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Zusammenfassung

Das Studium der evolutionären Beziehungen zwischen Lebewesen ist seit jeher ein grundle-
gendes Forschungsgebiet der biologischen Wissenschaften. In den letzten Jahrzehnten haben
große Fortschritte der Sequenziertechnologien für einen enormen Anstieg der Verfügbarkeit
von molekularen Sequenzdaten gesorgt. Zeitgenössische Methoden für die Ermittlung von
evolutionären Spezies-Beziehungen basieren von daher auf der Bestimmung von Ähnlichkeiten
und Unähnlichkeiten zwischen ihren biologischen Sequenzdaten. Das Ergebnis solcher phylo-
genetischer Studien wird oftmals als Stammbaum oder Netzwerk dargestellt. Während früher
jeder Organismus separat sequenziert wurde, ist es heutzutage möglich alle vorhandenen
Sequenzdaten aus einer Umweltprobe gleichzeitig zu extrahieren. Dadurch entstehen große
Mengen kurzer Sequenzabschnitte deren Ursprungsorganismus unbekannt ist. Ein wesentlicher
Schritt der bioinformatischen Aufbereitung solcher Daten befasst sich mit der taxonomischen
oder phylogenetischen Identifizierung dieser Sequenzen; aufgrund der großen Anzahl der
zugrunde liegenden Sequenzen können dafür keine Methoden zur de-novo Rekonstruktion von
Phylogenien mehr eingesetzt werden. Stattdessen stellt die Methode der phylogenetischen
Platzierung eine zukunftsfähige Alternative dar: Die phylogenetische Verwandtschaft einer
Eingabe-Sequenz wird bestimmt, indem sie direkt in einen bestehenden phylogenetischen
Baum aus Referenz-Sequenzen eingeordnet wird. In dieser Arbeit stellen wir eine neue,
vielseitige Methode zur phylogenetischen Platzierung vor. Im Gegensatz zu bisherigen An-
sätzen zur phylogenetischen Platzierung ist die vorgestellte Methode nicht abhängig von der
Verfügbarkeit von alignierten oder assemblierten Referenzen. Stattdessen verwendet unser
Algorithmus App-SpaM eine Vielzahl kurzer, nicht-konsekutiver Sequenz-Worte, um eine
geeignete Platzierung abzuleiten. Als Grundlage für die Schätzung von Platzierungen dient
sowohl die Anzahl der gefundenen Worte als auch eine daraus berechnete phylogenetische
Distanz zu allen Referenz-Sequenzen. Wir präsentieren eine umfangreiche Evaluation, die
App-SpaM mit anderen Programmen zur phylogenetischen Platzierung hinsichtlich seiner
Genauigkeit und Effizienz vergleicht. Unsere Analysen zeigen, dass die Präzision von App-
SpaM vergleichbar ist mit der Präzision von existierenden maximum-likelihood Methoden,
wobei es zwei bis dreimal schneller ist als diese. Im Anschluss stellen wir weitere Versionen des
Algorithmus vor, insbesondere erweiterte Platzierungs-Heuristiken, ein Maß für die Unsicher-
heit der abgeleiteten Platzierungen und die Verwendung von stochastischen Stichproben, um
eine Skalierbarkeit auf langen Referenz-Sequenzen zu gewährleisten. Zusätzlich diskutieren
wir mehrere Anwendungsfälle der phylogenetischen Platzierung mit App-SpaM und zeigen
deren Umsetzbarkeit an exemplarischen Experimenten. Dabei betrachten wir primär die
iterative Ergänzung von bestehenden Stammbäumen, sowie die Detektion von Gen- oder
Speziesausreißern.
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Abstract

The study of the evolutionary interrelations of living organisms has been at the heart of
biological sciences all along. A revolution in sequencing techniques in the past decades has
caused a massive increase in molecular sequence data. As a result, contemporary methods
assess evolutionary relationships between organisms by quantifying the degree of similarity
between their biological sequence data. The discovered relationships of phylogenetic studies
are commonly represented and visualized by phylogenetic trees or networks. Traditionally,
sequences have been extracted from single organisms; however, recent technological progress
has enabled the retrieval of sequence data directly from environmental samples. In doing so,
large numbers of short sequencing reads arise that may originate from all organisms present in
the respective environment. One major subsequent objective is the taxonomic or phylogenetic
identification of those sequencing reads. However, longstanding maximum-likelihood-based de-
novo phylogeny reconstruction methods are limited in their applicability by their computational
demands; typically, they cannot be applied when the available molecular sequences are present
in great numbers or are of great length. Fortunately, phylogenetic placement offers a unique
approach to identify large sets of query reads within their phylogenetic context by inserting
them into an existing phylogenetic tree comprising a set of reference sequences. Here, we present
a new alignment- and assembly-free approach to phylogenetic placement, the Alignment-free
phylogenetic placement algorithm based on Spaced-word Matches (App-SpaM). App-SpaM
extracts short, non-contiguous subwords to detect homologies between the query and reference
sequences, a method known as the spaced-word matches approach. It counts the number
of such words and utilizes them to infer the average number of nucleotide substitutions
between each read and each reference sequence. Then, it uses fast heuristics to infer a suitable
placement position within the reference tree. We assessed how App-SpaM compares to existing
algorithms for phylogenetic placement with respect to accuracy and computation speed in
a comprehensive evaluation. We demonstrate that App-SpaM is on par with maximum-
likelihood-based algorithms on metataxonomic data sets. In addition, App-SpaM is two to
three orders of magnitude faster than the next fastest programs while its memory demands
stay low. We extensively discuss App-SpaM’s advantages and drawbacks and propose several
additional features to improve upon its original version: For this, we evaluate a set of novel
placement heuristics, the use of sampling techniques to allow an improved scalability with the
length of the reference sequences, and a measure for the uncertainty of proposed placement
positions. Subsequently, we present a variety of novel use cases of phylogenetic that are
made uniquely possible by App-SpaM’s versatility with respect to its potential input data.
These applications include, in particular, the iterative augmentation of existing species trees
by means of phylogenetic placement and the screening for outlier genes or species prior to
phylogeny reconstruction.
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Chapter 1

Introduction

Life on Earth is complex and diverse. It is estimated that the first forms of life existed in
hydrothermal vents on the ocean floor more than 3 billion years ago [1]. Since then, over
thousands of millions of years [1, 2], a multitude of different forms of life have emerged and
vanished again. It is extremely difficult to estimate the number of unique organisms that
live today, and current estimates range from 8.7 million species [3] up to 1 trillion species [4].
This plethora of organisms varies in their size and shape, in their abundance and abode,
and in their metabolism and morphology. However, all organisms are also connected to one
another: The fundamental information that defines all organisms is encoded in their DNA,
the hereditary material. DNA is passed on from parent to offspring or shared via a variety of
complex mechanisms between living organisms [5]. From the smallest bacteria to the largest
mammal, organisms share a common history through evolution and are related to one another
with regard to their genetic content. Observing and measuring such relationships between
organisms from all areas of the tree of life has always been an essential part of biological
analyses. The study of evolutionary relationships between organisms is called phylogenetics.
There are a wide variety of inference methods that study phylogenetic relationships, and the
results are commonly represented and visualized as phylogenetic trees.

In early phylogenetic research, phylogenetic trees were created based on the apparent
visual characteristics of a species, its phenotype. The phenotypes of organisms were used to
group species together and determine their degree of relatedness; by now, however, phylo-
genetic analyses predominantly study the genetic material of organisms, the genotype. Thus,
phylogenetic inference today is performed by analyzing the similarity of biological sequences.
On the one hand, this change is motivated because the genotype offers much more detailed
information about the evolutionary history than the phenotype. On the other hand, this
process was also fueled by the drastic decrease in sequencing costs and the associated rise
in available sequencing data. The development of sophisticated sequencing techniques also
allowed the retrieval of DNA directly from environmental samples instead of only from a
single species. This area of research has been termed metagenomics. The most common
sequencing data in metagenomics are large collections of short DNA fragments, called reads.
Metagenomics is especially suitable for studying the composition of bacterial communities,
but several related fields of application have emerged within metagenomics [6].

Advances in sequencing technologies also entailed larger computational demands: Early
algorithms for sequence comparison are no longer suited to appropriately process the amounts
and types of sequence data that arise in metagenomics. Reasonable processing time and mem-
ory requirements are important characteristics of algorithms to be able to handle metagenomic
data sets. One of the most important tasks in many metagenomic studies today is to identify
which species are present in an environmental sample [7]. This task is commonly referred to
as read assignment. A multitude of programs have been developed to perform this task on a
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Chapter 1. Introduction

taxonomic basis. Short reads are queried against large annotated reference databases, and the
taxonomic labels of the most similar reference sequences are transferred to the query reads.
Nonetheless, this approach may fail for query reads if no similar references are present in the
database or if the taxonomic annotation of database entries is faulty. Another approach to
read assignment is via the phylogenetic context of the reads. This procedure is known as
phylogenetic placement. In phylogenetic placement, all query reads are assigned to a specific
position in an existing phylogenetic tree of a set of reference sequences. Thus, the resulting
positions in the tree can not only be used to infer taxonomic labels for the queries, but also
their phylogenetic relation to all reference sequences. So far, information obtained through
the process of phylogenetic placement is predominantly used synonymously with taxonomic
read assignment in metagenomic studies.

