motion. This non-uniformity in the ca-
pability of linear response to describe the allosteric motion bears the risk to overinterpret
the results obtained with the linear method—a high overall accuracy might hide the strong
local deviations that occur at the target site, which is apparently extremely susceptible to
deviations.

The differences between the linear and the full response are also evident in the observables
we used for training the networks, i. e. the radii of gyration rgyr of the source and target
site. Figs. 5.1c and 5.1d show these radii for two examples, illustrating especially that the
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5.4. Nonlinearities

(a) First example response trajectory (b) Second example response trajectory

(c) Radius of gyration (first example) (d) Radius of gyration (second example)

Figure 5.1: Examples where linear response fails to describe conformational motions.
While identical in the first step, for multiple steps the deviations can grow substantially.
Especially small local motions at the target pocket are not accurately described by the linear
response. Green lines and circles depict the full response, the orange ones correspond to
the linear response. Note that the radius of gyration is a nonlinear observable itself, thus
both, the lines obtained via the linear and the nonlinear response, show non straight lines.
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Chapter 5. Allosteric Response

Figure 5.2: Manifestations of nonlinearity in the response. The consecutive scalar product
of eigenvectors, (see Eq. (5.25)), shows that these rotate during the response, indicating
that the direction of the flattest path in the energy landscape changes. Eigenvalues change
their value and can even swap, which means the steepness of the potential changes. These
two observables tell us that we are leaving a valley with different slopes and orientations
during the allosteric response.

points where the linear response diverges from the full response can differ substantially
between the networks.

As we have access to the full sequence of Hessian matrices we can explain the observed
nonlinearities using spectral insights along the response path. The local motion inside the
first potential energy minimum is described by a combination of the curvature and the
orientation of the high dimensional instantaneous parabolae. The change of these two
observables is traced in Fig. 5.2, for the first six non-zero eigenvalues. The eigenvalues in
the right panel of Fig. 5.2 exhibit non-monotonic changes, indicating that the slope of the
parabolae against which the system is dragged varies substantially along the lowest-energy
path.

The changes of the eigenmodes are most easily analyzed in terms of the rotation these
undergo during the rearrangements of the network. We therefore plot the scalar product
of the first six non-zero eigenvectors, for their i-th step against the initial one,

α
(i)
k = ⟨v(0)

k |v(i)
k ⟩, (5.25)

see the left panel of Fig. 5.2. The example depicted here shows the different qualitative
changes that may occur during the response, them being almost zero for modes 3 and 4,
a steady rotation as mode 0 does, or strong but abrupt rotations like modes 1, 2 and 5. In
Figs. 5.3 and 5.4 we provide the statistics of these two observables, the change of the eigen-
values and the rotation of the eigenmodes during the response, respectively. Apparently,
the effect of nonlinearity can differ strongly in magnitude between the studied networks.
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5.4. Nonlinearities

Figure 5.3: Statistics over the first five non-zero eigenvalue variations during the response
for all artificial (left) and protein-derived (right) networks. The initial values are denoted
with crosses, the range they cover during the response is plotted.

The interpretation that accompanies these changes is simple but informative: Although we
do not observe any zero-crossing of eigenvalues, meaning that we remain within the initial
energy basin, the complex shape and anharmonicity of this basin carries enough high-
dimensional information to encode complex motions and allosteric behavior. Considering
that proteins actually perform motions that are thought to range across multiple minima,
this might appear as surprising. However, it is conceivable that we are describing just the
first part of the allosteric transition, i. e. the path of leaving the initial basin. The complete
path, described by the full potential (see Eq. A.1), may thereafter potentially lead to a new
basin. For allostery, this lowest-energy exit-path might already be of great importance.

We can thus conclude that that for the existence of nonlinear motion in ENM no barrier
crossing is required, i. e. it can also occur within the first energy basin. This brings us one
step closer towards a fast and accurate method for analyzing the motion of proteins, which
are inherently nonlinear even without considering partial or complete un- or refolding.

No major barrier crossing during macroscopic responses is also highly consistent with the
the observed sparsity of metastable states during the relaxation simulations with the full
ENM potential in [Togashi et al., 2010]. Almost all of the randomly perturbed configura-
tions found their way back to the initial minimum, very few got stuck in metastable states.
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Figure 5.4: Statistics over the rotation of the first five non-zero eigenmodes during the
response for all artificial (left) and protein-derived (right) networks. The initial values are
denoted with crosses, the range they cover during the response is plotted. It seems that
there are three classes of networks, (i) those that do not exhibit eigenvector rotation, for
which a description using only the first minimum is sufficient, (ii) those with an interme-
diately strong rotation, and (iii) those networks that experience rotation until the modes
are essentially orthogonal to the initial ones. These classes are indicated with grey lines.

The elastic energy corresponding to the trajectories was found to deviate from a quadratic
dependence for the nonlinear path, see Appendix A.2.

Our method therefore enters between the naïve linear response and a full-fledged MD
simulation, and is apparently detailed enough to describe complex motions but at the same
time fast enough to allow for complete scanning, i. e. computing responses of all possible
combinations of binding pockets—a task which we will address in Section 5.6.

We briefly recall and clarify the findings about nonlinearities in motions of proteins dis-
cussed in Section 2.5.2 and assess the results in light of these. Comparing against the
empirical conformational changes obtained via PCA of available crystal structures it was
shown that:

[Zheng and Doniach, 2003] Linear response successfully reproduces conformational
changes upon deformation of the binding pocket, and a single soft mode adequately
describes the transition well of F1-ATPase and myosin. However, kinesin shows no
single-mode overlap with the response and a (single-step) linear response cannot
reproduce the conformational motion.

60



5.4. Nonlinearities

[Zheng and Brooks, 2005b] In both myosin and kinesin show a strong coupling between
a pocket mode (obtained by analyzing the subsystem of the pocket in isolation) and
the global modes, although in the case of kinesin more modes are required. In the
case of kinesin not the softest, but actually a slightly stiffer mode (i. e. #10) shows
the highest overlap with both, the conformational change and the highest coupling
to the local pocket mode.

[Togashi and Mikhailov, 2007] In both, F1-ATPase and myosin nonlinearities are present
in the relaxation paths. Nevertheless, a single soft-mode description captures the
qualitative features.

[Togashi et al., 2010] In kinesin the nonlinearities in the relaxation are so strong that
normal mode analysis is not possible within the first energy basin no matter how
many soft modes are combined.

Many plausible explanations for the origin of such nonlinearities have been anticipated so
far:

[Ravasio et al., 2019] A bending in phase space caused by the motion following multiple
modes simultaneously.

[Togashi et al., 2010, Kim et al., 2019] Branching of the potential energy landscape that
leads to motions differing between the branches.

[Miyashita et al., 2003] Combinations of modes (as above) or local unfolding.

[Frauenfelder et al., 1991, Daily and Gray, 2007] The existence of multiple minima in
the underlying energy landscape.

We can reproduce nonlinearities similar to those observed above and add another interpre-
tation that unifies some of those mentioned above. Thinking along the spectral properties
of the Hessian matrix underlying the changing network it is conceivable that the normal
modes rotate during the response. This interpretation is independent of the number of
modes required to show a bending in phase space, even for the case that a single mode
is dominating the allosteric response initially, it can participate in the rotation that modes
undergo during the response and lead to nonlinearities sooner or later. As we do not ob-
serve negative, (not even zero), eigenvalues and do not accommodate for changes in the
connectivity of the ENM, the latter two cases are out of scope for our method.
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5.5 Non-reciprocity

As we argued for the hypothesis in Chapter 3, in order to provide a switch-like control,
allostery should to work in a non-reciprocal manner. This means that the information prop-
agation in form of the conformational change should be transported unidirectionally from
the active site to the allosteric site, and should not travel equally in the reverse direction.
We see that in fact that this is exactly what occurs in the response of the networks, there
is a clear qualitative and quantitative difference between the response to a perturbation at
the source and the target site. An example is shown in Fig. 5.5, where again we chose as
observable the radii of gyration of the two binding sites. The ratio of these two radii differs
greatly between the standard and the inverse pulling setting,5 Fig. 5.6 shows a histogram
over these ratios for all studied networks and demonstrates that non-reciprocity is indeed
the norm rather than an exception. For an exemplary full trajectory of a protein we point
to the Appendix, Fig. A.3.

