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Abstract

In recent years, many types of machine learning potentials (MLPs) have been developed,
which are used to represent the high-dimensional potential-energy surface (PES) of a chem-
ical system with similar accuracy as electronic structure methods. Commonly used MLPs
rely on atomic energy contributions dependent on the local chemical environments. Fre-
quently, in addition to the total energies, also atomic forces are used to construct the
potentials, as these provide detailed local information about the PES. Since many sys-
tems are too large for electronic structure calculations, the MLP training is based on
smaller subsystems like molecular fragments or clusters, providing reliable reference forces.
Additionally this procedure can substantially simplify the construction of the training sets.

In this work, a well-defined method is proposed to determine structurally converged molec-
ular fragments providing reliable training forces for high-dimensional neural network po-
tentials (HDNNPs) based on the analysis of the Hessian. The Hessian permits the inves-
tigation of the atomic force dependency on the local environment and thus, the method
serves as a locality test and allows to estimate the importance of long-range interactions.
The procedure is illustrated for a series of simple, quasi-one-dimensional molecular model
systems and the metal-organic frameworks IRMOF-1 (commonly known as MOF-5), -10
and-16 as examples for complex organic-inorganic hybrid materials. A fragment radius is
dervied to construct size-converged molecular fragments as the foundation of a HDNNP
data set.

In the formalism of the HDNNP, the atomic force components depend on twice the cutoff
radius compared to the atomic energy contributions. Because of this relation another
set of size-reduced molecular fragment is derived to construct another HDNNP data set.
Both data sets can be represented with similar accuracy. The validation of the resulting
HDNNPs illustrates the equivalence of the predictions. Consequently, very efficient small
molecular fragments are proposed for the construction of HDNNP data set.
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Chapter 1

Introduction

Our modern everyday life is based on computers and related to devices including microchips
in general. Although, computers became unavoidable in our modern society, most people
would repel the idea of computers or machines pervading our daily life. We use computers
to prepare projects for school, university, work and our private life; we write formal and
informal letters, e-mails and list; we use computers for learning from written and video
tutorials; and we use computers for entertainment, to mention only a few points among
many others [1].

Also the ever-increasing computational power described by Moore’s law [2], boosted the
importance of computers. Furthermore, computers are of huge importance in industry [3]
and also scientific research. Exemplary, well-known applications of computer simulations
in science are related to the physics of the weather [4], modelling infectious diseases [5] and
the virtual human body [6].

In addition, computers are used in chemistry to find stable atomic arrangements of molecules,
calculate energy differences to derive thermodynamic properties of chemical reactions and
to analyze the interactions of molecules. Thus, the computer is often used as a tool to
solve the many-body problem as formulated by the electronic Schrödinger equation (cha. 2)
providing the energy and atomic forces of a chemical system [7].

Among the static, equilibrium properties, also the evolution of a chemical system over
time in simulations is of interest. Despite the ever increasing computational power over
the last decades, simulation procedures like molecular dynamic (MD) simulations remain
a challenging task, because of the growing complexity of investigated problems being in-
herently connected to larger and more realistic model systems with an increasing need of
accuracy. The bottleneck of these simulations is the efficient and accurate description of
the atomic interactions. The functional mathematical expression describing these atomic
interactions is the potential energy surface (PES), which is a multi-dimensional, real val-
ued function defining the potential energy, its gradient – the atomic forces – of a system
dependent on the atomic positions. Furthermore, the PES is fully determined by solving
the electronic Schrödinger equation for all atomic arrangements. First principle electronic
structure methods like Density Functional Theory (DFT) allow accurate calculations of
arbitrary points on the PES, which is mostly related to the electronic ground state but
not restricted to it. Nevertheless, for applications like MD simulations, the energy and
atomic forces for a huge number of atomic configurations are required on-the-fly, which
is only feasible for low-dimensional small systems on short timescales by electronic struc-
ture methods, due to the demanding calculations. Another option is provided by simple,
analytic potentials. These types of inter atomic potentials define a direct relation be-
tween the structure and the corresponding energy of the system. However, they introduce
physical approximations and formulate a compromise between efficiency and accuracy. A
third option is formed by machine learned potentials (MLPs) [8–10], which combine the
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advantages of electronic structure methods – the accuracy – and the simple, analytic po-
tentials – the efficiency. Machine learning methods as a subtopic of artificial intelligence
are used in autonomous vehicles, robotics and gaming [11] to mention only a few examples.

Machine learning methods can also be used to represent any complex PES function based
on some provided energies and forces – the training data – derived from demanding elec-
tronic structure calculations for the specific system of interest. In general, MLPs consist of
three parts: training data describing the relation of energy and structure, the descriptors
transforming the structure data into a readable format of the machine learning method
and the machine learning method itself. For neural networks (NN) – one of the first ma-
chine learning methods – it could be proven to represent any mathematical function [12,13].

Atomic interactions are invariant with respect to the translation and rotation of the un-
derlying system, to the permutation of identically charged nuclei and to any type of point
group symmetry, since the effective coordinates of the atoms remain unchanged by these
operations. Consequently, these invariances are also valid for the PES and in conclusion,
the descriptors have to fulfill these conditions to ensure the effective coordinates resulting
from symmetry or permutational equivalent structures are related to the same input for the
MLP and thus to the same energy and atomic forces. Additionally, the descriptors itself
have to avoid further artificial symmetries to provide a biunique mapping of the structures.
In contradiction to that, this is only assured for a one-to-one correspondence between the
structural degrees of freedom and the descriptors, introducing an undesired dependency
on the system size. Along with these fundamental conditions, some functional conditions
are essential like the need of being differentiable with respect to the atomic coordinates for
the analytic determination of atomic forces.

Extending applicability of machine learning methods increased the attention on this field
and thus, different MLPs were developed, which can be categorized in four generations [10].
The first generation of MLPs came up with the advent of NNPs [14], which were limited
to low-dimensional systems, due to the NN architecture dependence on the system size
applied. Suitable descriptors for these systems were already quite challenging, since fun-
damental conditions like the permutational invariance were not fulfilled. To overcome
the permutational invariance problem and the limitation to only low-dimensional sys-
tems, the second generation of MLPs – the high-dimensional neural network potentials
(HDNNPs) [10, 15–18] – were invented and applied to systems of tens of thousands of
atoms. Furthermore, the concept of the nearsightedness in quantum chemistry [19] was
introduced, hence the total potential energy Etot of the system can be formulated as a sum
of M strictly local atomic energy contributions

Etot =
M∑
A=1

EA , (1.1)

which are calculated by element-specific atomic NNs. Moreover, the local atomic environ-
ment – the input information of the element-specific atomic NNs – is described by a new
class of descriptors the atom-centered symmetry functions (ACSFs) [20]. The ACSFs fulfill
the translational, rotational and permutational invariance and describe the environment of
an atom up to a predefined cutoff radius rcut. As a consequence, the HDNNP architecture
is fixed, due to the fixed architecture of the element-specific atomic NNs and the HDNNP
scales linearly with increasing system size.
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Also other types of MLPs were invented within this second generation like Gaussian ap-
proximation potentials (GAPs) [21, 22], moment tensor potentials (MTPs) [23], spectral
neighbor analysis potentials (SNAPs) [24], atomic cluster expansion (ACE) [25] and many
others [26–30] based on different types of structural descriptors like the already mentioned
ACSFs, the bispectrum [21], the Coulomb matrix [27], smooth overlap of atomic positions
(SOAP) [31] and others [29, 30, 32–36] with similar predictive and descriptive power [37].
Second generation MLPs consider the major part of the atomic interactions by the strict
locality, however the predictions for systems with sufficiently large long-range interactions
like electrostatics might fail, since all interactions beyond the cutoff radius are truncated
and equation 1.1 is not valid anymore. To include these truncated interactions, the third
generation of MLPs needs to be considered, including long-range electrostatic contributions
calculated by environment-dependent atomic charges [38–40]. Although this type of MLPs
include long-range electrostatic interactions described by another set of element-specific
atomic NNs, non-local structural or electronic effects on the charge of a certain atom are
not included. Accordingly, the equation 1.1 also cannot be hold and other methods are
needed for systems with present long-range charge transfer, guiding to the recent forth
generation of MLPs [40–44]. In summary, there is a highly active research in this field
since the advent of second generation HDNNPs.

As already mentioned an essential improvement in second generation MLPs is to split the
complex full-dimensional PES into lower-dimensional atomic energy contributions (eq. 1.1).
Although, these atomic energy contributions are no physical observables but mathematical
auxiliary quantities, the MLP training is performed by the total potential energy of the
training structures with an implicit partitioning onto the atomic energy contributions by
the MLP. Especially, this separation into atomic energy contributions is not unique for
large systems and a source of error compensation, since the atomic energy contributions
just need to represent the total potential energy of the specific structure without further
restrictions. Error compensation effects reduce the transferability of the potential. Among
the descriptors and the machine learning methods, thus also the training data set is a very
crucial and effort demanding element of the MLP development. Therefore, it is desired to
preserve as much information as possible from the demanding electronic structure calcula-
tions, reducing the overall number of training structures, which increases simultaneously
the efficiency of the MLP development. Nowadays, it is common practice to use atomic
forces also for the MLP training procedure [45–48]. Additionally, the atomic forces are
physically meaningful oberservables, which provide local information of the PES. Hence,
each structure provides 3M atomic force components as additional information for the PES
representation, if atomic forces are considered in the MLP training procedure.

For the application of MLPs for example in MD simulation, the atomic forces provided
by the MLP are analytically calculated directly as the negative gradient of the PES with
respect to the atomic positions, which ensures energy conversation trough the simulation.
Consequently, high consistent energies and atomic forces are mandatory in the training
data set and thus, highly converged electronic structure calculations, including the set-
tings for the calculations but also the size of the training structures, are required for
the training data set. Besides, the strict locality of atomic energy contributions enables
the common procedure to use small systems for the MLP training process, although the
resulting MLP will be applied to larger systems as demonstrated by HDNNPs for bulk
systems [46,49] to molecules [50]. However, this raises the question for the sufficient mini-
mum training system size to ensure accurate atomic forces within a predefined convergence
range. Definitely, this minimum size will be highly system dependent, due to very different
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atomic interactions in different molecules and solid-state materials. A method to analyze
the locality of atomic interactions probed by environment dependency of the atomic force
components will result in the minimum system size required for the MLP training systems
and additionally will asses the applicability of the MLP generation type needed, thus the
applicability of equation 1.1 and second generation MLPs or more recent generation types.

In this work the development of a method to analyze the dependency of the atomic forces
on the local environment is of special interest. A well-defined procedure is aspired as the
foundation of the method. Ideally, the individual dependence of the atomic force compo-
nents on each specific atom and its coordinates can be derived and the method circumvents
any statistical sampling of atomic configurations to avoid randomized factors. Finally, the
method provides a clear and simple technique how to construct minimum sized MLP train-
ing systems including size-converged atomic forces. Additionally, the method assesses the
crucial atomic interactions to derive the MLP generation, which in principle accurately
represents the training data. Finally, a HDNNP is constructed and validated.

Outline of this Work

To address these problems, three metal-organic framework (MOF) structures – MOF-5
also known as IRMOF-1 [51, 52] and the related homologous IRMOF-10 and -16 [53] with
increased linker molecules – are chosen as challenging benchmark systems, due to the huge
bulk unit cells and the complex atomic interactions within the systems. MOFs form a
class of organic-inorganic hybrid materials with fascinating properties and a wide range of
applications, such as gas storage and separation, catalysis and optical devices [54–58]. In
general, MOFs consist of organic linker molecules and inorganic metal-oxo clusters – the
secondary building units (SBUs) – to form highly-ordered, nanoporous, crystalline and co-
valently bond three-dimensional structures. A huge diversity of SBUs and linker molecules
exists, which can be connected to a huge amount of different MOFs [53, 54, 59–61]. Even
MOFs combining different SBUs and/or linker molecules have been reported [59,62]. Fur-
thermore, post synthetic modifications [54, 63, 64], different functionalizations [54, 57] and
MOF composites [65] increase the diversity and structural options for this class of materi-
als. Also theoretical investigations are of high interest in order to develop new MOFs and
to analyze and to predict their properties [66]. For such theoretical studies reliable and
accurate interatomic potentials are needed [67,68].

The desired size-converged HDNNP IRMOF training fragments are derived from the DFT
optimized bulk unit cells (sec. 4.1) to construct a HDNNP based on DFT reference calcu-
lations, which is applied to the three IRMOF bulk structures. Thus, for each in-equivalent
atomic site of the bulk structures, a size converged fragment, describing the bulk-like en-
vironment of this specific atomic site, needs to be defined. In section 4.2, drawbacks of the
convergence test for the atomic force vector of the central bulk-like atom, as a function of
the environment radius, are discussed. Owing to this drawbacks, the Hessian-based local-
ity test of the atomic forces is illustrated in section 4.3. Firstly, the locality test is applied
to a series of simple one-dimensional model systems including different types of bonding,
which affects the interaction range (sec. 4.4). Coupled with the analysis of the IRMOF
structures and the in-equivalent atomic sites, size-converged HDNNP training fragments
are determined to construct a HDNNP training data set.
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Because of the dependency of the atomic forces on twice the cutoff radius, another set
of size-reduced molecular fragments are used to construct a HDNNP training data set
(sec. 4.7). The validation of these resulting HDNNPs are performed to reveal conceptional
significant differences of the HDNNPs.





Chapter 2

Theoretical Background

The main focus in computational chemistry is to understand and predict material prop-
erties without experimental data. The tools to gain this understanding are first-principle
calculations, which are used to solve the time-independent, non-relativistic Schrödinger
equation [69, 70]

HΨ = EΨ. (2.1)

Here, the wave function Ψ defines all properties and contains all information about the
underlying system, which contains N electrons and M nuclei. Thus, the wave function
depends on N +M particle coordinates x [71–73]. The Hamilton operator (Hamiltonian)
H decomposes into different parts of energetic contributions, given in atomic units

H = T̂e + T̂n + V̂en + V̂ee + V̂nn,

= −1

2

N∑
i

∇2
i −

1
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(2.2)

The kinetic energy is determined by the T̂ operators for the i electrons and A nuclei
including the squared nabla operator ∇2 and the mass ratio MA of atom A. The V̂
operators characterize the potential energy contributions for the electron-nucleus (V̂en) for
the nucleus A and the electron i dependent on their distance riA and the nuclear charge ZA,
respectively for inter electronic (V̂ee) and the inter nuclear interactions (V̂nn). The solution
of the Schrödinger equation provides the total energy of the specific system. However,
there are only a few special cases with analytical solutions to equation 2.1, due to the
huge number of variables determining the wave function. Since the N electrons and M
nuclei depend on three spatial r = (x, y, z) and one spin s = α, β coordinate, summing
up to 4N + 4M coordinates x = (r, s) of the wave function. The Born-Oppenheimer
Approximation (BOA) exploits the huge mass difference of nuclei and electrons to separate
slow nuclear and fast electronic variables from each other [74]. Even the lightest nucleus
– a proton 1H – is 1800 times heavier (MA = 1800) than an electron. Hence, in BOA
the electrons experience a field of fixed nuclei and respond instantaneously to any changes
of the nuclear positions. Furthermore, it decouples the electronic and nuclear degrees of
freedom, leading to the electronic Schrödinger equation and the electronic Hamiltonian

Helec Ψelec = Eelec Ψelec,

Helec = T̂e + V̂en + V̂ee.
(2.3)

Accordingly, the kinetic energy of the nuclei vanishes T̂n = 0 and the nuclear interactions
remain unchanged V̂nn = const. but depend parametrically on the nuclear positions, as
well as the electronic wave function Ψelec. As a result, the concept of the potential energy
surface (PES) is introduced, defining the energy landscape of the nuclear arrangement. In
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the following, the subscript elec will be omitted, thus H and Ψ refer to their electronic ver-
sions as given in equation 2.3, since the nuclear wave function is commonly not of interest.

The huge number of 4N wave function variables and thus the complexity of the wave
function methods is a big disadvantage, hence, analytic solutions are still lacking. The first
attempt to solve equation 2.3 numerically was suggested with the Hartree-Fock method
(HF) [75–77], which states the expectation value for any trial wave function Ψ̃, provides a
larger trial energy Ẽ and thus an upper boundary for the exact energy E0 resulting from
the exact wave function Ψ0. This is known as the variational principle [78]

E0 ≤ Ẽ =
〈

Ψ̃
∣∣∣H∣∣∣Ψ̃〉 . (2.4)

The wave function itself is not an observable and only a mathematical concept describing
all properties of a specific system. Its squared modulus can be interpreted as the proba-
bility density specifying to find the electrons 1, 2, ..., N within the small volume elements
dr1, dr2, ..., drN at the same time

|Ψ(x1,x2, ...,xN )|2 dx1 dx2 ... dxN . (2.5)

2.1 Density Functional Theory (DFT)

The quantum mechanical framework, which uses the probability density ρ instead of the
wave function Ψ is called Density Functional Theory (DFT). The probability density is
obtained by integrating the squared modulus of the wave function over all electronic coor-
dinates but one spatial coordinate ri and scaled by the number of electrons N

ρ(r) = N

∫
|Ψ(x1,x2, ...,xN)|2 ds1 dx2 ...dxN . (2.6)

Since all electrons are indistinguishable, each electron i illustrates the same probability
density and all electronic coordinates are equivalent. To be exact, in this case the prob-
ability density ρ specifies the probability density of the presence of any electron i inside
an incremental volume element dr – commonly known as the electron density – while the
system is in state Ψ. The electron density integrates to the total number of electrons N
in the system; for distances r1A of electron 1 to any nucleus A near infinity the density
vanishes and furthermore, over the whole space the density shows non-negative values∫

ρ(r) dr = N,

lim
r1A→∞

ρ(r) = 0,

ρ(r) ≥ 0.

(2.7)

At the nucleus positions rA the density shows cusps providing information about the nu-
clear charge ZA

lim
r1A→0

[
∂

∂r
+ 2ZA

]
ρ̄(r) = 0. (2.8)

Consequently, the electron density ρ contains all information about the system (total num-
ber of nuclei M , type of nuclei via their charges ZA, nuclei positions rA, the total number
of electrons N and related quantities like the overall charge) and defines it completely.
Additionally the electron density is an observable, by e. g. X-ray diffraction, contrary
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to the wave function. The reduction to 3 spatial coordinates is independent on the sys-
tem size and one of the major advantages of the electron density. Moreover, only one- and
two-electron terms occur in the Hamiltonian (eq. 2.2), so the explicit consideration for each
single electron is not necessary in terms of indistinguishability of the electrons i. Vice versa,
the wave function may provides redundant information and the electron density appears
to be a more central and simplified variable of quantum mechanical systems. This offers
the opportunity, to investigate much larger systems, including more atoms and electrons,
like complex bulk structures in materials science or enzymes and macromolecules in biology.

The first model trying to connect the density to the total energy of the system via a
functional H

E = H [ρ] , (2.9)

is given by the Thomas-Fermi Model (TF). However, this model is only of historical interest,
since the TF is a crude approximation. Nevertheless, the energy is based only on the
electron density and classical terms for electron-electron and electron-nuclear interactions.
The TF defines the ground state of the system is given by the wave function Ψ0, which is
related to the ground state electron density ρ0 and thus to the ground state energy E0 via
a functional (eq. 2.9). Additionally, to determine the required ground state density ρ0, the
TF deploys the variational principle, although the proof has still been lacking.

2.1.1 Hohenberg-Kohn Theorems

The foundation of modern DFT methods is given by the Hohenberg-Kohn Theorems (HK)
[79], which do not provide any instructions to identify the ground state electron density
ρ0, nor any hint for the functional H (eq. 2.9). Anyway, HK are the proof of existence for
this functional H and declare the ground state energy E0 is deducible from the ground
state electron density ρ0 in general.

The First Hohenberg-Kohn Theorem

The physical legitimization of replacing the wave function by the electron density is given
by the first theorem. It defines two different nuclear arrangements, resulting in two different
external potentials Vext and V

′
ext – different by more than just a constant – lead to the same

electron density. From this follows, two different wave functions, two different Hamiltonians
and two different ground state energies

H = T̂ + V̂ee + V̂ext and H′
= T̂ + V̂ee + V̂

′
ext, (2.10)

E0 = 〈Ψ|H|Ψ〉 6= E
′
0 =

〈
Ψ

′
∣∣∣H′
∣∣∣Ψ′
〉
. (2.11)

Although, these two wave functions are different, they result in the same electron density,
as assumed

Vext ⇒ H⇒ Ψ⇒ ρ0(r)⇐ Ψ
′ ⇐ H′ ⇐ V

′
ext. (2.12)

Since the squared modulus of the wave function, used for the construction of the electron
density, is not biunique, the assumption (eq. 2.12) can be valid. Nonetheless, these two wave
functions Ψ

′ and Ψ can be inserted in equation 2.3, together with the different Hamiltonians
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H and H′

E0 <
〈

Ψ
′
∣∣∣H∣∣∣Ψ′

〉
=
〈

Ψ
′
∣∣∣H′
∣∣∣Ψ′
〉

+
〈

Ψ
′
∣∣∣H−H′

∣∣∣Ψ′
〉
,

E0 < E
′
0 +

∫
ρ(r)(Vext − V

′
ext)dr, (2.13)

H′
: E

′
0 < E0 −

∫
ρ(r)(Vext − V

′
ext)dr, (2.14)

E0 + E
′
0 < E

′
0 + E0. (2.15)

This results in two equations for H and H′ (eq. 2.13 and eq. 2.14), which sum up to a
physical and mathematical contradiction (eq. 2.15) and states the assumption (eq. 2.12)
wrong. As a consequence, the ground state wave function determines uniquely the ground
state electron density and therefore, the ground state energy, including all its components
being functionals of the ground state density

H [ρ0] = Vext [ρ0] + T [ρ0] + Vee [ρ0] ,

=

∫
ρ0(r)Vextdr + T [ρ0] + Vee [ρ0] ,

=

∫
ρ0(r)Vextdr + FHK [ρ0] , (2.16)

FHK [ρ0] = T [ρ0] + Vee [ρ0] . (2.17)

The universal and system independent Hohenberg-Kohn functional FHK forms the holy
grail of DFT methods. In reality, nothing is known about the mathematical of FHK. Only
the classical Coulomb interaction J [ρ]

Vee [ρ] = J [ρ] + Encl [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1 dr2 + Encl [ρ] , (2.18)

is known, while Encl [ρ] summarizes the non-classical part of the electron-electron interac-
tions like self-interaction correction (since J [ρ] 6= 0 in an one-electron system), exchange
and correlation effects.

The Second Hohenberg-Kohn Theorem

All properties of the system can be derived from the ground state density, formally also
for the excited states, but by different functionals, since FHK connects to the ground
state energy. However, commonly DFT is called a ground state method, because FHK

provides only the ground state energy for the ground state electron density. For all other
trial electron densities ρ̃, also fulfilling the restrictions in equation 2.7, the functional H
connects to energies higher than the ground state energy E0, which is exactly the variational
principle, shortly introduced above, known from wave function methods

E0 ≤ H [ρ̃] . (2.19)

This concept the ground state energy is the minimum energy of the system is restricted
only to the ground state and cannot be applied to excited states.

2.1.2 Kohn-Sham Approach

In addition to the Hohenberg-Kohn theorems, the Kohn-Sham Approach (KS) is very
fundamental in DFT methods, since KS offers the lacking scheme for obtaining the ground
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state electron density and energy [80]. A non-interacting reference system (nic) based on
one-electron orbitals is introduced to provide a simple and efficient way for calculating the
kinetic energy contributions similar to wave function methods. A system of non-interacting
electrons moving in an effective potential is exactly described by a single Slater determinant
as in HF [81]. Consequently, the Hamiltonian for this system is formulated as

Hnic = −1

2

N∑
i

∇2 +

N∑
i

Vnic(ri), (2.20)

and the related wave function Θnic is constructed by a set of one-electron spin orbitals {ψ}

Θnic =
1√
N !

∣∣∣∣∣∣∣
ψ1(x1) · · · ψN (x1)

...
. . .

...
ψ1(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣ . (2.21)

The following mathematics is equivalent to HF, thus the optimization of Θnic is performed
by varying {ψ} to minimize the resulting energy, restricted by the orthogonality 〈ψi|ψj〉 =
δij

∂Enic

∂ψ
=

∂

∂ψ
〈Θnic|Hnic|Θnic〉

!
= 0. (2.22)

This procedure leads to the Kohn-Sham operator f̂KS and the Kohn-Sham orbitals ψi

f̂KS ψi = εi ψi, (2.23)

f̂KS = −1

2
∇2 + Vnic(r). (2.24)

The connection of the real and non-interacting system is given by the potential Vnic

(eq. 2.20) satisfying the condition

ρnic(r) =
N∑
i

|ψi(r)|2 = ρ0(r). (2.25)

Equivalent to the classical Coulomb part in Vee (eq. 2.18), KS describes parts of T (eq. 2.15)
with the introduced non-interacting system

Tnic = −1

2

N∑
i

〈
ψi|∇2|ψi

∣∣ψi|∇2|ψi
〉
6= Texact. (2.26)

Definitely, there is a difference to the exact kinetic energy Texact. Nevertheless, KS sepa-
rates all known contributions from FHK (eq. 2.15) and merges the unknown parts to the
exchange-correlation functional Exc

F [ρ] = Tnic [ρ] + J [ρ] + Exc [ρ] , (2.27)
Exc [ρ] = Texact [ρ]− Tnic [ρ] + Vee [ρ]− J [ρ] . (2.28)
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The above required potential Vnic of the non-interacting system, is determined by mini-
mizing

H [ρ] = Tnic [ρ] + J [ρ] + Exc [ρ] + Ene [ρ] ,

= −1

2

N∑
i

〈
ψi|∇2|ψi

∣∣ψi|∇2|ψi
〉

+
1

2

N∑
i

M∑
A

∫ ∫
|ψi(r1)|2 1

r12
|ψj(r2)|2 dr1 dr2,

+ Exc [ρ]−
N∑
i

M∑
A

∫
ZA
r1A
|ψi(r1)|2 dr1,

(2.29)

which is performed by varying ψi. Resulting in(
−1

2
∇2 +

[∫
ρ(r2)

r12
dr2 + Vxc(r1)−

M∑
A

ZA
r1A

])
ψi =

(
−1

2
∇2 + Veff(r1)

)
ψi = εi ψi,

(2.30)
and stating by comparison of the equations 2.24 and 2.30

Vnic(r1) ≡ Veff(r1). (2.31)

Since the solution of equation 2.29 depends on the ground state electron density, which is
determined by the one-electron orbitals, defined in equation 2.24 being again dependent
on the effective potential and thus on the electron density, an iterative solution process is
required similar to HF. Up to this point KS and in general DFT methods are accurate, since
no approximations are included. However, the lacking knowledge about the mathematical
expression for Exc, causes the need of approximations leading to inaccuracies and to non-
exact DFT methods, in practice.

2.1.3 Approximations to the Exchange-Correlation Functional

The major contributions are known exactly in the KS (eq. 2.29), whereas the only exception
is conglomerated in the exchange-correlation functional Exc. Thus, the accuracy of DFT
methods exclusively depends on the approximation for Exc. In contrast to wave function
methods, the systematic instruction for continuously improving the accuracy of the DFT
ab initio results is not existent, being disadvantageous. Nevertheless, diverse Exc function-
als are used being different in the complexity with a trend of enhanced accuracy [82].

