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1 Introduction

1 Introduction

1.1 Clinical Trials in Personalized Medicine

In precision medicine the potential heterogeneity of patient populations becomes more
accessible through technical and medical innovations. A population might be heteroge-
neous in terms of different phenotypes or biomarkers, e.g. genetic markers, and different
strata (biomarker positive vs biomarker negative) may in turn respond heterogeneously
to a certain treatment. A certain proportion of the population might respond not at all
or even negatively to the investigated treatment. Personalized medicine and targeted
therapies aim to use this information to find tailored treatment for subjects depending
on subgroup affiliation, increasing the success rate of treated subjects. Therefore, clinical
trials with the ability to reveal an increased treatment benefit in particular subgroups
compared to the whole population are in great demand.

For example, take Pulmonary arterial hypertension (PAH), a rare, progressive disorder
characterized by high blood pressure in the arteries of the lungs. The exact cause of
PAH is unknown and there is no known cure for the disease. It is treatable, though, and
therefore efficient clinical trials are vital in treatment development. A World Symposia
on PAH revised a clinical classification system.1 Accordingly, PAH is divided into so-
called groups 1 to 5 which on their part contain subgroups as well, c.f. Figure 1.
Group 1 includes patients suffering from idiopathic or non-idiopathic PAH such as fa-
milial or associated PAH. Group 2 ’Pulmonary hypertension due to left heart diseases’
is divided into three sub-groups: systolic dysfunction, diastolic dysfunction and valvu-
lar dysfunction. Group 3 ’Pulmonary hypertension due to respiratory diseases’ includes
a heterogeneous subgroup of respiratory diseases like PAH due to pulmonary fibrosis,
COPD, lung emphysema or interstitial lung disease for example. Group 4 includes
chronic thromboembolic pulmonary hypertension and group 5 regroups PH patients
with unclear multifactorial mechanisms.2 An efficient clinical trial should enable test-
ing in certain subgroups while simultaneously investigating treatment benefits in larger
groups or even the full population. The broad term “efficient” implies there should be
flexibility to adjust the design during the trial, e.g. sample size adjustments and selec-
tion of promising subgroups, as well as testing strategies ensuring error control and a
predefined power to detect a treatment benefit if there is a benefiting population. All
while keeping a reasonable sample size.

Methodological approaches to the statistical design and analysis of clinical trials in-
vestigating such a potential heterogeneity of treatment effects across subgroups were
systematically reviewed by Ondra et al. (2016).3

However, in many applications, e.g. in oncology or cardiology, there is quite an uncer-
tainty about the amount of heterogeneity or the choice of biomarkers as well as cut-off
values for those biomarkers. Together with imprecise knowledge about the size of treat-
ment effects and important nuisance parameters, such as the subgroup prevalences or
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Figure 1: Illustration of the subgroup structure of patients suffering from pulmonary arterial
hypertension (PAH).

the variance of the endpoint, sample size determination prior to the study is challenging.
Choosing a study design and study size capable to detect a potential treatment effect
with a certain power in one or more (sub)populations while using resources optimally
is required for ethical and economical reasons. An inadequately small sample size holds
the risk of not showing the existing efficacy of a superior treatment. This would waste
the employed resources and patients would have been put unnecessarily at risk, hence,
- in not showing the benefit - denying other patients access to a superior treatment.
On the other hand an unnecessarily large trial wastes resources as well. It puts too
many patients at risk and possibly delays the roll out of a superior treatment. Hence,
for patients not partaking in the trial access to a more beneficial treatment is delayed
as well. Therefore an adequate sample size calculation is important which can only be
achieved by reliable assumptions or estimates of the above mentioned nuisance param-
eters. Often those are obtained from similar studies or pilot studies, i.e. small scale
preliminary studies with an exploratory character. For a wider application in clinical
research Julious (2016) discusses the role of pilot studies.4

Nevertheless, even the best guesses might be wrong, especially concerning the above-
mentioned nuisance parameters, e.g. there might be a larger variability in the subgroup
or a smaller prevalence than expected. Hence the pre-planned sample size may be too
small leading to an underpowered study if not further adjusted in the course of the trial.
A large focus of this dissertation will be on those nuisance parameters. Since there are
multiple populations of interest more assumptions and even more complex assumptions
about those parameters can be made, e.g. differing variances across subpopulations.
More parameters implicate more possibilities to missspecify parameters that drive the
sample size at the planning stage. To cope with these difficulties, there is a whole class
of clinical trial designs covering, among other things, sample size adjustments during an
ongoing trial. I will introduce those designs in the following section.
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1.2 Adaptive Clinical Trial Designs

“Adaptive or flexible designs are clinical trial designs that use accumulating data to
decide on how to modify aspects of a study as it continues, without undermining the
validity and integrity of the trial.”5 Thus, incorrect assumptions at the planning stage,
e.g. concerning nuisance parameters or treatment effects, can be detected and corrected
during the trial. This means adaptive designs are robust against misspecifications of
nuisance parameters at the planning stage. At the same adaptive trials offer a greater
flexibility of the ongoing trial and promise a greater efficiency in terms of smaller final
sample sizes or “an increased chance of correctly answering the clinical question of in-
terest.”6 Design adaptations include, but are not limited to, sample size adjustments,
early stopping, treatment selection or subgroup selection during an interim analysis (IA).
Corresponding adaptive designs are sample size re-estimation designs, group-sequential
designs, dose finding designs or adaptive enrichment designs. A broader overview and
detailed discussion of those designs is given by Chow and Chang (2008) and Kairalla
et al. (2012).6,7 In the context of the previous example concerning PAH, Grieve et al.
(2013) published the results of a workshop on advancing clinical trial design in pulmonary
hypertension including a discussion on population enrichment and subgroup analysis.8

Adaptive enrichment designs and adaptive designs in general have also been suggested
as methods for improving clinical trials for cardiovascular diseases in general in a posi-
tion paper from the Cardiovascular Round Table of the European Society of Cardiology.9

From a regulatory point of view the Food and Drug Administration (FDA) discusses
adaptive designs in special guidance documents for the industry as well as the European
Medicines Agency (EMA) in a reflection paper on methodological issues in confirmatory
clinical trials with adaptive designs.10–12 While approving the advantages, e.g. increased
statistical efficiency to a comparable non-adaptive design13 or same statistical power with
a smaller expected sample size,14 both agencies stress the importance of controlling the
chance of erroneous results. Special attention should be paid regarding type I error rate
inflation or adaptive design features that might lead to statistical bias in estimation of
treatment effects. The FDA created a separate and additional guidance for industry on
enrichment strategies for clinical trials providing some general considerations but also
giving a classification into prognostic enrichment, i.e. identifying high-risk patients, and
predictive enrichment, i.e. identifying more-responsive patients.15

In the widely used sample size re-estimation designs regulatory authorities recommend
adjustments based on a non-comparative analysis, i.e. “an examination of accumulat-
ing trial data in which the treatment group assignments of subjects are not used in
any manner in the analysis.”11 This is also known as a blinded analysis in contrast to
an unblinded analysis where treatment group assignments are revealed and used in the
analysis. The FDA chose to use the terms comparative/non-comparative analysis since
the terms blinded/unblinded might “misleadingly conflate knowledge of treatment as-
signment with the use of treatment assignment in adaptation algorithms.”11 Here, I will
continue to use the blinded/unblinded framework. In terms of sample size recalculation,
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a blinded sample size recalculation procedure is based on an early sample size review
reestimating nuisance parameters without revealing the treatment group affiliation, c.f.
Friede and Schmidli (2010) for an application with count data.16 An early sample size
review can be implemented using an internal pilot study (IPS) design.17 This means the
first part of the trial is employed for improving the sample size calculation, the name IPS
indicating its purpose to find better estimates for parameters that drive the sample size.
Friede and Kieser (2006) give a review on sample size recalculation in IPS designs.18

Also, Zucker et al. (1999) compare various procedures concerning IPS designs.19

Clinical trial designs with adaptations based on comparative data, i.e. unblinded or
unmasked data, include group-sequential designs20 as well as, with increasing interest,
adaptive enrichment trials. Here adaptations are driven by preplanned interim anal-
yses offering the possibility to stop the trial early or select populations that promise
an increased treatment effect. Multiplicity issues concerning the type I error rate con-
trol are adressed by adjusted critical boundaries or adjusted significance levels at each
interim analysis, e.g. using an error spending function,21 when testing repeatedly or
applying a closed testing procedure when testing multiple hypotheses.22 The latter is
computationally more extensive but more flexible and generally more efficient.
Having an interim analysis split the trial in two stages, popular methods ensuring type
I error rate control when stagewise selecting (sub)populations and testing the remaining
hypotheses are the combination test (CT) approach23–26 as well as the conditional error
function (CEF) approach.27–30 There are also approaches combining group-sequential
designs and subpopulation enrichment.31–33 Since it often takes a while to fully observe
the primary endpoints, interim analyses can be based on early or short-term data, e.g.
surrogate endpoints.34,35

These procedures, CT approach and CEF approach, require calculating stagewise p-
values. With multiple (sub)populations of interest, testing within each stage presents a
multiple testing problem again. Besides the classical but inefficient Bonferroni adjust-
ments and the Sidak or Simes tests there are more elaborate options for testing taking
into account the correlation between the test statistics.36–38

