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Abstract

We consider a moving free boundary problem where a diffusion equation posed on
an evolving domain bounded by a smooth surface is coupled with a mean curvature
flow of the bounding surface. The evolution velocity of the geometry is not a priori
known but has to be determined, as a part of the problem, by the solution to the
diffusion equation and the mean curvature vector of the surface. We develop and
analyze new geometrically unfitted discretization methods for solving the diffusion
equation and a geometric equation of the mean curvature vector at provable high orders
of accuracy. We test the methods with numerical experiments which show convergence
rates predicted by our a priori error estimates. With a level set function implicitly
representing the geometry, we solve an advection equation of the level set domain
transported by a velocity field extended from the surface. To this end, we propose
two velocity extension methods and take advantage of a high-order numerical method
for hyperbolic conservation laws. By unfolding the geometrically coupled bulk-surface
model into three sub-models solved using the methods, we conduct proof-of-concept
numerical simulations of this solution-curvature-driven moving free boundary problem.





Table of contents

List of figures xi

List of tables xvii

1 Introduction 1
1.1 Genesis of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 PDEs Coupled with Geometric Flow 13
2.1 Geometric Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Introduction to mean curvature flow . . . . . . . . . . . . . . . 15
2.1.2 Oriented and compact hypersurface . . . . . . . . . . . . . . . . 16
2.1.3 Signed distance function . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Geometric equation of mean curvature . . . . . . . . . . . . . . 20
2.1.5 Theory of mean curvature flow . . . . . . . . . . . . . . . . . . . 22

2.2 Level Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Level set function . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Level set transport equation . . . . . . . . . . . . . . . . . . . . 27

2.3 PDEs on Evolving Domains . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Advection-diffusion equation . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Two-phase interface problem . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Homogeneous diffusion equation . . . . . . . . . . . . . . . . . . 34

2.4 The Coupled Geometry-Physics System of PDEs . . . . . . . . . . . . . 35

3 Numerical PDEs on Time-dependent Domains 41
3.1 Eulerian Finite Element Method . . . . . . . . . . . . . . . . . . . . . . 42



viii Table of contents

3.1.1 Preliminaries and nomenclature . . . . . . . . . . . . . . . . . . 43
3.1.2 Variational formulation of low-order discretizations . . . . . . . 49
3.1.3 Introduction to isoparametric mapping . . . . . . . . . . . . . . 52
3.1.4 Transfer operator between mapped meshes . . . . . . . . . . . . 57
3.1.5 Isoparametric discretization in space . . . . . . . . . . . . . . . 59
3.1.6 BDF discretization in time . . . . . . . . . . . . . . . . . . . . . 60

3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 Analysis of the mesh transfer operator . . . . . . . . . . . . . . 62
3.2.2 Error splitting equation . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Consistency estimates . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Interpolation estimates . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.5 Ghost penalty and tuple norm estimates . . . . . . . . . . . . . 74
3.2.6 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.7 A priori error estimate . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 Kite transformation . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2 Two-phase mass transport . . . . . . . . . . . . . . . . . . . . . 83
3.3.3 Topological changes . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Discrete Mean Curvature on Hypersurfaces 89
4.1 Stabilized Isoparametric Trace Finite Element Method . . . . . . . . . 90

4.1.1 Preliminaries and nomenclature . . . . . . . . . . . . . . . . . . 90
4.1.2 Variational formulations . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Extension and projections . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Mapping between tangent spaces . . . . . . . . . . . . . . . . . 101
4.2.3 Coordinate embedding . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.4 Trace and inverse estimates . . . . . . . . . . . . . . . . . . . . 105
4.2.5 Interpolation estimates . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.6 Consistency estimates . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.7 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.8 A priori error estimate . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.1 Unit circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.2 Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



Table of contents ix

5 Evolution of Level Set Geometry 133
5.1 Extension of Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Normal diffusion extension method . . . . . . . . . . . . . . . . 134
5.1.2 Ghost penalty extension method . . . . . . . . . . . . . . . . . . 136

5.2 Runge–Kutta Discontinuous Galerkin Methods . . . . . . . . . . . . . . 138
5.2.1 Discontinuous Galerkin discretization in space . . . . . . . . . . 138
5.2.2 Explicit Runge–Kutta discretization in time . . . . . . . . . . . 140
5.2.3 Error analysis and numerical experiment . . . . . . . . . . . . . 141

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Computation of the Geometrically Coupled Problem 151
6.1 The algorithms for the coupled system . . . . . . . . . . . . . . . . . . 152

6.1.1 Weak coupling algorithm . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 Strong coupling algorithm . . . . . . . . . . . . . . . . . . . . . 154
6.1.3 Mesh transfer operator . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.1 Mean curvature flow of shrinking circle . . . . . . . . . . . . . . 156
6.2.2 Osmosis free boundary problem . . . . . . . . . . . . . . . . . . 158

7 Conclusion and Outlook 163
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Open Problems and Future Work . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 167





List of figures

1.1 Osmotic cell swelling problem at four time instances t0, t1, t2, and t3. 1
1.2 The diffusion equation on an evolving domain with no-flux boundary

condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The geometric equation of mean curvature and the velocity on the surface. 5
1.4 A transport equation of the level set domain with extended velocity field. 6

2.1 A sketch of the signed distance function that demonstrates the distance
values of 0 (where two circles represent the position of Γ) and 2. . . . . 19

2.2 A plane curve converges towards a circle under the curve-shortening flow.
Inner curves (in lighter color) shrink from the outer curves at earlier
time. Time steps between curves may not be uniform. Source: [45] . . 24

2.3 An illustration of the level set method. First row: An evolving domain
separates into two subdomains with developing a singularity and a
topological change. Second row: The globally defined level set function
intersects with the zero plane that represents the domain(s). Source: [44] 26

2.4 The problem of advection-diffusion equation posed on single evolving
domain. The domain Ω(t) is moving from the green region to the red
region by a velocity field w. The no-flux boundary condition imposed
on the boundary of domain (in purple) guarantees the conservation of
the physical quantity u. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 A sketch of the two-phase interface problem. The disjoint subdomains
Ω1 and Ω2 are separated by the sharp interface Γ, which is properly
contained in a background domain. . . . . . . . . . . . . . . . . . . . . 33

2.6 The problem of diffusion equation posed on single evolving domain.
The domain Ω(t) is moving from the green region to the red region
by a surface velocity w. The no-flux boundary condition imposed on
the boundary of domain (in purple) guarantees the conservation of the
physical quantity u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xii List of figures

2.7 The geometrically coupled bulk-surface moving FBP with a solution-
curvature-driven boundary involves a nonlinearly coupled system of the
diffusion equation posed on the time-dependent level set domain, the
no-flux boundary condition imposed on the bounding hypersurface, the
geometric evolution equation given by the mean curvature vector and
the physical quantity, the velocity extension equation with the consistent
surface condition, and the advection equation transporting the level set
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 The problem of an advection-diffusion equation with a no-flux Neumann
boundary condition posed on a single evolving domain unfitted to the
background mesh in the Eulerian framework. . . . . . . . . . . . . . . . 42

3.2 Left: the boundary (in yellow) of a second-order discrete level set
domain Ω̂n

h. Right: the boundary (in red) of a high-order discrete level
set domain Ω̃n

h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The concepts of discrete domains, strips, and different selections of

elements and facets. The first three columns display the mesh, the
discrete domain Ωn, and the set of active elements. The three columns
in the middle display a strip domain related to an extension by ±δ and
a further extension by one element layer, with corresponding element
and facet selections. While in the last three columns an extension by 2δ
and two element layers is considered. . . . . . . . . . . . . . . . . . . . 46

3.4 A comparison between smooth and discrete extensions: (a) A moving
domain Ωn−1 extended by δ distance to cover Ωn, cf. [102]; (b) A moving
domain on a background mesh where the facets in red the ghost penalty
acts on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The idea of isoparametric mappings to achieve high-order accurate and
explicit representation of interface Γn

h: (a) The highly accurate but
implicitly described interface by ϕn

h; (b) The explicit but only second-
order accurate interface represented by ϕ̂n

h; (c) The high-order accurate
and explicitly described interface by the mesh deformation through Θn. 53

3.6 An undeformed (straight) element T̂ with its inflated element T̂ε and de-
flated element T̂−ε, Θm-deformed (curved) element Tm and Θn-deformed
(curved) element Tn, involved in Lemma 3. . . . . . . . . . . . . . . . . 55



List of figures xiii

3.7 Three regions of element types under mesh deformation. At any fixed
time t an element is in exactly one of the three categories: cut (in
purple), transition (in blue) or undeformed (in green). Between any
two time instances tm < tn, for each fixed element two situations can be
distinguished: the element and all its adjacent neighbors keep their own
element types for all t ∈ [tm, tn] or not. . . . . . . . . . . . . . . . . . . 56

3.8 Element-local extensions and interpolation. For a deformed element
Tm = Θm

T (T̂ )∈T m
h the corresponding extension Tm

ε covers the differently
deformed element Tn = Θn

T (T̂ ) ∈ T n
h . For a Lagrange node xn

i in Tn the
mappings Θ−n

T and Θ−m∗
T , respectively, yield different points x̂i and ŷi
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Chapter 1

Introduction

1.1 Genesis of the Problem

Partial differential equations (PDEs) posed on complex and evolving geometries are
involved in the mathematical modeling of many phenomena in science and technology.
A free boundary problem (FBP) arises if there is a system of PDEs to be solved for
both unknown functions and unknown geometry. Furthermore, if the a priori unknown
geometry is time-dependent, it is called a moving FBP. Free surface or multi-phase flow,
fluid-structure interaction, plasma confinement, shock wave and flame propagation
are notable examples of FBP where prossibly large deformations and even topological
changes of the geometries give rise to the difficulty of numerical simulation.

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

Fig. 1.1 Osmotic cell swelling problem at four time instances t0, t1, t2, and t3.

Another significant field of such applications is cell biology, especially in the process
of cell division, where the geometrical shape of a cell may vary in time depending on
the shape itself and the quantities subject to PDEs on the evolving cell. Figure 1.1 is a
sketch of the so-called osmotic cell swelling problem for a cell evolving through four time
instances t0, t1, t2, and t3. A biological cell is immersed in a stationary environment.



2 Introduction

A time-dependent diffusion equation of some chemical concentration describes the
diffusion phenomenon inside the cell, which gives a distribution of the solute on
the selectively permeable membrane of the cell. This semi-permeable membrane is
permeable to the solvent but impermeable to the solute. Hence the distribution of the
solute, on the one hand, leads to a spontaneous movement of the membrane through
osmotic pressure. The curved membrane, on the other hand, causes a surface tension
that enforces the membrane moving towards a minimal surface, which can be measured
by the mean curvature of the surface. These two forces compete against each other
and together determine the acceleration of the membrane. Apart from the membrane,
physical velocity is neither present in the interior nor the exterior of the cell. The
short-time existence and uniqueness of classical solutions to this single-phase osmosis
model have been proved in [111]. This toy model can be employed to represent the
whole class of moving FBPs, which is not only at the cutting edge of theoretical and
numerical PDEs, but also a rapidly expanding subject area by the emerging of an
abundance of important topics and real-world applications since the famous Stefan
problem proposed in [152], see [30] for an overview. Unlike the classical Stefan problem
that describes the melting from ice to water, the osmosis model has a more sophisticated
free boundary evolving subject to the geometric object – the mean curvature.

In the context of this thesis, we call such a moving FBP geometrically coupled if the
PDEs of physics (i.e., conservation laws) are associated with some PDE of geometry
(i.e., geometric flow). In the osmosis model, more specifically, we consider the membrane
of the cell as a smooth bounding hypersurface embedded in a Riemannian manifold.
The normal component of the velocity with which any point on the hypersurface moves
depends partially on the mean curvature. The hypersurface arises as the boundary
of the enclosed domain (i.e., the cell) where some PDEs of physical phenomena (i.e.,
diffusion) are posed, and the trace of the solution to the PDEs (i.e., the distribution of
the solute on the membrane) also acts on the evolution of the bounding hypersurface.
If the solution to the PDEs is trivial, the normal velocity of the hypersurface is solely
given by the mean curvature, and the problem is reduced to a mean curvature flow. If,
on the other hand, the geometric evolution is a priori known, the problem results in
solving the PDEs on a given moving domain.

In this thesis, we only study connected closed hypersurfaces smoothly embedded and
evolving in a two- or three-dimensional Euclidean space, i.e., plane curves or surfaces.
Although this has greatly simplified the problem, it is still too complicated to write out
an exact solution in closed form or analytic expression. Therefore, the development and
analysis of the numerical methods of high-order accuracy and computational efficiency
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for approximate solutions to such geometrically coupled problems is the challenging
task we are dedicated to. In comparison to other related research in this subject area,
we will develop geometrically unfitted finite element methods (FEM) with provable
high-order error estimates, where the mesh discretization is not fitted to the evolving
hypersurface but fixed as a stationary background. Based on this unfitted discretization,
large deformations and topological changes of a complex geometry can be handled
easily in such a way that the zero level set of a real-valued auxiliary function, i.e.,
level set function, is exploited to describe the bounding hypersurface. This approach
enjoys much lower computational cost and simpler operational procedures by saving
the re-meshing time in contrast to the so-called geometrically fitted methods.

1.2 Mathematical Models

We aim at solving the geometrically coupled solution-curvature-driven moving free
boundary problem (FBP) where the evolution velocity of the bounding hypersurface is
an unknown depending on the mean curvature vector and the quantities subject to
PDEs posted on the enclosed domain.

Some theoretical research has been conducted towards the above-mentioned FBP
and the related osmosis model where osmotic pressure from diffusion and surface
tension from curvature compete with each other. In [65] the so-called closed osmometer
problem, first introduced in [136], is solved analytically and numerically in one spatial
dimension. For wellposedness and regularity results for the single-phase model with
radially symmetric initial conditions, short-time existence and uniqueness of solutions
in a proper Sobolev space are shown in [166]. Based on maximal regularity results
(for parabolic systems with inhomogeneous boundary conditions), the existence and
uniqueness of classical solutions on small time intervals, and on arbitrary long time
intervals if the initial geometry is close to an equilibrium, are proven in [111]. A
reasonable extension of the model by involving viscosity, i.e., the Stokes equations, is
investigated in [110], and the existence of classical solutions for a short time to this
problem is shown by the authors.

To the best of our knowledge, however, analytic solution in a closed-form expression
to the geometrically coupled moving FBP is only possible under very certain conditions,
e.g., linearity, regularity, symmetry, spatial dimensionality or temporal duration. In
general, such an analytic solution is not known to exist even for the one-phase osmosis
model – a sophisticated coupled bulk-surface model but a toy model among the class
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of geometrically coupled moving FBP. Towards solving this PDE problem, we propose
the following three sub-models to unfold it:

1. Provided that the evolution of a time-dependent geometry is given, we seek the
solution to PDEs posed on the geometry. Let u be the solution to the parabolic
diffusion equation ∂tu−ν∆u= 0 in a Lipschitz domain Ω(t)⊂Rd, d= 2,3, t∈R+,
with the boundary condition wu+ν∇u ·n = 0 on Γ(t) := ∂Ω(t) where w(x, t) ∈R
is the normal velocity of Γ(t) and n(x, t) ∈ Rd the outward unit normal, and
ν ∈ R+ a constant diffusion coefficient. We solve this diffusion equation on
the evolving domain Ω(t) equipped with the Lipschitz boundary Γ(t), which is
time-varying under smooth motion, deformation, and even topological changes.
See Figure 1.2 for a sketch of this problem and Chapter 3 for details.

∂tu−∇ · (ν∇u) = 0 in Ω(t)

Ω(t)

wu+ ν∇u · n = 0 on Γ(t)

w

Fig. 1.2 The diffusion equation on an evolving domain with no-flux boundary condition.

2. Provided that the solution to the PDEs and the geometry at a fixed time are
given, we compute the evolution velocity of the bounding hypersurface 1. Let
Γ := ∂Ω be the bounding surface (or plane curve) arising as the boundary of the
enclosed domain such that it is sufficiently smooth to have the mean curvature κ
well-defined at every point on the surface. We model the normal component of
the surface velocity 2 by w :=−ακ+βu|Γ, α,β ∈ R+ that linearly depends on
κ and the solution u restricted to the surface. As u is given, we seek the mean

1Note that a plane curve is a one-dimensional hypersurface embedded in R2 and a surface is a
two-dimensional hypersurface embedded in R3, but we may occasionally mix the usage of the terms
and use two-dimensional concepts for their one-dimensional counterparts, e.g., edge, facet, and volume.

2From here on, we identify surface velocity as the abbreviation for the normal component of the
velocity of the hypersurface. Note that the surface velocity solely determines – i.e., the tangential
component of the velocity of the hypersurface does not affect – the motion of the hypersurface.
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curvature vector H by solving the geometric equation H := κn = −∆Γx on Γ
with Laplace-Beltrami operator ∆Γ. See Figure 1.3 for a sketch of this problem
and Chapter 4 for details.

H := κn = −∆Γx on Γ

w = −ακ+ βu

Fig. 1.3 The geometric equation of mean curvature and the velocity on the surface.

3. Provided that the surface velocity is given, we extend it onto a time-independent
background domain and transport the enclosed domain of interest. Rather than
a Lagrangian approach that tracks the motion of each particle of the bounding
surface, we look into the geometric evolution from an Eulerian viewpoint. Let
Ω̄ ⊋ Ω(t), t ∈ R+ be a background domain that properly contains the moving
domain with its neighborhood for all time of investigation. Let ϕ : Ω̄×R+→ R
be a real-valued function called level set function such that the bounding surface
and the enclosed domain are represented by Γ(t) = {x ∈ Ω̄ | ϕ(x, t) = 0} and
Ω(t) = {x ∈ Ω̄ | ϕ(x, t)< 0}, respectively. The surface velocity w(x, t) on Γ(t) can
be extended to w(x, t) on Ω̄ by using an extension operator E : C(Γ)→ C(Rd)
with the restriction w =wn on Γ(t). With the velocity field w(x, t), the evolution
of Ω(t) described by ϕ(x, t) can be obtained by solving the hyperbolic advection
equation ∂tϕ+w ·∇ϕ= 0 over Ω̄. See Figure 1.4 for a sketch of this problem and
Chapter 5 for details.

Next, we will discuss the numerical methods to solve each of the three sub-models
approximately.
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∂tφ+ w · ∇φ = 0

Ω̄× [0, T ]

w = Ew

Fig. 1.4 A transport equation of the level set domain with extended velocity field.

1.3 Numerical Methods

It is either impossible or impracticable to seek analytical solutions to many advanced
PDE problems, the applied math community has therefore developed a number of
computational methods for numerical approximations to the exact solutions. In this
section, we briefly present an overview of the numerical methods, based on which we
will develop new discretizations to solve the geometrically coupled system of PDEs.

Finite element method (FEM) is one of the most popular and powerful class of
techniques with solid mathematical foundation for finding approximate solutions to
PDEs. It was first proposed in a seminal work of Richard Courant in 1943, cf. [48],
and the first important result in the sense of mathematical analysis was due to Milos
Zlámal in 1968, cf. [171]. In the context of modern FEM, there are essentially two
categories with respect to the approximation of the underlying geometry: fitted and
unfitted discretizations.

For geometrically stationary problems, a fitted characterization is widely used. To
this end, a parametric description is exploited for domains with curved boundaries.
In general, the parametrization for approximating the geometry is utilized to express
the numerical solution to PDEs as well. For instance, an approach called isogeometric
analysis integrates finite element analysis (FEA) into computer-aided design (CAD)
with using a common data set, in which the basis functions for FEA are also employed
to describe the geometry in CAD , cf. [47, 85]. Thanks to the explicit mapping to a
reference geometry consisting of uncurved elements, higher-order approximation of the
geometry can easily ally with higher-order finite element discretizations. We refer the
reader to an established literature for more details, cf. [2, 52, 91, 155].

In the past decades, discontinuous Galerkin (DG) methods [5, 107, 134, 135], and
hybrid discontinuous Galerkin (HDG) methods [34, 119], have been developed for more
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flexibility, efficiency, and stability, by relaxing the conformity of the standard high-order
FEM. Combined with the classical Runge–Kutta (RK) methods [94, 137] for multi-stage
time steppting, Runge–Kutta discontinuous Galerkin (RKDG) methods have been
proposed for solving time-dependent PDEs robustly at high order of accuracy in space
and time, and been developed by Cockburn et al. in a series of literature, cf. [36–
38, 40, 42]. The methods have found their way into the mainstream of computational
fluid dynamics (CFD) by a wide range of real-world applications, especially to advection-
dominated problems, cf. [41]. Some theoretical analysis of the RKDG methods for
hyperbolic conservation laws has been presented recently, e.g., in [35, 164, 168–170].

The geometrically fitted methods above are basically developed for problems with
time-independent domains. Towards geometrically non-stationary problems where the
domains are time-varying, on the other hand, both fitted and unfitted discretizations
have been studied. In the fitted class of approaches, i.e., Lagrangian framework, a
computational mesh is generated for the initial geometry, and adapted to the motion
of the geometry by mesh deformation in time, aiming to track the evolving geometry.
A very popular approach is called Arbitrary Lagrangian Eulerian (ALE) formulation
for problems with moving domains, cf. [43, 56]. This kind of methods, if applicable,
allows standard finite element discretizations and usually obtains accurate results as a
consequence. However, a major issue of this approach arises from large deformations
or topological changes of the underlying geometry. Consequently, these methods are
often involved in complicated and time-consuming procedures for re-meshing, and even
fail in mesh manipulation.

The idea of separating the geometry description from the computational mesh
gives rise to the geometrically unfitted discretization, i.e., Eulerian framework, which
allows for a very flexible handling of the underlying geometry. To this end, a basis
discretization is defined on a time-independent background mesh, and typically a
simple polygonal domain. This discretization is adapted to the geometrical information
according to the independently defined geometry during the evolution. One major
advantage of this approach is the capability to handle complex and time-varying
geometrical configurations without the computationally expensive mesh generation and
re-meshing procedures, which makes it especially appealing in the applications that
have dramatic evolution of the underlying geometries. For instance, in multi-phase flow
or in cell dynamics, the interface of fluids or cell membrane is often moving dramatically,
and the impact from the geometric evolution on the fluid dynamics or the dissolved
concentrations is of particular interest.
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In order to formulate a geometrically unfitted discretization, a specific description
of the geometry is required, of which the choice results in a particular PDE prescribing
the geometric evolution, and the discretization method in turn depends essentially on
the way one selects to represent the geometry. In this thesis, we exploit the so-called
level set method, which has been introduced since the pioneering work of Dervieux
in [54], and subsequently developed by Osher and Sethian in a series of literature,
cf. [29, 126, 142–146]. It has become very popular in many applications of subjects,
such as computer graphics, image processing, computational geometry, optimization,
computational biology, and CFD. A number of level-set data structures have been built
to facilitate the utilization of the level set method in computer science, cf. [161]. The
main idea of the level set method is to define a real-valued auxiliary function – level
set function – whose negative level sets typically specifies an open bounded domain
(i.e., the level set domain), and the zero level set consequently describes the boundary
of the domain (i.e., the bounding hypersurface).

A variety of unfitted finite element discretizations exist. For non-aligned boundary
value problems, penalty methods [8, 133], fictitious domain method [24, 71], immersed
boundary method [129] have been developed. For unfitted interface problems, extended
finite element methods (XFEM) have been proposed in [13, 14, 64, 79, 81, 115]. For
PDEs posed on moving domains, several unfitted space-time methods [83, 97, 98, 167],
and Eulerian finite element method (Eulerian FEM) [22, 102, 114, 157], have been
developed recently. For PDEs on static or evolving surfaces, cut finite element method
(CutFEM) and trace finite element method (TraceFEM) [26, 32, 73, 75, 120–124]
have been studied extensively, as well as finite cell method (FCM) [127] and unfitted
discontinuous Galerkin (UDG) method [11] in a similar manner.

The challenge regarding the higher order of accuracy, however, arises in the unfitted
setting with implicitly represented geometry. As the mesh is not fitted to the geometry,
one has to evaluate the integrals in variational formulation on cut elements, namely
the elements cut by the interface, which is described only implicitly by a zero level
set. It offers second order of accuracy for these numerical integrations based on the
explicit piecewise linear interpolation of the level set function, which is sufficient for
linear finite elements but not for higher-order ones. New approach is therefore required.
The technique called isoparametric mappings proposed in [99] yields a high-order
approximation of the geometry from the image of its piecewise linear representation
through a parametric mapping of the underlying mesh. Armed with this approach, the
resulting isoparametric unfitted finite element method has been analyzed for provable
error bounds of optimal order. This isoparametric technique has been introduced to
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merge with the unfitted space-time FEM to achieve high order of accuracy for moving
domain problems in [130], and has also been analyzed with TraceFEM for surface PDE
problems in [74].

Towards the coupled bulk-surface model, there are a few other computational works,
e.g., the phase field approach [132], the unfitted linear space-time FEM [160], and
the ALE-based model order reduction [104]. In [51] the authors present an overview
of computational mean curvature flow, governed by geometric PDEs, as an essential
sub-model to the problem. While in this thesis, we will focus on the geometrically
unfitted discretization based on the level set method, armed with the isoparametric
mappings of underlying mesh for provable high order of accuracy. Alternatively to
the unfitted isoparametric space-time FEM in [130], we will develop an isoparametric
Eulerian FEM for moving domain problems based on [102], but rather make use of
the classical backward differentiation formula (BDF) [49] for higher-order implicit time
stepping, which is expected to be computationally more efficient and simpler than its
competitor. We will also propose a stabilized isoparametric TraceFEM for computing
the discrete mean curvature vector on hypersurface, by using the stabilization methods
introduced in [74], to achieve arbitrarily high-order accuracy in comparison to its
low-order counterpart in [82]. In addition to these novel unfitted discretizations, the
RKDG methods are employed to solve the advection problem of the level set domain at
high order of accuracy in space and time. Altogether, we will exploit weak and strong
coupling algorithms to integrate the aforementioned numerical methods for solving the
geometrically coupled solution-curvature-driven moving free boundary problem.

Next, we will summarize the contributions and the structure of this thesis.

1.4 Outline of the Thesis

The main contributions of the work include:

• The development and the analysis of a provable higher order in space and time
Eulerian FEM, based on the isoparametric mappings and the BDF time stencil
applied to a discrete extended domain at each time step, for solving PDEs
on a priori known evolving geometry, which enjoys low computational cost and
maintains robust under large deformations or topological changes of the geometry;

• The development and the analysis of a provable arbitrarily high order and
stabilized TraceFEM for computing discrete mean curvature vectors on smooth
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manifolds, which is not only an interest of the mathematical community, but also
itself an important topic in computer graphics and computational geometry;

• The formulation and the verification of two methods for a smooth extension of
the velocity from the hypersurface to the embedding bulk, either by solving a
normal diffusion equation or by applying a penalizing term over the bulk;

• The proof-of-concept numerical simulation of the geometrically coupled solution-
curvature-driven moving FBP, by assembling the three sub-models through two
coupling algorithms, in such a way that a hyperbolic transport equation of the
level set domain is solved by the RKDG methods combined with the velocity
extension methods, which is novel and challenging in the sense of nonlinear
coupling and high order of accuracy.

This thesis is organized as follows:

• In Chapter 2 the theory and the mathematical models are introduced as prelimi-
naries for solving PDEs coupled with geometric flow on embedded submanifolds.
The mean curvature flow is particularly studied with definitions, theorems, and
geometric properties imported from the field of differential geometry, following
the similar lines in [51]. The level set method then arises from the motivation
for handling the mean curvature flow that develops singularities and topological
changes. To this end, a level set function represents the geometry implicitly. For
exploring the geometric evolution, two different approaches are proposed and
compared. After defining a velocity extension operator, the way of solving a
linear hyperbolic transport equation of the level set function is chosen. Next, for
the PDEs of physical phenomena posed on a prescribed time-dependent geometry,
an advection-diffusion equation on single moving domain and in non-stationary
two-phase interface problem is discussed, ending up with a homogeneous diffusion
equation on one-phase domain that is employed in the osmosis model. A summary
of all the equations integrated into a nonlinearly coupled system concludes this
chapter.

• In Chapter 3 a geometrically unfitted FEM called Eulerian FEM for solving PDEs
on evolving domains is introduced with the related variational formulation, cf.
[102]. The basic idea is to ally CutFEM with backward Euler time stepping on a
discrete extension of the domain at each time step in the spirit of the method of
lines. This however gives low-order accurate discretizations in both space and
time. The isoparametric mapping technique is therefore utilized for a higher-oder
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approximation of the geometry. This in turn requires a transfer of functions
between slightly different mapped meshes, which is comprehensively discussed
and analyzed with error estimates. Combined with the BDF time stepping, a
higher-order version of Eulerian FEM is developed and a priori error analysis is
performed, cf. [114]. Two numerical tests for convergence study and one example
to show the robustness of the method follow. A summary compares this method
with its two competitors, namely the unfitted isoparametric space-time FEM and
the characteristic-Galerkin FEM, which concludes this chapter.

• In Chapter 4 the stabilized finite element approximation of the mean curvature
vector on connected closed hypersurfaces is introduced from [82] and improved
towards a provable arbitrarily high order of accuracy. Due to the issue that the
discrete mean curvature vector based on the Laplace-Beltrami operator looses two
orders of convergence rate in the proper Sobolev norm, some stabilization methods
have been proposed. To achieve arbitrarily high order of accuracy, the high-order
facet-based derivative jump and the volume-based normal derivative stabilizations
introduced in [74] are combined into the variational formulation of a stabilized
isoparametric TraceFEM. A comprehensive a priori error analysis follows after
investigating the related projection and mapping, coordinate embedding, trace
and inverse estimates. An alternative approach of the error analysis is further
performed and compared subsequently. A fundamental example of the discrete
mean curvature vector of a unit circle, and an advanced example of the three-
dimensional discrete mean curvature vector of a two-dimensional embedded torus,
are numerically tested for extensive convergence study, which complete this
chapter.

• In Chapter 5 by the extension of surface velocity and the RKDG FEM, the novel
approach to transport a level set geometry is proposed. Two methods for extending
velocity from surface to bulk are discussed and compared. The extension method
by solving a normal diffusion equation is formulated, which describes a smoothing
operator only in directions normal to the surface. And another extension method
by applying a ghost penalty based on canonical extensions is also formulated. A
numerical example of velocity extension by normal diffusion follows. Next, the
classical RKDG FEM is introduced for solving the hyperbolic transport equation
of the evolving level set domain. In particular, the 4th-order explicit RK time
stepping is associated with the DG finite element discretization in space to ensure
uniformly high order of accuracy. The a priori error estimates are introduced
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from an established literature, followed by a numerical test which conclude this
chapter.

• In Chapter 6 the weak and the strong coupling algorithms are discussed and
implemented in a benchmark of the shrinking circle mean curvature flow and a
proof-of-concept numerical simulation of the geometrically coupled bulk-surface
osmosis model. The numerical results show the nonlinearly coupled three sub-
models working well.

• The last Chapter 7 concludes the achievements of this thesis, points out some
open problems, and looks forward to possible future work on several interesting
extensions and promising applications.

1.5 Reproducibility

A complete set of software and code for replicating all the numerical results in this
thesis is provided on the GitLab repository https://gitlab.gwdg.de/yimin.lou/ho_unf_
pdes_geom_flow.

We make use of Netgen/NGSolve [141] – a high performance multi-physics finite
element software – for implementation of the numerical methods developed in this
thesis. We also utilize ngsxfem [101] – an add-on library to Netgen/NGSolve – which
enables the exploitation of geometrically unfitted discretizations, e.g., TraceFEM.
Both packages are developed in C++ with a rich Python interface through which we
write the scripts for solving the PDE problems in our numerical experiments. Visit
https://ngsolve.org for more information.

https://gitlab.gwdg.de/yimin.lou/ho_unf_pdes_geom_flow
https://gitlab.gwdg.de/yimin.lou/ho_unf_pdes_geom_flow
https://ngsolve.org


Chapter 2

PDEs Coupled with Geometric Flow

The study of partial differential equations (PDEs) on Riemannian manifolds is an
active topic in the mathematical fields of differential geometry and geometric PDEs,
cf. [31, 77, 78]. If the PDEs on a manifold (or its enclosed bulk) are associated with
the geometric evolution equation that describes a geometric flow of the manifold, the
complexity of the problem makes it either impossible or impracticable to be solved
analytically in a closed form. It therefore motivates us to develop numerical methods
for approximate solutions to such a coupled bulk-surface model problem, provided
that a connected closed hypersurface is smoothly embedded and evolving in a two- or
three-dimensional Euclidean space. This is the so-called geometrically coupled moving
free boundary problem (FBP) where a coupled system of PDEs has to be solved for both
unknown functions and evolving geometry. As preliminaries in this chapter, we will
begin with an introduction to the basic theory of geometric flow, with an emphasis on
mean curvature flow. From that we will realize the issue of singularity and topological
change developed in a mean curvature flow, and thus the motivation for using the
level set method arises. We will then study the mathematical models: the geometric
equation of mean curvature vector, the geometric evolution equation of level set domain,
and the PDEs on evolving domain, cf. Section 1.2. We will take advantage of the three
sub-models to unfold the geometrically coupled moving FBP, in which the moving
free boundary (i.e., the hypersurface) is driven by the mean curvature vector – as a
mean curvature flow – together with the quantities subject to PDEs on the domain
enclosed by the hypersurface. Finally, we will conclude with a nonlinearly coupled
geometry-physics system of PDEs, by gluing the three sub-models as a whole. Starting
from these theorems and models, one may explore geometrically coupled PDEs posed
on the solution-curvature-driven hypersurfaces instead of their enclosed bulks, though
it goes beyond the scope of this thesis.
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2.1 Geometric Flow

In the field of modern differential geometry, a geometric flow is modeled from physical
flow but a certian type of PDEs for a geometric object, e.g., a Riemannian metric
(with intrinsic curvature in a moduli space) or an embedding (with extrinsic curvature
in a parameter space). Analogously to the fundamental PDEs, indeed, the geometric
flows can be classified as elliptic, parabolic, and hyperbolic types as well, but only the
parabolic ones have been studied intensely due to the general motivation to show that
a space satisfying certain geometric properties also has a unique canonical structure to
which the solution converges, like a heat equation. Such a parabolic geometric flow
arises as the gradient flow associated to a functional on a manifold with a geometric
interpretation. In this thesis, we focus on the mean curvature flow as an extrinsic
parabolic geometric flow, but the scope of this topic may be extended far beyond. For
example, on a Lorentzian manifold, some geometric wave equations, e.g., the Einstein
field equations and the Yang-Mills equations, can be regarded as special cases of intrinsic
hyperbolic geometric flow (while the Einstein manifold as elliptic), which are of great
interest in mathematical physics community, cf. [6, 9, 50, 58, 62, 92, 147, 158, 165].
Next, we draw our attention back to the well-known parabolic type and follow [162] to
have a vista of the two classes of geometric flow.

• Extrinsic geometric flows are PDEs for embedded submanifolds, or more generally,
immersed submanifolds. Some of the following examples are closely related to
this research:

– Mean curvature flow, the evolution of manifolds of which the normal velocity
is given by the mean curvature vector, such as soap films whose critical
points are minimal surfaces;

– Curve-shortening flow, the one-dimensional case of the mean curvature flow;

– Inverse mean curvature flow, used by Huisken and Ilmanen in [87] the proof
of the time-symmetric Riemannian Penrose inequality in General Relativity;

– Willmore flow, the L2-gradient flow of Willmore functional, where higher-
order derivatives of mean curvature and Gauss curvature are involved in the
geometric evolution, such as in minimax eversions of spheres.

• Intrinsic geometric flows are PDEs for the Riemannian metric, independent of
any embedding or immersion. Remarkable examples of this class but irrelevant
in this thesis include:
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– Ricci flow, which is analogous to the mean curvature flow but intrinsic,
introduced by Hamilton to prove a three-dimensional sphere theorem in [80],
by Hamilton and Perelman in the proof of the Poincaré conjecture in [128],
and by Brendle and Schoen in the differentiable sphere theorem in [20];

– Yamabe flow, which deforms the Riemannian metric of a noncompact man-
ifold, and is the negative L2-gradient flow of the normalized total scalar
curvature, restricted to a given conformal class;

– Calabi flow, which deforms a Kähler metric on a complex manifold.

We have a quick browse through various types of parabolic geometric flow above as
we intend to leave the possible interesting extensions of this work to the reader (see
Section 7.2 for more details), while in this thesis we will not dive into the intrinsic
theory of modern differential geometry, but rather focus on the computation of discrete
mean curvature flow and its one-dimensional case curve-shortening flow as the simplest
example among extrinsic geometric flows.

2.1.1 Introduction to mean curvature flow

Mean curvature flow is the most natural kind of extrinsic geometric flow of submanifolds
embedded in a Riemannian manifold, of which the theory has been extensively studied
by the community of differential geometry ever since the pioneering work of Brakke in
[18]. In the simplest case of a convex closed curve on the Eucliean plane, the properties
of the so-called curve-shortening flow are described by Gage-Hamilton theorem, cf.
[68, 80]. It claims that a curve will collapse to a point under the (prototype) mean
curvature flow. If it is rescaled in such a way that the enclosed area is of conservation,
the curve evolves towarads a circle. The Gage-Hamilton theorem combines with Grayson
theorem to prove that any closed embedded curve shrinks to a single round point
under the curve-shortening flow. Gage and Hamilton proved convergence to a point
for convex embedded curves, and Grayson generalized this by proving that non-convex
closed embedded curves must eventually become convex, allowing the Gage-Hamilton
theorem to then be applied, cf. [76]. Huisken generalized the Gage-Hamilton theorem
to higher dimension, cf. [86]. For the details about the aforementioned theorems we
refer the reader to Subsection 2.1.5.

In the following subsections we will introduce the mean curvature flow and the
related geometric properties along the similar lines in [51, Section 2]. The canonical
problem of mean curvature flow is to find a family of closed compact orientable
hypersurfaces {Γ(t)}t∈R+

in Rd whose evolution is defined by specifying the velocity
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w(x, t) in the normal direction n at every point x on Γ(t), cf. [51, Section 1]. A general
geometric evolution equation for mean curvature κ(x, t) reads

w(x, t) = f(x,n,κ) for x ∈ Γ(t) ↪→ Rd, t ∈ R+ (2.1)

where the function f depends on the application, and the dependence x might arise
from evaluating field variables on the hypersurface which satisfy their own system of
PDEs in Rd away from the hypersurface. For the osmotic cell swelling problem, cf.
[111], we will make use of the following linear function for some parameters α,β ∈ R+
such that

w =−ακ+βu on Γ(t) ↪→ Rd, d= 2,3, t ∈ [0,T ], T ∈ R+ (2.2)

where u(x, t) arises from the solution to the diffusion equation posed on the evolving
domain Ω(t) such that ∂Ω(t) = Γ(t). The equation is identical to the following prototype
mean curvature flow, i.e., motion by mean curvature, for a trivial selection of u(x, t)≡ 0

w =−κ on Γ(t) (2.3)

with a choice of α = 1. This geometric evolution may be viewed as an analogue for
moving hypersurfaces of the parabolic heat equation

∂tu+∆u= 0. (2.4)

In the next subsection, we will import some definitions and useful results from
differential geometry, cf. [51, Section 2].

2.1.2 Oriented and compact hypersurface

To begin with, we look into a certain type of hypersurfaces of interest and the related
geometric properties.

Definition 1 (C2-hypersurface). Let Γ⊂ Rd, d= 2,3 be a subset in the d-dimensional
Euclidean space. Γ is called a C2-smooth hypersurface embedded in Rd, if for each point
x ∈ Γ there exists an open neighborhood U(x) and a function φ ∈ C2(U) such that

U ∩Γ = {x ∈ U | φ(x) = 0}, and ∇φ ̸= 0 for all x ∈ U ∩Γ. (2.5)
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The tangent space TxΓ is a (d−1)-dimensional linear subspace of Rd orthogonal
to ∇φ(x), which is independent of the particular choice of function φ used to describe
Γ, cf. [51, Subsection 2.1]. Please note that by definition a hypersurface is always a
codimension-1 embedding of Rd (d= 2 for plane curve, d= 3 for surface) and orientable,
thus excluding the manifolds like Möbius strip or Klein bottle.

Definition 2 (Orientability). A C2-hypersurface Γ⊂ Rd is called orientable if there
exists a vector field n ∈ C1(Γ,Rd) such that n(x)⊥ TxΓ and |n(x)|= 1 for all x ∈ Γ,
cf. [51, Subsection 2.1].

With the unit normal n on Γ one can define the tangential gradient of a C1-function
f by removing the normal component from the standard Rd gradient if exists (or by
projecting it onto the tangent space) for the coordinate embedding Γ ∋ x 7→ x ∈ Rd.

Definition 3 (Tangential gradient). Let f ∈ C1(Γ) be differentiable in the open neigh-
borhood Γδ := Uδ of Γ. We define the tangential gradient of f by

∇Γf(x) := (D1f(x), ...,Ddf(x)) =∇f(x)− (∇f(x) ·n(x)) n(x) =: PΓ∇f(x)

where Di, i ∈ {1, ...,d} is defined as the component of the tangential gradient in each
dimension, ∇ denotes the standard gradient in the Euclidean space Rd, and PΓ is called
tangential projection.

By the definition above it is straightforward to show the following orthogonality

∇Γf(x) ·n(x) = 0 ∀x ∈ Γ. (2.6)

Next we introduce the so-called Laplace-Beltrami operator that is an essential
concept in differential geometry.

Definition 4 (Laplace-Beltrami operator). If f is furthermore a C2-function that
is twice differentiable in the open neighborhood Γδ := Uδ of Γ, we define the Laplace-
Beltrami operator of f by

∆Γf(x) :=∇Γ ·∇Γf(x) =
d∑

i=1
DiDif(x), x ∈ Γ.

And we call ∇Γ ·f(x) := ∑d
i=1Dif(x) the tangential divergence of f(x).

In addition to orientability the hypersurfaces are also required to be closed.
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Definition 5 (Closedness). A hypersurface embedded as a subset of Euclidean space is
compact, by the Heine-Borel theorem, if and only if its point set is closed and bounded.
A hypersurface is called closed if it is compact and without boundary. Note the difference
between the closedness of hypersurfaces and the closedness of point sets.

Remark 1 (Orientability and closedness). Any C∞-smooth closed hypersurface embed-
ded in Rd is orientable, proved in [138]. In other words, a non-orientable differentiable
manifold (without boundary) of dimension d− 1 cannot be C∞-embedded as closed
subset of Rd. That is also proved for compact manifolds without any differentiability
hypothesis in [3].

To conclude this subsection we introduce the following theorem that is important
for defining signed distance function and applying level set method.

Theorem 1 (Jordan-Brouwer separation theorem). Any connected compact hypersur-
face Γ⊂ Rd divides Rd into two connected components, say, the disjoint inside domain
Ω and outside domain Rd \Ω, each of which has Γ as its point set boundary, namely
there exists an open bounded set Ω⊂ Rd such that Γ = ∂Ω, and Ω is itself a compact
manifold.