A first common approach is the local (spin) density approximation (LDA or LSDA) based
on a homogeneous electron gas. A concept of a system filling up an infinite volume with an
infinite number of electrons, charge neutralized by a positive background charge. Over the
whole space, the electron density illustrates a finite, but constant value. The underlying
functional ELDA

xc /ELSDA
xc for this model concept is known high in accuracy

ELDA
xc [ρ] =

∫
ρ(r) εxc (ρ(r)) dr, (2.32)

ELSDA
xc [ρα, ρβ] =

∫
ρ(r) εxc(ρα(r), ρβ(r)) dr, (2.33)

including the exchange-correlation energy per electron εxc. LDA only considers the local
value of the electron density, in contrast to the generalized gradient approximation (GGA),
which includes also the gradient of the electron density ∇ρ in the exchange-correlation
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contributions

EGGA
xc [ραρβ] =

∫
f(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)) dr. (2.34)

The integrand f may also include parameters adjusting theoretical results to experimental
data contrary to functionals like PBE solely based on physical quantities. Also higher order
derivatives like the Laplacian ∇2 are used in Exc functionals, which are called meta-GGA
functionals considering the kinetic energy density ∇2ρ.

2.2 Basis Set

Among the exchange-correlation functional Exc, also a set of basis functions {ψ} is re-
quired to be defined in order to construct the Slater determinant in equation 2.21. Several
atom-centered basis function can be combined by the linear combination of atomic orbitals
(LCAO) to describe molecular orbitals, describing bonding, non-bonding, anti-bonding or
free electron pairs, while thinking in terms of a molecule. Different types of atom-centered
basis functions exist. Slater type orbitals (STOs), are the analytical solution of hydrogen-
like systems. However, STO are computationally demanding, when calculating overlap
integrals. This disadvantage is overcome by Gaussian type orbitals (GTOs) being more
efficient in calculating overlap integrals, since LCAO of GTOs does not change the under-
lying mathematics. Furthermore, GTOs can be contracted to adapt the basis functions.
Combining the basis functions results in different basis sets like split-valence basis sets [83]
increasing the basis functions to describe valence electrons, correlation-consistent basis
sets [84] for a systematic converging to the complete basis set limit of post HF methods
or polarization-consistent basis sets [85] as the DFT counterpart of the latest. Further-
more, there are non-atom-centered basis functions like plane waves, which are common
for PBC systems. Among these analytic basis functions, there are also numerical basis
functions, called numerical atomic orbitals (NAO) with a highly flexible form due to the
pre-tabulated values. These basis functions can be quite efficient in calculations, although
numerical integration is needed.

2.3 Dispersion Corrections

Among inter atomic interactions, between directly bonded atoms, there are also interac-
tions between atoms not directly bonded to each other. These interactions can be sepa-
rated into polar/electrostatic interactions Estatic, which tackle the attraction of oppositely
charged atoms or molecular parts and non-polar, also named van der Waals (vdW) interac-
tions. The energy EvdW resulting from these interactions becomes zero for large distances d
and very repulsive for short distances, because of overlapping, negatively charged electron
clouds Nevertheless, such vdW interactions are interesting, since at intermediate distances,
a slight attractive region arises based on induced dipole-dipole contributions. Also higher
multipoles are involved, but the major part arises from dipole contributions asymptotically
vanishing with d−6. The resulting forces from this interaction are named London disper-
sion forces [86]. For rare gas atoms, these are the only interactions and effect the atoms
to form a liquid and a solid phase. Also for non-polar molecules like hydrocarbons, vdW
contributions are the main interactions. Thus, it is expected these long-range contributions
to become important for the MOF structures used in this work. The general form of the
vdW interactions can be described as the difference of the repulsion and attraction term,
described by the pairwise dispersion coefficient C6

AB of atom/molecular fragment/molecule
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A and B

EvdW = Erepulsion(dAB)−
C6
AB

(dAB)6
. (2.35)

Commonly used Exc functionals do not correctly represent these long-range interactions
and in DFT calculations it became a standard procedure to include dispersion correc-
tion schemes to gain the wanted accurate results. Different types of dispersion correction
schemes are present in modern DFT methods [87]. In this work the Tkatchenko-Scheffler
method (TS) [88] is used for including the dispersion corrections by an additional term just
summed up with the energy EKS of the Kohn-Sham Approach

Ecorrected = EKS + ETS
vdW,

ETS
vdW = −1

2

∑
A,B

fdamp(dAB)
C6
AB

d6
AB

,
(2.36)

including the electron density dependent atom pair A–B dispersion coefficient C6
AB for the

internuclear distance dAB. The damping function fdamp eliminates singularities at short
distances.

2.4 Relativistic Corrections

The two main aspects of special relativity theory are the constant velocity of light and
the invariance of physical laws in different inertial frames of reference and deals with
inertial frames with constant velocity to each other. So the special relativity is a good
approximation for the movement of electrons around a nucleus, when the electrons’ velocity
is a significant fraction of the speed of light. Since the speed of light c is constant, the
relativistic mass mrel of objects increases with its velocity v compared to the rest mass m0

mrel = m0

√
1− v2

c2

−1

. (2.37)

In a one electron-system with nuclear charge ZA, like a hydrogen atom, the total energy
of the 1s-electron is

E1s
tot = −

Z2
A

2
, (2.38)

which is due to the virial theorem equivalent to its negative kinetic energy T 1s
e resulting in

a classical velocity

E1s
tot = −T 1s

e ,

−
Z2
A

2
= −m0v

2

2
with m0 = 1,

v = ZA.

(2.39)

Thus, the velocity of the 1s-electron in heavy-core elements becomes significantly large in
comparison to the speed of light c = 137.036 a. u., given in atomic units. In turn, relativistic
effects increase with ZA and get more significant. The relativistic wave function can be
expressed as four-dimensional vector

Ψ =


ΨLα

ΨLβ

Ψsα

Ψsβ

 , (2.40)
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including large components ΨLα,β and small components Ψsα,β . Because of the vectorial
form of the wave function the solution for the large component is dependent on the small
component

c(σ · p)Ψs + VΨL = EΨL,

c(σ · p)ΨL + (−2mc2 + V)Ψs = EΨs.
(2.41)

Here, σ defines a Pauli spin matrix, p the momentum operator and V an electric potential,
e. g. based on the nuclei. Ψs can be solved and expressed by terms of ΨL with the factor
K

Ψs = K
σ · p
2mc

ΨL,

K =

(
1 +

E −V

2mc2

)−1

,
(2.42)

leading to [
1

2mc
(σ · p)K(σ · p) + (V − E)

]
ΨL = 0 (2.43)

by inserting equation 2.42 in equation 2.41. For the non-relativistic case c → ∞ and thus
K = 1, equation 2.43 simplifies to an equivalent of the already known Schrödinger equation
(eq. 2.1). However, the current representation of K leads to divergent behaviour of the
wave function near the nuclei and can be avoided by representing Ψs and K as

Ψs = K′
c(σ · p)

2mc2 −V
ΨL,

K′ =

(
1 +

E

2mc2
−V

)−1

.

(2.44)

K′ can be expressed by an power series expansion, for which the zeroth order approximation
leads to K′ = 1, which is named the Zeroth-Order Regular Approximation (ZORA)

2.5 Extended Systems

Solid state materials, like MOFs, are from an atomistic view endless in each spatial di-
rection. For sure, a system with an infinite number of atoms cannot be described by ab
initio methods. Anyway, the infinite large structure follows a certain kind of translational
symmetry, inherently connected to the structure. The symmetry, in general, defines the
unit cell, which includes all information about the underlying system. Based on the unit
cell the endless and infinite structure can be reconstructed in combination with the trans-
lational symmetry. In theory, only the unit cell is considered including Periodic Boundary
Conditions (PBC).

2.5.1 Reciprocal Space

The symmetry of the structure defines a 3D lattice, which is filled up by the in-equivalent
atomic sites related to the lattice point r. All lattice points are, as mentioned above,
equivalent, due to the translational symmetry

r = r + R = r + ia1 + j a2 + l a3,

i, j,l ∈ Z.
(2.45)
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The basis vectors ai (i ∈ {1, 2, 3}) of the real lattice (position space) are defined by the unit
cell and simultaneously define how to reach the equivalent lattice points R. In contrast,
the electronic structure of the considered material is characterized in the reciprocal space
(momentum space), which is determined by the basis vectors bi (i ∈ {1, 2, 3}). These two
different typs of basis vectors are related to each other via

b1 =
2π

V
(a2 × a3), b2 =

2π

V
(a3 × a1), b3 =

2π

V
(a1 × a2). (2.46)

In analogy to the real lattice points, the reciprocal lattice points follow a certain type of
translational symmetry and thus the reciprocal lattice points are equivalent for

g = g + G = g +mb1 + nb2 + ob3,

m, n,o ∈ Z.
(2.47)

Among the common unit cell, there are primitive unit cells, including only one lattice
point at a time. A specific construction is called the Wigner-Seitz primitive unit cell,
whose counter part in the reciprocal space is called Brillouin Zone (BZ). The components
k of the wave vector k are restricted to

− π

|ai|
≤ k ≤ π

|ai|
, (2.48)

in the first BZ. That means for a mathematical description of an infinite solid, it is necessary
to consider all possible k, thus to integrate over all k. The integration for such a complex
task is very demanding and a more convenient procedure is to map the complete BZ onto
certain points of k, which get summed up. This mapping is called k point sampling and
has to be checked specifically for the system of interest.

2.5.2 Bloch Theorem

Equivalent to the structure, also the atomic potential for the electrons is repeated with the
unit cells

V (r) = V (r + R). (2.49)

For this periodic potentials, there are specific functions solving the electronic Schrödinger
equation, which are called Bloch Functions

ϕ(r,k) =
∑
G

ck−G eiGreikr = u(r,k)eikr = u(r + R,k)eikr. (2.50)

A translation by R or a multiplication by a phase factor eikR is stated as equivalent

ϕ(r + R,k) = u(r + R,k)eik(r+R) = u(r + R,k)eikreikR = u(r,k)eikreikR = ϕ(r,k)eikR,
(2.51)

which is known as the Bloch Theorem.

2.6 High-Dimensional Neural Networks

As already mentioned in the introduction, MLPs can be classified to one of four MLP
generations. Starting with the first generation applied only to small systems. Although,
the predicted results of such NNPs are very accurate, this method is quite limited due to
missing invariances like permutational invariance, but also due to its limited system size,
because of the size-dependent NNPs.
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2.6.1 The Energy Expression

In 2007, Behler and Parrinello introduced the second generation of MLPs as high-dimensional
neural network potentials (HDNNP) [15,17,18] to over come the limitations of the first gen-
eration. One important modification is the splitting of the total potential energy

Etot =
M∑
A=1

EA , (2.52)

into a sum ofM artificial atomic energies EA. In contrast to the total potential energy the
atomic energy contributions are no observable physical quantities, only auxiliary quanti-
ties for the mathematical concept for the construction of the total potential energy. Each
atomic energy contribution is predicted by an element-specific atomic NN (fig. 2.1) and
depends on the specific atomic environment SA. Introducing environment dependent de-
scriptors – the second modification – called atom-centered symmetry functions (ACSFs)
ensures the local dependence of the atomic energies up to the cutoff radius rcut. With this
concept, the limited size of first generation NNPs can be overcome, since the atomic energy
contributions are predicted strictly depending on the local environment, but independent
on the total number of nuclei M . Thus, adding and removing an atom B does not effect
the description of atom A, if the atomic distance is larger than the cutoff radius

dAB > rcut . (2.53)

Many different ACSFs are combined to form a vector SA, describing the specific environ-
ment of atom A, and translate the commonly used Cartesian coordinates into internal-like
relative coordinates (distances and angles).

The atomic environment, thus the symmetry function vector SA, is used as the input for
the element-specific atomic feed-forward NN (fig. 2.1), which processes the input via diverse
hidden layers, two in this example, including n1 and n2 neurons, and predicts the atomic
energy as the output of the last layer – the output layer. Each component nS of SA is
connected to the n1 neurons of the first hidden layer via the weights a01

nSn1
. Similarly,

any neuron µ of any layer ε is connected to the neurons ν in the following layer σ via the
weights aεσµν . Additionally, all the neurons, but the input neurons, are connected to the
bias node via the bias weights bεµ. The mathematical expression for each neuron value yσν
is given by

yσν = fσν

(
bσν +

nε∑
µ

aεσµνy
ε
µ

)
, (2.54)

and thus, neuron ν of layer σ is evaluated by summing up all values of the previous layer
neurons yεµ, which are multiplied with the related connecting weight aεσµν and its bias weight
bσν , followed by executing the activation function fσν . In case of HDNNP, the hyperbolic
tangent

f(x) ≡ tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
, (2.55)

is used as the activation function for the neurons in the hidden layers, introducing the
non-linear character, and for the output neuron a linear activation function, which is
numerically unrestricted in the range of the output energies. The functional form of the
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Figure 2.1: a) An atomic neural network as a part of a high-dimensional neural network
(HDNNP). Atomic NNs determine the atomic energy EA of atom A (in this case
equivalent to element A) by processing the local atomic environment, which is
described by the ACSF vector SA containing the nS ACSFs SA,nS

, via the
hidden layers. The two hidden layers 1 and 2 consist of n1 and n2 neurons,
respectively. The neurons of layer 1 are connected to the neurons in layer 2
by weights a12

n1n2
and are additionally connected to a bias note via the bias

weights b1n1
. b) The environment of a specific carbon atom is described by an

element specific ACSF vector SC and its energy is calculated by the element
specific atomic NN. All atomic energies EA are finally summed up to the total
energy of the system Etot. The figures in this work were created by Ovito [89],
matplotlib [90] and inkscape [91].

atomic energy contributions of the element-specific NN is given by

EA = f3
1

b31
6∑
k

a23
k1 · f2

k

b2k +
2∑
j=1

a12
jk · f1

j

(
b1j +

1∑
i=1

a01
ij · SA,i

) , (2.56)

which correlates the structural information, the local environment of atom A up to the
cutoff radius rcut given by the element specific symmetry function vector SA, to the atomic
energy as a part of the total potential energy sum Etot (eq. 2.52). As already mentioned,
the system usually includes different types of elements, but for the equation 2.56 a sub or
super script specifying the element is excluded for clarity. Nevertheless, the weights and
biases, the symmetry functions and also in general the architecture of the atomic NN is
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element specific, although the number of hidden layers, the including nodes and the cutoff
radius are the same in most practical cases.

2.6.2 Atom-Centered Symmetry Functions as Structural Descriptors

The already mentioned atom-centered symmetry functions (ACSF) translate the local
atomic environment dependent on the nuclear Cartesian coordinates up to a pre-defined
cutoff radius into a NN-readable format. The energy of a system is invariant with respect
to the translation and rotation of the total system and also to the order of atoms – the
permutational invariance. These invariances have to be fulfilled by the descriptors, as
provided by ACSFs, of the structures as well. If not, different input coordinates, like a
translated or rotated structure, would be related to the same energy, leading to contradic-
tions. Furthermore, the symmetry function vector SA dimensionality is pre-defined, fixed
and independent on the number of atoms included in the system.

Among many types of symmetry functions, two ACSFs commonly used are referred to
the radial and angular ACSF [20]. The radial ACSF (fig. 2.2) describe the distances dAB
between the specific atom A and its neighboring atoms B in each spatial direction around
atom A,

Srad
A =

∑
B

e−η(dAB−rshift)2 · fcut (dAB) , (2.57)

with the real, non-negative parameter η, determining the width of the Gaussian part.
The shifting parameter rshift switches the maximum of the radial ACSF and increases the
resolution in this certain region. The angular ACSFs (fig. 2.3) describe the orientation of

Figure 2.2: The Gaussian part of the radial ACSF (eq. 2.57) illustrating the behavior of
the parameter η and rshift.

the neighboring atoms B and C around atom A, depending on the angle θABC between
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the atoms, which is centered at atom A

Sang
A =21−ζ

∑
B

∑
C

[1 + λ · cos (θABC)]ζ · e−η(d2AB+d2AC+d2BC)

· fcut (dAB) · fcut (dAC) · fcut (dBC) .

(2.58)

Similar to η, the parameter ζ (usually ζ ∈ {1, 2, 4, 16}) determines the width of the cosine
part. The normalization factor 21−ζ guarantees a fixed value range of the cosine func-
tion, which changes with different ζ otherwise. The parameter λ ∈ {−1, 1} inverts the
cosine function and offers an additional option to increase the resolution for the angular
environment. The cutoff function (fig. 2.4),

Figure 2.3: The cosine part of the angular ACSF (eq. 2.58) illustrating the behavior of the
parameter λ and ζ.

fcut (dAB) =

{ 1 for dAB ≤ rinner,cut

0.5 · [cos (πx) + 1] for rinner,cut ≤ dAB ≤ rcut

0 for dAB > rcut ,
(2.59)

occuring in the mathematical expression of the ACSF (eq. 2.57 and 2.58) decays the ACSF
smoothly to zero for dAB > rcut in value and in slope. This ensures the continuity and dif-
ferentiability of the ACSF, required for the optimization of the weights and biases, but also
for the calculation of the forces, as presented below. The cutoff radius itself has to be chosen
sufficiently large to include all relevant atomic interactions, usually around 6−10Å, but as
small as possible to reduce the dimensionality of the configurational space, which needs to
be covered by the training data set. Usually, the inner cutoff radius rinner,cut is set to zero.

All ACSF parameters defining the spatial shape are not changed during the training pro-
cedure, but pre-defined and fixed. Also the dimensionality of the element-specific ACSF
vector is fixed and part of the NN architecture. Thus, the set of ACSFs is different for the
element combinations occuring in the system. The aim of the ACSF vector is to provide
a unique description for each important atomic environment used as input for the atomic
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Figure 2.4: The cutoff function fcut (eq. 2.59) illustrated for two different cutoff radii rcut.

NN. Hence, the HDNNP is not only a universal approximator for the PES, but also a kind
of classifier assigning a certain ACSF vector to the total potential energy via the auxiliary
quantity EA, the atomic energy contribution. Furthermore, HDNNPs can describe bond
breaking and bond formation, since only the positions and the elements of all nuclei are
used as input and no further definitions of bonding like in other classical potentials.

2.6.3 The Optimization of the Weights and Biases

To reproduce energies and forces of structures, a meaningful training data set including rep-
resentative structures, sampling all significant degrees of freedom, needs to be constructed,
which is used to optimize the weights and biases resulting in a good representation of the
training data. This procedure is commonly known as training the NN or in this case as
training all atomic NNs simultaneously, also fitting the NN is a common term. Mathemat-
ically, a loss or error function is defined as

f loss =
1

N train
struc

Ntrain
struc∑
i=1

(
ENNP
i − Erefi

)2
, (2.60)

in case only the energy values are used for the training procedure, but will change when
energies and forces are used. The error function is minimized with respect to the weights
and biases. For this minimization problem, the adaptive, global, extended Kalman filter
is consulted, performing the optimization iteratively [92, 93]. The performance of the
resulting HDNNP needs to be carefully validated and if required, the training data set
is extended referred to as active learning (sec. 3.4). The first validation of the HDNNP
quality is assessed by the root-mean squared error (RMSE), which is defined as the sum
of the squared energy differences between the HDNNP prediction ENNP

i and the reference
energy value Eref

i of the N train
struc training data points. For the N train

comp force components fNNP
i
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the RMSE is defined equivalently

RMSE(Etrain) =

√√√√ 1

N train
struc

Ntrain
struc∑
i

(
ENNP
i − Erefi

)2
, (2.61)

RMSE(f train) =

√√√√√ 1

N train
comp

Ntrain
comp∑
i

(
fNNP
i − f refi

)2
. (2.62)

The RMSE values can be analyzed for each iteration of the optimization. As the fitting pro-
cedure progresses, the RMSE values are decreasing, which can lead to overfitting (fig. 2.5).
Thus, the training data is represented perfectly, but the predictive power for data unknown
to the HDNNP is reduced. To avoid these situations, ∼ 10 % of the training data set is
extracted to form the testing data set. During the fitting procedure, the testing data is
part of the HDNNP training procedure. The RMSE values are defined in the same manner
as for the training data (eq. 2.61 and 2.62). The most accurate HDNNP representation
can be derived, for small RMSE values of the training data set and small deviations to the
RMSE testing data set are small. Only in this case, the HDNNP will provide an accurate
representation of the training data with sufficient predictive power for related but unknown
testing data.

Figure 2.5: Convergence of an examplary RMSE. At training epoch ∼ 25 overfitting can
be detected, since the predictive power for the test data decreases stated by
the increasing RMSE value.

2.6.4 Force calculation

Since the energy expression of the HDNNP and also the ACSF are known analytically, the
force components fAα can be calculated analytically by the negative derivative of the total
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potential energy Etot with respect to the coordinate Aα of atom A

fAα = −∂Etot
∂Aα

= −
∑
B

∂EB
∂Aα

. (2.63)

Not all atomic energies EB are dependent on the coordinate Aα, but all atoms B within
dAB ≤ rcut. Consequently, the force component fAα formally depends on 2 rcut, since the
atomic energy EB depends on all atoms within the cutoff radius of atom B.

2.7 Molecular Dynamics

The dynamical behaviour of an atomic system can be studied classically by applying New-
ton’s equation of motion

fAα = MA

··
RAα . (2.64)

The force component fAα is the result of multiplying the mass MA of atom A with the

second time derivative – the accleration –
··
RAα of its positional component α. Again, the

force component fAα is related to the negative derivative of the energy, thus the PES pro-
vides the values for fAα as described in equation 2.63. Due to the many-body problem,
the time evolution of a many-body system, must be solved numerically, since an analytical
solution for this system does not exist. Instead the coupled motions are propagated using
finite time steps dt by applying different time integrator algorithms [94–98]. This method
is known as classical molecular dynamics (MD) simulations [99, 100].

The often implemented Velocity Verlet algrithm considers the current atomic position RA
and its velocity vA for the time propagation

RA(t+ dt) = RA(t) + vA(t) dt+
fA(t)

2MA
dt2 , (2.65)

vA(t+ dt) = vA(t) +
fA(t) + fA(t+ dt)

2MA
dt . (2.66)

After the calculation of the propagated positions RA(t+dt), the forces for this new config-
uration is determined by the PES and finally the velocity can be updated for the current
time step t+dt. The big advantage of the Velocity Verlet algorithm is the time-reversibility
conserving the total energy among other conserved quantities, over a long period of time.
This fact improves the quality of the underlying simulations.
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Computational Details

3.1 FHI-aims

The DFT calculations within this work are performed by the FHI-aims program package,
version 171221 [101]. Approximations to the echange-correlation functional Exc (eq. 2.29)
are given by the revised version of the GGA functional PBE, called RPBE [102]. The
DFT parameters are converged to a sub-meV accuracy ensured by the change of the total
energy difference per atom ∆∆Eatom

tot ≤ 0.001 eV. This includes the NAO basis set, the
related confinement radius, the number of radial integration shells, the angular integration
grids, the radial_multiplier keyword, the expansion of the atom-centered charge density
and the k-point grid for IRMOF bulk calculations. Related convergence tests are sum-
marized in sectionA.1, which also provides further keywords to construct the FHI-aims
control.in file. During the SCF procedure, the electron density, the energy eigenvalue
sum, the total energy and the atomic forces are converged to 10−4, 10−2 eV, 10−6 eV and
10−2 eVÅ−1, respectively. Dispersion corrections were included by TS as implemented in
FHI-aims. FHI-aims recommends to include relativistic treatments for elements heavier
than calcium, being indeed true for zinc. Furthermore, the relativistic corrections affect the
energy convergence (tabA.1 andA.2) and thus, the atomic_zora approach is included in
the calculations. For structural optimizations, the FHI-aims implemented bfgs algorithm
optimized the atomic positions until the atomic forces converged below 10−2 eVÅ−1, basi-
cally performed in combination with the relaxed_unit_cell fixed_angles keyword to keep
the cubic structure of the IRMOF bulks (fig. 4.1).

For the calculations of the numerical Hessian for molecular structures, stricter DFT param-
eters were used, being equivalent to the FHI-aims tight recommendations for the elements
including additionally the first basis function of the second tier for zinc. Furthermore,
the SCF cycle was forced to converged below 10−6, 10−4 eV, 10−8 eV and 10−4 eVÅ−1 for
the electron density, the energy eigenvalue sum, the total energy and the atomic forces,
respectively. This inconvenience in the DFT parameters is based on inconsistencies of the
available compilers on the used high-performance computing (HPC) cluster, which was only
found by coincidence.

3.2 Fragment Approach

The fragment approach in this work is based on the following rules. To construct a molec-
ular fragment, one of the M in-equivalent atomic bulk sites is defined as the central atom
A of the fragment F1. Every atom of the bulk structure within a sphere defined by the
radius rfrag centered at atom A is included in the fragment structure (fig. 3.1a). The radius
rfrag is called the fragment radius basically defining the size of the fragment. Furthermore,
additional atoms are included in the fragment structure dependent on the already included
atoms. The SBU, the phenylene ring and the carboxyl groups form entities, which are in-
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Figure 3.1: a) A 2D-projection of the IRMOF-1 periodic bulk structure (fig. 4.1a) with
the marked central atom A = C2 as an exemplary in-equivalent atomic bulk
position (black cross) with the sphere of radius rfrag, centered at the central
atom (magenta-shaded, black circle around the cross) and the additionally
included atoms (orange shaded area) to complete the partially added entities.
b) The resulting molecular fragment structure highlighting the central atoms
as balls and the remaining structure as sticks together with the saturation
hydrogens (exemplary marked by the orange-shaded, black square). Zinc atoms
are illustrated in violet, oxygen in red, carbon in grey, hydrogen in white in
this work.

or excluded completely in the fragment structure. If any atom of an entity is located
within the sphere around the central atom A, all remaining atoms of this entity will be
included additionally, independent on the location within or outside the sphere. From a
chemical point of view, these entities can be understood as functional groups based on
a concept especially known in organic chemistry. This procedure ensures minimal devia-
tions of the bulk and fragment electronic structure, which is crucial to keep the atomic
interactions within the fragment similar to the bulk structure and thus accurately map
atomic bulk interactions onto the atomic fragment interactions. The fragment radius rfrag

at once describes the size of the molecular fragments and the bulk-like environment of
the central atoms, and defines an upper boundary of the cutoff radius for the HDNNP
descriptors, the ACSFs. Following these instructions for each in-equivalent atomic bulk
site results in a set F = {F1, F2, ..., FM} of molecular fragments, which ensures M in-
equivalent atomic sites are embedded in a bulk-like environment at least in one fragment
structure. However, larger fragments can include smaller, redundant fragments, leading
to a set of non-redundant fragment structures. This set F′ = {F1, F2, ..., FM ′} of non-
redundant fragment structures fulfills also the criterion, that M in-equivalent atomic bulk
sites are embedded in bulk-like environments at least within one of the M ′ (M ′ < M)
non-redundant molecular fragment structures.

When constructing fragments from larger reference systems – like the bulk structure –
bonds will be broken and may result in large changes of the electronic structure, which ef-
fect the interactions of the remaining atoms. Also these changes in the electronic structure
need to be reduced to a minimum for an accurate mapping of the larger reference system
interactions and properties onto the smaller fragment structure. In this work the broken
bonds are saturated by hydrogen atoms (fig. 3.1b), which are placed along the broken bond
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in a 1.05Å distance.

In quantum mechanics/molecular mechanics (QM/MM) methods and the related construc-
tion of the quantum mechanically treated region, similar problems occur. If a large system,
e. g. an enzyme, should be investigated theoretically, the chemical interesting region of this
large structure, the QM region, often includes only a few tens of atoms in contrast to the
outer environment, including hundreds or even thousands of atoms, which is referred to the
MM region. The different regions are treated by different levels of theory. The QM region
is treated by a quantum mechanical method and the MM region only by classical molec-
ular mechanics method. This spatial separation and the different levels of computational
treatment reduce the effort to describe the whole structure theoretically. Advantageously,
important long-range interactions – like electrostatics – determining certain properties of
the QM region, can be considered in this ansatz. Hence, the goal of describing the large
system, i. e. the enzyme, accurately by theoretical methods is in principle satisfied, be-
cause all atomic interactions are considered. Nevertheless, the problem arising here is to
find solutions to merge accurately energetic contributions described on different levels of
theory [103].