Concerning the interim analysis there are various tools to investigate optimal decision
rules,39 the optimal timing of the interim analysis40 and overall efficiency and optimality
of the design, e.g. utility functions.41–43
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1.3 Research Questions and Outline

The motivation of this dissertation arose from the joint research project Biostatisti-
cal Methods for Efficient Evaluation of Individualized Therapies (BIMIT) under grant
05M13MGE BIMIT of the Federal Ministry of Education and Research (BMBF). It
was granted in the context of the BMBF call for proposals regarding Mathematics for
Innovations in Industry and Services. The joint research project was split into three
subprojects represented by three research groups in Germany. Part A was handled by
the working group in Heidelberg under supervision of the coordinating principal investi-
gator Professor Meinhard Kieser. Here the focus was on methods for interim decisions in
adaptive enrichment designs such as optimal decision rules for population selection or the
sample size for the interim analysis. Part B was worked on in Bremen under supervision
of the principal investigator Professor Werner Brannath dealing with the use of surro-
gate variables in decision making in adaptive enrichment designs. Part C was located in
Göttingen lead by principal investigator Tim Friede. The Göttingen group’s task was to
investigate blinded sample size recalculation in adaptive enrichment designs. To do so,
I split the design into its two main components which I first analyzed separately: On
the one hand there is the analysis, sample size determination and blinded sample size
recalculation in a multiple subgroups design. On the other hand there is the adaptive en-
richment design with subgroup selection at an interim analysis. Both topics individually
pose several challenges, e.g. concerning variability across the (sub)populations, blinded
reestimation of parameters or distributional properties of the test statistics and each
resulted in an individual publication: The first part was published in Statistical Methods
in Medical Research presenting Clinical trials with nested subgroups: Analysis, sample
size determination and internal pilot studies. while the second part can be found in
Statistics in Medicine where we give A conditional error function approach for adaptive
enrichment designs with continuous endpoints.30,37 Having analyzed those issues step by
step I finally put them together once again presenting Blinded sample size recalculation
in adaptive enrichment designs published in the Biometrical Journal.44 In all three parts
we examine the performance of the proposed methods with simulations in R. Methods
from the first part - analysis, sample size calculation and blinded sample size recalcula-
tion - can be found in the R package spass which is available on CRAN.45,46 Methods
from the second and third part were reviewed to guarantee reproducible research and are
available as supplementary material of the third publication.44 In the following section
I summarize the results and publications in chronological order.
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2 Blinded Sample Size Reestimation in Adaptive Enrichment
Designs

The following Sections contain the main result of my research on Blinded Sample Size
Reestimation in Adaptive Enrichment Designs. The summary is split in three parts
which each individually resulted in a paper for publication as described above.

2.1 Clinical Trials with Nested Subgroups

The idea of this first part of the dissertation is to go back from the complex adaptive
enrichment design to a simple single-stage design with an overall population and multi-
ple nested subgroups within. We assume that each observation is normally distributed,
hence we are dealing with continuous endpoints. Comparing a treatment versus a con-
trol we suspect an increased benefit of the treatment in one or more subpopulations.
However, we are still interested in simultaneously performing hypothesis test in all sub-
populations as well as in the full population since detecting an overall treatment effect
is one of the study objectives. Testing multiple hypothesis the family-wise error rate,
i.e. the probability to falsely reject at least one hypothesis, has to be controlled. To
do so we use the joint multivariate distribution of standardized test statistics for test-
ing intersection hypothesis and then apply the closed testing principle.22 Each of those
Wald-type test statistics corresponds to a population included in the testing. Assuming
the variances in each population are known this simplifies to using multivariate normal
distributions, c.f. Spiessens and Debois (2010).36 We extend this approach by allow-
ing for unknown variances giving exact multivariate t-distributions where possible and
providing approximations otherwise. Using these results we derive a method for sample
size determination prior to the trial which depends on estimates of so-called nuisance
parameters. In this multiple subgroups design those parameters are the variances in the
populations and the prevalences of the subgroups. If there is no prior knowledge, they
have to be estimated or guessed at the planning stage. Consequently they are afflicted
with a certain uncertainty and a misspecification leads to inadequately sized studies. To
solve this problem we add a sample size review in an internal pilot study to the design.17

This means, after a prespecified amount of observations is obtained, the nuisance pa-
rameters are reestimated based on this early data and the new estimates are plugged in
the sample size determination method to calculate an adjusted sample size. This is done
in a blinded fashion, i.e. without revealing the treatment group affiliation, as preferred
by regulatory authorities.12,47

2.1.1 Statistical Model

First, the statistical model, i.e. the theoretical setting, had to be defined. Since our aim
was to analyse trials with subgroups we chose the most challenging subgroup design in
terms of dependencies between test statistics, the multiple nested subgroups design. Here
we had to deal with subgroups within subgroups and hence test statistics for hypotheses
testing for an effect in different subgroups would be highly correlated. We consider a
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2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

patient population with k nested subgroups. Let F = S0 denote the full population and
S1, . . . , Sk the nested subpopulations

Sk ⊂ Sk−1 ⊂ · · · ⊂ S1 ⊂ S0 = F.

The proportion of subjects in Si among all subjects in F is the prevalence of belonging
to subgroup i and is denoted by τi. Since the subgroups are nested we have

τ1 > τ2 > · · · > τk−1 > τk.

We want to compare an experimental treatment to a control, globally and in each sub-
group individually, assuming normal distributed observations. Mean treatment effects
are denoted by θ0, . . . , θk. This means, we assume a treatment effect θ0 in the full pop-
ulation and a treatment effect θk in the smallest subpopulation. In the same manner we
want to allow an individual variance σ2

S0
, . . . , σ2

Sk
for each population, assuming same

variances in the treatment and control group, i.e. σ2
Si,T

= σ2
Si,C

= σ2
Si
, i = 0, . . . , k.

Since smaller subgroups contribute to larger populations in terms of treatment effect
and variance due to the nested design, the distribution of each single observation is
more clearly represented by using a disjunctive partition of the whole patient popula-
tion. The ring Ri = Si\Si+1 denotes the set of subjects in population Si not included
in subpopulation Si+1. Therefore, all rings Ri, i = 0, . . . , k − 1, define a disjunctive
partition of the whole patient population Ri ∩ Rj = ∅, i ̸= j, F = ∪iRi (cf. Figure
2). Let Xijl denote the jth subject in ring Ri and treatment group l. Each individual
observation is assumed to be normally distributed, i.e.

XijC ∼ N (0, σ̃2
Ri
), i = 0, . . . , k, j = 1, . . . , nRi

C ,

XijT ∼ N (θ̃i, σ̃
2
Ri
), i = 0, . . . , k, j = 1, . . . , nRi

T .

The effects θ̃i and variances σ̃2
Ri

for each ring Ri, i = 0, . . . , k are chosen in such a way
that they can be combined to obtain the assumed effects θi and variances σ2

Si
of the

populations Si, e.g. the effects via

θk = θ̃k

θk−1 =

(
1− τk

τk−1

)
θ̃k−1 +

τk
τk−1

θk

...

θ0 = (1− τ1)θ̃0 + τ1θ1,

There are nRi
C subjects in Ri = Si\Si+1 and hence nSi

C =
∑k

j=i n
Rj

C in Si receive the

control. Let nS0
C = nC and nS0

T = nT be the total number of subjects in the experimental
treatment and control group and n = nC+nT . For unbalanced sample sizes an allocation
parameter a = nT /nC is defined. This means there are nSi

T = a · nSi
C subjects in Si

receiving the treatment.

8
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C

T

Figure 2: Two nested subgroups within a full population. It is S2 = R2, S1 = R1 ∪ R2 and
F = R0 ∪R1 ∪R2. Effects in the treatment group are denoted by θ̃i in ring Ri. Variances σ̃

2
i in

ring Ri are assumed to be the same for treatment and control group.

2.1.2 Hypotheses, Distributional Assumptions and Nuisance Parameters

Having set up the statistical model we aimed to explore methods for hypothesis testing
in the multiple nested subgroups design. In such a design not only the global hypothesis
in the full population is of interest. We are also interested in elementary hypotheses in
each subpopulation. To this end let

H
{F}
0 : θ0 = 0

H
{Si}
0 : θi = 0, i = 1, . . . , k

denote the null hypothesis of no treatment effect in the full population and in each
subpopulation, respectively, and

H
∩i∈ISi

0 : θi = 0 ∀i ∈ I ⊆ {0, . . . , k}

the intersection hypothesis that there is no effect in any population of a subset ∩i∈ISi,.
For I = {0, . . . , k} this corresponds to the global intersection hypothesis of no treat-
ment effect. Testing will be performed using standardized mean differences Z{Si} for
the elementary hypotheses and joint vectors of those test statistics for testing of the
intersection hypotheses. To this end we will need to determine the probability distribu-
tions of the test statistics which depend on nuisance parameters such as the variances in
the populations. Since we are simultaneously testing multiple hypotheses the familywise
error rate (FWER) control in the strong sense is an issue which is solved by applying
a closed testing procedure.22 This means, the FWER, i.e. the probability of making at
least one type I error in the testing family, is controlled for any configuration of true
and non-true null hypothesis. For example, in the case of two subgroups an individual

hypothesis, e.g. H
{S2}
0 , is only rejected if all hypotheses relating to intersections that

include S2 can be rejected. Here these are

HF∪S1∪S2
0 , HS1∪S2

0 and HF∪S2
0 .