Proof. See [109] and [140].

2.1.3 Signed distance function

Provided that the C2-hypersurface Γ⊂ Rd is connected and compact, by Theorem 1 it
separates Rd into two connected components, and thus we can assign a signed distance
function (or oriented distance function) ρ such that

ρ(x) :=


dist(x,Γ), x ∈ Rd \Ω,
0, x ∈ Γ = ∂Ω,
−dist(x,Γ), x ∈ Ω.

(2.7)

See Figure 2.1 for a sketch of a signed distance field where Γ contains two circles.
Formally, the signed distance function is constructed locally based on the following

tubular neighborhood theorem.

Theorem 2 (Tubular neighborhood theorem). Let Γ⊂M be a smooth submanifold,
then there exists a diffeomorphism χ from an open neighborhood of Γ in the normal
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Fig. 2.1 A sketch of the signed distance function that demonstrates the distance values
of 0 (where two circles represent the position of Γ) and 2.

bundle 1 NΓ onto an open neighborhood of Γ in the smooth manifold M. More
specifically, let Γ be compact and embedded in Rd with the inclusion map ι : Γ ↪→ Rd,
there exists a δ ∈ R+ such that χ : N(Γ, δ)→ Rd is a diffeomorphism from the open
neighborhood N(Γ, δ) := {(x,v) ∈ Γ×Rd | v⊥ TxΓ, ∥v∥< δ} of Γ in the normal bundle
onto the open neighborhood Γδ := {x ∈ Rd | |ρ(x)| < δ} of Γ in Rd. Then, for each
x ∈ Γδ there exists a unique closest point p(x)∈ Γ, and the map p : Γδ→ Γ called closest
point projector is a submersion. It is reduced to the so-called δ-neighborhood theorem
(or ε-neighborhood theorem) in the Euclidean space.

Proof. See [19, Theorem 11.4 in Section 11 of Chapter II] and [159, Theorem 2.1 and
2.2 in Lecture 10].

Corollary 1 (Closest point and signed distance properties). For a C2-hypersurface
Γ ↪→ Rd, the diffeomorphism may be written as

χ : Γ× (−δ,δ)→ Rd, (p(x),ρ(x)) 7→ p(x)+ρ(x)n(p(x)) (2.8)
1For an inmmersion ι : Γ ↪→M, one may obtain the normal bundle NΓ of the submanifold Γ by

taking the quotient TM|ι(Γ)/TΓ fiberwisely. If (M,g) is a Riemannian manifold, one can identify
this quotient bundle with the orthogonal complement.
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for all x ∈ Γδ and the inverse function has the form χ−1(x) = (p(x),ρ(x)). As a result,
every point x in the open tubular neighborhood Γδ can be uniquely written as

x = p(x)+ρ(x)n(p(x)) ∀x ∈ Γδ, (2.9)

where the closest point projector p : Γδ → Γ assigns precisely one p(x) ∈ Γ to each
x ∈ Γδ. The signed distance function ρ : Rd→ R is globally Lipschitz-continuous and
possesses the signed distance properties such as

∇ρ(x) = n(p(x)) ∀x ∈ Γδ (2.10)

and |∇ρ(x)|= 1 as a consequence.

Proof. See [63, Appendix A], [131, Chapter 2.3], and [51, Subsection 2.2].

To conclude this subsection we reveal the fact that such a hypersurface can always
be represented by a level set in the following lemma.

Lemma 1 (Level set hypersurface). Any connected compact hypersurface Γ ↪→ Rd is a
global level set {x ∈ Rd | ϕ(x) = c, c ∈ R} for some real-valued function ϕ ∈ C(Rd).

Proof. By Theorem 1, Γ is the interface of two subdomains of Rd, hence we can define
a level set function ϕ ∈ C(Rd),x 7→ ρ(x) ∈ R to match the signed distance function
(2.7) with using the tubular neighborhood theorem, which gives rise to a zero level set
{x ∈ Rd | ϕ(x) = 0} to represent Γ.

Assumption 1 (The hypersurfaces of the geometric properties). From here on, we
assume the hypersurface Γ is of all the desired geometric properties, namely smoothly
embedded, connected, closed, orientable, and C∞-smooth unless otherwise stated.

2.1.4 Geometric equation of mean curvature

In this subsection we derive the geometric equation of mean curvature, and its varia-
tional formulation.

Let us first introduce a symmetric matrix (i.e., shape operator or Weingarten map)

Hij(x) :=Dinj(x), i, j = 1, ...,d, x ∈ Γ, (2.11)

which has d− 1 non-zero eigenvalues κ1, ...,κd−1 (in addition to a zero eigenvalue)
called the principal curvatures of Γ, with corresponding eigenvectors v1, ...,vd−1 called
principal curvatures vectors.



2.1 Geometric Flow 21

We then define the mean curvature as the trace of the matrix.

Definition 6 (Mean curvature). The mean curvature of Γ at x is defined by

κ(x) :=
d∑

i=1
Hii(x) =

d−1∑
i=1

κi(x), x ∈ Γ.

Note that another definition of the mean curvature κ= 1
d−1

∑d
i=1Hii(x) = 1

d−1
∑d−1

i=1 κi(x)
exists and is commonly used elsewhere.

By substituting the definition of H in (2.11), Definition 6 implies the equivalence
between the mean curvature and the tangential divergence of the unit normal

κ(x) =∇Γ ·n(x), x ∈ Γ. (2.12)

In addition, by Equation 2.10 the symmetric matrix H is equivalent to the Hessian of
the signed distance function, cf. [82, Subsection 4.1]

H =∇⊗∇ρ, (2.13)

for which in the open neighborhood of Γ we have

H(x) =
d−1∑
i=1

κe
i

1+ρκe
i

ve
i ⊗ve

i , x ∈ Γδ, δ ∈ R+, (2.14)

where v1, ...,vd−1 are the corresponding principal curvatures vectors and ve
i := vi ◦p is

an extension from Γ to Γδ, cf. [70, Lemma 14.7].
As an oriented hypersurface Γ has two sides, and the sign of the mean curvature

κ depends on the specific choice of the unit normal n. In order to make the sign
independent of the direction choices, we define the following mean curvature vector
that points the outward direction along with the outward unit normal n.

Definition 7 (Mean curvature vector). For mean curvature κ in Definition 6 and the
outward unit normal n, we define the mean curvature vector by

H := κn

which determines the direction of velocity of the hypersurface in a mean curvature flow.

By taking the Laplace-Beltrami operator on f(x) = xj , j ∈ {1, ...,d}, cf. Definition 4,
and observing the identity Dixj = δij−njni (where δij := [i= j] is the Kronecker delta)
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one has

∆Γxj =−
d∑

i=1
Di(njni) =−(∇Γ ·n)nj−∇Γnj ·n =−κnj (2.15)

so that the geometric equation of mean curvature vector we aim to solve is

H := κn =−∆Γx on Γ. (2.16)

By multiplying the both sides of Equation 2.16 with a vector-valued test function
v ∈ [H1(Γ)]d we have the following variational formulation:
To find H ∈ [H1(Γ)]d such that for all v ∈ [H1(Γ)]d

B(H,v) = L(v) (2.17)

where
B(H,v) =

∫
Γ

H ·v ds and L(v) =
∫

Γ
∇Γx :∇Γv ds. (2.18)

Remark 2 (Wellposedness). By the Lax-Milgram theorem, cf. [96, Theorem 6 in
Section 6.3] and [61, Subsection 6.2.1], Equation 2.17 is wellposed if ellipticity and
boundedness of the bilinear form B(·, ·) hold in addition to the bounded linear functional
L(·) in a Hilbert space. However, the issue of wellposedness arises from the absence
of the coercivity of B(·, ·) in H1 space, while in L2 space it is indeed elliptic but L(·)
is no longer continuous. We will therefore develop stabilized numerical methods with
additional stabilization terms for a discrete mean curvature vector in Chapter 4.

2.1.5 Theory of mean curvature flow

To conclude this section we recall Subsection 2.1.1 and introduce some basic theorems
based on [51, Section 3] to depict how a hypersurface evolves by the prototype mean
curvature flow Equation 2.3. These results will demonstrate that the mean curvature
flow may produce singularities and eventually lead to topological changes of the
hypersurface. The motivation of using an Eulerian description to handle the geometry,
e.g., level set method, therefore arises.

The main feature of the prototype mean curvature flow governed by Equation 2.3
is the so-called area-decreasing property. In order to reveal this property, we consider
the well-known example of a shrinking sphere. Let Γ(t) = ∂BR(x0)⊂ Rd be the sphere
of a ball with radius R(t) that is shrinking by the geometric evolution equation (2.3).
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As a result, the normal velocity and the mean curvature of Γ(t) that are given by

w = ∂tR, κ= d−1
R

(2.19)

satisfy Equation 2.3 and thus yield

∂tR =−d−1
R

. (2.20)

The solution to this ordinary differential equation (ODE) is

R(t) =
(
R2

0−2(d−1)t
) 1

2 for t ∈ [0,T ), T = R2
0

2(d−1) , (2.21)

where the initial condition Γ(0) = ∂BR0(x0) is given. From this ODE one can deduce
that Γ(t) collapses to a point at x0 ∈ Rd as t goes to T .

Formally, this area-decreasing phenomenon can be recognized as a consequence of
the following theorem.

Theorem 3 (Area-decreasing property). A family of hypersurfaces {Γ(t)}t∈[0,T ) on
Assumption 1 evolving by Equation 2.3 satisfies

d

dt
|Γ|+

∮
Γ
w2 ds= 0

where |Γ| denotes the measure of the domain enclosed by Γ and w the normal velocity.

Proof. See [51, Lemma 3.1].

Remark 3. For a smooth initial hypersurface Γ(0), the existence of a smooth solution
locally in time can be expected, based on the fact that it is the solution to a second-order
parabolic problem derived from Equation 2.3. Moreover, from maximum and comparison
principles one can show that two smooth compact hypersurfaces initially disjoint will
remain disjoint, cf. [57]. It follows that Γ(t)⊂BR(t)(x0) for 0≤ t <min{T,R2

0/(2d−2)}
if Γ(t), t ∈ [0,T ) is a smooth solution with Γ(0) ⊂ BR0(x0), by using the shrinking
sphere as a comparison solution. See [51, Section 3].

The prototype mean curvature flow Equation 2.3 may produce singularities in finite
time before the solution disappears, while the following theorem claims that certain
initial configurations exist for which the smoothness of the solution can be preserved
until it collapses to a point.
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Theorem 4 (Huisken theorem). For d≥ 3 a uniformly convex hypersurface Γ(0)⊂ Rd

on Assumption 1 evolving by Equation 2.3 gives rise to a smooth solution Γ(t) in a
finite time interval [0,T ) that converges to a point as t goes to T . If the hypersurface
is rescaled such that the enclosed volume remains conservative, it in turn converges
towards a sphere as t goes to T .

Proof. See [86] and [51, Theorem 3.2].

In addition, one has the following theorem for the one-dimensional case, known as
the curve-shortening flow (see Figure 2.2 for a sketch).

Fig. 2.2 A plane curve converges towards a circle under the curve-shortening flow.
Inner curves (in lighter color) shrink from the outer curves at earlier time. Time steps
between curves may not be uniform. Source: [45]

Theorem 5 (Gage-Hamilton-Grayson theorem). Provided that an embedded plane
curve Γ(0) ↪→ R2 on Assumption 1 starts evolving by Equation 2.3, it gives rise to a
smooth embedded solution Γ(t) in a finite time interval [0,T ), which converges to a
round point as t goes to T .

Proof. The result for a convex Γ(0) is proved in [68], and later generalized for a non-
convex Γ(0) by proving that it will evolve towards convex (remaining smooth and
embedded) in finite time in [76], cf. [51, Theorem 3.3].

Remark 4. For d > 2 the analogue of Theorem 5 does not hold, which can be shown
by picking up a suitable initial surface in a dumbbell shape that separates and develops
a pinch-off singularity in the middle before the surface collapses to a point (see [51,
Figure 4.5] and [76]). This geometric evolution results in a change of topology, so that
a Lagrangian geometry description, e.g., the parametric approach where the topological
type is fixed, will develop a singularity that is challenging to handle, cf. [51, Section 3].

Due to the difficulty mentioned above, the question arises whether it is possible to
propose a notion of solution that is capable of tracking the mean curvature flow through
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a singularity. Such conceptions have been introduced and analyzed since the pioneering
work of Brakke in [18] on varifold solutions based on geometric measure theory. Phase
field and level set methods constitute two completely different approaches based on an
Eulerian perspective, cf. [51, Section 3]. In the next section we will discuss the level
set method in detail.

Remark 5 (The force balance of the osmosis model). In comparison to the prototype
mean curvature flow, the situation in the osmosis model may be optimistic. Normally
the osmotic pressure tends to expand the membrane, which may offset the shrinking
surface tension arising from the mean curvature flow.

2.2 Level Set Method

As we have briefly discussed in Section 1.3, the fitted and unfitted discretization
methods result in the different geometry descriptions of Lagrangian and Eulerian
coordinate systems. Each selection of description gives rise to a particular PDE that
determines the geometric evolution. The numerical method depends substantially on
the way one chooses to represent the geometry. In [51] Deckelnick and Elliott introduce
four approaches of which the first two are Lagrangian and the last two are Eulerian:

• Parametric approach, an explicit description of the meshed hypersurface;

• Graphs, which regards the hypersurface as a graph with the support of a height
function;

• Phase field approach, based on an approximation of the hypersurface by a diffuse
interface of a width across which a phase field function has a transition;

• Level set method, which implicitly represents the hypersurface by the zero level
set of an auxiliary function.

In Remark 4 we have mentioned that the Lagrangian geometry descriptions, e.g.,
parameterized surfaces and graphs, are challenging to handle the singularities developed
through a change of topology, hence the motivation to introduce approaches from
an Eulerian point of view arises. In this thesis, we focus on the level set method to
describe the geometry based on Theorem 1 and Lemma 1.

The level set method has been proposed starting with the pioneering work of
Dervieux in [54], and thereafter popularized by Osher and Sethian in a series of
literature, cf. [29, 126, 142–146]. It has been applied in a lot of disciplines and subjects,
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such as computer graphics, image processing, computational geometry, optimization,
computational biology and computational fluid dynamics (CFD). Several level-set data
structures have been established to facilitate the exploitation of the level set method
in computer science, cf. [161].

The major advantage of the level set method is the flexibility of geometry handling
that allows large deformations and even topological changes in time, without the
needs of parameterizing or remeshing the interfaces, for instance, when a soap bubble
splits into two, develops holes, or the reverse of these processes (see Figure 2.3 for a
sketch). We therefore build the unfitted discretizations based on level set domains and
interfaces.

Fig. 2.3 An illustration of the level set method. First row: An evolving domain
separates into two subdomains with developing a singularity and a topological change.
Second row: The globally defined level set function intersects with the zero plane that
represents the domain(s). Source: [44]

2.2.1 Level set function

The core idea of the level set method is to define a real-valued auxiliary function, i.e.,
level set function, of which the zero level set is exploited to specifies the bounding
hypersurface, and the negative level set usually represent the open domain bounded by
the hypersurface.

A typical choice of a level set function is the signed distance function defined by
(2.7) that enjoys the signed distance properties in Corollary 1.

Definition 8 (Level set function). Let Γ(t) be a time-dependent hypersurface in Rd.
Based on Lemma 1 we define a real-valued auxiliary function ϕ : Rd×R+→ R such
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that for any fixed time t ∈ R+

ϕ(x, t) = ρ(x) for all x ∈ Γδ(t)

where ρ(x) is the signed distance function defined by (2.7). Furthermore, one has

Γ(t) = {x ∈ Rd | ϕ(x, t) = 0}, Ω(t) = {x ∈ Rd | ϕ(x, t)< 0},
Rd \Ω(t) = {x ∈ Rd | ϕ(x, t)> 0}.

The level set function therefore inherits all the desired properties of the signed distance
function in the open tubular neighborhood Γδ(t) of Γ(t), cf. Corollary 1.

The signed distance properties of ϕ hold in the open tubular neighborhood Γδ(t)
only, which may not be preserved when Γ(t) moves, so that ϕ will be degenerated. For
a more general neighborhood of ⋃

t∈R+
Γ(t)×{t}, one needs a normalization.

Recalling Definition 1 and taking φ= ϕ, it is straightforward to show that

n =± ∇ϕ
∥∇ϕ∥

in U ∩Γ (2.22)

for ∥ · ∥ the standard Euclidean norm. By choosing the plus sign above with using
Equation 2.12 the mean curvature κ has the following expression:

κ=∇Γ ·
∇ϕ
∥∇ϕ∥

= 1
∥∇ϕ∥

d∑
i,j=1

(
δij−

∂xiϕ ∂xjϕ

∥∇ϕ∥2
)
∂2

xixj
ϕ. (2.23)

This formula, however, is expected to lose two orders of accuracy in practice, due to
the second order derivative of the level set function. Next, we will discuss the evolution
of level set function in two different ways.

2.2.2 Level set transport equation

Recalling the prototype geometric evolution equation of mean curvature flow (2.3), by
substituting (2.23) and the fact that ∂tϕ=−w∥∇ϕ∥, cf. [51, Subsection 2.5], one has
equivalently to (2.3) the following parabolic PDE

∂tϕ−
d∑

i,j=1

(
δij−

∂xiϕ ∂xjϕ

∥∇ϕ∥2
)
∂2

xixj
ϕ= 0 (2.24)
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in a neighborhood of ⋃
t∈R+

Γ(t)×{t}. The geometric evolution follows if we can solve
this equation of level set function. However, it is highly nonlinear, degenerate parabolic
and not well-defined where ∇ϕ vanishes. Therefore, standard methods for parabolic
PDEs fail, though it is possible to develop an existence and uniqueness theory within
the framework of viscosity solutions, cf. [51, Section 6].

Alternatively, we will solve the mean curvature κ by Equation 2.16 of Laplace-
Beltrami characteristics and its weak form (2.17) directly from a geometric viewpoint,
to avoid all the difficulties of solving Equation 2.24. This approach gives rise to a
linear hyperbolic PDE for the level set transport, which greatly simplifies the problem
once the surface velocity w depending on κ is linearized with respect to the geometric
evolution, and properly extended in order to provide a velocity field w for advection.

Let X (t) be the Lagrangian path of a particle moving in Rd for all time t ∈ R+.
To represent the motion of the particle implicitly by the level set function, we set the
value of ϕ(X (t), t) to be constant along the path, which, applied to all the particles,
results in

0 = d

dt
ϕ(X (t), t) = ∂

∂t
ϕ(X (t), t)+ d

dt
X (t) ·∇ϕ(X (t), t)

= ∂tϕ(x, t)+w(x, t) ·∇ϕ(x, t). (2.25)

This is a linear advection equation with the global velocity field w(x, t) introduced by
the material derivative. It can be written in the form of a hyperbolic conservation law

∂tϕ+∇·F(ϕ) = 0, for the flux function F(ϕ) := wϕ, (2.26)

if the velocity field is assumed to be divergence-free, i.e., ∇·w≡ 0, but this assumption
is not mandatory in our model. Physically, however, only the surface velocity w(x, t)
exists locally on the zero level set, we therefore define the following velocity extension
operator to obtain the global velocity field w(x, t).

Definition 9 (Velocity extension operator). Let w(x, t) be the normal component of
the velocity of each point x on the hypersurface Γ(t) ↪→ Rd in the direction of outward
unit normal n(x, t). The specific form of w(x, t) is given by a geometric evolution
equation, e.g., Equation 2.2 or Equation 2.3. We define a generic extension operator
E : C(Γ)→ [C(Rd)]d at each fixed time t such that

w := Ew with the consistency restriction w|Γ = wn.

Hence w(x, t) is a vector-valued velocity field over Rd.
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Remark 6 (Background domain). We have proposed a general extension operator
over Rd in Definition 9. In practice, however, we only need a velocity extension onto
a simple bounded background domain, denoted by Ω̄, typically a convex polygon, fixed
in the Euclidean space that properly contains the hypersurface with its δ-neighborhood
for all the time of evolution. Please distinguish the symbol Ω̄ with the short bar from
the closure of the domain denoted by Ω. This practical extension operator may be
considered as the generic extension operator restricted to the background domain, i.e.,
E|Ω̄, but from here on we identify it with E unless otherwise stated.

Apart from the consistency restriction, i.e., an extended velocity compatible to the
surface velocity, it remains many degrees of freedom to construct the velocity extension
operator. We introduce the following candidate for illustration in this chapter, but
please keep in mind this is neither a unique nor an optimal choice. We will discuss and
implement alternative extension operators in Chapter 5 and Chapter 6.

In order to preserve the signed distance property as much as possible for the level
set function when the hypersurface moves, we would prefer the velocity extension
acting as a smooth mapping only in directions normal to the hypersurface. This desired
extension can be achieved by solving the following elliptic diffusion equation with the
Dirichlet restriction of compatible velocity imposed on the hypersurface

∇· ((n⊗n)∇w) = 0 in Ω̄× [0,T ], (2.27a)
w = wn on Γ(t), t ∈ [0,T ], (2.27b)

where Ω̄⊂ Rd is a fixed time-independent background domain properly containing 2

Γδ(t) for all the time of evolution, i.e., Γδ ⊂ Ω̄, ∀t ∈ [0,T ], T ∈ R+. We stress that the
outward unit normal n here is well-defined in Ω̄× (0,T ] by extension of (2.22) with the
plus sign choice. The problem (2.27) equipped with the matrix n⊗n indeed produces
an anisotropic extension of the surface velocity w.

To derive the corresponding variational formulation for each fixed time t ∈ [0,T ] we
define a proper function space that enforces the Dirichlet boundary condition

Vw :=
{
v ∈ [H1(Ω̄)]d | v = wn on Γ(t)

}
(2.28)

and the corresponding test function space

V0 :=
{
v ∈ [H1(Ω̄)]d | v = 0 on Γ(t)

}
. (2.29)

2From here on, the term "properly contain" implies that a subdomain with its proper neighborhood
is totally contained in a domain.



30 PDEs Coupled with Geometric Flow

The PDE problem (2.27) can then be written in a weak sense:
To find w ∈ Vw such that∫

Ω̄
(n⊗n)∇w∇v dx = 0 ∀v ∈ V0. (2.30)

For the existence of this weak solution, see [61, Section 6.2]. We will study this choice
of velocity extension, among its alternatives, in the sense of computation in Section 5.1.

Now let us assume that the velocity field w has been obtained. Provided that
w : Ω̄→ Rd is properly given, the scalar-valued level set function ϕ : Ω̄× [0,T ]→ R is
governed by Equation 2.25 with the following initial and boundary conditions:

∂tϕ+w ·∇ϕ= 0 in Ω̄× (0,T ], (2.31a)
ϕ= ϕ0 in Ω̄×{0}, (2.31b)
ϕ= ϕΩ̄ on ∂Ω̄× [0,T ], (2.31c)

where the initial data ϕ0(x) is prescribed to be a sufficiently smooth signed distance
function in our model, which satisfies ϕ0(x) ̸= 0 for all x ∈ ∂Ω̄. Since the level set
function ϕ is an auxiliary function artificially constructed for describing the physical
domain, it is free to be determined on the boundary of the background domain ∂Ω̄,
which contains the inflow boundary ∂Ω̄−(t) := {x ∈ ∂Ω̄ |w(x, t) ·nΩ̄(x)< 0} for nΩ̄ the
outward unit normal on the boundary, and the outflow boundary ∂Ω̄+(t) = ∂Ω̄\∂Ω̄−(t).
One choice of the boundary value ϕΩ̄(x, t) is that

ϕΩ̄(x, t) =

 ϕ0(x) for x ∈ ∂Ω̄−(t),
limε→0ϕ(x− εw, t) for x ∈ ∂Ω̄+(t).

(2.32)

In other words, ϕΩ̄(x, t) takes value from the initial data on the inflow boundary and
from the upwind neighborhood on the outflow boundary. This boundary condition
ensures that there is no new zero level to be imported from the boundary. See
[113, Section 3.3] for a detailed discussion about the boundary condition. For the
wellposedness of the PDE problem (2.31), see [113, Theorem 3.4 in Section 3.1].

In contrast to Equation 2.24, this transport (advection) equation is linear and can be
solved easily by some well-investigated numerical methods for hyperbolic conservation
laws, which we will discuss in Section 5.2. From the solution ϕ(x, t) to the PDE problem
(2.31), we have all the information about the bounding hypersurface Γ(t) := ∂Ω(t)
along with the enclosed domain Ω(t) on which the PDEs of physical phenomena may
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be posed. This hyperbolic approach facilitates the resolution to the geometric evolution
compared to the parabolic approach.

2.3 PDEs on Evolving Domains

In this section, we discuss the sub-model of our geometrically coupled bulk-surface
problem where PDEs are posed on time-dependent domains of which the evolution is
given in advance. Due to the decoupling with the geometric evolution equation, though
more complicated than stationary problems, it is relatively simple from a geometric
perspective, and has been studied for many classes of PDEs, theoretically in [4, 28, 46]
and numerically in [23, 33, 83, 102, 130, 157]. We begin with an advection-diffusion
equation on a single domain, and then consider a non-stationary two-phase interface
problem, and end up with a homogeneous diffusion equation used in the osmosis model.

2.3.1 Advection-diffusion equation

In order to describe physical phenomena where particles, density, energy, chemical
concentration, or other scalar quantities are transported within a physical system
through two processes: advection and diffusion, the advection-diffusion equation 3

arises. Due to the linearity and the hybrid phenomena, it is often employed as a basic
model of many real-world applications.

We follow the similar lines in [102, Section 2] to build the mathematical model. Let
Ω(t)⊂ Rd, d= 2,3 be a time-dependent domain with Lipschitz boundary Γ(t) = ∂Ω(t)
smoothly evolving in a time interval t∈ [0,T ], T ∈R+, which is properly contained in a
polygonal time-independent background domain Ω̄⊂ Rd for all time t ∈ [0,T ]. For the
initial domain Ω(0) ∈ Rd as a fixed reference we assume there exists a diffeomorphism
describing the evolution such that

ψ(t) : Ω(0)→ Ω(t) for t ∈ [0,T ] (2.33)

with the additional regularity ψ ∈W1
∞([0,T ];W2

∞(Ω(0))), cf. [23, Section 2]. For the
Bochner space we refer the reader to [61, Subsection 5.9.2]. Hence for each time t,
the domain Ω(t) is a differentiable manifold. In practice, Ω(t) may be considered as a

3It is also called convection-diffusion equation in the literature. Although they are in general
considered synonym to each other, technically speaking, advection is the movement of physical quantity
transported by the velocity field of a fluid, whereas convection often applies to the movement of a
fluid arising from thermal gradient. We therefore use the term "advection" in this thesis.
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volume of fluid under motion and deformation, with a material velocity field w : Ω̄→Rd

that has a proper meaning over the whole background domain. The diffeomorphism
ψ can be regarded as a Lagrangian mapping from Ω(0) to Ω(t) for each x0 ∈ Ω(0)
satisfying the dynamical system

ψ(0,x0) = x0, ∂tψ(t,x0) = w(t,ψ(t,x0)) for t ∈ [0,T ]. (2.34)

In the Eulerian framework, the conservation of a scalar quantity u(x, t) of the fluid
with a diffusive flux is governed by the following advection-diffusion equation and
Neumann boundary condition

∂tu+∇· (uw−ν∇u) = g in Ω(t), t ∈ (0,T ], (2.35a)
∇u ·n = 0 on Γ(t), t ∈ (0,T ], (2.35b)

where ν ∈ R+ denotes a constant diffusion coefficient, g(x, t) is a source term that we
set zero for the time being, and n(x, t) is the outward unit normal on Γ(t). To solve
this PDE problem we assume in addition a proper initial condition

u(x,0) = u0(x) in Ω(0) (2.36)

with given initial data u0(x). An illustration of this problem is given in Figure 2.4.

∂tu+∇ · (∇uw − ν∇u) = g in Ω(t)

Ω(t)

∇u · n = 0 on Γ(t)

w

Fig. 2.4 The problem of advection-diffusion equation posed on single evolving domain.
The domain Ω(t) is moving from the green region to the red region by a velocity field
w. The no-flux boundary condition imposed on the boundary of domain (in purple)
guarantees the conservation of the physical quantity u.
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By Reynolds transport theorem applied to the evolving domain Ω(t) we can verify
that the no-flux boundary condition (2.35b) properly assures the conservation of u(x, t)

d

dt

∫
Ω(t)

u dx =
∫

Ω(t)
∂tu dx +

∫
∂Ω(t)

u(w ·n) ds=
∫

Ω(t)
∂tu+∇· (uw) dx (2.37)

=
∫

Ω(t)
∇· (ν∇u) dx =

∫
∂Ω(t)

ν∇u ·n ds.

For wellposedness of the PDE problems above we refer to [61, Chapter 7]. In this
thesis we will solve this problem numerically in Chapter 3.

2.3.2 Two-phase interface problem

Let us push forward the advection-diffusion equation further onto two subdomains
separated by a sharp interface where the thickness is assumed to be zero, across which
mass transport happens. This gives rise to the so-called two-phase interface problem
(see Figure 2.5), cf. [98]. We discuss this problem here because it will be implemented
as a numerical example in Subsection 3.3.2. In this thesis we only investigate the case
of moving interface, while for the corresponding stationary problem as a foundation we
refer the reader to [98, Chapter 2].

Γ

Ω1

Ω2

Γ

Ω1

Ω2

Fig. 2.5 A sketch of the two-phase interface problem. The disjoint subdomains Ω1 and
Ω2 are separated by the sharp interface Γ, which is properly contained in a background
domain.

Analogously to Subsection 2.3.1, we setup the geometry for the two-phase interface
problem based on Theorem 1. Let Ωi(t), i = 1,2 be two disjoint subdomains of a
background domain such that Ω1(t)∩Ω2(t) = Γ(t)⊂ Ω̄ and Ω1(t)∪Ω2(t) = Ω̄⊂Rd. The
subdomains Ωi(t) with their interface Γ(t) are Lipschitz continuous and the evolution
is smooth in a time interval t ∈ [0,T ], T ∈ R+. We consider the advection-diffusion
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equation (2.35a) posed on the two subdomains

∂tu+∇· (uw−ν∇u) = g in Ωi(t), i= 1,2, t ∈ (0,T ] (2.38)

and the Neumann boundary condition (2.35b) imposed on the interface in addition to
a Henry interface condition

[[−ν∇u ·n]] = 0 on Γ(t), t ∈ (0,T ], (2.39a)
[[γu]] = 0 on Γ(t), t ∈ (0,T ], (2.39b)

for νi, i= 1,2 the diffusion coefficients and γi, i= 1,2 the Henry weights, cf. [98, Section
1.2]. Moreover, we prescribe the Dirichlet data on the boundary of the background
domain, i.e., ∂Ω̄, and some proper initial conditions

u(x, t) = gD on ∂Ω̄, t ∈ (0,T ], (2.40)
u(x,0) = u0(x) in Ωi(0), i= 1,2. (2.41)

For more details about this model please refer to [98, Chapter 3]. In this thesis we
will employ this model and study the numerical solution in Subsection 3.3.2.

2.3.3 Homogeneous diffusion equation

To conclude this section, we propose a simpler case used in the osmosis model. Let us
ignore the advection for the moment and consider a homogeneous diffusion equation
posed on a single-phase domain, which is reduced from the inhomogeneous advection-
diffusion equation (2.35a), with a proper Robin boundary condition and a prescribed
initial data

∂tu−∇· (ν∇u) = 0 in Ω(t), t ∈ (0,T ], (2.42a)
wu+ν∇u ·n = 0 on Γ(t), t ∈ (0,T ], (2.42b)

u= u0 in Ω(0). (2.42c)

See Figure 2.6 for an illustration of this problem.
By following the same lines of (2.37), it can be verified that the boundary condition

(2.42b) properly assures the conservation of the physical quantity u(x, t).
The advection-diffusion problem (2.35) has a global velocity field w involved over

Ω̄, but in the osmotic cell swelling problem the physical velocity absents apart from
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∂tu−∇ · (ν∇u) = 0 in Ω(t)

Ω(t)

wu+ ν∇u · n = 0 on Γ(t)

w

Fig. 2.6 The problem of diffusion equation posed on single evolving domain. The
domain Ω(t) is moving from the green region to the red region by a surface velocity
w. The no-flux boundary condition imposed on the boundary of domain (in purple)
guarantees the conservation of the physical quantity u.

the membrane (i.e., the surface), which makes the global velocity field w in (2.35)
meaningless. We therefore make use of this diffusion model (2.42) instead, where only
the normal component of the surface velocity w is involved.

2.4 The Coupled Geometry-Physics System of PDEs

We have introduced all the sub-models that are united to unfold the geometrically
coupled solution-curvature-driven moving FBP, cf. Section 1.2. In this section, we
collect these sub-models towards a coupled system of physical and geometric equations.
Due to the nonlinearity of coupling we will probe two linearization strategies in the
sense of discrete solutions in Chapter 6.
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Let us recall the equations we have discussed before. Altogether, (2.16), (2.2),
(2.22), (2.27), (2.31), and (2.42) constitute the following coupled system of equations

κn =−∆Γx on Γ(t), t ∈ [0,T ], (2.43a)
w =−ακ+βu on Γ(t), t ∈ [0,T ], (2.43b)
w = wn on Γ(t), t ∈ [0,T ], (2.43c)

∇· ((n⊗n)∇w) = 0 in Ω̄× [0,T ], (2.43d)
n =∇ϕ/∥∇ϕ∥ in Ω̄× [0,T ], (2.43e)

∂tϕ+w ·∇ϕ= 0 in Ω̄× (0,T ], (2.43f)
ϕ= ϕ0 in Ω̄×{0}, (2.43g)
ϕ= ϕΩ̄ on ∂Ω̄× [0,T ], (2.43h)

∂tu−∇· (ν∇u) = 0 in Ω(t), t ∈ (0,T ], (2.43i)
wu+ν∇u ·n = 0 on Γ(t), t ∈ (0,T ], (2.43j)

u= u0 in Ω(0). (2.43k)

There are eleven equations involved in the nonlinearly coupled system (2.43), among
which three boundary conditions and two initial conditions present. The six unknowns
in the system are the scalar-valued physical quantity u, the mean curvature κ, the unit
normal n, the surface velocity w, the velocity field w, and the level set function ϕ.

We summarize step by step the idea to unravel the coupled system by the sub-models
with introducing the related notation of operators:

1. Provided that the level set domain Ω(t0) = {x ∈ Ω̄ | ϕ(x, t) < 0} is prescribed
at a fixed time t0 ∈ [0,T ], the mean curvature vector H := κn on the bounding
hypersurface Γ(t) = {x ∈ Ω̄ | ϕ(x, t) = 0} can be determined by the geometric
equation (2.43a). With the unit normal n(x, t0) from (2.43e) it gives the scalar-
valued mean curvature κ(x, t0). Hence the first stationary sub-problem is

κn =−∆Γ(ϕ)x on Γ, (2.44a)
n =∇ϕ/∥∇ϕ∥ on Γ, (2.44b)

for which an operator we denoted by

κ= A(ϕ). (2.45)
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2. At the fixed time t0 ∈ [0,T ], the mean curvature κ(x, t0) together with the PDE
solution u(x, t0) defines the surface velocity w(x, t0) simply by the algebraic
geometric evolution equation (2.43b)

w =−ακ+βu on Γ, (2.46)

which can be written in the operator form

w = B(κ,u). (2.47)

3. At the fixed time t0 ∈ [0,T ], with the consistency restriction (2.43c) from the
surface velocity w(x, t0) and the unit normal n(x, t0) from (2.43e), the extended
velocity field w(x, t0) on the background domain Ω̄ can be achieved by solving the
elliptic diffusion equation (2.43d). It gives rise to the third stationary sub-problem

w = wn on Γ, (2.48a)
∇· ((n⊗n)∇w) = 0 in Ω̄, (2.48b)

n =∇ϕ/∥∇ϕ∥ in Ω̄, (2.48c)

for which we denote
w = C(w,ϕ). (2.49)

4. Once the velocity field w(x, t0) is provided at the time t0 ∈ [0,T ], the level set
function ϕ(x, t) that represents the evolving domain Ω(t) can be transported in
a time interval (t0, t0 + ∆t], ∆t = T/N, N ∈ N as a solution to the hyperbolic
advection equation (2.43f) with the initial condition (2.43g) and the boundary
condition (2.43h). Then the following time-dependent sub-problem arises

∂tϕ+w ·∇ϕ= 0 in Ω̄× (t0, t0 +∆t], (2.50a)
ϕ= ϕ0 in Ω̄×{t0}, (2.50b)
ϕ= ϕΩ̄ on ∂Ω̄× [t0, t0 +∆t], (2.50c)

which can be written as
ϕ= D(w,ϕ0,ϕΩ̄). (2.51)
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5. Once the evolution of the level set domain Ω(t) is given in [t0, t0 + ∆t], the
diffusion equation (2.43i) posed on this evolving domain can be solved with the
boundary condition (2.43j) and the initial data (2.43k). It models the diffusion
phenomenon and results in the following sub-problem of PDEs on moving domain

∂tu−∇· (ν∇u) = 0 in Ω(t), t ∈ (t0, t0 +∆t], (2.52a)
wu+ν∇u ·n = 0 on Γ(t), t ∈ (t0, t0 +∆t], (2.52b)

n =∇ϕ/∥∇ϕ∥ on Γ(t), t ∈ (t0, t0 +∆t], (2.52c)
u= u0 in Ω(t0), (2.52d)

for the solution u(x, t) as a physical quantity of conservation. We use the operator

u= E(ϕ,w,u0). (2.53)

As we have seen, the strategy solves the nonlinearly coupled system in such a way
that it confines the geometric evolution within a small time interval and then linearizes
the sub-problems. Although every equation itself is linear, they are nonlinearly coupled
in the system. This results from that we use the approach of the linear hyperbolic
equation (2.31) to avoid the difficulties of solving the highly nonlinear, degenerate
parabolic equation (2.24), cf. Subsection 2.2.2. As a consequence, the nonlinearity
arises accordingly from the geometry-physics coupling as a cost we have to pay, which
makes most of analytical tools impracticable. To this end, the numerical methods for
the sub-models will be proposed in Chapter 3, Chapter 4, and Chapter 5, while a weak
and a strong coupling models will be presented in Chapter 6.



2.4 The Coupled Geometry-Physics System of PDEs 39

To conclude this chapter, we summarize an overview of the problem in Figure 2.7,
and rewrite the coupled system (2.43) in a compact form of equivalence

∂tϕ+w ·∇ϕ= 0 in Ω̄× (0,T ], (2.54a)
ϕ= ϕ0 in Ω̄×{0}, (2.54b)
ϕ= ϕΩ̄ on ∂Ω̄× [0,T ], (2.54c)

∇· ((n⊗n)∇w) = 0 in Ω̄× [0,T ], (2.54d)
∂tu−∇· (ν∇u) = 0 in {x ∈ Ω̄, t ∈ (0,T ] | ϕ(x, t)< 0}, (2.54e)

u(w ·n)+ν∇u ·n = 0 on {x ∈ Ω̄, t ∈ (0,T ] | ϕ(x, t) = 0}, (2.54f)
u= u0 in Ω(0), (2.54g)

w−α∆Γ(ϕ)x−βun = 0 on {x ∈ Ω̄, t ∈ (0,T ] | ϕ(x, t) = 0}, (2.54h)

in which the level set domain and hypersurface are presented implicitly, as well as the
dependence of the unit normal on the level set function.

∂tφ+ w · ∇φ = 0

Ω̄× (0, T ]

∂tu−∇ · (ν∇u) = 0 in {x | φ(x, t) < 0} =: Ω(t)

Ω(t)

u(w · n) +∇u · n = 0 on {x | φ(x, t) = 0} =: Γ(t)

w = α∆Γx + βun on Γ

Fig. 2.7 The geometrically coupled bulk-surface moving FBP with a solution-curvature-
driven boundary involves a nonlinearly coupled system of the diffusion equation posed
on the time-dependent level set domain, the no-flux boundary condition imposed on the
bounding hypersurface, the geometric evolution equation given by the mean curvature
vector and the physical quantity, the velocity extension equation with the consistent
surface condition, and the advection equation transporting the level set function.





Chapter 3

Numerical PDEs on
Time-dependent Domains

Towards the coupled bulk-surface model proposed in Section 2.4, our strategy is based
on decoupling and linearization. In this chapter, we will only consider the bulk model
and discuss the numerical methods for solving uncoupled PDEs posed on time-varying
bulk domains, of which the evolution is given independently and in advance. In other
words, the involved PDEs do not affect the geometry on which they are posted, whereas
the prescribed geometry has an influence on the quantities subject to the involved PDEs.
A variety of methods have been developed to solve numerical PDEs on time-dependent
domains in the past decades. Generally speaking, however, there are only two categories
of these methods, namely Eulerian and Lagrangian frameworks. Discretizations based
on a Lagrangian coordinate system work with an explicit description of geometry, in
which the computational mesh is adapted to fit the boundary of domain. A popular
approach of this sort is the so-called Arbitrary-Lagrangian-Eulerian (ALE) formulation,
cf. [43, 56]. Although the Lagrangian methods offer a more natural way to deal with
non-stationary geometry by tracking the boundary of domain, they are challenged
by significant deformations or topological changes of the geometry. These issues,
on the other hand, can be overcome by the Eulerian methods that work with the
computational mesh unfitted to the boundary of domain, in which the geometry is
represented implicitly, for example, by a level set function. In this thesis, we will focus
on this family of the so-called geometrically unfitted FEM that captures the boundary
(i.e., the interface or the hypersurface) by the level set method, cf. [29, 54, 126, 142–146].
This chapter is built substantially on the work of Lou and Lehrenfeld in [114].
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3.1 Eulerian Finite Element Method

Recalling that in Subsection 2.3.1 an advection-diffusion equation posed on a space-time
domain Ξ := ⋃

t∈[0,T ] Ω(t)×{t} ⊂ Ω̄× [0,T ] is considered, i.e., for t ∈ [0,T ]

∂tu+∇· (uw−ν∇u) = g in Ω(t), ∇u ·n = 0 on Γ(t), u= u0 on Ω(0). (3.1)

There is a single domain Ω(t) on which the equation is posed, cf. Figure 3.1 for a
sketch of the problem in the unfitted setting. While for the numerical tests we will
also consider a two-phase moving interface problem where the equation is posed on
both Ω1(t) and Ω2(t) := Ω̄\Ω1(t) that is separated by a jump interface Γ(t) := Ω1∩Ω2,
cf. Subsection 2.3.2. Let Ωε(t) := {x ∈ Ω̄ | dist(x,Ω(t)) < ε} be an ε-neighborhood
of the domain Ω(t) for some ε ∈ R+, with the corresponding space-time domain
Ξε := ⋃

t∈[0,T ] Ωε(t)×{t} ⊂ Ω̄× [0,T ], which will be used in the analysis.

∂tu+∇ · (∇uw − ν∇u) = g in Ω(t)

Ω(t)

∇u · n = 0 on Γ(t)

w

Fig. 3.1 The problem of an advection-diffusion equation with a no-flux Neumann
boundary condition posed on a single evolving domain unfitted to the background
mesh in the Eulerian framework.

