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Mathematics is the science of patterns, and nature exploits just about every
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1. General Introduction

1.1 Background

Developing new crop cultivars resilient to future climatic conditions presents a mounting challenge

for plant breeding, as weather patterns become increasingly volatile and extreme due to climate

change in many regions of the world. In the last decades, many studies have underpinned the

expected aftermath of detrimental weather conditions, with dramatically negative effects on yields

for major cereal species, such as wheat, rice and maize (Gammans et al., 2017; Trnka et al., 2014).

These three staple grains represented on their own more than 41% of the total calories for human

consumption in 2019 (FAOSTAT, 2020). Zhao et al. (2017) reported, based on different analytical

methods, that every degree-Celsius increase in mean temperature could result in a reduction of

global yields on average by 7.4% and by 6%, for maize and wheat, respectively. Yield variability

can often be attributed to major environmental stresses (deficits of soil water, high temperatures)

occurring at critical plant developmental stages (Lizaso et al., 2018). Hence, current and future

genetic improvement of crop varieties need to equip genotypes with increased phenotypic plasticity,

characterized by an improved tolerance for prolonged periods of drought and heat stresses, in order

to mitigate serious yield losses and subsequent economical consequences.

Yet, the task of predicting genotype performance in future environments, investigated in this thesis,

is further compounded by the presence of complex genotype-by-environment interactions (GE). G ×

E refers to a pervasive observation in plant breeding that the relative ranking of genotypes generally

changes conditional on the considered growing environment (Allard and Bradshaw, 1964; Cooper

and DeLacy, 1994). Dissecting G × E effects is only possible by analyzing multi-environment trials

(MET) data. The recent advancements in the field of environmental sensing technologies, of high-

throughput genotyping and phenotyping have enabled generating considerable amounts of data in

the context of plant breeding programs across MET. Harnessing these various types of information,

often described by a large number of variables, is demanding and requires sophisticated modeling

approaches. While whole-genome prediction of complex quantitative traits has become a major

tool in modern plant breeding (Crossa et al., 2017), weather and/or soil data are still not routinely

used alongside genomic information to select promising candidate genotypes. Pedoclimatic data

3



Chapter 1. General Introduction 4

can help define more precisely environmental conditions encountered in multi-environment trial

(MET) datasets; however their incorporation also raises statistical and computational issues with

regards to the high dimensionality of the corresponding G × E component.

In addition, genotypic responses to environmental gradients are often complex and nonlinear (Hes-

lot et al., 2014; Malosetti et al., 2006). Machine learning techniques offer high potential to capture

these nonlinear relationships and to explore untapped sources of environmental data. Nonetheless,

capitalizing on these predictive modeling approaches requires taking into account typical pitfalls,

among which (1) inappropriate pre-processing of the data, (2) inadequate size of training data to

efficiently learn G × E patterns, (3) over-fitting the model to the training data, i.e. the model

uncovers the random noise rather than true patterns within the data, and is therefore not able

to generalize well on a new TST. We explored in this thesis recent data mining methods, with

the objective of evaluating the predictive ability of genotype performance across various cross-

validation schemes relevant for plant breeders. In the following sections, characteristics related to

the statistical approaches for genome-based prediction in multi-environment trials, as well as major

hurdles when dealing with environmental datasets and machine learning methods are reviewed and

discussed.

1.2 Genotype-by-environment interactions in plant breeding

1.2.1 Strategies to deal with G × E interactions

Before getting officially released as new varieties on the market, genotypes need to be assessed

across multiple years and locations in order to obtain reliable estimates of their performance

for quantitative phenotypic traits, such as yield, to assess their stability and plasticity. In this

thesis, we designate an environment as a specific year-location, sometimes even also year-location-

management, combination.

Multiple-environment trials (MET) are useful to identify relevant genotype-by-environment (GE)

patterns, such as G × E cross-over interactions, which imply that the best genotype in an environ-

ment might perform less well than others in another environment. G × E can be further partitioned

into genotype-by-location (G × L), genotype-by-year (G × Y) and genotype-by-year-by-location

(G × Y × L) interactions using analyses of variance (ANOVA). When the G × L term prevails, i.e.

when repeatable G × E components, such as soil and/or management factors largely influence the

trait of interest, it becomes possible to make recommendations for genotypes specifically adapted

to subsets of geographical regions with homogeneous environmental conditions (Bernardo, 2002).

These groups of environments can be defined using unsupervised learning methods, such as clus-

tering analyses or principal component analysis (PCA). On the other hand, when G × Y and G

× Y × L terms are dominant, the unpredictability of weather conditions, especially in the current
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context of climate change, further complicates selection decisions.

A key concept related to G × E interactions is the phenotypic plasticity. A genotype can be char-

acterized by its ability to respond phenotypically to modifications in the environmental conditions,

and this level of phenotypic plasticity is in general represented by the form of its reaction norm.

The creation of cultivars exhibiting a high level of plasticity (e.g. reaction norm with a large slope)

might be suitable for local adaptation to specific environmental conditions; however, it also means

that the variety presents less potential for broad adaptation and a precise understanding of the

factors underlying the G × E interactions is oftentimes necessary. Thus, rather than defining the

best genotype for a specific environment, a more commonly applied strategy is to release cultivars

with the best average performance across all environments included in the MET, which is supposed

to be a proxy for the target population of environments (TPE). In this latter case, G × E effects

are hence not exploited (Bernardo, 2002).

1.2.2 Classical parametric approaches to describe G × E interactions

In classical plant breeding, the use of linear regression models to model G × E effects remains a

standard and relatively efficient practice. Joint-regression analyses (Eberhart and Russell, 1966;

Finlay and Wilkinson, 1963; Yates and Cochran, 1938), which consist in a genotype-specific re-

gression on the environmental mean - the latter being generally simply calculated as the mean of

all genotypes in the considered environment - have become very popular as a method to identify

stable genotypes across environments. It should be noted that the objectives in terms of stability

can differ considerably according to the breeding regions. In this model, a given genotype i with a

large intercept (µi), i.e. a high average performance, and a slope (bi) close to 1, i.e. its performance

follows the mean response of other cultivars across environments, might be defined as a suitable

genotype according to the concept of dynamic stability (type II) (Lin et al., 1986).

An improvement of G × E modeling was provided by the development of the additive main effects

and multiplicative interaction (AMMI) (Gauch Jr et al., 1992). This model assumes that the G ×

E interaction effects can be decomposed into more than one multiplicative term, while the genotype

and environmental effects are further treated as additive main effects and estimated with ANOVA.

Specifically, a principal component analysis is applied on the residuals of the additive model, i.e.

the G × E matrix with dimensions n×m, where n represents the number of genotypes and m the

number of environments. This yields two matrices: one giving the genotype scores (dimensions

n×min(n,m)) and another one representing the environment scores (dimensions m×min(n,m)).

The objective of the AMMI analysis is to obtain improved estimates of genotype performance

in various environments, which are corrected for the random, spurious G × E present in MET

data, and which represent the true G × E patterns captured by the first principal component

axes. The noisy component is often contained within the G × E term, as it exhibits the highest

degrees of freedom within the data (Gauch Jr, 2006; Malosetti et al., 2013). The AMMI model
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capitalizes on the complete dataset to obtain a good approximation of repeatable G × E interaction

effects, instead of simply considering the average estimate of the genotype performance for a given

environment.

Neither the standard Finlay-Wilkinson approach, nor AMMI allow for the inclusion of genetic

relationships among individuals based on pedigree or genomic data. Another limitation of these

models is that they use as proxy for the environmental index the average effect of the environment

over all genotypes and therefore cannot account for specific environmental factors. Hence, they

cannot shed light on crucial environmental stress covariates, which might provoke linear or non-

linear genotype responses along their gradients. Nonenetheless, these two approaches remain very

relevant in predictive breeding today, as we will show by providing further application examples

with these methods in the chapter 5.

1.3 Collecting and processing environmental data for incor-

poration in predictive models

Characterizing the quality of growing environments with relevant environmental indices implies

to have access to environmental data. Various environmental variables can influence cultivar per-

formance, among them soil physical, chemical and health properties, climatic variables, or factors

related to disease pressure (Bernardo, 2002). While various sensors or satellite-based systems can

give us access to this information, figuring out the most appropriate data source and meaningfully

processing raw hourly or daily weather data are important preprocessing steps.

1.3.1 Weather data sources

In recent years, monitoring and collecting climate information using automatic weather stations

closely located to fields in MET experiments have been more widely put into practice, as demon-

strated by the Genomes to Fields Initiative (AlKhalifah et al., 2018; McFarland et al., 2020) or

other large MET experiments (Ly et al., 2018; Rincent et al., 2019). These sensors generally collect

data for temperature, rainfall, relative humidity, dewpoint, solar radiation, wind speed and wind

direction at 30-min or 15-min intervals during the growing season. The resulting meteorological

time series need to be processed with quality control procedures, which we detail in the supplemen-

tal information of chapter 2, in order to deliver high quality climatic data. In particular, partial

(e.g. rainfall gauge) or complete breakdowns of weather stations can occur during the growing sea-

son, leading to missing data which need to be imputed. Using data retrieved from public surface

observing systems (e.g. records from the Global Historical Climatology Network (GHCN) or from

the Global Surface Summary of the Day (GSOD) in the US), different solutions can be applied

to infer missing values, such as (1) simple and fast deterministic methods like inverse distance

weighting, which basically estimates the missing daily weather variable value by taking the aver-
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age of all nearby sites within a particular radius and assigning greater weights to closer locations;

(2) geo-statistical methods, such as spatio-temporal kriging that exploits both a spatial and tem-

poral covariance matrix (Pebesma and Heuvelink, 2016; Pebesma, 2004); or (3) using data-driven

machine learning algorithms, e.g. random forest or artifical neural networks (ANN) (Hengl et al.,

2018; Kashani and Dinpashoh, 2012; Mital et al., 2020). In chapter 2, we implemented (1) and

(2) approaches to replace missing values in the G2F weather dataset.

While automatic weather stations offer the possibility to get accurate local measurements, they

must be situated close enough to the field, require maintenance, application of a control qual-

ity procedure and imputation of missing weather values. Alternatively, satellite- and model-

based databases, such as the National Aeronautics and Space Administration’s POWER database

(NASA, https://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi), produced by the

NASA Langley Research Center POWER Project, can be easily downloaded when surface measure-

ments are not available. An R package has also been recently developed to facilitate the retrieval of

solar and weather data from NASA POWER database (Sparks, 2018). As outlined by the NASA

POWER (NP) database documentation, this type of data offers two advantages: it has global

coverage, with a 0.5 x 0.625 degree latitude and longitude spatial resolution for meteorology, and 1

x 1 degree latitude and longitude for solar parameters. In addition, it does not include data gaps.

1.3.2 Developing crop-based environmental indices

Once the weather data are cleaned, another issue arises: how to reduce the number of variables,

and condense large amounts of daily weather information without loss of crucial information?

Although some studies make use of complete daily weather data (Washburn et al., 2021a; Widener

et al., 2021), a more common practice is to summarize it over specific time windows. Thereby,

the number of variables used in subsequent prediction models can be reduced considerably. When

the variability in crop growing season lengths across environments is low, a simple approach can

be to use non-overlapping sliding day-windows of fixed lengths throughout the growing season,

over which the environmental variables are calculated (Jarquin et al., 2021; Rogers et al., 2021).

This approach does not require any knowledge about the phenology of the crop under study.

However, defining environmental covariates (ECs) using crop developmental stages may better

account for the fact that climatic conditions can have a variable impact depending on the plant’s

phenological stage. In particular, when plants are subjected to environmental stresses that line up

with critical phenological stages, for instance at flowering or during grain filling, major consequences

on important agronomic traits can often be observed, e.g. a decrease of grain yield and quality

(Tardieu et al., 2018).

Nevertheless, determining the timing of development is highly challenging and theoretically requires

to have extended phenotypic information about the phenological development of each genotype

within each field experiment, which is currently infeasible from a management and cost perspec-

https://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi
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tive. A relatively easy solution is to use agronomic knowledge to approximate plant developmental

stages from day after planting onwards, based on a standard crop growing season, as illustrated

by studies with maize hybrids (Costa-Neto et al., 2021), with rice (Delerce et al., 2016) and with

cotton (Pérez-Rodríguez et al., 2015). The major drawback of these methods is that differences

in crop development among environments, mainly explained by variability in weather conditions,

are not considered. Millet et al. (2019) proposed a more precise method, exploiting information

coming from phenotyping platforms and from field observations. Based on repeated measurements

obtained via advanced phenotyping platforms of leaf phenological progression over a panel of maize

genotypes, and on field records for silking date, these authors defined per hybrid the timing of dif-

ferent phenological events (e.g. floral transition, silk initiation, end of abortion and grain maturity)

for MET field experiments in Europe on the basis of temperature records for these environments.

Thermal times weres also used by Boer et al. (2007) to approximate maize developmental stages

and to derive ECs from weather data. When flowering time is scored within each field experiment

and for each genotype, a more straightforward method, that we applied in chapter 2, is to define

crucial hybrid-specific phenological stages (i.e. vegetative, flowering, and grain fill stages) and to

derive climatic and stress covariates over these growth stages, which was done similarly in the work

of Monteverde et al. (2019).

When few or no other phenotypic data than the final trait of interest is available, more elaborate

process-based simulation frameworks, such as crop growth models (CGM), have been of interest to

predict plant developmental stages (Heslot et al., 2014). These models rely on a set of linear and

nonlinear equations to model crop physiological processes in response to environmental conditions

(e.g. accumulation of thermal time), and take as input genotype-specific physiological parame-

ters, weather and soil data. Once the duration of these developmental stages is known, climatic

and/or stress covariates can be calculated over these time periods (Heslot et al., 2014; Rincent

et al., 2019). Two possibilities to integrate crop growth models in association with genomic-based

predictive models are outlined by Heslot et al. (2014). As done by these authors, the output of

CGM models, run using only one or a few genotypes as representative cultivars, can be directly

incorporated as ECs in genomic prediction models. The second approach requires to first esti-

mate genetic parameters, accounting for differences among genotypes for some phenological traits

(e.g. phenological traits generally showing a higher heritability than the final trait), and then

to run the CGM, for each cultivar using its genetic parameters along with environmental data,

to predict the integrated trait, for instance grain yield. To calibrate the model and accurately

estimate these genetic parameters, one possibility is to exploit measurements of the underlying

phenological traits for genotypes included in the TRN, which can be obtained for instance with

high-throughput phenotyping capabilities (e.g. drones). Thus, whole-genome prediction (WGP)

models can be implemented to estimate marker effects, which in turn can be used to predict these

physiological traits for newly developed genotypes. Nonetheless, as mentioned before, it can be
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rather complicated to have access to this highly detailed phenotypic data, even for the TRN only,

and especially for the plant breeding industry for which the number of candidate genotypes is

generally high. Hence, a more straightforward approach is to consider these physiological traits as

hidden variables (Technow et al., 2015) and to infer them using Bayesian algorithms in so-called

WGP-CGM (Messina et al., 2018; Technow et al., 2015), or CGM coupled with marker-assisted

selection (CGM-MAS) (Rincent et al., 2017). The procedures described by Technow et al. (2015)

and Messina et al. (2018) are of particular interest, since molecular markers effects are used to

connect genotypic information to these latent physiological parameters, with the goal of being able

to predict genotype-specific parameters in the test set (TST) on the basis of genotypic data only.

A meaningful feature engineering strategy is to compute or to extract from CGM additional vari-

ables based on science-based equations of crop ecophysiology in response to weather conditions,

such as stress covariates (for instance, number of days above or below a certain temperature thresh-

old likely associated with heat or frost waves events, respectively); daily crop evapotranspiration

(Allen et al., 1998), that describes the two processes of evaporation and transpiration by which wa-

ter moves from land surface to atmosphere and essential to understand crop water use; or radiation

use efficiency (Monteith, 1977; Russell et al., 1989), which quantifies the conversion of intercepted

radiation to biomass. Numerous publications used these types of more elaborate ECs (Costa-Neto

et al., 2021; Heslot et al., 2014; Ly et al., 2018; Monteverde et al., 2019; Rincent et al., 2019), which

can better reflect plant physiological responses to drought and heat stresses. Stress covariates were

also shown to be superior to basic climatic variables and better related to the GE covariance matrix

derived from AMMI analysis in the study by Rincent et al. (2019). Some popular process-based

models used to generate these integrative physiological ECs are SiriusQuality (Martre et al., 2006)

for small grain cereals, such as wheat, APSIM (Hammer et al., 2010; Holzworth et al., 2018, 2014),

and WOFOST (Van Diepen et al., 1989; de Wit et al., 2019).

1.4 Accounting for genotype-by-environment interactions in

the genomic prediction framework

1.4.1 Genomic prediction

The development of high-throughput genotyping techniques has enabled the large and successful

deployment of genomic prediction (GP) in animal breeding first, and later adapted in plant breed-

ing, starting with the RidG × ERegression BLUP model Meuwissen et al. (2001). Considering a

training population of individuals that are characterized with genome-wide molecular markers and

phenotyped (named training set = TRN), a prediction model linking genomic data to phenotypic

traits is fitted and subsequently used to predict the performance of a testing population, that has

also been genotyped but has no phenotypic records. This model relies on the statistical assump-
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tion that most complex traits are controlled by a very large number of loci with very small effects,

hence the variance explained by each marker is very small and equal for all loci. In these mod-

els, marker effects are considered as random, while all other effects, including environments, are

generally treated as fixed. VanRaden (2008) proposed an equivalent model, the so-called GBLUP,

which presents the advantage of reducing the dimensionality of the problem and of making it com-

putationally more affordable, by calculating a genomic relationship matrix denoted G from marker

data. GP has been applied with success, leading to a decrease of the length of breeding cycles, and

proved superior to pedigree-based approaches for a broad range of plant and animal species, and

offers relatively low computational times (Crossa et al., 2017; Heslot et al., 2012a; Riedelsheimer

et al., 2012).

However, a first limitation of these models is that they do not allow markers to have larger or no

effects, although some previous genetic studies, such as genome-wide association studies (GWAS)

or quantitative trait locus (QTL) analyses, can often inform us with a prior understanding of the

genetic architecture of the trait under study. Indeed, it is often the case that some particular

genes might explain a larger part of the genetic variance than other genomic regions. For instance,

qualitative and quantitative resistance genes have been identified for many crop diseases, such as

Htn1 for northern corn leaf blight (Hurni et al., 2015). This problem can be partially solved by using

known large effects QTL as fixed covariates in the GP models (Bernardo, 2014; Rice and Lipka,

2019). Another issue arising from these models is that many complex phenotypic traits actually

result from gene networks involving epistatic and dominance effects, i.e. non-additive genetic effects

can also contribute to the observed phenotypic variation for these traits. For instance, epistatic

effects were shown to be a major component of heterosis for selfing species like bread wheat (Jiang

et al., 2017). As we will explain in Section 1.5, machine learning approaches can provide solutions

to model nonlinear genomic effects.

An additional constraint of the original GP framework is that it does not account for genotype-

by-environment interactions, hence preventing the development of cultivars on the basis of their

specific adaptation to a given region.

1.4.2 Development of GP models accounting for GE

Burgueño et al. (2012) first proposed a multivariate multi-environment extension of the GBLUP

model, where genomic and residual correlations among environments were modelled with vari-

ous covariance functions (i.e. diagonal, identity and factor analytic). This model allows for the

exploitation of genetic correlations between environments, thereby improving across-environment

predictive ability compared to single-environment pedigree and genomics prediction models that

ignored G × Eeffects.

Rather than using across-environment covariance structures, other approaches have focused on
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modelling marker-by-environment (M × E) interactions (Crossa et al., 2016; Lopez-Cruz et al.,

2015; Malosetti et al., 2008). The method developed by Lopez-Cruz et al. (2015) implies that

marker effects are decomposed into a main component, which reflects stable effects across environ-

ments, and environment-specific deviations. While the original model was tested with a shrinkage

approach (i.e. Bayesian ridge regression), Crossa et al. (2016) noted an increase in predictive

ability by instead implementing Bayes B as a variable selection method. The M × E perspective

offers several advantages relative to the covariance-based approach, that we previously mentioned,

among them the possibility to identify markers presenting highly environment-specific effects, and

are hence potentially involved in GE. Nonetheless, Lopez-Cruz et al. (2015) specified an important

condition for a successful application: as the covariance among environments is restricted to be

positive and constant, it is more reasonable to apply this approach for a set of environments with

positive correlations that are confined to lie within a similar range.

1.4.3 A step further with the introduction of environmental information

Introducing environmental covariates into the GP statistical framework further increases the di-

mensionality of the problem, already introduced with whole-genome based predictions. On the

other hand, these models allow to predict genotype performance when facing new environmental

conditions, and to evaluate the impact of some specific stress covariates, for instance related to

heat, drought or nitrogen deficiency or excesses. A class of models, namely factorial regression

models, has frequently been used to integrate differential genotypic sensitivies to explicit environ-

mental characteristics into predictive models (Heslot et al., 2014; Ly et al., 2018; Malosetti et al.,

2004; Millet et al., 2019). This type of model follows the general expression:

µij = µ+Gi + Ej +

K∑
k=1

βikZjk,

where µij is the mean of genotype i in environment j, µ is the overall mean, Gi is the random

genotypic main effect of genotype i, Ej is the random environmental main effect of environment j,

βik is the genotypic sensitivity for genotype i to the k -th EC and Zjk is the k -th EC characterizing

environment j. Heslot et al. (2014) tackled the aforementioned issue of data dimensionality by

performing variable selection to retain only a subset of markers, which showed the most variable

effects across environments, while the main genotype effect was modelled with the complete marker

dataset. This approach avoids fitting all combinations of markers with ECs, which could be

computationally highly challenging.

Jarquín et al. (2014) proposed another approach to incorporate interactions between large environ-

mental and genomic datasets in a Bayesian reaction norm mixed model, where the random main

effects of markers and of ECs are estimated using the covariance functions G and Ω, respectively,

and the interaction between these two components is modelled by their Hadamard product. This

model allows reducing the dimensionality of the M × E problem and to benefit from information
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on the strength of correlations among environments and among genotypes. It has been widely used

for various multi-environment crop datasets, demonstrating the benefit from using environmental

information in GP models (Basnet et al., 2019; Costa-Neto et al., 2021; De Los Campos et al.,

2020; Monteverde et al., 2019; Rincent et al., 2019; Sukumaran et al., 2017). We also implemented

this statistical framework in chapter 2 and in chapter 4 of this thesis.

1.5 Machine learning methods to harness environmental and

genomic data

1.5.1 The potential of machine learning with complex datasets

With the exception of the study of Heslot et al. (2014), where genotype sensitivities to particular

ECs are modelled with regression trees, it should be noted that the methods described in the previ-

ous section assume that the interactions between molecular markers and environmental covariates

are linear, and thus, do not adequately reflect the biological phenotypic plasticity of genotypes.

In fact, QTL responses to environmental stress factors can be fit better with nonlinear methods,

as illustrated by a study in potato (Malosetti et al., 2006) using logistic curves to model senes-

cence progression over time. While the crop growth models described above simulate nonlinear

responses to stress covariates, they cannot directly integrate genomic data, but require a previous

step of estimating genotype-specific parameters. Hence, more flexible predictive modeling frame-

works, able to combine various data sources (e.g. genomic, environmental and phenotypic data)

and to accommodate nonlinear patterns and complex relationships among predictor variables, are

of particular interest to overcome some limitations of mixed linear models.

Machine learning methods are particularly appealing in this context, because numerous learning

algorithms are inherently nonlinear in nature, which means that no precise assumptions regarding

the form of the nonlinear function needs to be specified before training. In the last decade,

these statistical learning techniques have been more closely investigated in genetic studies for their

potential ability to capture non-additive genetic effects, which can result in a viable improvement

over traditional methods for some complex traits (Abdollahi-Arpanahi et al., 2020; Azodi et al.,

2019; Gianola et al., 2011; González-Recio and Forni, 2011; Heslot et al., 2012b; Ogutu et al., 2011).

Additionally, machine learning algorithms are expected to be able to learn complex interactions

between genes and environmental conditions, without explicit modeling of all interaction terms

Khaki and Wang (2019); Shook et al. (2021).

Nonetheless, an efficient usage of these methods remains challenging, notably because the explosion

of environmental, high-throughput genotyping and phenotyping data leads to the well-known ’large

p, small n’ issue, meaning that the number of predictor variables (also called features), character-

izing the data, is much larger than the sample size (Libbrecht and Noble, 2015). Multicollinearity,
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overfitting and computational time represent some of the problems that need to receive attention

when applying advanced machine learning techniques.

Machine learning techniques are generally classified as either supervised or unsupervised learning

algorithms. Supervised learning methods make use of labels, such as classes (for classification

problem) or numeric values (regression problem), that characterize each training instance and

are used by the algorithm to learn the relationship linking the predictor variables and the label.

Unsupervised learning techniques aim at recognizing patterns and at discovering groups of similar

instances with unlabelled training data. Considering the diversity of existing machine learning

algorithms, we will focus next on ensemble models for regression, since these models were applied

in the thesis. We will also describe methods which can be used in general to prevent overfitting.

1.5.2 Ensemble models

Methods based on an ensemble of trees are averaging techniques that have been developed to

capitalize on the advantages of single decision trees. A decision tree divides the predictor space

into disjoint regions, by asking a series of questions to the data, as shown in Figure 1.1. The

respective regions, defined by the terminal nodes of the tree, show a homogeneous response to

the predictor variables. In this simple example, the outcome is given by a numeric value, but in

more advanced models, the terminal node corresponds to a more complex function of the predictor

variables. One of the most widely used method is the classification and regression tree (CART)

conceived by Breiman et al. (1984). Decision trees can be used with different types of predictor

variables (continuous, categorical, ordinal, etc), are able to perform feature selection with irrelevant

variables, and can handle missing data by using surrogates (Hastie et al., 2009). However, single

trees are relatively instable, meaning that when the data is even slightly modified, it might result

in a substantial change in the structure of the decision tree, hence they are prone to overfitting

resulting in larger prediction errors and are often referred as "weak learners".

Different techniques exist to combine a set of individual decision trees, among them bagging, boost-

ing and stacking. Bagging (bootstrap aggregation) generates bootstrap samples from the original

dataset, which are used to create a classifier or regression model, for instance based on a decision

tree. The final prediction is given by the average of all single prediction models. Although this

technique allows to reduce the overall variance by introducing a random component into the tree

building procedure, the main issue is the correlation among decision trees because the same set

of predictor variables is used at each split. A solution using the same fundamental principles as

bagging has been proposed by Breiman (2001) with the random forests algorithm. In random

forests, a random subset of mtry of the original p predictor variables is sampled within each bagged

tree at each node to split, thus contributing to a reduction of the correlation among trees.

Boosting is an ensemble technique which aims at reducing both bias and variance. Let us consider
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Figure 1.1: A regression tree fitting the average response for training instances within each
rectangle of the predictor space.

here only the case of a regression task. Boosting is a forward and stagewise procedure, developed

by Friedman (2001), and is described in Algorithm 1. At each iteration, a new tree is fit to the

residuals of the previous trees, rather than to the original response variable, with the objective

of minimizing the loss function using gradient descent. The gradient is calculated as the partial

derivative of the loss function and is useful to help improve model parameters in order to obtain

a better fit and a reduced error in the next iteration. After a new tree is fit, the residuals are

updated by calculating the residuals from the model containing the ensemble of previous trees

with the newly constructed one.

Thereby, it becomes clear that an emphasis is made at each iteration on the observations that

are poorly predicted by the model, which explains why the boosted trees approach is different

from random forests, for which the trees are independently built from each other. The final

prediction is the sum of all trees weighted by the learning rate λ, also called shrinkage parameter.

λ constitutes a hyperaparameter, which can be optimized using cross-validation. Other critical

tuning hyperparameters with boosted trees are the number of trees and the tree depth, which is

an important regularization parameter corresponding to the number of splits within each tree, and

thus, it controls the interaction order within the data. Gradient boosting allows flexibility regarding

the loss function to use. Mean squared error (MSE) is the most commonly used loss function for

regression tasks, while hinge loss or logarithmic loss are frequently used for classification tasks.

Popular gradient boosting libraries developed for R and Python are XGBoost (Chen and Guestrin,

2016) and LightGBM (Ke et al., 2017), that we employed in chapter 2.

Other ensemble methods, such as stacked generalization, consist of combining the output obtained

from different individual models. In a first layer of models, each individual base-learner (e.g.

multiple linear regression, random forest model, etc) generates predictions, which are then directly
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Algorithm 1 Boosting for Regression Trees from James et al. (2021)

Set f̂(x) = 0 and ri = yi for all i in the TRN

for b = 1, 2,..., B, do :

(a) Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the TRN (X,r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)←− f̂(x) + λf̂ b(x).

(c) Update the residuals,

ri ←− ri − λf̂ b(xi).

Output the boosted model,

f̂(x) =

B∑
b=1

λf̂ b(x)

used as input to train a meta-learner (e.g. Lasso). Using cross-validation, optimal weights are

assigned to each base learner by this meta-learner, that are used to obtain the final prediction.

More details are given about stacked generalization in chapter 3.

1.5.3 Mitigating overfitting with machine learning techniques

1.5.3.1 Hyperparameter optimization

Hyperparameters are parameters of machine learning algorithms for which no analytical formula

exists to estimate them directly from the TRN. Many of these parameters influence the complexity

of the model and should be carefully chosen to regulate the extent to which the model adapts

to very specific and noisy patterns in the training data. The classical approach, named grid

search, implies the definition of a grid of candidate values, to test all possible combinations of

hyperparameters via cross-validation and to finally select the combination of hyperparameters

resulting in the lowest mean squared error. As emphasized by Kuhn et al. (2013) and Azodi

et al. (2019), this tuning step should be performed using only the training data, while the TST is

used to obtain an unbiased estimate of model performance. Azodi et al. (2019) demonstrated the

importance of choosing adequate hyperparameters for nonlinear methods, showing for instance that

shallower trees (low interaction depth) in random forests generally improve model performance.

For artificial neural networks, the penalty method (L1 or L2), activation function and network

architecture can considerably influence the model’s predictive ability (Azodi et al., 2019; Bellot

et al., 2018; Pérez-Enciso and Zingaretti, 2019).

Despite its simplicity, the grid search method is computationally intensive with advanced algo-

rithms necessitating tuning numerous hyperparameters. Another possibility is to implement ran-

domized search, which enables the evaluation of a user-defined number of random combinations,
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with random sampling of each hyperparameter value at each iteration. In chapter 2, we describe

another method we implemented to optimize hyperparameters based on a Gaussian process model.

1.5.3.2 Resampling the data via cross-validation

Cross-validation (CV) is the most widely used technique to estimate the average generalization error

on an independent test sample. In genomic selection, the evaluation of the models is conducted

within the set of genotyped and phenotyped individuals, that is randomly partitioned into a number

of folds (k) of equal size. Data from (k-1) folds is used to train a predictive model, that is

subsequently used to predict the remaining fold (i.e. the TST). Assessment metrics are calculated

for each fold serving as a TST. This k-fold CV procedure has been the standard approach in

genomic selection studies over the last two decades.

However, with the increasing application of machine learning, more advanced methodologies are

required to prevent data leakage during the steps of data preprocessing/hyperaparameter optimiza-

tion and of model assessment. Following recommendation made by Varma and Simon (2006) and

Krstajic et al. (2014), who showed that nested CV procedures can significantly reduce the bias of

error estimates, we apply this method in chapter 2, which involves the usage of two layers of re-

sampling to separate the hyperparameter tuning procedure from the model assessment procedure,

thus ensuring that the loss estimates are unbiased.

Additionally, different cross-validations might be of particular interest in the specific context of

plant breeding. It is of utmost interest to reproduce real prediction problems that the breeders

generally encounter. Therefore, using the same terminology as many related publications Bur-

gueño et al. (2012); Jarquín et al. (2014, 2017), in chapter 2 we investigated how well genotype

performance can be predicted in a new year (i.e. no phenotypic data for the corresponding year

is included in the TRN, CV0-year), or at a new location (i.e. no phenotypic data for the corre-

sponding location is included in the TRN, CV0-location), which represent challenging prediction

scenarios. The same scenarios were considered when the hybrids have never been evaluated be-

fore (CV00-year and CV00-location). In chapter 4, prediction of genotype performance in new

year-location combinations (CV0-environment), of newly developed genotypes in already tested

environments (CV1) and of incomplete field trials (CV2) were implemented. Results obtained by

Jarquín et al. (2017) with wheat grown in Kansas indicate that moderately accurate results can

be achieved to predict tested genotypes in new environments, but the task of predicting in new

years, especially for new genotypes, was still infeasible. Yet, it should be noted that this study did

not incorporate weather data, which can potentially lend the model useful information about the

relationships between environments.
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Figure 1.2: A scheme of the hyperparameter tuning procedure preventing data leakage, i.e.
no test data is used for model selection (modified from Kuhn et al. (2013))
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1.5.3.3 Variable selection and feature extraction

As the amount of gathered data is steadily growing, variable selection is becoming increasingly

useful for facilitating the interpretation of the outputs of the machine learning models and to re-

duce data dimensionality, thereby accelerating training. From a statistical perspective, it is also

advantageous to use fewer predictor variables explaining a larger variance of the outcome. Ma-

chine learning algorithms do not perform equally well with regard to multicollinearity. Tree-based

methods are relatively robust to the inclusion of irrelevant variables (Hastie et al., 2009; James

et al., 2021), while artificial neural networks cannot efficiently handle extremely large genotypic

datasets (Azodi et al., 2019; Pérez-Enciso and Zingaretti, 2019), hence a step of feature selection

should systematically be carried out. A range of methods, among which are filter, wrappers and

embedded methods, can be employed to reduce the number of features in the model (Kuhn et al.,

2013). Filter methods, such as Pearson’s correlation coefficient, Spearman’s rank correlation, Chi-

Square or entropy-based features, generate a score for each variable and do not require using any

learning algorithm, while providing stable results (Piles et al., 2021).

Principal component analysis (PCA) can be used to handle collinearity, which occurs when input

variables are highly correlated with each other. The orthogonal new variables can then be employed

as inputs for machine learning algorithms. This procedure can be of particular interest to reduce

the dimensionality of the model’s genomic components, and we applied it in chapter 2 as well as

in different models proposed in the package learnMET described in chapter 3.

1.6 Objectives of the thesis

Integrating genotypic and environmental data to predict phenotypes across multiple environments

appears as a valuable strategy to make informed breeding decisions, and makes even more sense as

we expect the occurrence of abiotic stresses to considerably increase in the next decades. Jarquín

et al. (2014) proposed a reaction norm model based on the estimation of an environmental covari-

ance matrix, providing an efficient computational framework in a LME framework. However, this

predictive approach relies on strong statistical assumptions, which are: i) common variance for all

markers based on the G-BLUP model, ii) common variance of the slopes of the reaction norms

for all environmental covariates. Therefore, the model does not allow any heterogeneity regarding

the variance among slopes of reaction norms. These statistical conditions can explain why the

use of additional environmental data does not always result in substantial increases of predictive

ability (De Los Campos et al., 2020; Jarquin et al., 2021), although this data does explain a larger

proportion of the phenotypic variance.

While machine learning models are expected to capture implicit physical and biological relation-

ships among these diverse predictor variables, only few studies, focusing on deep neural networks
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(Khaki and Wang, 2019; Washburn et al., 2021b), investigated these techniques for the prediction of

complex phenotypes. Furthermore, the latter rely on very little feature engineering prior to model

training. Therefore, attention needs to be given to the performance of additional machine learning

techniques and to the impact of processing environmental data with regards to ecophysiological

knowledge.

Within the framework of the thesis, several public datasets have been utilized. In particular,

we extensively used the publicly available datasets of the Genomes to Fields maize Initiative

(AlKhalifah et al., 2018; McFarland et al., 2020). Briefly, a large number of unique maize hybrids

(≈ 2,000) was generated from a set of diverse inbred lines (e.g. recently expired plant variety

protection elite lines, recombinant inbred lines) and their performance was measured at various

locations across North America for several phenotypic traits (grain-related traits, plant height, ear

height, and phenological traits). A particular emphasis of the project is put on the understanding

of key G × Ecomponents, thus automatic weather stations were placed at each location. Starting

in 2014, the project also aims at regularly releasing genotypic, environmental and phenotypic

datasets characterizing the experimental trials managed by collaborators on their website (https:

//www.genomes2fields.org/).

Chapter 2 investigates the performance of two gradient boosting (GB) algorithms and linear

random effects models as a benchmark for prediction of phenotypic traits, based on four differ-

ent cross-validation scenarios mimicking concrete plant breeding prediction problems implemented

with the G2F datasets. To borrow information from correlated environments due to marker ×

environmental covariates interaction effects, the latter were explicitly modeled in random effects

models, while it was assumed that these G × E interactions can be inherently captured by the two

GB algorithms. We also explored some machine learning tools to better understand the respective

importance of the predictor variables to build predictions in the gradient boosting models.

Chapter 3 presents an R package which provides flexible pipelines to apply various types of

machine learning methods for genomic prediction using multi-environment trial data. In particular,

learnMET enables environmental characterization via the retrieval and aggregation of daily weather

data, and different cross-validation schemes are proposed.

Chapter 4 examines a multivariate nonlinear method to build an environmental distance matrix on

the basis of raw daily weather data characterizing the crop growing season within each environment.

Using a wheat and a maize multi-environment dataset, we explore the potential of this method for

environmental clustering and for predictive purposes with the model proposed by (Jarquín et al.,

2014).

Chapter 5 includes a general discussion on factors which can influence the gain obtained by using

environmental data along with genomic data for the prediction of genotype performance across

environments.

https://www.genomes2fields.org/
https://www.genomes2fields.org/
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2.1 Abstract

The development of crop varieties with stable performance in future environmental conditions

represents a critical challenge in the context of climate change. Environmental data collected at

the field level, such as soil and climatic information, can be relevant to improve predictive ability

in genomic prediction models by describing more precisely genotype-by-environment interactions,

which represent a key component of the phenotypic response for complex crop agronomic traits.

Modern predictive modeling approaches can efficiently handle various data types and are able to

capture complex nonlinear relationships in large datasets. In particular, machine learning tech-

niques have gained substantial interest in recent years. Here we examined the predictive ability

of machine learning-based models for two phenotypic traits in maize using data collected by the

Maize Genomes to Fields (G2F) Initiative. The data we analyzed consisted of multi-environment

trials (METs) dispersed across the United States and Canada from 2014 to 2017. An assortment

of soil- and weather-related variables was derived and used in prediction models alongside geno-

typic data. Linear random effects models were compared to a linear regularized regression method

(elastic net) and to two nonlinear gradient boosting methods based on decision tree algorithms

(XGBoost, LightGBM ). These models were evaluated under four prediction problems: (1) tested

and new genotypes in a new year; (2) only unobserved genotypes in a new year; (3) tested and new

genotypes in a new site; (4) only unobserved genotypes in a new site. Accuracy in forecasting grain

yield performance of new genotypes in a new year was improved by up to 20% over the baseline

model by including environmental predictors with gradient boosting methods. For plant height,

an enhancement of predictive ability could neither be observed by using machine learning-based

methods nor by using detailed environmental information. An investigation of key environmental

factors using gradient boosting frameworks also revealed that temperature at flowering stage, fre-

quency and amount of water received during the vegetative and grain filling stage, and soil organic

matter content appeared as important predictors for grain yield in our panel of environments.

Keywords: machine learning, genotype-by-environment interactions, gradient boosting, maize,

yield, genomic prediction, plant breeding

2.2 Introduction

The development of environmental sensing technologies, including local weather stations, soil and

crop sensors has progressively enabled field-level climate data to be incorporated into the analysis

of plant breeding experiments (Crossa et al., 2021; Ersoz et al., 2020; Tardieu et al., 2017). When

used to enhance genomic prediction, climate data can be useful to estimate the differential response

of genotypes to new environmental conditions, i.e., genotype-by-environment interactions (G×E),

almost omnipresent in multi-environment trial (MET) experiments (Chenu, 2015; Cooper and
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DeLacy, 1994). In plant breeding, an environment generally refers to the set of growing conditions

associated with a given location in a given year. Various statistical models, such as factorial

regression methods, have been developed to model genotype sensitivity to continuous environmental

covariates (ECs) (van Eeuwijk et al., 1996; Malosetti et al., 2004) or even to simple geographic

coordinates (Costa-Neto et al., 2020) capturing primarily genotype-by-location interaction effects

explained by crop management or soil characteristics.