Constructing a test for an elementary hypothesis is straightforward since the distribution
of the standardized test statistic is either a normal distribution or a t-distribution

Z{Si} =

√
nP
Si

a∗
θ̂Si

σSi

∼ N Z{Si} =

√
nP
Si

a∗
θ̂Si

σ̂Si

∼ tnP
Si

, i = 0, . . . , k,

9



2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

depending on whether the variance is given σSi or estimated σ̂Si . Here, θ̂Si denotes
the estimated treatment mean difference in population Si, a∗ = 1 + 1/a and nP is the
number of all subjects in the control group, nP =

∑k
i=0 n

P
Si
. Analogously, tests for the

intersection hypothesis are based on the joint distribution of the vector of test statistics
corresponding to the subset of populations. For example, for the global intersection
hypothesis we need the joint distribution of Z = (Z{F}, Z{S1}, . . . , Z{Sk}). In the case of
known variances, since Z is a vector of individually normally distributed test statistics,
this is again determined as a multivariate normal distribution, i.e.

Z =


Z{F}

Z{S1}

...

Z{Sk}

 =



√
nP
a∗

θ̂F
σF√

τ1nP
a∗

θ̂S1
σS1

...√
τknP
a∗

θ̂Sk
σSk


H0∼ MN(0,Σ)

Details on the covariance matrix Σ = Cov(Z) for equal and unequal variances and a
derivation of its entries can be found in the publication.37 You will find that for equal
variances, the covariance matrix depends only on the prevalences τi. Due to the nested
structure of the data it is analogous to covariance matrices seen in group-sequential
designs.20 A similar setting, but only for a single subgroup in a full population and
equal variances in both populations, was already considered by Spiessens and Debois
(2010).36

In practice it is uncommon to have such knowledge about the variances in the populations
that σ2

Si
i = 0, . . . , k are considered fixed and given. More realistic and challenging is

the case of unknown variances that have to be estimated via σ̂2
Si

i = 0, . . . , k. Here, for
the determination of the joint distribution of Z, we distinguished two scenarios. Firstly,
we assumed that the variances are equal across all populations, i.e. σ = σF = σS1 =
· · · = σSk

, and therefore the complete dataset can be used to estimate the variance σ.
It can be shown that under the null hypothesis

Z =


Z{F}

Z{S1}

...

Z{Sk}

 =


√

nP
a∗

θ̂F
σ̂

...√
τknP
a∗

θ̂Sk
σ̂

 H0∼ MTnP+nT−2(k−1) (0,Σ) .

follows a multivariate t-distribution with degrees of freedom df = nP +nT −2(k−1) and
the same covariance matrix Σ as in the case of equal and known variances (see Appendix
in Placzek and Friede (2018)37). Secondly, we analysed the most complex, but also the
most realistic scenario, where the variances are allowed to vary across the subgroups and
have to be estimated each individually. This means each component of

Z =


Z{F}

Z{S1}

...

Z{Sk}

 =


√

nP
a∗

θ̂F
σ̂F

...√
τknP
a∗

θ̂Sk
σ̂Sk


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is individually univariate t-distributed, each with different degrees of freedom corre-
sponding to the variance estimator. Here, the joint vector of test statistics Z is not
multivariate t-distributed. Its distribution is unknown. However, for n → ∞ each en-
try of Z is asymptotically normally distributed and σ̂Si converges in probability to σSi .
Therefore we have at least that Z is asymptotically multivariate normally distributed

Z
.∼. N (0,Σ) ,

with the covariance matrix as in the previous cases. Since in practice extremely large
sample sizes are not feasible, we considered and analyzed finite approximations to per-
form testing including the normal approximation, a liberal t-approximation and a con-
servative t-approximation. Here, “liberal” means testing using this approximation might
have a larger type I error than the nominal significance level. On the other hand, the
expression “conservative” stresses that the type I error rate is controlled but the nom-
inal significance level might not be fully exhausted. For the normal approximation we
performed testing using the multivariate normal distribution as in the case of given vari-
ances but replaced the covariance matrix by an estimator Σ̂ plugging in the estimates of
the variances. The conservative t-approximation uses a multivariate t-distribution with
degrees of freedom corresponding to the variance estimator of the smallest subgroup Sk,
i.e. dfcons = nSk

P + nSk
T − 2, while the liberal t-approximation is constructed with the

degrees of freedom corresponding to the variance estimator of the full population, i.e.
dflib = nP + nT − 2(k − 1). We considered these choices of degrees of freedom since
these are the two extremes. This means values of df smaller than dflib would lead to a
more conservative and values larger than dfcons to a more liberal test procedure. So any
approximation using MTdf , dfcons ≤ df ≤ dflib lies in between these two. Note that by
construction the conservative t-approximation controls the family-wise type I error rate
when using equicoordinate quantiles to perform testing as we have shown in Placzek and
Friede (2018).37 We took a look at the performance under the null hypothesis. To do
so, we simulated type I error rates in a design with one subgroup increasing the sample
size and subgroup prevalence (Figure 3). As expected for large sample sizes the methods
converge to the one-sided nominal level of 0.025, since they are asymptotically exact,
for smaller sample sizes they behave as constructed, liberal or conservative. The normal
approximation is even more liberal than the t-approximation. Generally, the larger the
subgroup (increasing prevalence), the better the approximation. The additional nuisance
parameter τ is estimated in the simulations by the amount of subjects in the subpopu-
lation among all subjects. Assuming it as fixed and given does not change the results
meaningfully (see publication for a comparison).37

An alternative approximation was given by Graf et al. (2019).38 They use a multivariate
normal distribution as approximative distribution for Z, calculate one single equicoor-
dinate quantile for all entries of Z and then use univariate t-distributions with degrees
of freedom corresponding to the number of subjects per subgroup in order to transform
this quantile into individual critical values for each subpopulation. I will discuss it as a
comparator in detail when summarizing the second publication.
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Figure 3: Type I error rates for designs with one subgroup. Comparison of the conservative
(MT2nS−2), the liberal (MT2n−4) and the normal approximation. The prevalence τ is estimated.
Number of simulation runs nsim = 100, 000.

2.1.3 Sample Size Determination and Recalculation

In order to calculate a sample size prior to a study several assumptions have to be
made, e.g. about the nuisance parameters, here the variances and prevalences, and
about the treatment effects θ0, . . . , θk which we would like to detect. Throughout our
work we defined power as the probability to reject at least one false null hypothesis.
This is called the disjunctive power48(c.f. Senn and Bretz (2007)49). This means, when
we calculate the sample size we have to look at the rejection of the global intersection
hypothesis which implies the rejection of at least one elementary null hypothesis. Hence,
we are again interested in the complete vector of standardized test statistics. As we have
seen in the previous Section the distribution of the joint vector of test statistics under
the null hypothesis depends on the nuisance parameters. Naturally, this holds for the
distribution under the alternative. Additionally, due to the treatment effects under the
alternative, a non-centrality parameter δ ∈ Rk+1 has to be introduced

δ = (δ1, . . . , δk+1)
′ =

(√
nP

a∗
θ0
σF

,

√
nP τ1
a∗

θ1
σS1

, . . . ,

√
nP τk
a∗

θk
σSk

)′

.

In Placzek and Friede (2018) we present the procedure for sample size determination for
each scenario discussed in the previous section, namely known variances, unknown but
equal variances and unknown and unequal variances.37 As an example I will describe the
method for the t-approximation in the case of unknown and unequal variances. Here,
under the alternative θ = (θ0, . . . , θk)

′, the joint distribution of Z is a multivariate
t-distribution with noncentrality parameter δ and df = nP + nT − 2(k − 1) (liberal
approximation) or df = nSk

P + nSk
T − 2 (conservative approximation),

Z
.∼. MTnP+nT−2(k−1)(δ, Σ̃).

Note that the alternative also introduces a shift to the covariance matrix Σ which is
denoted by Σ̃ and can be found in Placzek and Friede (2018).37 We define t0,Σ,df,1−α

as the (1 − α)-equicoordinate quantile of the distribution MTdf (0,Σ) under the null

12



2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

hypothesis H
{∩k

i=0Si}
0 , i.e. for X = (X0, . . . , Xk)

′ ∼ MTdf (0,Σ) it holds that

P

(
k⋂

l=0

Xl ≤ t0,Σ,df,1−α

)
= 1− α.