In the Eulerian framework, a naive idea to solve this PDE problem follows the
method of lines that combines a finite element discretization in space with a finite
difference scheme for time marching. However, this is not directly applicable to
problems with non-stationary geometry, as the domain of definition of the discrete
solution evolves and the corresponding unfitted finite element space varies in time, and
the degrees of freedom may get active or inactive across such a time-stepping stencil.
In [102] this difficulty has been overcome by the so-called Eulerian Finite Element
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Method (Eulerian FEM, the name due to the Eulerian framework and the implicit
Euler scheme), which extends the discrete solution at every time step to a sufficiently
large neighborhood in order to include all the degrees of freedom that are relevant
at the next time step. To this end, a discrete extension based on the so-called ghost
penalty method [21], is applied at every time step to make the solution still well-defined
on the domain of the next time step. This method, however, performs a piecewise
linear interpolation of the level set domain and the first-order backward Euler scheme
for time stepping, which make it a method of low-order accuracy in both space and
time. We therefore develop it into a higher-order method in space and time, based
on a sequence of isoparametric mappings of the level set domain and the backward
differentiation formula (BDF) [49] for time stepping, as we have proposed in [114].

In this section, we will first introduce some preliminaries and discrete notation,
followed by the weak formulation of the low-order Eulerian FEM including the ghost
penalty mechanism for stabilization and discrete extension, cf. [102]. We then give an
introduction to the technique of isoparametric mappings for a high-order approximation
of the geometry, cf. [99, 105], and design a mesh transfer operator that is required for
projecting the solutions between differently deformed meshes. Based on a sequence
of the isoparametric mappings in time, the mesh transfer operator, and the BDF
time stencils, we derive the space and time discretizations of high-order accuracy. A
comprehensive error analysis of this method will be conducted in the next section,
followed by three numerical experiments.

3.1.1 Preliminaries and nomenclature

In order to introduce the numerical methods, we first define the discrete objects and
their notation.

Discrete space and time

Let {Th}h∈R+
be a family of consistent subdivisions of the background domain Ω̄⊂

Rd, d= 1,2,3 into an admissible quasi-uniform triangulation Th consisting of simplexes
(i.e., elements) {T̂ ∈ Th} with a characteristic diameter (mesh size) h ∈ R+. On each
of these triangulations Th we define a time-independent, finite-dimensional space of
continuous piecewise polynomial functions of degree k, i.e., a finite element space, by

Vh = V(k)
h :=

{
vh ∈ C(Ω̄) | vh|T̂ ∈ P

k(T̂ ), ∀T̂ ∈ Th

}
, (3.2)
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where the bracketed upper index (k) may be omitted below. We call Th a background
mesh.

Let ∆t := T/N, T ∈ R+,N ∈ N be a uniform time step of an equally-spaced
subdivision of the time interval [0,T ] under investigation. Let tn := n∆t, n= 0,1, ...,N
be time instances for which we denote by unbracketed upper index (·)n := (·)|t=tn

the time-dependent objects restricted to t = tn , e.g., Ωn := Ω(tn), Γn := Γ(tn), or
ϕn := ϕ(·, tn).

Geometric approximation

Let ϕ(x, tn) be a level set function whose negative level set represents a smooth
domain Ωn = {x ∈ Ω̄ | ϕ(x, tn) < 0} exactly, with its zero level set for the boundary
Γn := ∂Ωn = {x∈ Ω̄ | ϕ(x, tn) = 0}, for n= 0, ...,N, N ∈N. Let ϕ̂n

h := In
hϕ be a piecewise

linear interpolation of the level set function ϕ(x, tn) at second order of accuracy, where
In

h is the corresponding nodal interpolation operator in the finite element space V(k)
h .

Let ϕn
h be an abitrarily high-order piecewise polynomial appoximation to ϕ(x, tn). The

discrete level set domains can be defined by the corresponding approximated level set
functions

Ω̂n
h :=

{
x ∈ Ω̄ | ϕ̂n

h(x)< 0
}
, Ω̃n

h :=
{
x ∈ Ω̄ | ϕn

h(x)< 0
}
. (3.3)

(a) Ω̂n
h (b) Ω̃n

h

Fig. 3.2 Left: the boundary (in yellow) of a second-order discrete level set domain Ω̂n
h.

Right: the boundary (in red) of a high-order discrete level set domain Ω̃n
h.

A sketch of the two approximations of the smooth domain Ωn is given in Figure 3.2.
We assume that the boundary ∂Ωn is sufficiently smooth and has a proximity bound

dist
(
∂Ωn,∂Ω̃n

h

)
≲ hq+1, ∀tn ∈ [0,T ], (3.4)
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where q ∈ N is for the order of accuracy of ϕn
h.

Remark 7 (Inequalities up to constants). In order to simplify the inequalities that
involve generic constants c independent of mesh size h, time step ∆t, and time instance
tn, we introduce the signs ≲, ≳, and ≃. In particular, x≲ y (x≳ y) denotes x≤ cy
(x≥ cy), and x≃ y indicates x≲ y and x≳ y. The hidden constant c may be refered
to by c(x.y) where (x.y) is the label of the corresponding inequality using ≲, ≳, or ≃.

Since the quadrature rules have difficulty in preserving the geometrical order of
accuracy, in this thesis we consider the isoparametric mappings approach introduced
in [99] to tackle this problem. The underlying idea of this technique is that the second-
order approximation of the geometry Ω̂n

h based on the piecewise linear interpolation ϕ̂n
h

serves as a reference configuration on which the quadrature rules can be constructed
easily, e.g., by simple geometrical decomposition rules. To improve the accuracy of this
low-order approximation, a polynomial function of degree q, denoted by Θn ∈ [V(q)

h ]d,
for transformation of the geometry is constructed at each time step n such that

dist
(
∂Ωn,Θn(∂Ω̂n

h)
)
≲ dist

(
∂Ωn,∂Ω̃n

h

)
+dist

(
∂Ω̃n

h,Θn(∂Ω̂n
h)

)
≲ hq+1. (3.5)

This transformation is itself a finite element function with respect to the background
mesh which renders the task of accurate numerical integration feasible. The mesh
deformation is local, namely only in the vicinity of zero level set it deviates from the
identity, and small everywhere in the sense that ∥Θn∥L∞(Ω̄) ≲ h2, cf. Subsection 3.1.3.
However, the fact that the deformed meshes and the properly adapted finite element
spaces are in general time-dependent, results in the need of a mesh transfer operator,
cf. Subsection 3.1.4 for details.

Based on this reference configuration, we define the high-order approximations of
the domain and its boundary, the deformed background mesh, and the time-dependent
isoparametric finite element spaces for n= 1, ...,N , respectively,

Ωn
h := Θn(Ω̂n

h), Γn
h := ∂Ωn

h, T n
h := Θn(Th), Vn

h := Vh ◦Θ−n, (3.6)

where the abbreviation denoted by Θ−n := (Θn)−1 is the inverse of the transformation.
Please note that Ωn

h is a good approximation to Ω̃n
h but Ωn

h ̸= Ω̃n
h. We call T̂ ∈ Th an

undeformed or straight element and Tn ∈ T n
h a deformed or curved element from here

on.
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Discrete domains and active meshes

In unfitted finite element discretizations, only a part of the background mesh is involved
in the computation at each time step, which we call active parts of domains, meshes
and finite element spaces, as those parts correspond to the elements that overlap the
physical domain Ωn or its discrete neighborhoods. See Figure 3.3 for a sketch of the
concepts and notation introduced hereafter.

Fig. 3.3 The concepts of discrete domains, strips, and different selections of elements
and facets. The first three columns display the mesh, the discrete domain Ωn, and the
set of active elements. The three columns in the middle display a strip domain related
to an extension by ±δ and a further extension by one element layer, with corresponding
element and facet selections. While in the last three columns an extension by 2δ and
two element layers is considered.

First of all, let us define an inflated level set domain and a deflated one based on
(3.3) with a parameter δ ∈ R+ as follows:

Ω̂n
h,δ :=

{
x ∈ Ω̄ | ϕ̂n

h(x)− δ < 0
}
, Ω̂n

h,−δ :=
{
x ∈ Ω̄ | ϕ̂n

h(x)+ δ < 0
}
. (3.7)

We assume the level set function ϕ(x, tn) is of signed distance property which guarantees
the extent of domain changes to be scaled approximately to δ, cf. Subsection 2.1.3.

By the inflated and the deflated level set domains we can easily define a discrete
mapped δ-strip for some δ ∈ R+ as follows:

Sn
h,±δ := Θn

(
Ω̂n

h,δ \ Ω̂n
h,−δ

)
, Sn

h,δ := Θn
(
Ω̂n

h,δ \ Ω̂n
h

)
, Sn

h,−δ := Θn
(
Ω̂n

h \ Ω̂n
h,−δ

)
, (3.8)

with the deformed mesh and the corresponding domain for Sn
h,±δ

T n,S
h,±δ :=

{
Tn ∈T n

h |measd(Tn∩Sn
h,±δ)> 0

}
, Dn,S

h,±δ :=
{
x∈ Tn | Tn ∈T n,S

h,±δ

}
, (3.9)



3.1 Eulerian Finite Element Method 47

and similarly for Sn
h,+δ and Sn

h,−δ we have T n,S
h,δ , Dn,S

h,δ and T n,S
h,−δ, Dn,S

h,−δ, respectively.
In addition, when δ→ 0 we detain Sn

h,0 := Γn
h, hence denoted by T n,S

h,0 and Dn,S
h,0 are the

set of cut elements {Tn ∈ T n
h |measd−1(Tn∩Γn

h)> 0} and the corresponding domain,
respectively, namely the set of elements that are cut by the discrete boundary.

For the discrete extension of the mapped domain that includes its interior, we
specify

Ωn
h,δ := Θn

(
Ω̂n

h,δ

)
(3.10)

with the corresponding active part of the deformed mesh and the domain

T n
h,δ :=

{
Tn ∈ T n

h |measd(Tn∩Ωn
h,δ)> 0

}
, Dn

h,δ :=
{
x ∈ Tn | Tn ∈ T n

h,δ

}
. (3.11)

Corresponding to the active meshes T n
h,δ we define the time-dependent isoparametric

finite element spaces restricted to T n
h,δ, as function spaces of continuous, piecewise

mapped polynomials of degree k for n= 1, ...,N , by

Vn
h,δ := Vn

h |Dn
h,δ

=
{
vh ∈ C(Dn

h,δ) | vh|T n ∈ Pk(T̂ )◦Θ−n, ∀Tn ∈ T n
h,δ

}
. (3.12)

Please note that when δ →∞ we have trivially Sn
h,±δ = Dn,S

h,±δ = Dn
h,δ = Ωn

h,δ = Ω̄,
T n,S

h,±δ = T n
h,δ = T n

h , and Vn
h,δ = Vn

h .
Moreover, we add a subscript r ∈ N next to δ, to further expand a set of elements

or domain by all neighboring elements 1 for r times, in addition to an extension of δ
distance, for a sufficient extension to cover the possible mesh displacement at forward
time steps, denoted by (·)h,δ,r. For instance, the set of cut elements plus all their
neighboring elements is denoted by T n,S

h,0,1, and the active elements T n
h,δ plus two stacks

of neighboring elements is denoted by T n
h,δ,2 with the coresponding domain Dn

h,δ,2. From
here on, unless otherwise stated, let us simplify the notation by a single subscript (·)r

to represent (·)h,rδ,r, namely (·)r for a discrete extension of rδ distance plus r stacks of
neighboring elements, which will be most frequently used in this chapter. For example,
T n

r := T n
h,rδ,r, T n,S

±r := T n,S
h,±rδ,r, Dn

r :=Dn
h,rδ,r, Dn,S

±r :=Dn,S
h,±rδ,r and Vn

r := Vn
h,rδ,r.

Remark 8 (Extension by neighboring elements). This extension by neighboring ele-
ments is involved only in the analysis for self-consistency, but not necessarily in the
implementation where the desired inclusion properties can be ensured simply by choosing
a sufficiently large δ.

Remark 9 (Symbols with index h or r). It is important to distinguish the abbreviations
Ωn

r , T n
r and Vn

r from their non-extended counterparts Ωn
h, T n

h and Vn
h by the parameter

1An element is considered a neighbor to another element if they share at least one vertex.
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h ∈ R+ or r ∈ N. For the sake of notational simplicity, we hide the subscripts h and δ
for these extended domains, meshes, and spaces that already have the subscript r to
represent the discrete sense implicitly.

Obviously, there holds

dist
(
∂Dn

r ,∂Dn
0

)
≳ r(h+ δ). (3.13)

Next, from Fn
h , which is the set of all facets involved in the mesh T n

h , we introduce
a set of active facets that is later on used for stabilization and discrete extension
purposes. To this end, we mark all facets between elements in the strip and those in
the extended domain, as follows:

Fn
h,δ :=

{
Tn

1 ∩Tn
2 | Tn

1 ∈ T n
h,δ,T

n
2 ∈ T

n,S
h,δ ,T

n
1 ̸= Tn

2
}
, (3.14a)

Fn
r :=

{
Tn

1 ∩Tn
2 | Tn

1 ∈ T n
r ,T

n
2 ∈ T n,S

r ,Tn
1 ̸= Tn

2
}
. (3.14b)

Please note that this selection of facets connects the domain interior of Ωn
h with Dn

r ,
i.e., the region obtained by applying an extension by rδ distance plus r neighboring
element layers.

We further introduce a patch ω(·) : Ω̄∪Fn
h ∪T n

h →T n
h that maps a point, a facet,

or an element to a set of neighboring elements such that

ω(x) := {∪T n∈T n
h
Tn, x ∈ Tn} for a point x ∈ Ω̄, (3.15a)

ω(Fn) := {∪T n∈T n
h
Tn, Fn ⊂ Tn} for a facet Fn ∈ Fn

h , (3.15b)

ω(Tn) := {∪T ′∈T n
h
T ′ |measd−1(T ′∩Tn)> 0} for an element Tn ∈ T n

h . (3.15c)

We employ this symbol of patch ω(·) also with respect to the undeformed mesh Th in
the same manner where the neighbors are picked from the straight facets Fh or elements
Th. The patch may also be applied to a part of an element, e.g., Tn

Ω := Tn∩Ωn
h, by the

same definition as (3.15c).
On top of all the active objects introduced above, we make use of the hat symbol

(̂·) with respect to undeformed mesh and low-order geometry, i.e., when Θn ≡ id. For
instance, F̂n

h,δ, T̂ n
h,δ, D̂n

h,δ and V̂n
h,δ. The hat symbol is, however, not applied to the

global 2 objects of low-order geometry, such as Fh, Th and Vh, for the sake of simplicity.
We conclude this subsection with the following definition.

2The term "global" implies that an object acts over the whole background domain.
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Definition 10 (Trivial finite element extension). We identify discrete functions on
restricted meshes with functions on the whole background mesh by setting all degrees
of freedom outside the restriction to zero, namely, e.g., there holds Vn

h,δ ⊂ Vn
h for any

δ ∈ R+.

3.1.2 Variational formulation of low-order discretizations

First of all, we derive the weak formulation of the original Eulerian FEM of low-order
accuracy, cf. [102], for an advection-diffusion equation posed on an evolving domain,
cf. Subsection 2.3.1 for the problem (2.35) or this chapter for (3.1). Each time step in
this low-order scheme consists of the following four parts:

1. The finite difference approximation of the time derivative through the implicit
Euler time stencil un

h−un−1
h

∆t ;

2. The spatially discrete bilinear form bnh for advection and diffusion;

3. A ghost-penalty-type bilinear form sn
δ for discrete extension and stabilization;

4. The linear form fn
h for a source term.

The weak formulation reads:
To find un

h ∈ V̂n
h,δ, n= 1, ...,N for a given u0

h ∈ V̂0
h,δ such that

∫
Ω̂n

h

un
h−u

n−1
h

∆t vhdx + bnh(un
h,vh)+γsn

δ (un
h,vh) = fn

h (vh), ∀vh ∈ V̂n
h,δ, (3.16)

where the first integrand is the standard backward Euler scheme and the right-hand
side linear form fn

h (vh) :=
∫
Ω̂n

h
gvhdx exists for a source term g. The remaining terms

are defined as follows.

Advection and diffusion

Here, the bilinear form for advection and diffusion makes use of a skew-symmetrized
form for the convection part

bnh(uh,vh) :=
∫

Ω̂n
h

ν∇uh ·∇vhdx + 1
2

∫
Ω̂n

h

(
(we ·∇uh)vh− (we ·∇vh)uh

)
dx (3.17)

+ 1
2

∫
Ω̂n

h

(∇·we)uhvhdx + 1
2

∫
Γ̂n

h

(we ·n)uhvhds, ∀uh,vh ∈H1(Ω̂n
h),
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where (·)e denotes a smooth extension from Ωn to Ω̂n
h that is presumed to exist.

If the time step is bounded by

∆t < ξ−1 := 2
(
∥∇· (we)∥L∞(Ω̂n

h) +ν+ c23.18∥we ·n∥L∞(Ω̂n
h)/4ν

)−1
, (3.18)

where c3.18 is a constant of the multiplicative trace inequality, then bnh has a lower
bound

bnh(vh,vh)≥ ν

2∥∇vh∥2Ω̂n
h
− ξ∥v∥2Ω̂n

h
. (3.19)

Here one assumes that the (extended) velocity we has bounded divergence and normal
flux, cf. [102, Lemma 3.1 and Remark 4.1].

Ghost penalty

Another bilinear form sn
δ (·, ·) in (3.16) for discrete extension and stabilization comes

with a parameter γ(h,δ), which is yet to be defined below. This term makes use of
the so-called ghost penalty stabilization mechanism introduced in [21], where several
variants to realize the same effects are available, cf. [102, Section 4.3]. The most
well-known version is the classical derivative jump ghost penalty formulation proposed
in [21] – the name due to penalizing jumps in directional derivatives across facets –
which we will exploit in Chapter 4. For here, however, we rather employ the direct
version of ghost penalty instead of the original version, due to the computational
advantages of its direct implementation only implicitly depending on the polynomial
degree, cf. [130, Lemma 3.1 and Remark 6], which takes the form

sn
δ (uh,vh) :=

∑
F̂ ∈F̂n

h,δ

sn
F (uh,vh), with sn

F (uh,vh) := 1
h2

∫
ω(F̂ )

(u1−u2)(v1−v2)dx, (3.20)

where ui = EP(uh|T̂i
),vi = EP(vh|T̂i

), i= 1,2 with EP : Pk(T̂i)→Pk(Rd) the canonical
extensions of a polynomial function to Rd, and the patch ω(F̂ ) = T̂1∪ T̂2. See Figure 3.4b
for an illustration of the facets where the ghost penalty applied.

The ghost penalty mechanism is responsible for two duties. On the one hand, it
stabilizes the weak formulation to achieve robustness with respect to the cut position
of the geometry within the elements, which further carries over to the conditioning
of the linear system. On the other hand, it implicitly realizes a discrete extension
from Ω̂n

h to D̂n
h,δ ⊃ Bδ(Ω̂n

h), which is required to make un
h well-defined on the domain

Ω̂n+1
h ⊂Bδ(Ω̂n

h)⊂ D̂n
h,δ. To this end, we make the following assumption on the extended
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Γn−1

Γn

∂Ωn−1
δ

δ

Ωn−1
δ

(a) Smooth extension

Γn

Γn+1

Ghost penalty facets F̂n
h,δ

w

(b) Discrete extension

Fig. 3.4 A comparison between smooth and discrete extensions: (a) A moving domain
Ωn−1 extended by δ distance to cover Ωn, cf. [102]; (b) A moving domain on a
background mesh where the facets in red the ghost penalty acts on.

distance
δ ≥∆t∥w∥L∞((0,T ),L∞(Ω̄)). (3.21)

Here, a global lower bound in space and time for δ is taken to keep the presentation
feasible, but a local choice of an extension would be accessible by considering different
values for δ in various time steps and spatial regions. Note that the solution is extended
away from Ω̂n

h by at least one additional layer of elements, namely by at least a distance
proportional to h such that for a constant c > 0 depending only on the shape regularity
there holds

dist(∂D̂n
h,δ,∂Ω̂n

h)≥ δ+ ch≳ ∆t+h. (3.22)

With Ωn+1 ⊂ Bδ(Ωn) and dist(∂Ω̂n
h,∂Ωn) ≲ h2 for all n= 0, ..,N , the inclusion Ω̂n+1

h ⊂
Bδ(Ω̂n

h)⊂ D̂n
h,δ holds for sufficiently small h.

Finally, to specify the parameter γ(h,δ), we make the following assumption as in
[102, Section 4.4].

Assumption 2 (Finite facets of paths). Recalling that T n,S
r denotes the "exterior"

subset of the strip mesh T n,S
±r where for at least one point x ∈ T ∈ T n,S

r there holds
ϕn

h(x)> 0. To every element in T n,S
r we require an element in T n

r \T n,S
r that can be

reached by repeatedly passing through facets in Fn
r . We assume that the number of

facets passed through in this path is bounded by K ≲ (1+ δ
h). Moreover, every "interior"

element in the active mesh, i.e., T ∈ T n
r \T n,S

r , provides at most M paths in which it
serves as the terminal element of such paths, where M is a number that is bounded
independently of h and ∆t.
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With this definition of K, we specify – following the same lines in [102, Section 4.4]
– γ(h,δ) := cγK ≲ 1+ δ

h for a constant cγ independent of h and ∆t. This completes the
full discretization of the low-order Eulerian FEM.

Unique solvability

The coercivity of the overall left-hand side bilinear forms in (3.16) with respect to the
norm

|||vh|||n :=
(ν

2∥∇vh∥2Ω̂n
h

+∥vh∥2Ω̂n
h

+γsn
h(vh,vh)

) 1
2 (3.23)

guarantees the unique solvability at each time step based on the Lax-Milgram theorem,
cf. [96, Theorem 6 in Section 6.3] and [61, Subsection 6.2.1].

The Eulerian FEM aforementioned has a low order of accuracy in space and time.
We have proposed in [114] an extension of this method to higher order of accuracy,
based on the technique of isoparametric mappings, an accurate mesh transfer operator,
and the BDF time stepping. Before discussing the corresponding weak formulation in
Subsection 3.1.5 and Subsection 3.1.6, we introduce the properties of the parametric
mappings in Subsection 3.1.3 as a function in space and in time, and then design a
mesh transfer operator between differently mapped meshes in Subsection 3.1.4.

3.1.3 Introduction to isoparametric mapping

As discussed in Section 3.1.1 the piecewise linear approximation of the level set domain
gives only second order of geometrical accuracy. In order to achieve higher-order
approximations of the geometry, we introduce the technique of isoparametric mappings,
cf. Figure 3.5 for a sketch of the idea on a stationary domain, as proposed in [99, 105].

Parametric mapping as a function in space

Let Θn : Ω̄→ Ω̄ be a sequence of mappings for the time step n= 0, ...,N based on the
construction strategies for time-independent domain, cf. [99, 105]. The mappings are
enable mainly on cut elements, i.e., on T n,S

0 , where the construction for each n ensures
that the image of the zero level set of ϕ̂n

h under the mappings is close to the zero level
set of ϕn

h in a high-order sense. In particular, the mapping is an identity on vertices
and O(h2) small elsewhere on cut elements, since the linearized level set function ϕ̂n

h

is already exact on all vertices and second-order accurate elsewhere. Away from cut
elements and their direct neighbors, i.e., on Th \T n,S

h,0,1, the mapping is an identity as
well. On those elements adjacent to cut elements, i.e., on T n,S

h,0,1 \T
n,S

0 , a transition to
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the identity is realized. Overall, for all n= 0, ...,N the mappings Θn are O(h2) small
and local around the interface.

The idea of the isoparametric mappings for an explicit and high-order accurate
representation of the geometry is to map the zero level set of ϕ̂n

h(x) towards that
of ϕn

h as the target by the mapping Θn. The geometry described by the high-order
approximation of the level set function ϕn

h is highly accurate but implicit. The zero
level set of the piecewise linear interpolation {x ∈ Ω̄ | ϕ̂n

h(x) := In
hϕ(tn) = 0}, where In

h

is the corresponding nodal interpolation operator, has an explicit representation but
only second order of accuracy. By the mesh deformation under Θn, {x ∈ Ω̄ | ϕ̂n

h(x) = 0}
is mapped to {x ∈ Ω̄ | ϕn

h(x) = 0} approximately, resulting in a high-order accurate
and explicit description Γn

h := {x ∈ Ω̄ | ϕ̂n
h ◦Θ−n(x) = 0}. An illustration of the idea is

shown in Figure 3.5.

+ Θn

−−→

(a) ϕn
h (b) ϕ̂n

h := In
hϕ(tn) (c) ϕ̂n

h ◦ (Θn)−1

Fig. 3.5 The idea of isoparametric mappings to achieve high-order accurate and explicit
representation of interface Γn

h: (a) The highly accurate but implicitly described interface
by ϕn

h; (b) The explicit but only second-order accurate interface represented by ϕ̂n
h; (c)

The high-order accurate and explicitly described interface by the mesh deformation
through Θn.

By Φn : Ω̄→ Ω̄ a sequence of ideal mappings is denoted for each n= 0, ...,N that
projects the zero level set of ϕ̂n

h onto Γn exactly. In a similar manner to Θn, the ideal
mappings Φn deviate from identity in T n,S

h,0,1 only.
The following lemma concludes the accuracy of the isoparametric mappings as a

sequence of functions in space
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Lemma 2. Let n ∈ {0, ..,N} be fixed and Dn,S
h,0,1 be the domain of cut elements with

their direct neighbors. For a sufficiently small mesh size h, there holds

Θn(x) = x, for x a vertex in Th or x ∈ Ω̄\Dn,S
h,0,1, (3.24a)

∥Θn− id∥L∞(Ω̄) ≲ h2, ∥DΘn(x)− I∥L∞(Ω̄) ≲ h, (3.24b)

∥Θn−Φn∥L∞(Ω̄) +h∥D(Θn−Φn)∥L∞(Ω̄) ≲ hq+1, (3.24c)

where the latter implies dist(∂Ω(t),∂Ωh(t)) ≲ hq+1. (3.24d)

Proof. See [105, Lemmas 3.4, 3.6 and 3.7].

We further characterize the inclusion relations between the (slightly) inflated
elements and the deflated ones by the following lemma, with a sketch in Figure 3.6.

Lemma 3. Let T̂ ∈ Th be an undeformed element, we define the corresponding inflated
element T̂ε := {x∈ Ω̄ | dist(x, T̂ )≤ ε} and deflated element T̂−ε := {x∈ T̂ | dist(x,∂T̂ )≥
ε} for some ε > 0. Furthermore, for m= 0, ..,N let Θm∗

T : T̂ε→Rd denotes the canonical
extension of the polynomial function Θm|T̂ to T̂ε. For a sufficiently small mesh size h,
there is a constant cL3 > 0 independent of h, T̂ and m,n, such that with ε= cL3h

2 the
following inclusion properties hold for m,n= 0, ...,N and Tm

±ε := Θm∗
T (T̂±ε)

Tn ⊂ T̂ ε
2
⊂ Tm

ε , T̂−ε ⊂ Tn∩Tm with measd

(
(Tn∪Tm)\ T̂−ε

)
≲ hd+1. (3.25)

Proof. Due to norm equivalences on the space of polynomials on a reference element
and its extension, by standard scaling arguments, we have with ε≃ h2 ≲ 1 that ∥Θm∗

T −
id∥L∞(T̂ε) ≲ ∥Θ

m|T̂ − id∥L∞(T̂ ) ≲ h2 and ∥DΘm∗
T − I∥L∞(T̂ε) ≲ ∥DΘm|T̂ − I∥L∞(T̂ ) ≲ h.

Hence, the properties of (3.24b) carry over to the extended function Θm∗
T which ensures

the inclusion properties and the measure of the ε-band, i.e., (Tn∪Tm)\ T̂−ε, with a
bound εhd−1 where ε≃ h2.

A direct corollary of the two previous lemmas can be concluded that for T̂ ∈
Th, T

n = Θn
T (T̂ ) and v̂ ∈ Pk(T̂ ) there hold the following norm equivalences

h
d
2∥v̂ ◦Θ−n

T ∥L∞(T n ) ≃∥v̂ ◦Θ−n
T ∥T n ≃∥v̂∥T̂ ≃∥v̂∥L∞(T̂ )≃ ≃ ≃ ≃ (3.26)

h
d
2∥v̂ ◦Θ−n

T ∥L∞(T n
±ε) ≃∥v̂ ◦Θ−n

T ∥T n
±ε
≃∥v̂∥T̂±ε

≃∥v̂∥L∞(T̂±ε).
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Tm

Tn

T̂

T̂ε

T̂−ε

Fig. 3.6 An undeformed (straight) element T̂ with its inflated element T̂ε and deflated
element T̂−ε, Θm-deformed (curved) element Tm and Θn-deformed (curved) element
Tn, involved in Lemma 3.

Parametric mapping as a function in time

The isoparametric mappings are not only the functions in space but also a sequence in
time. In contrast to the stationary problem, once the geometry is evolving in time,
the cut elements change as well following the moving interface, hence the mapped
meshes are slightly different between consecutive time steps, i.e., T n

h ̸= T
n−1

h . To do
proper time stepping in such an unfitted setting, we need to project solutions from one
deformed mesh to another. The projection will be investigated in detail later in the
next subsection. As such a projection has to be applied at every time step, one may
expect the projection errors accumulating with the increasing number of time steps
N ≃ 1

∆t . In order to show in the analysis that this is not true, we take a careful look at
how the mesh deformation depends on time. More specifically, we characterize where
and when the mesh deformation depends continuously on time and where and when
not. This will then be exploited when we analyze the accumulation of the projection
errors later in the next section.

Due to the properties of isoparametric mappings discussed in Section 3.1.3, for
any fixed time t, there exist three different types of mapped elements: cut elements,
transition elements (adjacent to cut elements) and undeformed elements. The cut
elements are transformed based on the desired property ϕ̂n

h ≈ ϕn
h ◦Θn, while the

undeformed elements sufficiently far away from the cut elements have Θn = id, and
the remainders are the transition elements which realize a proper blending between
these two zones. See Figure 3.7 for a sketch of these three element types in spatially
one-dimensional case.
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Θ(·, t) = id

φ̂h(·, t) ≈ φh(·, t) ◦Θ(·, t)

continuous transition in space

x

t

tm

tn

T̂0 T̂1 T̂2 T̂3 T̂4 T̂5 T̂6 T̂7 T̂i ∈ Th

Fig. 3.7 Three regions of element types under mesh deformation. At any fixed time
t an element is in exactly one of the three categories: cut (in purple), transition (in
blue) or undeformed (in green). Between any two time instances tm < tn, for each fixed
element two situations can be distinguished: the element and all its adjacent neighbors
keep their own element types for all t ∈ [tm, tn] or not.

Let us consider a fixed straight element T̂ ∈ Th at two time instances tm < tn and
define a function (Cut Configuration Changes) CCC : T̂ × [0,T ]× [0,T ]→{True,False}
that allows to distinguish two cases:

• CCC(T̂ , tm, tn) = False: If the element T̂ and all its adjacent neighbors keep their
element types in the time interval [tm, tn], then CCC evaluates to False. In this
case the mesh deformation depends continuously on the change of the level set
function, which is assumed to be Lipschitz-continuous in time, yielding the bound

∥Θm−Θn∥L∞(Ω̄) ≲ |tn− tm|. (3.27a)

• CCC(T̂ , tm, tn) = True: If the type of the element T̂ or any of its adjacent neighbors
changes within the time interval [tm, tn], then CCC evaluates to True. In this
case the mesh deformation on T̂ is not necessarily Lipschitz-continuous in time.
However, due to (3.24b) the difference between Θm and Θn is still bounded by

∥Θm−Θn∥L∞(Ω̄) ≤ ∥Θ
m− id∥L∞(Ω̄) +∥id−Θn∥L∞(Ω̄) ≲ h2. (3.27b)

Recalling that tn = n∆t, n = 1, ...,N are the time instances of a partition in the
time interval [0,T ]. For every fixed straight element T̂ ∈ Th we can define an integer
NT̂

:= #{n ∈ {1, ..,N} | CCC(T̂ , tn−1, tn) = True} that counts the number of time steps
for the case True, and NC := maxT̂ ∈Th

{NT̂} as the largest number of time steps among
all T̂ ∈ Th for the case True that has the mesh transformations discontinuous in time.



3.1 Eulerian Finite Element Method 57

Assumption 3 (Boundedness of the discontinuous mesh transformations). In this
thesis we assume that for a fixed time interval [0,T ] and a fixed computational mesh
Th, the number NC is bounded independent of the partition of the time interval, but
only depends on the specific motion of the geometry.

3.1.4 Transfer operator between mapped meshes

As aforementioned in Section 3.1.3 the sequence of isoparametric mappings in time
makes the mapped meshes slightly different between consecutive time steps, and hence
the solutions on the mapped meshes have to be projected from one mesh to another, in
order to do proper time stepping. In this section, we therefore design a mesh transfer
operator of finite element functions, denoted by Πn : Vn−1

h →Vn
h , which deviates from

a direct L2 projection on account of locality and computational efficiency. The analysis
of this mesh transfer projection will subsequently be conducted in Subsection 3.2.1.

Let vT m
h
∈ Vm

h , m = n− 1 be a discrete function with respect to the deformed
mesh T m

h = Θm(Th). We aim to approximate it on the differently deformed mesh
T n

h = Θn(Th) with vT n
h

:= Πn
mvT m

h
∈ Vn

h , i.e., a discrete function with respect to the
slightly different mesh T n

h . This projection is achieved in three steps:

1. By exploiting that vT m := vT m
h
|T m , i.e., the restriction of vT m

h
to an element

Tm ∈ T m
h , is smooth, we define and denote by v∗

T m an extension of vT m to a
small neighborhood Tm

ε of Tm with Tn ⊂ Tm
ε , such that v∗

T m ∈ C∞(Tm
ε );

2. We then project these extensions into ⊕
T n∈T n

h
Vn

h |T n , i.e., the discontinuous
(across element interfaces) version of Vn

h , yielding ṽT n
h

;

3. An Oswald-type interpolation of ṽT n
h

is then applied in order to obtain a continu-
ous function vT n

h
∈ Vn

h .

The first two steps are completely element-local and allow for a trivial parallelization,
especially since the access to neighboring elements is not required, whereas the third
step is a highly efficient vector operation, namely averaging. This is in contrast to an
only seemingly simpler approach such as a global L2 projection which would involve
non-local operations.

Element-local extensions

For an undeformed element T̂ ∈ Th we denote T i := Θi
T (T̂ ) ∈ T i

h with Θi
T := Θi|T̂ ∈

[Pq(T̂ )]d, i∈ {m,n} the parametric mapping restricted to local element. The restriction
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of vT m
h
∈ Vm

h to Tm, i.e., vT m := vT m
h
|T m , is a mapped polynomial and hence a smooth

function, i.e., vT m ∈ C∞(Tm). We can map it back to the undeformed element T̂ ∈ Th

and realize a function v̂T ∈ Pk(T̂ ) such that vT m = v̂T ◦Θ−m
T .

Let v̂∗
T = EP(v̂T ) ∈ Pk(T̂ε) and Θm∗

T = EP(Θm
T ) ∈ [Pq(T̂ε)]d be the canonical ex-

tension of this polynomial to the ε-neighborhood T̂ε of T̂ . With v∗
T m := v̂∗

T ◦Θ−m∗
T =

EP(v̂T )◦ (EPΘm
T )−1 we have a smooth extension of vT m from Tm to Tm

ε := Θm∗
T (T̂ε),

such that v∗
T m |T m = vT m still holds and furthermore Tn ⊂ Tm

ε . An illustration of this
extension is shown in Figure 3.8.

T̂

ŷi

Tm

xn
i

v̂T ∈ Pk(T̂ ) vTm : Tm → R

T̂

T̂ε

ŷix̂i

v̂∗T ∈ Pk(T̂ε)

Tm

Tm
ε

xn
i

v∗Tm : Tm
ε → R

Tn xn
i = Θn

T (x̂i) = Θm
T (ŷi)

vTn : Tn → R

Θ−mT

Θm∗
T

EP

T n 6⊂
T m

T
n ⊂ T

m
ε

Fig. 3.8 Element-local extensions and interpolation. For a deformed element Tm =
Θm

T (T̂ ) ∈ T m
h the corresponding extension Tm

ε covers the differently deformed element
Tn = Θn

T (T̂ ) ∈ T n
h . For a Lagrange node xn

i in Tn the mappings Θ−n
T and Θ−m∗

T ,
respectively, yield different points x̂i and ŷi in T̂ε.

Element-local interpolation

With Tn ⊂ Tm
ε we can define the following element-local interpolation, for given v∗

T m

as constructed above, yields ṽT n ∈ Pk(T̂ ) ◦Θ−n
T , or equivalently v̂T n ∈ Pk(T̂ ) with

v̂T n = ṽT n ◦Θn
T , by nodal interpolation.

Let L(T̂ ) = {x̂i}i=1,...,#L(T̂ ) be the set of Lagrange nodes of Vn
h |T̂ = Pk(T̂ ) on T̂

with corresponding set of Lagrange basis functions {φ̂i}i=1,...,#L(T̂ ), such that φ̂i(x̂j) =
δij , i, j ∈ {1, ..,#L(T̂ )}. The correspondingly mapped nodes and basis functions are
L(Tn) := {xn

i }i=1,...,#L(T̂ ) and {φn
i }i=1,...,#L(T̂ ) with xn

i = Θn
T (x̂i) and φn

i = φ̂i ◦Θ−n
T .
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We define

ṽT n(x) :=
#L(T̂ )∑

i=1
v∗

T m(xn
i )φn

i (x), ∀x ∈ Tn (3.28a)

or equivalently, with v∗
T m = v̂∗

T ◦Θ−m∗
T and xn

i = Θn
T (x̂i) we have

v̂T (x̂) :=
#L(T̂ )∑

i=1
v̂∗

T

(
Θ−m∗

T

(
Θn

T (x̂i)
))

︸ ︷︷ ︸
ŷi

φ̂i(x̂), ∀x̂ ∈ T̂ . (3.28b)

We stress that x̂i ̸= ŷi := Θ−m∗
T (xn

i ) and hence call this step shifted evaluation. See
Figure 3.8 for a sketch of the relation between x̂i and ŷi. By setting ṽT n

h
|T n := ṽT n for

all Tn ∈ T n
h we obtain ṽT n

h
∈⊕

T n∈T n
h
Vn

h |T n .

Projection into the space of continuous functions

After the previous two steps, we obtain a discontinuous, element-wise, mapped poly-
nomial approximation on T n

h . Finally, we apply an Oswald-type quasi-interpolation
Ph : ⊕

T n∈T n
h
C(Tn)→Vn

h in order to arrive at a continuous function vT n
h
∈ Vn

h , namely
vT n

h
:= Πn

mvT m
h

:= Ph(ṽT n
h
◦Θn)◦Θ−n.

Let L(T n
h ) = {xn

i } be the set of Lagrange nodes of Vn
h on T n

h , and {φn
i } the set of

corresponding Lagrange basis functions. Let ω(xn
i ) be the set of elements containing

the Lagrange node xn
i . The Oswald-type projector Ph is the following generalization of

the Lagrange interpolation for a discontinuous function v

Phv :=
∑

xn
i ∈L(T n

h )

(
#ω(xn

i )−1 ∑
T n∈ω(xn

i )
v|T n(xn

i )
)
φn

i . (3.29)

3.1.5 Isoparametric discretization in space

The low-order discretization introduced in Subsection 3.1.2 can be improved trivially to
higher order of accuracy in space if exact geometry handling is assumed or sufficiently
accurate quadrature on Ωn

ϕh
is given. However, the former is typically not realistic

and the latter is hard to secure, we therefore utilize the technique of isoparametric
mappings to achieve high-order approximation of the geometry.

As the physical domain evolves and the cut elements change, the time-dependent
deformation of the mesh based on a sequence of the parametric mappings {Θn}n=1,...,N

is realized, which implies T n−1
h ̸= T n

h and un−1
h /∈ Vn

h , hence a projection of the solution
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onto slightly different mesh arises. Thanks to the mesh transfer operator Πn
m, m= n−1

already prepared in Subsection 3.1.4, we make use of this consecutive transfer operator,
denoted by Πn : Vn−1

h →Vn
h , to project initial data un−1

h from one time step to the next.
Analogously to (3.16), the weak formulation of high-order accuracy in space reads:
To find un

h ∈ Vn
1 , n= 1, ...,N for a given u0

h ∈ V0
1 , such that

∫
Ωn

h

un
h−Πnun−1

h

∆t vh dx + bnh(un
h,vh)+γsn

1 (un
h,vh) = fn

h (vh), ∀vh ∈ Vn
1 . (3.30)

Note that here the isoparametric finite element space Vn
1 deviates from V̂n

h,δ. Accordingly,
sn

1 takes the form as in (3.20) but the set of active facets Fn
h,δ is now replaced by Fn

1 ,
cf. (3.14b), for extension of an additional element layer in order to cover the deformed
meshes at next time step. In particular, we define

sn
1 (uh,vh) :=

∑
Fn∈Fn

1

sn
F (uh,vh), with sn

F (uh,vh) := 1
h2

∫
ω(F n)

(u1−u2)(v1−v2)dx, (3.31)

where ui, vi, i= 1,2 are canonical extensions of the mapped functions, namely ui =
(EP(uh|T n

i
◦Θn

Ti
))◦Θ−n∗

Ti
(and similarly for vi) with Θn∗

Ti
= EP(Θn

Ti
) and EP : Pk(T̂i)→

Pk(Rd), T̂i = Θ−n
Ti

(Tn
i ) the canonical extension of a polynomial to Rd.

This discretization is considered an arbitrarily high-order method in space, as it
makes use of the isoparametrically mapped domain Ωn

h and the isoparametric finite
element space Vn

1 , but it has only low order of accuracy in time since the time derivative
is still approximated by the first-order time difference stencil, i.e., the backward Euler
scheme. We will therefore improve the time accuracy towards higher order by the BDF
schemes in the next subsection.

