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Prof. Dr. �omas Schick
Mathematisches Institut, Georg-August-Universität Gö�ingen
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Prof. Dr. Max Wardetzky
Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Gö�ingen

Tag der mündlichen Prüfung: 04. Oktober 2022



Acknowledgements

First of all, I would like to express utmost my gratitude to Stephan Huckemann, who has
accompanied and supervised me over the course of the last four years, including my work
on my master’s thesis. I also thank him for working with me, for his hospitality and for
sharing his many experiences of life with me.

Second, I would like to thank Tom Nye for inviting me to Newcastle for a one month visit,
for his hospitality and for sharing his views with me. �e experiences I made during this
visit shaped me and in�uenced my perspective on many things.

Furthermore, I would like to thank Russell Luke for supervising me and having me as a
frequent member of his Oberseminar.

Finally, I would like to thank all the colleagues and friends that made up a big portion of
my everyday life with all its struggles and joyful moments in the last three and a half years.
Every second at the Institut für Mathematische Stochastik I have felt at home and this was
due to the wonderful, kind and fascinating people that I have met and befriended there –
among those friendships many that will last for a long time. Last but not least, I would like
to thank my long-standing friends and my closest, that is my family: my parents Gerda
and Dirk, as well as my siblings Marie, Hannes and Paul.

iii





Preface

Given a �xed set of operational taxonomic units (OTUs), when studying their evolutionary
relationships among each other, a common way of depicting those is to construct a phy-
logenetic tree, a graph-theoretic tree with a root, that is the common ancestor (which one
assumes to exist). Herein each leaf represents a unique OTU and edges have real positive
lengths representing the evolutionary distance of some kind, which can be time, but also
other metrics.

Nowadays, those trees are generated from multiple measured sequence data such as DNA,
RNA or protein sequences, and having various measurements from the same species, one
usually obtains many di�erent proposals for phylogenetic trees representing the evolution-
ary relationships. As one believes that there exists one true phylogenetic tree, one wishes
to combine the di�erent proposals into a single phylogenetic tree. As a statistician, the nat-
ural thing to do is to average the proposals in some sense in order to obtain a mean, that
is again a phylogenetic tree, and which allows for further statistical methodology, such
as con�dence regions or testing. However, this requires some appropriate mathematical
structure on the set of phylogenetic trees, preferable with geometry, i.e. at least a metric
space.

�e Billera-Holmes-Vogtmann tree space (BHV space) is an example for such a structure,
it is a metric space that is CAT(0) and furthermore a Riemann strati�ed space of type B,
cf. Billera et al. (2001). �is space has favorable properties like completeness and global non-
positive curvature, which implies that between two points, there exists a unique geodesic
connecting them. Furthermore, there is a polynomial time algorithm to compute exact
geodesics in this space, cf. Owen & Provan (2011). Nonetheless, the space is arti�cially
constructed from embedding it in a high dimensional Euclidean space and as a consequence
does not behave as biological understanding would expect a metric space of phylogenetic
trees to behave, as is discussed for example in Garba et al. (2018). �ey consider the distance
between two trees with di�erent structures in the case that the edge lengths go to in�nity.
�e same example motivates one to actually include disconnected forests into the space.
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A promising construction that covers the example from above and behaves as biological
intuition suggests is our recently introduced Wald Space, cf. Garba et al. (2021a). It is based
on the characterization of phylogenetic trees as covariance matrices, which is a byproduct
of a generalization of the popular biological substitution models that are used to calcu-
late likelihoods for trees given genetic sequence data, so those substitution models are the
backbone of phylogenetic tree estimation. In other words, the Wald Space is a space that
is consistent with the tree estimation methods that are currently used, up to the general-
izations that have been made. More details can be found in Garba et al. (2021a).

In this work, we concentrate on the Wald Space purely from the perspective that it is a
mathematical structure and thus we try to enable for a be�er understanding of the Wald
Space. To this end, we introduce the mathematical structures required: metric spaces,
Riemannian manifolds, Riemann strati�ed spaces, as well as, for our construction essential,
various geometries on the manifold of strictly positive de�nite symmetric real matrices.
Furthermore, we introduce various possible ways to represent the phylogenetic trees and
forests that we consider. Having �nished the introduction of the more general and known
concepts, we brie�y introduce the BHV Space. �en we de�ne and describe the Wald Space,
which is a topological strati�ed space, and we investigate its topological features. �is part
is the core of the thesis. Finally, we equip the Wald Space with a geometry that can be
chosen to some degree and �nd that these spaces are then Riemann strati�ed spaces of
type (A). Last but not least, we propose some numerical algorithms to calculate geodesics
and distances in the Wald Space equipped with a geometry. �ose are not tested in this
work, but to some extent in Lueg et al. (2021).
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Chapter 1

Introduction and Motivation

Among others, the subject of evolutionary biology is concerned with the origin of life
on Earth and with the underlying principles that cause the diversi�cation or evolution
of the species over time. One of the fundamental assumptions or beliefs is the one of
common descent, that is that all living things stem from one universal common ancestor.
�is assumption was already formulated by Charles Darwin in 1859 in his famous and at
that time controversial publicationOn the Origin of Species byMeans of Natural Selection, Or
�e Preservation of Favoured Races in the Struggle for Life (Darwin, 1859). �e hypothesis of
the common descent was also the subject of interest in recent publications such as �eobald
(2010) and Weiss et al. (2016).

�e hypothesis of the universal common ancestor is one of the reasons for representing the
biological evolution and diversi�cation of species as well as their evolutionary relationships
via a phylogenetic tree. Usually, a phylogenetic tree consists of a root vertex and from it orig-
inating branches or edges that themselves branch again several times (the points at which
they branch are called interior vertices), until they terminate in a vertex (called leaf ). �e
leaves represent present-day species and the interior vertices represent common ancestors,
we think of them as extinct or unobserved. �e branching process represents a speciation
event, i.e. new species evolve from a previous one. Finally, each edge has a length, that is
a positive real number, describing the time or evolutionary distance between the incident
vertices.

Up until the beginning of the second half of the 20th century, phylogenetic trees were
mainly inferred from the morphological traits of the considered species. In fact, Ernst
Haeckel predicted in 1866 that “building phylogenetic trees will be the most important and
most interesting task of future morphology”, cf. Haeckel (1866, p. xx, translated). However,
in the second half of the 20th century, biologists developed computational methods to infer
phylogenetic trees from measured biological sequence data of the respective species. �e
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2 Chapter 1 Introduction and Motivation

biological sequence data can be DNA (Deoxyribonucleic acid) or RNA (Ribonucleic acid),
but also other sequences of large molecules such as protein sequences.

�ese methods, among others, are substitution models that consist of Markov models on
trees that describe evolutionary change over time, and based on these methods, phyloge-
netic trees can be estimated based on the sequence data, e.g. Felsenstein (1981). However,
due to these di�ering computational methods, o�en hundreds of trees are obtained as pro-
posals for the true phylogenetic tree for the same set of species. �is suggests to construct
a sample space that is at least a metric space, such that one can then infer statistics on the
set of trees, such as averaging (e.g. calculating the Fréchet mean) or con�dence regions.

�e Billera-Holmes-Vogtmann tree space (BHV space), cf. Billera et al. (2001), is the �rst
metric space that serves as a sample space for phylogenetic trees where statistics can be
performed, and is under ongoing investigation to this day (Owen & Provan (2011); Nye
(2011); Barden et al. (2013); Nye (2014); Nye et al. (2016); Barden et al. (2016); Anaya et al.
(2020), to name a few).

Furthermore, there exists tropical tree space which is based on representing each tree
uniquely via its distance matrix and equipping these matrices with a very special vector
space structure, cf. Lin et al. (2017, 2018); Yoshida et al. (2019).

However, both these spaces do not behave as one would expect when edges tend to in�-
nite length, and this is due to the choice of representation and the way those spaces are
constructed. In Kim (2000); Moulton & Steel (2004); Shiers et al. (2016), the idea of con-
structing a tree space based on representing the trees via correlation matrices or vectors
was developed and further investigated, and this representation of trees is consistent with
the substitution models used to estimate phylogenetic trees in the �rst place. �is work
then lead to the idea of our contribution called the Wald Space, �rst introduced in Garba
et al. (2021a), and we made some numerical experiments in Lueg et al. (2021). In Garba et al.
(2021a), there is a detailed introduction that motivates the Wald Space, and the construc-
tion of the Wald Space is given. �erefore, in this thesis, we do not focus on the motivation
or justi�cation of the construction of the Wald Space, but rather on the construction and
the properties of the Wald Space itself.

Importantly, in this thesis, contrary to Garba et al. (2021a), we think of the Wald Space
solely as the underlying strati�ed topological space. �is modular formulation allows us
then to �exibly equip the Wald Space with a metric which is induced by our choice of a
Riemannian metric on the manifold of strictly positive de�nite symmetric real N × N -
dimensional matrices, which we abbreviate with P throughout the thesis. Choosing the
Fisher-information metric on the statistical manifold of zero-mean multivariate Gaussians
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with covariance matrices in P then leads to the classical Wald Space that is discussed in
Garba et al. (2021a).

To summarize, we start introducing in Chapter 2 the mathematical structures that we use
throughout the thesis, e.g. metric spaces, manifolds and Riemann strati�ed spaces, and in
Chapter 3 various Riemannian metrics for the manifold of strictly positive de�nite sym-
metric real N × N -dimensional matrices P , both of those chapters can be viewed as pre-
requisites that we need throughout the thesis. In Chapter 4, we then focus on the various
representations of phylogenetic forests which are the elements of the Wald Space, and we
refer to the elements of the Wald Space as wälder (singular wald, which is German for for-
est, and the plural is wälder and means forests). Notably, the word wälder is read velder,
like the English word elder, but with a “v” in front. Each representation of the wälder has
its advantages and disadvantages when it comes to proving or formulating statements of
various kinds about the Wald Space, as each of these representations allows for viewing
wälder from a di�erent perspective. In Chapter 5, we introduce the BHV Space and in
Chapter 6, the actual work of this thesis begins, that is the topological investigation of
the Wald Space, where we bene�t from the carefully and precisely designed notation and
concepts that we developed in Chapter 4. Chapter 6 contains almost all the important theo-
retical results about Wald Space, and in Chapter 7, we show that in general, one can choose
any Riemannian metric onP and obtains a well-de�ned induced metric on the Wald Space.
We introduce various geometries on the Wald Space and refer to the Wald Space equipped
with the geometry in Garba et al. (2021a) as the Schwarzwald Space, as the Schwarzwald in
Germany was the place where the idea of the Wald Space �rst came up. Finally, in Chap-
ter 8, we introduce some algorithms, which are already implemented. In Chapter 9 we
summarize the contents of this work, as well as the contributions and the implementations
that are partly already published, and pose some open questions that might be interesting
to pursue in future work.

1.1 Notation

• N = {1, 2, . . . } are the natural numbers.

• R are the real numbers.

• For a �nite set A, RA contains all maps λ : A → R, sometimes we write elements
λ ∈ RA as vectors λ = (λa)a∈A.
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• We also allow A = ∅ and de�ne R∅ to contain exactly one element, which we do not
describe explicitly, but in vector notation we would sometimes write () ∈ R∅.

• For two sets A,B, the notation A ⊂ B means A is a subset of B, which includes the
possibility that A equals B. Sometimes, A ⊆ B is used, where the author thinks it is
important to highlight that A might be equal to B.

• For a matrix X ∈ Rn×n, n ∈ N, the expression diag(X) ∈ Rn is the diagonal of X
as a vector.

• However, the expression Diag(X) ∈ Rn×n is the matrix that equalsX on its diagonal
and is zero elsewhere.



Chapter 2

Metric Spaces, Riemannian Manifolds
and Stratified Spaces

We introduce the notion of metric spaces, Riemannian manifolds, Riemannian submersions
and Riemann strati�ed spaces. We will also have a closer look at the topologies of the
respective spaces.

2.1 Metric Spaces

De�nition 2.1.1 (Metric space). A metric space is a tuple (M, d), whereM be a set and
d : M×M→ [0,∞] is a map such that for all p, q, r ∈M we have

• d(p, q) = 0 ⇐⇒ p = q, (identity of indiscernibles)

• d(p, q) = d(q, p) and (symmetry)

• d(p, q) ≤ d(p, r) + d(r, q). (triangle inequality)

Furthermore, a metric space is also a topological space, where the topology is generated by
all open balls around p ∈M with radius ε > 0:

BM,d,ε(p) := {q ∈M : d(p, q) < ε},

and note that d is continuous in this topology.

De�nition 2.1.2 (Isometry). Let (M, d) and (M′, d′) be two metric spaces. A map f : M→
M′ is an isometry, if it satis�es d(p, q) = d′(f(p), f(q)) for all p, q ∈M. If f is furthermore
bijective, it is called isometric isomorphism, and in this case, (M, d) and (M′, d′) are called
isometric.

5



6 Chapter 2 Metric Spaces, Riemannian Manifolds and Strati�ed Spaces

Lemma 2.1.3 (Induced intrinsic metric). Let (M, d) be a metric space. �e induced intrinsic
metric of (M, d) is the map d∗ : M×M→ [0,∞], given for all p, q ∈M by

d∗(p, q) = inf
γ : [0,1]→M
γ(0)=p,γ(1)=q
γ continuous

Ld(γ),

where Ld(γ) is the length of γ measured using d, i.e.

Ld(γ) = sup
0=t0≤t1≤...≤tn=1

n∈N

n−1∑
i=0

d
(
γ(ti), γ(ti+1)

)
.

If no such path connecting p and q exists, we set d∗(p, q) :=∞.

Note that for some continuous path γ : [0, 1] → M we might have Ld(γ) = ∞, or there
need not exist a continuous path from p to q, so d∗(p, q) =∞ is generally possible.

Proof. We show that d∗ satis�es all three metric properties:

1. Using the triangle inequality of d, we �nd d∗(p, q) ≥ d(p, q) for all p, q ∈ M, and
thus d∗(p, q) = 0 =⇒ d(p, q) = 0 =⇒ p = q. If p = q, plugging in the constant
path γ : [0, 1] →M with γ(t) = p for t ∈ [0, 1], we �nd 0 ≤ d∗(p, p) ≤ Ld(γ) = 0.
�us d∗(p, q) = 0 ⇐⇒ p = q.

2. Symmetry follows directly from the symmetry of d.

3. For the triangle inequality, let p, q, r ∈ M let (γk)k∈N with γk : [0, 1] → M and
(γ′k)k∈N with γ′k : [0, 1] →M be sequences of paths from p to r and from r to q, re-
spectively, such that limk→∞ Ld(γk) = d∗(p, r) and limk→∞ Ld(γ

′
k) = d∗(r, q) holds

true. We concatenate γk and γ′k to obtain a new path from p to q:

γ′′k(t) =

γk(2t), t ∈ [0, 1
2
),

γ′k(2t− 1), t ∈ [1
2
, 1].

�us
d∗(p, q) ≤ Ld(γ

′′
k) = Ld(γk) + Ld(γ

′
k) −→ d∗(p, r) + d∗(r, q).

�

Note that the topology onM induced by d∗ is �ner or equal than the one induced by d
since d∗ ≥ d implies that every d-open ball is also d∗-open.
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De�nition 2.1.4 (Length spaces). A metric space (M, d) is called length space, if d = d∗.

De�nition 2.1.5 (Geodesics in metric spaces). Let (M, d) be a metric space. We call a
curve (continuous map) γ : I → M from an interval I ⊂ R into M a geodesic if there
exists a constant c > 0 such that locally for any t, t′ ∈ I we have

d
(
γ(t), γ(t′)

)
= c|t− t′|.

If the above property holds for all t, t′ ∈ I (i.e. globally), then we say that γ is a minimizing
geodesic or shortest path. We say that γ has natural parametrization if c = 1.

Let a, b ∈ R with a < b. Note that for a shortest path γ : [a, b] → M with natural
parametrization between p = γ(a) and q = γ(b) we have

b− a = d(γ(a), γ(b)) = d(p, q) ≤ d∗(p, q) ≤ Ld(γ) = b− a,

and thus the term minimizing geodesic or shortest path is justi�ed. As this property can
also be shown locally, geodesics in a metric space are locally minimizing curves.

�e following de�nition is from Bridson & Hae�iger (1999, De�nition 1.3).

De�nition 2.1.6 (Geodesic metric space). Let (M, d) be a metric space. �en we say that
it is

1. geodesic metric space or geodesic space if every two points in M are joined by a
geodesic;

2. uniquely geodesic if there is exactly one geodesic joining p to q, for all p, q ∈M;

3. r-geodesic if for every pair of points p, q ∈ M with d(p, q) < r there is a geodesic
joining p to q.

It is immediate that a geodesic metric space is a length space as the length of a geodesic
equals the distance between its end points. We introduce some notions that are needed in
the next theorems.

De�nition 2.1.7. Let (M, d) be a metric space.

1. A topological space is called locally compact, if each point has a locally compact
neighborhood.

2. A sequence (xn)n∈N ⊂ M is called Cauchy sequence in (M, d), if for every ε > 0

there exists an N ∈ N such that for all n,m ≥ N we have d(xn, xm) < ε.
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3. �e metric space (M, d) is called complete, if all Cauchy sequences inM converge
withinM.

�e following theorem shows under which assumptions a metric space is a geodesic space.
It is taken from Bridson & Hae�iger (1999, Proposition 3.7).

�eorem 2.1.8 (Hopf-Rinow for metric spaces). Let (M, d) be a length space. If (M, d) is
complete andM locally compact as a topological space, then (M, d) is a geodesic space.

An induced intrinsic metric inherits completeness under certain circumstances. �is result
can be found in Hu & Kirk (1978, p.123).

�eorem 2.1.9. Let (M, d) be a complete metric space for which each two points are con-
nected by a path that has �nite length. �en the space (M, d∗) is also complete.

Curvature in Metric Spaces

We introduce a notion of curvature in metric spaces. For simplicity and since we do not
need other notions, we will introduce CAT(κ) spaces only for the special case κ = 0. �e
following is a consequence of Bridson & Hae�iger (1999, Lemma 2.14).

Lemma 2.1.10. Let p, q, r be three points in a metric space (M, d). �en there exist points
p, q, r ∈ R2 such that d(p, q) = dE(p, q), d(q, r) = dE(q, r) and d(r, p) = dE(r, p), where
dE(x, y) = ‖x− y‖2 is the Euclidean distance on R2. �e triangle ∆(p, q, r) ⊂ R2 (the set of
points on the triangle with vertices p, q, r and sides [p, q], [q, r] and [r, p]) is unique up to an
isometry on R2.

We call such a triangle ∆ a comparison triangle for the triple (p, q, r).

De�nition 2.1.11 (Geodesic triangle). Let (M, d) be a metric space.

1. A geodesic triangle ∆ ⊂ M consists of three points p, q, r ∈ M, its vertices, and
a choice of three geodesic segments [p, q], [q, r], [r, p] joining them, its sides (where
[p, q] corresponds to the points on a geodesic between p and q).

2. For a geodesic triangle ∆ with vertices p, q, r ∈ M and a comparison triangle ∆

(with vertices p, q and r) for (p, q, r), a point x ∈ [p, q] is called a comparison point
for x ∈ [p, q] if d(p, x) = dE(p, x), and analogously for points in [q, r] and [r, p].
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3. Let ∆ ⊂ M be a geodesic triangle with vertices p, q, r ∈ M and let ∆ be a com-
parison triangle for (p, q, r). �en, ∆ is said to satisfy the CAT(0) inequality if for all
x, y ∈ ∆ and all comparison points x, y ∈ ∆,

d(x, y) ≤ dE(x, y).

De�nition 2.1.12. A metric space (M, d) is called CAT(0) space, if (M, d) is a geodesic
space and all its geodesic triangles satisfy the CAT(0) inequality. IfM is additionally com-
plete, we call (M, d) Hadamard space.

�eorem 2.1.13. In a CAT(0) space (M, d) there is a unique geodesic segment joining each
pair of points x, y ∈M andM is contractible and simply connected.

Proof. Cf. Bridson & Hae�iger (1999, Chapter II.1, Proposition 1.4 and Corollary 1.5). �

2.2 Smooth Manifolds

In this section, the basic de�nitions and notions of the theory of manifolds are introduced.
A manifold of dimensionm ∈ N is essentially a topological space that is locally homeomor-
phic to an open subset of Rm. Most spaces that we deal with are manifolds, for example
vector spaces, spheres, the torus, open subsets of Rm, and many more. Manifolds of vary-
ing dimension are also the building blocks of strati�ed spaces and Whitney strati�ed spaces.
�is section is based on Lee (2003).

In Lee (2003), a manifold is a topological space that is required to be

• second countable: a topological space T is second countable, if it has a countable base,
that is if there exists a collection {Ui}i∈N of open subsets of T such that any open
subset of T can be wri�en as a union of elements of some subset of {Ui}i∈N;

• Hausdor� : a topological space T is Hausdor�, if for every two points p, q ∈ T , there
exist disjoint open subsets U, V ⊂ T such that p ∈ U and q ∈ V .

As stated in Lee (2003, p.3), the Hausdor� property ensures for example that one-point
sets are closed, as well as that limits of convergent sequences are unique, which we use
extensively throughout later chapters.

De�nition 2.2.1 (Manifold). LetM be a topological space.M is a topological manifold of
dimension m, ifM is a Hausdor� space, second countable and locally Euclidean of dimen-
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sionm, that is, every point p ∈M has a neighborhood p ∈ U ⊂M that is homeomorphic
to an open subset of Rm.

�ese homeomorphisms, denoted by ϕ : U → ϕ(U) ⊂ Rm, are called charts (more pre-
cisely, the pair (U,ϕ) is called chart). Loosely speaking, the idea of a chart is that when-
ever you “stand” somewhere in the topological spaceM, there is no concept of direction,
orientation or distance, but when you use a chart and translate your location p ∈ M into
your coordinates, that is ϕ(p) ∈ Rm, you can then move (at least locally) in a direction, or
even measure a distance, and then translate back into the abstract topological spaceM.
�us, a chart gives you a local “map” (local coordinates) that you can use to move inM.

�e following terminology is taken from Lee (2003, p.7�). Two charts (U,ϕ), (V, ψ) are
called smoothly compatible, if either U ∩V = ∅ or the transition map ψ ◦ϕ−1 : ϕ(U ∩V )→
ψ(U∩V ) is a di�eomorphism, that is bijective, smooth (continuous partial derivatives of all
orders exist) and smooth inverse. An atlas forM is a collection of charts whose domains
cover M, and an atlas A is called a smooth atlas, if any two charts in A are smoothly
compatible. Such a smooth atlas is called maximal or complete, if it is not contained in a
strictly larger smooth atlas. A smooth structure on a topological manifoldM is a maximal
smooth atlas, and any chart (U,ϕ) ∈ A will be called smooth chart.

De�nition 2.2.2 (Smooth manifold). A smooth manifold is a pair (M,A), whereM is a
topological manifold of dimension m and A is a smooth structure onM.

If the smooth structure is clear, it is usually omi�ed and we say thatM is a smooth man-
ifold. Note that this de�nition implies that the topology of a smooth manifold (M,A) is
characterized via

B ⊂M open ⇐⇒ ϕ(B ∩ U) ⊂ Rm open for all (U,ϕ) ∈ A.

IfM is a smooth manifold, a function f : M→ Rk is said to be smooth if, for every smooth
chart (U,ϕ) onM, the composite function f ◦ϕ−1 is smooth on ϕ(U) ⊂ Rn. Note that the
technical de�nition of a smooth structure, that is a maximal atlas, is to avoid having several
possible smooth structures that induce the same functions f : M→ Rk to be smooth. �is
could be achieved in a similar way through a quotient, but via a maximal atlas, we can avoid
this extra construction. �e practicability is guaranteed by Lee (2003, Lemma 1.4) which
states that every smooth atlas forM is contained in a unique maximal smooth atlas, and
by Lee (2003, Lemma 2.1), which states that, in order to show that a function f : M→ Rk

is smooth, it su�ces to show that f ◦ ϕ−1 is smooth on ϕ(U) ⊂ Rn for all charts (U,ϕ) of
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some smooth atlas forM (this means that the smooth atlas could consist of just one global
chart).

We extend the notion of smoothness to maps between manifolds. �e following de�nition
is from Lee (2003, p.24)

De�nition 2.2.3 (Smooth map between manifolds). For two smooth manifoldsM1,M2

of dimension m1,m2, respectively, a map F : M1 →M2 is called smooth map if, for any
smooth charts (U,ϕ) forM1 and (V, ψ) forM2, the composite map

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ))→ ψ(V )

is smooth.

In the same way it su�ces to show smoothness of a function f : M→ Rk with respect to
some smooth atlas (which need not necessarily be a smooth structure), it su�ces to do so
for maps between manifolds, cf. Lee (2003, Lemma 2.2).

In the following, we will introduce the notion of tangent vectors on a manifold in the
same way as in Lee (2003, Chapter 3) and thereby make the above mentioned concept of
“directions” mathematically rigorous. We start with the general notion of derivations that
are linear maps that satisfy the product rule, which we then push forward locally via charts
into Euclidean spaces, where we can link the abstract idea of a tangent space with the very
geometric imagination of directions in Rm. Denote with C∞(M) the set of all smooth
functions f : M→ R on a smooth manifoldM.

De�nition 2.2.4. LetM be a smooth manifold and let p ∈M. A linear mapX : C∞(M)→
R is called a derivation at p if it satis�es the Leibniz rule for all f, g ∈ C∞(M)

X(fg) = f(p)Xg + g(p)Xf.

�e set of all derivations of C∞(M) at p is a vector space called the tangent space toM at
p, and is denoted by TpM. An element of TpM is called a tangent vector at p.

Note that for any constant function f ∈ C∞(M), we have by linearity and the Leibniz
rule of X that f(p)Xf = X(ff) = f(p)Xf + f(p)Xf = 2f(p)Xf , which is equivalent
to f(p)Xf = 0, such that Xf = 0. In general, for a smooth map F : M1 →M2 between
two smooth manifolds M1,M2, the push-forward associated with F is the map (where
p ∈M1)

F∗ : TpM1 → TF (p)M2, (F∗X)(f) := X(f ◦ F ), (2.2.1)
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and it is easy to show that this is well-de�ned, as well as that F∗X is a derivation at F (p).
We also write (∂F )p(X) := F∗X .

De�nition 2.2.5 (Submersions, immersions and embeddings). Let F : M1 → M2 be a
smooth map between smooth manifolds. We call F

(a) immersion, if F∗ is injective at each point p ∈M1;

(b) submersion, if F∗ is surjective at each point p ∈M1;

(c) smooth embedding, if F is an injective immersion that is a homeomorphism onto its
image F (M1) ⊂M2.

With the concept of a push-forward F∗, we can, loosely speaking, translate directions in
M1 into directions inM2. �us, ifM2 = Rm2 , we can translate “abstract” directions in
M1 into directions in Rm2 , which we are familiar with, and those maps are given naturally
by the charts ofM1, although possibly only locally.

Let (U,ϕ) be a smooth coordinate chart onM. �en, by Lee (2003, p.47), for any p ∈ U ,
ϕ∗ : TpM→ Tϕ(p)Rm is an isomorphism (between vector spaces). However, since Tϕ(p)Rm

has a basis consisting of the derivations ∂/∂xi
∣∣
ϕ(p)

, i = 1, . . . ,m, we can compute a basis
of TpM by applying (ϕ−1)∗:

∂

∂xi

∣∣∣∣
p

= (ϕ−1)∗
∂

∂xi

∣∣∣∣
ϕ(p)

,

which is a derivation that acts on a smooth function f : M→ R by

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1),

which is just the ith partial derivative of the coordinate representation of f at the coor-
dinate representation of p. �erefore, every tangent vector X ∈ TpM can be wri�en
uniquely as a linear combination

X =
m∑
i=1

X i ∂

∂xi

∣∣∣∣
p

,

where X1, . . . , Xm ∈ R.

So far, we de�ned the tangent space TpM toM at single points p ∈ M, but there is no
concept yet on how these tangent spaces at several points are connected or related to each
other. �is is realized via the tangent bundle.
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De�nition 2.2.6 (Tangent bundle). LetM be a smooth manifold. �e tangent bundle of
M, denoted by TM, is the disjoint union of the tangent spaces at all points ofM,

TM =
⊔
p∈M

TpM,

such that an element of TM is a pair (p,X), with p ∈M and X ∈ TpM.

With this de�nition alone it is not clear how those tangent spaces are connected. However,
by Lee (2003, Lemma 3.12), the tangent bundle TM is a smooth 2m-dimensional manifold
with a natural topology and smooth structure, such that the projection map π : TM →
M, (p,X) 7→ p is a smooth map. �e charts of TM are constructed in the following
way: for each chart (U,ϕ) of M, de�ne the chart (π−1(U), ϕ̃), where ϕ̃ maps a point
(p,X) ∈ π−1(U) onto

ϕ̃(p,X) =
(
ϕ(p)1, . . . , ϕ(p)m, X

1, . . . , Xm
)
,

with (X1, . . . , Xm) such that X =
∑m

i=1 X
i ∂
∂xi

∣∣
p

holds, where smooth compatibility of
two charts of TM is shown via smooth compatibility of the original charts ofM and via
a smooth coordinate change.

De�nition 2.2.7 (Vector �elds). A vector �eld is a smooth section of the tangent bundle,
that is a map X : M→ TM such that π ◦X = idM and X is smooth as a map between
manifolds. �e space of all vector �elds is denoted by T(M).

Note that we use the symbolX now for a vector �eld instead of just a vector in the tangent
space.

In order to be able to describe geodesics, that are locally shortest paths (or that are locally
straight lines or that have locally zero acceleration (second derivative)) and in that sense
the generalization of the Euclidean straight line, we need to introduce linear connections.
Loosely speaking, a linear connection is an operator that di�erentiates along vector �elds
(elements of T(M)), and this concept will be linked to di�erentiation of vector �elds along
curves. �e following is the de�nition of a linear connection as in Lee (2018, p.51).

De�nition 2.2.8 (Linear connections). LetM be a smooth manifold. A linear connection
onM is a map

∇ : T(M)× T(M)→ T(M), (X, Y ) 7→ ∇XY,

that satis�es the following properties:



14 Chapter 2 Metric Spaces, Riemannian Manifolds and Strati�ed Spaces

(a) ∇XY is linear over C∞(M) in X : for all f, g ∈ C∞(M), X1, X2, Y ∈ T(M),

∇fX1+gX2Y = f∇X1Y + g∇X2Y,

(b) ∇XY is linear over R in Y : for all a, b ∈ R, X, Y1, Y2 ∈ T(M),

∇X(aY1 + bY2) = a∇XY1 + b∇XY2,

(c) ∇ satis�es the following product rule: for all f ∈ C∞(M), X, Y ∈ T(M),

∇X(fY ) = f∇XY + (Xf)Y.