Now, if Gδ,Σ̃,df denotes the distribution function of MTdf (δ, Σ̃) and n = nP + nT we
can find the initial sample size N0 required to achieve a power of 1− β via

N0 = minn s.t. 1−Gδ,Σ̃,df (t0,Σ̃,df,1−α) ≥ 1− β. (2.1)

This can be done using a search algorithm. Equicoordinate quantiles and multivari-
ate normal and t-distributions can be calculated using the R packages multcomp and
mvtnorm.50,51 We have checked the performance of this sample size calculation proce-
dure for exactly this scenario, unknown and unequal variances, using simulations. The
results show that the proposed method reaches the nominal power of 90% for all approx-
imations. There is a small loss in power when analysing two nested subgroups instead of
one subgroup only and if additionally the prevalence has to be estimated. Throughout
the simulations the conservative approximation requires slightly more subjects than the
other approximations in terms of mean calculated sample size which is reasonable. The
complete result tables are available in the first paper.37

Sample size calculations always depend on the nuisance parameters. Therefore misspec-
ifications automatically lead to inadequately sized studies, e.g. an overestimation of
variances leads unnecessary large sample sizes while an underestimation leads to insuffi-
cient sample sizes. A solution is a sample size review and adjustment during the ongoing
trial which we considered next. To do so we considered blinded sample size reestimation
in an Internal Pilot Study Design,17 i.e. after the initial sample size N0 is determined,
patients are recruited until a predefined portion n1 = t ·N0 of subjects have entered the
trial. Values between 0.3 and 0.5 are not uncommon for t. These n1 observations are
used to reestimate the nuisance parameters τ1, . . . , τk and σ2

F , σ
2
Si
, τi, i = 1, . . . , k prefer-

able without unblinding the treatment allocation satisfying regulatory concerns. To
reestimate the variances in such a way we used so-called “lumped variance estimators”19

σ̂2
F =

1

n1 − 1

k∑
i=0

n
Ri
1∑

j=1

2∑
l=1

(Xijl − X̄i··)
2 (2.2)

σ̂2
Si

=
1

nRi
1 − 1

k∑
s=i

n
Rl
1∑

j=1

2∑
l=1

(Xsjl − X̄s··)
2, i = 1, . . . , k, (2.3)

with

X̄i·· =
1

nRi
1

n
Ri
1∑

j=1

2∑
l=1

Xijl, i = 0, . . . , k.
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The prevalences are estimated as follows

τ̂i =
nSi
1

n1
, i = 1, . . . , k. (2.4)

Recapitulate the notation from the beginning splitting F in disjunct rings Ri and define
nRi
1 as the number of subjects in ring Ri at the sample size review. Then this is just

calculating the one sample variance in each ring and combining them together to obtain
a blinded variance estimator for each subpopulation. The prevalence at the sample size
recalculation is again estimated as ratio of number of patients in the subgroup and total
number of patients at the blinded review. These new estimates are then treated as “new
prior information” on the nuisance parameters and simply plugged in the previously
described sample size calculation procedure to find the final sample size N . The remain-
ing n2 = N − n1 subjects are recruited and the final analysis is performed using all N
observations.

To assess the performance of the proposed sample size determination and recalculation
procedures in combination with methods for the analysis of a nested subgroups design we
simulated the power as well as type-I error rates for designs with an internal pilot study.
I will here summarize the results for the most interesting case, unknown and unequal
variances. The focus of the first part of the simulation was on the power, mean recalcu-
lated sample size and variability of the recalculated sample size. We wanted to evaluate
the impact of the choice of degrees of freedom for the multivariate t-distribution during
the blinded review on these outcomes. To this end we chose a one subgroup design which
was to be analysed at the final analysis using the conservative t-approximation, i.e. a
multivariate t-distribution with degrees of freedom depending on the number of subjects
in the subgroup. The alternative was generated in the subgroup θS = 1 while there was
no effect in the complement. To create various initial sample sizes the assumptions on
the variance in the subgroup were varied between 0.78 and 1.11 resulting in 40−75 sub-
jects per treatment group. Since the true variance in the subgroup is 1.3 a sample size
review is reasonable and simulated at timepoints 0.33, 0.5, 0.66. Figure 4 shows the char-
acteristics against the number of subjects in the subgroup at the blinded review, from
left to right, power, mean recalculated sample size and the standard deviation of the re-
calculated sample size. Red lines depict the described sample size recalculation method,
based on the number of subjects in the subgroup at the final sample size, according to
the conservative t-approximation. Due to small sample sizes at the blinded review and
therefore possibly poor variance estimates we added two modifications following Zucker
et al. (1999).19 They suggest using degrees of freedom depending on the size of the
blinded review. Hence, blue lines represent a method that uses degrees of freedom with
respect to nS

1 for the recalculation procedure, while black lines use degrees of freedom
with respect to n1. Concerning the power only the method that uses df(nS

1 ) reaches the
nominal power of 90% throughout the simulations while the other are quite conservative
at small sample sizes and need at least 25− 30 subgroup subjects at the blinded review
to attain the nominal power. The mean recalculated sample sizes show the price that the
method using df(nS

1 ) (blue line) pays with extremely large sample sizes for small blinded
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Figure 4: Simulated power, mean and standard deviation of the recalculated sample size of three
approaches based on different degrees of freedom of the multivariate t-distribution approximation
at the recalculation step for a design with one subgroup. Degrees of freedom are chosen with
respect to the number of subjects in the subgroup at the final analysis (red), the number of
subjects at the blinded review (black) or the number of subjects in the subgroup at the blinded
review (blue). The setting of a fixed prevalence by design (dashed line) is included as well as the
case where the prevalence has to be estimated (solid line).

reviews. Both other methods have an increased recalculated sample size compared to
the fixed design without recalculation (dashed grey line). Further simulations show that
this increase is independent of the true sample size needed in a fixed design which is in
line with findings by Friede and Kieser (2011).52 The rightmost panel of Figure 4 also
reveals that the variability of the method depending on the number of subjects in the
subgroup at the sample size determination is way larger compared to the other methods.
As expected it decreases with increasing number of subjects at the recalculation. Addi-
tionally, having to estimate the prevalence τ results in larger recalculated sample sizes
and variability (solid lines). Summing up, a sample size review with a small number of
subject leads to a decreased power at the final sample size except an unethically large
sample size is accepted. There should be at least 25 subjects in the smallest subgroup
when performing a sample size recalculation based on degrees of freedom depending on
the final subgroup size nS or the number of subjects at the sample size review n1.

We assessed the type I error rates of the three methods for sample size recalculation
shown in Figure 4 in another similar simulation setting. The final analysis is still per-
formed using the conservative t-approximation. Here we changed the misspecification of
the variances prior to the study, now overestimating the true variance in the subgroup.
Under the null hypothesis we assumed variances σ∗

F = σ∗
S = 1 while the true variance

in the subpopulation was actually σS = 0.8. Varying the subgroup size τ = 0.2, 0.3, 0.5
and simultaneously the initial sample sizes N0 = 125, 82, 50 we reported the mean recal-
culated sample sizes (N̂), the variability of the sample sizes (SD) and the type I error
rates (α̂) for different timepoints of the blinded review t = 0.2, 0.4, 0.6, 0.8 (Table 1). All
three methods control the type I error rate and are a bit conservative due to the conser-
vative t-approximation. The method performing its sample size recalculation depending
on df(nS

1 ) recalculates the largest sample sizes with the highest variability as already
seen in the power simulations. All methods recalulate smaller sample sizes than ini-
tially planned since the true variance in the subgroup is smaller than assumed at sample
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Table 1: Type I error rates for a one subgroup design with internal pilot study. The number of
simulation runs is nsim = 100 000.

df = nS
1 − 1 df = n1 − 2 df = nS − 2

τ Ninit t N̂ SD α̂ N̂ SD α̂ N̂ SD α̂

0.2 125 0.2 111 50 0.0237 82 37 0.0234 85 35 0.0244
0.4 90 27 0.0232 81 24 0.0223 85 24 0.0231
0.6 89 16 0.0233 86 14 0.0231 88 15 0.0236
0.8 102 6 0.0235 102 4 0.0235 102 5 0.0230

0.3 82 0.2 72 32 0.0230 56 25 0.0232 56 23 0.0231
0.4 61 19 0.0238 54 16 0.0241 56 16 0.0234
0.6 59 11 0.0243 57 9 0.0245 59 10 0.0251
0.8 68 4 0.0240 67 3 0.0237 68 3 0.0236

0.5 50 0.2 43 19 0.0254 35 15 0.0252 33 13 0.0258
0.4 35 10 0.0262 33 9 0.0254 33 9 0.0253
0.6 35 6 0.0246 34 5 0.0242 35 5 0.0235
0.8 41 2 0.0238 41 1 0.0250 41 1 0.0243

size planning. The larger the subgroup the smaller is the observed variation of recal-
culated sample sizes SD. The same is true for later timepoints of the sample size review.