3.1.6 BDF discretization in time

The low-order discretization introduced in Subsection 3.1.2 employs a backward Euler
scheme with a ghost penalty term for the solution to be extended and well-defined on
the domain at next time step. For higher-order discretization in time, we apply the
following backward differentiation formula (BDF) to the approximation of the time
derivative. A further domain extension is required accordingly.
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Let us introduce the symbol ∂r
∆t(...) for the BDF time stencils (for r = 1,2,3):

∂∆t(un
h,u

n−1
h ) := un

h−u
n−1
h

∆t , r = 1; (3.32a)

∂2
∆t(un

h,u
n−1
h ,un−2

h ) := 3un
h−4un−1

h +un−2
h

2∆t , r = 2; (3.32b)

∂3
∆t(un

h,u
n−1
h ,un−2

h ,un−3
h ) := 11un

h−18un−1
h +9un−2

h −2un−3
h

6∆t , r = 3. (3.32c)

These time stencils, however, require multiple δ-extensions to make all the previous
solutions well-defined on the current domain, and the mesh transfer operators across
multiple time steps to project all the previous solutions onto the current deformed
mesh. To this end, we define the following consecutive application of the mesh transfer
operators over all intermediate time steps

Πn
n−r : Vn−r

h →Vn
h , v 7→ Πn Πn−1 · · ·Πn−r+1v. (3.33)

Armed with the BDF and the consecutive mesh transfer operators, in contrast to
(3.30), the weak formulation of this completely high-order method reads:
To find un

h ∈ Vn
r , n = r, ...,N for given u0

h ∈ V0
r , ...,u

r−1
h ∈ Vr−1

r , such that for any
vh ∈ Vn

r∫
Ωn

h

∂r
∆t(un

h, ...,Πn
n−ru

n−r
h )vh dx + bnh(un

h,vh)+γsn
r (un

h,vh) = fn
h (vh). (3.34)

where sn
r takes the form as in (3.31) but the set of active facets Fn

1 is now replaced by
Fn

r , cf. (3.14b), for extension of rδ distance plus r additional element layers in order
to cover all the deformed meshes involved in the rth-order BDF time stencils.

Remark 10 (Consecutive mesh transfers in implementation). It is not necessary to
apply the whole chain of the projections Πn

n−r in implementation as the terms involving
Πm, m < n are already evaluated in previous time steps and can be reused. In fact,
there is only the projection Πn to be evaluated at each time step (on possibly several
terms though).

3.2 Error Analysis

In this section, we analyze the isoparametric BDF-Eulerian method to derive a priori
error estimate. The analysis substantially follows the lines in [114] and in [102]. The
extra work on top of [102] appears due to the mesh transfer operator Πn

m and the BDF
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time stencil ∂r
∆t, cf. Subsection 3.1.6. Therefore, we will first carry out a comprehensive

analysis of the mesh transfer operator, which is followed by a priori error analysis that
is composed of error splitting equation, consistency and interpolation bounds, ghost
penalty and stability analysis, and finally the error estimate. Without loss of generality,
we will only analyze the case of BDF2 time discretization, i.e., when r = 2 is fixed, but
an extension to higher order of accuracy in time is possible.

As a result of the errors induced by the mesh transfer operator, in the subsequent
analysis, we make the following assumption on the ratio between space and time
refinements.

Assumption 4 (Refinements in space and time). We assume that as mesh size h and
time step ∆t go to zero, h5

∆t2 converges to zero. Then, for any constant cA4 > 0 there is
an h0 > 0 such that for all meshes with mesh size h < h0 we have h5

ν∆t2 < cA4, which
implies h4

ν∆t < cA4 as well.

Remark 11. Assumption 4 is only a restriction on the efficiency for very high order
in space. Suppose an L2(0,T ;H1(Ω))-error bound of the form 3 O(∆t2 +hk), then only
for k ≥ 5 a scaling h≥∆t 2

5 would be benefitial for the efficiency of the scheme.

Moreover, in the remainder we treat the asymptotic behavior h,∆t→ 0 only, i.e.,
we implicitly assume h and ∆t sufficiently small at several occasions.

3.2.1 Analysis of the mesh transfer operator

As discussed in Section 3.1.3, the sequence of isoparametric mappings in time probably
alters the deformed meshes between consecutive time steps, and thus the solutions
on the deformed meshes have to be projected from one mesh to another, in order to
do proper time stepping. We therefore proposed the mesh transfer operator of finite
element functions Πn : Vn−1

h →Vn
h in Subsection 3.1.4, which deviates from a direct

L2 projection on account of locality and computational efficiency. As a consequence,
this projection may induce some errors, and hence in this subsection, we analyze
the mesh transfer operator by the following lemmas, with using the same notation
aforementioned, cf. Subsection 3.1.1 and Subsection 3.1.4.

We start with a simple observation for the norm evaluation with respect to one
mesh of a function defined on another (slightly different) mesh.

3See also the numerical examples for a motivation of this ansatz.
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Lemma 4. For vh ∈ Vn
h , wh ∈ Vm

h , Ti = Θi
T (T̂ ), T̂ ∈ Th, i ∈ {m,n}, there holds

∥vh +wh∥T n ≲ h
d
2∥vh +wh∥L∞(T n

−ε) +h
5
2∥∇vh∥T n +h

5
2∥∇wh∥ω(T m). (3.35)

Proof. Obviously we have ∥vh +wh∥T n ≲ ∥vh +wh∥T n
−ε

+ ∥vh +wh∥T n\T n
−ε

. The first
term on the right-hand side is simply bounded by hd

2∥vh +wh∥L∞(T n
−ε). For the second

term we use Lemma 3, i.e., measd(Tn \Tn
−ε) ≲ hd+1, and that for x ∈ Tn \Tn

−ε there
is y ∈ ∂Tn

−ε and z ∈ conv{x,y} ⊂ T \Tn
−ε such that |(vh +wh)(x)| ≤ |(vh +wh)(y)|+

|(∇(vh +wh))(z)| |y−x|, and hence with ε≲ h2 we obtain

∥vh +wh∥T n\T n
−ε

≲ h
d+1

2 ∥vh +wh∥L∞(T n\T n
−ε)

≲ h
d+1

2

(
∥vh +wh∥L∞(T n

−ε) + ε∥∇(vh +wh)∥L∞(T n\T n
−ε)

)
≲ h

d+1
2

(
∥vh +wh∥L∞(T n

−ε) +h2∥∇vh∥L∞(T n) +h2∥∇wh∥L∞(ω(T m))

)
≲ h

d+1
2 ∥vh +wh∥L∞(T n

−ε) +h
5
2∥∇vh∥T n +h

5
2∥∇wh∥ω(T m).

In the last step we take advantage of the norm equivalences on a reference element after
transformation. Please note that we cannot apply such a result directly for vh +wh

as wh and vh are not from the same (mapped) polynomial space. This completes the
proof by adding up the two terms.

In the next lemma, we claim that the L2-norm of a projected function (or its
gradient) on one element can be bounded by the original function (or its gradient) on
the corresponding element patch.

Lemma 5. Let Πn : Vm
h → Vn

h , m = n− 1 be the projection for a discrete function
vh ∈ Vm

h from the mesh T m
h to the mesh T n

h . Furthermore, let T̃h ⊂ Th be an arbitrary
selection of straight elements and the corresponding deformed meshes T̃ m

h , T̃ n
h with the

corresponding domains D̃m
h , D̃n

h, respectively. For c5a > 0 and c5b > 0 independent of
mesh size h and time step ∆t, there holds for T̂ ∈ Th, T

n = Θn
T (T̂ ),Tm = Θm

T (T̂ )

∥Πnvh∥2T n ≲ ∥vh∥2ω(T m), ∥Πnvh∥2D̃n
h
≤ c5a∥vh∥2D̃m

h,0,1
; (3.36a)

∥∇Πnvh∥2T n ≲ ∥∇vh∥2ω(T m), ∥∇Πnvh∥2D̃n
h
≤ c5b∥∇vh∥2D̃m

h,0,1
. (3.36b)
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Proof. First of all, we have ∥Πnvh∥T n ≃ ∥Πnvh∥T n
−ε

by (3.26). For x ∈ Tn
−ε and x̂ =

Θ−n(x) ∈ T̂−ε, with the notation introduced in Section 3.1.4, there holds by definition

Πnvh(x) =
#L(T n)∑

i=1

(
#ω̂(xn

i )−1 ∑
T̃ ∈ω̂(xn

i )
v̂∗

T̃
(ŷi)

)
φ̂i(x̂)

where #L(Tn) ≲ 1 is the number of Lagrange nodes on Tn and #ω̂(xn
i ) is the number

of elements in the patch set ω̂(xn
i ) = Θ−n(ω(xn

i )) with respect to the undeformed
mesh Th. Thus we have ∥Πnvh∥T n

−ε
≲ h

d
2∥vh∥L∞(ω(T m)) ≲ ∥vh∥ω(T m). Summing over all

elements in T̃ n
h yields (3.36a). For (3.36b) we proceed with Πnv̄h = v̄h on Tn

−ε similarly
after introducing v̄h = 1

|ω(T m)|
∫
ω(T m) vhds, namely

∥∇Πnvh∥T n
−ε

= ∥∇Πn(vh− v̄h)∥T n
−ε

≲ h
d
2h−1∥vh− v̄h∥L∞(ω(T m))

≲ h−1∥vh− v̄h∥ω(T m) ≲ ∥∇vh∥ω(T m).

This completes the proof.

Next, we estimate the bounds of the difference between original and projected
functions in the following lemma.

Lemma 6. Let Πn : Vm
h → Vn

h , m = n− 1 be the projection for a discrete function
vh ∈ Vm

h from the mesh T m
h to the mesh T n

h . There holds for Tn ∈ T n
h and Tm =

Θm(Θ−n(Tn)) ∈ T m
h

∥(id−Πn)vh∥T n ≲ h2∥∇vh∥ω(T m) ≲ h∥vh∥ω(T m). (3.37a)

Moreover, for an arbitrary selection of straight elements T̃h ⊂ Th and the corresponding
deformed meshes T̃ m

h , T̃ n
h with the corresponding domains D̃m

h , D̃n
h , respectively, there

holds

∥(id−Πn)vh∥D̃n
h
≲ h2∥∇vh∥D̃m

h,0,1
≲ h∥vh∥D̃m

h,0,1
. (3.37b)

Proof. Let Tn = Θn
T (T̂ ) ∈ T n

h and Tm = Θm
T (T̂ ) ∈ T m

h be the deformed elements of
T̂ ∈ Th. By Lemma 4 and Lemma 5 we obtain

∥(id−Πn)vh∥T n ≲ h
d
2∥(id−Πn)vh∥L∞(T n

−ε) +h
5
2∥∇vh∥ω(T m).
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We then bound the first term with using the notation introduced in Section 3.1.4. For
∀x ∈ Tn

−ε ⊂ Tn∩Tm and x̂ := Θ−n
T (x), we have by definition

(vh−Πnvh)(x) =
#L(T n)∑

i=1

(
#ω̂(xn

i )−1 ∑
T̃ ∈ω̂(xn

i )

(
v̂∗

T̃
(x̂i)− v̂∗

T̃
(ŷi)

))
φ̂i(x̂)

for the number of Lagrange nodes #L(Tn) ≲ 1 and the number of straight elements
#ω̂(xn

i ) in the patch ω̂(xn
i ) = Θ−n(ω(xn

i ))⊂ Th with respect to the undeformed mesh.
With the second-order boundedness of Θi, i ∈ {m,n}, cf. Lemma 2, we have |x̂i− ŷi|≲
h2 and hence for every T̃ in the element patch ω(T̂ ) there holds

|v̂∗
T̃

(x̂i)− v̂∗
T̃

(ŷi)|≲ h2∥∇v̂∗
T̃
∥L∞(T̂ε) ≲ h2∥∇v̂T̃∥L∞(T̂ ) ≲ h2−d

2∥∇v̂T̃∥T̂ ,

where we made use of the norm equivalence on finite dimensional spaces and scaling
arguments. This yields (3.37a). Summing over T̃ n

h we obtain (3.37b) by using finite
overlap.

In the following lemma, we study how the projection acts on the ghost penalty
terms, which bridges the ghost penalty terms at different time steps.

Lemma 7. Let Πn : Vm
h → Vn

h , m = n− 1 be the projection for a discrete function
vh ∈ Vm

h from the mesh T m
h to the mesh T n

h . For constants c7a and c7b independent of
mesh size h and time step ∆t, there holds

sn
1 (Πnvh,Πnvh)≤ c7as

m
2 (vh,vh)+ c7bh

2∥∇vh∥2Dm,S
2

. (3.38)

Proof. Let us consider a curved facet Fn ∈ Fn
1 with the corresponding straight facet

F̂ = Θ−n(Fn) and accordingly Fm = Θm(F̂ ) ∈ Fm
2 . Their adjacent elements of the

patches are denoted by ω(Fn) = Tn
1 ∪Tn

2 , ω(F̂ ) = T̂1 ∪ T̂2, and ω(Fm) = Tm
1 ∪Tm

2 ,
respectively. Note that Θm

T1 , Θn
T1 , Θm

T2 and Θn
T2 are involved here. Let uh = Πnvh ∈ Vn

h

be the discrete function after projection. Recalling the notation from (3.20) or (3.31),
we define ui = ûi ◦Θ−n∗

Ti
, i= 1,2 with ûi := EP(uh|T n

i
◦Θn

Ti
) and vi = v̂i ◦Θ−m∗

Ti
, i= 1,2

with v̂i := EP(vh|T m
i
◦Θm

Ti
). We further introduce the symbols for the properly extended

neighboring functions: û∗
j := ûj ◦Υn(x̂) and v̂∗

j := v̂j ◦Υm(x̂) with Υn = Θ−n∗
Tj
◦Θn

Ti

and Υm = Θ−m∗
Tj
◦Θm

Ti
. Importing the definition of the ghost penalty from (3.20) and

exploiting the h2-smallness of the deformations, we find after transformation to T̂i, T̂j
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that

h2sn
F (uh,uh)≤ 2

∑
i,j=1,2

∫
T̂i

(ûi− û∗
j)2dx̂ and

∑
i,j=1,2

∫
T̂i

(v̂i− v̂∗
j )2dx̂≤ 2h2sm

F (vh,vh).

Let a := ûi− û∗
j and b := v̂i− v̂∗

j , then with A := ûi− v̂i and B := û∗
j − v̂∗

j we have
a− b= A−B, so that there holds

a2− b2 = (a− b)︸ ︷︷ ︸
(A−B)

(a+ b)≤ (A−B)2 + 1
4(a+ b)2 ≤ 2(A2 +B2)+ 1

2(a2 + b2)

=⇒ 1
2a

2− 3
2b

2 ≤ 2(A2 +B2) =⇒ a2 ≤ 3b2 +4(A2 +B2).

Hence, we arrive at

sn
F (uh,uh) ≲ sm

F (vh,vh)+h−2 ∑
i,j=1,2

i̸=j

(
∥ ûi− v̂i︸ ︷︷ ︸

=A

∥2
T̂i

+∥ û∗
i − v̂∗

i︸ ︷︷ ︸
=B

∥2
T̂i

)
.

As a polynomial in Pk(Rd) we can retreat A(x̂) to T̂i,−ε and find

∥A∥T̂i
≃ ∥A∥T̂i,−ε

≲ ∥vh ◦Θn
Ti
−

ûi︷ ︸︸ ︷
uh ◦Θn

Ti
∥T̂i,−ε

+∥vh ◦Θn
Ti
−

v̂i︷ ︸︸ ︷
vh ◦Θm

Ti
∥T̂i,−ε

≲ ∥(id−Πn)vh∥T n
i

+∥vh ◦ (Θn
Ti
−Θm

Ti
)∥T̂i,−ε

≲ h2∥∇vh∥ω(T m
i )

where in the last step we made use of Lemma 6 and the closeness of Θn
T and Θm

T . For
B(x̂) we first note that ∥Υn−Υm∥L∞(T̂i) ≲ h2 and then recall ûj− v̂j ∈ Pk(Rd) such
that with standard scaling arguments we have ∥ûj− v̂j∥Υn(T̂i) ≲ ∥ûj− v̂j∥T̂j,−ε

and

∥B∥T̂i
≲ ∥(ûj− v̂j)◦Υn∥T̂i

+∥v̂j ◦Υn− v̂j ◦Υm∥T̂j
≲ ∥ûj− v̂j∥Υn(T̂i) +h2∥∇vh∥T m

j

≲ ∥uh ◦Θn
Tj
−vh ◦Θm

Tj
∥T̂j,−ε

+h2∥∇vh∥T m
j

≲ ∥(uh−vh)◦Θn
Tj
∥T̂j,−ε

+∥vh ◦Θn
Tj
−vh ◦Θm

Tj
∥T̂j,−ε

+h2∥∇vh∥T m
j

≲ ∥Πnuh−vh∥T n
j

+h2∥∇vh∥T m
j

≲ h2∥∇vh∥ω(T m
j ).

Putting all together completes the proof.

The previous lemmas describe the scenarios of the worst case as vh is allowed to be
arbitrarily rough in Vm

h . Assuming more smoothness helps to improve the bound.

Lemma 8. Let Πn : Vm
h → Vn

h , m = n− 1 be the projection for a discrete function
vh ∈ Vm

h from the mesh T m
h to the mesh T n

h . For any T̂ ∈ Th and Tn = Θn(T̂ ) ∈ T n
h ,
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v ∈Wk+1
∞ (Tn

ε )∩C0(ω(Tn)) and Ip
h the Lagrange interpolation operator with respect to

T p
h , p ∈ {m,n}, there holds

∥(In
h −ΠnIm

h )v∥T n ≲ ∥Θn−Θm∥L∞(ω̂(T̂ )) h
k+ d

2 |v|Wk+1
∞ (T n

ε ). (3.39)

Proof. Let φp
i := φ̂i ◦Θ−p

T be the Lagrange basis functions of Vp
h|T p with respect to the

Lagrange nodes xp
i := Θp

T (x̂i) on T p ∈ T p
h such that φp

i (xp
j ) = δij , i, j = 1, ...,#L(T p).

Analogously to the local interpolation operator Ip
T p on T p we define the nodal interpo-

lation operator on the extension T p
ε of T p, namely for p ∈ {m,n} such that

Ip
T pv(x) :=

#L(T p)∑
i=1

v(xp
i )φp

i (x) and Ip
T p

ε
v(x) :=

#L(T p)∑
i=1

v(xp
i )φp∗

i (x), v ∈ L∞(T p),

where (·)∗ = EP(·) canonically extends the basis functions φp
i on T p ∈ T p

h to T p
ε . With

the definition of the projection Πn, cf. Section 3.1.4, we have for x ∈ Tn

(In
hv−ΠnIm

h v)(x) =
#L(T n)∑

j=1

(
#ω(xm

i )−1 ∑
T̃ m∈ω(xm

i )

(
(v−Im

T̃ m
ε
v)(xn

j )
))
φn

j (x)

for any v ∈ C0(ω(Tm)). Taking the L2-norm on Tn ∈ T n
h we arrive at

∥In
hv−ΠnIm

h v∥T n ≲ h
d
2 max
T̃ m∈ω(T m)

∥v−Im
T̃ m

ε
v∥l∞(L(T n)),

where we made use of ∥∑#L(T n)
j=1 φn

j ∥T n ≲ h
d
2 . Let the Taylor polynomial of degree

k be denoted by T̂x̂m
j

that expands a function v̂ at node x̂m
j . We introduce the

mapped Taylor polynomial to the element T̃ in the patch ω(Tm) by transformation
to the undeformed element applying the Taylor expansion there and transforming
back, i.e., Txm

j
v := (T̂x̂m

j
(v ◦Θm∗

T̃
)) ◦Θ−m∗

T̃
such that there holds Txm

j
v = Im

T̃ m
ε
Txm

j
v.

For j = 1, ...,#L(Tn) we then have

|(v−Im
T̃ m

ε
v)(xn

j )|=
∣∣∣(v−Txm

j
v)(xn

j )+(Txm
j
v−Im

T̃ m
ε
v)(xn

j )
∣∣∣

≤ |(v−Txm
j
v)(xn

j )|+ |Im
T̃ m

ε
(Txm

j
v−v)(xn

j )|.

For the first part we simply have with xn
j = Θn

T̃
(x̂j), xm

j = Θm
T̃

(x̂j) and xn
j ,xm

j ∈ Tn
ε

|(v−Txm
j
v)(xn

j )|≲ |xn
j −xm

j |k+1|v|Wk+1
∞ (T n

ε ) ≲ ∥Θ
n
T̃
−Θm

T̃
∥k+1

L∞(T̂ )|v|Wk+1
∞ (T n

ε ).
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For the second part we exploit (Txm
j
v−v)(xm

j ) = 0 to obtain

|Im
T̃ m

ε
(Txm

j
v−v)(xn

j )|=
∣∣∣∣#L(T n)∑

i=1
(Txm

j
v−v)(xm

i )φm∗
i (xn

j )
∣∣∣∣ =

∣∣∣∣ ∑
i̸=j

(Txm
j
v−v)(xm

i )φm∗
i (xn

j )
∣∣∣∣

≲ max
i ̸=j
|φm∗

i (xn
j )| max

i̸=j
|(Txm

j
v−v)(xm

i )|

≲ max
i ̸=j
|φm∗

i (xn
j )| |xm

i −xm
j |k+1︸ ︷︷ ︸

≲hk+1

|v|Wk+1
∞ (T n

ε ).

Finally, we bound
∣∣∣φm∗

i (xn
j )

∣∣∣ for i ̸= j by using φm∗
i (xm

j ) = 0

|φm∗
i (xn

j )|= |φm∗
i (xn

j )−φm∗
i (xm

j )|≲ ∥∇φm∗
i ∥L∞(T̂ε)∥x

n
j −xm

j ∥≲ h−1∥Θn
T̃
−Θm

T̃
∥L∞(T̂ ).

Altogether, this completes the proof by summing over all T̃m in ω(Tm).

3.2.2 Error splitting equation

In order to conduct a priori error analysis of the numerical method, we start with an
error splitting into consistency and interpolation parts and estimate their error bounds.

Let u be the exact solution to the PDE problem (2.35) or (3.1). For un := u(tn), n=
0,1, ...,N ∈ N, we make use of the smooth extension operator E : L2(Ωn)→L2(Ωn

ε ) as
introduced in [102, Section 3.2.1], such that Eun is well-defined on Ωn

ε ⊃ Ωn+r and E
is uniformly continuous in standard Sobolev norms. In the remainder of this section,
we assume that ε ∈ R+ can be chosen sufficiently large to ensure Ωn

ε ⊃ Dn
r , and we

identify Eun with un for the sake of simplicity of the notation.
Let un

I := In
hu

n ∈ Vn
h be the global Lagrange interpolant with respect to T n

h such
that the error can be split into

en := un−un
h = en

I +en
h, for en

I := un−un
I , en

h := un
I −un

h, (3.40)

where en
I is the interpolation error and en

h is the discrete error. Furthermore, we split
the error after mesh transfer from Vm

h to Vn
h in such a way that

ẽm := um−Πn
mu

m
h = ẽm

I +Πn
mem

h , for ẽm
I := um−Πn

mu
m
I , (3.41)

where ẽm
I is the corresponding interpolation error after projection, and Πn

mem
h is the

projection of the corresponding discrete error.
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We then introduce a lifting operator (·)l :H1(Ωn
h)→H1(Ωn), vh 7→ vh ◦Θn ◦Ψ−n

that maps a function from the approximated domain to the exact domain, and cor-
respondingly bn(·, ·) and fn(·), in forms of the discrete bilinear form bnh(·, ·) and the
linear one fn

h (·) but in which Ωn
h, Γn

h are now replaced by Ωn, Γn of exact geometry.
For the exact solution un to (3.1) there holds for n= 0,1, ...,N∫

Ωn
h

∂tu
nv dx + bn(un,v) = fn(v) ∀v ∈H1(Ωn

h), (3.42)

from which we subtract (3.34) to obtain the equation of errors en, ẽn−1, ..., ẽn−r

∫
Ωn

h

∂2
∆t(en, ..., ẽn−r) vh dx + bnh(en,vh)+γsn

r (en,vh) = En
C(vh), (3.43)

where the consistency error term can be decomposed into four contributions

En
C(vh) :=

En
C1(vh)︷ ︸︸ ︷∫

Ωn
h

∂2
∆t(un, ...,un−r) vh dx−

∫
Ωn
∂tu

nvl
hdx (3.44)

+ bnh(un,vh)− bn(un,vl
h)︸ ︷︷ ︸

En
C2(vh)

+γsn
r (un,vh)︸ ︷︷ ︸
En

C3(vh)

+fn(vl
h)−fn

h (vh)︸ ︷︷ ︸
En

C4(vh)

.

Further splitting en and ẽn−1, ..., ẽn−r in (3.43) yields∫
Ωn

h

∂2
∆t(en

h, ...,Πn
n−ren−r

h )vhdx + bnh(en
h,vh)+γsn

r (en
h,vh) = En

C(vh)+En
I (vh), (3.45)

for the interpolation error term of two contributions

En
I (vh) :=−

∫
Ωn

h

∂2
∆t(en

I , ..., ẽn−r
I ) vh dx︸ ︷︷ ︸

En
I1(vh)

− bnh(en
I ,vh)−γsn

r (en
I ,vh)︸ ︷︷ ︸

En
I2(vh)

. (3.46)

In the following analysis, we will fix r = 2 for the BDF2 time stencil, however, an
extension to higher order of accuracy in time (i.e., BDF-r) is accessible.

3.2.3 Consistency estimates

In this subsection, we estimate the consistency error bound.

Lemma 9. Let u ∈W3
∞(Ξ)∩L∞(0,T ;Hk+1(Ω(t))) be the exact solution to (3.1) and

let g ∈ L∞(0,T ;W1
∞(Ω(t))), then the consistency error in (3.44) with r = 2 has the



70 Numerical PDEs on Time-dependent Domains

following bound for all vh ∈ Vn
2

|En
C(vh)|≲ (∆t2 +hq +hkK

1
2 )R9(u,g)|||vh|||n

withR9(u,g) := ∥u∥W3∞(Ξ) +∥u∥L∞(0,T ;Hk+1(Ω(t))) +∥g∥L∞(0,T ;W1∞(Ω(t))), where the semi-
norm |||vh|||2n = ∥vh∥2Ωn

h
+ ν

2∥∇vh∥2Ωn
h

+γsn
2 (vh,vh).

Proof. Recall (3.44), i.e., En
C(vh) = ∑4

i=1 ECi(vh). We start with En
C1(vh) by the

triangle inequality

|En
C1(vh)| ≤

∣∣∣∣ ∫
Ωn

h

(
∂2

∆t(un,un−1,un−2)−∂tu
n

)
vhdx︸ ︷︷ ︸

En
C1a

∣∣∣∣ +
∣∣∣∣ ∫

Ωn
h

∂tu
nvhdx−

∫
Ωn
∂tu

nvl
hdx︸ ︷︷ ︸

En
C1b

∣∣∣∣.

The first term is similar to the one in [102, Lemma 5.11] but differs due to the high-order
time difference stencil. By elementary calculations based on integration by parts on
[tn−2, tn−1] and [tn−1, tn] one obtains

En
C1a =

∫
Ωn

h

∫ tn

tn−2
z(t) ∂3

t u dt vhdx

for z ∈ C1([tn−2, tn]) satisfying z(t)|[tn−2,tn−1] = − 1
4∆t(t− tn−2)2 and z(t)|(tn−1,tn] =

1
12∆t((3t−3tn−1−∆t)2−4∆t2), which leads to ∥z∥L∞([tn−2,tn]) ≤ 1

3∆t. Thus we have
the bound with ∥∂3

t u∥L∞(Ωn
h×[tn−2,tn]) ≤ ∥∂3

t u∥L∞(Ξε) ≲ ∥∂3
t u∥L∞(Ξ)

|En
C1a|≲ ∆t2∥∂3

t u∥L∞(Ξ)∥vh∥Ωn
h
.

The second term En
C1b involves the high-order geometric approximation error, namely

the error from Ωn
h := Θ(Ω̂n

h) approximating Ωn. By denoting Φ := Ψ◦Θ−1 : Ωn
h→ Ωn,

i.e., a mapping from the high-order approximated domain to the exact domain, and
applying an integral transformation, one has

|En
C1b|=

∣∣∣∣ ∫
Ωn

h

(
∂tu

n− (∂tu
n ◦Φ)det(DΦ)

)
vhdx

∣∣∣∣
Splitting the integrand (apart from vh) into the sum of ∂tu

n− (∂tu
n ◦Φ) and (∂tu

n ◦
Φ)(1−det(DΦ)) yields

|En
C1b| ≤

∣∣∣∣ ∫
Ωn

h

|id−Φ| ∥∇∂tu
n∥L∞(Ωn

ε )vhdx
∣∣∣∣ +

∣∣∣∣ ∫
Ωn

h

|1−det(DΦ)| ∥∂tu
n∥L∞(Ωn

ε )vhdx
∣∣∣∣

≲ hq+1∥u∥W2∞(Ξ)∥vh∥L1(Ωn
h) +hq∥u∥W1∞(Ξ)∥vh∥L1(Ωn

h) ≲ hq∥u∥W2∞(Ξ)∥vh∥Ωn
h
,
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where we made use of

|∂tu
n(x)− (∂tu

n ◦Φ)(x)| ≤ ∥∇∂tu
n∥L∞(Ωn

ε )|x−Φ(x)| ∀x ∈ Ωn
h

and Lemma 2 to bound the parametric mapping error.
The bound for the second part follows similar lines in [102, Lemma 5.11] and yields

|En
C2(vh)|= |bnh(un,vh)− bn(un,vl

h)|≲ hq∥u∥W2∞(Ξ)∥vh∥H1(Ωn
h).

The third part is bounded by Cauchy-Schwarz inequality and the estimate from
[102, Lemma 5.8], which is still valid on deformed meshes, as follows:

|En
C3(vh)|= γsn

2 (un,vh)≤ γsn
2 (un,un)

1
2 sn

2 (vh,vh)
1
2

≲ γhk∥un∥Hk+1(Dn
2 )s

n
2 (vh,vh)

1
2 ≲K

1
2hk∥un∥Hk+1(Ωn)

(
γsn

2 (vh,vh)
) 1

2 ,

where for the last inequality we make use of Dn
2 ⊂ Ωn

ε and continuity of the extension.
Finally, the fourth part is estimated analogously to |En

C1b| as follows:

|En
C4(vh)|=

∣∣∣∣ ∫
Ωn

h

((gn ◦Φ)det(DΦ)−gn)vhdx
∣∣∣∣

≤ ∥vh∥L1(Ωn
h)

(
∥1−det(DΦ)∥L∞(Ωn

ε )∥gn∥L∞(Ωn
ε ) +∥id−Φ∥L∞(Ωn

ε )∥∇gn∥L∞(Ωn
ε )

)
≲

(
hq∥gn∥L∞(Ωn

h) +hq+1∥gn∥W1∞(Ωn
h)

)
∥vh∥Ωn

h
≲ sup

t∈[0,T ]
hq∥g∥W1∞(Ω(t))∥vh∥Ωn

h
.

This completes the proof.

3.2.4 Interpolation estimates

In this subsection, we estimate the interpolation error bounds.

Lemma 10. Let u ∈ L∞(0,T ;Wk+1
∞ (Ω(t))) with ∂tu ∈ L∞(0,T ;Hk(Ω(t))) be the exact

solution to (3.1), the interpolation errors in (3.46) have the following bound for all
vh ∈ Vn

2

N∑
n=2
|En

I1(vh)|≲N
1
2hkR10(u)∥vh∥N , |En

I2(vh)|≲K
1
2hk∥u∥Hk+1(Ωn

h)|||vh|||n,

withR10(u) := ∥∂tu∥L∞(0,T ;Hk(Ω(t))) +∥u∥L∞(0,T ;Wk+1
∞ (Ω(t))) and ∥vh∥2N := ∑N

n=2 ∥vh∥2Ωn
h
,

where the semi-norm |||vh|||2n = ∥vh∥2Ωn
h

+ ν
2∥∇vh∥2Ωn

h
+γsn

2 (vh,vh).
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Proof. We start with the first term En
I1(vh) in (3.46) and sum it over all time steps

from n= 2 to N . Let Tn
Ω := Tn∩Ωn

h be the intersection of the element and the domain,
then by Cauchy-Schwarz inequality one obtains

N∑
n=2
|En

I1(vh)|=
N∑

n=2

∣∣∣∣ ∫
Ωn

h

∂2
∆t(en

I , ẽn−1
I , ẽn−2

I )︸ ︷︷ ︸
=:zn

vhdx
∣∣∣∣≤ ∑

T n∈T n
h

N∑
n=2

∫
T n∩Ωn

h

|zn||vh|dx

≤
∑

T n∈T n
h

N∑
n=2
∥zn∥T n

Ω
∥vh∥T n

Ω
≤

∑
T n∈T n

h

( N∑
n=2
∥zn∥2T n

Ω

) 1
2

( N∑
n=2
∥vh∥2T n

Ω

) 1
2 .

Another triangle inequality yields the splitting

N∑
n=2
∥zn∥2T n

Ω
≤

N∑
n=2

∥∥∥∥3en
I −4ẽn−1

I + ẽn−2
I

2∆t

∥∥∥∥2

T n
Ω

≲

=:zn
1︷ ︸︸ ︷

∆t−2
N∑

n=2

∥∥∥3en
I −4en−1

I +en−2
I

∥∥∥2
T n

Ω

+∆t−2
N∑

n=2

∥∥∥4(In
h −Πn

n−1In−1
h )un−1− (In

h −Πn
n−2In−2

h )un−2
∥∥∥2

T n
Ω︸ ︷︷ ︸

=:zn
2

.

With eI(t) := u(t)−Ihu(t) and the standard interpolation properties, the first part zn
1

can be estimated as follows:

zn
1 = ∆t−2

N∑
n=2

∥∥∥∥3
∫ tn

tn−1
∂teI(t)dt−

∫ tn−1

tn−2
∂teI(t)dt

∥∥∥∥2

T n
Ω

≲Nh2k∥∂tu∥2L∞(0,T ;Hk(T n
Ω)).

For the second part zn
2 we split the expression into the following two terms by the

triangle inequality

∆t2zn
2 ≤

N∑
n=2

∥∥∥(In
h −ΠnIn−1

h )(4un−1−un−2)
∥∥∥2

T n
Ω︸ ︷︷ ︸

=:∆t2zn
2a

+
N∑

n=2

∥∥∥Πn(In−1
h −Πn−1In−2

h )un−2
∥∥∥2

T n
Ω︸ ︷︷ ︸

=:∆t2zn
2b
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We treat zn
2a by applying Lemma 8 with using Tn

Ωε
for the extended version of Tn

Ω

zn
2a ≲ ∆t−2

N∑
n=2

∥∥∥(In
h −ΠnIn−1

h )(4un−1−un−2)
∥∥∥2

T n
Ω

≲ ∆t−2
N∑

n=2
∥Θn−Θn−1∥2L∞(ω(T̂ )) h

2k+d∥4un−1−un−2∥2Wk+1
∞ (T n

Ωε
)

≲ (N +NC∆t−2h4)h2k+d sup
m,n=0,..,N

∥um∥2Wk+1
∞ (T n

Ωε
)

where by Assumption 3 for most of the time steps there holds ∥Θn−Θm∥L∞(Ω̄) ≲ ∆t,
while for a bounded number of time steps NC there holds ∥Θn−Θm∥L∞(Ω̄) ≲ h2. For
zn

2b we additionally make use of (3.36a) which extends the relevant region by one
element layer, yielding

zn
2b ≲ ∆t−2

N∑
n=2

∥∥∥(In−1
h −Πn−1In−2

h )un−2
∥∥∥2

ω(T n−1
Ω )

≲ ∆t−2
N∑

n=2
∥Θn−Θn−1∥2L∞(ω2(T̂Ω)) h

2k+d∥un−2∥2Wk+1
∞ (ω(T n−1

Ωε
))

≲ (N +NC∆t−2h4)h2k+d sup
m,n=0,..,N

∥um∥2Wk+1
∞ (ω(T n

Ωε
))

where ω2(T̂Ω) := ω ◦ω(T̂Ω) is the patch of the element patch ω(T̂Ω) for T̂Ω := Θ−n
T (Tn

Ω).
As a consequence, with NC ≲ N∆t and h4

∆t ≲ 1, cf. Assumption 4, we arrive at
(N+NC∆t−2h4) ≲N and hence by continuity, after summing over the mesh, the bound

∑
T n∈T n

h

N∑
n=2
∥zn∥2T n

Ω
≲Nh2k

(
∥∂tu∥2L∞(0,T ;Hk(Ω(t))) +card(T n

h )hd︸ ︷︷ ︸
≲1

∥u∥2L∞(0,T ;Wk+1
∞ (Ω(t))

)
.

This concludes the first result.
Next, we bound the second term En

I2(vh) in (3.46) by Cauchy-Schwarz inequality,
interpolation estimates, and using the results from [102, Lemma 5.8] as follows:

|bnh(en
I ,vh)| ≤ ∥en

I ∥H1(Ωn)∥vh∥H1(Ωn
h) ≲ hk∥un∥Hk+1(Ωn)

(
∥vh∥Ωn

h
+ ν

2∥∇vh∥Ωn
h

)
,

γsn
2 (en

I ,vh)≤ γsn
2 (en

I ,en
I )

1
2 sn

2 (vh,vh)
1
2 ≲K

1
2hk∥un∥Hk+1(Ωn)

(
γsn

2 (vh,vh)
) 1

2 .

Finally, we obtain the following bound for En
I2(vh)

|En
I2(vh)|≲ (1+K

1
2 )hk∥un∥Hk+1(Ωn)

(
∥vh∥Ωn

h
+ ν

2∥∇vh∥Ωn
h

+γsn
2 (vh,vh)

1
2

)
.
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This completes the proof.

3.2.5 Ghost penalty and tuple norm estimates

In this subsection, we first introduce a generalization of an important result in [102]
regarding the bound of the extensions obtained through the application of the ghost
penalty mechanism.

Lemma 11. Let vh ∈ Vn
r , r ∈ {1,2,3} be a discrete function on Dn

r . For any θ ∈ R+
the following inequalities hold true:

∥vh∥2Dn
r
≲ ∥vh∥2Ωn

h
+Kh2sn

r (vh,vh) (3.47a)

∥∇vh∥2Dn
r
≲ ∥∇vh∥2Ωn

h
+Ksn

r (vh,vh) (3.47b)

∥vh∥2Dn
r
≤ (1+ c11a∆t)∥vh∥2Ωn

h
+ c11bν∆t∥∇vh∥2Ωn

h
+ c11c∆tKsn

r (vh,vh) (3.47c)

where the constants c11a = c11r(1+θ−1), c11b(θ) = c11rθν−1, c11c = c11r(θ+h2 +h2θ−1)
for a constant c11 ∈ R+ independent of h and ∆t.

Proof. The results follows from [102, Lemma 5.2, Lemma 5.5 and Lemma 5.7] with
minor modification for an extended strip size (from On

δ in [102] to Dn
r here).

Remark 12. We note that the constant c11b can be decreased for the price of the
constant c11a to be increased by choosing θ accordingly. We will make use of this
adjustment later in order to drive c11b to be sufficiently small. In the remainder of this
subsection, we will however only reflect that dependency on θ for c11b.

Lemma 12. Let vh ∈ Vn
r , r ∈ {1,2,3} be a discrete function on Dn

r . For the interior
strip Sn

h,−ε, ε ∈ R+ defined by (3.8) there holds for any σ ∈ R+

∥vh∥2Sn
h,−ε
≤ c12

(
(1+σ−1)ε∥vh∥2Ωn

h
+σε∥∇vh∥2Ωn

h

)
. (3.48)

Proof. The claim follows from [59, Lemma 4.10] with an additional scaling argument.

To deal with the BDF2 time stencil in the following stability analysis, we define a
proper norm and make a simple but useful observation, cf. [60, Lemma 6.33].

Definition 11. Let uh,vh,wh ∈ Vn
2 . For any subset U ⊆Dn

2 we define the following
BDF2 tuple norm

|||(wh,vh)|||2U := ∥wh∥2U +∥2wh−vh∥2U . (3.49)
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Lemma 13. For ∂2
∆t as defined in Subsection 3.1.6 with the BDF2 tuple norm there

holds
(
4∆t∂2

∆t(wh,vh,uh),wh

)
Ωn

h

≥ |||(wh,vh)|||2Ωn
h
−|||(vh,uh)|||2Ωn

h
. (3.50)

Proof. Multiplying the terms out we find
(
4∆t∂2

∆t(wh,vh,uh),wh

)
Ωn

h

= ∥wh∥2Ωn
h

+∥2wh−vh∥2Ωn
h

−∥vh∥2Ωn
h
−∥2vh−uh∥2Ωn

h
+∥wh−2vh +uh∥2Ωn

h︸ ︷︷ ︸
≥0

.

See also [60, Lemma 6.33].

Let us stress that the similar tuple norms with the corresponding estimates can
also be defined for BDF3 and BDF4, cf. [112, Section 2]. In an analogous manner,
the analysis below can thus be extended to r = 3 and r = 4 as well. We will however
discuss the case of r = 2 only, in order to keep the technicalities at a manageable level.

Next, we bound the BDF2 tuple norm by a tuple of functions transferred from
Ωn−1

h and Ωn−2
h to Ωn

h.

Lemma 14. For all c14b > 0 and sufficiently small h and ∆t there holds for all
wh ∈ Vn−1

1 and vh ∈ Vn−2
2

|||(Πnwh,ΠnΠn−1vh)|||2Ωn
h
≤ (1+ c14a∆t)|||(wh,Πn−1vh)|||2Ωn−1

h

+ c14bν∆t
(
∥∇wh∥2Ωn−1

h
+∥∇vh∥2Ωn−2

h

)
+ c14cK∆t

(
sn−1

1 (wh,wh)+ sn−2
2 (vh,vh)

)
for constants c14a, c14c > 0 independent of h, ∆t and n.

Proof. Let D̂n,S
±1 := Θ−n(Dn,S

±1 ) be the unmapped strip domain of undeformed elements.
Let D̃n := Θn(D̂n−1,S

±1 ∪D̂n,S
±1 ) be the union of the strip domains mapped through Θn,

on which the mesh deformation acts such that Πn ̸= id, namely provided wh ∈ Vn−1
h

and Πnwh ∈ Vn
h we have trivially wh−Πnwh = 0 on Ω̄ \ D̃n. Let D̃n−1

1 ⊂ Dn−1
1 be

the extension of the intersection Θn−1(Θ−n(D̃n∩Dn
0 )) by all direct neighbors (but no

extension with δ) mapped through Θn−1. By the fact that

∥Πnwh∥2Ωn
h

= ∥wh∥2Ωn
h

+∥wh−Πnwh∥2Ωn
h

+2(wh,wh−Πnwh)Ωn
h

≤ ∥wh∥2Ωn
h

+µ∥wh∥2Ωn
h∩D̃n +(1+µ−1)∥wh−Πnwh∥2Ωn

h∩D̃n
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for any µ ∈ R+ and similarly for 2wh−Πn−1vh substituting wh that

∥Πn(2wh−Πn−1vh)∥2Ωn
h
≤ ∥2wh−Πn−1vh∥2Ωn

h
+µ∥2wh−Πn−1vh∥2Ωn

h∩D̃n

+(1+µ−1)
∥∥∥(2wh−Πn−1vh)−Πn(2wh−Πn−1vh)

∥∥∥2
Ωn

h∩D̃n

we exploit the Definiton Definition 11 to unroll the BDF2 tuple norm as follows:

|||(Πnwh,ΠnΠn−1vh)|||2Ωn
h
≤ |||(wh,Πn−1vh)|||2Ωn

h
+µ|||(wh,Πn−1vh)|||2Ωn

h∩D̃n (3.51)

+(1+µ−1)c23.37bh
4|||(∇wh,∇Πn−1vh)|||2D̃n−1

1

where the estimate (3.37b) from Lemma 6 was applied to the last term with Ωn
h∩D̃n ⊂

D̃n∩Dn
0 . Let us estimate the righ-hand side term by term.