Note that due to linearity, one can show that ∇XY |p depends on Y only in a local neigh-
borhood of p ∈M, as well as it depends only onXp, see e.g. Lee (2018, Lemma 4.1 and 4.2).
�is motivates to think of∇XY |p as the directional derivative of Y at p in the direction of
the vector Xp and to also write∇XpY . Using the basis ∂i ∈ T(M), i = 1, . . . ,m, with

∂i =

(
∂

∂xi

∣∣∣∣
p

)
p∈M

, (2.2.2)

we can express the connection X, Y and ∇ in local coordinates: write X =
∑m

i=1X
i∂i,

Y =
∑m

i=1 Y
i∂i (whereX i, Y i ∈ C∞(M) for i = 1, . . . ,m) as well as∇∂i∂j =

∑m
k=1 Γkij∂k,

where analogously Γkij ∈ C∞(M) for all i, j, k = 1, . . . ,m. From now on, we use the Ein-
stein summation convention, that is, whenever indices appear in a formula as once as an
upper index and once as a lower index, we implicitly sum over this index. Exploiting lin-
earity and the product rule of the linear connection∇, we �nd

∇XY = ∇Xi∂iY
j∂j = (XY k +X iY jΓkij)∂k. (2.2.3)

Note that here, the vector �eld X ∈ T(M) takes Y k ∈ C∞(M) as its argument, which
means that at each point, the derivation Xp ∈ TpM is applied to Y k, giving a number, so
XY k ∈ C∞(M). �e term X iY jΓkij is just a product of maps in C∞(M). By Lee (2018,
Lemma 4.4), there is a one-to-one correspondence between the m3 functions Γkij and the
linear connections∇ via (2.2.3).

We follow the section Vector Fields Along Curves from Lee (2018, p.55f). In this context, a
curve is a smooth map γ : I → M, where I ⊂ R is some interval (where, if the interval
has an endpoint, smooth means that we can extend the curve slightly more to an open in-
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terval such that it is a smooth map between manifolds. Recall the push-forward γ∗ : TtI →
Tγ(t)M, where TtI is the tangent space of I at t with one-dimensional basis d/dt. For any
t ∈ I , the velocity γ̇(t) de�ned as the push-forward γ̇(t) := γ∗(d/dt) ∈ Tγ(t)M, which acts
on functions by

γ̇(t)f =
d

dt

(
f ◦ γ

)
(t).

De�nition 2.2.9 (Vector �elds along curves). A vector �eld along a curve γ : I →M is a
smooth map V : I → TM such that V (t) ∈ Tγ(t)M for every t ∈ I . Denote with T(γ) the
space of vector �elds along γ.

We call V ∈ T(γ) extendible, if there exists a vector �eld X ∈ T(M) such that for each
t ∈ I , V (t) = Xγ(t). �e following lemma (which is exactly Lemma 4.9 from Lee (2018))
establishes the link between linear connections and the concept of directional derivatives
of vector �elds along curves.

Lemma 2.2.10. Let∇ be a linear connection onM. For each curve γ : I →M,∇ determines
a unique operator

Dt : T(γ)→ T(γ)

satisfying the following properties:

(a) Linearity over R: for a, b ∈ R, V,W ∈ T(γ),

Dt(aV + bW ) = aDtV + bDtW.

(b) Product rule: for f ∈ C∞(I), V ∈ T(γ),

Dt(fV ) = ḟV + fDtV.

(c) If V ∈ T(γ) is extendible, then for any extension X ∈ T(M) of V (i.e. V (t) = Xγ(t)

for all t ∈ I),
DtV (t) = ∇γ̇(t)X.

For any V ∈ T(γ), DtV is called the covariant derivative of V along γ. Note that the
expression ∇γ̇(t) is meant in the same way one writes ∇XpY (as discussed below De�ni-
tion 2.2.8). In coordinate notation, one can express the covariant derivative at t0 ∈ I , where
V (t) = V j(t)∂j , so V j ∈ C∞(I), via

DtV (t0) =
(
V̇ k(t0) + V j(t0)γ̇i(t0)Γkij(γ(t0))

)
∂k, (2.2.4)
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where γ is plugged into the functions Γkij ∈ C∞(M), as well as V̇ k(t0) is the ordinary
derivative of V k : I → R at t0. �e acceleration of a curve γ is the vector �eld Dtγ̇ along γ.

De�nition 2.2.11 (Geodesics). A curve γ is called a geodesic with respect to∇ if its accel-
eration is zero: Dtγ̇ ≡ 0.

�is de�nition together with (2.2.4) gives rise to a second-order system of ordinary di�er-
ential equations: for coordinates (xi) on some set U ⊂M, a curve γ : I → U is a geodesic
if and only if its coordinate representation γ(t) = (x1(t), . . . , xm(t)) satis�es the geodesic
equation:

ẍk(t) + ẋi(t)ẋj(t)Γkij(x(t)) = 0.

If we �x some point γ(t0) = p ∈ U and initial velocity γ̇(t0) = V ∈ TpM (which are
initial conditions to the system), we get existence and uniqueness of geodesics, cf. Lee
(2018, �eorem 4.10).

�eorem2.2.12 (Existence and uniqueness of geodesics). LetM be a smoothmanifold with
a linear connection ∇. For any p ∈ M, any V ∈ TpM, and any t0 ∈ R, there exist an open
interval I ⊂ R containing t0 and a geodesic γ : I → M satisfying γ(t0) = p, γ̇(t0) = V .
Any two such geodesics agree on their common domain.

Furthermore, from this theorem it follows that for any p ∈ M, any V ∈ TpM, there is a
unique maximal geodesic (one that cannot be extended to any larger interval) γ : I →M
with γ(0) = p and γ̇(0) = V . �is geodesic is denoted by γV . Consider the de�nition of
the exponential map from Lee (2018, p.72)

De�nition 2.2.13 (Exponential map). LetM be a smooth manifold. De�ne the set E ⊂
TM, that is the domain of the exponential map, by

E :=
{
V ∈ TM : γV is de�ned on an interval containing [0, 1]

}
,

and de�ne the exponential map Exp: E→M by

Exp(V ) = γV (1).

Furthermore, for p ∈ M the restricted exponential map Expp is the restriction of Exp to
the set Ep := E ∩ TpM.

Note that by �eorem 2.2.12 that Ep cannot be empty. From Lee (2018, Proposition 5.7), it
follows that each set Ep ⊂ TpM is star-shaped with respect to 0 ∈ TpM, that γV (t) =
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Exp(tV ) for all V ∈ TM and t ∈ R such that either side is de�ned, as well as that Exp is
smooth.

2.2.1 Example: Symmetric Positive Definite Matrices

To this end, we introduce the smooth manifold of symmetric positive de�nite matrices and
determine the tangent spaces. We denote the set of all strictly positive de�nite real-valued
symmetric n× n matrices by P , in particular,

P =
{
P ∈ Rn×n : P = P T , xTPx > 0 for all x ∈ Rn, x 6= 0

}
.

Here, x 6= 0 means that not all entries are zero. It is clear from the de�nition that P is an
open subset of the real-value symmetric n× n matrices, denoted by S , i.e.

S =
{
S ∈ Rn×n : S = ST

}
.

As S is a Euclidean space of dimension n(n+1)/2, one �nds the trivial smooth global chart

id : P → S, P 7→ P,

which determines a smooth atlas and thus a smooth structure, so P is a smooth manifold.
Note that by construction of the smooth structure a function f : P → Rk is smooth if and
only if f = f ◦ id−1 : P → Rk is smooth in the usual sense, i.e. all partial derivatives of all
orders are continuous and exist.

Since P ⊂ S is an open subset, the tangent space of P at P is TPP ∼= TPS ∼= S (use Lee
(2003, Proposition 3.7)). We avoid the vectorization of the symmetric matrices to Rn(n+1)/2

and thus simply keep the matrix shape for the tangent vectors. To be precise,

TPP =

{
∂

∂xij

∣∣∣∣
P

: i, j = 1, . . . , n, i ≤ j

}
,

where, for smooth functions f : P → R mapping (xij)ni,j=1;i≤j to a real number,

∂

∂xij

∣∣∣∣
P

f
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is in this case just the partial derivative of f in xij . A derivation X ∈ TPP can thus be
represented as (where X ij ∈ R)

X =
n∑

i,j=1
i≤j

X ij ∂

∂xij

∣∣∣∣
P

,

and with slight abuse of notation we can expressX as the symmetric matrixX = (X ij)ni,j=1

with X ij = Xji and continue calculations with symmetric matrices X ∈ S ∼= TPP .

2.3 Riemannian Manifolds

Following Lee (2018, Chapter 2), with k, l = 0, 1, . . . , we denote the bundle of mixed
(
k
l

)
-

tensors onM (also called k-covariant, l-contravariant tensor) by

T klM :=
⊔
p∈M

T kl (TpM),

where T kl (TpM) is the space of all multilinear maps

F : T ∗pM× · · · × T ∗pM︸ ︷︷ ︸
l copies

×TpM× · · · × TpM︸ ︷︷ ︸
k copies

→ R.

We use the convention T k0M = T kM and T 0
lM = TlM. As in the de�nition of the

tangent bundle, for each such bundle we have a natural projection π : T klM → M. A(
k
l

)
-tensor �eld is a smooth section of a tensor bundle T klM, that is a map F : M→ T klM

such that π ◦ F = idM and F is smooth as a map between manifolds. �en, the space of
all
(
k
l

)
-tensor �elds is denoted by Tkl (M).

De�nition 2.3.1 (Riemannian manifold). Let M be a smooth manifold. A Riemannian
metric onM is a 2-tensor �eld g ∈ T2(M) that is symmetric, i.e. g(X, Y ) = g(Y,X) and
positive de�nite, i.e. g(X,X) > 0 forX 6= 0, whereX, Y ∈ TM. �e pair (M, g) is called
a Riemannian manifold. De�ne 〈X, Y 〉 := g(X, Y ).

�e Riemannian metric essentially determines an inner product on each tangent space
TpM, and we de�ne the length or norm of a vector X ∈ TpM to be |X| = 〈X,X〉1/2p .

A linear connection ∇ is compatible with g if it satis�es the following product rule for all
X, Y, Z ∈ T(M):

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.
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Furthermore, a linear connection is symmetric, if for all X, Y ∈ T(M)

∇XY −∇YX ≡ [X, Y ],

where [X, Y ] is the Lie bracket, that is [X, Y ] = XY −Y X ∈ T(M), i.e. for all f ∈ C∞(M)

and p ∈ M, we have [X, Y ]pf = Xp(Y f) − Yp(Xf) (where Xf ∈ C∞(M)). We cite
�eorem 5.4 from Lee (2018).

�eorem 2.3.2 (Fundamental lemma of Riemannian geometry). Let (M, g) be a Rieman-
nian manifold. �ere exists a unique linear connection∇ onM that is compatible with g and
symmetric.

�is connection is called the Riemannian connection or Levi-Civita connection of g. Geodesics
on (M, g) with respect to the Levi-Civita connection are called Riemannian geodesics.

Using symmetry and compatibility, we can express the symbols Γkij from ∇∂i∂j = Γmij∂m

via
Γkij =

1

2
gkl
(
∂igjl + ∂jgil − ∂lgij

)
, (2.3.1)

where gij = 〈∂i, ∂j〉 and (glk)ml,k=1 is the inverse matrix of the matrix (gij)
m
i,j=1.

De�nition 2.3.3 (Isometries). Let (M, g) and (M̃, g̃) be Riemannian manifolds. A smooth
map ϕ : M → M̃ is an isometry, if for all p ∈ M and X, Y ∈ TpM (recall the push-
forward ϕ∗ : TpM→ Tϕ(p)M̃)

〈X, Y 〉p = 〈ϕ∗X,ϕ∗Y 〉ϕ(p).

By Lee (2018, Proposition 5.9), if ϕ : M → M̃ is an isometry, then for any p ∈ M, the
following diagram commutes (with Expp from De�nition 2.2.13):

TpM Tϕ(p)M̃

M M̃

ϕ∗

Expp Ẽxpϕ(p)

ϕ

By Lee (2018, Lemma 5.10), for any p ∈ M, there is a neighborhood V of 0 ∈ TpM and a
neighborhood U of p inM such that Expp : V→ U is a di�eomorphism, i.e. bijective and
smooth with smooth inverse.



20 Chapter 2 Metric Spaces, Riemannian Manifolds and Strati�ed Spaces

De�nition 2.3.4 (Logarithm map). Consider the setup as above. We denote the inverse by
Logp : U→ V, mapping elements from U ⊂M to V ⊂ TpM. Logp is called the logarithm
map.

We continue to de�ne the notion of lengths of curves as well as distance on a Riemannian
manifold, eventually ending up in the realm of metric spaces. �e easiest “class” of curves in
a manifold whose length one wants to determine are smooth curve segments (analogously
to Lee (2018, p.92)): if γ : [a, b]→M is a curve segment in a Riemannian manifold (M, g),
we de�ne the length of γ to be

Lg(γ) :=

∫ b

a

|γ̇(t)|dt.

We introduce more classes of curves. A regular curve is a smooth curve γ : I → M such
that γ̇(t) 6= 0 for all t ∈ I . A continuous map γ : [a, b] →M is called a piece-wise regular
curve segment if there exists a �nite subdivision a = a0 < a1 < . . . < ak = b such
that γ

∣∣
[ai−1,ai]

is a regular curve for i = 1, . . . , k. Distances on Riemannian manifolds are
measured along such curve segments, and we call such curves admissible curves. �e length
of an admissible curve is de�ned as the sum of the regular curve segments, i.e.

Lg(γ) :=
k∑
i=1

Lg
(
γ
∣∣
[ai−1,ai]

)
.

De�nition 2.3.5 (Riemannian distance). Let (M, g) be a connected Riemannian manifold.
De�ne the Riemannian distance dg(p, q) between two points p, q ∈ M as the in�mum of
the lengths of all admissible curves from p to q, that is

dg(p, q) = inf
γ : [0,1]→M
γ admissible

γ(0)=p; γ(1)=q

Lg(γ).

From Lee (2018, Lemma 6.2) or Bridson & Hae�iger (1999, Proposition 3.18) it follows that
(M, dg) is a metric space and that the induced topology from the metric dg coincides with
the topology of the manifold M. Furthermore, every minimizing curve γ : [a, b] → M,
i.e. Lg(γ) = dg(γ(a), γ(b)), is a geodesic when it is given a unit speed parametrization
(i.e. |γ̇(t)| = 1 for all t ∈ [a, b]), by Lee (2018, �eorem 6.6). Furthermore, by Lee (2018,
�eorem 6.12), every Riemannian geodesic is locally minimizing, i.e. for γ : I → M, for
any t0 ∈ I there exists a neighborhood J ⊂ I such that γ|J is minimizing between each
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pair of its points. �e following result from Bridson & Hae�iger (1999, Proposition 3.18)
relates the Riemannian manifold to length spaces (as in De�nition 2.1.4).

Proposition 2.3.6. Let (M, g) be a connected Riemannianmanifold. �emetric space (M, dg)

is a length space.

Note that this means that dg = d∗g and therefore, the length of an admissible curve in the
metric space sense,Ldg(γ), coincides with the length of γ in the Riemannian manifold sense
Lg(γ). We cite Bridson & Hae�iger (1999, Proposition 3.23):

Proposition 2.3.7. Let (M, g) be a Riemannian manifold and M̃ ⊂ M be a smoothly
embedded submanifold. �en the restriction g̃p = gp

∣∣
TpM̃×TpM̃

gives a Riemannian metric for

M̃. It holds that (dg
∣∣
M̃)∗ = dg̃, that is, the induced intrinsic metric of (M̃, dg

∣∣
M̃) coincides

with the Riemannian distance on M̃ induced by g̃.

Finally, we will cite the �eorem of Hopf-Rinow for Riemannian manifolds, cf. Lee (2018,
�eorem 6.13) or Lang (1999, p.224-226). Note that a Riemannian manifold is geodesically
complete if every maximal geodesic is de�ned for all t ∈ R. Recall that a metric space is
called complete, if all Cauchy sequences converge in that space.

�eorem 2.3.8 (Hopf-Rinow for Riemannian manifolds). A connected Riemannian mani-
fold is geodesically complete if and only if it is complete as a metric space.

2.4 Curvature

We introduce the curvature tensor on Riemannian manifolds and the concept of sectional
curvatures. We follow Lee (2018, Chapter 7).

De�nition 2.4.1 (Riemann curvature tensor). Let (M, g) be a Riemannian manifold. �e
Riemann curvature endomorphism is the mapR : T(M)×T(M)×T(M)→ T(M) de�ned
by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (2.4.1)

�is is by Lee (2018, Proposition 7.1) a
(

3
1

)
-tensor �eld and by Lee (2018, Lemma 7.2) locally

invariant under isometries, and thus Riemannian manifolds that are locally isometric and in
this sense considered to be “equal”, have locally the same “curvature”. �e local coordinate
representation of R is (where ∂i as in Equation (2.2.2))

R(∂i, ∂j)∂k =
m∑
s=1

Rs
ijk∂s,
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and from Do Carmo (1992, p.93) (where, one needs to take the negative of their formula as
their de�nition of the curvature endomorphism is −R(X, Y )Z), we have

Rs
ijk =

m∑
h=1

ΓhjkΓ
s
ih −

m∑
h=1

ΓhikΓ
s
jh + ∂iΓ

s
jk − ∂jΓsik. (2.4.2)

From the Riemann curvature endomorphism, we can derive its corresponding
(

4
0

)
-tensor,

called the Riemann curvature tensor, de�ned by

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉. (2.4.3)

Its coordinate representation is consequently

Rijks =
m∑
h=1

Rh
ijkghs. (2.4.4)

Using the Riemann curvature tensor, we can de�ne sectional curvatures (cf. Lee (2018,
Proposition 8.8)).

De�nition 2.4.2. Let (M, g) be a Riemannian manifold. �e sectional curvature of M
associated with the 2-plane Π ⊂ TpM spanned by any basis X, Y ∈ TpM with p ∈M to
be

K(X, Y ) =
Rm(X, Y, Y,X)

|X|2|Y |2 − 〈X, Y 〉2 .

Remark 2.4.3. 1. In Lee (2018), the sectional curvature associated with the 2-plane
Π is de�ned as the Gaussian curvature (cf. Lee (2018, p.142)) of the 2-dimensional
submanifold locally spanned by the tangent vectors in Π and then the above formula
is proven in Lee (2018, Proposition 8.8) using Gauss’s �eorema Egregium, e.g. Lee
(2018, �eorem 8.6).

2. �ere are more concepts of curvature directly derived from the Riemann curvature
tensor, such as the scalar curvature and the Ricci curvature (e.g. Lee (2018, p.124)).

We establish the correspondence between the sectional curvatures and CAT(0) spaces from
De�nition 2.1.12. We cite Bridson & Hae�iger (1999, Part II, �eorem 1A.6).

�eorem 2.4.4. Let (M, g) be a smooth Riemannian manifold, and let (M, dg) be the in-
duced metric space. �en (M, dg) is a CAT(0) space if and only if for all p ∈ M and for all
choices of bases X, Y ∈ TpM it holds that K(X, Y ) ≤ 0.
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2.5 Riemannian Submersions

We follow the notation from Lee (1997, Exercise 3-8). LetM and M̃ be smooth manifolds
and suppose the map π : M̃ → M is a surjective submersion. For each q ∈ M, the �ber
over p, denoted by M̃q, is the inverse image π−1(q) ⊂ M̃ and by the implicit function
theorem a closed, embedded submanifold (cf. Lee (1997, Exercise 3-8); and M̃q is non-
empty since π is surjective). Suppose furthermore that (M̃, g̃) is a Riemannian manifold.
Recall the push-forward of π, that is the linear map and additionally surjective as π is a
submersion,

(∂π)p : TpM̃ → Tπ(p)M.

We consider the following decomposition of TpM̃ into an orthogonal direct sum,

TpM̃ = HpM̃ ⊕ VpM̃,

where VpM̃ is the vertical space and HpM̃ is the horizontal space, given by

VpM̃ := ker
(
(∂π)p

)
= TpM̃π(p), HpM̃ := (VpM̃)⊥,

note that the Riemannian metric g̃ is used here to determine orthogonality and that the
map (∂π)p

∣∣
HpM̃

: HpM̃ → Tπ(p)M is an isomorphism.

De�nition 2.5.1 (Riemannian submersion). Let (M̃, g̃) and (M, g) be smooth Riemannian
manifolds. A smooth map π : M̃ →M is a Riemannian submersion if

1. π is a surjective submersion,

2. π∗ is an isometry on vectors in the horizontal space.

�e second condition can be rephrased in the sense that the map

(∂π)p
∣∣
HpM̃

: HpM̃ → Tπ(p)M

is an isometry for all p ∈ M̃, i.e.

g̃p(X̃, Ỹ ) = gπ(p)

(
(∂π)p(X̃), (∂π)p(Ỹ )

)
for all X̃, Ỹ ∈ HpM̃.

With the setup of De�nition 2.5.1, any vector �eld X̃ ∈ T(M) can be wri�en uniquely as
X̃ = X̃H + X̃V where XH is horizontal and X̃V is vertical, and both are smooth (cf. Lee
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(1997, Exercise 3-8, (a))). Furthermore, if X ∈ T(M) is a vector �eld onM, then there is a
unique smooth horizontal vector �eld X# on M̃, called the horizontal li� of X , such that
(∂π)p(X

#
p ) = Xπ(p) for each p ∈ M (cf. Lee (1997, Exercise 3-8, (b))). In the following,

we will use ·# as the horizontal li� operator. We state some well-known properties of the
horizontal li� from Lee (1997, Exercise 5-9).

Lemma 2.5.2. Let π : (M̃, g̃)→ (M, g) be a Riemannian submersion and denote by ∇̃ and
∇ their respective Riemannian connections. �en, for any vector �eldsX, Y ∈ T(M), it holds
that for all p ∈ M̃ with π(p) = q ∈M that

1. g̃p(X#
p , Y

#
p ) = gq(Xq, Yq),

2. [X#, Y #]H = [X, Y ]#,

3. ∇̃X#Y # =
(
∇XY

)#
+ 1

2

[
X#, Y #

]V .
Proof. A proof for 1. and 2. can be found in O’Neill (1983, Lemma 7.45), and 3. follows im-
mediately from using O’Neill (1966, Lemma 3, 4.) and plugging in O’Neill (1966, Lemma 1,
Lemma 2). �

We stateO’Neills formula, that is the fundamental relation between the sectional curvatures
of M̃ and M (cf. O’Neill (1966, Corollary 1), O’Neill (1983, �eorem 7.47) or Lee (1997,
Exercise 8-11)).

�eorem 2.5.3 (O’Neills formula). Let π : (M̃, g̃) → (M, g) be a Riemannian submersion
and let X, Y ∈ T(M) be two orthonormal vector �elds. �en the sectional curvatures of M̃
andM are related via

K(X, Y ) = K̃
(
X#, Y #

)
+

3

4

∣∣∣[X#, Y #
]V ∣∣∣2,

�is means that the sectional curvature onM cannot decrease with respect to the sectional
curvature on M̃.

Next, we will consider a special case of a Riemannian submersion: the quotient obtained
from a Lie group acting on a Riemannian manifold by isometries. For a start, we cite the
de�nition of a Lie group from Lee (2003, page 30) and Lie group actions from Lee (2003,
Chapter 7).
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De�nition 2.5.4 (Lie group, Lie group action). 1. A Lie group is a smooth manifold G
that is also a group in the algebraic sense, such that the the maps (where the �rst
denotes the group operation)

G×G→ G, (h1, h2) 7→ h1h2,

G→ G, h 7→ h−1,

are smooth. Denote the identity element of G by e.

2. Let G be a Lie group andM be a smooth manifold. A le� action of G onM is a map
θ : G×M→M, wri�en as θh(p) = h · p, that satis�es (where h1, h2 ∈ G, p ∈M)

h1 · (h2 · p) = (h1h2) · p,
e · p = p.

We further cite the de�nition of several properties of Lie group actions from Lee (2003,
Chapter 7), as well as Huckemann et al. (2010).

De�nition 2.5.5. Let θ : G × M → M be a le� action of a Lie group G on a smooth
manifoldM. �en

• the action is said to be smooth, if θh(p) depends smoothly on (h, p);

• for any p ∈ M, the �ber or orbit of p under the action is the set [p] = G · p =

{h · p : h ∈ G};
• the action is transitive if for any two points p, q ∈ M, there exists h ∈ G with
h · p = q;

• the action is said to be acting freely onM if h1 · p = h2 · p implies h1 = h2 for any
h1, h2 ∈ G and p ∈M.

• the action is said to be acting properly onM if for all pn, p, p′ ∈ M̃, hn ∈ G such
that hn · pn → p′, pn → p, it follows that hn has a point of accumulation h ∈ G with
h · p = p′.

Note that whenever θ acts freely onM, the �bers [p] are isomorphic to G for all p ∈ M
(cf. Huckemann et al. (2010)). Having introduced the necessary notation, we proceed to
prove the following result (cf. Lee (1997, Exercise 3-8)).
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�eorem 2.5.6. Let π : M̃ → M be a surjective submersion from a smooth Riemannian
manifold (M̃, g̃) to a smooth manifoldM. Let furthermoreG be a Lie group acting smoothly
on M̃ by θ : G× M̃ → M̃, and suppose that

1. G acts on M̃ by isometries of g̃, i.e. for any two vector �elds X̃, Ỹ ∈ T(M̃) and for
any p ∈ M̃, h ∈ G, it holds that

g̃p(X̃p, Ỹp) = g̃θh(p)

(
(∂θh)p(X̃p), (∂θh)p(Ỹp)

)
,

2. π ◦ θh = π for every h ∈ G, and
3. G acts transitively on each �ber M̃q, q ∈M, i.e. for any two points p1, p2 ∈ M̃q, there

exists h ∈ G with θh(p1) = p2.

�en there is a unique Riemannian metric g onM such that π is a Riemannian submersion.

Proof. Recall that VpM̃ = ker
(
(∂π)p

)
, and since by 2., π ◦ θh = π, we have (∂π)p =

(∂π)θh(p) ◦ (∂θh)p and thus

(∂θh)p
(
VpM̃

)
= Vθh(p)M̃ and furthermore (∂θh)p

(
HpM̃

)
= Hθh(p)M̃.

Observe that for any q ∈ M, from 2. and 3. it follows M̃q = π−1(q) = [p], with arbitrary
p ∈ M̃q. Let q ∈M and X, Y ∈ T(M). Let p ∈ M̃q = [p] be arbitrary. De�ne

gq(Xq, Yq) := g̃p
(
X#
p , Y

#
p

)
(2.5.1)

To show that this is well-de�ned, let p′ ∈ M̃q with p′ 6= p. By 3., there exists an element
h ∈ G with p′ = θh(p), and we have, since θh is an isometry,

g̃p
(
X#
p , Y

#
p

)
= g̃p′

(
(∂θh)p(X̃

#
p ), (∂θh)p(Ỹ

#
p )
)
,

and due to (∂θh)p
(
HpM̃

)
= Hθh(p)M̃ the vector (∂θh)p(X̃

#
p ) is horizontal and thus

(∂θh)p(X̃
#
p ) = X̃#

θh(p) = X̃#
p′ ,

analogously for Y #
p , and therefore

g̃p
(
X#
p , Y

#
p

)
= g̃p′

(
X#
p′ , Y

#
p′

)
,
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so gq(Xq, Yq) is well-de�ned for any q ∈M and by construction smooth. Now, g makes π
a Riemannian submersion, since for any X̃, Ỹ ∈ HpM̃, p ∈ M̃, we have

g̃p(X̃p, Ỹp) = g̃p

((
(∂π)p(X̃p)

)#
,
(
(∂π)p(Ỹp)

)#
)

= gπ(p)

(
(∂π)p(X̃p), (∂π)p(Ỹp)

)
.

Uniqueness follows from π∗ being an isometric di�eomorphism. �

Remark 2.5.7. Note that in �eorem 2.5.6, we assume the existence of a manifoldM and
a submersion π : M̃ → M. In contrast to these assumptions that are made in Lee (1997,
Exercise 3-8), the authors in Huckemann et al. (2010) and Abraham & Marsden (2008, p.266)
work with the se�ing that π : M̃ → M̃/G, p 7→ [p], and make the additional assumption
that the group action is

• proper, such that the �bers [p] for p ∈ M̃ are closed and thus M̃/G is Hausdor�;

• free, which implies that all the �bers [p] have the same dimension.

�en one can show that M̃/G carries a unique smooth manifold structure compatible
with its quotient topology (Abraham & Marsden (2008, p.266)) such that π is a surjective
submersion.

From Huckemann et al. (2010), in the se�ing of �eorem 2.5.6, we �nd that the distance dM
induced from the Riemannian metric onM as de�ned in �eorem 2.5.6 is given by (where
dM̃ is the induced distance on M̃ and let p1, p2 ∈ M̃, q1 = π(p1), q2 = π(p2))

dM(q1, q2) = inf
h1,h2∈G

dM̃(h1 · p1, h2 · p2),

and since the action is isometric, this can be simpli�ed to

dM(q1, q2) = inf
h∈G

dM̃(h · p1, p2). (2.5.2)

2.6 Riemann Stratified Spaces

First, we introduce Stiefel manifolds and Grassmannian manifolds, for the la�er see e.g. Lee
(2003, Chapter 7). Let k,m ∈ N. Any k-dimensional linear subspace V of Rm is the span
of the linearly independent columns x1, . . . , xk of a matrix X = (x1, . . . , xk) ∈ Rm×k, and
the space of all such matrices is the Stiefel manifold

St(m, k) = {X ∈ Rm×k : rk(X) = k},
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and we write
V = span{x1, . . . , xk} =: col(X).

�e Grassmannian manifold is the quotient

Gr(m, k) := St(m, k)/St(k, k),

which can be identi�ed with the space

{V ⊂ Rm : V linear subspace, dim(V) = k},

which is due to col(X) = col(XY ) for all Y ∈ St(k, k) and X ∈ St(m, k). Hence, the
Grassmannian can be viewed as the manifold of all k-dimensional linear subspaces in Rm,
and consequently, a sequence of k-dimensional linear subspaces Vn, n ∈ N, of Rm, 1 ≤
k ≤ m, converges in the Grassmannian Gr(m, k) to a k-dimensional linear subspace V
if there are Xn, X ∈ St(m, k) and Yn ∈ St(k, k) such that col(Xn) = Vn for all n ∈ N,
col(X) = V and ‖XnYn − X‖ → 0 as n → ∞. �e proof of the next lemma is from our
unpublished work and due to Stephan Huckemann.

Lemma 2.6.1. Let Xn ∈ St(m, k), n ∈ N such that limn→∞Xn ∈ Rm×k exists and such
that limn→∞ col(Xn) exists. �en

col
(

lim
n→∞

Xn

)
⊆ lim

n→∞
col(Xn).

Proof. Let x ∈ Rm with x ⊥ limn→∞ col(Xn). Once we show x ⊥ X := limn→∞Xn, the
assertion follows. By hypothesis, for every ε > 0 there are N ∈ N and Yn ∈ St(k, k) such
that

|xTXnYn| < ε ∀n > N.