1.1 Motivation

Phylogenetic placement is a valid alternative to taxonomic read assignment to identify species
membership for short reads from metagenomic experiments. However, with todays speed and
variety of sequencing data, new use cases for phylogenetic placement emerge. The algorithms
initially developed for phylogenetic placement depend on time-intensive multiple sequence
alignments and are limited with respect to their applicability to large data sets with many
references or many query reads. Additionally, the dependence on multiple sequence alignments
restricts the potential input data types and, by this, the applications in which phylogenetic
placement can be used in the first place. The reference sequences need to be assembled,
which requires high sequencing coverage or long reads, as well as laborious assembly pipelines.
Furthermore, the reference sequences need to be sufficiently short to be able to compute a
multiple sequence alignment. This is not only due to the computational demands of sequence
alignments but also because longer sequences may exhibit rearrangements, duplications, or
other evolutionary events that alter the overall sequence order and hinder the creation of
meaningful multiple sequence alignments. Both requirements are regularly not met, for
example, in low-coverage whole genome shotgun sequencing studies [8, 9]. As a result,
phylogenetic placement has only been used in a similar manner to taxonomic read assignment,
with the overall goal of classifying reads from metagenomic experiments in their phylogenetic
context to derive a taxonomic label.

Although it has been claimed that phylogenetic placement is more accurate than taxonomic
read assignment, especially when there are no close reference sequences [10], the use cases of
phylogenetic placement are more diverse. An algorithm that does not depend on multiple
alignments comes with several benefits: First, it accepts nearly arbitrary reference and query
sequences as input. This includes, for example, sets of unassembled reads from single genes or
whole genomes that are utilized as reference sequences, or query reads that are arbitrarily
long. Furthermore, such an approach would enable a multitude of use cases for phylogenetic
placement at the interface of metagenomics and phylogenetics other than read assignment.
Potentially, it could perform rapid identification of new metagenomic reads, binning of scaffolds,
fast integration of new species into existing phylogenetic trees, or detection of outlier genes or
species with respect to their evolutionary history.

For these reasons, we implemented an assembly- and alignment-free algorithm for phylo-
genetic placement, called the alignment-free phylogenetic placement algorithm based on
spaced-word matches (App-SpaM). App-SpaM is based on filtered spaced-word matches [11]
to estimate the average number of nucleotide substitutions between every query and reference
sequence. Subsequently, different placement heuristics are used to insert a given query read into
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1.2. Structure and Overview

the phylogenetic reference tree based on its estimated distances to each reference sequence. We
studied the accuracy of App-SpaM for the task of taxonomic read assignment across a broad
variety of potential scenarios in comparison to a variety of other alignment-based programs [10,
12–15]. Moreover, we examined the benefits and drawbacks of different algorithmic strategies
and investigated additional potential use cases for alignment-free phylogenetic placement.
These include the iterative augmentation of phylogenetic trees, and species and gene outlier
detection in phylogenetic reconstruction studies. We propose techniques to perform these
tasks based on the placement information of DNA sequences created with App-SpaM or other
alignment-free phylogenetic placement algorithms and assess their potential use in biological
studies.

1.2 Structure and Overview

We present the foundations for all of our work in Chpt. 2. This includes relevant basics of
genetics, alignment-based and alignment-free sequence comparison methods, foundations of
genomics and phylogenomics, an introduction to metagenomics, and lastly the concepts of
read assignment and phylogenetic placement. The foundations are followed by a detailed
description of App-SpaM in Chpt. 3. App-SpaM performs alignment-free and assembly-free
phylogenetic placement with high accuracy that is on par with other alignment-based software
tools. Furthermore, it enables the use of phylogenetic placement for a range of data sets with
arbitrary sequence lengths and versatile sequence types such as draft genomes as references.
The chapter includes a comprehensive evaluation of App-SpaM on simulated and real-world
data sets and highlights its shortcomings. Chapter 4 presents a variety of variations of App-
SpaM which include, in particular, different placement heuristics, the use of other evolutionary
models to estimate sequence similarity, different strategies to sample spaced words to enhance
its runtime, and approaches to assess the uncertainty of inferred placements. We evaluate and
discuss relevant shortcomings of and potential future work on these ideas in detail. Chapter 5
presents how phylogenetic placement may be used to iteratively update phylogenetic species
trees with new species based on individual gene placements. We employ App-SpaM to
augment existing trees with multiple additional species and evaluate the topological accuracy
of resulting trees. Additionally, we demonstrate how the detection and removal of outlier
genes or species can improve the accuracy of resulting tree topologies. Subsequently, two
smaller side projects are presented in Chpt. 6: First, we apply alignment-free methods to
reconstruct the phylogeny of eight Old World monkeys and second, we assess how the Simon’s
congruence behaves for simulated DNA sequences. Lastly, Chpt. 7 contains a comprehensive
discussion about the advantages and drawbacks of our presented techniques and how our
analyses fit into the overall metagenomic and phylogenomic research context of today.
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Chapter 2

Foundations

In the field of biology, taxonomy refers to the study of arranging organisms into hierarchically
organized groups with respect to their similarity. Taxonomy also aims to name the defined
groups and to specify their characteristics. The latest taxonomy groups living organisms
into three major domains of life, namely, Archaea, Bacteria, and Eukarya [16]. Organisms
without a cell nucleus are referred to as prokaryotes — the two domains of Archaea and
Bacteria contain all prokaryotes. On the contrary, the domain Eukarya contains all organisms
that do have a cell nucleus, the eukaryotes. The cell nucleus encloses the genetic material of
the cell and separates it from the surrounding cytoplasm. The cytoplasm contains several
other subunits of the cell that perform different functions, called organelles. Mitochondria are
organelles that act as energy suppliers of eukaryotic cells; plant cells have further organelles
referred to as plastids, such as the chloroplasts. Mitochondria and plastids contain their own
genetic material that is independent of the one in the cell nucleus.

The vast majority of all organisms are classified as prokaryotes, and only a small proportion
of organisms are classified as eukaryotes [17]. Furthermore, most prokaryotic life is unknown
today due to the sheer number of existing organisms and the difficulty in finding and identifying
them. Below the three domains of Archaea, Bacteria, and Eukarya, living organisms are
grouped into the seven kingdoms of Bacteria, Archaea, Protozoa, Chromista, Plantae, Fungi,
and Animalia [18]. Subsequently, the organisms are hierarchically grouped into the taxonomic
categories phylum, class, order, family, genus, and species. Creating a taxonomy is only
meaningful because organisms pass on and exchange their genetic material, which causes the
similarities and differences that are used for grouping and delineating species. The field of
genetics studies how, where, when, and by which processes heredity takes place in organisms.

2.1 Genetics

Deoxyribonucleic acid (DNA) is the genetic material in both prokaryotes and eukaryotes. The
DNA contains all genetic information necessary for the complete functioning of an organism,
including information on growth and reproduction. DNA was first isolated in 1869 [19] and in
1944 it was demonstrated to be responsible for heredity [20]. Figure 2.1 shows a schematic
representation of the DNA structure. The DNA molecule consists of two strands that are
intertwined in a double helix structure [21]. Each strand is a chain of consecutive nucleic
acids, also called nucleotides, each formed from a sugar, a phosphate group, and one of the
nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T). Based on their chemical
structure, A and G are classified as purines and C and T are classified as pyrimidines. In each
strand, the sugar of one nucleotide is connected to the phosphate group of the next one. The
two strands are complementary: the same pair of nucleotides are always opposite to each other
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Chapter 2. Foundations

Figure 2.1 – Schematic representation of the double helix structure of DNA. The helix
backbone of alternating sugar and phosphate molecules (grey) acts as a scaffold for the
nucleobases of each nucleotide (colored bars). The same two nucleotides always form a base
pair, and thus, the same colors are always opposite to each other: adenine (orange) pairs with
thymine (blue) and cytosine (cyan) pairs with guanine (red). The genetic information of an
organism is encoded in the sequence of nucleotides.

on both strands and form a base pair (bp). Hydrogen bonds between the complementary
nucleotides stabilize the DNA molecule. A and T form a base pair with two hydrogen bonds,
and C and G form a base pair with three hydrogen bonds. The complementary structure of
DNA implies that one strand can be reconstructed by knowing the other and vice versa.

In eukaryotes, DNA inside the cell nucleus is packaged into chromatin. Several chromatin
complexes form multiple linear chromosomes. In most prokaryotes, DNA is packaged into a
single circular chromosome instead. The complete genetic material of an organism is called
its genome and the study of the structure and function of genomic regions is called genomics.

The genetic information of the DNA is encoded by the sequence of the nucleotides. DNA
regions that code for the synthesis of biological products are called genes. Genes are also
referred to as coding regions, while other parts of the DNA are called non-coding regions.
During the process of gene expression, genes are first transcribed to ribonucleic acid (RNA).
RNA has only a single strand, compared to the double-stranded DNA, and folds onto itself.
Furthermore, the nucleotide uracil (U) is used instead of thymine. There are many different
kinds of RNA that serve a variety of biological purposes, for example, in the regulation
and expression of genes [22, 23]. However, in most cases, the transcribed RNA serves as
messenger RNA and is used as a template for the construction of proteins during the process
of translation in ribosomes. Here, three consecutive nucleotides, called a codon, are translated
into one amino acid. Amino acids are organic compounds that come in a great variety: The
DNA codes for 20 different amino acids, but approximately 500 amino acids are naturally
occurring. With 4 different nucleotides there are 43 = 64 different possible codons for only
20 amino acids. As a consequence, multiple codons encode the same amino acid. Thus, any
DNA sequence can be unambiguously translated into a sequence of amino acids, while the
converse does not apply.