The first term on the right-hand side of (3.51) can be bounded by applying (3.47c)
in Lemma 11 with Ωn

h ⊂D
n−1
1

|||(wh,Πn−1vh)|||2Ωn
h
≤ (1+ c11a∆t)|||(wh,Πn−1vh)|||2Ωn−1

h

+6c11bν∆t
(
∥∇wh∥2Ωn−1

h
+∥∇Πn−1vh∥2Ωn−1

h

)
+ c11cK∆t

(
9sn−1

1 (wh,wh)+2sn−1
1 (Πn−1vh,Πn−1vh)

)
where we made use of |||(u,v)|||2Ωn−1

h
≤ 6∥u∥2Ωn−1

h

+ 6∥v∥2Ωn−1
h

and sn−1
1 (2u−v,2u−v)≤

8sn−1
1 (u,u)+2sn−1

1 (v,v) for u,v ∈ Vn−1
1 . We then estimate ∥∇Πn−1vh∥2Ωn−1

h

by (3.36b)
in Lemma 5 with Ωn−1

h ⊂Dn−1
1 and (3.47b) in Lemma 11

∥∇Πn−1vh∥2Ωn−1
h
≤ c5b∥∇vh∥2Dn−2

2
≤ c5bc3.47b

(
∥∇vh∥2Ωn−2

h
+Ksn−2

2 (vh,vh)
)

and estimate sn−1
1 (Πn−1vh,Πn−1vh) by Lemma 7 with Dn−2,S

±2 ⊂Dn−2
2

sn−1
1 (Πn−1vh,Πn−1vh)≤ c7as

n−2
2 (vh,vh)+ c7bh

2∥∇vh∥2Dn−2
2

≤ (c7a + c7bc3.47bh
2K)sn−2

2 (vh,vh)+ c7bc3.47bh
2∥∇vh∥2Ωn−2

h
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where (3.47b) in Lemma 11 was again applied. In summary, we have for the first term

|||(wh,Πn−1vh)|||2Ωn
h
≤ (1+ c11a∆t)|||(wh,Πn−1vh)|||2Ωn−1

h
(3.52)

+6c11bν∆t
(
∥∇wh∥2Ωn−1

h
+ c3.47b(c5b + c3.52a)∥∇vh∥2Ωn−2

h

)
+ c11cK∆t

(
9sn−1

1 (wh,wh)+2(c7a + c7bc3.47bh
2K+ c3.52b)sn−2

2 (vh,vh)
)

where we set the parameters c3.52a := c11cc7bKh
2/(3c11bν) and c3.52b := 3c11bc5bc3.47bν/c11c.

The second term on the right-hand side of (3.51) is estimated by using Lemma 12
with choosing σ = c12/(1− c12) and ε= 2(δ+h) = µ−1∆t such that Ωn

h ∩D̃n ⊂ Sn
h,−ε

µ|||(wh,Πn−1vh)|||2Ωn
h∩D̃n ≤ µ|||(wh,Πn−1vh)|||2Sn

h,−ε
(3.53)

≤∆t|||(wh,Πn−1vh)|||2Ωn
h

+σ∆t|||(∇wh,∇Πn−1vh)|||2Dn−1
1

where we set µ= ∆t
2(δ+h) the parameter of the Young’s inequality in (3.51) and applied

the inclusion Ωn
h ⊂D

n−1
1 . The first tuple norm is identical to (3.52) and can be bounded

in the same form. The second tuple norm is identical to the following estimate.
The third term on the right-hand side of (3.51) is bounded with D̃n−1

1 ⊂Dn−1
1 by

applying (3.36b) in Lemma 5 and Lemma 7

|||(∇wh,∇Πn−1vh)|||2D̃n−1
1
≤ 6∥∇wh∥2Dn−1

1
+6c7b∥∇vh∥2Dn−2

2
(3.54)

≤ 6c3.47b

(
∥∇wh∥2Ωn−1

h
+ c7b∥∇vh∥2Ωn−2

h
+Ksn−1

1 (wh,wh)+ c7bKs
n−2
2 (vh,vh)

)
.

To conclude the proof, we add up (3.52), (3.53), (3.54) and summarize the conditions
for the involved constants as follows:

c14a ≥
∑
{c11a,1};

c14b ≥
∑
{6c11b,6c11bc3.47b(c5b + c3.52a),6c3.47b((1+µ−1)c23.37bh

4/∆t+σ)/ν,
6c3.47bc7b((1+µ−1)c23.37bh

4/∆t+σ)/ν};
c14c ≥

∑
{9c11c,2c11c(c7a + c7bc3.47bh

2K+ c3.52b),6c3.47b((1+µ−1)c23.37bh
4/∆t+σ),

6c3.47bc7b((1+µ−1)c23.37bh
4/∆t+σ)}.

If h is sufficiently small, by Assumption 4 (1+µ−1)h4/∆t≲ ν and Kh2 ≲ ν, then for
any choice of c14b that only depends on c11b we have correspondingly a θ in Lemma 11,
which gives the choice of c11c and hence c14c. This completes the proof.
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3.2.6 Stability analysis

In this subsection, we analyze the stability bound.

Theorem 6 (Stability of the numerical solution). The numerical solution {un
h}n=2,...,N

to (3.34) with r = 2 satisfies the following stability bound

|||(uN
h ,ΠNuN−1

h )|||2ΩN
h

+∆t
N∑

n=2

(
ν∥∇un

h∥2Ωn
h

+2γsn
2 (un

h,u
n
h)

)
≲ exp(c6tN )R0

6

with R0
6 := |||(u1

h,Π1u0
h)|||2Ω1

h
+∆t

( N∑
n=2
∥gn∥2Ωn

h
+

1∑
n=0

(
ν∥∇un

h∥2Ωn
h

+Ksn
2 (un

h,u
n
h)

))

where c6 := c14a + 1
2 +4ξ for ξ as in (3.18) indepedent of h, ∆t or T .

Proof. We test (3.34) with vh = 4∆tun
h and apply Lemma 13 which yields

|||(un
h,Πnun−1

h )|||2Ωn
h

+4∆tbnh(un
h,u

n
h)+4∆tγsn

2 (un
h,u

n
h)

≤ |||(Πnun−1
h ,ΠnΠn−1un−2

h )|||2Ωn
h

+4∆tfn
h (un

h).

Recall the lower bound of bnh(·, ·) from (3.19). We apply Lemma 14 on the right-hand
side followed by Young’s inequality with β > 0 and Cauchy-Schwarz applied to fn

h

(1−4ξ∆t)|||(un
h,Πnun−1

h )|||2Ωn
h

+2∆tν∥∇un
h∥2Ωn

h
+4∆tγsn

2 (un
h,u

n
h)

≤ (1+ c14a∆t)|||(un−1
h ,Πn−1un−2

h )|||2Ωn−1
h

+ c14bν∆t
(
∥∇un−1

h ∥2Ωn−1
h

+∥∇un−2
h ∥2Ωn−2

h

)
+ c14cK∆t

(
sn−1

1 (un−1
h ,un−1

h )+ sn−2
2 (un−2

h ,un−2
h )

)
+2∆t

(
β−1∥gn∥2Ωn

h
+β∥un

h∥2Ωn
h

)
.

Summing over n= 2, ...,N ≤N , choosing c14b ≤ 1
2 , and assuming γ ≥ c14cK yields

(1−4ξ∆t−2β∆t)|||(uN
h ,ΠNuN−1

h )|||2ΩN
h

+∆t
N∑

n=2
ν∥∇un

h∥2Ωn
h

+2∆t
N∑

n=2
γsn

2 (un
h,u

n
h)

≤ |||(u1
h,Π1u0

h)|||2Ω1
h

+∆t
1∑

n=0

(
ν∥∇un

h∥2Ωn
h

+ c14cKs
n
2 (un

h,u
n
h)

)
(3.55)

+(c14a +4ξ+2β)∆t
N∑

n=2
|||(un−1

h ,Πn−1un−2
h )|||2Ωn−1

h
+2∆tβ−1

N∑
n=2
∥gn∥2Ωn

h
.

Finally, by choosing β = 1
4 and applying the discrete Grönwall’s lemma with ∆tξ ≤ 1

16 ,
we obtain the result.
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Let us note that some parts of the stability analysis of the BDF2 scheme have been
considerably simplified in [89, Section 5.2.1].

3.2.7 A priori error estimate

In this subsection, we are ready to conclude the following a priori error analysis based
on all the results above.

Theorem 7 (Error estimate for the advection-diffusion equation on evolving domain).
Let u∈W3

∞(Ξ)∩L∞(0,T ;Wk+1
∞ (Ω(t))) with ∂tu∈L∞(0,T ;Hk(Ω(t))) be the exact solu-

tion to the PDE problem (2.35) or (3.1) with the source term g ∈ L∞(0,T ;W1
∞(Ω(t))).

For N = T/∆t the numerical solution {un
h}n=2,...,N to (3.34) with r = 2 fulfills the

following error estimate for en := |u(tn)−un
h|

∥eN∥2ΩN
h

+∆t
N∑

n=2

(
ν

2∥∇en∥2Ωn
h

+γsn
2 (en,en)

)
≲ exp(cT )

(
(∆t4 +Kh2k +h2q) R2

9(u,g)+h2kR2
10(u)

)
with c := c14a +4ξ+4 independent of the mesh size h, the time step ∆t, or the terminal
time T .

Proof. By the error splitting in (3.40) we have with the standard interpolation estimate

∥eN∥2ΩN
h
≲ ∥eN

I ∥2ΩN
h

+∥eN
h ∥2ΩN

h
≲ h2k∥uN∥2Hk+1(ΩN ) +∥eN

h ∥2ΩN
h

and by the result from [102, Lemma 5.8] for the ghost penalty of interpolation error

∆t
N∑

n=2

(
ν

2∥∇en
I ∥2Ωn

h
+γsn

2 (en
I ,en

I )
)
≲ T sup

n=2,...,N
Kh2k∥un∥2Hk+1(Ωn) ≲ exp(cT )Kh2kR2

9,

where the continuity property is employed, cf. [102, Lemma 3.4]. Hence only the
discrete error terms need to be bounded yet. Based on the observation that (3.45) for
en

h is identical to (3.34) if un
h is replaced by en

h and fn
h (vh) by En

C(vh) + En
I (vh), we

proceed with the proof as in Theorem 6 but the additional source term.
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Recalling Lemma 9 and Lemma 10, we test the consistency and interpolation error
terms with en

h and sum up

N∑
n=2

(
En

C(en
h)+En

I (en
h)

)
≲ (∆t2 +K

1
2hk +hq)R9

N∑
n=2
|||en

h|||+N
1
2hkR10∥en

h∥N

≲N(∆t4 +Kh2k +h2q)R2
9 +Nh2kR2

10

+
N∑

n=2

(
|||(en

h,Πnen−1
h )|||2Ωn

h
+ ν

2∥∇en
h∥2Ωn

h
+γsn

2 (en
h,en

h)
)

Analogously to (3.55) we then arrive at

(1−4ξ∆t−4∆t)|||(eN
h ,ΠN eN−1

h )|||2ΩN
h

+∆t
N∑

n=2

ν

2∥∇en
h∥2Ωn

h
+∆t

N∑
n=2

γsn
2 (en

h,en
h)

≲ |||(e1
h,Π1e0

h)|||2Ω1
h

+∆t
1∑

n=0

(
ν∥∇en

h∥2Ωn
h

+γsn
2 (en

h,en
h)

)
+Th2kR2

10

+T (∆t4 +Kh2k +h2q)R2
9 +(c14a +4ξ+4)∆t

N∑
n=2
|||(en−1

h ,Πn−1en−2
h )|||2Ωn−1

h

where we applied the discrete Grönwall’s inequality with (1+ ξ)∆t≤ 1
8 and made use

of ∥en
h∥Ωn

h
≤ |||(en

h,Πnen−1
h )|||Ωn

h
. This completes the proof by setting c := c14a +4ξ+4.

Remark 13 (Impact of the anisotropy factor K). The error bound above involves
the factor Kh2k ≲ h2k +∆t h2k−1. Hence, at first glance it seems that an anisotropy
between space and time refinements, i.e., when ∆t

h →∞ for h,∆t→ 0, may have a
negative impact on the convergence rate. For k > 1 one can estimate ∆t h2k−1 ≤
∆t2hk +h3k−2 ≲ ∆t4 +h2k and thereby conclude that the factor K has no influence on
the convergence rate. For k = 1, however, one indeed has that ∆t h converges slower
than ∆t4 +h2 for ∆t

h →∞ for h,∆t→ 0.

3.3 Numerical Experiments

In this section, we present three numerical examples for the higher-order Eulerian
FEM proposed in Section 3.1. The convergence study of the numerical results is in
agreement with the order of accuracy predicted by Theorem 7 in Section 3.2. The
numerical results also verify the stability with respect to the variation of discretization
parameters, and demonstrate the robustness of the method to handle evolving geometry
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even in complicated configurations such as topological changes. The following three
geometrical configurations are considered:

• A domain of disk shape transforming towards a kite;

• A circular moving interface separating two phases with interface jump condition;

• Two disconnected domains merging, separating, and transforming their shapes.

All the numerical experiments in this thesis are implemented with the finite element
package NGSolve [141] and its Add-on ngsxfem [101]. All the numerical examples in
this chapter are contributed from [114, Section 7]. For reproducibility we provide the
generating codes and instructions on the repository https://gitlab.gwdg.de/lehrenfeld/
repro-isop-unf-bdf-fem. See also Section 1.5.

In contrast to the analysis, we make two minor changes in the discretization. Firstly,
instead of the skew-symmetrized form (3.17), the following bilinear form is applied:

bnh(uh,vh) =
∫

Ωn
h

ν∇uh ·∇vhdx +
∫

Ωn
h

(we ·∇uh)vhdx +
∫

Ωn
h

(∇·we)uhvhdx. (3.56)

Secondly, we do not include the additional neighboring elements in the extension,
namely, we still have rδ distance extension but skip the r element layers in (·)h,rδ,r, cf.
Subsection 3.1.1. However, in all the subsequent numerical tests we have ensured that
the desired inclusion properties hold.

In some examples we construct a source term in order to obtain the corresponding
manufactured solutions, by which we meassure the numerical error e := |u−uh| in
terms of the following discrete space-time norms:

∥e∥2L2(H1) :=
N∑

n=1
∆t∥∇e∥2L2(Ωn

h), ∥e∥L∞(L2) := max
n=1,...,N

∥e∥L2(Ωn
h), (3.57)

where we recall that u is identified with its extension ue := Eu to the proper neighbor-
hood. For the first two examples we start with an initial (quasi-uniform) spatial and
(uniform) temporal mesh with initial mesh sizes h0 and ∆t0, respectively, and then
apply successive regular refinements in space and time. We denote the correspond-
ing refinement levels in space by Lx, and in time by Lt, such that h = 2−Lxh0 and
∆t= 2−Lt∆t0.

https://gitlab.gwdg.de/lehrenfeld/repro-isop-unf-bdf-fem
https://gitlab.gwdg.de/lehrenfeld/repro-isop-unf-bdf-fem
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3.3.1 Kite transformation

In the first numerical example, we consider a domain of disk shape transforming
towards a kite shape. See Figure 3.9 for an illustration of this example.

−1 1

(a) t = 0 (b) t = T/2 (c) t = T

Fig. 3.9 Numerical example from Subsection 3.3.1 with k = q = 3 and r = 2 (BDF2):
Mesh, active mesh (in grey), neighborhood extension (red line) and discrete solutions
on Ω(t) for (a) Lx = 0, Lt = 3, t= 0; for (b) Lx = 1, Lt = 4, t= T/2; and for (c) Lx = 2,
Lt = 5, t= T .

The background domain is fixed to Ω̄ = (−1,1)2 and the time interval [0,T ] is set for
a terminal time T = 1. The evolution of the geometry is represented by the following
level set function

ϕ(x, t) = ∥x−c(x, t)∥2−
1
2 for c(x, t) = w(x) t and w(x) =

(1
6 −

5
3x

2
2,0

)

where x := (x1,x2) denotes the standard Cartesian coordinate system. Note that
ϕ may not be a signed distance function for t ∈ (0,T ], i.e., it may not preserve
the signed distance properties. The source term function g is designed such that
u(x, t) = cos π

R∥x−c∥2, which satisfies −∇u ·n = 0, on Γ(t), t ∈ [0,T ], solves (3.1)
exactly. The initial spatial and temporal resolutions are h0 = 0.25 and ∆t0 = T .

In Figure 3.10 the convergence of the errors in L∞(L2) and L2(H1) norms are
displayed for r = k = q = 2. We observe that the convergence rates in time are O(∆t2)
in both norms, whereas the convergence rates in space are O(h2) in L2(H1) norm and
O(h3) in L∞(L2) norm. These numerical results are in agreement with the prediction
of Theorem 7, except for the O(h3)-convergence in L∞(L2) norm which is even one
order better than the prediction.
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Fig. 3.10 L∞(L2)- and L2(H1)-errors of the isoparametric unfitted BDF2-FEM dis-
cretization for k = q = 2 and cγ = 0.1 for several levels of space and time refinements
in the example from Subsection 3.3.1.

3.3.2 Two-phase mass transport

In the second example, we consider a two-phase moving interface problem as depicted
in Subsection 2.3.2, cf. [98], of which the complexity and the third order of accuracy in
space and time are beyond the scope of the previous analysis. A circular interface that
separates two materials is moving within the background domain Ω̄ = (0,2)2 and the
time interval [0,T ] for a final time T = 1

2 . The interface is described by the following
level set function

ϕ(x, t) = ∥x−c(t)∥2−
1
3 for c(t) =

(1
2 + 1

4π sin(2πt),1
)
,

of which the zero level set represents a circle moving with time-dependent velocity in
the horizontal direction. We then define the two subdomains

Ω1(t) = {x ∈ Ω̄ | ϕ(x, t)< 0}, Ω2(t) = {x ∈ Ω̄ | ϕ(x, t)> 0},
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on which the advection-diffusion equation ∂tu+∇· (uw−νi∇u) = g is posed for i= 1,2
where w(t) = ∂tc(t) is given, as described in (2.38). We prescribe the Dirichlet data on
∂Ω̄ as in (2.40), and impose the jump interface conditions [[−ν∇u ·n]] = 0, [[βu]] = 0
on Γ(t) = Ω1(t)∩Ω2(t) as in (2.39), for the diffusion coefficients νi, i = 1,2 and the
Henry weights γi, i= 1,2 in the Henry interface condition, cf. [98, Section 1.2]. More
specifically, we choose (ν1,ν2) = (10,20) and (β1,β2) = (2,1) in this example. The
corresponding boundary data and source term function g are prescribed such that
u(x, t) = sin(πt)ui(∥x− c(t)∥) with u1(z) = a+ bz2 and u2(z) = cos(πz), a ≈ 1.1569,
b≈−8.1621, is the unique manufactured solution.

For the discretization we make use of a geometrically unfitted setting similar to
(3.34), but for both subdomains a Nitsche formulation is applied for the coupling
through the interface conditions. The discretization takes the following form:
To find un

h = (un
1 ,u

n
2 ) ∈ Vn

r ×Vn
r , n = r, ...,N for given u0

h, ...,u
r−1
h , such that for all

vh = (v1,v2) ∈ Vn
r ×Vn

r there holds

∑
i=1,2

βi

(∫
Ωn

h,i

∂r
∆t(un

i , ...,Πn
n−ru

n−r
i )vi dx + bnh,i(un

h,vh)+γsn
r,i(un

h,vh)
)

+
∫

Γn
h

−{{ν∇uh ·n}}[[βvh]]−{{ν∇vh ·n}}[[βuh]]+ {{ν}}λN

h
[[βuh]][[βvh]] ds

=
∑

i=1,2
βi

∫
Ωn

h,i

givi dx,

where Ωn
h,i, i= 1,2 and Γn

h are the discrete subdomains and the interface approximations
to Ωi(tn) and Γ(tn), respectively. The discrete bilinear forms bnh,i(·, ·) and sn

r,i(·, ·) are
analogously to Section 3.1 but acting on Ωn

h,i or on a corresponding set of facets Fn
r,i,

respectively. In the Nitsche terms we choose λN = 40. On the right-hand side gi is a
proper extension of g|Ωi(t) to Ωn

h,i. The spatial and temporal resolution are h0 = 0.5
and ∆t0 = T initially.

In Figure 3.11 the convergence of the errors in L∞(L2) and L2(H1) norms, which are
composed as the summation of the corresponding norms on the subdomains Ωn

h,i, i= 1,2,
are displayed for r = k = q = 3 and we observe that the convergence rates in time are
O(∆t3) in both norms, whereas the convergence rates in space are O(h3), and even
higher in L∞(L2) norm. These numerical results are again in agreement with the
expectations from the case of single domain predicted by Theorem 7.
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Fig. 3.11 L∞(L2)- and L2(H1)-errors of the isoparametric unfitted BDF3-FEM dis-
cretization for k = q = 3 and cγ = 10 for several levels of mesh and time refinements in
the example from Subsection 3.3.2.

3.3.3 Topological changes

In the third example, we consider a geometrically singular configuration with topological
changes, in order to test the robustness of the method. Two disjoint domains merge
together and separate afterwards while their topology changes, and continuously
transform their shapes between kites and disks while they are moving. The evolution
of the geometry is represented by the following level set function

ϕ(x, t) = min
(
∥x−c−∥2,∥x−c+∥2

)
− 1

2 , for c±(t) =
(
± (1+sgn(1− t)2x2

2)(1− t),0
)
.

The background domain is fixed to Ω̄ = (−2,2)× (−1,1) and the time interval [0,T ]
is set for a terminal time T = 2. The corresponding velocity field is discontinuous at
x1 = 0 and t= 1 such that

w(x, t) =−sgn(x1)sgn(1− t) (1,0).
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The advection-diffusion equation (3.1) is posed on each disjoint domain or the merged
domain, with initial data u0 = −1 on the left side and u0 = 1 on the right side,
respectively.

−1 1

Fig. 3.12 Numerical example from Subsection 3.3.3 with k = q = 2 and r = 2 (BDF2):
Mesh, evolving domain, boundary (in yellow), 2δ-extension (in red or blue), and discrete
solutions on Ω(t). A series of snapshots with a time interval 3

20T in-between.

As the method is not able to maintain high order of accuracy under topological
changes that cause non-smooth boundaries, we do not study the error convergence for
this special example. As a bottom line, however, this topology changing experiment
demonstrates the robustness of the method. Visit https://gitlab.gwdg.de/lehrenfeld/
repro-isop-unf-bdf-fem/-/blob/master/solver/demo.ipynb for a tutorial of this example,
and see Figure 3.12 for a series of the resulting snapshots.

3.4 Summary

In this chapter, we have developed the Eulerian FEM from [102] for solving PDEs on
evolving domains towards provably higher order of accuracy in space and time. The
contributions of this work in contrast to [102] include the high-order isoparametric
method in space and the corresponding analysis on the one hand, and the analysis of
the time stepping method from an implicit Euler to a higher-order BDF scheme on the
other hand. The a priori error estimate of this isoparametric unfitted BDF-FEM yields
arbitrarily high order of accuracy in space and up to second-order convergence in time.
The construction, the analysis, and the implementation of the mesh transfer operator
for mesh deformations changing in time with respect to the isoparametric unfitted
discretization play a major part of this chapter, which are valuable not only for the
numerical methods considered in this thesis. The numerical experiments have verified
the convergence rates predicted by the analysis, the robustness of handling topological

https://gitlab.gwdg.de/lehrenfeld/repro-isop-unf-bdf-fem/-/blob/master/solver/demo.ipynb
https://gitlab.gwdg.de/lehrenfeld/repro-isop-unf-bdf-fem/-/blob/master/solver/demo.ipynb


3.4 Summary 87

changes of complex geometry, and the capability towards further applications beyond
the scope of this thesis.

The isoparametric unfitted BDF-FEM shows several advantages over its competitors.
In comparison to the isoparametric unfitted space-time FEM in [130], the proposed
method based on the standard isoparametric unfitted discretization involves only
spatial integrals and finite element spaces, which results in an implementational
and computational complexity comparable to stationary unfitted problems. While
compared to the characteristic Galerkin fictitious-domain method in [33], it trades the
extra cost and complexity of the Lagrangian tracking of the geometry (to high-order
accuracy) with a comparably simple ghost-penalty-based discrete extension. Moreover,
as mentioned in [102], this approach waives the reconstruction of a physical domain on
each time slab, but only approximates the domain at time instances. The avoidance
of reconstruction by a Lagrangian or an arbitrary mapping from a reference domain
makes the method especially promising for the applications in which the evolution of
the geometry is described by a sequence of snapshots without further details about the
continuous motion. One important application is the numerical simulation of cardiac
hemodynamics where the blood flow through a heart is recovered based on a series of
medical images, cf. [116, 153].





Chapter 4

Discrete Mean Curvature on
Hypersurfaces

In Chapter 3 we have developed the higher-order Eulerian FEM for solving PDEs on
a time-varying geometry of which the evolution is given in advance and decoupled
with the involved PDEs, while for the geometrically coupled solution-curvature-driven
moving free boundary problem (FBP) proposed in Section 2.4 the evolution of the
geometry depends on the mean curvature of the geometry itself and the solution to the
diffusion equation. In order to solve such a coupled bulk-surface problem, i.e., PDEs
on the bulk coupled with a geometric flow of the surface, our strategy is to decouple it
into three sub-models, cf. Section 1.2. In this chapter, we will take the mean curvature
sub-model forward, to compute the mean curvature vector of the surface at each time
step as a stationary problem, for which we develop a stabilized isoparametric Trace
Finite Element Method (TraceFEM) to solve the geometric equation of mean curvature
vector of manifolds numerically at arbitrarily high order of accuracy. The method is
stabilized by using volumetric normal diffusion from [74] and ghost penalty mechanism
from [82] as a whole. As discussed in Section 1.3 the discrete hypersurface may be
represented either explicitly by fitted mesh or implicitly by unfitted approaches, we will
however only consider the unfitted hypersurface cut by the zero level set of a level set
function, on account of the coupling with the geometrically unfitted Eulerian FEM in
Chapter 3 to solve the diffusion equation on the domain enclosed by the hypersurface.
The discrete mean curvature vector (together with the PDE solution) gives the surface
velocity to be extended onto the background domain for a velocity field, based on
which we are able to solve the level set transport equation for the evolution of the
geometry, cf. Subsection 2.2.2.
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4.1 Stabilized Isoparametric Trace Finite Element
Method

The Trace Finite Element Method (TraceFEM) firstly introduced in [122] for elliptic
PDEs posted on stationary manifolds is particularly suitable for problems in which the
hypersurface is given implicitly by a level set function, and in which there is a coupling
with another PDE problem on a bulk domain that contains the surface, e.g., two-phase
interface problem or the bulk-surface model we proposed in Section 2.4. We therefore
utilize the TraceFEM for the geometric PDE in order to compute the discrete mean
curvature vector of the hypersurface. The TraceFEM for PDEs posed on piecewise linear
surfaces, i.e., surface PDEs, has been well investigated, for instance, in [26, 120, 124] for
stationary surfaces and in [73, 75, 121, 123] for evolving surfaces. Towards high-order
TraceFEM for PDEs on isoparametrically mapped hypersurfaces, however, there does
not exist a comparably adequate literature. A recent work of Grande et al. in [74],
where a unified framework for the analysis of various stabilizations has been presented,
shows that only the so-called normal derivative volume stabilization is compatible for
high-order TraceFEM. To couple with the unfitted isoparametric BDF-FEM developed
in Chapter 3, we accordingly demand the discrete mean curvature vector on a high-order
approximation of the hypersurface. Consequently, we take advantage of the high-order
isoparametric TraceFEM with using both ghost penalty and normal derivative volume
stabilizations, and the later is called normal diffusion in this thesis. In contrast to the
surface PDEs of physical phenomena, the geometric PDE of mean curvature has its
own issue about stability that we will discuss in Subsection 4.1.2. To this end, we make
use of the both stabilization mechanisms and call the method stabilized isoparametric
TraceFEM for solving the geometric equation of mean curvature vector.

4.1.1 Preliminaries and nomenclature

In a similar manner to Subsection 3.1.1, we first prepare the notation for the discrete
objects but all time-independent in this subsection.

Finite element spaces and level set hypersurfaces

Let {Th}h∈R+
be a family of consistent subdivisions of the background domain Ω̄⊂

Rd, d= 2,3 into an admissible quasi-uniform triangulation Th consisting of simplexes
(elements) {T̂ ∈ Th} with the interior facets Fh := {T 1∩T 2 | T1,T2 ∈ Th, T1 ̸= T2} and
a characteristic diameter (mesh size) h ∈ R+. On each of these triangulations Th we
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define a time-independent, finite-dimensional function space of polynomials of order k,
i.e., a finite element space, by

Vh = V(k)
h :=

{
v̂h ∈ C(Ω̄) | v̂h|T ∈ Pk(T ), ∀T̂ ∈ Th

}
, (4.1)

where the bracketed upper index (k) may be omitted below.
Let Γ⊂ Ω̄⊂Rd, d= 2,3 be a smooth hypersurface. Let Γ̂h⊂Γδ =Bδ(Γ), h < δ ∈R+

be a connected piecewise linear hypersurface, which gives a second-order approximation
to Γ, such that Γ̂h∩ T̂ is a closed subset of a hyperplane Ĝh := {Γ̂h∩ T̂ | ∀T̂ ∈ Th} in
which Êh := {Ĝ1∩ Ĝ2 | Ĝ1, Ĝ2 ∈ Ĝh, Ĝ1 ≠ Ĝ2} is the set of edges. Let F̂Γ

h = {F̂ ∈ Fh |
measd−2(F̂ ∩ Γ̂h) > 0} be the set of facets and T̂ Γ

h = {T̂ ∈ Th |measd−1(T̂ ∩ Γ̂h) > 0}
be the set of elements cut by the hypersurface Γ̂h.

In order to represent Γ and Γ̂h implicitly within an unfitted discretization, we
design a level set function ϕ that matches the signed distance function ρ as introduced
in Subsection 2.1.3, such that for all time t ∈ [0,T ] there holds

ϕ(x, t) = ρ(x) in Γδ. (4.2)

Remark 14 (Signed distance properties). Equation 4.2 implies the assumption of
signed distance properties on the level set function, cf. Corollary 1. It considerably
simplifies the error analysis in this chapter, but it is not crucial (and thus may not be
strictly preserved) to the implementation of the numerical methods.

The zero level set of ϕ is utilized to describe the exact hypersurface by

Γ = {x ∈ Ω̄⊂ Rd | ϕ(x, ·) = 0}. (4.3)

We then apply a piecewise linear interpolation of the level set function for a fixed time
t ∈ [0,T ], i.e., ϕ̂h(x, t) := Ihϕ(x, t) by the nodal interpolation operator Ih, such that
the linearized level set hypersurface is represented by

Γ̂h = {x ∈ Ω̄⊂ Rd | ϕ̂h(x, ·) = 0}. (4.4)

Let Θ be the isoparametric mapping which is a qth-order finite element function
constructed such that Γh := Θ(Γ̂h) gives a high-order approximation to Γ, cf. Subsec-
tion 3.1.1 and Subsection 3.1.3. On the deformed cut elements T Γ

h := Θ(T̂ Γ
h ) we define

the isoparametric trace finite element space of polynomial degree k by

VΓ
h :=

{
vh ∈ C(T Γ

h ) | vh = v̂h|Γ̂h
◦Θ−1, v̂h ∈ V

(k)
h

}
. (4.5)
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Correspondingly, we have the partition of the isoparametrically mapped hypersurface
and the edges within it, as well as the sets of deformed cut facets and cut elements,
respectively,

Gh := Θ(Ĝh), Eh := Θ(Êh), FΓ
h := Θ(F̂Γ

h ), T Γ
h := Θ(T̂ Γ

h ). (4.6)

Geometric approximation

We begin this section with the closest point projector that connects the points between
the hypersurface Γ and its open tubular neighborhood Γδ := {x ∈ Ω̄⊂ Rd | |ρ(x)|< δ}
for some finite δ > h depending on the smoothness of Γ. See also Subsection 2.1.3.

Definition 12 (Closest point projector). Let p : Γδ→ Γ be the closest point projector
such that

p(x) := x−ρ(x)(n◦p(x)) ∀x ∈ Γδ

which assigns precisely one x on the exact hypersurface Γ to each x in the open tubular
neighborhood Γδ.

In Subsection 2.1.2 we have introduced the oriented and compact C2-hypersurfaces
on which we may define the mean curvature vector. In Assumption 1 we have assumed
the hypersurfaces to be C∞-smooth, but to analyze the discrete mean curvature of
arbitrarily high order of accuracy, the requirement of geometric regularity depends on
the approximation order, i.e., the hypersurface needs to be sufficiently smooth up to a
certain degree. We hence make the following assumption.

Assumption 5 (Geometric regularity). In this chapter we assume the hypersurface
Γ ∈ Ck+3(Rd) on which the mean curvature vector H satisfies

∥H∥Wk+1
∞ (Γ) ≲ 1

where k ≥ 1 is set to match the polynomial degree of the finite element space V(k)
h . By

the Sobolev embedding theorem (See [61, Section 5.6]), H ∈ C(Γ) follows.
Provided that by the Sobolev extension theorem (See [61, Section 5.4]) the mean

curvature vector H can be continuously extended onto the open tubular neighborhood
Γδ, δ > h with the closest point projector p in Definition 12, we have in addition the
stability of the extension

∥H◦p∥Wk+1
∞ (Γδ) ≲ 1.

Next, we relate the signed distance function to the unit normals on the hypersurfaces,
and carry out the estimates for the signed distance function and the unit normals. We
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emphasize that many of the following results hold based on the assumption of signed
distance property, which simplifies the analysis but is not necessary to be preserved in
numerical implementation, cf. Corollary 1 and Remark 14.

Lemma 15 (Unit normal vectors). Let ρ : Ω̄→ R be the signed distance function
satisfying (4.2). By definition of the C2-hypersurface Γ, the tangent space TxΓ is
orthogonal to ∇ρ(x), hence the unit normal n on Γ satisfies

n = ∇ρ
∥∇ρ∥2

.

With the piecewise linear interpolation operator Ih the unit normal n̂h on linearized
hypersurface Γ̂h satisfies

n̂h = ∇(Ihρ)
∥∇(Ihρ)∥2

.

With the isoparametric mapping Θ the unit normal nh on the mapped hypersurface
Γh := Θ(Γ̂h) satisfies

nh = ∇(Ihρ◦Θ−1)
∥∇(Ihρ◦Θ−1)∥2

= (DΘ)−Tn̂h

∥(DΘ)−Tn̂h∥2
.

Note that ∥ · ∥2 is the standard Euclidean norm.

Proof. See [74, Lemma 3.3].

Next, we estimate the distances between the exact and the approximated hypersur-
faces, as well as the distances between their unit normals.

Lemma 16 (Discrete hypersurface estimates). Let n̂h be the unit normal on Γ̂h and
nh be the unit normal on Γh := Θ(Γ̂h). By the construction of Γ̂h and Γh the following
estimates hold true:

∥ρ∥L∞(Γ̂h) ≲ h2, ∥n◦p− n̂h∥L∞(Γ̂h) ≲ h (4.7)

for linearized cut hypersurface Γ̂h and

∥ρ∥L∞(Γh) ≲ hq+1, ∥n◦p−nh∥L∞(Γh) ≲ hq (4.8)

for mapped cut hypersurface Γh with Θ of polynomial degree q ≥ 1.
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Proof. See [105, Corollary 3.2 and Lemma 3.6] for the first result of (4.8). See [74,
Lemma 3.3] for the second result of (4.8). The linearized case (4.7) follows directly
when q = 1.

By the two lemmas above we have the following corollary.

Corollary 2. The unit normal n and the discrete unit normals n̂h,nh have the stability
bounds

∥n◦p∥L∞(Γδ) ≲ 1, ∥n̂h∥L∞(Γ̂h) ≲ 1, ∥nh∥L∞(Γh) ≲ 1. (4.9)

In addition, for the tensor product of the unit normals there hold

∥(n◦p)⊗ (n◦p)− n̂h⊗ n̂h∥L∞(Γ̂h) ≲ h, (4.10)

∥(n◦p)⊗ (n◦p)−nh⊗nh∥L∞(Γh) ≲ hq. (4.11)

Proof. The stability bounds (4.9) obviously hold based on Lemma 15 and Lemma 16.
We prove (4.11) as follows:

∥(n◦p)⊗ (n◦p)−nh⊗nh∥L∞(Γh) = ∥(n◦p−nh)(n◦p)T +nh(n◦p−nh)T∥L∞(Γh)

≤ ∥(n◦p−nh)∥L∞(Γh) +∥(n◦p−nh)T∥L∞(Γh)

≲ hq +hq ≲ hq,

where we made use of the triangle inequality, normal estimates (4.9) and (4.8). The
linearized case (4.10) follows the similar lines when q = 1.

Recalling the tangential projection PΓ := I−n⊗n we have introduced in Section 2.1.
Obviously, it is an identity in the tangent space TxΓ because

PΓPΓ = (I−n⊗n)2 = I2−nnTI− InnT +(nnT)2 = I−2 nnT +nnT = PΓ. (4.12)

Analogously, we can define the tangential projections to the tangent space of the
linearized hypersurface and to that of the mapped hypersurface, as follows:

Definition 13 (Tangential projections). Let PΓ̂h
be the tangential projection to Tp(x)Γ̂h,

and PΓh
be the tangential projection to Tp(x)Γh, such that

PΓ̂h
:= I− n̂h⊗ n̂h, PΓh

:= I−nh⊗nh.
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The corresponding tangential gradients are defined by

∇Γ̂h
:= PΓ̂h

∇, ∇Γh
:= PΓh

∇.

Similarly, they are identities in the corresponding tangent spaces as well. Further-
more, we have the following lemma for the tangential projections.

Lemma 17 (Tangential projection bounds). The tangential projections have the
stability bounds

∥PΓ∥L∞(Γ) ≤ 1, ∥PΓ̂h
∥L∞(Γ̂h) ≤ 1, ∥PΓh

∥L∞(Γh) ≤ 1. (4.13)

In addition, there hold for the distance between the tangential projections

∥PΓ ◦p−PΓ̂h
∥L∞(Γ̂h) ≲ h, ∥PΓ ◦p−PΓh

∥L∞(Γh) ≲ hq. (4.14)

Proof. The stability bounds (4.13) hold directly by Definition 13. The estimates for
projection distances (4.14) are based on Definition 13 with the normal estimates (4.9),
(4.10) and (4.11).

4.1.2 Variational formulations

By geometric equation (2.16) in Subsection 2.1.4, we have defined the mean curvature
vector H and derived the corresponding weak formulation (2.17). However, this weak
form is not wellposed. We start this section with an investigation on the issue of
wellposedness, and then propose the stabilized discretizations of the weak form for
both piecewisely linearized and isoparametrically mapped hypersurfaces.

Wellposedness

Recall the variational formulation of the geometric equation (2.17):
To find H ∈ [H1(Γ)]d such that

B(H,v) = L(v) ∀v ∈ [H1(Γ)]d (4.15)

where
B(H,v) =

∫
Γ

H ·v ds and L(v) =
∫

Γ
∇Γx :∇Γv ds. (4.16)
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As we discussed in Remark 2, by the Lax-Milgram theorem, cf. [96, Theorem 6
in Section 6.3] and [61, Subsection 6.2.1], the problem is wellposed, provided that
coercivity and continuity of the bilinear form B(·, ·) hold in addition to the bounded
linear functional L(·) in a Hilbert space. However, the challenge arises from the absence
of the ellipticity of B(·, ·) in H1 space, while in L2 space it is indeed coercive but L(·)
is not continuous.

More specifically, let us consider the Ritz-Galerkin discretization on a proper
fitted mesh Th with the characteristic length h, and assume a meshed hypersurface
Γ = ⋃

T∈Th
T for the conforming triangulation Th, which is a special case of the unfitted

setting in an ideal condition. The Ritz-Galerkin method reads:
To find uh ∈ [Vh(Γ)]d ⊂ [H1(Γ)]d such that

B(uh,vh) = L(vh) ∀vh ∈ [Vh(Γ)]d. (4.17)

The Lax-Milgram theorem is applicable since Vh is a finite dimensional subspace of
H1. The bilinear form B(·, ·) is then elliptic for a constant c1 in this problem

B(vh,vh) = ∥vh∥2L2(Γ) ≥ c1h
2∥vh∥2H1(Γ) ∀vh ∈ [Vh(Γ)]d (4.18)

where the inverse inequality holds only in finite dimensional spaces. Hence a unique
solution exists. Suppose u is the exact solution to (4.17) and uh is the corresponding
discrete solution in the finite dimensional subspace [Vh(Γ)]d ⊂ [H1(Γ)]d. With Galerkin
orthogonality and boundedness of B(·, ·) we have for all vh ∈ [Vh(Γ)]d

c1h
2∥u−uh∥2H1(Γ) ≤B(u−uh,u−uh) =B(u−uh,u−vh)+B(u−uh,vh−uh)︸ ︷︷ ︸

=0≤ c2∥u−uh∥H1(Γ)∥u−vh∥H1(Γ)

where c2 is a constant independent of h. Hence we arrive at the Céa’s lemma

∥u−uh∥L2(Γ) ≤ ∥u−uh∥H1(Γ) ≤
c2
c1

h−2 inf
vh∈[Vh(Γ)]d

∥u−vh∥H1(Γ)

which indicates ∥u−uh∥L2(Γ) loses two orders of accuracy with respect to the quasi-
optimal error estimate. It therefore motivates us to look for a stabilization of the
L2-orthogonal projection.
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Stabilized discretization for linearized hypersurface

In [82] Hansbo et al. propose a stabilized approximation of the mean curvature vector
Ĥh, defined as follows:
To find Ĥh ∈ [Vh|T̂ Γ

h
]d such that for all vh ∈ [Vh|T̂ Γ

h
]d

B̂h(Ĥh,vh)+ Ŝh(Ĥh,vh) = L̂h(vh), (4.19)

where the original bilinear and linear forms

B̂h(Ĥh,vh) :=
∫

Γ̂h

Ĥh ·vh ds, L̂h(vh) =
∫

Γ̂h

∇Γ̂h
x :∇Γ̂h

vh ds, (4.20)

and the additional stabilization term of ghost penalty

Ŝh(Ĥh,vh) :=

Facet stabilization︷ ︸︸ ︷
γF̂

∑
F̂ ∈F̂Γ

h

∫
F

[[∇Ĥh ·nF̂ ]][[∇vh ·nF̂ ]]ds (4.21)

+γÊh
∑

Ê∈Êh

∫
Ê

[[∇Γ̂h
Ĥh ·nÊ ]][[∇Γ̂h

vh ·nÊ ]]ds

︸ ︷︷ ︸
Edge stabilization

,

where F̂Γ
h is the set of cut facets and Êh is the set of edges in the partition of the

hypersurface Ĝh, and the two parameters γF̂ ,γÊ ∈R. Note that nF̂ is the outward unit
normal to the facet F̂ , and nÊ is the outward co-normal orthogonal to the edge Ê and
tangent to the hypersurface piece Ĝ ∈ Ĝh such that ∀Ê ∈ {∂Ĝ}Ĝ∈Ĝh

. More specifically,
we define the jumps

[[∇vh ·nF̂ ]] :=∇vh|T̂1
·nF̂ ,T̂1

+∇vh|T̂2
·nF̂ ,T̂2

, (4.22a)

[[∇Γ̂h
vh ·nÊ ]] :=∇Γ̂h

vh|Ĝ1
·nÊ,Ĝ1

+∇Γ̂h
vh|Ĝ2

·nÊ,Ĝ2
, (4.22b)

where vh|T̂i
, i = 1,2 are for the facet jump and vh|Ĝi

for the edge jump, and corre-
spondingly nF̂ ,T̂i

are the unit normals to the facet F̂ = T̂1∩ T̂2 and outward to the
element T̂i, whereas nÊ,Ĝi

are the co-normals orthogonal to the edge Ê = Ĝ1∩ Ĝ2 and
tangent to the hypersurface piece Ĝi.