In the case that there is a subsequence nm with ‖Ynm‖ > 1, de�ne Znm = Ynm/‖Ynm‖ ∈
St(k, k) to �nd

|xTXnmZnm| <
ε

‖Ynm‖
< ε ∀nm > N,

and as Znm is bounded, there is a cluster point Z ∈ St(k, k) with |xTXZ| ≤ ε, and as
ε > 0 was arbitrary, we have xTXZ = 0, so xTX = 0. In the case that there is no such
subsequence, Ynm has a cluster point Y ∈ St(k, k) such that |xTXY | ≤ ε and thus again
xTX = 0. �erefore, x ⊥ X as asserted. �
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De�nition 2.6.2 (Strati�ed space, Whitney strati�ed space of type (A) and (B)). A strati�ed
space S of dimension m embedded in a Euclidean space (possibly of higher dimension
M ≥ m) is a direct sum

S =
k⊔
i=1

Si

such that 0 ≤ d1 < . . . < dk = m, each Si is a di-dimensional manifold and Si ∩ Sj = ∅
for i 6= j and if Si ∩ Sj 6= ∅ then Si ⊂ Sj .

A strati�ed space S is Whitney strati�ed of type (A),

(A) if for a sequence q1, q2, · · · ∈ Sj that converges to some point p ∈ Si, such that the
sequence of tangent spaces TqnSj converges in Gr(M,dj) to some dj-dimensional
linear space T as n → ∞, then TpSi ⊂ T , where all the linear spaces are seen as
subspaces of RM .

Moreover, a strati�ed space S is a Whitney strati�ed space of type (B),

(B) if for sequences p1, p2, · · · ∈ Si and q1, q2, · · · ∈ Sj which converge to the same point
p ∈ Si such that the sequence of secant lines cn between pn and qn converges to a
line c as n → ∞ (in Gr(M, 1)), and such that the sequence of tangent planes TqnSj
converges to a dj-dimensional plane T as n→∞ (in Gr(M,dj)), then c ⊂ T .

For the de�nition of Riemann strati�ed spaces, we use the de�nition from Huckemann &
Eltzner (2020, Section 10.6).

De�nition 2.6.3 (Riemann strati�ed space of type (A) and (B)). A Riemann strati�ed space
of type (A) (type (B)) is a Whitney strati�ed space S of type (A) (type (B)) such for each
i = 0, . . . , k, Si is a di-dimensional Riemannian manifold with Riemannian metric g(i),
and if a sequence q1, q2, · · · ∈ Sj converges to a point p ∈ Si such that as above TqnSj
converges to some T as n → ∞, then the Riemannian metric g(j)

qn converges to some 2-
tensor g∗p : T ⊗ T → R as n→∞, then g(i)

p ≡ g∗q
∣∣
T 2
pSi

.





Chapter 3

Geometries for Strictly Positive
Definite Matrices

Let N ∈ N. Recall from Section 2.2.1 the symmetric matrices and the symmetric positive
de�nite matrices, i.e.

S =
{
S ∈ RN×N : S = ST

}
.

and
P =

{
P ∈ S : xTPx > 0 for all x ∈ RN , x 6= 0

}
.

Furthermore, we introduce the set of matrices P ∈ P that have ones on the diagonal, these
are the correlation matrices:

C =
{
P ∈ P : diag(P ) = 1

}
.

Finally, denote all positive diagonal matrices by

D =
{
P = (Pij)

N
i,j=1 ∈ P : Pij = 0, Pii > 0, i 6= j

}
.

Furthermore, de�ne the matrix exponential function exp: S → P (cf. Lang (1999, Chap-
ter XII,§1)) to be

exp(X) =
∞∑
k=0

Xk

k!
, (3.0.1)

which, given the spectral decomposition UΛUT = X , where Λ is a diagonal matrix con-
taining the eigenvalues λi, i = 1, . . . , N ofX (e.g. Ho�man & Kunze (1971, Chapter 8, �e-
orem 18) for the spectral decomposition), can be calculated via exp(X) = U exp(Λ)UT ,
where exp(Λ) is the diagonal matrix with entries exp(λi), i = 1, . . . , N . Since this is a

31
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one-to-one mapping from S to P , we can de�ne its inverse to be the matrix logarithm
log : P → S (e.g. Pennec et al. (2006)). Furthermore, the matrix square root of a positive
de�nite matrix P ∈ P is denoted by

√
P or P 1/2, which is the unique matrix in P that

satis�es
√
P

2
= P .

3.1 The Fisher-Information Geometry

Recall from Section 2.2.1 the smooth manifold of symmetric strictly positive de�nite matri-
cesP , where the tangent space ofP atP ∈ P is just S ∼= TPP . We introduce a Riemannian
metric (cf. De�nition 2.3.1) forP , which is referred to in this thesis as the Fisher-information
metric, given at P ∈ P for all X, Y ∈ S by

gP (X, Y ) = Tr
[
P−1XP−1Y

]
,

cf. Lang (1999, Chapter XII), so we obtain a Riemannian manifold (P , g). One can show
that the induced distance is (P,Q ∈ P ; cf. De�nition 2.3.5)

d(P,Q)2 = Tr

[
log
(√

P
−1
Q
√
P
−1
)2
]

=
N∑
i=1

log(µi)
2, (3.1.1)

where µ1, . . . , µN are the eigenvalues of PQ−1 and log : P → S is the matrix logarithm.
�e Riemann exponential and logarithm map are given by (e.g. Pennec et al. (2006))

ExpP (X) =
√
P exp

(√
P
−1
X
√
P
−1
)√

P ,

LogP (Q) =
√
P log

(√
P
−1
Q
√
P
−1)√

P .

With t ∈ R, γP,Q(0) = P and γP,Q(1) = Q, the geodesic from P to Q is given explicitly by
(e.g. Moakher (2005, p.5) or Moakher & Zerai (2011, �eorem 3))

γP,Q(t) = ExpP
(
tLogP (Q)

)
=
√
P exp

(
t log

(√
P
−1
Q
√
P
−1))√

P .

Parallel transport of X ∈ TPP from P to Q is given by

ΠP,Q(X) =
√
P

√√
P
−1
Q
√
P
−1√

P
−1
X
√
P
−1
√√

P
−1
Q
√
P
−1√

P

=
√
QP−1X

√
P−1Q,
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where the �rst equality is derived using the exact pole ladder scheme for symmetric spaces
from Pennec (2018), and the second equality is from Yair et al. (2019), which can be derived
using √

QP−1 =
√
P

√√
P
−1
Q
√
P
−1√

P
−1
.

�e Riemannian manifold (P , g) has global non-positive sectional curvature and is there-
fore CAT(0) by �eorem 2.4.4. Consequently, between any two points P,Q ∈ P , there ex-
ists a unique geodesic connecting them (cf. �eorem 2.1.13), and furthermore, its geodesics
are globally de�ned (e.g. Lang (1999, Chapter XII)).

Remark 3.1.1. In Lang (1999), this metric is referred to as the trace metric. �is geometry
is also called a�ne-invariant geometry, as the metric is invariant under transformations
P 7→ GPGT for invertible matrices G, which correspond to a�ne transformations Gx of
the corresponding zero-mean multivariate Gaussian x ∼ N (0, P ) (cf. Pennec et al. (2006)).
Furthermore, this metric is also referred to as the scaled Frobenius metric, as it is a scaled
version of the Frobenius metric, which is given by g̃P (X, Y ) = Tr[XY ] (cf. Schwartzman
(2006, Def. 2.2.2)). We refer to this metric as the Fisher-information metric, because it is the
metric (times a constant) inherited from using the general Fisher-information metric for
statistical manifolds onto the zero-mean multivariate Gaussians parameterized by covari-
ance matrices P ∈ P .

We to verify that the geodesics in (P , g) are also geodesics with respect to the induced
Riemannian distance d.

With P ∈ P , X ∈ S and t ∈ R denote the geodesic starting from P and emanating into
the direction X by

P (t) :=
√
P exp

(
t
√
P
−1
X
√
P
−1
)√

P ,

For two points on the geodesic, say P (t1), P (t2) for some t1, t2 ∈ R, we �nd that

P (t1)P (t2)−1 =
√
P exp

(
(t1 − t2)

√
P
−1
X
√
P
−1
)√

P
−1
,

which has the same eigenvalues as exp
(
(t1 − t2)

√
P
−1
X
√
P
−1), so its eigenvalues are

exp((t1 − t2)µi), i = 1, . . . , N,
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where µi, i = 1, . . . , N are the eigenvalues of
√
P
−1
X
√
P
−1, or equivalently of P−1X or

XP−1, and they do not depend on t1 nor t2. Writing c =
√∑N

i=1 µ
2
i , we conclude

d
(
P (t1), P (t2)

)
=

√√√√ N∑
i=1

log
(

exp
(
(t1 − t2)µi

))2
= c|t1 − t2|,

so P (t) is indeed globally a geodesic in the sense of the metric space (P , d).

3.2 The Euclidean Geometry

�is section provides a summary of the properties of the Riemannian manifold (P , g)

equipped with the well-known Euclidean metric. Identify again TPP ∼= S for each P ∈ P .
�e Euclidean metric is a Riemannian metric (cf. De�nition 2.3.1) de�ned on the manifold
P , given by (where X, Y ∈ S)

gP (X, Y ) = Tr[XY ].

for each P ∈ P , X, Y ∈ S ∼= TPP , i.e. it is independent of the point P ∈ P , where
the Riemannian metric is almost the scalar product of the �at Euclidean space Rn(n+1)/2,
except for that the o�-diagonal entries are weighted twice. �e induced distance is thus
(P,Q ∈ P ; cf. De�nition 2.3.5)

d(P,Q)2 = ‖P −Q‖2
F ,

where ‖ ·‖F is the Frobenius norm. �e Riemann exponential and logarithm map are given
by (for gP (X,X) < δ for some δ > 0)

ExpP (X) = P +X,

LogP (Q) = Q− P.

Note that we have the restriction by δ since geodesics might leave the open set P ⊂ S ,
which also implies that (P , g) is not geodesically complete (cf. also Schwartzman (2006,
Section 2.2.5)). �e geodesic from P to Q is given explicitly by

γP,Q(t) = ExpP (tLogP (Q)) = P + t(Q− P ) = (1− t)P + tQ.
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Parallel transport of X ∈ TPP from P to Q is given by

ΠP,Q(X) = X,

use Lee (1997, Equation (4.13), page 61) and the fact that the Christo�el symbols of the
corresponding Levi-Civita connection are all zero (Lee (1997, page 52)).

3.3 The Bures-Wasserstein Geometry

�is section provides a summary of the properties of the Riemannian manifold (P , g)

equipped with the Bures-Wasserstein metric. Identify again TPP ∼= S for each P ∈ P . Most
of those results are from Bhatia et al. (2017), although the metric is de�ned for complex-
valued matrices, whereas we restrict ourselves to the real-valued case. It is a Riemannian
metric de�ned on the manifold P , given by

gP (X, Y ) =
n∑
i=1

n∑
j=1

λj
X̃ijỸij

(λi + λj)2
= 1′(X̃ ◦M ◦ Ỹ )λ,

where P = U Diag(λ)UT is the unique eigenvalue decomposition with eigenvalues λ =

(λi)
n
i=1 > 0 and U orthonormal, and where

M =

(
1

(λi + λj)2

)n
i,j=1

, X̃ = (X̃ij)
n
i,j=1 = UTXU, Ỹ = UTY U = (Ỹij)

n
i,j=1.

In a more implicit manner, the metric can also be expressed as

gP (X, Y ) = Tr
[
KAH

]
,

whereK andH are the unique solutions to the equationsKP+PK = Y andHP+PH =

X , respectively (cf. Bhatia et al. (2017)). �is yields the distance

d(P,Q)2 = Tr
[
P
]

+ Tr
[
Q
]
− 2 Tr

[(√
PQ
√
P
)1/2
]

= Tr
[
P
]

+ Tr
[
Q
]
− 2 Tr

[√
PQ
]
.

�e geodesic from P to Q is given explicitly by

γP,Q(t) = (1− t)2P + t2Q+ t(1− t)
[√

PQ+
√
QP
]
.
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An expression for the Riemannian exponential can be derived by se�ing (for the third
equality, see eg. Yair et al. (2019))

X = γ′P,Q(0) = −2P +
√
PQ+

√
QP

= −2P +
√
P
−1(√

PQ
√
P
)1/2√

P +
√
P
(√

PQ
√
P
)1/2√

P
−1

which one can then rewrite with H2 =
√
PQ
√
P to

√
PX
√
P + 2P 2 = HP + PH,

which has a unique solutionH = H(P,X) (solving a continuous Lyapunov equation), such
that we �nd Q = Q(P,X) =

√
P
−1
H2
√
P
−1. �e Riemann exponential and logarithm

map are given by

ExpP (X) = γP,Q(P,X)(1) = Q(P,X)

LogP (Q) = −2P +
√
PQ+

√
QP.

Remark 3.3.1. Notably, Bhatia et al. (2017) use the framework of a Riemannian submersion
(cf. De�nition 2.5.1) to derive the formulas (in their case complex matrices, we use real
matrices). Denote the general linear group of invertible n × n matrices by GL(n), the
orthonormal matrices by O(n). �en the map π : GL(n) → P , π(A) = P , where A =

UP is the polar decomposition (cf. Hall (2015, Proposition 2.19)) of a matrix A ∈ GL(n),
where U ∈ O(n) and P ∈ P , is a submersion. �e Lie group O(n) acting on GL(n)

via θV (A) = V A satis�es then all the requirements in �eorem 2.5.6, such that π is a
Riemannian submersion.

3.4 The Log-Euclidean Distance

Identify again TPP ∼= S for each P ∈ P . �e idea of this metric is to pull back points
from P to S via the matrix logarithm log : P → S and impose the Euclidean geometry of
S (cf. Arsigny et al. (2005, 2006a,b)). �e distance between two points P,Q ∈ P is then
simply

d(P,Q) = ‖ log(P )− log(Q)‖2.
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To derive the Riemannian metric, one needs to compute the push-forwards log∗ and exp∗

(cf. Equation (2.2.1)), where we use the notation (making the points at which the derivative
is taken explicit)

(∂ log)P := log∗ : S ∼= TPP → Tlog(P )S ∼= S,
(∂ exp)S := exp∗ : S ∼= TSS → Texp(S)P ∼= S.

A formula for (∂ exp)S is provided in Arsigny et al. (2006a, Equation (2.1)) through di�er-
entiation of Equation (3.0.1), as well as a formula for (∂ log)P via the inverse of (∂ exp)S ,
where X ∈ S :

(∂ exp)S(X) =
∞∑
k=1

1

k!

( k−1∑
l=0

Sk−l−1XSl
)
,

(∂ log)P (X) =
(
∂ exp

)−1

log(P )
(X).

Remarkably, �anwerdas & Pennec (2021b) exploit an idea, originally developed in Bhatia
(1997, page 124), to calculate the di�erential of univariant functions, that are extensions of
maps (we assume they are analytic) f : R→ R to S → S via the de�nition

f(S) = f
(
U Diag(λ1, . . . , λn)UT

)
:= U Diag(f(λ1), . . . , f(λn))UT ,

where UDiag(λ1, . . . , λn)UT is the spectral decomposition of the symmetric matrix S ∈ S
(e.g. Ho�man & Kunze (1971, Chapter 8, �eorem 18)). �en by Bhatia (1997, Corol-
lary V.3.2) the di�erential of f is (where X ∈ S and with spectral decomposition S =

UΛUT )
(∂f)S(X) = U

(
f [1](Λ) ◦

(
UTXU

))
UT ,

where ◦ is the Hadamard product between matrices and f [1](Λ) is the �rst divided di�erence
of f at Λ = Diag(λ1, . . . , λn), de�ned as

(
f [1](Λ)

)
ij

:=


f(λi)−f(λj)

λi−λj if λi 6= λj,

f ′(λi) else,

where f ′ is the �rst derivative of f : R → R (which exists as f is analytic). We can apply
this idea to calculate (∂ exp)S(X) and (∂ log)P (X) directly (where S = UΛUT is again
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the spectral decomposition, as well as (with abuse of notation) P = UΛUT , where, due to
P ∈ P , λi > 0 for i = 1, . . . , n)

(∂ exp)S(X) = U
(

exp[1](Λ) ◦
(
UTXU

))
UT ,

(∂ log)P (X) = U
(

log[1](Λ) ◦
(
UTXU

))
UT .

We proceed to verify that with these formulas we have indeed (∂ log)P (X)
!

=
(
∂ exp

)−1

log(P )
(X)

(as stated in Arsigny et al. (2006a)). Note that log(P ) = U log(Λ)UT . Observe that (where
Y ∈ S)

X =
(
∂ exp

)
log(P )

(Y ) = U
(

exp[1](log(Λ)) ◦
(
UTY U

))
UT

UTXU = exp[1](log(Λ)) ◦
(
UTY U

)
,

where (
exp[1](log(Λ))

)
ij

=


λi−λj

log λi−log λj
if λi 6= λj,

λi else,

and since the derivative of g(x) = log(x) is f ′(x) = 1/x, the element-wise inverse of this
matrix is just log[1](Λ), which yields

UTXU = exp[1](log(Λ)) ◦
(
UTY U

)
log[1](Λ) ◦

(
UTXU

)
= UTY U

(∂ log)P (X) = U
(

log[1](Λ) ◦
(
UTXU

))
UT = Y =

(
∂ exp

)−1

log(P )
(X),

which yields the assertion.

Let P,Q ∈ P , X, Y ∈ S . �e Riemannian metric is given by (cf. Arsigny et al. (2006a))

gP (X, Y ) = Tr
[
(∂ log)P (X) (∂ log)P (Y )

]
.

�e Riemann exponential and logarithm map are given by (cf. Arsigny et al. (2006a))

ExpP (X) = exp
(

log(P ) + (∂ log)P (X)
)
,

LogP (Q) = (∂ exp)log(P )

(
log(Q)− log(P )

)
.



3.5 �otient Geometry for Correlation Matrices 39

�e geodesic from P to Q, t ∈ R, is given explicitly by (cf. Arsigny et al. (2006a))

γP,Q(t) = exp
(

(1− t) log(P ) + t log(Q)
)
.

3.5 �otient Geometry for Correlation Matrices

�is Riemannian metric on the manifold of correlation matrices C was originally studied
by Paul David in his PhD thesis (David, 2019) and subsequent publication (David & Gu,
2019). �anwerdas & Pennec (2021a) provide calculation recipes for many quantities.

For a vector x ∈ Rn, de�ne Diag(x) ∈ Rn×n to be the n× n matrix with x1, . . . , xn on its
diagonal entries, zeros elsewhere. For a matrix X ∈ Rn×n, de�ne Diag(X) ∈ Rn×n to be
the n×nmatrix withX11, . . . , Xnn on its diagonal entries, zeros elsewhere. Finally, denote
by diag(X) the vector (X11, . . . , Xnn) ∈ Rn. Denote by X ◦Y the Hadamard product, that
is the element-wise multiplication of the respective entries.

For a matrixP ∈ P , de�ne ΛP :=
√

Diag(P )
−1, where the square root is the unique matrix

square root corresponding to taking the square root each element for diagonal matrices,
and note that the inverse of a diagonal matrix corresponds to inverting the diagonal entries.
�us we can write ΛP = Diag(

√
P11
−1
, . . . ,

√
Pnn

−1
). De�ne the map

π : P → C, P 7→ ΛPPΛP , (3.5.1)

which is clearly well-de�ned (i.e. π(P ) ∈ C), since (π(P ))ii =
√
Pii
−1
Pii
√
Pii
−1

= 1 for
i = 1, . . . , n, and since ΛP is invertible andP ∈ P , π(P ) ∈ P . Note that C is an n(n−1)/2-
dimensional manifold with the Euclidean topology, and that the tangent space of C at some
C ∈ C can be represented via the hollow matrices, i.e.

TCC ∼= H = {H ∈ S : diag(H) = 0}.

�eorem3.5.1. Let (P , g(P)) be the Riemannianmanifold equippedwith the Fisher-information
geometry from Section 3.1.

1. �e map π as de�ned in Equation (3.5.1) is a surjective submersion.

2. �e map θ : D ×P → P , θD(P ) = DPD, is a Lie group action on P that satis�es the
requirements from �eorem 2.5.6.

3. �ere exists a unique Riemannian metric g(C) on C such that π is a Riemannian submer-
sion (and (C, g(C)) is a smooth Riemannian manifold).
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Proof. 1. Clearly π is surjective since π(C) = C for all C ∈ C ⊂ P . Further, π is smooth
as it is smooth in its matrix entries. To see that π is a submersion, compute its di�erential
(cf. �anwerdas & Pennec (2021a, Appendix A)). Let P (t) be a curve in P with P (0) = P

and P ′(0) = V ∈ TPP ∼= S , where t ∈ (−ε, ε) for some small ε > 0. �en

(∂π)P (V ) =
∂

∂t

(
Pii(t)

−1/2 Pij(t)Pjj(t)
−1/2

)n
i,j=1

∣∣∣∣
t=0

=

(
− 1

2
ViiP

−3/2
ii PijP

−1/2
jj + P

−1/2
ii VijP

−1/2
jj − 1

2
P
−1/2
ii PijVjjP

−3/2
jj

)n
i,j=1

(3.5.2)

= Λ−1
P

(
V − 1

2

(
Λ−2
P Diag(V )P + P Diag(V ) Λ−2

P

))
Λ−1
P , (3.5.3)

where from Equation (3.5.2) it is immediate that the diagonal is zero, so (∂π)P (V ) ∈
H. To see that (∂π)P is surjective, let H ∈ H and let ΛPHΛP ∈ S ∼= TPP , where
Diag(ΛPHΛP ) = 0 and thus (∂π)P (ΛPHΛP ) = H .
2. First, to see that D acts on P by isometries of g(P), observe that (∂θD)P (X) = DXD

for any X ∈ S ∼= TPP , and thus for all X, Y ∈ S ∼= TPP ,

g
(P)
θD(P )

(
(∂θD)P (X), (∂θD)P (Y )

)
= Tr

[
D−1P−1D−1DXDD−1P−1D−1DYD

]
= Tr

[
P−1XP−1Y

]
= g

(P)
P (X, Y ).

Secondly, we show π ◦ θD = π. Let P ∈ P , D ∈ D and observe that

ΛθD(P ) = Diag(D−1
11

√
P11

−1
, . . . , D−1

nn

√
Pnn

−1
)

and consequently

π(θD(P )) = ΛθD(P )θD(P )ΛθD(P ) =
(
D−1
ii

√
Pii
−1
DiiPijDjj

√
Pjj
−1
D−1
jj

)n
i,j=1

= ΛPPΛP = π(P ).

�irdly, to see that D acts transitively on each �ber PC = π−1(C) for any C ∈ C, let
P,Q ∈ P such that π(P ) = π(Q) = C . �en, for all i, j = 1, . . . , n,

√
Pii
−1
Pij
√
Pjj
−1

=
√
Qii

−1
Qij

√
Qjj

−1 ⇐⇒ Pij =

√
Pii√
Qii

Qij

√
Pjj√
Qjj

,
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and thus we have P = θD(Q) for D = Diag(
√
P11/
√
Q11, . . . ,

√
Pnn/

√
Qnn) ∈ D yields

the assertion. �erefore θ ful�lls the requirements of �eorem 2.5.6.
3. Follows from �eorem 2.5.6. �

Having established the foundation that we are in the se�ing of a Riemannian submer-
sion (cf. Section 2.5), we continue to compute the quantities of the Riemannian manifold
(C, g(C)), and thereby follow �anwerdas & Pennec (2021a) very closely. For P ∈ P , the
tangent space TPP decomposes into the orthogonal sum of the vertical space VPP and hor-
izontal space HPP , i.e. TPP = VPP ⊕HPP . We �nd for X ∈ S ∼= TPP (where 1 denotes
the n-dimensional vector of ones; cf. also �anwerdas & Pennec (2021a, Appendix A))

X ∈ VPP ⇐⇒ (∂π)P (X) = 0

(3.5.2)⇐⇒ Xij =
1

2
Pij

(
Xii

Pii
+
Xjj

Pjj

)
for all i, j = 1, . . . , n

⇐⇒ X ∈
{
P ◦

(
x1T + 1xT

)
: x ∈ Rn

}
⇐⇒ X ∈

{
DP + PD : D ∈ D}.

Note that from this calculation it is evident that VPP is an n-dimensional vector space,
which makes sense since dim(P) = n(n + 1)/2, dim(C) = n(n − 1)/2, and HPP is iso-
morphic to Tπ(P )C, and dim(P)− dim(C) = n. For the horizontal space HPP = (VPP)⊥,
we �nd (cf. also �anwerdas & Pennec (2021a, Appendix A))

X ∈ HPP ⇐⇒ Tr
[
P−1XP−1Y

]
= 0 for all Y ∈ VPP

⇐⇒ Tr
[
P−1

(
DP + PD

)
P−1X

]
= 0 for all D ∈ D

⇐⇒ Tr
[
D
(
P−1X +XP−1

)]
= 0 for all D ∈ D

⇐⇒ P−1X +XP−1 ∈ H ⇐⇒ P−1X ∈ H ⇐⇒ XP−1 ∈ H
⇐⇒ P−1X +XP−1 = H for some H ∈ H,

where the last expression means that X is the solution to Sylvester’s equation P−1X +

XP−1 = H for some H ∈ H.

Remark 3.5.2. Notably, vectors X ∈ HPP need not necessarily satisfy diag(X) = 0, as
opposed to what one might think in the �rst place. �is is only true for all vectors in the
tangent spaces of the correlation matrices C.

We continue to compute the orthogonal projections from TPP onto VPP andHPP , respec-
tively (cf. �anwerdas & Pennec (2021a, Appendix A)). We start with the vertical projection
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vP : TPP → VPP by solving X = DP + PD + Y for D ∈ D, where X ∈ S ∼= TPP and
Y ∈ HPP . Observe that

X = DP + PD + Y ⇐⇒ P−1X = P−1DP +D + P−1Y

P−1Y ∈H
=⇒ diag(P−1X) = (P−1 ◦ P + I)diag(D)

⇐⇒ D = Diag
(

(I + P−1 ◦ P )−1diag(P−1X)
)
. (3.5.4)

�us, the vertical projection vP : TPP → VPP is

vP (X) = DP + PD, D := Diag
(

(I + P−1 ◦ P )−1diag(P−1X)
)
. (3.5.5)

Consequently, the horizontal projection hP : TPP → HPP is given by

hP (X) = X − vP (X). (3.5.6)

We are now ready to compute the horizontal li� of a vector H ∈ H ∼= TCC, C ∈ C
(cf. �anwerdas & Pennec (2021a, �eorem 2)).

Lemma 3.5.3. �e horizontal li� of H ∈ H ∼= TCC, C ∈ C, is calculated by

H# = hP (ΛPHΛP ) ∈ HPP .

Proof. LetH ∈ H ∼= TCC. Since (∂π)P is an isomorphism fromHPP to Tπ(P )C, it is enough
to �nd any vector X ∈ TPP that satis�es (∂π)P (X) = H and then H# = hP (X) ∈ HPP .
Considering Equation (3.5.3), the obvious candidate is X = ΛPHΛP as from Diag(H) = 0

we have that Diag(X) = 0, and thus (∂π)P (X) = 0. Consequently, se�ing H# = hP (X)

we have

(∂π)P (H#) = (∂π)P (hP (ΛPHΛP )) = (∂π)P (ΛPHΛP )
(3.5.3)
= H.

�

Using the horizontal li�, we can determine the Riemannian metric on C via Equation (2.5.1)
(cf. �anwerdas & Pennec (2021a, �eorem 3)).
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�eorem 3.5.4. �e Riemannian metric g(C) on C induced by the Riemannian submersion
from Equation (3.5.1) in the sense of �eorem 2.5.6 is given by (where C ∈ C, X, Y ∈ H ∼=
TCC, and let P ∈ π−1(C) be any point in the �ber of C)

g
(C)
C (X, Y ) = g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PY Λ2

P

)
−2 diag(C−1Λ2

PXΛ2
P )T (I+C◦C−1)−1diag(C−1Λ2

PY Λ2
P )

In particular, for P = C ∈ π−1(C), the formula simpli�es to

g
(C)
C (X, Y ) = g

(P)
C

(
X, Y

)
− 2 diag(C−1X)T (I + C ◦ C−1)−1diag(C−1Y ).

Proof. Note that C = π(P ) = ΛPPΛP implies that P−1 = ΛPC
−1ΛP . We compute the

Riemannian metric using Equation (2.5.1). Let X ∈ H ∼= TCC and with Equation (3.5.5),
recall that (where D ∈ D)

vP (ΛPXΛP ) = DP + PD, where diag(D) = (I + P−1 ◦ P )−1diag(P−1ΛPXΛP ).

(3.5.7)
�en

g
(C)
C (X,X) := g

(P)
P (X#, X#)

= g
(P)
P

(
hP (ΛPXΛP ), hP (ΛPXΛP )

)
(3.5.6)
= g

(P)
P (ΛPXΛP ,ΛPXΛP )− g(P)

P (vP (ΛPXΛP ), vP (ΛPXΛP ))

(3.5.7)
= Tr

[
P−1ΛPXΛPP

−1ΛPXΛP

]
− Tr

[
P−1(DP + PD)P−1(DP + PD)

]
= g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PXΛ2

P

)
− Tr

[
P−1D2P +DP−1DP + P−1DPD +D2

]
= g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PXΛ2

P

)
− 2 Tr

[
P−1DPD +D2

]
= g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PXΛ2

P

)
− 2 diag(D)T (I + P ◦ P−1)diag(D)

(3.5.7)
= g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PXΛ2

P

)
− 2 diag(P−1ΛPXΛP )T (I + P ◦ P−1)−1diag(P−1ΛPXΛP )

= g
(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PXΛ2

P

)
− 2 diag(C−1Λ2

PXΛ2
P )T (I + C ◦ C−1)−1diag(C−1Λ2

PXΛ2
P ).

