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Abstract

Using cryo-electron microscopy (cryo-EM), it is possible to resolve structures of biological

macromolecules by averaging numerous projections of macromolecules (particle images)

frozen in vitrified ice and imaged using the electron microscope. Developments over the

last years have thereby sparked a so-called “resolution revolution”. Nowadays, reaching

(near) atomic resolution for a large range of protein complexes has become a standard

practice for structural biology and a complementing technique for X-ray crystallography.

These developments entail developments in microscope hardware, such as direct electron

detectors, that allow for single electron detection (counting) and therefore a much reduced

radiation dose. Algorithmic developments as well as improvements in computer hardware,

however, have greatly improved the in silico processing of samples. Especially relevant

is the ability to quickly process datasets of hundreds of thousands of particles by using

efficient processing algorithms as well as computation on graphic processing units (GPU).

Due to the low electron dose used in cryo-EM experiments today, the signal-to-noise ratio

is low and accurately reconstruction of the high resolution features entails, among other

things, to average numerous particle images to increase this ratio.

In single particle cryo-EM each particle image originates from a biological copy of the

macromolecule under investigation. Ideally, these copies would be exact, i.e. each macro-

molecule is exactly the same as all other copies. Otherwise, during reconstruction, averag-

ing of projections will result in blurry reconstructions. In reality, however, this assumption

cannot hold. Especially when active proteins or protein complexes are under investigation,

it can be expected that the set of projection images originated from a homogeneous set

VII



of macromolecules that are in different conformational states, have different occupancy or

have certain regions that could undergo free movement prior to being frozen in the ice.

Effort has gone into the development of classification techniques which aim to divide the

dataset in such a way that within each class, the assumption of exact copies holds again.

Alternatively, subsections of the structure that are in themselves rigid are refined individ-

ually. Both approaches only handle free movement suboptimally, though. Classification

cannot divide a dataset such that there is no residual movement within each class and

refining only sections of a structure does not give a global reconstruction.

In this work, I explore a pseudo atom based approach to reconstruction. The volume to

be reconstructed is represented using a pseudo atom cloud. When two projection images

originate from different macromolecules, movement of the pseudo atoms can model the

difference between the two when using the projection images to update the intensities of

the pseudo atoms. With this, it is possible to reconstruct a single volume from a dataset

with projections originating from different macromolecule states. This approach was fully

incorporated into a deep learning framework. This enables further development into an

end-to-end machine learning approach.

Deep learning algorithms are thereby a promising class of algorithms for cryo-EM pro-

cessing. In a separate chapter, I explored the possibility of using a generative adversarial

network instead of conventional ab-initio reconstruction algorithms. In this approach, a

generator learns a volume that represents the real protein in the experimental images,

without seeing the experimental images directly. This approach already shows promising

results. The learned volume is accurate enough that it can be used as a reference for

subsequent high resolution refinement. Multiple parts can still be added and improved to

further increase the usability of this approach.

In the last part of this thesis, an approach to identify dimeric particles in a homogenous

dataset of monomeric and dimeric SARS-CoV-2 RdRp particles is presented. The ap-

proach was successfully applied to identify enough dimeric particles to reconstruct the

dimeric state with 5.5Å resolution and subsequently publishing it. Fitting previously
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published RdRp structures allowed for a closer examination of this dimeric state. Fur-

thermore, we hypothesize that this dimeric form might be functional and plays a role in

subgenomic RNA production.
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1 General Introduction

1.1 Single Particle Cryo-Electron Microscopy

Using electron microscopy to determine the structure of biological macromolecules goes

back to the works of Richard Henderson and Joachim Frank in the 1970s [Henderson and

Unwin, 1975; Frank, 1973, 1975]. Numerous copies of the same macromolecule are frozen

in amorphous ice and imaged using an electron beam. This results in 2D projections

of the Coulomb potential of these macromolecules (particle images). Each individual

macromolecule contributes one projection image. Only through multiple copies of the

macromolecule frozen in the same sheet of ice, a distribution of different projection orien-

tations is achieved. After data pre-processing, refinement algorithms are used to calculate

the original 3D Coulomb potential [Marques et al., 2019], sometimes also referred to as

a density map analogous to the result from X-ray crystallography. Processing and re-

finement algorithms thereby have to cope with a number of imaging artifacts, as well

as unknown orientations for each particle image. Developments in the last years have

sparked the so-termed “resolution revolution” [Kühlbrandt, 2014]. This term combines

developments in microscope hardware such as Direct Electron Detectors (DED) but also

developments in computational methods that combined enable to obtain density maps

from cryo-electron microscopy (cryo-EM) data at near-atomic resolution. With modern

cryo-electron microscopy methods, resolutions of 3Å to 4Å can be reached frequently, e.g.

for [Merk et al., 2016; Nogales, 2016]. At this resolution, atomic models can be fitted to

the obtained Coulomb potentials with high accuracy and cryo-EM has become a viable
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1 General Introduction

method in structural biology, which had long depended on imaging crystallized proteins

by X-ray diffraction for high resolution structure determination [Lyumkis, 2019].

In contrast to crystallography, however, cryo-electron microscopy does not rely on crys-

tallizing biological macromolecules first. This is especially relevant for classes of proteins

that have proven to be difficult to crystallize, e.g. membrane proteins [Cheng, 2018].

But also for proteins for which crystal structures are available, cryo-EM can provide a

more heterogeneous picture of possible confirmations [Wang and Wang, 2017]. In cryo-

EM, samples with numerous copies of the same macromolecule are blotted onto grids and

frozen in liquid ethane to ideally obtain a thin layer of ice containing distinguishable,

single macromolecule particles. Imaging of these thin layers of ice through the electron

microscope yields 2D images containing projections of the Coulomb potential from multi-

ple particles that are separated in silico to yield images of individual particles. These are

then subjected to data processing and refinement algorithms to yield a reconstruction of

the macromolecule’s density map.

1.1.1 Image Formation

Biological specimens show very little amplitude contrast in an electron microscope. Ampli-

tude contrast is caused by electrons being scattered outside the objective aperture, which

is only a weak effect in thin samples [Erickson and Klug, 1971]. While the amplitude

contrast is directly measurable, it would carry not enough information for high resolu-

tion structure determination in the downstream processing. The more prominent phase

contrast, resulting from the electron beam passing through the Coulomb potential of the

specimen, is, however, not visible on the imaging plane when performing in-focus imaging.

In cryo-electron microscopy, images are therefore acquired at underfocus or, alternatively,

a phase plate is introduced on the optical axis [Wang and Fan, 2019]. Both techniques

have in common that they convert the phase contrast into an amplitude contrast in the

imaging plane (the camera). The introduced phase shift between the scattered and un-

scattered beam then causes interference between, which directly alters the strength of the
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1.1 Single Particle Cryo-Electron Microscopy

measurable signal in the imaging plane. The interference does thereby alter with varying

spatial frequency. This effect results in a contrast that oscillates between ±1 following

a sine function, which is termed the Contrast Transfer Function (CTF) [Frank, 1973].

The oscillation thereby depends on the defocus value. The characteristics of the CTF are

the oscillation between ±1, but even more importantly ’0’ crossings in between, which

indicate a complete loss of signal for certain spatial frequencies. The speed of oscillation

and therefore also the location of these ‘0’ crossings is mostly determined by the spherical

aberration (usually fixed for one microscope during imaging) and the defocus value. These

can be altered during imaging and can vary within a single micrograph, as the specimens

usually do not lie on a single, perfectly perpendicular plane with respect to the electron

beam. In the frequency domain, the signal is multiplied with the CTF, while in the spa-

tial domain its effect presents as an offset of signal side bands from their true location

[Downing and Glaeser, 2008]. Commonly, the CTF in the frequency domain is expressed

as a symmetrical, real-valued function, but higher order aberrations and asymmetries can

be accounted for using Zernike polynomials [Zivanov et al., 2020]. With direct electron

detectors employed in modern cryo-electron microscopes, the signal measured is a distri-

bution of electron counts across the individual pixels of the detector. Mathematically, it

would be ideal to have infinitely many electrons to sample the underlying true distribution

(i.e. the un-obscured structural information) as well as possible. However, the high energy

electrons that are used in imaging can cause radiation damage in the biological specimens

when energy transfer due to inelastic scattering occurs and the transferred energy exceeds

the bonding energy of individual atoms in the structure. This highly limits the appliable

dosage in imaging and typically the dosage used is only in the range of 20 − 30e−/Å2.

Even at these controlled levels of exposure, there still is an effect of energy transfer that

displaces individual atoms. This effect can be compensated by a frequency dependent

dampening in the frequency domain [Grant and Grigorieff, 2015]. Using such a low dosage

is also the source of so-called “shot-noise”, which stems from the fact that we only obtain

a noisy estimate of the true underlying distribution of electron counts, and is the main

source of noise in cryo-EM images. The first step in data acquisition is usually the collec-

tion of so-called “movies” which are individual frames that only contain a fraction of the

3



1 General Introduction

total dose information, i.e. if the desired dose is 30e−/Å2, then this could be fractionized

by acquiring 30 individual images corresponding to 1e−/Å2. Subsequently, these individual

frames can be averaged to obtain the micrograph images. This process and the subsequent

analysis will be described in more detail in the next section.

1.1.2 Pre-Processing of Data

The first step after acquisition of movies is averaging. The shot noise can be assumed to

have a mean value of 0, while the actual signal has a non-zero mean value. Therefore,

averaging of N frames should increase the signal-to-noise ratio by a factor of
√
N . During

data acquisition, however, the vitrified specimens undergo motion [Brilot et al., 2012]. This

motion can be decomposed into a global motion of entire frames, caused by mechanical

instabilities in the stage holding the sample, and local motion. In data processing pipelines

aiming for high resolution, both kinds of motion need to be corrected for. Global motion

can be accounted for by estimating a single displacement vector for each frame in a movie

that minimizes the difference between individual frames [Zheng et al., 2017; Tegunov and

Cramer, 2019]. For local motion, a motion model can be fitted to sub-frames, which then

allows to remap each pixel prior to averaging. Motion corrected averaging combines the

individual frames into the final micrograph images.

Contrast Transfer Function (CTF) parameters can be estimated directly from these micro-

graph images. Popular tools, such as CTFFIND [Rohou and Grigorieff, 2015] and CTER

[Penczek et al., 2014], estimate defocus and astigmatism values per micrograph by fitting

the CTF parameters to the power spectrum of the micrograph. Especially in tilted sam-

ples, however, local defocus values need to be estimated, as done in the preprocessing tool

Warp [Tegunov and Cramer, 2019].

The input for single particle reconstruction algorithms are images that contain only sin-

gle particles roughly in their center. Therefore, particles need to be located within the

micrograph to extract patches containing individual ones. Due to the low signal-to-noise
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1.1 Single Particle Cryo-Electron Microscopy

ratio (SNR) in the images, this process is non-trivial and different classes of algorithms

exist that try to tackle this issue. A first distinction can be made between “classical” and

“machine learning” approaches. “Classical” methods can thereby be either reference (tem-

plate) based or template free methods. Template based methods [Scheres, 2015; Roseman,

2004; Hoang et al., 2013; Chen and Grigorieff, 2007] thereby rely on some prior knowledge

of expected particle views used for matching against the micrograph. These approaches

introduce a certain bias, however. Patches of pure noise that randomly show high corre-

lation values to the expected particle views might be extracted along with true positive

matches. In a subsequent refinement, these patches would contribute to reconstructing

the expected volume, as highlighted by the “Einstein from noise” example [Henderson,

2013]. Algorithms like the APPLE picker [Heimowitz et al., 2018] try to avoid this pitfall

by adaptively choosing templates from the data itself. The idea is that patches of actual

particle images will show high correlation with other particle patches, while patches of

noise will have low correlation with other patches. This does not prevent other structure’s

like ice crystals from being identified as particles. Reference free methods [Voss et al.,

2009; Zivanov et al., 2018] utilize image filters to identify particle locations on the mi-

crograph, but often lack the ability to correctly filter out image artifacts [Tegunov and

Cramer, 2019]. Deep Learning based methods utilize some kind of neural network to iden-

tify particle locations on the micrograph. They thereby built on the increasing success

of such networks in numerous computer vision tasks in other fields. A popular example

would be BoxNet, which is part of Warp [Tegunov and Cramer, 2019]. One key advan-

tage is, that they can be trained to not only detect particles correctly, but also to ignore

e.g. ice crystals or other artifacts visible in the micrographs. Once particle locations are

determined, 2D patches of uniform size are extracted from the micrographs. The size of

these patches is usually a user-defined parameter, which only requires a rough estimate of

the expected particle size in Å and knowing the pixel size of the micrograph. The data

preprocessing tool Warp, developed by Dimitry Tegunov, combines all these steps into a

single automated workflow that can run in real time during data acquisition, allowing for

a direct feedback to the operator of the microscope about the current quality of data.
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1 General Introduction

Extracted particle images can be used as input for reconstruction algorithms that calculate

estimates of the 3D density maps that gave rise to these projections. To refine the set

of particles, different algorithms like 2D and 3D classification can be used to filter out

false negative particle picks or images of unwanted particles. Unwanted here can mean

incomplete complex assemblies, contamination or other artifacts. These algorithms are

not covered here in more detail, however.

1.1.3 Refinement Algorithms

Refinement algorithms aim to calculate a 3D volume with high SNR by averaging multiple

particle images [Frank, 1975]. The main assumption used here is that the dataset con-

tains numerous particle images from different poses, which are related with the original

3D density via the Fourier slice theorem. This allows to back project particle images and

average them, even from different poses. The challenge thereby is that the particle poses

are unknown, posing a computational challenge to estimate the poses and the volume at

the same time. Refinement algorithms in use currently [Scheres, 2012b; Punjani et al.,

2017] use reference based methods to align particle images to a (coarse) density and cal-

culating iterative updates to improve pose estimations and volume estimation. References

can thereby be already known structures from closely related specimens or obtained via

ab-initio reconstruction. In a forward model, the reference is projected, subjected to the

CTF function and weighted by the spectral signal-to-noise ratio to filter noise. The ex-

perimental projections can then be compared with the reference projections to find either

the best match or to calculate likelihoods that the reference projection’s pose matches the

experimental image. This way, for each experimental image, a distribution of possible

poses can be obtained. The experimental images are then CTF corrected and, using the

estimated poses, used in a weighted back projection paradigm to update the reference

volume while also performing CTF correction. Iteratively, the updated reference volume

can then be used to refine the estimated particle poses. This process can be repeated until

a certain number of iterations have been performed or until the resolution does not in-
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crease further. The resolution is usually estimated from the Fourier shell correlation curve

calculated between two half maps that have been reconstructed from half of the available

data [Henderson et al., 2012]. Between these half maps, one can assume no correlation

between noise in the reconstruction and positive correlation between signal. Thus, the

Fourier shell correlation (FSC) value indicates if, at a certain spatial frequency, the half

maps contain mostly signal or mostly noise. Usually, the resolution estimate for these

half maps is the point at which the FSC curve falls below the value 0.143 [Rosenthal and

Henderson, 2003]. Parts of the reconstructed half maps usually corresponds to solvent

only and therefore only contain noise. These parts are usually masked to increase FSC

values, but the introduction of false correlation due to features of the mask itself need to

be checked carefully [Chen et al., 2013].