Before the emergence of environmental data in breeding, large whole-genome marker datasets,

generated by high-throughput genotyping platforms, have progressively enabled the routine im-

plementation of genomic prediction (GP) methods (Haley and Visscher, 1998; Meuwissen et al.,

2001). GP allows to predict performance of untested genotypes based on their genetic similarity,

estimated with marker data, with other phenotyped genotypes. GP has since been expanded to

achieve predictions in a multi-environment context, for instance by implementing a multivariate

GBLUP approach (Burgueño et al., 2012) to use genetic correlations among environments. Despite

the overall success of genomic prediction, a lingering challenge has regularly been to incorporate

interactions between high-dimensional genomic data and high-dimensional environmental data. A

solution proposed by Jarquín et al. (2014) is to use reaction norm models, where markers and

environmental effects are modeled using covariance structures. Interactions between markers and

environmental covariates are computed with the Hadamard product which avoids the need to fit

all first-order interaction terms. This extension of the GBLUP G×E mixed effects models has

been applied on a large number of datasets in different species (De Los Campos et al., 2020; Jar-

quín et al., 2017; Monteverde et al., 2019; Pérez-Rodríguez et al., 2015, 2017; Rincent et al., 2019;

Sukumaran et al., 2017, 2018). Several studies have also focused on the integration of crop growth

models in genomic prediction to better model the differential impact of abiotic stress depending

on the crop developmental stage (Heslot et al., 2014; Rincent et al., 2017, 2019). Rincent et al.

(2019) proposed a method to select the optimal subset of ECs from the output of a crop growth

model on the basis of the correlation between the environmental covariance matrix, which is based

on ECs, and the covariance matrix between G×E interactivity of environments obtained by AMMI

decomposition. Overall, many studies have found that using quantitative environmental informa-

tion in genomic prediction models in the form of additional covariates can result in an enhancement

of prediction accuracies (Costa-Neto et al., 2021; Heslot et al., 2014; Jarquín et al., 2014; Malos-

etti et al., 2016; Millet et al., 2019; Monteverde et al., 2019) and a better characterization of the

genotype-by-environment interaction effects (Rogers et al., 2021).

However, modeling interaction effects with nonlinear techniques is a crucial topic that has not been

conclusively explored for genomic prediction in MET. In particular, machine learning techniques

have gained attention over the last two decades due to their ability to handle nonlinear effects

(Hastie et al., 2009) and to uncover higher-order interactions between predictor variables (Behravan

et al., 2018; Lampa et al., 2014). With machine learning algorithms, the mapping function linking
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input variables to the outcome—i.e., a phenotypic trait—is learned from training data and no

strong assumptions about its form need to be explicitly formulated beforehand. Hence, these

methods represent relatively flexible frameworks for data-driven integration of different data types.

Among these new techniques, ensembles of trees, such as methods based on bagging (e.g., random

forests), or on boosting (e.g., gradient boosted trees) have become increasingly popular. Ensemble

methods designate predictive modeling techniques which aggregate the predictions of a group of

base learners, and thereby generally allow better predictions than by using only the single best

learner (Friedman, 2001; Géron, 2019; Hastie et al., 2009). Broad applications of these approaches

include human disease prediction (Fukuda et al., 2013; Kopitar et al., 2020; Romagnoni et al., 2019),

bioinformatics (Yu et al., 2019), ecology (Elith et al., 2008; Moisen et al., 2006) and agricultural

forecasting (Crane-Droesch, 2018; Delerce et al., 2016; Fukuda et al., 2013; Jeong et al., 2016;

Shahhosseini et al., 2020). In the field of genomic prediction, ensemble methods have progressively

been used, as they appear especially interesting for capturing non-additive effects such as epistasis

or dominance effects, which can be important for predicting complex phenotypic traits (Abdollahi-

Arpanahi et al., 2020; Azodi et al., 2019; González-Recio et al., 2013; Ogutu et al., 2011). Abdollahi-

Arpanahi et al. (2020) concluded from results obtained on both a real animal and simulated datasets

that gradient boosting was the best predictive modeling approach when the genetic architecture

included non-additive effects. While these new predictive modeling approaches can also potentially

enable superior prediction results, special attention must be paid to an appropriate optimization

of hyperparameters during the training phase in order to prevent overfitting on new test data

(Friedman, 2001; Géron, 2019; Hastie et al., 2009).

In addition, these new predictive modeling frameworks, coupled with large volumes of environ-

mental data, can provide powerful data mining opportunities to identify critical environmental

factors affecting economically important phenotypic traits in the field. Much research has already

been done to examine the expected impact of climate change on the vulnerability of major staple

food crops. Extreme weather events are expected to happen at a higher frequency in the future,

characterized for instance by heat waves or prolonged drought periods according to various climate

scenarios (Rahmstorf et al., 2012; Trnka et al., 2014). When occurring at crucial crop develop-

mental stages, risks for important yield losses are augmented. Different studies on maize have for

instance reported a physiological sensitivity to higher temperatures, heightened during the repro-

ductive phase, which often results in grain yield reduction when a certain threshold is exceeded

(Butler and Huybers, 2015; Cicchino et al., 2010; Lizaso et al., 2018). In addition, nonlinear effects

of environmental covariates, especially of temperature and precipitation on maize plants, have

also been regularly described in the literature (Mushore et al., 2017; Schlenker and Roberts, 2009).

Therefore, machine learning techniques break new ground to get an extended comprehension of the

effect—both in direction and magnitude—of environmental conditions in the context of breeding

for abiotic stress resilience.
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Motivated by previous studies emphasizing the benefit of nonlinear methods, we tested two machine

learning ensemble methods, based on gradient boosted trees, which, to our knowledge, have never

been examined for data-driven predictions and interpretation using MET experimental datasets

from the Maize Genomes to Fields initiative. The Maize Genomes to Fields (G2F) initiative

(www.genomes2fields.org) includes yearly evaluations of inbred and hybrid maize across a large

range of climatically-distinct regions in North America. The project makes publicly available phe-

notypic and genotypic (genotyping-by-sequencing datasets relating to the inbred lines) information,

as well as weather (field weather stations), agronomic practices and soil data (Falcon et al., 2020;

McFarland et al., 2020). The large number of phenotypic observations, and the assortment of

various data types makes the application of machine learning models here particularly relevant to

evaluate their performance, as well as their usefulness to disentangle hidden relationships. Our

objectives in this study were (1) to evaluate recent gradient boosting methods for prediction of two

phenotypic traits (plant height and grain yield) across four different cross-validations, and compare

them to traditional prediction models classically used for multi-environment trials; (2) to examine

if the use of environmental information, in addition to genomic predictor variables, could lead to

a gain of predictive ability of genotype performance based on these various prediction models; and

(3) to better understand the influence of some environmental factors on maize grain yield using

tools derived from the machine learning framework.

2.3 Material and Methods

2.3.1 Phenotypic Data Cleaning and Analysis

Phenotypic datasets (years 2014–2017) were downloaded from the official website of the Genomes to

Fields project. The full dataset represents a large collection of trials located on the North-American

continent run by different principal investigators and institutions, but the experimental design used

for most of the hybrid trials was a randomized complete block design with two replications per

environment. A total number of 71 trial experiments remained for further analysis (Supplementary

Figure S2.1, Supplementary Table S2.1) after having eliminated environments with critical missing

information, such as flowering time (Supplementary Table S2.2). Plots with low phenotypic quality,

as interpreted by the researcher groups who collected field data, were removed before within-

experiment analysis. Replicates within a same ID experiment but planted seven or more days

apart were considered as different environments and treated as unreplicated environments, due to

the difference in the weather conditions they experienced at their respective phenological stages.

Each environment (Year-Site combination) was independently analyzed to obtain best linear un-

biased estimates (BLUEs) for each hybrid in each environment for grain yield, plant height and

silking date. We performed this analysis with the lme4 package (Bates et al., 2015) in R version
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3.6.0 (R Core Team, 2019) based on the following model:

Yij = µ+Gi +Rj + εij ,

where Yij is the observed phenotypic response variable of the i -th hybrid genotype (G) in the j -th

replicate (R), µ is the general mean, Gi is the effect of the i -th hybrid genotype, Rj is the effect

of the j -th replicate and εij is the error associated with the observation Yij . We treated genotype

as a fixed effect and replicate as a random effect.

Phenotypic observations with absolute studentized conditional residuals greater than three were

identified as potential outliers and removed from the dataset. The plant material and phenotypic

datasets are described in more details in previous publications (AlKhalifah et al., 2018; McFarland

et al., 2020) and on the project website (https://www.genomes2fields.org/home/). Ultimately,

18,325 and 16,951 phenotypic observations for grain yield and plant height, respectively, with

available silking date, genotypic and environmental data, were used as target response variable in

the prediction models.

2.3.2 Genotypic Data

Genotype-by-sequencing (GBS) data of inbred lines used in Genomes to Fields hybrid experiments

were downloaded on CyVerse. SNPs with more than two observed alleles were removed before

analysis. Taxa with less than 70% site coverage and more than 8% heterozygosity were discarded.

Monomorphic markers were removed, as were those missing or heterozygous in more than 5%

of the parental lines. These filtering analyses were performed with TASSEL 5 (Bradbury et al.,

2007). After filtering, 246,818 SNPs remained for analysis. These were imputed using the software

LinkImpute (Money et al., 2015). The genotype matrix was coded as the number of minor alleles

at each locus (0, 1, or 2). Markers with minor allele frequency less than 2% and in high linkage

Disequilibrium (LD) were further removed using the pruning function of Plink (Purcell et al.,

2007) with a window of size 100 markers, a step of 5, and a LD threshold of 0.99. In silico

genotypes of maize hybrids, for which phenotypic data had been analyzed, were constructed based

on the processed genotypes of parental lines, and a final minor allele frequency filtering of 2% was

applied. The final hybrid genotype dataset contained 107,399 SNPs characterizing 2,033 hybrids.

Additional details regarding the genotype-by-sequencing procedure implemented by the Genomes

to Fields project has been previously published (Gage et al., 2017).

2.3.3 Weather Data

All field experiment locations in the Genomes to Fields project had a WatchdogTM Model 2700

weather station (Spectrum Technologies Inc., East-Plainfield, Illinois, 60585, USA) on-site. Weather

records were recorded every 30 min during the growing season. Measurements for air tempera-

ture (°C), relative humidity (%), rainfall (mm), solar radiation (W/m2) and wind speed (m/s)

https://www.genomes2fields.org/home/
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were specifically analyzed. In-field weather station measurements provide climatic information of

a very localized scale in comparison to weather service stations. Therefore, we prioritized the use

of weather-station data whenever data quality criteria were fulfilled and the proportion of missing

data was reasonable. When quality criteria were not met, weather data was acquired from nearby

weather service stations.

In the first step, we summarized the hourly or semi-hourly records for each climatic variable

on a daily basis using various quality control criteria (consistent number of weather records per

day; threshold tests; persistence tests, i.e., flagging observations with null variability during the

day; internal consistency tests, i.e., verification of the relation between measured variables). These

criteria were applied based on the recommendations from the official published guidelines on quality

control procedures for data acquired from weather stations (Estévez et al., 2011; Zahumenskỳ,

2004) and are detailed in Supplementary Table S2.3. Data from the field weather station were

compared against weather data obtained from public climate summaries to check for possible large

data divergences and to fill out missing values. Data from the Global Historical Climatology

Network (GHCN) and from the Global Surface Summary of the Day (GSOD) were retrieved from

the National Oceanic and Atmospheric Administration (NOAA) website to investigate American

locations, while data for Canadian locations were downloaded from the Environment and Climate

Change Canada (ECCC) website, based each time on a 70-kilometer radius from the geographic

coordinates for each field experiment. In case data from the field weather station data were missing

or assigned as erroneous, data from the closest publicly accessible weather station were used, if

it was located less than 2 km from the field. If the distance to the nearest station was large,

interpolation by spatio-temporal kriging or inverse distance weighting was performed using the R

package gstat to impute the missing data (Gräler et al., 2016; Pebesma, 2004). For wind data, we

only used results obtained from inverse distance weighting because of the consistency regarding

the standard height measurement obtained from GSOD data. Similarly, in-field weather stations

solar radiation data were characterized by a high percentage of missing values and inconsistencies;

we used instead the R package nasapower (Sparks, 2018), which enables an easy access to NASA

POWER surface solar radiation energy data. Some environments were irrigated: for those of which

the precise amount was tracked during the growing season, these data were added to the final daily

precipitation data.

Hence, the daily weather data consisted of the daily maximum, minimum and mean temperature

(average of minimum and maximum daily temperatures), average wind speed, precipitation, hu-

midity, incoming solar radiation. Based on these processed weather data, we were then able to

calculate the daily growing degrees (Baskerville and Emin, 1969), the photothermal time (product

between GDs and day length in hours, for each day), the mean vapor pressure deficit, the reference

evapotranspiration (ET0) using FAO-56 Penman-Monteith method (Allen et al., 1998). These lat-

ter variables were computed because they incorporate crop physiological parameters which make
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them sometimes more relevant than the initial weather data.

2.3.4 Derivation of Environmental Variables per Hybrid Growth Stage

The next step was to obtain pertinent environmental predictors from daily weather summaries for

the predictive modeling framework. The objective was to relate each hybrid phenotypic perfor-

mance (e.g., yield) in a particular environment, individually characterized by its specific flowering

dates, to the corresponding weather series during the growing season. To develop a unified frame-

work across the different growing season lengths, which varied throughout locations and years,

we used three critical maize growth stages, as was performed in previous similar work for other

crops (Delerce et al., 2016; Gillberg et al., 2019; Heslot et al., 2014; Monteverde et al., 2019). This

approach was needed to account for the differential impact of weather-based variables according to

the crop developmental stage. Each intermediate plant developmental stage could not be precisely

determined since visual scoring for all stages is in practice highly time-consuming and expensive.

However, the sowing date and the flowering date, i.e., when 50% of plants in a plot have visible silk,

were recorded for each hybrid kept after phenotypic data analysis. Based on these known dates,

three hybrid maize growth periods could be estimated: vegetative (from the planting date to 1

week before the 50% silking date); flowering (from 1 week before 50% silking date to 2 weeks after

that date, which corresponds approximately to the end of the pollination period); and the grain

filling stage (from the end of the flowering period to 65 days after, after which maturity should

be reached). By definition, these three periods do not overlap. The typical duration of the grain

filling stage varies according to the hybrid and the environment; nonetheless, based on literature

and agronomic knowledge, the corn plant is normally at physiological maturity (R6) about 55–65

days after silking (Ritchie et al., 1993).

Based on these dates, 13 weather-based environmental predictor variables were computed for each

phenological stage and therefore were both environment- and hybrid-specific (Table 2.1). We

included stress covariates related to heat, as it is expected that an excess of heat can be detrimen-

tal, especially during the flowering stage, and results in a lower yield. To examine the presence

of clusters of environments based on climatic similarity, a principal component analysis on the

weather-based covariates using the R package factoextra (Kassambara and Mundt, 2017) was ap-

plied.
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Table 2.1: Environmental predictor variables used in the prediction models. The suffixes
refer to: V, vegetative period; F, flowering period; G, grain fill period; SC, soil covariate.

Acronym General description

P.V, P.F, P.G Accumulated precipitation + irrigation (mm) by growth period

FreqP5.V, FreqP5.F, FreqP5.G

Frequency of days with more than 5 mm precipitation by growth

period

MeanT.V, MeanT.F, MeanT.G Average of daily mean temperature (°C) by growth period

MinT.V, MinT.F, MinT.G Average of minimum daily temperature (°C) by growth period

MaxT.V, MaxT.F, MaxT.G Average of maximum daily temperature (°C) by growth period

GDD.V, GDD.F, GDD.G Cumulative growing degree days, Base 10°C (°C) by growth period

Photothermal.Time.V,

Photothermal.Time.F,

Photothermal.Time.G

Cumulative photothermal time (GDD x Day Length) by growth

period

FreqMaxT30.V, FreqMaxT30.F, Freq-

MaxT30.G

Frequency of days with maximum temperature above 30°C by

growth period

FreqMaxT35.V, FreqMaxT35.F, Freq-

MaxT35.G

Frequency of days with maximum temperature above 35°C by

growth period

St30.V, St30.F, St30.G Sum of the daily maximal temperatures above 30°C (°C)

CumSumET0.V,

CumSumET0.F,

CumSumET0.G

Accumulated reference evapotranspiration (mm), under standard

conditions, according to the FA0-56 Penman-Monteith methodol-

ogy for each growth period

CumDailyWaterBalance.V,

CumDailyWaterBalance.F,

CumDailyWaterBalance.G

Cumulative daily water balance, i.e. daily precipitation + irriga-

tion - daily reference evapotranspiration (mm)

Sdrad.V, Sdrad.F, Sdrad.G

Accumulated incoming daily solar radiation (MJ m-2 day-1) by

growth period

SandProp.SC Sand composition (%)

Silt.Prop.SC Silt composition (%)

ClayProp.SC Clay composition (%)

OM.SC Percentage of organic matter (%)

In addition to climatic variables, our framework accommodates four soil-based environmental vari-

ables: soil quality types (percentages of sand, silt, and clay composition) and percentage of soil

organic matter. The majority of the soil information originates from the soil samples realized at

each G2F field location; otherwise, when the location presented missing information, we defined an

area of interest based on field geographical coordinates using the Web Soil Survey application for

American locations, and the web mapping application Agricultural Information Atlas for Canadian

locations, and retrieved the aforementioned data of interest. In the rest of the paper, the abbrevi-

ation “W” refers to the set of weather-based and soil-based environmental covariates. For the trait

plant height, weather-based covariates from the grain filling stage were not used as explanatory

variable for prediction, since this trait was usually measured shortly after flowering time.
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2.3.5 Prediction Models Implemented

2.3.5.1 Linear random effects models (LRE models)

In multi-environment trial analysis and plant breeding experiments, linear random effects models,

abbreviated to LRE models thereafter, are often used as genomic prediction models and were

compared in this study with machine learning techniques, according to the models outlined in

(Jarquín et al., 2014). In particular, G×E can be modeled with a covariance function equal to

the product of two random linear functions of markers and of environmental covariates, which is

equivalent to a reaction norm model (Jarquín et al., 2014). An environment always refers to a Site

× Year combination.

Main effects models

(1) Model G+E: Marker + Environment Main Effects (baseline model)

The response variable is modelled as the sum of an overall mean (µ), plus random deviations due

to the environment Ei and to the genotypic random effect of the j th hybrid genotype gj based on

marker covariates (G-BLUP component), plus an error term εij :

yij = µ+ Ei + gj + εij , (2.3.1)

where Ei
IID∼ N(0, σ2

E), g IID∼ N(0,Gσ2
g) and εij

IID∼ N(0, σ2
ε), and N(.,.) denotes a normally

distributed random variable, IID stands for independent and identically distributed, and σ2
E , σ2

g

are the corresponding environmental and genomic variances, respectively.

gj corresponds to a regression on marker covariates of the form gj =
∑p

m=1 xjmbm, linear combi-

nation of p markers and their respective marker effects. Marker effects were regarded as IID draws

from normal distributions of the form bm
IID∼ N(0, σ2

b ), m = 1,...,p . The vector g=Xb follows a

multivariate normal density with null mean and covariance-matrix Cov(g) = Gσ2
g , where G = XX′

p

is the genomic relationship matrix, X representing the centered and standardized genotype matrix

and p is the total number of markers.

(2) Model G+S: Marker + Site Main Effects

The present model allows to gain information from a site evaluated over several years, as it includes

the site effect:

ykj = µ+ Sk + gj + εkj (2.3.2)

Here ykj corresponds to the phenotypic response of the jth genotype in the kth site with Sk
IID∼

N(0, σ2
S), k = 1,...,K .

(3) Model G+E+W: Marker + Environment + Environmental Covariates Main Effects

This model incorporates additionally the main effect of the environmental covariates (including

the longitude and latitude coordinates). We can model the environmental effects by a random
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regression on the ECs (W), that represents the environmental conditions experienced by each

hybrid in each environment: wij =
∑Q

q=1 Wijqγq, where Wijq is the value of the qth EC evaluated

in the ij th environment x hybrid combination, γq is the main effect of the corresponding EC, and

Q is the total number of ECs. We considered the effects of the ECs as IID draws from normal

densities, i.e. γq ∼ N(0, σ2
γ). Consequently, the vector w = Wγ follows a multivariate normal

distribution with null mean and covariance matrix Ωσ2
w, where Ω ∝ WW′, and the matrix W,

which is centered and standardized, contains the values of the ECs. The model becomes then:

yij = µ+ Ei + gj + wij + εij (2.3.3)

with w ∼ N(0,Ωσ2
w).

In this model, as explained in Jarquín et al. (2014), environmental effects are subdivided in two

components, one that originates from the regression on numeric environmental variables, and one

due to deviations from the Year-Site combination effect which cannot be accounted for by the

ECs. Indeed, the environmental variables might not be able to fully explain the differences across

environments. The modeling of the covariance matrices Ω and G allows to borrow information

between environments and between hybrid genotypes, respectively.

Models with interaction

(4) Model G+E+G×E: main effects G+E with Genomic × Environment Interaction

The model G+E was extended by including the interaction term between environments and markers

(G×E):

yij = µ+ Ei + gj + gEij + εij (2.3.4)

with gE ∼ N(0, [ZgGZ′
g]◦[ZEZ

′
E]σ

2
gE), εij

IID∼ N(0, σ2
ε), where Zg and ZE are the design matrices

that connect the phenotype entries with hybrid genotypes and with environments, respectively;

σ2
gE is the variance component of the gEij interaction term; and ◦ denotes the Hadamard product

between two matrices.

(5) Model G+S+G×S: main effects G+S with Genomic × Site Interaction

Similar to the previous model, this model extends model G+S by including the interaction term

between sites and markers (G×S):

ykj = µ+ Sk + gj + gSkj + εkj (2.3.5)

where gS ∼ N(0, [ZgGZ′
g]◦[ZSZ

′
S]σ

2
gS), εkj

IID∼ N(0, σ2
ε), where ZS and σ2

gS are the design matrix

for sites and the associated variance component for this interaction, respectively.

(6) Model G+E+S+Y+G×S+G×Y+G×E: main effects G+E+S+Y with Genomic × Environment

Interaction, Genomic × Site Interaction and Genomic × Year Interaction
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This model corresponds to the most complete model using only basic G×E information (year and

site information) about environments:

yjkm = µ+ gj + Sk + Ym + Ekm + gSjk + gYjm + gEjkm + εjkm (2.3.6)

where gY ∼ N(0, [ZgGZ′
g] ◦ [ZYZ′

Y]σ2
gY ), εkj

IID∼ N(0, σ2
ε), where ZY and σ2

gY are the design

matrix for years and the associated variance component for this interaction, respectively.

(7) Model G+E+W+G×W: main effects G+E+W with interactions between markers and environ-

mental covariates

The model G+E+W was extended by adding the interaction between genomic markers and en-

vironmental covariates. Jarquín et al. (2014) demonstrated that this interaction term induced by

the reaction-norm model can be described by a covariance structure which corresponds, under

standard assumptions, to the Hadamard product of two covariance structures: one characterizing

the relationships between lines based on markers information (e.g. G), and one describing the

environmental resemblance based on ECs (e.g. Ω). The vector of random effects, denoted gw

represents the interaction terms between markers and ECs, is assumed to follow a multivariate

normal distribution with null mean and covariance structure [ZgGZ′
g] ◦ Ω. The model can be

expressed as follows:

yij = µ+ Ei + gj + wij + gwij + εij , (2.3.7)

with gw ∼ N(0, [ZgGZ′
g] ◦Ωσ2

gw).

(8) Model G+E+W+G×W+G×E: main effects G+E+W with Genomic × Environment Interac-

tion and Genomic × Environmental Covariates Interaction

The interaction term gEij is incorporated in this model, because some G×E might not be com-

pletely captured by the interaction term gwij , and the model becomes:

yij = µ+ Ei + gj + wij + gwij + gEij + εij (2.3.8)

Main and interactions effects included in the different models described above are summarized

in Table S5. Models using W, i.e. the matrix of environmental covariates, were tested with

and without longitude and latitude data included. Additional combinations of main effects and

interactions not detailed here were also evaluated and results are presented as Supplementary data.

These models were implemented in a Bayesian framework using the R package BGLR (Pérez and

de Los Campos, 2014), for which the MCMC algorithm was run for 42,000 iterations and the first

2000 cycles were removed as burn-in with thinning equal to 5.

2.3.5.2 Machine Learning Based Methods Used

The potential of machine learning models was explored using the following three algorithms: the

linear regularized Elastic Net (Zou and Hastie, 2005), XGBoost (Chen and Guestrin, 2016) and
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LightGBM (Ke et al., 2017). All the machine learning regression models were conducted in R

version 3.6.1 (R Core Team, 2019) using the tidymodels framework (Kuhn and Wickham, 2020)

and wrapper functions of treesnip (https://github.com/curso-r/treesnip/). Elastic net is a

regularized linear regression method that has proven to be useful with datasets characterized by

multicollinearity to identify the most relevant predictor variables as well as reducing the computing

time (Zou and Hastie, 2005). It corresponds to a linear combination of two penalty terms: the

lasso (L1 regularization), noted ∥β∥1 =
∑p

j=1 |βj | and the ridge (L2 regularization), noted ∥β∥22 =∑p
j=1 β

2
j . While the L2 penalty tends to contract the coefficients of highly correlated features

toward each other, the L1 penalty supports a sparse solution, as many coefficients are zeroed.

However, this method does not account for interactions between features.

Originally introduced by Friedman (2001), gradient boosting approach sequentially builds an en-

semble of decision trees, with each new tree improving the predictions of the previous one by

fitting on its residual errors. Two implementations of gradient boosting of decision trees (GBDT)

for regression were used: Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient

Boosting (XGBoost). The two GBDT frameworks stand out from other similar boosting algorithms

regarding their efficiency, which can be achieved by their common implementation of a histogram-

based method for split finding, which groups continuous features into discrete bins. Hence, the

algorithm does not iterate through all feature values, which is extremely time-consuming, but in-

stead performs splitting on the bins. This speeds up training for very large datasets, as well as

reducing memory usage. LightGBM, developed more recently, incorporates additional features,

among others a downsampling during the training on basis of gradients. GBDT frameworks can

handle well various types of data (binary, continuous data), and they are relatively robust to the

effects of outliers among predictor variables (Hastie et al., 2009). Decision trees can capture, by

construction, higher-order interactions between features, as well as nonlinear relationships between

predictors and response variable (Friedman, 2001). Hence, interactions do not need to be explicitly

provided as input data, since new splits are built conditional on preceding splits made on other

predictors.

2.3.5.3 Data Pre-Processing for Machine Learning-Based Models

For data processing, we used the R package recipes (Kuhn and Wickham, 2020). To reduce

genomic data dimensionality, we did not input SNP data into our prediction models directly.

Instead, we used the top 275 or 350 principal components (PCs) of SNP data, for the traits grain

yield and plant height, respectively. This set of PCs was chosen after evaluation of the predictive

ability using different sets of top PCs explaining a various proportion of the variance in the data.

Covariates which had no variance were removed using the step_nzv function. Retained covariates

were standardized to zero mean and unit variance. As for linear random effect models, we tested

the influence on prediction of longitude and latitude data by including and removing them as

https://github.com/curso-r/treesnip/
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predictor variables across the different cross-validation scenarios. The year was also included as an

input variable as a predictor variable in some models to account for environmental variation not

fully captured by environmental covariates. In that case, the factor variable was converted into

four new variables corresponding to each level of the original predictor. To model the site effect in

models without numerical environmental information, we used the simple geographic coordinates of

each location instead of using its label. Indeed, in decision trees, the use of a categorical predictor

with a high number of levels can lead to overfitting (Hastie et al., 2009).

2.3.5.4 Optimization of Hyperparameters and Hyperparameter Impor-

tance for Machine Learning-Based Models

Bayesian optimization using an iterative Gaussian process was used for hyperparameter tuning.

It represents a much faster approach than grid search while allowing more flexibility in how the

parameter space is covered. The Gaussian process builds a probability model based on an initial set

of performance metrics obtained for various hyperparameter combinations during an initialization

step, and predicts new tuning hyperparameters to test based on these previous results (Snoek et al.,

2012; Williams and Rasmussen, 2006). Bayesian optimization incorporates prior assumptions on

model parameter distribution and update it after each iteration, seeking to minimize the root mean

square error (RMSE). Hyperparameter tuning was evaluated with 30 iterations under resampling

based on a fivefold cross-validation (CV) with two repeats on the training set. Supplementary

Table S2.4 indicates the set of hyperparameters tuned for each method during this optimization

step. This set of hyperparameters was then used to fit the whole training data and predict the test

set, which was unused during the optimization of hyperparameters. The general procedure for this

nested cross-validation is illustrated in Figure 2.1. Fine-tuning of hyperparameters is required in

order to prevent overfitting and to achieve the best prediction accuracy and representation of the

data.

In addition, we examined the role of each hyperparameter on the overall model performance.

This analysis provide insights into the most important hyperparameters to primarily tune in order

to yield accurate models. We focus here on the LightGBM algorithm and XGBoost. A method

based on random forests and functional ANOVA (fANOVA) was proposed by Hutter et al. (2014) to

quantify the marginal contribution of each hyperparameter and pairwise interaction effects. Briefly,

we used the output table of performance metrics of each algorithm with different hyperparameter

combinations, which was obtained during the optimization step. The metric (root mean square

error) is then used as target variable while hyperparameters represent the explaining variables

to fit a random forest algorithm. fANOVA is then applied to evaluate the importance of each

hyperparameter used in the grid search.
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Figure 2.1: Nested cross-validation diagram for evaluation of model performance in the
leave-1-year-out CV scheme with a machine learning approach.

2.3.5.5 Assessment of Prediction Accuracy for New Environments

In order to mimic real plant breeding problems, we considered four different cross-validation strate-

gies aiming at predicting genotypes in environments that were never tested before, namely CV0-

Year, CV0-Site, CV00-Year, and CV00-Site, described in Jarquín et al. (2017). The CV0 cross-

validation scheme allows to borrow information in the training set about the performance of pre-

dicted genotypes in other tested environments, while the CV00 cross-validation scheme consists of

the prediction of newly developed genotypes. This means that for implementation of the CV00

cross-validation, any observation from a genotype included in the test set (i.e., new environments)

was removed from the training set. Predictions of untested genotypes can be achieved by exploiting

information from marker data on genetic similarities between genotypes from the training set and

from the test set. Four scenarios in total were examined, which differ according to whether site or

year were used to build the test set, and to the degree of relationship between training and test

set: (1) CV0-Year, where phenotypic information about the performance of genotypes evaluated in

the same year was masked; (2) CV00-Year, where phenotypic information about the performance
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of any genotypes present in the test set in other years was additionally masked; (3) CV0-Site,

where phenotypic information about the performance of genotypes evaluated in the same site was

masked and (4) CV00-Year, where phenotypic information about the performance of any genotypes

present in the test set in other sites was additionally masked. In this procedure, the number of

observations contained in each outer fold is not the same, due to the unbalanced character of the

dataset. This approach reflects a common issue arising in multi-environment plant breeding trials,

as all selection candidates cannot be grown in all environments. However, we can ensure a fair

model comparison by having the same data splits across tested models.

Regarding evaluation metrics, we define the prediction accuracy as the Pearson correlation be-

tween the predicted and the observed performance in a given environment, i.e., correlations were

computed on a trial basis.

In order to take into account the difference in sample sizes between environments, we evaluated

the weighted average predictive ability across environments according to Tiezzi et al. (2017), for

each combination of prediction model, predictor variables and trait, as following:

rw =

∑J
j=1

rj
V (rj)∑J

j=1
1

V (rj)

,

with rj the Pearson’s correlation between predicted and observed values at the jth environment,

V (rj)=
1−r2j
nj−2 its sampling variance and nj the total number of phenotypic observations in the jth

environment.

2.3.6 Variable Importance and Partial Dependence Plots for Grain Yield

We used the gain metric to quantify the feature importance in the XGBoost model fitted to the full

dataset. This metric corresponds to the relative contribution of the variable to the ensemble model,

calculated by considering each variable’s contribution for each boosting iteration. A superior value

of the gain for one feature compared to another feature means that this feature is more important

to generate a‘prediction.

Overall partial dependence plots (PDPs) were computed using the R package DALEX (Biecek,

2018) using the four trained datasets from the CV0-Year scheme and the full dataset. PDPs are

relevant to study how the predicted outcome of a machine learning model is partially influenced by

a subset of explanatory variables of interest, by marginalizing over the values of all other variables.

The partial dependence profile of f(X) is defined as following by Friedman (2001):

fS(XS) = EXC
f(XS , XC),

where the XS represents the set of input predictor variables for which the effect on the prediction

is analyzed, and XC represents the complement set of other predictor variables used in the model.
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The following partial function can be used as an estimator:

f̄S(XS) =
1

N

N∑
i=1

f(XS , xiC),

where x1C , x2C , ..., xNC are the values of XC observed in the training data. This means that we

estimate this expected value as the average of the model predictions, over the joint distribution of

variables in XC , when the set of joint values in XS is fixed. As emphasized by Hastie et al. (2009),

partial dependence functions represent hence the influence of XS on f(X), after taking into account

the average effects of the other variables XC on f(X).

2.3.7 Code Availability

A Github repository containing the various R scripts and Bash scripts used for phenotypic analysis,

processing of weather data, spatio-temporal interpolation of missing weather data, and predictive

modeling is available: https://github.com/cjubin/G2F_data.

2.4 Results

2.4.1 Variability of Climatic Conditions in the Panel of Environments

Figure 2.2 reveals a partitioning of environments into clusters corresponding mostly to different

US climate zones. It suggests that the sample of environments was broad enough to cover a

large spectrum of environmental conditions across the North-American continent. The first two

principal components explained more than 55% of total variation among environments on the

basis of weather-based environmental covariates. The loading plot shows that MinT.F and GDD.F,

FreqMaxT30.G, which are covariates related to temperature during flowering and grain filling stage,

strongly influenced the first principal component (PC1). Environments from the South/Southeast

(Arkansas, Texas, Georgia) showed positive PC1 and PC2 scores, which can be explained by a

common humid subtropical climate, according to the Köppen climate type classification (Köppen

and Geiger, 1930). One exception was one location in Texas (denoted 2014_TXH2), associated

with more semi-arid climatic conditions. These results indicate that a closer geographical distance

does not necessarily imply similar environmental conditions, based on climate types. For instance,

environments from Delaware were closer to environments from the Midwest than Northeastern

environments. Environments from the Midwest, associated with a humid continental climate,

were situated mostly around the origin of the plot, and environments further north or in Canada

exhibited the lowest temperatures among this set of sampled environments and presented a negative

PC1 score.

https://github.com/cjubin/G2F_data
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Figure 2.2: Principal component analysis (PCA) plot of environmental data from the 71
environments, using the median flowering date as reference in each environment. (A)
Maize trial experiments located in the US and in Canada used in analyses. Name of the
locations and their geographical position are given in Supplementary Table S2.1. (B)
Correlation plot of the weather-based covariates used in the PCA.
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2.4.2 Hyperparameter Importance for Gradient Boosting Approaches

Computing by fANOVA the marginal contribution of each tuned hyperparameter, using the per-

formance data gathered during the hyperparameter optimization step on the different training sets,

highlights large differences regarding their respective impact on model performance (Supplementary

Figure S2.3). For the two gradient boosting algorithms, the learning rate (named eta in XGBoost)

and the maximum depth of the tree were the most relevant algorithm parameters, as well as their

interaction. The number of boosting iterations did not play a major role in model performance.

We also found an advantage of using the hyperparameter feature_fraction and colsample_bytree,

implemented in LightGBM and XGBoost, respectively, as it allowed an important reduction of the

training time without having any observed negative effect on the accuracy of the predictions. It

should be emphasized that we did not fully explore the influence of all possible hyperparameters

implemented in these algorithms because of computational limitations, and therefore many of these

were fixed during the hyperparameter optimization step.

2.4.3 Comparison of Model Performance Across Two Traits and Four

Different CV Scenarios
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Figure 2.3: Weighted average predictive ability across 71 environments obtained for four
cross-validation schemes and 16 models for the trait grain yield. G, main effect of SNPs
markers (genomic relationship matrix for LRE models; principal components derived from
marker matrix for machine learning-based approaches); Y, year effect; S, site effect; G×S,
genotype-by-site interaction; E, environment effect; G×Y, genotype-by-year interaction;
G×S, genotype-by-site interaction; G×E, genotype-by-environment interaction; G×W, in-
teraction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and
soil-based covariates. For linear random effects models, results with models including lon-
gitude and latitude data in the matrix W are depicted here.
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Figure 2.4: Weighted average predictive ability across 71 environments obtained for four
cross-validation schemes and 16 models for the trait plant height. G, main effect of SNPs
markers (genomic relationship matrix for LRE models; principal components derived from
marker matrix for machine learning-based approaches); Y, year effect; S, site effect; G×S,
genotype-by-site interaction; E, environment effect; G×Y, genotype-by-year interaction;
G×S, genotype-by-site interaction; G×E, genotype-by-environment interaction; G×W, in-
teraction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and
soil-based covariates. For linear random effects models, results with models including lon-
gitude and latitude data in the matrix W are depicted here.

CV0-Year

When the aim was to predict yield performance of already tested hybrids in new environments,

the weighted average correlation of the baseline LRE model (G+E) was 0.356 (Figure 2.3; Sup-

plementary Table S2.6). When the G×E term was added, the average correlation improved to

0.362. The model that included all interactions (G+E+W+G×W+G×E) was the best LRE

model, while using only interactions between environmental covariates and genomic information

(model G+E+W+G×W) slightly decreased the predictive ability of the baseline model to 0.347.

In this prediction scenario, the two GBDT methods outperform all LRE models; model XGBoost-

G+W+Y+Lon+Lat improved upon the baseline model by 18%. In addition, a small increase of

predictive ability could be observed when environmental covariates were included as features for the

machine learning-based frameworks. Furthermore, models that included geographical coordinates

as predictor variables resulted in better prediction accuracies, and this revealed true across all

prediction problems; therefore, Figures 4, 5 display results from LRE models using W as including

longitude and latitude as predictor variables. For plant height, the baseline model performed best

(Figure 2.4; Supplementary Table S2.8), and gradient boosting models incorporating environmen-

tal predictor variables performed consistently worse than models based only on genotypic data,

geographical data and year information.

CV00-Year

CV00-Year produced lower average correlation coefficients for the two traits and for all models com-



Genomic Prediction With Gradient Boosting 48

pared to CV0-Year, which illustrates that genomic prediction in multi-environment trials achieves

better results when the training set includes information from the same genotypes evaluated in

other environments. Regarding the trait grain yield (Figure 2.3; Supplementary Table S2.6), mod-

eling the effect of sites instead of environments resulted in a small improvement of the predictive

ability (% better than the G+E model). Adding the G×E term to the LRE baseline model also pos-

itively affected the predictive ability (8% better than the G+E model). However, the LRE model

with main site and genotype-by-site interaction effects (G+S+G×S) outperformed LRE models

based on the modeling of year-location (E) effects. Overall the best predictive model for this trait

was again the GBDT model XGBoost-G+W+Y+Lon+Lat, which displayed an average correla-

tion of 0.301 (20% higher than the baseline model). GBDT models incorporating W performed

between 6 and 13% better than GBDT models excluding W, which demonstrates the usefulness

of environmental data for prediction of yield performance of new genotypes in an untested year.

Among LRE models, the LRE model with all interactions and using enviromental data was the

best model and resulted in an improvement of 17% over the baseline model. Regarding the trait

plant height (Supplementary Table S2.8), the best predictive model was the baseline LRE model

with an average weighted correlation of 0.604. Among LRE and GBDT models, models which did

not include any environmental data performed better than those using these. An explanation for

this lack of improvement with environmental data for plant height in this prediction problem can

be that year and geographical position are appropriate and sufficient data to efficiently characterize

environments for prediction of plant height, while using all environmental variables might generate

noise here.

CV0-Site

The prediction of already tested genotypes in all environments associated with a common site re-

vealed higher predictive abilities than with the CV0-Year prediction problem (Figures 2.3 and 2.4;

Supplementary Tables S2.7 and S2.9). Indeed, based on our dataset, which covers many different

sites across the US (see Supplementary Figure S2.1), the leave-one-site-out CV strategy generates

large ratios across all training/test splits. This greater amount of data available to predict environ-

ments from one site can explain why this CV scheme obtained higher predictive abilities than the

CV0-Year strategy. For the trait grain yield (Figure 2.3; Supplementary Table S2.7), the XGBoost-

G+Lon+Lat+Y outperformed other models, showing an increase of 9% compared to the baseline

LRE model. LightGBM models showed also better predictive abilities than LRE models. Only for

LRE models did the use of environmental data yield a very small increase in predictive ability; the

best result within this type of statistical approach was obtained by the model including all interac-

tions (0.477, 3% higher than the baseline model). However, for the trait plant height (Figure 2.4;

Supplementary Table S2.9), LRE models performed better than machine learning-based methods,

with the model G+E+S+Y+G×S+G×Y+G×E, which uses only basic information on environ-

ments, showing a mean correlation of 0.742. LightGBM and XGBoost methods with geographical



Genomic Prediction With Gradient Boosting 49

and year information predicted reasonably well compared to the latter model (average r between

0.7 and 0.72), and again, the addition of environmental covariates decreased the predictive ability

of GBDT models G+Lon+Lat+Y.