Remark 15 (Edge stabilization). The edge stabilization has been proven crucial for
meshed hypersurfaces but unnecessary for cut hypersurfaces by Hansbo et al., cf. [82,
Theorem 4.2]. Hence in this thesis we will not apply this stabilization term in our
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numerical method. However, we display it here because the edge-related objects will be
used in the error analysis.

Higher-order discretization for isoparametrically mapped hypersurface

We define the stabilized discrete mean curvature vector Hh on the high-order isoparamet-
rically mapped cut hypersurface Γh by a weak formulation based on the isoparametric
TraceFEM discretization, and then estimate the numerical error.

To compute the stabilized discrete mean curvature vector Hh that is sufficiently
accurate in the H1 norm, we utilize the ghost penalty mechanism to regulate the geom-
etry, cf. [82]. Moreover, for high order of accuracy we make use of the normal diffusion
mechanism to stabilize the method, so-called normal derivative volume stabilization in
[74], on top of the high-order ghost penalty stabilization.

Given the discrete coordinate map xΓh
: Γh ∋ x→ x ∈ Rd, we define the stabilized

discrete mean curvature vector Hh by the following weak formulation:
To find Hh ∈ [VΓ

h ]d such that for all vh ∈ [VΓ
h ]d

Bh(Hh,vh)+Sh(Hh,vh) = Lh(vh) (4.23)

where the original bilinear and linear forms

Bh(Hh,vh) =
∫

Γh

Hh ·vh ds, Lh(vh) =
∫

Γh

∇Γh
x :∇Γh

vh ds, (4.24)

and the additional stabilization term of ghost penalty and normal diffusion

Sh(Hh,vh) =

Ghost penalty︷ ︸︸ ︷
γFh

λ
∑

F ∈FΓ
h

k∑
j=1

h2j−1
∫

F
[[∂j

nF
Hh]][[∂j

nF
vh]]ds (4.25)

+γT h
∫

T Γ
h

(∇Hh ·nh)(∇vh ·nh)dx︸ ︷︷ ︸
Normal diffusion

where FΓ
h is the set of cut facets and T Γ

h is the set of cut elements, which are all
deformed through the isoparametric mapping Θ of polynomial degree q, with the two
parameters γF ,γT ∈ R and the mesh size scaling parameter λ ∈ R to be determined
yet. Note that here we use the kth-order derivative jump ghost penalty formulation
where the jump is defined analogously to (4.22a) but the gradients are replaced by the
high-order directional derivatives.
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Remark 16 (L2-scale and H1-scale). The mesh size scaling parameter λ ∈ R typically
chosen 1 or −1 corresponds to L2- or H1-scale, respectively. In [82] Hansbo et al. select
λ = −1 for H1-scale in the facet-based ghost penalty term. We however reserve the
flexibility of λ choices at this point, and will investigate how the different choices of λ
affect the results in the error analysis in Section 4.2 and in the numerical experiments
in Section 4.3.

In order to conduct the error analysis below we define the following semi-norms for
the edge ghost penalty, the high-order facet ghost penalty and the normal diffusion for
all vh ∈ [VΓ

h ]d based on the jumps similar to (4.22)

|||vh|||2Eh
:= h∥[[∇Γh

vh ·nE ]]∥2Eh
, (4.26a)

|||vh|||2FΓ
h

:=
k∑

j=1
h2j−1∥[[∂j

nF
vh]]∥2FΓ

h
, (4.26b)

|||vh|||2T Γ
h

:= ∥∇vh ·nh∥2T Γ
h
. (4.26c)

Remark 17 (Edge semi-norm). We eliminate the edge ghost penalty stabilization term
in (4.25) that has been proven not required for cut surfaces, cf. [82, Theorem 4.2], but
we reserve the corresponding edge semi-norm defined by (4.26a) that will be exploited
in the error analysis, particularly in Lemma 24.

4.2 Error Analysis

In this section, we aim at a priori error estimate for the discrete mean curvature
vector of the high-order isoparametrically mapped hypersurfaces. Hansbo et al. have
carried out a priori error analysis for the low-order case of piecewise linear surfaces by
a quite technical way in [82]. At first, we will not follow the same lines but a more
unified framework of error analysis by error splitting and the Strang’s lemma, which is
considered a simplified proof and easier to discuss the effect of the mesh size scaling hλ.
After achieving an order of convergence in this approach, we will then turn to Hansbo’s
outlines towards an optimal order of convergence, and compare the cases to explain
where difficulties arise. This section is organized along the similar lines in [82] as
follows: Firstly, in Subsection 4.2.1 two operators for extending and lifting of functions
are introduced, and some estimates for the Hessian of the signed distance function;
Secondly, a mapping between tangent spaces and its properties are investigated in
Subsection 4.2.2; Thirdly, we probe the errors induced by the coordinate embedding in
Subsection 4.2.3, and prepare several trace and inverse inequalities in Subsection 4.2.4



100 Discrete Mean Curvature on Hypersurfaces

that are preliminaries for the error estimates; Fourthly, in order to analyze through
error splitting we conduct the interpolation estimates in Subsection 4.2.5 and the
consistency estimates in Subsection 4.2.6; Next, the stability analysis is studied in
Subsection 4.2.7; Finally, the a priori error analysis based on the consistency and the
interpolation errors is performed in Subsection 4.2.8, followed by the alternative a
priori error estimate based on the proof of the low-order case in [82]. We will focus on
the high-order case of isoparametrically mapped hypersurface in the following analysis,
while the linearized hypersurface may be considered a reduced case of our results that
has been well-investigated in [82].

4.2.1 Extension and projections

Extending and lifting of functions

In order to carry out the analysis we first introduce two operators that map a function
onto or off from the exact hypersurface Γ.

Definition 14 (Extending operator). Any function u : Γ→ Rd defined on Γ can be
extended to Γδ for a finite δ > h, denoted by (·)e : Γ→ Γδ, using the pull back

ue(x) = u◦p(x) ∀x ∈ Γδ,

where p : Γδ→ Γ is the closest point projector by Definition 12.

By the Sobolev extension theorem, cf. [61, Section 5.4] and [82, Subsection 4.1],
the following stability estimate holds true:

∥ue∥Wk+1
∞ (Γδ) ≲ ∥u∥Wk+1

∞ (Γ) ∀u ∈Wk+1
∞ (Γ). (4.27)

Definition 15 (Lifting operator). As Γ̂h ⊂ Γδ and Γh := Θ(Γ̂h) ⊂ Γδ, the closest
point projector p : Γδ → Γ projects each x ∈ Γ̂h ∪Γh onto Γ. Hence, any function
v : Γ̂h∪Γh→ Rd defined on Γ̂h or Γh can be lifted to Γ, denoted by (·)l : Γ̂h∪Γh→ Γ,
using the push forward

(vl)e(x) = vl ◦p(x) = v(x) ∀x ∈ Γ̂h∪Γh.



4.2 Error Analysis 101

The Hessian of the signed distance function

Recalling the Hessian of the signed distance function H(x) =∇⊗∇ρ(x) introduced in
Subsection 2.1.4 we have

H(x) =
2∑

i=1

κe
i

1+ρκe
i

ve
i ⊗ve

i ∀x ∈ Γδ, (4.28)

which projects any vector to be parallel to ve
i , i.e., into Tp(x)Γ, cf. [70, Lemma 14.7].

Thus one has the identity
H = HP e

Γ. (4.29)

In addition, the Hessian has the stability bound

∥H∥L∞(Γδ) ≲ 1. (4.30)

To conclude this subsection, we derive an identity for the derivative of the closest
point projector.

Lemma 18. For the closest point projector p in Γδ there holds

Dp= P e
Γ−ρH.

Proof. For any point x ∈ Γδ we have

Dp(x) =D
(
x−ρ(x)(n◦p(x))

)
=Dx−n(p(x))Dρ(x)−ρ(x)Dn(p(x))

= I−n(p(x))⊗n(p(x))−ρ(x)
(
∇⊗∇ρ(x)

)T
= (P e

Γ−ρH)(x),

where we made use of (2.9) and (2.10).

4.2.2 Mapping between tangent spaces

In this subsection, we introduce a mapping from the tangent space of the approximated
hypersurface to that of the exact hypersurface, and then carry out some estimates for
the mapping, cf. [82].

Definition 16 (The mapping between tangent spaces). Let M : TxΓh→ Tp(x)Γ be a
mapping from the tangent space of Γh to the tangent space of Γ such that

M := P e
Γ(I−ρH)PΓh

. (4.31)
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M is an invertible matrix. To simplify the notation, we omit the extending operator (·)e

or the lifting operator (·)l from M,M−1,MT,M−T that are extended or lifted implicitly.

By this mapping we can bridge the tangential gradients of any smooth functions
on the two tangent spaces, as shown in the following lemma.

Lemma 19. Let u : Γ→ Rd be any smooth function defined on Γ, and v : Γh→ Rd be
any smooth function defined on Γh. For the tangential gradients of u and v there hold

∇Γu =M−T∇Γh
ue, ∇Γh

v =MT∇Γvl,

where the invertible matrix M : TxΓh→ Tp(x)Γ is defined by (4.31).

Proof. We make use of Lemma 18 and (4.29) to obtain

∇Γh
ue = PΓh

∇(u◦p) = PΓh
(Dp)T(P e

Γ)−1∇Γu = PΓh
(P e

Γ−ρH)(P e
Γ)−1PΓ∇Γu

= PΓh
(I−ρH)PΓ∇Γu =MT∇Γu.

This gives the first result. The second one is reached directly by setting u = vl and
ue = v.

We summarize in the following lemma the equivalences of Lp norms on Γ and Γh.

Lemma 20 (Norm equivalences). For any functions u on Γ and v on Γh the following
norm equivalences hold for p ∈ [1,∞]

∥u∥Lp(Γ) ≃ ∥ue∥Lp(Γh), ∥v∥Lp(Γh) ≃ ∥vl∥Lp(Γ).

In addition, if u,v are sufficiently smooth there hold

∥∇Γu∥Lp(Γ) ≃ ∥∇Γh
ue∥Lp(Γh), ∥∇Γh

v∥Lp(Γh) ≃ ∥∇Γvl∥Lp(Γ).

Proof. See [82, Subsection 4.1].

To conclude this subsection, we estimate some important bounds for the mapping.

Lemma 21. Let M be the mapping between the tangent spaces defined by Equation 4.31.
The following estimates hold true:

∥M∥L∞(Γh) ≲ 1, ∥M−1∥L∞(Γ) ≲ 1, ∥PΓ−MMT∥L∞(Γ) ≲ hq+1.
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Proof. The first two bounds follow the same lines in [25, Section 3] but with the
high-order estimates in Lemma 16. In order to prove the third result, we start with
the norm equivalence

∥PΓ−MMT∥L∞(Γ) ≃ ∥P e
Γ−MMT∥L∞(Γh)

due to Lemma 20. By inserting the definition of M and multiplying out the brackets,
we have

∥P e
Γ−MMT∥L∞(Γh) = ∥P e

Γ− (P e
Γ(I−ρH)PΓh

)(P e
Γ(I−ρH)PΓh

)T∥L∞(Γh)

= ∥P e
Γ−P e

Γ(I−ρH)PΓh
(I−ρH)P e

Γ∥L∞(Γh)

= ∥P e
Γ−P e

Γ(PΓh
−ρHPΓh

−PΓh
ρH+ρHPΓh

ρH)P e
Γ∥L∞(Γh)

≤ ∥P e
Γ−P e

ΓPΓh
P e

Γ∥L∞(Γ) +∥P e
Γ(ρHPΓh

+PΓh
ρH)P e

Γ∥L∞(Γh)

+∥P e
ΓρHPΓh

ρHP e
Γ∥L∞(Γh),

where we applied the triangle inequality in the last step. With using the stability
bounds (4.30), (4.13) and the second estimate of (4.14) in Lemma 17, the first term
above is bounded by

∥P e
Γ−P e

ΓPΓh
P e

Γ∥L∞(Γ) ≲ ∥P e
Γ(P e

Γ−PΓh
)(P e

Γ−PΓh
)P e

Γ∥L∞(Γh)

≲ ∥P e
Γ−PΓh

∥2L∞(Γh) ≲ h2q,

while the second and the third terms are bounded by

∥P e
Γ(ρHPΓh

+PΓh
ρH)P e

Γ∥L∞(Γh) ≲ ∥ρ∥L∞(Γh) ≲ hq+1,

∥P e
ΓρHPΓh

ρHP e
Γ∥L∞(Γh) ≲ ∥ρ∥2L∞(Γh) ≲ h2q+2,

where the first estimate of (4.8) in Lemma 16 was applied. Hence for q ≥ 1 we arrive at

∥P e
Γ−MMT∥L∞(Γh) ≲ hq+1,

which completes the proof.

Lemma 22. Let M be the mapping between the tangent spaces defined by Equation 4.31
and |M | be the determinant of M such that the surface measure

dΓ = |M |dΓh, (4.32)
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which is given as in [25, Section 3.3] but the unit normals in Lemma 15. The following
estimates hold true:

∥|M |∥L∞(Γh) ≲ 1, ∥|M |−1∥L∞(Γh) ≲ 1, ∥1−|M |∥L∞(Γh) ≲ hq+1.

Proof. The results follow the same lines in [25, Section 3.3] but with the high-order
estimates in Lemma 16.

4.2.3 Coordinate embedding

The exact and the approximated hypersurfaces are both embedded in the Rd Euclidean
space, the difference between their coordinates however exists. In this subsection, we
estimate the distance between the embeddings of the exact and the approximated
hypersurfaces.

Lemma 23 (Coordinate embedding). With Lemma 16 the following estimate holds
for the exact hypersurface Γ and the qth-order mapped hypersurface Γh embedded in the
Rd Euclidean space

∥xe
Γ−xΓh

∥2L∞(Γh) +h2∥∇Γh
(xe

Γ−xΓh
)∥2L∞(Γh) ≲ h2q+2. (4.33)

As a consequence, in L2 norm there holds

∥xe
Γ−xΓh

∥2Γh
+h2∥∇Γh

(xe
Γ−xΓh

)∥2Γh
≲ h2q+2. (4.34)

Proof. The first term on the left-hand side of (4.33) is bounded by using (4.8), namely

∥xe
Γ−xΓh

∥L∞(Γh) = ∥ρ∥L∞(Γh) ≲ hq+1.

The second term on the left-hand side of (4.33) can be estimated with using the chain
rule followed by Lemma 18, namely

∥∇Γh
(xe

Γ−xΓh
)∥L∞(Γh) ≤ ∥PΓh

DpT−PΓh
∥L∞(Γh)

= ∥(P e
Γ−ρH)PΓh

−PΓh
∥L∞(Γh)

≤ ∥(P e
Γ−PΓh

)PΓh
∥L∞(Γh) +∥ρHPΓh

∥L∞(Γh)

≲ ∥P e
Γ−PΓh

∥L∞(Γh) +∥ρ∥L∞(Γh)

≲ hq +hq+1 ≲ hq,
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where we made use of the identity (4.29), the stability bounds (4.30), (4.13) and the
second estimate of (4.14) in Lemma 17. This completes the proof of (4.33). The second
result (4.34) follows correspondingly with meas(Γh)≃ 1.

4.2.4 Trace and inverse estimates

In this subsection, we formulate several inequalities that will be used in the a priori
error analysis. The first lemma gives an upper bound for the edge stabilization term in
the isoparametric case.

Lemma 24 (Edge estimate). The semi-norm of edge ghost penalty defined by (4.26a)
satisfies the following stability estimate for any function u ∈W1

∞(Γ)

|||ue|||2Eh
≲ h2q∥u∥2W1∞(Γ).

Proof. Analogously to [82, Lemma 4.5], let tE be the unit vector parallel to the edge
E ∈ Eh at each point x ∈ E such that nE,G1(x) = nh,G1(x)× tE(x) and nE,G2(x) =
−nh,G2(x)× tE(x). For tΓ := (ne× tE)l and tF := tΓ×n such that span{tΓ,tF} =
Tp(x)Γ for x ∈ E, we have by the triangle inequality combined with the Young’s
inequality

|||ue|||2Eh
=

∑
E∈Eh

h∥∇Γh
ue · (nE,G1−nE,G2)∥2E

≲
∑

E∈Eh

h
(
∥nE,G1− tΓ)∥2L∞(E) +∥tΓ−nE,G2∥

2
L∞(E)

)
∥∇Γh

ue∥2E

=
∑

E∈Eh

h
(
∥(nh,G1−ne)× tE∥2L∞(E) +∥(ne−nh,G2)× tE∥2L∞(E)

)
∥∇Γh

ue∥2E

≲
∑

E∈Eh

h∥ne−nh∥2L∞(E)∥tE∥2L∞(E)meas(E)∥ue∥2W1∞(E)

≲ card(Eh) meas(E) h2q+1∥u∥2W1∞(Γ) ≃ h
2q∥u∥2W1∞(Γ),

where we made use of the second estimate of (4.8) in Lemma 16, and the extension
stability (4.27), with card(Eh)≃ h1−d, meas(E)≃ hd−2. This completes the proof.

The following trace inequality bounds the facet norm by the corresponding volume
norms.
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Lemma 25 (Facet trace inequality). For vh ∈ VΓ
h and h sufficiently small there holds

∥vh∥2FΓ
h
≲ h−1∥vh∥2T Γ

h
+h∥∇vh∥2T Γ

h
.

Proof. See [81] and [74, Subsection 5.1].

The high-order facet ghost penalty term is estimated by the following lemma.

Lemma 26 (Facet ghost penalty inequality). The semi-norm of high-order facet ghost
penalty defined by (4.26b) satisfies the following estimate for any function u∈Wk+1

∞ (Γ)

|||ue|||2FΓ
h
≲

k∑
j=1

h2j−2∥∇jue∥2T Γ
h

+h2j∥∇j+1ue∥2T Γ
h
.

Proof. With using Lemma 25 after unrolling the ghost penalty semi-norm, the result
follows directly. See also [100].

The following inverse inequality bounds the volume norm by the corresponding
semi-norm with the L2 norm on the hypersurface.

Lemma 27 (Volume inverse inequality). For vh ∈ VΓ
h and h sufficiently small there

holds
∥vh∥2T Γ

h
≲ h∥vh∥2Γh

+h2|||vh|||2T Γ
h
.

Proof. See [74, Lemma 7.10].

Next, we derive two important estimates in the following lemma that bound the
tangential gradients of discrete functions on the hypersurfaces by the normal diffusion
semi-norms of the functions.

Lemma 28 (Tangential gradient inverse inequality). For vh ∈ VΓ
h and h sufficiently

small there holds eq:volume semi norm

∥∇Γh
vh∥2Γh

≲ h−2∥vh∥2Γh
+h−1|||vh|||2T Γ

h
. (4.35)

Furthermore, for the lifted function vl
h on Γ there holds

∥∇Γvl
h∥2Γ ≲ h−2∥vh∥2Γh

+h−1|||vh|||2T Γ
h
. (4.36)
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Proof. The first result (4.35) can be bounded with using the projection stability
estimates (4.13), the standard inverse inequalities and Lemma 27 such that

∥∇Γh
vh∥2Γh

≲ ∥PΓh
∥2L∞(Γh)∥∇vh∥2Γh

≲ h−1∥∇vh∥2T Γ
h
≲ h−3∥vh∥2T Γ

h

≲ h−2∥vh∥2Γh
+h−1|||vh|||2T Γ

h
.

The second result (4.36) follows directly by Lemma 20 the norm equivalence

∥∇Γvl
h∥Γ ≃ ∥∇Γh

vh∥Γh
.

This completes the proof.

4.2.5 Interpolation estimates

In this subsection, we introduce the interpolation operators and the corresponding
error estimates, cf. [82, Subsection 4.6] and [74, Subsection 5.1].

Definition 17 (Interpolation operators). Let IΘ
h : C(T Γ

h )→VΓ
h be the isoparametric

trace interpolation operator such that

(IΘ
h v)◦Θ = I id

h (v◦Θ) ∀v ∈ C(T Γ
h ),

where I id
h is the nodal interpolation operator in the standard finite element space V(k)

h

of continuous piecewise polynomials up to degree k, i.e., when Θ = id. We define a new
interpolation operator Ih : C(Γ)→VΓ

h by

Ih : u 7→ IΘ
h ue ∀u ∈ C(Γ)

and the corresponding lifting interpolation operator I l
h : C(Γ)→VΓ

h |Γ by

I l
h : u 7→ (IΘ

h ue)l ∀u ∈ C(Γ).

Lemma 29 (Interpolation estimate). Let I l
h be the lifting interpolation operator in

Definition 17. For u ∈Hk+1(Γ)⊂ C(Γ) the following interpolation error estimate holds
true:

∥u−I l
hu∥Hs(Γ) ≲ hr−s∥u∥Hr(Γ), 0≤ s≤ r ≤ k+1. (4.37)
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In addition, for the extension of u to the bulk T Γ
h there holds

∥ue−Ihu∥Hs(T Γ
h ) ≲ hr−s∥ue∥Hr(T Γ

h ), 0≤ s≤ r ≤ k+1. (4.38)

Proof. See [74, Lemma 5.3] for the isoparametric case, [27] and [53] for the piecewise
linear counterpart. See also [106].

Next, we estimate the approximation error with respect to the interpolation as a
preparation for the a priori error analysis. We first derive a result with L2-scale ghost
penalty, i.e., the mesh size scaling λ= 1 in the lemma, and subsequently another result
with H1-scale, i.e., λ=−1 in the corollary. See the high-order ghost penalty term in
(4.25) and Remark 16 for details.

Lemma 30 (L2-scale approximation error estimate). Let H∈ [Hk+1(Γ)∩Wk+1
∞ (Γ)]d be

the mean curvature vector of the oriented compact hypersurface Γ ∈ Ck+3(Rd),d= 2,3,
which is defined by (2.16) and is the weak solution to (4.15) under the geometric
regularity Assumption 5. For the discrete hypersurface Γh the interpolation error
satisfies

∥He−IhH∥Γh
+h

1
2 |||He−IhH|||FΓ

h
+h

1
2 |||He−IhH|||T Γ

h
≲ hk+1,

where He is the extension of H by Definition 14, Ih is the interpolation operator by
Definition 17, and the semi-norms are given by (4.26).

Proof. The first term on the left-hand side can be lifted by Lemma 20, and subsequently
bounded by the interpolation estimate (4.37) in Lemma 29 with r = k+1 and s= 0,
namely

∥He−IhH∥Γh
≃ ∥H−I l

hH∥Γ ≲ hk+1∥H∥Hk+1(Γ) ≲ hk+1,

where the geometric regularity Assumption 5 was realized in the last step.
For the second term, we apply Lemma 25 to each term of the high-order ghost

penalty semi-norm, or use Lemma 26 directly, followed by the interpolation estimate
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(4.38), namely

|||He−IhH|||2FΓ
h

=
∑

F ∈FΓ
h

k∑
j=1

h2j−1
∥∥∥[[∂j

nF
(He−IhH)]]

∥∥∥2
F

≲
∑

T̃ ∈T Γ
h

k∑
j=1

h2j−2
∥∥∥∇j(He−IhH)

∥∥∥2
T̃

+h2j
∥∥∥∇j+1(He−IhH)

∥∥∥2
T̃

≤
∑

T̃ ∈T Γ
h

k∑
j=1

h2j−2∥He−IhH∥2Hj(T̃ ) +h2j∥He−IhH∥2Hj+1(T̃ )

≲
∑

T̃ ∈T Γ
h

k∑
j=1

h2j−2h2k−2j+2∥He∥2Hk+1(T̃ ) +h2jh2k−2j∥He∥2Hk+1(T̃ )

≲
∑

T̃ ∈T Γ
h

k∑
j=1

h2k∥He∥2Hk+1(T̃ ) ≲ card(T Γ
h ) meas(T̃ ) h2k∥He∥2Wk+1

∞ (T̃ )

≲ h2k+1,

where in the last step we realized the fact that card(T Γ
h )≃ h1−d and meas(T̃ )≃ hd for

any T̃ ∈ T Γ
h , together with the geometric regularity Assumption 5 for h < δ <∞.

For the third term with the normal stability ∥nh∥L∞(T Γ
h ) ≲ 1 the interpolation

estimate (4.38) gives

|||He−IhH|||2T Γ
h

= ∥∇(He−IhH) ·nh∥2T Γ
h
≲ ∥He−IhH∥2H1(T Γ

h )

≲ h2k∥He∥2Hk+1(T Γ
h ) ≲ h2k+1∥He∥2Wk+1

∞ (T Γ
h ) ≲ h2k+1

where the fact that meas(T Γ
h ) ≃ h and the geometric regularity Assumption 5 for

h < δ <∞ are employed.
This completes the proof.

Corollary 3 (H1-scale approximation error estimate). Let H ∈ [Hk+1(Γ)∩Wk+1
∞ (Γ)]d

be the mean curvature vector of the oriented compact hypersurface Γ∈ Ck+3(Rd),d= 2,3,
which is defined by (2.16) and is the weak solution to (4.15) under the geometric
regularity Assumption 5. For the discrete hypersurface Γh the interpolation error
satisfies

∥He−IhH∥Γh
+h− 1

2 |||He−IhH|||FΓ
h

+h
1
2 |||He−IhH|||T Γ

h
≲ hk,
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where He is the extension of H by Definition 14, Ih is the interpolation operator by
Definition 17, and the semi-norms are given by (4.26).

Proof. The result follows directly by adding an h−1 to the ghost penalty semi-norm in
Lemma 30.

4.2.6 Consistency estimates

In preparation of the a priori error analysis, we estimate the consistency error for both
L2-scale and H1-scale in the following lemma and corollary. See also the high-order
ghost penalty term in (4.25) and Remark 16 for the mesh size scaling.

Lemma 31 (L2-scale consistency error estimate). Let Hh ∈ [VΓ
h ]d, d = 2,3 be the

discrete mean curvature vector of kth-order finite element function on the qth-order
isoparametrically mapped hypersurface Γh ↪→ Rd, k,q ≥ 1, defined by (4.23). The
consistency error of Hh satisfies

∥Hh−IhH∥Γh
+h

1
2 |||Hh−IhH|||FΓ

h
+h

1
2 |||Hh−IhH|||T Γ

h
≲ hk+1 +hq−1

where Ih is the interpolation operator by Definition 17 and the semi-norms are given
by (4.26).

Proof. Let us first define a discrete bilinear form for vh,wh ∈ [VΓ
h ]d such that

Ah(vh,wh) :=Bh(vh,wh)+Sh(vh,wh)

with the corresponding semi-norm

|||vh|||2A := Ah(vh,vh) = ∥vh∥2Γh
+h|||vh|||2FΓ

h
+h|||vh|||2T Γ

h
.
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With the identities (4.15) and (4.23) we apply the Cauchy-Schwarz inequality to
obtain

|||Hh−IhH|||2A = Ah(Hh−IhH,Hh−IhH)
= Ah(Hh−He,Hh−IhH)+Ah(He−IhH,Hh−IhH)
= Ah(Hh,Hh−IhH)−Ah(He,Hh−IhH)+Ah(He−IhH,Hh−IhH)
= Lh(Hh−IhH)−L(Hl

h−I l
hH)+B(H,Hl

h−I l
hH)

−Ah(He,Hh−IhH)+Ah(He−IhH,Hh−IhH)
≲ |||He−IhH|||A|||Hh−IhH|||A +

∣∣∣Lh(Hh−IhH)−L(Hl
h−I l

hH)
∣∣∣

+
∣∣∣Ah(He,Hh−IhH)−B(H,Hl

h−I l
hH)

∣∣∣.
Dividing both sides by |||Hh−IhH|||A it follows for wh = Hh−IhH that

|||Hh−IhH|||A ≲ |||He−IhH|||A + sup
wh∈[VΓ

h ]d

∣∣∣Ah(He,Hh−IhH)−B(H,Hl
h−I l

hH)
∣∣∣

|||Hh−IhH|||A

+ sup
wh∈[VΓ

h ]d

∣∣∣Lh(Hh−IhH)−L(Hl
h−I l

hH)
∣∣∣

|||Hh−IhH|||A

in the form analogously to the first Strang lemma, cf. [151, Theorem 8.2].
The first term is identical to the approximation error estimated by Lemma 30 with

the norm equivalence ∥H−I l
hH∥Γ ≃ ∥He−IhH∥Γh

by Lemma 20, which gives

I := |||He−IhH|||A ≲ hk+1. (4.39)

For the second term, we take advantage of the trivial identities [[∇He ·nF ]] = 0 on
FΓ

h and ∇He ·n = 0 on T Γ
h , with using (4.32) to change domain of integration from Γ
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to Γh, followed by the Cauchy-Schwarz inequality, yielding

II : =
∣∣∣Ah(He,Hh−IhH)−B(H,Hl

h−I l
hH)

∣∣∣
=

∣∣∣Bh(He,Hh−IhH)−B(H,Hl
h−I l

hH)+Sh(He,Hh−IhH)
∣∣∣

=
∣∣∣(He,Hh−IhH)Γh

− (H,Hl
h−I l

hH)Γ +
(
∇He ·nh,∇(Hh−IhH) ·nh

)
T Γ

h

∣∣∣
=

∣∣∣((1−|M |)He,Hh−IhH
)

Γh
+

(
∇He · (nh−n),∇(Hh−IhH) ·nh

)
T Γ

h

∣∣∣
≲

(
∥1−|M |∥L∞(Γh)∥He∥Γh

+∥nh−n∥L∞(T Γ
h )∥∇He∥T Γ

h
h− 1

2
)
|||Hh−IhH|||A

≲
(
hq+1∥He∥Γh

+hq∥He∥W1∞(T Γ
h )

)
|||Hh−IhH|||A

≲ hq|||Hh−IhH|||A

where we made use of the third result in Lemma 22, the second estimate in (4.8), and
the geometric regularity Assumption 5 for h < δ.

For the third term, we have with (4.32) to change domain of integration from Γh

to Γ and the Cauchy-Schwarz inequality that

III : =
∣∣∣Lh(Hh−IhH)−L(Hl

h−I l
hH)

∣∣∣
=

∣∣∣(∇Γh
xΓh

,∇Γh
(Hh−IhH)

)
Γh
−

(
∇ΓxΓ,∇Γ(Hl

h−I l
hH)

)
Γ

∣∣∣
=

∣∣∣(|M |−1MT∇Γxl
Γh
,MT∇Γ(Hl

h−I l
hH)

)
Γ
−

(
∇ΓxΓ,∇Γ(Hl

h−I l
hH)

)
Γ

∣∣∣
=

∣∣∣(|M |−1MMT∇Γxl
Γh
−∇ΓxΓ,∇Γ(Hl

h−I l
hH)

)
Γ

∣∣∣
≤

∥∥∥|M |−1MMT∇Γxl
Γh
−∇ΓxΓ

∥∥∥
Γ

∥∥∥∇Γ(Hl
h−I l

hH)
∥∥∥

Γ

≲
∥∥∥|M |−1MMT∇Γxl

Γh
−∇ΓxΓ

∥∥∥
Γ

(
h−1∥Hh−IhH∥Γh

+h− 1
2 |||Hh−IhH|||T Γ

h

)
≲ hq−1|||Hh−IhH|||A

where we applied (4.36) from Lemma 28 to the second last step, and bounded the
geometric error by the triangle inequality and the coordinate embedding estimate (4.34)
with the norm equivalences by Lemma 20 in the last step, namely,
∥∥∥|M |−1MMT∇Γxl

Γh
−∇ΓxΓ

∥∥∥
Γ
≤

∥∥∥(|M |−1MMT−PΓ)∇Γxl
Γh

∥∥∥
Γ

+
∥∥∥∇Γ(xl

Γh
−xΓ)

∥∥∥
Γ

≲ ∥(|M |−1MMT−PΓ)∥L∞(Γ)∥∇Γh
xΓh
∥Γh

+∥∇Γh
(xΓh

−xe
Γ)∥Γh

≲ hq+1
(
∥∇Γh

(xΓh
−xe

Γ)∥Γh
+∥∇ΓxΓ∥Γ

)
+hq

≲ hq+1(hq +1)+hq ≲ hq.
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We notice that this O(hq) error is one order larger than what we expected.
Collecting all three terms together, we arrive at

|||Hh−IhH|||A ≲ I+(II+ III) |||Hh−IhH|||−1
A ≲ hk+1 +hq−1.

This completes the proof.

Corollary 4 (H1-scale consistency error estimate). Let Hh ∈ [VΓ
h ]d, d = 2,3 be the

discrete mean curvature vector of kth-order finite element function on the qth-order
isoparametrically mapped hypersurface Γh ↪→ Rd, k,q ≥ 1, defined by (4.23). The
consistency error of Hh satisfies

∥Hh−IhH∥Γh
+h− 1

2 |||Hh−IhH|||FΓ
h

+h
1
2 |||Hh−IhH|||T Γ

h
≲ hk +hq−1

where Ih is the interpolation operator by Definition 17 and the semi-norms are given
by (4.26).

Proof. The result follows directly when Corollary 3 is applied to the first term I with
the corresponding norm ||| · |||A in (4.39).

Remark 18 (Coordinate embedding error). We observe that in the third term III in
the proof of Lemma 31, the coordinate embedding estimate induces a considerable error
O(hq), which eventually leads to an O(hq−1) convergence one order lower than our
expectation of O(hq).

4.2.7 Stability analysis

In this subsection, we formulate a stability estimate for the discrete mean curvature
vector.

Theorem 8 (Stability of the discrete mean curvature vector). The discrete mean
curvature vector Hh ∈ [VΓ

h ]d, d= 2,3 of kth-order finite element function on the qth-order
isoparametrically mapped hypersurface Γh ↪→ Rd, k,q ≥ 1, defined by (4.23), satisfies

∥Hh∥2Γh
+hλ|||Hh|||2FΓ

h
+h|||Hh|||2T Γ

h
≲ 1

for the mesh size h ∈ R+ and the scaling λ ∈ R.
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Proof. By testing (4.23) with vh = Hh and using the triangle inequality it follows

∥Hh∥2Γh
+hλ|||Hh|||2FΓ

h
+h|||Hh|||2T Γ

h
= (∇Γh

x,∇Γh
Hh)Γh

≤
(
∇Γh

(x−xe
Γ),∇Γh

Hh

)
Γh

+
(
∇Γh

xe
Γ,∇Γh

Hh

)
Γh
.

The first term on the right-hand side can be estimated by using the Cauchy-Schwarz
and the Young’s inequality for any ε∈R+, followed by Lemma 23 for discrete embedding
error and Lemma 28 for the gradient of mean curvature∣∣∣∣(∇Γh

(x−xe
Γ),∇Γh

Hh

)
Γh

∣∣∣∣≤ ∥∇Γh
(x−xe

Γ)∥Γh
∥∇Γh

Hh∥Γh

≲ ε−1h−2∥∇Γh
(x−xe

Γ)∥2Γh
+ εh2∥∇Γh

Hh∥2Γh

≲ ε−1h2q−2 + ε
(
∥Hh∥2Γh

+h|||Hh|||2T Γ
h

)
.

For the second term, we take integration by parts first, and then apply the Cauchy-
Schwarz and the Young’s inequalities for any ε ∈ R+, with Lemma 20 for norm
equivalences, yielding

∣∣∣∣(∇Γh
xe

Γ,∇Γh
Hh

)
Γh

∣∣∣∣ =
∣∣∣∣∣ ∑
G∈Gh

(
∇Γh

xe
Γ,∇Γh

Hh

)
G

∣∣∣∣∣
=

∣∣∣∣∣ ∑
E∈Eh

(
[[∇Γh

xe
Γ ·nE ]],Hh

)
E
−

∑
G∈Gh

(
∆Γh

xe
Γ,Hh

)
G

∣∣∣∣∣
≤

∑
E∈Eh

∥[[∇Γh
xe

Γ ·nE ]]∥E∥Hh∥E +∥∆Γh
xe

Γ∥Γh
∥Hh∥Γh

≲ ε−1h−2|||xe
Γ|||

2
Eh

+ εh
∑

E∈Eh

∥Hh∥2E + ε−1∥∆ΓxΓ∥2Γ + ε∥Hh∥2Γh
,

where for the first part Lemma 24 for edge stability gives

|||xe
Γ|||

2
Eh

≲ h2q∥xΓ∥W1∞(Γ) ≲ h2q,

and for the second part the trace inequalities ∥Hh∥2E ≲ h−1∥Hh∥2F (E) ≲ h−2∥Hh∥2T (F )
yields

h
∑

E∈Eh

∥Hh∥2E ≲ h−1 ∑
T ∈T Γ

h

∥Hh∥2T = h−1∥Hh∥2T Γ
h
≲ ∥Hh∥2Γh

+h|||Hh|||2T Γ
h
,
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where Lemma 27 was applied to the last step. Together with the remainder estimated
by using (2.16) and H ∈ L2(Γ) that

ε−1∥∆ΓxΓ∥2Γ + ε∥Hh∥2Γh
= ε−1∥H∥2Γ + ε∥Hh∥2Γh

≲ ε−1 + ε∥Hh∥2Γh
,

we collect all the terms and make use of the kickback argument for a sufficiently small
0< ε≲ 1 to obtain

∥Hh∥2Γh
+hλ|||Hh|||2FΓ

h
+h|||Hh|||2T Γ

h
≲ ε−1 + ε−1h2q−2 + ε

(
∥Hh∥2Γh

+h|||Hh|||2T Γ
h

)
.

This completes the proof.

Remark 19 (Normal diffusion stability). The Theorem 8 implies that the discrete
mean curvature vector is stable with the normal diffusion stabilization only, in which
the ghost penalty is not present on the right-hand side. We will however observe that
for higher order of accuracy the ghost penalty stabilization is required.

4.2.8 A priori error estimate

In this subsection, we first collect the results from the approximation error estimate
in Subsection 4.2.5 and the consistency error estimate in Subsection 4.2.6, in order
to conduct the a priori error analysis of the discrete mean curvature vector of the
isoparametrically mapped hypersurface. This result has provable arbitrarily high order
of accuracy, however, it seems not optimal in comparison to the low-order result proved
by Hansbo et al. in [82, Theorem 4.2]. Therefore, we subsequently follow the similar
lines in [82, Theorem 4.1] to present an alternative proof and investigate the problem.

Theorem 9 (Error estimate of the discrete mean curvature vector). Let H∈ [Hk+1(Γ)∩
Wk+1

∞ (Γ)]d be the mean curvature vector of the oriented compact hypersurface Γ ∈
Ck+3(Rd),d= 2,3, which is defined by (2.16) and is the weak solution to (4.15) under
the geometric regularity Assumption 5. Let Hh ∈ [VΓ

h ]d be the discrete mean curvature
vector of kth-order finite element function on the qth-order isoparametrically mapped
hypersurface Γh ↪→Rd, defined by (4.23) with L2-scale λ= 1 in (4.25). For any k,q ≥ 1
the following error estimate holds true:

∥H−Hl
h∥2Γ +h|||He−Hh|||2FΓ

h
+h|||He−Hh|||2T Γ

h
≲ h2k+2 +h2q−2.
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Alternatively, if H1-scale λ=−1 is chosen in (4.25), it satisfies the estimate

∥H−Hl
h∥2Γ +h−1|||He−Hh|||2FΓ

h
+h|||He−Hh|||2T Γ

h
≲ h2k +h2q−2

for any k,q ≥ 1.

Proof. Let us estimate each term on the left-hand side. By the triangle inequality for
error splitting one has

|||He−Hh|||FΓ
h
≤ |||He−IhH|||FΓ

h
+ |||IhH−Hh|||FΓ

h
,

|||He−Hh|||T Γ
h
≤ |||He−IhH|||T Γ

h
+ |||IhH−Hh|||T Γ

h
,

and with the norm equivalences due to Lemma 20 it follows that

∥H−Hl
h∥Γ ≤ ∥H−I l

hH∥Γ +∥I l
hH−Hl

h∥Γ ≃ ∥He−IhH∥Γh
+∥IhH−Hh∥Γh

.

The Lemma 30 for approximation error gives

∥He−IhH∥Γh
+h

1
2 |||He−IhH|||FΓ

h
+h

1
2 |||He−IhH|||T Γ

h
≲ hk+1.

The Lemma 31 for consistency error yields

∥Hh−IhH∥Γh
+h

1
2 |||Hh−IhH|||FΓ

h
+h

1
2 |||Hh−IhH|||T Γ

h
≲ hk+1 +hq−1.

Summing up with using the Young’s inequality leads to the first result. The second
result follows directly by taking Corollary 3 and Corollary 4 instead of Lemma 30 and
Lemma 31. This completes the proof.

This result shows arbitrarily high order of accuracy, however, it is not reduced to
the result of the linearized case in [82, Theorem 4.1] when we choose k = 1 and q = 1.
The geometrical error O(hq−1) is one order larger than our expectation. Towards
an optimal order of convergence, next, we follow the similar lines in the proof by
Hansbo et al. in [82, Theorem 4.1] but to pursue an arbitrarily high order of accuracy
based on increasing the polynomial degrees of the finite element discretization and the
isoparametric mapping.
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Alternative proof. We begin with an error splitting into the following four terms:

∥H−Hl
h∥2Γ +h|||He−Hh|||2FΓ

h
+h|||He−Hh|||2T Γ

h

=B(H−Hl
h,H−Hl

h)+Sh(He−Hh,He−Hh)
=B(H−Hl

h,H−I l
hH)+B(H−Hl

h,I l
hH−Hl

h)+Sh(He−Hh,He−Hh)
=B(H−Hl

h,H−I l
hH)+L(I l

hH−Hl
h)−B(Hl

h,I l
hH−Hl

h)+Sh(He−Hh,He−Hh)

=
I︷ ︸︸ ︷

B(H−Hl
h,H−I l

hH)+
II︷ ︸︸ ︷

Bh(Hh,IhH−Hh)−B(Hl
h,I l

hH−Hl
h)

+Sh(Hh,IhH−Hh)+Sh(He−Hh,He−Hh)︸ ︷︷ ︸
III

+L(I l
hH−Hl

h)−Lh(IhH−Hh)︸ ︷︷ ︸
IV

where we used the identities B(H,I l
hH−Hl

h) =L(I l
hH−Hl

h) and Bh(Hh,IhH−Hh)+
Sh(Hh,IhH−Hh) = Lh(IhH−Hh). Let us look into each terms.