Plugging this into g(C)
C (X, Y ) = 1

2
g

(C)
C (X − Y,X − Y )− g(C)

C (X,X)− g(C)
C (Y, Y ) yields

g
(C)
C (X, Y ) = g

(P)
C

(
Λ2
PXΛ2

P ,Λ
2
PY Λ2

P

)
−2 diag(C−1Λ2

PXΛ2
P )T (I+C◦C−1)−1diag(C−1Λ2

PY Λ2
P )

and if we choose P = C ∈ π−1(C), then ΛP = I and thus

g
(C)
C (X, Y ) = g

(P)
C

(
X, Y

)
− 2 diag(C−1X)T (I + C ◦ C−1)−1diag(C−1Y ).
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�

To compute the distance, plugging the distance dP of P from Equation (3.1.1) into Equa-
tion (2.5.2) yields

d2
C(C1, C2) = inf

D∈D
d2
P(C1, DC2D). (3.5.8)

�is is a minimization problem over n variables on the set D ∼= (0,∞)n. Let C ∈ C and
X ∈ H ∼= TCC. In �anwerdas & Pennec (2021a, �eorem 4), the Riemann exponential
map is derived for P = C ∈ π−1(C), but we shall also provide the formula for general
P ∈ π−1(C), where X# ∈ HPP is the horizontal li� of X at P :

Exp
(C)
C (X) = π

(
Exp

(P)
P (X#)

)
. (3.5.9)

�e Riemannian logarithm between C1, C2 ∈ C is computed by searching for a horizontal
direction X ∈ HC1P with Exp

(P)
C1

(X) = C2, which is achieved by �nding a minimizer

D∗ = arg min
D∈D

d2
P(C1, DC2D), (3.5.10)

and then se�ing X := Log
(P)
C1

(D∗C2D
∗) ∈ HC1P . Hence the Riemannian logarithm in C

is (cf. �anwerdas & Pennec (2021a, p.5); and note that again, another choice than C1 ∈
π−1(C1) and C2 ∈ π−1(C2) can be made)

Log
(C)
C1

(C2) = (∂π)C1

(
Log

(P)
C1

(D∗C2D
∗)
)
. (3.5.11)

Consequently, the geodesic from C1 to C2 ∈ C is

γ
(C)
C1,C2

(t) = Exp
(C)
C1

(
tLog

(C)
C1

(C2)
)

= π
(
γ

(P)
C1,D∗C2D∗

(t)
)
. (3.5.12)

Note that γ(C)
C1,C2

(0) = π(C2) = C2 and γ(C)
C1,C2

(1) = π(D∗C2D
∗) = C2.

Remark 3.5.5. For the minimization problem stated in Equation (3.5.10), which is also
necessary to solve in order to compute the distance on C (cf. Equation (3.5.8)), in their �rst
version, the authors of �anwerdas & Pennec (2021a) state that the uniqueness and even
existence of the minimizer D∗ is not proven yet. Prior to the International Conference on
Geometric Science of Information (GSI) in July 2021 in Paris, where �anwerdas & Pennec
(2021a) was published, I have made several a�empts to �nd a solution to Equation (3.5.10),
but apparently with no success. However, when I met Yann �anwerdas at GSI 2021, we
discussed this problem and could prove coercivity of the function to be minimized on the
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spot, which implies existence of a solution to Equation (3.5.10). �is result in addition to
the computation of the gradient of the function to be minimized, which is an outcome of
my a�empts of solving the minimization problem, is stated in the next lemma.

Lemma 3.5.6. Let P,Q ∈ P be arbitrary. De�ne the map FP,Q : (0,∞)n → [0,∞) (where
Dx := Diag(x) for x ∈ (0,∞)n) with

FP,Q(x) = d2
P(P,DxQDx) = Tr

[
log
(√

P
−1
DxQDx

√
P
−1
)2]

.

�e gradient of FP,Q at x ∈ (0,∞)n is

~∇FP,Q(x) = 4 diag
(√

Dx

−1√
Q
−1

log
(√

QDxP
−1Dx

√
Q
)√

Q
√
Dx

−1
)
∈ Rn.

Furthermore, FP,Q is coercive (i.e. FP,Q(x) → ∞ whenever x tends to some boundary of
(0,∞)n, including going to∞) and there is a solution to the minimization problem

x∗ ∈ arg min
x∈(0,∞)n

FP,Q(x).

Proof. Coercivity and existence of a solution will be in a future version of �anwerdas &
Pennec (2021a). We continue to compute the gradient of FP,Q. Let x = (x1, . . . , xn) ∈
(0,∞)n and let k = 1, . . . , n. �e equalities that are given numbers are explained below.

∂FP,Q
∂xk

(x) =
∂

∂xk
Tr
[

log
(√

P
−1
DxQDx

√
P
−1)2

]
(1)
= 2 Tr

[
log
(√

P
−1
DxQDx

√
P
−1)√

PD−1
x Q−1D−1

x

√
P

∂

∂xk

(√
P
−1
DxQDx

√
P
−1
)]

(2)
= 2 Tr

[(
Q−1/2 log

(
Q1/2DxP

−1DxQ
1/2
)
Q−1/2

)(
D−1
x

∂

∂xk

(
DxQDx

)
D−1
x

)]
,

(3.5.13)

where (1) follows from Moakher (2005, Proposition 2.1), where a general formula for di�er-
entiating the trace of a squared matrix logarithm is given; and (2) follows from the invari-
ance of the matrix logarithm under the congruence action, i.e. log(A−1BA) = A−1 log(B)A

for, say, A,B ∈ P (e.g. Moakher (2005, Equation (2.1))), as well as the cyclic property of
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the trace: Tr[AB] = Tr[BA]. In the following, let denote by δij the Kronecker delta, i.e.
δij = 0 whenever i 6= j, δij = 1 if i = j. �en

D−1
x

∂

∂xk

(
DxQDx

)
D−1
x = D−1

x

(
δikQijxj + δjkQijxi

)n
i,j=1

D−1
x

=

(
δikQij

xi
+
δjkQij

xj

)n
i,j=1

=
1

xk

(
δikQij + δjkQij

)n
i,j=1

.

For any matrix A = (Aij)
n
i,j=1, we compute

2 Tr
[
A D−1

x

∂

∂xk

(
DxQDx

)
D−1
x

]
=

2

xk
Tr
[( n∑

l=1

Ail
(
δlkQlj + δjkQlj

))n
i,j=1

]
=

2

xk

n∑
i=1

( n∑
l=1

Ail
(
δlkQli + δikQli

))
=

2

xk

n∑
i=1

( n∑
l=1

Ail
(
δlkQli + δikQli

))
=

2

xk

( n∑
i=1

AikQki +
n∑
l=1

AklQlk

)
=

4

xk
(AQ)kk.

Se�ing A :=
√
Q
−1

log
(√

QDxP
−1Dx

√
Q
)√

Q
−1 and using the above result, we obtain

for Equation (3.5.13)

~∇FP,Q(x) = 4 diag
(√

Dx

−1√
Q
−1

log
(√

QDxP
−1Dx

√
Q
)√

Q
√
Dx

−1
)
.

�

Remark 3.5.7. 1. �e gradient computed in Lemma 3.5.6 can be implemented in order
to use gradient descent methods to solve the minimization problem. Observe that by
se�ing the gradient equal to zero, i.e. ~∇FP,Q(x) = 0, we can reduce the equation to
a seemingly simple equation:

0 = ~∇FP,Q(x)

⇐⇒ 0 = 4 diag
(√

Dx

−1√
Q
−1

log
(√

QDxP
−1Dx

√
Q
)√

Q
√
Dx

−1
)

⇐⇒ 0 = diag
(

log
(
DxP

−1DxQ
))
.
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Moreover, observe that whenever P = DxQDx, then log
(
DxP

−1DxQ
)

= log(I) =

0, where not only the diagonal entries are zero, but the whole matrix.

2. Note that the formula for the gradient given in Lemma 3.5.6 is not the shortest ver-
sion, as the

√
Q terms can be pulled into the matrix logarithm (as has been done in

1. of this remark). In practice however, taking the matrix logarithm of a symmetric
matrix is much more stable, as the singular value decomposition is more stable.

3. Furthermore, one could try to compute the Hessian. �e di�culty here is that di�er-
entiating log(X(t)) leads to X ′(t)X−1(t) only if X ′(t) and X−1(t) commute. �is
is certainly not true in general for QDxP

−1Dx and ∂
∂xk

QDxP
−1Dx, so we cannot

use this rule. �ere is a more general and also more involved expression using an
integral over a product of matrices, but I did not manage to make something out of
it (e.g. Moakher (2005, Proof of Proposition 2.1)).





Chapter 4

Phylogenetic Forests

To this end, we introduce phylogenetic forests starting with the intuitive representation
via graphs. We continue to introduce the concept of splits and derive a representation of
phylogenetic forests via splits, before we de�ne distance matrices of phylogenetic forests
and from that the correlation matrix representation. All of those representations are partic-
ularly relevant for de�ning and working on the Wald Space that we construct in Chapter 6.
In the following, L = {1, . . . , N} is the set of labels.

4.1 Representation via Graphs

4.1.1 Some Theory on Graphs

We introduce the basic notation for graphs (e.g. Semple & Steel (2003, Section 1.1 and 1.2)).

De�nition 4.1.1. 1. A graph is a tuple (V,E) with a �nite non-empty set of verticesV
and edges E ⊂

{
{u, v} : u, v ∈ V, u 6= v

}
.

Moreover, if (V,E) is a graph, then we say that

2. two vertices u, v ∈ V are adjacent, if {u, v} ∈ E,

3. two edges e, e′ ∈ E with e′ 6= e are incident, if |e ∩ e′| = 1,

4. an edge e ∈ E is incident with a vertex v ∈ V, if v ∈ e.
5. For v ∈ V, the degree of v is the number of incident edges to v, i.e.

deg(v) = |{e ∈ E : v ∈ e}|.

49
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6. A vertex v ∈ V is a leaf or pendant vertex if deg(v) = 1 and an interior vertex if
deg(v) ≥ 2.

7. A vertex v ∈ V is an isolated vertex, if deg(v) = 0.

8. An edge e ∈ E is a pendant edge, if it is incident with a leaf v ∈ V.

9. An edge that is not a pendant edge is called interior edge.

10. A path between vertices u, u′ ∈ V is a set of edges P ⊂ E with

P =
{
{v1, v2}, {v2, v3}, . . . , {vm−1, vm}

}
for a sequence of pairwise distinct vertices v1, v2, . . . , vm, except v1 = vm is allowed,
with 2 ≤ m ∈ N such that u = v1 and u′ = vm. We say that P connects its endpoints
u and u′.

11. We say that two vertices u, u′ ∈ V are connected if there exists a pathP that connects
u and u′.

12. We say that (V,E) is connected, if all vertices u, v ∈ V with u 6= v are connected.

13. A path is called a cycle, if it is a path from v to v for some vertex v ∈ V.

De�nition 4.1.2. A graph (V,E) is

1. a (graph-theoretical) forest if whenever two vertices u, v ∈ V with u 6= v are con-
nected, then the path that connects them is unique. In this case, denote the unique
path between u and v by E(u, v).

2. a (graph-theoretical) tree, if it is connected and a forest.

Only to this end we will refer to graph-theoretical trees and forests as trees and forests,
respectively. We state part of �eorem 9.1 from Wilson (1996, p.44).

Proposition 4.1.3. Let (V,E) be a graph. �en the following statements are equivalent:

(i) (V,E) is a tree;

(ii) (V,E) contains no cycles and |E| = |V| − 1;

(iii) (V,E) is connected and |E| = |V| − 1;

(iv) (V,E) is connected and for any e ∈ E the graph (V,E \ {e}) is not connected.

De�nition 4.1.4. We say that a tree (V,E) is binary or fully resolved, if deg(v) = 3 for
every interior vertex v ∈ V.
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�e next proposition is from Semple & Steel (2003, Proposition 1.2.3).

Proposition 4.1.5. Let (V,E) be a graph. �en,

1. if (V,E) is a tree, then |E| ≥ |V| − 1;

2. if (V,E) is a binary tree, then |E| = 2l − 3, where l ∈ N is the number of leaves of
(V,E).

4.1.2 Phylogenetic Forests via Graphs

De�nition 4.1.6. 1. A graph-based forest representative is a triple (V,E, `), where

(G1) (V,E) is a graph-theoretical forest, called the underlying graph and L ⊂ V,
such that v ∈ V \ L implies deg(v) ≥ 3,

(G2) and ` = (`e)e∈E ∈ (0,∞)E.

We also refer to the underlying graph (V,E) as the topology of (V,E, `). If the
underlying graph is a tree, we say graph-based tree representative. If the underlying
graph is a fully resolved tree and deg(u) = 1 for all u ∈ L, we call the graph-based
tree representative and its topology fully resolved.

Remark 4.1.7. 1. �e de�nition of graph-based tree representatives without the edge
lengths ` is exactly the de�nition of phylogeneticX-trees as in Semple & Steel (2003,
De�nition 2.1.1 and 2.1.2) with X = L, where, instead of using a labeling function
φ : L→ V that is injective, we identify φ(L) with L and have L ⊂ V.

2. �e condition that v ∈ V \ L implies deg(v) ≥ 3 means that any unlabeled vertex
must have degree three or higher. �is is equivalent to saying that whenever a vertex
has degree two or less, it must be labeled, i.e. for any v ∈ V, deg(v) ≤ 2 =⇒ v ∈ L.

3. Consequently, a fully resolved tree representative hasN labeled leaves, and all other
vertices have degree three.

4. For any graph-based forest representative (V,E, `) and any pair of labels u, v ∈ L
with u 6= v that are in the same connected component, it follows that E(u, v) 6= ∅.

Proposition 4.1.8. Let (V,E, `) be a graph-based forest representative. If N = 1, then
|V| = 1 and |E| = 0. Let N ≥ 2. �en

1. N ≤ |V| ≤ 2N − 2 and 0 ≤ |E| ≤ 2N − 3;

2. N ≤ |V| ≤ 2N − 2 and N − 1 ≤ |E| ≤ 2N − 3 if the underlying graph is a tree;
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3. |V| = 2N −2 and |E| = 2N −3 if and only if (V,E, `) is a fully resolved graph-based
tree representative.

Proof. If N = 1, then |V| = 1, else there would exist unlabeled vertices with degree two
or less. It follows that |E| = 0.

3. �e equivalence that (V,E, `) is a fully resolved graph-based tree representative if and
only if |E| = 2N − 3 follows from Moulton & Steel (2004, �eorem 4.2, (v)). �en by
Proposition 4.1.3, |V| = |E|+ 1 = 2N − 2.

1. Any forest representative can be extended by adding edges and vertices until it is a fully
resolved tree representative, so the upper bounds are |E| ≤ 2N − 3 and |V| ≤ 2N − 2

(cf. Moulton & Steel (2004, �eorem 4.2, (i) and (v))). For the lower bounds, the tree with
N vertices V = L and no edges is a graph-based forest representative and yields |V| = N

and |E| = 0.

2. Analogously to 1., we obtain the same upper bounds. For the lower bounds, we have
at least N vertices, each labeled once. �e minimum number of edges we can have that
connect theN vertices form a chain ofN−1 edges, yielding |V| ≥ N and |E| ≥ N−1. �

De�nition 4.1.9. Two forest representatives (V,E, `), (V′,E′, `′) are topologically equiv-
alent, if there is a bijection f : V→ V′ such that

(i) {u, v} ∈ E ⇐⇒ {f(u), f(v)} ∈ E′,

(ii) f(u) = u for all u ∈ L.

�ey are isomorphic if additionally

(iii) `({u, v}) = `′
(
{f(u), f(v)}

)
for all edges {u, v} ∈ E.

Moreover,

1. every isomorphy class of a graph-based forest representative is called a graph-based
forest and denoted by F = [V,E, `], analogously for graph-based tree representatives
and fully resolved graph-based tree representatives;

2. every topological equivalence class of a graph-based forest representative is called
its topology [F] = [V,E].

Remark 4.1.10. 1. Note that the above de�nition is well-de�ned: if one representative
of [V,E, `] is a tree, so will be every representative; analogously for fully resolved
graph-based tree representatives.
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2. Topological equivalence between graph-based tree representatives corresponds to
the notion of isomorphisms between phylogeneticX-trees as de�ned in Semple & Steel
(2003, p.17) with X = L, cf. also Remark 4.1.7.

4.2 Representation via Splits

4.2.1 Some Theory on Splits

To this end, let X be a �nite set.

De�nition 4.2.1. 1. A split of X or X-split is a two-set partition of X into two non-
empty sets, i.e. a split of X is a set {A,B} of sets A,B ⊂ X , A,B 6= ∅, A ∪ B = X

and A ∩B = ∅. We write interchangeably

{A,B} = A|B = a1 . . . ar|b1 . . . bs = a1 . . . ar|B = A|b1 . . . bs ,

whenever A = {a1, . . . , ar}, B = {b1, . . . , bs}.
2. Two splits are called compatible with each other, if at least one of the four expressions

is empty:
A ∩ C, A ∩D, B ∩ C, B ∩D. (4.2.1)

3. A set of splits is called compatible, if all its splits are pair-wise compatible.

Lemma 4.2.2. Consider two X-splits A|B and C|D with A|B 6= C|D. �e following state-
ments are equivalent:

(i) A|B and C|D are compatible,

(ii) exactly one of the four expressions in (4.2.1) is empty:

A ∩ C, A ∩D, B ∩ C, B ∩D.

(iii) exactly one of the following statements is true:

A ⊂ D, A ⊂ C, B ⊂ D, B ⊂ C, (4.2.2)

(iv) exactly one of the following statements is true:

C ⊂ B, D ⊂ B, C ⊂ A, D ⊂ A. (4.2.3)
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Proof. Since A = X \B and C = X \D, we �nd that

A ∩ C = ∅ ⇐⇒ C ⊂ B ⇐⇒ A ⊂ D,

yielding (ii) ⇐⇒ (iii) ⇐⇒ (iv). By de�nition of compatibility, (ii) =⇒ (i). Again, from
A ∩ C = ∅ ⇐⇒ C ⊂ B ⇐⇒ A ⊂ D, we �nd A ∩ C = ∅ =⇒ B ∩ C 6= ∅ and
A∩C = ∅ =⇒ A∩D 6= ∅, and �nally, if B ∩D = ∅ =⇒ B ⊂ C , contradicting C ⊂ B

implied by A ∩ C = ∅. �us, A ∩ C = ∅ =⇒ B ∩ D 6= ∅, and thus (i) =⇒ (ii), which
yields the assertion. �

Note that (i)⇐⇒ (ii) is mentioned but not proven in Semple & Steel (2003, p.44). Further-
more, Buneman (1971, p.388) mentions that if two intersections in (4.2.1) are empty, then
A|B = C|D.

De�nition 4.2.3. Let ∅ 6= Y ⊂ X be another �nite set and let s = A|B be a split of X .
�e restriction of s to Y is

s
∣∣
Y

:= (A ∩ Y )|(B ∩ Y ). (4.2.4)

If s
∣∣
Y

is a split of Y we say that s
∣∣
Y

is valid. If s
∣∣
Y

is not a split of Y we say that s
∣∣
Y

has
vanished.

4.2.2 Phylogenetic Forests via Splits

De�nition 4.2.4. A tuple (E, λ) is a split-based forest if

1. L = {L1, . . . , LK} with 1 ≤ K ≤ N such that the non-empty sets L1, . . . , LK form
a partition of the label set L;

2. each e ∈ E is a split of Lα for some 1 ≤ α ≤ K ;

3. Eα denotes the elements in E that are splits of Lα;

4. each Eα is compatible;

5. for all u, v ∈ Lα with u 6= v there exists e = A|B ∈ E such that u ∈ A and v ∈ B;

6. the edge weights are λ = (λe)e∈E ∈ (0, 1)E .

We say that (E, λ) is a split-based tree, if K = 1. We call the set E the topology of (E, λ).

Remark 4.2.5. �e partition of the label set L can be omi�ed from the tuple (E, λ) as it
can be reconstructed from E: set without loss of generality

{
L1, . . . , LK̃

}
:=
{
A ∪B : A|B ∈ E

}
,



4.2 Representation via Splits 55

where K̃ ≤ K , and for all u ∈ L \ ⋃K̃
α=1 Lα, the singleton {u} is added to the collection

and we obtain L = {L1, . . . , LK}.

We will elaborate on how to obtain a split-based tree from a graph-based tree representative
(V,E, `) following Semple & Steel (2003, Section 3.1). By Proposition 4.1.3, we know that
cu�ing an edge e ∈ E (i.e. considering the graph (V,E \ {e})) splits the underlying graph
into two connected components. Furthermore, it partitions the labels L ⊂ V into two non-
empty sets Ae and Be (if one of them was empty, we would have had a vertex v ∈ V \ {L}
with deg(v) ≤ 2, which is by de�nition not possible). Note that no two edges give the
same partition (cf. Semple & Steel (2003, Section 3.1)). �us, we have a map from E to a set
of splits,

e 7→ s(e) = Ae|Be, E :=
{
se : e ∈ E

}
. (4.2.5)

We say that (V,E, `) induces the splits E. From Semple & Steel (2003, �eorem 3.1.4), we
can derive the following result.

Lemma 4.2.6. LetE be a set of splits of L. �en there exists a graph-based tree representative
(V,E, `) that induces E if and only if E is compatible and for any u, v ∈ L there exists a
split A|B ∈ E such that u ∈ A and v ∈ B. In this case, (V,E, `) is unique up to topological
equivalence.

Proof. Semple & Steel (2003, �eorem 3.1.4) yields this result for X-trees as de�ned in
Semple & Steel (2003, De�nition 2.1.1) with X = L, where multiple labeled vertices are
allowed and E are compatible split sets, the condition that for any u, v ∈ L there exists
a split A|B ∈ E with u ∈ A and v ∈ B is dropped. But this is exactly the condition
that characterizes that labels are “separated” at least by any split and thus there cannot
be multiply labeled vertices, and vice versa. As pointed out in Remark 4.1.10, 2., topolog-
ical equivalence between graph-based tree representatives corresponds to isomorphisms
between phylogenetic X-trees (here X = L), and thus we get the uniqueness result from
Semple & Steel (2003, �eorem 3.1.4). In particular, for two topological equivalent graph-
based tree representatives (V,E, `) and (V′,E′, `′) with f : V → V′ satisfying (i) and (ii)
from De�nition 4.1.9, it holds that

s({u, v}) = s′({f(u), f(v)}) for all {u, v} ∈ E, (4.2.6)

where s′ is the map de�ned in Equation (4.2.5) with respect to (V′,E′, `′). �
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For a graph-based tree representative (V,E, `), de�ne the induced edge weights (λs)s∈E ∈
(0, 1)E with respect to the induced splits E by (where s = s(e) for e ∈ E)

λs := 1− exp(−`e). (4.2.7)

Note that this is a strictly monotonically increasing correspondence and thus `e → 0 ⇐⇒
λs → 0 as well as `e → ∞ ⇐⇒ λs → 1. From Equation (4.2.6) and from (iii), Def-
inition 4.1.9, it follows immediately, that the de�nition of λ is unique up to isomorphy
of graph-based tree representatives. To be precise, for two topological equivalent graph-
based tree representatives (V,E, `) and (V′,E′, `′) with f : V→ V′ satisfying (i), (ii) and
(iii) from De�nition 4.1.9, since they are topologically equivalent, they induce the same set
of splits E, and let λ ∈ (0, 1)E and λ′ ∈ (0, 1)E be the edge weights induced by (V,E, `)

and (V′,E′, `′), respectively. �en, for any split s ∈ E with s = s(e) = s′(e′) with e ∈ E

and e′ ∈ E′, we know from the uniqueness of induced splits and Equation (4.2.6) that if
e = {u, v}, then e′ = {f(u), f(v)}. �erefore,

λs = 1− exp(−`e) isom.
= 1− exp(−`′e′) = λ′s′(e′) = λ′s.

We summarize these observations in the following lemma.

Lemma 4.2.7. Let E be a set of splits of L and let λ ∈ (0, 1)E be some edge weights. �en
there exists a graph-based tree representative (V,E, `) that induces E and λ if and only if E
is compatible, for all u, v ∈ L there exists a split A|B ∈ E such that u ∈ A and v ∈ B and
λ satis�es Equation (4.2.7). In this case, (E, λ) is a split-based tree and (V,E, `) is unique up
to isomorphy.

We can extend the previous results to graph-based and split-based forests.

�eorem 4.2.8. �ere is a one-to-one correspondence between split-based forests as in De�-
nition 4.2.4 and graph-based forests as in De�nition 4.1.9.

Proof. Each graph-based forest [V,E, `] corresponds one-to-one to a collection of graph-
based trees, say [V1,E1, `

(1)], . . . , [VK ,EK , `
(K)] for some K ∈ N with non-empty label

sets L1, . . . , LK , respectively, with L1, . . . , LK being a partition of L.

To see this, note that the topology of any representative (V,E, `) yields connected com-
ponents, say, (V1,E1), . . . , (VK ,EK) with Lα = Vα ∩ L and `(α)

e = `e for all e ∈ Eα, α =

1, . . . , K . For any other representative (V′,E′, `′) that is isomorphic to (V,E, `), its topol-
ogy yields the same number of connected components, say, (V′α,E

′
α, `

(α)′), α = 1, . . . , K ,
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such that w.l.o.g. V′α ∩ L = Lα and hence by restricting an isomorphism f : V → V′ to
f
∣∣
Vα

(i.e. f as in De�nition 4.1.9), it holds that (V′α,E
′
α, `

(α)′) is isomorphic to Vα,Eα, `
(α),

α = 1, . . . , K .

�en, from Lemma 4.2.7 we have a one-to-one correspondence between collections of
graph-based trees [V1,E1, `

(1)], . . . , [VK ,EK , `
(K)] with label sets L1, . . . , LK that are a

partition of L, and collections of split-based trees (E1, λ
(1)), . . . , (EK , λ

(K)) for label sets
L1, . . . , LK , respectively (to be precise, each (Eα, λ

(α)) has a partition Lα = {Lα} of the
label set Lα, for α = 1, . . . , K).

Finally, there is an obvious one-to-one correspondence between such collections of split-
based trees (E1, λ

(1)), . . . , (EK , λ
(K)) for label sets L1, . . . , LK , respectively, and split-

based forests (E, λ), given by E = ∪αEα and λ
∣∣
Eα

= λ(α). �

Due to this one-to-one correspondence, we also use the symbol e ∈ E for splits and will
refer to them as edges. Furthermore, we say that two labels u, v ∈ L are connected in a
split-based forest (E, λ), if u, v ∈ Lα for some α = 1, . . . , K , where L = {L1, . . . , LK} is
its corresponding label partition. Let (V,E, `) be a graph-based forest representative. For
u, v ∈ V that are connected, denote by E(u, v) the set of edges in the unique path connect-
ing u and v (recall the notation introduced in De�nition 4.1.1). �e following result states
that an edge is in the path between u and v whenever its corresponding split “separates” u
from v.

Lemma 4.2.9. Let (V,E, `) be a graph-based forest representative and (E, λ) be its cor-
responding split-based forest, and let s be de�ned as in Equation (4.2.5). Let u, v ∈ L be
connected and let e ∈ E with corresponding split s = s(e) ∈ E. �en

e ∈ E(u, v) ⇐⇒ s = A|B and u ∈ A, v ∈ B.

Proof. Cu�ing an edge e from the underlying graph of (V,E, `) divides the connected com-
ponent that e is contained in into two parts, and accordingly the labels, which yield the
corresponding split s(e). �us e is on the unique path between u and v if and only if its
corresponding split is A|B with u ∈ A and v ∈ B. �

�e previous lemma motivates the following de�nition.

De�nition 4.2.10. Let (E, λ) be a split-based forest with partition L = {L1, . . . , LK}.
�en, for labels u, v ∈ Lα, α = 1, . . . , K , de�ne

E(u, v) = {e ∈ E : e = A|B, u ∈ A, v ∈ B}.
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Remark 4.2.11. In light of the previous de�nition, it follows from Lemma 4.2.9 and Re-
mark 4.1.7 that E(u, v) 6= ∅ for all u, v ∈ Lα, 1 ≤ α ≤ K , which is equivalent condition
5. in De�nition 4.2.4.

Partial Ordering on Split-Based Forest Topologies

We introduce a partial ordering on split-based forest topologies from Moulton & Steel (2004,
Section 3), although they de�ne it for a broader class of forests. Whenever two split-based
forest topologiesE andE ′ satisfy the relationshipE ′ ≤ E, one can intuitively think of it as
saying that “E ′ can be derived fromE by contracting and cu�ing edges”, where split-based
forest topologies corresponding to fully resolved graph-based trees (using the one-to-one
correspondence from �eorem 4.2.8) are the greatest upper bounds with respect to this
partial ordering, and the split-based forest topology E = ∅ is the unique smallest element.

De�nition 4.2.12. For two topologies E,E ′, of two split-based forests, respectively, and
with label partitions L = {L1, . . . , LK}, L′ = {L′1, . . . , L′K′}, respectively, we say that

E ′ ≤ E (4.2.8)

if the following three properties hold:

Refinement: L′ is a re�nement of L, that is for every 1 ≤ α′ ≤ K ′ there is 1 ≤ α ≤ K

with L′α′ ⊂ Lα;

Restriction: for every such α′ and α above with L′α′ ⊂ Lα,

E ′α′ ⊂
{
ẽ : ẽ := e

∣∣
L′
α′

is a valid split, e ∈ Eα
}

Cut: for every 1 ≤ α′1 6= α′2 ≤ K ′ and 1 ≤ α ≤ K , if L′α′1 , L
′
α′2
⊂ Lα, then there is some

A|B ∈ E with L′α′1 ⊂ A, L′α′2 ⊂ B .

Further, we say E ′ < E if E 6= E ′ ≤ E.

�e following result is due to Moulton & Steel (2004, Lemma 3), and we prove it for conve-
nience.

Proposition 4.2.13. �e relation E ′ ≤ E in split-based forest topologies as de�ned in De�-
nition 4.2.12 is a partial ordering.
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Proof. We show re�exivity (E ≤ E), antisymmetry (E ′ ≤ E and E ≤ E ′ then E = E ′)
and transitivity (E ′′ ≤ E ′ and E ′ ≤ E then E ′′ ≤ E).

Re�exivity. Clearly, L is a re�nement of itself and for the restriction property, since e
∣∣
Lα

=

e for any e ∈ Eα, it boils down to an equalityEα = {e
∣∣
Lα

: e ∈ Eα}. �e cut property does
not come into play at all, and thus E ≤ E.

Antisymmetry. Since L′ is a re�nement of L and vice versa, L = L′. �en analogously
to re�exivity, the restriction property becomes trivial and the cut property does not come
into play.

Transitivity. Let E ′′ ≤ E ′ ≤ E with label partitions L′′,L′ and L, respectively. Since L′′ is
a re�nement of L′, for any 1 ≤ α′′ ≤ K ′′, there exists 1 ≤ α′ ≤ K ′ such that L′′α′′ ⊂ L′α′ ,
and since L′ is a re�nement of L, there exists 1 ≤ α ≤ K such that L′α′ ⊂ Lα, and thus
L′′α′′ ⊂ Lα. �erefore, L′′ is a re�nement of L, so the re�nement property with respect to
E ′′ and E holds.

For the restriction property, let α′′, α′ and α be as above such that L′′α′′ ⊂ L′α′ ⊂ Lα. Let
e′′ ∈ E ′′α′′ . �en from the restriction property of E ′′ ≤ E ′ there exists e′ ∈ E ′α′ with
e′′ = e′

∣∣
L′′
α′′

, and by the restriction property of E ′ ≤ E there exists e ∈ Eα with e′ = e
∣∣
L′
α′

,
but due to L′′α′′ ⊂ L′α′ , we have e′′ =

(
e
∣∣
L′
α′

)∣∣
L′′
α′′

= e
∣∣
L′′
α′′

and thus the restriction property
for E ′′ and E holds.