1.1.4 Structural Heterogeneity

As described, cryo-EM reconstruction relies on the averaging of many images of the same

structure from different view points to increase the signal-to-noise ratio, which is low in

raw particle images due to the small electron dose used for imaging. This approach relies

on the assumption that all 2D particle images used for the reconstruction actually originate

from the same structure. This is difficult to ensure in typical cryo-EM experiments,

as all particle images are from distinct biological replicates embedded in the ice. Real

protein complexes can have different occupancy, different conformations, or have degrees

of freedom that allow for movement of the individual domains. All these can lead to

structural heterogeneity, i.e. the presence of multiple different structures as origin for

the particle images in a dataset. In case of a distinct number of different structures,

e.g. originating from a finite number of different conformations, classification can be

used. Early examples of using this approach include [Heymann et al., 2004; Gao et al.,

2004] and modern likelihood based 3D classification techniques are implemented in many

processing tools [Lyumkis et al., 2013; Scheres, 2012b; Punjani et al., 2017; Grant et al.,

2018]. Starting from a single 3D reference, these approaches try to classify the set of

7
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particle images into a user defined number of different classes corresponding to different

underlying 3D structures. This approach can work well when the cause for structural

heterogeneity is indeed conformational changes or different occupancy, as these give rise

to a finite number of structures present in a dataset. In case of movement, however, 3D

classification would result in residual structural heterogeneity in each class, which leads

to blurry reconstructions in the regions subjected to this movement [Nakane et al., 2018].

Different techniques have therefore been developed to deal with motion induced structural

heterogeneity. One approach is to split the 3D volume into individual parts that can be

reconstructed individually and describe the motion they undergo across a particle dataset

using principal components. This approach is called multi-body-refinement [Nakane et al.,

2018]. One can also perform focused refinement, where a mask defines a region of the

density that is to be reconstructed separately. In this approach, the reference volume is

multiplied with the supplied mask prior to generating the reference projections and then

compared with the experimental images from which the regions outside the mask were

subtracted [Bai et al., 2015]. The idea behind these two approaches is that the regions

of the maps or individual bodies are rigid and can therefore be reconstructed with high

accuracy. These approaches have limitations in the kind of flexibility or motion that

they can compensate, and applying them requires careful tuning of the user or even a

combination of multiple methods to reconstruct different regions of the same structure

[Nguyen et al., 2016]. Additionally, the fact that these approaches all rely on a sort of

local refinement, there are always border regions for which the refinement might be ill-

defined. Only recently, deep learning based approaches have started to emerge that can

generate global reconstructions and deal with structural heterogeneity. CryoDRGN uses

an autoencoder like structure to encode structural heterogeneity in the latent space [Zhong

et al., 2021a], while a method now implemented in cryoSPARC learns a deformation vector

field for the reconstructed density [Punjani and Fleet, 2021].

8



1.2 Artificial Neural Networks

1.2 Artificial Neural Networks

1.2.1 Principal Idea and Differentiable Programming

Artificial neural networks are a type of machine learning algorithm. As such, the general

idea is to have an algorithm that is capable of performing a certain task by approximating

a function that is not known a-priori and maps data from an input space to an output

space. The core idea of these approaches is that instead of writing down an exact formula,

a series of operations with different parameters is defined, of which the correct parameters

to perform the desired function are not known a-priori. This series of operations is what

comprises a neural network. In the simplest forms, these are so-called neurons, which

accept multiple inputs that are multiplied by a weight, summed and then added to a so

called “bias” to produce the output variable [Rosenblatt, 1957, 1958]. As a simplistic model

of how a human brain is organized, multiple interconnected layers form so-called multi-

layer perceptron networks that can approximate many mathematical functions. Next to

the exact shape of the network, the values of the weight and bias parameters will determine

the form of the function that maps input variables of the first layer to the output of the

last layer. To obtain these parameter values, the network is “trained” to perform a specific

task. For training, a set of training data is needed, i.e. a set of input data and desired

output. An example in the context of cryo-EM could be images of micrographs as input

and images with annotated particle locations as output. One now needs a procedure to

update the parameters of the network in such a way that it best reproduces the mapping of

input to desired output given in the training data. Thereby, it is desired that the network

does not only perform well in recreating the mapping dictated by the training data, but

also show some degree of generalization capability. That is, given some previously unseen

input data that is of the same form as the training data, produce an output that is

meaningful given that input. In the example of particle picking, this would mean that

the network would also be able to pick particle locations in previously unseen micrograph

images. To update parameters, usually gradient based methods are used [Bottou, 2010].
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One of the key developments that enabled the current success of deep (i.e. comprised

of multiple layers) neural networks went into efficient calculation of the gradient of the

network’s output w.r.t all of its parameters. It is therefore crucial, that the network’s

operations are all differentiable so that the combination of them, i.e. the complete network,

is also differentiable. Modern neural networks are usually comprised of multiple layers

and thousands of parameters to train [LeCun et al., 2015]. This makes in unfeasible

to write down the function that the network performs and differentiate it analytically

(even if mathematically possible). The most important development that enabled modern

deep learning was therefore the development of the backpropagation algorithm [Rumelhart

et al., 1986]. It works as follows: First, given an input from the training dataset, the

output of the network is calculated. Then, some differentiable error function is used to

calculate the difference between the network’s output and the desired output associated

with this training input. The differentiability of the error function can then be used to

calculate its gradient w.r.t the network’s output. Finally, if the individual building blocks

of the network are all differentiable, one can apply the chain rule to back propagate the

gradient information through the whole network. In the example of a simple neuron of

which the output is a linear function of the output, the gradient information for its input

is a linear function of the gradient information of its output. By iteratively propagating

the gradient information through all layers of the network, a gradient for each parameter

can be obtained and used to update this parameter. Bowadays, backpropagation is part

of deep learning frameworks used frequently and is performed computationally efficient

due to highly parallelized execution on graphics processing units (GPU)[Paszke et al.,

2019; Abadi et al., 2015; Seide and Agarwal, 2016]. Stochastic approaches [Kiefer and

Wolfowitz, 1952], where a random batch of training data is presented to the network at

once and gradients are averaged over the whole batch, are usually employed to stabilize

convergence. Convergence of neural network parameters is mathematically challenging, as

the function learned by the neural network is usually highly non-convex and algorithms

such as stochastic gradient descent (SGD), Adam [Kingma and Ba, 2014] or AdaGrad

[Ward et al., 2020] are used to stably train the parameters.
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Using the backpropagation algorithm is thereby applicable to a very broad spectrum of

neural networks. The core requirement is that, for each individual operation, it is pos-

sible to carry gradient information from its output to its input, i.e. it is a differentiable

operation. Some tasks in cryo-EM processing pipelines share resemblance with tasks from

computer vision. The already mentioned example of particle picking is a special form of

the general question of object detection, for which current network architectures reach

human level accuracy [Hestness et al., 2019]. Therefore, advances in different applica-

tion fields can be ported to tasks in cryo-EM processing pipelines. An example is Warp’s

[Tegunov and Cramer, 2019] particle picking, which is built using ResNet [He et al., 2016].

1.2.2 Generative and Discriminative Models

Generative models try to generate realistic looking data points. More precisely, given a

random input z, they are tasked with generating data xg that follows some real-world data

distribution Pr. The challenge is that Pr is not known directly and can be quite complex.

Many developments in this area have been in the area of natural images, an example might

be the generation of images of human faces. In this case, Pr would be the distribution of

all possible images of human faces, embedded in the space of all possible images. As this

distribution is not known, it is also not possible to sample from it directly, hence the need

to create and train an artificial generator that mimics the desired sampling. To be able to

learn how to mimic data points that follow Pr, generative models usually perform some

kind of training on available examples xr ∼ Pr. During training, their task would then

be to learn an internal representation of the data points that it needs to create artificial

data points xg. To judge the quality of the generator’s output, one approach is to define

a second network called a discriminator. These two networks, combined to a Generative

Adversarial Network (GAN), try to counteract one another [Goodfellow et al., 2014]. The

generator generates data points xg, while the discriminator is presented with real data

points xr and generated ones from the generator and trained to discriminate them. This

11



1 General Introduction

is often defined using the following training criterion for the generator G and discriminator

D:

min
G

max
D

Ex∼Pr [logD(x)] + Ez∼Pz [log (1−D(G(z)))] (1.1)

The discriminator tried to maximize the distance between its output on the real data and

the generated data, while the generator tries to minimize this distance. This corresponds

to a ‘minimax game’, known from game theory [Goodfellow et al., 2014]. These kinds of

networks are difficult to train, though. Theoretically, a training following Equation 1.1 is

equivalent to minimizing the Kullback-Leibler divergence [Goodfellow et al., 2014]. Train-

ing such a network is challenging, though, as Pr usually has a low dimensional manifold

as its support that can be disjunct from that of Pg during training [Arjovsky and Bottou,

2017]

1.2.3 Wasserstein GANs

An improvement to the training of GAN networks was the development of Wasserstein

GANs, i.e. a Generative Adversarial Network that uses the Wasserstein distance as a

distance measure between Pr and Pg. The advantage of using the Wasserstein distance is,

that it also provides meaningful gradient information when both probability distributions

do not share an overlap [Arjovsky et al., 2017]. With the use of the Kantorovich-Rubinstein

duality [Villani, 2009], the Wasserstein distance can be calculated by:

W (Pr, Pg) = supEx∼PrC(x)− Ex∼PgC(x). (1.2)

These kinds of network architectures introduce an additional constraint on the discrimi-

nator, which is often called a critic C, to be 1-Lifschitz continuous. This constraint can be

met with a variety of techniques. In the original WGAN publication, weight clipping was
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described [Arjovsky et al., 2017], but other techniques such as gradient penalty [Gulrajani

et al., 2017] or spectral normalization [Miyato et al., 2018] have since been developed.
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2 Refinement in the Presence of Structural

Heterogeneity

2.1 Main Idea

Single particle cryo-EM - although already developed almost 50 years ago [Henderson

and Unwin, 1975; Frank, 1975; Dubochet et al., 1982] - has undergone a process termed

the “resolution revolution” [Kühlbrandt, 2014] recently. Developments in software and

hardware both within the microscope and for data processing have enabled near-atomic

resolution for a variety of macro-molecules and complexes, and even atomic resolution for

apoferritin [Yip et al., 2020; Nakane et al., 2020]. A main bottleneck that existed when

this project was devised was the assumptions of processing algorithms of having a single

rigid 3D electron density that is to be reconstructed from 2D projections distorted by

the Contrast Transfer Function. Different gold standard software packages had limited

capability to cope with this problem in samples where structural heterogeneity is present,

as also described in subsection 1.1.4. A first kind of approach relies on classifying het-

erogeneity into a user-defined number of classes. This is ideal when the structure in the

dataset actually has a finite number of discrete state. Such classification schemes are

implemented in RELION’s 3D classification [Scheres, 2012b] and cryoSPARC’s [Punjani

et al., 2017] heterogeneous refinement. To overcome this problem, local refinement of sub-

units that are in themselves rigid is an option. This is then called masked refinement [Bai

et al., 2015]. The main disadvantage of these approaches is that only a fixed number of
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different confirmations can be refined (classification) or that a fractionized version of the

3D density is obtained (local refinement) which fails to resolve the global density with

high continuity. Structural heterogeneity, however, does not always represent itself as a

classification problem, which only captures a subset of scenarios such as different confor-

mations or occupancy. If the subunits in the analyzed structure have a degree of freedom,

i.e. they can move against one another, then this can only be modeled with an infinite

number of classes. Consequently, the resolution in such areas is lower and movement is a

common source of a drop in local resolution. As an alternative, principal component-based

approaches have been used to deal with structural heterogeneity by describing motion be-

tween rigid subunits that can be refined using masks [Liu and Frank, 1995; Penczek et al.,

2011; Tagare et al., 2015]. Principal components cannot accurately describe all types of

motion though [Sorzano and Carazo, 2021]. A different approach was employed, for exam-

ple, for the pre-initiation complex with TFIIH and Mediator. Subunits were selected by

minimizing inter-region normal modes and locally refined and combined using masks and

pseudo atoms [Schilbach et al., 2017]. More recently, deep learning based approaches have

also been explored to deal with per-particle heterogeneity [Zhong et al., 2021a; Punjani

and Fleet, 2021].

With this project, we aimed to incorporate the movement into the reconstruction process

by utilizing real-space refinement techniques combined with a pseudo-atom representation

of the density to be refined. Pseudo atoms {{x, y, z, s}}k=1...N are thereby a set of N

combinations of a position in 3D space {x, y, z} and an intensity s. A mapping f :

R4N → RD3 thereby allows to raster the pseudo atoms to a 3D volume with side length

D. The pseudo atoms thereby serve a double function. Through the aforementioned

mapping f , they form a non-Cartesian representation of the protein density. During

the reconstruction process, we can update the intensities of the pseudo atoms, which in

turn alters the represented density and improves on its agreement with the experimental

data. Additionally, the positions encode for a current movement state of the protein.

Altering the positions of the pseudo atoms should thereby model real movement, allowing

to incorporate this information into a reconstruction workflow as follows: Given an input
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of 2D projections {P (x, y)}i that each were obtained by projecting a 3D electron density

V (x, y, z), the following steps are performed.

1. Perform a consensus reconstruction, obtaining a consensus volume V and estimated

projection angles {ϕ, θ, ψ}i for each projection Pi

2. Using a separate algorithm, for each image Pi, find an approximate representation

of the underlying volume Ṽi

3. Pick one Ṽi and initialize a set Ai = {{xi,k, yi,k, zi,k, sk}}k=1...N of N pseudo atoms.

Thereby, the represented density should model Ṽi as close as possible: f(A) ≈ Ṽi

4. Estimate pseudo atom movements starting from Ai:

Estimate alternate positions of the pseudo atoms such that we have for each Ṽj a

different set of atom positions, but with constant intensities:

Aj = {{xj,k, yj,k, zj,k, sk}}k=1...N with f(Aj) ≈ Ṽj

5. Iterative reconstruction, for each projection Pi:

a) Project the pseudo atoms Ai using the orientation {ϕ, θ, ψ}i obtaining an image

P̃i

b) Compare P̃i and Pi and calculate an update for the pseudo atom intensities

With this, pseudo atoms are “moved” to fit the correct movement state of the protein that

has generated the current projection. Intensities can then be updated using information

from all projections, independent of the movement state that they represent. The final

result will also not be just a single volume Ṽ , but we can instead map any pseudo atom

arrangement Aj to a 3D density. This then allows representing each movement state that

is present in the dataset at high resolution. They can be generated using the intensities

that were refined using the information from all other projections. This procedure does,
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however, need multiple parts, which I addressed during my doctoral research and describe

in the following. Namely:

1. A way to estimate for each projection Pi a representation of the underlying 3D

density that is good enough for the initialization of the pseudo atoms

2. Define and analyze a mapping f of pseudo atoms, which can be irregularly placed in

Cartesian space. This mapping should ensure that densities V and their projections