Term I:
Term I is estimated by using the Cauchy-Schwarz and the Young’s inequality for

any ε ∈ R+ as follows:

|I| : =
∣∣∣B(H−Hl

h,H−I l
hH)

∣∣∣≤ ∥H−Hl
h∥Γ∥H−I l

hH∥Γ
≲ ε∥H−Hl

h∥2Γ + ε−1∥H−I l
hH∥2Γ ≲ ε∥H−Hl

h∥2Γ + ε−1h2k+2∥H∥2Hk+1(Γ)

≲ ε−1h2k+2 + ε∥H−Hl
h∥2Γ, (4.40)

where we bound the last term by the interpolation estimate from Lemma 29 with the
geometric regularity Assumption 5.

Term II:
Term II is estimated with using (4.32) to change domain of integration from Γ to

Γh, followed by the Cauchy-Schwarz and the Young’s inequalities for any ε ∈ R+, as
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follows:

|II| : =
∣∣∣Bh(Hh,IhH−Hh)−B(Hl

h,I l
hH−Hl

h)
∣∣∣

=
∣∣∣∣(Hh,IhH−Hh

)
Γh
−

(
Hl

h,I l
hH−Hl

h

)
Γ

∣∣∣∣
=

∣∣∣∣((1−|M |)Hh,IhH−Hh

)
Γh

∣∣∣∣≤ ∥1−|M |∥L∞(Γh)∥Hh∥Γh
∥IhH−Hh∥Γh

≲ ε−1∥1−|M |∥2L∞(Γh)∥Hh∥2Γh
+ ε∥IhH−Hh∥2Γh

≲ ε−1h2q+2∥Hh∥2Γh
+ ε∥H−I l

hH∥2Γ + ε∥H−Hl
h∥2Γ

≲ ε−1h2q+2 + εh2k+2∥H∥2Hk+1(Γ) + ε∥H−Hl
h∥2Γ

≲ εh2k+2 + ε−1h2q+2 + ε∥H−Hl
h∥2Γ, (4.41)

where we made use of the third result in Lemma 22 to bound the |M | term, Theorem 8
for the stability of Hh, the norm equivalence due to Lemma 20, and the interpolation
estimate from Lemma 29 with the geometric regularity Assumption 5.

Term III:
Term III is related to the stabilizations. Provided that a semi-norm for Sh involving

both ghost penalty and normal diffusion is defined for vh ∈ VΓ
h such that

|||vh|||2S := Sh(vh,vh) = h|||vh|||2FΓ
h

+h|||vh|||2T Γ
h
, (4.42)

we make use of the Cauchy-Schwarz and the Young’s inequalities for any ε ∈ R+ to
obtain

|III| : =
∣∣∣Sh(Hh,IhH−Hh)+Sh(He−Hh,He−Hh)

∣∣∣
=

∣∣∣Sh(Hh,IhH−He)+Sh(Hh,He−Hh)+Sh(He,He−Hh)−Sh(Hh,He−Hh)
∣∣∣

=
∣∣∣Sh(Hh−He,IhH−He)+Sh(He,IhH−He)+Sh(He,He−Hh)

∣∣∣
≤ |||Hh−He|||S |||IhH−He|||S + |||He|||S |||IhH−He|||S + |||He|||S |||H

e−Hh|||S
≲ ε−1|||He|||2S + |||IhH−He|||2S + ε|||He−Hh|||2S .
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Now let us estimate each terms above. For the first term with the trivial identities
[[∇He ·nF ]] = 0 on FΓ

h and ∇He ·n = 0 on T Γ
h it follows that

|||He|||2S = h|||He|||2FΓ
h

+h|||He|||2T Γ
h

= h|||He|||2T Γ
h

= ∥∇He · (nh−n)∥2T Γ
h

≤ ∥nh−n∥2L∞(T Γ
h )∥∇He∥2T Γ

h
≲ h2q∥He∥2H1(T Γ

h ) ≲ h2q+1∥He∥2W1∞(T Γ
h ) ≲ h2q+1,

where we utilized the second estimate in (4.8), meas(T Γ
h ) ≃ h, and the geometric

regularity Assumption 5 for h < δ. The second term is composed of the interpolation
errors in the semi-norms of ghost penaly and normal diffusion. With using Lemma 30
for approximation error estimate it follows directly that

|||IhH−He|||2S = h|||IhH−He|||2FΓ
h

+h|||IhH−He|||2T Γ
h
≲ h2k+2. (4.43)

Hence, with adding the third term, one has for any ε ∈ R+ that

|III|≲ h2k+2 + ε−1h2q+1 + ε
(
h|||He−Hh|||2FΓ

h
+h|||He−Hh|||2T Γ

h

)
. (4.44)

Term IV:
Term IV can be further split into two parts as follows:

IV : = L(I l
hH−Hl

h)−Lh(IhH−Hh)
= L(I l

hH−H)−Lh(IhH−He)︸ ︷︷ ︸
IV1

+L(H−Hl
h)−Lh(He−Hh)︸ ︷︷ ︸

IV2

.

The first part IV1 is bounded by changing domain of integration from Γh to Γ with
surface measure (4.32), followed by the Cauchy-Schwarz and the Young’s inequality

IV1 =
(
∇ΓxΓ,∇Γ(I l

hH−H)
)

Γ
−

(
∇Γh

xΓh
,∇Γh

(IhH−He)
)

Γh
(4.45)

=
(
∇ΓxΓ,∇Γ(I l

hH−H)
)

Γ
−

(
|M |−1MT∇Γxl

Γh
,MT∇Γ(I l

hH−H)
)

Γ

=
(
∇ΓxΓ−|M |−1MMT∇Γxl

Γh
,∇Γ(I l

hH−H)
)

Γ

≤
∥∥∥∇ΓxΓ−|M |−1MMT∇Γxl

Γh

∥∥∥
Γ

∥∥∥∇Γ(I l
hH−H)

∥∥∥
Γ

≤ h−2
∥∥∥∇ΓxΓ−|M |−1MMT∇Γxl

Γh

∥∥∥2
Γ

+h2
∥∥∥∇Γ(I l

hH−H)
∥∥∥2

Γ
,

where for the first norm we use the triangle inequality combined with the Young’s
inequality, and the norm equivalence due to Lemma 20 to estimate the coordinate
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embedding error by (4.34) in Lemma 23 for the first part
∥∥∥∇ΓxΓ−|M |−1MMT∇Γxl

Γh

∥∥∥2
Γ
≲

∥∥∥∇Γ(xΓ−xl
Γh

)
∥∥∥2

Γ
+

∥∥∥(PΓ−|M |−1MMT)∇Γxl
Γh

∥∥∥2
Γ

≲
∥∥∥∇Γh

(xe
Γ−xΓh

)
∥∥∥2

Γh︸ ︷︷ ︸
≲h2q

+
∥∥∥PΓ−|M |−1MMT

∥∥∥2
L∞(Γ)︸ ︷︷ ︸

≲h2q+2

and the second part followed by applying the tangent mapping estimates from Lemma 21
and Lemma 22
∥∥∥PΓ−|M |−1MMT

∥∥∥
L∞(Γ)

≤
∥∥∥|M |−1(1−|M |)PΓ

∥∥∥
L∞(Γ)

+
∥∥∥|M |−1(PΓ−MMT)

∥∥∥
L∞(Γ)

≲ hq+1 +hq+1 ≲ hq+1 (4.46)

and realizing the last term again by the norm equivalences due to Lemma 20

∥∇Γxl
Γh
∥Γ ≲ ∥∇Γh

(xΓh
−xe

Γ)∥Γh
+∥∇ΓxΓ∥Γ ≲ hq +1 ≲ 1.

The second norm is also handled with the interpolation estimate and the geometric
regularity Assumption 5 as follows:

∥∥∥∇Γ(I l
hH−H)

∥∥∥
Γ
≤ ∥I l

hH−H∥H1(Γ) ≲ hk∥H∥Hk+1(Γ) ≲ hk. (4.47)

Hence we arrive at
IV1 ≲ h2k+2 +h2q−2. (4.48)

The second part IV2 is further split into two parts, where the first part (4.49) can
be treated analogously to the part IV1 (4.45), but now xΓh

is replaced by xe
Γ that

eliminates the coordinate embedding error, hence only the geometric approximation
error (4.46) is left, and I l

hH is replaced by Hl
h, with the Young’s inequality for any

ε ∈ R+, yielding

IV2 =
(
∇ΓxΓ,∇Γ(H−Hl

h)
)

Γ
−

(
∇Γh

xΓh
,∇Γh

(He−Hh)
)

Γh

=
(
∇ΓxΓ,∇Γ(H−Hl

h)
)

Γ
−

(
∇Γh

xe
Γ,∇Γh

(He−Hh)
)

Γh
(4.49)

+
(
∇Γh

(xe
Γ−xΓh

),∇Γh
(He−Hh)

)
Γh

(4.50)

≲ ε−1h2q + εh2
∥∥∥∇Γ(H−Hl

h)
∥∥∥2

Γ
+

∥∥∥∇Γh
(xe

Γ−xΓh
)
∥∥∥

Γh

∥∥∥∇Γh
(He−Hh)

∥∥∥
Γh

≲ ε−1h2q +2εh2
∥∥∥∇Γ(H−Hl

h)
∥∥∥2

Γ
+ ε−1h−2

∥∥∥∇Γh
(xe

Γ−xΓh
)
∥∥∥2

Γh
, (4.51)
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where the second part (4.50) followed by the Cauchy-Schwarz and the Young’s inequality
for any ε ∈ R+, and by the norm equivalences due to Lemma 20 the mean curvature
vector term was combined into the second term of (4.51). To this end, we split the
error with using the Young’s inequality, and then bound each part by the interpolation
estimate (4.47) and the second result (4.36) in Lemma 28 to obtain

∥∥∥∇Γ(H−Hl
h)

∥∥∥2
Γ
≲

∥∥∥∇Γ(H−I l
hH)

∥∥∥2
Γ

+
∥∥∥∇Γ(I l

hH−Hl
h)

∥∥∥2
Γ

≲ ∥H−I l
hH∥2H1(Γ) +h−2∥I l

hH−Hl
h∥2Γ +h−1|||IhH−Hh|||2T Γ

h

≲ h2k∥H∥2Hk+1(Γ) +h−2
(
∥H−I l

hH∥2Γ +∥H−Hl
h∥2Γ

)
+h−1

(
|||He−IhH|||2T Γ

h
+ |||He−Hh|||2T Γ

h

)
≲ h2k +h−2

(
∥H−Hl

h∥2Γ +h|||He−Hh|||2T Γ
h

)
,

where we eliminate the interpolation error in the normal diffusion semi-norm by
Lemma 30 for the approximation error estimate

|||He−IhH|||2T Γ
h
≲ h2k+1.

The last term of (4.51) is simply the coordinate embedding error (4.34) bounded by
∥∥∥∇Γh

(xe
Γ−xΓh

)
∥∥∥2

Γh
≲ h2q.

Hence, we arrive at for any ε ∈ R+

IV2 ≲ ε−1h2q−2 + εh2k+2 + ε
(
∥H−Hl

h∥2Γ +h|||He−Hh|||2T Γ
h

)
. (4.52)

Together with the first part IV1 (4.48) we have for any ε ∈ R+ that

IV = IV1 +IV2

≲ (1+ ε)h2k+2 +(1+ ε−1)h2q−2 + ε
(
∥H−Hl

h∥2Γ +h|||He−Hh|||2T Γ
h

)
. (4.53)

Conclusion:
To conclude the proof, summing up the estimates (4.40), (4.41), (4.44), (4.53) of

the Term I-IV, it follows that

I+II+III+ IV ≲ h2k+2 +h2q−2 + ϵ
(
∥H−Hl

h∥2Γ +h|||He−Hh|||2FΓ
h

+h|||He−Hh|||2T Γ
h

)
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for any 0< ϵ≲ 1, which can be chosen sufficiently small, and by using the kickback
argument we arrive at the first result.

Towards the second result, we change the mesh size scaling from h to h−1 in front
of the high-order ghost penalty semi-norm in (4.42), and then rather use Corollary 3
to achieve an O(h2k) error in (4.43), which modifies the bound accordingly in (4.44).
As a consequence, we obtain the second result.

This completes the proof.

Remark 20 (Optimal order of convergence). In the low-order case of piecewise linear
surface, Hansbo et al. estimate (4.50) by partial integration and eliminate ∆ĜĤh = 0
on the flat piece Ĝ due to the linear Ĥh. If we follow the same lines, it gives

(
∇Γh

(xe
Γ−xΓh

),∇Γh
(He−Hh)

)
Γh

=
∑

E∈Eh

(
xe

Γ−xΓh
,∇Γh

(He−Hh) ·nE

)
E

−
∑

G∈Gh

(
xe

Γ−xΓh
,∆G(He−Hh)

)
G

≲ ε−1 ∑
E∈Eh

h−1∥xe
Γ−xΓh

∥2E + ε|||He−Hh|||2Eh

+
∑

G∈Gh

∥xe
Γ−xΓh

∥G∥∆G(He−Hh)∥G

≲ (1+ ε−1)h2q + ε|||He−Hh|||2Eh

+h2 ∑
G∈Gh

∥∆G(He−Hh)∥2G,

where we have the last term ∆G(He−Hh) needs to be estimated yet. If this term
could be bounded by O(hk), the L2-error of the discrete mean curvature vector would
be bounded at an optimal order of (hk+1 +hq) that made the Hansbo’s result a reduced
case when k = q = 1. Unfortunately, however, this seems not the case due to the curved
piece G by the isoparametric mapping. We leave the improvement to the optimal order
of convergence in the future work.

Remark 21 (Interchangeable ghost penalty). As we have introduced in Section 3.1.2,
multiple versions of the ghost penalty stabilization exist, cf. [102, Subsection 4.3]. Recall
the stabilization bilinear form (4.25) in which we make use of the original version, i.e.,
high-order derivative jump ghost penalty

Sh(Hh,vh) = γFh
λ

∑
F ∈FΓ

h

k∑
j=1

h2j−1
∫

F
[[∂j

nF
Hh]][[∂j

nF
vh]]ds. (4.54)
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The mesh size scaling is yet to be chosen between L2-scale λ= 1 and H1-scale λ=−1.
Recall the ghost penalty bilinear form (3.31) that we have exploited for discrete extension
and stabilization in the isoparametric BDF-FEM, analogously we can use the direct
version of ghost penalty

sh(Hh,vh) = γFh
λ−2 ∑

F ∈FΓ
h

∫
ω(F )

(H1−H2)(v1−v2)dx (4.55)

where λ=±1 corresponds to L2-scale or H1-scale in the same manner, and Hi,vi, i=
1,2 are canonical extensions of the mapped polynomials. Indeed, it has been proven in
[130, Lemma 3.1 and Remark 6] that the direct version is bounded by the derivative
jump ghost penalty, namely, for any vh ∈ [VΓ

h ]d there holds

sh(vh,vh) ≲ Sh(vh,vh). (4.56)

As a consequence, the stability result of Theorem 8 and the error estimates in
Theorem 9 still hold true if the semi-norm for derivative jump ghost penalty (4.26b) is
replaced by the one corresponding to the direct version, and the stabilized isoparametric
TraceFEM still works with the direct version of ghost penalty in (4.25).

In [130, Remark 6] the author has discussed the computational advantages the
direct version of ghost penalty has for higher-order methods. We will take advantage of
the direct version in the following numerical experiments, not only because it is more
efficient in computation and easier for implementation, but also due to a precision
limit around 10−7 when we use the add-on library ngsxfem [101] to the finite element
package NGSolve [141] to compute the derivative jumps in the ghost penalty term.

4.3 Numerical Experiments

In this section, we test the stabilized isoparametric TraceFEM by two numerical
examples for computing the discrete mean curvature vector fields on:

1. a unit circle in two dimensions;

2. a torus in three dimensions.

We investigate the experimental order of convergence (EOC) in order to verify the a
priori error estimated in Subsection 4.2.8.
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4.3.1 Unit circle

Let us first perform a concrete convergence study for the discrete mean curvature
vector of a unit circle with radius R = 1, on which the exact mean curvature vector
has a simple expression

H = 1
R

x = (x1,x2) (4.57)

for x = (x1,x2) the standard Cartesian coordinate system. Based on the extension of
this exact mean curvature vector, we measure the following L2-error for the discrete
mean curvature vector Hh on the isoparametrically mapped hypersurface:

∥He−Hh∥L2(Γh) =
(∫

Γh

|He−Hh|2ds
) 1

2
. (4.58)

To implement the stabilized isoparametric TraceFEM, we generate an unstructured
mesh Th consisting of triangles with an initial mesh size h0 = 0.6 in a background
square domain (−1.2,1.2)2. The unit circle centered on the origin can be described by
the signed distance function

ρ= x2
1 +x2

2−1. (4.59)

We construct a high-order approximation of the signed distance function by using the
isoparametric interpolation ρh = Ihρ, cf. Definition 17, such that Γh is the zero level
set of ρh. The mesh refinement is applied in such a way that the mesh size h= 2−L h0

for the refinement level L= 0, ...,6.
We will present the numerical results computed with the direct version of ghost

penalty (4.55) applied into (4.25), in addition to the ones with the original version of
derivative jump ghost penalty. See Remark 21 for details. Next, we will begin with
the cases when k = q, i.e., uniform orders of the finite element discretization k and
the isoparametric mapping q, for different mesh size scalings, i.e., L2-scale λ= 1 and
H1-scale λ = −1. We will subsequently investigate the cases when k ̸= q, which is
suggested by Theorem 9.

Cases when k = q

The following cases of stabilization are considered:

• L2-scale derivative jump ghost penalty with normal diffusion;

• H1-scale derivative jump ghost penalty with normal diffusion;

• L2-scale direct version of ghost penalty with normal diffusion;
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• H1-scale direct version of ghost penalty with normal diffusion.

With choosing the stabilization parameters γF = γT = 1, the stabilized isoparametric
TraceFEM gives the numerical results in Figure 4.1 and Figure 4.2.
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Fig. 4.1 L2-error of the discrete mean curvature vector of the unit circle for k = q =
1,2,3,4, computed by the stabilized isoparametric TraceFEM with the derivative jump
ghost penalty and the normal diffusion stabilization. Left: L2-scale λ = 1; Right:
H1-scale λ=−1.

In Figure 4.1 we show the L2-error convergence curves of the discrete mean curvature
vector of the unit circle for k = q = 1,2,3,4, which are computed by the stabilized
isoparametric TraceFEM with the derivative jump ghost penalty and the normal
diffusion stabilization, but different mesh size scalings are used for the ghost penalty
term. To produce the left data we set L2-scale λ= 1, while for the right data H1-scale
λ=−1. We observe that with L2-scale λ= 1 each convergence rate is approximately
one order lower than k,q, which is in agreement with the prediction of Theorem 9, i.e.,
O(hk+1 +hq−1). However, with H1-scale λ=−1 each convergence rate is significantly
higher than its left counterpart, and almost the same as k,q, which implies that
Theorem 9 gives a suboptimal a priori error estimate, i.e., O(hk +hq−1).

Let us further investigate the EOC with H1-scale λ = −1 derivative jump ghost
penalty by specific numbers in Table 4.1. From Table 4.1 we observe that the EOC for
k = q = 1,2,3 are approximately equivalent to (or even an half order higher than) k,q,
while for k = q = 4 the EOC are downgraded to k,q, especially the last one loses an
half order perhaps due to the precision limit from the add-on library ngsxfem [101] to
the finite element package NGSolve [141] when we compute the derivative jumps in the
ghost penalty term. Overall, we have realized that the H1-scale λ=−1 gives rise to a
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Table 4.1 L2-error of the discrete mean curvature vector of the unit circle for k = q =
1,2,3,4, computed by the stabilized isoparametric TraceFEM with the H1-scale λ=−1
derivative jump ghost penalty and the normal diffusion stabilization. The numbers are
truncated to two decimal places without rounding, but the EOC in round brackets are
computed based on double precision and then truncated to two decimal places without
rounding.

L k = q = 1 k = q = 2 k = q = 3 k = q = 4
0 3.03 ·10−1 2.61 ·10−1 1.18 ·10−1 5.79 ·10−2

1 1.03 ·10−1 (1.55) 3.19 ·10−2 (3.03) 1.01 ·10−2 (3.54) 3.85 ·10−3 (3.91)
2 3.38 ·10−2 (1.61) 7.65 ·10−3 (2.06) 1.49 ·10−3 (2.76) 3.18 ·10−4 (3.59)
3 1.12 ·10−2 (1.59) 1.54 ·10−3 (2.31) 1.88 ·10−4 (2.98) 1.71 ·10−5 (4.21)
4 3.86 ·10−3 (1.53) 4.06 ·10−4 (1.92) 2.23 ·10−5 (3.07) 1.22 ·10−6 (3.81)
5 1.49 ·10−3 (1.37) 8.38 ·10−5 (2.27) 2.02 ·10−6 (3.46) 7.48 ·10−8 (4.02)
6 5.95 ·10−4 (1.32) 1.46 ·10−5 (2.51) 2.19 ·10−7 (3.20) 6.81 ·10−9 (3.45)

better convergence rate, despite the suboptimal a priori error estimates in Theorem 9
predict that L2-scale λ= 1 would result in a sharper bound with respect to k.

The numerical results of the stabilized isoparametric TraceFEM with the direct
version of ghost penalty and the normal diffusion stabilization are shown in Figure 4.2.
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Fig. 4.2 L2-error of the discrete mean curvature vector of the unit circle for k = q =
1,2,3,4, computed by the stabilized isoparametric TraceFEM with the direct version
of ghost penalty and the normal diffusion stabilization. Left: L2-scale λ= 1; Right:
H1-scale λ=−1.

In Figure 4.2 we present the L2-error convergence curves of the discrete mean
curvature vector of the unit circle for k = q = 1,2,3,4 computed by the stabilized
isoparametric TraceFEM with the direct version of ghost penalty and the normal
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diffusion stabilization. Different mesh size scalings are applied into the ghost penalty
term in such a way that we choose L2-scale λ= 1 for the left result and H1-scale λ=−1
for the right one. Again, we recognize that the convergence rates with H1-scale λ=−1
on the right side are considerably better than the ones with L2-scale λ= 1 on the left
side. The right data surpasses the suboptimal a priori error estimate O(hk +hq−1) by
an half order, and has no significant difference from (a little bit worse than) the former
result produced with the derivative jump ghost penalty, while the left data still follows
the prediction of Theorem 9, i.e., O(hk+1 +hq−1). To summarize, the ghost penalty
version does not matter, but the mesh size scaling matters.

Apart from that, we have also tested the cases with only one stabilization type,
either the ghost penalty or the normal diffusion. We observe that without the ghost
penalty the convergence behavior is similar to the cases of L2-scale λ= 1 ghost penalty.
As a consequence, if the ghost penalty is not applied in the low-order case when k= q= 1
the error does not converge, which is in agreement with the result in [82]. On the other
hand, when k = q = 1,2 the ghost penalty itself shows sufficient capability to stabilize
the discrete mean curvature vector, but higher-order convergence rate is not possible
without the normal diffusion, which has been concluded in [74] where the normal
diffusion is called normal derivative volume stabilization. For ease of presentation we
do not plot these numerical results here, but the reader can feel free to replicate them
with using our software and code provided on the GitLab repository, cf. Section 1.5.

Cases when k ̸= q

The a priori error estimates in Theorem 9 suggest that one should choose the order
of isoparametric mapping q higher than the order of finite element discretization k to
optimize the error bounds, which motivates us to investigate the numerical results if
k ̸= q, especially when k < q. To this end, we fix q = 3 with varying k = 1,2,3,4, and
subsequently change q = 2,3,4,5 with a fixed k = 3. Since we have realized the fact
that H1-scale λ=−1 gives rise to better convergence behaviors, here we study only
with this mesh size scaling. The numerical results come with the derivative jump ghost
penalty in Figure 4.3. With the direct version of ghost penalty the numerical results
are shown in Figure 4.4.

As we expected, the difference of ghost penalty versions does not impact on the
convergence behavior in general. The numerical results above demonstrate that either
k or q would limit the error convergence rates. On the left side when q = 3 is fixed,
the maximum convergence rate is restricted below O(h3) even though k goes to 4.
The situation is much better on the right side with a fixed k = 3, since the maximum
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Fig. 4.3 L2-errors of the discrete mean curvature vector of the unit circle, computed
by using the stabilized isoparametric TraceFEM with the H1-scale λ=−1 derivative
jump ghost penalty and the normal diffusion stabilization. Left: The fixed q = 3 and
the varied k = 1,2,3,4. Right: The fixed k = 3 and the varied q = 2,3,4,5.

convergence rate exceeds O(h3) and approaches to O(h4) when q goes up. Overall,
based on Figure 4.3 and Figure 4.4 we conclude that the convergence rates are bounded
approximately by O(hk+ 1

2 +hq− 1
2 ). This observation on the convergence behavior has

an half order better than the suboptimal a priori error estimate O(hk +hq−1) predicted
by Theorem 9. As a bottom line, one can optimize the choices of k and q by the
criterion q−k = 1, which is in agreement with Theorem 9.

4.3.2 Torus

In the second numerical example, we consider the mean curvature vector of a torus
in three spatial dimensions, which can be represent by the following signed distance
function

ρ=
((

(x2
1 +x2

2)
1
2 −R

)2
+x2

3

) 1
2
− r (4.60)

with the parameters R = 1.0 and r = 0.5. This torus is embedded in the Euclidean
space R3 with x = (x1,x2,x3) the standard Cartesian coordinate system. Provided
that the signed distance function ρ is given, the exact mean curvature vector of the
torus can be computed by

H = (∆ρ)∇ρ. (4.61)

See [82, Subsection 5.1.2] for details of this formula. Based on the extension of this
exact mean curvature vector, we measure the following L2-error for the discrete mean
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Fig. 4.4 L2-errors of the discrete mean curvature vector of the unit circle, computed by
using the stabilized isoparametric TraceFEM with the H1-scale λ=−1 direct version
of ghost penalty and the normal diffusion stabilization. Left: The fixed q = 3 and the
varied k = 1,2,3,4. Right: The fixed k = 3 and the varied q = 2,3,4,5.

curvature vector Hh on the isoparametrically mapped hypersurface Γh:

∥He−Hh∥L2(Γh) =
(∫

Γh

|He−Hh|2ds
) 1

2
. (4.62)

Analogously, we generate an unstructured mesh Th in three dimensions consisting
of tetrahedrons with an initial mesh size h0 = 1.0 in a background cube domain
[−2,2]× [−2,2]× [−2,2]. Again, we construct a high-order approximation of the signed
distance function in the same manner by the isoparametric interpolation ρh = Ihρ

whose zero level set represents Γh. The mesh refinement is applied in such a way that
h= 2−Lh0 for the refinement level L= 0, ...,4.

As we have discovered that H1-scale λ=−1 enjoys the better convergence behavior,
and the different versions of ghost penalty do not matter, we only investigate the
H1-scale derivative jump ghost penalty in this example. Both the standard k = q and
the optimal k = q−1 cases are considered.

From Figure 4.5 we observe that convergence rates are approximately equal to k
and q when k = q on the left side, which are better than the O(hk +hq−1)-convergence
predicted by Theorem 9. But on the right we do not see the expected improvement
when we lift q by one order. These results might not be illustrative, because we take
the maximum mesh refinement level only L= 4, and we cannot afford the expensive
computational cost of the three-dimensional example on a finer mesh.
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Fig. 4.5 L2-errors of the discrete mean curvature vector of the torus, computed by using
the stabilized isoparametric TraceFEM with the H1-scale λ=−1 derivative jump ghost
penalty and the normal diffusion stabilization. Left: The uniform orders k = q = 1,2,3.
Right: The optimal orders k = 1,2,3 and q = k+1 = 2,3,4.

Figure 4.6 shows how we generate the background cube domain and unfitted mesh
containing the torus by using the GUI of Netgen/NGSolve [141]. The exact level set
torus and the discrete mean curvature vectors around the torus are displayed.

Figure 4.7 shows the discrete level set torus we created and the unfitted mesh cut
by the surface. The discrete mean curvature vectors are presented on the surface, with
the color indicating the magnitude of them.

4.4 Summary

In this chapter, we have developed the stabilized isoparametric TraceFEM for solving
the geometric equation of the discrete mean curvature vector of hypersurfaces. We have
proved in the error analysis that the isoparametric TraceFEM working with the ghost
penalty and normal diffusion stabilization gives rise to arbitrarily high order of accuracy.
The numerical experiments we presented have verified the predicted convergence rates,
and shown the effects of the different stabilizations and mesh size scalings. Moreover,
the convergence study of the first example provides a remarkable suggestion on the
optimal choice of the orders of finite element discretization and isoparametric mapping.
The second example demonstrates the capability of our method to handle more flexible
two-dimensional surfaces embedded in three spatial dimensions.



4.4 Summary 131

Fig. 4.6 The torus contained in the background cube domain, with the unstructured
computational mesh, the exact level set surface, and some discrete mean curvature
vectors intersected by a clipping plane.

This chapter is considered as the core of this thesis, which is not only a building
block for the geometrically coupled bulk-surface problem, but it also plays an important
role independently. In computer graphics and computational geometry, solving the
high accurate mean curvature vector of a discrete surface is an active topic, cf. [17, 55].
The geometrically unfitted setting of this method gives the largest flexibility to the
related applications. Furthermore, the method serves as a piece of puzzle towards the
mean curvature flow.
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Fig. 4.7 The discrete level set torus with the cut element facets, and some discrete
mean curvature vectors sampled on the surface, with the magnitude by color.



Chapter 5

Evolution of Level Set Geometry

As discussed in Subsection 2.2.2, there are two different approaches to figure out the
evolution of a level set geometry. We do not choose to solve the highly nonlinear,
degenerate, parabolic equation, but rather to solve the linear hyperbolic transport
equation of the level set function, which additionally requires a velocity field well-
defined on the whole background domain. To this end, the velocity field can be
obtained through a variety of extension methods, e.g., the Fast Marching Method
[1, 143–146], based on the surface velocity arising from the mean curvature vector and
the PDE solution. We have developed the high-order numerical methods in Chapter 3
for the advection-diffusion equation on an evolving domain and in Chapter 4 for the
geometric equation of mean curvature vector of the bounding hypersurface, hence we
are ready to compute the surface velocity on the boundary of the domain. In this
chapter, we present two methods for extending the surface velocity from the bounding
hypersurface onto the background domain. One of these extension methods works by
solving a normal diffusion equation of the velocity field over the background domain
with an interface condition consistent with the surface velocity. Another method is
the ghost-penalty-based discrete extension, as we have seen in Section 3.1.2. With
this extended velocity field well-defined on the background domain and linearized with
respect to the geometric evolution at each time step, we are able to solve the transport
equation by a variety of standard schemes for hyperbolic PDEs. We briefly introduce
the discontinuous Galerkin (DG) finite element discretization in space combined with
the explicit Runge–Kutta (RK) schemes for time stepping, i.e., the RKDG methods
developed in [36–38, 42, 40], which is popular and robust to solve hyperbolic system of
conservation laws at high order of accuracy. For the corresponding error analysis, we
collect some notable results from the established literature [35, 154, 164, 168–170]. A
numerical experiment of the level set transport problem concludes this chapter.
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5.1 Extension of Velocity Field

There are multiple approaches to construct the velocity field for evolving the level sets
on the whole background domain. Once the surface velocity is determined, the only
restriction is that the velocity field on the surface must be consistent with the surface
velocity. Apart from that, the construction still has considerable degrees of freedom.
The optimal choice indeed depends on the specific problem. For instance, in two-phase
interface flow problem, an intrinsic velocity field of physics exists over the whole region,
which can be utilized to solve the level set transport equation. In single-domain problem,
however, the artificial background domain has no such a natural velocity outside of
the physical domain, hence we have to take care of the manufacture of a velocity
field. The simplest idea is extrapolation from the closest point on the boundary, but it
may not preserve the signed distance property and give rise to a smooth velocity field
that is desired when we continue updating the level sets. Another popular approach
to build a distance-preserving extension of the velocity field is to solve the eikonal
equation in front of the propagating interface, which is called Fast Marching Method,
cf. [1, 143–146]. For the geometrically coupled solution-curvature-driven moving FBP
we proposed in Section 2.4, a more convenient way is to extend the surface velocity
by solving an elliptic diffusion equation over the whole background domain, with the
interface condition for the compatibility with the surface velocity, on account of that
we have employed the normal diffusion mechanism on cut elements for stabilizing the
discrete mean curvature vector. Another on-hand approach of velocity extension is
based on the ghost penalty formulations that we have exploited in Chapter 3. In this
section, we introduce these two methods and implement them for some numerical
examples. As the velocity extension is a stationary problem to be solved at each time
step, the variable of time dependence is omitted in the notation.

5.1.1 Normal diffusion extension method

Recall the normal velocity on the bounding hypersurface Γ defined by (2.2) in Subsec-
tion 2.1.1 that

w :=−ακ+βuΓ (5.1)

for the mean curvature κ and the trace of the solution uΓ to PDEs on the bounded
domain, and some parameters α,β ∈ R+. With the unit normal n of the hypersurface
Γ we have the surface velocity vector

wΓ := wn = (−ακ+βuΓ)n =−αH+βuΓn on Γ, (5.2)
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where H is the mean curvature vector of the hypersurface Γ.
In Subsection 2.2.2 we have introduced by Definition 9 the velocity extension

operator E : C2(Γ)→ [C2(Ω̄)]d for the surface velocity w such that the restriction of
consistency (Ew)|Γ = wΓ holds. A compatible velocity extension operator such that
w := Ew defined on the background domain Ω̄ can be obtained by solving the following
elliptic diffusion equation with the interface condition for the compatibility with the
surface velocity vector:

∇· (T∇w) = 0 in Ω̄, (5.3a)
w = wΓ on Γ, (5.3b)

where for the diffusion coefficient T one has two choices:

T :=

 I, (isotropic)
n⊗n, (anisotropic)

(5.4)

for the identity matrix I and a tensor-valued coefficient n⊗n = nnT. Here n = ∇ϕ
∥∇ϕ∥ is

well-defined over the background domain Ω̄ by extension of (2.22) with the plus sign
choice, even if the level set function ϕ : Ω̄→ R does not preserve the signed distance
properties. The identity diffusion coefficient is called isotropic since it reduces (5.3a)
to a Laplace equation that would smear out the values from (5.3b), namely, w|Γ is to
be distributed with the same magnitude in every direction from the hypersurface to
the background domain. This is however not a preferred result. Alternatively, we make
use of the anisotropic option which adds the diffusion only in those directions normal
to the hypersurface. This aims to generate a velocity distribution that preserves the
signed distance properties as much as possible for the level set function when it is
being updated by solving the transport equation.

Let us recall the weak form (2.30) with the Sobolev spaces (2.28) and (2.29) in
Subsection 2.2.2. For such a stationary diffusion problem in a simple polygon domain,
the standard finite element discretization follows directly.

However, we have an idea to solve this PDE problem more efficiently. If we divide
the computational domain into a partition of strips, and then we can solve the problem
by element layers, in order to save computational cost. Recalling the notation for
discrete domains and meshes in Section 3.1.1, we use the similar symbols but omit the
time dependence n and choose δ = 0 in this section. For example, the cut elements
and the corresponding domain are denoted by T S

0 and DS
0 , to which all the direct

neighboring elements added are denoted by T S
±1 and DS

±1 (i.e., one element layer
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extension in both directions), and so on. In addition, we define a strip domain D̃S
r

such that

D̃S
0 :=DS

0 and D̃S
r :=DS

±r \DS
±(r−1) for r ∈ N+, (5.5)

which is the set difference of two consecutive strip domains. It can be considered as
two separate concentric strips, each of which has a single element layer away from the
cut elements. Upon this relative complement of consecutive strip domains, we setup
the following Dirichlet and Neumann boundary conditions:

w = wΓ on Γh, i= 0, (5.6a)

w = wDi−1 on ∂D̃S
i−1∩∂D̃S

i , i= 1, ..., j, (5.6b)

(n⊗n)∇w ·n = 0 on ∂D̃S
i ∩∂D̃S

i+1, i= 0, ..., j (5.6c)

where wDi−1 denotes the Dirichlet data from the solution on D̃S
i−1, and D̃S

j is the
furthest element strip inward or outward from the hypersurface, with the frontier
defined by ∂D̃S

j+1 := ∂Ω̄ or by ∂D̃S
j+1 := ∅ if the inward direction is further. Now we

aim to find wh ∈ [Vh(D̃S
i )]d such that∫

Ω̄
(nh⊗nh)∇wh∇vh dx = 0 ∀vh ∈ [Vh(D̃S

i )]d (5.7)

for i= 0,1, ..., j. This procedure is to be implemented as follows: When i= 0, (5.6a)
and (5.6c) are applied; When 0< i≤ j, (5.6b) and (5.6c) are applied; When i > j there
is no further element strip to be solved.

Please note this is just an idea of solving the PDE problem with more efficient
algorithm, but we do not bring it into practice yet.

5.1.2 Ghost penalty extension method

As we have seen in Section 3.1.2, one effect of the ghost penalty mechanism is the
discrete extension of a domain along with the functions defined on the domain. Hence
it can be utilized for velocity extension as well. Due to the variants of the ghost penalty
formulation, we have accordingly various ghost-penalty-based extension methods with
the same effect.
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Recall the stabilization bilinear form (4.25) where we take the most well-known
version, i.e., high-order derivative jump ghost penalty

Sh(uh,vh) = γFh
−1 ∑

F ∈FΓ
h

k∑
j=1

h2j−1
∫

F
[[∂j

nF
uh]][[∂j

nF
vh]]ds. (5.8)

Recall the ghost penalty bilinear form (3.31) that we used for a discrete extension
in the isoparametric unfitted BDF-FEM. Analogously, we carry out the direct version
of the ghost penalty

sh(uh,vh) = γF
∑

F ∈FΓ
h

1
h3

∫
ω(F )

(u1−u2)(v1−v2)dx (5.9)

where ui,vi, i= 1,2 are canonical extensions of mapped polynomials.
We prefer the direct version which is simpler in the sense of computation, since

the high-order derivative jumps are involved implicitly, cf. [130, Remark 6]. But in
Chapter 6 we will bring both velocity extension methods into implementation.

Numerical test

In this subsection, we present a simple example to test the velocity extension by normal
diffusion. See Figure 5.1 for an illustration of the implementation.

0.00 5.00

Fig. 5.1 An implementation example of velocity extension from the cut elements to the
background mesh by anisotropic normal diffusion. The background color indicates a
level set function and the vectors for a velocity field with the magnitude by color.
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Figure 5.1 shows the velocity properly extended from the cut elements onto the
background domain by anisotropic normal diffusion. To get it, we solve the stationary
diffusion equation (5.3a) over the background domain with applying the restriction
(5.3b) by using the standard FEM.

5.2 Runge–Kutta Discontinuous Galerkin Methods

As we have discussed in Section 2.2, for the level set method a real-valued auxiliary
function ϕ : Ω̄→ R is defined over the background domain, of which the zero level set
is exploited to represent the boundary Γ of a physical domain Ω⊂ Ω̄. This level set
function is time-dependent, i.e., ϕ : Ω̄× [0,T ]→ R, if the physical domain is moving
with a surface velocity w in the background domain. Provided that a velocity field
w : Ω̄→ Rd is well-defined by extension from w, cf. Section 5.1, the level set function
ϕ(x, t) can be considered as a solution to the corresponding advection equation on Ω̄,
cf. Subsection 2.2.2. This hyperbolic PDE can be solved numerically by a variety of
upwind schemes in order to track the evolution of the physical domain. In this section,
we will briefly introduce the method of lines approach that combines the discontinuous
Galerkin (DG) finite element discretization in space with the explicit Runge–Kutta
(RK) methods for time stepping. The resulting Runge–Kutta discontinuous Galerkin
(RKDG) methods have been developed by Cockburn et al. in a series of literature,
cf. [36–38, 40, 42], which are robust and high-order accurate for advection-dominated
problems, and found their way into the mainstream of computational fluid dynamics
(CFD) by a wide range of real-world applications, cf. [41]. Next, we discuss in detail
the RKDG methods applied to the linear hyperbolic transport equation of level set
geometry.

5.2.1 Discontinuous Galerkin discretization in space

Recall the level set transport problem (2.31) in Subsection 2.2.2. Let ϕ : Ω̄× [0,T ]→R
be a real-valued function for a scalar quantity transported in time by a solution-
independent velocity field w : Ω̄→Rd. It is considered a level set function governed by
the following linear advection equation with proper initial and boundary conditions:

∂tϕ+w ·∇ϕ= 0 in Ω̄× (0,T ], (5.10a)
ϕ= ϕ0 in Ω̄×{0}, (5.10b)
ϕ= ϕΩ̄ on ∂Ω̄× [0,T ], (5.10c)
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where the smooth initial data ϕ0(x) is given such that ϕ0(x) ̸= 0 for all x ∈ ∂Ω̄. The
boundary value ϕΩ̄(x, t) can be prescribed such that ϕΩ̄(x, t) = ϕ0(x) for all t∈ [0,T ] on
the inflow boundary ∂Ω̄−(t) := {x ∈ ∂Ω̄ |w(x, t) ·nΩ̄(x)< 0} where nΩ̄ is the outward
unit normal on the boundary, and it simply takes value from the upwind neighborhood
on the outflow boundary ∂Ω̄+(t) = ∂Ω̄\∂Ω̄−(t). This boundary condition ensures that
no new zero level is to be imported from the boundary. The hyperbolic PDE problem
(5.10) is wellposed and has a unique weak solution in the corresponding Sobolev space,
cf. [113, Theorem 3.4 in Section 3.1].

Next, let us derive the weak formulation corresponding to DG-FEM. In the spirit
of relaxing the H1-conformity of the standard FEM, we introduce the broken Sobolev
space for a consistent subdivision Th of the background domain Ω̄ ⊆ Rd, d = 1,2,3
(e.g., an admissible quasi-uniform triangulation)

H1
T̂

(Ω̄) :=
{
v ∈ L2(Ω̄) | v|T̂ ∈H

1(T̂ ), ∀T̂ ∈ Th

}
. (5.11)

Towards the non-conforming DG finite element discretization, a finite-dimensional
broken Sobolev space of piecewise polynomials of degree k is defined by

V̈h(Ω̄) :=
{
v ∈ L2(Ω̄) | v|T̂ ∈ P

k(T̂ ), ∀T̂ ∈ Th

}
. (5.12)

By multiplying a test function vh ∈ V̈h(Th) on both sides of Equation 5.10a, and
using integration by parts, the weak formulation reads:
To find ϕh ∈ V̈h(Th) such that for all vh ∈ V̈h(Th)

∑
T̂ ∈Th

(
∂t

∫
T̂
ϕhvhdx−

∫
T̂
ϕhw ·∇vhdx +

∫
∂T̂
ϕ̈h(w ·nT̂ )vhds

)
= 0 (5.13)

where the value on the boundary of each element T̂ , denoted by ϕ̈h, allows multiple
choices resulting in various DG schemes, for which the upwind direction of wave
propagation is preferred. If the hyperbolic equation is nonlinear, typically one needs
to solve a Riemann problem (either exactly or approximately) to find the proper
intermediate state, but here for the linear problem we can simply define

ϕ̈h :=


ϕh|T̂ if w ·nT̂ ≥ 0,
ϕ0 if x ∈ ∂Ω̄−,

ϕh|Ť if w ·nT̂ < 0 and x /∈ ∂Ω̄−,

(5.14)
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where the inflow boundary condition on ∂Ω̄− has been enforced, and Ť denotes the
element neighboring to T̂ with whom it shares the interface ∂T̂ equipped with the
outward unit normal nT̂ pointing from T̂ to Ť . The resulting choice of F(ϕ̈h) in (2.26)
is known as an upwind numerical flux.