Figure 5.5: The curves show the radii of gyration of source and target pocket during the
response, for pulling on the source beads (red curve) and pulling on the target beads (blue
curve), examples for both an symmetric (left) and an antisymmetric (right) network are
shown. The inverse pulling induces essentially zero response at the source, indicating that
the allosteric effect in this network in non-reciprocal. This example is representative for
essentially all our trained networks. A trajectory displaying the non-reciprocity of a protein
is given in the Appendix, see Fig. A.3.

Thus, inverse pulling on the target beads does not have the same reciprocal effect on the
source beads as compared to the original setting. We provide a simple explanation for how

5For the input of the inverse setting we use exactly the positions we obtained during the response
of the standard setting.
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this can be encoded in the energy landscape of the ENM and how we resolve it with the
constrained optimization response, Eq. (5.8). The constraint on the fixed beads and the
subsequent energy minimization we enforce on the source beads defines a hypersurface on
which the positions of the free beads must lie. The free beads move along the lowest energy
basin that is available on this hypersurface. Suppose we now, on the contrary, constrain the
target beads to follow precisely their former response. In that case, the hypersurface will
generally be different, and so will be the minimum path because the constraint is different,
essentially orthogonal to the former one. Thus, the trajectories of the respective free beads
will generally not be the same. This follows also directly from Eq. (5.8): Rearranging the
equation for a different set of fixed and free beads, we obtain entirely different blocks of
matrices required for the determination of the free beads.

Figure 5.6: Statistics over the ratios of the final radii of gyration of the two binding sites,
for the standard setting in blue and the inverse setting in green. Histograms are taken over
all studied networks, and demonstrate that here, non-reciprocity is the norm rather than
an exception.

For remotely regulated networks, one might want to distinguish between non-reciprocal
switches and networks that exhibit a symmetric, cooperative effect. For the latter, e. g. ob-
served in the symmetric tetramer hemoglobin, the mechanism appears to be reciprocal at
first. Reciprocity is intuitively expected whenever there is a single soft mode, reminiscent of
an Inextensional Mechanism (IM), underlying the allosteric motion. The mechanism might
still correspond to a high-dimensional trajectory, but it is effectively a one-dimensional mo-
tion as a single parameter suffices to describe it. For such a motion, it does notmatter from
which side it is perturbed; there is only a single degree of freedom which the response
can follow. As long as the perturbation happens along the mode it will be reciprocal. This
argument is in line with the findings of Yan et al., who report solely single soft-modemecha-
nisms for networks which they trained for cooperativity and where both active and allosteric
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sites play a symmetric role [Yan et al., 2018]. Returning to hemoglobin, where the binding
sites are identical, it does not matter which is occupied first; either one induces the change
that allows the next one to bind O2 more easily. Notably, a global soft mode (#2) has
been reported in hemoglobin that shows a high degree of symmetry and causes identical
displacements at all four binding sites [Perahia and Mouawad, 1995]. However, there is a
specific set of residues in the vicinity of the binding sites, that is shown not to participate in
the global soft mode but reacts sensitively to the binding of O2 and thus plays a major role
in inducing the allosteric response [Xu et al., 2003]. Therefore we conclude that, although
the existence of a global soft mode is essential here, it definitely cannot explain the entire
picture.

Unidirectional allostery is known to exist in proteins, shown by both MD simula-
tions [Guo and Zhou, 2016] and in experiments [Hosokawa et al., 2021]. Models employ-
ing unidirectional allostery explain and reproduce experimental data better and with fewer
additional assumptions than the bidirectional counterpart [Koda and Saito, 2020]. This ef-
fect is also well-known in the field of metamaterials [Coulais et al., 2017].

5.6 Specific response scanning
The considerable gain in speed that our iterative quadratic optimization formulation en-
tails for computing the full response allows for large-scale screening applications. The
(iterative) full response provides a substantial advantage compared to single-step linear
response, as for proteins the precise rearrangement at the active site it thought to be im-
portant [Daily and Gray, 2007].

We assume now that the target site is known. The aim is to allosterically control and
rearrange this target in a specific manner. The allosteric (source) pocket is in turn unknown
and to be determined.

Note that enforcing the wanted response at the target site and observing the rest of the
network to deduce the allosteric site is not possible for the trained networks as well as the
protein-derived networks, because the motion is non-reciprocal, see Fig. 5.6. Although it
might work in cases where the mechanism is indeed reciprocal, pinning down an allosteric
site by assuming a bidirectional coupling between them can thus not be in general ap-
plicable [Tee et al., 2018, Ni et al., 2021b]. The method we propose works irrespective of
reciprocity.

In the following we will demonstrate the feasibility of a pre-scan to be used in drug design.
For this purpose, we define the configuration that is targeted by drug design as the final
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configuration at the target site, whichwe also achieve by perturbing the (in our case known)
source pocket. Then, we scan all possible pocket pairs and triplets, for proteins also the
large pockets with a 100 step iterative linear response. Nearest neighbors of the target are
omitted from the scan. The computation time for all 14 proteins and 33 trained networks
was a few hours on a medium sized cluster, negligibly short compared to MD-based scans
requiring weeks to months of computation on the same hardware. The exact number of
scanned pockets per protein is given in Table A.2 and A.1.

We now define the initial configuration of the target site (A = T ) as T0. The final config-
uration at the end of the response are Tfin

i and Tfin
∗ , corresponding to perturbing the i-th

candidate pocket and the true source pocket, respectively. Only the actual configuration
at the target site matters, the response of the rest of the network is irrelevant for drug de-
sign applications. We therefore apply an optimal rototranslation [Kabsch, 1976] in order
to optimally overlay the respective target configurations.

In drug design applications Tfin
∗ is the desired response. We introduce the relative magni-

tude of the response to closing the pair/pocket i as

0 ≤ ∆i ≡
∥∥Tfin

i −T0
∥∥
2∥∥Tfin

∗ −T0
∥∥
2

≤ 1, (5.26)

and the relative distance from the desired response as

Di ≡
∥∥Tfin

i −Tfin
∗
∥∥
2

∥Tfin
∗ −T0∥2

. (5.27)

For convenience we introduce the response specificity µ as

0 ≤ µi ≡ (1 +Di)
−1 ≤ 1 (5.28)

such that the desired response has relative magnitude and specificity one, ∆∗ = µ∗ = 1.

The results are shown in Fig. 5.7, in the form of joint frequency histograms of magnitude
∆ and specificity µ, p(∆, µ) in 5.7 (b,e). Their marginals, p(∆) and p(µ) are shown in
Figs. 5.7, for networks and proteins respectively in panels (a,c) and (d,f).

The histograms are evaluated for ∆i and µi for all i surface pairs and triplets of beads
on the surface of trained networks and for all i binding pockets in proteins. All values
are normalized with respect to the given network, and the statistics are combined for all
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Figure 5.7: Identifying optimal source pockets for a specific allosteric response. Joint fre-
quency histograms of magnitude ∆ and specificity µ, p(∆, µ) (b,e), as defined in Eqs. 5.26
and 5.28 respectively, and their marginals, p(∆) (c,d) and p(µ) (c,d), for networks and
proteins, respectively. The black lines denote the bounds imposed by the three triangle in-
equalities between the norms in Eq. (5.29) and the green arrows point towards the desired
response at (1, 1). A magnification of the desired region is shown in the insets, dots indicate
individual data points.

networks and proteins separately. The region into which all responses fall is described by
the triangle inequalities between the norms6 in Eqs. 5.26 and 5.28, which read

µ(∆i) ≥
1

2 + ∆i

µ(∆i) ≤
1

∆i

µ(∆i) ≤
1

2−∆i
.