P can be approximated accurately

3. Incorporation of common artifacts like the Contrast Transfer Function (CTF) into

the reconstruction process

2.2 Towards Efficient and Differentiable Approach

2.2.1 Tri-linear Interpolation and Stability of Consecutive Rastering

Pseudo atoms can be modeled as a point cloud of positions and their intensities. In

contrast to voxels on a Cartesian grid, pseudo atoms can thereby assume any arbitrary

position in 3D space. This enables arbitrary movement of pseudo atoms to model the

movement of subunits. To create a set of pseudo atoms, a 3D binary mask M of the

density is used. The procedure to initialize the pseudo atoms A does then try to “fill”

the mask with closely packed pseudo atoms, i.e. a hexagonal packing of spheres. Given a

mask M , its side length D and the number N of pseudo atoms to initialize, the procedure

is as written in algorithm 1. At the same time, however, it is desirable to have a Cartesian

representation of the density represented by the pseudo atoms or its projections. For the

approach here, we decided to use tri-linear interpolation to raster pseudo atom intensities

back to Cartesian coordinates. For a set of pseudo atoms A = {{xk, yk, zk, sk}}Nk=1 the

rasterization to a 3D volume is described in algorithm 2 and the reverse procedure to

update the pseudo atoms’ intensities sk given a volume V is described in algorithm 3.
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Algorithm 1: Procedure to initialize a set of N pseudo atoms, given a cubic binary
maskM , the number of pseudo atoms N to initialize and the sidelength D of the mask.
Iteratively, the radius R is adjusted, and the mask is filled with a dense hexagonal
packing of pseudo atoms until either the radius is such that exactly N atoms fit into
the mask or 10 iterations have been performed. The final result is then the set of
pseudo atoms saved in A and their radius R.
Data: Number of Pseudoatoms N > 0, cubic mask M , side length of mask D
Result: Set of pseudo atoms A, Radius r
a← 0
b← D/2
N ← n
for it← 0 to 10 by 1 do

r ← a+b
2

sx ← 2r, sy ←
√
3r, sz ← 2

√
6/3r

for k ← 0 to D/sx do
for i← 0 to D/sy do

for j ← 0 to D/sz do
x← (j + 1/2((i+ k) mod 2)) · sx
y ← (i+ 1/3(k mod 2)) · sy
z ← k · sz
if M(bxc, byc, bzc) == 1 then

A← A ∪ {x, y, z, 1}
if |A| == N then

break
else if |A| < N then

b← r
else

a← r
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Algorithm 2: Procedure to map a set of pseudo atoms A to a volume V (x, y, z)
through tri-linear interpolation, i.e. the intensity of a pseudo atom is divided between
the 8 adjacent voxels, weighted by the distance to each voxel.
Data: Pseudo atoms A, side length of volume D, oversampling factor α
Result: Volume V
for x← 1 to D · α do

for y ← 1 to D · α do
for z ← 1 to D · α do

V (x, y, z)← 1
for each {x, y, z, s} in A do

x← α · x, y ← α · y, z ← α · z
x0 ← bxc, x1 ← dxe
y0 ← byc, y1 ← dye
z0 ← bzc, z1 ← dze
V (x0, y0, z0) += (x1 − x) · (y1 − y) · (z1 − z) · s
V (x0, y0, z1) += (x1 − x) · (y1 − y) · (z − z0) · s
V (x0, y1, z0) += (x1 − x) · (y − y0) · (z1 − z) · s
V (x0, y1, z1) += (x1 − x) · (y − y0) · (z − z0) · s
V (x1, y0, z0) += (x− x0) · (y1 − y) · (z1 − z) · s
V (x1, y0, z1) += (x− x0) · (y1 − y) · (z − z0) · s
V (x1, y1, z0) += (x− x0) · (y − y0) · (z1 − z) · s
V (x1, y1, z1) += (x− x0) · (y − y0) · (z − z0) · s

V ← Scale V to D

Algorithm 3: Procedure to initialize the intensities for a set of pseudo atoms A, given
a cubic volume V that needs to be modeled by the atoms.
Data: Pseudo atoms A, volume V
Result: Pseudo atoms A with updated intensities
a← 0
b← D/2
N ← n
for k ← 1 to |A| do

x← A[k].x, y ← A[k].y, z ← A[k].z
x0 ← bxc, x1 ← dxe
y0 ← byc, y1 ← dye
z0 ← bzc, z1 ← dze
V00 ← V (x0, y0, z0) · (x1 − x) + V (x1, y0, z0) · (x− x0)
V01 ← V (x0, y1, z0) · (x1 − x) + V (x1, y1, z0) · (x− x0)
V10 ← V (x0, y0, z1) · (x1 − x) + V (x1, y0, z1) · (x− x0)
V11 ← V (x0, y1, z1) · (x1 − x) + V (x1, y1, z1) · (x− x0)
V0 ← V00(y1 − y) + V01(y − y0)
V1 ← V10(y1 − y) + V11(y − y0)
A[k].s← V0(z1 − z) + V1(z − z0)
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2.2.2 Gradient Descent for Movement Estimation and Reconstruction

Suppose that from step 2 described on page 17 an approximate density Ṽi is already

known for each of our experimental images Pi. Then the set of pseudo atoms can be

initialized with the procedure described in the previous section for one specific Ṽj . For the

reconstruction procedure described below, we need to be able to express the differences

between Ṽj and Ṽi as a change in the pseudo atom positions. The goal is therefore to move

the pseudo atoms from a set Aj = {{xj,k, yj,k, zj,k, sk}}Nk=1, initialized to best represent

Ṽj , to a set of atoms Ai = {{xi,k, yi,k, zi,k, sk}}Nk=1 that best represent Ṽi. According to

algorithm 2 the value V (x, y, z) of a voxel is linearly dependent on the positions of the

pseudo atoms that are adjacent to it. This allows to calculate gradients and a gradient

descent algorithm to update the positions of the pseudo atoms. Suppose that we have

some function f(Ṽi, Ṽj) that measures a goodness of fit between the two volumes. This

could for example be a squared error function:

f(Ṽi, Ṽj) =
∑
x,y,z

(
Ṽi − Ṽj

)2
(2.1)

Obtaining a gradient for a specific coordinate, e.g. xk, can be done by applying the chain

rule. Suppose we fix the volume Ṽi and want to update Ṽj :

∂f

∂xj,k
=

∂f

∂Ṽj

∂Ṽj
∂xj,k

(2.2)

The partial derivative ∂Ṽj/∂xj,k can thereby be calculated as a sum of gradients obtained

from all voxels that the pseudo atom k contributed intensity to in algorithm 2. The

gradient information can then be used to update intensities using the Adam algorithm

[Kingma and Ba, 2014], see algorithm 4.
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Algorithm 4: Procedure to iteratively update the positions of a pseudo atom set A
so that they best represent a volume V . In each step, a current volume Vc is calculated
and compared with the reference volume V . Gradients of the squared difference w.r.t.
each atom’s position can be calculated as the derivative of the tri-linear interpolation
(not shown). The atom positions are then updated using Adam [Kingma and Ba, 2014]
for first and second moment correction. The updating process is iterated for different
oversampling parameters. In this way, the atoms can first be moved on a coarse
Cartesian representation of the volume and iteratively updated to higher resolution.
Data: Pseudo Atoms A, reference volume V , side length of the volume D, list of

scaling factors {α}nj=1

/* Adam parameters */
α← 0.001
β1 = 0.9
β2 = 0.999
ϵ = 1e− 8
for j ← 1 to n do

m0 ← 0
v0 ← 0
for i← 1 to 100 do

Vs ← Scale V to α ·D
Vc ← rasterize with algorithm 2 using A, D, αj)
error = (Vc − V )2

g ← ∇error // Gradient w.r.t. atom positions

/* Adam procedure */

mi ← β1 ·mi−1 + (1− β1) · g
vi ← β2 · vi−1 + (1− β2) · (g · g)
m̂i ← 1

1−βi
1
·mi

v̂i ← 1
1−βi

2
· vi

update ← α · m̂i/(
√
v̂i + ϵ); Add update to pseudo atom positions
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2.2.3 Reconstruction Procedure

Given a set of pseudo atoms A = {x, y, z, s} that represent a density in three-dimensional

space, reconstruction is the task of updating the pseudo atom intensities based on exper-

imental images containing 2D projections of an unknown structure. The reconstruction

procedure will have roughly three parts:

1. A forward operator that calculates 2D projections of the pseudo atoms

2. A function that compares 2D projections of the pseudo atoms with the reference

images/experimental images and defines update information for each pixel in the

projections

3. A backward operator that uses the update information in each pixel to update the

pseudo atom intensities

In accordance with common convention [Heymann et al., 2005], the projection is thereby

parameterized by three angles {ϕ, θ, ψ} that describe the viewing direction. The order

of rotation is chosen here to be ZYZ, as is used in XMIPP [Sorzano et al., 2004] and

RELION [Scheres, 2012b]. Usually, one would need to perform a line integral through a

rotated 3D volume to obtain the 2D projection, but an advantage of the representation

through pseudo atoms is that the line integral can be replaced with a sum over the pseudo

atoms. From the three angles, we can obtain a rotation matrix:

R =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Rotate ψ around z-axis

·


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

Rotate θ around y-axis

·


cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


︸ ︷︷ ︸

Rotate ϕ around z-axis

(2.3)

=


cψ · c θ · cϕ− sψ · sϕ cψ · c θ · sϕ+ sψ · cϕ − cψ · s θ

− sψ · c θ · cϕ− cψ · sϕ − sψ · c θ · sϕ+ cψ · cϕ sψ · s θ

s θ · cϕ s θ · sϕ c θ

 (2.4)
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2 Refinement in the Presence of Structural Heterogeneity

Here, s and c were used as shorthand for sin and cos respectively in the second line.

This rotation matrix can be used to rotate the pseudo atom clouds before projection along

the z-axis. Afterwards, the projection can be simplified to rastering the pseudo atoms to

a 2D Cartesian grid, ignoring the z coordinate after rotation. The resulting procedure is

listed in algorithm 5.

Algorithm 5: Procedure to create a 2D projection image P , given a set of pseudo
atoms A, that model a 3D density with side length D, and rotation matrix R. The
rotation is applied to the pseudo atom positions before bilinear interpolation to obtain
the projection image P .
Function ProjectForward(Pseudo atoms A, rotation matrix R, side length of
projections and volume D):
P [1...D][1...D]← 0

for each x, y, z, s in A do
r⃗ ← {x, y, z}
r⃗ ← r⃗ − {D/2,D/2,D/2}
r⃗ ← R · r⃗
r⃗ ← r⃗ + {D/2,D/2,D/2}
x0 ← bxc x1 ← dxe
y0 ← byc y1 ← dye
P (x0, y0) += (x1 − x) · (y1 − y) · s
P (x0, y1) += (x1 − x) · (y − y0) · s
P (x1, y0) += (x− x0) · (y1 − y) · s
P (x1, y1) += (x− x0) · (y − y0) · s

return P

As an additional part for the reconstruction procedure, we need a back projection op-

erator, which can again be modeled using a linear interpolation to update the pseudo

atom intensities, see algorithm 6. With the forward and backward operator defined, we

can write down a simultaneous iterations reconstruction technique (SIRT) like algorithm

[Sorzano et al., 2017] to iteratively update pseudo atom intensities, which are initially set

to 0 (algorithm 7).
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Algorithm 6: Procedure to update the intensities of the pseudo atoms A, given up-
dates to pixel intensities in a 2D image ∆P , a rotation matrix R and volume side
length D.
Function ProjectBackward(Updates for each pixel in the projection ∆P , pseudo
atoms A, rotation matrix R, side length of projection and volume D):

for each x, y, z, s in A do
r⃗ ← {x, y, z}
r⃗ ← r⃗ − {D/2,D/2,D/2}
r⃗ ← R · r⃗
r⃗ ← r⃗ + {D/2,D/2,D/2}

x0 ← bxc x1 ← dxe
y0 ← byc y1 ← dye

d0 = ∆P (x0, y0)(x1 − x) + ∆P (x1, y0)(x− x0)
d1 = ∆P (x0, y1)(x1 − x) + ∆P (x1, y1)(x− x0)
d = d0(y1 − y) + d1(y − y0)
s += d

return A

Algorithm 7: SIRT like algorithm for the refinement process. Given N pseudo
atom conformations {Ai}i=1...N , corresponding to each experimental image {Pi}i=1...N ,
thereby the intensities of the pseudo atoms are shared between different conformations.
Additionally, we know the rotation matrix Ri for each experimental image.
Data: A set of pseudo atoms for each projection {Ai}, projection images {Pi},

rotation matrices {Ri}, side length D, learning rate λ
for i← 1 to N do

P̃i ← ProjectForward (Ai, Ri, D)
∆Pi ← λ · (P̃i − Pi)

for i← 1 to N do
ProjectBackward (∆Pi, Ai, Ri, D)
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2 Refinement in the Presence of Structural Heterogeneity

2.2.4 CUDA Based Highly Efficient Implementation

NVIDIA’s Compute Unified Device Architecture (commonly referred to as CUDA) is a

parallel computing platform and programming model that allows to write and compile

programs that can run instructions on CUDA enabled NVIDIA Graphic Processing Unit

(GPU). It allows for highly parallelized and hierarchical execution. A CUDA kernel defines

the operation that is to be performed by each thread. Up to 1024 threads can be part of

one block, and multiple blocks can form a grid of theoretically up to 216 × 216 × 216 indi-

vidual blocks. Within the kernel, the position of the thread in the block and the block’s

location in the grid is accessible as a 1D, 2D or 3D index, creating an easy possibility to

have a parallelization for each element in a 1D vector or multidimensional matrix. For

the reconstruction procedure in algorithm 7, I implemented the ProjectForward and Pro-

jectBackward operator using CUDA. In the forward model, when pseudo atom intensities

are projected to a 2D plane, the parallelization is performed over different projections as

multiple threads working on the same projection would potentially cause race conditions

when different threads try to write to the same pixel. In the backward model, when up-

dates are read from the pixels of the 2D plane and fed back to the atom intensities, the

parallelization is performed across the pseudo atoms. A parallelization across projections

would in this case create race conditions when different threads try to update the same

pseudo atom’s intensity.
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2.3 Results on 20s Proteasome

I downloaded a known density of a 20S Proteasome that was published in the Electron

Microscopy Database (EMDB, Lawson et al. [2016]) under the accession code EMD-9233.

20S is the 700 kDa core particle of the Proteasome and is frequently used as a model in

cryo-EM method development [Punjani et al., 2017; Campbell et al., 2015; Zheng et al.,

2017]. The density was reported with a resolution of 2.1Å, a pixel size of 0.6616Å/pixel,

and a box with a side length of 400 pixels or 264.64Å. For the tests performed during the

development, the original density was down sampled to a pixel size of ∼ 2Å/pixel using

Fourier cropping, resulting in a box side length of 134 pixels. A soft mask was generated

by thresholding the down sampled volume at 0.01, expanding the resulting mask by 6

voxels and generating a soft edge using a raised cosine filter. The down sampled density

and the generated mask were then used as references for the subsequent analyses.

2.3.1 Benchmarking Representation with Pseudo Atoms

The pseudo atom representation needs to be an accurate representation of the density.

To test the achievable accuracy, we can compare the density represented by pseudo atoms

with the reference, which is represented on a Cartesian grid. To this end, pseudo atoms

can first be generated from the reference mask according to algorithm 1 and subsequently

be updated with the correct intensities according to algorithm 3. Subsequently, the pseudo

atoms can be rastered back to a Cartesian grid according to algorithm 2 and can be com-

pared to the original density, e.g. using the Fourier shell correlation (FSC), which is a

common measure for resolution estimation when comparing cryo-EM obtained densities

[Henderson et al., 2012]. In Figure 2.1, the FSC values between the pseudo atom rep-

resented density and the reference are shown for different setups. Figure 2.1a shows the

results when using different numbers of pseudo atoms. As is expected, a certain minimum

number of pseudo atoms is needed to accurately represent a density. Here, somewhere

between 200 000 and 500 000 atoms seem to be sufficient. This is on the same order of
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2 Refinement in the Presence of Structural Heterogeneity

magnitude than the 305 000 non-zero voxels present in the reference mask. Further, using

an oversampling setting > 1 seems to increase the accuracy of the represented density (Fig-

ure 2.1b), and performing consecutive rastering of the form Cartesian→ pseudo atoms→

Cartesian does not seem to reduce the accuracy of the represented density (Figure 2.1c).
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(a)

(b)

(c)

Figure 2.1: Analysis of the accuracy and stability of representing densities using
pseudo atoms
To access the accuracy of the pseudoatom represenatation of a density, they can be rastered back to
a Cartesian grid and then compared to the reference density using Fourier Shell correlation (FSC).
Here, different representations were generated from a downsamples density of a 20S Proteasome.
a) Representing the density using different numbers of pseudo atoms. b) Using different settings
for the supersampling parameter. c) Consecutive rastering of pseudo atoms → Cartesian grid →
pseudo atoms.