For the cut property, let 1 ≤ α′′1, α
′′
2 ≤ K ′′ and 1 ≤ α ≤ K such that L′′α′′1 , L

′′
α′′2
⊂ Lα. �en

by the re�nement property with respect to E ′′ ≤ E ′ and E ′ ≤ E there exist 1 ≤ α′1, α
′
2 ≤

K ′ such that L′′α′′1 ⊂ L′α′1
⊂ Lα and L′′α′′2 ⊂ L′α′2

⊂ Lα. We distinguish two cases:

1. If α′1 = α′2, then by the cut property of E ′′ ≤ E ′ there exists e′ = A′|B′ such that
L′′α′′1

⊂ A′ and L′′α′′2 ⊂ B′, and by the restriction property of E ′ ≤ E there exists
e = A|B with e′ = e

∣∣
L′
α′1

, say A ∩ L′α′1 = A′ and B ∩ L′α′1 = B′, so L′′α′′1 ⊂ A and

L′′α′′2
⊂ B and the cut property holds.

2. If α′1 6= α′2 then by the cut property of E ′ ≤ E there exists an edge e = A|B ∈ Eα
with L′′α′′1 ⊂ L′α′1

⊂ A and L′′α′′2 ⊂ L′α′2
⊂ B, so the cut property holds true as well.

We conclude E ′′ ≤ E, yielding the assertion. �

�e partial ordering simpli�es signi�cantly if E and E ′ are topologies of split-based trees.

Proposition 4.2.14. Let E,E ′ be split-based tree topologies. �en

E ′ ≤ E ⇐⇒ E ′ ⊂ E.
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Proof. �e label partitions are just L = L′ = {L}, and thus the re�nement property is
always satis�ed and the cut property never comes into play. For the re�nement property,
observe that in this case

E ′ ⊂
{
ẽ : ẽ := e

∣∣
L

is a valid split, e ∈ E
}

= E,

yielding the assertion. �

Back to the general case, let E,E ′ be two split-based forest topologies. By de�nition of the
restriction property, some edges e ∈ E yield edges e′ ∈ E ′ when being restricted to the
respective label set. �e following de�nition categorizes edges e ∈ E with respect to the
partial orderE ′ ≤ E into three categories: those that vanish due to them being “cut”, those
that vanish due to them being “contracted” and �nally those that yield valid splits that one
can rediscover in E ′.

De�nition 4.2.15. Let E,E ′ be split-based forest topologies with E ′ ≤ E.

1. Let e′ ∈ E ′α′ , 1 ≤ α′ ≤ K ′. De�ne the set of all edges in E that yield e′ to be

Re′ :=
{
e ∈ E : e′ = e

∣∣
L′
α′

}
.

2. Denote the set of all disappearing splits in E by

Rdis :=
{
e ∈ E : ∃α′ s.t. e

∣∣
L′
α′

is valid, but e
∣∣
L′
α′
/∈ E ′

}
.

3. Denote the set of all cut splits in E by

Rcut :=
{
e ∈ E : 6 ∃α′ s.t. e

∣∣
L′
α′

is valid
}
.

�e following lemma gives intuition for the behavior of these sets.

Lemma4.2.16. LetE ′ ≤ E with label partitionsL = {L1, . . . , LK} andL′ = {L′1, . . . , L′K′},
respectively, and u, v ∈ L. �en the following hold

(i) IfK = K ′ then, say, L′α = Lα, and E ′α ⊂ Eα for all α = 1, . . . , K and Re′ = {e′} for
all e′ ∈ E ′. Furthermore, in this case,

E ′ < E ⇐⇒ ∃α with E ′α ( Eα ⇐⇒ Rdis 6= ∅.

(ii) K < K ′ ⇐⇒ Rcut 6= ∅.
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(iii) Re′ 6= ∅ for all e′ ∈ E ′ and if ∃e′ ∈ E ′α′ with |Re′ | > 1 then L′α′ ( Lα.

(iv) E = E ′ ⇐⇒ (Rdis = ∅ and Rcut = ∅).
(v) Re′ ∩Re′′ = ∅ for all e′, e′′ ∈ E ′ with e′ 6= e′′.

(vi) �e set of splits from the restriction property in De�nition 4.2.12, for any 1 ≤ α′ ≤ K ′,
given by {

ẽ : ẽ := e
∣∣
L′
α′
is valid, e ∈ E

}
,

is compatible.

(vii) e′ ∈ E ′(u, v) ⇐⇒ Re′ ∩ E(u, v) 6= ∅ ⇐⇒ Re′ ⊂ E(u, v).

(viii) Rdis, Rcut in conjunction with the Re′ over all e′ ∈ E ′ form a partition of E, where Rdis

and Rcut might be empty.

(ix) Let u, v ∈ L′α′ for some 1 ≤ α′ ≤ K ′. �en Rdis ∩ E(u, v) in conjunction with the Re′

over all e′ ∈ E ′(u, v) form a partition of E(u, v), whereRdis∩E(u, v) might be empty.

(x) For any L′α′ , L
′
α′′ ⊂ Lα with α′ 6= α′′, there exists an edgeA|B = e ∈ E with L′α′ ⊆ A,

L′α′′ ⊆ B and e ∈ Rcut.

Proof. (i) K = K ′ implies that Lα = L′σ(α) for some permutation σ on {1, . . . , K}, so
without loss of generality we assume in this case Lα = L′α. �en e

∣∣
L′α

= e
∣∣
Lα

= e

are valid splits for all e ∈ Eα for all α = 1, . . . , K , so the restriction property of
E ′ ≤ E reads E ′α ⊂ Eα, and Re′ = {e′} for all e′ ∈ E ′.
�e equivalences are immediate from

Rdis = ∅ ⇐⇒ (for all α = 1, . . . , K, E ′α = Eα) ⇐⇒ E ′ = E.

(ii) “⇒”: Follows from the stronger statement (x). “⇐”: IfK = K ′, then by (i) w.l.o.g.L′α =

Lα and in particular e
∣∣
L′α

= e
∣∣
Lα

= e are valid splits for all e ∈ Eα, α = 1, . . . , K ,
so Rcut = ∅, a contradiction. �is yields K < K ′.

(iii) By the restriction property ofE ′ ≤ E, each e′ ∈ E ′α′ is the restriction of some e ∈ Eα,
thus e ∈ Re′ 6= ∅. Assume that there exist e1, e2 ∈ Re′ with e1 6= e2. If L′α′ = Lα was
true, then e1 = e1

∣∣
L′
α′

= e2

∣∣
L′
α′

= e2, a contradiction.

(iv) “⇒”: Trivial. “⇐”: Rcut = ∅ =⇒ K = K ′ due to (ii) and thusRdis = ∅ =⇒ E = E ′

due to (iv).

(v) Assume the contrary: let A|B = e ∈ Re′ ∩ Re′′ , where e′ ∈ L′α′ ⊂ Lα and e′′ ∈
L′α′′ ⊂ Lα.
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If α′ = α′′, then e′ = e
∣∣
L′
α′

= e′′, a contradiction to e′ 6= e′′, so α′ 6= α′′. Since e is in
both Re′ and Re′′ , both restrictions to L′α′ and L′α′′ exist and therefore

A ∩ L′α′ 6= ∅, B ∩ L′α′ 6= ∅, A ∩ L′α′′ 6= ∅, B ∩ L′α′′ 6= ∅.

Due to E ′ ≤ E, by the cut property there exists C|D = ẽ ∈ Eα separating L′α′
and L′α′′ , i.e. L′α′ ⊆ C and L′α′′ ⊆ D. But then ẽ, e ∈ Eα cannot be compatible, a
contradiction.

(vi) LetL′α′ ⊂ Lα. Let e′, e′′ ∈ E
∣∣
L′
α′

such that e′ = e
∣∣
L′
α′

and e′′ = e◦
∣∣
L′
α′

with e = A|B ∈
E and e◦ = A◦|B◦ ∈ E. �en e, e◦ ∈ Eα for otherwise their restriction with L′α′
would be empty. Since e and e◦ are compatible, w.l.o.g. A ∩ A◦ = ∅. Consequently,
e′ = (A ∩ L′α′)|(B ∩ L′α′) and e′′ = (A◦ ∩ L′α′)|(B◦ ∩ L′α′) are compatible as (A ∩
L′α′) ∩ (A◦ ∩ L′α′) = ∅.

(vii) We proceed to show e′ ∈ E ′(u, v) =⇒ Re′ ⊂ E(u, v) =⇒ Re′ ∩E(u, v) 6= ∅ =⇒
e′ ∈ E ′(u, v).
If e′ ∈ E ′(u, v) and due to (iii), Re′ 6= ∅, so e′ := e|L′

α′
= (A ∩ L′α′)|(B ∩ L′α′) for

some e = A|B ∈ Re′ , hence u ∈ A, v ∈ B, or vice versa, i.e. e ∈ E(u, v). Since the
choice e ∈ Re′ was arbitrary, Re′ ⊂ E(u, v).

If e ∈ Re′ ∩ E(u, v), u, v ∈ L′α′ , such that e′ = e|L′
α′

then e′ ∈ E ′(u, v).

(viii) By de�nition of Rdis and Rcut, they are disjoint and furthermore have empty inter-
section with each Re′ , e′ ∈ E ′ and the la�er are pair-wise disjoint due to (v).

(ix) By de�nition, Rcut ∩ E(u, v) = ∅ for all u, v ∈ L′α′ (else Rcut would contain valid
splits). �en (v) in conjunction with (viii) yields the assertion.

(x) Without loss of generality, let K = 1. We prove by induction over K ′.

Base case: Let K ′ = 2. �en L′1 ∪L′2 = L, then by the cut property of E ′ < E, there
exists an edge A|B = e ∈ E with L′1 ⊂ A, L′2 ⊂ B so neither e

∣∣
L′1

nor e
∣∣
L′2

yield a
valid split, so e ∈ Rcut.

Induction step: Suppose w.l.o.g. the assumption holds true for K ′ − 1 ≥ 2 and let
L =

⋃K′

α=1 L
′
α. By the cut property of E ′ ≤ E, there exists an edge A|B = e ∈ E

with L′1 ⊆ A and L′K′ ⊆ B. If e ∈ Rcut, we are done, so assume e /∈ Rcut. By
de�nition of Rcut, w.l.o.g. e

∣∣
L′2

is a valid split, so A ∩ L′2 6= ∅ and B ∩ L′2 6= ∅.
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In the following, we construct two wald topologies E and E ′, with respect to the
labels L := L \ L′K′ , via “deletion” of L′K′ from E and E ′, respectively:

E := {e
∣∣
L

: e ∈ E, e
∣∣
L

is a valid split},
E
′
:= E ′ \ E ′K′ .

Both are wald topologies, E due to (vi) and E ′ as we are deleting one connected
component.

�en, E ′ ≤ E is an immediate consequence of E ′ ≤ E.

�us, by induction hypothesis, there exists a split e = C|D ∈ Rcut of L (where
Rcut from De�nition 4.2.15 with respect to E ′ ≤ E) with L′1 ⊆ C and L′2 ⊆ D

such that for each α = 1, . . . , K ′ − 1 the restriction e
∣∣
L′α

does not yield a valid split.
Furthermore, by construction of E, there exists e◦ = C|D ∈ E with e◦

∣∣
L

= e, i.e.
C = C \L′K′ and D = D \L′K′ , and such that e◦ and e are compatible; and note that
due to e ∈ Rcut, for each α = 1, . . . , K ′ − 1 that e◦

∣∣
L′α

does not yield a valid split.
Recalling from above, we have that L′1 ⊆ A, L′2 ∩ A 6= ∅, L′2 ∩ B 6= ∅, L′1 ⊆ C and
L′2 ⊆ D, therefore

A ∩ C 6= ∅, B ∩D 6= ∅, A ∩ C 6= ∅,

so by compatibility of e0 and e it must be that B ∩ C = ∅, so from L′K′ ⊆ B we �nd
L′K′ ⊆ D, i.e. e0 = C|D = C|(D ∪ L′K′), and thus e0

∣∣
L′
K′

does not yield a valid split,
so e0 ∈ Rcut, as well as L′1 ⊆ C and L′K′ ⊆ D, which yields the assertion.

�

4.3 Representation via Distance Matrices

Within a graph-based forest, we will set the distance between two vertices that are not
connected to be in�nity. �erefore, we de�ne a calculus on [0,∞], where the element∞
has been added to the interval [0,∞). We de�ne the following rules:

(i) x+∞ =∞+ x =∞ for all x ∈ [0,∞],

(ii) x <∞ for any x ∈ [0,∞).

With this de�nition, we introduce forest distance matrices.

De�nition 4.3.1. Let D = (duv)
N
u,v=1 ∈ [0,∞]N×N be a matrix such that for all u, v ∈ L
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(D1) duv = 0 ⇐⇒ u = v and

(D2) duv = dvu.

�en we say that D is a forest distance matrix if it satis�es the four-point condition, that is
if

(D3) for every four (not necessarily distinct) labels u, v, s, t ∈ L, two of the following
three terms are equal and greater or equal than the third:

duv + dst, dus + dvt, dut + dvs. (4.3.1)

Remark 4.3.2. In the literature, D is also called tree metric (e.g. Semple & Steel (2003,
Chapter 7)) or distance matrix (e.g. Felsenstein (2003, Chapter 11)).

�e four-point condition can be expressed in a more useful manner.

Proposition 4.3.3. �e four-point condition is equivalent to the statement that for every four
(not necessarily distinct) labels u, v, s, t ∈ L, it holds that

duv + dst ≤ max{dus + dvt, dut + dvs} (4.3.2)

Proof. “⇒”. If one of the terms in Equation (4.3.1) equals∞, as two of them must be equal
and greater or equal than the third, at least two terms equal∞, so (D3) holds.

Suppose that all terms in Equation (4.3.1) are �nite. �en, independent of which two terms
are equal and greater or equal than the third, Equation (4.3.2) holds.

“⇐”. From permuting the indices we �nd that

(∗) duv + dst ≤ max{dus + dvt, dut + dvs},
(∗∗) dus + dvt ≤ max{duv + dst, dut + dvs},

(∗ ∗ ∗) dut + dvs ≤ max{dus + dvt, duv + dst},

and thus, if one of the three terms in Equation (4.3.1) equals ∞, at least one other term
equals∞, so (D3) holds.

Suppose that all terms in Equation (4.3.1) are �nite. Without loss of generality, let duv +dst

be greater or equal than the other two terms, i.e. duv+dst ≥ max{dus+dvt, dut+dvs}. From
(∗), we have equality (whenever another term is the largest, use (∗∗) or (∗∗∗) accordingly),

dus + dvt = max{duv + dst, dut + dvs},



4.3 Representation via Distance Matrices 65

which implies (D3). �

Corollary 4.3.4. Let D = (duv)
N
u,v=1 ∈ [0,∞]N×N be a forest distance matrix. �en D

satis�es the triangle inequalities (cf. De�nition 2.1.1), that is

(D4) duv ≤ dus + dsv for all u, v, s ∈ L.
Furthermore, D is a metric on L in the sense of De�nition 2.1.1.

Proof. Plug u, v, s, t ∈ L with s = t into Equation (4.3.2) to obtain duv = duv + dst ≤
max{dus + dsv, dus + dsv} = dus + dsv. �en, D satis�es all properties of a metric from
De�nition 2.1.1 (to be precise, the metric is d(u, v) := duv). �

�e following lemma teaches that the matrix entries of a forest distance matrix D that are
equal to in�nity can be “cleanly separated” from the entries that are �nite.

Lemma 4.3.5. Let D = (duv)
N
u,v=1 ∈ [0,∞]N×N be a forest distance matrix. �e relation on

L de�ned by u ∼ v ⇐⇒ duv <∞ is an equivalence relation.

Proof. Trivially, u ∼ u for all u ∈ L and u ∼ v ⇐⇒ v ∼ u for all u, v ∈ L. For
transitivity, let u, v, s ∈ L with u ∼ s and s ∼ v, i.e. dus < ∞ and dsv < ∞. �en, the
triangle inequality (D4) yields duv ≤ dus + dsv <∞ and thus u ∼ v. �

De�nition 4.3.6. Let (V,E, `) be a graph-based forest representative as de�ned in De�-
nition 4.1.6. De�ne

µ(V,E, `) = (duv)
N
u,v=1

where

duv =



∑
e∈E(u,v)

`e, if u 6= v connected,

0, if u = v,

∞, else.

(4.3.3)

for 1 ≤ u, v ≤ N .

�eorem 4.3.7. 1. Let (V,E, `) be a graph-based forest representative. �en µ(V,E, `)

is a forest distance matrix.

2. For any forest distancematrixD, there exists a graph-based forest representative (V,E, `)

with D = µ(V,E, `), and it is unique up to isomorphy.
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Proof. 1. By de�nition of µ, D = (duv)
N
u,v=1 := µ(V,E, `) is symmetric and duu = 0.

For any u, v ∈ L with u 6= v, either duv = ∞ 6= 0 or duv =
∑

e∈E(u,v) `e > 0, since by
Remark 4.1.7, E(u, v) 6= ∅.
Hence D satis�es (D1) and (D2), and for each 1 ≤ α ≤ K , this makes (duv)u,v∈Lα a tree
metric in the sense of Semple & Steel (2003, De�nition 7.1.2) such that we can apply Semple
& Steel (2003, Lemma 7.1.7), stating that the four-point condition holds for all choices (not
necessarily distinct) u, v, s, t ∈ Lα.

For all other choices u, v, s, t ∈ L, at least two of the four labels are not connected, say
without loss of generality duv = ∞. Both s and t can thus only be connected to either u
or v, respectively. �us in all four cases, at least two of the three terms of Equation (4.3.1)
equal∞, which implies that the four-point condition holds for all choices of u, v, s, t ∈ L,
yielding the assertion.

2. Let D = (duv)
N
u,v=1 ∈ [0,∞]N×N be a forest distance matrix. From Lemma 4.3.5, we

have a partition of L into equivalence classes L1, . . . , LK for some 1 ≤ K ≤ N with
duv < ∞ if and only if u, v ∈ Lα for some 1 ≤ α ≤ K . By assumption, each sub-
matrix (duv)u,v∈Lα satis�es the four-point condition and thus by Semple & Steel (2003,
�eorem 7.2.6) each sub-matrix (duv)u,v∈Lα is a tree metric on Lα in the sense of Semple
& Steel (2003, De�nition 7.1.2). �is means that there exists an X-tree with X = Lα in
the sense of Semple & Steel (2003, De�nition 2.1.1), and positive edge lengths, that induces
(duv)u,v∈Lα , and duv > 0 for all u, v ∈ Lα with u 6= v is equivalent to that it is a phylogenetic
Lα-tree, which corresponds by Remark 4.1.7 (and with the edge lengths) to a graph-based
tree representative (Vα,Eα, `

(α)) with labels Lα, such that µ(Vα,Eα, `
(α)) = (duv)u,v∈Lα .

By Semple & Steel (2003, �eorem 7.1.8), (V,E, `) is unique up to isomorphism.

�is collection of graph-based tree representatives corresponds uniquely a graph-based
forest representative (V,E, `) by V = ∪αVα, E = ∪αEα, `e = `

(α)
e for e ∈ Eα, 1 ≤ α ≤ K ,

and note that µ(V,E, `) = D, and that (V,E, `) is unique up to isomorphism as every
component is unique up to isomorphism. �

�e previous result motivates the following de�nition.

De�nition 4.3.8. Let F = [V,E, `] be a graph-based forest. De�ne

µ(F) := µ(V,E, `).

As the graph-based forest representative with forest distance matrix is unique up to iso-
morphy, we have at once the following result.
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Corollary 4.3.9. For any forest distance matrix D there exists a unique graph-based forest
F with µ(F) = D.

Let F = [V,E, `] be a graph-based forest with corresponding forest distance matrix D =

(duv)
N
u,v=1 and corresponding split-based forest (E, λ) with label partitionL = {L1, . . . , LK}

(cf. �eorem 4.2.8). �en, by de�nition of µ(V,E, `) = D, cf. Equation (4.3.3), and using
Lemma 4.2.9 as well as Equation (4.2.7), it follows for all u, v ∈ Lα with u 6= v, 1 ≤ α ≤ K ,

duv =
∑

e∈E(u,v)

`e =
∑

e∈E(u,v)

`e = −
∑

e∈E(u,v)

log(1−λe) = − log

( ∏
e∈E(u,v)

(1−λe)
)
. (4.3.4)

�is motivates the following de�nition.

De�nition 4.3.10. Let (E, λ) be a split-based forest. De�ne

ν(E, λ) = (duv)
N
u,v=1

where

duv =



− log

( ∏
e∈E(u,v)

(1− λe)
)
, if u 6= v connected,

0, if u = v,

∞, else.

(4.3.5)

for 1 ≤ u, v ≤ N .

�e calculations above yield the following result.

�eorem 4.3.11. For any forest distance matrix D there exists a unique split-based forest
(E, λ) with corresponding graph-based forest F (in the sense of �eorem 4.2.8), such that

ν(E, λ) = µ(F) = D.

We conclude this section with a characterization of the forest topology by the forest dis-
tance matrix.

Proposition 4.3.12. Two graph-based forests F,F′ are topologically equivalent if and only if
their corresponding forest distance matrices satisfy the same equalities and strict inequalities
in (D3).

Proof. �is follows directly from Semple & Steel (2003, Example 7.1.6). �
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4.4 Representation via Correlation Matrices

De�nition 4.4.1. A matrix P = (ρuv)
N
u,v=1 ∈ RN×N is a forest correlation matrix, if

ρuv = exp(−duv)

for all u, v ∈ L, where D = (duv)
N
u,v=1 is a forest distance matrix and exp(−∞) := 0.

Translating the conditions for D being a forest distance matrix to forest correlation matri-
ces, we obtain at once the following result.

Proposition 4.4.2. A matrix P = (ρuv)
N
u,v=1 ∈ RN×N is a forest correlation matrix if and

only if P ∈ [0, 1]N×N such that for all u, v ∈ L
(C1) ρuv = 1 ⇐⇒ u = v and

(C2) ρuv = ρvu,

(C3) for every four (not necessarily distinct) labels u, v, s, t ∈ L, two of the following three
terms are equal and less or equal than the third:

ρuvρst, ρusρvt, ρutρvs. (4.4.1)

Translating Corollary 4.3.4 and Equation (4.3.2) to forest correlation matrices, we obtain at
once the following corollary.

Corollary 4.4.3. Let P = (ρuv)
N
u,v=1 be a forest correlation matrix. �en

(C4) ρuv ≥ ρusρsv for all u, v, s ∈ L.
Furthermore, (C3) is equivalent to the statement that for every four (not necessarily distinct)
labels u, v, s, t ∈ L, it holds that

ρuvρst ≥ min{ρusρvt, ρutρvs}. (4.4.2)

Just as the maps µ and ν map graph-based forests and split-based forests to their cor-
responding forest distance matrices, respectively, we de�ne the maps ψ and φ that map
graph-based forests and split-based forests to their corresponding forest correlation matri-
ces, respectively.
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De�nition 4.4.4. Let F = [V,E, `] be a graph-based forest with corresponding split-based
forest (E, λ), with distance matrix µ(F) = ν(E, λ) = (duv)

N
u,v=1. De�ne ψ and φ by

ψ(F) = ψ(V,E, `) =
(

exp(−duv)
)N
u,v=1

,

φ(E, λ) =
(

exp(−duv)
)N
u,v=1

.

�e next result is an immediate consequence of Equation (4.3.3).

Corollary 4.4.5. Let F = [V,E, `] be a graph-based forest with corresponding forest corre-
lation matrix ψ(F) = (ρuv)

N
u,v=1. �en

ρuv =



∏
e∈E(u,v)

exp(−`e), if u 6= v connected,

1, if u = v,

0, else.

(4.4.3)

for 1 ≤ u, v ≤ N .

�e next result is an immediate consequence of Equation (4.3.5).

Corollary 4.4.6. Let (E, λ) be a split-based forest with corresponding forest correlation ma-
trix φ(E, λ) = (ρuv)

N
u,v=1. �en

ρuv =



∏
e∈E(u,v)

(1− λe), if u 6= v connected,

1, if u = v,

0, else.

(4.4.4)

for 1 ≤ u, v ≤ N .

�e next result is the fundamental motivation for the de�nition of Wald Space in Chapter 6
and can be found in Garba et al. (2021a, �eorem 4.1).

�eorem 4.4.7. Let (E, λ) be a split-based forest. �en its forest correlation matrix φ(E, λ)

is strictly positive de�nite and thus φ(E, λ) ∈ P .

Proof. �is is proven in Garba et al. (2021a, Appendix E), but we shall state a more detailed
version here. By de�nition, if we can show that for any graph-based forest representative
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(V,E, `), the matrix ψ(V,E, `) is strictly positive de�nite, we are done. We prove the
assertion by induction on N .

Base case. For N = 2 we have two possible graph-based forest representative topologies.
First, V = {1, 2}, E = ∅ (so ` is an “empty vector”) and thus ψ(V,E, `) = I ∈ P , that is
the 2× 2 unit matrix. Secondly, V = {1, 2}, E = {1|2} and `1|2 ∈ (0,∞), therefore

ψ(V,E, `) =

(
1 exp(−`1|2)

exp(−`1|2) 1

)
,

which is strictly positive de�nite since exp(−`1|2) ∈ (0, 1).

Induction hypothesis. Now let N ≥ 3 and assume that for any graph-based forest represen-
tative with respect to a label set of size N − 1 or less, its corresponding forest correlation
matrix is strictly positive de�nite.

Induction step. Let (V,E, `) be a graph-based forest representative with forest correlation
matrix ψ(V,E, `) = P = (ρuv)

N
u,v=1.

If it has more than one connected component, then the label setL is divided into a partition
L1, . . . , LK , such that ρuv > 0 for all u, v ∈ Lα, α = 1, . . . , K , and ρuv = 0 otherwise. For
any α = 1, . . . , K , the matrix Pα = (ρuv)u,v∈Lα is strictly positive de�nite by induction
hypothesis as it is the forest correlation matrix of a graph-based tree representative with
label set Lα and |Lα| < |L| = N . �us we �nd for any vector x ∈ RN with x 6= 0, where
x(α) = (xu)u∈Lα ,

xTPx =
K∑
α=1

(x(α))TPα x
(α) > 0,

since x(α) 6= 0 for at least one α = 1, . . . , K .

Let (V,E, `) be a graph-based tree representative with forest correlation matrixψ(V,E, `) =

P = (ρuv)
N
u,v=1.

Sylvester’s criterion tells us that a matrix is strictly positive de�nite if and only if all prin-
cipal minors have strictly positive determinant. Since the matrix (ρuv)

N−1
u,v=1 is also a forest

correlation matrix, it must be corresponding to some graph-based forest, and thus by in-
duction hypothesis, it is strictly positive de�nite. �erefore, it is enough to show that
det(P ) > 0.

Within the tree (V,E), there must exist labels u, v ∈ L with u 6= v, such that u is a leaf
that is

1. either adjacent to v,
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2. or adjacent to an unlabeled vertex w ∈ V \L such that v is also a leaf adjacent to w.

If there was not such labels u and v, then for any label u ∈ L there must exists an unlabeled
vertex to which no other label is adjacent, so |V| ≥ 2N , a contradiction to Proposition 4.1.8.
Without loss of generality, we can assume that u = N and v = N − 1, as otherwise we
permute the labels accordingly with an invertible permutation matrix R, and the forest
correlation matrix of the thus obtained graph-based tree representative is RTPR, which is
strictly positive de�nite if and only if P is.

In both cases 1. and 2., denote the edge incident by N by eN , and de�ne x := exp(−`eN ),
and since eN ∈ E(u,N) for all u = 1, . . . , N − 1, with Equation (4.4.3) we can write
ρuN = x cu for some positive constant cu > 0, u = 1, . . . , N − 1.

With S being the set of permutations on L, the Leibniz formula for determinants gives
(where sgn(σ) = (−1)m, where m is the number of transpositions of any decomposition
into transpositions of σ)

det(P ) =
∑
σ∈S

sgn(σ)
N∏
u=1

ρuσ(u)

=

( ∑
σ∈S

σ(N)=N

sgn(σ)
N∏
u=1

ρuσ(u)

)
+

( ∑
σ∈S

σ(N)6=N

sgn(σ)
N∏
u=1

ρuσ(u)

)

= det
(

(ρuv)
N−1
u,v=1

)
+ x2

( ∑
σ∈S

σ(N) 6=N

sgn(σ)cσ(N)cσ−1(N)

N−1∏
u=1

u6=σ−1(N)

ρuσ(u)

)
,

so the det(P ) as a function in x2 is a straight line (denote this function by f(x2)).

Case 1. In this case, as discussed above, the leaf N is adjacent to N − 1 via the edge eN .
�en ρN(N−1) = x and ρuN = xρu(N−1), and cu = ρu(N−1) for u = 1, . . . , N − 2, and
cN−1 = 1. Now, if we plug in x = 0, we obtain

f(0) = det(P ) = det
(

(ρuv)
N−1
u,v=1

)
> 0,

by induction hypothesis. If we plug in x = 1, we �nd that ρuN = ρu(N−1) for u ∈ L and
thus det(P ) = 0, giving f(1) = 0. Since f(x2) is a straight line and f(0) > f(1) = 0,
we conclude det(P ) = f(x2) > 0 for all x ∈ (0, 1), which is the case by de�nition of
x = exp(−`eN ).

Case 2. Let eN−1 be the edge that is incident with the leaf N − 1 and adjacent to the same
unlabeled vertexw ∈ V\L thatN is adjacent to via eN . De�ne y := exp(−`eN−1

), and with
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the same argument using the Leibniz formula for determinants we know that det(P ) is a
straight line with parameter y2 (as N − 1 is also a leaf as N is). We make the dependency
visible via de�ning det(P ) := g(x2, y2), where g is an a�ne function in (x2, y2).

As N and N − 1 are both adjacent to the same unlabeled vertex, we have that E(u,N) \
{eN} = E(u,N − 1) \ {eN−1} for all u = 1, . . . , N − 2, and E(N − 1, N) = {eN−1, eN},
and for u = 1, . . . , N − 2, by Equation (4.4.3),

ρuN = x cu, ρu(N−1) = y cu, ρN(N−1) = xy,

where cu =
∏

e∈E(w,u) exp(−`e). �us if x = y = 1 then ρu(N−1) = ρuN for all u ∈ L, so
det(P ) = g(1, 1) = 0. If x = 0 and y 6= 0, then det(P ) = det((ρuv)

N−1
u,v=1) > 0 which is pos-

itive by induction hypothesis, if y = 0 and x 6= 0 then det(P ) = det((ρuv)u,v∈L\{N−1}) > 0

which is positive by induction hypothesis as well. If x = 0 and y = 0, then det(P ) =

det((ρu,v)
N−2
u,v=1) > 0 which is again positive by induction hypothesis. �us, since g is an

a�ne function in (x2, y2) we have that g(x2, y2) > 0 for all (x2, y2) ∈ (0, 1)2, which is the
case by de�nition of x = exp(−`eN ) and y = exp(−`eN−1

).

We conclude that P = ψ(V,E, `) is strictly positive de�nite. �

We summarize the previous results in the following corollary.