(5.29)

The corresponding bounds are depicted with black lines in Fig. 5.7.

Most of the candidate pockets show almost no response ∆ ≈ 0, ranked at around µ ≈ 1/2.
Note that this is in contrast to the observations from [Yan et al., 2018] (SI) who find that a
large response at the active site can be triggered by binding anywhere for networks designed
to propagate displacements, and is far more in line with what is expected for proteins.
There is a considerable amount of pockets which lead upon binding to a strong response,
that is however not in the desired direction caused by the real source (∆ > 0 and µ < 1/2),

6Note that the metric properties after the rotation and translation are maintained, a proof is
given in the Appendix of [Fogolari et al., 2012].
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and is thus only of secondary interest for drug design. Just very few pockets cause a strong
and specific response, ∆ ≈ 1 and µ ≈ 1 as shown in the inset in Fig. 5.7. The trained
networks and proteins display qualitatively similar behavior, except that in proteins fewer
pocket candidates lead to a response that is close to the desired one, possibly caused by a
stronger specificity due to stronger evolution with additional constraints that we did not
account for in our training.

Depending on the desired response in a practical application an optimal result will probably
not be reached. In this case source candidates closest to the optimum have to be considered.
A fallback would be to consider also pockets that only lead to a strong but nonspecific
response, as these still carry allosteric information.
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Propagation and Prediction

As we have seen at the end of Chapter 2, the exact role of normal modes, and especially
the soft modes, in the allosteric response is currently not clear. There is ample evidence
showing that in many systems there is a good overlap between a soft mode or a subset of
soft modes and the allosteric response. However, this can not be considered as a general
principle because there are many counter-arguments and counterexamples demonstrating
the failure of describing complex motion with eigenmodes stemming from the first mode in
the first energy basin. One must account at least for linear combinations of multiple modes.
It may even be that the modes do not play a dominant and direct role in determining the
allosteric response. For the specific rearrangement of the target site, which is essential
for precise control, in general a balanced interplay of many collective modes derived from
multiple expansions along the constrained minimum path might be required.

Additionally, breaking down allosteric motion into single soft modes, such as hinges or shear
mechanisms, has recently been revealed to be an impossible endeavor, as there is no sin-
gle mechanism underlying allostery; instead it is a continuum of mechanisms [Liu, 2021].
Therefore, we do not even attempt to translate the movement into one that is easily dis-
cernible to the human eye, but instead maintain the way of thought of linear combinations
of modes, not necessarily limited to the original, unperturbed configuration.

We found in Section 5.5 that in general allosteric transmission is non-reciprocal, thus in-
dicating that there must be a fundamental difference between the source and the target
site.

In this chapter we develop an analysis that is independent of the number of modes and
allows the investigation of the differences between allosteric source and target sites. We
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find a criterion that distinguishes the allosteric source site from the other binding pockets
and employ it to predict sources in real proteins.

6.1 Local softening of modes
Building upon the findings of non-reciprocity in our trained networks and the implications
this has for directionality of the allosteric response, we now try to quantify the difference
between the source and target site.

Spot-sampled investigations of the trained networks suggest that the soft modes, although
often acting on the length scale of the whole network, tend to involve only the parts where
the target pocket is located. The source pockets do not seem to participate in these soft
modes at all. To quantify this, we calculate the projections of the relevant soft modes
onto both pockets. Reminiscent of the collective springs, which the eigenvalues actually
represent, we refer to small projections, expected at the allosteric sources sites, as local
hardening, while large projections at the target sites are coined local softening.

We define the “local eigenvalues” as

λ̄k(A) ≡
√

NA

N

λk∥∥∥P̂Avk

∥∥∥
2

≡ λk

χk(A)
, (6.1)

where P̂Avk denotes the projection of vk onto a relevant subset A of NA beads, e. g. a set
of source A = S or target A = T beads, and || · ||2 the Euclidean norm. N is the total
number of beads such that for the extremal case of projecting onto all beads NA = N ,
where the projection P̂Avk = 1 due to orthonormal eigenvectors. Moreover χk(A) = 1,
thereby recovering the bare spectrum.

We introduce the local softening of mode k over the set of beadsA ηk(A) = χk(A)−1 (which
is equivalent to the hardeningwhen ηk(A) < 0). The combined effect of the firstM relevant
(that is, they show a pronounced softening/hardening in the spectrum, as illustrated in
panel (c) of Figs. 6.1 and 6.2) modes is described by the dimensionless effective softening
η(A) =

∑M
k=1 (λmin/λk) ηk(A), where M is the upper cutoff beyond which contributions

(to the enclosed area under the respective spectra) are negligible and we neglect the six
zero-modes (i. e. λmin = λ1 > 0).
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(a) initial random network

(b) trained variant: antisymmetric

(c) trained variant: symmetric

Figure 6.1: Local spectra for two trained networks and their ancestor, the initially random
network [Flechsig, 2017].



(a) One of our trained networks

(b) Adenylate Kinase (ADK) (open, apo)

(c) Human Serum Albumin (HSA), (holo, with Warfarin bound)

Figure 6.2: Examples for the local spectra in three networks. Additional examples are
shown in the Appendix A.8



6.1. Local softening of modes

Examples of the localization of the first few relevant modes in trained ENMs are given in
Fig. 6.1 for structures available from the literature [Flechsig, 2017], and in Fig. 6.2a for a
network we trained ourself. Localizations of soft modes in proteins are depicted in Fig. 6.2,
for ADK (Fig. 6.2b) and HSA (Fig. 6.2c).

Figs. 6.1 and 6.2 share the same layout: Panel (a) shows the ENM and its response depicted
in green, where the source perturbation is highlighted in blue and the target’s response in
red. Panel (b) depicts the first four non-zero eigenmodes of the system, with only those
beads drawn that move substantially. The dimensionless mode-softness λmin/λ̄k(A) for all
k up to just above M is shown in panel c, for different sets A. High values in the reciprocal
plot mean soft local modes and vice versa for harder modes. The source A = S (blue)
and target A = T (red) pockets show strong deviations from the full spectrum λmin/λk

where NA = N (black). As anticipated, the soft, allosterically relevant modes show high
projections at the target pockets, indicating that these modes’ motions concentrate there.
On the contrary, the beads of the source pockets experience rather small projections of
the same modes. It is only in the untrained network that we see a qualitatively different
behavior; in Fig. 6.1a the soft modes span the full network and no systematic differences
between projections at different subsets are recognizable.

We also clearly observe that the fraction of modes relevant for the target pockets’ motion
can vary drastically between networks and proteins. The examples we studied only in rare
cases allow to deduce that a single soft mode drives the allosteric response. Matching the
results for the source and target projections nicely is the spectral behavior of the other
proposed pockets in the networks. The averages ± standard deviation of these are shown
for beads (orange), pairs (cyan) and triplets (green) on the surface of trained networks,
and for triplets in the pockets of the proteins. Their lines follow the trend of the full inverse
spectrum and the area that their variance covers in the reciprocal plot lies mostly in between
the source and target pocket spectra.

The dashed lines in panel (c) depict the upper threshold M , up to which we consider
modes to be relevant. These relevant modes represent the modes which enclose 95% of
the area under the corresponding curves. Note that panel (c) is just a small cutout of the
full spectrum, only the first ~25 modes out of 3N are shown with N being on the order of
up to a few hundred.