29



2 Refinement in the Presence of Structural Heterogeneity

2.3.2 Reconstruction with Noise

A critical characteristic of cryo-EM images is the high prevalence of colored noise. The

signal-to-noise ratio can thereby be as low as 0.01. This high level of noise is caused by

the small number of electrons which are used for imaging - limited by radiation damage

- which results in a large influence of shot-noise [Singer and Sigworth, 2020]. During the

reconstruction procedure presented here, the noise does not need to be incorporated in

the forward model. In algorithm 7, the experimental projections Pi will be aberrated by

noise. In Fourier space, this noise can be modeled as Gaussian with a standard deviation

depending on the radius (colored noise). The same noise will then be present in the

calculated deviations ∆Pi. When performing the back-projection, however, the update for

each pseudo atom will be a sum of all updates gathered from. By the law of large numbers,

the strength of noise should decrease with an increase in the number of projections. To

test this, I generated a small test dataset at different number of projections and different

signal-to-noise ratios. First, I generated projections from the density of EMD-9233, which

I downloaded and down-sampled to ∼ 2Å/pixel as described above. I used 3072 projection

angles obtained using the HEALPIX algorithm [Gorski et al., 2005]. The projections were

then generated using the Projector class from Warp [Tegunov and Cramer, 2019], which

uses code from RELION [Scheres, 2012b]. From these noise-free (“clean”) projections, I

generated sets of noisy projections with different signal-to-noise ratios, resulting in sets of

3072 projections with no noise, an SNR of 1 and 0.1 respectively. I used each of these sets

as input for my reconstruction procedure. I generated pseudo atoms by filling the mask

of EMD-9233, as done above, and initialized their intensities to 0. The reconstruction

was run for one iteration. Afterwards, I generated the 3D volume represented by the

pseudo atoms. For the evaluation, I calculated the Fourier Shell Correlation with the

reference density that was used to generate the projections. The result is presented in

Figure 2.2. It shows the expected drop in the Fourier shell correlation, especially towards

higher frequencies. The signal strength of the reference probably decreases towards higher

frequencies, which would result in a spectral signal-to-noise ratio that is actually much

worse towards higher frequencies than lower ones.
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Figure 2.2: Fourier Shell Correlation between a density of 20S Proteasome recon-
structed with a fixed number of projections but at different SNR and the reference
density.
Starting with pseudo atoms with intensities set to 0, a single iteration of the iterative reconstruc-
tion procedure is run with different sets of 3072 projections. They deviate in the strength of
added noise. After reconstruction, the density represented by the pseudo atoms was generated and
compared to the reference density by calculating the Fourier Shell Correlation which is shown in
this plot. SNR inf represents no added noise and shows the highest correlation, comparable to a
signal-to-noise ratio of 1. At a signal-to-noise ratio of 0.1, however, the 3072 projections are not
enough to average out the effect of the noise effectively, which reduces the correlation with the
reference density.

Figure 2.3: Fourier Shell Correlation between the 20S Proteasome reference density
and a density reconstructed from projections with a SNR of 0.1 with an increasing
number of projections.
Increasing the number of projections increases the correlation of the reconstructed density with
the reference. This can be expected from the law of large number, which predicts that the noise
in the different projections should decrease with 1/N.
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To test the effect of an increasing number of projections, I followed a similar scheme. For

each simulated signal-to-noise ratio, I simply increased the number of projections before

the noise generation and then ran the reconstruction for each resulting set. In Figure 2.3

the FSC of the density represented by the pseudo atoms after one iteration with the

reference density is shown for the lowest simulated SNR of 0.1. As is expected, an increase

in the number of projections does indeed result in a recovery of accuracy. The standard

deviation of the noise is expected to decrease with σ2/n. This would mean that with an

ever-increasing number of projections, the noise level will decrease slower and slower, which

can also be seen in Figure 2.3. Adding 3072 projections to the initial 3072 has a higher

impact than increasing the number of projections from 12k to 15k.

2.3.3 Proof of Concept for Moved Reconstruction

The main advantage of the pseudo atom representation is the ability to use projections

from different movement states of the same structure in one high-resolution reconstruction.

To test this, I generated a test data set based on the 20S Proteasome density from the

EMDB. I here used the down sampled version again.

1. Generate a reference set of pseudo atoms and update their intensities to best repre-

sent the 20S Proteasome density. This represents pseudo atom set Ã1

2. Apply a non-linear displacement to the pseudo atom positions to generate a pseudo

atom set Ã2 that shares intensity values with Ã1 but with updated positions. For

each atom, the position is updated as follows:


x′

y′

z′

 =


x+ 3 · (z/134)2

y + 3 · (z/134)2

z
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3. Generate projections from Ã1 and Ã2 using evenly distributed projection angles

generated using order 4 healpix algorithm [Gorski et al., 2005]

4. Using algorithm 4 transform the set Ã2 → A1 to best match the original 20S Pro-

teasome density represented by Ã1.

5. Using algorithm 7, use projection sets P1 with A1 and set P2 with Ã2 as input

In this way, the reconstruction is performed using projections from the original protein

and a deformed version. Ã2 represents the pseudo atom positions set to the deformed

state, whereas A1 has positions updated by algorithm 4. Using this approach, to update

the shared intensities between both sets, should yield a high-resolution reconstruction of

the original density. After the reconstruction, I rastered the pseudo atoms back to their

Cartesian representation and calculated the Fourier shell correlation with the original den-

sity. As a comparison, I also performed a reconstruction using Fourier back projection that

cannot incorporate movement information during the reconstruction. In Figure 2.4 the

resulting FSC curves can be seen. While the Fourier back projection cannot reconstruct

the density at high resolution, the pseudo atom-based reconstruction can incorporate the

movement information and can therefore reconstruct the 20S Proteasome density accu-

rately.
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2 Refinement in the Presence of Structural Heterogeneity

Figure 2.4: Fourier Shell Correlation between the 20S Proteasome reference density
and a density reconstructed from projections obtained from the original density and
one representing a moved variant.
The gold stanadard Fourier back projection algorithm is not able to correct for the fact that the
projections used in this reconstruction were obtained from slightly different variants of the same
density. Consequently the FSC (blue curve) quickly falls off. As an alternative, the pseudo atom
based refinement using estimated atom positions for the moved density variant, can reach a high
FSC with the reference density across all wave numbers.

2.4 CTF Correction During the Refinement

The signal obtained in cryo-electron microscopy is convolved with the Contrast Transfer

Function (CTF), which is a result of defocus and spherical aberration [Erickson and Klug,

1970]. When trying to reconstruct the correct 3D densities from the 2D projections, we

therefore need to perform CTF correction to reach high resolution [Zhang, 2016]. Fourier

back projection techniques can perform CTF correction directly, as the signal is multiplied

with the CTF in Fourier space. The contribution of a specific spectral component P̂ (x, y)

to the Fourier transform of the reconstructed density can be simply weighted by the

value of the corresponding CTF belonging to the projection P . In the flexible refinement

framework, the reconstruction is calculated in real space, where the influence of the CTF

is a convolution with the original signal. While this is computationally more complex than

a simple multiplication, it can be incorporated by phrasing the reconstruction problem as

an optimization of a target function. This can be a squared error function between the

experimental images and the projections obtained from the pseudo atoms. Given a set of

pseudo atoms A, experimental projection images {P}i, which are assigned Euler angles
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2.4 CTF Correction During the Refinement

{α}i = {ϕ, θ, ψ}i, an estimation of the CTF for each projection {CTF}i, we can generate

the corresponding projections from

P̃i = CTFi × Pαif(A = {{x, y, z, s}}k=1...N ). (2.5)

Here, × denotes a convolution, f(A) is the volume represented by the pseudo atoms A

and Pαi is the projection operator with Euler angles αi. Given M experimental images,

we need to update the pseudo atom intensities to minimize a target function t(s), which

depends on the intensities of the pseudo atoms

t(s) =

M∑
i=1

(P̃i − Pi)2 (2.6)

t(s) = min
s

M∑
i=1

(CTFi × Pαif(A = {{x, y, z, s}}k=1...N )− Pi)2, (2.7)

i.e.

s = argmin
s

t(s) = argmin
s

M∑
i=1

(CTFi × Pαif(A = {{x, y, z, s}}k=1...N )− Pi)2 (2.8)

All of these operations are differentiable:

• Pαif(A = {{x, y, z, s}}k=1...N ) is the projection of the pseudo atom represented

density under the orientation αi. It is bi-linear interpolation and therefore a simple

linear dependence of the pixel values on the atom intensities s (see algorithm 5)

• The convolution is differentiable and can be calculated by multiplying the Fast-

Fourier Transform of the projection with the Fourier transform of the CTF and then

performing an inverse Fourier transform

By application of the chain rule, it is possible to calculate ∂t
∂s and use it to update the

intensities. Gradient descent for a series of differentiable calculations is a frequent task in

the context of training (deep) neural networks and therefore highly efficiently implemented
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2 Refinement in the Presence of Structural Heterogeneity

in deep learning frameworks. One of these frameworks is the deep learning framework

PyTorch [Paszke et al., 2019]. In the next section, I will therefore describe steps taken to

be able to implement the described reconstruction procedure using PyTorch.
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2.5 Incorporation of Pseudo Atom Based Refinement into a

Deep Learning Framework

As mentioned above, I implemented the described reconstruction procedure using PyTorch

[Paszke et al., 2019]. PyTorch is a modular framework to define, train and evaluate neural

networks. The definition of the network thereby means chaining a series of mathematical

operations (with parameters) that produce a single output in the end. The strength of

these frameworks is thereby that they automatically keep track of the necessary steps

to perform a so called back-tracking to calculate the gradient of this single output with

respect to the parameters. In the case of a reconstruction network, the single output is a

scalar error function between experimental images and those obtained from the forward

operator applied to the pseudo atom cloud. One can use the function t already given in

(2.8). The parameters of the mathematical operations that need to be trained are the

intensities of the pseudo atoms.

PyTorch contains the automatic differentiation package Autograd. Autograd provides

automatic differentiation for scalar valued functions with arbitrarily shaped input. One

needs to define the function as a series of Autograd operations, and the system is then able

to automatically perform gradient calculation of the output with respect to the function’s

input and all its parameters. One key feature of the PyTorch and its underlying C++

API LibTorch is thereby an interface through which custom operations can be added to

Autograd. More precisely: given an input ωI that can be a single multidimensional input,

or a combination of N multidimensional inputs:

ωI ∈ Rn1 ∪ Rn2 ∪ · · · ∪ RnN
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we want to define a function F that generates a scalar output ωO:

F : Rn1 ∪ Rn2 ∪ · · · ∪ RnN → R

ωI 7→ ωO.

This function needs to be defined as a series of k individual operations f that can have

parameters that I denote as θ. In the simplest form, F can be a chain of such operations:

ω1 = f1θ1 (ωI)

ω2 = f2θ1 (ω1) = f2θ1
(
f1θ1 (ωI)

)
. . .

F (ωI) = fkθk

(
fk−1
θk−1

(
...f1θ1 (ωI) ...

))

Given such a chain of operations (or a more complex combination of operations), Autograd

is now able to automatically calculate all gradients, i.e. w.r.t. the input ∂ωO/∂ωI and w.r.t

all function parameters ∂ωO/∂θ1 , . . . , ∂ωO/∂θk.

A custom operation can be added to Autograd by implementing two functions:

• “forward pass”: given an input ωi, define how to calculate ωi+1 = fθ (ωi)

• “backward pass”: given the gradient ∂ωO/∂ωi+1 = ∂ωO/∂fθ(ωi), apply the chain rule to

obtain

∂ωO
∂ωi

=
∂ωO

∂fθ (ωi)
· ∂fθ (ωi)

∂ωi
(2.9)

∂ωO
∂θ

=
∂ωO

∂fθ (ωi)
· ∂fθ (ωi)

∂θ
(2.10)
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For the reconstruction framework presented here, the input for a batch of N experimental

images consists of: N experimental images, their orientation given as Euler angles, and

corresponding CTF given in Fourier space. The network then performs the following

operations to obtain a scalar output:

1. Project pseudo atoms. For each of the N input items, use the corresponding Euler

angles and pseudo atom coordinates, as well as the shared pseudo atom intensities

to produce super sampled 2D images (4 times larger than experimental images, see

subsection 2.3.1)

2. Take the Fast-Fourier Transform of the resulting 2D images

3. Crop the FT to the experimental image dimensions

4. Multiply each of the N projections in Fourier space with the corresponding CTF

from the input

5. Take the Fast-Fourier Transform to obtain the 2D real-space images that now have

the same dimensions as the experimental images and are convolved with the CTF

6. Calculate the mean squared error between these N images and the experimental

images given in the input

The operations needed for steps 2, 4, 5 and 6 were already implemented in Autograd. I

added the necessary operations for step 1 (following algorithm 5) and step 3. Furthermore,

I also implemented algorithm 2 as an Autograd operation. For all cases, I used CUDA to

parallelize the computation using the GPU. With all operations available, they could be

chained to produce the desired output.
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2.5.1 Reconstruction Test

To test the reconstruction framework in PyTorch and evaluate the CTF correction, I per-

formed a small proof of concept analysis. I again used as reference the density of 20S

Proteasome downloaded from the EMDB with accession code EMD-9233, down sampled

to ∼ 2Å/pixel and a box size of 134 pixels as was previously used in. A mask was also

generated as described above (see section 2.3). From this reference density, I generated

3072 projections using the Projector class from Warp [Tegunov and Cramer, 2019]. The

projections were evenly distributed on the sphere using the HEALPIX algorithm [Gorski

et al., 2005]. Additionally, I sampled CTF parameters randomly from shiny.star pro-

vided in EMPIAR-10299 [Casañal et al., 2017] and created a separate CTF image for each

projection. I convolved each reference projection with the respective CTF. The resulting

projections serve as a reference for the reconstruction process.

I initialized ∼ 500 000 pseudo atoms as already done above and set their intensities to

0. For 128 projections at a time, I ran steps 1 through 6 (page 39), used Autograd to

calculate the gradients for the pseudo atom intensities and performed stochastic gradient

descent with a learning rate of λ = 0.1 to update them. This was repeated until all

projections were processed exactly once. After each of such an iteration, I rastered the

pseudo atom intensities to a Cartesian grid and compared the resulting volume with the

reference volume previously used to generate the projections. For this comparison, I

calculated the Fourier shell correlation. I ran the process for 10 iterations. The FSC

values after each iteration is presented in Figure 2.5. The FSC is well above 0.5 for all

wave numbers, indicating a refinement up to the Nyquist limit. Furthermore, as single

iteration was sufficient, as subsequent iterations did not alter the result.
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Figure 2.5: Quality of the reconstructed density using the gradient descent based
approach for projections that are aberrated by the CTF function.
After processing all 3072 projections, the pseudo atom intensities were rastered to a Cartesian grid
and the Fourier shell correlation with the reference density were calculated after masking with a
soft mask. Curves for different iterations are all overlapping, indicating no further improvement
after the first iteration.