When a sequence of nucleotides is translated into amino acids, the starting position of the
translation is essential. Shifting the starting position by a single nucleotide in either direction
will result in different amino acids because the shift results in different codons. Six different
reading frames of a DNA sequence are possible when considering both strands of a DNA.
Typically, there is only a single biologically relevant reading frame for each DNA sequence
called its open reading frame (ORF). The translated amino acids form a chain, a so-called
polypeptide, that in turn forms a protein. Proteins ensure the proper functioning of organisms
and are responsible for a wide variety of vital tasks.
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Figure 2.2 – The relationship between different fields of genome science: Genomics studies
the DNA of the whole genome, transcriptomics the transcribed RNA of the transcriptome,
and proteomics investigates translated proteins. Furthermore, the field of metabolomics (not
shown) studies all metabolites within a cell or organism.

The proportion of coding to non-coding regions differs greatly between organisms. The
estimated proportion of coding regions in the human genome is estimated to be approximately
1.5 percent of the total genome [24]. The coding regions encode an estimated number of 20 000
genes [25], however, there are different estimates that also depend on the implied definition of
a gene [26]. On the contrary, most prokaryotic genomes are densely packed with genes, and
the proportion of coding regions is often greater than 85% [27].

Similarly to genomics studying the genome, the complete collection of RNAs of a system
is called its transcriptome and is studied in the field of transcriptomics. The proteome of
an organism is its collection of proteins and is studied in the field of proteomics. Figure 2.2
shows a schematic representation of the relationship between genomics, transcriptomics, and
proteomics. Thus, biological sequence data is available as either DNA, RNA, or as a protein
sequence. All genetic material within an organism is called the genotype of the organism.
Through transcription, translation, and further biological processes, the genotype is directly
responsible for the visible features that define an organism, the phenotype. Organisms are
related to another with respect to their DNA content.

The DNA within a cell is subject to change through a variety of biological processes.
This results in genetic variability between cells, and accordingly between organisms and
species. In sexual organisms, recombination is a major source of genetic variability: During
reproduction, genetic material is transferred from ancestors to offspring. The DNA of the
offspring is a recombination of the corresponding chromosomes of the two parental cells. In
organisms that have more than two copies of each chromosome, so-called polyploid organisms,
the number of possible genetic recombinations is amplified. DNA from organelles, such as
mitochondrial DNA, is transferred directly from the maternal organism and is not subject
to recombination. In asexual organisms, the offspring receives an almost exact copy of the
parental genome. Here, horizontal gene transfer (HGT) is one of the main processes of genetic
exchange between cells: During an HGT, DNA or RNA is transferred from a living cell to
another by a variety of mechanisms [5, 28]. HGT occurs mostly in prokaryotes; however,
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it also exists in certain eukaryotes [29, 30], and between pro- and eukaryotes [31]. Another
important source of genetic variability is through mutations. Mutations are alterations of
DNA or RNA within a cell. They usually occur through errors during the replication of a
sequence, but many other reasons exist such as error-prone DNA repair processes [32, 33].
The alteration arises as an insertion, a deletion, or a mutation. Insertions occur when one or
multiple new nucleotides are incorporated into the sequence. Deletions occur when one or
more nucleotides are removed from the sequence. A mutation is the exchange of one or more
nucleotides for other nucleotides. Point mutation are mutations of single nucleotides in the
sequence. A transition is a point mutation between purines (A, G) or between pyrimidines
(C, T). Conversely, a transversion is a point mutation from a purine to a pyrimidine or vice
versa. Transitions occur more often than transversions in most biological sequences [34]. If a
point mutation is present in multiple organisms in a species population, it is also called a
single-nucleotide polymorphism (SNP).

Generally, somatic mutations are differentiated from germline mutations. The former
occur in somatic tissue and are not passed on to the sexual offspring, while the latter occur
in reproductive cells and are passed on to the offspring [35]. Genetic variability is affected
by the process of evolution, resulting in biodiversity. Natural selection is one of the major
evolutionary processes. It describes the effect that genetic changes with phenotypes that grant
a higher chance of reproduction for the organism become more common in a population. In
contrast, genetic changes that impede the chances of reproduction of an organism become less
common. If two organisms share a common feature that descends from the same origin, that
feature is called a homology. Analogously, if DNA segments in different organisms descended
from the same DNA segment through evolutionary processes, they are called homologous
sequences. Homologies in the DNA are further classified into ortholog and paralog sequences
depending on the evolutionary event that caused the homology. Ortholog sequences are the
result of speciation events: the same DNA sequence evolved differently in groups of organisms
that diverged into different species. Paralog sequences originate from a gene duplication
event where a DNA fragment is duplicated and both copies of the original fragment evolve
independently.

The study of evolutionary relationships between organisms is known as phylogenetics. The
relationship between species and their evolutionary history is typically analyzed in phylogenetic
trees. However, the use of phylogenetic trees assumes that transfer of genetic information
only occurred from parent to offspring and represents the species relations accordingly: A
phylogenetic tree has a root that represents the last common ancestor of all species within
the tree. Each bifurcation from the root towards the tips of the tree represents a speciation
event and constitutes the last common ancestor of all species in the subtree below. This
representation is simplified and does not account for processes where DNA is passed by
other means than from parent to offspring. For example, in hybrid speciation offspring is
produced from two different species, a common incident in plants [36]. Hybridization cannot
be represented by phylogenetic trees, and the same applies for horizontal gene transfers. Thus,
evolutionary relationships of prokaryotes with many such transfers are often represented in
phylogenetic networks instead.

When networks are used to study phylogenetic relationships, it is also called reticulate
evolution. The most common approach to calculate phylogenetic trees or networks is by means
of multiple sequence alignments. An alignment relates homologous nucleotides of the involved
sequences to one another and enables the estimation of sequence divergence times based on
given evolutionary models. Similarly, sequence alignments allow the calculation of the ’most
likely’ phylogenetic tree with standard Bayesian statistics.
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2.2 Definitions

The subsequent notations are used to denote important concepts throughout this work: The
set of numbers {1, 2, 3, . . . , n} is denoted as [n]. An alphabet Σ is a set of distinct elements,
called characters or symbols. Here, it is usually assumed that Σ is the alphabet of nucleotides
Σ = {A, C, G, T}. Other common alphabets in bioinformatics include the slightly modified
alphabet for RNA sequences Σ = {A, C, G, U}, or the set of 20 distinct amino acids. It is also
assumed that the elements of Σ are ordered, meaning that the relations < and > are defined
for the symbols in Σ. The size of the alphabet is denoted as |Σ| = o. Each character σ ∈ Σ
is assigned its index i ∈ [o] of the ordered list of all characters. Hence, σi refers to the i-th
character of the ordered alphabet. Thus, for any two indices i, j ∈ [o] with i < j the relation
σi < σj holds. A sequence S is defined over an alphabet Σ and is a finite and ordered list of
elements of Σ. A sequence is also called a string or a word. The number of elements |S| in
a sequence is called the length of S and is denoted as n = |S|. A sequence with |S| = k is
also called a k-mer. The characters in S are numbered from 1 to n and the i-th character is
denoted by S[i]. A substring of S from the i-th character to the j-th character where i < j is
the string of characters S[i], S[i+ 1], . . . , S[j] and denoted as S[i..j]. A substring S[i..j] where
i = 1 is called a prefix of S. A substring S[i..j] where j = n is called a suffix of S. In contrast
to substrings, a subsequence of S is a non-contiguous sequence of S. Thus, a subsequence
of length k is defined by k indices i1, . . . , ik where i1 < i2 < · · · < ik; the subsequence is
the concatenation of the symbols S[i1], S[i2], . . . , S[ik]. If there are m sequences, they are
numbered from 1 to m and denoted as S1, . . . , Sm. Two strings Si and Sj can be compared
in the lexicographic order induced by Σ. For strings of different lengths where one string is a
prefix of the other, the shorter string is considered to be smaller. The Hamming distance
between two strings S1 and S2 of the same length n is the number of symbols at corresponding
sequence positions that differ:

Ham(S1, S2) = |{S1[i] 6= S2[i], i ∈ [n]}| . (2.1)

For identical sequences, Ham(S1, S2) = 0 applies, while Ham(S1, S2) = n holds when the
sequences do not have identical nucleotides at any given sequence position. The Edit distance
between two sequences S1 and S2 with lengths n1 and n2, respectively, is defined as the
minimal number of operations required to transform one sequence into the other, whereby
allowed operations include the insertion of a symbol into a sequence, the deletion of a symbol
from a sequence, or the substitution of a symbol in a sequence by another symbol.
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2.3 Alignment-Based Sequence Comparison

Sequence alignments are one approach to compare two or more DNA or protein sequences
with respect to their evolutionary history. For this, alignments identify and relate homologous
regions between the sequences to one another. Pairwise sequence alignments (PSAs) involve
exactly two sequences and are distinguished from multiple sequence alignments (MSAs) which
align more than two sequences. A PSA can be conceived of as a matrix with two rows, one
for each sequence, and multiple columns. For DNA sequences, nucleotides of both sequences
reside in the same column if the corresponding nucleotides are presumed to be homologous.
Between homologous nucleotides, gaps are added to either of the two sequences to account for
evolutionary events such as insertions or deletions (indels). Gaps are marked with a hyphen
character at the according position in the alignment matrix; thus, sequence alignments for
sequences over an alphabet Σ are constructed over an extended alphabet Σ′ = Σ ∪ {−}.
Likewise, the concept of PSAs is applicable to multiple sequences, resulting in a MSA. A
MSA for m sequences has m rows, one for every sequence; hence, a PSA is a MSA for m = 2.
A MSA for m sequences S1, . . . , Sm is represented as a matrix A ∈ Σ′m×n with m rows and
n columns with n ≥ maxi |Si|, see Fig. 2.3 for an example.