Panels (d-f) show the local hardening/softening of the four (three for proteins) lowest
eigenmodes for all pockets, and the corresponding total hardness in (g) for proteins. A
pronounced hardening in the vicinity of the source and a softening near the target beads
is evident.
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Figure 6.3: Frequency histograms of local softness/hardness of relevant modes, χk(A) =
λk/λ̄k(A), for the source (A = S, blue ) and target (A = T , red ) pockets evalu-
ated for all trained networks (a) and proteins (b). A two-sample Kolmogorov-Smirnov
test [Smirnov, 1948] yields p-values 5.6×10−16 and 4.4×10−16 for networks and proteins,
respectively, thus confirming that the distributions of χk for the source (A = S, blue ) and
target (A = T , red) pockets are indeed conclusively distinct.

If these findings are significant on a statistical level, we should in fact typically observe
χk(S) < 1, χk(T ) > 1, and χk(T ) > χk(S) for the relevant modes. Therefore we inspect the
empirical distribution of local mode softness, χk, and relative target/source mode softness,
χk(T )/χk(S) (grey insets), over the set of all relevant modes (i. e. k ≤ M ) and all trained
networks and proteins.

The frequency histograms (on a logarithmic χk-scale) are shown in figure 6.3 for trained
networks (a) and proteins (b). Distributions for source (blue) and target (red) beads pro-
vide evidence that the relevant modes are indeed locally softer at the target and harder at
the source sites, respectively.

The apparently big overlap between the distributions might at first seem to weaken the
findings. However, if we study the distribution of the relative target/source mode softness
χk(T )/χk(S) we notice that per mode k, it holds that χk(T )/χk(S) > 1 (on the logarithmic
scale: ln [χk(T )/χk(S)] > 0). We see in the insets that this is almost always the case, which
further supports the conclusion that a relevant mode is softer at the target site than it is at
the source.

We can thus conclude that these results fully confirm our hypothesis, which was that al-
losteric source and target sites are fundamentally different. However, although this softness
gradient already encodes the directionality of signal propagation in the networks—an in-
put perturbation at the target site would simply be translated in a very local response of the
direct neighbors and thus not propagated far—it is not precise enough to pin down exactly
where the true source pocket lies. We see this in panels (d-g) of Figs. 6.1 and 6.2: the hard
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and soft regions do not show pronounced peaks for the actual source and target pockets,
they only classify their overall regions correctly. For accessing such specific information, a
full-response scan as described in Section 5.6 seems to be unavoidable.

6.2 Mode mixing during response

The (iterative) linear response naturally consists of two steps, (i) the perturba-
tion—constraining of the source beads δc, and (ii) the response—relaxation of the rest
of the network δs. According to this partition we analyze the overlaps of the networks’
motion with their eigenmodes, for both the self trained and the protein-derived networks.

Before we can take the scalar product between a 3N dimensional mode and a 3N − F or
F dimensional displacement vector, we fill them up to full dimensionality with zeros, such
that the assignment of nonzero entries and source/non-source beads is correct. All vectors
are normalized. The projection is then

αk = ⟨δri|vk⟩. (6.2)

In order to make networks inter-comparable, the number of eigenmodes must be normal-
ized. Of greatest interest is especially the difference of projections on the softer modes.
Therefore we spread the eigenmode index for each network on a logarithmic scale af-
ter dividing by 3N . The complete mapping for normalizing the mode indices is then
log10

(
9(k−6)
3N + 1

)
for k = 6 . . . 3N . We take the absolute of the square root for the projec-

tions√αk and plot them on a logarithmic axis. The results are shown in panels (c) and (d)
of Figs. 6.4 and 6.5 for the trained networks and the protein-derived networks, respectively.

The first part of our hypothesis, namely that the input couples to stiff modes and relaxes
along soft modes, is convincingly confirmed. The two-dimensional histograms show a de-
cline towards soft modes for the overlap of the eigenmodes with the displacement during
constraining. Note the logarithmic scale; the shifts in the projections for the networks drop
about one and the proteins about half an order of magnitude.

Far more pronounced, however, is the rise in the overlaps during the relaxing step towards
softer modes. The change in magnitude is here almost three decades for the networks
and two for the proteins. Apparently it is more important for the input displacement to
avoid the softest modes than for the relaxation to couple only to higher modes in general.
This can be deduced from the different ranges over which the projections onto low modes
drop and rise, for the perturbation and the relaxation, respectively. This range covers the
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Figure 6.4: Projections of the perturbation (a,c) and the response (b,d) onto the eigen-
modes of the Hessian for perturbations of all pockets (a,b) and that of the real source (c,d).
Data shown for trained networks.

Figure 6.5: Description see Fig. 6.4. Data shown for protein-derived ENMs.
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first two logarithmic mode bins during the relaxation step while the constraining step only
shows pronounced low projections within the first bin. An interpretation for extremely high
modes, condensed to the very right of the plots, is not possible. These are the motions that
are on length-scales where the approximation of the ENM breaks down. However, the most
pronounced difference between the mode coupling of constraining and relaxing lies at soft
to intermediate stiff modes.

The relevance this has for the allosteric effect becomes especially clear when we compare
the projections belonging to other input pockets, which are those not carrying an allosteric
effect (see panels (a) and (b) of Fig. 6.4 and Fig. 6.5, respectively for the networks and
proteins). There we carry out an analogous analysis for all other possible binding pock-
ets, which we determined in Sections 4.2.4 and 4.1.2. The projections belonging to these
pockets show almost no qualitative change over the modes, with an exception being the
relaxation of the proteins, where we see a small jump towards higher modes at the first
bins. The projections are still extremely small when compared to the relaxation of the real
source beads.

These findings indicate that the response to closing random (aka non-allosteric pockets) is
short ranged and dissipates directly in the vicinity of the pocket, caused by the nonspecific
mixing with both soft and stiff modes. The concerted interplay that is needed to couple stiff
to soft modes is specific for the real allosteric source pocket.

Now we can incorporate the fact that higher modes tend to localize at smaller length scales
in the system and are located around regions with stronger stiffness, as described in Sec-
tion 2.5. Although the catalytic motion at the active site of proteins seems to happen along
the soft modes, these intermediate high modes are not unimportant for the dynamics of the
protein. For long-range mechanical interactions in ENMs of allosteric proteins they indeed
seem to be crucial.

These findings shift the paradigm of allosteric signal propagation in networks and proteins
from a purely soft-mode based version towards a two-step thinking, which differentiates
strongly between the allosteric in- and output. Nevertheless, these results do not per se re-
quire more information than is available in the first minimum; these overlaps are generated
with a single step of the displacement based linear response algorithm. A quick scan over a
~300 amino acid protein is performed in minutes on a standard personal computer. Only
for a more detailed investigation of the motion in the target pocket a nonlinear approach
must be employed, as we saw in Section 5.6.

Considering that normal modes are—as the name suggests—orthogonal to each other, in-
teraction between modes may sound non-intuitive at first. As soon as only parts of the

77



Chapter 6. Propagation and Prediction

eigenvectors are taken into account however, the orthogonality relation does not exist any-
more.

Studies of allosteric structures and their modes which are performed only at equilibrium
may therefore be restricted to insights that involve only part of the important modes.

Remembering first, that in our response algorithm the perturbation δs = s − s(0) and the
response of the system δc = c− c(0) are related by

δs = −S−1BTδc (6.3)

and second that δs couples to the soft modes while δc couples to all but the soft modes,
we can gain some insight into where the mixing between soft and stiff modes actually
happens and what this means for the selectivity of the allosteric source pocket. BT is a
thin matrix (∈ R3N−F×F ) that takes the input δc (∈ RF ) and distributes it to the rest
of the 3N − F beads. Thus BT must contain entries which allow for the real allosteric
input δcallo to selectively avoid loading the wrong (soft) springs. The relaxation over the
inverse S−1 allows then to receive the loaded springs and—again selective for the allosteric
input—transfer their energy into motion along softer modes. The orthogonality condition
is thus bypassed by switching to the lower dimensional vectors δs and δc and the mixing
occurs via the matrices S−1BT.