CV00-Site

As expected, the prediction of new genotypes in new sites resulted in lower mean correlations

than CV0-Site for the two traits under study across predictive models. This highlights again the

importance of the relationship between training and test sets. For the trait grain yield (Figure

2.3; Supplementary Table S2.7), the weighted average predictive ability of the reference model

(G+E) was 0.248, and the model using sites instead of environment main effect was slightly better

with a mean correlation of 0.265 (7% over G+E model). When the G×E term was added to

the baseline model, the weighted average predictive ability was improved to 0.269 (8% over G+E

model). It is worth to underline that models incorporating genotype-by-site effects performed even

better (10% and 11% higher than the reference model). Modeling the interaction between ECs

and genotypes and between environments and genotypes (model G+E+W+G×W+G×E) yielded

an improvement of the baseline model by % (average r = 0.296), which was closely followed by

the LightGBM and XGBoost models incorporating environmental covariates (between 11 and 16%

increase over the baseline model). As for the CV0-Year and CV00-Year CV schemes, the use

of environmental data slightly increased the average predictive ability for grain yield. For the

trait plant height (Figure 2.4; Supplementary Table S2.9), the baseline model with interactions by

environment (G+E+G×E) outperformed other models. As for the previous prediction problems,

environmental data decreased predictive abilities over all implemented models for the trait plant

height.

When comparing the predictive abilities across traits, grain yield was the trait showing the lowest

predictive ability across all CV schemes. Across all CV schemes, Elastic Net was the worst predic-

tive modeling approach, which can be related to the absence of interactions between predictors in

this model, if these are not explicitly provided as new features.

Figure 2.5; Supplementary Tables S2.10 and S2.11 display the detailed within-environment cor-

relation results for grain yield for two (CV0-Year and CV0-Site) cross-validation schemes. If a

predicted environment is over the identity line, this means that there was an increment of the

predictive ability by using environmental information. For CV0-Year, the machine learning-based

model including environmental data outperformed the model only using geographical and year

information in 44 of the 71 considered environments. For CV0-Site, however, the model with en-

vironmental features was better than the less complex one in only 34 environments. This can be

interpreted as a failure to explain a large part of the G×E by the computed ECs, and by a more

efficient representation of environmental effects by simple geographic information.
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Figure 2.5: | Comparison of the within-environment predictive ability with different sets of
predictors for the trait grain yield for XGBoost (A) with the CV0-Year scenario and (B)
CV0-Site scenario. The x-axis corresponds to the within-environment correlation obtained
with the model incorporating PCs derived from SNPs, year and geographical coordinates.
The y-axis corresponds to the within-environment correlation obtained with the model
incorporating PCs, year, W (i.e., weather- and soil-based covariates) and geographical
coordinates. The line indicates the identity. Blue-colored points with a label indicate
environments for which the absolute difference between the two predictive abilities was su-
perior to 0.13. Black-colored points with a label indicate the least and the most accurately
predicted environments.
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2.4.4 Variable Importance
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Figure 2.6: Feature importance ranking based on the average relative gain per feature
obtained with the model XGBoost-G+W, for the two traits grain yield and plant height.
The metric was estimated using a model fitted on the full dataset. The gain represents the
improvement in accuracy when using a feature for splitting, across all trees in the model.
The order of features is based on feature performance within covariate class for the trait
grain yield. The sum of all feature contributions is equal to 1. Weather-based variables
from the grain filling stage were not used to predict plant height.

Regarding the trait grain yield, many of the identified top variables were related to temperature,

such as the average minimum temperature during the flowering stage, or the frequency of days

during which the maximum temperature was above 35°C (Figure 2.6). Organic soil matter concen-

tration was the third most important feature, which demonstrates that fields with fertile soils were

associated with higher yields. The amount of water received by the field (P.V) during the vegeta-

tive and grain filling stage was also a major feature for the model, as well as the frequency of days

during the vegetative stage for which the amount of water was greater than 5 mm. Regarding the

trait plant height, variables based on soil information played a major role for trait prediction, as

they likely affect the crop shoot architecture. The amount of water received during the vegetative

stage was also an important explanatory variable for plant height.
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Figure 2.7: Partial dependence plots (PDPs) showing the behavior of the expected value
of predicted yield as a function of four top-ranked predictor variables. The Y-axis value of
a PDP is calculated average of all model predictions obtained from the training dataset,
when the value of the predictor variable is equal to X. The four training sets from the leave-
1-year-out cross-validation scheme (CV0-Year) and the full dataset, separately trained with
XGBoost, were used. Tick marks indicate individual observations. (A) MaxT.V, maxi-
mum temperature during the vegetative stage; (B) MinT.F, minimum temperature during
the flowering stage; (C) OM.SC, percentage of soil organic matter; (D) P.V, Amount of
precipitation and irrigation during the vegetative stage.

Partial dependence plots (Figure 2.7) show that minimum temperature at flowering stage was

strongly impacting yield from approximately 20°C onwards. Maximum temperature during the

vegetative stage had a detrimental effect on yield, suggesting that very elevated temperatures can

impair a normal plant growth, eventually required to achieve optimal grain yield, although it tended

to have a more gradual effect than minimum temperature at flowering stage. The relationship with

yield of the total amount of precipitation during the vegetative stage was positive, before reaching

a plateau. A high soil organic matter content yielded in superior yield predicted values.

2.5 Discussion

Breeders, working on the development of climate resilient cultivars, risk making incorrect selection

decisions if genotype-by-location and genotype-by-year interactions are not properly accounted for

(De Los Campos et al., 2020; Jarquín et al., 2017). By incorporating environmental variables in

our models, we assessed the value of these predictor variables for genomic prediction of complex

phenotypes across four cross-validation scenarios. Gradient boosting frameworks based on decision

trees have demonstrated high prediction performance for traits affected by non-additive effects
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(Abdollahi-Arpanahi et al., 2020), as well as model interpretability to extract important insights

from the model’s decision making process (Shahhosseini et al., 2020). Thus, a second objective was

to evaluate these new prediction methods on the basis of prediction accuracies and for identification

of the most relevant environmental variables.

2.5.1 Comparison of Prediction Methods Across the Two Traits

We observed that GBDT frameworks produced a slightly improved predictive ability for grain yield

compared to the linear random effects models in three (CV0-Year, CV00-Year, and CV0-Site) out

of the four CV schemes. However, no advantage was observed when GBDT was used to predict

plant height. Overall, GBDT methods were competitive to LRE models, but we did not find any

case where these machine learning-based methods considerably exceeded the predictive ability of

LRE models. Previous studies have suggested that machine learning-based approaches can provide

superior accuracy for prediction of phenotypic traits characterized by substantial non-additive

effects. For instance, results from Zingaretti et al. (2020) in strawberries suggest that traits,

exhibiting large epistatic effects, can be better predicted by convolutional neural networks (CNN),

than by Bayesian penalized linear models. On the other hand, for moderately to highly heritable

traits, no real advantage of using machine learning-based methods was observed in their study.

Bellot et al. (2018) pointed out that human height, a trait with a prevailing additive component

and a polygenic architecture, was better predicted by linear methods than by CNNs. For other

traits they examined in their study, a deep learning approach did not significantly outperform other

methods in terms of prediction accuracy. Similar conclusions were drawn by Azodi et al. (2019)

who reported an inconsistency of performance for non-linear machine learning-based algorithms in

comparison with linear algorithms, according to the trait under study.

In our study, we incorporated not only genomic-based, but also environmental-based predictor

variables. Yield component traits are controlled by numerous physiological processes under the

influence of environmental factors, which can explain the large contribution of the G×E variance

component for the phenotypic variance of grain yield, while for plant height, the proportion of

variance explained by G×E is generally much lower than the proportion of variance related to

genetic effects (Olivoto et al., 2017; Rogers et al., 2021). Nonlinear relationships between some

environmental factors, such as temperature or rainfall amounts, and grain yield are well-known

in the field of ecology and agriculture (Li et al., 2019; Troy et al., 2015). Hence, the slightly

better prediction performance for grain yield with GBDT frameworks might originate from their

ability to model nonlinear effects of environmental predictor variables, as observed with the partial

dependence plots, as well as interactions with other predictor variables like genomic-based principal

components. This asset was also described by Heslot et al. (2014) when implementing soft rule fit (a

modified ensemble method) capturing nonlinear interactions between markers and environmental

stress covariates. Additional studies are required to validate this hypothesis using other phenotypic
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traits showing various genetic architectures. Moreover, it should be noted that we used only linear

kernels in the reaction norm models to model genetic and environmental similarities. This means

that we did not account for the specific combining ability (i.e., nonlinear genetic effects, due to

dominance or epistasis, of specific hybrid combinations) which can influence the magnitude of

yield heterosis in maize hybrids. Alternative approaches exist to model additive and dominant

genetic effects, as well as environmental relatedness with nonlinear kernels (Costa-Neto et al.,

2021; Cuevas et al., 2018; Bandeira e Sousa et al., 2017). Bandeira e Sousa et al. (2017) and

Cuevas et al. (2018) obtained better predictive abilities when using a Gaussian kernel rather than

a linear GBLUP kernel with multi-environment G–E interactions models. More recently, Costa-

Neto et al. (2021) implemented Gaussian and arc-cosine kernels-based approaches on both genomic

and environmental datasets from a MET maize dataset, and noted an improvement in prediction

accuracy using these methods across various cross-validation strategies. These results highlight

the potential of nonlinear methods to better unravel nonlinear relationships existing in the input

space.

2.5.2 Model Performance Under Various Prediction Problems

The four cross-validation schemes we evaluated represent challenging prediction problems. They

seeked to assess the ability of the models to predict the effect of unknown combinations of environ-

mental stresses on the studied phenotypic traits in a new year (CV0-Year and CV00-Year) or in

a new site (CV0-Site and CV00-Site). Previously published work has revealed somewhat similar

ranges of prediction accuracies for this trait in maize Costa-Neto et al. (2021); Jarquin et al. (2020).

In winter wheat, Jarquín et al. (2017) and Sukumaran et al. (2017) reported the predictions of yield

performance in future years (CV0-Year) as the most challenging prediction problem on the basis

of results obtained for various cross-validation schemes, and results of Sukumaran et al. (2018)

showed that modeling site effect instead of environment effect based on basic information about

the environments (year and location) had a positive effect on predictive ability with CV0-Year, as

we could also observe for CV0-Year, CV00-Year, and CV00-Site in our results. Indeed, this type of

models allows to exploit information from the same site tested across several years. Another factor

which is important to take into account in multi-year breeding data, as emphasized by Bernal-

Vasquez et al. (2017), is the degree of genetic relatedness between the training and validation sets.

Hence, CV00-Year and CV00-Site were more challenging prediction problems than CV0-Year and

CV0-Site, respectively, and yielded lower weighted mean correlations across all models.

Regarding the usefulness of environmental information, the best model for grain yield based on

mean predictive ability included these data for three (CV0-Year, CV00-Year, and CV00-Site) out

of the four CV schemes. In addition, it must be taken into account that much less phenotypic ob-

servations were masked for CV0-Site (1/28, about 3.6% on average, with some sites being present

more often than others across years in our dataset) than for CV0-Year (1/4, about 25% as the
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dataset is unbalanced). Hence, we can consider CV0-Year and CV00-Year as more challenging

prediction problems than CV0-Site and CV00-Site in our study. The improvement due to the

incorporation of environmental data was however less remarkable and less consistent across CV

schemes than expected, which was in contrast with previous results. Monteverde et al. (2019)

also implemented a leave-1-year-out scenario, with one unique location present in the dataset, and

the best prediction accuracies for grain yield were always reached by the models integrating en-

vironmental predictors alongside genomic predictors. Findings from Costa-Neto et al. (2021) also

show a significant increase of prediction accuracy with the linear GB kernel incorporating envi-

ronmental data in a CV0 scheme, but the authors additionally modeled dominant genetic effects,

which were not accounted for in our study. On the other hand, Jarquin et al. (2020) also used

the same Genomes to Fields dataset and reported a lack of enhancement when using a model

that solely incorporated interactions between genotype and environmental covariates (i.e., without

using the environment label). The best predictive models for the CV0 and CV00 schemes, that

they implemented, included both genotype-by-environment and genotype-by-EC interactions, sim-

ilarly to our results (Supplementary Tables S2.6, S2.7, S2.8, S2.9). In agreement with the reasons

invoked by the authors of this study, we argue that environmental data are especially relevant for

predictions when a larger number of environments is used, e.g., by testing sites within a limited

geographical range with relatively similar environmental conditions across multiple years. This

was for example achieved in the study of De Los Campos et al. (2020), where 16 sites located in

France were tested over 16 years. A reasonable hypothesis is that historical weather data obtained

across multiple years for a specific geographical area can lend the model reliable information on

the effect of year-to-year climatic variation on phenotypic performance, in addition to site-based

factors (soil and geographical position). A finding supporting this hypothesis is that the environ-

ments, which showed the best prediction accuracies with an environmental model, corresponded

generally to the sites which were repeated across years, like Madison (WI) or College Station (TX)

(Supplementary Tables S2.10, S2.11). Interestingly, 2014_TXH2, a location for which data were

only included for a single year, showed a moderate prediction accuracy with the XGBoost model

without environmental information in CV0-Year (r = 0.28; Supplementary Table S2.10), which was

superior to the model with environmental covariates (r = 0.21 with all environmental covariates

included). We can suppose that the inclusion of environmental information, when predicting a new

environment with properties that are very different from environments covered by the training set,

is not useful to enhance the predictive ability of the model using basic predictors, such as the year

factor and geographic coordinates. Extreme weather events can make some environments very

unpredictable. 2017_ARH1 and 2017_ARH2 exhibited a very low prediction accuracy for grain

yield (<0 for 2017_ARH2) in both CV0-Year (Supplementary Table S2.10) and CV0-Site (Sup-

plementary Table S2.11), which is likely to be related to the effect of the tropical storm Harvey

at the end of August 2017, which caused substantial lodging due to wind and excessive rainfall

affecting the yield, and was reported by collaborators in the metadata.
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2.5.3 Incorporation of Weather-Covariates in the Predictive Models

The use of environmental information yielded a small gain in average prediction accuracy for many

models tested on grain yield, but did not lead to any improvement for plant height. For this latter

trait, the large influence of soil-based variables, illustrated by the variable importance ranking

(Figure 2.6), can also possibly explain why prediction models using only geographical coordinates

outperformed more elaborate models. For this trait, latitude and longitude data might indirectly

capture information which is site-specific and repeatable across years, e.g., related to the quality

of soil. For instance, environments from the Corn Belt, which were present in our dataset, usually

exhibited fertile soils with much higher organic soil matter content than environments located in

other US regions. Costa-Neto et al. (2020) highlighted that simple geographic-related information,

such as longitude and latitude data, can also efficiently represent environmental patterns that are

specific to a site (for instance related to soil characteristics), and hence capture well genotype-by-

site interaction while using only two variables.

In general, the lack of real enhancement of predictive ability may result from the way we incorpo-

rated developmental stages into our models, as we defined only three main developmental stages

(i.e., vegetative, flowering and grain filling stages). Trial data often lack a rigorous collection of

phenological data due to phenotyping costs. A possible solution to predict plant developmen-

tal stages can be to use crop models, such as APSIM (Holzworth et al., 2014) or SiriusQuality

(Keating et al., 2003), as done in related studies (Bustos-Korts et al., 2019; Heslot et al., 2014;

Rincent et al., 2017, 2019). In our case, we did not implement a crop model since we aimed at

estimating the flowering stage at the hybrid level as accurately as possible, as it is known to be

a critical period for the determination of yield-related components. Therefore, we based our envi-

ronmental characterization on available field data (sowing date and silking date scored) in order

to derive environmental covariates for three main developmental stages, similarly to Monteverde

et al. (2019) in rice. The reported variability among crop growth models (CGM) in simulating

temperature response can complicate the task of choosing the most appropriate one (Bassu et al.,

2014). In addition, the task of integrating genetic variation for earliness in crop growth models

can also be rather challenging, with the risk that the predicted developmental crop stages might

not appropriately reflect the plant developmental stages observed in the field if the model does not

properly account for genotype-specific parameters (Rincent et al., 2019). Technow et al. (2015)

developed a complex framework combining both CGM and whole-genome prediction, where the

CGM is used to predict grain yield as a function of several physiological traits and of weather

and management data. Genotype-specific physiological parameters were estimated in this study

by running a Bayesian algorithm which models them as linear functions of the effects of genomic

features. It would be of high interest to apply CGM models on this dataset by taking advantage of

the flowering time data that are available. We should also mention that other types of input data

could be incorporated in future analyses, such as the type of field management, the field disease
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pressure, preceding crop, or the presence of external treatments (organic, nitrogen fertilizers).

2.5.4 Prerequisites to Use Machine Learning-Based Models and Their

Usefulness to Understand Significant Environmental Factors

Specific techniques should be employed to ensure an efficient application of machine learning-

based models. These can provide better results when expert knowledge is incorporated (Brock

et al., 2021; Kagawa et al., 2017; Roe et al., 2020). Here, we restricted weather information to

the duration of the growing season, transformed some raw weather information into new variables

(evapotranspiration) and built stress indices besides typical climate covariates based on previous

biological knowledge (e.g., detrimental temperature thresholds for maize (Greaves, 1996; Lobell

et al., 2014; Mimić et al., 2020; Schlenker and Roberts, 2009; Zhu et al., 2019). Prior understanding

of the role of input features can help mitigate the risk of using irrelevant information in the model.

As expected, the correlation matrix between environmental covariates (Supplementary Figure S2.2)

showed that numerous predictor variables were highly correlated with each other, especially those

related to temperature and heat stress. We did not perform feature selection based on the Pearson

correlation coefficients between environmental covariates, because of the risk of dropping highly

predictive variables, since the metric ignores the relationship to the output variable. In addition,

methods based on decision trees can perform internal feature selection, making them robust to

the inclusion of irrelevant input variables and to multicollinearity (Hastie et al., 2009; Kuhn et al.,

2013). If two variables are strongly correlated, the decision tree will pick either one or the other

when deciding upon a split, which should not eventually affect prediction results. Another approach

to reduce the number of features and reduce training time is to apply feature extraction, as we

did by deriving principal components from the genotype matrix and use these as new predictor

variables in the machine learning-based models. This procedure did not seem to affect model

performance.

Machine learning models often require an elaborated hyperparameter optimization strategy, imply-

ing for example a nested cross-validation approach which can be computationally expensive (Varma

and Simon, 2006), since it involves a series of train/validation/test set splits to prevent data leak-

age. Inadequate model tuning can result in a suboptimal performance of the algorithm. Here, we

found that the hyperparameters such as the learning rate or tree depth were relevant regularization

parameters to reduce the model complexity, thereby dealing with overfitting. In accordance with

these results, other authors had also reported these two hyperparameters as the most important

ones for another gradient boosting library similar to LightGBM, Adaboost (Van Rijn and Hutter,

2018). In general, lower values of the learning rate (<0.01) are recommended to reach the best

optimum (Ridgeway, 2007). Nonetheless, as the learning rate is decreased, more iterations are

needed to get to the optimum, which implies an increase of the computation time and of additional

memory (Kuhn et al., 2013; Ridgeway, 2007). With regard to the tree depth, a relatively low
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maximal depth generally helped to prevent overfitting, and better results were generally obtained

with our data using a tree depth lower than to 8. The deeper a tree is, the more splits it contains,

resulting in very complex models which do not generalize well on new data. Knowledge regarding

the most important hyperpararmeters to tune is useful if limited computational resources hamper

the investigation of numerous hyperparameter combinations during the training phase. Our results

demonstrated similar predictive abilities of LightGBM and XGBoost, with a clear speed advantage

for LightGBM, which ran often more than twice as fast. This asset relies in particular on a feature

implemented in LightGBM, the gradient-based one-side sampling method (GOSS), which implies

that not all data actually contribute equally to training. Training instances with large training er-

ror (i.e., larger gradients) should be re-trained, while data instances with small gradients are closer

to the local minima and indicate that data is well-trained. Hence, this new sampling approach

focuses on data points with large gradients and keeps them, while randomly sampling from those

with smaller gradient values. A drawback of this method is the risk of biased sampling which might

change the distribution of data, but this issue is mitigated in LightGBM by increasing the weight

of training instances with small gradients. The main advantage is that it makes LightGBM much

faster with comparable accuracy results. Another crucial aspect when applying machine learning

models is the adequacy of the dataset for machine learning applications, which should be large

enough to allow the algorithm to learn from the data (Géron, 2019). In our case, we benefited

from a very large training dataset and a low feature-to-instance ratio (316/18,325).

In our study, on top of prediction applications, tree-based methods were also used to obtain

estimates of feature importance, and thereby contributed to a better understanding of key abiotic

factors driving the response of the tested genotypes. Feature importance rankings and partial

dependence profiles showed that the minimal temperatures and indices related to prolonged heat

stress, or to amounts of water received in the field, especially at the flowering stage, ranked among

the most important variables for grain yield. When comparing these results with established

agronomic knowledge, it was reported that, above a certain threshold, high minimum temperature

can lead to an increase of the rate of senescence and reduce the ability of the plant to produce grain

across many plant species (Hatfield and Prueger, 2015; Hatfield et al., 2011). Previous research

also revealed that increases in average night temperatures were associated with a reduction of

grain yield in maize (Millet et al., 2019) and in rice (Welch et al., 2010). In an alternative study

on rice cultivars in Colombia, Delerce et al. (2016) identified high minimum temperature (above

22.7°C) as one of the most important environmental factors negatively impacting grain yield by

using a machine learning approach based on conditional inference trees. Exposure to temperatures

exceeding 35°C during the flowering stage was also a key factor in our study (best predictor variable

for grain yield), which can be related to a loss of pollen viability, and consequently to a reduced

final kernel set (Hatfield et al., 2011). In our study, water availability at vegetative and grain-filling

stages appeared to affect yield, in accordance with the literature outlining that any water deficit
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during these growth stages can impact grain yield (Cakir, 2004; Denmead and Shaw, 1960), with

a more significant impact when water stress occurs during the grain-filling stage (Cakir, 2004).

Caution should nonetheless be taken regarding feature importance ranking due to the important

correlations between some environmental variables. Furthermore, only 4 years of field trials were

used in our analyses, therefore variable importances could be refined with additional data from

following years, to mitigate the influence of some environments characterized by adverse climatic

conditions and potentially acting as outliers.

2.5.5 Applications

The usefulness of medium to high prediction accuracies, when predicting the performance in a

new environment, must always be related to our predictability of the environmental variation.

If the weather fluctuates considerably year to year, then the environmental predictors used to

compute these predictions might be very different from the true value in the corresponding year.

In addition, even if more precise climate change models were available to improve upon the precision

of environmental predictors, predictions of observations falling outside the applicability domain,

i.e., the range of predictor space in the training set for which the model can give relativey accurate

predictions (Netzeva et al., 2005), might not be trustworthy and should be used cautiously (Kuhn

et al., 2013). The degree of similarity of the new test set to the training set should hence always

be carefully considered.

While some environmental factors are repeatable from year to year, such as the soil type or agro-

nomic practices, a large part of the G×E variation is attributable to weather patterns. Hence, the

success of this type of prediction scenario depends on the relative stability of the climate in the

targeted regions across years. Nonetheless, we posit that our approach presents two key advan-

tages to predict performance in future years. First, because they are fundamentally data-directed,

the tree-based models can take into account new phenotypic data in the training set in a more

flexible manner than classical mixed models, without the need to explicitly specify interactions

for example. The development of high-throughput phenotyping technologies announces a future

enhancement of rapid and accurate training data (Juliana et al., 2019). The predictive frameworks

we presented here can make use of new information to refine the estimated effects of the predictor

variables. Secondly, we were able to predict a quantitative phenotype in a new environment by

using a novel configuration of genotypic and environmental predictors describing it. A point of

interest relates to resource allocation and the possibility to select more efficiently candidates to test

in field trials. Based on the exploration of different plausible climatic scenarios—within a range

of conditions experienced by the training set—these models can help to evaluate which genotypes

might be more adapted to which range of environmental conditions. For regions or target popula-

tion of environments presenting relatively stable climatic conditions across years, the probability

of success of this type of predictive modeling approach is heightened.
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2.6 Conclusions

Encouraged by the effectiveness of machine learning-based frameworks reported in the recent liter-

ature across various research fields, we compared two popular ensemble models with linear random

effects models implemented in a Bayesian framework and a regularized linear model. In three CV

schemes with the trait grain yield, the use of gradient boosting models resulted in a slight improve-

ment of the average predictive ability but not for plant height. This finding indicates that machine

learning-based approaches can be envisaged for genomic prediction but their efficiency may vary

according to the trait under study and its degree of responsiveness to environmental variation.

For a trait strongly under the influence of environmental factors, machine learning-based models

could provide predictive abilities similar or slightly superior to linear random effects, and could

additionally be used for interpretation of feature ranking and to build partial dependence plots

detailing relationships between predictor variables and outcome. Provided further efficiency gains

in machine learning algorithms, as well as the standardization and harmonization of large-scale

environmental data, new opportunities in the field of predictive modeling for developing climate

resilient varieties appear forthcoming.
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Supplementary Material

Figure S2.1: Maps of the experimental trials used in this study (from original Genomes To
Fields Initiative datasets). Sample size designates the number of phenotypic observations
for grain yield. Some points gather several experiments at very close distance from each
other.
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Figure S2.2: Pearson’s coefficients of correlation within and across weather- and soil-based
environmental predictors across 71 environments and 18,325 phenotypic observations. Non-
significant coefficients (P < 0.01) were left blank; please refer to Table 1 for the abbrevia-
tions of the environmental predictors.
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Figure S2.3: Boxplots showing the most important hyperparameters and interactions be-
tween them for (A) LightGBM and (B) XGBoost, using performance metrics obtained
in the leave-one-year-out CV schemes (CV0-Year and CV00-Year). Hyperparameter im-
portance values were obtained from fitting a random forest model on performance data
obtained with various hyperparameter settings, followed by a functional ANOVA analysis.
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Table S2.1: Seventy-one trial experiments from the Genomes to Fields datasets used in
analyses, with the location, the university factor (used to determine the training/test splits
in the CV0-Site and CV00-Site CV schemes), longitude (Lon), latitude (Lat), the planting
and harvest dates (in day of year) and the irrigation status of the field experiment. Not all
of the environments originally present in the Genomes to Fields datasets were eventually
incorporated in the prediction analyses (see Table S2.2).

ID_Experiment Location, US

State

Site/University factor Lon Lat Planting

Date

(DOY)

Harvest

Date

(DOY)

Irrigated

(and

tracked)

number

of yield

records

used

number

of

plant

height

records

used

2014_DEH1 Georgetown1,

DE

UniversityDelaware -75.20 38.64 125 272 yes 224 224

2014_GAH1 Tifton, GA UniversityGeorgia1 -83.56 31.51 94 254 yes 237 236

2014_IAH1_early Ames, IA IowaStateUniversity1 -93.70 42.00 129 293 no 131 131

2014_IAH1_late Ames, IA IowaStateUniversity1 -93.70 42.00 137 294 no 634 619

2014_ILH1 Urbana, IL UniversityIllinois -88.23 40.06 126 280 no 233 229

2014_INH1 WestLafayette,

IN

PurdueUniversity -87.01 40.49 145 322 no 237 236

2014_MNH1 Waseca, MN UniversityMinnesota -93.53 44.07 136 289 no 232 230

2014_MOH1 Columbia, MO UniversityMissouri -92.21 38.90 127 295 yes 244 243

2014_MOH2 Columbia

HinksonCreek,

MO

UniversityMissouri -92.35 38.93 125 317 no 240 239

2014_NEH1 Lincoln, NE UniversityNebraska -96.66 40.83 136 295 no 242 242

2014_NEH2 North Platte, NE UniversityNebraska3 -100.75 41.05 135 309 no 237 234

2014_NYH2 Aurora, NY CornellUniversity -76.65 42.73 148 336 no 212 208

2014_ONH1 Waterloo, ON GuelphUniversity2 -80.43 43.50 139 308 no 181 179

2014_ONH2 Ridgetown, ON GuelphUniversity1 -81.88 42.45 147 333 no 240 239

2014_TXH1 CollegeStation,

TX

TexasAMUniversity1 -96.43 30.55 60 233 yes

(not

tracked)

236 235

2014_TXH2 Plainview, TX TexasAMUniversity2 -101.95 34.18 113 273 yes

(not

tracked)

243 242

2014_WIH1 WestMadison,

WI

UniversityWisconsin1 -89.53 43.06 129 301 no 200 197

2015_DEH1 Georgetown2,

DE

UniversityDelaware -75.47 38.63 119 257 yes 407 407

2015_GAH1 Tifton, GA UniversityGeorgia1 -83.56 31.51 91 238 yes 295 294

2015_ILH1 Urbana, IL UniversityIllinois -88.23 40.06 120 275 no 393 392

2015_INH1 WestLafayette,

IN

PurdueUniversity -87.00 40.48 134 288 no 414 414

2015_KSH1 Manhattan1, KS KansasStateUniversity -96.61 39.22 113 264 no 408

2015_MNH1 Waseca, MN UniversityMinnesota -93.53 44.07 139 314 no 395 394

2015_MOH1 Columbia, MO UniversityMissouri -92.21 38.90 124 279 no 411 410

2015_MOH2 Columbia, MO UniversityMissouri -92.21 38.90 125 275 no 411 409

2015_NEH2 North Platte, NE UniversityNebraska3 -100.75 41.05 113 299 no 394

2015_NEH3 Brule, NE UniversityNebraska2 -101.99 41.16 161 348 no 242

2015_NYH2 Aurora, NY CornellUniversity -76.65 42.73 127 320 no 347 344

2015_NYH3 Aurora, NY CornellUniversity -76.66 42.72 143 322 no 348 348

2015_OHH1 South

Charleston,

OH

OhioStateUniversity -83.66 39.86 141 290 no 413 412

2015_ONH1 Waterloo, ON GuelphUniversity2 -80.45 43.50 120 288 no 345 345

2015_ONH2 Ridgetown, ON GuelphUniversity1 -81.88 42.45 127 285 no 350 349

2015_SDH1 New Underwood,

SD

SouthDakotaUniversity -102.93 44.21 142 301 no 317 316

2015_TXH1 College Station,

TX

TexasAMUniversity1 -96.43 30.55 66 209 no 290 287

2016_DEH1 Georgetown2,

DE

UniversityDelaware -75.45 38.65 116 258 no 227 225

2016_GAH2 Watkinsville, GA UniversityGeorgia2 -83.31 33.72 146 286 no 84 84

2016_IAH2 Glidden, IA IowaStateUniversity2 -94.73 42.07 116 285 no 375 372

2016_IAH3 Keystone, IA IowaStateUniversity3 -92.26 41.99 115 280 no 352 351

2016_IAH4 Ames, IA IowaStateUniversity1 -93.70 42.00 117 291 no 388 384

2016_ILH1.a Urbana, IL UniversityIllinois -88.23 40.06 127 283 no 125 125

2016_ILH1.b Urbana, IL UniversityIllinois -88.23 40.06 117 283 no 201 201

2016_INH1 WestLafayette,

IN

PurdueUniversity -86.99 40.48 140 280 no 224 221

2016_KSH1 Manhattan2, KS KansasStateUniversity -96.63 39.14 106 271 no 262 262
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2016_MIH1 EastLansing

Powrline, MI

MichiganStateUniversity -84.30 42.41 145 321 no 227 227

2016_MNH1 Waseca, MN UniversityMinnesota -93.53 44.07 138 294 no 216

2016_MOH1 Columbia, MO UniversityMissouri -92.21 38.89 144 281 no 328 326

2016_NEH1 Mead, NE UniversityNebraska4 -96.42 41.17 127 313 no 225 225

2016_NEH4 Mead, NE UniversityNebraska4 -96.42 41.17 159 314 no 211 211

2016_NYH2 Aurora, NY CornellUniversity -76.66 42.73 131 343 no 228 226

2016_ONH1 Waterloo, ON GuelphUniversity2 -80.45 43.50 125 289 no 207 206

2016_ONH2 Ridgetown, ON GuelphUniversity1 -81.88 42.45 132 306 no 223 222

2016_TXH1 CollegeStation,

TX

TexasAMUniversity1 -96.43 30.55 64 218 no 197 193

2016_WIH1 WestMadison,

WI

UniversityWisconsin1 -89.53 43.06 130 288 no 303 300

2016_WIH2 Arlington, WI UniversityWisconsin2 -89.34 43.33 145 299 no 395 392

2017_ARH1 Marianna, AR ArkansasStateUniversity1 -90.76 34.73 107 254 yes 178 175

2017_ARH2 Keiser, AR ArkansasStateUniversity2 -90.07 35.67 115 259 yes 160 159

2017_COH1 FortCollins, CO ColoradoStateUniversity -105.00 40.65 151 326 no 199 195

2017_DEH1 Georgetown2,

DE

UniversityDelaware -75.43 38.67 118 251 no 163 162

2017_GAH1 Tifton, GA UniversityGeorgia1 -83.56 31.51 94 250 no 107 106

2017_GAH2 Watkinsville, GA UniversityGeorgia2 -83.30 33.73 122 251 no 72 72

2017_IAH4 Ames, IA IowaStateUniversity1 -93.69 41.99 127 290 no 310 307

2017_MIH1 EastLansing, MI MichiganStateUniversity -84.49 42.68 142 293 no 180 179

2017_MOH1 Columbia, MO UniversityMissouri -92.20 38.89 135 292 no 217 216

2017_NYH2 Aurora, NY CornellUniversity -76.65 42.73 138 328 no 187 185

2017_NYH3 Aurora, NY CornellUniversity -76.65 42.73 138 328 no 88 88

2017_ONH1 Waterloo, ON GuelphUniversity2 -80.43 43.50 137 304 no 171 169

2017_TXH1-Dry CollegeStation,

TX

TexasAMUniversity1 -96.43 30.55 62 206 no 112 111

2017_TXH1-

Early

CollegeStation,

TX

TexasAMUniversity1 -96.43 30.55 62 212 no 146 146

2017_TXH1-

Late

CollegeStation,

TX

TexasAMUniversity1 -96.43 30.55 96 222 no 109 107

2017_WIH1 WestMadison,

WI

UniversityWisconsin1 -89.53 43.06 125 292 no 266 261

2017_WIH2 Arlington, WI UniversityWisconsin2 -89.34 43.32 131 310 no 279 276
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Table S2.2: List of discarded environments from the original G2F phenotypic datasets,
with the reason justifying their removal

Year_Exp Reason

2014_IAH2 no flowering date

2014_IAH3 no flowering date

2014_IAH4 no flowering date

2014_NCH1 no flowering date

2014_NEH3 no flowering date

2014_NYH1 no silking date

2015_NCH1 no flowering date

2015_NEH1 no silking date

2015_NEH4 no silking date

2015_NYH1 disease field treatment

2015_TXH2 no location nor geographical coordinates in metadata file

2015_WIH1 no flowering date

2015_WIH2 no flowering date

2016_ARH1 many recorded dates with field irrigation but no amount tracked in the

metadata

2016_ARH2 many recorded dates with field irrigation but no amount tracked in the

metadata

2016_GAH1 many recorded dates with field irrigation but no amount tracked in the

metadata

2016_IAH1 no flowering date

2016_NCH1 no flowering date

2016_NYH1 disease field treatment

2016_NYH3 no yield data

2016_OHH1 no flowering date

2016_SCH1 no yield data

2016_TXH2 no location nor geographical coordinates in metadata file

2017_IAH1 no flowering date

2017_IAH2 no flowering date

2017_IAH3 no flowering date

2017_ILH1 no location nor geographical coordinates in metadata file

2017_INH1 no location nor geographical coordinates in metadata file

2017_MNH1 based on comments regarding low phenotypic quality from metadata file

2017_NCH1 no flowering date

2017_NEH3 no flowering date

2017_NEH4 no flowering date

2017_NYH1 disease field treatment

2017_OHH1 no flowering date

2017_ONH2 strange values for flowering date (FW 30 days after sowing date?)

2017_SCH1 no yield data

2017_TXH2 no location nor geographical coordinates in metadata file
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Table S2.4: Hyperparameters tuned with Bayesian optimization for regression models im-
plemented.

Algorithm

(R package) Hyperparameter Meaning Min Max

glmnet alpha

lambda

elastic net mixing parameter

penalty

0

0

1

1

XGBoost nrounds

min_child_weight

colsample_bytree

max_depth

eta

maximum number of iterations

minimum number of samples required to create a new

node

subsample fraction of features to use when constructing

each tree

maximum depth of a tree

learning rate

4000

5

0.4

2

3e-4

7000

18

0.8

12

0.01

LightGBM num_iterations

min_data_in_leaf

feature_fraction

max_depth

learning_rate

maximum number of iterations

minimum number of samples in a leaf

subsample fraction of features to use when constructing

each tree

maximum depth of a tree

learning rate

4000

5

0.4

2

3e-4

7000

18

0.8

12

0.01



Genomic Prediction With Gradient Boosting 70

Table S2.5: Linear random effects (LRE) models evaluated in four cross-validation scenar-
ios (CV0-Year, CV00-Year, CV0-Site, CV00-Site).
E, environment (YearxSite combination); G, SNPs markers;Y, year; S, site; W, environ-
mental covariates + longitude + latitude; G×E, interactions between environments and
markers; G×S, interactions between sites and markers; G×Y, interactions between years
and markers; G×W, interactions between markers and environmental covariates.

Model abbreviation Effects included

Main effects Interaction terms

G E S Y W G×E G×S G×Y G×W

G+E X X

G+S X X

G+Y X X

G+E+G×E X X X

G+S+G×S X X X

G+Y+G×Y X X X

G+E+S+Y+G×S+G×Y+G×E X X X X X X X

G+W X X

G+E+W X X X

G+W+G×W X X X

G+E+W+G×W X X X X

G+E+W+G×W+G×E X X X X X
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Table S2.6: Weighted average correlation between predicted and observed values across 71
environments for the trait grain yield for two cross-validation schemes leaving one year out
(CV0-Year, CV00-Year) and for four types of statistical models (XGBoost, LightGBM,
Elastic net and linear random effects model, i.e. LRE model) tested with different combi-
nations of predictor variables. The best model for each cross-validation scheme is written
in bold.

Type of

statistical

model

Predictors used Weather-

and soil- based

variables

included

Longitude

and latitude

included

CV0: Leave-one-

year-out

CV00: Leave-

one-year-out, new

genotypes

XGBoost G+W+Y+Lon+Lat Y Y 0.419 0.301

XGBoost G+W Y N 0.414 0.292

XGBoost G+Lon+Lat+Y N Y 0.398 0.267

LightGBM G+W+Y+Lon+Lat Y Y 0.417 0.293

LightGBM G+W Y N 0.411 0.286

LightGBM G+Lon+Lat+Y N Y 0.406 0.27

Elastic net G+W+Y+Lon+Lat Y Y 0.319 0.226

Elastic net G+W Y N 0.313 0.231

Elastic net G+Lon+Lat+Y N Y 0.31 0.241

LRE model G+E N N 0.356 0.25

LRE model G+E+G×E N N 0.362 0.271

LRE model G+S N N 0.343 0.259

LRE model G+S+GS N N 0.362 0.289

LRE model G+Y N N 0.32 0.193

LRE model G+Y+G×Y N N 0.313 0.199

LRE model G+E+S+Y+G×S+G×Y+G×E N N 0.373 0.287

LRE model G+W Y N 0.341 0.256

LRE model G+E+W Y N 0.371 0.273

LRE model G+W+G×W Y N 0.316 0.258

LRE model G+E+W+G×W Y N 0.347 0.281

LRE model G+E+W+G×W+G×E Y N 0.377 0.291

LRE model G+W Y Y 0.35 0.26

LRE model G+E+W Y Y 0.372 0.274

LRE model G+W+G×W Y Y 0.323 0.267

LRE model G+E+W+G×W Y Y 0.347 0.287

LRE model G+E+W+G×W+G×E Y Y 0.377 0.293
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Table S2.7: Weighted average correlation between predicted and observed values across
71 environments for the trait grain yield for two cross-validation schemes leaving one site
out (CV0-Site, CV00-Site) and for four types of statistical models (XGBoost, LightGBM,
Elastic net and linear random effects model, i.e. LRE model) tested with different combi-
nations of predictor variables. The best model for each cross-validation scheme is written
in bold.