Another differentiation is often made between global and local sequence alignments: Global
alignments assume an underlying homology that spans the entirety of the sequences. This is
primarily the case if only site-level events have happened since the sequence divergence such
as character substitutions or indels. Conversely, if biological events occurred that changed the
whole sequence succession, for example, gene duplication or loss, translocations, inversions, or
horizontal gene transfers, the sequences cannot be globally aligned in any meaningful way.
Hence, global alignments are sensible when the sequences at hand are homologous in their
entirety [37]; otherwise, only local alignments should be produced.

Sequence alignments were first used in 1963 to compare homologous amino acid se-
quences [38]. Soon after, the development of new technologies resulted in a rapid increase in
the availability of DNA and RNA sequences. To properly analyze these sequences, alignments
were also applied to DNA and RNA sequences [39, 40]. The number of generated sequences
quickly surpassed the threshold where it was feasible to generate alignments manually, and
thus, first automated programs for sequence alignments emerged. The well-known Needle-
man–Wunsch algorithm for the alignment of biological sequences was published in 1970 [41].
Hence, sequence alignments were one of the first approaches to methodologically compare the
similarity of sequences and are still one of the most important tools in modern bioinformatics.

2.3.1 Models of Sequence Evolution

In order to judge the quality of a generated sequence alignment, an optimality criterion must
be defined. Only then is it possible to search for the optimal alignment with respect to the
defined criterion. Any optimality criterion inherently depends on an underlying model of
sequence evolution that is assumed to have produced the sequences at hand. Optimality
criteria are also referred to as scoring schemes and usually consist of two parts: a scoring
matrix and gap penalties. A scoring matrix S with o rows and o columns defines a score Sij
for each pair of nucleotides (σi, σj) ∈ Σ2. For a given scoring matrix S and a defined gap
penalty, a score is assigned to an alignment by adding the respective scores and gap penalties
across all columns. The resulting total score represents the quality of the alignment. The
sequence alignment with the highest score out of all possible sequence alignments is considered
the optimal one; the score of this ’best’ alignment is also a measure for the similarity of the
involved sequences. For nucleotides, such scoring schemes might be as simple as defining a
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Figure 2.3 – A global pairwise sequence alignment (PSA) and a global multiple sequence
alignment (MSA) between DNA sequences. The input DNA sequences (left) are allowed to
have differing lengths. The alignment process adds gap characters to the input sequences in
order to compute alignments (right). Each column represents those sequence positions that
are assumed to be homologous. Indels are marked with a gap character in the corresponding
other sequences. Both alignments were created with a freely accessible web service [42].

positive score s for identical nucleotides, and the negative of s for different nucleotides:

Sij =

{
s, if i = j

−s, if i 6= j
(2.2)

However, the simple scoring scheme illustrated in Eq. 2.2 has little connection to observed
substitution frequencies as it is not inferred from real sequence data.

To derive scoring matrices from real-world data, a substitution matrix M is used. Similarly
to S,M is a o×o matrix where o = |Σ| and each entryMij defines a substitution score between
the pair of symbols (σi, σj) ∈ Σ2. A substitution score Mij represents the likeliness that a
substitution from symbol σi to symbol σj happened. Substitution matrices are often chosen to
be symmetric with Mij = Mji. Thus, it is implied that the direction of the substitution does
not matter. Furthermore, a frequency vector π defines the base frequencies of the symbols in
Σ. There are different methods to derive a scoring matrix from M , but often the log-odds
approach

Sij =

(
1

λ

)
log

(
Mij

πi · πj

)
(2.3)

is used [43], whereby λ is a scaling factor and πi is the frequency of symbol σi.
To model the evolution of DNA or protein sequences over a time period, the model is

usually extended to be dependent on the time t and the resulting models are referred to as
continuous-time Markov chains. A Markov chain is defined by a rate matrix Q that defines
the rate at which symbols of the alphabet change between one another, see Fig. 2.4. The
time-dependent transition matrix M(t) is derived from Q by matrix exponentiation:

M(t) = eQt (2.4)

Each entry Mij(t) for two states (σi, σj) ∈ Σ2 represents the probability for the mutation
from σi to σj in time t. Evolutionary models are usually considered to be stationary Markov
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Figure 2.4 – Transition probabilities of a stationary Markov chain process for DNA evolution.
The four states (round circles) correspond to the four nucleotides Σ = {A, C, G, T} and the
transition probabilities (black arrows) between the states are marked with qij , i, j ∈ Σ.

processes. This means that the rate matrix Q does not change over time but stays constant.
A transition matrix is called time reversible if the probability of a mutation between two
characters is not dependent on the direction of time: Mij(t) = Mji(t). Most continuous-time
Markov chains used to model the evolution of DNA are time reversible.

Continuous-time Markov chains for DNA alignments differ with respect to the chosen rate
matrix Q and the base frequency vector π = (πA, πC, πG, πT). Generally, Q and π are either
inferred from the data of the current analysis at hand, or they are estimated from a large
and representative data sample and reused for multiple analysis. The most general model for
DNA sequences over the alphabet Σ = {A, C, G, T} is the generalised time reversible (GTR)
model [44] with a total of nine free parameters. The rate matrix

Q =


−(aπC + bπG + cπT) a · πC b · πG c · πT

a · πA −(aπA + dπG + eπT) d · πG e · πT
b · πA d · πC −(bπA + dπC + fπT) f · πT
c · πA e · πC f · πG −(cπA + eπC + fπG)

 (2.5)

has six free parameters (a to f) that define the rate changes between nucleotides. The lower
left and upper right of Q are dependent on each other to satisfy the time-reversibility. The
base frequency vector sums up to 1 and thus has three free parameters. Several simpler
models with a reduced number of free parameters exist: The Jukes-Cantor model [45] is the
simplest and assumes equal base frequencies as well as equal substitution probabilities between
all nucleotides. The K80 model [46] distinguishes between transitions and transversions.
Thus, K80 reflects the difference in mutation frequency in the model by assigning lower
mutation rates for transversion events than for transition events; the base frequencies are set
to equal. There are many additional models for the evolution of DNA that allow a subset
of the parameters of the GTR model [47–51]. Amino acids vary in their similarity based
on their structure and chemical properties. This results in strongly differing substitution
probabilities [52]. Thus, estimating accurate substitution models for amino acid sequences is
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more complex. Substitution matrices have been inferred from the relative substitution events
observed in reference data sets on several occasions: Common models include position accepted
mutation matrices [53], and many variants thereof [54]. Another set of often used matrices are
block substitution matrices [43]. Many iterations of updated substitution matrices for amino
acid sequences emerged, such as improved versions of PAM [54], matrices based on larger
datasets [55], or matrices estimated with other methods such as the maximum likelihood
principle [56].

For both nucleotides and amino acids, alignment gaps are penalized with a negative score.
With a linear gap penalty, each gap character receives the identical negative score. An affine
gap penalty differentiates between the new opening of a gap and the extension of an existing
gap. It is common practice to consider all nucleotide sites in the alignment to be independent
from each other. The total score of a PSA with respect to a scoring scheme is then the sum
over all scores of each nucleotide column in the alignment plus the gap penalties. For multiple
sequence alignments, the total score is often calculated with the Sum-of-Pairs approach: Here,
the scores of all possible pairs of sequences in the MSA are calculated first, and all pairwise
scores are summed up subsequently. It is also possible to account for rate heterogeneity [57];
then, the parameterization of the substitution model and base frequencies is adjusted for
different columns of the alignment.

2.3.2 Calculating Sequence Alignments

Calculating pairwise and multiple sequence alignments is computationally expensive with
respect to time and memory requirements. For two sequences of length n there are already
(2n)!/n!2 possible sequence alignments [58]. Finding the optimal PSA with respect to a scoring
criterion takes time in the order of O(n2). Calculating an optimal MSA is NP-hard [59] and,
therefore, there is no feasible algorithm to compute the optimal MSA for any substantial
number of sequences. Instead, algorithms calculate MSAs by using approximate heuristics to
drastically speed up the computations, at the cost of suboptimal solutions. One of the first
algorithms for pairwise sequence alignments, the Needleman-Wunsch algorithm [41], calculates
the optimal global alignment between two sequences using dynamic programming : In the first
step, the algorithm iteratively determines optimal alignments for prefixes of increasing length
and creates a table of all respective alignment scores. In the second step, a traceback through
the obtained scoring table of all prefix alignments yields the optimal global alignment. For two
sequences of lengths n1 and n2, the Needleman-Wunsch algorithm runs in O(n1 · n2/ log n1)
time complexity and O(n1 · n2) space complexity [60]. In contrast, the Smith-Waterman
algorithm [61] finds an optimal local sequence alignment between two sequences and operates
similarly to the Needleman-Wunsch algorithm. And, likewise, it requires quadratic time and
space with respect to the product of the lengths of both input sequences. Many variants
of both algorithms exist that use modern computer architecture or novel data structures to
improve upon the original versions, such as GPU-accelerated versions [62, 63], a version that
requires only linear space [64], or a version that brings further speed improvements [65].