This can be transferred to the description of a larger reference structure, e. g. periodic IR-
MOF bulk structure. Since the definition of a molecular fragment structure, being similar
to QM region, based on the larger reference structure, which is the MM region equivalent,
is comparably similar. However, all interactions of the molecular fragment (QM region)
with the remaining environment of the large reference structure (MM region) introduces
information from beyond the cutoff radius rcut, which is indeed not applicable to MLPs,
since this violates the locality ansatz (sec. 2.6). Furthermore, these beyond-cutoff radius
assumptions would lead to contradictory information in the MLP data set, because the
local environment can remain unchanged, while structural rearrangements beyond the cut-
off radius may change atomic interactions and thus the force on the central atom. These
contradictions cannot be resolved by MLPs due to the locality.

In summary, the molecular fragment structure must not include any information of the
large reference structure beyond the cutoff radius. Additionally, any assumptions of the
atomic structure beyond the cutoff radius must be avoided to ensure the locality ansatz.
As a consequence, embedding schemes successfully applied in QM/MM methods are not
applicable to MLPs.

3.3 RuNNer

The HDNNPs within this work (sec. 4.7) were constructed with the in-house program
package RuNNer [15, 17, 18]1. The atom-centered symmetry functions (ACSFs), used as
structural descriptors, are summarized in the tablesA.12 andA.13 for the HDNNPs r′frag−
2−SF1 and rfrag − 2−SF1, as well as in tablesA.14 toA.16. Each atomic NN consists
of two hidden layers with 15 nodes each. For the hidden layers the activation function
is defined by the hyperbolic tangent, in contrast to the output node, which is processed
by a linear activation function. Furthermore, 10 % of the whole data set was separated
for the test data set to identify and further avoid overfitting epochs during the HDNNP
training process. The weights were optimized by the extended Kalman filter [92,93] based
on the reference total binding energies and atomic forces, as the binding energies defined

1In private communication a modified version of RuNNer was used in this work, based on changes by
Alea Miako Tokita related to the Kalman filter.
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as the difference of the total energies and the sum of the free atom energies. To improve
the numerical stability of the training procedure, the ACSFs were rescaled to the interval
[0; 1] and shifted by its average values to the origin, thus to the non-linear region of the
hyperbolic tangent activation function. Furthermore, the random, initial weights were
adapted to fit the reference energy average and the related standard deviation to reduce
the RMSE of the energies in the starting epoch. During the training procedure the weights
are optimized on a random order of the training points and an additional weight update
based on the reference binding energies after the update based on the atomic forces, for
each epoch.

3.4 Active Learning Procedure

For all MLPs, the reference data set forms the holy grail, since all information about
atomic interactions are exclusively stored in the reference data set. A reliable and accu-
rate representation of the PES by MLPs is crucially dependent on the training data set.
MLPs permit accurate representations of the data set itself, due to the high flexibility of
MLPs in representing any mathematical expression [12,13], however this does not include
an accurate representation of the PES simultaneously. The reasons for this fact are related
to the overfitting problem mentioned in section 2.6 and the missing physical foundation
of MLPs. Thus, an accurate and reliable MLP – more specific in this work a HDNNP –
balances the accurate representation of the data set and the predictive power for the PES
in general. Besides, the predictive power is affected by the resolution of the PES, which
is related to the distribution of the data points over the PES. The more data points, the
higher the resolution of the PES sampling and thus, the more information of the relation
between the structure and the energy are included in the data set.

Commonly, a finite region of the PES, equivalent to a finite region of the full configura-
tional space, is of interest depending on the specific application of the resulting HDNNP.
In the following the phrases PES and configurational space relates to this finite region.
Consequently, the data set has to sample the PES with a sufficient number of data points,
but for efficiency reasons as less data points as possible, due to the computational effort
of electronic structure calculations.

A systematic procedure to sample the PES is only possible for very small chemical systems
including only a few degrees of freedom. In contrast, the high-dimensionality of the PES
for larger systems prevents its systematic sampling, because of the high amount of possible
atomic arrangements. Nevertheless, the PES can be sampled for high-dimensional systems
with an iterative procedure converging to a complete data set, which is referred to as active
learning (fig. 3.2). Based on initial structures, which can be generated from ab initio MD
simulations as in this work, experimental data, as well as by many other procedures, and
the reference electronic structure method, a reference data set can be constructed to train
a HDNNP. Every MLP needs to be validated, which might be done by the analysis of the
MLP training procedure. A simple quality feature of a MLP is given by the RMSE values
of the training data set and the accurate representation of the individual training and test
energies along with the atomic forces. Furthermore, a more detailed analysis of the data
set and its representation can be performed by investigating the atomic energy range, the
maximum atomic force components and the distribution of the ACSF values, to mention
only a few. This may identify high energy, non-physical or missing intermediate structures.
Further validation steps like applying the MLP to calculate certain kinds of properties as
lattice constants, rotational barriers and many more can be performed.



3.4 Active Learning Procedure 39

Figure 3.2: Iterative construction scheme for the reference data set, starting with initial
structures, whose reference energies and atomic forces are calculated by the
chosen reference electronic structure method to construct a data set for the
HDNNP training procedure. The completeness of the data set and the PES
representation accuracy need to be validated to ensure an accurate description
of the essential degrees of freedom for the underlying system. Identified crucial
but non-considered structures or structures of unreliably resolved PES regions
can be added to the data set to increase the applicability of the HDNNP. Thus,
another cycle of the active learning procedure is necessary, starting with new
reference calculations based on the identified structures in the validation.
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Figure 3.3: a) The total energy of a system Etot over several trajectory time steps of a
simulation for two different HDNNPs (green solid and dashed black line) with
deviating predictions for the marked time steps (grey shaded areas) and some
exemplary training data points (black crosses). The atomic arrangement R2

demonstrates the consequences of unreliably resolved PES regions leading to
interpolation errors. b) Configurational space spanned by a two component
(SA,1 and SA,2) atom-centered symmetry function (ACSF) vector (black dotted
line) of a training data set including several training data points (black crosses)
with unreliably resolved PES regions (grey shaded areas), due to few training
data points. The atomic arrangement R1 causes extrapolation errors, because
of ACSF values outside the trained range (dotted black line) and R2 causes
interpolation errors, related to the insufficient resolution of the PES region, due
to few training data points within the specific the region (grey shaded area).

The overall goal of these validation steps is to identify inaccurately represented data points,
non-converged reference calculations or high-energy configurations, due to non-physical
short bonds, which can be removed to improve the overall representation of the data set
and the predictions of the PES. Additionally, inaccurately resolved regions of the PES can
be identified, whose resolution need to be improved by adding structures to the training
data set to increase the applicability of the MLP. Technically, these regions are determined
by extrapolation and interpolation errors of the MLP (fig. 3.3). For HDNNPs, extrapola-
tion errors are simple to identify and occur for an atomic arrangement R1 described by
ACSF values outside the ACSF range of the training data set. Therefore, the HDNNP
is obviously not trained to this kind of atomic arrangements and thus, accurate represen-
tations for the energy and atomic forces cannot be expected. Hence, this specific atomic
arrangement R1 can be added to the training data set to extend the applicability of the
HDNNP. Contrary, interpolation errors are more challenging to identify and occur for an
atomic arrangement R2 described by ACSF values within the training data ranges. How-
ever, the predictions of two independent HDNNPs can deviate by more than a pre-defined
tolerance for the total energy or atomic forces, demonstrating an inaccurate representation
of these structural arrangements and a insufficient resolution for the related domain of the
PES. To increase the resolution of the related domain, the structure R2 can be added to
the training data set.

In this work, the RuNNerActiveLearn tool [49, 104] was used with a slight modifica-
tion explained below, which was required for the active learning procedure in combina-
tion with the fragment approach (sec.3.2). The tool created different MD simulations
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based on the initial DFT optimized bulk IRMOF structures (fig. 4.1) in the isothermal-
isobaric (NPT ) ensemble processed by the Nose-Hoover barostat at a pressure of 1 bar,
a time step of 1 fs and a total simulation duration of 200 ps. Furthermore, the range
of simulation temperatures was iteratively increased up to 100 K. The program pack-
age n2p2 [105] processed the different MD simulations in this work based on the trained
HDNNPs. Structures exceeding the ACSF space of the training data set (extrapolation
errors) were analyzed by the tool to suggest additional structures for the extension of
the training data set. Additionally, the predictions for two different and independent
HDNNPs – different NN architecture, different seed for splitting data set and initializing
the NN weights – were compared to identify atomic energy and atomic force component de-
viations by more than ∆Eatom ≤ 0.00015 Ha atom−1 ≈ 0.004 eV atom−1 ≈ 5RMSE(Eatom)
and ∆f ≤ 0.02 Ha a0

−1 ≈ 1 eVÅ−1 ≈ 5RMSE(f) and the tool suggested further structures
to extend the data set. Here, the RuNNerActiveLearn tool was modified to explicitly la-
bel atoms exceeding the ACSF space and deviating atomic force components to construct
the related molecular fragments, which were added to the data set. Identified bulk struc-
tures by deviating atomic energies were rejected, because of the cohesive energy offsets
mentioned by Eckhoff et al. [49].

3.5 Equation-of-State

For most HDNNP applications low energy structures around the ground state are most
significant. Thus, the atomic positions and the lattice constants a of the bulk IRMOF
structures are optimized by DFT. In addition, the equilibrium lattice constant can be
determined by the volume-energy relation described by an equation-of-state (EOS). In this
work, the Birch-Murnaghan [106] (BM) EOS is used

EBM(V ) = E0 +
9V0B0
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In cubic cases as for the selected IRMOF structures, the lattice constant is determined by
the simple relation V = a3. Among the lattice constant, also the bulk modulus and its
pressure derivative of the material are determined. Additionally, the required structures
of the EOS fit, can be used to validate the HDNNPs as shown in section 4.7.
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Results and Discussion

Within the HDNNP formalism (sec. 2.6) the atomic energies, summing up to the total
energy, are strictly dependent on the local environment/structure of the atom. MOFs
are built up by two types of building block, which can easily be separated into molecular
MOF fragments by chemical intuition, which include inherently information about the local
atomic environment and the energy. Since also atomic forces, as atomic observables pro-
viding local information about the PES, can be used for the HDNNP training, to increase
the information per reference calculation, which reduces simultaneously the total amount
of needed reference calculations and thus, the computational effort for the preparation of
the HDNNP training set. Nevertheless, the quality of the atomic forces provided by the
molecular fragments need to be accurate in comparison to the bulk structure for which the
resulting HDNNP should finally be applied to.

A well-defined starting point for the determination of size-converged molecular fragments
is of crucial importance. Since, for most applications of interatomic potentials, the equilib-
rium region is of special interest. In a first step, the IRMOF bulk unit cells are optimized
by DFT and finally used for the determination of size-converged molecular fragments.

4.1 Bulk structures

The metal-organic frameworks (MOFs) of interest in this work – MOF-5 also known as
iso-reticular MOF-1 (IRMOF-1), IRMOF-10 and IRMOF-16 – are illustrated in figure 4.1.
These structures are built up by two building blocks. The secondary building unit (SBU)
– an oxide-centered Zn4O6+ tetrahedron, which is connected to six carboxylate groups
forming an octahedron-shaped SBU. Each of the six carboxylate groups at the tetrahedron
edges is connected to a dicarboxylate linker – the other building block, which is benzene-
1,4-dicarboxylate (BDC2−) in case of IRMOF-1, biphenyl-4,4′-dicarboxylate (BPDC2−)
for IRMOF-10 and terphenyl-4,4′′-dicarboxylate (TPDC2−) for IRMOF-16. Each unit cell
contains eight units of SBU(linker)3. The phrase reticular describes the netlike structure of
the IRMOFs and iso the similarity, thus the term isoreticular describes the relation of the
netlike structures with the same building scheme. The bulk unit cells and the related space
group no. 225 Fm3m underline this similarity. Although, IRMOF-16 crystallizes in space
group no. 221 Pm3m, since the phenylene rings are repelling each other and prevent the
terminating carboxyl groups in a co-planar orientation as the BDC2−-linker of IRMOF-1.
This reduces the unit cell symmetry of IRMOF-16 as demonstrated by Eddaoudi et al. [53].
Nevertheless, for comparison reasons the structure is represented in the same space group
as IRMOF-1 and -10, which plays only a minor role for the construction of the molecular
fragments in this work.

The unit cells (fig. 4.1) contain 424, 664 and 904 atoms with 7, 10 and 13 in-equivalent
atomic-sites for IRMOF-1, -10 and -16, respectively. To determine the equilibrium lattice
parameter a the bulk unit cell is optimized by DFT with respect to the lattice parameter
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Figure 4.1: Bulk structures of the isoreticular (IR) metal-organic frameworks (MOFs)
IRMOF-1, IRMOF-10 and IRMOF-16 in the upper panel and the different
in-equivalent atomic sites in the lower panel. Zinc atoms are illustrated in
violet, oxygen in red, carbon in grey, hydrogen in white in this work.

and the atomic positions. Furthermore, an equation of state (sec. 3.5) can be used to
determine the equilibrium lattice parameter by fitting the resulting total energy of the
bulk unit cell against the volume V , which depends on the lattice parameter in cubic
systems by V = a3. For the IRMOF structures, the scaling of the unit cell, performed by a
scaling factor σ ∈ {0.95− 1.10} in steps of 0.01, changes also the atomic bonds within the
unit cell. However, the atoms can relax within the scaled unit cell volume due to the large
pores of the IRMOF structures. Thus, an additional relaxation of the atomic positions
follows the expansion or compression of the unit cell and results in a data set of 16 scaled
bulk structures with relaxed atomic positions for each of the three IRMOF bulk structures.
The resulting lattice parameters a (tab. 4.1) are slightly overestimated by RPBE around

lit. [53] DFT BM(DFT)

aIRMOF−1 25.8302 26.296 26.289
aIRMOF−10 34.2807 35.063 35.061
aIRMOF−16 42.9806 43.832 43.832

∆aIRMOF−1 0.0000 -0.4658 -0.4586
∆aIRMOF−10 0.0000 -0.7823 -0.7807
∆aIRMOF−16 0.0000 -0.8510 -0.8514

∆′aIRMOF−1 0.0000 -0.0180 -0.0178
∆′aIRMOF−10 0.0000 -0.0228 -0.0228
∆′aIRMOF−16 0.0000 -0.0198 -0.0198

Table 4.1: Compilation of the literature [53], DFT and Birch-Murnaghan (BM) EOS equi-
librium lattice parameter a, the absolute deviation ∆a = alit. − a compared to
the literature lattice parameters in Å and the relative deviation ∆′a = 1− a

alit.

calculated by DFT and the BM EOS fit.
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2 %.

4.2 Fragment Construction by Convergence of Force
Differences

The dependence of the local environment is strongly dependent on the underlying electronic
structure. Thus, for each in-equivalent atomic site A, a molecular fragment is constructed
based on the optimized bulk structures. The central atom A is embedded in a bulk-like
environment up to the fragment radius rfrag, determining the size of the molecular fragment
(sec. 3.2). Furthermore, the atomic force f frag

A of atom A depends on the fragment radius.
If the fragment radius converges to infinity, the fragment will converge to the periodic bulk
structure and the molecular atomic force will be equivalent to the bulk force fA

lim
rfrag→∞

f frag
A = fA . (4.1)

Hence, the fragment radius, at which the atomic force will be converged to the atomic bulk
force within a pre-defined tolerance ∆fmax

A , is of crucial importance. Thus, the atomic
force and the force difference ∆fA are functions of the fragment radius, which need to be
analyzed to find the fragment radius vanishing the atomic force difference

||∆fA|| = ||fA − f frag
A ||

!
≤ ||∆fmax

A || , (4.2)
lim

rfrag→∞
||∆fA|| = 0 . (4.3)

An obvious disadvantage of this ansatz is highlighted by atoms in a symmetric environment
as O1 (fig. 4.1). The atomic force fO1 is independent on the fragment radius, although
the force difference is below the pre-defined tolerance, a meaningful fragment radius is
undefined (fig. 4.2). Furthermore, no detailed information about the central atom force

Figure 4.2: Compilation of the force error norm ||∆fO1|| = ||fO1− f frag
O1 || as the norm of the

difference between the atomic bulk force fO1 and the related atomic fragment
force f frag

O1 of the in-equivalent atomic site O1 (fig. 4.1) for different fragments
of IRMOF-1.

dependence on the neighboring atoms is gained. In cases of central atoms effected by a few
atoms in large distance via electrostatic interactions, large fragment radii, enforcing large
molecular fragments, will be derived to include these interacting atoms. Simultaneously,
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the large fragments lead to computationally demanding reference calculations needed for
the HDNNP training.

An alternative locality test is presented for amorphous carbon [107]. In this approach
fluctuations of atomic forces are analyzed for the central atom A embedded in a frozen
environment up to a certain radius. The atomic positions outside this radius are varied
to investigate the effect on the central atom. The frozen environment is increased until
the changes of the atomic force of the central atom decrease below a predefined threshold
value. Although, this method is quite universal and it permits the analysis of symmet-
rically embedded atoms, it relies on a large number of electronic structure calculations,
which need to sample a set of representative atomic arrangements. Furthemore, this ap-
proach prevents a detailed analysis of the specific neighboring atoms.

For this reasons, a well-defined method is of interest to analyze atoms in symmetric envi-
ronments and specific neighboring atoms. A systematic way for analyzing the dependence
of the atomic force fA of atom A on the atomic coordinate Bβ of the neighboring atom B is
illustrated by the derivative of the atomic forces with respect to the atomic positions. This
is equivalent to the second derivative of the energy with respect to the atomic positions,
which is commonly denoted as the Hessian.
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4.3 The Hessian-Based Assessment of Atomic Forces

Figure 4.3: Structure of the Hessian matrix H for a system containing M = 4 atoms. The
interaction between atom A = 2 and atom B = 3, defined by equation 4.4 is rep-
resented by the atomic Hessian submatrix h23 highlighted in orange. Adapted
from [108] with permission from ©2022 AIP Publishing.

To estimate the dependence of the force vector fA of the reference atom A on the atomic
coordinates Bβ of the neighboring atom B, the 3M × 3M -dimensional Hessian matrix
(fig. 4.3) is calculated 1 and contains the elements

HAαBβ =
∂2E

∂Aα∂Bβ
= −

∂fBβ
∂Aα

= −∂fAα
∂Bβ

, (4.4)

which describe the dependence of each force component fAα on the Cartesian coordinate
Bβ of the neighboring atom B, with α, β ∈ {x, y, z}. Each atomic interaction is depicted
by a 3× 3 submatrix hAB and quantified by the norm of the atomic Hessian submatrix

||hAB|| =
√ ∑
α=x,y,z

∑
β=x,y,z

h2
AαBβ

. (4.5)

The scalar atomic Hessian submatrix norm is assumed to decrease with increasing atomic
distance dAB, between the interacting atoms A and B, and vice versa.

4.3.1 Hessian Group Matrix

Starting from the bulk or alternatively from an arbitrary large molecular fragment as the
reference structure, the crucial point is, how much of the outermost, nearly spherical envi-
ronment can be removed, leading to the smaller fragment, without introducing significant

1The results discussed and presented in this section 4.3, the following section 4.4 and to a significant part
the results of section 4.5 were obtained in my recent publication [108] and are shown for completeness
with permission from ©2022 AIP Publishing.
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errors for force components on the central atom. Thus, atoms in all spatial directions need
to be removed for a decreasing spherical environment and therefore the cumulative effect
of the removed atoms on the central atom is of interest. This defines the Hessian group
matrix

Gg
A =

∑
B∈g

hAB , (4.6)

as the sum of atoms present in group g, which re removed from the reference fragment.
Hence, the Hessian group matrix Gg

A is the sum of all atomic interactions hAB of the
central atom A and the neighboring atoms B of the reference system beyond a specific
fragment radius rfrag and thus, defines all missing interactions in the smaller fragment,
determined by rfrag, compared to the reference fragment. In analogy to equation 4.5, the
Hessian group matrix is quantified by its norm. While summing up different atomic Hes-
sian submatrices hAB, specific contributions of neighboring atoms B can cancel each other,
in general. The more atoms are removed, the more atoms are include in the groups and
the Hessian group matrix norm increases. Additionally, the fragment size-decreases and
the truncated atomic interactions increase. This results in a system-related dependence of
the Hessian group matrix on the atomic environment. Diverse bonding situations, depend
differently on the specific environment.

Figure 4.4: Simple carbon dioxide showcase for the Hessian group matrix. The force (green)
and the Hessian group matrix norm (black) are shown for the central carbon.
The DFT equilibrium bond length of d = 1.176Å is expanded and shrinked
symmetrically by ∆d ± 0.1Å. Related to the symmetric environment of the
central carbon atom, the force value is vanishing for all the structures. The
Hessian group matrix norm instead describes the different atomic interactions.
Adapted from [108] with permission from ©2022 AIP Publishing.

The concept of the Hessian group matrix is explained by a simple showcase (fig. 4.4). The
atomic Hessian submatrices cover the individual atom-atom interactions between the three
atoms, while the summarized interactions of the central carbon A = 2 is covered by the
Hessian group matrix

G1
2 =

∑
B∈g

h2B = h21 + h23 , (4.7)
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the group g = 1 includes the two oxygen atoms B = 1, 3. As already stated in section 4.2,
atoms in symmetric environments like the central carbon, experiences symmetric force
contributions, which cancel each other independent on the considered atomic environment,
in this case independent from the distance d. Thus, the force difference to a symmetric
reference structure will not change and the range of interaction is hard to determine using
these force values and has to be checked carefully. The Hessian group matrix norm in-
stead, changes for different symmetric atomic arrangements of the two oxygen atoms and
decreases for d = 1.276Å and increases for d = 1.076Å, providing a useful quantity to de-
termine interaction ranges also for symmetric environments. However, the carbon dioxide
molecule is a very simple showcase, since all atoms but the central carbon are included in
the group g = 1 and no bonds are broken. For reasons described in section 3.2, broken
bonds or dangling bonds, occurring in fragment construction, are saturated by hydrogen
atoms in this work. Thus, in addition to the atoms included in group g, also these added
and artificial interactions hAb of the central atom A and the saturation hydrogen atoms
b needs to be considered in the cumulative atomic interactions by subtracting the con-
tributions from the Hessian group matrix, leading to the effective Hessian group matrix

G′gA =
∑
B∈g

hAB −
∑
b

hAb . (4.8)

Another option is to neglect these interactions hAb and examine the interaction range
by applying Gg

A directly. Nevertheless, hAb is usually very small for meaningful-sized
fragments, leading to a very small difference of Gg

A and G′gA in practice.
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4.4 Model Systems

The electronic structure determines the range of interaction, and this will be different for
diverse bonding situations. For a first investigation different model systems, differing in
their bonding situation and in their electronic structure, are chosen as idealized structures.
Real and more complex systems, like IRMOF structures, can be viewed as combinations of
these idealized model systems. However, the effect of the electronic structure needs to be
figured out, achieved by the analysis of different covalent bonding situations in the model
system.

4.4.1 Structures

Figure 4.5: Chosen model systems for the Hessian-based assessment being exemplary for
bonding situations in the IRMOF structures. Hexadecane (HD) represents typ-
ical covalent single bonds, (3E,5E,7E,9E,11E,13E)-hexadeca-1,3,5,7,9,11,13,15-
octaene (HDOE) a conjugated π-electron system extending over the whole
molecule, while the 1,1′:4′,1′′:4′′,1′′′:4′′′,1′′′′:4′′′′,1′′′′′-quinquephenyl all in-plane
conformer (QPP), which provides also an extended π-electron system over the
whole structure and a maximum amount of resonance stabilization together
with the out-of-plane conformer (QPO) decoupling the π-system of the spe-
cific phenylene rings, represent aromatic systems. Adapted from [108] with
permission from ©2022 AIP Publishing.

Quasi-1D hydro carbon structures (fig. 4.5) are used to clarify the distance dependence of
the central atomic force. The model systems include typical covalent single bonds cov-
ered by the hexadecane (HD), a conjugated π-electron system extending the whole model
structure as given in (3E,5E,7E,9E,11E,13E)-hexadeca-1,3,5,7,9,11,13,15-octaene (HDOE)
and two conformers of 1,1′:4′,1′′:4′′,1′′′:4′′′,1′′′′:4′′′′,1′′′′′-quinquephenyl. An all in-plane con-
former (QPP) also providing an extended π-electron system over the whole structure and a
maximum amount of resonance stabilization. Contrary, the out-of-plane conformer (QPO)
is based on pairwise-orthogonal neighboring phenylene-ring, without inter phenylene ring
π-electron resonance, due to the missing inter phenylene overlap of the p-orbitals.
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For HD and HDOE, the molecular structures are fully minimized in energy, whereas the
QPP and QPO are based on a fully minimized benzene molecule, which is replicated and
inter connected in para-position with a carbon-carbon distance of 1.45Å.

4.4.2 Atomic Hessian Matrix Norm

Figure 4.6: Atomic Hessian submatrix norm values ||hAB||, describing the interaction be-
tween the carbon reference atom (magenta) and all neighboring atoms B for
the different model systems HD, HDOE, QPP and QPO. Adapted from [108]
with permission from ©2022 AIP Publishing.

The Hessian matrix is calculated by DFT for the different model systems and the atomic
interactions are analyzed. Figure 4.6 states a decrease of the atomic Hessian submatrix
norm ||hAB||, describing the interaction between the terminal carbon reference atom A
(highlighted in magenta) and the neighboring atoms B, with an increasing spatial distance
dAB between these atoms. These results are in line with the expectation of weak atomic
interactions at large distances and vice versa, strong interactions at small distances. Thus,
with increasing atomic distance of the neighboring atom B and the reference atom A, the
less significant is atom B effecting the reference atom force fA (fig.A.1 and 4.7). Of course,
the position of the reference atom A illustrates the maximum influence on the force fA
as expected and stated by the submatrix hAA. Figure 4.7 emphasizes also the differences
related to the range of interaction and the decay with increasing distance. Although, the
model systems qualitatively behave similarly, differences in the quantitative behaviour of
the model systems highlight the electronic structure differences. Especially, the carbon-
carbon interactions decays much slower in HDOE and QPP, than in comparison to HD and
QPO. Thus, the interactions in HDOE QPO demonstrate a long-ranged character in com-
parison HD and QPO, respectively. This behaviour is based on the conjugated π-system
of HDOE and QPP, causing the increased interactions. The comparison of QPP and QPO
confirms the effect of the π-system. The molecular structure differs in second phenylene
ring, around dAB ≈ 4Å. Additionally, this change is also obvious in the carbon interac-
tions (fig. 4.7, green and black line with marking circles), being very similar for distances
dAB < 4Å and start to deviate for larger distances dAB ≥ 4Å. A special case occurs in the
region of the second phenylene ring dAB ≈ 4 − 7Å, interactions within the QPO start to
vanish, in contrast to QPP demonstrating nearly constant interaction with the reference
atom. Thus, the increased electron delocalization in QPP, due to the in-plane orientation
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of the phenylene rings, increases drastically the effect on the force fA for the carbon atoms
localized in the second phenylene ring. In QPO, these interactions are truncated, because
of the orthogonal orientations of neighboring phenylene rings.

The hydrogen interactions of the reference atom at the given distances are smaller than the
carbon interactions discussed above. Because of the additional bond transmitting informa-
tion of structural changes, related to the specific neighboring hydrogen atom, towards the
reference atom, compared to the neighboring carbon atom at a similar distance. But the
major part is related to the π-electron system, to which hydrogen does not contribute, due
to its missing π-electrons. For this reason, the interactions of hydrogen and the reference
atom are reduced. As discussed above, the π-system dictates the degree of long-range
character. Hence, hydrogen atom interactions are mostly dependent on the distance to
the reference atom as shown by very similar reference carbon-hydrogen interactions in
HD and HDOE and a nearly indistinguishable interactions in QPP and QPO, also in the
pronounced region dAB ≈ 4− 7Å of the carbon interactions.