Corollary 4.4.8. 1. Each split-based forest F = (E, λ) corresponds uniquely to a forest
correlation matrix given by φ(F ) ∈ [0, 1]N×N , characterized by the properties (C1),
(C2) and (C3).

2. Furthermore, φ maps injectively from the split-based forests into P .
3. Finally, two split-based forests F, F ′ have the same topologies if and only if their cor-

responding forest correlation matrices satisfy the same equalities and strict inequalities
in (C3).
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BHV Tree Space

In 2001, Louis Billera, Susan Holmes and Karen Vogtmann introduced the BHV Space (the
acronym stands for the authors names; cf. Billera et al. (2001)). Let N ∈ N with N ≥ 3.
�e BHV space is a metric space where the elements are rooted phylogenetic trees with
labels {1, . . . , N} on the leaves. We will label the root 0 and add it to the set of labels,
so L0 = {0, 1, . . . , N}. Originally, the distance on BHV space was de�ned taking into
account the interior edges only, and one would then add the pendant edges of the tree via
a Cartesian product. We will take also the pendant edges into account and interpret the
root 0 as another label. We will rigorously de�ne the BHV Space using the notation from
Chapter 4.

5.1 BHV Space without Pendant Edges

Recall properties and notation for splits from Section 4.2. Let L0 = {0, 1, . . . , N}. Denote
the set of all possible interior edges with respect to the label set L0 by

E =
{
A|B : L0 = A tB, |A|, |B| ≥ 2

}
.

Note that the number of possible splits in E is the cardinality of the power set of L0 divided
by 2, minus the number of subsets A ⊂ L0 with |A| ≤ 1, that is N + 2, we conclude

|E| = 2N −N − 2.

De�nition 5.1.1. 1. �e set of all tree trunks is de�ned by

B◦ =
{

(E, `) : E ⊂ E compatible, ` ∈ (0,∞)E
}
.

73
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2. De�ne the map χ : B◦ → [0,∞)E by

T = (E, `) 7→ χ(T ) := x,

where for each e ∈ E,

xe :=

`e, if e ∈ E,
0, else.

3. De�ne the metric dB◦ : B◦ × B◦ → [0,∞) on B◦ by (where T, T ′ ∈ B◦)

dB◦(T, T
′) := inf

γ : [0,1]→B◦
γ(0)=T,γ(1)=T ′

χ◦γ continuous

L(χ ◦ γ),

where L(χ ◦ γ) is the length of the path χ ◦ γ with respect to the Euclidean distance
on [0,∞)E, i.e.

L(χ ◦ γ) = sup
0=t0<t1<...<tn=1

n∈N

n−1∑
i=0

∥∥(χ ◦ γ)(ti)− (χ ◦ γ)(ti+1)
∥∥.

Proposition 5.1.2. �e tuple (B◦, dB◦) is a metric space. For any T, T ′ ∈ B◦ we have that
dB◦(T, T

′) <∞.

Proof. �e metric space property follows directly from Lemma 2.1.3. As 0 ∈ χ(B◦) and the
straight line segments from χ(T ), χ(T ′) to 0, respectively, are contained in χ(B◦), we �nd
dB◦(T, T

′) ≤ ‖χ(T )‖2 + ‖χ(T ′)‖2 <∞. �

Remark 5.1.3. �e metric space (B◦, dB◦) introduced in De�nition 5.1.1 is the original
BHV Space, as is immediate from Billera et al. (2001, Section 3.2). �is is essentially a
metric space on split-based trees, but taking only the interior edges (splits) into account,
ignoring all pendant edges (i.e. splits where one part contains only one label). However, as
mentioned in Billera et al. (2001, p.743), one can include the pendant edges via a product of
an (N + 1)-dimensional Euclidean space, and that allows us to compare BHV Space with
other tree or forest spaces.

�e following result is from Billera et al. (2001, Lemma 4.1).

�eorem 5.1.4. �e metric space (B◦, dB◦) is CAT(0).

�is property has strong implications: geodesics exist and are unique, cf. �eorem 2.1.13.
We investigate the structure of the BHV Space which is a composition of orthants.
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De�nition 5.1.5. Let E ⊂ E be a compatible set of interior splits. �e orthant of E is the
set

OE =
{
x ∈ [0,∞)E : xe ∈ (0,∞) for e ∈ E, xe = 0 else

}
.

All of the following statements are trivial by construction.

Lemma 5.1.6. (i) O∅ = {0} ⊂ RE.

(ii) Let E,E ′, E ′′ ⊂ E be compatible, respectively. �en

E ′ 6= E ⇐⇒ OE′ ∩ OE = ∅,
E ′ ⊆ E ⇐⇒ OE′ ⊆ OE,

E ∩ E ′ = E ′′ ⇐⇒ OE ∩ OE′ = OE′′

and furthermore,
OE =

⊔
E′⊆E

OE′ .

(iii) For any compatible set of interior splits E ⊂ E, it holds that

OE = χ
({

(E, `) : ` ∈ (0,∞)E
})
.

(iv) B◦ is a decomposition into its orthants, i.e.

χ(B◦) =
⊔
E⊂E

E compatible

OE.

�e notation of orthants simpli�es the expression of dB◦ . For two tree trunksT = (E, `), T ′ =

(E ′, `′) ∈ B◦ with their image being in the same orthant, i.e. E = E ′, their distance is sim-
ply

dB◦(T, T
′) = ‖χ(T )− χ(T ′)‖2 = ‖`− `′‖2.

Furthermore, every continuous path γ : [0, 1] → B◦ consists of segments such that their
image under χ traverse an orthant, and we can always shorten γ by replacing the segment
through an orthant by the straight line segment with the same end points. �is motivates
the following de�nition.

De�nition 5.1.7. Let T = T0, T1, . . . , Tn = T ′ be a �nite sequence of points in B◦ with
χ(Tk) = x(k) ∈ OEk for some Ek ⊂ E compatible for each k = 0, . . . , n. �e sequence
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T0, T1, . . . , Tn is admissible, if for all k = 1, . . . , n, the sets Ek−1 ∪ Ek ⊂ E are compatible,
respectively.

Note that ifEk−1∪Ek is compatible then x(k−1), x(k) ∈ OEk−1∪Ek , and therefore the straight
line segment throughOEk−1∪Ek will be the shortest path between x(k−1) and x(k). �us we
can rewrite

dB◦(T, T
′) = inf

T=T0,T1,...,Tn=T ′

admissible
n∈N

n∑
k=1

∥∥χ(Tk−1)− χ(Tk)
∥∥.

By �eorem 5.1.4, there exists a unique shortest path between any two points in B◦. In
Owen & Provan (2011), M. Owen and J. S. Provan present an algorithm for computing
geodesics in BHV Space in polynomial time, where one starts with the trivial path over the
cone point and augments it step by step.

We now consider two examples, where we examine the BHV Space for N = 3 and N = 4.

Example 5.1.8 (BHV Space for N = 3). We have L0 = {0, 1, 2, 3} and thus

E =
{

01|23, 02|13, 03|12
}
.

�us there are four possible choices for compatible subsets of E, namely

E0 = ∅, E1 = {01|23}, E2 = {02|13}, E3 = {03|12}.

�e respective orthants are, say,

OE0 = {(0, 0, 0) ∈ R3},
OE1 = {(a, 0, 0) ∈ R3 : a > 0},
OE2 = {(0, b, 0) ∈ R3 : b > 0},
OE3 = {(0, 0, c) ∈ R3 : c > 0}.

�ey are depicted in Figure 5.1.

Example 5.1.9 (BHV Space for N = 4). We have L0 = {0, 1, 2, 3, 4}. �en |E| = 2N −
N −2 = 10 and according to Billera et al. (2001, p.743) there are (2N −3)!! := 5 ·3 ·1 = 15

di�erent possible choices of compatible subsets E ⊂ E with |E| = N − 2 = 2. For
simplicity and presentability, we consider only the splits

e1 = 12|034, e2 = 012|34, e3 = 123|04, e4 = 124|03,
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Figure 5.1:�e BHV Space embedded in R3 via χ forN = 3, cf. Example 5.1.8. �e blue axes
are the orthantsOEk for k = 1, 2, 3. �e red point corresponds to the orthantOE0 = {0}. �e
pendant edges of the trees are in gray to indicate that they are not taken into account.

and the following compatible split sets,

E1 = {e1, e2}, E2 = {e1, e3}, E3 = {e1, e4}.

With, say, E = {e1, e2, e3, e4, e5, . . . , e10}, we have the following orthants,

OE1 = {(a, b, 0, 0, 0, . . . , 0) ∈ R10 : a, b > 0},
OE2 = {(a, 0, c, 0, 0, . . . , 0) ∈ R10 : a, c > 0},
OE3 = {(a, 0, 0, d, 0, . . . , 0) ∈ R10 : a, d > 0}.

�ey are depicted in Figure 5.2.

5.2 BHV Space with Pendant Edges

As already discussed in Remark 5.1.3, pendant edges can be added to B◦ by a Cartesian
product. De�ne the set of all pendant edges by

Epen :=
{
{u}|(L \ {u}) : u ∈ L0

}
.



78 Chapter 5 BHV Tree Space

a
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Figure 5.2: Part of the BHV Space for N = 4 embedded in R10 via χ, where only a three
dimensional slice is shown, cf. Example 5.1.9. �e planes are the three orthantsOE1 (red),OE2

(green) and OE3 (blue) �e blue axis is the orthant O{e1} and the red dot marks the star tree
0 ∈ R10. Furthermore, four trees are depicted with the topology of the respective orthant they
belong to. �e red line marks the shortest path between the respective endpoints, and note that
only due to the visualization the path appears to be a straight line.

For any split-based tree (E, λ) (cf. De�nition 4.2.4), we reparametrize the edge weights
λ ∈ (0, 1)E back to edge lengths ` ∈ (0,∞)E in a strictly monotonically increasing fashion
(in particular, one-to-one), for all e ∈ E, by

`e = − log(1− λe), (5.2.1)

and write (E, `) instead of (E, λ). �en, for any reparametrized split-based tree (E, `) with
Epen ⊂ E, the edges are divided into Eint = E \ Epen ⊂ E and Epen, and the edge lengths
` ∈ (0,∞)E are separated into `pen ∈ (0,∞)Epen and `int ∈ (0,∞)Eint accordingly.

De�nition 5.2.1. Denote the set of all reparametrized split-based trees (E, `) with Epen ⊂
E by B. Furthermore, de�ne the metric dB on B by (where T = (E, `) ∈ B, T ′ = (E ′, `′) ∈
B)

d2
B(T, T ′) = d2

B◦
(
(Eint, `int), (E

′
int, `

′
int)
)

+ ‖`pen − `′pen‖2
2.

�e BHV Space (B, dB) is the set B of all split-based trees

Note that B is the Cartesian product B◦ × (0,∞)Epen and its metric is a product of metrics
of the form as in Bridson & Hae�iger (1999, Part I, De�nition 5.1) and thus from Bridson
& Hae�iger (1999, Part II, Example 1.15, (3)) it follows that (B, dB) is also CAT(0). Finally,
geodesics in (B, dB) are just geodesics in (B◦, dB◦) coupled with straight line segments in
(0,∞)Epen .



Chapter 6

Wald Space of Phylogenetic Forests

Let N ∈ N be the number of labels with N ≥ 2, and de�ne L = {1, . . . , N}. Recall from
Chapter 4 the de�nitions of graph-based forests F = [V,E, `] (cf. De�nition 4.1.9) and split-
based forests F = (E, λ) (cf. De�nition 4.2.4), as well as their one-to-one correspondence
we established in �eorem 4.2.8. Furthermore, recall the maps ψ and φ (cf. Equation (4.4.3)
and Equation (4.4.4), respectively), that map graph-based forests and split-based forests
one-to-one to strictly positive de�nite forest correlation matrices, respectively (positive
de�niteness from �eorem 4.4.7). Recall further the manifold of strictly positive de�nite
matricesP from Section 2.2.1 and Chapter 3 with the topology inherited from the Euclidean
space, P ⊂ RN×N . In the following section, we de�ne the Wald Space.

6.1 Definition and Topology

De�nition 6.1.1. �e Wald Space is a topological space consisting of the set

W

of all split-based forests F = (E, λ) with labels L, equipped with the unique topology such
that the map φ : W → P is a homeomorphism onto its image. According to �eorem 4.4.7,
we use split-based forests F and graph-based forests F interchangeably and call an element
ofW a wald, in plural wälder. �e topologyE of a wald (E, λ) ∈ W is called wald topology.
Further, wälder that have the same topology E form a grove

GE =
{
F ′ = (E ′, λ′) ∈ W : E = E ′

}
.

79
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Remark 6.1.2. With E , the set of all wald topologies E = E1 ∪ . . . ∪ EK , i.e. each Eα
is a set of compatible splits of Lα, α = 1, . . . , K , satisfying De�nition 4.2.4, 1.-5., where
L1, . . . , LK runs over all partitions of L and 1 ≤ K ≤ N , the Wald Space can be bijectively
identi�ed with the disjoint union

W ∼=
⊔
E∈E

(0, 1)E.

Note that this is not a topological statement.

In order to explore the topology ofW , by de�nition we need to understand the topology
of the subset φ(W) ⊂ P . From �eorem 4.3.7 and by de�nition De�nition 4.4.1 of forest
correlation matrices, the image φ(W) is exactly the set of all forest correlation matrices.
�us by Proposition 4.4.2, φ(W) is characterized by algebraic equalities and inequalities
(namely (C1)-(C3) in Proposition 4.4.2), and we have the following corollary.

Proposition 6.1.3. φ(W) ⊂ P is a closed subset of P .

Proof. For any sequence P (k) ∈ φ(W) with limit P = (ρuv)
N
u,v=1 ∈ P , trivially, (C2) and

(C3), as well as (C4) are satis�ed. For (C1), trivially ρuu = 1 for u ∈ L, and for u, v ∈ Lwith
u 6= v, assume the contrary of (C1), namely suppose that ρuv = 1. �en by the triangle
inequalities (C4),(

ρus ≥ ρuvρvs = ρvs ∧ ρvs ≥ ρuvρus = ρus

)
=⇒ ρus = ρvs,

for all s ∈ L, so the two rows coincide and det(P ) = 0, a contradiction to P ∈ P . �us
ρuv < 1 for all u, v ∈ L with u 6= v, and (C1) holds true as well. As P satis�es (C1)-(C3)
from Proposition 4.4.2, we deduce that P ∈ φ(W). �

Proposition 6.1.4. Let E be the wald topology of a wald F = (E, λ) that is fully resolved
tree. �en the grove GE is open inW .

Proof. All matrices P ∈ φ(GE) are characterized by the fact that the matrix entries satisfy
the same equalities and the same strict inequalities (cf. Corollary 4.4.8). Fully resolved trees
are the highest dimensional forests (maximal number of edges) where each label is a leaf,
and thus φ(GE) is open in φ(W), i.e. GE is open inW . �

De�ne the completely disconnected wald F∞ to be F∞ = (E, λ) with E = ∅ and λ = (),
with partition L = {{u} : u ∈ L} accordingly. �is is the wald with K = N connected
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components, where each component is a single vertex u with u ∈ L. In particular, the unit
N × N matrix I = (δuv)u,v∈L ∈ P is the φ-image of F∞ ∈ W , i.e. φ(F∞) = I . We can
directly show another simple result that is due to the characterization of forest correlation
matrices.

Proposition 6.1.5. W is star shaped in the Euclidean sense of P ⊂ RN×N with respect to
F∞ and hence contractible.

Proof. Let F ∈ W with φ(F ) = P = (ρuv)
N
u,v=1 ∈ P satisfying (C1)-(C3) from Proposi-

tion 4.4.2. Recall that φ(F∞) = I and consider

P (x) = (ρ(x)
uv )Nu,v=1 = x I + (1− x)P,

and observe for all x ∈ [0, 1] that ρ(x)
uv ∈ [0, 1], further ρ(x)

uv = 1 ⇐⇒ u = v for all
u, v ∈ L, and that P (x) is symmetric. �us for all x ∈ [0, 1], P (x) satis�es (C1) and (C2)
from Proposition 4.4.2. Moreover, to see that P (x) satis�es (C3), we show that P (x) satis�es
Equation (4.4.2) for all choices of u, v, s, t ∈ L (and note thatP does satisfy Equation (4.4.2),
and we will use this fact everywhere). For pair-wise distinct u, v, s, t ∈ L, observe that

ρ(x)
uv ρ

(x)
st = (1− x)2ρuvρst ≥ (1− x)2 min{ρusρvt, ρutρvs} = min{ρ(x)

us ρ
(x)
vt , ρ

(x)
ut ρ

(x)
vs }.

In the case that two of the pair-wise distinct u, v, s, t ∈ L are equal, it is enough to verify
the cases, say, s = t and u = s. For s = t, so ρ(x)

st = 1 = ρst, it holds that

ρ(x)
uv ρ

(x)
st = (1− x)ρuvρst ≥ (1− x) min{ρusρvt, ρutρvs}

≥ (1− x)2 min{ρusρvt, ρutρvs} = min{ρ(x)
us ρ

(x)
vt , ρ

(x)
ut ρ

(x)
vs };

and for u = s, so ρ(x)
us = 1 = ρus we trivially �nd

ρ(x)
uv ρ

(x)
st = ρ(x)

vs ρ
(x)
st ≥ min{ρ(x)

vt , ρ
(x)
vs ρ

(x)
st } = min{ρ(x)

us ρ
(x)
vt , ρ

(x)
ut ρ

(x)
vs }.

If two or more pairs of the pair-wise distinct u, v, s, t ∈ L are equal, then Equation (4.4.2)
is trivially satis�ed.

We conclude that P (x) satis�es (C1)-(C3) from Proposition 4.4.2, so P (x) is a forest cor-
relation matrix for all x ∈ [0, 1], and by �eorem 4.3.7 the entire continuous path x 7→
P (x), [0, 1]→ P corresponds to a path F (x) := φ−1(P (x)) ∈ W , connecting F = F (0) with
F∞ = F (1) as asserted. �
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Remark 6.1.6. 1. For showing contractibility of the edge-product space the authors of
Moulton & Steel (2004, Proposition 5.1) contract to the same point.

2. All of the wälder F (x), for 0 ≤ x < 1 constructed in the proof of Proposition 6.1.5
have the same partition of labels into connected tree components, respectively, due
to ρuv 6= 0 ⇐⇒ (1− x)ρuv 6= 0 for all x ∈ [0, 1) for all u, v ∈ L.

3. For 0 < x < 1, P (x) satis�es unchanged, strict or non-strict four-point conditions
(C3), that may be di�erent, though, from those of P (0) = φ(F ). �us, F (x) are in the
same grove for all x ∈ (0, 1).

4. All triangle inequalities (C4) from Corollary 4.4.3 involving initial nonzero ρuv are
strict, however, for 0 < x < 1, so that for φ−1(P (x)) none of the leaves have degree
2. For example, starting with the wald consisting of a chain of three vertices with
N = 3 (so each vertex is labeled and the middle is of degree two), it is immediately
transformed into a fully resolved tree (and stays one for all x ∈ (0, 1)).

De�nition 6.1.7. Let E be a wald topology.

1. We identify a grove GE of a wald F = (E, λ) with topology E with the open cube

GE = {F = (E, λ) ∈ W : λ ∈ (0, 1)E} ∼= (0, 1)E . (6.1.1)

2. We denote the restriction of φ : W → P from Equation (4.4.3) to a grove GE by
φE : GE → P such that

φE : (0, 1)E → P , λ 7→ φE(λ) := φ(E, λ) = (ρuv)
N
u,v=1, (6.1.2)

such that

ρuv =



∏
e∈E(u,v)

(1− λe), if u 6= v connected,

1, if u = v,

0, else.

(6.1.3)

3. �e continuation of φE from Equation (6.1.2) onto all of RE is denoted by

φ̄E : RE → S, λ 7→ (ρuv)
N
u,v=1, (6.1.4)
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where

ρuv =



∏
e∈E(u,v)

(1− λe), if u 6= v connected,

1, if u = v,

0, else.

(6.1.5)

Note that although the formulas are the same, for sake of completeness we have repeated
them here in detail. Furthermore, note that the continuation φ̄E is multivariate real ana-
lytic. �e properties of φE are summarized in the following theorem, which thereby char-
acterize each grove.

�eorem 6.1.8. Let E be a wald topology.

1. �e inverse of φE : (0, 1)E → P for a forest correlation matrix P = (ρuv)
N
u,v=1 ∈

φE(GE) is given by
φ−1
E (P ) = λ,

with
λe = 1− max

u,v∈A
s,t∈B

√
ρutρvs
ρuvρst

, for all e = A|B ∈ E .

2. �e derivative of φE has full rank |E| throughout (0, 1)E ,

3. �e map φE : (0, 1)E → P is a smooth embedding.

Proof. For the �rst assertion consider e = A|B, where A ∪ B = Lα, for some 1 ≤ α ≤ K

and where L1, . . . , LK is the leaf partition induced by E. Let D = (duv)
N
u,v=1 be the forest

distance matrix corresponding to P (cf. De�nition 4.3.1 and De�nition 4.4.1). �en, by
Corollary 4.3.4, the matrix entries duv = − log ρuv (u, v ∈ Lα) de�ne a metric on Lα. For
such a metric, Buneman (1971, Lemma 8) asserts that one can assign a graph-based tree
representative (Vα,Eα, `

α) where

`αe = min
u,v∈A
s,t∈B

1

2

(
dut + dvs − duv − dst

)
, (6.1.6)

which is uniquely determined by Buneman (1971, �eorem 2). Due to our uniqueness
results from �eorem 4.2.8 and �eorem 4.3.7, due to Equation (4.2.7), λe = 1− exp(−`αe )

and thus from Equation (6.1.6) and by ρuv = exp(−duv),

λe = 1− exp

(
− min

u,v∈A
s,t∈B

1

2

(
dut + dvs − duv − dst

))
= 1− max

u,v∈A
s,t∈B

√
ρutρvs
ρuvρst

.
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For the second assertion, let e ∈ E and suppose that F = (E, λ) with label partition
L = {L1, . . . , LK}, 1 ≤ K ≤ N . Using Equation (6.1.3), for any u, v ∈ L, if either u = v

or u ∈ Lα, v ∈ Lα′ with α 6= α′, then(
∂φE
∂λe

(λ)

)
uv

= 0 .

Else, if u, v ∈ Lα for some 1 ≤ α ≤ K , then ρuv > 0 and with the Kronecker delta δ,(
∂φE
∂λe

(λ)

)
uv

= −δe∈E(u,v)

∏
ẽ∈E(u,v)
ẽ 6=e

(
1− λẽ

)
= − ρuv

1− λe
δe∈E(u,v) , (6.1.7)

�us, for every x ∈ RE , we have for the di�erential of φE ,(
(dφE)λ(x)

)
uv

= −ρuv
∑
e∈E

xe
1− λe

δe∈E(u,v) ,

so that
(
(dφE)λ(x)

)
uv

= 0 implies for all u, v ∈ Lα, for each α = 1, . . . , K ,

0 =
∑

e∈E(u,v)

xe
1− λe

=: d′uv. (6.1.8)

We now view each of the `′e := xe
1−λe , e ∈ E as a real valued “length” of e. With the

corresponding graph-based forest topology [V,E] corresponding to E, for every e ∈ E

there are v1, v2 ∈ Vα with suitable 1 ≤ α ≤ K such that e corresponds to {v1, v2} ∈ Eα.
In particular, since (Vα,Eα) is a tree, there are u, v, s, t ∈ Lα (not necessarily all of them
distinct), such that

`′e =
1

2

(
d′uv + d′st − d′ut − d′vs

)
.

As the r.h.s. is zero due to Equation (6.1.8), it follows that xe = 0, yielding that (dφE)λ has
full rank, as asserted.

�e third assertion follows directly from 1. and 2., i.e. φE is bijectively smooth onto its
image and its di�erential is injective. �

Having characterized each grove, we are interested in what happens with φ̄E if λ ∈ (0, 1)E

converges to the boundary of the cube. �e next result characterizes exactly under which
conditions φ̄E(λ) stays in the image of Wald Space under φ, i.e. φ(W).
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Lemma 6.1.9. LetE be a wald topology and λ∗ ∈ ∂([0, 1]E) with φ̄E(λ∗) = (ρ∗uv)
N
u,v=1 ∈ S .

�en

φ̄E(λ∗) ∈ φ(W) ⇐⇒ φ̄E(λ∗) ∈ P ⇐⇒ ρ∗uv < 1 for all u, v ∈ L with u 6= v.

Proof. For the �rst equivalence, by Proposition 6.1.3 φ(W) is closed in P and by continuity
of φ̄E , φ̄E(λ∗) is a limit of matrices φ̄E(λ(n)) = φE(λ(n)) ∈ φ(W), so φ̄E(λ∗) ∈ φ(W) ⇐⇒
φ̄E(λ∗) ∈ P .

For the second equivalence, if φ̄E(λ∗) ∈ φ(W) then by (C1) of Proposition 4.4.2, for all
u, v ∈ L, ρ∗uv = 1 ⇐⇒ u = v.

For the other direction, suppose that ρ∗uv < 1 for all u, v ∈ L with u 6= v. Again, by con-
tinuity of φ̄E , φ̄E(λ∗) is a limit of matrices φ̄E(λ(n)) = φE(λ(n)) and thus φ̄E(λ∗) satis�es
(C2), (C3) of Proposition 4.4.2, as well as ρ∗uu = 1 for u ∈ L. Now, since ρ∗uv < 1 for all
u, v ∈ L with u 6= v, we have ρ∗uv = 1 ⇐⇒ u = v, so (C1) is also satis�ed and thus
φ̄E(λ∗) ∈ φ(W). �

So, as long as all o�-diagonal entries are strictly less than one, or equivalently, as long as
the matrix is strictly positive de�nite, we stay in the image of the Wald Space under φ.
Accordingly, we de�ne the boundary of groves which is by Lemma 6.1.9 well-de�ned.

De�nition 6.1.10. Let E be a wald topology. �e boundary of the grove GE is de�ned by

∂GE :=
{
F = φ−1

(
φ̄E(λ∗)

)
: λ∗ ∈ ∂([0, 1]E), φ̄E(λ∗) ∈ P

}
⊂ W . (6.1.9)

Accordingly, de�ne GE := GE ∪ ∂GE .

�e following result gives a �rst glimpse on how di�erent groves are connected through
the convergence of wälder.

�eorem 6.1.11. Consider a sequence of wälder (Fn)n∈N ⊂ W , such that Fn → F ′ ∈ W ,
where Fn = (En, λ

(n)), n ∈ N, F ′ = (E ′, λ′). �en there is a subsequence nk, k ∈ N, and a
common topology E such that Enk = E for all k ∈ N. Furthermore

1. λ(nk) has a cluster point λ∗ ∈ [0, 1]E ,

2. and φ(F ′) = φ̄E(λ∗) for every of such cluster point λ∗ ∈ [0, 1]E ,

3. and F ′ ∈ ∂GE whenever E 6= E ′.

Proof. For the �rst assertion, as there are only �nitely many wald topologies, there needs to
exist a subsequence (Fnk)k∈N ⊂ (Fn)n∈N with Enk = E for some topology E for all k ∈ N,
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and thus, since Fnk ∈ GE ∼= (0, 1)E , there exists λ(nk) ∈ (0, 1)E with φE(λ(nk)) = φ(Fnk)

for all k ∈ N.

For 1., by Bolzano-Weierstraß, there needs to exist a cluster point λ∗ ∈ [0, 1]E of (λ(nk))k∈N.

For 2., for any cluster point λ∗ ∈ [0, 1]E , from the continuity of φ̄E , φ̄E(λ∗) is a cluster
point of (φ(Fn))n∈N and by Fn → F ′ we �nd φ(Fn)→ φ(F ′) and thus φ̄E(λ∗) = φ(F ′).

For 3., let λ∗ ∈ [0, 1]E be a cluster point. If λ∗ ∈ (0, 1)E then F ′ ∈ GE and E = E ′,
a contradiction. �us λ∗ ∈ ∂([0, 1]E), and due to φ̄E(λ∗) = φ(F ′) ∈ P , the assertion
follows. �

�eorem 6.1.11 proves that whenever a sequence of wälder Fn ∈ GE converges Fn → F ′ ∈
W topology E ′ and F ′ /∈ GE , then F ′ ∈ ∂GE . In this sense we have found a relationship
between E ′ and E. In the following section we make this relationship precise and un-
ravel the boundary correspondences via a partial ordering on wald topologies, which was
introduced in De�nition 4.2.12.

6.2 At Grove’s End

In the following theorem, we characterize the boundaries of groves via the partial ordering
on wald topologies (cf. De�nition 4.2.12).

�eorem 6.2.1. For wald topologiesE andE ′, the following three statements are equivalent,
where the boundary of groves ∂GE is as de�ned in Equation (6.1.9):

(i) E ′ < E,

(ii) GE′ ⊂ ∂GE ,

(iii) GE′ ∩ ∂GE 6= ∅.

Proof. Let E have label partition L = {L1, . . . , LK}.
“(i) =⇒ (ii)”. Assume that F ′ = (E ′, λ′) ∈ GE′ with partition L′ = {L′1, . . . , L′K′}. By
assumptionE ′ < E, and we can use the sets from De�nition 4.2.15 as well as Lemma 4.2.16.
Using Lemma 4.2.16, (ix), set

λ∗e :=


0 e ∈ Rdis

1 e ∈ Rcut

1−
(
1− λ′e′

)1/|Re′ | e ∈ Re′ , e
′ ∈ E ′
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to obtain λ∗ ∈ [0, 1]E , and note that λ∗ ∈ ∂([0, 1]E) since Rcut ∪ Rdis 6= ∅ due to E ′ < E

by Lemma 4.2.16, (v). By injectivity of φ, it su�ces to show (∗) (in this case, F ′ ∈ ∂GE):

(
ρ∗uv
)N
u,v=1

:= φ̄E(λ∗)
(∗)
= φ(F ′) =:

(
ρ′uv
)N
u,v=1

∈ P .

First, observe that by Equation (6.1.5) for all u ∈ L,

ρ∗uu = 1 = ρ′uu .

Next, again from Equation (6.1.5), for all u, v ∈ L with u 6= v that are not connected in F ′,
say u ∈ L′α′1 , v ∈ L′α′2 for some α′1, α′2 ∈ {1, . . . , K ′}, we have ρ′uv = 0. If u and v are also
not connected in E, then ρ∗uv = 0 = ρ′uv. Assume now that u and v are connected in E.
�en, by Lemma 4.2.16, (xi), there exists an edge A|B = e ∈ Rcut with u ∈ A and v ∈ B,
and due to λ∗e = 1 by construction, ρ∗uv = 0 = ρ′uv.

Finally, for all u, v ∈ L that are connected in F ′, we have, due to construction and Lemma
4.2.16, (x),

ρ∗uv =
∏

e∈E(u,v)

(
1− λ∗e

)
=

( ∏
e∈Rdis∩E(u,v)

(
1− λ∗e

))( ∏
e′∈E′(u,v)

∏
e∈Re′

(
1− λ′e′

)1/|Re′ |
)

=
∏

e′∈E′(u,v)

(
1− λ′e′

)
= ρ′uv .