As sequence alignments are one of the major approaches to quantify sequence similarity
in an evolutionary context, they play an essential role in diverse use cases: Determining DNA
or protein homology, screening unknown sequences against existing databases for sequence
identification, SNP analysis [66], genome assembly, building phylogenetic trees, and many
more [67], see Subsec. 2.3.3. However, it is often not imperative, and due to the time
complexity not advisable, to calculate an optimal MSA. Instead, even when multiple sequences
are involved, using PSAs between a subset of sequence pairs or using suboptimal MSAs
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inferred with adequate heuristics is often sufficient to answer common research questions.
But even calculating optimal PSAs between many pairs of sequences is too time-intensive
for most applications. Thus, several tools exist that compute approximate pairwise sequence
alignments or derived similarity measures thereof. One of the most influential tools for
sequence comparison is the basic local alignment search tool, or short BLAST [68]. BLAST
is designed to efficiently align a single query sequence to multiple other sequences within a
database by employing fast heuristics. The output of BLAST is a collection of high-scoring
local alignments between the query sequence and database entries. However, BLAST does not
guarantee to find the overall optimal local alignment for a given query. The general idea is to
rapidly detect candidate regions in the database sequences that have a high probability to form
high-scoring alignments with the query. This approach is also known as seeding. In BLAST,
the seeding approach works as follows: The query sequence Sq over the alphabet Σ is divided
into words wk of a specified length k that form a set KSq = {wk, wk is substring of Sq}. Then,
a word w′k ∈ Σk is called a neighboring word to a word wk ∈ KSq with respect to a substitution
matrix M when the score between w′k and wk is above a defined threshold t. Here, the score
between wk and w′k is calculated as if the two words would constitute a sequence alignment
without gaps. BLAST determines all neighboring words w′k to any word wk ∈ KSq and stores
them in a set. Thus, the resulting set of neighboring words represents all words that are
identical or exhibit at least a certain similarity to any word of length k in Sq. The reference
database is then searched for all neighboring words of Sq and the according sequences are
extracted; these exact word matches represent the initial seeds for local alignments. Each seed
in each reference sequence is extended in both directions to form a local sequence alignment
based on the substitution matrix M . Extension of alignments is stopped when the score
decreases over multiple consecutive nucleotides. All resulting alignments between the query
and any database sequence that exceed a predefined similarity threshold are kept as the
output of BLAST. By now, a whole family of different BLAST algorithms for a multitude of
applications exists: Gapped BLAST, PSI-BLAST [69], and BLAT [70] are faster versions
with improved heuristics for the seeding and alignment extension, PLAST [71] is a parallelised
version, Mega-BLAST [72] performs additional preprocessing of the database to speed up the
database search, and Magic-BLAST [73] is designed to handle RNA data. There is a wealth
of other sequence similarity search tools such as FASTA [74], UBLAST and USEARCH [75],
or PatternHunter [76]. All of these programs are predominantly designed to search large
reference databases for entries that are similar to a supplied query sequence and likely to
produce high-scoring pairwise alignments.

There are also many tools available for the calculation of multiple sequence alignments.
Due to the large time and space requirements when constructing MSAs, present sequence
aligners use ever-improving heuristics to compute near-optimal alignments in a fast manner:
The most common approach is the progressive construction of alignments [67]. Progressive
alignment algorithms iteratively combine pairwise alignments, from the most similar sequences
to the least similar ones [77]. Often, a guide tree is used that specifies the order in which
PSAs are combined to arrive at the final MSA. The guide tree is determined from a fast
initial pairwise sequence similarity comparison. In some algorithms pairwise alignments are
fixed, while in other implementations pairwise alignments can be adapted later on when
incorporating new sequences. One of the first popular software tools that pursued this
paradigm was ClustalW [78], as well as its extension ClustalX [79] which provides a
graphical user interface. Compared to ClustalW, the program DIALIGN [80] and its
successor DIALIGN-T [81] follow a segment-based approach to create DNA and protein
MSAs. Here, the MSA is based on pairwise sequence similarities of local scope; based on such
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highly similar substrings between sequence pairs, it is possible to combine distantly related
sequences in a single MSA. The resulting alignments are of high quality, especially for locally
related sequences. MAFFT [82] is a popular progressive sequence alignment method that
relies on the Fast Fourier Transform to quickly determine homologous regions between input
sequences. In general, progressive alignment methods are susceptible to differences in the guide
tree and a bad guide tree may cause sub-par results [83]. Thus, many progressive alignment
programs, such as MSAProbs [84], employ a step referred to as iterative refinement to
overcome such limitations. Subsequent versions of MAFFT also include iterative refinements
of the produced sequence alignments [85], as well as parallelization [86], and a multitude of
further enhancements [87, 88]. Other alignment tools that follow a progressive procedure are,
for example, T-Coffee [89] and MUSCLE [90]. Hidden Markov models (HMMs) are another
strategy for the construction of multiple sequence alignments [91]. In HMMs, alignments are
represented as directed acyclic graphs where sequence characters are represented as nodes,
also called observed states. The hidden states are characters of the mutual ancestral sequence
of all aligned sequences. HMMs are not only used for the construction of MSAs, but also with
respect to a variety of other tasks in biological sequence analysis, such as the classification of
sequences, annotation of genes, or database similarity search [92]. Normally, profile HMMs
are employed which encode not only nucleotide frequencies but also insertions and deletions,
all of which are encoded position specific [93, 94]. Hence, profile HMMs are probabilistic
models capable of comprehensively representing whole sequence sets or gene families when
parameterized accordingly. SAM [91] was one of the first approaches to use HMMs for
building MSAs. HMMER [95] is a popular tool for sequence alignments and database search
based on HMMs. Clustal Omega [96] uses a combined approach of progressive sequence
alignments and HMMs based on the HH-suite [97]. It is also possible to compare profile
HMMs with each other; this enables the detection of even more distant relationships between
sequences and is, for example, utilized by the program HHsearch [98]. Another group of
MSA algorithms are phylogeny-aware sequence aligners. The main distinguishing factor
of phylogeny-aware approaches is their focus on the construction of alignments that also
integrate the phylogenetic context of the sequences into the estimation procedure. As a
consequence, a resulting alignment is not necessarily the one that maximizes the similarity
between the sequences [67]. Currently, various software packages are available that perform
phylogeny-aware multiple sequence alignment [99–101] and several comprehensive reviews on
multiple sequence alignment tools in general exist [67, 102, 103].

2.3.3 Applications of Sequence Alignments

The applications of sequence alignments are broad and varied. Alignments have contributed
substantially to bioinformatic data analysis since they were first devised: Mostly, they serve as
a means to quantify similarity between DNA, RNA, or protein sequences. The alignment score
of a PSA specifies the similarity of the two involved sequences, but several other measures,
such as the Hamming or Edit distance, are also derived from DNA alignments. In addition,
there are a variety of models that estimate the number of nucleotide substitutions from
alignments [48, 104–107], which in turn is utilized to estimate the divergence time of the
according species [108, 109]. Furthermore, identification and classification of newly obtained
sequences is often one of the first steps in analyses pipelines, and programs such as BLAST or
PatternHunter [76] employ alignment strategies based on the seed-and-extent approach to
scan biological databases for known homologs. Homologous sequences then provide information
about taxonomic affiliation of the new sequences, but they are also utilized to transfer other
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known information, for example, about secondary or tertiary structure for proteins. In this
context, alignments have been used for protein structure prediction [110, 111], phenotype
prediction [112], or functional prediction [113, 114]. Furthermore, alignments are used for motif
finding [115, 116] and gene prediction [117]. There are also many sequence aligners optimized
for specific sequence types, such as short metagenomic reads [118], whole genomes [119],
or splice-aware aligners [120]. Another major use case of MSAs is the reconstruction of
phylogenetic trees. For example, maximum-likelihood models for phylogeny reconstruction
infer the phylogenetic tree with the highest log-likelihood for a given alignment and a large
variety of tools exist for this task [121–123], see Subsec. 2.5.4. Some of these approaches
estimate alignments and phylogenetic trees simultaneously [101, 124]. Alignments are also used
for reference-based sequence assembly: Here, short reads are aligned against reference genomes
to guide the assembly process [125, 126]. For this purpose, several tools are specialized for
aligning short query reads against large reference genomes [127, 128].

Evidently, pairwise and multiple sequence alignments are an important tool in many
areas of bioinformatics and form the basis for many computational analyses. Nonetheless,
alignments also come with inherent limitations and drawbacks. In general, the calculation of
MSAs is time-intensive even when multiple heuristics are applied in an attempt to quickly
discover local optima in the large space of possible alignments. Thereby, depending on the
software in use, the heuristics used to speed up the calculation can result in sup-optimal
alignments. This distorts subsequent analysis steps and, for example, might result in inaccurate
phylogenetic trees. Additionally, sequence alignments are best applicable if the sequences
share global homologies. However, biological mechanisms such as gene duplication or loss,
horizontal gene transfers, high mutation rates, or genome rearrangements result in sequences
that are difficult to compare with traditional global alignment-based approaches. Many tools
have been developed to specifically deal with local alignments [129–131] or whole genome
alignments [132–134]. Still, it remains questionable whether alignments constitute the best
approach when considering such data sets [135] and it has been suggested that the quality
of whole genome alignments varies considerably [136]. With the rise of next-generation and
third-generation sequencing techniques, the amount of genomic data is increasing at higher
speeds than ever before. Modern sequencing data often consist of short sequencing reads or
draft genomes, where sequences are not necessarily assembled to longer contiguous sequences;
see Section 2.6. This also fundamentally limits the use of alignments in these contexts. The
data has also reached a volume where MSA-algorithms are not sufficiently fast, even when
broad heuristics are used, exacerbating the problem of long runtimes. Additionally, alignments
are always based on assumptions such as the underlying evolutionary model, substitution
matrices, gap penalties, and others. Using adequate assumptions for the data at hand is
necessary to infer well-founded alignments, and any misspecification can result in undesirable
alignment results. For all of these reasons, another group of methods for the calculation of
sequence similarity emerged that do not rely on sequence alignments: so-called alignment-free
sequence comparison methods.
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2.4 Alignment-Free Sequence Comparison

Algorithms for alignment-free sequence comparison are a broad category of methods that
do not rely on the calculation of pairwise or multiple sequence alignments to determine the
similarity between biological sequences. Instead, other properties of the sequences are used to
derive measures of sequence similarity. Most approaches can be assigned to one of two groups:
word-based methods or information theory-based methods, although there are approaches that
fit in neither of these categories [137]. In word-based methods, sequences are transformed
into a new feature space with the reasoning that it is computationally less expensive to
compare sequence representations in the newly constructed space than to compare the original
sequences themselves. Common feature spaces are based on the distribution or abundance
of substrings of the sequences. Such feature representations are often position-independent :
Similar sequence fragments from two sequences are detected, even if they occur at different
positions within the original sequences. Therefore, these methods are typically less influenced
by large-scale evolutionary mechanisms, such as genome rearrangements. This property
gives word-based methods a unique advantage in comparison to alignment-based algorithms.
Information theory-based methods use concepts from the field of information theory, such as
entropy of or mutual information between sequences, to quantify sequence similarity [138]. On
the one hand, alignment-free methods tend to be faster than alignment-based methods and,
thus, are commonly used when dealing with large data sets. On the other hand, alignment-free
methods are generally assessed to be less accurate than alignment-based methods [139].