The idea of an energy flow between modes is not entirely new, in the context of compar-
isons to modes in crystals such behavior has been proposed for proteins [Bahar et al., 1998]
but was not pursued further. Our findings are also consistent with the reported interaction
between the nucleotide binding pocket of myosin and the rest of the protein if one inter-
prets the arising suppression of motions in the pocket in the presence of coupling between
both subsystems [Zheng and Brooks, 2005b]. Even the puzzling role of a specific set of
residues in hemoglobin, as indicated in Section 5.5, which are known not to participate
in the global soft mode [Perahia and Mouawad, 1995] but react sensitively to the binding
of O2 [Xu et al., 2003], can potentially be explained when accounting for a mixing of the
locally available stiff modes with the global soft mode.

6.3 Efficient energy transfer

The second part of the hypothesis was related to the energy-uptake at the allosteric site and
the transfer of this energy towards the active site. We postulated that allosteric networks
are designed in a way that they provide the collective lever which specifically transmits the
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energy available from an input displacement at the real source towards the target pocket.
Thus, we expect a high energy change for both, constraining and relaxation. It is straight-
forward to test this prediction, by analyzing the change in energy related to the two steps
of the response.

The energy change during the constraining step is

δU(δc) =
1

2
δcTCδc, (6.4)

and during relaxation step (with δr split in δc and δs, and H split in S, B, BT and C)

δU(δs) =
1

2
δrTHδr − 1

2
δcTCδc

=
1

2
δsTSδs+ δsTBTδc

= −1

2
δcTBS−1BTδs

, (6.5)

where in the last step we used the definition of the linear response to replace δs.

For a given input displacement δc an allosteric network should fulfill:

sup
C

{
δcTCδc

}
∧ inf

C,B,S

{
δcT

(
C− BS−1BT

)
δc
}
.

Again we compare between possible pocket candidates of the structures and the known
allosteric binding pocket, for both protein and trained ENMs. The comparison between
source candidates and the real source is carried out via the ratio of the respective change
in energy, δUA/δU source where A is the set of beads belonging to the tested pocket. To keep
the test perturbation comparable between the different scanned pockets, we always pull
each pockets’ beads towards their center of mass until their radius of gyration is decreased
by a specific amount which is fixed by the structure. Specific values are given in Tables A.1
and A.2. In order to rule out trivial effects caused by different pocket sizes we divide the
energy by the number of beads we are pulling, normalizing the energy change to a “per-
bead” energy change.

Figs. 6.6 and 6.7 show histograms over the “per-bead” energy change for the constraining
(orange) and the minimization (green) step, combined for all artificial allosteric networks.
The energy changes caused by closing the real source pocket are indicated with dashed
lines at ±1. We can clearly observe that there is a significant trend for the relative energy
changes of the non-allosteric binding pockets towards smaller values. The effect is not
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Figure 6.6: Histogram of energy changes for trained networks

Figure 6.7: 2D Histogram of energy changes for trained networks
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Figure 6.8: Histogram of energy changes for protein-derived networks

Figure 6.9: 2D Histogram of energy changes for for protein-derived networks
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as strong for the constraining step as it is for the relaxation step. The long tails of the
distributions, especially for the constraining step, indicate that there are also other beads
that can induce displacements to the networks that lead to large energy changes. However,
it is not guaranteed (for the trained networks) that the high energy caused by the input
displacement also allows for a strong relaxation, as the relaxation distribution has a far less
pronounced tail. The observation becomes evident from the shape of the distribution in the
two-dimensional histogram in Fig. 6.7. We confirm, as anticipated in the previous section,
that a high energy input is not a sufficient but only a necessary condition for allostery. The
strong relaxation on the contrary has already as a prerequisite a high energy rise during
the constraining step, rendering it a sufficient condition for an allosteric source, as we will
see in Section 6.6.

Figs. 6.8 and 6.9 show the equivalent analysis for the protein-derived networks. The same
effect is observable here, but is far more pronounced. The distributions are essentially
symmetric, meaning that most of the binding pocket candidates do neither introduce nor
transmit much energy through the network. The two dimensional histogram in Fig. 6.9
confirms this; there is almost a linear relation between input and relaxation. A possible
interpretation for the superiority of proteins might be caused by the better training over
longer timescales and with stronger selectivity of natural evolution.

Taken together with the results of the last section, these findings fully confirm our hypoth-
esis that the coupling of stiff to soft modes allows allostery to efficiently propagate input
displacements from the source to the target site.

Conditioning on µ and ∆

Fig. 6.10 shows the effect that conditioning the responses on either high ∆ or µ have, sim-
ilar as in Section 5.6. For all histograms we see a shift toward higher absolute values of
the energy change, confirming that these high-energy pocket candidates indeed propagate
allosteric signals specifically to the target site.

6.3.1 Subsample source pocket

To eliminate any further concerns, we take a closer look at the source pocket. We have
indeed not scanned the large pockets found in Section 4.1.2 as a whole, but generated
within them various combinations of how a ligand may bind there. The real source pocket
is somewhat larger than these combinations, see Fig. A.7. Throughout we have always
divided by the number of perturbed beads, their actual number thus should have no effect.
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Figure 6.10: Conditional probability histograms of the energy changes during loading and
relaxation for high ∆ (left column) and µ (right column) shift towards higher values for
both trained networks (upper row) and protein-derived networks (lower row), respectively.

However, a further control is advisable to check whether other possible effects caused by
the pocket size differences do occur. Therefore we inspect the source pocket again by
scanning across all combinations of triplets possible with the pocket’ beads, equivalent to
the sampling performed within the larger binding pocket candidates.
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Figure 6.11: Histogram of energy changes for protein-derived networks (source subsam-
pled)

Figure 6.12: 2D Histogram of energy changes for for protein-derived networks (source
subsampled)
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In general, just because the source beads are found to bind to the ligand, that does not
mean that all of them are equally important for transmitting the allosteric signal. It could
also be that only a subset of them is actually responsible for loading stiff collective springs.
Along these lines we can also interpret the results from the sub-sampling of the source
pocket shown in Fig. 6.11 and 6.12. We see a significant difference with respect to the
other pockets in the distributions of the energy change for the relaxation step and recover
the known trend for the energy input during constraining. This means that indeed not all
of the source beads contribute equally. Rather there exist critically important beads within
the source pockets which are accountable for most of the energy input. If we do not pull
these critical beads, but the other source pocket beads, which are however connected to
the critical ones, the energy does not increase immediately during the constraining step,
but only afterwards in the minimization step, that is, when the critical beads follow. In
this respect, the (relaxation) movements of the critical beads compensate for the absence
of energy input from the constrained, non-critical beads in the source pocket.

6.3.2 Large pockets

Another complementary check would be to directly perturb the large pockets and study the
energy changes caused by them. We find that there is no qualitative difference between
scanning smaller parts of the possible binding pockets and the whole binding pockets, as
shown in Figs. 6.13 and 6.14. The exceptionally high values for energy uptake and release
when pulling the real source pocket in contrast to almost all other pockets is still more than
pronounced. This excludes a possibly trivial pocket-size effect.
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Figure 6.13: Histogram of energy changes for protein-derived networks (large pockets)

Figure 6.14: 2D Histogram of energy changes for for protein-derived networks (large
pockets)
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6.4 Illustrative example
To get an impression of the spatial distribution of the energy changes induced by the per-
turbation and subsequent relaxation for different pocket candidates in a network, we will
take a protein-derived network as an example. Fig. 6.15 depicts these observables in Hu-
man Serum Albumin (HSA) (PDB ID 2BXD [Ghuman et al., 2005]), a monomeric protein.
Panel (a) shows a cartoon representation of the protein with geometrically determined (see
Section 4.1.2) binding pocket candidates, shown in color are the largest 9 out of a total of
77 analyzed pockets. The elastic network derived from the protein structure is shown in
panel (b), coarse grained on a residue level, the beads are located at α-carbon positions.
Colored beads constitute the potential binding pockets matching panel (a).