The DG-FEM weak formulation (5.13) is a semi-discretization for the time being,
i.e., ϕh(t) is the semi-discrete solution as an unknown function of time t, and we have
the time derivative to be discretized yet.

5.2.2 Explicit Runge–Kutta discretization in time

Let L := ∑
|α|≤maα(x)Dα be an mth-order differential operator, such that a linear

time-dependent PDE (e.g., Equation 5.10a) can be written as

∂tϕ(x, t) = Lϕ(x, t). (5.15)

Let Lh(·, ·) be a spatial discretization of the differential operator L, in particular the
discontinuous Galerkin discretization introduced in Subsection 5.2.1, then the DG-FEM
semi-discrete form (5.13) can be considered as an ODE problem

d

dt
ϕh(t) = Lh(ϕh, t), ϕh(0) = ϕ0, (5.16)

which is known as a scheme of the method of lines yet to be discretized with a time
integrator.

Let ∆t := T/N, T ∈ R+,N ∈ N be a uniform time step of an equally-spaced
subdivision of the time interval [0,T ] of interest. Let tn := n∆t, n = 0,1, ...,N be
time instances for which we denote by upper index (·)n := (·)|t=tn the time-dependent
objects restricted to t = tn , e.g., ϕn

h := ϕh(tn) for the semi-discrete solution ϕh as a
function continuous in time and the fully discrete solution ϕn

h at time tn.
For higher order of accuracy in time, other than multi-step methods like BDF, we

can solve (5.16) by multi-stage methods that use temporary in-between states on way
from tn to tn+1. Among the multi-stage methods the explicit Runge–Kutta schemes are
the most popular. The classical 2nd-order and 4th-order RK schemes can be formulated
as follows:

• The 2nd-order RK2 scheme:

ϕn+1
h = ϕn

h +∆tR2; (5.17)
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• The 4th-order RK4 scheme:

ϕn+1
h = ϕn

h + 1
6∆t(R1 +2R2 +2R3 +R4); (5.18)

where the intermediate stages

R1 = Lh(ϕn
h, tn), R2 = Lh

(
ϕn

h + 1
2∆tR1, tn + 1

2∆t
)
, (5.19a)

R3 = Lh

(
ϕn

h + 1
2∆tR2, tn + 1

2∆t
)
, R4 = Lh(ϕn

h +∆tR3, tn +∆t). (5.19b)

Although even higher orders are possible, the RK4 scheme is sufficiently accurate and
will be employed in the implementations.

Remark 22 (CFL condition and TVD property). It is well-known that the Courant-
Friedrichs-Lewy (CFL) condition has to be satisfied such that the Courant number
∥w∥∞ ∆t

h ≤ cCFL for a certain (maximum allowed) constant cCFL for linear stability
and consequently (with consistency by the Lax equivalence theorem) convergence of an
explicit time stepping scheme, cf. [108]. Although this sub-model for level set transport
is a linear hyperbolic problem starting with smooth initial data that is assumed not
to develop discontinuities, the level set function solved within each time step in the
geometrically coupled problem may contain kinks or even discontinuities. In order to
achieve nonlinear stability, the total variation diminishing (TVD) schemes are suggested
for discontinuous solutions to hyperbolic conservation laws, for example, the TVD
Runge–Kutta schemes proposed in [72, 149, 150]. The classical RK2 and RK4 schemes
above-mentioned are of the TVD property under certain CFL condition with cCFL = 1
and cCFL = 2

3 , respectively, for one-dimensional problems and divided by d for problems
in d spatial dimensions, according to the results in [150]. In practice, we will set
sufficiently small Courant numbers to ensure the CFL condition and the TVD property
to be fulfilled.

5.2.3 Error analysis and numerical experiment

Although the RKDG methods have been widely used by the CFD community, the
theoretical analysis is lagging behind the applications. The error estimates of the RK
and the DG schemes are both well-investigated, but it is not straightforward to derive
the order of convergence for the fully discrete RKDG methods. To the best of our
knowledge, most a priori error analyses exist for either semi-discrete or space-time DG
methods only, provided that the exact solutions are sufficiently smooth. For example,
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in [7] the authors show that the error bound of O(hk+ 1
2 ) holds for advection-dominated

problems, whereas O(hk) for diffusion-dominated and O(hk+1) for reaction-dominated
problems, in which the L2 norms of the distances between DG solutions of piecewise
polynomials of degree k and smooth exact solutions to stationary advection-diffusion-
reaction problems are estimated, cf. [113, Section 7.1]. In [148], Shu concludes that
the DG methods have at least (k+ 1

2)-th order of accuracy, and often optimal (k+1)-th

order, for smooth solutions regardless of the mesh structures, and possibly (2k+1)-th

order super-convergence in negative norm and in strong L2 norm for post-processed
solutions, cf. [39, 90, 95].

As for the error estimates of the RKDG methods, one challenge lies ahead of them
beyond the method of lines that the fully discrete L2 stability is hard to be established
with explicit Runge–Kutta time discretizations, as well as another difficulty sits on
finding appropriate projection operators for the analysis, according to the discussion in
[154]. In spite of these issues, some creative works of analyzing the RKDG methods
for hyperbolic conservation laws have been presented in the past decades, e.g., in
[35, 164, 168–170]. In this subsection, we collect several important results of error
estimate from the established literature, and subsequently provide a numerical example
to verify the order of convergence they predicted.

Selected error estimates

First of all, we begin with an analysis of the Crank–Nicolson DG method presented in
[113, Chapter 7], which does not utilize the explicit Runge–Kutta time stepping but the
well-known implicit Crank–Nicolson scheme in time combined with the discontinuous
Galerkin discretization in space. However, the application in [113] is the same as ours
and the idea in the proof may be useful. We therefore introduce the main result of
error estimate in [113].

Theorem 10 (Error estimate of the Crank–Nicolson DG method for level set transport).
Let ϕ ∈ C2([0,T ];H1(Ω̄))∩C1([0,T ];Hk+1(Ω̄)) be the exact solution to the PDE problem
(2.31) or (5.10). Let {ϕn

h}n=0,...,N be the numerical solution to the fully discrete form
of the Crank–Nicolson DG scheme, cf. [113, Equation 4.47]. For constants c(ϕ,w, tn)
and C(ϕ,w, tn) independent of the mesh size h and the time step ∆t, the following
error estimate holds true:

∥ϕ(x, tn)−ϕn
h∥L2(Ω̄) ≤ c(ϕ,w, t

n)hk+ 1
2 +C(ϕ,w, tn)∆t2,

where k is the piecewise polynomial degree of the DG finite element space.
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Proof. See [113, Theorem 7.19].

Remark 23. This result gives the error bounds O(hk+ 1
2 ) in space and O(∆t2) in time

in the L2 norm. It is well-known that the Crank–Nicolson scheme is 2nd-order accurate,
thus the order of convergence in time is optimal. While the convergence rate in space
may be not optimal, but expected according to the prior predictions, e.g., in [7], since
the level set transport is a purely advection-dominated problem. We emphasize that
the result holds only for smooth solution, under the assumption of a time-independent,
divergence-free, globally Lipschitz-continuous velocity field without any closed curves or
stationary points.

Next, let us turn to the error estimates of the RKDG methods. The following result
is presented by Zhang and Shu in [169] for the 2nd-order total variation diminishing
(TVD) Runge–Kutta discontinuous Galerkin method for sufficiently smooth solutions
to scalar conservation laws.

Theorem 11 (Error estimate of the 2nd-order TVD RKDG method). Let ϕ(x, t) be the
sufficiently smooth exact solution to the linear scalar hyperbolic conservation law (2.26)
posed on Ω̄× [0,T ], which is periodic or compactly supported and whose derivatives are
bounded. Let {ϕn

h}n=0,...,N be the numerical solution to the fully discrete form of the
2nd-order TVD RKDG method, cf. [169, Equation 2.4]. If an upwind numerical flux
is used, then for sufficiently small mesh size h and time step ∆t the following error
estimate holds true:

max
0≤n≤N

∥ϕ(x, tn)−ϕn
h∥L2(Ω̄) ≤ C(hk+1 +∆t2),

where the constant C is independent of h, ∆t, n and N . The result holds for the
piecewise polynomials of degree k = 1 under the CFL condition ∆t≤ cCFLh or k ≥ 2
under ∆t≤ cCFLh

4
3 with a properly given Courant number cCFL. Moreover, the result

still holds for nonlinear problems if k > d+1
2 and thus ∥ϕ(x, tn)−ϕn

h∥L2(Ω̄)≤ h is assumed
to be true.

Proof. See [169, Theorem 3.1 and Remark 5.2].

Remark 24. This result gives optimal orders of convergence O(hk+1) in space and
O(∆t2) in time, provided that the exact solution is sufficiently smooth and an upwind
numerical flux is chosen, otherwise quasi-optimal O(hk+ 1

2 ) in space for a general mono-
tone numerical flux. The original Theorem 3.1 in [169] holds only for one-dimensional
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scalar conservation laws, but the result has been extended to multi-dimensional linear
and nonlinear problems according to Remark 5.2 in [169]. We stress that the authors
do not consider specific boundary conditions. Similar result but quasi-optimal O(hk+ 1

2 )
convergence rate in space is given in [168, Theorem 2.1] for symmetrizable systems of
conservation laws. In [170, Theorem 5.1] the result is further extended to the 3rd-order
TVD RKDG method which remains the same order of convergence in space but rises to
O(∆t3) in time.

All the error estimates above are for sufficiently smooth exact solutions, which
become invalid when the solutions contain discontinuities. In practice, discontinuous
solutions may be developed from smooth initial data through nonlinear hyperbolic
equations, or retained from discontinuous initial data in linear problems. It is therefore
worth mentioning the following result by the work of Cockburn and Guzmán in [35].

Theorem 12 (Error estimate of non-smooth solution to 1d linear transport equation).
Let ϕ(x,t) be the exact solution to the hyperbolic conservation law (2.26) posed on
R× [0,T ] with w = 1, and the compactly supported initial data is discontinuous at
x= 0 but smooth everywhere else. Let {ϕn

h}n=0,...,N be the numerical solution to the
fully discrete form of the 2nd-order TVD RKDG method, cf. [35, Equation 2.1].
Provided that ∆t

h ≤
α
3 for some fixed α ∈ (0, 1

3), then for any β ≥ 4 and a constant C > 0
independent of h, ∆t, T , and α, the following error estimate holds true:

∥ϕ(x,T )−ϕN
h ∥L2(R\RD)≤CTh2

(
1+

( ∆t
αT

) 1
2

)
+Chβ +∥ϕ(x,T )−P (ϕ(x,T ))∥L2(R\RD)

where the region containing the discontinuity denoted by RD is given by

RD = T +α−1βγ log (h−1)
(
− (∆t/h)− 7

3T
1
3h

2
3 , (∆t/h)− 1

2T
1
2h

1
2

)

where the constant γ > 0, and the projection P (v) of a function v ∈H1
T̂

(R) is in the
finite-dimensional broken Sobolev space V̈h(R) of piecewise polynomials of degree 1, cf.
(5.11) and (5.12), such that on each interval T̂ (j) := (xj−1/2,xj+1/2), j ∈ Z there hold
(P (v),1)j = (v,1)j and P (v)(x−

j+1/2) = v(x−
j+1/2) for {T̂ (j)}j∈Z a uniform partition of

R.

Proof. See [35, Theorem 2.1].

Remark 25. This result is an extension of and can be reduced to Theorem 11 with
k = 1, when the initial data is sufficiently smooth. The error bound O(h2) at time



5.2 Runge–Kutta Discontinuous Galerkin Methods 145

T in the L2(R \RD) norm shows optimal order of convergence in space. This error
estimate of non-smooth solutions is considered a milestone towards the goal of solving
nonlinear hyperbolic conservation laws in multiple spatial dimensions, but only the case
of one-dimensional linear identity-coefficient transport equation is as yet studied.

We have shown the error estimates of the 2nd-order (and the 3rd-order) TVD RKDG
method, however, the extension to higher order of accuracy in time is highly non-trivial,
which has become available only recently. Next, we introduce the main result of error
analysis in this subsection that is recently presented in [164].

Theorem 13 (Error estimate of the 4th-order RKDG method). Let ϕ(x, t) be the
sufficiently smooth exact solution to the hyperbolic conservation law (2.26) posed on
Ω̄× [0,T ] where Ω̄ = (0,1)2 with a constant coefficient w. Let {ϕn

h}n=0,...,N be the
numerical solution to the fully discrete form of the 4th-order RKDG method whose
parameters satisfy a weak smoothness assumption, cf. [164, Section 2.3, 2.4, 2.5]. For
a constant C > 0 independent of mesh size h and time step ∆t, the following error
estimate holds true:

max
0≤n≤N

∥ϕ(x, tn)−ϕn
h∥L2(Ω̄) ≤ C(hk+k′

+∆t4)

if the CFL condition ∆t≤ cCFLh holds for a specific Courant number cCFL. The index
k denotes the piecewise polynomial degree of the DG finite element space, and k′ = 1
arises from Qk-elements of rectangles while k′ = 1

2 from Pk-elements of either rectangles
or triangles.

Proof. See [164, Theorem 2.2].

Remark 26. This result gives optimal order of convergence O(∆t4) in time, while
optimal O(hk+1) and quasi-optimal O(hk+ 1

2 ) in space. The analysis is conducted in
two-dimensional linear case, but the authors claim that the result can be trivially
extended to problems in arbitrary spatial dimensions, and even to nonlinear problems
along the same lines as in [169, 170]. In spite of the only restriction placed on the
regularity of the exact solution which has to be sufficiently smooth, we consider it an
enlightening error estimate of the 4th-order RKDG method for hyperbolic PDEs.

To conclude this subsection, we introduce the most recent work by Sun and Shu
in [154] that is a framework of error estimates of the RKDG method of any order for
linear time-dependent PDEs. We briefly present the main result with skipping the
details of the statement but refer the reader to [154, Theorem 3.2 and Corollary 3.1].
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Theorem 14 (Error estimate of the RKDG method of any order for linear PDEs).
Let ϕ(x, t) be the sufficiently smooth exact solution to a linear time-dependent PDE
∂tϕ=Lϕ posed on Ω̄× [0,+∞) for Ω̄⊆Rd where L is an mth-order differential operator,
cf. Equation 5.15. Let {ϕn

h}n=0,...,N be the numerical solution to the fully discrete form
of the RKDG method of any order, cf. [154, Equation 1.3]. For two constants c and C
independent of mesh size h and time step ∆t, the following error estimate holds true:

∥ϕ(x, tn)−ϕn
h∥L2(Ω̄) ≤ exp(ctn)∥Πϕ(x,0)−ϕ0

h∥L2(Ω̄) +C(σ+1)(hk+k′
+∆ts)

under [154, Assumption 2.3, 2.4, 2.5] for stability of the fully discrete form, consistency
of the RK scheme, and the linear operator Π, respectively. Here, (1+ c∆t) is used to
bound the fully discrete operator under the CFL condition ∆t≲ cCFLh

m for a specific
Courant number cCFL, and σ(c, tn) arises from the Grönwall’s inequality, and C depends
on the parameters of the RK scheme. The index k denotes the piecewise polynomial
degree, k′ ∈ [0,1] depends on the specific problem, and s indicates the linear order of
accuracy of the time integrator.

Proof. See [154, Theorem 3.2 and Corollary 3.1].

Remark 27. This result may be considered an instructive extension of Theorem 13,
since it is adaptable to arbitrary explicit RK schemes of any order with a variety of
DG discretizations, and goes beyond the hyperbolic conservation laws. The error bound
O(hk+k′ +∆ts) implies that we can obtain optimal order of convergence in time while
it depends on the specific problem in space. We notice that the requirement of the
regularity, i.e., the exact solution has to be sufficiently smooth, still exists.

As we have seen, all the error estimates above-mentioned are restricted either to the
smoothness of the exact solution or to the linearity and dimensionality of the problem.
In addition, most of the analyses do not consider specific boundary conditions. To the
best of our knowledge, there is no a priori error estimate of the RKDG methods for
the (possibly non-smooth) level set transport problem (5.10) available yet. However,
Theorem 13 may be regarded as a useful error estimate if we assume the regularity of
the solution and prescribe a periodic boundary condition to our problem.

Numerical test

Although the RKDG methods for a variety of problems have been extensively verified
with respect to the convergence rates in an established literature, cf. [41], we present a
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numerical example of solving the level set transport equation in two spatial dimensions
by using the 4th-order RKDG method with polynomial order k = 3.

Let x = (x1,x2) be the standard Cartesian coordinate system. The PDE problem
(5.10) is considered such that a real-valued level set function ϕ(x, t) is defined on a
square background domain Ω̄ = (−1.2,1.2)2 for time t ∈ [0,T ], T = 1, whose negative
level sets represent a domain Ω(t) moving and transforming from a disk towards an
airfoil shape within the unit disk {x ∈ Ω̄ | x2

1 +x2
2 ≤ 1}. To this end, we define a velocity

field
w(x, t) = sgn(0.5− t) z [−x2,x1]T on Ω̄× [0,T ] (5.20)

that changes the direction at t= 0.5. The parameter z := max{1−x2
1−x2

2, 0} is set to
avoid the background boundary. The initial geometry is described by

ϕ0(x) := ϕ(x,0) = (x1−0.4)2 +(x2−0.4)2−0.252. (5.21)

This problem has an analytic solution

ϕ(x, t) = ϕ0(x0) for x0 = [x1 cos(zt)+x2 sin(zt),x1 sin(zt)+x2 cos(zt)]T (5.22)

that can be found through the characteristics. We measure the L2-error of the discrete
level set domain by integrating the exact level set function (which is zero on the exact
interface) along the discrete interface Γn

h := {x ∈ Ω̄ | ϕn
h = 0} and taking maximum for

n= 0, ...,N

max
0≤n≤N

∥ϕ∥L2(Γn
h) = max

0≤n≤N

(∫
Γn

h

ϕ2 ds
) 1

2
. (5.23)

To implement the 4th-order RKDG method, we generate an unstructured computational
mesh consisting of triangles with an initial mesh size h0 = 0.6 for the background
domain Ω̄. The initial time step ∆t0 = T

100 = 0.01 is set sufficiently small to satisfy the
CFL condition, cf. Remark 22. The refinements in space and in time are executed
in such a way that the mesh size h= 2−L h0 and the time step ∆t= 4−L∆t0 for the
uniform refinement level L= 0,1,2,3.

We plot the numerical results in Figure 5.2.
The curves in Figure 5.2 show the convergence rates higher than k+ 1

2 . We further
make Table 5.1 to look into the experimental orders of convergence (EOC).

From Table 5.1, we observe that the EOC is around 3.5 when k = 3 as the optimal
choice, which is in agreement with the prediction of Theorem 13.
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Fig. 5.2 L2-error convergence curves of the level set domain computed by the 4th-order
RKDG method for k = 1,2,3.

Table 5.1 L2-error table of the level set domain computed by the 4th-order RKDG
method for k = 1,2,3. The numbers are truncated to two decimal places without
rounding, but the EOC in round brackets are computed based on double precision and
then truncated to two decimal places without rounding.

L k = 1 k = 2 k = 3
0 4.98 ·10−2 5.45 ·10−2 1.06 ·10−1

1 1.67 ·10−2 (1.57) 1.17 ·10−2 (2.21) 7.27 ·10−3 (3.87)
2 3.41 ·10−3 (2.29) 3.99 ·10−4 (4.88) 9.59 ·10−5 (6.24)
3 8.81 ·10−4 (1.95) 3.46 ·10−5 (3.52) 8.71 ·10−6 (3.46)

5.3 Summary

In this chapter, we have proposed the numerical methods for solving the third sub-model
of the level set evolution problem. In particular, when a physical domain is represented
by a level set function, the evolution of the level set domain is governed by a hyperbolic
transport equation, which can be solved numerically by the Runge–Kutta discontinuous
Galerkin methods, provided that the velocity field in the equation is obtained by the
surface velocity extension methods. We have introduced two different methods for
extending the surface velocity other than the famous Fast Marching Method, namely,
the normal diffusion and the ghost penalty extension methods that follow the same
mechanisms as discussed in the last two chapters. Moreover, we have introduced the
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space and time discretizations of the RKDG methods, which are sufficiently accurate
and robust for hyperbolic problems, followed by several notable error estimates and a
numerical test for the experimental order of convergence. This sub-model bridges the
previous two sub-models together for solving the osmotic cell swelling problem as a
toy model of the class of geometrically coupled solution-curvature-driven moving free
boundary problems, which will be implemented in the following chapter.





Chapter 6

Computation of the Geometrically
Coupled Problem

In Chapter 2 we have proposed the mathematical models of the geometrically coupled
solution-curvature-driven moving free boundary problem (FBP). In order to solve
the first sub-model numerically, in Chapter 3 we have developed the higher-order
isoparametric BDF Eulerian finite element method (Eulerian FEM) for PDEs on a
time-dependent domain enclosed by a level set hypersurface. For the second sub-model,
we have developed the high-order isoparametric stabilized trace finite element method
(TraceFEM) to compute the mean curvature vector of the bounding hypersurface
in Chapter 4. To solve the third sub-model, in Chapter 5 we have introduced two
extension methods for the solution-curvature-based velocity along with the high-order
Runge–Kutta discontinuous Galerkin (RKDG) methods for the evolution of the time-
dependent level set domain. In this chapter, we glue the building blocks all together
towards a proof-of-concept simulation of the geometrically coupled moving FBP, of
which the osmotic cell swelling problem represents as a toy model (i.e., osmosis model).
As discussed in Section 2.4, each equation in the osmosis model is indeed linear but
they are nonlinearly coupled into the system. A linearization is therefore necessary
for solving the system of equations numerically. To this end, we will introduce two
algorithms to decouple the system and to solve each linear sub-model within each time
step. The first strategy which we call weak coupling solves each equation only once
at each time step without the guarantee of uniform convergence, while the second
one called strong coupling searches the convergence of the solution satisfying all the
equations through a fixed-point iteration within each time step.
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6.1 The algorithms for the coupled system

Towards the nonlinearity of the coupled system of PEDs, there are two strategies we
call weak coupling and strong coupling. Roughly speaking, the weak coupling algorithm
linearizes the problems and solves each sub-model just once for each time step regardless
of convergence, while the strong coupling algorithm searches convergence of all the
variables through a fixed-point iteration within each time step before marching to the
next time step. The features of the two algorithms are summarized as follows:

• Weak coupling:

Cheap in computational cost,

Much more robust,

Relatively simple in implementation,

• Strong coupling:

Expensive in computational cost,

Less stable and even not convergent,

More complicated in implementation,

Next, let us introduce the two algorithms with flow chats.

6.1.1 Weak coupling algorithm

Recalling the procedure for unrolling the coupled system of equations and the corre-
sponding notation in Section 2.4, we follow the similar lines with a time discretization.
Based on a uniform partition of the time interval (0,T ] = ⋃

n=0,1,...,N (tn, tn+1] for a vari-
able vn = v(·, tn), the weak coupling pseudo-algorithm runs for time step n= 0,1, ...,N
as follows:

(1) With a level set function ϕn representing the interface by its zero level set, the
geometric equation (2.43a) gives the mean curvature κn:

κn←− A(ϕn) (6.1)

by using the stabilized isoparametric TraceFEM developed in Chapter 4, based
on a deformed mesh from the isoparametric mapping;
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(2) With a scalar-valued physical quantity un in addition to κn, the geometric
evolution equation (2.43b) gives the surface velocity wn:

wn←−B(κn,un) (6.2)

by simply adding the two factors;

(3) With the surface velocity wn and the unit normal as a function of ϕn by (2.43e),
the velocity extension equation (2.43d) and the consistency condition (2.43c) give
the compatible velocity field wn:

wn←− C(wn,ϕn) (6.3)

by using the velocity extension methods presented in Section 5.1, which is then
mapped from the deformed mesh back to the undeformed mesh, cf. Subsec-
tion 6.1.3 for details;

(4) With the velocity field wn, the level set transport equation (2.43f) based on the
initial condition (2.43g) at time tn and the boundary condition (2.43h) updates
the level set function ϕn:

ϕn+1←−D(wn,ϕn,ϕΩ̄) (6.4)

by using the RKDG methods introduced in Section 5.2, based on the undeformed
background mesh;

(5) With the level set function ϕn+1,ϕn, ...,ϕn+1−r, r ∈N, and the linearized velocity
field wn, the diffusion equation (2.43i) based on the initial condition (2.43k) at
time tn and the boundary condition (2.43j) updates the physical quantity un:

un+1←− E(ϕn+1,ϕn, ...,ϕn+1−r,wn,un) (6.5)

by using the isoparametric BDF-r Eulerian FEM developed in Chapter 3, based
on a deformed mesh from the isoparametric mapping;

(6) Loop back to Step (1) with updating the time step n:

n← n+1. (6.6)
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This weak coupling algorithm with linearization of the nonlinearly coupled system
works well if the uniform size of time step between the time instances ∆t= |tn+1− tn|
is chosen sufficiently small. Otherwise, one needs to search convergence within each
time step, which gives rise to the following strong coupling strategy.

6.1.2 Strong coupling algorithm

The strong coupling algorithm indeed follows the similar lines along with its weak
counterpart, but it is equipped with an additional residual function that measures the
distance between the current and the updated variables within a sub-time loop. The
residual function can be defined by

∆m
n := ∥ϕm−ϕn∥+∥um−un∥+∥wm−wn∥ ≤ δ (6.7)

where δ ∈ R+ is a positive constant of tolerance prescribed to control the difference.
We add this criterion to the end of step (5) in the weak coupling algorithm: if it
holds true then we continue to (6), or else go back to (1). Recalling the steps and the
corresponding notation in Subsection 6.1.1, the strong coupling pseudo-algorithm can
be summarized with the in-between time step m as follows:

(A) For n= 0,1, ...,N :

(1) κm←− A(ϕn)
(2) wm←−B(κm,un)
(3) wm←− C(wm,ϕn)
(4) ϕm←−D(wm,ϕn,ϕΩ̄)
(5) um←− E(ϕm,ϕn, ...,ϕn+1−r,wm,un)
(6) If ∆m

n > δ then go to (1) with (κn,wn,wn,ϕn,un)← (κm,wm,wm,ϕm,um)

(B) (κn+1,wn+1,wn+1,ϕn+1,un+1)← (κm,wm,wm,ϕm,um) and go back to (A).

Due to the additional criterion (6), this strong coupling algorithm does not march
forward to the next time step until the difference between the iterative solutions ∆m

n

is smaller than the tolerance δ. More specifically, in order to ensure the numerical
solution at a time instance satisfies all the equations in the coupled system, we solve
each of the sub-models multiple times and perform the fixed-point iteration to seek
convergence of the solution through a sub-time loop within each time step before
moving into the next time step. The strong coupling algorithm is therefore much more
time-consuming – and theoretically more accurate – than the weak one.
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6.1.3 Mesh transfer operator

Recall Subsection 3.1.4 and Subsection 3.2.1 where an operator is established to transfer
the functions between differently mapped meshes at different time steps. Similarly,
in the geometrically coupled problem we have the physical quantity u and the mean
curvature κ on isoparametrically mapped meshes but the level set function ϕ on the
background mesh that is undeformed, which gives rise to the requirement of using an
operator to transfer the functions from the deformed mesh to the undeformed one at
each time step.

More specifically, in Step (2) of the coupling algorithms we have u and κ to compute
the surface velocity w on an isoparametrically mapped mesh, and in Step (3) w is
extended to the velocity field w based on the unit normal n also with respect to the
deformed mesh. However, in Step (4) we intend to apply the velocity field w (defined
on the deformed mesh yet) to the undeformed background mesh in order to transport
the level set function ϕ, where a mesh transfer operator is needed to send w to the
background mesh. To this end, with the velocity fields on the background mesh and
the mapped mesh denoted by wm

Th
and wm

T m
h

respectively, we add the following step
between Step (3) and (4):

wm
Th
←− Π0

m(wm
T m

h
)

where Π0
m : Vm

h → Vh implies the mesh transfer operator analogously as in Subsec-
tion 3.1.4 and Subsection 3.2.1. Without this mesh transfer procedure, we can expect
that even the strong coupling algorithm would give a low-order result only.

6.2 Numerical experiments

As we have briefly discussed in Section 1.2, generally speaking, an analytic solution
to the geometrically coupled bulk-surface model is not known to exist, and even a
manufactured solution is not practicable, due to the complexity of the problem. It on
the one hand motivates us to develop the numerical methods aforementioned, while on
the other hand it also challenges us to carry out the convergence study. In other words,
we have to investigate some simplified examples in order to compare our numerical
results to the exact solutions that are accessible.

Basically, we could consider three options for the convergence study. First of all,
we may set super high orders for the numerical methods and then regard the result
as exact solution to be compared. This approach requires sufficiently high order of
accuracy in both space and time. However, the isoparametric BDF-FEM is limited to
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3rd order yet and the RKDG methods are known to have up to 5th order in time, which
are not qualified enough to be considered as exact. Secondly, a rotationally symmetric
and quasi-stationary solution is possible based on the assumptions of isotropic diffusion
and spherical geometry. In [132, Subsection 4.2] and in [160, Subsection 5.3.1] the
authors have tested a benchmark under this configuration. Assume a circle of an initial
radius R0, and the initial physical quantity u0 is spatially homogeneous, then the
conservation of u(t) ensures u(t)πR(t)2 = u0πR2

0 for all time t ∈ [0,T ], and hence

dR

dt
=−ακ+βu=−α

R
+ βu0R2

0
R2 (6.8)

holds true due to the mean curvature κ= 1
R and the geometric evolution Equation 2.2.

Once this ordinary differential equation (ODE) is solved for R(t), we get u(t) solved
and to be compared with uh(·, t) which is computed by our numerical methods. This
ODE does not have an explicit solution in a closed-form expression, though it can be
solved numerically by some standard ODE solver at some accuracy level, namely, the
solution is not truly exact. Trivially setting u0 = 0 results in the third choice we take,
where we have an analytic solution to the mean curvature flow, cf. Subsection 2.1.5.

In the first example, we will verify the weak and strong coupling algorithms with
the simplest shrinking circle problem. As a first benchmark, we will test the coupling
between the stabilized isoparametric TraceFEM for mean curvature vector and the
RKDG method for level set transport, and study the error convergence based on
the analytic solution to the mean curvature flow. Subsequently, we will perform a
proof-of-concept numerical simulation of the full osmosis model equipped with a more
flexible geometry in the second example. We will combine the three sub-models by
using the coupling algorithms, and implement the proposed numerical methods to solve
the geometrically coupled bulk-surface PDEs as a moving free boundary problem.

6.2.1 Mean curvature flow of shrinking circle

As a first benchmark for convergence study, we consider the shrinking circle problem,
which has analytic solution in a closed-form expression, cf. Chapter 6.

Recall the ODE system (2.21) that describes a shrinking ball under the prototype
mean curvature flow

R(t) =
(
R2

0−2(d−1)t
) 1

2 for t ∈ [0,T ), T = R2
0

2(d−1) (6.9)



6.2 Numerical experiments 157

where the initial condition Γ(0) = BR0(x0) is given. We simply take d= 2 and R0 = 1
for an initial unit circle and get the time-dependent exact domain area

A(t) = πR(t)2 = π(1−2t). (6.10)

A level set function is employed to represent the initial unit circle in the standard
Cartesian coordinate system x = (x1,x2) such that

ϕ(0) = x2
1 +x2

2−1. (6.11)

The level set domain evolves under a velocity field, which is obtained by velocity
extension from the surface, defined as the negative mean curvature vector in (2.3). The
mean curvature vector is computed by using the stabilized isoparametric TraceFEM
with equivalent orders k = q = 4. For stabilization and extension, both the direct
version and the derivative jump ghost penalty are tested. By solving the level set
transport equation, the 4th-order RKDG method with polynomial order k = 4 gives
rise to a time-dependent level set solution ϕh(t) to compute the discrete domain area

Ah(t) =
∫

{ϕh(t)<0}
1 dx. (6.12)

The weak coupling algorithm and the strong one are both tested, but there is no
significant difference between the numerical results, though the computational cost
differs. See Figure 6.1 for a numerical simulation of the shrinking circle problem.

Analogously to (3.57) we can measure the numerical errors by defining two discrete
norms

∥A−Ah∥2L2(T ) :=
N∑

n=1
∆t

∣∣∣∣A(tn)−Ah(tn)
A(tn)

∣∣∣∣2, (6.13)

∥A−Ah∥L∞(T ) := max
n=1,...,N

∣∣∣∣A(tn)−Ah(tn)
A(tn)

∣∣∣∣2, (6.14)

for an initial time step ∆t0 = 0.02 and a final time T = 0.1. The errors are scaled by
|A(tn)|. We generate a square background mesh on (−1.2,1.2)2 with an initial mesh
size h0 = 0.5. By applying successive regular refinements in space h= 2−Lh0 and in
time ∆t= 2−L∆t0 for the refinement level L= 0,1,2,3,4, we plot the L2(T )-error and
the L∞(T )-error at 5 space-time levels in Figure 6.2.

From Figure 6.2 we observe that both the L2(T )-error and the L∞(T ) of the domain
area converge, with the convergence rates similar for different ghost penalty versions.
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−1 1

Fig. 6.1 A level set function representing a shrinking circle solved by the stabilized
isoparametric TraceFEM coupled with the 4th-order RKDG method. Six snapshots at
six time instances.

Although the higher-order discretization methods have been applied, the experimental
orders of convergence do not reach a higher rate. This is probably because of the mesh
transfer operation we ignored, cf. Subsection 6.1.3.

As a bottom line, this example demonstrates that the nonlinear coupling between
the two sub-models for mean curvature computation and level set transport, together
as a mean curvature flow, can be achieved by using our coupling algorithms. Next, we
will perform a proof-of-concept numerical simulation towards the full osmosis model.

6.2.2 Osmosis free boundary problem

As the final numerical example, we consider the fully coupled bulk-surface osmosis
model, which is a two-dimensional geometrically coupled solution-curvature-driven
moving free boundary problem, introduced in Section 2.4.
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Fig. 6.2 Convergence curves of the shrinking domain area computed by the RKDG
method and the stabilized isoparametric TraceFEM with normal diffusion extension.
The direct version (in red) and the derivative jump (in blue) ghost peanlty are compared.
Left: L2(T )-error. Right: L∞(T )-error.

We take two initial geometries into account: a pentagram-like star polygon {5/2}
and an octagram-like {8/2}, which can be described by the level set function

ϕ(x,0) =
√
x2

1 +x2
2− (0.5+0.15sin(p atan2(x1,x2))) = 0 (6.15)

for x = (x1,x2) the standard Cartesian coordinate system, where p= 5,8 is the number
of vertices in the Schläfli symbol to denote a p-pointed star polygon, and atan2 is the
2-argument arctangent.

On these initial domains the diffusion equation of some concentration (2.43i) is
posed, with the diffusion coefficient ν = 1. The initial condition (2.43k) is set to be a
simple cosine function. See Figure 6.3 for the initial data and geometry.

The surface velocity in the no-flux boundary condition (2.43j) is defined by (2.43b),
where the mean curvature arises from the geometric equation (2.43a). By velocity
extension (2.43d) from the surface (2.43c), the velocity field is manufactured for (2.43f)
to govern the evolution of the level set domain.

We plot the extended velocity vector field that drives the geometry to evolve and
the contour of the varying concentration at five time instances in Figure 6.4.

From Figure 6.4 we realize that the velocity field is typically dominated by the
mean curvature vector, based on the observation that the direction points inward
on the convex surface and outward on the concave surface, while the concentration
takes a minor effect. One may witness some kinks near the center, but we do not find
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0 1

Fig. 6.3 The initial data of the diffusion equation posed on the initial geometry. Left:
{5/2} pentagram; Right: {8/2} octagram; Color: The contour of the concentration.

non-smoothness when we zoom in the contours. Actually, they are just the vectors in
different colors and restricted to the image quality.

We plot the contour of the concentration in a 3d view at four time instances in
Figure 6.5. From Figure 6.5 we observe the diffusion phenomenon of the concentration,
namely, the diffusion equation is smearing the concentration over the evolving domain.
On the one hand, the concentration tends to drag the fingers out of the body, but on
the other hand, the mean curvature vector drives the domain shape flowing from a
star polygon towards a disk.
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0 1

Fig. 6.4 The evolving domain with the velocity vector field and the contour of the
concentration. Left: {5/2} pentagram; Right: {8/2} octagram; Color: The contour of
the concentration; Vector: The velocity field.
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0 1

Fig. 6.5 A 3d view of the concentration on the evolving octagram-like {8/2} star
polygon at four different time instances.



Chapter 7

Conclusion and Outlook

Towards the numerical simulation of the geometrically coupled solution-curvature-
driven moving free boundary problem (FBP) modeled in Chapter 2, we have proposed
the following discretization methods: an isoparametric BDF-Eulerian finite element
method (FEM) in Chapter 3, a stabilized isoparametric trace finite element method
(TraceFEM) in Chapter 4, two velocity extension methods based on ghost penalty
or normal diffusion, and the Runge–Kutta discontinuous Galerkin (RKDG) FEM
in Chapter 5. The numerical methods have been analyzed for provable high order
of accuracy, and implemented in solving the coupled bulk-surface osmosis model in
Chapter 6, where a diffusion equation is posed on a bulk evolving with a mean curvature
flow of the bounding surface. In this final chapter, we summarize the most important
features of these methods and the main contributions of this research. An outlook for
open problems in the future work will conclude this thesis.

7.1 Summary

In this thesis, we take advantage of the geometrically unfitted discretizations for the
coupled bulk-surface osmosis model where the geometry is not fitted to the underlying
mesh but described implicitly by a level set function, which gives the capability of
handling large deformations of the geometry. To this end, mainly two high-order
unfitted discretization methods have been introduced, developed, and analyzed, namely,
the isoparametric BDF-Eulerian FEM and the stabilized isoparametric TraceFEM.
The former is applied for solving an advection-diffusion equation posed on a given
evolving domain at provable higher order of accuracy, which is computationally efficient
and robust for handling deformations or even topological changes of the geometry,
and is promising to be extended for more complicated PDEs either on multi-phase
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domains or on surfaces. The latter is proposed for solving the geometric equation
of the discrete mean curvature vector of hypersurface, which is provably stable and
arbitrarily high-order accurate. Apart from these two innovative methods, two velocity
extension methods for smoothly extending the velocity from surface to bulk have also
been formulated and implemented. These building blocks are constructed, together
with the classical RKDG methods that solves an advection equation of the level set
function in order to transport the geometry, by using strong or weak coupling strategy
for the proof-of-concept simulation of the coupled bulk-surface osmosis model.

7.2 Open Problems and Future Work

As we have seen in the proof-of-concept simulation, this work towards solving the
geometrically coupled solution-curvature-driven moving FBP in the sense of high-order
accuracy is still very original. However, this sophisticated problem has motivated
us to develop novel discretization methods that are able to solve the corresponding
sub-models more accurately and efficiently. To each of these sub-models, we propose
several open problems.

Firstly, to the unfitted isoparametric BDF-Eulerian FEM, it is straightforward to
investigate more complicated PDE problems beyond the advection-diffusion equation.
Indeed, we have tested this method with the two-phase moving interface problem
in Subsection 3.3.2. A recent study on the low-order Eulerian FEM for the time-
dependent Stokes problem on moving domain has been proposed in [23] and [157],
where an extension to higher order of accuracy, or to the Navier–Stokes equations,
is possible. Another improvement may be on the time stepping schemes other than
the BDF family, where the explicit Euler scheme and the trapezoidal rule have been
discussed in [89]. As an alternative the unfitted isoparametric space-time FEM in [130]
can also be introduced into the coupled system instead of the Eulerian FEM. Moreover,
the aforementioned methods may be further extended for PDEs from bulk to surface,
cf. [103, 123, 125].

Secondly, to the stabilized isoparametric TraceFEM, one considerable open problem
is the further analysis for optimal order of convergence. We have proven the arbitrarily
high order of accuracy, however, the numerical experiments suggest an optimal con-
vergence rate of O(hk+1 +hq), which is one order better than the predicted rate of
O(hk+1 +hq−1). The problem that if we may avoid the loss of one order of accuracy
at the geometrical error is yet to be addressed. Furthermore, applying the unfitted
finite element discretization to geometric objects other than the mean curvature is an
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interesting topic. In particular, Deckelnick and Elliott have mentioned the Gaussian
curvature and the Willmore flow in [51], and Fritz has studied the discrete Ricci
curvature and the Ricci–DeTurck flow in several articles, cf. [66, 67]. Most of the
works are, however, based on the fitted discretization, because in the unfitted scenario
an appropriate embedding is strictly required.

Finally, to the nonlinear coupling we have found that, on the one hand, the
weak coupling algorithm is computationally cheap and robust, but it may not give
convergence of the solution within every time step. On the other hand, the strong
coupling strategy can search the convergence point that satisfies the system of equations,
but the corresponding iterations are particularly time-consuming if one chooses a small
tolerance, which makes the algorithm not very applicable. Therefore, the development
of an accurate and efficient linearization method based only on several consecutive
solution states is a promising open problem.

To conclude, we emphasize that the potential extensions and the real-world ap-
plications of the geometrically coupled moving FBP may be far beyond the scope
of this thesis, though the numerical approaches used in this thesis such as the level
set method is not yet applicable to some advanced open problems. As we have
stated at the beginning of Section 2.1, the idea might be extended to some geometric
wave equations on a Lorentzian manifold, e.g. the Einstein field equations and the
Yang-Mills equations, cf. [6, 9, 58, 147, 158, 165], which are particularly attractive
to physicists and natural scientists. The study of numerical methods for geometric
flows and their applications to quantum field and gauge theory seems a promising
subject area, cf. [10, 12, 163]. As for the applications in state-of-the-art technology
and engineering, for instance, we have seen a well-established literature regarding
the numerical simulation of magnetohydrodynamics (MHD) of free surface flow for
plasma physics, especially in toroidal confinement fusion reactors like a tokamak, cf.
[15, 16, 69, 84, 88, 93, 117, 118, 139, 156].

Although there are still many open problems and future work to do, as Prof. David
Hilbert ever said one century ago, we must know, and we will know.
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