2.4.1 Information Theory-Based Methods

The Shannon entropy is a measure of uncertainty for the possible outcomes of a random
variable X. A high entropy implies that the outcome of a single draw of X is highly uncertain;
or, in other words, that previous draws from X do provide little information about future
draws. A biological sequence can be interpreted as a series of draws from a random variable
where the values are drawn from the according alphabet Σ, such as Σ = {A, C, G, T} for DNA
sequences. Sequences with many repetitions have a low entropy, whereas more complex
sequences have a high entropy. The notion of compression is closely related to entropy:
Sequences with low entropy are highly compressible without loss of information, while little
compression can be applied to sequences with high entropy. It is possible to apply the
concepts of entropy and compression in order to infer the degree of similarity between two
sequences. Let S1 and S2 be two sequences that are already fully compressed, meaning that
no further lossless compression is possible. The concatenation of the sequences is denoted as
S1+2. The amount of compression that can be applied to S1+2 contains information about
the similarity of S1 and S2: If S1 is identical to S2, then S1+2 has a low entropy and S1+2 is
easily compressible while retaining all information. However, when S1 and S2 do not share
common information, S1+2 is impossible to compress without loosing information. Thus, the
degree of compression that can be applied to S1+2 is a measure of similarity for S1 and S2.

A large number of compression strategies for biological sequences or whole sequence
databases are available [140], as are derived distance metrics and applications [141, 142]. In
this context, compression has also been used to discover large-scale evolutionary events such
as genome rearrangements [143]. Several other algorithms use metrics directly related to
sequence entropy that yield information about the similarity of two sequences. For example,
the Kullback-Leibler divergence [144] represents the amount of information that is shared
between two sequences. Another related metric is the Jensen-Shannon divergence, calculated,
for example, by the software Alfree [137]. Interestingly, it is possible to estimate such metrics
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from word-frequency statistics as well: One method following this approach is the average
common substring method [145]. It defines a similarity measure between two sequences S1

and S2 with lengths n1 and n2 based on the average length of maximum common substrings.
For every position i ∈ [n1] in S1 the longest matching substring in S2 starting at some arbitrary
position j ∈ [n2] is determined. The resulting lengths l(i) are averaged over all positions
i ∈ [n1] to obtain the average length of the common substrings acs(S1, S2) =

∑
i∈[n1] l(i)/n. To

obtain a distance that is symmetrical and also satisfies d(S1, S1) = 0 the inverse is computed
and then normalized:

d′(S1, S2) =
log(n2)

acs(S1, S2)
− log(n1)

acs(S1, S1)
, (2.6)

d(S1, S2) = d(S2, S1) =
d′(S1, S2) + d′(S2, S1)

2
. (2.7)

The authors demonstrate that this measure is directly related to the Kullback-Leibler relative
entropy. The implementation runs in O(n1) by using suffix trees [146], a large gain in
computation speed compared to alignment-based approaches.

2.4.2 Word-Based Methods

Word-based methods use the occurrence, distribution, or other properties of substrings or
subsequences present in the input sequences. They are rarely concerned about the overall
order and identity of all nucleotides in the sequences but instead focus on the presence
and composition of shorter sequence parts, also called words or k-mers. The simplest
implementation of this idea is to compare the number of occurrences of k-mers for a specified
length k between the provided sequences. The reasoning is that closely related sequences
share many k-mers since only a limited number of mutations occurred since their divergence;
in contrast, distantly related sequences share far fewer identical k-mers due to an increased
number of mutations and indels that occurred. Assuming that there are two sequences S1

and S2 of length n and that all positions mutate independently with a probability p over
time t, then the probability to observe the same k-mer at any position i in both sequences
is (1 − p)k

t , provided that no indels or other evolutionary events occurred. The overall
number of expected identical k-mers at all corresponding positions is accordingly given as
n · (1− p)kt . However, k-mers are usually not only compared at identical sequence positions,
but all occurrences of k-mers across all sequence positions are taken into account. In this way,
k-mers from homologous sequence regions that reside at different absolute locations in S1

and S2 are detected as well. Still, it is extremely unlikely to observe an identical k-mer at
non-homologous positions for large values of k: For DNA sequences over an alphabet of four
symbols, under the simplified assumption of independent positions with random nucleotides,
this probability is 0.25k; already for k = 12 this evaluates to less than 10−7. This is an
important aspect of word-based methods, as it is safe to assume that the presence of identical
k-mers stems from an evolutionary interrelation and provides valuable information. Even
when identical k-mers are found at different positions in the sequences S1 and S2 they most
likely do not appear by pure chance. This example also highlights an important advantage of
word-based methods over alignment-based methods: Most word-based methods are unaffected
by large-scale evolutionary events, such as genome rearrangements, as they do not take overall
sequence order into account.

Given the previous considerations, one of the most basic algorithms for comparing a set
of m sequences S1, . . . , Sm of possibly differing lengths is as follows: For a specified size k,
the occurrences for all distinct k-mers in a sequence Si, i ∈ [m] are counted. For an alphabet
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Distance calculation

Word extraction
(k = 2)

Query sequences

Word ordering
and word counting

||v(S1) , v(S2)|| = (|2 - 2|p + |1 - 1|p + |3 - 2|p + |0 - 1|p + |1 - 1|p + |2 - 1|p)

v(S1) = v(S2) =

Figure 2.5 – A simple word-based procedure for sequence comparison: Two query sequences
are decomposed into consecutive words of length k, here k = 2. Then the number of each
unique k-mer in S1 and S2 is counted, resulting in a word-count array v(S) for each sequence.
Those k-mers that are not present in either of the species are omitted to save memory space.
The distance between S1 and S2 is calculated on the basis of the the two word-count arrays
v(S1) and v(S2), for example, a Minkowski distance.

Σ, the number of possible words of length k is l = |Σ|k. Since an ordering of the k-mers
K1,K2, . . .Kl is induced by the order of Σ, the resulting values for a sequence Si can be
stored in a vector v(Si) of size l where the j-th element vj(Si) corresponds to the count of
Kj . Thus, each entry vj(Si) in the vector corresponds to the number of occurrences of Kj

in Si according to their lexicographic order. Extracting the k-mers of a sequence Si can be
carried out efficiently with a sliding window of length k that is shifted from the first position
Si[1] of the sequence to the position Si[n− k + 1]. At every position ι ∈ [n] the count of the
k-mer Si[ι : ι+ k] is updated at its according position in the vector v(Si). Subsequently, such
vectors are created for all other sequences as well. Then, two sequences Si1 and Si2 can be
compared with respect to their lists of k-mer counts v(Si1) and v(Si2). Here, any metric for
the comparison between two vectors can be used, for example, Minkowski-metrics

‖v(Si1),v(Si2)‖p =

 l∑
j=1

|vj(Si1)− vj(Si2)|p
 1

p

. (2.8)

For p = 1 this equals the so-called manhatten distance, for p = 2 the euclidean distance,
and for p 7→ ∞ the supremum distance. This procedure is also illustrated in Fig. 2.5
and comprehensive overviews of possible distance functions for k-mer counts of biological
sequences and their advantages and drawbacks exist [147]. However, this method also comes
with computational difficulties: For a given k and alphabet Σ the number l = |Σ|k of possible
words of length k grows rapidly. For the nucleotide alphabet and k = 31, a value used in
certain programs [148], storing all possible k-mers would result in 431 ∼ 4.611 · 1018 values.
Storing a vector of this size for even a single sequence is inconceivable with current technology
and would require more than one billion gigabytes of space. For the substantially larger
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amino acid alphabet, the number grows even faster with increasing values of k. Hence, an
implementation that stores the counts for all possible k-mers is not feasible. Instead, only
those k-mers that are present in at least one sequence under consideration are stored; often
singular k-mers are omitted from being stored as well and instead they are dismissed as
’spurious’ k-mers. In general, the choice of k is a key factor in all word-based approaches to
sequence comparison: Choosing small values for k results in an insufficient characterization
of the sequences and k-mer vectors of different sequences converge to similar distributions.
On the contrary, large values of k result in only a few or no common k-mers across different
sequences, which prohibits meaningful comparison. These opposing trends always result in a
trade-off when choosing appropriate values of k.