The input perturbation at the allosteric site (source pocket, blue beads) and the net-
work’s nonlinear response (green trace) is shown in panel (c), with beads at the active
site (target pocket) highlighted in red. The experimentally known binding sites for the
allosteric ligand (warfarin) and the regulated ligand (heme) constitute the source and tar-
get pockets, respectively (Information about the binding sites’ residues can be obtained
from [Ascenzi and Fasano, 2010]).

The fist four softest (nonzero) eigenmodes of the Hessian matrix of the network in panel
(b) are superimposed with the structure in panel (d), only substantial motions are shown.
Notice the lack of soft-mode participation of the source pocket beads. The impact of con-
tractions of possible binding pockets on the potential energy of the network, for loading
the springs around the source pocket in panel (f) and relaxing the network in panel (e),
colors indicate the magnitude of the change in potential energy relative to closing of the
real source pocket. The statistics over (e) and (f), respectively in green and orange his-
tograms (analogous to Fig. 6.8) in panel (f), again we see that only a few pockets show a
substantial change in energy.
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Figure 6.15: Example depicting the energy changes in a protein-derived network. For a
detailed description refer to the text.



6.5. Interpretation

6.5 Interpretation
Our approach differs systematically from previous attempts to understand allostery in me-
chanical networks. Splitting the motion into perturbation and response allows us to draw
a connection between previously unrelated facts. The conjecture that virtually all proteins
exhibit allostery [Gunasekaran et al., 2004] and the fact that it is remarkably tractable to
assign allostery into artificial1 networks [Rocks et al., 2017] raises the questions about their
common properties and why allostery is so ubiquitous in a wide variety of networks.

It has long been known that proteins are very similar in certain properties: They exhibit a
similar vibrational spectrum from low to intermediate frequencies [Ben-Avraham, 1993];
the associated soft modes, which propagate over the entire length scale, tend
to be relevant to protein function [Nicolay and Sanejouand, 2006, Na et al., 2018];
harder modes typically localize at smaller length scales near more rigidly connected
structures [Bartlett et al., 2002, Yuan et al., 2003] due to the presence of inhomo-
geneities [Anderson, 1978, Anderson, 1958].

These are also the properties in which artificial networks and proteins are similar. We also
saw that in both a specific allosteric response emerges from an elaborate interplay of harder
modes that transmits input displacements from the allosteric source pocket to the active
target pocket through the soft modes.

The existence of soft global and stiffer local modes belongs to the intrinsic properties to
inhomogeneous media like proteins. It is not far-fetched to assume that nature takes ad-
vantage of this. These ingredients apparently do not need to be mixed strongly for allosteric
effects to arise. Due to the high number of stiff modes these are available throughout the
networks for being coupled to the softer ones by means of small mutations. Thereby it
is possible to impose directionality through coupling from stiff to soft, and incorporating
specificity through selecting critical residues at the source pocket. This enables proteins to
be controlled precisely, just as the cell demands.

1Even more impressive is the successful design of a new allosteric site into a pro-
tein [Zhang and Bishop, 2007].
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6.6 Predictive power

Using the specific role of the source beads, it is possible to predict possible source pockets.

To do this, we require a means to rank source pocket candidates by how much energy
the network releases during the relaxation step2 after we perturbed these source pocket
candidates’ beads during the constraining step. The data we have, however, is on a pair or
triplet (with a few exceptions also quartet and quintets) basis. There is no unique way to
reduce this data to a bead basis. We try to provide the simplest mapping: We rank pocket
candidates, which is easy to do from the individual proteins’ data in Fig. 6.8, and append
for each of the pockets the respective beads as an ordered list. If a bead is already in the
list it is not appended again. This permits a complete ranking of all the sampled beads.
The beads at the front of the list are now highly likely to be source beads, according to our
prediction.

To generate a binary assignment, we now need to decide on a threshold that classifies
beads into source beads and non-source beads. For a Receiver Operating Characteris-
tic (ROC) analysis [Park et al., 2004], this threshold is traversed, and the predictions are
subsequently evaluated. They fall into the classes of true and false positives which are
exactly the coordinates of the ROC plot.

A perfect classifier would give only true positives and zero false positives, i. e. a step func-
tion in the ROC graph. A random selection would give a straight line with slope one half.
Classifiers that lie above this straight line are better than a random guess and the closer
the ROC curve is to the step function (easily measured in terms of the Area Under Receiver
Operating Characteristic curve (AUROC)), the better the classifier performs.

The prediction of source beads based on their energy-release performs extremely well, as
can be seen in Fig. 6.16. The ROC curves for all proteins are far better than a random guess
and reach high values for the AUROC values, with all of them being larger than 0.7. Our
method performs significantly better than a recent study with a similar aim, which is relying
on the reciprocity of allosteric signal propagation [Tee et al., 2018]. This is surprising as
there is remarkably little information entering the analysis. Essentially, only a single step
of the linear response algorithm is needed to access this information.

2Or by how much energy they contribute to the network in the constraining step. The results
are similar on average, but show a larger variance. See Section A.10 in the Appendix. As the strong
relaxation during the relaxation already requires a strong loading during the constraining step, and
thus includes information of both events, we expect the relaxation energies to be more relevant.
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Figure 6.16: The Receiver Operating Characteristic (ROC) curve is an effective method of
illustrating the performance of a binary classifier [Park et al., 2004]. (a) shows the curves
for all proteins used in this work. Crosses mark the optimal threshold per protein. The
grey shaded area in (b) shows the mean (vertical averaging [Fawcett, 2006]) of the ROC
curves, ± standard deviation. The inset in (b) shows the Area Under Receiver Operating
Characteristic curve (AUROC) values which are astonishingly high for a classification that
relies only on a single initial structure per protein.

6.7 Scoring residue conservation

In evolutionary biology conserved sequences refer to identical or similar sequences found
in proteins or nucleic acids (RNA and DNA) across different species. A conserved sequence
is an indication that this sequence is selectively maintained; the interpretation is that this
sequence is functionally relevant for the protein3

To check whether the residues that we predict to be crucially relevant for the allosteric
action, we evaluate the degree of conservation of their corresponding part of the sequence.
We first search for and retrieve amino acid sequences that are similar to each protein with
Basic Local Alignment Search Tool (BLAST) [Ye et al., 2006], and subsequently employ
Clustal Omega [Sievers and Higgins, 2014] to do a Multiple Sequence Alignment (MSA).
In order to extract the data that is important for the respective protein of interest, we cut
out the part from the MSA that corresponds to the sequence of this protein.

3This interpretation that has to be approached with caution, as there are also non-
coding sequences on the DNA level that are conserved—at first sight without functional rele-
vance [Asthana et al., 2007].
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Figure 6.17: Boxplots illustrating the statistics over the mean degree of conservation per
group of beads and proteins. The degree of conservation is given relative background mu-
tation rate, i. e. to the average conservation of the full sequence. Notice that the predicted
source beads are conserved with a higher rate than the real source beads. This could be
related to the finding in Section 6.3 where we saw that not all source beads contribute
equally to the energy input, some where drastically more important than others.