In summary, we presented methods for planning and analyzing a trial with normally
distributed data. This includes sample size determination as well as blinded sample size
recalculation in an internal pilot study. We focused on the nuisance parameters, e.g.
the variances in the (sub)populations, and their impact on the distribution of the test
statistics. We gave exact distributions where possible and suggested approximations
otherwise. Performance was assessed via simulations which showed that for type I error
rate control at all times the conservative t-distribution approximation should be used.
The proposed sample size recalculation procedures do not inflate the type I error rate.
We have seen that at least 20 − 25 subjects in the smallest subgroup are needed at
the timepoint of the sample size review in order to recalculate a reasonable sample size
reaching the desired power. This is in line with Sandvik et al. (1996)53 and Birkett
and Day (1994)54 who found that the minimal number of degrees of freedom should be
20. For early sample size review, hence small numbers of subjects available, we gave
slight modifications in the recalculation procedure using degrees of freedom based on
the number of subjects at the blinded review rather than the projected final sample size.
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2.2 Adaptive Enrichment Designs

In the second part we consider methods for adaptive enrichment designs. Those are
designs with one or more interim analyses at which decisions on design adaptations
can made without inflating the family-wise type I error rate. This includes sample size
adjustments, population selection or alterations of the further testing strategy. If the
interim analysis suggests there is an increased treatment benefit in a particular subgroup
and it is decided to reallocate the stage-two sample size to this subgroup only, this is
called an enrichment. There are many different aspects discussed in literature reaching
from adaptive designs with subgroup selection25,29 or population enrichment trials26,55

over estimation in single- and multstage designs that select subgroups56 to combinations
of group-sequential and subpopulation enrichment designs.31,32 Here we focus on the
methods used to combine two stages of an adaptive enrichment design while still con-
trolling the overall type I error rate. Popular methods are based on the combination
test (CT)23 or the conditional error function (CEF) approach.27 Especially in settings
with one subgroup the CT approach24,25 as well as the CEF approach28,55 have al-
ready been explored. Using our previous results on clinical trials with nested subgroups,
in particular transferring the distributional properties of the (vector of) test statistics,
we extend the CEF approach to an adaptive enrichment design with multiple subgroups.

We kept to the framework from the previous section, i.e. multiple nested subgroups
and normally distributed outcomes, and wanted to construct an adaptive enrichment
design for multiple nested subgroups with potentially unknown and unequal variances.
Therefore we transferred our results on the distributional properties of the test statistics,
under different scenarios concerning the variances in the populations (known/unknown,
equal/unequal), to the conditional error function approach.

The concept of the CEF approach is as follows. An interim analysis is performed when
recruitment has reached a predefined number of subjects, e.g. half of the initially planned
sample size. At this interim analysis the first stage test statistics are calculated and ac-
cording to a decision rule it is decided which populations are carried to the next stage
to be tested at the final analysis. For each planned hypothesis test a conditional error
CE is calculated. It is defined as the probability to reject the test at the final analysis
given the observed stage one data available at the interim analysis. Recruitment con-
tinues according to the decisions for dropping or enriching certain populations. At the
final analysis second-stage p-values q are calculated and the corresponding hypothesis is
rejected if q ≤ CE, c.f. Koenig et al. (2008).57

Let H1 denote the set of hypothesis planned to be tested at the final analysis and
HI = H

∩i∈ISi

0 . At the interim analysis for each test of HI ∈ H1 we calculate the
conditional error

CEI = PHI
(max

i∈I
Z{Si} ≥ ds|z{Si}

(1) , i ∈ I), (2.5)

where z
{Si}
(1) is the first-stage observed test statistic in population Si. The critical value
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ds is a Dunnett-type critical boundary58 and s = |I|. A selection rule that we will later
apply in the simulations, the ε rule, which was already used in treatment selection59 and
multi-arm designs,60 was adopted to subgroup selection by Friede et al. (2012).28 The
idea is to choose a distance ε ≥ 0 and then continue with all populations that have test
statistics within ε-range of the maximum test statistic at the interim analysis, i.e. all Si

with
z
{Si}
(1) ≥ maxj(z

{Si}
(1) )− ε. (2.6)

Assume we have decided on certain populations for the second stage and the remaining
subjects are recruited accordingly. Let H2 denote the set of the hypothesis left for the
final analysis and I2 the corresponding set of indices of subgroups involved. Second-stage
p-values are calculated as

qI = PHI
(max
i∈I2

Zi ≥ zmax
I2 |z{Si}

(1) , i ∈ I2), (2.7)

where zmax
I2

is the actually observed value of maxi∈I2 Zi. Finally, HI is rejected in the
final analysis if qI ≤ CEI . Friede et al. (2012) showed in a one subgroup design with
equal and known variances that these probabilities can be easily computed using a mul-
tivariate normal distribution.28 However, assuming unknown and unequal variances and
multiple subgroups, determining CEI and qI is tedious. Certainly, the derived distribu-
tional properties of the joint vector of test statistics Z and the suggested approximations
remain valid, but to evaluate (2.5) and (2.7) we need the conditional distributions of Z
given the first-stage data.

Since it is difficult to determine the conditional distribution of this multivariate vector,
we proposed an efficient procedure for simulating conditional distributions. For details
see Placzek and Friede (2019).30 The idea is, given a particular stage-one data set, to
calculate the first-stage means and variances for the treatment and the control group.
Then we generate ndsim stage-two data sets. For each of these data sets we calculate
second-stage means and variances in the same manner, and combine the means and vari-
ances of the two stages for each treatment group seperately using the stage-wise sample
sizes as weights. Then, the overall treatment differences and variances for each popula-
tion are determined resulting in ndsim vectors of final test statistics given this stage-one
data set Z∗

1,Z
∗
2, . . . ,Z

∗
dsim. Suppose we wanted to calculate the conditional error for the

rejection of the global intersection hypothesis assuming a scenario with unknown and
unequal variances. With the conservative t-approximation, let c = t0,Σ,df,1−α denote the

(1 − α)-equicoordinate quantile of MTdf (0,Σ) with df = nSk
P + nSk

T − 2. According to
(2.5) we have to calculate

CE
H

∩iSi
0

= P
H

∩iSi
0

( max
i=0,...,k

Z{Si} ≥ c|z{Si}
(1) , i = 0, . . . , k), (2.8)

which is now easily estimated by generating ndsim stage-two data sets under H∩iSi
0 and

counting
#{maxZ∗

i ≥ c i = 1, . . . , ndsim}/ndsim. (2.9)
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This procedure can be applied whenever multivariate conditional distributions have to
be evaluated. We used it in the extensive simulations assessing the performance of the
extended CEF approach that I will summarize next.

An overview of the simulation scenarios considered is given in Table 2. Since the condi-
tional distributions are simulated no matter what scenario is considered we also showed
simulation results for the case where we know the exact multivariate distribution of the
vector of test statistics Z, i.e. unknown but equal variances. As a comparison to the

Table 2: Overview of simulation scenarios considered for two nested subgroups. Type I error rates
and power values were simulated with 100,000 and 10,000 replications, respectively. τi, i = 1, 2,
denote the prevalences of the subgroups, σ2

j the variances and θj the effects in the smallest

subgroup and its complement, j = S2, S̄2. The number of subjects from the control group
initially planned in the full population is given by nC .

equal variances unequal variances
type I error power type I error power

τ1 0.4, 0.6 0.4, 0.6 0.4 0.4
τ2 0.2, 0.3 0.2, 0.3 0.2 0.2
σ2
S2

1 1 2 2

σ2
S̄2

1 1 1 1

θS2 0 1 0 1.5
θS̄2

0 0 0 0
nC 50, 60, . . . , 90 50, 60, . . . , 90 60, 70, . . . , 100 60, 70, . . . , 100

CEF approach we additionally present results for a combination test. The combination
test approach, c.f. Brannath et al. (2009) or Friede et al. (2012),24,28 is based on
combining stage-one and stage-two p-values using a combination function.23 Here the
inverse normal combination function is used, e.g. let p1 denote a first-stage p-value and
p2 the corresponding second-stage p-value, then

p = Comb(p1, p2) = 1− Φ
(
w1Φ

−1(1− p1) + w2Φ
−1(1− p2)

)
combines the evidence from both stages in a single final p-value. The weights w1, w2

have to fulfill w2
1 + w2

2 = 1 and are usually chosen depending on the sample sizes, here
wi =

√
ni/n, i = 1, 2 and n = n1 + n2. P-values are obtained testing intersection

hypotheses using the previously presented multivariate distributions while elementary
hypothesis are tested using a closed testing procedure, the same way testing is per-
formed with the CEF approach. I will skip the one subgroup scenario here and directly
discuss Figure 5 which shows the results for a design with two nested subgroups and
unknown but equal variances. This corresponds to columns 1 − 2 in Table 2. The left
two panels show type I error rates for three methods, namely the CEF approach and
the CT approach, both using the exact multivariate t-distribution at the final analysis,
and additionally, the normal approximation, plugging in the estimated variances and us-
ing the multivariate normal distribution. In the process, conditional distributions were
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Figure 5: Type I error rate and power for an adaptive enrichment design with two nested sub-
groups and equal variances as a function of the sample size in the treatment group.

simulated with ndsim = 10, 000 samples. Smaller subgroup sizes are shown in the top
panels while larger subgroups are analyzed in the bottom panels. We considered three
different selection rules at the interim analysis which were implemented using the ε-rule
choosing ε = 0, 1,∞. Note that for ε = 0 there is always only the population with
the maximum test statistic selected at interim. For ε = ∞ always all populations are
carried to the next stage while ε = 1 leads to varying decisions at interim depending on
the observed test statistics, selecting one, two or all populations. Reported are rejection
probabilities for the rejection of at least one individual hypothesis. For both settings of
subgroup sizes and across all sample sizes (x-axis) and selection rules at interim the CEF
approach contains the nominal level of 0.025. For the CT approach this is true only using
the selection rule “max”. For the other two selection rules there is a slight decrease in
type I error rate which can be explained by the non-consonance of the CT approach, i.e.
an intersection hypothesis may be rejected without rejecting a corresponding elementary

20



2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

hypothesis. This decrease diminishes with increasing subgroup sizes due to the higher
correlation of the test statistics. The normal approximation is too liberal in all cases
improving with increasing sample sizes and increasing subgroup sizes. Therefore, we did
not include the normal distribution when showing power results. Here, both CEF and
CT approach have the highest power when choosing the most promising population at
the interim analysis. This is reasonable since the alternative is generated in the smallest
subgroup. Hence, correctly selecting only the smallest subgroup consequently increases
the power. As expected always continuing with all populations and never enriching
the design has the lowest power. Choosing populations based on ε = 1 and therefore
sometimes performing an enrichment gives rejection rates in between those two extremes.