2.6 Discussion and Outlook

Reconstruction of cryo-EM density is the calculation of a 3D electron density map from the

2D projections of particles obtained from the electron microscope. The usual formulation

of the problem is that we have a set of 2D particle images Pi that all originate from

exact copies of the same particle, i.e. they all represent the same density, projected from

an unknown direction. Additionally, particle images are convolved with the Contrast

Transfer Function (CTF) and overlaid by a high degree of noise. The Contrast Transfer

Function is thereby a direct consequence of the defocus contrast imaging performed in

cryo-electron microscopy. The high level of noise is a consequence of the low number of

electrons used for imaging to reduce radiation damage to the sample. This results in a

high level of shot noise, which is counteracted by averaging multiple movie frames and

having a large number of particle images.

In this formulation, the task of reconstruction is an optimization problem to simultane-

ously find the unknown projection orientations for each particle image and the unknown

3D density. A gold standard algorithm that utilizes Bayesian formulation of this problem

was devised by Sjors Scheres [Scheres, 2012a] and implemented in the software package
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RELION [Scheres, 2012b], which provides end-to-end functionality to go from raw micro-

graph images to high resolution reconstructions. A major bottleneck in the above described

formulation of the reconstruction procedure, however, is the assumption of exact copies of

the same particles that give rise to the particle images. Alternative or incomplete assem-

blies of protein complexes, different states, as well as flexibility, can thereby be a source

of structural heterogeneity in the dataset. Alternative assemblies and different states can

thereby often be solved by performing classification of particle images, i.e. sorting them

into a fixed number of classes, corresponding to unique underlying structures and per-

forming separate reconstruction tasks that can again assume that all particle images in

one class originate from the same density [Gao et al., 2004]. When dealing with structural

heterogeneity originating from flexibility, however, there are no longer a finite number

of different densities into which we can classify. Instead, having a free movement along

one or multiple degrees of freedom will introduce an infinite amount of different densities

as a source for the 2D projections. In this chapter, I explored the possibility to recon-

struct a single density from a dataset that shows such structural heterogeneity. Thereby,

I assumed that we have a system that can estimate for each projection image an at least

low-resolution representation of the density that it originated from. I developed a pseudo

atom based reconstruction framework that initializes a single set of pseudo atoms com-

prised of locations in 3D space and intensities, which together represent a density map. By

updating the locations, the pseudo atoms can be moved along the same degree of freedom

present in the biological specimen. The movement of pseudo atoms is thereby calculated

by gradually updating them to fit the required coarse density representation from each

projection image. All this information then enable to perform a real-space reconstruction.

For each experimental image, the pseudo atoms are moved to best fit this image’s 3D

density, projected using the same orientation previously estimated for this experimental

image and then compared to said experimental image. This gives a per-pixel error which

can be back-projected to update the pseudo atom intensities. This can be performed for all

experimental images and incorporates movement information. I implemented this scheme

using CUDA for GPU accelerated computation of projection images and back projection

of updates. I could show the correctness of the implemented operation by reconstructing
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a 20S Proteasome from artificially generated projections accurately. Furthermore, I could

show that in the presence of noise, the reconstructed density have lower Fourier shell corre-

lation values. This becomes less prominent if the number of projection images is increased,

as can be expected. I also showed that it is possible to correctly reconstruct a dataset with

structural heterogeneity. From the 20S Proteasome density, I created an artificially moved

density, used a gradient descent scheme to estimate pseudo atom coordinates and recon-

structed a single density from a combined projection set from both moved and unmoved

densities. This showed that it is possible to incorporate movement information into the

reconstruction process by using pseudo atoms, and that high resolution reconstruction is

in principle possible. Knowing that these operators work in principle for a reconstruction

procedure, I made them compatible with PyTorch’s Autograd framework for automatic

differentiation. This enables to incorporate them into a neural network for a variety of

tasks and increases their usability. In this regard, I could already show how this definition

could automatically compensate for the effect of the Contrast Transfer Function (CTF)

on the reconstruction process.
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Reconstruction

3.1 Core Idea and Related Work

In cryo-electron microscopy data processing, the task of reconstruction is the step to cal-

culate from the 2D particle images Xij a 3D representation of the corresponding macro-

molecule’s Coulomb potential. The typical forward model how these projections are gen-

erated in the microscope is described through a linear model in Fourier space [Scheres,

2012a]:

Xij = CTFij
L∑
l=1

PΦ
jlVkl +Nij (3.1)

The components are thereby:

Xij The i-th component of the j-th experimental image

CTFij The value of the CTF function for the component ij∑L
l=1 PΦ

jlVkl The j-th component of the projection operator acting on a Volume Vk, i.e.

this operator extracts the j-th component of a 2D slice obtained from the 3D

Fourier transform of Vk with the orientation given by Φ

Nij Additive spectral noise
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3 Wasserstein GAN based Ab-Initio Reconstruction

The experimental images are projections of the structure(s) of interest under unknown

orientations. The noise level is usually significant, as the electron dose is kept low to

reduce radiation damage to the sample. The combination of unknown orientations, low

SNR and unknown volume make the reconstruction a computationally difficult task.

One key step is to obtain an initial model of the volume(s) from which the projections orig-

inate [Elmlund et al., 2008; Punjani et al., 2017]. The quality of this ab-initio model can

thereby heavily influence subsequent refinement steps and can introduce modelling bias

in case of an incorrect representation of the underlying data [Henderson, 2013]. There-

fore, it is crucial to have a bias free approach to generate such ab-initio models. Over

the course of the last decade, deep learning based approaches have revolutionized many

fields in computer science and can reach human level accuracy on many image processing

tasks like segmentation and classification [Hestness et al., 2019]. More recently, generative

approaches, and more explicitly generative adversarial networks, have also reached high

levels of resolution [Goodfellow et al., 2014; Gonog and Zhou, 2019; Yi et al., 2019; Ar-

jovsky et al., 2017]. A generative network is thereby a neural network that can artificially

create data points x that follow some real distribution Pr. Generative Adversarial Net-

work, often shortened as GAN, consist of two neural networks that are competing against

each other. The first is the generator, a network with a set of parameters θ that maps a

random input z to a data point x = G(z) that follows a certain probability distribution

x ∼ Pθ. Its training objective will ultimately be to best mimic the real data, i.e. Pθ ∼ Pr.

The key challenge is thereby that Pr is most likely not be known explicitly. E.g. it could

just be a category of data, i.e. certain natural images like images of faces. To address

this challenge, GANs train a second network called a discriminator D. This discriminator

is presented with data points from the real data xr ∼ Pr and those generated from the

generator xg ∼ Pθ. Its training objective is to best distinguish data from these two classes.

The data points are not directly compared, however. Instead, the training objective can

be formulated such that the discriminator is trained to produce different output for both

classes. E.g. this could be a binary ‘1’ for x ∼ Pr and ‘0’ for x ∼ Pr, or alternatively

‘high’ and ‘small’ (or negative) numbers for the two cases. It does therefore work against
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the generator, as their training objectives are counteracting. G tries to achieve output

that is indistinguishable from the real output Pθ ∼ Pr, while D tries to find a way to

distinguish the two. Updates for the generator are calculated as follows: First, a data

point x = G(z) ∼ Pθ is generated and presented to the discriminator. If both G and

D are fully differentiable, gradients can be calculated for G’s parameters θ and θ can be

updated such that D(G(z)) moves towards a ‘high’ output, i.e. the generator learns how

to better “fool” the discriminator.

Correct training of the discriminator is therefore critical for a successful training of the

generator. A special class of GANs are Wasserstein GAN networks that make use of the

Wasserstein distance. In these networks the discriminator is called a Critic instead (as

it can no longer perform binary classification) and we utilize the Wasserstein distance

between Pr and Pθ during training:

W (Pr, Pθ) = sup
||C||L<1

Ex∼Pr [C(x)]− Ex∼Pθ
[C(x)] (3.2)

The constraint ||C||L < 1 is that the Critic needs to be a 1-Lifschitz function mapping a

data point x to the output C(x) that is supposed to be large for real data points ∼ Pr and

small for those generated from fake data points ∼ Pθ. The 1-Lifschitz criterion is needed

to ensure that the gradient ∂C(x)/∂θ convey useful information to actually bring Pθ closer

to Pr. In this network architecture, the generator learns to produce realistic looking data,

without seeing the real data directly.

In the project in this chapter, we wanted to explore the usage of a Wasserstein GAN

to perform ab-initio reconstruction from a set of experimental images. According to the

forward model given in Equation 3.1, each of those experimental images show a projection

of the electron density of a biological structure. Each image is convolved with the CTF

and aberrated by a high degree of noise. The generator will learn a volume and generating

artificial data will follow the forward model:
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3 Wasserstein GAN based Ab-Initio Reconstruction

1. The volume is projected under a random angle, creating a ‘clean‘ projection

2. Convolve with a CTF

3. Add noise

The CTF parameters can thereby be sampled from the experimental images. Theoretically,

one could also try to learn a correct distribution of CTF parameters from which the

generator samples, but as CTF parameters can already be estimated from the micrographs

its estimation would unnecessarily complicate the training task. The generator will need to

learn a volume that best represents the biological structure that was present in the sample

that gave rise to the experimental images. Additionally, it will need to learn a noise model

that accurately matches the noise distribution within the experimental images. With the

additive noise, there is no direct way for the generator to have an incentive to encode

actual structural information only in the volume and not in the noise model. However,

this can be counteracted by randomly shifting the sampled noise images prior to adding

them to the generated 2D projections.

Using a Wasserstein GAN for cryo-EM reconstruction was previously explored by Gupta

et al. [Gupta et al., 2021]. Their approach required to semi-automatically extract “noise”

patches from the same micrographs that particles were extracted from, and was only tested

with symmetric structures.
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3.2 Network Architecture

3.2 Network Architecture

I implemented a Wasserstein GAN using LibTorch, the C++ API of PyTorch, version

1.7. All network parts were defined with Autograd operators, which enables automatic

differentiation and subsequent learning of the network’s parameters. The implemented

Wasserstein GAN consists of a generator and a Critic network, which I describe in the

following.

3.2.1 Generator

The main learnable parameter of the generator is a volume of size D3, where D is the box

length of the volume to be reconstructed. To create a 2D image, this volume first needs

to be projected. The projection angles can either be randomly sampled from a uniform

distribution on a sphere. Or, one can also empower the generator to learn an uneven dis-

tribution of viewing directions. Three random variables (sampled from a Gaussian with

unit standard deviation and mean 0) can be processed by a small multi-layer-perceptron

(MLP) network with a 3x3 rotation matrix as output. The task of the MLP is thereby to

perform distribution transformation from the unit Gaussian distribution to the experimen-

tal viewing direction distribution. The actual projection can then be performed as follows.

First, we sample a rotated volume, using the affine_grid and grid_sample which were

developed in the context of spatial transformer networks [Jaderberg et al., 2015]. Subse-

quently, a mean operation along the new z axis performs the actual projection operation,

creating a “clean” projection of size D2. At this point, we could have also performed

Fourier slice extraction according to the Fourier slice theorem, but is computationally not

less expensive than the described method. CTF parameters are randomly sampled from

the experimental images, and the “clean” projection is convolved with a CTF. Finally,

random noise is generated by processing a random input through a series of MLP and

deconvolutions into a noise patch of size D2. This noise patch is circularly shifted by a

random amount of pixels along the x-axis to discourage any structural information being
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3 Wasserstein GAN based Ab-Initio Reconstruction

Figure 3.1: Strategy to update the generator during training.
Iteratively, the Critic and generator are updated during the training. The Critic is trained to
produce high output on the real images and low output on the generated images. To update the
generator, first multiple images are generated from the volume learned by the generator. These
“clean” projections are then distorted by noise sampled from the noise network and convolved
with the contrast transfer function (CTF). The resulting “generated image” is given to the Critic
which generates a numeric output. All these operations are differentiable and back propagation is
automatically performed by Autograd. In this way, gradients can be obtained for the weights in
the noise generator as well as all voxels in the generator volume.

learned by the noise model. The resulting noise patch is added to the previously convolved

“clean” projection. Updates to the noise generator and the volume are calculated from

the Critics output on the generated images, see Figure 3.1.

3.2.2 Critic

The Critic consists of a series of convolution and downsampling operations. Each convo-

lution block is a combination of a convolution operation, followed by max-Pooling and a

leaky RELU. The convolution’s kernel size is set to 3, padding and stride are set to 1.

Max Pooling operates with a 2×2 kernel with a stride of 2, effectively reducing the dimen-

sionality by a factor of 2. The Critic consists of 6 consecutive blocks with an increasing

number of channels: 96, 192, 384, 768, 1536, 3072. This is followed by a fully connected

layer with 10 neurons, a leaky RELU operation and a single neuron that produces the final

output. All leaky RELU have a negative slope of 0.1. The main difficulty in training the
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Critic in ensuring the 1-Lifschitz continuity. To ensure this, a number of different tech-

niques have been developed, such as weight clipping, gradient clipping, gradient penalty

and spectral normalization [Gulrajani et al., 2017; Miyato et al., 2018]. During training,

gradient penalty was applied, i.e. the term

(||∇C(η ∗ xr + (1− η)xg||2 − 1)2λ

is added to the Critic’s loss function, which pushes it’s gradient to stay close to 1. λ was

set to 0.6.

3.3 Results

I processed an experimental dataset with 400k particles of a polymerase complex to ob-

tain a test data set for the GAN based ab-initio reconstruction. All particle images had a

side-length of 128pixel and 3Å/pixel. After 2D classification with cryoSPARC [Punjani

et al., 2017], 2D classes that resembled projections of polymerase were selected, corre-

sponding to 155 550 particles. Subsequently, ab-initio reconstruction and 3D refinement

were performed to obtain a 3D reconstruction up to the Nyquist limit. The cryoSPARC

reconstructed volume as well as the particle set were exported and 3D refinement was

redone in RELION [Scheres, 2012b], as its output contains the parameters of the noise

model fit to the data. With this processing, I now had 155 550 particle images with orien-

tations, noise model estimated during the reconstruction and CTF parameters as well as

a 3D density with 1283 pixel at 3Å/pixel, which I used as reference in the following.

3.3.1 Noise Free Reconstruction

I read all CTF parameters and the noise model into memory. The generator was initialized

with a volume of size 643, with all entries set to 0. For a first test, the noise model was not
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3 Wasserstein GAN based Ab-Initio Reconstruction

applied in the forward model. All parameters of the Critic network were initialized with

PyTorch’s[Paszke et al., 2019] default initialization scheme. Gradient based optimization

was performed using the Adam [Kingma and Ba, 2014] optimizer with α = 0.01, β1 =

0.5, β2 = 0.9, ϵ = 10−8. To generate ‘real‘ projections, first I sampled a random orientation

from the unit sphere and random CTF and noise model parameters from the experimental

images. I projected the reference density to 2D images with a box size of 128 pixels,

convolved them with the CTF and added noise sampled from the noise model. Finally,

the resulting images were down sampled to a box size of 64 pixels, corresponding to

6Å/pixel. The training of both networks was performed iteratively:

In each step, first the Critic was trained four times: Each time, a batch of 8 ‘real‘ images

was sampled as well as a batch of 8 images from the generator. The loss to minimize for

the Critic, given real images xr and generated images xg, was then defined as:

L = C(xg)− C(xr) + λ · (||∇C(η ∗ xr + (1− η)xg||2 − 1)2

which maximizes C(xr) and the distance C(xr)−C(xg). Additionally, it contains a gradient

penalty term, which penalizes a deviation of the Critic’s gradient from 1, ensuring 1-

Lifschitz continuity [Gulrajani et al., 2017]. For each batch, gradients were automatically

calculated by AutoGrad and updates to the Critics parameters were calculated according

to Adam. After four times training of the Critic, a single iteration was performed for the

generator. For this iteration, a batch of 8 images is generated from the generator, and then

presented to the Critic, giving the output C(xg). The loss to minimize for the generator

was then defined as

L = −C(xg)
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which tries to maximize C(xg). As for the Critic, gradients were automatically calculated

by AutoGrad and updates to the generators parameters were calculated according to

Adam.