Type of

statistical

model

Predictors used Weather-

and soil- based

variables

included

Longitude

and latitude

included

CV0: Leave-one-

site-out

CV00: Leave-one-

site-out, new geno-

types

XGBoost G+W+Y+Lon+Lat Y Y 0.495 0.28

XGBoost G+W Y N 0.485 0.275

XGBoost G+Lon+Lat+Y N Y 0.504 0.269

LightGBM G+W+Y+Lon+Lat Y Y 0.496 0.275

LightGBM G+W Y N 0.489 0.288

LightGBM G+Lon+Lat+Y N Y 0.503 0.272

Elastic net G+W+Y+Lon+Lat Y Y 0.392 0.243

Elastic net G+W Y N 0.38 0.247

Elastic net G+Lon+Lat+Y N Y 0.388 0.225

LRE model G+E N N 0.461 0.248

LRE model G+E+G×E N N 0.453 0.269

LRE model G+S N N 0.447 0.265

LRE model G+S+GS N N 0.445 0.274

LRE model G+Y N N 0.392 0.177

LRE model G+Y+G×Y N N 0.403 0.185

LRE model G+E+S+Y+G×S+G×Y+G×E N N 0.471 0.275

LRE model G+W Y N 0.423 0.264

LRE model G+E+W Y N 0.475 0.274

LRE model G+W+G×W Y N 0.379 0.242

LRE model G+E+W+G×W Y N 0.46 0.287

LRE model G+E+W+G×W+G×E Y N 0.475 0.294

LRE model G+W Y Y 0.437 0.276

LRE model G+E+W Y Y 0.475 0.274

LRE model G+W+G×W Y Y 0.4 0.257

LRE model G+E+W+G×W Y Y 0.463 0.287

LRE model G+E+W+G×W+G×E Y Y 0.477 0.296



Genomic Prediction With Gradient Boosting 73

Table S2.8: Weighted average correlation between predicted and observed values across 71
environments for the trait plant height for two cross-validation schemes leaving one year
out (CV0-Year, CV00-Year) and for four types of statistical models (XGBoost, LightGBM,
Elastic net and linear random effects model, i.e. LRE model) tested with different combi-
nations of predictor variables. The best model for each cross-validation scheme is written
in bold.

Type of

statistical

model

Predictors used Weather-

and soil- based

variables

included

Longitude

and latitude

included

CV0: Leave-one-

year-out

CV00: Leave-

one-year-out, new

genotypes

XGBoost G+W+Y+Lon+Lat Y Y 0.632 0.522

XGBoost G+W Y N 0.602 0.493

XGBoost G+Lon+Lat+Y N Y 0.658 0.554

LightGBM G+W+Y+Lon+Lat Y Y 0.631 0.521

LightGBM G+W Y N 0.61 0.49

LightGBM G+Lon+Lat+Y N Y 0.663 0.555

Elastic net G+W+Y+Lon+Lat Y Y 0.517 0.453

Elastic net G+W Y N 0.491 0.407

Elastic net G+Lon+Lat+Y N Y 0.564 0.536

LRE model G+E N N 0.686 0.604

LRE model G+E+G×E N N 0.685 0.602

LRE model G+S N N 0.623 0.562

LRE model G+S+GS N N 0.608 0.56

LRE model G+Y N N 0.487 0.426

LRE model G+Y+G×Y N N 0.476 0.429

LRE model G+E+S+Y+G×S+G×Y+G×E N N 0.675 0.598

LRE model G+W Y N 0.499 0.431

LRE model G+E+W Y N 0.678 0.59

LRE model G+W+G×W Y N 0.41 0.377

LRE model G+E+W+G×W Y N 0.66 0.556

LRE model G+E+W+G×W+G×E Y N 0.674 0.58

LRE model G+W Y Y 0.513 0.458

LRE model G+E+W Y Y 0.679 0.589

LRE model G+W+G×W Y Y 0.416 0.396

LRE model G+E+W+G×W Y Y 0.661 0.56

LRE model G+E+W+G×W+G×E Y Y 0.676 0.58
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Table S2.9: Weighted average correlation between predicted and observed values across 71
environments for the trait plant height for two cross-validation schemes leaving one site
out (CV0-Site, CV00-Site) and for four types of statistical models (XGBoost, LightGBM,
Elastic net and linear random effects model, i.e. LRE model) tested with different combi-
nations of predictor variables. The best model for each cross-validation scheme is written
in bold.

Type of

statistical

model

Predictors used Weather-

and soil- based

variables

included

Longitude

and latitude

included

CV0: Leave-one-

site-out

CV00: Leave-one-

site-out, new geno-

types

XGBoost G+W+Y+Lon+Lat Y Y 0.700 0.517

XGBoost G+W Y N 0.686 0.512

XGBoost G+Lon+Lat+Y N Y 0.719 0.541

LightGBM G+W+Y+Lon+Lat Y Y 0.704 0.514

LightGBM G+W Y N 0.685 0.515

LightGBM G+Lon+Lat+Y N Y 0.72 0.534

Elastic net G+W+Y+Lon+Lat Y Y 0.576 0.473

Elastic net G+W Y N 0.577 0.447

Elastic net G+Lon+Lat+Y N Y 0.624 0.538

LRE model G+E N N 0.736 0.597

LRE model G+E+G×E N N 0.736 0.598

LRE model G+S N N 0.69 0.536

LRE model G+S+GS N N 0.707 0.58

LRE model G+Y N N 0.554 0.38

LRE model G+Y+G×Y N N 0.554 0.369

LRE model G+E+S+Y+G×S+G×Y+G×E N N 0.742 0.59

LRE model G+W Y N 0.591 0.46

LRE model G+E+W Y N 0.732 0.588

LRE model G+W+G×W Y N 0.486 0.363

LRE model G+E+W+G×W Y N 0.717 0.565

LRE model G+E+W+G×W+G×E Y N 0.731 0.579

LRE model G+W Y Y 0.59 0.469

LRE model G+E+W Y Y 0.732 0.588

LRE model G+W+G×W Y Y 0.476 0.384

LRE model G+E+W+G×W Y Y 0.718 0.567

LRE model G+E+W+G×W+G×E Y Y 0.732 0.579



Genomic Prediction With Gradient Boosting 75

Table S2.10: Pearson’s correlations between predicted and observed values computed within each
environment in the CV0-Year prediction problem, using XGBoost with and without environmental
data (results ordered by year).

Year_Exp Pearson’s correlation between predicted

and observed values - Model XGBoost-

G+Lon+Lat+Y

Pearson’s correlation between predicted

and observed values - Model XGBoost-

G+W+Y+Lon+Lat

2014_DEH1 -0.00038 -0.03141

2014_GAH1 0.039908 0.112209

2014_IAH1_early 0.470778 0.412316

2014_IAH1_late 0.244271 0.376256

2014_ILH1 0.326263 0.436469

2014_INH1 0.554022 0.3753

2014_MNH1 -0.14013 0.42382

2014_MOH1 0.35867 0.457647

2014_MOH2 0.389949 0.469562

2014_NEH1 0.175078 0.204411

2014_NEH2 0.227811 0.22328

2014_NYH2 0.494023 0.432915

2014_ONH1 0.270531 0.332591

2014_ONH2 0.526447 0.43561

2014_TXH1 0.468913 0.480222

2014_TXH2 0.275946 0.20704

2014_WIH1 0.548343 0.606907

2015_DEH1 0.428647 0.337348

2015_GAH1 0.100642 0.259561

2015_ILH1 0.292991 0.382949

2015_INH1 0.33941 0.365498

2015_KSH1 0.166681 0.217401

2015_MNH1 0.219478 0.298932

2015_MOH1 0.147063 0.177479

2015_MOH2 0.258198 0.237618

2015_NEH2 0.150283 0.142226

2015_NEH3 0.148109 0.261604

2015_NYH2 0.368203 0.367911

2015_NYH3 0.396606 0.399689

2015_OHH1 0.302886 0.330156

2015_ONH1 0.500552 0.381253

2015_ONH2 0.470438 0.453759

2015_SDH1 0.165344 0.275692

2015_TXH1 0.409079 0.379781

2016_DEH1 0.676664 0.632206

2016_GAH2 0.167941 0.256443

2016_IAH2 0.361859 0.467092

2016_IAH3 0.323082 0.361847

2016_IAH4 0.513045 0.45837

2016_ILH1.a 0.15853 0.20329

2016_ILH1.b 0.113304 0.183547

2016_INH1 0.610272 0.64807

2016_KSH1 0.038255 -0.02406

2016_MIH1 0.630822 0.57595

2016_MNH1 0.499454 0.383406

2016_MOH1 0.519051 0.516576

2016_NEH1 0.559879 0.594455

2016_NEH4 0.336597 0.407543

2016_NYH2 0.17573 0.170988

2016_ONH1 0.512765 0.588222

2016_ONH2 0.488428 0.449989

2016_TXH1 0.488807 0.569038

2016_WIH1 0.656356 0.689881

2016_WIH2 0.627307 0.640923

2017_ARH1 0.080175 0.072308

2017_ARH2 -0.00686 0.028488

2017_COH1 0.384681 0.410604

2017_DEH1 0.759031 0.696925

2017_GAH1 0.235513 0.308306

2017_GAH2 0.406465 0.45164

2017_IAH4 0.659361 0.693042

2017_MIH1 0.734516 0.711509

2017_MOH1 0.589471 0.509746

2017_NYH2 0.430153 0.500422

2017_NYH3 -0.05178 0.157664

2017_ONH1 0.533839 0.523437
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2017_TXH1-Dry 0.421615 0.574875

2017_TXH1-Early 0.305317 0.456222

2017_TXH1-Late 0.278046 0.383466

2017_WIH1 0.627729 0.638422

2017_WIH2 0.682127 0.683406



Genomic Prediction With Gradient Boosting 77

Table S2.11: Pearson’s correlations between predicted and observed values computed within each
environment in the CV0-Site prediction problem, using XGBoost with and without environmental
data (results ordered by site).

Year_Exp

Pearson’s correlation between predicted

and observed values - Model XGBoost-

G+Lon+Lat+Y

Pearson’s correlation between predicted

and observed values - Model XGBoost-

G+W+Y+Lon+Lat

2017_ARH1 0.083618 0.087805

2017_ARH2 -0.11405 -0.08229

2017_COH1 0.434181 0.395753

2014_NYH2 0.618258 0.645201

2015_NYH2 0.420689 0.46726

2015_NYH3 0.414204 0.504762

2016_NYH2 0.071884 0.13314

2017_NYH2 0.489832 0.510642

2017_NYH3 0.039865 0.194063

2014_ONH2 0.701346 0.680824

2015_ONH2 0.636242 0.626894

2016_ONH2 0.696007 0.488337

2014_ONH1 0.545165 0.498874

2015_ONH1 0.615251 0.466422

2016_ONH1 0.59863 0.583291

2017_ONH1 0.553925 0.59485

2014_IAH1_early 0.492282 0.43794

2014_IAH1_late 0.437323 0.430194

2016_IAH4 0.576048 0.469782

2017_IAH4 0.629009 0.665542

2016_IAH2 0.463735 0.4613

2016_IAH3 0.482565 0.450599

2015_KSH1 0.312603 0.331673

2016_KSH1 0.036547 0.015976

2016_MIH1 0.661474 0.649279

2017_MIH1 0.726516 0.751137

2015_OHH1 0.569874 0.512396

2014_INH1 0.660406 0.479942

2015_INH1 0.410292 0.41781

2016_INH1 0.681134 0.706826

2015_SDH1 0.382275 0.278046

2014_TXH1 0.487586 0.455357

2015_TXH1 0.461609 0.40085

2016_TXH1 0.484127 0.407383

2017_TXH1-Dry 0.551344 0.404471

2017_TXH1-Early 0.415016 0.307181

2017_TXH1-Late 0.270513 0.331329

2014_TXH2 0.50653 0.408112

2014_DEH1 0.000496 -0.03348

2015_DEH1 0.568924 0.647196

2016_DEH1 0.475822 0.576064

2017_DEH1 0.567695 0.675415

2014_GAH1 0.15681 0.158373

2015_GAH1 0.637245 0.587707

2017_GAH1 0.454122 0.182706

2016_GAH2 0.245837 0.167543

2017_GAH2 0.433908 0.475884

2014_ILH1 0.478114 0.551237

2015_ILH1 0.507431 0.540645

2016_ILH1.a 0.191753 0.156859

2016_ILH1.b 0.136002 0.159364

2014_MNH1 0.321004 0.590724

2015_MNH1 0.490254 0.510987

2016_MNH1 0.60069 0.514643

2014_MOH1 0.46074 0.437299

2014_MOH2 0.60346 0.612721

2015_MOH1 0.176224 0.150778

2015_MOH2 0.394699 0.348521

2016_MOH1 0.591315 0.605213

2017_MOH1 0.56974 0.461632

2014_NEH1 0.220867 0.246266

2015_NEH3 0.184895 0.207049

2014_NEH2 0.199181 0.194448

2015_NEH2 0.212923 0.253392

2016_NEH1 0.659393 0.691755

2016_NEH4 0.432744 0.463022

2014_WIH1 0.759711 0.684768
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2016_WIH1 0.798492 0.797723

2017_WIH1 0.673311 0.680053

2016_WIH2 0.627422 0.685192

2017_WIH2 0.738874 0.720376
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3.1 Abstract

We introduce the R-package learnMET, developed as a flexible framework to enable a collection

of analyses on multi-environment trial (MET) breeding data with machine learning-based models.

learnMET allows the combination of genomic information with environmental data such as climate

and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data
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from field weather stations, or to retrieve global meteorological datasets from a NASA database.

Daily weather data can be aggregated over specific periods of time based on naive (for instance,

non-overlapping 10-day windows) or phenological approaches. Different machine learning methods

for genomic prediction are implemented, including gradient boosted decision trees, random forests,

stacked ensemble models, and multi-layer perceptrons. These prediction models can be evaluated

via a collection of cross-validation schemes that mimic typical scenarios encountered by plant

breeders working with MET experimental data in a user-friendly way. The package is published

under a MIT license and accessible on GitHub.

Keywords: multienvironment trials, machine learning, genotype x environment interaction, ge-

nomic prediction, R software

3.2 Introduction

Large amounts of data from various sources (phenotypic records from field trials, genomic or

omics data, environmental information) are regularly gathered as part of multi-environment trials

(MET). The efficient exploitation of these extensive datasets has become of utmost interest for

breeders to address essentially two objectives: (1) accurately predicting genotype performance in

future environments; (2) untangling complex relationships between genetic markers, environmental

covariables (ECs) and phenotypes to better understand the pervasive phenomenon of genotype-

by-environment (G x E) interaction.

Many R packages have recently been developed that allow to implement genomic prediction models

accounting for G x E effects using mixed models: BGLR (Pérez and de Los Campos, 2014), sommer

(Covarrubias-Pazaran, 2016), Bayesian Genomic Genotype × Environment Interaction (BGGE)

(Granato et al., 2018), Bayesian Multi-Trait Multi-Environment for Genomic Selection (BMTME)

(Montesinos-López et al., 2019), bWGR (Xavier et al., 2019), EnvRtype (Costa-Neto et al., 2021b)

and MegaLMM (Runcie et al., 2021). BGGE presents a speed advantage compared to BGLR, that

is explained by the use of an optimization procedure for sparse covariance matrices, while BMTME

additionally exploits the genetic correlation among traits and environments to build linear G x E

models. EnvRtype further widens the range of opportunities in Bayesian kernel models with the

possibility to use non-linear arc-cosine kernels aiming at reproducing a deep learning approach

(Costa-Neto et al., 2021a; Cuevas et al., 2019), and to harness environmental data retrieved by the

package.

While Bayesian approaches have been successful at dramatically improving predictive ability in

multi-environment breeding experiments (Costa-Neto et al., 2021b; Cuevas et al., 2017, 2019),

data-driven machine learning algorithms represent alternative predictive modeling techniques with

increased flexibility with respect to the form of the mapping function between input and output

variables. In particular, non-linear effects including gene x gene and genotype x environment (G
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x E) interactions can be captured with machine learning models (Crossa et al., 2019; McKinney

et al., 2006; Ritchie et al., 2003; Westhues et al., 2021). G x E interactions are of utmost interest

for plant breeders, especially when they present a crossover-type, because the latter implies a

change in the relative ranking of genotypes across different environments. Breeders generally cope

with G × E by either (1) focusing their program on wide adaptation of cultivars over a target

population of environments, from which follows that the developed varieties are not the best ones

for a given environment, and positive G × E interactions are not exploited, or (2) identifying

varieties that are the best adapted to specific environments (Bernardo, 2002). Enhancing the

modeling of genotype-by-environment interactions, by the inclusion of environmental covariates

related to critical developmental stages, also resulted in an increase of predictive ability in many

studies using MET datasets (Costa-Neto et al., 2021a; Heslot et al., 2012; Monteverde et al., 2019;

Rincent et al., 2019).

In this article we describe the R-package learnMET and its principal functionalities. learnMET

provides a pipeline to (1) facilitate environmental characterization and (2) evaluate and compare

different types of machine learning approaches to predict quantitative traits based on relevant cross-

validation schemes for MET datasets. The package offers flexibility by allowing to specify the sets

of predictors to be used in predictions, and different methods to process genomic information to

model genetic effects.

To validate the predictive performance of the models, different cross-validation (CV) schemes are

covered by the package, that aim at addressing concrete plant breeding prediction problems with

multi-environment field experiments. We borrow the same terminology as in previous related

studies (see Burgueño et al. (2012); Jarquín et al. (2014, 2017)), as follows: (1) CV1: predicting

the performance of newly developed genotypes (never tested in any of the environments included

in the MET); (2) CV2: predicting the performance of genotypes that have been tested in some

environments but not in others (also referred to as field sparse testing); (3) CV0: predicting the

performance of genotypes in new environments, i.e. the environment has not been tested; and (4)

CV00: predicting the performance of newly developed genotypes in new environments, i.e. both

environment and genotypes have not been observed in the training set. For CV0 and CV00, four

configurations are implemented: leave-one-environment-out, leave-one-site-out, leave-one-year-out

and forward prediction.

3.3 Methods

3.3.1 Installation and dependencies

Using the devtools package (Wickham et al., 2021), learnMET can be easily installed from GitHub

and loaded (Box 1).
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Box 1: Install learnMET

> devtools::install_github("cjubin/learnMET")

> library(learnMET)

Dependencies are automatically installed or updated when executing the command above.

3.3.2 Real multi-environment trial datasets

Three toy datasets are included with the learnMET package to illustrate how input data should

be provided by the user and how the different functionalities of the package can be utilized.

Rice datasets: The datasets were obtained from the INIA’s Rice Breeding Program (Uruguay)

and were used in previous studies (Monteverde et al., 2018, 2019). Two breeding populations of rice

(indica, composed of 327 elite breeding lines; and japonica, composed of 320 elite breeding lines)

were phenotyped for four traits. The two populations were evaluated at a single location (Treinta

y Tres, Uruguay) across multiple years (2010-2012 for indica and 2009-2013 for japonica) and

were genotyped using genotyping-by-sequencing (GBS) (Monteverde et al., 2019). Environmental

covariables, characterizing three developmental stages throughout the growing season, were directly

available. More details about the dataset are given in Monteverde et al. (2018).

Maize datasets: A subset of phenotypic and genotypic datasets, collected and made available by

the G2F initiative (www.genomes2fields.org), were integrated into learnMET. Hybrid genotypic

data were computed in silico based on the GBS data from inbred parental lines. For more infor-

mation about the original datasets, please refer to AlKhalifah et al. (2018) and McFarland et al.

(2020). In total, phenotypic data, collected from 22 environments covering 4 years (2014 to 2017)

and 6 different locations in American states and Canadian provinces, are included in the package.

3.3.3 Running learnMET

learnMET is implemented as a three-step pipeline. These are described below.

3.3.4 Step 1: specifying input data and processing parameters

The first function in the learnMET pipeline is create_METData() (Box 2). The user must pro-

vide genotypic and phenotypic data, as well as basic information about the field experiments

(e.g. longitude, latitude, planting and harvest date). Missing genotypic data should be imputed

beforehand. Climate covariables can be directly provided as day-interval aggregated variables,

using the argument climate_variables. Alternatively, in order to compute weather-based covari-

ables, based on daily weather data, the user can set the compute_climatic_ECs argument to

TRUE, and two possibilities are given. The first one is to provide raw daily weather data (with

the raw_weather_data argument), which will undergo a quality control with the generation of an

output file with flagged values. The second possibility, if the user does not have weather data avail-

www.genomes2fields.org
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able from measurements (e.g. from an in-field weather station), is the retrieval of daily weather

records from the NASA’s Prediction of Worldwide Energy Resources (NASA POWER) database

(https://power.larc.nasa.gov/), using the package nasapower (Sparks, 2018). Spatio-temporal

information contained in the info_environments argument is required. Note that the function also

checks which environments are characterized by in-field weather data in the raw_weather_data ar-

gument, in order to retrieve satellite-based weather data for the remaining environments without

in field weather stations. An overview of the pipeline is provided in Figure 3.1.

Some covariates are additionally computed, based on the daily weather data, such as vapor pressure

deficit or the reference evapotranspiration using the Penman-Monteith (FAO-56) equation. The ag-

gregation of daily information into day-interval based values is also carried out within this function.

Four methods are available and should be specified with the argument method_ECs_intervals: (1)

default: use of a definite number of intervals across all environments (i.e. the window length varies

according to the duration of the growing season); (2) use of day-windows of fixed length (i.e. each

window spans a given number of days, which remains identical across environments), that can be

adjusted by the user; (3) use of specific day intervals according to each environment provided by

the user, which should correspond to observed or assumed relevant phenological intervals; and (4)

based on the estimated crop growth stage within each environment using accumulated growing

degree-days in degrees Celsius.

Besides weather-based information, soil characterization for each environment can also be provided

given the soil_variables argument. The output of create_METData() is a list object of class

METData, required as input for all other functionalities of the package.

 https://power.larc.nasa.gov/
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Figure 3.1: Overview of the pipeline regarding integration of weather data using the
function create_METData() within the learnMET package. The blue circle signals the
first step of the process, when the function is initially called. The blue boxes indi-
cate how the arguments of the function should be characterized, according to the type
of datasets available to the user. The green boxes indicate a task which is run in the
pipeline via internal functions of the package. The red circle signals the final step, when
the METData object is created. Details on the quality control tests implemented on
daily weather data are provided at https://cjubin.github.io/learnMET/reference/
qc_raw_weather_data.html, and on the methods to build ECs based on aggregation of
daily data at https://cjubin.github.io/learnMET/reference/get_ECs.html.

Box 2: Integration of input data in a METData list object

Case 1 : ECs directly provided by the user

> library(learnMET)

> data(geno_indica)

> data(map_indica)

> data(pheno_indica)

> data(info_environments_indica)

> data(env_data_indica)

> METdata_indica <- create_METData(

geno = geno_indica,

map = map_indica,

pheno = pheno_indica,

climate_variables = climate_variables_indica,

info_environments = info_environments_indica,

compute_climatic_ECs = FALSE,

path_to_save = " /learnMET_analyses/indica")

Case 2 : daily climate data automatically retrieved and ECs calculated via the package

> data(geno_G2F)

> data(pheno_G2F)

> data(map_G2F)

> data(info_environments_G2F)

> data(soil_G2F)

> METdata_g2f <- create_METData(

geno = geno_G2F,

pheno = pheno_G2F,

map = map_G2F,

climate_variables = NULL,

raw_weather_data = NULL,

compute_climatic_ECs = TRUE,

info_environments = info_environments_G2F,

soil_variables = soil_G2F,

path_to_save = " /learnMET_analyses/G2F" )

Note: code example to use in-field daily weather data provided at https://cjubin.github.io/learnMET/articles/

vignette_getweatherdata.html

https://cjubin.github.io/learnMET/reference/qc_raw_weather_data.html
https://cjubin.github.io/learnMET/reference/qc_raw_weather_data.html
https://cjubin.github.io/learnMET/reference/get_ECs.html
https://cjubin.github.io/learnMET/articles/vignette_getweatherdata.html
https://cjubin.github.io/learnMET/articles/vignette_getweatherdata.html
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3.3.5 Machine learning-based models implemented

Different machine learning-based regression methods are provided as S3 classes in an object oriented

programming style. These methods are called within the pipeline of the predict_trait_MET_cv()

function, that is presented in the following section. In particular, the XGBoost gradient boosting

library (Chen and Guestrin, 2016), the Random Forest algorithm (Breiman, 2001), stacked ensem-

ble models with Lasso regularization as meta-learners (Van der Laan et al., 2007), and multi-layer

perceptrons using Keras (Chollet et al., 2015) are implemented as prediction methods. In this

section, we briefly present how these machine learning algorithms work.

Gradient boosted decision trees (GBDT) can be seen as an additive regression model, where the

final model is an ensemble of weak learners (i.e. a regression tree in this case), in which each

base learner is fitted in a forward sequential manner. Considering a certain loss function (e.g.

mean squared error for regression), a new tree is fitted to the residuals of the prior model (i.e.

an ensemble of trees) to minimize this loss function. Then, the previous model is subsequently

updated with the current model. From this definition, it becomes clear that GBDT and Random

Forest models strongly differ from each other, since for GBDT, trees are built conditional on past

trees, and the trees contribute unequally to the final model (Kuhn et al., 2013).

In contrast, in Random Forest algorithms, trees are created independently from each each other,

and results from each tree are only combined at the end of the process. The concept of GBDT

was originally developed by Friedman (2001). In learnMET, a set of prediction models, denoted

xgb_reg and rf_reg, is proposed that use the XGBoost algorithm or the Random Forest algorithm,

respectively, with different input variables.

A multi-layer perceptron (MLP) consists of one input layer, one or more hidden layers, and one

output layer. Each layer, with the exception of the final output layer, includes a bias neuron (i.e.

a constant value that acts like the intercept in a linear equation and is used to adjust the output)

and is fully connected to the next layer. Here, the first hidden layer receives the marker genotypes

and the ECs as input, computes a weighted linear summation of these inputs (i.e. z = W⊺ ·X + b,

where X represent the input features, W⊺ the vector of weights, and b the bias), and transforms

the latter with a non-linear activation function f(z), yielding the output of the given neuron. In the

next hidden layers, each neuron (also named node) in one layer connects with a given weight to each

neuron in the consecutive layer. The last hidden layer is generally connected with a linear function

to the output layer, that consists of a single node. In MLP, learning is done via backpropagation:

the network makes a prediction for each training instance, calculates the error associated with

this prediction, estimates the error contribution from each connection at each hidden layer by

iterating backward from the last layer (reverse pass), and finally changes the connection weights

to decrease this error, usually using gradient descent step (Géron, 2019). For more details about

deep learning methods in genomic prediction, we refer to the review written by Pérez-Enciso and
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Zingaretti (2019). In learnMET, a set of prediction models named DL_reg, are proposed that

apply multi-layer perceptrons models with different input variables.

Stacked models can be understood as an ensemble method that exploits the capabilities of many

well-working models (called base learners) on a classification or regression task. The theoretical

background of this method was originally proposed by Breiman (1996), and further developed

by Van der Laan et al. (2007). In the first step, different individual base learners are fitted to

the same training set resamples (typically generated via cross-validation), and potentially using

different sets of predictor variables or different hyperparameter settings. Then, the predictions of

the base learners are used as input to predict the output by fitting a regularization method, such

as Lasso, on the cross-validated predictions. Hence, the final model has learned how to combine

the first-level predictions of the base learners, and this stacked ensemble is expected to achieve

similar or better results than any of the base learners (Van der Laan et al., 2007). This implies

also that some weak learners, trained in the first stage, are generally excluded by variable selection

from the resulting ensemble model if their predictions are highly correlated with other models, or

irrelevant for predicting the trait of interest. In learnMET, prediction models named stacking_reg

apply stacked ensemble models with different base learners and input variables. For instance,

stacking_reg_3 combines a support vector machine regression model fitted to the ECs, an elastic

net model fitted to the SNPs data, and a XGBoost model using as features the 40 genomic-based

PCs and the ECs. The stacked model was designed to embrace individual learners as diverse

as possible, in order to improve the likelihood that the predictions of the different models are

different from each other, and that the meta learning algorithm really benefits from combining

these first-level predictions. Regularized regression methods are widely used for genomic selection

(de los Campos et al., 2013; Zou and Hastie, 2005), thus our choice to incorporate Elastic Net as

an individual learner to estimate the SNPs effects.

3.3.6 Step 2: model evaluation through cross-validation

The second function in a typical workflow is predict_trait_MET_cv() (Box 3). The goal of this

function is to assess a given prediction method with a specific CV scenario, that mimic concrete

plant breeding situations.

When predict_trait_MET_cv() is executed, a list of training/test splits is constructed accord-

ing to the CV scheme chosen by the user. Each training set in each sub-element of this list is

processed (e.g. standardization and removal of predictors with null variance, feature extraction

based on principal component analysis), and the corresponding test set is processed using the

same transformations. Performance metrics are computed on the test set, such as the Pearson

correlation between predicted and observed phenotypic values (always calculated within the same

environment, regardless of how the test sets are defined according to the different CV schemes),

and the root mean square error. Analyses are fully reproducible given that seed and tuned hy-
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perparameters are stored with the output of predict_trait_MET_cv(). Note that, if one wants to

compare models using the same CV partitions, specifying the seed and modifying the model would

be sufficient.

The function applies a nested CV to obtain an unbiased generalization performance estimate.

After splitting the complete dataset using an outer CV partition (based on either CV1, CV2, CV0

or CV00 prediction problems), an inner CV scheme is applied to the outer training dataset for

optimization of hyperparameters. Subsequently, the best hyperparameters are selected and used

to train the model using all training data. Model performance is then evaluated based on the

predictions of the unseen test data using this trained model. This procedure is repeated for each

training-test partition of the outer CV assignments. Table 3.1 shows the different arguments that

can be adjusted when executing the cross-validation evaluation.

Note that the classes we developed for pre-processing data and for fitting machine learning-based

methods use functions from the tidymodels collection of R packages for machine learning (Kuhn and

Wickham, 2020), such as Bayesian optimization to tune hyperparameters (function tune_bayes())

or the package stacks. For models based on XGBoost, the number of boosting iterations, the

learning rate and the depth of trees represent important hyperparameters that are automatically

tuned. Ranges of hyperparameter values are pre-defined based on expert knowledge. Bayesian

optimization techniques use a surrogate model of the objective function in order to select better

hyperparameter combinations based on past results (?). As more combinations are assessed, more

data become available from which this surrogate model can learn to sample new combinations from

the hyperparameter space that are more likely to yield an improvement. This technique allows a

reduction of the number of model settings tested during the hyperparameter tuning.

Box 3: evaluation of a prediction method using a CV scheme (i.e. METData object with phenotypic

data)

> res_cv0_indica <- predict_trait_MET_cv(

METData = METdata_indica,

trait = "GC",

prediction_method = "xgb_reg_1",

cv_type = "cv0",

cv0_type = "leave-one-year-out",

seed = 100,

path_folder = " /project1/indica_cv_res/cv0" )

3.3.7 Extracting evaluation metrics from the output

Once a model has been evaluated with a CV scheme, various results can be extracted from the

returned object, as shown in Box 4, and plots for visualization of results are also saved in the

path_folder.
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Table 3.1: Description of the main arguments used with the function pre-
dict_trait_MET_cv()

Function argument Description

METData An object created by the initial function of the package create_METData().

trait Name of the trait to predict.

prediction_method String to name the trait to predict.

lat_lon_included Logical to use longitude and latitude as predictor variables. FALSE by default.

year_included Logical to use year effect as dummy variable. FALSE by default.

cv_type String indicating the cross-validation scheme to use among "cv0" (prediction of genotypes in

new environments), "cv00" (prediction of new genotypes in new environments), "cv1" (predic-

tion of new genotypes) or "cv2" (prediction of incomplete field trials). Default is "cv0".

cv0_type String indicating the type of cv0 scenario, among "leave-one-environment-out", "leave-one-site-

out","leave-one-year-out" and "forward-prediction". Default is "leave-one-environment-out".

nb_folds_cv1 Integer for the number of folds to use in the cv1 scheme, if selected.

repeats_cv1 Integer for the number of repeats in the cv1 scheme, if selected.

nb_folds_cv2 Integer for the number of folds to use in the cv2 scheme, if selected.

repeats_cv2 Integer for the number of repeats in the cv2 scheme, if selected.

include_env_predictors Logical to indicate if ECs should be used in predictions. TRUE by default.

list_env_predictors Vector of character strings with the names of the environmental predictors which should be

used in predictions. NULL by default, which means that all environmental predictor variables

are used.

seed Integer with the seed value. Default is NULL, which implies that a random seed is generated,

used in the other stages of the pipeline, and given as output for reproducibility.

save_processing Logical to save the processing steps used to build the model in a RDS file. Default is FALSE.

path_folder String to indicate the full path where the RDS file with results and plots generated during the

analysis should be saved.

num_pcs Optional argument. Integer to indicate the number of principal components to derive from

the genotype matrix or from the genomic relationship matrix (encouraged to speed up cross-

validation with large datasets).

save_model Logical indicating whether the fitted model for each training-test partition should be saved.

Default is FALSE.
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Box 4: Extraction of results from returned object of class met_cv

# Extract predictions for each test set in the CV scheme:

> pred_2010 <- res_cv0_indica$list_results_cv[[1]]$prediction_df

> pred_2011 <- res_cv0_indica$list_results_cv[[2]]$prediction_df

> pred_2012 <- res_cv0_indica$list_results_cv[[3]]$prediction_df

# The length of the list_results_cv sub-element is equal to the number of train/test sets partitions.

# Extract Pearson correlation between predicted and observed values for 2010:

> cor_2010 <- res_cv0_indica$list_results_cv[[1]]$cor_pred_obs

# Extract root mean square error between predicted and observed values for 2011:

> rmse_2011 <- res_cv0_indica$list_results_cv[[2]]$rmse_pred_obs

# Get the seed used:

> seed <- res_cv0_indica$seed_used

3.3.8 Step 3: prediction of performance for a new test set

The third module in the package aims at implementing predictions for unobserved configurations

of genotypic and environmental predictors using the function predict_trait_MET() (Box 5). The

user needs to provide a table of genotype IDs (e.g. name of new varieties) with their growing

environments (i.e. year and location) using the argument pheno in the function create_METData().

Genotypic data of the selection candidates to test within this test set should all be provided

using the geno argument. Regarding characterization of new environments, the user can either

provide a table of environments, with longitude, latitude and growing season dates, or can directly

provide a table of ECs that should be consistent with the ECs provided for the training set.

Environmental variables for the unobserved test set should be provided or computed with the

same aggregation method (i.e. same method_ECs_intervals) as for the training set. To build an

appropriate model with learning parameters, able to generalize well on new data, a hyperparameter

optimization with cross-validation is conducted on the entire training dataset when using the

function predict_trait_MET().

This function can potentially be applied to harness historical weather data and to obtain predictions

across multiple years at a set of given locations (de Los Campos et al., 2020), or to conjecture about

the best selection candidates to assess in field trials at specific locations. However, we emphasize

the importance of both environmental and genetic similarity between training and test sets. If

the selection candidates within the test set are not strongly genetically related to the genotypes

included in the training set, or if the climatic conditions experienced in the test set differ too

much from the feature space covered within the training set, the prediction results might not be

trustworthy for decision making.
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The function analysis_predictions_best_genotypes(), takes directly the output of predict_trait_MET()

and can be used to visualize the predicted yield of the best performing genotypes at each of the

locations across years included in the test set.



learnMET 101

Box 5: prediction of new observations using a training set and a test set (i.e. phenotypic data not

required)

# Create a training set composed of years 2014, 2015 and 2016:

> METdata_G2F_training <-

create_METData(

geno = geno_G2F,

pheno = pheno_G2F[pheno_G2F$year %in% c(2014,2015,2016), ],

map = map_G2F,

climate_variables = NULL,

compute_climatic_ECs = TRUE,

et0 = T, # Possibility to calculate reference evapotranspiration with the package (if TRUE, elevation data should

be preferably added as a column in info_environments)

info_environments = info_environments_G2F[info_environments_G2F$year %in% c(2014,2015,2016), ],

soil_variables = soil_G2F[soil_G2F$year %in% c(2014,2015,2016), ],

path_to_save = " /project1/g2f_trainingset") # path where daily weather data and plots are saved

# Create a prediction set (same default method to compute ECs as above):

> METdata_G2F_new <-

create_METData(

geno = geno_G2F,

pheno = as.data.frame(pheno_G2F[pheno_G2F$year %in% 2017, ] %>% dplyr::select(-pltht, -yld_bu_ac,

-earht)),

map = map_G2F,

et0 = T,

climate_variables = NULL,

compute_climatic_ECs = TRUE,

info_environments = info_environments_G2F[info_environments_G2F$year %in% 2017, ],

soil_variables = soil_G2F[soil_G2F$year %in% 2017, ],

path_to_save = " /project1/g2f_testset",

as_test_set = T) # in order to provide only predictor variables (no phenotypic data for the test set available) in

pheno argument.

# Fitting the model to the training set and predicting the test set

> results_list <- predict_trait_MET(

METData_training = METdata_G2F_training,

METData_new = METdata_G2F_new,

trait = "yld_bu_ac",

prediction_method = "xgb_reg_1",

use_selected_markers = F,

save_model = TRUE,

# save_model set to TRUE in order to retrieve subsequently variable importance

lat_lon_included = F,

year_included = F,

num_pcs = 200,

include_env_predictors = T,

seed = 100,

path_folder = " /project1/g2f_results_year_2017"

)
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3.3.9 Interpreting ML models

Compared to parametric models, ML techniques are often considered as black-boxes implementa-

tions, that complicate the task of understanding the importance of different factors (genetic, envi-

ronmental, management or their respective interactions) driving the phenotypic response. There-

fore, various methods have recently been proposed to aid the understanding and interpretation of

the output of ML models. Among these techniques, some are model-specific techniques (Molnar,

2022), in the sense that they are only appropriate for certain types of algorithms. For instance, the

Gini importance or the gain-based feature importance measures can only be applied for tree-based

methods (e.g. decision trees, Random Forests, gradient boosted trees), since it calculates how

much a predictor variable can reduce the sum of squared errors in the child nodes, compared to

the parent node, across all splits for which this given predictor was used. Feature importances are

in this case scaled between 0 and 100.

Other model-agnostic interpretation techniques have been developed, that provide the advantage of

being independent from the original machine learning algorithm applied, thereby allowing straight-

forward comparisons across models (Molnar, 2022). After shuffling the values of a given predictor

variable, the value of the loss function (e.g. root mean square error in regression problems), esti-

mated using the predictions of the shuffled data and the observed values, can be used to obtain an

estimate of the permutation-based variable importance. Fisher et al. (2019) formally defined the

permutation importance for a variable j as follows: vipjdiff = L(ŷ, Xpermuted, y)−L(ŷ, Xoriginal, y),

where L(ŷ, X, y) is the loss function evaluating the performance of the model, Xoriginal is the origi-

nal matrix of predictor variables and Xpermuted is the matrix obtained after permuting the variable

j in Xoriginal. The reason behind this approach is that, if a predictor contributes strongly to a

model’s predictions, shuffling its values will result in increased error estimates. On the other hand,

if the variable is irrelevant for the fitted model, it should not affect the prediction error. It is

recommended to repeat the permutation process to obtain a more reliable average estimate of the

variable importance (Fisher et al., 2019; Molnar, 2022). Another interesting aspect of permutation-

based variable importance is the possibility to calculate it using either the training or the unused

test set. Computing variable importance using unseen data is useful to evaluate whether the ex-

planatory variables, identified as relevant for prediction during model training, are truly important

to deliver accurate predictions, and whether the model does not overfit. However, in the latter

case, one needs to ensure that the training and test set are sufficiently related. New data might

behave very differently from the data used for training without implying that the trained model is

fundamentally wrong. The function variable_importance() enables retrieving variable importance,

either with a model-specific method (via the package vip (Greenwell et al., 2020)), when available,

or based on a permutation-based method (argument type, see Box 6), and the calculation is made

by default using the training set, but can be achieved for the test set by setting the argument

unseen_data to TRUE.
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Box 6: retrieving variable importance using the fitted model and the training data

> fitted_split <- results_list$list_results[[1]]

# Model-specific: variable importance based on the gain as importance metric from the XGBoost model (via vip

package)

> variable_importance <- variable_importance(

object = fitted_split,

path_plot = " /project1/variable_imp_trset",

type = "model_specific")

# Model-agnostic: variable importance based on 10 permutations

> variable_importance <- variable_importance(

object = fitted_split,

path_plot = " /project1/variable_imp_trset",

type = "model_agnostic",

permutations = 10)

# Model-agnostic: accumulated local effects plot

> ALE_plot_split(fitted_split,

path_plot = " /project1/ale_plots",

variable ="freq_P_sup10_2")

Accumulated local effects (ALE) plots, also model-agnostic, allow to examine the influence of a

given predictor variable on the model prediction, conditional on the predictor value (Apley and

Zhu, 2020). Compared to partial dependence (PD) plots, they provide the advantage of addressing

the bias that emerges when features are correlated. While predictions are computed over the

marginal distribution of predictor variables in the case of PD plots (i.e. meaning that predictions

of unrealistic instances are considered), ALE plots offer a solution to this issue by considering

the conditional distribution, thus avoiding to use predictions of unrealistic training observations.