For the scenario with two nested subgroups and unknown and unequal variances we con-
sidered three different methods. Since the joint distribution of the vector of test statistics
Z has to be approximated, we simulated the CEF approach and the CT approach in
combination with the conservative multivariate t-approximation and the normal approx-
imation. Additionally, as a third comparison, we included an approximation given by
Graf et al. (2019).38 For testing of intersection hypotheses, instead of using one equico-
ordinate quantile c they calculate individual critical values ci corresponding to each entry
of Z. To do so they start similarly: A multivariate normal distribution approximation

Z
.∼. N

(
0, Σ̃

)
with the same covariance matrix Σ̃ as previously described is used and Pocock type
boundaries61 are applied to calculate an equicoordinate quantile cα as the same critical
value for all subpopulations. Here, to account for the unknown variances, they take it
a step further and transform this critical value based on univariate t-distributions with
degrees of freedom depending on the subgroup sizes following Jennison and Turnbull
(1999),20

ci = Ψ−1

(a+1)n
Si
P −2

(Φ0,1(cα)), i = 0, . . . , k.

Here Ψdf and Φ0,1 denote the distribution functions of a univariate t-distribution with

df degrees of freedom and the standard normal distribution. Since df = (a + 1)nSi
P − 2

is different for each (sub)population this leads to individual critical values. Hence, the
calculation of the conditional error for this method resolves to

CEI = 1− PHI
(Z{Si} < ci, i ∈ I|z{Si}

(1) , i ∈ I). (2.10)

Graf et al. (2019) call this method the corrected t-test,38 we referred to this as the
univariate t-approximation. In Figure 6 type I error rates and power for the same three
selection rules at interim are shown for a subgroup sizes τ1 = 0.4 and τ2 = 0.2 (columns
3-4 in Table 2). The best performing method is the univariate t-approximation using
the CEF approach. Although showing a minimally inflated type I error rate when al-
ways selecting the population with the maximum test statistic at the interim analysis
(bottom panels) it exhausts the alpha more fully than the conservative t-approximation.
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Figure 6: Type I error rate and power for an adaptive enrichment design with two nested sub-
groups and unequal variances as a function of the sample size in the treatment group.
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The normal approximation is once again too liberal. The CT approach performs slightly
worse than the CEF approach due to its non-consonance as in the scenario with equal
variances. Power-wise the results transfer as well. Selecting the most promising popula-
tion leads to a more powerful design if there is indeed an increased benefit in a specific
population. Since we generated the effect in S2 the design with selection rule “max”
shows the highest power.

To sum up, we have seen that in both scenarios, unknown and equal or unequal vari-
ances, the normal approximation which is often used in practice is too liberal. Instead
one of the proposed methods should be used, which incorporate the fact that the vari-
ances are estimated, by using multivariate or univariate t-distributions. Generally, the
CEF approach slightly outperforms the CT approach. When performing an enrichment
after the interim analysis the power is increased notably if the correct subpopulation is
selected.

2.2.1 Nonoverlapping Subgroups and Multistage Designs

In Placzek and Friede (2019) we also gave extensions to our initially considered statis-
tical design.30 Instead of solely nested subgroups, we described how our results transfer
to nonoverlapping subgroups. Nonoverlapping subgroups within a full population means
Si∩Sj = ∅, for all i ̸= j. Hence, the standardized test statistics Z{Si} and Z{Sj} are inde-
pendent. There only remains a correlation between Z{F} and Z{Si}, for all i = 1, . . . , k,
that depends on the prevalence τi and the variances σF and σSi . Therefore, using the
methods proposed here can easily be applied to nonoverlapping subgroups by adjusting
the covariance matrixΣ accordingly. Distributions and approximations remain the same.

Concerning the interim stops we presented some advice on how to plan a multistage
design. Rather than only one interim analysis we considered designs with multiple data
looks. Here we distinguished two strategies. First, we assumed that at a data look only
subgroup selection and no testing can be performed. This means the trial always ends
at the final analysis after all stages are completed. The second case included testing at
each data look and consequently options to stop the trial for futility or efficacy early.

The idea in the first case, when testing only at the final analysis, is to treat data as if
there were only two stages at each data look. Conditional errors are calculated condi-
tioning on all data prior to this particular data look but according to a test at the final
analysis using the significance level of the conditional error of the previous data look.
Assume there are k − 1 interim analysis and a final analysis at the end, i.e. there are
k data looks. Let CE0 = α denote the significance level. At each data look l < k a
set of populations are selected to continue the trial. For each corresponding hypothesis
the conditional error CEl is calculated as the probability to reject the hypothesis at the
final analysis given the data observed in stages 1, . . . , l when testing to the level of the
previous conditional error CEl−1. At the final analysis, the hypothesis is rejected if the
corresponding p-value q is smaller than the conditional error CEk−1 of the last interim
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analysis .

In the second case we additionally allowed for hypothesis testing at each data look
enabling the option to stop for futility or efficacy. For the analysis and type I error
rate control throughout the whole trial we applied a similar idea by Müller and Schäfer
(2001) considering data from stages before and after an interim analysis as separate
independent trials.27 Evidence is then combined using group sequential testing.14,62 For
example one could plan a two stage adaptive design spending a prespecified amount α1

of the significance level at the first data look. After testing and selecting populations at
this interim analysis it is decided not to stop for futility or efficacy but to extend the
design by another interim analysis. Since data before and after data look one is treated
separately, for hypotheses of interest the conditional error CE1 is calculated which is
the probability to reject the hypothesis at the final analysis given the stage-one data
when testing to the remaining significance level. The next part of the trial can then
be planned using a group-sequential design with respect to the significance level CE1.
This procedure can be repeated iteratively leading to a design with multiple stages still
controlling the type I error rate. For more details see Placzek and Friede (2019).30 The
same can be applied to the CT approach resulting in recursive combination tests.63

24



2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

2.3 Incorporating BSSR into the Adaptive Enrichment Design

Finally, having discussed the analysis of multiple subgroups designs and adaptive enrich-
ment designs, our aim was to give a procedure incorporating the methods for blinded
sample size calculation into an adaptive enrichment design with multiple subgroups and
normally distributed endpoints. This means the statistical model remains unchanged
but at the planning stage of a trial additional decisions have to be made: For the
blinded sample size review we install an internal pilot study; hence, a timepoint for
the blinded review has to be chosen. This is usually done by specifying an amount of
observed patients available, e.g. p = 30% of the initial sample size N0. Additionally,
there is a stop for an interim analysis. Here the timepoint is specified depending on
the recalculated sample size obtained from the blinded review, e.g. the interim analysis
is performed when half of those patients are observed (c.f. Figure 7). Further deci-
sions deal with options for design adaptations such as possibilities for early stopping
or enrichment of the design. Based on that a testing strategy is chosen. Besides those
advanced features the usual assumptions for the initial sample size calculation have to
be made. This includes assumptions on treatment effects as well as nuisance parameters.

We will break the following steps down using a one subgroup design as an example.

� Planning stage: Use assumptions on nuisance parameters/testing strategy/design
adaptations to calculate initial sample size N0.

� Blinded review: Reestimate nuisance parameters using p · N0 observations and
recalculate final sample size N .

� unblinded interim analysis: After t ·N patients are observed carry out unblinded
analysis and decide on further course of the trial, e.g. drop populations and enrich
trial.

� Final analysis: Perform hypothesis tests in the remaining populations with total
number of observed patients.

At the planning phase we begin by defining the statistical model. Since there are differ-
ent distributional implications depending on the restrictions concerning the variances in
the subpopulation and the full population as we have seen in Section 2.1, we have to state
which scenario is chosen here. Assume we put no restrictions on the variances in the pop-
ulations, i.e. we allow for unknown and unequal variances across the (sub)populations,
as this is close to reality. This implies that our testing strategy is based on approxima-
tions of multivariate distributions of vectors of standardized test statistics. We further
specify the timepoints p of the blinded review and t of the interim analysis and choose
an adaptive method to combine evidence from the two stages. Suppose we use the CEF
approach without an option for early stopping at the interim analysis but with the pos-
sibility to select a promising population and enrich the trial in the second stage.
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Figure 7: Combining blinded sample size recalculation in an internal pilot study design and an
adaptive enrichment procedure with an interim analysis. In this example there is one subpopu-
lation inside a full population and a two-stage design shall reveal whether there is an increased
treatment benefit in the subpopulation while still simultaneously examining the full population.