A closely related approach to compute similarities between DNA sequences is the use of
min hash techniques. Here, the main insight is that it is not necessary to save all k-mers of
the sequences to estimate similarities. Instead, a subset of all k-mers, a so-called sketch, is
sufficient. In this way, memory requirements and runtimes are significantly reduced. The tool
Mash [149] is one technique that adopts this principle: Given two sequences S1 and S2 and
their k-mer setsWS1 = {S1[ι : ι+k], ι ∈ [n1−k+1]} andWS2 = {S2[ι : ι+k], ι ∈ [n2−k+1]},
Mash calculates the similarity between the sequences by estimating the Jaccard index.

J(WS1 ,WS2) =
|WS1 ∪WS2 |
|WS1 ∩WS2 |

. (2.9)

The Jaccard index is then used to infer the Hamming distance. However, instead of considering
the complete k-mer sets, Mash passes every k-mer through a universal hash function h resulting
in the set Wh = {h(Kj), j ∈ [l]}. For a sequence S it then selects only those k-mers Kj from
WS where h(Kj) is among the lowest s values of Wh, whereas s is the predefined sketch size.
This results in a randomly selected subset of all possible k-mers while it is guaranteed that
the same k-mers are selected across different sequences. Calculating the Jaccard index for
these subsets is an unbiased estimate of the overall Jaccard index. This allows Mash to
scale to very large sequence databases without running into computational troubles. Several
adaptations to the approach exist, for example, Order Min Hash [150] which estimates
the Edit distance instead of the Hamming distance by incorporating the relative order of
k-mers into the sketches. Hashing techniques are applied in diverse applications: For example,
MashMap [151] maps long reads to existing reference genomes, but hashing has also been
used for genome assembly [152] or SNP detection [153].

As for hash-based techniques, there is also a large variety of other approaches that utilize
other types of substrings or different algorithmic procedures to calculate sequence similarity.
The shortest unique substring algorithm shustring identifies unique substrings in sequences
that cannot be extended to the left or right without losing their uniqueness [154]. The
distribution and number of shortest unique substrings is then used, for example, to detect
repeats or singular regions in a genome. kmacs [155] is an algorithm that extends the average
common substring approach, however, with an important difference: kmacs allows up to
k positions in a substring to deviate between the two sequences (whereas this k is not to
be confused with the word length k of other substring approaches). This approach poses a
new and unique strategy for alignment-free sequence comparison as it does neither rely on
continuous substrings nor on subsequences of a fixed length. Complementary to this approach,
the authors also developed a method based on non-contiguous substrings of fixed length k, so-
called spaced words. These spaced words are defined by a binary pattern, see also Subsec. 2.4.3,
and their frequencies are used to infer a measure for sequence similarity. Although this idea
has previously been applied to search large databases [76], kmacs applied it to different tasks
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such as phylogeny reconstruction. The main advantage of using non-contiguous words is that
identical nucleotide positions are spread out and, thereby, are statistically less dependent
on each other compared to using contiguous words. The use of such inexact k-mers has
been demonstrated to produce better results than methods that use only exact k-mers [76].
Other alignment-free word-based approaches use minimal absent words [156, 157], perform
variable-length encoding of nucleotides depending on their surrounding sequence parts [158],
or use statistical metrics of irredundant common subwords [159]. Several comprehensive
reviews for alignment-free methods exist [137, 160, 161].

One drawback of the methods introduced so far is their inability to compute similarity or
dissimilarity measures that entail a direct biological interpretation. While, for example, the
Euclidean distance between two k-mer count vectors provides information about the relative
degree of relatedness between the sequences, it cannot be used to infer information about
biological properties of the sequences themselves. In contrast, alignment-based approaches
allow the calculation of biological properties of the underlying sequences, such as the average
number of nucleotide substitutions per sequence position, parsimonious measures that describe
the minimal number of evolutionary events that explain the data, or the relative number of
shared genes between organisms. The alignment-free program Co-phylog [162] overcomes
this limitation: It finds pairs of k-mers that occur next to each other in both sequences
and are separated by exactly one base pair. They term the single nucleotide object, and the
surrounding identical words context. If the same context is present in both sequences, it is
called a micro-alignment. Such micro-alignments have identical nucleotides at all positions of
the context, while an arbitrary nucleotide is allowed at the object. Then, the phylogenetic
distance between sequences is estimated as the average number of times that the object
is different across all micro-alignments. The software andi [163] extends the approach of
Co-phylog by allowing arbitrarily large regions between the aligned contexts.

2.4.3 Filtered Spaced-Word Matches

Estimating the number of nucleotide substitutions with andi or Co-phylog requires that
micro-alignments are exclusively formed from homologous sequence regions. Only then do
the derived nucleotide substitution statistics reflect the actual evolutionary distance of the
sequences. However, the general issue of word-based methods regarding the choice of k also
applies here and causes a trade-off for the length of the context: On the one hand, a short
context context results in a larger number of micro-alignments that occur purely by chance
and such spurious micro-alignments skew distance estimates. On the other hand, a long
context only works when the sequences under consideration are sufficiently similar.

The alignment-free program Filtered Spaced-Word Matches (FSWM) [164] aims to
overcome this limitation. FSWM estimates the average number of nucleotide substitutions
between every pair of a set of sequences using spaced words. For this, a binary pattern
P ∈ {0, 1}l of a predefined length l is used. The 1’s in the pattern are termed match positions,
while the 0’s are called don’t care positions. The number of 1’s in P is called the weight of
P . Given an alphabet Σ and an extended alphabet Σ+ = Σ ∪ {*} where * is the so-called
wildcard character, a spaced word of length l with respect to the pattern P is defined as
W ∈ Σ+

l where W [ι] ∈ Σ if ι is a match position of P and W [ι] = * if ι is a don’t care
position in P . A spaced word that starts in a sequence S at position i is called a spaced-word
occurrence and written as (W, i). For example, a possible spaced word over the alphabet
Σ = {A, C, G, T} and the pattern P = 110101 is provided by W = TT*A*C. This spaced word
has a spaced-word occurrence (W, 2) in the sequence S = GTTGATCA. Two sequences S1 and
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Pattern

Figure 2.6 – Spaced-word matches between two DNA sequences: A binary pattern P =
110101 is defined. For the given input sequences, there are two spaced-word matches with
respect to P . Nucleotides at the match positions are identical in both sequences (blue lines).
The don’t care positions have identical or different nucleotides (red lines).

S2 have a spaced-word match at positions i and j, respectively, if the same spaced word W
has a spaced-word occurrence in sequence S1 at position i and sequence S2 at position j.
That means, when P is aligned to S1 starting at position i and at S2 starting at position j,
the nucleotides at the match positions of P are identical in both sequences, while the don’t
care positions can be either identical or different:

S1[i+ ι] = S2[j + ι], if ι is a match position of P . (2.10)

FSWM considers patterns with a length of 112 and a weight of 12 by default. The positions
of the match positions within P have little influence on the performance. Hence, spaced-word
matches are similar to the earlier introduced micro-alignments, however, they are defined with
respect to a more flexible binary pattern P . Nonetheless, the term micro-alignment is also
used when referring to spaced-word matches. Figure 2.6 shows an example of spaced-word
matches between two sequences.

For a substitution matrix M that defines substitution scores for all pairwise combinations
of symbols in the alphabet Σ, the score of a spaced-word match is defined as the sum of all
substitution scores between the symbols at the don’t care positions of the two spaced-word
occurrences, see Fig. 2.7. If the score of a spaced-word match is above a preset threshold t, the
match is considered to originate from two homologous sequence regions. On the contrary, if the
score is below t, the match is considered a random (or background) match that appeared purely
by chance and not due to sequence homology — t is set to 0 as default. FSWM determines
all spaced-word matches between two DNA or RNA sequences, calculates their scores and
removes all matches with a score below t. The remaining matches are used to estimate the
average number of nucleotide substitutions: First, the average number of substitutions at
the don’t care positions are counted and then the resulting percentage is adjusted with the
Jukes-Cantor formula [45]. In andi and Co-phylog the context must be sufficiently long
to ensure that only homologs are considered; in contrast, the filtering procedure overcomes
this requirement in FSWM. Even with a small weight of P the non-homologous random
matches are filtered out based on their score. After filtering, a spaced word W can occur at
multiple positions in both sequences. If W occurs at p positions in S1 and q positions in S2

there are p · q possible spaced-word matches for W . This poses two problems: First, it takes
a quadratic amount of time to consider W , which is especially troubling for words W with
many spaced-word occurrences. Second, considering all pairwise matches results in double
counting of sequence positions as every spaced-word occurrence is matched with multiple
other spaced-word occurrences. As spaced-word matches represent homologous regions, it is
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Sequence 1

Sequence 2

Spaced Words

Substitution matrix

Spaced-Word Match

Score of SWM

+

-34

Figure 2.7 – The filtered spaced-word matches approach to calculate the number of nucleotide
substitutions between two sequences: Based on a predefined pattern P , all spaced words
between the two query sequences are extracted. Identical spaced words form a spaced-word
match and its score is calculated on the basis of a substitution matrix M . Spaced-word
matches with a score below a predefined threshold t are removed from further consideration.
From all remaining spaced-word matches, the average number of nucleotide substitutions at
the don’t care positions is calculated and corrected with the Jukes-Cantor formula. Note that
the pattern presented here only serves the purpose of visualizing how spaced-word matches
are applied; real patterns are longer and mostly comprised of don’t care positions.

natural to limit every spaced-word occurrence to a single match. Therefore, instead of using
all pairwise matches between the occurrences of a spaced word, FSWM uses a heuristic to
assign each spaced-word occurrence from one sequence to exactly one spaced-word occurrence
from the second sequence. The scores of the spaced words are used in a greedy procedure:
First, the occurrences that form the spaced-word match with the highest score are selected
and removed from the list of occurrences. Then, the two remaining spaced-word occurrences
with the highest of the (p − 1) · (q − 1) scores are removed from the list. This is repeated
until no further spaced-word occurrences remain for either S1 or S2. This process assumes
that the spaced-word occurrences of the spaced-word match with the highest score in each
iteration are two homologous sequence regions. Note, however, that double counting of single
sequence positions still occurs when spaced-word occurrences overlap each other. For m
input sequences, FSWM calculates their pairwise distances with the described procedure and
generates a m ×m distance matrix M. Phylogenetic trees can be produced from M with
standard methods such as neighbor joining, see Subsec. 2.5.2. It was also proposed to use a set
of multiple patterns P, instead of a single pattern P ; the above procedure is then performed
for each pattern P ∈ P individually, and the resulting distances are averaged over all patterns.
Using multiple patterns reduces the variance of distance estimates that is attributed to the
choice of a single pattern. When using multiple patterns, it is recommended to optimize them
with respect to their overlap complexity, for example, with the program rasbhari [165].