To build an ALE plot, the range of the explanatory variable is first split into equally-sized small

windows, such as quantiles. For each window, the ALE method only considers observations, that

show for this feature a value falling within the interval. Then, it computes model predictions for

the upper limit and for the lower limit of the interval for these data instances, and calculates

the difference in predictions. The changes of predictions are averaged within each interval, which

allows to block the impact of other features. These average effects are then accumulated across

all intervals and centered at 0. The function ALE_plot_split() yields the ALE plot for a given

predictor variable. An example is provided in Box 6.
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3.4 Results and Discussion

To illustrate the use of learnMET with multi-environment trials datasets, we provide here two

example pipelines, both of which are available in the official package documentation. The first one

demonstrates an implementation that requires no user-provided weather data, while the second

pipeline shows prediction results obtained based on user-provided environmental data.

3.4.0.1 Retrieving meteorological data from NASA POWER database

for each environment

When running the commands for step 1 (Box 1, Case 2) on the maize dataset, a set of weather-

based variables (see documentation of the package) is automatically calculated using weather data

retrieved from the NASA POWER database. By default, the method used to compute ECs uses

a fixed number of day-windows (10) that span the complete growing season within each environ-

ment. This optional argument can be modified via the argument method_ECs_intervals (detailed

information about the different methods can be found at https://cjubin.github.io/learnMET/

reference/get_ECs.html). The function summary() provides a quick overview of the elements

stored and collected in this first step of the pipeline (Box 7).

Box 7: Summary method for class METData

> summary(METdata_g2f)

Clustering analyses, that can help to identify groups of environments with similar climatic condi-

tions and to identify outliers, were generated based on (a) only climate data; (b) only soil data

(if available); and (c) all environmental variables together, for a range of values for K = 2 to 10

clusters (Figure 3.2).

3.4.1 Benchmarking two prediction methods from learnMET and a lin-

ear reaction norm model

Phenotypic yields were predicted by the reaction norm model proposed by Jarquín et al. (2014),

thereafter denoted as G-W-GxW, that account for the random linear effects of the molecular

markers (G), of the environmental covariates (W) and of the interaction term (GxW), under the

following assumptions:

yij = µ+ gi + wj + gwij + εij ,

with g ∼ N(0,Gσ2
g), where G = XX′/p (with p being the number of SNPs and X the scaled and

centered marker matrix), w ∼ N(0,Ωσ2
w), where Ω = WW′/q (with q being the number of ECs

and W the scaled and centered matrix that contains the ECs), gw ∼ N(0, [ZgGZ′
g]◦Ωσ2

gw) where

◦ denotes the Hadamard product (cell by cell product), εij
IID∼ N(0, σ2

ε).

For additional details about the benchmark model, we refer to the original publication of Jarquín

https://cjubin.github.io/learnMET/reference/get_ECs.html
https://cjubin.github.io/learnMET/reference/get_ECs.html
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A

B C

Figure 3.2: Output results from the create_METData() function. (A) Cluster analysis
using K-means algorithm (K=4) to identify groups of similar environments based on climate
and soil data. (B) Total within-cluster sum of squares as a function of the number of
clusters. (C) Average Silhouette score as a function of the number of clusters. These
methods can help users decide on the optimal number of clusters. Data used here is
a subset of the Genomes to Fields maize dataset (AlKhalifah et al., 2018; McFarland
et al., 2020). Weather data were retrieved from NASA POWER database via the package
nasapower Sparks (2018). Plots are saved in the directory provided in the path_to_save
argument.
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et al. (2014). We implemented this model using BGLR (Pérez and de Los Campos, 2014), for which

the MCMC algorithm was run for 20,000 iterations and the first 2000 iterations were removed as

burn-in using a thinning equal to 5.

Two prediction models proposed in learnMET were tested: (i) xgb_reg_1, which is an XGBoost

model that uses a certain number of principal components (PCs) derived from the marker matrix

and ECs, as features and (ii) stacking_reg_3. Although computationally more expensive than

parametric methods, we paid attention to reasonable computational time (e.g. maximum of 13.3

hours to fit stacking_reg_3 model to n = 4,587 training instances with 10 CPUs).

We conducted a forward CV0 cross-validation scheme, meaning that future years were predicted

when using only past years as the training set. For the rice datasets, at least two years of data were

used to introduce variation in the EC matrix characterizing the training set (only one location was

tested each year). Year, location or year-location effects were not incorporated in any of the linear

and machine learning models, because we focused our evaluation on how the different models could

efficiently capture the effects of SNPs and ECs, and of SNP × EC interaction effects.

Results from the benchmarking approach are presented in Figure 3.3 and in Figure 3.4. We have

observed that the machine learning models are competitive with the linear reaction norm approach

and tend to outperform it, albeit not consistently, as the training set size increases. Applied to

small training set sizes, sophisticated prediction models are likely not able to capture informative

patterns related to SNP × EC interactions, and linear models perform better. Similarly, the root

mean square error was generally reduced with the machine learning methods as the training set

increased (Figure 3.4). Machine learning also performed better with the G2F data, that integrated

multiple locations per year and was therefore larger and probably more relevant to learn G × E

patterns than with the rice dataset. Therefore, we encourage users to first evaluate whether their

datasets are sufficiently large to leverage the potential of the advanced techniques proposed in this

package and whether the latter provide satisfying predictive abilities in cross-validation settings.

3.4.2 Model interpretation from a gradient boosted model fitted to the

maize dataset

Figure 3.5.A illustrates the permutation-based approach on the maize dataset, and Figure 3.5. Fig-

ures B and C describe how two environmental variables (sum of photothermal time and frequency

of rainfall) influence the average prediction of maize grain yield using accumulated local effects

plots. We should stress that the size of the dataset employed here is likely too small to make real

inferences about the relationship between the predictor variables and the outcome (sharp drops

observed at some feature values). Our goal here is essentially to illustrate how these functions can

be used to gain insights into a model’s predictions using the package.
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Figure 3.3: Correlations between predicted and observed values for a forward prediction
scenario using two machine learning models and a linear reaction norm approach. A Three
traits predicted for two rice populations. Each year is predicted based on at least two past
years of phenotypic data (one single location). B Grain yield predicted for the G2F dataset.
GC (rice data): percentage of chalky kernels; GY (rice data): grain yield (kg/ha); PHR
(rice data): percentage of head rice recovery; GY (G2F): bushels per acre.

3.5 Concluding remarks and future developments

learnMET was developed to make the integration of complex datasets, originating from various

data sources, user-friendly. The package provides flexibility at various levels: (1) regarding the use

of weather data, with the possibility to provide on-site weather station data, or to retrieve external

weather data, or a mix of both if on-site data are only partially available; (2) regarding how time

intervals for aggregation of daily weather data are defined; (3) regarding the diversity of non-linear

machine learning models proposed; (4) regarding options to provide manually specified subsets of

predictor variables (for instance for environmental features via the argument list_env_predictors

in predict_trait_MET_cv()).

To allow analyses on larger datasets, future developments of the package should include parallel

processing to improve the scalability of the package and to best harness high performance com-

puting resources. Improvements and extensions of stacked models and deep learning models are
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Figure 3.4: Root mean square error between predicted and observed values for a forward
prediction scenario using two machine learning models and a linear reaction norm approach.
A Three traits predicted for two rice populations. Each year is predicted based on at least
two past years of phenotypic data (one single location). B Grain yield predicted for the
G2F dataset.
GC (rice data): percentage of chalky kernels; GY (rice data): grain yield (kg/ha); PHR
(rice data): percentage of head rice recovery; GY (G2F): bushels per acre.

also intended, as we did not investigate in-depth the network architecture (e.g. number of nodes

per layer, type of activation function, type of optimizer), nor other types of deep learning models,

that might perform better (e.g. convolutional neural networks). Finally, the package could be

extended to allow genotype-specific ECs, because the timing of developmental stages differs across

genotypes (e.g. due to variability in earliness) and should ideally be taken into account.

3.5.1 Data Availability

The software is available on GitHub at https://github.com/cjubin/learnMET. Documentation

and vignettes are provided at https://cjubin.github.io/learnMET/. All scripts used to obtain

the results presented in this paper can be found on GitHub at https://github.com/cjubin/

learnMET/tree/main/scripts_publication.

https://github.com/cjubin/learnMET
https://cjubin.github.io/learnMET/
https://github.com/cjubin/learnMET/tree/main/scripts_publication
https://github.com/cjubin/learnMET/tree/main/scripts_publication
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Figure 3.5: Model interpretation methods applied on the model fitted to a subset of the
G2F dataset from years 2014 to 2016 (17 environments included) with xgb_reg_1 for the
trait grain yield. A Model-agnostic variable importance using 10 permutations. The top
40 most important predictor variables are displayed, and the table containing results across
all permutations for all variables is returned. Accumulated local effects (ALE) plots for
B sum of photothermal time during the 1st day-interval of the growing season, and C the
frequency of days with an amount of precipitation above 10 mm during the 2nd day-interval
of the growing season.
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4.1 Abstract

Inter-annual variability and uncertainty of climatic conditions can strongly impact the phenotypic

performance of crop cultivars in multi-environment trials and complicates accurate estimation

of genotype × environment interaction (G × E) effects. The recent development of large-scale

environmental data is expected to enable precise quantification of environmental contributions to
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phenotypic variation, and to allow the partitioning of the full dataset into homogeneous groups

of environments with reduced G × E. A second advantage of using climatic data relates to the

prediction of genotype response in a new environment using as predictor variables only marker data

and a set of environmental variables, thus to also assess in silico potential superior candidates in

the context of limiting weather conditions. Yet, some questions remain regarding the best approach

to reduce weather data dimensionality. Especially when the amount of phenotypic data is limited

to the target trait such as grain yield, deriving environmental covariates (ECs) per growth stage is

a challenging task. We introduce a new method based on dynamic time warping distance to cluster

year-location cropping events in two multi-environment datasets for two major crops (wheat lines,

with n = 6,716, and maize hybrids, with n = 18,325). DTW appeared as an efficient method to

subdivide the MET into clusters of environments with pronounced climatic similarity, leading to

a reduction of the G × E interaction variance within cluster in the wheat dataset. This result

is encouraging to develop cultivars adapted to specific types of environmental conditions, more

precise than based on geographical information. We then estimated an environmental relationship

matrix, KDTW , derived from DTW distance and used it in reaction-norm models derived from

G-BLUP. Across three cross-validation (CV) schemes, we tested a serie of models characterized

by increasing levels of complexity. In particular, we examined the impact of modeling dominance

genetic effects in the hybrid dataset, and of integrating climatic data incorporated with either ECs,

or with KDTW in the two datasets. In the maize dataset, the most complex model that integrated

dominance genetic effects and interactions between KDTW and genomic components yielded the

best predictive abilities across all CV schemes, with the maximum gain of 3.5% observed in the

leave-one-environment-out (CV0) prediction scheme, while in the wheat dataset, the full model

with DTW and additive genetic effects led to an improvement of ∼10% in the same CV. Our

results also show the importance of considering genotype × environment interaction effects, either

using climatic data or by disentangling the effects of year and location, in CV1 and CV2 with these

two datasets.

Keywords: genotype-by-environment interaction, dynamic time warping, environmental covari-

ates, reaction norm model, genomic prediction

4.2 Introduction

Global demands for food are expected to increase in the coming decades. At the same time, adverse

environmental conditions are occurring more frequently. The occurrence and magnitude of heat

waves or shortages of precipitation during the crop growing season will be heightened in the future,

and severe yield losses for major staple crops, such as wheat (Semenov et al., 2014), maize (Hawkins

et al., 2013), represent a major concern for food security in many regions of the world. Boosting

the development of crop cultivars resilient to drought and heat stresses, and characterized by yield
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stability under limited agricultural inputs, constitutes an effective solution to mitigate the impact

of climate change and bolster agricultural production.

The breakthrough in ground environmental monitoring technologies, such as automatic weather

stations (AWS), and in high-resolution satellite remote sensing technologies in agriculture have

enabled to generate important amount of meteorological data. Harnessing this information in the

context of plant breeding can be achieved in two principal manners. First, climatic data can be

retrieved for field experiments composing the multi-environment trials (MET) network, in which

candidate genotypes are grown and evaluated for their performance and stability, and subsequently

used to identify homogeneous subgroups of environments. Classically, methods aiming to group

environments, such as the Additive Main Effect and Multiplicative Interaction (AMMI) decom-

position, exploit phenotypic data rather than environmental information. However, an important

requirement underlying its implementation, is that performance data should characterize a common

set of genotypes across all year-location combinations composing the MET. Thus, it is not always

possible to derive meaningful distances among growing environments, when phenotypic datasets

are not connected, or only weakly connected, with common genotypes across years and locations.

On the other hand, employing unsupervised learning techniques, such as hierarchical clustering or

k-means using as input data available climatic datasets represents a more straightforward strategy.

However, the crucial question remains as to whether cultivar’s response is consistent with these a

priori clustering techniques, and whether they can efficiently capture repeatable G × E patterns

observed within the phenotypic data.

Another application of weather data is to incorporate these in advanced statistical models to pre-

dict and assess the variability of the phenotypic performance for candidate genotypes under new

environmental conditions. This is a prediction problem of utmost interest for plant breeders, as

many breeding programs are not able to evaluate all selection candidates across all environments,

and genotypes are generally advanced to further experimental trials on the basis of their perfor-

mance in a very limited sample of the total target population of environments (TPE). Widely used,

classical genomic prediction (GP) models capitalize on realized relationships calculated using dense

molecular genotypic information, between individuals forming the training set, evaluated in field

trials, and those in the prediction set, for which no phenotypic records are available. While GP

models have allowed breeders to realize more rapid genetic gains for many plant and animal species,

the original methodological framework of ignoring G × E interaction effects needs to be adapted

in the context of MET data. Coping with G × E interactions in GP models has been carried

out with the integration of explicit environmental covariates (e.g. sum of precipitation, average

temperatures during the crop season) in factorial regression models (Heslot et al., 2014), or by

modeling G × E with linear (Basnet et al., 2019; Jarquín et al., 2014, 2017; Jarquin et al., 2021a)

and non-linear covariance functions in reaction norm models (Costa-Neto et al., 2021). Dealing

with very large genomic and environmental datasets represents an additional challenge, tackled
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by Heslot et al. (2014) with a variable selection approach seeking at identifying the most variable

markers across environments to use for the G × E interaction term, thus allowing a reduction of

the total number of interactions used in the model.

The choice of method to summarize daily weather data into ECs for incorporation in genomic

prediction models is not trivial for two main reasons. First, the duration of the growing season

can differ significantly across environments, as was illustrated in the Genomes to Fields dataset

(AlKhalifah et al., 2018; McFarland et al., 2020). Second, some plant developmental stages have

been shown to be particularly vulnerable to abiotic stresses, such as reproductive stages like silking

stage in maize (Dong et al., 2021) or heading stage in wheat (Kazan and Lyons, 2016). For this

reason, it can be pertinent to derive ECs based on the growth stage timing, rather than by simply

segmenting the total crop growing season into day periods of equal length, has often been outlined

as a useful strategy to efficiently reduce weather data dimensionality and to enhance predictive

ability (Jarquin et al., 2021b; Millet et al., 2019; Westhues et al., 2021a). Nonetheless, this method

requires some information about the occurrence of some phenological stages, and can be inexact

when dates corresponding to key biological events (e.g. flowering dates) are not available. To our

knowledge, no studies have proposed a comparison of predictive abilities obtained with an approach

based on ECs derived from predicted phenological stages, versus an approach based on naive day

periods.

Nonetheless, a loss of information regarding day-to-day variability necessarily arises when summa-

rizing weather data using ECs. In this study, we propose the application of a feature engineering

method, called dynamic time warping (DTW), that takes advantage of raw meteorological time

series data to quantify nonlinear climatic similarity among field trials experiments. The method

was proposed by Delerce et al. (2016) to group similar rice on-farm cropping events based on daily

weather patterns, but has never been used, to our knowledge, in the frame of multi-environment

genomic prediction. Dynamic Time Warping (DTW) is a nonlinear dynamic warping algorithm

that computes a dissimilarity measure between two time series. This measure was originally devel-

oped for speech recognition (Sakoe and Chiba, 1978) and has been since then widely implemented

in the field of remote sensing for analysis of satellite image time series (Petitjean et al., 2012),

with applications for crop mapping (Csillik et al., 2019; Guan et al., 2016; Zhao et al., 2020), but

also in finance (Fu et al., 2001), in medicine (Wismüller et al., 2002), and in bioinformatics (Aach

and Church, 2001). In the context of shape-based time series similarity, DTW is a commonly used

distance measure (Aghabozorgi et al., 2015). The algorithm on which its calculation is based,

attempts at finding the optimal alignment between two temporal sequences. It takes into account

local distortions, such as stretched or compressed time series, generally associated with differences

in time scaling, time shifts or noise Lhermitte et al. (2011). Hence, the method is able to match

temporal patterns that do not occur at the exact same time point in the two time series. On the

other hand, the Euclidean distance or Manhattan distance, two widely used distance measures,
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perform one-to-one alignment of time series, which can be brittle and fail at considering flexible

similarities. It has also been shown in several studies that DTW can provide better accuracy than

Euclidean distance (Aach and Church, 2001; Chu et al., 2002; Keogh and Pazzani, 2000), and

can be used to compare time series of different lengths (Aghabozorgi et al., 2015). This can be

advantageous when dealing with weather data acquired from weather stations which might vary

in length.

The objectives of the present study were to investigate in two independent multi-environment

datasets whether DTW was beneficial in the context of MET data analyses. In particular, we

tested DTW for hierarchical clustering of crop growing environments, and compared the classifi-

cation results with the established Köppen-Geiger climate classification and with the USDA plant

hardiness classification. Then, we evaluated the new environmental similarity matrix derived from

the DTW distance across various cross-validation scenarios in a suite of prediction models and

compared results obtained by using environmental covariates to quantify environmental similarity.

4.3 Material & Methods

4.3.1 Genotypic, phenotypic and environmental datasets used

Grain yield phenotypic records of two large multi-environment datasets for two cereal species

(wheat and maize) were collected from publicly available databases. The wheat dataset consisted

of a diversity panel from advanced spring wheat lines developed at the International Maize and

Wheat Improvement Center (CIMMYT). This dataset has been described and used in previous

publications on genomic prediction (Li et al., 2021; Sukumaran et al., 2017) and on genome-wide

association studies for flowering traits (Li et al., 2021; Sukumaran et al., 2016). The lines have been

evaluated in different locations in South and Western Asia, Mexico, and North Africa. Phenotypic

data from 2009-2010 and 2010-2011, as well as genomic data of the lines (21,321 markers), were

downloaded from the CIMMYT shared research data repository at https://hdl.handle.net/

11529/10714. Geographical coordinates and planting dates for 23 year-site combinations (i.e.

environments), were retrieved from the supplemental data of Sukumaran et al. (2016) and Li

et al. (2021). Harvest dates were not precise, so we considered an approximate date defining the

end of each growing season (Table S4.1). This dataset was balanced across environments and

comprised in total 6,716 phenotypic observations. Daily weather data were obtained with the

package nasapower from a satellite-based weather system (Sparks, 2018), which was called in the

pipeline of the learnMET package (Westhues et al., 2021b). We discarded information related to

water stress patterns due to a lack of information regarding the amount and dates of irrigation.

The large multi-environment hybrid maize dataset from the Genomes to Fields initiative (AlKhali-

fah et al., 2018; McFarland et al., 2020), curated as described in Westhues et al. (2021a), was used.

 https://hdl.handle.net/11529/10714
 https://hdl.handle.net/11529/10714


DTW for genomic prediction in multi-environment trials 119

Briefly, it consisted of 18,325 phenotypic observations across a set of 71 environments, spread across

Southern Canada, Northeastern, Midwestern, and Southern US sites in years 2014-2016 (Table

S4.2). Weather data collected using automatic weather stations, phenotypic, and molecular marker

data were publicly available and retrieved at https://www.genomes2fields.org/resources/. Ir-

rigation data were also integrated in the daily weather data. A genotypic matrix for 2,073 hybrids

was built in silico from inbred parental line genotypes using 106,414 single nucleotide polymor-

phisms (SNPs). The G2F dataset is an unbalanced dataset for two primary reasons. First, the

tested hybrids were assigned to the northern, midwestern, and southern locations on the basis

of their maturity group. Second, different types of specific experiments were conducted across

years. More details about the project can be found at https://www.genomes2fields.org/about/

project-overview/. It should be noted that the quality control on phenotypic data allowed for

the presence of outlier environments in the final datasets. The motivation behind this was to

observe whether these outlier environments, characterized for instance by particular low or high

average yields, and often reported by collaborators in the metadata file, could also be identified

with the environmental clustering results.

4.3.2 Using dynamic time warping (DTW) distance as a dissimilarity

measure among environments

Let us define two matrices, Q and R, that can present a different number of rows, m and n,

respectively. Since we are considering multivariate time series, each matrix is defined by a set

of V vectors of equal length, where each vector corresponds to a daily weather variable, for a

given field experiment during the growing season. Maximum and minimum temperature, total

precipitation (only for the maize dataset), average relative humidity, vapour pressure deficit and

solar incoming radiation on daily scale were used. The time series were preprocessed to obtain

z-scores by subtracting the mean from the variable and dividing by the standard deviations.

Hence, we can write qvi to denote the i -th element of the v -th variable of Q, and rvi to denote

the i -th element of the v -th variable of R. Note that all time series being compared must have

the same number of variables. The first step in the algorithm implies the creation of a local cost

matrix, denoted lcm, with n x m dimensions. This matrix is estimated for each pair of time series

(i.e. each pair of environments), and can be written as follows, when using the l1 norm between

two points (q,r) as local cost function:

lcm(i,j) =
V∑

v=1

|qvi − rvj |

In the next step, the DTW algorithm finds the optimum warping path over all potential warping

paths:

DTW (Q,R) = argmin
W∈P

∑
(i,j)∈W

lcm(i, j)

https://www.genomes2fields.org/resources/
https://www.genomes2fields.org/about/project-overview/
https://www.genomes2fields.org/about/project-overview/
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The optimum warping path is the one minimizing the cumulative distance between the two time

series. As mentioned by Berndt and Clifford (1994), the number of possible warping paths P is

prohibitively high. Hence, constraints can be used to reduce the search space for the set P (Sakoe

and Chiba, 1978):

1. Monotonicity condition: temporal ordering in time series must be respected, ik−1 ≤ ik and

jk−1 ≤ jk

2. Continuity condition: the steps in the matrix are confined to neighbouring points, ik - ik−1

≤ 1 and jk - jk−1 ≤ 1

3. Boundary conditions: the first elements of R and Q must match, i1 = 1 and j1 = 1.

An example illustrating how to compute DTW between two temporal sequences is provided in

Figure 4.1. To compute the DTW pairwise distances, we used the R package dtwclust (Sardá-

Espinosa, 2017) using the method dtw_basic, with L1 norm and the symmetric1 step pattern,

that ensures to obtain a symmetric matrix. We note DDTW the matrix containing the pairwise

DTW distances based on climatic data between growing environments.

4.3.3 Clustering analyses

Hierarchical, agglomerative clustering was applied to group field experiments using the DTW

distance as a dissimilarity measure between the pairwise observations. As the name suggests,

hierarchical clustering algorithm produces clusters at each level of the hierarchy by joining clusters

from the next lower level (Hastie et al., 2009), and has been widely used for time-series clustering

(Keogh and Pazzani, 1998; Oates et al., 2000). The average linkage clustering was chosen as

an intergroup dissimilarity measure. Clustering analyses were conducted in R (R Core Team,

2021) with the function hclust and dendogram visualizations were achieved with the R package

dendextend (Galili, 2015).

4.3.4 Evaluation of clusters

To verify that the groups defined by the clustering step presented reliable patterns in accor-

dance with knowledge about climatic zones, we compared the DTW-based clustering with two

well-known climatic classification systems. The first one was the Köppen–Geiger (KG) classifica-

tion approach, which is a heuristic rule-based system, where different climate classes are deter-

mined using criteria based on temperature and observations on different vegetation types. We

used the re-analyzed Köppen-Geiger digital worldwide high resolution map available at http:

//koeppen-geiger.vu-wien.ac.at/present.htm to define the classes based on data across the

period 1986-2010 (Kottek et al., 2006; Rubel et al., 2017). The second system was the plant hardi-

ness zone classification, developed by the United States Department of Agriculture (USDA), which

defines 13 regions based on annual extreme minimum temperature and is available for the US at

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
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Figure 4.1: Example of calculation of the DTW distance between two time series Q and
R, both of length 6.
A. The distance matrix (or local cost matrix) is computed, in which each entry is the
Manhattan distance (l1 norm) between datapoints from sequences Q and R, i.e. d(xi, yj) =
|(xi − yj)|
B. Accumulated cost matrix.Calculation of the DTW matrix (accumulated cost matrix) as
follows: DTW (i, j) = d(xi, yj) +min(DTW (i− 1, j − 1), DTW (i, j − 1), DTW (i− 1, j)).
C. The optimal (minimum) warping path is given by the arrow directing along the blue
boxes. Restrictions on the warping path: it starts from (1,1) and ends at (6,6). One
step is taken at a time. A warping path aligns the two temporal sequences, such that
all datapoints are matched with at least one datapoint of the other sequence. The final
DTW distance, computed with all the points falling on the optimum path, is 5 in this
example. The Manhattan norm between R and Q moves along the main diagonal (one-to-
one matching) and has a cost equal to 9 in this example.
D. DTW alignment.
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https://planthardiness.ars.usda.gov/. Hence, this latter classification was used only for the

G2F maize dataset.

The V-measure score was used to assess how similar are two completely independent clustering

approaches (Rosenberg and Hirschberg, 2007) and has been used by Netzel and Stepinski (2016)

to estimate the degree of similarity between two climatic clustering methods. This score presents

several advantages: the two label assignment strategies do not need to share the same number of

groups, and the score is not related to the absolute values of the labels. Rosenberg and Hirschberg

(2007) define two concepts for homogeneity and completeness that one needs in order to calculate

to estimate the V-measure score. Given ground truth labels (here, either the KG or the hardiness

map labels), the homogeneity criteria is fulfilled when the algorithm assigns within a clusteronly

data points that belong to a single class (e.g. the true label). The homogeneity is defined as

follows:

h =

1 if H(C,K) = 0

1− H(C|K)
H(C) else

(4.3.1)

where K denotes a set of clusters obtained via hierarchical clustering using the DTW distance,

and C a set of classes from the Köppen-Geiger or USDA hardiness classification systems. The

completeness criteria is fulfilled when all data points that belong to a same unique class are

assigned to a same unique cluster. The completeness is defined as follows:

c =

1 if H(K,C) = 0

1− H(K|C)
H(K) else

(4.3.2)

The V-measure score can then be calculated as the weighted harmonic mean of homogeneity and

completeness:

Vβ =
(1 + β) ∗ h ∗ c

β ∗ h+ c
(4.3.3)

We used the default value of 1 for β.

In addition, for the wheat dataset, we computed pairwise Euclidean distances between environ-

ments using marker effects as environment predictors, similar to the approach proposed by Heslot

et al. (2013) for environmental characterization without using environmental data. The marker

effects were estimated with ridge regression, a marker-homogeneous shrinkage method, in BGLR

(Pérez and de Los Campos, 2014). We decided not to conduct the same analysis on the maize

dataset, since the genetic composition of hybrids tested across the environments depended on major

environmental differences (e.g. different lengths of the crop growing season), and the marker-effects

https://planthardiness.ars.usda.gov/
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based correlation could therefore be affected by the amount of genetic relatedness between envi-

ronments.

4.3.5 Computing environmental covariates

Our objective was to compare the performance of the DTW-based environmental similarity matrix,

that we described in the previous section, with classical approaches that estimate an environmental

similarity matrix based on a set of environmental covariates (ECs) related to abiotic stresses

calculated over day periods. A total of 11 climatic covariates were considered using the pipeline

implemented in the package learnMET (Westhues et al., 2021b) (Table 4.1).

Although we had access to flowering data recorded for each genotype in the maize dataset, we

decided to consider a more general and simplified situation, where one only has knowledge about

the approximate required growing degree units (GDUs) to flowering or to physiological maturity

for each environment. This method allows to calculate calendar dates for relevant distinct devel-

opmental phases based on the daily accumulated GDUs within each environment. GDUs were

calculated considering a base temperature of 0 °C and 10 °C, and a maximum temperature of 35

°C and 30 °C, for wheat and corn, respectively. These temperatures were chosen based on crop

physiology standards (Bauer et al., 1984; Swan et al., 1987). To derive the phenologically-informed

set of ECs, the main function create_METData of the package learnMET was used, with the

argument method_ECs_intervals set to GDD. For the maize dataset, we determined three sets

of growth stages based on observed differences among environments for thermal time to silking

(Figure S4.2). Regarding the wheat dataset, two groups of maturity were similarly defined, by

exploiting information related to thermal time to heading from the study of Sukumaran et al.

(2016). Thus, for each species dataset, the calendar dates coinciding with the beginning of a new

developmental stage based on GDUs accumulation could be subsequently estimated according to

the estimated GDUs requirements within each environment (Table S4.3, Table S4.4). By applying

this method, 6 and 9 development periods were determined for the maize and wheat datasets,

respectively, and ECs were calculated for each of them according to Table 4.1.

To obtain the second naive set of ECs, the argument method_ECs_intervals was set to fixed_nb_windows_across_env

to divide the growing season into 10 windows of equal length within each environment. For instance,

if the growing season spanned 155 days in a given environment, 10 consecutive non-overlapping

windows of 15 days were generated. Note that a maximum of 9 days could remain unused in ECs

calculations. Thus, for the two crop datasets, each environment was characterized by 10 intervals

covering a certain number of days.
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Table 4.1: List of 13 environmental covariates used in the study.
Acronym Description Dataset (wheat: W

or maize: M)

mean_TMIN Average minimum temperature for the respective day-window or predicted

phenological stage (°C)

W, M

mean_TMAX Average maximum temperature for the respective day-window or predicted

phenological stage(°C)

W, M

mean_TMEAN Average mean temperature for the respective day-window or predicted phe-

nological stage(°C)

W, M

freq_TMAX_sup30 Frequency of days with a maximum temperature > 30 °C for the respective

day-window or predicted phenological stage

W, M

freq_TMAX_sup35 Frequency of days with a maximum temperature > 35 °C for the respective

day-window or predicted phenological stage

W, M

freq_TMAX_sup40 Frequency of days with a maximum temperature > 40 °C for the respective

day-window or predicted phenological stage

W

cumsum30_TMAX Sum of the daily maximum temperature > 30 °C for the respective day-

window or predicted phenological stage

W

sum_PTT Cumulative photothermal time (daily growing degree-days × day length in

hours) for the respective day-window or predicted phenological stage

W, M

sum_P Precipitation (with irrigation, if indicated) for the respective day-window or

predicted phenological stage

M

freq_P_sup10 Frequency of days with total precipitation > 10 mm for the respective day-

window or phenological stage

M

sum_solar_radiation Accumulated incoming global solar radiation (MJ.m−2.d−1) for the respec-

tive day-window or predicted phenological stage

W, M

mean_vapr_deficit Average vapour pressure deficit (kPa) for the respective day-window or pre-

dicted phenological stage

W, M

freq_TMIN_inf_minus5 Frequency of days with a minimum temperature < -5 °C for the respective

day-window or predicted phenological stage

M

4.3.6 Statistical prediction models

Prediction models with different components were fitted for the maize and the wheat datasets,

respectively, and are presented in the following section. The different components without weather

data included E, environment (field trial) main effect; Y, year effect; L, location effect; A, additive

genetic effect; D, dominance genomic effect; A × E, additive × environment interaction effect; A

× Y, additive × year interaction effect; A × L, additive × location interaction effect and DE,

dominance × environment interaction effect.

To specify how the climatic data were integrated in the models, the following acronyms will be

used: KDTW, DTW-based environmental similarity matrix; WECs_stages, ECs based on esti-

mated phenological stages and WECs_windows, ECs based on the 10 windows within each envi-

ronment. Covariance between environments derived from the DTW distance was computed as:

KDTW = 1E − DDTW

max(DDTW ) , where 1E is a matrix of size (NE × NE), with NE the total number of

environments in the MET dataset, and NE = 23 and NE = 71 for the wheat and maize datasets,

respectively. WECs_stages and WECs_windows have dimensions NE × q, with q the number of

ECs that depended on the method used to summarize the daily weather data and on the species

dataset (see section 4.3.5). Importantly, WECs_stages and WECs_windows were centered and

scaled using the training data, and the same transformation was applied to the respective test set,

before fitting one of the following statistical models to the training data and predicting the test

set. Covariates with null variance were removed.

Interaction terms incorporating weather data were denoted as follows in the models: AW, additive
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× climate ECs interaction effect; DW, dominance × climate ECs interaction effect; A × KDTW ,

additive × DTW-based environmental kinship and D ×KDTW DTW-based environmental kinship.

4.3.6.1 Models with main effects (without weather data)

M1: Additive genetic and environment main effects (A + E)

The phenotypic response (yij) of the jth genotype (which is a maize hybrid or a wheat line in our

study) in the ith environment was defined as:

yij = µ+ Ei + aj + εij , (4.3.4)

where µ is the grand mean, Ei is the random effect of the ith environment, aj is the random effect

of the additive genetic value of the jth genotype linked to genomic markers, and εij is the random

error term. All random effects follow an independent and identically distributed (iid) multivariate

normal distribution: Ei
IID∼ N(0, σ2

E), a
∼
N (0,Aσ2

a) and εij
IID∼ N(0, σ2

ε).

Specifically, the additive genetic random effect of the genotype jth, noted aj , is expressed as the

regression on marker data aj =
∑p

m=1 xjmbm, where xjm is the genotype of the jth genotype at the

mth molecular marker, and bm is the random effect of the mth marker such that bm
IID∼ N(0, σ2

b )

(m=1,...,p), with σ2
b the variance of the marker effects. Based on the assumptions of the G-BLUP

model (VanRaden, 2008), the vector a = (a1, ..., aJ)
′ contains the additive genetic values of all the

genotypes and follows a multivariate normal density with zero mean and with a covariance matrix

Cov(a) = Aσ2
a, where A is the additive genomic relationship matrix computed as A = XX′/p.

Here, X is the standardized genotype matrix containing molecular markers coded as counts of the

minor allele (0, 1, 2).

This baseline model allows to borrow information across genotypes based on their degree of additive

genetic relationship derived from marker data, but no information related to correlations among

environments is used.

M2: Additive genetic, location, year, and environment main effects (A + L + Y + E)

The model M1 assumes that field trials correspond to independent year-location combinations (E).

In M2, the main year (Y) and location (L) effects were added, under the assumptions Ys
IID∼

N(0, σ2
S), and Lk

IID∼ N(0, σ2
K):

yskj = µ+ Ys + Lk + Esk + aj + εskj , (4.3.5)

Compared to model 4.3.4, this model enables exploiting information about genotypes tested at

a same location or in a common year. E was still incorporated to model potential trial-specific

effects, that could not be accounted for by year nor location effects (e.g. field management).
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M3: Additive and dominance genetic effects, with environment main effect (A + D

+ E)

This baseline model includes the dominance-deviation effects, as follows:

yij = µ+ Ei + aj + dj + εij , (4.3.6)

where dj is the random effect of the dominance genetic value of the jth genotype linked to genomic

markers, with d ∼ N(0,Dσ2
d), where D is the genomic matrix of dominance deviations, calculated

as D = SS′, where S is the centered and scaled marker allele matrix for dominance effects,

obtained by assigning all homozygous genotypes to 0 in the original hybrid genotypic matrix,

while heterozygous genotypes remain coded as 1. This model was only implemented for the maize

hybrids dataset.

4.3.6.2 Models with interactions (without weather data)

M4: Additive main genetic effect, environment main effect, and additive × environ-

ment interaction (A + E + A × E)

The baseline model 4.3.4 was extended to include the interaction term between environments and

molecular markers (G ×E) using covariance structures, as demonstrated by Jarquín et al. (2014):

yij = µ+ Ei + aj + aEij + εij (4.3.7)

with aE ∼ N(0, [ZaAZ′
a] ◦ [ZEZ

′
E]σ

2
aE), εij

IID∼ N(0, σ2
ε), where Za and ZE are the design ma-

trices that connect the phenotype entries with genotypes (wheat lines or maize hybrids) and with

environments, respectively; σ2
aE is the variance component of the aEij interaction term; and ◦

denotes the cell-by-cell product (Hadamard) between two matrices. The component aEij corre-

sponds to the interaction between each marker, from the additive genomic relationship, and each

environment.

M5: Additive main genetic effect, year, location and environment main effect, addi-

tive × year interaction, additive × location interaction, and additive × environment

interaction (A + Y + L + E + A × Y + A × L + A × E)

The model 4.3.5 was extended to include genotype × year, genotype × location, and genotype ×

environment interaction effects:

yjsk = µ+ aj + Ys + Lk + Esk + aYjsk + aLjsk + aEjsk + εjsk, (4.3.8)

M6: Additive and dominance main genetic effects, environment main effect, additive

× environment interaction, dominance × environment interaction effects (A + D + E

+ A × E + D × E)
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Many authors reported an increase of predictive ability in maize by including dominance effects with

a genomic relationship matrix modeling dominance deviations (Costa-Neto et al., 2021; Jarquin

et al., 2021a; Rogers and Holland, 2021). As proposed by Costa-Neto et al. (2021), model 4.3.7 was

extended to incorporate dominance main effect and dominance × environment interaction effect,

as follows:

yij = µ+ Ei + aj + dj + aEij + dEij + εij (4.3.9)

with dE ∼ N(0, [ZdDZ′
d]◦ [ZEZ

′
E]σ

2
dE), εij

IID∼ N(0, σ2
ε), where Zd is the design matrix that con-

nects the phenotype entries with hybrid genotype, and σ2
dE is the variance component of the dEij

interaction term. The component dEij corresponds to the interaction between each dominance-

deviation and each environment. Only the maize dataset was tested with this model.

4.3.6.3 Models with main effects (with weather data)

M7: Additive main genetic effect, environment main effect, and ECs main effect (A

+ E + W)

Environmental data extracted from daily weather data was included as a main effect as a random

regression on the ECs, wi =
∑Q

q=1 Wiqγq, where Wiq is the value of the qth EC evaluated in the ith

environment, γq is the main effect of the corresponding EC, and Q is the total number of ECs. In

this study, Wi was replaced with WECs_stages or WECs_windows. Here, Wi was only dependent on

the environment (and not on the genotype), because we considered that all genotypes encountered

the same environmental conditions in an environment. Because the climatic data we used cannot

not fully characterize differences across environments (no soil information included in this study,

and only linear interactions are considered), we still included the location-year (environment) effect:

yij = µ+ Ei + aj + wi + εij , (4.3.10)

where the vector w = Wγ follows a multivariate normal distribution with null mean and covariance

matrix Ωσ2
w, where Ω ∝WW′/q, i.e. the entries in Ω are calculated in the same way as those of

the G matrix.