In total, the network was trained for 14 000 iterations, which took ∼ 10 hours on an

NVIDIA RTX2800TI graphics card. After training, the volume learned by the generator

was extracted and compared with the original reference volume. The comparison was

performed by importing both the reference and extracted volume into cryoSPARC and

running a 3D alignment job. This job rotates both volumes and calculates the gold stan-

dard FSC values. These are shown in Figure 3.2. Using a cut-off of 0.5 for a resolution

estimate gives a resolution of 15.8Å for the reconstruction. The volume that the gener-

ator reconstructed had a pixel size of 6Å, which gives a theoretical limit of 12Å for the

resolution.

3.3.2 Reconstruction in the Presence of Noise

Experimental cryo-EM particle images are aberrated by a high level of noise. To test

the ability of the WGAN based approach to still be able to provide a useful ab-initio

reconstruction, I expanded the test case described in the previous section. For the ‘real’

projections, I added Gaussian noise with standard deviation σ = 1 to the images after

convolving with the CTF and prior to down sampling to 642 box size. As the reference

volume, from which the projections are calculated, is the direct output from a RELION

reconstruction, it is normalized such that the noise has σ = 1 in the experimental images

from which the volume was reconstructed. Therefore, adding σ = 1 noise to the artificially

created projections gives a signal-to-noise ratio that is close to the real images. The main

difference is that the added noise is white, while the noise in the experimental images is

usually assumed to be colored.

The generator also adds Gaussian noise to the projections after convolving with the CTF

and prior to down sampling. The code was again run for 14 000 iterations. The final vol-
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ume was again extracted, imported to cryoSPARC and evaluated by running an Align3D

job with the reference volume. The calculated gold-standard FSC values are shown in

Figure 3.3. The resolution is drastically reduced in comparison to the noise free recon-

struction shown in Figure 3.2. The main property that an ab-initio reconstruction should

fulfill is that it can be a good starting point for a subsequent high-resolution refinement

that needs a good starting model to assign projection angles to the particle images. I

used the reconstructed density as a reference for a “Refinement New” task in cryoSPARC.

The 155 550 particle images from the pre-processing of the reference density were used as

input for this reconstruction. This reconstruction algorithm reconstructs two independent

half maps from the particles and uses the Fourier Shell correlation between the two for

a resolution estimate. Usually, a cut-off of 0.143 in the FSC between both half maps is

chosen to assign a resolution value to the reconstruction [Henderson et al., 2012]. The

FSC curve was above this threshold for all wave numbers in this dataset, indicating the

maximal possible resolution that could be reconstructed from this density (see Figure 3.4).
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Figure 3.2: Fourier Shell Correlation between the reference map and the density map
reconstructed using the WGAN approach with noise free projection images as input.
The blue line represents the FSC values while the dashed line indicates the 0.5 cut-off for the
resolution estimate. Here, the reolution is estimated to be 15.8Å, which is close to the limit of
12Å.
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3 Wasserstein GAN based Ab-Initio Reconstruction

Figure 3.3: Fourier Shell Correlation between the reference map and the density map
reconstructed using the WGAN approach with noisy projection images as input.
The simulated projection images used as input for the WGAN reconstruction were distorted with
colored noise (see main text). In this plot, the blue line represents the FSC values, while the
dashed line indicates the 0.5 cut-off for the resolution estimate. Here, the resolution is estimated
to be 25.3Å.
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Figure 3.4: cryoSPARC reconstruction using the ab-initio reference map generated
by the WGAN approach.
Unaltered result as reported by cryoSPARC. FSC values for different versions of the final recon-
structed volume against the reference density map are drawn in different colors. The horizontal
line indicates the 0.143 FSC cut off for the resolution estimation.

3.4 Discussion and Outlook

A priori reconstruction is a crucial step in cryo-EM method development. It is needed,

as current high resolution reconstruction techniques require for an estimate of the volume

to be reconstructed [Punjani et al., 2017; Scheres, 2012b]. Thereby, the volume obtained

from ab-initio reconstruction is used to create artificial projections according to some

forward model. These projections are then compared to experimental images to obtain

estimates of possible orientations for each projection image. With this information, exper-

imental images can then be back projected to update the current estimate of the volume

to reconstruct. As such, these algorithms are sensitive to the correctness of the initial

guess obtained from ab-initio refinement. Several different techniques have already been

developed that perform ab-initio reconstruction [Zhong et al., 2021b; Reboul et al., 2018;

Doerschuk and Johnson, 2000; Gomez-Blanco et al., 2019; Elmlund et al., 2008; Punjani

et al., 2017; Levy et al., 2022]. CryoGAN is a GAN based approach that was devised for

cryo-EM reconstruction [Gupta et al., 2021]. It showed good performance for a dataset of

β-galactosidase, but needed to use the symmetry and a manual extraction of noise patches.
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Based on this, I started to work on a Wasserstein GAN network with a similar task. The

generator learns a volume from which it can generate projections using a forward model.

The forward model does thereby consist of:

1. Projection of the learned volume. The pose can be randomly sampled from a uniform

distribution or alternative from a learned pose distribution

2. Convolving with the CTF. The CTF parameters are thereby available from the

experimental images.

3. Adding noise. The noise can thereby be generated by a small MLP network.

Images generated in this fashion are presented to the Critic, a convolutional neural network

and the generator’s parameters are updated to improve the output of the Critic on the

generated images. The Critic is trained by presenting it with experimental images as well

as artificially created once and maximizing the distance between the outputs on both. So

far, I was able to implement the network and training algorithm and used a polymerase

dataset to test the principal working of the approach. Thereby, a volume with a relatively

large pixel size was learned. This was chosen for two reasons. Foremost, the task of ab-

initio reconstruction does not require resolving high resolution features. In the refinement

steps that usually follow ab-initio reconstruction, the provided reference maps are usually

low pass filtered anyhow. Additionally, this choice decreased both the computational

burden, but also the number of parameters to be learned. I have also tested lower pixel

sizes, but saw a decrease in convergence speed as well as suboptimal performance (results

not shown). Using the test dataset, a proof of concept could already be demonstrated.

The generator was able to learn a low resolution representation of the true volume, which

could also be used in a subsequent refinement step to reach resolution up to the Nyquist

limit. At the same time, the generator was not fully able to get the full potential from

the available information. In principle, the projections used for training the Critic contain

information up to 12Å, but the generator has only learned up to 15.8Å in the noise free
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case and 25.3Å in the case with artificial noise. This might indicate that the current

network design/training scheme is not ideal, yet.

At this stage, some parts could not be tested yet. The ability to learn arbitrary noise

models as well as arbitrary pose distributions are two key parts that will need to be tested

prior to being able to reconstruct real cryo-EM samples.
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4 The Structure of a Dimeric Form of

SARS-CoV-2 Polymerase

In April 2020, our group successfully solved the structure of the replicating RNA-de-

pendent RNA polymerase of the SARS-CoV-2 [Hillen et al., 2020] which caused a global

pandemic that is still ongoing at the time of writing this thesis. Based on this work, further

research was able to reveal how Remdesivir interacts with the polymerase and can only

cause an incomplete pausing [Kokic et al., 2021]. While working on these publications,

there were hints that in some acquired datasets, dimeric structures might be present.

My contribution then started by analyzing these already acquired datasets in more detail

to single out the particle images that belong to dimeric conformations and subsequently

perform 3D refinement to obtain the dimeric structure. With input from Dimitry Tegunov,

I developed a method to identify from a set of particles those that might actually be part

of a dimer. I wrote a software tool to perform this identification, re-processed the data

set from [Kokic et al., 2021] to identify further dimeric particles and performed different

analysis and 3D refinement to obtain the density of a dimeric form of the RdRp. Hauke

Hillen and Goran Kokic then helped to fit a structure to said density and, together with

Patrick Cramer and Jana Schmitzova, supported me in formulating a hypothetical model

for the role of this dimeric structure in the production of subgenomic RNA. All this effort

resulted in a publication:

Jochheim, F. A., Tegunov, D., Hillen, H. S., Schmitzová, J., Kokic, G., Diene-
mann, C., and Cramer, P. (2021). The structure of a dimeric form of sars-cov-2
polymerase. Communications biology, 4(1):1–5
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The following text in this chapter is taken from said publication. Formatting was edited

to comply with the style of this thesis.

4.1 Abstract

The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to repli-

cate and transcribe its genome. Previous structures of the RdRp revealed a monomeric

enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy

of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve

its structure at 5.5Å resolution. In this structure, the two RdRps contain only one copy

of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement.

We speculate that the RdRp dimer facilitates template switching during production of

sub-genomic RNAs.

4.2 Introduction

Replication and transcription of the RNA genome of the coronavirus SARS-CoV-2 rely on

the viral RNA-dependent RNA polymerase (RdRp) [Hilgenfeld and Peiris, 2013; Snijder

et al., 2016; Posthuma et al., 2017; Romano et al., 2020; Jiang et al., 2021]. Following

the structure of the RdRp of SARS-CoV6, structures of the RdRp of SARS-CoV-2 were

obtained in free form7 and as a complex with bound RNA template-product duplex [Yin

et al., 2020; Wang et al., 2020; Hillen et al., 2020; Kokic et al., 2021]. These structures

revealed a monomeric RdRp with a subunit stoichiometry of one copy of the catalytic

subunit nsp12 [Ahn et al., 2012], two copies of the accessory subunit nsp8 [Imbert et al.,

2006], and one copy of the accessory subunit nsp7 [Posthuma et al., 2017; Subissi et al.,

2014]. Two studies additionally observed monomeric RdRp lacking one of the two nsp8

subunits and nsp7 [Kirchdoerfer and Ward, 2019; Wang et al., 2020]. Here we show that
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the RdRp of SARS-CoV-2 can also adopt a dimeric form, with two RdRps arranged in an

antiparallel fashion.

4.3 Results and Discussion

To detect possible higher-order RdRp assemblies in our cryo-EM data for RdRp-RNA

complexes, we wrote a script to systematically search for dimeric particles (Methods). We

calculated nearest-neighbor (NN) distances and relative orientations of neighboring RdRp

enzymes. In one of our published data sets (structure 3 [Kokic et al., 2021]), we detected

many particles that showed RdRps with a preferred NN distance of 80Å and a relative

orientation of 180◦ (Supplementary Fig. 1a, b), indicating the existence of a structurally

defined RdRp dimer.

From a total of 78 787 dimeric particles, we selected 27 473 particles that showed a strong

RNA signal during 2D classification. The selected particles led to a 3D reconstruction

at an overall resolution of 6.1Å (Supplementary Fig. 2b). We then fitted the obtained

density with two RdRp-RNA complexes [Hillen et al., 2020], which revealed an antipar-

allel arrangement and RNA exiting to opposite sides of the dimeric particle. When we

applied the two-fold symmetry during 3D reconstruction, the resolution increased to 5.5Å

(Supplementary Fig. 2c).

The reconstruction unambiguously showed that both RdRps lacked one copy of nsp8, and

thus each enzyme was comprised of only one copy of each of the three subunits (Supple-

mentary Fig. 3a). The lacking nsp8 is the one that interacts with nsp7 in monomeric

RdRp and had been called nsp8b [Hillen et al., 2020]. The reconstruction showed poor

density for the C-terminal helix of nsp7 (residues 63-73) and the sliding pole of the remain-

ing nsp8 subunit (nsp8a, residues 6-110) (Supplementary Fig. 2b). These regions were

mobile in both RdRp complexes and were removed from the model. Rigid body fitting of

the known RdRp domains led to the final structure.
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The structure of the antiparallel RdRp dimer showed that the two polymerases interact via

their nsp7 subunits, with the nsp7 helices α1 and α3 (residues 2-20 and 44-62, respectively)

contacting each other (Fig. 1). Formation of the nsp7-nsp7 dimer interface is only possible

upon dissociation of nsp8b, which liberates the dimerization region of nsp7 (Supplementary

Fig. 3c). To our knowledge, no similar nsp7-nsp7 interaction has been observed so far,

as it differs from a previously described interaction in a nsp7-nsp8 hexadecamer structure

[Zhai et al., 2005] and the nsp7-nsp7 interaction observed in a (nsp7-nsp8)2 heterotetramer

[Zhang et al., 2021; Krichel et al., 2021].

Frequently occurring mutations in the SARS-CoV-2 genome are predicted to influence

formation of the RdRp dimer. The nsp12 mutation P323L [Chand et al., 2020], coevolved

with the globally dominating spike protein mutation D614G [Kannan et al., 2020], is often

found in severely affected patients [Biswas and Mudi, 2020] and is predicted based on

the structure to stabilize nsp12 association with nsp8a [Kannan et al., 2020; Reshamwala

et al., 2021]. In contrast, the nsp7 mutation S25L is predicted to destabilize nsp7 binding

to nsp8a [Reshamwala et al., 2021] and the nsp7 mutation L71F, which is associated with

severe COVID-19 [Nagy et al., 2021], may destabilize binding of the nsp7 C-terminal

region to nsp8b. We speculate that mutations in RdRp subunits can influence the relative

stabilities of the RdRp monomer and dimer.

Neither the catalytic sites nor the RNA duplexes are involved in RdRp dimer forma-

tion. It is therefore likely that the two RdRp enzymes remain functional within the dimer

structure. The two RdRp enzymes in the dimer may thus be simultaneously involved in

RNA-dependent processes. Unfortunately, we could not test whether the RdRp dimer is

functional because we were unable to purify it. In particular, we attempted to reconsti-

tute the RdRp with a nsp12:nsp8:nsp7 stoichiometry of 1:1:1, but obtained preparations

showed again an apparent stoichiometry of 1:2:1 that was observed in previous RdRp

structures. Therefore, the functional relevance of the RdRp dimer reported here needs to

be established.

64



4.3 Results and Discussion

We hypothesize that the RdRp dimer is involved in the production of sub-genomic RNA

(sgRNA) [Sola et al., 2015; Kim et al., 2020; V’kovski et al., 2021]. In this intricate process,

positive-strand genomic RNA (gRNA) is used as a template to synthesize a set of nested,

negative-strand sgRNAs that are 5’ and 3’ coterminal with gRNA. The obtained sgRNAs

are later used as templates to synthesize viral mRNAs. Production of sgRNAs involves

a discontinuous step, a switch of the RdRp from an upstream to a downstream position

on the gRNA template [Sawicki and Sawicki, 1998]. These positions contain transcription

regulatory site (TRS) [Alonso et al., 2002; Pasternak et al., 2002; Zúñiga et al., 2004], but

it is enigmatic how a single RdRp enzyme could ‘jump’ between these.

Our dimer structure suggests a model for sgRNA synthesis that extends a recent proposal

[Chen et al., 2020; Malone et al., 2021] (Fig. 2). In the model, one RdRp of the dimer

(RdRp 1) synthesizes sgRNA from the 3’ end of the gRNA template until it reaches a TRS

in the template body (TRS-B). Due to the lack of one nsp8 subunit, the dimeric RdRp

is predicted to have lower processivity than monomeric RdRp [Hillen et al., 2020; Subissi

et al., 2014] and this may facilitate TRS recognition. The viral helicase nsp13 could then

cause backtracking of the RdRp [Chen et al., 2020; Malone et al., 2021]. Backtracking

exposes the 3’-end of the nascent sgRNA, which is complementary to the TRS and may

hybridize with another TRS located in the leader (TRS-L) at the 5’-end of the template.