�us, we have shown φ(F ′) = φ̄E(λ∗).

“(ii) =⇒ (iii)” is trivial.

“(iii) =⇒ (i)”. Let F ′ = (E ′, λ′) ∈ GE′ ∩ ∂GE , i.e. there exists λ∗ ∈ ∂([0, 1]E) with
φ̄E(λ∗) = φ(F ′) ∈ P . In the following, we will construct a wald F ◦ = (E◦, λ◦) and show
that

Claim I: E◦ < E, and

Claim II: φ(F ◦) = φ(F ′), implying F ◦ = F ′ and E◦ = E ′,

which, in conjunction, yield E ′ < E.
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Let φ̄E(λ∗) = (ρ∗uv)
N
u,v=1. Denote the connectivity classes of L, where u, v ∈ L are con-

nected if and only if ρ∗uv > 0, by

L◦ = {L◦1, . . . , L◦K◦},

with 1 ≤ K◦ ≤ N . By Equation (6.1.5), if ρ∗uv > 0 for u 6= v, it follows that u, v ∈ Lα

for some 1 ≤ α ≤ K and therefore also ρuv > 0 by Equation (6.1.3). So ρ∗uv > 0 implies
ρuv > 0, and we have thatL◦1, . . . , L◦K◦ is a re�nement ofL1, . . . , LK by Lemma 4.2.16, (xii).

De�ne E◦ by se�ing for each 1 ≤ α◦ ≤ K◦ (where, say, L◦α◦ ⊂ Lα for some 1 ≤ α ≤ K)

E◦α◦ :=
{
e
∣∣
L◦
α◦

: e ∈ E, if e
∣∣
L◦
α◦

exists and λ∗e 6= 0
}
, (6.2.1)

and consequently E◦ :=
⋃
α◦ E

◦
α◦ . To verify that E◦ is a wald topology, by Lemma 4.2.16

(vii), eachE◦α◦ comprises of compatible splits. We need to check De�nition 4.2.4, 5. For any
labels u, v ∈ L◦α◦ ⊂ Lα, since E is a wald topology, there exists an edge e = A|B ∈ Eα
with u ∈ A and v ∈ B, and any such edge yields a valid split e◦ = A◦|B◦ = e

∣∣
L◦
α◦

with
u ∈ A◦|B◦. Suppose for any split e ∈ E such that e◦ = e

∣∣
L◦
α◦

it holds that λ∗e = 0. �en,
by Equation (6.1.5), we had that ρ∗uv = 1, so by Lemma 6.1.9 φ̄E(λ∗) /∈ P , a contradiction.
�us there exists at least one edge e◦ ∈ E◦ separating u and v. We conclude that E◦ is a
wald topology. Furthermore, the restriction property is satis�ed trivially.

Verifying the cut property, suppose there exist 1 ≤ α◦1 6= α◦2 ≤ K◦ and 1 ≤ α ≤ K such
that L◦α◦1 , L

◦
α◦2
⊂ Lα. Hence by construction

ρ∗us = 0, ρ∗uv > 0 and ρ∗st > 0 for all u, v ∈ L◦α1
and s, t ∈ L◦α2

. (6.2.2)

Let now u ∈ L◦α◦1 and s ∈ L◦α◦2 , then by Equation (6.1.5), ρ∗us =
∏

e∈E(u,s)(1 − λ∗e) = 0, so
there must exist e = A|B ∈ E(u, s) with λ∗e = 1. �is implies L◦α◦1 ⊆ A and L◦α◦2 ⊆ B, for
otherwise, if A 63 v ∈ L◦α◦1 , say, then v ∈ B and hence e ∈ E(u, v) by De�nition 4.2.10, so
ρ∗uv = 0, due to λ∗e = 1, a contradiction to Equation (6.2.2). �us the cut property holds.

Having veri�ed all of the properties from De�nition 4.2.12, we have shown E◦ ≤ E, and
we can use the notation introduced in De�nition 4.2.15 and Lemma 4.2.16 is applicable for
E◦ ≤ E. Since λ∗ is on the boundary, there must be some e ∈ E with either λ∗e = 1 >

λe > 0 or all λ∗e < 1 and there is λ∗e = 0 < λe. In the �rst case, e ∈ Rcut, in the second case
e ∈ Rdis, so that in both cases E◦ 6= E by Lemma 4.2.16, (v), yielding E◦ < E, which was
Claim I.
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In order to see Claim II we de�ne suitable edge weights λ◦. Let 1 ≤ α◦ ≤ K◦ be arbitrary
and let 1 ≤ α ≤ K be such that L◦α◦ ⊆ Lα. For each e◦ ∈ E◦α◦ , de�ne

λ◦e◦ := 1−
∏
e∈Re◦

(
1− λ∗e

)
. (6.2.3)

Indeed, λ◦e◦ ∈ (0, 1), since by Lemma 4.2.16 (ix), none of the e ∈ Re◦ lie in Rcut, we have
λ∗e < 1, and by Equation (6.2.1) and Lemma 4.2.16 (iii) there exists e ∈ Re◦ with λ∗e > 0.
�us F ◦ := (E◦, λ◦) is a well de�ned wald.

We now show the �nal part of Claim II, namely that φ(F ′) = φ(F ◦). Recall that φ(F ◦) =

φ̄E(λ∗) = (ρ∗uv)
N
u,v=1 and let φ(F ◦) = (ρ◦uv)

N
u,v=1. By Equation (6.1.5), for all u ∈ L we have

ρ∗uu = 1 = ρ◦uu and by de�nition of the connectivity classes L◦1, . . . , L◦K◦ we have ρ∗uv = 0

if and only if ρ◦uv = 0 for all u, v ∈ L.

For all other u, v ∈ L, we may assume that u, v ∈ L◦α◦ with L◦α◦ ⊆ Lα for some 1 ≤ α◦ ≤
K◦ and 1 ≤ α ≤ K . By Lemma 4.2.16 (vii), the sets Rdis ∩E(u, v) in conjunction with Re◦

for all e◦ ∈ E◦(u, v) form a partition of E(u, v). For the �rst set we have

e ∈ Rdis ∩ E(u, v) =⇒ λ∗e = 0 . (6.2.4)

Indeed, if e ∈ Rdis ∩ E(u, v) then the restriction e◦ := e
∣∣
L◦
α◦

is a valid split as it splits L◦α◦
into two non empty sets. But as e ∈ Rdis this split does not exist in E◦ which, taking into
account Equation (6.2.1), is only possible for λ∗e = 0.

In consequence, we have (the �rst and the last equality are the de�nitions, respectively, the
second uses that Rdis ∩E(u, v) and Re◦ , e◦ ∈ E◦(u, v) partition E(u, v) and the third uses
for the �rst factor (6.2.4) and (6.2.3) for the second factor)

ρ∗uv =
∏

e∈E(u,v)

(
1− λ∗e

)
=

( ∏
e∈Rdis∩E(u,v)

(
1− λ∗e

)
︸ ︷︷ ︸

=1

)( ∏
e◦∈E◦(u,v)

∏
e∈Re◦

(
1− λ∗e

)
︸ ︷︷ ︸

=1−λ◦
e◦

)

=
∏

e◦∈E◦(u,v)

(
1− λ◦e◦

)
= ρ◦uv,

completing the proof. �
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Corollary 6.2.2. Let E be a wald topology. �en

∂GE =
⋃
E′<E

GE′ . (6.2.5)

Corollary 6.2.3. Let E be a wald topology and let (Fn)n∈N ⊂ GE ⊂ W be a sequence of
wälder such that Fn → F ′ ∈ W for some wald F ′ ∈ W with wald topologyE ′. �enE ′ ≤ E.

Proof. Either E ′ = E or by �eorem 6.1.11, 3., F ′ ∈ ∂GE , which, in turn, implies by
�eorem 6.2.1 that ∂GE ∩ GE′ 6= ∅, so E ′ < E. In both cases, we �nd E ′ ≤ E. �

6.3 Stratification

�eorem 6.3.1. Wald Space with the smooth structure on every grove GE conveyed by φE , is
a Whitney strati�ed space of type (A).

Proof. First, we show thatW is a strati�ed space. Let E be a wald topology with |E| = i

for some i = 0, . . . , 2N − 4. In the case that the topology of the graph-based forest repre-
sentative corresponding to E has more than one connected component, one can connect
two of the components by inserting an edge connecting two labeled vertices to obtain a
new graph-based forest representative and thus wald topologyE ′, and asE is displayed by
E ′ in the sense of Moulton & Steel (2004), we have E < E ′ and |E ′| = i + 1. In the case
that E has only one component, and since i < 2N − 3, one can add another compatible
split to obtain a new wald topology E ′ with |E ′| = i+ 1.

We conclude that for any E with |E| = i there exists E ′ with |E ′| = i + 1 and E < E ′,
and by �eorem 6.2.1, GE ⊂ GE′ . As E was arbitrary with |E| = i, we have that Si ⊂ Si+1

and thus for any i < j that Si ⊂ Sj as required.

For Whitney condition (A), let F1, F2, · · · ∈ Sj be a sequence of wälder that converges to
some wald F ′ ∈ Si, so i < j, and such that TFnSj ⊂ S converges to a j-dimensional plane
T ⊂ S as n→∞ (in the Grassmannian G(dim(S), j)).

First of all, we can assume without loss of generality that F1, F2, · · · ∈ GE for some wald
topology E with |E| = j since Sj is a disjoint union of �nitely many groves, and by
Corollary 6.2.3 we have that Fn → F ′ ∈ GE′ implies F ′ ∈ GE′ , and furthermore, without
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loss of generality that Fn = φE(λ(n)), where λ(n) ∈ (0, 1)E , n ∈ N, with λ(n) → λ∗ ∈
[0, 1]E satisfying φ(F ′) = φ̄E(λ∗) (by taking subsequences accordingly). �en, using

TFnGE = span

{
∂φ̄E
∂λe

(
λ(n)

)
: e ∈ E

}
⊂ S,

and using Lemma 2.6.1, we �nd

span

{
∂φ̄E
∂λe

(
λ∗
)

: e ∈ E
}

= span

{
lim
n→∞

∂φ̄E
∂λe

(
λ(n)

)
: e ∈ E

}
⊂ lim

n→∞
span

{
∂φ̄E
∂λe

(
λ(n)

)
: e ∈ E

}
= T.

�erefore, showing that (∗) holds in

TF ′GE′ := span

{
∂φE′

∂λ′e′
(λ′) : e′ ∈ E ′

}
(∗)
⊂ span

{
∂φ̄E
∂λe

(
λ∗
)

: e ∈ E
}
⊂ T

would yield the assertion. We will show (∗) by showing that for each e′ ∈ E ′, there exists
a constant c > 0 and an edge e ∈ E such that

∂φE′

∂λ′e′
(λ′) = c

∂φ̄E
∂λe

(λ∗).

Recall from Equation (6.1.3) and Equation (6.1.5), respectively, the uv-th matrix entry of φ̄E
and φE′ for connected u, v, (

φ̄E(λ∗)
)
uv

=
∏

e∈E(u,v)

(
1− λ∗e

)
,(

φE′(λ
′)
)
uv

=
∏

e′∈E′(u,v)

(
1− λ′e′

)
,

and we calculate their partial derivatives, where the symbol 1 is the indicator function:(
∂φ̄E
∂λe

(λ∗)

)
uv

= −1e∈E(u,v)

∏
ẽ∈E(u,v)
ẽ 6=e

(
1− λ∗ẽ

)
,

(
∂φE′

∂λ′e′
(λ′)

)
uv

= −1e′∈E′(u,v)

∏
ẽ′∈E′(u,v)
ẽ′ 6=e′

(
1− λ′ẽ′

)
.
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�e relationship between F ′ and φ̄E(λ∗) as derived in the “(iii)⇒ (i)” part in the proof of
�eorem 6.2.1 holds true here as well, in particular Equation (6.2.1)

E ′α′ =
{
e′ : e ∈ E, e′ := e

∣∣
L′
α′

is a valid split of L′α′ and λ∗e 6= 0
}

and for each e′ ∈ E ′ from Equation (6.2.3),

λ′e′ = 1−
∏
e∈Re′

(1− λ∗e) 6= 0. (6.3.1)

Consequently, by Lemma 4.2.16 (iii), for any e′ ∈ E ′α′ there exists e ∈ Re′ with λ∗e 6= 0. Let
u, v ∈ L be arbitrary.

1. Assume e /∈ E(u, v). By Lemma 4.2.16 (vii), e′ = e
∣∣
L′
α′
/∈ E ′(u, v) and thus

(
∂φE′

∂λ′e′
(λ′)

)
uv

= 0 =

(
∂φ̄E
∂λe

(λ∗)

)
uv

.

2. Assume e ∈ E(u, v). �en there are two cases:

a) e′ /∈ E ′(u, v). On the one hand, this implies
(∂φE′
∂λ′

e′
(λ′)
)
uv

= 0, on the other
hand either u /∈ L′α′ or v /∈ L′α′ , implying

0 =
(
φE′(λ

′)
)
uv

=
(
φ̄E(λ∗)

)
uv

def
=

∏
ẽ∈E(u,v)

(
1− λ∗ẽ

)
,

so λ∗ẽ = 1 for some ẽ ∈ E(u, v) with ẽ 6= e, which implies(
∂φ̄E
∂λe

(λ∗)

)
uv

= 0 =

(
∂φE′

∂λ′e′
(λ′)

)
uv

.

b) e′ ∈ E ′(u, v). In this case by Lemma 4.2.16 (vii), Re′ ⊂ E(u, v) and we have(
∂φE′

∂λ′e′
(λ′)

)
uv

= −
∏

ẽ′∈E′(u,v)
ẽ′ 6=e′

(
1− λ′ẽ′

)
= −

∏
ẽ∈E(u,v)
ẽ /∈Re′

(
1− λ∗ẽ

)
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and furthermore,(
∂φ̄E
∂λe

(λ∗)

)
uv

= −
∏

ẽ∈E(u,v)
ẽ6=e

(
1− λ∗ẽ

)

= −
( ∏
ẽ∈Re′
ẽ6=e

(
1− λ∗ẽ

))( ∏
ẽ∈E(u,v)
ẽ /∈Re′

(
1− λ∗ẽ

))

=

( ∏
ẽ∈Re′
ẽ 6=e

(
1− λ∗ẽ

))(∂φE′
∂λ′e′

(λ′)

)
uv

,

where the �rst factor (call it c) does not depend on u and v and must be non-zero
by Equation (6.3.1).

From all these cases, we �nd

∂φE′

∂λ′e′
(λ′) = c

∂φ̄E
∂λe

(λ∗),

concluding the proof. �

Having Whitney condition (A), this later allows for interpreting Wald Space as a Riemann
strati�ed space.





Chapter 7

Geometries for Wald Space

In Chapter 6, the Wald Space is introduced, that is a topological space W with topology
inherited from embedding it into the manifold of strictly positive de�niteN×N symmetric
matricesP via φ : W → P . In this chapter, we de�ne a general framework on how to obtain
a metric on W via choosing a Riemannian metric on P and state some general results.
Recall the de�nitions of Riemannian manifolds, Riemannian metrics in De�nition 2.3.1 and
the Riemannian distance in De�nition 2.3.5. Furthermore, recall the concept of an induced
intrinsic metric and lengths of curves in metric spaces (Lemma 2.1.3).

7.1 General Results for Geometries on Wald Space

If g is a Riemannian metric on P , we construct a length space (W , d∗g) by �rst taking the
induced intrinsic metric d∗g with respect to the metric space (φ(W), dg), where dg is the
Riemannian distance on (P , g), and then pull-back this construction toW via φ. But one
has to be cautious with the topologies: the topology induced by the metric space (φ(W), d∗g)

might not necessarily be the same (it can be �ner) as the topology induced by (φ(W), dg),
and thus the metric space (W , d∗g) can carry a topology that is �ner than the topology of
the Wald Space. However, we show that this is not the case.

Lemma 7.1.1. Let g be a Riemannian metric on P and let E be a wald topology. For any
point P ∈ φ(GE) with P = φ̄E(λ) for some λ ∈ [0, 1]E there exists a compact neighborhood
U ⊂ RE of λ with φ̄E(U) ⊂ P and a constant c > 0 such that for all λ′ ∈ U it holds that

d∗g
(
P, φ̄E(λ′)

)
≤ c‖λ− λ′‖2.

Proof. First of all, since φ̄E is continuous, P ⊂ S is open and φ̄E(λ) ∈ P , there must exist
an open neighborhoodU ′ ⊂ RE around λ such that φ̄E(λ′) ∈ P for all λ′ ∈ U ′. LetU ⊂ U ′

95
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be a compact and convex set and ε > 0 with Bε = {x ∈ RE : ‖x‖2 ≤ ε} such that for any
λ′ ∈ U , we have λ′ +Bε ⊂ U ′. �en, for any λ′ ∈ U and x ∈ Bε the function

fλ′(x) = d2
g

(
φ̄E(λ′), φ̄E(λ′ + x)

)
is well-de�ned and smooth. Note that fλ′(0) = 0 and furthermore

f ′λ′(0) = 2dg
(
φ̄E(λ), φ̄E(λ+ x)

)
grad dg

(
φ̄E(λ), φ̄E(λ+ ·)

)∣∣
x=0

= 0,

and thus using the Taylor expansion of f at x = 0 yields fλ′(x) = O(‖x‖2
2) in particular

fλ′(x) ≤ c2
λ′‖x‖2

2 for some constant cλ′ > 0 depending on λ′, for all x ∈ Bε.

Let λ′ ∈ U be arbitrary and setQ = φ̄E(λ′). Furthermore, denote the straight line segment
from λ to λ′ by

γ : [0, 1]→ U, γ(t) = λ+ t(λ′ − λ),

where l is well-de�ned as U is convex, and observe that ‖γ(t′)− γ(t)‖2 = |t′− t|‖λ′−λ‖2

for all t, t′ ∈ [0, 1]. Finally, note that c := supλ′∈U cλ′ <∞ asU is compact. By de�nition of
the induced intrinsic metric (cf. Lemma 2.1.3), we can bound d∗g from above by plugging in
the curve φ̄E ◦γ instead of taking the in�mum over all continuous paths connecting P and
Q. �is yields, where for t0 < t1 < . . . < tn in the supremum, we can assume without loss
of generality that n ∈ N is large enough and ‖γ(ti+1)− γ(ti)‖2 = (ti+1− ti)‖λ′−λ‖2 ≤ ε

for all i = 0, . . . , n− 1,

d∗g(P,Q) = d∗g
(
φ̄E(λ), φ̄E(λ′)

)
≤ sup

t0<t1<...<tn
t0=0,tn=1

n∈N

n−1∑
i=0

dg
(
φ̄E
(
γ(ti)

)
, φ̄E

(
γ(ti+1)

))

= sup
t0<t1<...<tn
t0=0,tn=1

n∈N

n−1∑
i=0

(
fγ(ti)

(
γ(ti+1)− γ(ti)

))1/2

≤ sup
t0<t1<...<tn
t0=0,tn=1

n∈N

n−1∑
i=0

cγ(ti) (ti+1 − ti) ‖λ′ − λ‖2

≤ c‖λ′ − λ‖2.

We conclude the assertion. �



7.1 General Results for Geometries on Wald Space 97

Proposition 7.1.2. If g is a Riemannian metric on P , the topologies of the metric spaces
(φ(W), dg) and (φ(W), d∗g) agree.

Proof. By de�nition we have that d∗g ≥ dg, which implies that sequences that converge with
respect to d∗g also converge with respect to dg. For the other direction, let (Pn)n∈N ⊂ φ(W)

be a sequence that converges to P ∈ φ(W) with respect to dg, i.e. dg(P, Pn) → 0 as
n → ∞. Using that the topology of the Wald Space is by de�nition the one induced by
(φ(W), dg), we can apply �eorem 6.1.11 to �nd a subsequence nk, k ∈ N, and a wald
topology E, such that there are wälder Fnk = (E, λ(k)) ∈ W with φ̄E(λ(k)) = Pnk for all
k ∈ N and such that λ(k) → λ∗ for some λ∗ ∈ [0, 1]E and φ̄E(λ∗) = P . By Lemma 7.1.1,

d∗g(P, P
(k)) ≤ c‖λ∗ − λ(k)‖2 → 0, as k →∞.

�

�e following result is a direct consequence of Proposition 7.1.2 and Burago et al. (2001,
Proposition 2.3.12).

Proposition 7.1.3. Let g be a Riemannianmetric onP . �en any continuous curve γ : [0, 1]→
φ(W) in (φ(W), dg) is continuous in (φ(W), d∗g) and vice versa, and Ldg(γ) = Ld∗g(γ).

Another practical result is the following consequence of Lemma 7.1.1.

Lemma7.1.4. Let g be a Riemannianmetric onP and letE be awald topology. Let γ : [0, 1]→
[0, 1]E be a continuous curve and assume that φ̄E ◦ γ : [0, 1]→ φ̄E(GE) ⊂ P is well-de�ned.
�en, if γ has �nite length measured with respect to the Euclidean distance on [0, 1]E , the
continuous curve φ̄E ◦ γ has �nite length measured in (φ(W), d∗g) and (φ(W), dg).

Proof. Denote the length of γ with respect to the Euclidean distance on [0, 1]E by L. Use
Lemma 7.1.1 and the fact that without loss of generality for the supremum we can assume
that ‖γ(ti)− γ(ti+1)‖ < ε for all i = 0, . . . , n− 1, for any ε > 0, and we obtain

Ldg(φ̄E ◦ γ) = Ld∗g(φ̄E ◦ γ) ≤ sup
t0<t1<...<tn
t0=0,tn=1

n∈N

n−1∑
i=0

dg

(
φ̄E
(
γ(ti)

)
, φ̄E

(
γ(ti+1)

))

≤ sup
t0<t1<...<tn
t0=0,tn=1

n∈N

n−1∑
i=0

cγ(ti)

∥∥γ(ti)− γ(ti+1)
∥∥

2

≤ cL,
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where c = supγ(t)∈[0,1] cγ(t) < ∞ as the supremum is taken over a compact set. So in
particular, Ldg(φ̄E ◦ γ) ≤ cL <∞ by assumption, which yields the assertion. �

In particular, we have the following useful result.

Proposition 7.1.5. Let g be a Riemannian metric on P . For any two points P,Q ∈ φ(W)

there exists a continuous path connecting them with �nite length with respect to dg. In partic-
ular, d∗g(P,Q) <∞ for all P,Q ∈ φ(W).

Proof. Any point P ∈ φ(W) corresponds to a wald F ∈ GE for some wald topology E
with P = φE(λ) for some λ ∈ (0, 1)E . �e straight line segment in [0, 1]E from λ to the
vector 1 ∈ [0, 1]E that has ones in each coordinate, where φ̄E(1) = I ∈ P , the unit matrix,
yields a continuous curve γ : [0, 1] → [0, 1]E that has �nite Euclidean length. �erefore,
using Lemma 7.1.4, the continuous curve φ̄E◦γ connects P and I and has �nite length with
respect to dg and d∗g. �us, for arbitrary points P,Q ∈ φ(W), take the paths connecting
them with I , respectively, and concatenate them, yielding a path from P to Q with �nite
length.

For the second assertion, denote this path by γ̃. �en, d∗g(P,Q) ≤ Ldg(γ̃) < ∞ yields the
assertion. �

To conclude, Proposition 7.1.2 justi�es the following de�nition, where we use that φ is
injective (cf. Corollary 4.4.8).

De�nition 7.1.6. Let g be a Riemannian metric on P inducing the Riemannian distance
dg on P . �e Wald Space equipped with metric induced by g is the metric space (W , d̃g)

de�ned by
d̃g(F, F

′) := d∗g(φ(F ), φ(F ′))

for all F, F ′ ∈ W , where d∗g is the induced intrinsic metric from (φ(W), dg).

Remark 7.1.7. First of all, note that the Wald Space from De�nition 6.1.1 is a topological
space and Proposition 7.1.2 ensures that the topology induced by d̃g is the same as the
topology of the Wald Space.

Second, we could have started with just a metric d on P instead of the Riemannian man-
ifold structure and assumed that the topologies of (φ(W), d) and (φ(W), d∗) agree, and
we would still have obtained a well-de�ned Wald Space equipped with a metric. However,
the Riemann exponential and logarithm will prove to be very useful for designing numer-
ical algorithms that compute approximated geodesics on (W , d∗g). �at is why from the
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very beginning, we use a Riemannian manifold structure on P . And as we have seen in
Chapter 3, there exist several of Riemannian metrics on P to choose from.

For the next theorem, recall completeness and local compactness from De�nition 2.1.7.

�eorem7.1.8. Let g be a Riemannianmetric onP with Riemannian distance dg and suppose
that (P , dg) is complete. �en the Wald Space equipped with metric induced by g, (W , d̃g), is
a geodesic space.

Proof. Proposition 6.1.3 yields that φ(W) is closed in P . Consequently, as any manifold
is locally compact, φ(W) is locally compact, and since (P , dg) is complete by assumption,
(φ(W), dg) is complete.

Furthermore, since by Proposition 7.1.5, any two points are connected by a continuous
path of �nite length in (φ(W), dg), which is complete, applying �eorem 2.1.9 yields that
(φ(W), d∗g) is complete.

Finally, as (φ(W), d∗g) is by de�nition a length space that is complete and locally com-
pact (the la�er is the case since (φ(W), dg) and (φ(W), d∗g) carry the same topology due
to Proposition 7.1.2), we can apply the Hopf-Rinow �eorem for metric spaces (cf. �eo-
rem 2.1.8), which concludes the theorem. �

Recall from De�nition 2.6.3 the de�nition of a Riemann strati�ed space.

�eorem 7.1.9. Let g be a Riemannian metric on P . �e Wald Space equipped with metric
induced by g, (W , d̃g) is a Riemann strati�ed space of type (A).

Proof. As we equip all of φ(W) ⊂ P (i.e. all strata) with g, the assertion follows immedi-
ately. �

Geometry on Maximal Groves

Given a wald topology E, on can construct an intrinsically induced distance on φ(GE) via
(φ(GE), d∗g), where the ∗ operator is with respect to φ(GE). Pulling back onto GE then
yields another metric space (GE, d̃Eg ), and it is not clear whether d̃g restricted to GE equals
d̃Eg , in general it does not need to be true.

However, Proposition 6.1.4 teaches that for a fully resolved tree topology E, GE is open
inW , and thus, as GE is an embedded submanifold of P by �eorem 6.1.8, the geometries
agree locally. �erefore, geodesics computed in the thus obtained Riemannian manifold
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GE (by restricting the metric g on P to φ(GE) are geodesics in the metric space (W , d̃g), in
a small enough neighborhood. �is is the motivation to view groves of fully resolved trees
as Riemannian manifolds.

In the following, we identify GE ∼= (0, 1)E as in De�nition 6.1.7 and recall the embedding
φE : (0, 1)E ∼= GE → P from De�nition 6.1.7. Further, recall �eorem 6.1.8 stating that φE
is a smooth embedding between manifolds.

�e tangent space at λ ∈ GE is then given by TλGE ∼= RE , and denote the di�erential of
φE by

(dφE)λ(x) =
∑
i∈E

xi
∂φE
∂λi

(λ).

�e Riemannian metric on GE is computed by requiring φE to be an isometric embedding
in the manifold sense, i.e. for any x, y ∈ RE , se�ing P = φE(λ) ∈ P , we have

gEλ (x, y) = gP

(
(dφE)λ(x), (dφE)λ(y)

)
=
∑
i∈E

∑
j∈E

xiyjg
E
ij ,

where for all i, j ∈ E,

gEij = gEij(λ) = gP

(
∂φE
∂λi

(λ),
∂φE
∂λj

(λ)

)
, (7.1.1)

�e Gram matrix of gE is then (gEij)i,j∈E with inverse denoted by (gijE )i,j∈E . By de�nition
of the Christo�el symbols in Equation (2.3.1) we have with i, j, k ∈ E,

Γkij =
1

2

∑
l∈E

(
∂gEjl
∂λi

+
∂gEli
∂λj
− ∂gEij
∂λl

)
glkE (7.1.2)

Consequently, recall from Equation (2.4.4) that the symbols of the curvature tensor are
computed via

Rijkl =
∑
s∈E

Rs
ijkg

E
sl =

∑
s∈E

(∑
h∈E

ΓhikΓ
s
jh −

∑
h∈E

ΓhjkΓ
s
ih +

∂

∂λj
Γsik −

∂

∂λi
Γsjk

)
gEsl . (7.1.3)

We continue to introduce several di�erent geometries for Wald Space.
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7.2 Schwarzwald Space: Fisher-Information Geometry

Recall the Fisher-information metric for P from Section 3.1. Recall the corresponding Rie-
mannian metric, given by

gP (X, Y ) = Tr
[
P−1XP−1Y

]
for P ∈ P , X, Y ∈ S ∼= TPP . �us, with De�nition 7.1.6, we can construct a metric for
the Wald Space.

De�nition 7.2.1. We call the metric space that is the Wald Space equipped with the met-
ric induced by the Fisher-information metric g the Schwarzwald Space, and denote it by
(W , dS).

We call this space the Schwarzwald Space, as it was �rst proposed at the Oberwolfach
workshop 1804 (2018) in the black forest which is the Schwarzwald in German (the rea-
son for the name was already mentioned in Lueg et al. (2021)). A direct consequence of
�eorem 7.1.8 and �eorem 7.1.9 is the following theorem.

�eorem 7.2.2. �e Schwarzwald Space is a geodesic space. Furthermore, it is a Riemann
strati�ed space of type (A).

Proof. By Lang (1999, p.325) and as mentioned in Section 3.1 (P , g) is geodesically com-
plete, and by the Hopf-Rinow theorem for Riemannian manifolds (cf. �eorem 2.3.8) it fol-
lows that (P , dg) is complete. �us by �eorem 7.1.8, the Schwarzwald Space is a geodesic
metric space. �e second assertion follows immediately from �eorem 7.1.9. �

7.2.1 Schwarzwald Space for N = 2

Let N = 2, and consequently L = {1, 2}. �en, there are two possible wald topologies:

E = {1|2} and E∞ = ∅,

where GE∞ = ∂GE andW = GE ∪GE∞ . Identifying the grove GE ∼= (0, 1)E ∼= (0, 1) yields
φ̄E : [0, 1]E → S with

φ̄E(λ) =

(
1 1− λ

1− λ 1

)
,

where due to Lemma 6.1.9 we have that φ̄E(λ) ∈ P whenever λ ∈ (0, 1].
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Since GE = W is one-dimensional, we can compute the distance between two wälder
F1, F2 ∈ W with φ(F1) = φ̄E(λ1) and φ(F2) = φ̄E(λ2) by choosing any non self-
intersecting di�erentiable curve γ from λ1 to λ2 and compute the length of φ̄E ◦γ to obtain
their distance dS(F1, F2). To be precise, we need to compute

dS(F1, F2) =

∫ 1

0

gφ̄E(γ(t))

((
φ̄E ◦ γ

)′
(t),
(
φ̄E ◦ γ

)′
(t)
)1/2

dt.