To calculate the initial sample size we need prior knowledge or assumptions on the vari-
ances and prevalence of the subgroup, define a one-sided significance level α = 0.025
and a power 1− β = 0.8 to detect an anticipated alternative θ. We use the sample size
formula from Equation (2.1). Therefore, we have to decide which approximation should
be employed as this determines the degrees of freedom of the multivariate t-distribution.
We choose the conservative approach, i.e. df = 2nS − 2. Note that we assume a 1:1
allocation between treatment and control group. The iterative search algorithm yields
an initial sample size N0.

At the blinded review, i.e. after p · N0 observations, the variances and prevalence are
reestimated based on the data available. This is done in a blinded fashion, c.f. Equa-
tions (2.2)-(2.4). The new estimates are once again plugged in the original sample size
formula (2.1) and the final sample size N is obtained. This new sample size may be
larger or smaller than the initially calculated N0 depending on whether the nuisance
parameters were over- or underestimated at the planning stage. Since the timepoint of
the interim analysis depends on N the interim analysis is now performed later or earlier
than initially planned (with N0).

The interim analysis is performed with t · N observations. Here treatment group af-
filiations are revealed, unblinded estimators for the nuisance parameters as well as the
treatment effects obtained and standardized test statistics calculated. Based on those
test statistics it is decided in which populations testing will be continued. A selection
rule that we already discussed is the ε rule, c.f. Equation (2.6). The ε rule is capable
of covering all possible paths, i.e. continue with both populations, only with the full
population or only with the subpopulation. In the last case second-stage recruitment
can focus exclusively on patients from the subgroup, hence, enriching the trial. For each
hypothesis the conditional error is calculated as described in (2.5). This can be imple-

26



2 Blinded Sample Size Reestimation in Adaptive Enrichment Designs

mented using Monte Carlo simulations of the conditional distribution of the (vector of)
test statistics as described in (2.8) and (2.9).

According to the decisions at the interim analysis stage-two recruitment is conducted. At
the final analysis stage-two p-values are calculated for each of the remaining hypothesis,
once again employing Monte Carlo simulations of the conditional distributions given the
stage-one data that are needed in (2.7). A hypothesis is then rejected if the stage-two
p-value is smaller than the corresponding conditional error that was calculated at the
interim analysis. Following the closed testing principle, an individual hypothesis con-
cerning the full population or the subpopulation is only rejected if the global intersection
hypothesis is rejected and the elemental hypothesis is rejected as well (both tested with
significance level α).

In simulations we assessed various aspects of this procedure including power, type I error
and variability of final sample sizes, as well as (optimal) timepoints of the blinded review
and the interim analysis. We included different selection rules at the interim analysis
and a comparison to a design without BSSR.

In Section 5, we demonstrated the advantages the combination of BSSR and adaptive
enrichment brings along performing some simulations in a one subgroup design. First,
we compared the power to reject the intersection hypothesis for four variations of the
procedure in the following scenario: We generated a subgroup with prevalence τ = 0.4
inside a full population. The true treatment effect is ∆S = 0.75 in the subgroup and zero
in the complement of the subgroup. For initial sample size calculation we assumed that
the variances in both populations equal 1 while the true variance in the subpopulation
was varied, i.e. σS = 0.8, 1, . . . , 1.6 on the x-axis. This means at the planning stage
we had an intended misspecification of this nuisance parameter in almost all cases. The
blinded review was planned at the timepoint of having observed 30% of the initial sample
size while the interim analysis should take place after observing 50% of the recalculated
sample size. Throughout the simulations we assumed unknown and unequal variances.
The prevalence, i.e. the subgroup size, is assumed to be fixed and known, since we found
in the first publication37 that estimating this parameter additionally does not notably
change the simulation results. As adaptive method we chose the CEF approach employ-
ing the univariate t-approximation. We compared a method without BSSR and three
strategies with BSSR but different decision rules at the interim analysis, namely always
selecting both populations, selecting the population with the maximum test statistic at
interim and always selecting the subpopulation. The last rule represents the theoreti-
cal strategy always choosing correctly since the true treatment effect is indeed only in
the subpopulation. Figure 8 shows the power curves (left panel) obtained from 10, 000
simulation runs with significance level α = 0.025 and nominal power of 1 − β = 80%.
The robustness against misspecifications that is added by implementing a BSSR in an
internal pilot study is striking. The method without a blinded review is over- or under-
powered in those cases where the assumptions on the variance in the subgroup is wrong
while the other three methods contain the nominal power with only slight losses. Those
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are discussed in more detail in the third publication.44 Note that there is an additional
adjustment of the sample size in case of an enrichment of the subpopulation which can
already be planned at the blinded review. Since we are enriching the trial with patients
from the promising population we may decrease the sample size while maintaining the
desired power. This explains the differences in the final sample sizes (right panel). The
method without BSSR keeps the initially calculated sample size fixed in all cases. For the
methods with blinded review the sample size increases with increasing variability in the
subgroup. Generally, the strategy with no enrichment has the largest sample sizes while
both enrichment strategies are able to save 25-60 patients in terms of mean recalculated
sample sizes. Comparing those two, the method that always chooses the subpopulation
shows slightly smaller sample sizes. This is not surprising since in this example only
patients in the subgroup benefit from the treatment, hence, always enriching S leads to
a more efficient design. We obtained analogous results for the variability of the mean
recalculated sample sizes, c.f. Placzek and Friede (2022).44
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Figure 8: Comparison between methods combining BSSR and adaptive testing strategies (black,
red, green) and a strategy without BSSR (blue). Testing strategy in all cases is based on the
conservative approximation of the multivariate t-distribution.

In the previous simulation scenario we only considered an effect in the subpopulation.
To complement these power and sample size simulations we additionally simulated a
scenario with effects in both full population and subpopulation, i.e. ∆F = 0.5 and
∆S = 0.5, holding on to the remaining settings. The results do not differ much from
the ones seen in Figure 8, except with effects in both populations there is almost no
difference between the two selection rules. However, those results underline the integrity
of the proposed procedure and can be found in the third publication.44

Next, we briefly simulated type I error rates to demonstrate FWER control. Since BSSR
and adaptive enrichment methods are applied independently in the combined procedure,
type I error rate control follows directly from FWER control of both independent com-
ponents, cf. Placzek and Friede (2017, 2019).30,37 The adaptive testing strategy applied
in the simulations is the conditional error function approach. For both selection rules,
deciding at an interim analysis whether to continue testing in both populations or only in
the population with the maximum test statistic at interim, the type I error is controlled
across all scenarios.30 Rejection rates are even a bit conservative which is inherited by
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Figure 9: Power of the conditional error function approach for different timepoints of the interim
analysis (x-axis) varying the subgroup prevalence.

the conservative approach used at the BSSR.

Finally, we took a look at the timepoints of the blinded review and the interim analy-
sis and how those influence the performance of the procedure. First, we simulated an
adaptive enrichment design without BSSR varying the timepoint of the interim analysis
in order to find an optimal timepoint for population selection and enriching of the trial.
For three different subgroup sizes we assessed the power of the CEF approach which
selects the population with the maximum test statistic at interim. Timepoints ranged
from 10% to 90% of the planned sample size. There was no adjustment of the sample
size. Figure 9 suggest an optimal timepoint of 40− 50% of the final sample size.

Since recalculating the sample size automatically changes the amount of patients repre-
senting 40−50% of the final sample size we wanted to investigate the benefit of adjusting
the timepoint of the interim analysis based on the recalculated sample size coming from
a blinded review. Therefore we compared such a strategy (two-stop strategy) with a de-
sign where the sample size review and the interim analysis are simultaneously performed
at one timepoint (one-stop strategy). This means, while in the first case a sample size
review is performed after 30% of patients have been observed and then the interim analy-
sis takes place after 50% of the recalculated sample size, in the second case both, sample
size recalculation and interim analysis, are conducted at 50% of the initially calculated
sample size missing out on optimizing the timepoint of the interim analysis with respect
to a sample size adjustment. Once again, we simulated a one subgroup design and com-
pared power, mean recalculated sample size, variance of the sample size and selection
probabilities of the subgroup between these two approaches. We found that, while quite
similar in terms of power and mean recalculated sample size with the one-stop strat-
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egy even a bit favorable, concerning the enrichment aspect of the design, i.e. with a
selection rule allowing selection of the subgroup, the two-stop strategy outperforms its
competitor in terms of variability of the mean recalculated sample size and in terms
of selection probabilities of the subgroup. Here, timing the IA based on the results of
the blinded review leads to a smaller standard deviation of the recalculated sample size
and a higher probability to correctly select the subgroup compared to the procedure
with a simultaneous sample size review and IA. This behavior intensifies for increasing
variability in the subgroup and associated larger total sample sizes. More details as well
as corresponding graphics can be found in Placzek and Friede (2022).44

To summarize the part on methods for blinded sample size recalculation and subgroup
selection in adaptive enrichment designs, we have seen how the individual results from
Sections 2.1 and 2.2 can be combined to construct a robust, flexible and efficient pro-
cedure. However, the advanced complexity with the increasing number of parameters
requires more elaborate planning of the trial and a diligent execution of the study plan.
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3 Discussion