The resulting RNA duplex could then bind to the active center of the second RdRp (RdRp

2) to continue sgRNA synthesis.

In our model, it is not the RdRp that switches to a second RNA position, but instead

the RNA switches to a second RdRp. After the switch, RdRp 1 may backtrack further,

whereas RdRp 2 could move forward until it reaches the 5’-end of the template. These

movements occur on the same template but in opposite directions and would be facilitated

by the antiparallel arrangement of the polymerases. Superpositions show that only one

copy of the template-strand engaged nsp13 [Yan et al., 2020] can be modeled on our dimer

structure without clashes (Supplementary Fig. 3d). However, the interaction of this nsp13

copy to the monomeric RdRp is partially mediated by the nsp8 copy that is absent in the
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Figure 4.1: Structure of antiparallel RdRp dimer.
a Two views of a ribbon model of the antiparallel RdRp–RNA dimer. Color code for nsp7, nsp8,
nsp12 domains (NiRAN, interface, fingers, palm, and thumb), RNA template (blue), and RNA
product (red) is used throughout. Nsp7 subunits in the two RdRp monomers are colored slightly
differently for the two monomers (dark and light blue, respectively). Views are related by a 90◦

rotation around the vertical axis.
b Close-up view of nsp7–nsp7 dimerization interface. View is as in the left structure of panel a.
The final cryo-EM density is shown as a black mesh.

dimeric form. Thus, how backtracking in a dimeric complex may be facilitated remains

unclear and it is possible that the second nsp13 copy that was previously not observed to

be engaged with template RNA is involved in this process (Supplementary Fig. 3e).

Although the functional relevance of the RdRp dimer remains to be established, we note

that RdRp dimerization and oligomerization has been reported for many other viruses

including Influenza, Polio, Hepatitis C, Norovirus, and others [te Velthuis, 2014]. RdRp

oligomerisation can be important for cooperative template binding [Högbom et al., 2009]

and can be critical for the viral life cycle [Chang et al., 2015; Fan et al., 2019]. Future work

should therefore concentrate on the preparation and functional analysis of the coronavirus

RdRp dimer and possible additional higher-order structures of the enzyme.
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Figure 4.2: Hypothetical model of subgenomic RNA production for viral transcription.
a Genomic positive-strand (�) RNA (gRNA) is used as a template to produce the 5’ region of
negative-strand (�) sgRNA until TRS-B is reached by the RdRp monomer 1.
b Backtracking is mediated by nsp13 helicase and exposes the newly synthesized, complementary
TRS sequence.
c The complementary sequence in sgRNA can pair with the downstream TRS-L in gRNA and is
then loaded into RdRp monomer 2.
d RdRp 2 then completes � sgRNA synthesis while RdRp 1 backtracks further.
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4.4 Methods

4.4.1 Cryo-EM Sample Preparation

We reused the already processed data set 3 from our previous publication [Kokic et al.,

2021]. Briefly, RNA sequence for the scaffold used was: rUrUrU rUrCrA rUrGrC rAr-

CrU rGrCrG rUrArG rGrCrU rCrArU rArCrC rGrUrA rUrUrG rArGrA rCrCrU rUrUrU

rGrGrU rCrUrC rArArU rArCrG rGrUrA and rUrGrA rGrCrC rUrArC rGrC- rA/rR

-rGrUrG. RdRp-RNA complexes were formed by mixing 1.6nmol of purified nsp12 with

an equimolar amount of RNA scaffold and 4.8nmol of each nsp8 and nsp7. The mix-

ture was incubated for 10min and afterwards applied to a Superdex 200 Increase 3.2/300

size exclusion chromatography column, which was equilibrated in complex buffer (20mM

Na-HEPES pH 7.4, 100mM NaCl, 1mM MgCl2, 1mM TCEP) at 4 ◦C. Peak fractions

corresponding to the RdRp-RNA complex were pooled and diluted to 2mg/mL. Three

microliters of the concentrated RdRp-RNA complex were mixed with 0.5µL of octyl ß-d-

glucopyranoside (0.003% final concentration) and applied to freshly glow discharged R 2/1

holey carbon grids (Quantifoil). The grids were blotted for 5 s using a Vitrobot MarkIV

(Thermo Fischer Scientific) at 4 ◦C and 100% humidity and plunge frozen in liquid ethane.

4.4.2 Preprocessing of Cryo-EM Data

Data collection and preprocessing was the same as previously described [Kokic et al., 2021].

Briefly, data was collected using SerialEM [Mastronarde, 2005] on a 300 keV Titan Krios

transmission electron microscope (Thermo Fischer Scientific) and a K3 direct electron de-

tector (Gatan). Inelastically scattered electrons were filtered out prior to detection using

a GIF quantum energy filter (Gatan) using a slit width of 20 eV. Images were acquired

at a nominal magnification of 105 000x and a calibrated pixel size of 0.834Å/pixel. Due

to previously observed preferred orientation when imaging RdRp complexes [Hillen et al.,

2020], data was collected using a 30◦ tilt to obtain more particle orientations. 7 043 raw
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micrographs were acquired in total and preprocessed on-the-fly in Warp for automatic

contrast transfer function (CTF) estimation, averaging, motion correction, and particle

prediction and extraction. 2.2 million individual RdRp particles were predicted and ex-

ported by Warp and imported into cryoSPARC and subjected to a Hetero Refinement job

using five ‘Junk‘ classes and one class representing monomeric RdRp as described pre-

viously [Kokic et al., 2021]. The resulting particle set was used for a 3D homogeneous

refinement to obtain refined poses and positions for each RdRp monomer.

4.4.3 Initial Detection of RdRp Dimers in Cryo-EM data

To analyze the statistical distribution of RdRp monomers in our cryo-EM data, we calcu-

lated the nearest-neighbor (NN) distances and the relative orientations for all neighboring

RdRp complexes using the previously refined monomer poses. To account for the tilted

data acquisition, we treated the influence on distances observed on the micrograph as a 30◦

rotation around the x-axis. We chose to express relative orientation through a single angle

by calculating the angle of the rotation around the eigenvector of the rotation matrix.

This showed that certain distances and relative orientations between two monomers were

highly prevalent (Supplementary Fig. 1) and indicated the presence of dimeric particles

where the two RdRps would adopt a specific distance and relative orientation with respect

to each other. We then located such RdRp dimers in micrographs by identifying pairs of

RdRps within a narrow range of NN distances and orientations. We observed an overrep-

resented RdRp distance of 80Å and relative angle of 180◦. Furthermore, we could observe

that the overrepresented distance and relative orientation correlated with one another,

indicating the occurrence of a defined RdRp dimer (Supplementary Fig. 1a). We initially

obtained ∼31 000 dimeric particles using a distance < 90 Å and relative orientation larger

than 166◦ as a filtering criterion.
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4.4.4 Detection of Additional Dimeric Particles

Because the yield of dimeric particles depended on both halves of a dimer being first

detected as monomer, we aimed to detect more RdRp monomers using two strategies.

First, we carried out template-based picking and particle extraction in RELION [Zivanov

et al., 2019] using the monomeric RdRp-RNA structure10 filtered to a resolution of 30Å

as a 3D reference to pick further monomers that might have been missed due to their

proximity to other particles. Template-based picking of monomeric RdRp however did

not introduce any model bias that could influence the dimer structure. Second, we used

the previously established NN distance and relative orientation to predict for each RdRp

monomer the position where its partner in a dimeric particle should be located on the

micrograph. From our NN search we obtained the 3D offset that the second monomer

should adopt in a dimeric particle (Supplementary Fig. 1b, c) and used this together

with the monomer poses from our first refinement to predict micrograph coordinates for

a potential second monomer in a dimeric arrangement. This approach does not bias the

analysis towards a fixed relative orientation of NN monomers. Instead, we calculated the

orientation of each monomer de novo after combining all picked monomers from Warp,

template-based picking, and our prediction approach. With this procedure, patches ex-

tracted from predicted micrograph positions with pure noise will be assigned uncorrelated

poses. Only NN monomers that actually form a dimer will have both the correct distance

and relative orientation to be predicted as a dimer. After removing duplicates, we used

the 3D classification approach described previously38 and conducted homogenous 3D re-

finement in cryoSPARC. Using the new monomer populations of 1.5 million particles and

their refined poses, we could predict 78 787 dimer particles (i.e., ∼ 10% of the monomers

are predicted to be part of a dimer).
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4.4.5 RdRp Dimer Reconstructions and Model Building

Final dimer coordinates were used to extract particles using a box size of 300Å and a pixel

size of 1.201Å. 2D classification in cryoSPARC [Punjani et al., 2017] (Supplementary Fig.

2a) showed a dimeric structure that contained two RdRps in antiparallel orientation. We

selected 2D classes that showed two RdRp-RNA monomers without a gap between them.

After 2D classification, we used 27 473 particles for an ab initio refinement with three

classes. For the subsequent 3D homogeneous refinement job in cryoSPARC, we chose a

reconstruction from the ab initio refinement that had two clearly resolved RdRp monomers

close to one another as a reference. A molecular model was obtained by placing two copies

of RdRp-RNA complexes (PDB-7B3D, structure 3 from our previous publication) [Kokic

et al., 2021], removal of mobile regions and fitting of domains as rigid bodies was done in

UCSF Chimera [Pettersen et al., 2021].
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4.4.6 Supplementary Figures
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Figure 4.3: Detection of dimeric RdRp particles.
a, Detection of RdRp dimers in cryo-EM data. On the left, nearest neigbor (NN) distances for
all N = 902 303 Warp ([Tegunov and Cramer, 2019]) picked monomeric RdRp particles, with
the most significant peak that deviates from the underlying random distribution indicated (*) at
around 75Å. In the middle plot, NN orientations are shown, expressed as a single angle of rotation
around the eigenvector of the rotation matrix. A clear peak (*) is visible close to 180◦. On the
right, a conjoined plot of NN monomer distances and relative orientations, revealing that those
nearest neighbors with a distance around 75Å are also very likely to have relative orientation of
> 165◦. This indicates a correlation between this distance and a defined orientation within dimers.
b, Detailed analysis of our peak distances and relative orientations. In the first two panels, the
elements of the vector connecting two NN monomers, expressed in the reference frame of one of the
two monomers, are shown, further indicating a defined co-localization of two monomeric RdRps.
In the third panel, a projection of relative orientations on a half sphere are shown. Colors indicate
the number of particles in each bin.
c, Monomeric RdRp as previously reported [Hillen et al., 2020] (PDB code 6yyt) with axes indicated
that were used for x,y,z offsets in b. Color code is the same as in Supplementary Figure 4.5.
d, NN distances and relative orientations of the N = 31 011 monomers that are predicted to be
part of dimers and an overlayed Gaussian fit.
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Figure 4.4: Cryo-EM processing of RdRp dimers.
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Figure 4.4: Cryo-EM processing of RdRp dimers. (continued)
a, Selected 2D class averages from our predicted 78 787 dimeric particles. We chose classes with
two clearly defined RdRp monomers and strong RNA signal as an indication for high alignment
quality, representing 27 473 particles in total.
b, Fourier shell correlation (FSC) curve for the masked reconstruction of the antiparallel dimer,
indicating an average resolution of 6.1Å. FSC values were calculated through a RELION [Scheres,
2012b] postprocessing job to obtain values for the phase randomized curve as well. As input,
the half maps and refinement mask from cryoSPARC’s [Punjani et al., 2017] reconstruction were
provided. The second panel contains a histogram of directional FSC values as calculated by the
3DFSC [Tan et al., 2017] server, indicating significant anisotropy with a sphericity value of 0.807.
c, With C2 symmetry applied, the average resolution of the reconstruction increased to 5.5Å. The
second panel contains a histogram of directional FSC values as calculated by the 3DFSC server,
indicating significant anisotropy with a sphericity score of 0.789.
d, Orientation distribution from the reconstruction without (left) and with C2 symmetry alignment
(right), showing a strong preferred orientation. Color bars indicate the number of particles in each
bin.
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Figure 4.5: Quality of dimeric RdRp structure and structural comparisons.
a, Fit of structural model to cryo-EM density. Density was weak or lacking for the second turn
of RNA and the associated nsp8a sliding pole. Views are related by a 90◦ rotation around the
vertical axis.
b, Local resolution estimated using cryoSPARC. Resolution was weak for the second turn of RNA,
which was also excluded from our model in a.
c, Modeling the second nsp8 copy (nsp8b) onto the top RdRp in the dimer structure resulted in
clashes with the nsp7 subunit of the neighboring RdRp on the bottom.
d, Modeling of the nsp13 shows that helicase may accommodate on the RdRp dimeric structure.
The nsp13 copy nsp13.1 (chain E in 7CXN [Yan et al., 2020]) can bind to one of the two monomers
(binding to top monomer shown).
e, Modeling of the nsp13.2 shows that each of the two RdRp molecules may bind this copy of nsp13
(chain F in 7CXN [Yan et al., 2020]) without clashes.
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Using cryo-electron microscopy (cryo-EM) to resolve structures of biological macromolecules

is a rapidly evolving field, which now rivals the long-standing gold standard method of

X-ray crystallography in structural biology.

To further drive this success, we require fast and automated methods for the in silico

processing of the data. Especially the application of machine learning methods to different

parts of the processing pipeline has grown in the last years. In this thesis, I introduced two

methods for reconstruction. I explored a pseudo atom based approach to reconstruction

in the presence of structural heterogeneity (chapter 2) and a Wasserstein GAN based

ab-initio reconstruction algorithms (chapter 3). Additionally, I presented an approach to

identify dimeric particles in a homogenous dataset of monomeric and dimeric SARS-CoV-2

RdRp particles (chapter 4). In the following, I discuss these three projects in the context

of the current state of the fields, challenges, limitations and I also give my assessment for

upcoming work related to each project.

5.1 Flexible Refinement

5.1.1 Current Status of Dealing with Structural Heterogeneity

Resolving structure(s) from datasets with structural variation has been studied for quite

some time already. Thereby, this heterogeneity is often of relevance to study the activity
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of the protein complex under investigation. Studying different states and the transitions

between them can give insight about the function of a protein complex [Wittenborn and

Marletta, 2021; Hillen et al., 2020; Kokic et al., 2021]. Furthermore, due to flexibility, it

can be impossible to resolve a structure globally in high resolution [Schilbach et al., 2017].

Traditionally, classification and masked refinement were options to try and resolve struc-

tural heterogeneity through different approaches. Classification aims to divide the dataset

in such a way that the different classes show little enough structural heterogeneity to al-

low for subsequent refinement. Masked refinement on the other hand aims to reduce the

refinement task to regions of the structure that are in itself rigid enough to again allow for

high resolution reconstruction. With these approaches, it is e.g. already possible to solve

different states of an actively transcribing polymerase [Kokic et al., 2021; Hillen et al.,

2020] or to solve the mediator complex using a combined approach of masked refinement

and normal mode analysis [Schilbach et al., 2017]. Recently, the deep learning based tools

CryoDRGN [Zhang et al., 2021] and 3DFlex [Punjani and Fleet, 2021] were developed that

aim to solve structural heterogeneity that could not be resolved using previous methods.

E.g. continuous motion cannot be classified and while it can be masked using masked

refinement, this does not yield a global map, which is desirable. These tools could already

be applied successfully, e.g. to reveal additional functional states of the chromatin remod-

eler ALC1 [Bacic et al., 2021], but proved insufficient in the processing of actomyosin-V

complex [Pospich et al., 2021]. This highlights, that the development in this direction

is not complete yet, and different computational methods should still be investigated to

increase the number of available methods. Both of these new methods employ machine

learning to tackle the problem of structural heterogeneity. The main advantage is that

machine learning algorithms can learn patterns and rules in the data that may be hidden

for the human observer. Machine learning approaches, e.g. for natural image classification,

have already proven to be able to surpass human level accuracy [Hestness et al., 2019].