Figure 4.7: The atomic Hessian submatrix norm values ||hAB|| of the four model systems
HD, HDOE, QPP and QPO as a function of the distance dAB between the
reference carbon atom A as defined in figure 4.6 and all neighboring atoms B.
Separated curves are given for the interactions of atom A with neighboring
carbon and hydrogen atoms. The inset shows the data for the interaction of A
with all atoms in the entire molecules. A separated plot for each model system
is shown in figureA.2. Adapted from [108] with permission from ©2022 AIP
Publishing.

4.4.3 Hessian Group Matrix Norm

The results show decreasing atomic interactions and thus decreasing dependence of the
force fA on the neighboring atoms B with increasing atomic separation. Thus, in prin-
ciple weakly interacting atoms can be determined by choosing a threshold value for the
atomic Hessian submatrix norm ||hAB||. Furthermore, all atoms showing ||hAB|| below
this threshold can be eliminated from the reference structure, assumed without significant
changes for the atomic force fA provided by the resulting smaller fragment. However, this
procedure would lead to arbitrary bond cutting, may resulting in large changes of the elec-
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Figure 4.8: Effective Hessian group matrix norm ||G′gA|| for all atomic groups (represented
by the colored rectangles) with respect to the reference carbon atoms A shown
in magenta for the model systems HD, HDOE, QPP and QPO. The bonds,
which are cut to form increasing groups of removed atoms, are shown as white
dashed lines along with the numbering of the resulting groups from the top to
the bottom. The black dashed lines indicate the bond to be cut for the small-
est considered fragment corresponding to the largest atomic group of removed
atoms. Note that each group is included in the next larger group when more
atoms are removed from the system. Adapted from [108] with permission from
©2022 AIP Publishing.

tronic structure, if π-bonds get broken, for example. This will affect the atomic interactions
and the energy , as well as the atomic forces. Therefore, a definition of a threshold based
on the atomic Hessian submatrix cannot be applied as a criterion for indicating weakly
and thus non-significant atomic interactions.

Using the concept of functional groups (sec. 3.2 and the effective Hessian group matrix
norm, significant and non-significant interactions can be distinguished. Moreover, the
changes of the electronic structure, comparing to the reference system, are minimized for
the smaller fragment. Furthermore, this results in discrete smaller fragments by removing
the functional groups step-wise from the reference structure. For the model systems, the
chemical groups/entities, which are allow to be separated from the reference structure, are
defined as follows:

• HD: terminal CH3- and each CH2-entity,

• HDOE: terminal C2H3- and each C2H2-entity to sustain the extended π-electron
system,

• QPP and QPO: each phenylene for the aromatic character of the phenylene rings.

In addition, fragments, which are created by breaking bonds to the reference atom, are
not considered. Consequently, there are 15, 8, 5 and 5 fragments, whose construction is
based on the for model systems HD, HDOE, QPP and QPO. Following this procedure, the
entities are cut one after the other from the reference system, while the removed atoms
are then included in 14, 7, 4 and 4 groups g of removed atoms. Thus, the fragment size
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decreases, while the number of atoms in the groups g increases, since all groups form
a sub group of the next following larger group (fig. 4.8). The colors of the rectangular
boxes is defined by the effective Hessian group matrix norm (eq. 4.8 and 4.5). Similar
to the results of the atomic interactions above, the effective Hessian group matrix norm
decreases with increasing distance of the reference atom A and the group g. Again, there
is a similar qualitative, but different quantitative behaviour among the model systems.
For the constructed fragments, the force fgA can be compared to the force value fA of the
reference system, resulting in the force error

∆fgA = fA − fgA , (4.9)

of the fragments. The broken bond is saturated along the broken carbon-carbon bond with
a carbon-hydrogen distance of 1.05 Å.FigureA.3 illustrates a similar decay of the force er-
ror norm and the effective Hessian group matrix norm for the four model systems, giving
explicit evidence of a correlation for these quantities.

The effect of the saturation hydrogen on the Hessian group matrix norm is investigated
exemplary for the model system HD (fig.A.4). For distances of the saturating hydrogen
atoms to the reference atom larger than ∼ 5Å, its contribution is rather small and the
effect of the hydrogen saturation on the machine learning data set, typically constructed
with an environment radius of 5− 6Å can be neglected.

4.4.4 Force-Convergence Threshold

As described in section 4.4.1 above, the investigated structures of the model systems are
near-equilibrium structures. A more diverse data set is obtained by rescaling the model sys-
tem structures. The scaling factor σ ∈ {0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20} expands and
contracts the whole molecular structures and results in non-equilibrium atomic arrange-
ments. Furthermore, the Hessian is calculated for these non-equilibrium structures, fol-
lowed by the analysis in the same manner as for the near-equilibrium structure (σ = 1.00).
The correlation of the Hessian group matrix norm ||hAB|| and the force error norm ||∆fgA||
is shown in figure 4.9 for all model system structures generated by employing σ.

Approximately, the two quantities ||∆fgA|| and ||G
′g
A|| correlate linearly, even for the highly

compressed structures (σ = 0.90, blue curves in fig. 4.9). Large differences of this approxi-
mated linear behaviour is shown by the smallest investigated HD fragments, which can be
understood, since the construction of these fragments include already structural changes
near the reference atom – the second nearest carbon is removed. Nevertheless, the force
errors in these specific atomic arrangements are unexpectedly small, indicating only weak
interactions of the reference atom in the expanded (σ ∈ {1.10, 1.15, 1.20}) HD structures.
All model systems show the largest force errors for their highly compressed structures
(σ = 0.90). These strong interactions of the reference atom within the smallest fragments
are perfectly in line with the strong atomic repulsion for short atomic distances as present
in these compressed structures.

Based on the approximately linear correlation and the definition of the required force ac-
curacy criterion ||fmax||, which needs to be fulfilled by the fragments, a threshold value Γ
of the Hessian group matrix norm can be determined. Following, all atomic interactions
accumulating to a smaller effective Hessian group matrix norm as the derived threshold
Γ, can be removed to result in the minimum, size-converged fragments, which provide the
desired force accuracy in relation to the reference system. All atoms contributing to an
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Figure 4.9: The effective Hessian group matrix norm ||G′gA|| in relation to the norm of
the force error ||∆fgA|| of the reference carbon atom A for the model systems
HD, HDOE, QPP and QPO. For HD and HDOE, the inset shows the complete
data range and the main plot focuses on the region near the origin. These plots
summarize the results for all employed scaling factors σ = 0.90 − 1.20. The
norm of the force error ||∆fgA|| and the effective Hessian group matrix norm
||G′gA|| decrease towards the origin, describing the increase of the molecular
fragment up to the reference system at the origin. The threshold values Γ of
the effective Hessian group matrix norm ||G′gA|| are represented by the black
lines in the panels of HD, HDOE and QPP, ensuring size-converged fragments
with a force accuracy criterion of ||fmax|| = 0.125 eVÅ−1. In case of QPO,
already the smallest fragment is stated as size-converged. Adapted from [108]
with permission from ©2022 AIP Publishing.

effective Hessian group matrix norm larger in value than the threshold Γ, interact signifi-
cantly with the reference atom and must not be removed to keep the desired force accuracy.
Up to now, it is not yet clear, if this threshold Γ is strongly dependent on the underlying
bonding situation. A distinct tendency for such a dependence prevents the application
of the threshold Γ to different types of bonding. Consequently, for each type of bonding
a specific threshold needs to be derived. For a threshold Γ being nearly independent on
the bonding type, size-converged fragments can be determined for a wide range of many
different bonding situations, because of the universal character. A desired force accuracy
for HDNNP training fragments is chosen to be ||∆fmax|| ≤ 0.125 eVÅ, which is typically
achieved during HDNNP training procedure as stated by the RMSE of the force com-
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ponents. The related threshold Γ of the effective Hessian group matrix norm, providing
size-converged fragments with the desired force accuracy, is given by the correlation of
||∆fgA|| and ||G

′g
A|| (fig. 4.9). Here, the most compressed structures (σ = 0.90) are deci-

sive for the determination of the threshold Γ, since the largest force errors occur for the
most compressed structures. For QPO, even the smallest fragment (benzene) is already
size-converged within the chosen force accuracy, due to the very weak interactions of the
reference atom and the atoms of the second phenylene ring, as discussed above (sec. 4.4.2
and 4.4.3). The resulting threshold values Γ for the effective Hessian group matrix norm
of the different model systems and thus for different bonding situations, are quite simi-
lar with only slight absolute differences (HD: 0.36 eVÅ−2, HDOE: 0.31 eVÅ−2 and QPP:
0.45 eVÅ−2). Hence, to a good approximation, a general, universal threshold can be used
to define size-converged fragments for the different model systems. Below the tightest con-
vergence criterion of HDOE (0.31 eVÅ−2), the reference atom forces for all model systems
are converged in the resulting fragment. While adding a safety margin to the threshold Γ of
±0.02 eVÅ−2 (sec. A.2), the threshold value for the effective Hessian group matrix norm is
chosen to be Γ = 0.29 eVÅ−2, which can be adjusted for stricter convergence of the forces,
if needed. For the HDOE model system this leads to the size-converged fragment HDOE5

((1E,3E,5E)-hexatriene) (tab. 4.2) with an atomic force error of the reference atom A be-
low the desired convergence criterion ||∆fmax|| = 0.1111 eVÅ−1 ≤ 0.125 eVÅ−1 with an
approximated fragment radius 6.2Å. Furthermore, the resulting size-converged fragments
of the model systems determined by the threshold Γ = 0.29 eVÅ−2 are HD13 (propane),
QPP3 (biphenyl) and QPO4 (benzene), with the approximated fragment radii 2.6, 7.1 and
2.8Å, respectively. Similar to the enlarged long-range character of HDOE and QPP, the
increased environment dependence results in larger fragments compared to HD and QPO.

Table 4.2: Compilation of the force component errors ∆f
HDOEg
Ax,y,z

and the total force er-

rors ||∆f
HDOEg
A || in eVÅ−1 for the reference carbon atom in the model system

HDOE (fig. 4.8 and 4.9, σ = 1.00). Further, the effective Hessian group matrix
norm ||G′gA|| is given in eVÅ−2. Numbers outside the intended convergence
criterion are given in bold.Adapted from [108] with permission from ©2022 AIP
Publishing.

g ∆fHDOE
Ax

∆f
HDOEg
Ay

∆f
HDOEg
Az

||∆f
HDOEg
A || ||G′gA||

ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0014 -0.0043 0.0045 0.02
2 0.0000 0.0042 -0.0116 0.0124 0.04
3 0.0000 0.0094 -0.0247 0.0264 0.07
4 0.0000 0.0195 -0.0495 0.0532 0.14
5 0.0000 0.0414 -0.1031 0.1111 0.29
6 0.0000 0.0986 −0.2474 0.2663 0.71
7 0.0000 0.1877 −1.0018 1.0192 3.71
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4.5 IRMOF-Structures

To transferring the knowledge from the idealized and simple model systems to a more com-
plex system like the IRMOF structures, a simplified, one-dimensional IRMOF-1 system is
constructed and analyzed. The overall goal is again the construction of size-converged frag-
ments with an accurate description of the reference atom forces within the size-converged
fragments based on the threshold γ.

4.5.1 1D-IRMOF-1: Proof of Principle

The one-dimensional IRMOF-1 structure (1D) is constructed from an IRMOF-1 supercell
as shown in figure 4.10. It contains six SBU entities, which are connected by five linker
molecules including hydrogen saturation for the broken bonds. The Hessian analysis is
performed for different reference atoms of the 1D reference system. The defined smaller
fragments 1Dg are labeled as 1D1−1D9 for the reference atoms occurring in the first SBU
(fig. 4.10b, fragment 1D9). Reference atoms localized in the first linking phenylene ring
(fig. 4.10b, fragment 1D9′) depend on two adapted low-radius fragments, which are rede-
fined as 1D′8 and 1D′9. With increasing group index g, the number of atoms included in the
group increases, whereas the fragment size decreases. Occurring broken bonds within the
fragments are also saturated with hydrogen atoms. The fragments 1Dg follow the same
construction rules as given in section 3.2.

The C1-like atomic sites are analyzed in more detail and the remaining atomic positions are
summarized in the appendix and will be referenced, respectively. Because of the reduced
symmetry of 1D, three C1-like positions occur in the 1D model system – C1′, C1′′ and
C1′′′. Similar to the results above, the Hessian atomic submatrix norm ||hAB|| decreases
with in creasing atomic distance dAB between the reference atom A (magenta) and the
neighboring atom B (fig. 4.11). Equivalent results are shown for the remaining atoms in
appendix (fig.A.5 andA.6). Although, a more detailed analysis offers an increase of the
Hessian submatrix norm with increasing distance. This feature occurs in figureA.5 j):
the phenylene carbon atoms (z ≈ 10Å) show rather weak interactions (blue color) to the
reference atom, in comparison to the more distant atoms of the following linking carboxyl
group (z ≈ 14Å), which demonstrate increased interactions with the reference atom, de-
spite the larger distance. This underlines diverse effects of different in-equivalent atomic
sites on the reference atom, which did not emerge within the model systems above. In fact,
the neighboring carbon atoms of the model systems illustrate very similar environments,
which smears their in-equivalence. This results in similar effects of all neighboring carbon
atoms on the reference carbon atom and thus, the interactions are only dependent on the
distance to the reference carbon atom (fig. 4.6 and 4.7).

In general, atoms in the spatial proximity of the reference atom – in the same SBU or
the same linker – show significant interactions (yellow) in all cases. Perfectly in line with
the QPP model system, the π-electron system of the phenylene linker mediates the atomic
interactions over large distances. Contrary to the mediating effect of the linker π-electron
system, the more ionic character of the SBU locks the range of the atomic interactions,
especially the zinc atoms. For the C1′′′ position, the atomic interactions beyond the zinc
atoms of the next SBU (z ≈ 16Å) vanishes, which is also observed in figureA.5 andA.6,
panels j), k) and l). Investigating the Hessian group matrix norm, similar results occur:
significant long-ranged interactions occur for atoms contributing to the π-electron system,
presented by C1′′′ and figureA.7 andA.8, panel n). Thus, C1′′′ is a special case compared
to the other atomic sites, because of the most long-ranged interactions, due to its position
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Figure 4.10: a) The IRMOF-1 supercell used to construct the 1D system with marked
IRMOF-1 unit cells (red dashed line) and the 1D system embedded in the
periodic environment (black dotted line). b) The 1D structure without the
periodic environment, but instead with the hydrogen saturated broken bonds
and the diverse fragments of different size (black dashed lines) used in the
Hessian analysis labeled as 1D1−9. For the reference atoms occurring in the
first phenylene ring, the smallest two molecular fragments change for those
positions and are labeled as 1D8′ and 1D9′ (red dashed lines). Atomic colors:
zinc violet, oxygen red, carbon gray and hydrogen white. Adapted from [108]
with permission from ©2022 AIP Publishing.
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Figure 4.11: The atomic Hessian submatrix norm ||hAB|| of the three C1-like atoms C1′,
C1′′ and C1′′′ (magenta) of 1D related to the C1 atomic site in IRMOF-1.
The remaining atomic sites are shown in appendix (fig.A.5 andA.6). Adapted
from [108] with permission from ©2022 AIP Publishing.

in the carboxyl group bridging the gap between SBU and linker in IRMOF-1.

Figure 4.12: The effective Hessian group matrix norm ||G′gA|| of the three C1-like atoms
C1′, C1′′ and C1′′′ (magenta) of 1D related to the C1 atomic site in IRMOF-1.
The remaining atomic sites are shown in appendix (fig.A.7 andA.6). Adapted
from [108] with permission from ©2022 AIP Publishing.

Furthermore, size-converged fragments are derived by employing Γ = 0.29 eVÅ−2 based
on the analysis of the model systems above. For C1′′′, the threshold Γ predicts at least
the fragment 1D6 and larger fragments as size-converged, providing accurate forces for the
C1′′′ position as shown in table 4.3. The force error of C1′′′ in 1D8 is indeed lower than the
chosen convergence criterion f = 0.125 < 0.0016. Repeating the conclusion of the model
systems: the threshold Γ is a universal threshold, resulting in size-converged fragments for
a variety of bonding types, which is confirmed by the results of the 1D model system and
thus Γ is even extendable to more complex systems like IRMOF structures. The resulting
molecular fragments represent the forces in the desired accurate manner.
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Table 4.3: Compilation of the force component errors ∆f
1Dg
C1′′′x,y,z

and the total force errors

||∆f
1Dg
C1′′′
|| in eVÅ−1 for the C1′′′ reference atom in different fragments of the one-

dimensional IRMOF-1 system (1D) shown in figure 4.11. Further, the effective
Hessian group matrix norm ||G′g

C1′′′
|| is given in eVÅ−2 as shown in figure 4.12.

Numbers outside the intended convergence are given in bold. Adapted from [108]
with permission from ©2022 AIP Publishing.

g ∆f
1Dg
C1′′′x

∆f
1Dg
C1′′′y

∆f
1Dg
C1′′′z

||∆f
1Dg
C1′′′
|| ||G′g

C1′′′
||

ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0001 -0.0001 0.0000 0.0002 0.01
2 0.0000 0.0000 -0.0013 0.0013 0.01
3 0.0000 0.0000 0.0001 0.0001 0.00
4 0.0001 0.0001 0.0005 0.0005 0.03
5 0.0000 0.0000 -0.0069 0.0069 0.02
6 0.0000 0.0000 0.0016 0.0016 0.02
7 0.0006 -0.0006 0.0003 0.0008 0.34
8 0.0000 0.0000 −0.1492 0.1492 0.31
9 -0.0003 0.0001 3.0328 3.0328 21.80

4.5.2 3D-IRMOF Fragments

The results from the simplified 1D system, proved the principle and the effective Hessian
group matrix norm threshold Γ, which is based on the four idealized model systems above
(sec. 4.4.4). And the threshold Γ can additionally be applied to more complex structures.
Thus, the next step is the derivation of size-converged three-dimensional IRMOF fragments
predicted by the threshold Γ = 0.29. However, for the reference system no periodic bulk
structure is used to avoid interferences of periodic images, which may introduce artificial
periodic effects affecting the results of the environment dependencies on the central refer-
ence atom force. Extending the periodic bulk structure to a periodic supercell, increases
the computational effort enormously and shifts the ratio of computational effort to knowl-
edge earnings far to the effort side. Instead, very large molecular fragments are constructed
for each in-equivalent atomic site (fig. 4.1). These fragments need to be as large to show
nearly zero interactions to the outer most shell of atoms, ensured by the atomic Hessian
submatrix norm ||hAB|| < 0.1 eVÅ−2, which is derived from the 1D system above.

IRMOF-1 The resulting very large molecular fragments (C1ref , Zn1ref , O1ref , O2ref , C2ref ,
C3ref , and H1ref) are used as reference structures for the different in-equivalent atomic sites
(C1, Zn1, 01, O2, C2, C3 and H1 as defined in fig. 4.1). With a fragment radius around
rfrag = 10− 12Å. As a decisive example, the effect of the environment for the atomic site
C1 is discussed in detail. The results of the remaining in-equivalent sites are also shown
in the appendix and referenced, respectively.

Similar to the four model systems and the 1D system, the atomic Hessian submatrix norm
||hAB|| and the atomic distance dAB of the reference atom A and the neighboring atom
B correlate negatively. While the distance increases, the atomic Hessian submatrix norm
decreases (fig. 4.13, panel a)). Additionally, the atomic Hessian submatrix norm decreases
similar to the results of the 1D case (fig. 4.11, panel c)). The groups g of the fragments
(fig. 4.14) form a shell-like structure around the central reference atom. Shells near to
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Figure 4.13: a) The atomic Hessian submatrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central
atom A = C1 (magenta) in reference structure C1ref . ||G′gA|| defines the color
for the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.

the reference atom include also the more distant atoms, equivalent to the groups in the
model systems and the 1D system. Due to the three-dimensionality of the structures, more
atoms are included in the groups than in the 1D system, increasing the truncated atomic
interactions for the constructed fragments, which may be reflected by the larger values
of the effective Hessian group matrix norm. Thus, the reference atom interactions with
its environment may be increased in total, compared to the 1D system. This has to be
considered for the definition of the size-converged fragment.

Table 4.4: Compilation of the force error components ∆f
C1g
C1x,y,z

and of the force vector

||∆f
C1g
C1 || of the reference atom C1 (fig. 4.13) for different fragments in eVÅ−1.

Further, the effective Hessian group matrix norm ||G′gC1|| is given in eVÅ−2.
Numbers outside the intended convergence level are given in bold. The frag-
ments C11−7 are shown in figure 4.14. Adapted from [108] with permission from
©2022 AIP Publishing.

g ∆f
C1g
C1x

∆f
C1g
C1y

∆f
C1g
C1z

||∆f
C1g
C1 || ||G

′g
C1||

ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0018 0.0022 0.0165 0.0167 0.02
2 -0.0019 0.0022 -0.0733 0.0734 0.10
3 -0.0019 0.0022 -0.0630 0.0630 0.11
4 -0.0013 0.0016 -0.0599 0.0599 0.36
5 -0.0024 0.0027 0.0172 0.0176 0.35
6 -0.0018 0.0022 0.1666 0.1666 0.30
7 -0.0016 0.0016 −3.0135 3.0135 21.83
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Figure 4.14: The reference structure C1ref and the smaller molecular fragments C11−7 con-
structed for the IRMOF-1 atomic site C1 (magenta) including the hydrogen
atoms saturating the broken bonds. Adapted from [108] with permission from
©2022 AIP Publishing.
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Figure 4.15: Fragment structures, reduced to the atoms with significant interaction for the
chosen force accuracy criterion ||∆fmax|| = 0.125 eVÅ−1, resulting from the
Hessian analysis of IRMOF-1 for the in-equivalent positions C1, Zn1, O1, O2,
H1, C2 and C3 (magenta). The cross marks the atom with the largest ||hAB||
of the outermost group g. Adapted from [108] with permission from ©2022
AIP Publishing.

Employing the effective Hessian group matrix norm threshold derived from the model sys-
tems, C13 is stated as the size-converged fragment for the in-equivalent atomic site C1 with
a force error ||∆fC13

C1 || = 0.0630 eVÅ−1. Also the results of the remaining positions (fig.A.9
toA.15, tab.A.5 andA.6) are similar to the results of the 1D system. Hence employing the
effective Hessian group matrix norm threshold results in size-converged fragments (fig. 4.15)
with well converged forces (tab.A.5 andA.6). Nevertheless, the environment dependence
and thus, the fragment size is very diverse for the chosen reference atomic site, which
highlights the difference in boding type and the connected local electronic structure. As a
spill over effect, some of the smaller sized fragments are redundantly included in the more
extended fragments. Thus, the size-converged fragments of C1 and O1 (fig. 4.15) are the
non-redundant fragments and provide effectively size-converged DFT forces for all remain-
ing atomic sites. These two fragments could be the foundation of a data set, which includes
different structural configurations of these two fragments and is used for HDNNP training.

Nevertheless, this approach of creating a data set suffers from the different effective atom
environment represented by the fragments for the atomic sites. But for an accurate descrip-
tion of the PES by HDNNP or more general MLP, the environment of each atom should
be known up to the same radius. To ensure this for all atomic sites, the largest appearing
fragment radius rfrag of the size-converged fragments is decisive to gain a general fragment
radius for all of those atomic positions. Within this chosen fragment radius each, fragment
provides accurate DFT forces for its specific central reference atom. An simple procedure
to derive the fragment radius, is to take the distance from the central reference atom to its
most distant neighboring atom. Conversely, many of these atoms in the derived fragments
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show only very weak interactions with the reference atom and are included just because
this atom is part of a non-divisible chemical entity, like a phenylene-ring, a carboxyl-group
or a SBU. A more sensitive definition of the fragment radius is defined by the distance dAB
of the reference atom A and the neighboring atom B, contributing with the largest atomic
Hessian submatrix norm ||hAB|| to the effective Hessian group matrix norm ||G′gA|| of the
outer most group g. This procedure leads to the fragment radii between the reference atom
A and the specific neighbor atom B as marked in figure 4.15 and summarized in table 4.5.

Table 4.5: Fragment radii rfrag in Å obtained for the fragments shown in figure 4.15 for the
seven atomic sites in IRMOF-1. g is the number of the converged fragment and
simultaneously of the outer most group. Adapted from [108] with permission
from ©2022 AIP Publishing.

A g rfrag

Zn1 3 4.333
O1 3 5.165
O2 6 2.379
C1 3 8.502
C2 3 7.304
C3 4 3.817
H1 5 2.725

IRMOF-10 Similar to IRMOF-1, a very large reference molecular fragment (I10) for all
atomic sites of IRMOF-10 (fig. 4.1) is defined, with nearly zero interactions of the reference
atoms and the outer most fragment atoms, ensured by the atomic Hessian submatrix norm
||hAB|| < 0.1 eVÅ−2.

In figure 4.16 the results of the C1 position are shown, because of the prominent long-range
character in contrast to the other atomic positions (fig.A.16 toA.25). Fragments used for
the analysis of the C1 atomic site occurring in IRMOF-10 are shown in figure 4.14. The
overall behaviour for each atomic site occurring in IRMOF-10, is similar to the results of
IRMOF-1. Thus, no qualitative differences to the IRMOF-1 results arise in the IRMOF-
10 results and even for the atomic sites Zn1, O1, O2 and H1, the results of IRMOF-1
(fig.A.9,A.10,A.11 andA.15) and -10 (fig.A.16,A.17,A.18 andA.24) are nearly equiva-
lent. Employing the threshold of the effective Hessian group matrix norm results in the
fragment I102 (fig. 4.17) with a force error of ||∆f

I10g
C1 || = 0.0236 eVÅ−1 < 0.125 eVÅ−1

(tab. 4.6). Also for the remaining atomic sites, fragments fulfilling the desired force error
convergence are derived by the effective Hessian group matrix norm threshold, which are
shown in figure 4.18. The related force errors and effective Hessian group matrix norms
are summarized in tableA.7 andA.8. The derived minimum fragments (fig. 4.15 and 4.18)
for the atomic sites Zn1, O1 and H1 are equivalent for the IRMOF-1 and -10 structure,
whereas the fragments for C1 and O2 are still similar in both cases. For C1, the slight
differences are related to the structural linker changes – the additional phenylene ring –
going from IRMOF-1 to IRMOF-10 and for the O2 site, low radius fragments where not
considered as detailed in the IRMOF-10 case as for IRMOF-1. For the atomic sites C2
and C3, more differences are arising, also related to the structural changes within the
linker and thus changing the low distance environment and the local electronic structure,
mostly effecting these atoms. For the remaining atomic sites (C4, C5 and H2) no equiv-
alents are existent within the IRMOF-1 structure. The environment dependence of the
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Figure 4.16: a) The atomic Hessian submatrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central
atom A = C1 (magenta) in reference structure I10ref . ||G′gA|| defines the color
for the closest atoms of a given group, which in addition also contains all
atoms at larger distance. The colors of the smallest possible fragment in b)
refer to the chemical elements.

Table 4.6: Compilation of the force error components ∆f
I10g
C1x,y,z

and of the force vector

||∆f
C1g
C1 || of the reference atom C1 (fig. 4.13) for different fragments in eVÅ−1.