M8: Additive main genetic effect, environment main effect, environment effect derived

from DTW distance, KDTW (A + E + KDTW )

The environmental relationship matrix obtained from the DTW distance was used as a main

random effects:

yij = µ+ Ei + aj + ki + εij , (4.3.11)
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with ki
∼
N (0,KDTWσ2

DTW )

M9: Additive and dominance main genetic effect, environment main effect, and ECs

main effect (A + D + E + W)

Model 4.3.10 was extended to incorporate dominance effects, for the maize dataset:

yij = µ+ Ei + aj + dj + wi + εij (4.3.12)

M10: Additive and dominance main genetic effect, environment main effect, and

environment effect derived from DTW distance, KDTW (A + D + E + KDTW )

Model 4.3.10 was extended to incorporate dominance effects, for the maize dataset:

yij = µ+ Ei + aj + dj + ki + εij (4.3.13)

4.3.6.4 Models with interactions (with weather data)

M11: Additive main genetic effect, environment main effect, ECs main effect, and A

× W interaction effect (A + E + W + A × W)

This model added the interaction between genetic markers (coded for additive effects) and en-

vironmental covariates. Jarquín et al. (2014) showed that predictive ability could be enhanced

by including this interaction term, described by a covariance structure equal to the Hadamard

product of the entries of Ω, the covariance-variance matrix corresponding to the relationship be-

tween environments and A, the covariance-variance matrix of additive genetic relationship between

genotypes. This first-order multiplicative component induces a reaction norm model. Thus,

yij = µ+ Ei + aj + wi + awij + εij , (4.3.14)

with aw ∼ N(0, [ZaAZ′
a] ◦ Ωσ2

aw). The vector aw represents the random effect of interaction

terms between markers and ECs, and is assumed to follow a multivariate normal distribution with

null mean and covariance structure [ZaAZ′
a] ◦Ω.

M12: Additive main genetic effect, environment main effect, ECs main effect, A × E

interaction effect, and A × W interaction effect (A + E + W + A × E + A × W)

We extend the model 4.3.14 by including the A × E deviations, which account for genotype-

by-environment interactions which are not captured by the interactions between genotype and

weather-based covariates:

yij = µ+ Ei + aj + wi + awij + aEij + εij , (4.3.15)

with ak ∼ N(0, [ZaAZ′
a] ◦KDTWσ2

ak).
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M13: Additive main genetic effect, environment main effect, environment main effect

from KDTW , and A × KDTW interaction effect (A + E + KDTW + A × KDTW )

We replaced in 4.3.14 the covariance matrix Ω by the environmental relationship matrix defined

based on DTW, KDTW:

yij = µ+ Ei + aj + ki + akij + εij , (4.3.16)

with ak ∼ N(0, [ZaAZ′
a] ◦KDTWσ2

ak).

M14: Additive and dominance main genetic effect, environment main effect, ECs main

effect, A × W and D × W interaction effects using ECs (A + D + E + W + A × W

+ D × W)

The model 4.3.13 was extended to incorporate dominance × environment interaction effects for

the maize dataset:

yij = µ+ Ei + aj + wi + awij + dwij + εij , (4.3.17)

with dw ∼ N(0, [ZdDZ′
d] ◦Ωσ2

dw).

M15: Additive and dominance main genetic effect, environment main effect, environ-

ment main effect from on KDTW , A × KDTW and D × KDTW interaction effects using

DTW distance (A + D + E + KDTW + A × KDTW + D × KDTW )

The model 4.3.15 was extended to incorporate dominance × environment interaction effects for

the maize dataset:

yij = µ+ Ei + aj + ki + akij + dkij + εij , (4.3.18)

with dk ∼ N(0, [ZdDZ′
d] ◦KDTWσ2

dk).

In the suite of models presented above, environmental main effects were modeled using two terms,

one related to the weather data (using ECs or DTW distance), and one due to deviations from the

Year-Location combination effect which cannot be accounted for by the weather data only.

4.3.7 Implementation of the models

The R package BGLR (Pérez and de Los Campos, 2014) was used to implement the models, for

which the MCMC algorithm was run for 20,000 iterations and the first 2000 iterations were removed

as burn-in using a thinning equal to 5.
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4.3.8 Evaluation of the predictive ability

Following Burgueño et al. (2012) and Jarquín et al. (2017), three types of cross-validation (CV)

schemes were considered to evaluate the model’s predictive ability (PA), that aimed at simulating

real prediction schemes relevant for plant breeders in the context of multi-environment trials. CV1,

aimed at predicting newly developed genotypes, meaning that no phenotypic records of these lines

was included in the training set. Training and test sets were obtained by assigning lines to 5 folds,

so that approximately 20% of the genotypes were contained in each fold, and with all phenotypic

records of a given genotype assigned to the same fold. The second CV scheme, CV2, was used to

assess the ability of each model to predict the performance of a certain proportion of genotypes,

using as training data phenotypic records of the same genotypes evaluated in other environments,

and from related genotypes in the same environment. In this prediction scenario, the complete

dataset of location-year yield BLUEs was randomly divided into five folds, which means that

phenotypic evaluations of a given genotype were potentially assigned to different folds. For both

CV1 and CV2, each fold was independently predicted using the four remaining folds, and the

process was repeated 10 times, yielding a total of 50 training-test set partitions. With regard to

the maize data, due to the highly unbalanced structure of the G2F dataset (i.e. not each genotype

was repeated in each Year-Location combination), it was not possible to obtain equal sample sizes

within each fold for each environment. For this dataset, the average number of observations per

environment, within one testing set, was equal to 52 in the two CV schemes.

The third CV (CV0) corresponded to a leave-one-environment-out prediction problem. Therefore,

the number of training-test partitions was equal to the number of environments in each MET, i.e.

71 and 23 for the maize and wheat datasets, respectively.

For all CV schemes, PA was calculated as the Pearson correlation between predicted test set

values and observed yield within each year-location IDs. For the CV1 and CV1, the average

within-environment correlation from the 50 training-testing set partitions was calculated. For

CV0, each environment represented one fold (i.e. one test set), so only one value per environment

was obtained. Importantly, the exact same training-test partitions were used to evaluate all models

presented in section 4.3.6.

To evaluate statistical differences between prediction models, we applied a paired t-test to Fisher’s

transformed (r) Pearson correlation coefficient. Following the approach described by de Los Cam-

pos et al. (2020), we calculated the Fisher’s transformation as z =

√
nij−3

2 log( 1+r
1−r ), nij being

the number of records in the given year-location, for each testing set, per model and per environ-

ment. We used the function orderPValue from the R package agricolae (Felipe de Mendiburu and

Muhammad Yaseen, 2020) to group models that were significantly different from each other (α =

5%).
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Figure 4.2: Dendogram of environments based on DTW distance calculated using weather
time series. A Ward’s hierarchical clustering given DTW pairwise distances. Environments
are colored according to their class in the Koeppen-Geiger climate classification. B Den-
dogram on DTW distance with environments colored according to the class in the USDA
plant hardiness system. C The silhouette score (Rousseeuw, 1987) was used to determine
the optimal number of groups.

4.3.9 Code availability

All scripts and public datasets used in our analyses are available at https://github.com/cjubin/

DTW_paper.

4.4 Results

4.4.1 Environmental clustering using dynamic time warping identifies

groups consistent with classical climate classification systems

https://github.com/cjubin/DTW_paper
https://github.com/cjubin/DTW_paper
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Figure 4.4: Dendogram of environments based on DTW distance calculated using weather
time series. A Ward’s hierarchical clustering given DTW pairwise distances. Environments
are colored according to their class in the Koeppen-Geiger climate classification. B The
silhouette score (Rousseeuw, 1987) was used to determine the optimal number of groups.
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The 71 environments of the G2F dataset and the 23 environments of the wheat dataset were

clustered based on Ward’s hierarchical clustering technique (Ward Jr, 1963) using the dynamic

time warping (DTW) distance (Figure 4.2, Figure 4.4) calculated using daily weather data. The

number of groups was determined according to the Silhouette score. For the two datasets, the

V-measure score computed to estimate the goodness of the DTW output, by taking as reference

the Koeppen-Geiger climate classification system, was relatively moderate (about 0.4 in the G2F

dataset and 0.6 in the wheat dataset). For the wheat dataset, some environments associated

with different Koeppen-Geiger classes clustered together, such as India_Karnal_2011 and Pak-

istan_Islamabad_2010, which can be explained by the fact that water supply (precipitation +

irrigation) had not been included for this dataset. In general, for the two datasets, the largest

differences among clusters were attributed to geographic patterns, but at smaller height cutoff

values, year-to-year variability could explain the year-wise clustering of environments, especially

with the G2F dataset. Within the clusters 2, 3, 4, 5, 6 and 7, at least two Koeppen-Geiger classes

were represented, and up to three classes in clusters 3 and 7. It should however be noted that some

locations were almost at the border between two classes, such as locations in Illinois or Indiana,

which can explain why these Midwest locations present more climatic similarity with the northern

locations, in some years, than with southern locations. Interestingly, some sites relatively far from

each other were grouped together like SDH1_2015 and COH1_2017 in the maize dataset.

In the maize dataset, the two largest clusters comprised both 16 environments. Cluster 3 included

environments from northern and midwestern locations in North America, while environments from

cluster 1 were mostly located in southern US regions (Figure 4.2). As illustrated in Figure 4.3,

cluster 3 was characterized by lower light, lower maximum and minimum temperatures, especially

in late stages of the growing season, and lower vapour pressure deficit (VPD) values than cluster 1.

VPD is an indicator of how plants respond to humidity in their growing environment. Very high

VPD can yield water stress, and results in a reduction of evapotranspiration via stomata, impeding

plant growth. Characteristic time series for other clusters of the maize dataset are provided in S4.6,

and for wheat in S4.7.

For the wheat dataset, we also compared these results with a heatmap of pairwise environment

distances calculated from marker effects estimated with ridge regression (Figure S4.3), e.g. by con-

sidering only phenotypic and marker data without weather information. Two environments appear

as striking outliers, namely India_Indore_2010 and Pakistan_Islamabad_2011, which revealed

to be two high-yielding environments (Figure S4.1). These environments could not be recognized

as outliers on the basis of the DTW clustering, presumably because some critical environmen-

tal or management information was lacking, for the reasons previously advanced. Overall, some

similarities between the marker-effects heatmap and the DTW-based clustering could be identi-

fied. For instance, Sudan_Hudeiba_2010 and Sudan_WadMedani_2010 presented a very small

Euclidean distance (< 0.02), and both belonged to the same group based on the hierarchical clus-
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tering with DTW distances (Figure 4.4). The same observation could be done with environments

Bangladesh_Joydebpur_2010, Bangladesh_Joydebpur_2011 and India_Dharwad_2010.

4.4.2 Partitioning of variance components in the wheat dataset

Figure 4.5A show the proportion of variance components obtained from full data analysis. Envi-

ronment was the random effect explaining about 80% of grain yield variance in the basic models

M1 and M2, while the amount of variance attributed to main additive genetic effects (A) was about

3% (S4.7). In M4, approximately 19% and 31% of the across-environment variance was explained

by location (L) and year (Y) factors, respectively, while year-location (E) factor remained the most

important environmental component (between 37 and 42%). In M5, the A × E, A × Y and A ×

L interactions captured only a very small amount of variance (∼3 %), but M5 helped to reduce

residual error by 38 %.

In models including main effects of weather data, when comparing with M1, the estimated variance

attributed to environments (E) was reduced by approximately 72% in M7 using WECs_windows,

and by 46% in M7 with WECs_stages, which both incorporated weather data as covariates. Using

KDTW in M8, E variance component was reduced by ∼78%. This highlights that WECs_windows,

WECs_stages and especially KDTW were efficient to model differences among environments due

to weather conditions experienced by the crop. Interestingly, the inclusion of interaction terms

between ECs and SNPs in model M11 did not have the same impact according to the methodology

used to derive ECs. In M11 with WECs_windows, we could notice a strong decrease of the proportion

of variance explained by the main effect of ECs (∼62%), while in the case of WECs_stages, the

decrease was more modest (∼22%).

M13 was the model for which the modeling of weather data and of their interaction with genetic

additive effects captured the largest proportion of grain yield variance across environments (∼69%

with KDTW main effect and A ×KDTW ). In comparison, main effects of ECs and their interactions

with SNPs captured between ∼28% and ∼34% of grain yield variance in models M11 and M12

for WECs_windows and WECs_stages, respectively. Additionally, M13 was the model revealing

the smallest fraction of residual error among all models. We still included E effects in models

M7, M11, M12, M8 and M13, because the weather data used here could not fully capture all

environmental differences between field experiments, due for instance to precipitation patterns,

irrigation conditions or soil factors.

We applied M6 within the clusters defined using DTW and presented in 4.4 to verify whether these

groups of environment based on weather conditions yielded a reduction of the total G × E variance

(Figure 4.7 B). Across all clusters, the fraction of phenotypic variation captured by A and A ×

E within cluster exceeds the same fraction estimated using the full wheat dataset. In 4 out of 5

clusters, the ratio of A on A × E is also increased, by up to 71% in cluster 3.
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Figure 4.5: A Proportion of total variance explained by different genetic and environmental
components, by their respective interactions and by residual error, in the different models
implemented with the full wheat dataset.
B Proportion of total variance explained by G and G × E within each cluster defined based
on DTW distance and with the full dataset in the model M2.
E, environment (field trial) main effect; Y, year effect; L, location effect; A, additive ge-
netic effect; A × E,additive × environment interaction effect; A × Y,additive × year
interaction effect; A × L,additive × location interaction effect; KDTW , DTW-based en-
vironmental similarity matrix; WECs_stages, ECs based on estimated phenological stages;
WECs_windows, ECs based on the 10 windows within each environment; AW, additive ×
ECs interaction effect; A × KDTW , additive × DTW-based environmental kinship.



DTW for genomic prediction in multi-environment trials 136

4.4.3 Partitioning of variance components in the maize dataset

In the maize G2F dataset, the estimated variance due to additive genetic effects (A) ranged between

12 and 20% in the models M1, M2, M4 and M5, in which dominance effects were not incorporated

(Figure 4.6 A, Table S4.8). When dominance effects were added (in M3, M6, M9, M14, M10 and

M15), they explained a larger part of the phenotypic variation than their additive counterpart, and

we could also observe a decrease of the proportion of the additive genomic variance component

in these models, ranging between 2% and 6% of the total across-environment genomic variance

(Figure 4.6 A). Adding dominant effects reduced the genetic source of variation by 32%, from M1

to M3.

Using the model M2, the environmental and A × E variance component terms accounted for about

53% and 10%, respectively, of the across-environment phenotypic variation. Year and location

effects contributed to a substantial proportion of the across-environment variance in the main

effect model M4 (∼39%), thus reducing by the E component by 64% compared with M1. Main

effects models that included weather data with ECs (i.e. M7 and M9) captured between 42% and

51% of the total proportion of phenotypic variance due to environmental effects (ratio W/(E +

W )). Interestingly, the ratio KDTW /(E + KDTW ) was even superior (∼79% and ∼81% in M8

and M10 respectively, thus indicating that KDTW efficiently recovered phenotypic variation due to

weather patterns. The full model M15, followed by M13, based on KDTW , were both more efficient

than other models to reduce the residual variance, similarly to the wheat dataset. In addition,

reaction-norm model M15 was also better at capturing additive × environment and dominance ×

environment variance (∼17%) than the two other reaction norm-models M14 with WECs_stages

(∼10%) and WECs_windows (∼11%). Overall, these models that incorporated interactions between

climatic data and both dominance and additive genetic terms (i.e. M14 and M15) captured a

superior amount of phenotypic variation than the model using A × E and D × E, i.e. only the

environment label (∼6%).

We applied M6 within the clusters defined using DTW and presented in 4.2. The proportion of

yield phenotypic variance explained by genetic components (A, D, A × E and D × E) was larger

within clusters than within the full dataset, with the exception of cluster 1 (Figure 4.6 B). The

ratio of G (i.e. A + D) on G × E (i.e. A × E and D × E) increased substantially for clusters

5 (264%), 6 (216%) and 8 (207%), but was reduced in the remaining clusters, thereby suggesting

that the G × E variance component remained important within clusters, and/or that the mere

genetic variance must explain on its own a large variability of grain yield variation with the full

dataset.
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Figure 4.6: A Proportion of total variance explained by different genetic and environmental
components, by their respective interactions and by residual error, in the different models
implemented with the maize dataset.
B Proportion of total variance explained by G and G × E within each cluster defined based
on DTW distance and with the full dataset in the model M6.
E, environment (field trial) main effect; Y, year effect; L, location effect; A, additive genetic
effect; D, dominance genomic effect; A × E,additive × environment interaction effect; A
× Y,additive × year interaction effect; A × L,additive × location interaction effect; DE,
dominance × environment interaction effect; KDTW , DTW-based environmental similar-
ity matrix; WECs_stages, ECs based on estimated phenological stages; WECs_windows, ECs
based on the 10 windows within each environment; AW, additive × ECs interaction effect;
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Figure 4.7: Comparison of the predictive ability in each environment of the wheat dataset
in the CV0 scheme (leave-one-environment-out) between model M13 (full model with in-
teractions between KDTW and additive genetic effects) and model M5 (full model with
interactions between year and location effects with additive genetic components, without
weather data). The line indicates the identity, and blue points show an environment for
which the absolute difference of predictive ability between the two models was superior to
0.10. Environment labels are precised in Table S4.1.

4.4.4 Predictive ability in the wheat dataset

Table 4.2 summarizes the results obtained with the three cross-validation schemes (CV0, CV1

and CV2) for each model tested with the wheat dataset. Across all CV schemes we evaluated, the

incorporation of G × E terms (modeled with either year, location and/or environment label or with

weather information) in addition to the the main effect terms, yielded a substantial improvement

of predictive ability, by 15% in CV0 (from M7 to M12 with WECs_stages), 32% in CV1 (from M1

to M4) and by 29% in CV2 (from M7 to M12 with WECs_stages).

An advantage of using weather data was observed with CV0 and CV2, where the best model M12

with WECs_stages outperformed the most complex model without weather data (i.e. M5), by ∼10%

in CV0, and by ∼3% in CV2. Models M12 with WECs_stages and M13 with KDTW provided very

similar results with the CV0 scheme. Figure 4.7 shows the comparison between two interaction

models, M13 (with weather data modeled with KDTW ) and M5 (environment modeled with year

and location labels), where the diagonal line corresponds to the case where the environment is

predicted exactly the same with the two models. It highlights that 18 over 23 environments were

better predicted with the interaction model M13, that uses KDTW (i.e. weather data), than

with the interaction model 5, that incorporates year and location effects, in CV0. The gain was

particularly important for two environments located in Sudan, 2010 and in Mexico.

The prediction of new genotypes (CV1) resulted in the lowest average predictive abilities compared

with CV2 and CV0 (Table 4.2). Figure 4.8 shows the range of predictive abilities obtained across

50 test partitions by environment in the CV1 (panel A) and in the CV2 (panel B) prediction
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Figure 4.8: Classification of within-environment predictive abilities for the wheat dataset
for a set of implemented predictive models. A CV1 prediction scheme (prediction of new
genotypes), evaluated across 50 different testing sets. B CV2 prediction scheme (incom-
plete field trials), evaluated across 50 different testing sets.
Each facet corresponds to a predictive model. Each column corresponds to an environ-
ment, sorted according to the green category in model M1 for each panel A and B. Models
in the left column correspond to main effects models, while models in the right column are
interaction effects models. Environment labels are precised in Table S4.1.
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Figure 4.9: Comparison of the predictive ability in each environment of the maize dataset
in the CV0 scheme (leave-one-environment-out) between model M15 (full model with in-
teractions between KDTW and both additive and dominance genetic effects) and model M3
(model with main effects of additive, dominance genetic effects and environment, without
weather data). The line indicates the identity, and blue points show an environment for
which the absolute difference of predictive ability between the two models was superior to
0.10. Environment labels are precised in Table S4.2.

schemes. Predictions for some environments, such as India_Varanasi_2010, India_Delhi_2010

or Nepal_Bhairahawa_2011 could be considerably improved in CV2 compared with CV1. It

highlights that some lines could not be well predicted if completely absent from the training set,

suggesting that the amount of genetic relatedness was not sufficient between the training and test

sets. It can be related to the fact that the set of lines included in the wheat WAMI panel is

genetically diverse, as reported in a previous study (Lopes et al., 2015). For environments SD10,

SH10 and IDh10 in particular, adding G × E terms in CV1 and CV2 had a strong impact on

the range of the predictive abilities (Figure 4.8), leading to an almost disappearance of negative

predictive abilities using M12 with WECs_stages and M13 with KDTW in CV2. Regarding the

modeling of ECs, a slight benefit of using WECs_stages over WECs_windows was observable for

CV1 and CV2 but remained less than 5%.

4.4.5 Predictive ability in the maize dataset
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Figure 4.10: Classification of within-environment predictive abilities for the maize dataset
for a set of implemented predictive models. A CV1 prediction scheme (prediction of new
genotypes), evaluated across 50 different testing sets.B CV2 prediction scheme (incomplete
field trials), evaluated across 50 different testing sets.
Each column corresponds to an environment, sorted according to the blue category in
model M1 for each panel A and B. Each facet corresponds to a predictive model. Models
in the left column correspond to main effects models, while models in the right column are
interaction effects models. Environment labels are precised in Table S4.2.
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Table 4.3 summarizes the results obtained with the three cross-validation schemes (CV0, CV1 and

CV2) for each model tested with the maize dataset. The prediction of new environments (CV0)

resulted in the lowest average predictive abilities compared with CV2 and CV1 (Table 4.3, Figure

4.10). This difference from results obtained with the wheat dataset can be explained by the fact

that within CV1, the training set still comprised a large number of maize hybrids due to the size of

the experiments and it often shared at least one parent with hybrids assigned to the test set. Thus,

the training set in CV1 generally still contained hybrids with relatively high genetic similarity to

those included in the test set. In CV0, the use of model M5, that considers the year and location

main effects together with their respective interactions with the additive genetic effects, yielded an

important improvement over the M4 model, that considers interactions between environment label

and additive genetic effects (∼11%). This corroborated the assumption that year and location

effects are beneficial to model when dealing with large multi-environment datasets characterized

by a number of common locations tested across several years. Thereby, model M5 allows to recover

information from the same site observed in different years and from the same year considered at

different sites within the leave-one-environment-out CV prediction scheme. On the other hand,

model M4 does not allow to borrow information based on the level of climatic similarity due to

geographical patterns or year trends among environments.

Across all CV schemes (CV0, CV1, and CV2) we implemented, models incorporating main additive

and dominance genetic effects, i.e. M3, M9 and M10, yielded a better predictive ability than their

counterpart modeling only main additive effects (M1, M7 and M8). Considering CV1 and CV2, the

modeling of additive-by-environment and of dominance-by-environment interactions effects (either

with A × E and D × E, or with A × W and D × W, or with A × KDTW and D × KDTW ), as

proposed in models M6, M14 and M15, yielded an improved average performance compared with

the main effects models.

The inclusion of weather data led to a maximum improvement of 3.5% in CV0, considering the

model M15 versus the best model without weather data, i.e. M3. Figure 4.9 shows a comparison

of predictive abilities in the CV0 scheme between the two interaction models M3 and M15. 41

out of 71 environments were better predicted with the full model incorporating weather data with

KDTW than with M3. Environments corresponding to locations very well represented in the total

dataset, i.e. from northern or midwestern regions, did not display major improvements, with the

exception of NYH2_2016 and ONH2_2016. A location which was present only once in our dataset,

TXH1_2014, and differed significantly from all other environments in terms of weather conditions,

was better predicted without weather data, suggesting that the degree of climatic similarity between

training and testing sets also plays a major role with models integrating weather data.

For CV1 and CV2, adding weather data yielded non or negligible effects on within-environment

average predictive abilities, and M6 was competitive with M15 (Figure 4.10). An interesting result

was the fact that the KDTW method in M15 was more efficient to capture additive-by-environment
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and dominance-by-environment interactions than models based on WECs_windows or WECs_stages,

and this observation was consistent across all CV prediction schemes.

4.5 Discussion

Summarizing efficiently large amounts of weather records for integration in prediction models

remains a complex task, as it implies (1) to determine a set of informative ECs to calculate

based on daily climatic data and (2) to define a temporal resolution over which the ECs are

computed. In this study, we presented a data-driven method, utilizing a dissimilarity measure

between weather time series, to cluster crop growing season events and to derive an environmental

relationship matrix between environments, which can be used for instance in reaction-norm models.

We compared a large series of models to evaluate how the modeling of weather conditions impacted

the proportion of variance explained by the environmental effects in prediction models, as well as

the predictive ability in different CV schemes. In addition, we assessed the benefit of including

interaction effects between genomic and environmental components in these models, as well as of

considering dominance deviations for the maize dataset.

4.5.1 Modeling dominance effects and its impact on the predictive abil-

ity in the hybrid maize dataset

The correlation between elements of the dominance D and additive A genomic relationship matrices

was equal to 0.89 in our study, which was close to the value of 0.83 reported by Rogers et al. (2021),

and this dependency indicates that partitioning dominance from additive genetic effects was not

easily achieved. In contrast to Rogers et al. (2021), we found a larger contribution of the dominance

effects compared to additive effects using the full dataset. Yet, different marker subsets were used

across the two studies, complicating direct comparisons of variance component estimates. Jarquin

et al. (2021a) also found a larger portion of phenotypic variation explained by the specific combining

ability (SCA), which is associated with nonadditive genetic effects, than by the individual parental

main additive effects, modeled through the general combining abilities (GCA) components.

In our study, the main D effects and the D × E interactions, using the environment label, explained

about 9% of the phenotypic variation for the trait grain yield, and this proportion was slightly

increased when modeling E with ECs in M14 (∼10%). Some other studies found a greater range

of variance attributed to D effects. Costa-Neto et al. (2021) showed that D main effects and their

interactions with E explained up to 40% of the phenotypic variation for the same trait, but we used

a different formula to define D, the dominance relationship matrix, as similarly applied in other

studies (Ferrão et al., 2020; Granato et al., 2018; Rogers and Holland, 2021). The parametrization

method for D they carried out was suggested by Vitezica et al. (2013), and would potentially result

in a different partition of the genetic variance, and on a different interpretation of genetic effects
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of the markers. Another interesting fact from our results is that, as D effects were included in the

model, the proportion of phenotypic variation due to additive genetic effects strongly decreased

(∼69% from M1 to M3), as it could also be observed in the study of Muñoz et al. (2014), that

reports a decrease of narrow-sense heritability up to 40% and of the broad-sense heritability of

9%, when dominance effects are included in marker-based models. About 47% of the decrease in

additive variance was captured by the dominance variance, illustrating that when dominance is

not included, estimated additive variance can account for it.

Consistent with previous studies conducted with the same G2F dataset, analyzed from 2014 to

2015 (Jarquin et al., 2021a), and from 2014 to 2016 (Rogers and Holland, 2021; Rogers et al.,

2021), we found that modeling dominance effects in the G2F dataset yielded an important increase

in predictive ability across all CV schemes we studied. The gain in predictive ability was the

largest in the CV1 prediction problem (∼ 19%), which can be interpreted by the fact that accurate

prediction of newly released F1 hybrids might necessitate the inclusion of dominance effects. Since

dominance variance (σ2
D) depends on the product pI(1 − pI)pII(1 − pII) (Griffing, 1962), where

pI and pII designate the allele frequencies in two heterotic groups, reduced dominance variance is

expected when the cross occurs between two strongly divergent populations, such as Dent × Flint

(Westhues et al., 2017). Thus, the presence of substantial dominance effects that we observed in

the present dataset is fully concordant with the observation made by Jarquin et al. (2021a) that

the F1 crosses examined in this study were realized within and between heterotic groups, making

the modeling of dominance effects all the more beneficial.

4.5.2 Clustering environments in MET datasets with DTW distance

We decided to classify the two MET datasets based on a multivariate method using climate time

series. The groups of environments that we identified were coherent with classical climate clas-

sification systems, such as the Koppen-Geiger classification. The DTW-based clustering can be

useful to elucidate why some environments appear as outliers based on phenotypic data, e.g. par-

ticular low or high yielding environments, in case that no meta-data from breeders’ observations

is available. Nonetheless, this method is not flawless, since extreme weather events, such as heavy

storms which can impact final yield due to stem lodging, delayed harvest, or emergence of disease

related to wet conditions (Rötter et al., 2015), could probably not be detected as wind speed was

not included in the weather time series. Therefore, marker-effects clustering (Figure S4.3) should

also be systematically combined to help interpretation, provided that a variable amount of genetic

relatedness among environments does not affect the marker-effects clustering (Heslot et al., 2013).

Recognition and subsequent removal of atypical year-location combinations can be of interest, be-

cause these environments might not appropriately represent the target population of environments

(Heslot et al., 2013).

Furthermore, it is crucial to ensure that relationships among environments based on climatic
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similarity estimated with DTW can be related to true G × E patterns exploitable with breeding,

hence to examine the relationship with the target trait grain yield. First, regarding the complete

G2F dataset, we showed that a substantial larger fraction of grain yield variance could be captured

by incorporating A × KDTW and D × KDTW in M15, than by using year-location ID as in model

M6. Additionally, full models incorporating interactions between KDTW and genomic components

were associated with the least residual error across all models in the two datasets. Thus, a superior

proportion of yield variance could be explained by quantitative environmental information in the

full model that used KDTW compared to all other models.

Secondly, given the fact that (1) the exact same set of lines was assessed in the different environ-

ments and (2), that the ratio of G to G× E interaction variances was substantially enhanced in

4 out of 5 clusters within the wheat dataset, the interest of our method to reduce G × E inter-

action, thereby increasing heritability, is demonstrated for the wheat dataset. This partitioning

of environments in homogeneous subgroups can be useful to identify cultivars specifically suitable

for each of these subgroups on the basis of climatic conditions impacting grain yield. With regard

to the maize dataset, the same ratio was increased after clustering in only 3 out of 9 clusters.

However, several characteristics related to the composition of the G2F dataset can be advanced

to explain this observation. Jarquin et al. (2021a) conducted a study with the data of the G2F

Initiative from 2014 to 2015 and reported the confounding effect of environmental conditions with

genetic background of the tested hybrids, due to an unbalanced allocation of hybrids to growing

environments, partially based on maturity groups. In addition, Rogers et al. (2021) highlighted

the important level of diverse genetic backgrounds identifiable within this material, as illustrated

by the high within-cluster heterogeneity observed after using 10 clusters determined by principal

component analysis on the GBS data on hybrids and parental lines. Hence, it could be hypothe-

sized that, considering the full dataset, the proportion of phenotypic variation due to pure genetic

components is larger than when performing within-cluster analyses, where the genetic material

is already more adapted to the environment type. If the amount of genetic relatedness among

environments is generally heightened within clusters, thus it can possibly explain why we observe

that the G × E interaction contributes more significantly than mere genetics to yield variation in

the case of large clusters, where substantial environmental differences still occur, such as within

clusters 1 or 3. To solve this problem, a solution could be to increase the number of groups to

further partition some of the clusters. In general, though, the exact number of clusters cannot

be exactly determined, and clustering based on DTW cannot guarantee that all clusters have the

same level of climate homogeneity.

A supplemental reason for a lack of improvement of the G to G× E interaction variance ratio

can also be that other environmental features, that we did not take into account here, might have

influenced grain yield in some clusters, for instance management aspects (type and amount of

fertilizers, precedent crop, that potentially affect nitrogen availability), soil factors or even disease
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pressure (Heslot et al., 2014; Ly et al., 2017; Touzy et al., 2019). In the wheat dataset, the lack of

information regarding irrigation prevented to integrate explicitly water stress as a potential abiotic

stress factor in the clustering analysis.

4.5.3 Incorporating climatic information with ECs in prediction models

Overall, the impact of the temporal resolution used to summarize weather data into environmental

covariates, i.e. by predicting growth stages based on GDD or by simply dividing the total crop

growing season into a fixed number of day windows, did not seem to substantially impact predictive

abilities for either dataset. As a consequence, we could not find any advantage for prediction

purposes by using approximated growth stages to compute ECs. This could be attributed to

the fact that we used the average flowering time to define three (two) main groups of maturity

and subsequently assigned each environment to one of these groups for the maize (wheat) dataset.

Dates corresponding to several developmental stages, predicted on the basis of accumulated growing

degree days, were obtained within each environment, without taking into account variable flowering

time among wheat lines or maize hybrids. As shown by Figure S4.5, the variability among silking

dates within environment could span more than two weeks, and the average root mean square error

was equal to 4.7 days. In our previous results (Westhues et al., 2021a), we harnessed flowering

time data to derive hybrid-specific ECs for three main developmental stages, thereby ensuring that

the variables used in our models perfectly reflected real environmental conditions occurring at this

crucial developmental stage for each genotype. Here, we chose to make the assumption of sparse

phenotypic data (i.e. only grain yield data per genotype and an average flowering time within

the environment), in order to mimic large-scale plant breeding programs, which are unlikely to

collect detailed phenotypic observations for each genotype in each environment. For new selection

candidates, this method would also imply to estimate their flowering time with marker-based

approaches, such as CGM coupled with marker-assisted selection (Rincent et al., 2017), because

this information would be required as input variables to predict grain yield performance. Utilizing

ECs derived from crop growth models might yield better predictive abilities in some cases (Heslot

et al., 2014; Ly et al., 2017; Rincent et al., 2017), provided that the predictive stages can be

predicted with accuracy, which was difficulty achievable in our study S4.5 for the reasons explained

above.

Across the two datasets, we observed that the inclusion of weather data in the form of ECs was

especially useful in the CV0 prediction problem for the wheat dataset, leading to a gain in predictive

ability of up to ∼ 10%, compared with the best model that uses the respective effects of year and

location (M5). It is worth mentioning that the CV0 prediction scheme, which was a leave-one-

environment-out CV scheme, yielded a large training set consisting of the remaining environments,

which was supposedly enough related to the test set, from an environmental perspective, to provide

the model with reliable estimates of interaction effects between marker data and ECs for this
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specific year-location combination. Regarding the maize dataset, the range of average values we

obtained with the CV0 scheme (0.402 to 0.482) was close to the results reported by Rogers and

Holland (2021) (0.47 to 0.48), that utilized more than 370 environmental covariates accounting

for climatic and soil information. The more challenging scenarios explored by Rogers and Holland

(2021) with the 2014-2016 G2F dataset, for instance by leaving out 1 year and related hybrids from

the training set, or by stratification-by-environment clusters, did not lead to any improvement by

adding G × E interactions based on environmental data. The same authors also examined which

temporal resolution was the most adequate to aggregate weather data, using a slightly different

approach than ours with WECs_windows by considering a fixed number of days included in each

window, which necessarily leads to a heterogeneous number of windows across environments as

crop growing season lengths differ. The temporal resolution leading to the best average predictive

ability was 5-day window, which was reduced compared to the temporal resolution used in our

study with WECs_windows; the minimum number of days used within a window was equal to 12

in our case. A previous study conducted with the G2F data (Jarquin et al., 2021a) considering

all hourly values from the weather stations yielded a reduced gain in predictive ability, compared

with the study of Rogers and Holland (2021) and our study, which both initially aggregated the

hourly weather records into daily datasets. For CV1 and CV2, we noticed, however, that the mere

individual modeling of year and location effects yielded a leap in accuracy that was comparable with

the results obtained with the integration of weather data. Nonetheless, this advantage might be

observed because the dataset exhibited repeated field trials across multiple years in geographically

close locations. On the other hand, one key advantage of using an environmental kinship matrix,

either based on ECs or DTW distance, is that predictions can be achieved for an untested location

in a new year that has never been tested before.

4.5.4 Advantages of using dynamic time warping (DTW) in prediction

models

The use of an environmental kinship matrix based on DTW for prediction purposes appeared

especially useful for the maize dataset, for which it outperformed methods based on ECs, and

did not demonstrate any important drop in accuracy with the wheat dataset. Figure 4.9 shows

that substantial improvements were observed to predict TXH1-Early_2017, TXH1-Dry_2017

and TXH1_2016 environments, while adding weather information worsened predictive ability in

GAH2_2016. Similar impacts of the impact of adding G × E for TXH1_2016 and GAH2_2016

were reported by Rogers and Holland (2021).

The method we propose allows to conserve the precision provided by daily weather records and

to operate an efficient reduction of weather data dimensionality (Delerce et al., 2016) with little

feature engineering. The main advantage of DTW over Euclidean distance is that this measure is

able to synchronize two weather time series, even though variations in the weather data do not
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occur at the exact same time point (Netzel and Stepinski, 2016). For instance, the method can also

be of interest when weather stations start collecting data from the planting date onwards, which

differ among environments. In this case, DTW is able to match two time series that would present

very similar patterns overall, but present a time shift regarding their set first day, that cannot

be detected by the Euclidean distance. Compared with the methods we described based on ECs,

applying DTW does not require to determine a temporal resolution for summarizing daily weather

data, and has relevance when phenotypic data on crop phenological and physiological development

is scarce, hindering the possibility to use precise crop growth models.

In the wheat dataset, although time series characterizing water supply was not included, it is

frequently observed that weather variables follow a coincident path throughout the growing period,

as for example maximum temperature is often correlated with drought periods (Sadras et al., 2012).

Therefore, as noted in other studies (Touzy et al., 2019), water stress patterns, if they are present,

might potentially be captured by the maximum temperature time series. Including the vapour

pressure deficit (VPD) in the multivariate time series analysis, besides raw climatic time series,

seems appropriate, given the fact that different authors recommended to integrate limitation on

transpiration via stomatal closure in response to high VPD as a trait of interest in cereal breeding

programs for selecting genotypes with improved drought tolerance (Medina et al., 2019; Sinclair

et al., 2005; Yang et al., 2012).

4.5.5 Future directions

In the present study, we used a reaction norm model that makes the assumption of equal variance

of all reaction norm slopes associated with different environmental covariates, and of no correlation

among these slopes. Thereby, no differential impact of the environmental variables is allowed by

this model. However, it is likely that some specific stresses might explain a larger proportion of

phenotypic variation than others, as highlighted by Ly et al. (2018) considering drought stress

at flowering stage in wheat. Rogers and Holland (2021) used LASSO to model flexible G × E

effects and to enable shrinkage of irrelevant covariates effects. Nonetheless, as mentioned above,

no strong increase of predictive ability could yet be observed across the different CV schemes that

were implemented in their study. The ability of machine learning approaches, such as tree-based

methods or artificial neural networks, to capture nonlinear responses of genes to environmental

stresses, represents therefore a promising strategy to improve predictive performance (Delerce

et al., 2016; Washburn et al., 2021; Westhues et al., 2021a,b).

Although it can be envisaged to employ the the DTW distance instead of the Euclidean distance in

some classical kernel functions, predictive frameworks such as support vector machines necessitate

positive definite (PD) kernels (??). Since the DTW distance is not in general symmetric, unless a

local constraint is set that restricts the directions when advancing in the local cost matrix as the

cost is being calculated (Sardá-Espinosa, 2017), the use of DTW distances with kernel methods is
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not straightforward. Support vector machines often exploit as PD kernels simple similarity mea-

sures, such as inner products, that ensure the existence of a feature space. Deriving admissible PD

kernels from DTW dissimilarity measures is a non-trivial issue, but has received attention in recent

years. A solution proposed by Kate (2016) is to use a variable-based representation of the DTW

distance, and these features can be used as input data for various machine learning approaches.

Further investigation would also be needed to know whether deriving separate DTW-based sim-

ilarity matrices for each type of weather input variable (e.g. temperature, water supply, solar

radiation, etc), and calculating interactions with the genotype component for each of these kernels,

would lead to a potential gain in predictive abilities compared with the multivariate approach we

used here. If the data acquired in the field allow to track variation at the genotype level for some

environmental indices, such as water stress index or hyperspectral vegetation indices, it might even

be possible to estimate DTW pairwise distances among hybrid-environment training instances.