We then first calculate a background mutation rate which is the average degree of conser-
vation of the full sequence, i. e. the ratio of how often the residue we have in our original
sequence occurs at the same spot in the other sequences. Then we divide for each predicted
source pocket residue its mutation rate by the backgroundmutation rate; values larger than
one correspond to a conservation that is more than average.

We find that the real source pocket residues are conserved more than the average, with a
few exceptions. The beads we predict as source beads are conserved with the same or an
even slightly higher rate. This may be interpreted as that not all of the residues in the source
pocket are important for allostery although the ligand binds to them, especially when seen
in context of the findings in Section 6.3, where we saw that not all of the source beads
directly contribute to the energy input.
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Conclusion and outlook

7.1 Conclusion
The following quote nicely summarizes what we have achieved in this thesis; and it reminds
us of the ultimate goal of drug design, towards which we have made an important first step.

Perhaps, as we learn more about allosteric systems it may become possible to
develop algorithms to distinguish allosteric from active sites, and to design novel
triggers to inhibit or activate proteins as required. [Laskowski et al., 2009]

Indeed, we have shown that in order to understand the mechanical basis of allostery, it
was essential to assume a fundamental difference between allosteric and active sites. This
in turn allowed us to accurately predict the actual allosteric sites in proteins by analyzing
solely the energy transfer in a single structure.

So, finally, we are able to answer quite precisely the questions we originally posed. First of
all, the question of where the allosteric effect should appear has turned out to be only of
secondary importance. On the one hand, often this particular effect and the actual site is
already known in the proteins of interest which are to be controlled by drugs, and, on the
other hand, it is much easier to predict, since the resolved structures often show distinct
conformational transitions just there. Nevertheless, spectral analysis can still provide valu-
able clues here, even from a single structure, as the active site is predominantly located in
the regions where the global soft modes exert their effects. A more precise prediction of
these sites is not possible, since the effect of the soft modes is often extended over a larger
area.
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The input for the allosteric regulation is notoriously harder to predict as it does not partic-
ipate in the well-studied and well-behaved soft eigenmodes. As the input couples to stiffer
modes, it is impossible to predict a priori without a perturbation-based response which part
of the protein is important—there are simply too many possibilities. However, as already
indicated, the question of where to induce an allosteric effect can be answered with high
precision. Excitingly, this is possible even without knowing the active location and works
for holo (ligand-bound) structures as well as for apo (ligand-free) structures. A scan in-
volving all possible binding sites of a protein, each of which undergoes a perturbation by
contracting, allows the allosteric sites to be identified. The corresponding residues only
have to be ranked according to how strongly the mechanical energy relaxes again after a
perturbation.

The observations of the last chapter have confirmed our hypothesis that allosteric networks
are exceptionally efficient at first receiving the mechanical energy associated with input
deformations via stiffmodes and then releasing it back to the targeted region via soft modes.

This also relates to the answer to the third question, about how the mechanical signal is
propagated. Indeed, allosteric networks are optimized to accept displacements at a cer-
tain location particularly well and to load the collective springs in the vicinity of this site,
whereupon the network converts the mechanical energy efficiently into long-range motion
by coupling the local, stiff modes to soft, global modes. Allostery is thus at least to some ex-
tent a non-equilibrium phenomenon that only becomes fully apparent upon perturbation,
assessments in equilibrium can, if at all, only account for half of the picture.

We have also seen that, depending on the system, the allosteric response can proceed either
along a singlemode or along a combination of several modes, and in some cases cannot even
be describedwith themodes from the first energyminimum butmay require a full nonlinear
description. We have found the explanation for this in the rotation of the eigenmodes during
the response itself, which varies strongly in magnitude between the studied networks.

As we have seen, the origin of long range coupling between binding sites in elastic net-
works is identical for protein-derived and artificial structures. Thus, the assumption that
the essential properties of allostery are captured in the ENM is well justified. Last but not
least the question arises, why the coarse-grained description actually works so well for de-
scribing allosteric motions, considering that the passage of barriers—usually regarded as
essential—was not observed during the responses. The answer is found in the smoothening
effect that accompanies every coarse-grained model1; local variations in the energy land-
scape are inherently flattened for residue level descriptions of proteins and especially ENMs

1This effect is depicted in Fig. A.9 in the Appendix.
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are known to be capable of sampling nearby configurations that are otherwise separated by
local energy barriers [Xu et al., 2003]. Our formulation for determining the response of
proteins to perturbations now pushes the boundaries of what “nearby” refers to.

7.2 Outlook

The first straightforward application of the newly won knowledge would be to approach
the evolutionary training of artificial networks from a spectral perspective. How exactly do
the predicted observables (efficient energy transfer and mutual exclusive eigenmode pro-
jections) change during the training, and how, when and where does the selective coupling
between stiff and soft modes emerge? This could also give the answer to the question why
it is so remarkably easy for networks to adapt allosteric behavior [Rocks et al., 2017]; fi-
nally this could hint towards the reason for the ubiquity of allostery in proteins and other
macromolecules. Coupled to this question is the naturally arising question of whether it
is possible to pinpoint which modes exactly couple to each other and which residues are
involved? The (probably nontrivial) answer must lie in the special structure of the two ma-
trices S and B, (in Eq. 5.8) as they connect between the input δc and the response δs. Yet
another extension related to the evolutionary training addresses entropic allostery. Is it pos-
sible to train for allostery without a conformational change [Cooper and Dryden, 1984], if
we adopt a different cost function during training that addresses primarily the suppression
of fluctuations?

Another interesting extension is to use the developed method to make quantitative and
measurable predictions, by including the statistical mechanics description of the binding of
ligands explicitly. Foundations for this work are developed in [Olaussen and Stell, 1991,
Okazaki and Takada, 2008, Gilson et al., 1997], the computation of binding affinities and
eventually Hill-curves [Hill, 1910] based on the configurations of the different allosteric
states, should therefore be possible.

The underlying model, the ENM, could itself be extended in various ways to allow for
more complex behavior, e. g. (partial) un- and refolding or the occupation of different,
empirically known conformational states. The former might be incorporated by allow-
ing either for an adaptive connectivity2, or, with different types of springs, e. g. by intro-
ducing breakable springs, following [Poma et al., 2018]. Describing conformational mo-
tion covering multiple distinct energy basins is possible by iteratively combining ENM of
different structures, e. g. the two allosteric states of proteins (assuming multiple experi-

2This is implemented in the software already.
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mental structures area available), which goes along the lines of [Miyashita et al., 2003].
A possible implementation could linearly interpolate between the respective two ENMs
by scaling their spring constants like it is e. g. done with λ-dynamics in MD simula-
tions [Kong and Brooks III, 1996, Kohnke et al., 2020], where the protonation states of the
titratable group can be varied continuously.

As discussed, the incorporation of implicit solvent models into the Hessian matrix is in
principle possible. However, due to the computational overhead, another approach might
be more promising. The covariance matrices of trajectories generated in MD simulations
provide, upon diagonalization, access to eigenmodes that are similar to the normal modes
of ENM. These so called principal components encode collective motions according to their
variance and no harmonic approximation is implied. It is quite likely, that an equivalent
analysis of these PCA modes confirms our findings with higher chemical detail.

However, the convincing success in predicting potential allosteric sites calls for an immedi-
ate application to computational drug design.
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Appendix A

Appendix

A.1 Semiempirical potential energy function

These potential energy function used in MD simulations describe in high detail the molec-
ular interactions between the atoms in an assembly of molecules and have the form

Uff(r) =
∑
b

1

2
Kb(b− b0)

2

+
∑
θ

1

2
Kθ(θ − θ0)

2

+
∑
ζ

1

2
Kζ(ζ − ζ0)

2

+
∑
ϕ

Kϕ(1 + cos(nϕ− δ))
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pairs: ij

qiqj
4πϵrϵ0rij

+
∑

pairs: ij
4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]

.