Further, the effective Hessian group matrix norm ||G′gC1|| is given in eVÅ−2.
Numbers outside the intended convergence level are given in bold. The frag-
ments I10g for the reference site C1 are shown in figure 4.17.

g ∆f
I10g
C1x

∆f
I10g
C1y

∆f
I10g
C1z

||∆f
I10g
C1 || ||G

′g
C1||

ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0013 0.0020 0.0430 0.0431 0.22
2 -0.0040 0.0049 0.0905 0.0907 0.16
3 -0.0013 0.0020 -0.0235 0.0236 0.30

atomic sites, is as in the IRMOF-1 case (tab. 4.5) very different from each other resulting
in molecular fragments different in size, which satisfy the defined force error convergence
criterion ||∆f

I10g
A || < 0.125 eVÅ−1. The fragment radii of the IRMOF-10 minimum struc-

tures (tab. 4.7) are determined by the same procedure as described and applied for the
IRMOF-1 minimum fragment structures. In comparison to the IRMOF-1 fragment radii
(tab. 4.5) the environment dependence of the C2 position is decreased in the IRMOF-10,
based on the changed linker structure, which increases the distance between the C2 atomic
site and the carboxyl group on the opposite site of the linker, but simultaneously decreases
the interactions with these carboxyl group atoms in the IRMOF-10 case. Thus, the strong
interactions between the C2 site and the carboxyl group atoms are decreased (fig.A.20)
in comparison to the IRMOF-1 case (fig.A.13) and not important for the construction of
a size-converged molecular fragment. Another important aspect, the C2 sites are only to
a zero order approximation equivalent, since the IRMOF linker molecules are different,
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Figure 4.17: The reference structure I10ref and the smaller molecular fragments I101−3 con-
structed for the IRMOF-10 atomic site C1 (magenta) including the hydrogen
atoms saturating the broken bonds.

Figure 4.18: Fragment structures, reduced to the atoms with significant interaction for the
chosen force accuracy criterion ||∆fmax|| = 0.125 eVÅ−1, resulting from the
Hessian analysis of IRMOF-10 for the in-equivalent positions C1, Zn1, O1,
O2, C2, C3, C4, C5, H1 and H2 (magenta). The cross marks the atom with
the largest ||hAB|| of the outermost group g. For the H2 position, the smallest
considered molecular fragment (biphenylene) is size-converged and a fragment
radius is not defined. Considering still a smaller fragment (benzene, compare
to H1), would just increase the computational effort without further insight.
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which for sure will affect the environment dependence of this site in the different IRMOF
structures. For the atomic sites Zn1, O1, O2, C1, C3 and H1, the derived fragment radii
are very similar for the IRMOF-1 and -10 case. As mentioned above, for the C4, C5 and
H2 sites, there are no equivalents within the IRMOF-1 structure to compare with.

Table 4.7: Fragment radii rfrag in Å obtained for the fragments shown in figure 4.18 for the
ten atomic sites in IRMOF-10. g is the number of the converged fragment and
simultaneously of the outer most group. For the H2 position, no atom is marked
by a cross, since the smallest considered molecular fragment (biphenylene) is
already size-converged. Considering still a smaller fragment (benzene, compare
to H1), would just increase the computational effort without further insight.

A g rfrag

Zn1 3 4.328
O1 3 5.160
O2 3 2.376
C1 2 8.718
C2 3 4.328
C3 2 3.830
C4 2 3.816
C5 2 4.364
H1 3 2.731
H2 – –

IRMOF-16 Equivalent to the reference structure I10 as used above, a large reference
molecular structure (I16) is constructed for the analysis of all in-equivalent atomic sites
of IRMOF-16 (fig. 4.1). Again, the size of the fragment does not illustrate any strong
atomic interactions of a reference atom with its outermost neighboring atoms, ensured
by the atomic Hessian submatrix norm ||hAB|| < 0.1 eVÅ−2. Similar to the IRMOF-1
and -10, the C1 position demonstrates the most prominent long-range character of all in-
equivalent atomic sites in IRMOF-16. Therefore, the C1 results are portrayed exemplary
in figure 4.19. Nevertheless, the qualitative relation of atomic Hessian submatrix norm
and the atomic distance remains unchanged in IRMOF-16: increasing the atomic distance
between the reference and the neighboring atom, but decreasing the interaction of these
atoms as demonstrated by the decreasing atomic Hessian submatrix norm (fig. 4.19 a)).This
can also be confirmed by the effective Hessian group matrix norm (fig. 4.19 b)) being sim-
ilar for all remaining in-equivalent atomic site (fig.A.26 toA.38). Thus, in addition to the
similarities of IRMOF-1 and -10 results, also IRMOF-16 provides nearly equivalent results
for the atomic positions Zn1, O1, O2 and H1 (IRMOF-1: fig.A.9, A.10, A.11 andA.15;
IRMOF-10: fig.A.16, A.17, A.18 andA.24; IRMOF-16: fig.A.26, A.27, A.28 andA.36).
Furthermore, the atomic positions C2, C3, C4, C5 and H2 indicate nearly equivalence by
comparing the IRMOF-10 (fig.A.20, A.21, A.22, A.23 and A.25) and IRMOF-16 results
(fig.A.30, A.31, A.32, A.33 and A.37). For the in-equivalent positions of C6, C7 and H3
of IRMOF-16, no equivalents to compare with are included in the structures IRMOF-1
and -10. Employing the effective Hessian group matrix norm threshold Γ = 0.29eVÅ−2

provides the size-converged fragments in figure 4.20 fulfilling the force error criterion of
||∆f

I16g
A || < 0.125 eVÅ−1 as indicated by tablesA.9 and A.10. The size-converged frag-

ments and the related fragment radii (tab.4.9) are equivalent to the IRMOF-10 results and
similar to IRMOF-1 with the same differences as already mentioned above for IRMOF-10.
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Surprisingly, the size-converged fragments for the C5 position differ in IRMOF-16 and -10
by a terminal carboxyl group being present for the C5 size-converged fragment in IRMOF-
10 (fig. 4.18), but not in the C5 size-converged fragment of IRMOF-16 (fig. 4.20). A reason
for this deviation, may be based on the less detailed analysis of the low radius fragments
for the C5 position. However, the resulting fragment radius for C5 would be small in
comparison to the other atomic positions (C1 in IRMOF-1 and -10) and thus, its accurate
fragment radius is not of further interest.

Figure 4.19: a) The atomic Hessian submatrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central
atom A = C1 (magenta) in reference structure I16ref . ||G′gA|| defines the color
for the closest atoms of a given group, which in addition also contains all
atoms at larger distance. The colors of the smallest possible fragment in b)
refer to the chemical elements.

Table 4.8: Compilation of the force error components ∆f
I16g
C1x,y,z

and of the force vector

||∆f
I16g
C1 || of the reference atom A = C1 (fig. 4.19) for different fragments in

eVÅ−1. Further, the effective Hessian group matrix norm ||G′gI16|| is given in
eVÅ−2. Numbers outside the intended convergence level are given in bold.

g ∆f
I16g
C1x

∆f
I16g
C1y

∆f
I16g
C1z

||∆f
I16g
C1 || ||G

′g
C1||

ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0012 0.0013 0.0317 0.0318 0.14
2 0.0000 -0.0001 -0.0244 0.0244 0.11
3 -0.0001 -0.0001 -0.0308 0.0308 0.04
4 0.0000 -0.0001 -0.0007 0.0008 0.40
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Figure 4.20: Fragment structures, reduced to the atoms with significant interaction for the
chosen force accuracy criterion ||∆fmax|| = 0.125 eVÅ−1, resulting from the
Hessian analysis of IRMOF-16 for the in-equivalent positions C1, Zn1, O1, O2,
C2, C3, C4, C5, C6, C7, H1, H2 and H3 (magenta). The cross marks the atom
with the largest ||hAB|| of the outermost group g. For the positions C5, H2
and H3, the smallest considered molecular fragments (biphenylene) are size-
converged and a fragment radius is not defined. Considering still a smaller
fragment (benzene, compare to H1), would just increase the computational
effort without further insight.
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Table 4.9: Fragment radii rfrag in Å obtained for the fragments shown in 4.20 for the ten
atomic sites in IRMOF-10. g is the number of the converged fragment and
simultaneously of the outer most group. For the positions C5, H2 and H3, the
smallest considered molecular fragments (biphenylene) are size-converged and a
fragment radius is not defined. Considering still a smaller fragment (benzene,
compare to H1), would just increase the computational effort without further
insight.

A g rfrag

Zn1 4 4.333
O1 4 5.158
O2 4 2.375
C1 3 6.316
C2 3 4.327
C3 3 3.827
C4 2 4.811
C5 – –
C6 3 4.389
C7 5 3.830
H1 4 2.730
H2 – –
H3 – –
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4.6 HDNNP-Training Fragments

For each of the IRMOF bulk structures, size-converged fragments (fig. 4.15, 4.18 and 4.20)
are defined, which embedding the in-equivalent atomic sites (fig. 4.1) in the minimum re-
quired spatial environment. The different in-equivalent atomic sites demonstrate different
dependencies on the atomic environment (tab. 4.5, 4.7 and 4.5). The most long-ranged
obtained environment dependence is pronounced by the C1 atomic site of IRMOF-10 with
a fragment radius rfrag = 8.718Å. This fragment radius deals as a global fragment radius
for all atomic sites to construct size-converged fragments, fulfilling the force error criterion
for the central reference atoms of the fragments (fig.,4.21). For IRMOF-1, the fragment
of Zn1 includes the O1 and O2 fragment, while the C2 fragment includes the fragments of
C1, C3 and H1. For IRMOF-10, the Zn1 fragment includes the fragments of O1, O2, C1
and H1, as the fragment of C5 includes the C2, C3, C4, H2 and additionally also the C1
and H1 fragments. For IRMOF-16, the fragment of Zn1 is equivalent to the Zn1 fragment
of IRMOF-10 and includes the O1, O2, C1, C2 and H1 fragments, while the C3 fragment
includes the fragments of C4, C5, C6, H2, H3 and additionally also of C1, C2 and H1. Fur-
thermore, the IRMOF-16 C7 atomic site is only accurately represented by the C7 fragment.
Consequently, there remain only six non-redundant fragments for the accurate description
of all atomic sites occurring in the three IRMOF bulk structures, which are summarized in
figure 4.21. The advantage of these non-redundant fragments is to provide converged refer-

Figure 4.21: Non-redundant rfrag = 8.718Å fragments of for the in-equivalent positions
of IRMOF-1, -10 and -16 bulk structures, which can be used as foundation
for a HDNNP training data set. I1-A and I1-B are based on Zn1 and C2 of
IRMOF-1, I10-A and I10-B on Zn1 and C5 of IRMOF-10, I16-B and I16-C
on C3 and C7 of IRMOF-16, respectively. The molecular fragment structures
are shown by sticks and the element specific color, but the central atoms
of the fragments, which are shown by balls and are embedded in the same
environment as in the bulk up to a radius of rfrag = 8.718Å.

ence data for a HDNNP training set for different atomic sites simultaneously and to reduce
the amount of computational effort compared to atomic site specific fragments. Related to
the uncertainties of the fragment radius definition, the resulting fragments are definitely
not sensitive to a specific definition, since the main structural IRMOF building blocks – the
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SBU, the phenylene ring and the carboxyl group – are in- or excluded completely within a
molecular fragment structure to avoid significant changes of the electronic structure. For
the definition of the HDNNP cutoff radius equal to the fragment radius rcut = rfrag, not
all atoms included in the fragment structure effect the atomic energy contribution EA of
a selected central reference atom A (magenta). Only atoms B (orange) within an atomic
distance dAB smaller than the cutoff radius dAB ≤ rcut effects the atomic energy contri-
bution EA, while the remaining atoms (blue) are only included due to restrictions in the
fragment construction procedure (fig. 4.23).

Besides the fragments in figure 4.21, more efficient fragments structures can be defined by
increasing the number of atoms in a bulk-like environment by just slightly increasing the
total number of atoms. For example, the fragment I1-A (fig. 4.21) shows only one zinc atom
in a bulk-like environment, because for the remaining three zinc atoms the terminating
carboxyl groups are missing to complete the bulk-like environment up to a radius of rfrag =
8.718Å. Including the missing carboxyl group atoms leads to the fragment I1-A′ with four
bulk-like zinc atoms (fig. 4.22). Hence, by a moderate increase of the total number of
atoms and thus a moderate increase of the computational effort, the information obtained
by a DFT calculation for this fragment is strongly increased. Table 4.10 summarizes the
number of total and bulk-like atoms, as well as their ratio, which is increased for all
efficiency increased fragments. For the fragments I1-B and I16-C, a more efficient version
of the molecular fragment structure is not existent as in the aspect of the fragment I1-A
and these two fragments remain unaffected.

Figure 4.22: Non-redundant, increased efficiency rfrag = 8.718Å fragments of for the in-
equivalent positions of IRMOF-1, -10 and -16 bulk structures, which can be
used as foundation for a HDNNP training data set. I1-A′ and I1-B′ (equivalent
to I1-B) are based on Zn1 and C2 of IRMOF-1, I10-A′ and I10-B′ on Zn1 and
C5 of IRMOF-10, I16-B′ and I16-C′ (equivalent to I16-C) on C3 and C7 of
IRMOF-16, respectively. The molecular fragment structures are shown by
sticks and the element specific color, but the central atoms of the fragments,
which are shown by balls and are embedded in the same environment as in
the bulk up to a radius of rfrag = 8.718Å.
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Table 4.10: Compilation for M the total number of atoms, Mbulk the number bulk-like
atoms within a cutoff radius rcut = 8.718Å and their ratio Mbulk

M for the rfrag =
8.718Å based (fig.4.21) and increased efficiency fragments (fig.4.22).

rfrag = 8.718 Å based I1-A I1-B I10-A I10-B I16-B I16-C

M 98 145 119 116 99 38
Mbulk 8 12 17 11 14 4
Mbulk
M 0.08 0.08 0.14 0.09 0.14 0.11

increased efficiency I1-A′ I1-B′ I10-A′ I10-B′ I16-B′ I16-C′

M 107 145 149 156 209 38
Mbulk 17 12 35 22 101 4
Mbulk
M 0.16 0.08 0.23 0.14 0.48 0.11
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4.7 Construction of a HDNNP-Based on Molecular
Fragments Structures

From the DFT summary in section 4.6, a fragment radius rfrag is obtained being crucial
for the construction of size-converged molecular fragments based on IRMOF-1, -10 and -16
structure. The central atoms of the fragments are characterized by a bulk-like environment
up to a radius of rfrag = 8.718Å and accurate atomic forces, which are particularly similar
to the related bulk forces within the periodic bulk-structure. Thus, these non-redundant
fragments form the foundation of a HDNNP training set including different configurational
atomic arrangements probably created by MD simulations. This training set provides ac-
curate IRMOF bulk forces for the central atoms of the fragments and can be used for the
prediction of bulk properties [49], like bulk forces as demonstrated in figure 4.23 a) and b).
As known from the theoretical background of HDNNP (sec. 2.6), the total potential energy
Etot of a system is separated into atomic energy contributions EA of atoms A (eq. 2.52).

The non-observable auxiliary quantities – the atomic energy contributions – EA depend
on the local atomic environment described by a set of ACSFs up to the HDNNP cutoff
radius rcut. The atomic force component fAα (sec. 2.6.4) is the negative derivative of the
total potential energy with respect to the atomic coordinate Aα of atom A (eq. 2.63)

fAα = −∂Etot
∂Aα

= −
∑
B

∂EB
∂Aα

. (4.10)

However, not all atoms B contribute to the force component fAα in the formalism of
HDNNP, since only atomic energy contributions EB depend on the atomic coordinate Aα,
if the atomic distance dAB is smaller than the cutoff radius,

∂

∂Aα
EB 6= 0 for dAB ≤ rcut , (4.11)

and vice versa for atoms C the distance dAC is beyond the the cutoff radius,

∂

∂Aα
EC = 0 for dAC > rcut . (4.12)

Thus, the ACSFs strictly ensures the locality approach for the atomic energy contributions.
All interactions for a specific atom A with its neighboring atoms B beyond the cutoff radius
(dAB > rcut), are truncated. Nevertheless, the atomic energy contributions EB depend on
all atoms within within their cutoff radius and thus, the force component fAα depends
formally on all atoms within a 2rcut environment. Consequently, the HDNNP formalism
defines the atomic energy contribution a function of the single cutoff radius EA = f(rcut)
and the atomic force as function of twice the cutoff radius fA = f(2rcut). Since the derived
fragment radius rfrag = 8.718Å, provides size-converged fragment with respect to accurate
atomic forces compared to the bulk structures, the derived fragment radius is equivalent
to the twice cutoff radius,

rfrag = 8.718Å = 2rcut , (4.13)
rcut = 4.359Å . (4.14)

For this reason, another set of molecular fragments can be constructed with the strong
predictive power for the much larger bulk structures based on r′frag = 4.359Å (fig. 4.24),
including less atoms than the fragments based on rfrag = 8.718Å (fig. 4.22).
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Figure 4.23: a) A 2D-projection of the IRMOF-1 structure with a marked C1 atom of in-
terest A (magenta cross), two exemplary neighboring atoms B and B′ (orange
triangles) within the cutoff radius environment (magenta/orange/blue shaded
circle) and a neighboring atom C (blue triangle) even outside the 2rcut envi-
ronment (black dashed circle) of atom A. The cutoff radii of atoms A, B and
B′ demonstrate the formal 2rcut dependence of the force component fAα . The
black dashed lines highlight the broken bonds for the size-converged fragment
of the atomic site C1 and underline the integration of the complete 2rcut envi-
ronment within this fragment. b) The non-redundant fragment I1-B’ for the
accurate description of the in-equivalent atomic site C1 of IRMOF-1, being
used together wit further fragment structures by the HDNNP to predict the
atomic bulk force fA. c) The non-redundant fragment I1-Bs for the descrip-
tion of the in-equivalent atomic site C1 of IRMOF-1, based on r′frag = 4.359Å,
being used together wit further fragment structures by the HDNNP to predict
the atomic bulk force fA.
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The fragment radius defines the upper boundary for the cutoff radius, since up to this radius
the central atoms of the fragments are embedded in a bulk-like environment. Comparing
the bulk-like atoms within a cutoff radius rcut = 4.359Å, the rfrag = 8.718Å fragments
include more bulk-like atoms than their rfrag = 4.359Å counter parts (tab. 4.11). To

Table 4.11: Compilation for M the total number of atoms, Mbulk the number bulk-like
atoms within a cutoff radius rcut = 4.359Å and their ratio Mbulk

M for the rfrag =
4.359Å-based (fig.4.24) and the fragments based on rfrag = 8.718Å (fig. 4.22).

I1-As I1-Bs I10-Bs I16-Cs I1-A’ I1-B’ I10-A’ I10-B’ I16-B’ I16-C’

M 59 42 49 32 107 146 149 156 209 38
Mbulk 17 11 17 16 65 62 101 68 161 24
Mbulk
M 0.29 0.26 0.35 0.50 0.61 0.42 0.68 0.44 0.77 0.63

image the accurate atomic bulk forces by a molecular fragment structure, definitely the
size-converged fragments based on rfrag = 8.718Å (fig. 4.22) demonstrate the significant
minimum environment, which needs to be considered for the specific atomic sites of the
IRMOF structures. This is related to the underlying physics of the IRMOF systems and
comparable to map the periodic bulk properties onto molecular fragment structures as
used for example in the cluster approach to model surfaces [109] and related to the already
mentioned problems in QM/MM approaches in section 3.2: mapping properties of a com-
putational demanding real system, like a complex periodic surface structure or an enzyme
including a huge number of atoms onto a computationally non-demanding model system.
However, this imaging of periodic bulk properties, like atomic forces onto molecular frag-
ments, is not the main aspect here. The goal is to train a HDNNP based on molecular
fragment data, resulting in the predictive power of the HDNNP for bulk properties, among
others also for the atomic bulk forces. Nevertheless, the predictive power is not related to
any further requirements for the molecular fragments itself, but the correct description of
the bulk environment up to the cutoff radius (rfrag = 8.718Å= 2rcut → rcut = 4.359Å)
and the correct relation of the structure and the total binding energy of a system (eq. 2.56).
Thus the molecular fragments do not need to illustrate the accurate atomic bulk forces for
their central atoms and the restriction

f frag
A

!
= fbulk

A , (4.15)

does not need to be fulfilled for the molecular fragments. It might be possible for the
HDNNP to predict the accurate atomic bulk forces, while trained on molecular fragments
as reference data, which do not provide the accurate atomic bulk forces of a chosen central
atom (fig. 4.23c). This is related to the HDNNP prediction of the bulk forces, which is
based on the total potential bulk energy. As long as the prediction of the bulk energy is
accurate, this should be valid for the atomic bulk forces.
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Figure 4.24: Non-redundant, r′frag = 4.359Å fragments for the in-equivalent positions of
IRMOF-1, -10 and -16 bulk structures. I1-As describes the Zn1, O1 and O2
positions for all three IRMOF structures; I1-Bs describes also the O1 and
O2 position, as well as C1 and H1 for all IRMOF structures, additionally
C2 and C3 for IRMOF-1; I10-Bs desribes also O1, O2, C1 and H1 for all
IRMOF structures and C2, C3, C4, C5 and H2 for IRMOF-10 and -16; I16-
Cs describes also C5 and H2 for IRMOF-10 and -16 and C6, C7 and H3 for
IRMOF-16. The molecular fragment structures are shown by sticks and the
element specific color, but the central atoms of the fragments, which are shown
by balls and are embedded in the same environment as in the bulk up to a
radius of r′frag = 4.359Å.

Figure 4.25: Norm of the force error ||∆fA|| for all central atoms of the fragment between
the true bulk and fragment force of the rfrag- (fig. 4.22) and r′frag-fragments
(fig. 4.24). This data sets are independent from HDNNP training as intro-
duced in section 4.9.1. The predefined force criterion ||∆fmax|| ≤ 0.125 eVÅ
is indicated by the black line.
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The atomic forces of the central atoms are verified by a bulk IRMOF data set being
introduced in section 4.9.1. Based on these bulk structures, rfrag- and r′frag-fragments
are constructed and the atomic fragment forces are compared to the related bulk forces
(fig. 4.25). The accuracy of the atomic fragment forces is different for the diverse frag-
ments, which is also related to the construction of the underlying bulk data set. Nev-
ertheless, rfrag-fragments describe their central atoms rather accurately with force error
norms similar to the pre-defined force criterion ||∆fA|| ≈ ||∆fmax|| ≤ 0.125 eVÅ in the
analysis of the Hessian (sec. 4.9). Contrary, the r′frag-fragments show large deviations
of their related central atom forces with significantly large deviations to the bulk forces
||∆fA|| ≈ 3× ||∆fmax|| ≤ 0.125 eVÅ.
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4.8 Training of the HDNNPs

For the r′frag based fragments (fig .4.24) an initial training set HDNNP-1′ is created by ab
initio MD simulations of the FHI-aims program package [101] at a moderate temperature
of 600 K, resulting in 3498 structures (I1-As: 682, I1-Bs: 908, I10-Bs: 908, I16-Cs: 1000)
or in terms of the HDNNP training points. The neural network architecture is selected as
15×15×1 with two hidden layers containing 15 nodes each and an one-node output layer.
For the activation function the hyperbolic tangent is chosen for the hidden layers and a
linear activation function for the output layer, respectively. Exact details are summarized
in sections sec. 3.3 andA.7.

4.8.1 r′frag-Fragments Based HDNNP

For the ACSFs, the HDNNP cutoff radius is defined as rcut = 4.359Å as already men-
tioned above. For each element combination five radial ACSFs are defined, while for
the angular ACSFs eight different sets of parameters for chosen per element combina-
tion. To reduce the amount of ACSFs for certain element combinations, the DFT Hes-
sian data is analyzed demonstrating no significant interactions between zinc and hydrogen
atoms (fig.A.9, A.15, A.16, A.24, A.25, A.26, A.36, A.37 and A.38), only less signif-
icant hydrogen-hydrogen interactions (fig.A.15, A.24, A.25, A.36, A.37 and A.38) and
hydrogen-oxygen interactions (fig.A.10, A.11, A.15, A.17, A.18, A.24, A.25, A.27, A.28,
A.36, A.37 and A.38), resulting in the set of 20 radial ACSFs for carbon, 18 for oxygen, 15
for zinc and eleven for hydrogen atoms as mentioned in tableA.12 with the cutoff radius
rcut = 4.359Å= 8.237 a0, the shifting parameter rshift = 0.000Å= 0.000 a0 and the inner
cutoff radius rinner,cut = 0.000Å= 0.000 a0. For the angular ACSF, the element combina-
tions as summarized in tableA.13 are expanded by all different combinations of the param-
eter ζ ∈ {1, 2, 4, 16}, defining the width of the cosine part and the parameter λ ∈ {−1, 1}
inverting the cosine part. For the element combinations C-Zn-Zn, Zn-C-C, Zn-C-Zn, Zn-O-
Zn and Zn-Zn-Zn the angular ACSF with the parameter combination of η/λ = −1/16 are
neglected, since these do not provide any input information for the HDNNP and the under-
lying data set. A first HDNNP represents the initial data with a high accuracy (tab. 4.12),
low errors for the total potential energy of the training RMSE(Etrain

tot ) = 0.0009 eVatom−1

and test data set RMSE(Etest
tot ) = 0.0008 eVatom−1, as well as acceptable errors for

the force components of the training RMSE(f train) = 0.1450 eVÅ−1 and test data set
RMSE(f test) = 0.1450 eVÅ−1, respectively. Also the individual errors of the fragments I1-
As, I1-Bs and I10-Bs are acceptably small, which underlines the accurate representation of
the data set, although the errors for the I16-Cs fragment are increased but still acceptable.
Based on the initial HDNNP fit and data set of r′frag-1, the data set is iteratively expanded
to sample the important regions of the configurational space. More details are given in the
sections 3.4. Finally the data set r′frag-2 of 13220 data points is observed, containing 3092
structures of I1-As, 3049 of I1-Bs, 4000 of I10-Bs and 3079 of I16-Cs, which is represented
by the same HDNNP architecture and ACSF as the initial data set, resulting in similar
RMSEs of the total data set and for the individual fragment structures (tab. 4.12).

4.8.2 rfrag-Fragments Based HDNNP

Based on the initial HDNNP fit r′frag-1-SF1 (tab. 4.12), a data set for the rfrag-fragments
(fig.4.22) is created by MD simulations (sec. 3.4). For the ACSF also a cutoff radius
of rcut = 4.359Å can be defined with the same ACSFs as summarized in tablesA.12
andA.13. However, the atomic environment of the central atoms within these fragments
is equivalent to the bulk environment up to a radius rfrag = 8.718Å, which defines the
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Table 4.12: Root-mean squared error (RMSE) for the total potential energy of the training
(Etrain

tot ) and test data set (Etest
tot ) in eV atom−1 and for the force components

of the training (f train) and test data set (f test) in eVÅ−1 summarized for the
initial r′frag-1-SF1 and the final data set r′frag-2-SF1, which are based on the
r′frag-fragments as shown in figure 4.24, on the atom-centered symmetry func-
tions summarized in tablesA.12 andA.13 and a 15× 15× 1 NNP architecture
(details given in sec. 3.3 andA.7). For the individual fragments I1-As, I1-Bs,
I10-Bs and I16-Cs, the individual RMSE values are shown, resulting from the
parameters fitted for the complete data set presented by r′frag-1-SF1 and r′frag-
2-SF1.