It should also be noted that important pedological and management variables (e.g soil type, organic

soil matter content, amounts of nitrogen fertilization) were not taken into account in the present

study, but we would recommend to do so whenever this information is available, as different studies

demonstrated their significant weights in neural networks (Khaki and Wang, 2019; Washburn et al.,

2021), in LASSO models with G × E interactions (Rogers et al., 2021) and in gradient boosted

trees models (Westhues et al., 2021a).
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Supplementary Material

Table S4.1: Description of the wheat multi-environment dataset for the WAMI panel used
in the study (Sukumaran et al., 2016, 2017) and downloaded at https://hdl.handle.
net/11529/10714. Harvest dates were not provided, so an approximate date was used to
retrieve weather data.

year Location Code environment Labels Latitude Longitude Planting Date Harvest Date

2010 WadMedani, Sudan Sudan_WadMedani_2010 SW10 14.24 33.29 2009.11.20 2010.05.10

2010 Hudeiba, Sudan Sudan_Hudeiba_2010 SH10 14.4 33.5 2009.11.20 2010.05.10

2010 Dharwad, India India_Dharwad_2010 IDh10 15.26 75.07 2009.12.07 2010.05.10

2011 Dharwad, India India_Dharwad_2011 IDh11 15.26 75.07 2010.12.06 2011.05.10

2010 Dongola, Sudan Sudan_Dongola_2010 SD10 19.1 30.4 2009.12.14 2010.05.10

2010 Indore, India India_Indore_2010 II10 22.37 75.5 2009.12.10 2010.05.10

2011 Indore, India India_Indore_2011 II11 22.37 75.5 2010.12.07 2011.05.10

2010 Joydebpur, Bangladesh Bangladesh_Joydebpur_2010 BJ10 23.46 90.23 2009.12.10 2010.05.10

2011 Joydebpur, Bangladesh Bangladesh_Joydebpur_2011 BJ11 23.46 90.23 2010.12.20 2011.05.10

2010 Varanasi, India India_Varanasi_2010 IV10 25.26 82.98 2009.11.22 2010.05.10

2010 ElMataana, Egypt Egypt_ElMataana_2010 EE10 25.5 32.6 2009.12.22 2010.05.10

2010 Sohag, Egypt Egypt_Sohag_2010 ES10 27.17 31.32 2009.12.20 2010.05.10

2010 ObregonMD, Mexico Mexico_ObregonMD_2010 MD10 27.24 -109.56 2009.11.30 2010.05.10

2010 ObregonMHD, Mexico Mexico_ObregonMHD_2010 MHD10 27.24 -109.56 2010.02.24 2010.06.20

2010 Bhairahawa, Nepal Nepal_Bhairahawa_2010 NB10 27.32 83.25 2009.11.26 2010.05.10

2011 Bhairahawa, Nepal Nepal_Bhairahawa_2011 NB11 27.32 83.25 2010.12.07 2011.05.10

2010 Karnal, India India_Karnal_2010 IK10 29.43 75.57 2009.11.25 2010.05.10

2011 Karnal, India India_Karnal_2011 IK11 29.43 75.57 2010.11.14 2011.05.10

2010 Delhi, India India_Delhi_2010 IDe10 28.24 76.5 2009.11.22 2010.05.10

2010 Ludhiana, India India_Ludhiana_2010 IL10 30.54 75.48 2009.11.27 2010.05.10

2011 Ludhiana, India India_Ludhiana_2011 IL11 30.54 75.48 2010.11.22 2011.05.10

2010 Islamabad, Pakistan Pakistan_Islamabad_2010 PI10 33.43 73.06 2009.11.25 2010.05.10

2011 Islamabad, Pakistan Pakistan_Islamabad_2011 PI11 33.43 73.06 2010.12.11 2011.05.10

Table S4.2: Description of the subset of environments from the maize Genomes to Fields
Initiative database used in the study, downloaded at https://www.genomes2fields.org/.

year Location Code environment Latitude Longitude Planting Date Harvest Date

2014 Georgetown, DE DEH1_2014 -75.204 38.63741 5/5/2014 9/29/2014

2014 Tifton, GA GAH1_2014 -83.555 31.50654 4/4/2014 9/11/2014

2014 Ames, IA IAH1.a_2014 -93.6962 41.99653 5/9/2014 10/20/2014

2014 Ames, IA IAH1.b_2014 -93.6962 41.99653 5/17/2014 10/20/2014

2014 Urbana, IL ILH1_2014 -88.2332 40.06114 5/6/2014 10/7/2014

2014 West Lafayette, IN INH1_2014 -87.006 40.488 5/25/2014 11/18/2014

2014 Waseca, MN MNH1_2014 -93.5341 44.06972 5/16/2014 10/16/2014

2014 Columbia, Missouri MOH1_2014 -92.21 38.8987 5/7/2014 10/22/2014

2014 Columbia, Missouri MOH2_2014 -92.3522 38.92875 5/5/2014 11/13/2014

2014 Lincoln, NE NEH1_2014 -96.6567 40.83439 5/16/2014 10/22/2014

2014 North Platte, NE NEH2_2014 -100.749 41.05298 5/15/2014 11/5/2014

2014 Aurora, NY NYH2_2014 -76.65 42.73 5/28/2014 12/2/2014

2014 Waterloo, ON ONH1_2014 -80.427 43.49703 5/19/2014 11/4/2014

2014 Ridgetown, ON ONH2_2014 -81.8831 42.4542 5/27/2014 11/29/2014

2014 College Station, TX TXH1_2014 -96.4339 30.54684 3/1/2014 8/21/2014

2014 Plainview, TX TXH2_2014 -101.949 34.18467 4/23/2014 9/30/2014

2014 Madison, WI WIH1_2014 -89.531 43.05706 5/9/2014 10/28/2014

2015 Georgetown, DE DEH1_2015 -75.466 38.62998 4/29/2015 9/14/2015

2015 Tifton, GA GAH1_2015 -83.555 31.5065 4/1/2015 8/26/2015

2015 Urbana, IL ILH1_2015 -88.2336 40.06031 4/30/2015 10/2/2015

2015 West Lafayette, IN INH1_2015 -87.0006 40.47666 5/14/2015 10/15/2015

2015 Manhattan, KS KSH1_2015 -96.6052 39.21586 4/23/2015 9/21/2015

2015 Waseca, MN MNH1_2015 -93.5349 44.07099 5/19/2015 11/10/2015

2015 Columbia, MO MOH1_2015 -92.2083 38.89608 5/4/2015 10/6/2015

2015 Columbia, MO MOH2_2015 -92.2076 38.89853 5/5/2015 10/2/2015

2015 North Platte, NE NEH2_2015 -100.747 41.05097 4/23/2015 10/26/2015

2015 Brule, NE NEH3_2015 -101.988 41.15841 6/10/2015 12/14/2015

2015 Aurora, NY NYH2_2015 -76.6533 42.73271 5/7/2015 11/16/2015

2015 Aurora, NY NYH3_2015 -76.6562 42.72351 5/23/2015 11/18/2015

2015 South Charleston, OH OHH1_2015 -83.6644 39.85542 5/21/2015 10/17/2015

2015 Waterloo, ON ONH1_2015 -80.4489 43.49735 4/30/2015 10/15/2015

2015 Ridgetown, ON ONH2_2015 -81.8809 42.45433 5/7/2015 10/12/2015

2015 New Underwood, SD SDH1_2015 -102.93 44.20888 5/22/2015 10/28/2015

2015 College Station, TX TXH1_2015 -96.4347 30.54677 3/7/2015 7/28/2015

2016 Georgetown, DE DEH1_2016 -75.4516 38.64865 4/25/2016 9/14/2016

2016 Tifton, GA GAH2_2016 -83.3114 33.71736 5/25/2016 10/12/2016

https://hdl.handle.net/11529/10714
https://hdl.handle.net/11529/10714
https://www.genomes2fields.org/
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2016 Glidden, IA IAH2_2016 -94.7275 42.06591 4/25/2016 10/11/2016

2016 Keystone, IA IAH3_2016 -92.2602 41.98738 4/24/2016 10/6/2016

2016 Ames, IA IAH4_2016 -93.6999 41.9975 4/26/2016 10/17/2016

2016 Urbana, IL ILH1.a_2016 -88.2333 40.06119 5/6/2016 10/9/2016

2016 Urbana, IL ILH1.b_2016 -88.2333 40.06119 4/26/2016 10/9/2016

2016 West Lafayette, IN INH1_2016 -86.9901 40.47835 5/19/2016 10/6/2016

2016 Manhattan, KS KSH1_2016 -96.6294 39.14409 4/15/2016 9/27/2016

2016 East Lansing, MI MIH1_2016 -84.2954 42.4118 5/24/2016 11/16/2016

2016 Waseca, MN MNH1_2016 -93.5342 44.06616 5/17/2016 10/20/2016

2016 Columbia, MO MOH1_2016 -92.2075 38.89497 5/23/2016 10/7/2016

2016 Mead, NE NEH1_2016 -96.4173 41.16636 5/6/2016 11/8/2016

2016 Mead, NE NEH4_2016 -96.4172 41.16702 6/7/2016 11/9/2016

2016 Aurora, NY NYH2_2016 -76.6551 42.72543 5/10/2016 12/8/2016

2016 Waterloo, ON ONH1_2016 -80.452 43.49968 5/4/2016 10/15/2016

2016 Ridgetown, ON ONH2_2016 -81.8835 42.45275 5/11/2016 11/1/2016

2016 College Station, TX TXH1_2016 -96.4347 30.54677 3/4/2016 8/5/2016

2016 Madison, WI WIH1_2016 -89.5317 43.05687 5/9/2016 10/14/2016

2016 Arlington, WI WIH2_2016 -89.3402 43.32695 5/24/2016 10/25/2016

2017 Marianna, AR ARH1_2017 -90.76 34.7299 4/25/2017 9/11/2017

2017 Keiser, AR ARH2_2017 -90.075 35.6747 4/17/2017 9/16/2017

2017 Fort Collins, CO COH1_2017 -105 40.64786 5/31/2017 11/22/2017

2017 Georgetown, DE DEH1_2017 -75.4339 38.66956 4/28/2017 9/8/2017

2017 Tifton, GA GAH1_2017 -83.5592 31.50825 4/4/2017 9/7/2017

2017 Watkinsville, GA GAH2_2017 -83.2978 33.72686 5/2/2017 9/8/2017

2017 Ames, IA IAH4_2017 -93.6886 41.99439 5/7/2017 10/17/2017

2017 East Lansing, MI MIH1_2017 -84.4941 42.6819 5/22/2017 10/20/2017

2017 Columbia, MO MOH1_2017 -92.2048 38.89238 5/15/2017 10/19/2017

2017 Aurora, NY NYH2_2017 -76.6533 42.73219 5/18/2017 11/24/2017

2017 Aurora, NY NYH3_2017 -76.6532 42.73306 5/18/2017 11/24/2017

2017 Waterloo, ON ONH1_2017 -80.4261 43.49604 5/17/2017 10/31/2017

2017 College Station, TX TXH1-Dry_2017 -96.4326 30.54535 3/3/2017 7/25/2017

2017 College Station, TX TXH1-Early_2017 -96.4326 30.54535 3/3/2017 7/31/2017

2017 College Station, TX TXH1-Late_2017 -96.4326 30.54535 4/6/2017 8/10/2017

2017 Madison, WI WIH1_2017 -89.5311 43.05718 5/5/2017 10/19/2017

2017 Arlington, WI WIH2_2017 -89.3358 43.32453 5/11/2017 11/6/2017
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Table S4.3: GDD requirements for the three groups of maturity used with the maize
dataset. VE, emergence; V7, collar of 7-th leaf visible; V15, collar of 15-th leaf visible;
R1, silk emergence (silk visible outside the husk), tassel shedding pollen; R3, milk stage
(kernel yellow outside, while inner fluid is milky white due to accumulating starch); R4,
dough stage (continued starch accumulation in the endosperm).

Corn growth stages GDD accumulation in

°C (group 1)

GDD accumulation in

°C (group 2)

GDD accumulation in

°C (group 3)

VE 95 110 120

V7 280 315 350

V15 560 630 700

R1 680 760 850

R3 900 1095 1210

R4 1160 1350 1450

Table S4.4: GDD requirements for the two groups of maturity used with the wheat dataset

Wheat growth stages GDD accumulation in

°C (group 1)

GDD accumulation in

°C (group 2)

emergence 105 120

crown root initiation 250 270

leaf initiation 310 330

leaf development 840 900

booting stage 1130 1250

heading 1230 1365

anthesis 1290 1405

milky stage 1560 1650

soft dough 1740 1850
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Table S4.5: Groups of environments based on estimated thermal time to flowering (maize
dataset)

Group 1 Group 2 Group 3

IAH1.a_2014 DEH1_2014 GAH1_2014

NYH2_2014 IAH1.b_2014 INH1_2014

ONH1_2014 ILH1_2014 NEH2_2014

ONH2_2014 MNH1_2014 TXH2_2014

OHH1_2015 MOH1_2014 KSH1_2015

ONH1_2015 MOH2_2014 MOH1_2015

ONH2_2015 NEH1_2014 MOH2_2015

SDH1_2015 TXH1_2014 NEH2_2015

NEH1_2016 WIH1_2014 KSH1_2016

ONH1_2016 DEH1_2015 MOH1_2016

ONH2_2016 GAH1_2015 ARH1_2017

WIH1_2016 ILH1_2015

WIH2_2016 INH1_2015

COH1_2017 MNH1_2015

DEH1_2017 NEH3_2015

GAH2_2017 NYH2_2015

MIH1_2017 NYH3_2015

NYH2_2017 TXH1_2015

ONH1_2017 DEH1_2016

WIH1_2017 GAH2_2016

WIH2_2017 IAH2_2016

IAH3_2016

IAH4_2016

ILH1.a_2016

ILH1.b_2016

INH1_2016

MIH1_2016

MNH1_2016

NEH4_2016

NYH2_2016

TXH1_2016

ARH2_2017

GAH1_2017

IAH4_2017

MOH1_2017

NYH3_2017

TXH1-Dry_2017

TXH1-Early_2017

TXH1-Late_2017
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Table S4.6: Groups of environments based on estimated thermal time to flowering (wheat
dataset)

Group 1 Group 2

Egypt_ElMataana_2010 Bangladesh_Joydebpur_2010

Egypt_Sohag_2010 Bangladesh_Joydebpur_2011

India_Dharwad_2010 India_Dharwad_2011

India_Varanasi_2010 India_Indore_2010

Nepal_Bhairahawa_2010 India_Indore_2011

Nepal_Bhairahawa_2011 India_Karnal_2010

Pakistan_Islamabad_2010 India_Ludhiana_2010

Pakistan_Islamabad_2011 India_Ludhiana_2011

Sudan_Hudeiba_2010 Mexico_ObregonMD_2010

Sudan_WadMedani_2010 Mexico_ObregonMHD_2010

India_Karnal_2011 Sudan_Dongola_2010

India_Delhi_2010
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Table S4.7: Estimates of variance components with the different models with the wheat
dataset

Model component value Sum of variance

components in the

model

Percentage of

the across-

environment

variance

M1 residual 0.6336 3.81132 0.16624274

M1 A 0.12118 3.81132 0.03179383

M1 E 3.05654 3.81132 0.80196343

M2 residual 0.50566 3.66478 0.1379785

M2 A 0.11117 3.66478 0.03033528

M2 E 2.91344 3.66478 0.79498451

M2 A × E 0.1345 3.66478 0.03670171

M4 residual 0.63447 5.60514 0.11319454

M4 A 0.09647 5.60514 0.01721019

M4 Y 1.7491 5.60514 0.31205307

M4 L 1.07431 5.60514 0.19166468

M4 E 2.0508 5.60514 0.36587752

M5 residual 0.49351 4.78691 0.10309564

M5 A 0.08082 4.78691 0.0168842

M5 Y 1.18455 4.78691 0.24745629

M5 L 0.82977 4.78691 0.17334189

M5 E 1.99722 4.78691 0.41722632

M5 A × Y 0.06347 4.78691 0.01325894

M5 A × L 0.06741 4.78691 0.0140829

M5 A × E 0.07015 4.78691 0.01465382

M7 with WECs_windows residual 0.63392 4.88295 0.12982365

M7 with WECs_windows A 0.10472 4.88295 0.02144574

M7 with WECs_windows E 1.09148 4.88295 0.22352972

M7 with WECs_windows WECs_windows 3.05282 4.88295 0.62520089

M7 with WECs_stages residual 0.63408 4.35829 0.14548832

M7 with WECs_stages A 0.10551 4.35829 0.02421003

M7 with WECs_stages E 1.90457 4.35829 0.43699977

M7 with WECs_stages WECs_stages 1.71412 4.35829 0.39330189

M11 with WECs_windows residual 0.53522 3.61168 0.14819252

M11 with WECs_windows A 0.10388 3.61168 0.02876094

M11 with WECs_windows E 1.97545 3.61168 0.54696096

M11 with WECs_windows WECs_windows 0.86208 3.61168 0.23869306

M11 with WECs_windows A × WECs_windows 0.13505 3.61168 0.03739252

M11 with WECs_stages residual 0.52953 3.77702 0.14019724

M11 with WECs_stages A 0.10343 3.77702 0.0273841

M11 with WECs_stages E 1.84674 3.77702 0.48894057

M11 with WECs_stages WECs_stages 1.15336 3.77702 0.30536264

M11 with WECs_stages A × WECs_stages 0.14396 3.77702 0.03811544

M12 with WECs_windows residual 0.49275 3.41614 0.14424322

M12 with WECs_windows A 0.10011 3.41614 0.02930474

M12 with WECs_windows E 2.13147 3.41614 0.62394007

M12 with WECs_windows WECs_windows 0.52509 3.41614 0.15370843

M12 with WECs_windows A × WECs_windows 0.08298 3.41614 0.02429024

M12 with WECs_windows A × E 0.08374 3.41614 0.0245133

M12 with WECs_stages residual 0.49629 3.57978 0.13863677

M12 with WECs_stages A 0.09947 3.57978 0.02778759

M12 with WECs_stages E 2.19692 3.57978 0.61370276

M12 with WECs_stages WECs_stages 0.62187 3.57978 0.17371659

M12 with WECs_stages A × WECs_stages 0.082 3.57978 0.02290548

M12 with WECs_stages A × E 0.08323 3.57978 0.02325081

M8 with KDTW residual 0.63412 6.98118 0.09083266

M8 with KDTW A 0.10517 6.98118 0.01506473

M8 with KDTW KDTW 5.0272 6.98118 0.72010785

M8 with KDTW E 1.21469 6.98118 0.17399476

M13 with KDTW residual 0.5164 6.3915 0.0807956

M13 with KDTW A 0.07959 6.3915 0.01245264

M13 with KDTW E 1.40288 6.3915 0.21949149

M13 with KDTW KDTW 4.16454 6.3915 0.65157432

M13 with KDTW A × KDTW 0.22809 6.3915 0.03568595
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Table S4.8: Estimates of variance components with the different models with the G2F
dataset

Model component value Sum of variance

components in the

model

Percentage of

the across-

environment

variance

M1 residual 625.531 2143.85 0.291779

M1 A 425.2847 2143.85 0.198374

M1 E 1093.034 2143.85 0.509846

M2 residual 446.8275 2205.153 0.202629

M2 A 368.3793 2205.153 0.167054

M2 E 1167.278 2205.153 0.529341

M2 A × E 222.6688 2205.153 0.100977

M3 A 116.4151 1925.983 0.060445

M3 D 143.7168 1925.983 0.07462

M3 E 1078.345 1925.983 0.559893

M3 residual 587.5066 1925.983 0.305042

M4 residual 625.7422 2525.817 0.247739

M4 A 420.661 2525.817 0.166545

M4 Y 412.3418 2525.817 0.163251

M4 L 583.4264 2525.817 0.230985

M4 E 483.6456 2525.817 0.191481

M5 residual 446.9876 2401.479 0.18613

M5 A 292.3829 2401.479 0.121751

M5 Y 323.437 2401.479 0.134682

M5 L 518.7515 2401.479 0.216013

M5 E 557.5511 2401.479 0.23217

M5 A × Y 53.03081 2401.479 0.022083

M5 A × L 90.05956 2401.479 0.037502

M5 A × E 119.2788 2401.479 0.049669

M6 A 107.8048 1964.802 0.054868

M6 D 126.8704 1964.802 0.064572

M6 E 1093.878 1964.802 0.556737

M6 A × E 83.88279 1964.802 0.042693

M6 D × E 42.61663 1964.802 0.02169

M6 residual 509.749 1964.802 0.25944

M7 with WECs_stages residual 625.6553 2136.641 0.292822

M7 with WECs_stages A 423.2289 2136.641 0.198081

M7 with WECs_stages E 531.3797 2136.641 0.248699

M7 with WECs_stages WECs_stages 556.3771 2136.641 0.260398

M7 with WECs_windows residual 625.3568 2154.723 0.290226

M7 with WECs_windows A 425.895 2154.723 0.197656

M7 with WECs_windows E 520.073 2154.723 0.241364

M7 with WECs_windows WECs_windows 583.3982 2154.723 0.270753

M8 with KDTW residual 625.6075 2643.514 0.236658

M8 with KDTW A 423.6824 2643.514 0.160272

M8 with KDTW KDTW 1261.188 2643.514 0.477088

M8 with KDTW E 333.0355 2643.514 0.125982

M9 with WECs_stages A 110.0369 1771.063 0.06213

M9 with WECs_stages D 143.2094 1771.063 0.080861

M9 with WECs_stages E 536.1242 1771.063 0.302713

M9 with WECs_stages WECs_stages 393.9452 1771.063 0.222434

M9 with WECs_stages residual 587.7472 1771.063 0.331861

M9 with WECs_windows A 108.576 1904.313 0.057016

M9 with WECs_windows D 143.0668 1904.313 0.075128

M9 with WECs_windows E 520.6062 1904.313 0.273383

M9 with WECs_windows WECs_windows 544.3449 1904.313 0.285848

M9 with WECs_windows residual 587.719 1904.313 0.308625

M10 with KDTW A 108.503 2409.595 0.04503

M10 with KDTW D 144.1336 2409.595 0.059817

M10 with KDTW E 293.8054 2409.595 0.121931

M10 with KDTW KDTW 1275.31 2409.595 0.529263

M10 with KDTW residual 587.8432 2409.595 0.243959

M11 with WECs_stages residual 511.5894 2068.95 0.24727

M11 with WECs_stages A 368.6503 2068.95 0.178182

M11 with WECs_stages E 605.6739 2068.95 0.292745

M11 with WECs_stages WECs_stages 381.779 2068.95 0.184528

M11 with WECs_stages A × WECs_stages 201.2571 2068.95 0.097275

M11 with WECs_windows residual 504.3659 2165.546 0.232905

M11 with WECs_windows A 378.6376 2165.546 0.174846

M11 with WECs_windows E 573.1125 2165.546 0.26465

M11 with WECs_windows WECs_windows 492.5156 2165.546 0.227433

M11 with WECs_windows A × WECs_stages 216.9148 2165.546 0.100166
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M12 with WECs_stages residual 446.6623 2074.212 0.215341

M12 with WECs_stages A 360.9783 2074.212 0.174032

M12 with WECs_stages E 574.6397 2074.212 0.27704

M12 with WECs_stages WECs_stages 462.6648 2074.212 0.223056

M12 with WECs_stages A × WECs_stages 44.12939 2074.212 0.021275

M12 with WECs_stages A × E 185.1374 2074.212 0.089257

M12 with WECs_windows residual 447.2762 2161.16 0.206961

M12 with WECs_windows A 361.5465 2161.16 0.167293

M12 with WECs_windows E 562.449 2161.16 0.260253

M12 with WECs_windows WECs_windows 563.1639 2161.16 0.260584

M12 with WECs_windows A × WECs_stages 45.19264 2161.16 0.020911

M12 with WECs_windows A × E 181.5314 2161.16 0.083997

M13 with KDTW residual 454.1882 2693.111 0.168648

M13 with KDTW A 145.0687 2693.111 0.053867

M13 with KDTW E 408.5847 2693.111 0.151715

M13 with KDTW KDTW 1230.011 2693.111 0.456725

M13 with KDTW A × KDTW 455.2589 2693.111 0.169046

M14 with WECs_stages A 104.2291 1917.596 0.054354

M14 with WECs_stages D 130.0033 1917.596 0.067795

M14 with WECs_stages E 551.5485 1917.596 0.287625

M14 with WECs_stages A × WECs_stages 138.8656 1917.596 0.072416

M14 with WECs_stages D × WECs_stages 56.17767 1917.596 0.029296

M14 with WECs_stages WECs_stages 468.0495 1917.596 0.244081

M14 with WECs_stages residual 468.7226 1917.596 0.244432

M14 with WECs_windows A 103.0376 1959.29 0.052589

M14 with WECs_windows D 134.2496 1959.29 0.06852

M14 with WECs_windows E 573.633 1959.29 0.292776

M14 with WECs_windows A × WECs_windows 154.8289 1959.29 0.079023

M14 with WECs_windows D × WECs_windows 54.44863 1959.29 0.02779

M14 with WECs_windows WECs_windows 476.3663 1959.29 0.243132

M14 with WECs_windows residual 462.7256 1959.29 0.23617

M15 with KDTW A 53.97941 2695.129 0.020029

M15 with KDTW D 46.54905 2695.129 0.017272

M15 with KDTW E 262.2352 2695.129 0.0973

M15 with KDTW KDTW 1482.629 2695.129 0.550114

M15 with KDTW A × KDTW 252.6501 2695.129 0.093743

M15 with KDTW D × KDTW 197.0667 2695.129 0.07312

M15 with KDTW residual 400.0203 2695.129 0.148423
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Figure S4.1: Boxplot showing phenotypic values for grain yield in the wheat dataset mea-
sured in 23 environments. Whiskers of the boxplots represent 1.5 times the interquartile
range of the data, and the middle is marked at the median of the observations.
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Figure S4.2: Boxplot showing phenotypic values for grain yield in the maize dataset mea-
sured in 71 environments. Whiskers of the boxplots represent 1.5 times the interquartile
range of the data, and the middle is marked at the median of the observations.
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Figure S4.3: Heatmap of environments of the wheat dataset, based on Euclidean distances
computed using marker effects estimated with ridge regression. Red color shows larger
distance, while blue color indicates a smaller distance between two given environments.
The colors in the labels correspond to the colors from the clustering using DTW distance
from Figure 4.4.
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Figure S4.4: Thermal time to flowering (°C) in the Genomes to Fields maize dataset. Three
different types of phenological development timing were determined based on these data
and used to approximate plant developmental stage within each environment. The orange
environments were assigned to group 1, the green environments to group 2 and the blue
environments to group 3 in Table S4.4.
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Figure S4.5: Observed hybrid silking date (scored as the day at which 50% of plants
within a plot show silk emergence) within each environment against the predicted start
of the R1 stage (silk emergence = reproductive corn stage), calculated using estimations
of the accumulated thermal time required to reach this stage. Each environment had
been beforehand assigned to a maturity group (see S4.4), based on the average estimated
GDD at silking date across all hybrids grown in this environment. For sake of simplicity,
growth stages were predicted within each environment without accounting for variability
of earliness among hybrids. The approximated start of each stage within each environment
was then predicted based on the accumulated thermal time (GDDs calculated with a base
temperature of 10°C). The colors on the plot along the x-axis appear in the same order as
in the legend. Average RMSE was equal to 4.7 days.
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Figure S4.6: Daily weather time series for 6 climatic variables (in rows) characterizing
the remaining clusters (in columns) in the maize dataset. Individual time series for each
environment are depicted in grey, and the blue line represents the loess smoothing function
to help seeing patterns.
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Figure S4.7: Daily weather time series for 5 climatic variables (in rows) characterizing
the different clusters (in columns) in the wheat dataset. Individual time series for each
environment are depicted in grey, and the blue line represents the loess smoothing function
to help seeing patterns.
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Figure S4.8: Prediction of growth stages within each environment of the maize G2F dataset
using total accumulated growing degree days, achieved using learnMET with the function
compute_EC_gdd(). P, planting day; VE, emergence; V7, seven leaf collar (vegetative
stage); V15, fifteen collars (vegetative stage); R1, silking (reproductive stage); R3, kernel
milk stage (grain fill stage); R4, kernel dough stage (grain fill stage).
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5. General Discussion

Plant phenotypes result from the combined effects of the genetic makeup of the plant and of the

plant’s neighbouring environment. The first main focus of this work relate to the incorporation of

quantitative environmental data into routinely used genomic prediction (GP) models for analysis of

multi-environment trials. The second important facet concerns the application of machine learning

model interpretation methods to understand the output of machine learning (ML) models that are

trained with genomic and environmental features. In chapter 2, different models were evaluated

for their ability to predict single-cross maize hybrids, namely linear reaction norms, that belong to

the classical toolbox of plant breeders, and gradient boosting frameworks, a ML ensemble method.

Secondly, an R package was developed in chapter 3, which allows to assess different types of ML

prediction methods in various cross-validation (CV) schemes that mimic practical situations faced

by plant breeders, and also enables to get some insights into the importance of the predictors. In

chapter 4, we explored avenues for clustering and predicting phenotypes with a similarity matrix

derived from pairwise dynamic time warping distances calculated among growing environments.

Our results show that high predictive abilities are mainly related to the incorporation of interaction

terms, to the amount of genetic and environmental relatedness between training (TRN) and test

sets (TST) and to the method used to summarize the weather data. The following discussion is

devoted to important questions arising from our studies, to lessons learned from processing and

analyzing environmental data, and to additional topics to investigate.

5.1 Merits of modeling genotype-by-environment, genotype-

by-year and genotype-by-location interactions in multi-

environment trials

In chapter 2 and chapter 4, we explored different reaction norm models that represent the

environment (E) using a single factor corresponding to the year-location combination, as well as

by using additional categorical factors separating the effects of year (Y) and location (L). Modelling

environments as independent outcomes allows to capture potential trial-specific effects, related for

instance to management and crop cultivation practices. However, this approach does not allow to

198
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borrow information among environments, while useful information can be retrieved by specifying in

which location and in which year phenotypic observations have been recorded. Modelling site effect

appears especially relevant in the G2F dataset, as we expected that the environmental variation

experienced by the maize hybrids in the Genomes to Fields Initiative could be largely explained

by the localization of field trials, that belonged to various climatic zones, as reported by previous

studies (Jarquin et al., 2021; McFarland et al., 2020; Rogers et al., 2021). Our results were coherent

with these studies, as we found a larger value of the variance component term for location effect

compared to year effect (chapter 4), and also a better performance of models that incorporated

site effects along marker effects (G+S), than models considering instead only year effect (G+Y)

(chapter 2).

While aggregated multi-year and multi-location data are beneficial to augment the size of the

training data, appropriate modeling of genotype-by-year (GY) effects is essential to separate the

main genotypic effects from unpredictable year-to-year weather variations (Bernal-Vasquez et al.,

2017; Dias et al., 2020). It is frequently the case that hybrid breeding programs aim at general

adaptation and develop varieties capable of maintaining good performance across different environ-

mental conditions. Hence, values for variance components involving years are generally much larger

than those involving locations, as observed by Dias et al. (2020) with a Brazilian hybrid maize

program. Bernal-Vasquez et al. (2017) demonstrated the interest of performing year-wise analyses

of breeding cycles, and to use these directly in GP models to predict in a new year, together with

a kinship component estimated from molecular data for modeling G × Y effects, similar to our

approach in chapter 2. This approach yielded better predictive abilities than models that esti-

mated the year effect only based on common genotype checks used across years (e.g. using the ID

of the genotype rather than genomic similarity) that ignored G × Y interaction effects. As noted

by Bernal-Vasquez et al. (2017), in hybrid breeding programs, first years of evaluation of general

combining ability (GCA) of potential hybrids are generally completely disconnected across years,

i.e. no common genotypes are tested across years. Dissecting genotype main effect from G × Y

can therefore only be achieved with marker data in such cases and is essential to make predictions

that account for the respective effect of previous years on genotype performance. In the Genomes

to Fields Initiative, a set of 30 to 50 common check hybrids were used in all locations, as well as

regional hybrid checks for the Northern, Central and Southern North-American regions, ensuring

that the trials were well connected within a year. Regarding the connectivity across years, 627,

50 and 29 hybrids were tested in exactly 2, 3 and 4 years considering the dataset that we used

after data cleaning and pre-processing. Including genotype-by-environment, genotype-by-year and

genotype-by-location interaction terms in GP models, as we did in chapter 2 and chapter 4 was

relevant to improve predictive abilities, as we showed that the best reaction norm model without

weather data corresponded to the full model G + E + S + Y + G×S + G×Y + G×E. It should

be noted that, when the objective is to predict untested genotypes in already tested environments
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(e.g. CV1 or CV2 in chapter 4), this latter model performed better or very similar to models

with environmental data. Other variance-covariance structures could be explored to model het-

erogeneous error variance, such as factor-analytical model (Buntaran et al., 2019), especially when

the estimated variance components for location and year effects are large.

We also expected that the weather and soil covariates we derived could not capture the complete

variation due to the influence of the environment, and for this reason added back the G × E

interaction term in the reaction norm models that already incorporated G × W. This assumption

appeared fair, as we observed an improvement of the predictive ability for grain yield with the

model G+E+W+G×W+G×E, compared to the model G+E+W+G×W, of up to 9% in the CV0-

year prediction scheme (chapter 2, Supplemental Table S6-S7). We also found an advantage of

incorporating the geographical coordinates and the year dummy variables in the gradient boosted

decision trees (GBDT) frameworks, as the LightGBM and XGBoost models G+W+Y+Lon+Lat

yielded better average predictive abilities than the models G+W, that include solely weather and

soil predictor variables (chapter 2, Supplemental Table S6-S7). Although these variables have

no direct mechanistic effect on yield, other studies also used these as predictors for crop yield

prediction (Crane-Droesch, 2018; Guo et al., 2021; Heslot et al., 2014; Huntington et al., 2020;

Tiezzi et al., 2017), because they can potentially serve as proxies for numeric variables that are

otherwise not included in the models.

In our studies, we more specifically aimed to leverage environmental data, that can be learned from

past data. On the other hand, the year effect is per se unpredictable, and using it or the location

factor in prediction models prevents the possibility of evaluating in silico genotype performance

under various quantitative pedoclimatic scenarios. In contrast to the above-mentioned studies

(Bernal-Vasquez et al., 2017; Dias et al., 2020), our objective was to predict phenotypes, rather

than genomic estimated breeding values (i.e. that focus only on additive genetic effects), thus,

accounting for both environmental and genomic effects with quantitative data was necessary. Such

an approach also allows to envisage development of cultivars adapted for local environmental

conditions, rather than global adaptation.

5.2 The applicability and the issues related to the use of

quantitative environmental data in prediction models

5.2.1 Attempts at reducing sources of errors by using spatio-temporal

interpolation methods for weather data in the G2F dataset

In chapter 2, after quality control of the weather data acquired by in-field automatic weather

stations, missing or likely erroneous values were flagged within the daily weather dataset. About

20.2% of daily minimum and maximum temperature records and 22.8% of the daily total precipi-
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tation records, for the 71 environments used in our analyses, did not pass our quality control and

were flagged, thus assigned as missing data. Details of the QC are provided in chapter 2 (Sup-

plemental Table S2.3), and a pipeline to flag potential erroneous weather values was implemented

in learnMET (chapter 3), when users provide in-field weather data. Subsequently to this quality

check, we checked whether the difference between weather records of in-field weather station, and

of the closest weather station from the Global Historical Climatology Network (GHCN) was sub-

stantial, and if this was the case, the total daily weather records of the given environment were

considered as missing, and interpolated as described below.

Whenever a station was found to be very close to the field experiment (less than 2 km) and with

reliable and complete data for the growing season, these data were directly used to replace data

of the in-field weather station. For many year-location combinations though, it was not possible

to find a station at a such high spatial resolution. In these cases, interpolation of flagged daily

weather data, based on information extracted from weather stations located in a radius of 70 km

from the field trial, was achieved in order to replace missing daily weather data. In addition, the

use of multiple weather stations can generate better interpolation data, since single-station data

can also exhibit mistakes or missing data.

The fundamental principle of spatio-temporal interpolation originally relates to Waldo Tobler’s

first law of geography (1969): "Everything is related to everything else, but near things are more

related than distant things" (Tobler, 1970), that has driven the foundation of kriging and its many

variants in spatial statistics. Spatio-temporal kriging is a geostatistical interpolation technique

that utilizes the statistical properties of the sample points, both based on geographic and on

temporal distances. While adding observations taken at other time points is generally useful to

obtain more accurate predictions, adding the temporal dimension in spatial statistical models is

not trivial, and specific models are needed that integrate both variability in space and time. In the

context of a spatio-temporal random process, Gräler et al. (2016) proposed to adapt the covariance

function with the temporal component. The climatic variable is characterized by the location si

of the weather station where it was observed, and by the time stamp ti that identifies when the

measurement was taken: the spatio-temporal coordinates are noted (si,tj). The spatio-temporal

autocorrelation can be modelled using a variogram, that represents the semivariance between any

pair of points that are separated by a spatial lag h and a temporal lag u, and can be computed as

follows (Sherman, 2011):

γ(h, u) =
1

2
E(η(si, tj)− η(si + h, tj + u))2 (5.2.1)

where E denotes the mathematical expectation.

The empirical variogram is used as a first estimate of the variogram model, directly derived from

the sample data. Different covariance models are available in the R package gstat (Gräler et al.,

2016; Pebesma, 2004) to fit the empirical variogram, among which separable, product sum, metric,
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sum metric and simple sum metric covariance functions. Based on our CV results, we found an

advantage of using metric or sum metric models to interpolate precipitation data. Both metric and

sum metric models incorporate a spatio-temporal anisotropy (k) term, thereby more flexibility.

From a meteorological standpoint, the motivation behind modelling anisotropy is that rainfall

intensity can be affected by wind direction and geomorphological characteristics (Tomczak, 1998).

Model selection among these different covariance functions was achieved for each environment

to predict, based on 5-fold CV for temperature and humidity, and with leave-one-station-out for

precipitation. Interpolation errors were calculated using the root mean square error (RMSE) and

interpolation accuracy with the Pearson correlation between predicted and observed daily values

during the maize growing season. After selecting the covariance model with the lowest average

RMSE, the latter was used to predict in-field weather stations.

With respect to the land-based weather stations used for interpolation, the Global Historical Cli-

matology Network (GHCN) was chosen as an integrated database with a dense network for rainfall

and temperature data in the US, for which data can be easily retrieved via the rnoaa R package

(Chamberlain, 2021). In particular, we can recommend to use different sources of data in order

to impute daily rainfall; we can for example report a gain in cross-validated accuracy by including

the "Community Collaborative Rain, Hail and Snow" (also named CoCoRaHs network), which

is a network of volunteer weather observers, most likely because the spatiotemporal coverage of

precipitation data was thereby increased. It is essential to have enough data to accurately describe

the random phenomena and to fit a variogram model to the empirical variogram.

Figure 5.1: Average Pearson correlation coefficient and average root mean square error
(RMSE) map for minimum temperature (TMIN) calculated for the different interpolated
G2F environments, using 5-fold CV (complete random partition of all spatio-temporal
points in the dataset), for years 2014 and 2015.

Figures 5.1, 5.2 and 5.3 show the cross-validated estimates. Very reliable estimates (average r>0.9)

could be obtained by the kriging approach to predict temperature data, using a random 5-fold CV.
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Figure 5.2: Average Pearson correlation coefficient and average root mean square error
(RMSE) for maximum temperature (TMAX) calculated for the different interpolated G2F
environments, using 5-fold CV (complete random partition of all spatio-temporal points in
the dataset), for years 2014 and 2015.

Figure 5.3: Average Pearson correlation coefficient and average root mean square error
(RMSE) for precipitation (PRCP) calculated for the different interpolated G2F environ-
ments, using leave-one-location-out CV (LOOCV), for years 2014 and 2015.

For precipitation (Figure 5.3), the LOOCV was more challenging, because we wanted to assess the

validity of interpolated precipitation data when no data from the exact location was used to fit

the model. Overall, accuracy was satisfying and could be used as a proxy for the true rainfall data

fallen at the given field experiments.

However, the above-described methodology requires time and additional knowledge to implement

geostatistical models, and one could reasonably object that filling-in missing or erroneous values

using satellite-based data is much more straightforward (See General Introduction 1.3.1) (Grassini

et al., 2015). However, their accuracy to interpolate rainfall and relative humidity data, is regu-
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larly questioned, because they do not systematically take into account the topography (Prof. Dr.

Reimund P. Rötter, personal communication). Different studies for agro-climatic purposes have

investigated the quality of model-based precipitation results from the NASAPOWER database in

comparison with rainfall data from surface weather stations (SWS). Some of these publications

report significantly better performance of SWS data (Duarte and Sentelhas, 2020), while others

indicate encouraging results for NP data for crop yield simulation (Araghi et al., 2021; Monteiro

et al., 2018). Accordingly, a crucial question remains: does reducing the measurement error in the

environmental predictors (for example, using spatio-temporal kriging) really helps to obtain better

predictions of genotype performance in the field? This question could be addressed in further

studies.

5.2.2 Attempts at finding the best representation of the climatic data

with feature engineering

Adding the environmental dimension in GP frameworks is of utmost interest to better account for

the fact that environmental factors are intrinsically interwoven with gene expression, as they influ-

ence key physiological processes, for example ear and kernel development in maize. Nonetheless, as

we draw a parallel between genomic data and environmental data, similar issues need to be taken

care of in order to efficiently utilize environmental parameters in GP models.

First, reduction of the dimensionality of weather data is generally required before using the latter as

input in prediction models. By analogy with the use of haplotype block partitioning with marker

data, summarizing high-dimensional weather time series over time windows has been a widely

used strategy (Heslot et al., 2014; Millet et al., 2019; Rincent et al., 2019; Rogers and Holland,

2021). In chapter 2, we generated covariates for only three main maize growth stages, namely

vegetative, flowering and grain filling, which were hybrid-specific, and estimated based on the

truly observed silking dates of each hybrid. By combining each environmental factor to a specific

plant developmental stage, our hope was that informative covariates were generated by this feature

engineering step, in order to better reflect the impact of climatic variables on critical physiological

events. In contrast, in chapter 4, only environment-specific climatic covariates were generated,

using two methods proposed in the package learnMET (either by considering accumulated thermal

time or simple naive day-windows), that both neglected the genetic variation for earliness. This

was achieved to mimic the fact that genotype-specific flowering time data are often not available

for each environment in large-scale breeding programs.