CryoDRGN and 3DFlex are just examples of transferring the predictive power of these

approaches to cryo-EM image processing tasks, and one can expect that many algorithmic

improvements in this field will be from applying deep learning techniques. As such, it is
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important that the approach investigated in this chapter is now fully compatible with a

deep learning framework.

5.1.2 Further Development

5.1.2.1 Combination of Refinement and Flexibility Estimation

To be able to move the pseudo atom clouds for each individual projection and use that

information during the reconstruction, I have assumed that a rough 3D density for each

projection image is already known. Dimitry Tegunov had previously worked on this prob-

lem and explored it using 3D PCA analysis [Schilbach et al., 2017] as well as an autoencoder

to generate such estimates. Using an autoencoder to generate the density estimations and

then using my framework to estimate pseudo atom coordinates however has an unneces-

sary intermediate step. One would train the network to output Cartesian densities, only

to represent them as pseudo atom clouds in the subsequent step. With the reconstruction

pipeline completely integrated into the deep learning framework PyTorch, however, an

end-to-end approach can be developed. Currently, a combined network called TildeNet

is being developed. First, it estimates pseudo atom coordinates for each projection im-

age using an autoencoder like architecture and then utilizes my framework to perform a

reconstruction using the same projection images. The agreement of two halfmaps being

reconstructed separately, as well as the difference between pseudo atom generated projec-

tions and experimental images, can thereby be used as target functions for the training.

This approach has similarity to cryoSPARC’s flexible refinement algorithm, which was

published shortly after we had devised this project [Punjani and Fleet, 2021]. However,

cryoSPARC’s algorithm does not employ pseudo atoms, but a deformation vector field on

the Cartesian representation of the volume. As TildeNet is still under active development

- mostly by Dimitry Tegunov -, no results can be shown here. This application however

shows the usefulness of having implemented my operators in PyTorch, as it enables the

training of larger networks that only utilize the pseudo atoms in some intermediate steps.

79



5 Conclusion

Using this combined approach, we hope that we will be able to reach high resolution

reconstructions on datasets on which reconstruction was not possible using rigid-body

approaches.

5.1.2.2 Further Benchmarking

Thus far, only a simulated dataset with two states was used to test the new reconstruction

approach. Eventually moving to real datasets is, however, needed as a comparison to

other published methods. Thereby, the Rag1-Rag2 dataset, [Ru et al., 2015] used in the

evaluation of CryoDRGN [Zhong et al., 2021a], and the U4/U6.U5 tri-snRNP complex,

used in the evaluation of 3DFlex [Punjani and Fleet, 2021], would be viable targets to

quantify the performance of the approach presented here in comparison to other methods.

As an intermediate step, a dataset with known ground truth could be used to judge the

progress of the current development. Any arbitrary dataset from which densities were

reconstructed using 3D classification could be used for this purpose. Using such a dataset

as input, one could analyze if the flexible refinement algorithm is able to reach the same

3D structures obtained from the classification approach.

5.1.3 Conclusion

Prior to the start of this project, no universal tool was available to tackle structural

heterogeneity when presented as flexibility that could not be classified or masked in a

satisfactory way. By now, at least two methods based on deep learning have been published

that aim to solve the same problem that our approach was supposed to address. To judge

if working on this project further is viable, one would now carefully identify problems

with the existing approaches and then test if these could be overcome with the approach

developed here. There are interesting aspects to this project, however. The fact that the

flexibility is parametrized by pseudo atoms already couples the modeled flexibility with

the movement of physical objects, and might therefore ensure that any solutions produced
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by the algorithm actually conform with what would be physically possible. In contrast to

approaches like classification and masked refinement, this approach should thereby allow

for a global reconstruction using all particle images.

5.1.4 Code Availability

The code of this project has been uploaded to GitHub and is freely available under https:

//github.com/cramerlab/FlexibleRefinement.

5.2 WGAN

5.2.1 Comparison to Other ab-initio Algorithms

In chapter 3 I explored the use of a Wasserstein GAN for the ab-initio reconstruction. Gold

standard approaches as implemented in cryoSPARC [Punjani et al., 2017] and RELION

[Scheres, 2012b] are always directly data driven, i.e. information from particle images is

directly used to update and estimate an initial model as good as possible. The learning

of the volume in the WGAN based approach only indirectly uses the information in the

experimental particle images. The critic network is used to learn a representation of the

real experimental data, and its learned information is then used to update the genera-

tor volume. This approach has previously been tested in the development of CryoGAN

[Gupta et al., 2021, 2020] which also used a Wasserstein GAN to reconstruct 3D Coulomb

potentials. CryoGAN, however, does not feature a learned distribution of the noise in the

image and instead relies on extracting noise from free regions on the micrograph. This is

not ideal, as there is usually no guarantee that such free regions exist. Furthermore, this

approach was not tested on non-symmetrical real experimental data and probably suffers

from similar issues when presented with real experimental images, as could be seen during

the research on chapter 3.
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5.2.2 Further Development

5.2.2.1 Regularization of Learned volume

It would be beneficial to determine why the generator was not able to already generate a

volume up to the Nyquist limit; at least in the noise free case. As could be shown, this

does not hinder the usability of the reconstructed volume in downstream processing. But

understanding the source of this issue would give further insight into the challenges of

using WGAN approaches for reconstruction purposes. As noted in [Arjovsky and Bottou,

2017], GANs are difficult to train, as the distribution the generator needs to learn is

often a low-dimensional manifold. In this case, the generator has a space of 643 float

values that it can arbitrarily change. However, it is obvious that real maps of protein

structures cannot be arbitrary 3D volumes. It is difficult, if not impossible, though to

write down a parametrization of protein maps that would allow for a reduction of the

learnable parameters of the generator while regularizing it to be only able to learn correct

protein representations. There are, however, many available examples of available density

maps in public archives such as the EMDB [Lawson et al., 2016]. With this data, one

can train an autoencoder network to learn a mapping from a latent space to a 3D volume

[Bank et al., 2020]. In short, such a network would take a 3D volume, then pass it through

a neural network called an encoder that outputs a vector in the latent space with a user

defined number of variables. In a second step, this latent vector is used as input for a

decoder network that would map it back to a 3D volume. The training objective would

be that the volumes on both ends should be identical and that the distribution in the

latent space should follow a user defined one, e.g. Gaussian. The decoder of this network

could then be used in the generator of the reconstruction WGAN. Instead of learning a

full volume, the generator would learn a vector in latent space and pass it through the

pre-trained decoder to obtain the volume it needs to project. Training would then only

update the latent vector, and needs to be regularized such that the latent vector still

complies with a Gaussian distribution.
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Figure 5.1: Multi-class reconstruction with a generative adversarial network.
The approach introduced in chapter 3 can be expanded to be able to reconstruct multiple distinct
densities (classes). These could originate from different occupancies of subunits, different states
in an active complex, or from contamination. Instead of always projecting the same volume, the
generator could randomly pick one of multiple volumes. In a real data set not all classes would be
present in equal amounts. To be able to cope with an uneven class distribution in the source data,
a value sampled from a gaussian distribution can be transformed by a small MLP network.

5.2.2.2 Additions to Fit Experimental Data

In real cryo-EM experimental data, poses are not uniformly distributed, as was assumed

in the simulated datasets used in this project. Instead, there is usually some kind of bias

toward a certain pose, as particles can orient relative to the air-water interface on the

grid. To compensate and incorporate this into the reconstruction process would be crucial

to correctly reconstruct from datasets with strong preferred orientation. Learning the

correct distribution of viewing directions can be added to the generator by introducing a

small MLP network that learns to map a random Gaussian input variable to a viewing

direction sampled from the real distribution present in the data. A similar approach could

be employed to incorporate multiple classes of volumes in the reconstruction task. Instead

of a single volume, the generator could learn an ensemble of volumes, of which one is

randomly picked when creating a single projection. Thereby, the distribution of classes
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could again be learned by an MLP network. In total, the generator network could be

adapted as seen in Figure 5.1.

5.2.3 Conclusion

The research presented here, in combination with the publications already available,

[Gupta et al., 2020, 2021] hint at the potential that could be reached using a Wasser-

stein GAN for ab-initio reconstruction. I expect, that it is difficult for this approach

to accurately reconstruct 3D maps with a high resolution en par with existing 3D re-

construction algorithms that require an ab-initio model. It does, however, provide an

interesting approach to ab-initio reconstruction, as no prior knowledge is required. In-

termediate steps, such as designing an autoencoder to parametrize possible volumes, do

thereby represent interesting research directions in themselves. It will be interesting to

see if such networks are possible to train, as this would further strengthen the advantages

seen in the application of deep learning techniques to open questions in science. I do,

however, expect that this tool will only be complementary to already existing tools and

not supersede them. Due to the difficulty in training and converging a Wasserstein GAN

to the optimal solution, there are probably failure cases which are difficult to predict and

carefully confirming any findings done using a deep learning tool with traditional methods

should always be performed.

5.2.4 Code Availability

The code of this project has been uploaded to GitHub and is freely available under https:

//github.com/cramerlab/WGANReconstruction.
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5.3 RdRp

In the third project, we developed an approach to identify dimeric particles in a set of both

monomeric and dimeric particles. We applied this approach to filter pre-existing SARS-

CoV-2 RdRp datasets. With this approach, we identified and reconstructed a dimeric

form of the RdRp complex and hypothesized a potential model of how it might facilitate

sgRNA production.

5.3.1 Current Results on Backtracking

Central to the hypothetical model of sgRNA production is the idea that backtracking

occurs when RdRp reaches the TRS site. This would then allow for the second RdRp in

the dimeric complex to load the exposed TRS complement paired with the downstream

TRS-L site. When working on this project, first structural insights into the RdRp-nsp132

complex had already been published [Chen et al., 2020; Yan et al., 2020, 2021]. These also

suggested that nsp13 activity would be crucial for backtracking. It was however poorly

understood how backtracking in activity of nsp13 is activated and controlled to allow

rapid duplication of the RNA genome by RdRp in cases when backtracking is not needed.

A detailed analysis of conformational changes undergone by nsp13 have revealed that

backtracking can be turned on and off by the RdRp-nsp13 complex [Chen et al., 2022].

Thereby, backtracking is performed by nsp13.1, which can be bound to one of the RdRp

copies in our dimeric structure, see Figure 4.5. Current knowledge of how backtracking

is performed is therefor compatible with our dimeric structure, and the correctness of our

model is still an open question.

5.3.2 Current Results on sgRNA production

Sub-genomic RNA production in coronaviruses, and also in SARS-CoV-2 is the result

of discontinuous transcription of the full length RNA genome. The current model for
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this mechanism is that two transcription regulatory sites (TRS) are paired, which then

creates a location at which the RNA-dependent RNA polymerase can undergo template

switching. When reaching the TRS-B site closer to the 3’ end of the genome, the RdRp is

then thought to template switch to the TRS-L site at the 5’ end of the genome. Thereby, to

my knowledge, no further insight into the exact mechanism behind the template switching

is known.

Characterization of sgRNA production is thereby carried out by analyzing sequencing data

from infected patients or cells [Chen et al., 2022; Parker et al., 2021; Zeng et al., 2022; Lyu

et al., 2022; Parker et al., 2022]. These studies have shown that sgRNA production may

play a role in gene regulation and host adaption [Lyu et al., 2022], can be used as a marker

for infection severity [Chen et al., 2022] as its production shows a kinetic during infection

that is yet poorly understood [Parker et al., 2021], and might provide a way to monitor

upcoming variants [Parker et al., 2022]. As such, further research into the exact mechanism

by which template switching during sgRNA production is performed as well as how it is

regulated is an interesting field of research, as it can yield important understanding of

the biology of coronaviruses, but also has clinical relevance as an additional marker for

infection severity. Determining if the dimeric structure presented here plays a role in this

process may thereby assist this process, and further experiments towards elucidating its

role should be performed.

5.3.3 Further Experiments

5.3.3.1 Purification of RdRp Dimer

A key disadvantage in studying the presented dimeric structure in more detail so far is that

it has not been purified thus far. Understanding the biochemical conditions under which

the dimer forms preferably and purifying it is however needed to use it in any hypothetical

essays to quantify sgRNA production. As little is known in this direction yet, experiments

in this direction will need to be exploratory. The dimeric structure was reconstructed
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from particles that were part of a sample of monomeric RdRp complexes. The workflow

to identify dimeric particles allows to also quantify the fraction of particles that are part

of a dimer. Therefore, one could start with the sample preparation parameters used

to generate the sample used in this study and then alter these using cryo-EM and the

dimer detection workflow to quantify the fraction of dimeric particles. This would allow

identifying changes that would increase the chance to form the dimeric structure. This can

then be coupled with size-exclusion chromatography to try to filter out potential dimeric

structures at different steps of the sample preparation. Notably, however, size exclusion

was already used to specifically filter out monomeric RdRp articles, indicating that dimers

must have formed in a subsequent step of the sample preparation.

5.3.3.2 Relevance of RdRp Dimer for sgRNA production

The open question from the presented publication is the relevance of the presented dimeric

structure for sgRNA production. Studying this in more detail is complicated by the

fact that - to my knowledge - no essay exists to quantify sgRNA production in vitro.

Knowledge of sgRNA production and kinetics stems from analyzing sequencing data from

infected cells [Chen et al., 2022; Parker et al., 2021; Zeng et al., 2022; Lyu et al., 2022].

Designing an experiment that analyzes the relevance of the dimeric structure to form

would also require more understanding of the conditions under which the dimer forms

preferably. If, hypothetically, we had an essay to test sgRNA production in vitro, we

would need mutations to nsp7 that would hinder the dimeric structure from forming while

not hampering the processivity of monomeric RdRp in any way. If we have a protocol to

produce the dimeric structure in a reproducible way, one could test if certain mutations

to the α1 and α3 helix hamper the dimer formation. At the same time, one would check

in an extension essay if monomeric RdRp with the same mutation is still active.
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5.3.3.3 Application to Other Multi-Copy Structures

The workflow developed to identify the RdRp dimeric structures is not limited to only

identify RdRp dimers. The core idea was to identify NN particles that show an over-

represented relative distance and relative orientation. This approach should be viable to

identify multimers of different complexes as well. Thereby, one is not only limited to

dimers. In principle, one can also apply this approach to identify any kind of complex

that is made up of several parts. The key requirement thereby is that the individual parts

can be picked individually with high accuracy. The advantage using the pipeline devel-

oped here is thereby that it is not needed to specifically pick the multimeric structures.

This can be difficult as most particle pickers will pick both pure monomeric structures,

but also the multimers. Subsequent steps like 2D classification can not always be used to

sort out the multimers specifically, as projections of multimers also show high correlation

to projections of the monomers. I therefore suggest using the pipeline developed for the

RdRp dimer for the detection of multimeric structures in future datasets. I was not able

to find similar tools suited for this task.

5.3.4 Conclusion

The biological relevance of the dimeric structure that was discovered, is yet to be analyzed.

For this analysis, however, the right toolkit is not available yet. One will need to solve the

intermediate problems such as purifying the dimer and designing an essay for the analysis

of sgRNA production first, before being able to analyze the function of this dimer in more

detail. It is however crucial to understand the many aspects of SARS-CoV-2 replication

in as great a detail as possible, as this will enable us to design ways to combat the ongoing

pandemic through the design of custom drugs.
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5.3.5 Code Availability

The code of this project has been uploaded to GitHub and is freely available under https:

//github.com/cramerlab/RdRp-DimerDetection.
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