HDNNP/ RMSE RMSE data
data set Etrain

tot Etest
tot f train f test points

r′frag-1-SF1 0.0012 0.0013 0.1436 0.1453 3498
I1-As 0.0009 0.0008 0.1450 0.1450 682
I1-Bs 0.0009 0.0008 0.1483 0.1472 908
I10-Bs 0.0008 0.0008 0.1224 0.1229 908
I16-Cs 0.0018 0.0016 0.1626 0.1638 1000

r′frag-2-SF1 0.0014 0.0015 0.1267 0.1295 13220
I1-As 0.0013 0.0013 0.1291 0.1315 4370
I1-Bs 0.0011 0.0010 0.1167 0.1181 2860
I10-Bs 0.0013 0.0012 0.1212 0.1173 4314
I16-Cs 0.0022 0.0021 0.1571 0.1572 1676

upper boundary for the ACSF cutoff radius rmax
cut . Because of the atomic force dependency

on twice the cutoff radius fA = f(2rcut), the HDNNP predicts atomic forces dependent
on 2rcut = 17.436Å environment. Consequently, the increased cutoff radius and thus,
the inherently increased information of the local atomic environment input to the HDNNP
should in principle increase the accuracy of the predicted results, apart from technical issues
like the increased configurational space to sample. For a set of ACSFs SF-2, providing a
similar radial resolution as SF-1 (tab.A.12 andA.13), the increased number of radial ACSFs
is inherently related to the increased the cutoff radius rcut = 8.718Å. Thus, 17 radial
ACSF are defined for each element combination, while again zinc-hydrogen interactions
are neglected, hydrogen-hydrogen and hydrogen-oxygen ACSFs are reduced resulting in
68 radial ACSF for carbon, 54 for oxygen, 51 for zinc and 23 for hydrogen (tab.A.14
andA.15) with the cutoff radius rcut = 8.718Å= 16.475 a0, the shifting parameter rshift =
0.000Å= 0.000 a0 and the inner cutoff radius rinner,cut = 0.000Å= 0.000 a0. For the angular
ACSF, the element combinations as summarized in tableA.16 are expanded in analogy to
SF-1. For the element combinations C-Zn-Zn, O-O-O, Zn-C-C, Zn-C-Zn, Zn-O-Zn, Zn-
Zn-Zn and H-O-O the angular ACSF with the parameter combination of η/λ = −1/16
are neglected, since these do not provide any input information for the HDNNP for the
underlying data set. Based on the initial HDNNP fit and data set, the data set is iteratively
expanded independently from the data based on r′frag, to sample the important regions of
the configurational space. More details are given in the sections 3.4. Finally the data set
rfrag-2-SF2 of 13503 data points is observed, containing 1279 structures of I1-A’, 3271 of
I1-B’, 1240 of I10-A’, 4314 of I10-B’, 1938 of I16-B’ and 1461 of I16-C’, resulting in RMSE
values as the HDNNP r′frag-2-SF1 (tab. 4.12 and 4.13).
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Table 4.13: Root-mean squared error (RMSE) for the total potential energy of the training
(Etrain

tot ) and test data set (Etest
tot ) in eVatom−1 and for the force components

of the training (f train) and test data set (f test) in eVÅ−1 summarized for the
initial rfrag-1-SF2 and the final data set rfrag-2-SF2, which are based on the
rfrag-fragments as shown in figure 4.22, on the ACSF summarized in tablesA.14,
A.15 andA.16 and a 15 × 15 × 1 NNP architecture (details given in sec. 3.3
andA.7). Additionally, the errors are summarized for the final data set rfrag-
2-SF1, which based on the ACSF summarized in tablesA.12 andA.13. For
the individual fragments I1-A’, I1-B’, I10-B’ and I16-C’, the individual RMSE
values are shown, resulting from the parameters fitted for the complete data
set presented by rfrag-1-SF2 and r′frag-2-SF2.

HDNNP/ RMSE RMSE data
data set (Etrain

tot ) (Etest
tot ) (f train) (f test) points

rfrag-2-SF2 0.0011 0.0012 0.1654 0.1636 13 503
I1-A’ 0.0007 0.0007 0.1323 0.1314 1 279
I1-B’ 0.0007 0.0008 0.1351 0.1337 3 271
I10-A’ 0.0010 0.0010 0.1666 0.1585 1 240
I10-B’ 0.0009 0.0009 0.1606 0.1614 4 314
I16-B’ 0.0010 0.0010 0.2014 0.1974 1 938
I16-C’ 0.0023 0.0024 0.2268 0.2233 1 461

rfrag-2-SF1 0.0012 0.0011 0.1448 0.1441 13 503
I1-A’ 0.0008 0.0007 0.1174 0.1150 1 279
I1-B’ 0.0008 0.0008 0.1225 0.1204 3 271
I10-A’ 0.0009 0.0011 0.1422 0.1425 1 240
I10-B’ 0.0009 0.0009 0.1408 0.1436 4 314
I16-B’ 0.0010 0.0010 0.1720 0.1733 1 938
I16-C’ 0.0025 0.0021 0.2047 0.1946 1 461
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4.9 Application of the HDNNPs

The resulting HDNNPs r′frag-2-SF1, rfrag-2-SF1 and rfrag-2-SF2 presented in the section
above are used to predict properties for the periodic bulk IRMOF structures (fig. 4.1) and
for the different molecular fragment structures based on rfrag (fig. 4.22) and r′frag (fig. 4.24),
which are derived by the DFT Hessian results (sec. 4.6 and related). The underlying data
sets are independent from the HDNNP training data sets.

4.9.1 Energies and Forces of the Fragments and the Bulk Structures

For each of the threeIRMOF structures, an independent data set of 502 structures/data
points is constructed based on two independent MD simulations within the NPT ensemble
at normal pressure and at temperatures of 200 K and 500 K for IRMOF-1, 200 K and
450 K for IRMOF-10, as well as 200 K and 350 K for IRMOF-16, which are generated
by the HDNNP r′frag-2-SF1. These temperatures are chosen to ensure the MD trajectory
stays in a reasonable region of the configurational space to avoid extrapolation warning for
the ACSFs marking less accurate sampled regions of the configurational space resulting in
unreasonable energies and forces and this unreasonable structures of the IRMOFs. More
details are given in section 3.4. From each MD trajectory 251 structures separated by
2 ps (2000 TS× 1 fs TS−1) are combined for the IRMOFs to result in the HDNNP training
independent bulk data set.

Bulk Structure Predictions

Predicted energies and forces of the two HDNNPs r′frag-2-SF1 and rfrag-2-SF1 for IR-
MOF-1 are summarized in figure 4.26, for IRMOF-10 in figureA.40 and for IRMOF-16 in
figureA.41. The structures of the two independent MD trajectories at different tempera-
tures can clearly be separated by the two starting structures as stated by the data points
1 and 252 (panel a) of fig. 4.26, A.40 andA.41). The atomic energy differences ∆E of the
HDNNP predictions and the DFT references are properly small (panel a) of fig. 4.26, A.40
andA.41; ∆E . 0.0025 eV) and comparable to the RMSE of the energies of the HDNNPs
(tab. 4.12 and 4.13). Also for the forces, the error RMSE(f) as stated by the RMSE of
the force components for each data point are in an acceptable order of magnitude (panel
c) of fig. 4.26, A.40 andA.41; RMSE(f) . 0.16 eVÅ−1) as expected from the HDNNP
RMSE of the force components. Furthermore, there no significant quantitative differences
between the two HDNNP predictions. In general, with increase of the temperature of the
MD trajectory and thus the kinetic energy of the atoms, also the errors increase, because
this additional kinetic energy leads to regions of the configurational space, which are not
sampled properly.

r′frag-Fragments Predictions

Based on the generated bulk data mentioned above, r′frag-fragment structures are con-
structed for each of the 502 data points to result in HDNNP training independent data
sets of the fragment structures. For the I1-As fragment, representing – among other cen-
tral atoms – the in-equivalent site Zn1 in the three IRMOF bulk structures, a data set of
1506 data points are combined from 251 data points of the two MD trajectories for each
of the three IRMOFs. The data set (502 data points) for the I1-Bs fragment structures is
combined from 251 data points of the two IRMOF-1 trajectories; the I10-Bs data set (1004
data points) is combined from 251 data points of the IRMOF-10 and -16 trajectories; the
I16-Cs data set (502 data points) is combined from 251 data points of the two IRMOF-16
trajectories. The predicted energies and forces for the data set of I1-As are summarized in
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Figure 4.26: Compilation of the IRMOF-1 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (502 structures/data points), combined of 251 data points for each of
two MD simulations in the NPT ensemble (sec. 3.4) at normal pressure and
temperatures T ∈ {200, 500} in K. a) Demonstrates the total potential energy
of the IRMOF-1 bulk structure over the data set. The two independent MD
simulations can be separated by the two starting points of the simulations
(data point 1 and 252). b) The atomic energy error ∆E in eV for the data
set and c) the root-mean squared error of the force components RMSE(f) for
each data point in eVÅ−1.
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figure 4.27, for I1-Bs in figureA.42, for I10-Bs in figureA.40 and for I16-Cs in figureA.44.
The atomic energy differences are low in value (panel b) of fig. 4.27, A.42, A.40 andA.44;
∆E . 0.004 eV) similar to the RMSE of the force components per data point (panel c)
of fig. 4.27, A.42, A.40 andA.44; RMSE(f) . 0.010 eVÅ−1) and again comparable to the
RMSE values of the HDNNP training (tab. 4.13 and 4.13). Also here, the errors increase
with the temperature of the underlying MD trajectory, due to the increased kinetic energy.
For the I16-Cs fragment data set, the errors are marginally increased (∆E . 0.006 eV
and RMSE(f) . 0.250 eVÅ−1), which is in line with the increased RMSE values of the
HDNNP training data set of I16-Cs. Furthermore, the two differentHDNNPs does not
predict significantly different values.

rfrag-Fragments Predictions

For each of the rfrag-fragments also an independent data set is constructed based on the
specific bulk MD trajectories, including 502 data points (251 from each trajectory). The
results for I1-A′ are summarized in figure 4.28, for I1-B′ in figureA.45, for I10-A′ in fig-
ureA.46, for I10-B′ in figureA.47, for I16-B′ in figureA.48 and for I16-C′ in figureA.49.
The errors are similar to the rfrag- fragments presented above and in accurate agreement
with the training RMSEs. Some outliers arise e. g. for I1-A′ resulting in large force errors
(RMSE(f) ≈ 0.300 eVÅ−1 at data point 400), demonstrating a fragment structure for
which the configurational space is less accurately sampled resulting in this large force er-
ror. Nevertheless, equivalent to the results of the bulk and r′frag-fragment structures, both
HDNNPs illustrate similar results and no significant differences for the forces and energies
of the rfrag-fragment structures.

4.9.2 The Lattice Parameter of the IRMOF Structures

To determine the equilibrium lattice parameter a the data set presented in section 4.1 is
used. The predicted energies and forces of the HDNNPs are summarized for IRMOF-1
in figure 4.29, for IRMOF-10 in figureA.50 and for IRMOF-16 in figureA.51, respectively.
The predictions around the equilibrium structure (data point 6) are accurate, as this re-
gion of the configurational space is sampled with high resolution by the active learning
scheme (sec. 3.4). Larger deviations of the energy predictions (∆E & −0.005 eV) occur for
the compressed structures and for the expanded structures (∆E . 0.015 eV) predicted by
r′frag-2-SF1, whereas rfrag-2-SF1 predicts more accurate energies for the expanded struc-
tures (∆E . 0.002 eV). The same behaviour is observed for the error of the forces as
in the equilibrium regions the force predictions are accurate (RMSE(f) . 0.060 eVÅ−1)
compared to the expanded and compressed structures (RMSE(f) . 0.200 eVÅ−1). The re-
sulting lattice parameters are in accurate agreement with the DFT results (tab. 4.14) with
an absolute deviation of the lattice parameter |∆a| . 0.050Å and insignificantly relative
deviations |∆′a| . 0.0011.

4.9.3 Phenylene Rotations within the IRMOF Structures

To analyze the rotational barrier so-called dumbbell fragments of the IRMOFs are con-
structed (fig. 4.30) including a linker of the specific IRMOF being embedded in the SBU
bulk environment. For sure, periodic bulk effects are not considered in these dumbbell
model fragments, but the computational effort is decreased drastically compared to the
analysis of the phenylene rotations within the periodic bulk structures. Nevertheless, in
this comparison the goal is to find different and common features of the predictions of
two HDNNP with a conceptional different approach for the data set. An accurate descrip-
tion of the IRMOFs rotational barriers is not focused. The data sets for the rotational
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Figure 4.27: Compilation of the I1-As fragment (fig. 4.24) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for the three individual IRMOFs (in total 1506
I1-As fragment structures/data points, 502 for the individual IRMOFs). a)
Demonstrates the total potential energy of the I1-As fragment structure over
the data set. The individual MD simulations can be separated by the starting
points of the simulations (data point 1, 252, 503, 754, 1005 and 1256). b) The
atomic energy error ∆E in eV for the data set and c) the root-mean squared
error of the force components RMSE(f) for each data point in eVÅ−1.
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Figure 4.28: Compilation of the I1-A’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-1 (in total 502 I1-A’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I1-A’
fragment structure over the data set. The individual MD simulations can be
separated by the starting points of the simulations (data point 1 and 252).
b) The atomic energy error ∆E in eV for the data set and c) the root-mean
squared error of the force components RMSE(f) for each data point in eVÅ−1.
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Figure 4.29: Compilation of the IRMOF-1 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (16 structures/data points), based on expanded and compressed bulk struc-
tures by a scaling factor σ ∈ {0.95−1.10} in steps of 0.01 with DFT optimized
atomic positions. a) Demonstrates the total potential energy of the IRMOF-1
bulk structure over the data set, b) The atomic energy error ∆E in eV for the
data set and c) the root-mean squared error of the force components RMSE(f)
for each data point in eVÅ−1.
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Table 4.14: Compilation of the DFT and Birch-Murnaghan (BM) EOS equilibrium lattice
parameter a, the absolute deviation ∆a = aDFT − a compared to the DFT
lattice parameter in Å and the relative deviation ∆′a = 1− a

aDFT predicted by
DFT and the HDNNPs r′frag-2-SF1, rfrag-2-SF1 and rfrag-2-SF2 BM EOS fit.

BM BM BM BM
DFT DFT r′frag-2-SF1 rfrag-2-SF1 rfrag-2-SF2

aIRMOF−1 26.296 26.289 26.293 26.298 26.382
aIRMOF−10 35.063 35.061 35.074 35.094 34.973
aIRMOF−16 43.832 43.832 43.835 43.882 43.742

∆aIRMOF−1 0.000 0.007 0.003 -0.002 -0.0857
∆aIRMOF−10 0.000 0.002 -0.011 -0.031 0.0896
∆aIRMOF−16 0.000 0.000 -0.004 -0.050 0.0894

∆′aIRMOF−1 0.0000 0.0003 0.0001 -0.0001 -0.0033
∆′aIRMOF−10 0.0000 0.0000 -0.0003 -0.0009 0.0026
∆′aIRMOF−16 0.0000 0.0000 -0.0001 -0.0011 0.0020

Figure 4.30: IRMOF-dumbbell fragments used for the analysis of the phenylene ring ro-
tations with the two-fold rotational axis (dashed line), the phenylene rings
being rotated (solid line and rotational arrow) and the labeling of the pheny-
lene rings.

barriers are based on the DFT equilibrium structure (data point 1) combined with 36
structures of a full rotation for the phenylene rings in steps of 10 ◦ without any further
relaxation steps. Contrary to the one-dimensional analysis of IRMOF-1 and -16 (37 data
points in the data set), the phenylene-ring rotation of IRMOF-10 is analyzed in its two
dimensional manner resulting in 1369 data points (37 orientations for the first and the
second phenylene ring). The symmetry of the phenylene ring is not explicitly considered
here, although the symmetry can reduce the computational effort by reducing the total
number of structures necessary to map the PES related to the phenylene ring rotations,
since the phenylene ring includes a two-fold rotational axis, thus rotations beyond 180 ◦

are rotationally equivalent. The DFT reference data illustrate the minimum of the pheny-
lene ring rotation for IRMOF-1 in the co-planar orientation of the phenylene ring and the
two carboxyl groups of the embedding SBUs as expected [53]. For IRMOF-10 the global
minimum of the rotation in not the co-planar orientation as assumed in section 4.1 and in
the literature [53], although in this orientation the overlap of the p-orbitals portray the
most bonding character. Also the interactions of the hydrogen atoms of the neighboring
phenylene rings demonstrate the most repulsive character in this orientation. Thus, an
interplay of both effects shifts the minimum for the phenylene ring orientation out of the
co-planar structure to a slightly twisted orientation of the phenylene rings and the carboxyl
groups, i. e. the first phenylene ring in an orientation 160 ◦ and the second phenylene ring
in an orientation 200 ◦ and symmetry related orientations, respectively. This orientation
results in a 40 ◦ dihedral angle between the neighboring phenylene rings, being perfectly
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in line with the dihedral angle of 38 ◦ within the structure of a biphenyl molecule [110].
For IRMOF-16, the global minimum fo the phenylene ring orientation is also not located
at the co-planar orientation of the phenylene rings and the carboxyl groups of the embed-
ding SBUs for the same reasons as pronounced for IRMOF-10, being completely in line
with the structure from [53]. The results of the one-dimensional IRMOF-1 phenylene-ring
rotation are summarized in figureA.53; for IRMOF-16 only the first phenylene-ring ro-
tation is analyzed (fig.A.54) exemplary for its three dimensional phenylene-ring rotation
problem and the results of IRMOF-10 are summarized in figure 4.31. The equilibrium
structures around data point 1 (and symmetry related 19) of IRMOF-1 and -16, as well as
the 0 ◦-orientation of both phenylene rings for IRMOF-10, respectively, are again described
accurately by both HDNNPs. In contrast to the less accurate description of the high en-
ergy structures, thus 90 ◦ rotation of the phenylene rings for IRMOF-1 and -16, as well as
the 90 ◦ co-planar rotation of both phenylene rings, respectively. Also the turning points
of the rotational barriers around 60 ◦ rotation – for IRMOF-10 the co-planar 60 ◦ rotation,
respectively – demonstrate large deviations in energy from the reference data. In general,
the HDNNP r′frag-2-SF1 predicts more accurate energies for IRMOF-10 (|∆E| . 0.04 eV)
and -16 (|∆E| . 0.02 eV), but not for IRMOF-1 (|∆E| . 0.05 eV), which is describe more
precisely by rfrag-2-SF1 (|∆E| . 0.035 eV). However, the HDNNP rfrag-2-SF1 predicts
larger energy deviations for IRMOF-10 and -16 (|∆E| . 0.04 eV). The forces are compa-
rable to the HDNNP RMSE values (tab. 4.12 and4.13) with in general smaller force errors
for r′frag-2-SF1 compared to rfrag-2-SF1.

4.9.4 Application of HDNNP rfrag-2-SF2

The predicted results for the HDNNP rfrag-2-SF2 are qualitatively comparable to the results
predicted by r′frag-2-SF1 and rfrag-2-SF1. Force and energy predictions for the bulk struc-
tures (fig.A.55) and the related rfrag-based fragments (fig.A.56 andA.57) of the HDNNP
training independent data sets are similar in all three HDNNPs, but the force errors are
slightly increased for rfrag-2-SF2. For the r′frag-based fragments, no predictions are per-
formed, since for these structures no central atom is embedded in a bulk-like environment
because of the enlarged cutoff radius rcut = 8.718Å, while the fragment radius is smaller
rfrag = 4.359Å. Also the predictions for the lattice parameter determination (fig.A.58)
illustrate increased force errors resulting in larger deviations for the determined lattice
parameter a (tab 4.14). Furthermore, for the phenylene rotations (fig.A.59) the errors are
increased of the HDNNP rfrag-2-SF2 predictions.
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Figure 4.31: Compilation of the IRMOF-10 dumbbell model fragment predictions for the
HDNNPs r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP train-
ing independent data set (1369 structures/data points), based on the rotation
of the phenylene rings in steps of 10 ◦. a) Demonstrates the total potential
energy predicted by the HDNNP of the IRMOF-10 dumbbell model fragment
structure over the data set (DFT reference total potential energy given in
figureA.52), b) The total energy error ∆E in eV for the data set and c) the
root-mean squared error of the force components RMSE(f) for each data point
in eVÅ−1.
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4.9.5 Suggestion for Efficient Construction of HDNNPs

In summary, the predictions of the HDNNP r′frag-2-SF1 and rfrag-2-SF1 are similar to each
other only with slight deviations of the quantitative description. However, the predic-
tions for the HDNNP rfrag-2-SF2 illustrates qualitatively the same behavior as observed
for r′frag-2-SF1 and rfrag-2-SF1, but the RMSE values are increased. The increased cutoff
radius rcut = 8.718Å increases the configurational space, which needs to be sampled with
an increased amount of data points. Nevertheless, this HDNNP and its results are not
further interest.

Although, the data set rfrag-2 in combination with the cutoff radius rcut = 4.359Å contains
approximately five times the amount of bulk-like atomic environments of the data set rfrag-2
(tab. 4.15), the HDNNP rfrag-2-SF1 predicts similar errors as r′frag-2-SF1. This behaviour is

Table 4.15: Compilation of the bulk-like atomic environmentsMbulk,data of the two different
data sets rfrag−2− SF1 and r′frag−2− SF1 calculated by the sum of the mul-
tiplication for the bulk-like central atoms Mbulk and the amount of fragments
Nfrag included in the data sets.

Mbulk Nfrag Mbulk,data

I1-A′ 65 1 279 83 135
I1-B′ 62 3 271 202 802
I10-A′ 101 1 240 125 240
I10-B′ 68 4 314 293 352
I16-B′ 161 1 938 312 018
I16-C′ 24 1 461 35 064

Σrfrag−2−SF1 13 503 1 051 611

I1-As 17 4 370 74 290
I1-Bs 11 2 860 31 460
I10-Bs 17 4 314 73 338
I16-Cs 16 1 676 26 816

Σr′frag−2−SF1 13 220 205 904

counter intuitive, but is not related to differences of the training data sets, since both data
sets contain similar structural information as demonstrated by the ACSF averages and the
ranges spanned by the ACSFs (fig. 4.32). Nevertheless, deviations and differences of the
ACSF averages and ranges are related to the different types of HDNNP training fragments
(fig. 4.22 and 4.24). However, the independently and iteratively extended data sets cover a
similar region of the configurational space. Indeed, these two data sets and thus the similar
sampling of the configurational space are perfectly in-line with the predictions of the two
HDNNPs rfrag−2− SF1 and r′frag−2− SF1 presented and discussed above. Intuatively, a
larger amount of bulk-like atomic environments of the HDNNP training fragments should
be more efficient in sampling the configurational space. In practice, this should only be
valid if different symmetry equivalent bulk-like central atoms are embedded in significantly
different atomic environments. Hence, the symmetry equivalent bulk-like atomic environ-
ments of the central atom A are analyzed within the fragment I16-B′, which is included
in the data set rfrag−2− SF1, e. g. each I16-B′ structure contains four Zn1 atoms in a
bulk-like environment as summarized in table 4.16.
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Figure 4.32: Compilation of the element specific (carbon C, oxygen O, zinc Zn and hy-
drogen H) ACSFs average (solid lines) and the related ACSF ranges (dashed
lines) for the training data sets rfrag-2-SF1 (blue) and r′frag-2-SF1 (orange).
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Table 4.16: Compilation of the Nfrag fragment structures I16-B′, I1-As and I10-Bs included
in the related data set, exhibiting N> structures with a larger norm ||S′σA,frag||
(fig. 4.33 and 4.34) of the range-scaled ACSF standard deviation vector for the
Mbulk,A bulk-like central atoms A within each fragment structure compared
to the norm ||S′σA,data|| of the range-scaled ACSF standard deviation vector
for the bulk-like central atoms A over all structures of this fragment type.
Additionally, the counter part N<, as well as the ratios N>

N frag and N<
N frag are

given. Data in bold is also shown in figures 4.33 and 4.34.

A Mbulk,A Nfrag N> N<
N>
Nfrag

N<
Nfrag

||S′σA,data||

I16-B′ Zn1 4 1938 189 1749 0.10 0.90 0.791
O2 12 1938 617 1321 0.32 0.68 0.417
C1 6 1938 521 1417 0.27 0.73 0.411
C2 6 1938 471 1467 0.24 0.76 0.213
C3 12 1938 685 1253 0.35 0.65 0.181
C4 12 1938 475 1463 0.25 0.75 0.242
C5 12 1938 397 1541 0.20 0.80 0.223
C6 12 1938 397 1541 0.20 0.80 0.236
C7 24 1938 479 1459 0.25 0.75 0.264
H1 12 1938 677 1261 0.35 0.65 0.260
H2 24 1938 448 1490 0.23 0.77 0.326
H3 24 1938 469 1469 0.24 0.76 0.330
Ø 1938 485.4 1452.6 0.25 0.75

I1-As Zn1 1 4370 0 4370 0.00 1.00 1.046
O2 6 4370 979 3391 0.22 0.78 0.511
C1 3 4370 696 3674 0.16 0.84 0.569
H1 6 4370 108 3283 0.25 0.75 0.316
Ø 4370 690.5 3679.5 0.16 0.84

I10-Bs O2 2 4314 358 3956 0.08 0.92 0.419
C1 1 4314 0 4314 0.00 1.00 0.458
C2 1 4314 0 4314 0.00 1.00 0.259
C3 2 4314 426 3888 0.10 0.90 0.195
C4 2 4314 342 3972 0.08 0.92 0.318
C5 2 4314 14 4300 0.00 1.00 0.271
H1 2 4314 584 3730 0.14 0.86 0.269
H2 4 4314 424 3890 0.10 0.90 0.453
Ø 4314 268.5 4045.5 0.06 0.94
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Figure 4.33: Norm ||S′σA,frag|| of the ACSF standard deviation vector for all symmetry
equivalent bulk-like central atoms A ∈ {C3,Zn1,H1,H2} in each fragment
structure I16-B′ included in the data set rfrag-2-SF1 (blue and orange dots)
compared to the norm ||S′σA,data|| of the ACSF standard deviation vector for
all symmetry equivalent bulk-like central atoms A ∈ {C3,Zn1,H1,H2} over
all fragments I16-B′ included in the data set rfrag-2-SF1 (green line). If
||S′σA,frag|| > ||S′σA,data|| the structure is colored in orange, else in blue.

For each I16-B′ structure, an averaged environment for these Zn1 atoms and the related
standard deviation vector S′σA,frag can be determined based on the ACSF. To balance the
numerical effect of different ACSFs, the ACSF values are scaled by their ranges. The
norm ||S′σA,frag|| of this standard deviation vector defines a scalar value, which describes the
difference of the four Zn1 atoms, since a vanishing norm (||S′σA,frag|| ≡ ~O) relates to four
Zn1 atoms perfectly embedded in the same atomic environment. Furthermore, an averaged
environment for these Zn1 atoms and the related standard deviation vector S′σA,data can be
defined for all bulk-like Zn1 atoms of all 1938 I16-B′ structures (fig. 4.33). The norm of
these two standard deviations vectors ||S′σA,frag|| and ||S′σA,data|| are now compared to each
other. If

||S′σA,frag|| > ||S′σA,data||, (4.16)

the Zn1 atoms of this specific I16-B′ structure differ significantly from each other, since
the averaged difference of the atomic environments is larger within this specific I16-B′

structure than the averaged difference within all I16-B′ structures of the whole data set.
Vice versa, if

||S′σA,frag|| < ||S′σA,data||, (4.17)
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the Zn1 atoms are non-significantly different to each other and are embedded in non-
significantly different atomic environments, thus the information of the bulk-like Zn1 cen-
tral atoms, provided as input to the HDNNP training data set by the ACSF vector, is
approximately equivalent. Therefore, each I16-B′ fragment structure can be classified to
one of these categories (N> and N<). Obviously, only a fraction of 0.10 of the I16-B′

fragment structures contain significantly different Zn1 bulk-like central atoms (tab. 4.16).
Moreover, only a minor part – an averaged fraction of 0.25 and at maximum 0.35 for the
C3 and H1 bulk-like central atoms – of the structures for the remaining central atoms A of
fragment I16-B′, contain significantly different bulk-like atomic environments. In general,
it is not a surprising fact, that differences of symmetry equivalent bulk-like atoms within
the same fragment structure are small, in comparison to the differences of the symmetry
equivalent bulk-like atoms of two independent fragment structures. As a consequence, not
all bulk-like central atoms of a specific fragment are independent from each other. This
reduces the efficiency of the larger fragments in terms of sampling different atomic environ-
ments, which is indeed essential for the HDNNP training data set. Likewise, the central
atoms A of the fragments I1-As and I10-Bs can be analyzed, which demonstrates a similar
behaviour of the symmetry equivalent bulk-like central atoms. Hence, the amount of N>-
structures, representing a larger norm of the standard deviation vector per fragment, is
drastically reduced – for I1-As averaged to a fraction of 0.16 and for I10-Bs to 0.06 (fig. 4.34
and tab. 4.16). In summary, the number of bulk-like central atoms A for a specific fragment
structure is of minor importance for the HDNNP training set; the major part of different
atomic environments is included via many different and independent structures of a spe-
cific fragment. For this reason, the r′frag-fragments are preferred for the construction of
a HDNNP data set, because these fragments are computationally less demanding: faster
reference and ACSF value calculation, which decreases the effort for the construction of
the data set and for the training procedure itself. The HDNNPs based on those fragments
predict non-significant deviations compared to the HDNNP based on the rfrag-fragments.
Furthermore, these fragments are easy to handle for the extension of the data set, since
inaccurately described atomic environments can be added to the data set by a minimum
amount of atoms (r′frag-fragments) compared to the may redundant atomic environments
additionally included in the larger rfrag-fragments. In addition, the HDNNP error compen-
sation effect as described by Eckhoff et al. [49] is reduced for smaller fragments, in general.