To evaluate the impact of using hybrid-specific ECs versus using ECs that are common to all

hybrids grown in an environment and estimated solely based on accumulated thermal time, we ran

the dominance model M14, defined in chapter 4, but with the set of weather-based ECs used in

chapter 2, that also includes reference evapotranspiration as feature (the latter was not computed
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in chapter 4). As shown in Figure 5.4, an advantage of using hybrid-specific and more complex

ECs was demonstrated for most of the predicted environments. The average correlation of the

model employing hybrid-specific ECs was 0.466 versus 0.441 for the model tested in chapter 4.
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Figure 5.4: Comparison of the predictive ability in each environment of the G2F dataset
in the CV0 scheme (leave-one-environment-out) between the dominance model with inter-
actions between SNPs and ECs, where ECs (WECs_stages from chapter 4) are common to
all genotypes within an environment (on the x-axis), and the same model, where ECs are
genotype-specific (on the y-axis). Only weather-based ECs were used in the W matrix.
The line indicates the identity. Environment labels are precised in Table S4.1.

From a biological perspective, the impact of abiotic stress largely depends on the timing of major

developmental stages, such as flowering time, and stress covariates also need to account for crop-

specific temperature thresholds (Heslot et al., 2014). For instance, different studies reported that

high temperatures in maize at flowering time can have an impact on silk and tassel synchrony, and

can cause decrease of pollen viability and germination (Dong et al., 2021), which results in kernel

abortion, shortening of the duration of grain filling (Edreira and Otegui, 2012) and reduction of

grain yield (Dong et al., 2021; Hatfield and Prueger, 2015). Although some genotypes might be

more prone to tolerate heat stress, maize can generally flourish with mean temperatures between

28 and 32°C (Sánchez et al., 2014).

Some ML methods have also been applied with very little feature engineering. Exploiting the

same original 2014-2017 G2F dataset, Washburn et al. (2021) used gridded estimates of daily

weather parameters from DAYMET (Thornton et al., 2016), (e.g. precipitation, minimum and

maximum temperature, radiation, vapor pressure), in addition to management and extended soil

data, as input data for convolutional neural networks. Apart from cumulative thermal time, no

additional climatic-based variable was derived from the original weather or soil dataset, and all daily

weather data were provided as input data. Regarding model performance, an average predictive
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ability of 0.39 was obtained with a CV scheme named "GEM Practical" (genetic, environmental

and management holdout scenario), that was very similar to the CV0-Year prediction scheme we

implemented in chapter 2, for which our results indicate a weighted average predictive ability

of 0.377. Saliency maps were employed in this study to visualize the relative importance of the

features, and particular high feature importance scores were observed for precipitation in the first

weeks after planting, then diminishing but remaining high throughout the crop growing season.

Precipitation during vegetative stage was also an important predictor in GBDT models in chapter

2. Nonetheless, we argue that the use of a reasonable number of identified variables that quantify

potential environmental stresses (e.g. prolonged heat or drought stress), and are related to a

specific growth stage, is more useful to draw general conclusions and to design cultivar ideotypes.

An ideotype refers to the set of morphological and physiological phenotypic characteristics that

confer a crop a suitable adaptation for a given type of environment (Martre et al., 2015). For

example, Ly et al. (2017) used the water deficit, calculated based on the daily rainfall and potential

evapotranspiration, to better take into account the drought stress at flowering in reaction norm

models, and showed that the reaction norm to drought yielded prediction gains between 2.4% and

12.9%. The season average water stress associated with drought, calculated via the crop growth

model APSIM Holzworth et al. (2014), was systematically the top best ranked predictor based on

average normalized permutation importance for three test years in the study by Shahhosseini et al.

(2021). We also calculated the Penman-Monteith crop evapotranspiration from a reference crop

canopy (Allen et al., 1998), as well as water balance estimates with the precipitation and irrigation

data (chapter 2), and implemented the calculation of this variable in learnMET (chapter 3).

In chapter 4, a very different approach was assessed by using dynamic time warping as a nonlinear

method to quantify climatic similarity between two environments on the basis of their respective

daily weather time series. This time-series representation of the environments in the reaction norm

models demonstrated similar or slightly better predictive abilities than methods based on ECs, and

was useful to group environments. A limitation with how we carried out this method, though, is

that it does not allow to identify subsequently the weight of some particular environmental features

to explain grain yield. To this end, separate kernels for temperature or water patterns could be

considered.

On the other hand, reduction of data dimensionality by performing feature extraction on the

environmental component should probably be avoided. Rogers and Holland (2021) compared two

types of G×E models on the G2F dataset. One of the models proposed by these authors, named

PCA(Markers)*Env, used as input PCs derived from a marker dominance relationship matrix

and all environmental variables, while the other model, named PCA(Env)*Markers used as input

PCs obtained from the environmental data together with all dominance marker data. Rogers and

Holland (2021) reported better predictive abilities on average by using the first type of model,

and suggested that specific stress indicators could likely explain on their own a larger part of
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the phenotypic variation than other variables with almost null effect, as supported by the results

obtained by Ly et al. (2018) mentioned above, that outline the specific weight of drought at

flowering time in wheat, for instance. Utilizing as input features the principal components (PCs)

hinders readability and interpretability, compared to the use of original features.

5.2.3 How to identify the most relevant environmental variables?

Secondly, collinearity among weather and soil-based covariates is also a critical topic with high-

dimensional environmental datasets. As we predicted grain yield given climatic and soil variables,

we could observe substantial correlations among some of these variables (chapter 2, Supplemen-

tal Figure S2). Some of these correlations are completely expected, because some variables are

connected via mathematical formulas, such as the Penman-Monteith (FAO-56 method) reference

evapotranspiration (Allen et al., 1998), that is derived from solar radiation, air temperature, hu-

midity and wind daily data:

ET0 =
0.408∆(Rn −G) + γ 900uz(es−ea)

T+273

∆+ γ(1 + 0.34uz)
, (5.2.2)

where ET0 is the reference evapotranspiration rate (mm/day), Rn the net radiation flux (MJ/m2/day),

G the sensible heat flux into the soil (MJ/m2/day), T the mean air temperature (°C), es the mean

saturated vapor pressure (kPa) calculated using the daily minimum and maximum air tempera-

tures (°C), ea the actual vapour pressure derived from relative humidity data (kPa) - es-ea is noted

the saturation vapour pressure deficit (kPa) -, uz the wind speed at 2 m height (m/s), ∆ the slope

of the saturated vapor pressure curve (kPa/°C) and γ the psychrometric constant (kPa/°C).

Another example is between the different soil, silt and sand fractions, because the percentage of

each of these elements depends on the two others to explain the total soil texture. Other corre-

lated distributions are generally explained due to observed climatic phenomena, such as between

vapour pressure deficit and temperature. Thus, the question can be asked whether the presence

of correlated features affects predictions or variable importance ranking. In the original version of

chapter 2, we tested a recursive feature elimination for the two GBDT frameworks, by sequen-

tially removing the 10 least important environmental variables and refitting the model at each

iteration of feature selection (Kuhn et al., 2013). The relative contribution of each feature to the

fitted model is calculated by taking each feature’s contribution for each tree in the ensemble of

boosted trees. Results with a leave-one-year-out (CV0-year) scheme are presented in Figure 5.5.

Even though this method allows to reduce redundancy in the input space, it is computationally

burdensome and did not yield major improvements, likely because gradient boosted trees methods

are not strongly impacted by removal of correlated variables, as long as they use another feature

that carries similar information (Hastie et al., 2009).

Other techniques have also been employed to reduce the number of environmental variables to the

ones affecting the most severely the trait of interest. Rincent et al. (2019) used an environmental
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Figure 5.5: Within-environment average predictive abilities for two phenotypic traits (A)
grain yield and (B) plant height. For XGBoost and LightGBM, different sizes of best-
ranking environmental predictors were considered.
G, SNPs; E, trial label (environment); GxLoc, genotype-by-location interaction; GxY,
genotype-by-year interaction; GE, genotype-by-environment interaction; GW, interaction
between W and SNPs; Lon, longitude; Lat, latitude; Y, year, W, weather- and soil-based
covariates + Longitude + Latitude. The blue dots correspond to the weighted average pre-
dictive ability obtained across all predicted environments with the the leave-one-year-out
CV scheme for each model. The red dashed line indicates the weighted average predictive
ability of the benchmark model (linear random effect model, G+E).

covariance matrix WAMMI, derived from AMMI decomposition and therefore directly linked to

the G × E patterns, to extract a subset of covariates, that have a substantial effect on grain

yield, from the environmental covariance matrix W based on all computed ECs. Using a stepwise

forward procedure, an optimal subset of ECs, that yielded a maximum increase of correlation with

WAMMI, was thereby determined (called Wsel), and used for subsequent prediction problems.

Importantly, the authors tested this strategy both on a covariance matrix with a subset of ECs

defined using the full dataset, or for each TRN only. The latter strategy is preferable because

it prevents data leakage from the TST to the TRN, which can result in overestimated prediction

accuracy results. Yet, none of these two approaches did lead to any improvement in predictive

abilities, and the results were especially disappointing in the most challenging prediction scenarios

CV0 (decrease of predictive ability by 12%) and CV00 (decrease by 7%), with the method that only

uses the TRN for feature selection. This might be attributed to the fact that Rincent et al. (2019)

also applied the reaction norm models proposed by (Jarquín et al., 2014), that assume the same
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weight for each marker-EC interaction terms in the prediction model. In contrast, XGBoost and

LightGBM models that we used in chapter 2 could learn, based on decision trees, which SNPs-

derived PC-by-EC combinations were particularly relevant to obtain gains in predictive ability.

One further disadvantage of performing a decomposition of the G×E matrix with AMMI analyses

is that a common set of genotypes must be evaluated across all environments, and this is hardly

applicable when the trials are not connected with the same genotypes, as it is often the case in

early breeding stages (See Section 5.1). To account for realized genetic similarity based on marker

data, we would recommend an approach that uses marker effects to characterize environments and

to compute a distance between them, as proposed by Heslot et al. (2013), and that we also applied

in chapter 4 (Supplementary Figure S4.3). This approach also enables to identify QTL with

contrasting patterns effects across environments.

Prior to carrying out prediction analyses, Millet et al. (2019) selected three environmental indices

(night temperature and soil water potential during flowering time, and the amount of radiation

during the vegetative phase) based on their correlation with grain number of maize reference

hybrid. This approach can be described as a filter method in the ML terminology, because it

does not use for variable selection the same method that will be used for predictions. Li et al.

(2021) proposed an even more conservative feature selection approach by selecting only one EC-

growth period combination, that presented the highest correlation with environmental means for a

given phenotypic trait. Four environmental parameters were considered, all related to temperature

and/or day length, and the selected environmental index (among these four parameters at a given

day-window) was used in both GWAS and GP models. However, we would argue that additional

parameters need to be considered to better represent the environmental dimension.

When it comes to model interpretation with ML methods, separating out the individual effects of

collinear features on the target variable can cause some issues. Considering Random Forest, the

random choice of choosing one of the correlated variables will be performed for each tree, because

each tree is independently built from others (random bagging procedure). On the other hand,

XGBoost algorithm (Chen et al., 2015) offers a more reliable interpretation of feature importance,

due to the fact that this algorithm learns the relationship between a feature and the outcome in

the first iteration, and subsequently use it in the next iterations (fundamental principles of boosted

trees described in General Introduction, Section 1.3.2), rather than randomly picking one of

the correlated features in each tree like RF. Consequently, all of the variable importance should

be assigned to the feature having a major role to explain the outcome, although this information

should be examined together with statistical correlations between features.

5.2.4 Relevance of soil and management data

In chapter 2, we identified the organic matter content as the third most important predictor

explaining grain yield across environments, directly followed by the proportion of clay. We also
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noted that covariates related to soil texture were the top factors to predict the trait plant height

(chapter 2). The significance of these soil factors was also emphasized in two other studies

harnessing the G2F dataset. Rogers et al. (2021) established a factor analysis of environmental

data, and found significant negative loadings associated with both sandy and clay proportions for

the trait grain yield. In the study of Washburn et al. (2021), the soil-based factors represented

about 35% of total importance score, before genetic and weather-based factors, when historical

data were additionally used in model training. Organic matter content plays an important role

in ensuring adequate soil functionality (e.g. coping with changes in soil acidity) and soil fertility

(Tiessen et al., 1994). Although it is not possible to draw from our results direct causalities, it is

also an established fact in agronomy that soils with higher clay content are more susceptible to

compaction than other soil types in case of heavy precipitation and can result in decreased yields

(Soinne et al., 2021).

Figure 5.6: Bar plot of the sum of gain scores (model-specific variable importance) by
covariate category. The sum of all variable importance scores across predictors is equal to
1.

Summarizing into main categories (weather and irrigation, soil, and genetics), as displayed in

Figure 5.6, we found somewhat similar scores to the saliency map scores obtained by Washburn

et al. (2021) for soil covariates (≈ 11.5%), when no historical data was used. As proposed by

Washburn et al. (2021), other soil characteristics could be relevant to include, such as pH (acid soils

are generally associated with lower productivity), soil electrical conductivity, which is an indicator

of nutrient availability and of water capacity, or amounts of soil nutrient (nitrogen, phosphorus,

potassium). Irrigation was used in their study as a factor, while irrigation data were integrated in

our study by directly merging these data with the daily amount of rainfall. Our motivation was

to favour the use of quantitative variables, and to avoid mixed data types in our analyses.

Nonlinear interactions between soil types and precipitation, explicitly modelled with an interaction

Gaussian kernel, yielded the largest kernel weights associated with G×E in a study with barley in

Finland (Gillberg et al., 2019). From an agronomic perspective, interactions between management
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factors related to water supply and soil textures have regularly been examined (Fang and Su, 2019;

Jalota et al., 2006), and unambiguously adding these interaction components in the prediction

models, as implemented by Gillberg et al. (2019), should be considered in further studies. One

limit to the feature importance based on gain (displayed in chapter 2, Figure 2.6 and in Figure

5.6), is that this measure only indicates the general importance of each individual predictor variable,

with interwoven interactions involving this variable. Getting a better level of comprehension of the

two-way and three-way interactions, for instance using the Friedman’s H-statistic (Friedman and

Popescu, 2008) should be considered in further studies.

Management data were not included our study, but some factors were strongly associated with

grain yield in the study of Washburn et al. (2021), like plant density. Fertilization levels, crop

used as precedent, type of soil preparation, disease pressure, sowing time could also be encoded

and integrated in ML models. In a study on crop yield prediction, Shahhosseini et al. (2021)

used the simulation crop model APSIM (Holzworth et al., 2014) to generate informative features,

that take into account nitrogen limitation. Among others, the season average nitrogen stress (a

crop-based APSIM variable) and the nitrogen loss due to leaching and denitrification (soil-based

APSIM variable) were integrated in the ML models as input data. Ly et al. (2018) also pointed

out the utility of exploiting information on the amounts of nitrogen fertilization and to consider

crop nitrogen dynamics by calculating a nitrogen nutrition index (Justes et al., 1994; Lemaire and

Meynard, 1997). However, it should be noted that, in the latter study, accuracy gains explained by

considering nitrogen stress were very modest (up to 2.4% only) Ly et al. (2018), compared to those

obtained by including drought-related stress variables (that we also considered in our analyses). In

addition, the accurate estimation of this index in the context of multi-environment plant breeding

trials, as proposed by Ly et al. (2018), requires detailed trial information (soil depth, organic

and inorganic matter content, precise N management data) and phenotypic data (crop nitrogen

at different stages for each genotype). In this thesis, we did not apply sophisticated crop models

to obtain more complex crop physiological features (See General Introduction, Section 1.3.2

about advantages of crop models), due to the lack or incompleteness of the management data in

the original metadata file. Besides, most crop growth models need reference genotypic parameters,

and their implementation in the context of the G2F hybrid breeding trials, where a large number

of unique single-crosses (> 2,000) were evaluated, was not trivial.
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5.3 Impact of genetic and environmental similarity across

prediction models

5.3.1 Modeling of genetic effects in hybrid predictions

Previous studies have investigated how the genetic relationships between individuals in the TRN

and TST impact predictive abilities of GP models (Auinger et al., 2016; Bernal-Vasquez et al.,

2017; Habier et al., 2007; Riedelsheimer et al., 2013). In the context of hybrid breeding, including

in the TRN crosses with the two parents of hybrids of the TST (also referred as T2 CV scheme

(Technow et al., 2014)) was shown to yield better predictive abilities (Riedelsheimer et al., 2013;

Technow et al., 2014; Westhues et al., 2017), most likely because the general combining ability

of these lines can be learned from these data. In our studies, we did not explicitly model the

general combining abilities (GCA) of the parental lines and the specific combining ability of the

cross (SCA), but instead directly used in silico hybrid genotype data and derived from it either

an additive relationship matrix (for reaction norm models) chapter 2, or both an additive and

dominance relationship matrices chapter 4. Examining G2F field trials from 2014-2015, Jarquin

et al. (2021) found an average predictive ability of 0.45 with the model that included GCA and

SCA, as well as interactions with the environment label covariate, in the CV0 prediction scheme.

Although results are not directly comparable because we also included 2016 and 2017 phenotypic

data, results from chapter 4 (Table 4.3) with the model A + D + E + A × E + D × E, with the

same CV scheme, show a very similar average predictive ability (r ≈ 0.455), and a gain of accuracy

was systematically observed with models including dominance effects. This can be explained by

the within-heterotic group crosses tested in the G2F experiments (See chapter 4, Section 4.5.1).

In future studies with ML algorithms for hybrid prediction, we would suggest to evaluate models

that either directly employ as input features the dominance marker matrix, or that use the first

PCs obtained by eigenvalue decomposition of this matrix.

Additionally, our approach in chapter 2 for the GBDT algorithms is based on using PCs from the

marker matrix to capture genetic relationships among maize hybrids. This implies that obtained

predictive abilities are not due to linkage disequilibrium between markers and causative QTL

for grain yield or plant height, as it should ideally be the case in GP. The reason behind this

methodology was the objective of reducing the computational load, of avoiding collinearity issues

and to obtain faster results than by using the complete set of SNPs data. It should be also noted

that: (i) the predictive models were assessed in various CV schemes, (ii) the number of phenotypic

observations was large, (iii) that the environmental component was expected to account for a much

larger proportion of the phenotypic variation, and finally, (iv) a rigorous tuning of hyperparameters

for all training-test splits was achieved; thus, opting for a dimensionality reduction technique

appeared reasonable, and was also proposed by another study with the G2F data (Washburn
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et al., 2021). Besides, classical GP prediction methods were also shown to be sensitive to realized

genetic relationships among individuals, such as RR-BLUP (Habier et al., 2013). Nonetheless,

these methods cannot account for some large effects QTL, whose effects might be sensitive to

specific environmental conditions (e.g. the Ppd-D1 main photoperiod sensitivity locus in winter

wheat (Heslot et al., 2014)). It would be of interest to investigate machine learning models, such

as stacked ensemble, that integrate as explanatory variables both markers associated with known

QTL (e.g. from previous GWAS studies) along with the PCs representing the main genetic effects.

Further, ML methods have already shown their potential to detect interactions between SNPs

(epistatic effects) (Azodi et al., 2019; Pook et al., 2020; Zingaretti et al., 2020). The package

learnMET would be convenient to study additional traits in other species, as it allows to use

either SNPs or PCs as predictor variables for a range of ML prediction models, among which

gradient boosting, random forest, stacked generalization ensemble models and deep learning models

(chapter 3).

5.3.2 Importance of relatedness between TRN and TST at the environ-

mental level

In our studies, CV0 schemes consisted of either leaving one year (chapter 2), one location

(chapter 2) or one environment (chapter 4) out of the TRN. Among these, predictions for

a new year and for new hybrids yielded the lowest predictive abilities, which was consistent with

the results of other studies using the same CV scheme with the G2F data (Jarquin et al., 2021;

Rogers and Holland, 2021; Washburn et al., 2021). Since the weather represents the most unpre-

dictable component among environmental predictors, these results were expected. Extrapolation,

i.e. making predictions for instances in the TST that lie outside the range of values found in the

TRN, should in principle be avoided (De Los Campos et al., 2020). To this end, sampling addi-

tional years in the given set of locations, thereby augmenting the TRN in order to cover a wide

range of environmental variation for all predictors used, would likely help generating predictions

for new environments. Especially machine learning approaches benefit from data augmentation,

generally associated in MET data with an improved coverage of potential weather conditions: we

could notice in chapter 3 that the performance of the stacked regression model and of XGBoost

improved as additional years were used in the TRN set in the forward prediction scenario.

In chapter 2 and chapter 4, we could observe that some environments, characterized by un-

common environmental conditions (e.g. West Texas, dryer weather) compared to the remaining

environments, and only sparsely represented in the training set, were not well predicted with GP

models including ECs. Widener et al. (2021) also reported negative or lower prediction accuracies

with a G × E-GBLUP model when predicting an extreme environment, and outlined the potential

gains that could be achieved by using a more diverse training set. As demonstrated recently by

various studies (De Los Campos et al., 2020; Shahhosseini et al., 2020, 2021; Shook et al., 2021;
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Washburn et al., 2021), historical data are relevant to enable ML models to really learn interac-

tions among the different genetic, environmental and management components, although extreme

weather years generally remain complicated to predict, as reported by Shahhosseini et al. (2021).

On the other hand, CV2, implemented in (chapter 4), showed the highest predictive abilities,

similar to previous studies (Costa-Neto et al., 2021; Jarquín et al., 2014; Jarquin et al., 2021;

Rogers and Holland, 2021), which indicates that when both genotypes and environments from

the TST are also included in the TRN, G × E information is well captured by reaction norm

models. However, this CV scheme already enables a more efficient allocation of resources, because

each genotype does not need to be tested in each environment, but can be predicted by using

information from genetically related individuals and correlated environments.

5.4 Outlook and future perspectives

5.4.1 Breeding for target environments?

A very large part of the environmental variation is due to year-to-year weather variability, as

shown in chapter 4, that are much less predictable than soil or management factors. Evaluating

genotypes across multiple years would generate estimates of genotype performance across a larger

range of environmental conditions, but also implies more expensive field trials experiments and

more time to develop a variety. To develop varieties with a range of various sensitivities to a

given environmental stress, it would still be necessary to perform field experiments to generate

representative training set data. However, the knowledge generated by data-driven analyses of the

form of the phenotypic response to the most critical factors (for instance, heat stress during flow-

ering time, as observed in chapter 2, Figure 2.7), could help to further streamline the allocation

of resources in multi-environment trials. Concretely, when this phenotypic response is nonlinear,

selecting adequately testing environments to better characterize the steepness, key thresholds and

possible plateau values for different groups of genotypes could be a meaningful phenotyping strat-

egy. Defining sufficiently dissimilar environments can be achieved using the package learnMET

(chapter 3), that allows to incorporate soil or quantified management data provided by the user

and to retrieve satellite-based weather data. In the first function, the package provides plots that

allows to assess the similarity among environments using soil and weather data separately, or both

types of data jointly.

The machine learning interpretation tools, briefly introduced in chapter 3, could theoretically be

employed to study how different groups of genotypes (for instance from different families of line

crosses) are impacted by specific climatic stress variables across many years. For instance, the

accumulated local effects plots could be analyzed with various training sets consisting of different

groups of selection candidates, to investigate with a data-driven approach whether some patterns
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between abiotic stress resilience and genetic groups are identifiable. If the average yield prediction

for a given germplasm is only moderately affected at critical environmental indices related to

heat or drought stresses, it can indicate that the developed genotypes might be promising for

environments that are likely to experience these stresses in future years. General adaptation traits

of some germplasm for certain regions should nonetheless be taken into account, such as photo-

thermal units requirement. It can also be envisaged for soil or management factors, in order to gain

insights into the sensitivity of genotypes to specific soil types, for example. Once again, we should

stress the importance of large training set sizes to harness the full potential of these modeling

techniques using field data.

5.4.2 Exploiting historical data to examine yield stability of cultivars

Recently, the Finlay-Wilkinson (FW) model has been revisited by De Los Campos et al. (2020)

with the utilization of historical data. The authors performed simulations of genotype performance

over 16 years and 16 locations, where locations were sampled in order to represent the main

wheat-producing regions in France. This approach allows to consider a broader range of past

environmental conditions, rather than only those associated with real past field trials for a few

years. From the 143 million simulated grain yield data, De Los Campos et al. (2020), for 28 wheat

cultivars, genotype-specific intercepts (i.e. general adaptation) and slopes (level of sensitivity to

the quality of the environment) (See General Introduction 1.2.2) were consequently calculated,

which can help to determine genotypes that appear the most stable at each site, after smoothing

out G × E effects across many years. learnMET (chapter 3) could be applied with the same

purpose, provided that the training data size is sufficient to leverage machine learning’s ability

to learn inherently nonlinear interactions. The package allows to retrieve weather data from past

years, and predictions with nonlinear algorithms could be obtained for a set of genotypes that has

already been grown in a certain region, but for additional years. Thereafter, stability analyses

could also be conducted.

5.4.3 Predicting genotype performance in future environments

As highlighted by Trnka et al. (2014), multiple adverse climatic events (e.g. frost stress, late frost,

water logging, drought during sowing-anthesis stage, drought during anthesis-maturity stage, heat

stress at flowering stage, heat stress at grain fill stage) will increase in frequency in Europe due to

climate change. Additionally, the global objective of reducing fertilizer usage by 20% in 2030 in

the European Union involves to better take into account nitrogen use efficiency of the developed

varieties, and its interaction with weather factors such as precipitation. To account for future

potential environmental conditions, a grid of simulated weather time series could be computed by

a climate prediction algorithm. Practically, the very popular stochastic weather generator (LARS-

WG) (Semenov and Barrow, 1997), has been used in many publications to downscale global climate
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models to a smaller resolution, for instance at regional scales (Hashmi et al., 2011; Hassan et al.,

2014; Zubaidi et al., 2019). By analyzing the past and future weather time series, the similarity

between historical and simulated environments could be estimated using dynamic time warping,

as suggested by Netzel and Stepinski (2016). Coupled with historical field trial data, these climate

projections could be used to predict in silico the performance of the genotypes, with the objective

of making better decisions on the most promising varieties to test in field trials.

5.4.4 Potential of phenomics to improve the identification of genotype-

specific timing of phenological stages

High-throughput phenotyping technologies can provide efficient solutions to generate in the future

larger amounts of plant training phenotypic data, required to train robust predictive models (Yang

et al., 2020). In addition, these techniques enable to obtain regular measurements throughout the

crop growing season, for instance to precisely characterize the timing of important growth stages,

as proposed by Roth et al. (2021) with a modern field phenotyping platform. As we explained

earlier, knowing the precise dates of some key phenological events is relevant to obtain accurate

values of genotype-specific EC for statistical modeling purposes, and to investigate stress tolerance

or avoidance (e.g. early maturing varieties) patterns at development stages that are the most

influential on grain yield component traits.

In our studies, we focused on the final integrated trait grain yield. However, examining yield

component traits, such as grain number (Millet et al., 2019), or other intermediate phenotypes

that could be massively and efficiently generated by the means of high-throughput phenotyping

methods, would be of high interest to better understand the extend of G × E for these specific

phenotypic characteristics

Besides, remote sensing data acquired from unmanned aerial vehicles (UAV) can also provide

means to identify development stages, as carried out recently in a study with maize (Herrmann

et al., 2020), for which high quality spectral data were employed to determine plant phenological

stages, as well as irrigation treatments, using drone-mounted superspectral camera.
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Summary

In plant breeding, genotype-by-environment (G × E) interactions represent a substantial source of

variation underlying complex phenotypic traits. A better understanding of G × E interactions can

be beneficial to design varieties specifically adapted to certain types of environmental conditions, as

well as to optimize the set of environments to include in the training set used in genomic selection.

A caveat of modeling G × E interactions with only year-location labels is the impracticality of

making predictions for new environments that have never been tested, such as potential future

weather conditions. Nowadays, a large wealth of information, such as large volumes of high-

throughput environmental, genomic and phenotypic data, can be jointly analyzed to estimate

the sensitivity of the phenotypic response of selection candidates to a set of weather and soil

conditions. Numerous statistical methods, mostly based on mixed models, have been proposed

for integrating these large datasets and to disentangle G × E interactions. However, they rely on

strong statistical assumptions, that cannot identify nonlinear responses of genes to environmental

conditions. Machine learning approaches are of utmost interest to harness these observational

datasets, in particular because they can handle mixed data formats, capture nonlinear and linear

interactions and cope intrinsically with irrelevant input variables.

The main objectives of this dissertation were therefore to examine machine learning methods for (i)

enhancement of prediction performance using genomic, environmental, and management data, and

for (ii) better understanding of the environmental factors impacting predictive abilities of complex

agronomic traits. In addition, specific pitfalls and challenges associated with machine learning

methods, such as optimization of hyperparameters and utilization of regularization methods, were

studied.

In chapter 1, we give a general introduction to the topic of G × E interactions and of the collection

and processing of environmental data. We also present some general characteristics of machine

learning models for genomic prediction in the context of multi-environment trials (METs).

In chapter 2, we examine the predictive ability of gradient boosted tree algorithms, a relatively

recent machine learning framework, against reaction norm models, for environment-specific pre-

dictions. The data we analyzed consist of multi-environment trials from 32 locations across the
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United States and Canada from 2014 to 2017, in which maize hybrids were phenotyped for various

traits like plant height and grain yield. Soil, management (irrigation information) and weather data

were used in prediction models in addition to molecular genome-wide marker data. In particular,

genotype-specific environmental covariates were used to summarize daily weather data, to take into

account variability in earliness. Results demonstrate an improvement of predictive ability using

nonlinear gradient boosting frameworks harnessing environmental data, for the trait grain yield, in

a challenging cross-validation scheme aiming at predicting new genotypes in a new year. Modeling

explicitly G × E interactions yielded a gain in predictive ability for the class of random effects

models. The effect of environmental factors on grain yield was also investigated, and those related

to heat stress, precipitation and soil fertility were ranking among the most important variables.

In chapter 3, we describe an R package (learnMET ) that provides a user-friendly pipeline to

evaluate machine learning algorithms for prediction of genotype performance in different multi-

environment prediction scenarios. Weather data can be retrieved from a public satellite-based

platform (NASA POWER) or derived from field weather stations data. Well-known relationships in

ecophysiology (vapour pressure deficit, reference evapotranspiration) and abiotic stress covariates

are computed based on the available climate data. Additionally, various methods are proposed

to summarize the daily climate data into temporal window sizes, some of which attempting to

predict the timing of important developmental stages based on accumulated thermal time. Different

evaluation metrics are provided as output when a cross-validation scheme is evaluated, to allow

users to decide on the best model to use with their own data. We assessed some of the proposed

prediction tools against a parametric benchmark method. Further, the fitted model can be used

to gain insights into the relative contribution of different environmental or genetic factors, as we

implemented gateways to other expert R packages for machine learning model interpretation.

In chapter 4, a new method is introduced to build environmental similarity matrices using a

nonlinear distance measure, named Dynamic Time Warping (DTW), calculated between weather

time series characterizing the crop growing season in each environment. This metric was used

to cluster crop growing events and applied to two MET datasets (the Genomes to Fields dataset

from chapter 2, and a wheat dataset from CIMMYT). Reaction norm models defined in a similar

manner to the models implemented in chapter 2 were tested (i) with a similarity matrix based on

environmental covariates, and (ii) with a similarity matrix derived from DTW distance. According

to our results, the latter explained a larger part of the environmental variance than the former,

and better captured additive-by-environment and dominance-by-environment interaction effects.

Therefore, we encourage further exploring DTW distance as an effective and simple approach to

quantify similarity between time series, which could be applied to other types of datasets, such as

time series measurements with high-throughput phenotyping data.

Finally, in chapter 5, we discuss limitations and possibilities related to these studies. In particular,

special attention should be given to environmental data quality, to the design of the training set
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data in order to avoid extrapolation, and to preprocessing techniques for improving predictive

performance.
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Zusammenfassung

In der Pflanzenzüchtung repräsentieren Genotyp-Umwelt-Interaktionen (G × E) eine bedeutende

Quelle von Variation in komplexen phänotypischen Merkmalen. Ein besseres Verständnis von G

× E Interaktionen kann einen Mehrwert für die Selektion von Sorten bieten, die für bestimmte

Umweltbedingungen angepasst sind. Zusätzlich lassen sich diese Erkenntnisse nutzen, um die

Auswahl der Umwelten, die das Training Set für genomische Selektion bilden, zu optimieren. Ein

Nachteil der Modellierung von G × E Interaktionen, die lediglich Informationen zur Klassifizierung

von Jahr und Ort nutzt, ist, dass es nahezu unmöglich ist Vorhersagen für bisher ungeteste Umwel-

ten, wie beispielweise zukünftige Wetterverhältnisse, zu treffen. Heutzutage lassen sich große Men-

gen an Umwelt-, genomischen und phänotypischen Daten gemeinsam auswerten, um die Sensitivität

des Phänotyps von Selektionskandidaten gegenüber Wetter- und Bodenverhältnissen zu schätzen.

Zahlreiche statistische Methoden, die häufig auf gemischten Modellen basieren, wurden bisher

auf ihre Eignung überprüft große Datensätze gemeinsam auszuwerten und G × E Interaktionen

aufzuschlüsseln. Diese Ansätze basieren allerdings auf statistischen Annahmen, die es verbieten,

nicht-lineare Zusammenhänge zwischen Genen und Umweltbedingungen zu identifizieren. Ansätze

aus der Domäne des maschinellen Lernens sind hier von großem Interesse, da sie es ermöglichen

Daten mit unterschiedlicher Kodierung auszuwerten, und dabei sowohl lineare als auch nicht-lineare

Interaktionen zu berücksichtigen und automatisch mit uninformativen Variablen umzugehen.

Die Hauptziele dieser Arbeit bestehen daher darin Ansätze des maschinellen Lernens dahinge-

hend zu überprüfen, ob sie (i) die Vorhersageleistung mittels genomischer, Umwelt- und Man-

agementdaten verbessern können und (ii) es ermöglichen ein verbessertes Verständnis darüber zu

erlangen welche Umweltfaktoren die Vorhersagegenauigkeit komplexer, agronomischer Merkmale

beeinflussen. Zusätzlich wollten wir untersuchen, wie sich beispielsweise die Optimierung von

Hyperparametern sowie die Nutzung von Regulierungsmethoden, welche bei der Anwendung von

Algorithmen im Bereich maschinelles Lernen berücksichtigt werden müssen, auf die Vorhersage der

Merkmale auswirkt.

Das erste Kapitel liefert eine allgemeine Einleitung der G x E Thematik sowie der Erfassung und

Verarbeitung von Umweldaten. Zusätzlich präsentieren wir allgemeine Eigenchaften von Mod-

ellen der Domäne maschinellen Lernens im Zusammenhang mit genomischen Vorhersagen vor dem
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Hintergrund von mehrortigen Versuchen (METs).

Im zweiten Kapitel untersuchen wir die Fähigkeit von "gradient-boosted tree"-Algorithmen, im

Vergleich mit Reaktionsnormmodellen, umweltspezifische Vorhersagen zu treffen. Die untersuchten

Daten umfassen phänotypische Messungen diverser Phänotypen von Maishybriden, darunter Pflanzen-

höhe und Kornertrag, welche in mehrortigen Versuchen erfasst wurden. Dieser Datensatz beinhaltet

Messungen an 32 Orten, die über die gesamten USA und Kanada verteilt sind, und in den Jahren

2014 bis 2017 erhoben wurden. Zusätzlich wurden Bodenparameter, Managementinformationen

(beispielsweise Bewässerungsdaten) Wetterdaten und genomische Markerdaten für die Vorhersage-

modelle verwendet. Im Besonderen wurden genotypspezifische Umwelt-Kovariablen eingesetzt,

um tägliche Wetterdaten zusammenzufassen und damit Unterschiede in der Reife von Genotypen

berücksichtigen zu können. Unsere Ergebnisse zeigen einen Mehrwert nicht-linearer "gradient-

boosting"-Algorithmen bei der Nutzung von Umweltdaten zur Vorhersage des Merkmals Korner-

trag für Genotyp-Umwelt-Kombinationen, die bisher nicht experimentell untersucht wurden. Die

explizite Modellierung von G x E Interaktionen erzielte einen Zugewinn an Vorhersagegenauigkeit

für die Klasse von Modellen mit zufälligen Effekten. Der Einfluss von Umweltfaktoren auf das

Merkmal Kornertrag wurde ebenfalls untersucht. Insbesondere Hitzestress, Niederschlag und Bo-

denfruchtbarkeit konnten in diesem Zusammenhang als Faktoren mit starkem Einfluss auf den

Kornertrag identifiziert werden.

Im dritten Kapitel beschreiben wir ein R-Paket (learnMET ) welches eine nutzerfreundliche Zusam-

menstellung von Algorithmen des maschinellen Lernens bietet, um unterschiedliche Konstellatio-

nen von Genotypen und mehrortigen Versuchen, hinsichtlich der Vorhersagefähigkeit genotypis-

cher Leistung, zu untersuchen. Zu diesem Zweck können Wetterdaten automatisch von einer öf-

fentlichen, satellitenbasierten Plattform (NASA POWER) bezogen werden oder, alternativ, extern

ermittelt und integriert werden, sofern Daten von Wetterstationen vorliegen. Allgemein bekannte

ökophysiologische Beziehungen (z.B. Dampfdruckdefizite und Evapotranspiration) sowie abiotische

Stresskovariablen werden, basierend auf den vorliegenden Klimadaten, berechnet. Zusätzlich schla-

gen wir unterschiedliche Methoden zur Aggregierung der täglichen Klimadaten in größere, zeitliche

Fenster vor; darunter Ansätze zur Vorhersage des Zeitpunkts wichtiger Entwicklungsstadien auf

der Grundlage akkumulierter Wärmeeinheiten. Im Zuge einer Kreuzvalidierung liefert die Software

den Nutzern unterschiedliche Metriken zur Bewertung der Eignung unterschiedlicher Modelle für

ihre Daten. Zur Validierung unserer Ansätze haben wir diese mit weitverbreiteten, parametrischen

Modellen verglichen. Neben unseren eigenen Ansätzen haben wir explizit eine Integration anderer

Softwarepakete verfolgt, um die Erfassung des relativen Beitrags unterschiedlicher genetischer oder

Umweltfaktoren zu ermöglichen ohne sich mit der Syntax diese Pakete vertraut machen zu müssen.

In Kapitel Vier stellen wir eine neue Methode zur Erstellung von Ähnlichkeitsmatrizen auf der

Grundlage von Umweltdaten vor. Diese basieren auf einer nicht-linearen Distanzmetrik, welche als

Dynamic Time Warping (DTW) bezeichnet wird, und mittels einer Zeitreihenanalyse berechnet
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wird, welche charakteristisch für die Wachtumsperiode einer Kulturart in einer gegebenen Umwelt

ist. Diese Metrik wurde verwendet um bestimmte Entwicklungsstadien zu gruppieren und auf

zwei mehrortige Datensätze angewandt (Genomes to Fields Datensatz aus dem zweiten Kapitel

und Weizendaten des CIMMYT). In einem ersten Schritt wurden Reaktionsnormmodelle mit einer

Ähnlichkeitsmatrix, auf der Basis von Umweltkovariablen, geprüft. In einem zweiten Schritt wur-

den Rekationsnormmodelle mit einer Ähnlichkeitsmatrix, die mittels DTW-Distanz erstellt wurde,

verwendet. Unsere Ergebnisse zeigen, dass DTW-basierte Ähnlichkeitsmatrizen einen größeren

Anteil der Umweltvarianz erklären konnten als der alternative Ansatz und zusätzlich vorteilhaft

sind um additive und dominante Interaktionseffekte zwischen Genotyp und Umwelt zu model-

lieren. Daher regen wir an DTW-Distanz, als effektiven und simplen Ansatz zur Quantifizierung

der Ähnlichkeit zwischen Zeitreihen, auf andere Datensätze, wie beispielsweise Zeitreihenanalysen

von phänotypischen Daten aus Hochdurchsatzverfahren, anzuwenden.

Abschließend diskutieren wir in der General Discussion die Möglichkeiten und Grenzen unserer

bisherigen Studien. Ein Hauptaugenmerk sollte dabei auf die Qualität von Umweltvariablen, auf

das Design des Traingsdatensatzes zur Vermeidung von Extrapolation sowie auf Datenaufbere-

itungsmethoden zur Verbesserung der Vorhersageleistung gelegt werden.
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