In the context of the BIMIT project I tackled the analysis of subgroup designs. More
specifically, I considered blinded sample size recalculation and the selection of a sub-
group in an adaptive enrichment design as this was the focus of package C carried out
in Göttingen. Since such a sophisticated design requires a solid statistical foundation
we thoroughly examined the underlying statistical model and established exact meth-
ods or approximations for testing hypothesis in a multiple (nested) subgroups design
comparing a treatment versus a control in the full population and the subpopulations
simultaneously. Here, other than in common practice, we put no restrictions on the
variances in the populations, i.e. additional to the cases of known or equal variances
we included the scenario of unknown and unequal variances. However, we restricted our
research to normally distributed outcomes. We use standardized test statistics and their
(joint) distributions to test intersection hypotheses and individual hypothesis and then
apply the closed testing principle in order to control the type I error rate. A sample
size determination is performed using equicoordinate quantiles of the multivariate dis-
tribution of the vector of test statistics and an interative algorithm. We analyzed the
proposed procedures in simulations which confirmed the validity concerning power and
type I error rate. Next, we added a method for blinded sample size recalculation in
an internal pilot study giving blinded estimators for the variances and prevalences. In
further simulations we found no notably inflated type I error when using blinded sample
size adjustments. However, we found a lower boundary for the size of the internal pilot
study, i.e. a minimum of 20-25 subjects in the smallest subgroup. Otherwise the target
power cannot be achieved. Though we presented additional adjustments for the BSSR
in the IPS handling smaller sample sizes, this comes at a high cost in terms of the final
sample size.

With the same statistical model as the basic framework we went on to adaptive enrich-
ment designs. Transferring our results on the different scenarios accounting for uncer-
tainty in the variance estimation we extended the conditional error function approach to
a more general setting, i.e. multiple subgroups and standardized test statistics with esti-
mated variances. Subgroup selection at the interim analysis was based on different rules
including always continuing with all populations, only with the most promising or with
a combination of populations that lay in between those two extremes (ε-rule). In the
last two cases an enrichment of the promising populations can be performed. Calcula-
tion of the conditional error and second stage p-values relies on conditional multivariate
distributions which we generated in Monte Carlo simulations. In an extensive simula-
tion study we compared the CEF approach with the combination function approach.
In the case of unknown and unequal variances we analyzed three different approxima-
tions, namely the conservative and liberal multivariate t-approximation as well as the
univariate t-approximation. Generally the CEF approach slightly outperforms the CT
approach in terms of type I error rate and power. This becomes more pronounced with
an increasing number of subgroups. From the three approximations the univariate t-
approximation is the best performing, slightly better exhausting the type I error and

31



3 Discussion

with a somewhat better power. Naturally, if an enrichment is conducted and there is
indeed an increased treatment effect in the selected subpopulation, the overall power is
significantly increased.

Finally, in a third publication, we combined both BSSR and adaptive enrichment and
gave a full procedure including sample size calculation, blinded sample size recalcula-
tion, (sub)population selection in an interim analysis, subgroup enrichment and testing
at a final analysis. We discussed model assumptions and optimal timepoints for the in-
terim analysis and showed that in certain scenarios it is beneficial to perform the BSSR
prior to the interim analysis and to adjust the timepoint of the interim analysis based
on those results. We saw that the full procedure unites the benefits of both individual
methods, robustness against misspecifications and flexibility in terms of design adapta-
tions without sacrificing power. Type I error rate control follows from FWER control
in the strong sense of both the BSSR methods and the adaptive enrichment methods
individually, since those are applied independently in our design.

Revisiting the example in pulmonary arterial hypertension from the Introduction, the
advantages of those adaptive designs with subgroup analysis are striking. They offer a
flexible and effective way to identify groups of patients, and even subgroups within those
groups, which benefit more from a treatment while keeping the sample size needed at a
minimum. In PAH patients there were already some achievements toward personalized
medicine, e.g. it was found that most drugs for PAH seem to be more efficient in pa-
tients with idiopathic PAH than in those with non-idiopathic PAH, c.f. Figure 1. On
the other hand, PAH patients with connective tissue disease consistently showed a lesser
response to treatment.64 Further directions of targeted therapies are the investigation of
proteins to develop personalized proteomics of PAH as well as genetic studies to identify
subgroups.65,66 Those can then be used to apply the study design proposed here in a
future clinical trial.

We published methods for the analysis, sample size calculation and blinded sample
size recalculation in an R package spass on the Comprehensive R Archive Network
(CRAN).45,46 Additionally, methods for the combination of BSSR and Adaptive Enrich-
ment Designs are available as supplementary material of the third publication.44 Those
packages also contain the simulation code that was used to obtain the results in this sum-
mary. Another powerful R package for the design and analysis of confirmatory adaptive
group sequential designs is rpact by Wassmer and Pahlke (most recent update August
2022).67 It provides power and sample size calculation as well as simulation and anal-
ysis tools for adaptive designs with interim analyses including enrichment designs, not
only for continous endpoints but also for binary and survival endpoints (hazard ratios).
Implemented are the methods by Wassmer and Brannath (2016).68

We assessed performance of the procedures using the most common metrics for adaptive
designs reporting type I error rates, power, expected total sample size and variability
of the sample size in various simulation scenarios. One might argue that trial dura-
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tion should also be considered a metric of interest, since both adaptations, BSSR and
adaptive enrichment, can increase or decrease trial duration. Obviously, there is a linear
relation between final sample size and trial duration. Hence, increasing or decreasing the
sample size via a BSSR will increase or decrease trial duration. If at interim it is decided
to continue recruiting only from a specific subpopulation in the second stage, this might
as well increase trial duration since recruitment might be slower. This, however, can
be compensated by fewer subjects needed to achieve the pre-planned power, therefore
decreasing trial duration. Naturally, multiple interim looks (BSSR and interim analysis)
potentially increase costs in terms of time and work for a statistician. On the other
hand those hold benefits as well, e.g. a more continous monitoring and data cleaning
as well as the statistician getting familiar with the data set early on. In the long run
this improves data quality and saves time at interim and final analysis. Friede et al.
(2019) assess the operating characteristics, including trial duration, of a BSSR proce-
dure in an event-driven trial and compare them with those of a fixed sample size design.69

A new understanding of the type I error in designs with multiple populations was pre-
sented by Brannath et al. (2020) who suggest a criterion ignoring multiplicity adjust-
ments if disjoint subpopulations are considered and controlling the average multiple type
I error rate for intersecting subpopulations. This is the probability that a randomly se-
lected patient received an inefficient treatment. They call it the population-wise error
rate.70

Type I error rate control should also be kept in mind when thinking about unblinded
sample size recalculation. Naturally, one might want to perform an additional sample
size adjustment at the interim analysis in an unblinded fashion, since data is unblinded
at that timepoint anyway. Here, we have to differentiate between two ways of doing so.
On the one hand such an unblinded sample size recalculation can be based solely on
unblinded estimates of the nuisance parameters, e.g. variances, not taking into account
observed treatment effects. There are two major drawbacks: First, unblinded sample
size recalculation, other than its blinded counterpart, does inflate the type I error rate.
Secondly, although counterintuitive, Friede and Kieser (2013) compared sample size
reestimation based on blinded and unblinded variance estimators and showed that the
unblinded method does not guarantee that the nominal power is attained.71 The blinded
methods turn the obvious disadvantage of using biased estimators in case of treatment
group differences into an advantage by compensating a small power loss introduced by
recalculating the sample size in an ongoing trial through a slightly increased sample
size. That is why we kept using the blinded one-sample variance estimator in all three
publications experiencing the same results. On the other hand an unblinded sample size
recalculation might additionally incorporate observed treatment effects. This, however,
can inflate the type I error to more than two times the size than the nominal level and
statistical adjustment is necessary.72 Appropriate methods were summarized and re-
viewed by Wassmer (2000) including variance spending, alpha spending and conditional
error function approaches.72–74 Needless to say, the conditional error function approach,
as discussed here, allows for effect based sample size adjustments while controlling the
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type I error rate.

Blinded sample size recalculation and adaptive designs remain relevant topics in ongoing
research. BSSR in various designs including multitreatment crossover trials or stepped-
wedge cluster randomized trials were considered by Grayling et al. (2018)75,76 while
Harden and Friede (2020) considered BSSR in multicenter randomized controlled clini-
cal trials based on noncomparative data.77 In the field of adaptive designs Friede et al.
(2020) present a framework on adaptive seamless designs combining phase II and phase
III characteristics such as treatment or subgroup selection and confirmatory testing.35

Here interim analyses are informed by either the primary outcome or an early outcome.
Additionally they implemented an extension of the R package asd78 to include adaptive
enrichment designs.

In our publications we considered normally distributed endpoints. However, the princi-
ple and general idea of BSSR as well as adaptive enrichment designs can be transferred
to other endpoints, e.g. binary, survival or other event-based outcomes. Here, we had
to deal with variances and prevalences as nuisance parameters, standardized mean dif-
ferences as test statistics and (multivariate) normal or t-distributions. Of course, those
parameters change depending on the distribution of the endpoint, but the methods and
procedure in general remain the same. For example, Asendorf et al. (2019) proposed
methods for BSSR in clinical trials with longitudinal negative binomial counts.79 They
include the overall rate and shape parameter as nuisance parameters working with a
negative binomial distribution.
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