(A.1)

The terms can be separated into bonded and non bonded interactions. The first four terms
in Eq. (A.1) represent the bonded interactions, summing over the bonds b, the angles θ, the
improper dihedral angles ζ and the dihedral angles ϕ. The angle δ is the regular value of
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the respective dihedral angle, rij is the distance between the two atoms i and j. The non-
bonded interactions are taken into account with the last two terms in Eq. (A.1), where the
sum is taken over all pairs of atoms i and j. They represent the Coulomb and the Lennard-
Jones potential, where the latter approximates quantum mechanical effects. It consists of
an attractive part, representing the London dispersion forces (van der Waals forces) and a
repulsive term, accounting for the Pauli exclusion principle. ϵr is the dimensionless relative
permittivity of the material in which the charges qi are immersed, ϵ0 is the electric constant,
εij is the depth of the Lennard-Jones potential well, σij is the distance at which the inter-
particle potential is zero. A nontrivial amount of both theoretical and experimental studies
is devoted to deriving the constants in Eq. (A.1). The routines for NMA are for quite some
time included in state of the art MD software [Van Der Spoel et al., 2005, Hess et al., 2008,
Pronk et al., 2013, Abraham et al., 2015], often different potentials and solvent models are
available.
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A.2 Eigenvalue spectra

Figure A.1: The eigenvalues of the Hessian matrices are plotted on a logarithmic scale,
normalized with the first non-zero eigenvalue. Spectra of all studied networks are deter-
mined, different networks are indicated with colors. Artificial networks are shown on the
left, including those from [Flechsig, 2017] and protein-derived networks on the right. Note
that there are no qualitative differences between these sets. A spectral gap between the
first and subsequent eigenvalues can be observed for some networks, however, this is ap-
parently not a necessary condition for allostery.
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A.3 Structural data

A.3.1 Proteins from the PDB
Table A.1: Overview over the parameters of the proteins we analyzed in this work. rc is
the cutoff length, in Å. N is the total number of beads, NT and NS the number of beads
composing the target and source pocket, respectively. Ns andNp are the numbers of pocket
candidates, subsampled pockets and original pockets, respectively.

Name PDB state rc N NT NS Ns Np Reference
HSP90 2ior holo 9 228 3 9 1397 33 [Shiau et al., 2006]
MetJ 1cmc apo 10 104 3 10 640 23 [Rafferty et al., 1989]
PurR 1wet holo 11 338 27 5 2776 48 [Schumacher et al., 1997]
HSA 1n5u holo 9 583 16 14 3523 51 [Wardell et al., 2002]
HSA 2bxd holo 9 578 16 8 4169 77 [Ghuman et al., 2005]
HSA 2bxg holo 9 578 16 14 3168 68 [Ghuman et al., 2005]
ADK 4ake apo 8 214 4 5 1390 27 [Müller et al., 1996]
ADK 1ake holo 8 214 4 5 1145 29 [Müller and Schulz, 1992]
MyoV 1oe9 apo 9 730 3 31 5192 110 [Coureux et al., 2003]
MyoV 1w7j holo 9 752 3 31 6065 116 [Coureux et al., 2004]
PGK1 4o33 holo 9 417 6 21 3029 53 [Chen et al., 2015]
PDK1 3hrf holo 14 287 4 10 1388 24 [Hindie et al., 2009]
LacR 1efa holo 10 328 10 14 2154 47 [Bell and Lewis, 2000]
LacR 1tlf apo 10 296 10 14 1161 47 [Friedman et al., 1995]
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A.4 Artificial allosteric networks
Table A.2: Overview over the parameters of the networks we analyzed in this work. rc
is the cutoff length, unitless. N is the total number of beads, NT and NS the number of
beads composing the target and source pocket, respectively. Nsp and Nst are the numbers
of pocket candidates, bead pairs and triplets, respectively.

ID variant rc N NT NS Nsp Nst origin
1 anti 1.63 120 2 2 206 206 packed spheres
2 symm 6.0 95 3 3 376 376 trained pseudo protein
3 anti 6.0 94 3 3 295 295 trained pseudo protein
4 symm 6.0 89 3 3 224 224 trained pseudo protein
5 symm 6.0 142 3 3 201 201 trained pseudo protein
6 anti 6.0 142 3 3 309 309 trained pseudo protein
7 anti 6.0 180 3 3 530 530 trained pseudo protein
8 symm 6.0 93 3 3 461 461 trained pseudo protein
9 anti 6.0 154 3 3 315 315 trained pseudo protein
10 symm 6.0 100 3 3 540 540 trained pseudo protein
11 symm 6.0 99 3 3 401 401 trained pseudo protein
12 anti 6.0 94 3 3 294 294 trained pseudo protein
13 symm 6.0 93 3 3 535 535 trained pseudo protein
14 symm 6.0 147 3 2 495 495 trained pseudo protein
15 symm 6.0 94 3 3 330 330 trained pseudo protein
16 symm 6.0 99 3 3 332 332 trained pseudo protein
17 symm 6.0 154 3 3 465 465 trained pseudo protein
18 anti 6.0 89 3 3 288 288 trained pseudo protein
19 anti 6.0 93 3 3 461 461 trained pseudo protein
20 anti 6.0 95 3 3 317 317 trained pseudo protein
21 anti 6.0 99 3 3 400 400 trained pseudo protein
22 anti 6.0 100 3 3 480 480 trained pseudo protein
23 symm 6.0 135 3 3 571 571 trained pseudo protein
24 symm 6.0 88 3 3 187 187 trained pseudo protein
25 symm 6.0 87 3 3 244 244 trained pseudo protein
26 symm 6.0 169 3 3 386 386 trained pseudo protein
27 anti 6.0 147 3 2 427 427 trained pseudo protein
28 anti 6.0 99 3 3 353 353 trained pseudo protein
29 anti 6.0 87 3 3 234 234 trained pseudo protein
30 anti 6.0 169 3 3 382 382 trained pseudo protein
1F anti 9.0 200 2 2 845 2204 [Flechsig, 2017]
2F symm 9.0 200 2 2 892 2691 [Flechsig, 2017]
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A.5 Energy rise during response

Figure A.2: Slope of the energy rise during response, normalized with the slope during the
first step. Left for the artificial networks, right for the protein-derived networks. Deviations
from a pure quadratic rise are visible.
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A.6 Non-reciprocity in myosin V

(a) Perturbation at the allosteric site (b) Outer sphere

Figure A.3: Non-reciprocity in the response of myosin V [Coureux et al., 2004].
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A.7 Comparing heatbath with allosteric effect

Figure A.4: To obtain distance fluctuations during the response, we evaluate the equilib-
rium fluctuations as derived in section 4.3 along the computed path.
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A.8 Local spectra

A.8.1 Evolutionary trained networks
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Figure A.5: Overview of local spectra in evolutionary trained networks
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A.8.2 Protein-derived networks
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Figure A.6: Overview of local spectra in protein-derived networks
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A.9. Pocket size distributions

A.9 Pocket size distributions

Figure A.7: Pocket size distributions for the proteins.
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Chapter A. Appendix

A.10 ROC curves for energy change during constrain-

ing
The ROC curve for the prediction based on energy input during the constraining step.

Figure A.8: For an explanation refer to Fig. 6.16. Results are similar on average but with
a larger spread.
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A.11. Smooth energy landscape

A.11 Smooth energy landscape

Figure A.9: Coarse-grained models smoothen the energy landscape, small barriers and
local minima effectively disappear. Figure from [Kmiecik et al., 2016]

115





Appendix B

Software

After publication, the software accompanying this thesis will be available as an open-source
python package at:

https://gitlab.gwdg.de/mvossel/elastory.
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