Nevertheless, the increased computational effort for the rfrag-based fragments and the re-
quired additional ACSFs due to the increased cutoff radius, are not mandatory to yield a
HDNNP providing accurate predictions of the bulk properties. A HDNNP based on the
r′frag-fragments (fig. 4.24) predicts accurate energies and forces for bulk and fragment struc-
tures. Indeed, large errors arise for high energy structures (EOS: fig. 4.29, A.50 andA.51
and the phenylene rotations: fig. 4.31, A.53 andA.54) for which the current data set does
not properly sample the high energy regions of the configurational space. Nevertheless,
this lack of information can easily, quickly and accurately be added to the data set by the
r′frag-fragments to improve the predictions.
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Figure 4.34: Norm ||S′σA,frag|| of the range-scaled ACSF standard deviation vector for all
symmetry equivalent bulk-like central atoms A ∈ {Zn1,H1} in each frag-
ment structure I1-As and A ∈ {C3,H2} in each fragment structure I10-Bs
included in the data set r′frag-2-SF1 (blue and orange dots) compared to
the norm ||S′σA,data|| of the range-scaled ACSF standard deviation vector for
all symmetry equivalent bulk-like central atoms A over all fragments I1-As
(A ∈ {Zn1,H1} and I10-Bs (A ∈ {C3,H2}) included in the data set rfrag-2-
SF1 (green line). If ||S′σA,frag|| > ||S′σA,data|| the structure is colored in orange,
else in blue.
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Conclusion and Outlook

The main goal of this work was the development of a method to analyze the dependency
of the atomic forces on the local environment to determine minimum-sized MLP training
data providing size-converged atomic forces. As exemplary and challenging benchmark sys-
tems three IRMOF structures (IRMOF-1, -10 and -16) were selected. For these systems, a
HDNNP, based on molecular training fragment data, should be developed, which is appli-
cable to the bulk structures. Firstly, the drawbacks for the convergence of the atomic forces
as a function of the environmental radius were discussed. The essential quantity defining
the fragment size is the fragment radius rfrag. Increasing molecular fragments, satisfying
some restrictions to reduce changes of the electronic structure, were constructed, which
describe the local environment of the bulk-like central atom. In the limit of an infinite
fragment radius, the molecular fragment becomes similar to the bulk. For this reason, the
atomic forces provided by the fragments were compared to the reference atomic bulk forces
to derive a minimum fragment size. For a certain fragment radius, the atomic force differ-
ence was assumed to vanish within a predefined convergence range. However, an obvious
drawback of this method was illustrated by the O1 position of the IRMOF bulk structures,
embedded in a symmetric environment demonstrating an independent force difference on
the fragment radius. Furthermore, a detailed analysis of each neighboring atom is lacking.

Therefore, a Hessian-based locality test of the atomic forces was developed from scratch
and illustrated by some one-dimensional model systems. As expected, the range of inter-
actions strongly depended on the underlying electronic structure. Especially, an electronic
π-system determines the range of atomic interactions. In analogy to the fragment ap-
proach, chemical entities were removed from the one-dimensional model systems to result
in smaller molecular fragments and to remain the electronic structure unchanged. The
force difference vector norm in relation to the effective Hessian group matrix norm con-
clude an effective Hessian group matrix norm threshold Γ = 0.29 eVÅ−2, which was used
to determine size-converged molecular fragments of the model systems.

As an intermediate step of transferring these results to the IRMOF systems, a one-
dimensional IRMOF-1 model system (1D) was constructed and analyzed. The Hessian-
based locality test provided a detailed insight on the atomic interactions of IRMOF-1.
Different atomic positions were analyzed, showing the same overall behaviour of decreasing
atomic interactions with increasing atomic distances. Again the π-system of the benzene-
1,4-dicarboxylate (BDC2−) linker mediated atomic interactions over long ranges, in con-
trast to the zinc atoms of the secondary building unit (SBU), which locked the atomic
interactions to shorter ranges, due to the ionic character. Employing the derived threshold
Γ, size-converged molecular fragments were derived providing accurate atomic forces.

The analysis of the three-dimensional IRMOF structures were perfectly in line with the
results from the 1D model. Size-converged molecular fragments were derived for each in-
equivalent atomic site of the IRMOF bulk structures, leading to a series of fragments.
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For obvious reasons, each of the atomic sites depended to a different extent on the local
environment. In fact, different fragment radii were derived from these fragments. The
strongest dependence on the local environment was found for the C1 position in IRMOF-
10 (rfrag = 8.718Å). Nevertheless, the local environment of each atomic site have to be
known to the same extent. Thus, six non-redundant molecular fragments were derived,
based on rfrag = 8.718Å, as a foundation for a HDNNP training data set, which describe
all atoms of the three IRMOF bulk structures. Furthermore, the type of the HDNNP
generation could be assessed by the Hessian-based locality test.

The analytic forces in the second generation HDNNP formalism depend on twice the
HDNNP cutoff radius, which was assumed to be equivalent to the fragment radius (2rcut =
8.718Å). However, to train an accurate HDNNP, based on molecular fragments, with a
predictive power for bulk structures, it was assumed to be also possible by another series of
four molecular fragments based on half the derived fragment radius (r′frag = 4.359Å), since
for the application to bulk structures the molecular training fragments are not restricted
to provide accurate bulk forces. Two independent data sets were constructed iteratively,
based on half and the full fragment radius, respectively. Three HDNNPs (r′frag-2-SF1,
rfrag-2-SF1 and rfrag-2-SF2) were developed, validated and compared to each other.

The training of the data sets was performed by the same HDNNP architecture with differ-
ing sets of atom-centered symmetry functions (ACSFs) indicated as -SF1 (rcut = 4.359Å)
and -SF2 (rcut = 8.718Å). The root-mean squared error (RMSE) values are in a com-
parable range and in the same order of magnitude with slightly increased values for the
forces of rfrag-2-SF1 and rfrag-2-SF2. Moreover, the HDNNPs were validated for several
independent data sets, resulting in the same qualitative predictions with quantitatively
increased deviations for rfrag-2-SF2 compared to r′frag-2-SF1 and rfrag-2-SF1.

Although, the data set rfrag-2-SF1 includes more bulk like atomic environments than r′frag-
2-SF1, the predictive power is equivalent as demonstrated by the validation. It could
be illustrated, the sampling of the potential energy surface (PES) is similar for the both
data sets and the analysis of the symmetry equivalent bulk-like central atoms in rfrag-2-
SF1 revealed dependencies of these symmetry equivalent atoms underlined by a similar
local environment of these atoms. Thus, the fragments based on the fragment radius
r′frag = 4.359Å are favored compared to the enlarged fragments based on rfrag = 8.718Å,
due to less demanding reference calculations and an efficient handling during the HDNNP
construction.

In summary, a method to analyze the dependence of the atomic forces on the local envi-
ronment was developed without the need of statistical sampling of atomic configurations
but detailed information about the dependence on all neighboring atoms. The Hessian-
based locality test provides minimum-sized molecular fragment structures as a foundation
for a HDNNP training data set. However, this method is not restricted to molecular
fragment structures and not to HDNNPs, but in principle it can also be applied to drive
minimum-sized periodic training systems, which will be represented by other MLP meth-
ods. Nevertheless, this method is quite recent and other types of bonding situations like
metals, electrostatic or charge-transfer dominated materials need to be analyzed to extend
the knowledge and thus the applicability of this general and well-defined procedure. Fur-
thermore, this method derived fragment radii providing molecular fragments with accurate
representation of the reference forces. Moreover, it could be illustrated HDNNP training
fragments do not need to include accurate bulk forces for the accurate prediction of these.
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In principle, smaller reference training systems can be used to construct the HDNNP in-
creasing the efficiency of the HDNNP construction. Additionally, this method assess the
atomic interactions to derive the accurate generation of MLPs to represent the system
accurately. To extend the applicability of the developed HDNNPs, further molecular frag-
ments introducing a huge diversity of bonding situations of different MOFs can be included
to the data set employing the effective Hessian group matrix norm threshold.

In the same manner as the atomic forces are calculated by MLPs, also the Hessian should
be available. The analysis of the MLP Hessian will show the dependency of the atomic
forces on the local environment in terms of the MLP formalism. The comparison of these
two local dependencies, resulting from the reference electronic structure method and the
MLP, may reveal differences in the description of the atomic forces, which further can be
analyzed to improve the MLP predictions. However, for the MLP construction not only the
energy and its derivative with respect to the atomic positions – the atomic forces – can be
used in the training procedure, but also the second derivative of the energy with respect to
the atomic positions – the Hessian. This increases the information per reference electronic
structure calculation for the MLP training, reduces the amount of required reference data
and consequently, increases the efficiency of MLP constructions, in general.
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A.1 FHI-aims Settings

For the convergence tests the energy difference between the IRMOF-1 unit cell (a =
25.8247Å) [111] and an expanded structure (1.05 a = 25.8247Å) is investigated for the
different DFT parameters. Although, FHI-aims provides default settings for the elements,
which are called light for fast relaxation of preliminary test calculations, tight for meV-level
accuracy and really_tight for high accuracy results, the convergence behavior in this work
is analyzed explicitly to ensure accurate but also efficient FHI-aims settings. The light set-
tings form a lower boundary for the derived and converged DFT settings used in this work
(tab.A.1 andA.2). The basis function set includes for all elements the FHI-aims recom-
mended functions of the minimal basis, of tier 1 and the first basis function of tier 2. The
confinement potential is selected with the onset radius of 4Å, a width of 2Å and the scaling
parameter 1. The number of radial shells for the numerical integration and the angular
integration grids are equivalent to the light FHI-aims settings with a radial_multiplier of
1. The atom-centered charge density expansion is, as in the light settings, truncated at
l_hartree = 4. These settings are used in addition to the following keywords to form the
FHI-aims control.in file used in this work:

xc rpbe
spin none
relativistic atomic_zora scalar
charge 0
occupation_type gaussian 0.01
mixer pulay
sc_accuracy_rho 1E-04 # 1E-06 mol. Hessian calc.
sc_accuracy_eev 1E-02 # 1E-04 mol. Hessian calc.
sc_accuracy_etot 1E-06 # 1E-08 mol. Hessian calc.
sc_accuracy_forces 1E-04 # 1E-06 mol. Hessian calc.
sc_iter_limit 100
vdw_correction_hirshfeld
compute_forces .true.
#k_grid 1 1 1 # for bulk calculations
#relax_geometry bfgs 1E-02 # for structure minimization
#relax_unit_cell fixed_angles # for structure minimization
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Table A.1: Compilation of the DFT parameter convergence analyzed by energy differ-
ence ∆Etot of an IRMOF-1 (a = 25.8247Å) [111]) and an expanded struc-
ture (1.05 a = 25.8247Å) in eV. Total energy difference per atom ∆Eatom

tot is
converged below ≤ 0.001 eV as stated by energy difference ∆∆Eatom

tot to the fol-
lowing, more strict DFT settings. The basis functions in FHI-aims are grouped
tiers: tier = 1 all basis functions of tier 1 used; tier = 2− 1 all basis functions
up to the first in tier 2 used; until tier = 2 all basis function of tier 1 and
2 used. The parameter cut_pot defines the onset radius of the confinement
potential, radial_base the number of shells for numerical integration with the
light settings, divisions define the specific angular grids for the numerical in-
tegration, radial_multiplier factors additional integration shells and l_hartree
defines the angular momentum expansion of the atom-centered charge density.
All parameters given in italic font are FHI-aims keywords.

parameter ∆Etot ∆Eatom
tot ∆∆Eatom

tot

tier
1 -18.5815 -0.0438 -0.0039
2-1 -16.9138 -0.0399 0.0004
2-2 -17.0792 -0.0403 0.0000
2-3 -17.0965 -0.0403 -0.0006
2-4 -16.8430 -0.0397 0.0000
2 -16.8327 -0.0397 –

cut_pot
3 19.1896 0.0453 -0.0003
4 19.3030 0.0455 0.0000
5 19.3102 0.0455 0.0000
6 19.3106 0.0455 0.0000
7 19.3100 0.0455 –

radial_base
-10 -19.3750 -0.0457 -0.0002
light -19.3045 -0.0455 0.0000
+10 -19.3102 -0.0455 –

divisions
light -16.7556 -0.0395 0.0003
tight -16.8658 -0.0398 -0.0001

really_tight -16.8327 -0.0397 –

radial_multiplier
1 -19.3495 -0.0456 -0.0001
2 -19.3102 -0.0455 0.0000
3 -19.3103 -0.0455 –
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Table A.2: Continuation of tableA.1. Compilation of the DFT parameter convergence
analyzed by energy difference ∆Etot of an IRMOF-1 (a = 25.8247Å) [111])
and an expanded structure (1.05 a = 25.8247Å) in eV. Total energy difference
per atom ∆Eatom

tot is converged below ≤ 0.001 eV as stated by energy difference
∆∆Eatom

tot to the following, more strict DFT settings. The basis functions in
FHI-aims are grouped tiers: tier = 1 all basis functions of tier 1 used; tier =
2 − 1 all basis functions up to the first in tier 2 used; until tier = 2 all basis
function of tier 1 and 2 used. The parameter cut_pot defines the onset radius
of the confinement potential, radial_base the number of shells for numerical
integration with the light settings, divisions define the specific angular grids for
the numerical integration, radial_multiplier factors additional integration shells
and l_hartree defines the angular momentum expansion of the atom-centered
charge density. All parameters given in italic font are FHI-aims keywords.

parameter ∆Etot ∆Eatom
tot ∆∆Eatom

tot

l_hartree
4 -19.1258 -0.0451 0.0004
6 -19.2942 -0.0455 0.0000
8 -19.3102 -0.0455 0.0000
10 -19.3166 -0.0456 –

relativistic
none -19.3102 -0.0455 -0.0030

atomic_zora -18.0530 -0.0426

k_grid
111 -19.3102 -0.0455 0.0000
222 -19.3102 -0.0455 –
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A.2 Accuracy of the Hessian Group Matrix Norm

The simple carbon dioxide molecule already introduced in section 4.3.1 is used to verify
the accuracy of the Hessian group matrix norm Gg

A with respect to the spatial orientation,
being used as confidence intervall for the effective Hessian group matrix norm threshold
Γ (sec. 4.4.4). The carbon dioxide is orientated along the Cartesian z-axis referred as
orientation 1. A second orientation is gained by the rotation of 35 ◦ around the y-axis. The
Hessian group matrix norm for both orientation is equivalent within the derived Hessian
group matrix norm accuracy of ∆||G1

2|| ± 0.02 eVÅ−2 as shown in tableA.3.

Table A.3: Hessian group matrix norm ||G1
2|| in eVÅ−2 for two different orientations of

the carbon dioxide molecule, introduced in section 4.3.1, within the Cartesian
space.

orientation ||G1
2||

1 173.563
2 173.543
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A.3 Hessian-Based Assessment: Model Systems

Figure A.1: The atomic Hessian sub matrix norm values ||hAB|| describing the interaction
between the magenta reference carbon atoms A and all neighboring atoms B
in the model systems HD, HDOE, QPP and QPO (linear scale). Adapted
from [108] with permission from ©2022 AIP Publishing.
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Figure A.2: The atomic Hessian sub matrix norm values ||hAB|| of the four model systems
HD, HDOE, QPP and QPO as a function of the distance dAB between the
reference atom A as defined in figure 4.6 and neighboring atoms B. Separate
curves are given for the interactions of atom A with neighboring carbon and
hydrogen atoms. The inset shows the data for the interaction of A with all
atoms in the entire molecules. Adapted from [108] with permission from ©2022
AIP Publishing.
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Figure A.3: The ffective Hessian group matrix norm values ||G′gA|| of group g and the norm
of the force error ||∆f

Yg
A || of the reference carbon atom A in the fragment

structure Yg (reference structure Y without the removed atoms of group g,
including hydrogen saturation) for the model systems HD, HDOE, QPP and
QPO. The force difference vector is defined as ∆f

Yg
A = fYA − f

Yg
A . Adapted

from [108] with permission from ©2022 AIP Publishing.
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Figure A.4: The atomic Hessian sub matrix norm values ||hAb|| for the saturating hydrogen
atom b as a function of the distance dAb to the reference carbon atom A in
the different fragments of the HD model system. Adapted from [108] with
permission from ©2022 AIP Publishing.
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Table A.4: Compilation of the force component errors ∆f
Yg
Ax,y,z

and the total force errors

||∆f
Yg
A || in eVÅ−1 for the reference carbon atoms in the model systems Y =

HD,HDOE,QPP,QPO (Fig. 6 and 7, σ = 1.00). Further, the effective Hessian
group matrix norm ||G′gA|| is given in eVÅ−2. Numbers outside the intended
convergence are given in bold. Adapted from [108] with permission from ©2022
AIP Publishing.

Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

HD ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0000 0.0000 0.0000 0.01
2 0.0000 −0.0001 0.0000 0.0001 0.01
3 0.0000 −0.0001 0.0000 0.0001 0.01
4 0.0000 −0.0001 0.0000 0.0001 0.01
5 0.0000 −0.0001 0.0000 0.0001 0.01
6 0.0000 −0.0001 0.0000 0.0001 0.01
7 0.0000 −0.0002 0.0000 0.0002 0.01
8 0.0000 −0.0004 −0.0001 0.0004 0.01
9 0.0000 −0.0007 −0.0003 0.0007 0.01
10 0.0000 −0.0011 −0.0006 0.0013 0.01
11 0.0000 −0.0025 −0.0009 0.0027 0.02
12 0.0000 −0.0039 −0.0030 0.0049 0.02
13 0.0000 0.0054 −0.0291 0.0296 0.08
14 0.0000 −0.1981 −0.0921 0.2184 1.07

HDOE ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0014 −0.0043 0.0045 0.02
2 0.0000 0.0042 −0.0116 0.0124 0.04
3 0.0000 0.0094 −0.0247 0.0264 0.07
4 0.0000 0.0195 −0.0495 0.0532 0.14
5 0.0000 0.0414 −0.1031 0.1111 0.29
6 0.0000 0.0986 −0.2474 0.2663 0.71
7 0.0000 0.1877 −1.0018 1.0192 3.71

QPP ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0000 −0.0003 0.0003 0.01
2 0.0000 0.0000 −0.0018 0.0018 0.02
3 0.0000 0.0000 −0.0113 0.0113 0.05
4 0.0000 0.0000 −0.1315 0.1315 0.48

QPO ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0000 0.0000 0.0000 0.01
2 0.0000 0.0000 0.0000 0.0000 0.01
3 0.0000 0.0000 −0.0002 0.0002 0.01
4 0.0000 0.0000 −0.0484 0.0484 0.26
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A.4 Hessian-Based Assessment: 1D-System

Figure A.5: a)–j) Atomic Hessian submatrix norm values ||hAB|| for different reference
atoms A (magenta) of the one-dimensional reference structure 1D of IRMOF-
1. Adapted from [108] with permission from ©2022 AIP Publishing.
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Figure A.6: Continuation of Fig. A.5. k)–o) Atomic Hessian submatrix norm values ||hAB||
for different reference atoms A (magenta) of the one-dimensional reference
structure 1D of IRMOF-1. Adapted from [108] with permission from ©2022
AIP Publishing.
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Figure A.7: a)–j) Effective Hessian group matrix norm values ||G′gA|| for different reference
atoms A (magenta) of the one-dimensional reference structure 1D of IRMOF-1.
The atomic colors of the smallest possible fragment are specified by the atom’s
element. Adapted from [108] with permission from ©2022 AIP Publishing.
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Figure A.8: ontinuation of Fig. A.7. k)–o) Effective Hessian group matrix norm values
||G′gA|| for different reference atoms A (magenta) of the one-dimensional ref-
erence structure 1D of IRMOF-1. The atomic colors of the smallest possible
fragment are specified by the atom’s element. Adapted from [108] with per-
mission from ©2022 AIP Publishing.
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A.5 Hessian-Based Assessment: 3D Fragments

A.5.1 IRMOF-1

Figure A.9: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = Zn1 (magenta) in reference structure Zn1ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.

Figure A.10: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = O1 (magenta) in reference structure O1ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.
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Figure A.11: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = O2 (magenta) in reference structure O2ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.

Figure A.12: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = C1 (magenta) in reference structure C1ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.
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Figure A.13: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = C2 (magenta) in reference structure C2ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.

Figure A.14: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = C3 (magenta) in reference structure C3ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.
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Figure A.15: a) The atomic Hessian submatrix norm values ||hAB|| and b) effective Hessian
group matrix norm values ||G′gA|| in eVÅ−2 with respect to the central atom
A = H1 (magenta) in reference structure H1ref . ||G′gA|| defines the color for
the closest atoms of a given group, which in addition also contains all atoms
at larger distance. The colors of the smallest possible fragment in b) refer to
the chemical elements. Adapted from [108] with permission from ©2022 AIP
Publishing.
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Table A.5: Compilation of the force component errors ∆f
Yg
Ax,y,z

and the total force errors

||∆f
Yg
A || in eVÅ−1 for the reference atoms Zn1, O1, O2, C1, C2, C3, H1 of the

reference structures Zn1ref (fig.A.9), O1ref (fig.A.10), O2ref (fig.A.11), C1ref

(fig. 4.13), C2ref (fig.A.13), C3ref (fig.A.14) and H1ref (fig.A.15). Further, the
effective Hessian group matrix norm ||G′gC1′′′ || is given in eVÅ−2. Numbers
outside the intended convergence are given in bold. Adapted from [108] with
permission from ©2022 AIP Publishing.

A/Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

Zn1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0016 -0.0018 -0.0100 0.0103 0.27
2 0.0065 0.0011 -0.0143 0.0158 0.26
3 -0.0282 0.0358 0.0204 0.0499 0.23
4 0.0005 0.0073 -0.0081 0.0109 0.59

O1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0001 0.0066 -0.0001 0.0066 0.27
2 0.0001 0.0000 -0.0001 0.0001 0.22
3 0.0000 0.0002 -0.0001 0.0002 0.33

O2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0028 0.0028 -0.0026 0.0048 0.02
2 0.0220 -0.0233 0.0576 0.0659 0.09
3 0.0268 -0.0281 0.0655 0.0762 0.25
4 0.0143 -0.0155 0.0429 0.0478 0.22
5 0.0058 -0.0070 -0.0115 0.0146 0.23
6 -0.0290 0.0277 -0.0952 0.1033 0.15
7 0.1157 −0.1168 0.5454 0.5696 3.37

C1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0018 0.0022 0.0165 0.0167 0.02
2 -0.0019 0.0022 -0.0733 0.0734 0.10
3 -0.0019 0.0022 -0.0630 0.0630 0.11
4 -0.0013 0.0016 -0.0599 0.0599 0.36
5 -0.0024 0.0027 0.0172 0.0176 0.35
6 -0.0018 0.0022 0.1666 0.1666 0.30
7 -0.0016 0.0016 −3.0135 3.0135 21.83

C2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0002 -0.0001 -0.0115 0.0115 0.01
2 0.0002 -0.0001 0.0162 0.0162 0.02
3 -0.0363 0.0364 0.0070 0.0519 0.17
4 0.0366 -0.0365 -0.0068 0.0521 0.36
5 0.5746 −0.5738 -0.0916 0.8172 0.57
6 −0.5443 0.5442 -0.1055 0.7769 0.37
7 -0.0002 0.0014 1.8754 1.8754 20.2
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Table A.6: Continuation of tableA.5. Compilation of the force component errors ∆f
Yg
Ax,y,z

and the total force errors ||∆f
Yg
A || in eVÅ−1 for the reference atoms Zn1,

O1, O2, C1, C2, C3, H1 of the reference structures Zn1ref (fig.A.9), O1ref

(fig.A.10), O2ref (fig.A.11), C1ref (fig. 4.13), C2ref (fig.A.13), C3ref (fig.A.14)
and H1ref (fig.A.15). Further, the effective Hessian group matrix norm ||G′gC1′′′ ||
is given in eVÅ−2. Numbers outside the intended convergence are given in bold.
Adapted from [108] with permission from ©2022 AIP Publishing.

A/Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

C3 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0022 -0.0023 0.0017 0.0036 0.00
2 0.0029 -0.0030 0.0015 0.0045 0.02
3 -0.0252 0.0250 -0.0655 0.0745 0.05
4 0.0348 -0.0349 0.0668 0.0830 0.06
5 -0.0236 0.0235 -0.0102 0.0348 0.29
6 0.0026 -0.0030 0.0006 0.0040 0.37
7 0.1660 −0.1663 −0.3542 0.4251 1.99

H1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0006 0.0008 0.0002 0.0010 0.01
2 0.0003 -0.0001 -0.0005 0.0006 0.02
3 0.0010 -0.0007 -0.0127 0.0128 0.02
4 -0.0035 0.0038 0.0188 0.0195 0.03
5 -0.0025 0.0027 -0.0166 0.0170 0.01
6 -0.0361 0.0362 0.0387 0.0641 0.07
7 -0.0795 0.0797 -0.0035 0.1126 0.40
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A.5.2 IRMOF-10

Figure A.16: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = Zn1 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.17: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = O1 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.



A.5 Hessian-Based Assessment: 3D Fragments 129

Figure A.18: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = O2 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.19: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C1 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.20: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C2 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.21: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C3 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.22: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C4 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.23: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C5 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.24: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = H1 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.25: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = H2 (magenta) in reference structure I10ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Table A.7: Compilation of the force component errors ∆f
Yg
Ax,y,z

and the total force errors

||∆f
Yg
A || in eVÅ−1 for the IRMOF-10 reference atoms Zn1, O1, O2, C1, C2, C3,

C4, C5, H1 and H2 of the reference structure I10 (fig. 4.16 andA.16 toA.25).
Further, the effective Hessian group matrix norm ||G′gC1′′′ || is given in eVÅ−2.
Numbers outside the intended convergence are given in bold.

A/Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

Zn1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0164 0.0162 0.0128 0.0264 0.18
2 -0.0020 0.0018 0.0018 0.0032 0.18
3 0.0340 -0.0342 -0.0342 0.0591 0.12
4 0.0054 -0.0050 -0.0050 0.0089 0.70

O1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0001 0.0031 0.0001 0.0031 0.15
2 0.0001 0.0001 0.0001 0.0002 0.14
3 0.0001 0.0001 0.0001 0.0001 0.02
4 -0.0001 0.0000 0.0000 0.0001 0.40

O2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0095 0.0095 -0.0321 0.0348 0.15
2 0.0118 -0.0117 0.0255 0.0304 0.12
3 -0.0163 0.0164 0.0172 0.0288 0.12
4 −0.1481 0.1477 −0.5776 0.6143 3.52

C1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0013 0.0020 0.0430 0.0431 0.22
2 -0.0040 0.0049 0.0905 0.0907 0.16
3 -0.0013 0.0020 -0.0235 0.0236 0.30

C2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0017 0.0017 -0.0076 0.0079 0.10
2 0.0000 0.0000 0.0438 0.0438 0.09
3 0.0000 0.0000 0.0667 0.0667 0.08
4 0.5441 −0.5444 -0.0497 0.7712 0.71

C3 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0010 -0.0010 -0.0009 0.0017 0.02
2 0.0059 -0.0058 -0.0045 0.0094 0.03
3 -0.0407 0.0414 0.0858 0.1036 0.47

C4 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0004 -0.0004 0.0082 0.0082 0.04
2 0.0179 -0.0178 -0.0546 0.0601 0.10
3 -0.0060 0.0068 -0.1236 0.1239 0.40

C5 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0433 -0.0434 -0.0065 0.0616 0.08
2 0.0433 -0.0434 -0.0065 0.0616 0.11
3 0.0384 -0.0384 -0.0017 0.0543 0.38
4 -0.0001 -0.0001 0.1109 0.1109 0.29
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Table A.8: Continuation of tableA.7. Compilation of the force component errors ∆f
Yg
Ax,y,z

and the total force errors ||∆f
Yg
A || in eVÅ−1 for the IRMOF-10 reference atoms

Zn1, O1, O2, C1, C2, C3, C4, C5, H1 and H2 of the reference structure I10
(fig. 4.16 andA.16 toA.25). Further, the effective Hessian group matrix norm
||G′gC1′′′ || is given in eVÅ−2. Numbers outside the intended convergence are
given in bold.