We will compute the di�erent terms involved in this equation step by step. �e �rst quan-
tity is the matrix inverse of φ̄E(λ), λ ∈ (0, 1],

φ̄E(λ)−1 =
1

λ(2− λ)

(
1 λ− 1

λ− 1 1

)
.

Choosing the curve γ(t) = λ1 + t(λ2 − λ1) then yields for any t ∈ [0, 1],

(
φ̄E ◦ γ

)′
(t) =

∂φ̄E
∂λ

(
γ(t)

)
· γ′(t) =

(
0 −1

−1 0

)
(λ2 − λ1),

and we conclude

gφ̄E(γ(t))

((
φ̄E ◦ γ

)′
(t),
(
φ̄E ◦ γ

)′
(t)
)

= Tr

[(
φ̄E
(
γ(t)

)−1 (
φ̄E ◦ γ

)′
(t)
)2
]

= (λ2 − λ1)2 1

γ(t)2 (2− γ(t))2
Tr

[(
1− γ(t) −1

−1 1− γ(t)

)2 ]

= 2(λ2 − λ1)2 1 + (1− γ(t))2

γ(t)2 (2− γ(t))2
,

and therefore (where in the step (∗)
= we substitute γ(t) = λ with dλ = γ′(t)dt = (λ2 −

λ1)dt),

dS(F1, F2) = 2 |λ2 − λ1|
∫ 1

0

√
1 + (1− γ(t))2

γ(t) (2− γ(t))
dt

(∗)
=
√

2

∣∣∣∣ ∫ λ2

λ1

√
1 + (1− λ)2

λ (2− λ)
dλ

∣∣∣∣.
�en with

f(λ) :=
√

2
√

1 + (1− λ)2
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we �nd∫ √
1 + (1− λ)2

λ (2− λ)
dλ = sinh−1(1− λ) +

1√
2

tanh−1

(
λ

f(λ)

)
− 1√

2
tanh−1

(
2− λ
f(λ)

)
,

so using tanh−1(x) = 1
2

ln
(

1+x
1−x

)
for |x| < 1, we �nd

∫ √
1 + (1− λ)2

λ (2− λ)
dλ = sinh−1(1− λ) +

1

2
√

2
ln

(
f(λ) + λ

f(λ)− λ

)
− 1

2
√

2
ln

(
f(λ) + 2− λ
f(λ)− 2 + λ

)

= sinh−1(1− λ) +
1

2
√

2
ln

((
f(λ)− (1− λ)

)2 − 1(
f(λ) + (1− λ)

)2 − 1

)
.

We conclude with sinh−1(x) = ln(x+
√
x2 + 1) that

dS(F1, F2) =

∣∣∣∣√2 ln

(
1− λ2 + 1√

2
f(λ2)

1− λ1 + 1√
2
f(λ1)

)

+
1

2
ln

((
f(λ2)− (1− λ2)

)2 − 1(
f(λ1)− (1− λ1)

)2 − 1
·
(
f(λ1) + (1− λ1)

)2 − 1(
f(λ2) + (1− λ2)

)2 − 1

)∣∣∣∣.
Plugging in λ2 = 1, we �nd

dS(F1, F∞) =
√

2

∣∣∣∣ 1

2
√

2
ln

(
(f(λ1) + (1− λ1))2 − 1

(f(λ1)− (1− λ1))2 − 1

)
− ln

(
1− λ1 +

1√
2
f(λ1)

)∣∣∣∣
which is �nite for all λ1 ∈ (0, 1] and strictly monotonically decreasing as λ1 ↗ 1, see also
Figure 7.1, where the distance from a wald Fλ = (E, λ) to F∞ for any value of λ ∈ (0, 1)

is depicted. Note that the distance behaves almost linear when λ is close to one, which is
consistent with the fact that at φ(F∞) = I , the Riemannian metric is gI(X, Y ) = Tr[XY ],
which is the same as the Euclidean inner product, and thus locally at I the space P should
“behave Euclidean”.

7.2.2 Sectional Curvature in Groves

Using the Riemannian metric introduced on groves and the consequential formulas for
the Christo�el symbols and Riemann curvature tensor, de�ned in Equation (7.1.1), Equa-
tion (7.1.2) and Equation (7.1.3), respectively, we compute the sectional curvature on a
grove GE for a wald topology E. For the sectional curvature from De�nition 2.4.2, using
the formula for the Riemann curvature tensor symbolsRijkl computed in Equation (A.1.11)
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0.0 0.2 0.4 0.6 0.8 1.0
λ

0

1

2

3

4

5

6
dS(Fλ, F∞)

Figure 7.1:�e distance dS(Fλ, F∞) for λ ∈ (0, 1), where Fλ = (E, λ), with E = {1|2}.

and consequently the sectional curvature symbols Rijji from Equation (A.1.12) from Ap-
pendix A.1, we conclude that the sectional curvature of the spanned tangent plane of two
linearly independent vectors x, y ∈ RE ∼= TλGE at some coordinate λ ∈ (0, 1)E is com-
puted by

K(x, y) =

∑
i,j∈E Rijij xi yi

|x|2|y|2 − gEλ (x, y)2
,

where with Qi := P−1 ∂φE
∂λi

(λ) and Qij := P−1 ∂2φE
∂λi∂λj

(λ), where P = φE(λ),

Rijji =
1

4

∑
a,h∈E

gahE Tr
[
Qa(2Qij −QiQj −QjQi)

]
Tr
[
Qh(2Qij −QiQj −QjQi)

]

−
∑
a,h∈E

gahE Tr
[
QaQ

2
j

]
Tr
[
QhQ

2
i

]
.

− Tr
[
Qij(Qij −QiQj −QjQi)

]
.

7.3 Euclidean Induced Geometry

Recall the Euclidean geometry on P from Section 3.2, where gP (X, Y ) = Tr[XY ] for all
P ∈ P , X, Y ∈ S . We use De�nition 7.1.6 for the following de�nition.
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De�nition 7.3.1. We call the metric space that is the Wald Space equipped with the metric
induced by the Euclidean metric g the Wald Space with induced Euclidean geometry, and
denote it by (W , dE).

From �eorem 7.1.9, we have immediately the following result.

�eorem 7.3.2. �e Wald Space with induced Euclidean geometry is a Riemann strati�ed
space of type (A).

7.4 Bures-Wasserstein Induced Geometry

Recall the Bures-Wasserstein metric g on P from Section 3.3. We use De�nition 7.1.6 for
the following de�nition.

De�nition 7.4.1. We call the metric space that is the Wald Space equipped with the met-
ric induced by the Bures-Wasserstein metric g the Wald Space with induced Wasserstein
geometry, and denote it by (W , dW).

From �eorem 7.1.9, we have immediately the following result.

�eorem 7.4.2. �e Wald Space with induced Wasserstein geometry is a Riemann strati�ed
space of type (A).

7.5 Log-Euclidean Induced Geometry

Recall the Log-Euclidean metric g on P from Section 3.4. We use De�nition 7.1.6 for the
following de�nition.

De�nition 7.5.1. We call the metric space that is the Wald Space equipped with the metric
induced by the Log-Euclidean metric g theWald Space with induced Log-Euclidean geometry,
and denote it by (W , dLE).

From �eorem 7.1.9, we have immediately the following result.

�eorem7.5.2. �eWald Space with induced Log-Euclidean geometry is a Riemann strati�ed
space of type (A).
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7.6 Correlation�otient Geometry

Note that the map φ : W → P is also well-de�ned as φ : W → C. Recall from Section 3.5,
in particular �eorem 3.5.4 that (C, g(C)) is a Riemannian manifold, where the topology is
the trace topology from being a subset of the Euclidean space S , i.e. C ⊂ P ⊂ S , due to the
design of the surjective submersion π : P → C from Equation (3.5.1). �erefore, we can
analogously apply Lemma 7.1.1 and the succeeding results in Section 7.1. So, again, we use
De�nition 7.1.6 for the following de�nition.

De�nition 7.6.1. We call the metric space that is the Wald Space equipped with the metric
induced by the Wald Space with induced correlation quotient geometry g(C), and denote it by
(W , dC).

From �eorem 7.1.9, we have the following result.

�eorem 7.6.2. �e Wald Space with induced correlation quotient geometry is a Riemann
strati�ed space of type (A).



Chapter 8

Algorithms for Geodesics in Wald
Space

We introduce a general framework with algorithms that are supposed to approximate
geodesics in Wald Space equipped with some geometry as in De�nition 7.1.6.

LetE be a fully resolved wald topology. Recall once again from Chapter 6 thatφE : (0, 1)E ∼=
GE → P is an embedding (analogously for φE : (0, 1)E → C) and let g be some Riemannian
metric on P , such that (W , d̃g) is the Wald Space with geometry induced by g as de�ned
in De�nition 7.1.6.

Recall the notation from De�nition 2.3.4, i.e. the open neighborhoods UP ⊂ P of P ∈ P
and VP ⊂ S ∼= TPP of 0 ∈ TPP , such that the Riemann exponential and Riemann loga-
rithm, as well as the geodesic between two pointsP,Q ∈ P , with respect to the Riemannian
manifold (P , g), are given by

ExpgP : VP → P , LoggP : UP → TPP and γgP,Q : [0, 1]→ P ,

respectively. For any λ ∈ (0, 1)E ∼= GE , the tangent space RE ∼= TλGE can be embedded
as a linear subspace into TPP via (dφE)λ, and we write TPGE := (dφE)λ

(
TλGE

)
, such that

the orthogonal projection from TPP onto TPGE is

πP : TPP → TPGE,

this projection is calculated using an orthonormal basis of TPGE obtained from applying
Gram-Schmidt to the following basis of TPGE :

∂φE
∂λe

(λ), e ∈ E.

107
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Finally, we will need a projection from P ontoW ∼= φ(W) ⊂ P , which we de�ne by

π : P → W , P 7→ π(P ) ∈ arg min
F∈W

d2
g

(
P, φ(F )

)
,

where π is only well-de�ned for P ∈ P close enough to the embedded Riemann strati�ca-
tion φ(W) ⊂ P .

�e projection π is computed by starting to search in some grove GE for some fully resolved
wald topology E, and if we have found a local minimum F = (E, λ∗) with λ∗ ∈ (0, 1)E ,
set π(P ) := F . However, the search might end up on the boundary of the grove, i.e.
λ∗ ∈ ∂([0, 1]E), and we will terminate the search with an error, if any coordinate λ∗e = 1

for some e ∈ E, or if two or more coordinates are zero. However, if exactly one coordinate
is zero, so λ∗e = 0 for some A|B = e ∈ E and 0 < λ∗e′ < 1 for all e′ ∈ E \ {e}, there
are exactly two splits e1, e2 that are compatible with E \ {e}, i.e. two neighboring fully
resolved wald topologies E1 = E \ {e} ∪ {e1} and E2 = E \ {e} ∪ {e2}, where then
F := φ−1(φ̄E(λ∗)) satis�es F ∈ GE ∩ GE1 ∩ GE2 (that there are exactly two splits can be
explained with the nearest neighbor interchange (NNI) operation that is described in Semple
& Steel (2003, p.31)).

�is motivates to continue the search in the groves of the wald topologies E1 and E2,
respectively, and repeat the procedure, where the algorithm memorizes the groves which
were already searched through, and excludes those from being searched twice.

De�nition 8.0.1 (Projection). Let P ∈ P . Let F ∈ GE be a fully resolved wald and let
λ0 ∈ (0, 1)E with φE(λ0) = F . Setup the set of possible wald topologies to be E = {E}
and let Eold = ∅. Repeat the following steps until the algorithm stops.

1. Choose E ∈ E and update E := E \ {E} and Eold := Eold ∪ {E}.
2. De�ne the functional fE : [0, 1]E → [0,∞) by

fE(λ) = d2
g

(
P, φ̄E(λ)

)
and compute λ∗ ∈ arg minλ∈[0,1]E fE(λ). If λ∗ ∈ (0, 1)E , stop and return F ∗ =

(E, λ∗).

3. If and only if λ∗e = 0 for exactly one e ∈ E and λ∗e′ ∈ (0, 1) for all other e′ ∈ E, e′ 6= e,
determine the two fully resolved wald topologies E1, E2 that satisfy φ−1(φ̄E(λ∗)) ∈
GE1 ∩ GE2 and such that E,E1, E2 are pair-wise distinct. Update E := E∪ {E1, E2}.

4. Else, stop and return an error message that the computation of the projection failed.
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�e minimization for the computation of λ∗ is done using a sequential linear-quadratic
programming algorithm1, which is based on Kra� & Munchen (1994).

Remark 8.0.2. �e calculation of this map is the bo�leneck of the algorithms that are
introduced later in this section. Note that in practice, one would expect the error message
in 4. to be raised o�en, but to my surprise this usually does not happen in practice whenever
one is close enough to a fully resolved wald.

We continue to de�ne the algorithms for the approximation of geodesics between two
points F, F ′ ∈ W . �e following is a very simple but naive algorithm. We have included
it in our study of possible algorithms in Lueg et al. (2021).

De�nition 8.0.3 (Naive Projection (NP)). Given 3 ≤ n ∈ N and two fully resolved wälder
F ′1, F

′
2 ∈ W , for i = 1, . . . , n compute

(1) Fi = π
(
γgF ′1,F ′2

(
i−1
n−1

))
.

Return (F1, . . . , Fn).

Importantly, the weakness of this algorithm is two-fold. First, due to the projection, the
discrete path between F ′1, F ′2 no longer needs to be equidistant. �e other weakness is the
design of the algorithm that points on the geodesic γF ′1,F ′2 can be far away from φ(W) ⊂ P ,
and thus the projection might be signi�cantly inaccurate or fail.

�e next algorithm makes small (approximately geodesic) steps and successively takes the
geodesic from the newest point to the destination (note the Fi−1 and Gi−1 in the subscript
in the update step). �is algorithm was proposed in Garba et al. (2021a) and also included
in the study of algorithms in Lueg et al. (2021).

De�nition 8.0.4 (Symmetric Projection (SP)). Given odd 3 ≤ n ∈ N and two fully resolved
wälder F ′1, F ′2 ∈ W , set F1 := F ′1 and G1 := F ′2. For i = 2, . . . , bn

2
c, do

(1) Fi := π
(
γgFi−1,Gi−1

(
1

n−2i+1

))
and

(2) Gi := π
(
γgGi−1,Fi−1

(
1

n−2i+1

))
.

Set H := π
(
γgFbn2 c,Gbn2 c

(1
2
)
)

and return

(F1, . . . , Fbn
2
c, H,Gbn

2
c, . . . , G1).

Given a proposal F1, . . . , Fn ∈ W for a geodesic from F ′1 ∈ W to F ′2 ∈ W (i.e. F1 = F ′1

and Fn = F ′2), the following algorithm iteratively improves the path by “straightening”.
1h�ps://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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It is originally inspired from Schmidt et al. (2006) and is the extrinsic path straightening
algorithm from Lueg et al. (2021, Algorithm 3).

De�nition 8.0.5 (Path Straightening (PS)). Let F ′1, F ′2 ∈ W and suppose that (F1, . . . , Fn)

is a discrete path from F ′1 to F ′2 with 3 ≤ n ∈ N. Given m ∈ N, for j = 1, . . . ,m, do

(1) for i = 2, . . . , n− 1 compute

Xi =
1

2

(
Loggφ(Fi)

(
φ(Fi−1)

)
+ Loggφ(Fi)

(
φ(Fi+1)

))
,

(2) and update (F2, . . . , Fn−1): for i = 2, . . . , n− 1 compute

Fi := π
(

Expgφ(Fi)
(Xi)

)
.

Return (F1, . . . , Fn).

Note that this algorithm works properly only if the points on the path F1, . . . , Fn are suc-
cessively close enough such that the Riemann logarithm Loggφ(Fi)

(
φ(Fi−1)

)
is well de�ned

for all i = 2, . . . , n − 1, as well as if Expgφ(Fi)
(Xi) and φ(Fi) are close enough. However,

note that the closer the successive pair-wise points in F1, . . . , Fn are (and n needs to be
su�ciently big for that), the smaller |Xi| will be, and the smaller the change of the itera-
tion, which slows down the algorithm. �us there is reason to have a su�ciently large n
such that everything is well-de�ned and exists, but also such that n is not too big, as the
computational cost will be unnecessarily large.

We measure the quality of a proposal (F1, . . . , Fn), 3 ≤ n ∈ N by its energy,

E(F1, . . . , Fn) =
1

2

n−1∑
i=1

d2
g

(
φ(Fi), φ(Fi+1)

)
.

Note that in order two compare the quality of two discrete paths, they need to have the
same number of points n ∈ N.



Chapter 9

Discussion and Outlook

What are the main contributions of this thesis? We will answer this question chrono-
logically with respect to the contents of the thesis. Chapter 2 concisely introduces the
relevant background on Riemannian manifolds, in particular Riemannian submersions in
Section 2.5. A summary about the most important geometries on P is of great interest
for those who wish to implement them. Chapter 4 introduces and summarizes various
representations of phylogenetic forests, serving as the notational foundation for possible
future publications in this �eld. In Chapter 6, we have shown the most important results
about Wald Space, that it is contractible, how it is embedded in P and �nally we have un-
derstood the strati�ed nature of the space via the partial ordering on the wald topologies.
Furthermore, in Chapter 7, we have shown that one can choose any Riemannian metric on
P and obtains a well-de�ned geometry for the Wald Space, turning it into a metric space.
Furthermore, we have computed the curvature symbols for the sectional curvatures in the
groves of the Schwarzwald Space. In Chapter 8, we introduce a framework for algorithms
to approximate geodesics. Although we do not make any simulations in this thesis, we
have implemented those algorithms and made simulations in Garba et al. (2021a) and Lueg
et al. (2021), and we make some more observations, including the sectional curvatures in
Schwarzwald Space, in Lueg et al. (2022).

I have made contributions to Garba et al. (2021a,b); Lueg et al. (2021), and Lueg et al. (2022)
includes many of the results presented in this thesis. Furthermore, over time I have devel-
oped an unpublished Python package, where I have also implemented the BHV Space that
is de�ned in Chapter 5. Lately, I have begun to merge this code into the Python project
geomstats, cf. Miolane et al. (2020), where many scientists from the �eld of non-Euclidean
statistics contribute to this well-structured package, so far almost only on Riemannian man-
ifolds. Together with Anna Calissano, we have started to extend the package to also deal
with strati�ed spaces, and the BHV Space as well as a �rst version of the Wald Space is al-
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ready online and part of the main repository. �e aim of this is to enable anyone to be able
to make simulations and computations within BHV Space and Wald Space despite their
complicated nature.

�ere are still plenty of open questions regarding the Wald Space (equipped with some
geometry), that include geodesics from trees to actual forests, curvature, stickiness, and in
general the very non-intuitive behavior of strati�ed spaces. It will be exciting to see actual
averages of data sets of phylogenetic trees. Finally, it will be interesting to compare the
various geometries that one can equip the Wald Space with, and if the Schwarzwald Space
proves to be the most reasonable space to use.



A Appendix

A.1 Schwarzwald: Sectional Curvature in Groves

Recall from Equation (7.1.2) and Equation (7.1.3) the curvature and Christo�el symbols,
respectively. Let E be a wald topology and let F ∈ GE with P = φ(F ) = φE(λ) ∈ P for
some λ ∈ (0, 1)E .

�roughout this chapter, parts of formulas will be highlighted in di�erent colors to improve
comprehensibility. For notational convenience, we introduce the following names, where
i, j, k ∈ E.

Qi = P−1 ∂φE
∂λi

(λ), Qij = P−1 ∂2φE
∂λi∂λj

(λ), and Qijk = P−1 ∂3φE
∂λi∂λj∂λk

(λ),

where note thatQij = Qji andQijk = Qikj = Qkji = . . . holds for all i, j, k ∈ E. For these
symbols, we can use standard di�erentiation rules (the product rule and (∂/∂λi)P

−1 =

−P−1
(
(∂/∂λi)P

)
P−1)) such that we obtain the following useful rules:

∂

∂λi
P−1 = −QiP

−1,
∂

∂λi
Qj = Qij −QiQj, and ∂

∂λi
Qjk = Qijk −QiQjk.

�us, plugging the Fisher-information metric into the de�nition of the Gram matrix on
groves from Equation (7.1.1) yields (using that the trace is a linear operator and its cyclic
permutation property)

∂gEij
∂λl

=
∂

∂λl
Tr
[
QiQj

]
= Tr

[
QiQjl +QjQil −QiQjQl −QjQiQl

]
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Continuing with the Christo�el symbols from Equation (7.1.2),

∂gEjl
∂λi

+
∂gEli
∂λj
−∂g

E
ij

∂λl
= Tr

[
QjQli +QlQji −QjQlQi −QlQjQi

+ QiQjl +QlQij −QiQlQj −QlQiQj

− QiQjl −QjQil +QiQjQl +QjQiQl

]
= Tr

[
2QijQl −QiQjQl −QjQiQl

]
,

consequently,

Γkij =
1

2

∑
l∈E

(
∂gEjl
∂λi

+
∂gEli
∂λj
− ∂gEij
∂λl

)
glkE =

1

2

∑
l∈E

Tr
[
2QijQl −QiQjQl −QjQiQl

]
glkE .

(A.1.1)
We continue to compute the curvature symbols as de�ned in Equation (7.1.3). For this, we
need several results.

∂

∂λk
Tr
[
2QijQl−QiQjQl−QjQiQl

]
= Tr

[
2QkijQl − 2QkQijQl + 2QijQkl − 2QijQkQl

−QkiQjQl +QkQiQjQl −QiQkjQl +QiQkQjQl

−QiQjQkl +QiQjQkQl

−QkjQiQl +QkQjQiQl −QjQkiQl +QjQkQiQl

−QjQiQkl +QjQiQkQl

]
. (A.1.2)

Using (where gE = (gE)−1)
∂gE
∂λl

= −gE
∂gE

∂λl
gE,

we �nd

∂glsE
∂λi

= −
∑
a∈E

∑
b∈E

glaE
∂gEab
∂λi

gbsE

= −
∑
a∈E

∑
b∈E

glaE g
bs
E Tr

[
QaQbi +QbQai −QaQbQi −QbQaQi

]
. (A.1.3)
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We conclude

2

(
∂Γsik
∂λj

−
∂Γsjk
∂λi

)
=

∂

∂λj

∑
l∈E

Tr
[
2QikQl −QiQkQl −QkQiQl

]
glsE

− ∂

∂λi

∑
l∈E

Tr
[
2QjkQl −QjQkQl −QkQjQl

]
glsE

=
∑
l∈E

(
∂

∂λj
Tr
[
2QikQl −QiQkQl −QkQiQl

])
glsE

+
∑
l∈E

Tr
[
2QikQl −QiQkQl −QkQiQl

]∂glsE
∂λj

−
∑
l∈E

(
∂

∂λi
Tr
[
2QjkQl −QjQkQl −QkQjQl

])
glsE

−
∑
l∈E

Tr
[
2QjkQl −QjQkQl −QkQjQl

]∂glsE
∂λi

, (A.1.4)

where using Equation (A.1.2) yields

∂

∂λj
Tr
[
2QikQl −QiQkQl −QkQiQl

]
− ∂

∂λi
Tr
[
2QjkQl −QjQkQl −QkQjQl

]
= Tr

[
2QjikQl − 2QjQikQl + 2QikQjl − 2QikQjQl

−QjiQkQl +QjQiQkQl −QiQjkQl +QiQjQkQl −QiQkQjl +QiQkQjQl

−QjkQiQl +QjQkQiQl −QkQjiQl +QkQjQiQl −QkQiQjl +QkQiQjQl

]
−Tr

[
2QijkQl − 2QiQjkQl + 2QjkQil − 2QjkQiQl

−QijQkQl +QiQjQkQl −QjQikQl +QjQiQkQl −QjQkQil +QjQkQiQl

−QikQjQl +QiQkQjQl −QkQijQl +QkQiQjQl −QkQjQil +QkQjQiQl

]
= Tr

[
2QikQjl − 2QjkQil −QjQikQl +QiQjkQl −QikQjQl

+QjkQiQl −QiQkQjl −QkQiQjl +QjQkQil +QkQjQil

]
,
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and thus two of the terms in Equation (A.1.4) simplify to

∑
l∈E

(
∂

∂λj
Tr
[
2QikQl −QiQkQl −QkQiQl

]

− ∂

∂λi
Tr
[
2QjkQl −QjQkQl −QkQjQl

])
glsE

=
∑
l∈E

Tr
[
2QikQjl − 2QjkQil −QjQikQl +QiQjkQl −QikQjQl

+QjkQiQl −QiQkQjl −QkQiQjl +QjQkQil +QkQjQil

]
glsE . (A.1.5)

Observe that only terms remain where no factor is di�erentiated more than twice and in
each term, there exists at least one factor that is di�erentiated twice. For the remaining
two terms in Equation (A.1.4), we use Equation (A.1.3) to �nd

∑
l∈E

Tr
[
2QikQl −QiQkQl −QkQiQl

]∂glsE
∂λj
−
∑
l∈E

Tr
[
2QjkQl −QjQkQl −QkQjQl

]∂glsE
∂λi

=
∑
a,b,l∈E

glaE g
bs
E Tr

[
2QjkQl −QjQkQl −QkQjQl

]
Tr
[
QaQbi +QbQai −QaQbQi −QbQaQi

]
−
∑
a,b,l∈E

glaE g
bs
E Tr

[
2QikQl −QiQkQl −QkQiQl

]
Tr
[
QaQbj +QbQaj −QaQbQj −QbQaQj

]
.

(A.1.6)

Furthermore, using Equation (A.1.1) we �nd

∑
h∈E

ΓhikΓ
s
jh =

1

4

∑
a,b,h∈E

gahE g
bs
E Tr

[
2QikQa −QiQkQa −QkQiQa

]
Tr
[
2QjhQb −QjQhQb −QhQjQb

]
(A.1.7)∑

h∈E

ΓhjkΓ
s
ih =

1

4

∑
a,b,h∈E

gahE g
bs
E Tr

[
2QjkQa −QjQkQa −QkQjQa

]
Tr
[
2QihQb −QiQhQb −QhQiQb

]
(A.1.8)
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Recall that the curvature tensor is

Rijkl =
∑
s∈E

(∑
h∈E

ΓhjkΓ
s
ih −

∑
h∈E

ΓhikΓ
s
jh +

∂Γsjk
∂λi

− ∂Γsik
∂λj

)
gEsl

=
∑
s,h∈E

ΓhjkΓ
s
ihg

E
sl −

∑
s,h∈E

ΓhikΓ
s
jhg

E
sl +

∑
s∈E

(
∂Γsjk
∂λi

− ∂Γsik
∂λj

)
gEsl . (A.1.9)

Using that
∑

s∈E g
bs
E g

E
sl = δbl (since gE is the inverse of gE), where δbl is the Kronecker

delta, we simplify Equation (A.1.7) and Equation (A.1.8) by

∑
s,h∈E

ΓhikΓ
s
jhg

E
sl =

1

4

∑
a,h∈E

gahE Tr
[
2QikQa −QiQkQa −QkQiQa

]
Tr
[
2QjhQl −QjQhQl −QhQjQl

]
,

∑
s,h∈E

ΓhjkΓ
s
ihg

E
sl =

1

4

∑
a,h∈E

gahE Tr
[
2QjkQa −QjQkQa −QkQjQa

]
Tr
[
2QihQl −QiQhQl −QhQiQl

]
,

and using Equation (A.1.4), where we plug in Equation (A.1.5) and Equation (A.1.6) to obtain

2
∑
s∈E

(
∂Γsik
∂λj

−
∂Γsjk
∂λi

)
gEsl

= Tr
[
2QikQjl − 2QjkQil −QjQikQl +QiQjkQl −QikQjQl

+QjkQiQl −QiQkQjl −QkQiQjl +QjQkQil +QkQjQil

]
+
∑
a,h∈E

ghaE Tr
[
2QjkQh −QjQkQh −QkQjQh

]
Tr
[
QaQli +QlQai −QaQlQi −QlQaQi

]
−
∑
a,h∈E

ghaE Tr
[
2QikQh −QiQkQh −QkQiQh

]
Tr
[
QaQlj +QlQaj −QaQlQj −QlQaQj

]
.
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Pu�ing everything together, we obtain for Equation (A.1.9)

Rijkl =
∑
s,h∈E

ΓhjkΓ
s
ihg

E
sl −

∑
s,h∈E

ΓhikΓ
s
jhg

E
sl +

∑
s∈E

(
∂Γsjk
∂λi

− ∂Γsik
∂λj

)
gEsl

=
1

4

∑
a,h∈E

gahE Tr
[
2QjkQa −QjQkQa −QkQjQa

]
Tr
[
2QihQl −QiQhQl −QhQiQl

]

− 1

4

∑
a,h∈E

gahE Tr
[
2QikQa −QiQkQa −QkQiQa

]
Tr
[
2QjhQl −QjQhQl −QhQjQl

]

+
1

2

∑
a,h∈E

gahE Tr
[
2QikQa −QiQkQa −QkQiQa

]
Tr
[
QhQlj +QlQhj −QhQlQj −QlQhQj

]

− 1

2

∑
a,h∈E

gahE Tr
[
2QjkQa −QjQkQa −QkQjQa

]
Tr
[
QhQli +QlQhi −QhQlQi −QlQhQi

]
.

− 1

2
Tr
[
2QikQjl − 2QjkQil −QjQikQl +QiQjkQl −QikQjQl

+QjkQiQl −QiQkQjl −QkQiQjl +QjQkQil +QkQjQil

]
, (A.1.10)

and a�er merging the blue terms and the red terms, respectively, we have

Rijkl =
1

4

∑
a,h∈E

gahE Tr
[
2QikQa −QiQkQa −QkQiQa

]
Tr
[
2QhQlj −QhQlQj −QlQhQj

]

− 1

4

∑
a,h∈E

gahE Tr
[
2QjkQa −QjQkQa −QkQjQa

]
Tr
[
2QhQli −QhQlQi −QlQhQi

]
.

− 1

2
Tr
[
2QikQjl − 2QjkQil −QjQikQl +QiQjkQl −QikQjQl

+QjkQiQl −QiQkQjl −QkQiQjl +QjQkQil +QkQjQil

]
, (A.1.11)
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Sectional Curvatures

�e sectional curvature symbols areRijji (cf. De�nition 2.4.2). �us, from Equation (A.1.11),
we have, where Qii = Qjj = 0,

Rijji =
1

4

∑
a,h∈E

gahE Tr
[
Qa(2Qij −QiQj −QjQi)

]
Tr
[
Qh(2Qij −QiQj −QjQi)

]

−
∑
a,h∈E

gahE Tr
[
QaQ

2
j

]
Tr
[
QhQ

2
i

]
.

− Tr
[
Qij(Qij −QiQj −QjQi)

]
, (A.1.12)

so in particular Riiii = 0.
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