A/Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

H1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0003 0.0003 0.0014 0.0015 0.01
2 0.0036 -0.0036 -0.0022 0.0055 0.01
3 0.0356 -0.0356 -0.0526 0.0728 0.09
4 0.0787 -0.0788 -0.0145 0.1123 0.40

H2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0003 -0.0003 0.0008 0.0009 0.01
2 0.0003 -0.0003 0.0028 0.0028 0.02
3 0.0000 0.0000 -0.0130 0.0130 0.16
4 0.0000 0.0000 -0.0130 0.0130 0.03
5 0.0028 -0.0028 -0.0236 0.0239 0.15
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A.5.3 IRMOF-16

Figure A.26: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = Zn1 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.27: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = O1 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.28: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = O2 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.29: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C1 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.30: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C2 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.31: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C3 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.32: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C4 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.33: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C5 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.34: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C6 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.35: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = C7 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.36: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = H1 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Figure A.37: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = H2 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.

Figure A.38: a) The atomic Hessian sub matrix norm values ||hAB|| and b) the effective
Hessian group matrix norm values ||G′gA|| in eVÅ−2 with respect to the cen-
tral atom A = H3 (magenta) in reference structure I16ref . ||G′gA|| defines the
color for the closest atoms of a given group, which in addition also contains
all atoms at larger distance. The colors of the smallest possible fragment in
b) refer to the chemical elements.
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Table A.9: Compilation of the force component errors ∆f I16
Ax,y,z

and the total force errors

||∆f I16
A || in eVÅ−1 for the IRMOF-16 reference atoms Zn1, O1, O2, C1, C2,

C3, C4, C5, C6, C7, H1, H2 and H3 of the reference structure I16 (fig. 4.19
andA.26 toA.37). Further, the effective Hessian group matrix norm ||G′gA|| is
given in eVÅ−2. Numbers outside the intended convergence are given in bold.

A/Y g ∆f I16
Ax

∆f I16
Ay

∆f I16
Az

||∆f I16
A || ||G

′g
A||

Zn1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0100 0.0101 0.0082 0.0164 0.11
2 -0.0008 0.0008 0.0008 0.0014 0.11
3 -0.0006 0.0005 0.0005 0.0009 0.03
4 0.0065 -0.0063 -0.0062 0.0110 0.73

O1 ref 0.0328 -0.0305 -0.0299 0.0539 0.00
1 0.0327 -0.0290 -0.0300 0.0530 0.09
2 0.0328 -0.0305 -0.0299 0.0539 0.09
3 0.0328 -0.0305 -0.0299 0.0539 0.02
4 0.0328 -0.0305 -0.0300 0.0539 0.07
5 0.0328 -0.0305 -0.0299 0.0538 0.42

O2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0066 0.0066 -0.0205 0.0226 0.09
2 -0.0003 0.0003 0.0066 0.0066 0.01
3 -0.0230 0.0230 0.0089 0.0337 0.17
4 0.0002 -0.0001 0.0598 0.0598 0.26
5 −0.1579 0.1551 −0.5901 0.6302 3.57

C1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0012 0.0013 0.0317 0.0318 0.14
2 0.0000 -0.0001 -0.0244 0.0244 0.11
3 -0.0001 -0.0001 -0.0308 0.0308 0.04
4 0.0000 -0.0001 -0.0007 0.0008 0.40

C2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 -0.0001 -0.0099 0.0099 0.06
2 0.0001 0.0001 0.0190 0.0190 0.06
3 0.0001 0.0001 0.0293 0.0293 0.07
4 0.5438 −0.5444 -0.0828 0.7739 0.77

C3 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0007 0.0008 0.0019 0.0021 0.02
2 0.0005 -0.0005 -0.0048 0.0049 0.02
3 0.0068 -0.0067 0.0101 0.0139 0.04
4 -0.0416 0.0421 0.1013 0.1174 0.50

C4 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0008 0.0008 -0.0012 0.0016 0.02
2 0.0175 -0.0178 -0.0772 0.0811 0.06
3 -0.0068 0.0060 −0.1458 0.1461 0.36

C5 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0048 -0.0012 -0.0005 0.0050 0.05
2 -0.0048 -0.0012 0.0018 0.0052 0.22
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Table A.10: Continuation of tableA.9. Compilation of the force component errors ∆f I16
Ax,y,z

and the total force errors ||∆f I16
A || in eVÅ−1 for the IRMOF-16 reference atoms

Zn1, O1, O2, C1, C2, C3, C4, C5, C6, C7, H1, H2 and H3 of the reference
structure I16 (fig. 4.19 andA.26 toA.37). Further, the effective Hessian group
matrix norm ||G′gA|| is given in eVÅ−2. Numbers outside the intended con-
vergence are given in bold.

A/Y g ∆f
Yg
Ax

∆f
Yg
Ay

∆f
Yg
Az

||∆f
Yg
A || ||G

′g
A||

C7 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0006 -0.0006 -0.0045 0.0046 0.04
2 -0.0104 0.0107 0.0069 0.0164 0.06
3 -0.0268 0.0268 0.0164 0.0412 0.02
4 -0.0268 0.0268 0.0164 0.0412 0.02
5 -0.0268 0.0268 0.0164 0.0412 0.02
6 -0.0369 0.0341 0.1769 0.1839 0.52
7 -0.1091 0.1101 0.6727 0.6903 2.28

H1 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0391 0.0309 -0.0298 0.0581 0.01
2 -0.0396 0.0314 -0.0286 0.0580 0.01
3 -0.0387 0.0305 -0.0288 0.0570 0.02
4 -0.0357 0.0275 -0.0342 0.0566 0.09
5 -0.0034 -0.0046 -0.0847 0.0849 0.41

H2 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0360 0.0362 0.0214 0.0554 0.01
2 -0.0356 0.0358 0.0217 0.0549 0.02
3 -0.0378 0.0379 0.0085 0.0542 0.02

H3 ref 0.0000 0.0000 0.0000 0.0000 0.00
1 -0.0399 0.0386 -0.0201 0.0590 0.02
2 -0.0367 0.0354 -0.0185 0.0542 0.02
3 -0.0370 0.0358 -0.0154 0.0538 0.04
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A.6 Comparison Hessian Reference Systems

The approach of using sufficiently large fragment structures1 for the Hessian analysis refer-
ence structure instead of the periodic bulk structure is validated by the comparison of the
atomic Hessian sub matrix norms calculated from the large fragment C1ref (fig. 4.13a) and
the bulk structure (fig. 4.1a, short note: results are calculated with derived DFT settings,
described in sectionA.1 and 3.1, are used and not the tight-like settings used for molecu-
lar numerical Hessian) which is illustrated in figureA.39. The atomic Hessian sub matrix
norms, calculated from the 1×1×1 unit cell, are shown in a 2×2×2 supercell (fig.A.39b).
All atoms included in C1ref are marked by the grey background (fig. A.39b) embedded in
the IRMOF-1 bulk environment. A direct comparison of the C1ref fragment (fig. A.39c
and fig. 4.13a) and the periodic results (fig. A.39d) show only very small differences (tab.
A.11, ∆||hAB|| . 0.080 eVÅ−2). Only the reference atom itself B = 4 and the directly
neighboring oxygen B = 11 show larger deviations for the atomic Hessian sub matrix
norms. However, these deviations do not effect the determination of the size-converged
fragments.

Figure A.39: a) An in-plane view of the periodic C1 (magenta) atomic Hessian sub matrix
norm values of the IRMOF-1 bulk unit cell, shown by a 2×2×2 replication of
the simple unit cell (red dashed lines separate the simple unit cells), b) bent
view of a 2D-slab cutout with a grey-marked C1ref structure embedded in the
periodic IRMOF-1 environment, c) C1 results of Fig. 11a with some marked
atoms (B = 1− 14) and d) the grey-marked C1ref structure from b) without
the surrounding environment and marked broken bonds by the dashed lines.
Adapted from [108] with permission from ©2022 AIP Publishing.

1The results discussed and presented in this section were obtained in my recent publication [108] and are
shown for completeness. Adapted from [108] with permission from ©2022 AIP Publishing.
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Table A.11: Compilation of the atomic Hessian sub matrix norm values ||hAB|| of the atoms
B = 1 − 14 marked in fig.A.39c calculated by the reference structures C1ref

and the periodic bulk unit cell (fig. 4.1a), as well as the differences of these
values ∆||hAB|| given in eVÅ−2. Adapted from [108] with permission from
©2022 AIP Publishing.

B element ||hC1ref
AB || ||hbulk

AB || ∆||hAB||

1 C 0.143 0.218 −0.075
2 C 1.170 1.205 −0.036
3 O 1.218 1.265 −0.047
4 C 94.885 95.788 −0.903
5 C 1.098 1.106 −0.008
6 O 0.185 0.202 −0.017
7 C 0.172 0.193 −0.021
8 Zn 0.558 0.563 −0.005
9 C 0.142 0.193 −0.052
10 O 0.063 0.129 −0.066
11 O 42.074 42.630 −0.556
12 H 0.155 0.153 0.002
13 Zn 0.402 0.439 −0.037
14 O 0.200 0.244 −0.045
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A.7 RuNNer Atom-Centered Symmetry Functions

Table A.12: Compilation of the radial atom-centered symmetry functions (ACSF) as given
in equation 2.57 for the different element combinations of the ACSF set SF-
1. A defines the element of the atom at which the ACSF is centered and B
the element of the neighboring atom. The η parameter defining the width of
the Gaussian is given in a−2

0 with the cutoff radius rcut = 4.359Å= 8.237 a0,
the shifting parameter rshift = 0.000Å= 0.000 a0 and the inner cutoff radius
rinner,cut = 0.000Å= 0.000 a0.

no. A B η A B η A B η A B η

1 C H 0.000 O H 0.000 Zn C 0.000 H H 0.000
2 C C 0.000 O C 0.000 Zn O 0.000 H C 0.000
3 C O 0.000 O O 0.000 Zn Zn 0.000 H O 0.000
4 C Zn 0.000 O Zn 0.000 Zn Zn 0.001 H C 0.007
5 C Zn 0.002 O O 0.003 Zn C 0.002 H O 0.010
6 C Zn 0.003 O Zn 0.004 Zn Zn 0.002 H H 0.014
7 C Zn 0.005 O C 0.006 Zn C 0.003 H C 0.020
8 C C 0.006 O O 0.007 Zn Zn 0.003 H O 0.041
9 C O 0.006 O Zn 0.009 Zn O 0.004 H C 0.053
10 C H 0.007 O H 0.010 Zn Zn 0.004 H H 0.079
11 C Zn 0.007 O O 0.013 Zn C 0.005 H C 0.182
12 C C 0.015 O C 0.016 Zn C 0.007
13 C O 0.016 O Zn 0.017 Zn O 0.009
14 C H 0.020 O O 0.021 Zn O 0.017
15 C C 0.034 O Zn 0.031 Zn O 0.031
16 C O 0.039 O C 0.039
17 C H 0.053 O H 0.041
18 C C 0.084 O C 0.106
19 C O 0.106
20 C H 0.182
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Table A.13: Compilation of the angular atom-centered symmetry functions (ACSFs) as
given in equation 2.58 for the different element combinations of the ACSF set
SF-1. A defines the element of the atom at which the ACSF is centered, B
and C the element of the neighboring atoms. The η parameter defining the
width of the Gaussian is defined as η = 0.000 a−2

0 with the cutoff radius rcut =
4.359Å= 8.237 a0 and the inner cutoff radius rinner,cut = 0.000Å= 0.000 a0.
The set of angular ACSF of each element combination is expanded by all
different combinations of the parameter ζ ∈ {1, 2, 4, 16}, defining the width of
the cosine part and the parameter λ ∈ {−1, 1} inverting the cosine part. For
the element combinations C-Zn-Zn, Zn-C-C, Zn-C-Zn, Zn-O-Zn and Zn-Zn-
Zn the angular ACSF with the parameter combination of η/λ = −1/16 are
neglected, since these do not provide any input information for the HDNNP
for the underlying data set.

no. A B C A B C A B C A B C

1 C H H O H C Zn C C H H C
2 C H C O H O Zn C O H C C
3 C H O O C C Zn C Zn H C O
4 C H Zn O C O Zn O O H O O
5 C C C O C Zn Zn O Zn
6 C C O O O O Zn Zn Zn
7 C C Zn O O Zn
8 C O O O Zn Zn
9 C O Zn
10 C Zn Zn
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Table A.14: Compilation of the radial atom-centered symmetry functions (ACSFs) as given
in equation 2.57 for the different element combinations of the ACSF set SF-2.
A defines the element of the atom at which the ACSF is centered and B the
element of the neighboring atom. The η parameter defining the width of the
Gaussian is given in a−2

0 with the cutoff radius rcut = 8.718Å= 16.475 a0,
the shifting parameter rshift = 0.000Å= 0.000 a0 and the inner cutoff radius
rinner,cut = 0.000Å= 0.000 a0.

no. A B η A B η A B η A B η

1 C H 0.000 O H 0.000 Zn C 0.000 H H 0.000
2 C C 0.000 O C 0.000 Zn O 0.000 H C 0.000
3 C O 0.000 O O 0.000 Zn Zn 0.000 H O 0.000
4 C Zn 0.000 O Zn 0.000 Zn C 0.001 H C 0.001
5 C H 0.001 O C 0.001 Zn O 0.001 H C 0.002
6 C C 0.001 O O 0.001 Zn Zn 0.001 H C 0.003
7 C O 0.001 O Zn 0.001 Zn C 0.002 H C 0.004
8 C Zn 0.001 O C 0.002 Zn O 0.002 H C 0.006
9 C H 0.002 O O 0.002 Zn Zn 0.002 H C 0.007
10 C C 0.002 O Zn 0.002 Zn C 0.003 H H 0.010
11 C O 0.002 O C 0.003 Zn O 0.003 H C 0.010
12 C Zn 0.002 O O 0.003 Zn Zn 0.003 H C 0.012
13 C H 0.003 O Zn 0.003 Zn C 0.004 H O 0.013
14 C C 0.003 O C 0.004 Zn O 0.004 H C 0.016
15 C O 0.003 O O 0.004 Zn Zn 0.004 H C 0.021
16 C Zn 0.003 O Zn 0.004 Zn C 0.005 H C 0.027
17 C H 0.004 O C 0.005 Zn O 0.005 H C 0.036
18 C C 0.004 O O 0.005 Zn Zn 0.005 H C 0.049
19 C O 0.004 O Zn 0.005 Zn C 0.006 H C 0.070
20 C Zn 0.004 O O 0.006 Zn O 0.006 H H 0.082
21 C C 0.005 O Zn 0.006 Zn Zn 0.006 H C 0.102
22 C O 0.005 O C 0.007 Zn C 0.007 H C 0.161
23 C Zn 0.005 O O 0.007 Zn O 0.007 H O 0.194
24 C H 0.006 O Zn 0.007 Zn Zn 0.007
25 C C 0.006 O O 0.008 Zn C 0.008
26 C Zn 0.006 O Zn 0.008 Zn O 0.008
27 C H 0.007 O C 0.009 Zn Zn 0.008
28 C O 0.007 O O 0.009 Zn C 0.009
29 C Zn 0.007 O O 0.010 Zn Zn 0.009
30 C C 0.008 O Zn 0.010 Zn C 0.010
31 C Zn 0.008 O C 0.011 Zn O 0.010
32 C O 0.009 O O 0.011 Zn Zn 0.010
33 C Zn 0.009 O O 0.012 Zn C 0.011
34 C H 0.010 O Zn 0.012 Zn Zn 0.011
35 C C 0.010 O H 0.013 Zn C 0.012
36 C Zn 0.010 O C 0.014 Zn O 0.012
37 C O 0.011 O O 0.015 Zn Zn 0.012
38 C Zn 0.011 O Zn 0.015 Zn C 0.013
39 C H 0.012 O C 0.018 Zn Zn 0.013
40 C Zn 0.012 O O 0.018 Zn C 0.014
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Table A.15: Continuation of tableA.14. Compilation of the radial atom-centered symmetry
functions (ACSFs) as given in equation 2.57 for the different element combi-
nations of the ACSF set SF2. A defines the element of the atom at which the
ACSF is centered and B the element of the neighboring atom. The η param-
eter defining the width of the Gaussian is given in a−2

0 with the cutoff radius
rcut = 8.718Å= 16.475 a0, the shifting parameter rshift = 0.000Å= 0.000 a0

and the inner cutoff radius rinner,cut = 0.000Å= 0.000 a0.

no. A B η A B η A B η A B η

41 C C 0.013 O Zn 0.018 Zn Zn 0.014
42 C Zn 0.013 O O 0.021 Zn O 0.015
43 C O 0.014 O Zn 0.022 Zn Zn 0.015
44 C Zn 0.014 O C 0.023 Zn C 0.016
45 C H 0.016 O O 0.025 Zn Zn 0.016
46 C C 0.016 O Zn 0.028 Zn C 0.018
47 C Zn 0.016 O C 0.030 Zn O 0.018
48 C O 0.018 O Zn 0.034 Zn O 0.022
49 C Zn 0.018 O C 0.039 Zn O 0.028
50 C H 0.021 O Zn 0.044 Zn O 0.034
51 C C 0.021 O C 0.052 Zn O 0.044
52 C O 0.023 O C 0.073
53 C H 0.027 O C 0.105
54 C C 0.027 O H 0.194
55 C O 0.030
56 C C 0.035
57 C H 0.036
58 C O 0.039
59 C C 0.046
60 C H 0.049
61 C O 0.052
62 C C 0.062
63 C H 0.070
64 C O 0.073
65 C C 0.086
66 C H 0.102
67 C O 0.105
68 C H 0.161
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Table A.16: Compilation of the angular atom-centered symmetry functions (ACSFs) as
given in equation 2.58 for the different element combinations of the ACSF set
SF2. A defines the element of the atom at which the ACSF is centered, B
and C the element of the neighboring atoms. The η parameter defining the
width of the Gaussian is defined as η = 0.000 a−2

0 with the inner cutoff radius
rinner,cut = 0.000Å= 0.000 a0. There are two shells of angular ACSF: one shell
is similar to SF1 (tab.A.13) with the cutoff radius rcut = 4.359Å= 8.237 a0

and a second shell with the cutoff radius rcut = 8.718Å= 16.475 a0. The
set of angular ACSF of each element combination is expanded by all different
combinations of the parameter ζ ∈ {1, 2, 4, 16}, defining the width of the cosine
part and the parameter λ ∈ {−1, 1} inverting the cosine part. For the element
combinations C-Zn-Zn, O-O-O, Zn-C-C, Zn-C-Zn, Zn-O-Zn, Zn-Zn-Zn and
H-O-O the angular ACSF with the parameter combination of η/λ = −1/16
are neglected, since these do not provide any input information for the HDNNP
for the underlying data set.

no. A B C A B C A B C A B C

1 C H H O H C Zn C C H H C
2 C H C O H O Zn C O H C C
3 C H O O C C Zn C Zn H C O
4 C H Zn O C O Zn O O H O O
5 C C C O C Zn Zn O Zn
6 C C O O O O Zn Zn Zn
7 C C Zn O O Zn
8 C O O O Zn Zn
9 C O Zn
10 C Zn Zn



A.8 Predictions of the HDNNPs 151

A.8 Predictions of the HDNNPs
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Figure A.40: Compilation of the IRMOF-10 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (502 structures/data points), combined of 251 data points for each of
two MD simulations in the NPT ensemble (sec. 3.4) at normal pressure and
temperatures T ∈ {200, 450} in K. a) Demonstrates the total potential energy
of the glsirmof-1 bulk structure over the data set. The two independent MD
simulations can be separated by the two starting points of the simulations
(data point 1 and 252). b) The atomic energy error ∆E in eV for the data
set and c) the root-mean squared error of the force components RMSE(f) for
each data point in eVÅ−1.
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Figure A.41: Compilation of the IRMOF-16 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (502 structures/data points), combined of 251 data points for each of
two MD simulations in the NPT ensemble (sec. 3.4) at normal pressure and
temperatures T ∈ {200, 350} in K. a) Demonstrates the total potential energy
of the glsirmof-1 bulk structure over the data set. The two independent MD
simulations can be separated by the two starting points of the simulations
(data point 1 and 252). b) The atomic energy error ∆E in eV for the data
set and c) the root-mean squared error of the force components RMSE(f) for
each data point in eVÅ−1.
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Figure A.42: Compilation of the I1-Bs fragment (fig. 4.24) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-1 (in total 502 I1-Bs fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I1-Bs
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.43: Compilation of the I10-Bs fragment (fig. 4.24) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-1 and -16 (in total 1004 I10-Bs fragment
structures/data points, 502 for the individual IRMOFs). a) Demonstrates
the total potential energy of the I10-Bs fragment structure over the data set.
The individual MD simulations can be separated by the starting points of
the simulations (data point 1, 252, 503 and 754). b) The atomic energy error
∆E in eV for the data set and c) the root-mean squared error of the force
components RMSE(f) for each data point in eVÅ−1.
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Figure A.44: Compilation of the I16-Cs fragment (fig. 4.24) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-16 (in total 502 I16-Cs fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I16-Cs
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.45: Compilation of the I1-B’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-1 (in total 502 I1-B’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I1-B’
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.46: Compilation of the I10-A’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-10 (in total 502 I10-A’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I10-A’
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.47: Compilation of the I10-B’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-10 (in total 502 I10-B’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I10-B’
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.48: Compilation of the I16-B’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-16 (in total 502 I16-B’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I16-B’
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.49: Compilation of the I16-C’ fragment (fig. 4.22) predictions for the HDNNPs
r′frag-2-SF1 (tab. 4.12) and rfrag-2-SF1 (tab 4.13) based on the HDNNP train-
ing independent data sets for IRMOF-16 (in total 502 I16-C’ fragment struc-
tures/data points). a) Demonstrates the total potential energy of the I16-C’
fragment structure over the data set. The individual MD simulations can
be separated by the starting points of the simulations (data point 1 and
252). b) The atomic energy error ∆E in eV for the data set and c) the root-
mean squared error of the force components RMSE(f) for each data point in
eVÅ−1.
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Figure A.50: Compilation of the IRMOF-10 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (16 structures/data points), based on expanded and compressed bulk
structures by a scaling factor σ ∈ {0.95 − 1.10} in steps of 0.01 with DFT
optimized atomic positions. a) Demonstrates the total potential energy of
the IRMOF-10 bulk structure over the data set, b) The atomic energy error
∆E in eV for the data set and c) the root-mean squared error of the force
components RMSE(f) for each data point in eVÅ−1.
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Figure A.51: Compilation of the IRMOF-16 bulk predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (16 structures/data points), based on expanded and compressed bulk
structures by a scaling factor σ ∈ {0.95 − 1.10} in steps of 0.01 with DFT
optimized atomic positions. a) Demonstrates the total potential energy of
the IRMOF-16 bulk structure over the data set, b) The atomic energy error
∆E in eV for the data set and c) the root-mean squared error of the force
components RMSE(f) for each data point in eVÅ−1.
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Figure A.52: The DFT reference total potential energy for the I10-dumbbell structure
(fig. 4.30) of a HDNNP training independent data set (1369 structures/data
points), based on the rotation of the phenylene rings in steps of 10 ◦.
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Figure A.53: Compilation of the I1-dumbbell predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (37 structures/data points), based on the rotation of the phenylene ring in
steps of 10 ◦. a) Demonstrates the total potential energy of the IRMOF-1 bulk
structure over the data set, b) The total energy error ∆E in eV for the data
set and c) the root-mean squared error of the force components RMSE(f) for
each data point in eVÅ−1.
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Figure A.54: Compilation of the I16-dumbbell predictions for the HDNNPs r′frag-2-SF1
(tab. 4.12) and rfrag-2-SF1 (tab 4.13) of a HDNNP training independent data
set (37 structures/data points), based on the rotation of the phenylene ring
in steps of 10 ◦. a) Demonstrates the total potential energy of the IRMOF-
16 bulk structure over the data set, b) The total energy error ∆E in eV for
the data set and c) the root-mean squared error of the force components
RMSE(f) for each data point in eVÅ−1.
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Figure A.55: Compilation of the atomic energy ∆E in eV and the force error RMSE(f) in
eVÅ−1 per data point of the HDNNP rfrag-2-SF2 (tab. 4.13) predictions for
a) a HDNNP training independent data set (502 structures/data points) for
IRMOF-1, combined of 251 data points for each of two MD simulations in the
NPT ensemble (sec. 3.4) at normal pressure and temperatures T ∈ {200, 450}
in K, b) for IRMOF-10 at temperatures T ∈ {200, 450} in K and c) for
IRMOF-16 at temperatures T ∈ {200, 350} in K.
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Figure A.56: Compilation of the atomic energy ∆E in eV and the force error RMSE(f) in
eVÅ−1 per data point of the HDNNP rfrag-2-SF2 (tab. 4.13) predictions for
a) I1-A′ based on the HDNNP training independent data sets for IRMOF-
1 (in total 502 I1-A’ fragment structures/data points), b) I1-B′ based on
the HDNNP training independent data sets for IRMOF-1 (in total 502 I1-B’
fragment structures/data points), c) I10-A′ based on the HDNNP training
independent data sets for IRMOF-10 (in total 502 I10-A’ fragment struc-
tures/data points).
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Figure A.57: Compilation of the atomic energy ∆E in eV and the force error RMSE(f) in
eVÅ−1 per data point of the HDNNP rfrag-2-SF2 (tab. 4.13 predictions for a)
I10-B′ based on the HDNNP training independent data sets for IRMOF-10
(in total 502 I10-B’ fragment structures/data points), b) I16-B′ based on the
HDNNP training independent data sets for IRMOF-16 (in total 502 I16-B’
fragment structures/data points), c) I16-C′ based on the HDNNP training
independent data sets for IRMOF-16 (in total 502 I16-C’ fragment struc-
tures/data points).
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Figure A.58: Compilation of the atomic energy ∆E in eV and the force error RMSE(f) in
eVÅ−1 per data point of the HDNNP rfrag-2-SF2 (tab. 4.13) predictions for
HDNNP training independent data set (16 structures/data points), based on
expanded and compressed bulk structures by a scaling factor σ ∈ {0.95−1.10}
in steps of 0.01 with DFT optimized atomic positions for a) IRMOF-1, b)
IRMOF-10 and c) IRMOF-16.
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Figure A.59: Compilation of the atomic energy ∆E in eV and the force error RMSE(f) in
eVÅ−1 per data point of the HDNNP rfrag-2-SF2 (tab. 4.13) predictions for a
HDNNP training independent data set (37 structures/data points and 1369
structures/data points for IRMOF-10, respectively), based on the rotation
of the phenylene ring in steps of 10 ◦ for a) IRMOF-1, b) IRMOF-10 and c)
IRMOF-16.
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