Since the introduction of the program FSWM, the concept of filtered spaced-word
matches has been utilized in multiple additional applications: The program Read-SpaM [166]
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computes a phylogenetic tree for a set of assembled or unassembled sequences following a
similar procedure as FSWM. Prot-Spam [167] uses filtered spaced-word matches to estimate
phylogenies from amino acid sequences; here, different parameter choices for the length l and
the weight w of the pattern are necessary to account for the properties of proteins. The program
Multi-SpaM [168] uses a combination of spaced-word matches and maximum likelihood
estimation to produce phylogenies. In Multi-SpaM, blocks of consecutive spaced-word
matches are searched in quadruples of input sequences and quartet trees are created from such
sets. Then, all quartet trees are merged into a single super tree using the software Quartet
MaxCut [169]. Slope-SpaM [170] is another novel approach to estimate phylogenetic
distances based on spaced-word matches. The main idea is to estimate the sequence similarity
from the slope of the function of the number of words of length k with respect to k. This
function is shown to be affine linear between distinct values of k, named kmin and kmax. Using
spaced words with weight k instead of contiguous k-mers improves the distance estimates.
Slope-SpaM determines the values kmin and kmax for two given sequences, calculates the
number of spaced-word matches with weight w = kmin and w = kmax and estimates their
Jukes-Cantor corrected average number of nucleotide substitutions per sequence position
based on the slope. Filtered spaced-word matches have also been used to detect anchor points
for whole genome sequence alignments [171].

2.4.4 Applications of Alignment-free Sequence Comparison Methods

As for sequence alignments, the use cases for alignment-free methods are wide-ranging.
However, their focus often lies on time and memory efficiency, making them particularly suited
for data sets from recent sequencing technologies that comprise large quantities of sequences,
very long sequences, or both. Accordingly, alignment-free methods have generated great interest
in the field of metagenomics, where large amounts of short reads need to be processed. Here,
alignment-free methods provide a useful toolbox for handling tasks such as read binning [172,
173], read assignment [174, 175], genome assembly [176], phylogenetic placement [13, 177],
or visualization of metagenomic data [178]. These applications will be discussed in detail
in Sec. 2.6. It is also becoming more common to apply a hybrid approach using alignment-
free and alignment-based methods collectively or consecutively [179]. For example, fast
alignment-free methods are initially used to screen large sequence sets for potential sequences
of interest; subsequently, more accurate but slower alignment-based methods are applied
to this preselection [180]. Combining alignment-free and alignment-based approaches can
improve results over using only one of the approaches [181]. Alignment-free methods are also
well suited in cases where sequence rearrangements are present. For this, specific programs
have been developed that identify and visualize rearrangements [143, 182]. Furthermore,
alignment-free methods are suited for distantly related sequences where it is challenging
to construct sequence alignments [11], but some alignment-free algorithms also specifically
target closely related sequences [183]. Thereby, a major use case for distances generated by
alignment-free methods is the reconstruction of phylogenetic trees [161]. Moreover, alignment-
free methods have also been extensively utilized in epigenomics [184], for the comparison
of regulatory sequences [185], to model and predict protein families [186], or for phenotype
prediction [187].
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2.5 Phylogenetics

Phylogenetics centers on the analysis and reconstruction of evolutionary relationships between
species, groups of species, or biological sequence entities such as single genes. The most
common models to represent and visualize such relationships are phylogenetic trees, also called
phylogenies.

2.5.1 Phylogenetic Trees

A graph G is a tuple G = (V,E) consisting of a set of p vertices V = {v1, v2, . . . , vp} (also
called nodes) and a set of q edges E = {e1, e2, . . . , eq}. The edges are a set of tuples
E =

{
(vi, vj) | i, j ∈ [p]

}
. An edge (vi, vj) connects the two vertices vi and vj . A path

ρ = (vi, . . . , vj) between two vertices vi and vj is a list of vertices starting with vi and ending
with vj such that there is an edge (vk, vl) or (vl, vk) in E for every two consecutive vertices
vk and vl in ρ. If there is at least one path ρ between every two vertices of V , the graph G
is called connected. If there is at most one path ρ between any two vertices of V , the graph
G is called acyclic. If G is connected and acyclic, then G is called a tree. Only trees are
considered from now on and denoted as T . In trees, since they are connected, every vertex
occurs in at least one edge of E. A node vi that occurs in exactly one edge of E is called a
leaf node of T ; all other nodes of V are called internal nodes of T . A tree T is called strictly
bifurcating if and only if every internal node vi ∈ V occurs in exactly three edges of E. A
clade, or subtree, Vc ⊂ V is a subset of vertices of V such that there exists a path between
every two vertices of Vc by only using edges with vertices from Vc. The trees introduced so
far are called unrooted trees — they do not specify a hierarchy of the nodes. On the contrary,
rooted trees have an additional node v0, called the root of T , which extends the set of nodes
to V = {v0} ∪ {v1, . . . , vp}. For rooted trees, the level of a node vi, i ∈ [p] is denoted as l(vi)
and defined as the number of vertices in the distinct path from v0 to vi minus 1; the level of
the root is l(v0) = 0. Hence, a root v0 of a tree T imposes an order on all other nodes of V
where higher levels are assigned to nodes that are further away from the root. In addition to
the above definition of strictly bifurcating trees, the root v0 in a strictly bifurcating rooted
tree appears in exactly two edges. For rooted trees, the lowest common ancestor of two leaf
nodes vi and vj of T is the internal node vk on the distinct path p = (vi, . . . , vk, . . . , vj)
that has the lowest level l(vk). A phylogenetic tree can have a length associated with each
edge e ∈ E, also called the weight of e; the weight of an edge e is denoted as w(e). Thus, an
edge-weighted tree is defined by its set of weighted edges E′ =

{
(vi, vj , w) | i, j ∈ [p], w ∈ R

}
.

In phylogenetic trees with edge lengths, the length of a path ρ is the sum of the lengths of all
edges on ρ. Edges are also referred to as branches. A phylogenetic tree without specified edge
lengths is also called a cladogram. Cladograms only indicate the structure of the tree, also
called its topology.

Typically, phylogenetic trees are defined to be strictly bifurcating and are either unrooted
or rooted. A phylogenetic tree T represents the evolutionary relationships between a set
of m species where m is the number of leaf nodes in T . Leaf nodes are commonly labeled
with m distinct identifiers for the given species. Using strictly bifurcating trees to represent
phylogenetic relationships assumes that a speciation event results in exactly two new species.
However, if T is not required to be strictly bifurcating, nodes with more than three edges are
allowed; such an instance is called a polytomy or multifurcation. The existence of polytomies
is either a result of an insufficient phylogenetic signal to further resolve the topology or of a
divergence event of multiple species. Every internal node in a phylogenetic tree represents
the common ancestor of all species in the leaves below; thus, the root is the last common
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Figure 2.8 – A strictly bifurcating unrooted tree (left) and a strictly bifurcating rooted tree
(right) representing the phylogenetic relationships between a set of nine unlabeled species.
The edges (black lines) represent the evolutionary process. The root (red dot) in the right
tree is the only node with two adjacent edges and represents the last common ancestor of
all nine species. Each leaf (orange dots) represents a single species and inner nodes (black
dots) represent unknown ancestor species. An example of a clade is illustrated (blue dotted
line) that comprises two species vi and vj and a common ancestor, which is the last common
ancestor (blue dot) in the rooted tree. If the root is removed from the right tree, both trees
have an identical topology. The length of each edge represents its weight and indicates the
amount of evolutionary change that occurred between the two connected species; the two
depicted trees have different edge weights.

ancestor of all species in the tree. The edge weight w(e) of an edge e encodes the estimated
amount of evolutionary change that happened between the species attached to the edge. This
amount of change is also referred to as phylogenetic distance. Similarly, for a path ρ between
two leaf nodes vi and vj , the smaller the length of ρ the closer the species are evolutionarily
related. In the optimal case, the length of a path p between any two leaves vi and vj labeled
with the two species S1 and S2 is identical to the phylogenetic distance between S1 and S2.
Figure 2.8 shows an unrooted tree and a rooted tree and highlights exemplary examples of
the introduced concepts of inner nodes, leaves, a clade, and a lowest common ancestor.

The main goal within the field of phylogenetics is the reconstruction of a phylogenetic tree
T given data for a set of m species. Early approaches for phylogenetic tree reconstruction were
based on the presence or absence of distinct phenotypes of the species under investigation. In
such a case, a m×R matrix indicates the presence or absence of R phenotypes for all species.
Species that share a phenotype are assumed to be more closely related than those species
that exhibit different phenotypes and therefore should appear closer together in the resulting
phylogenetic tree, see Fig. 2.9 for an example. Many algorithms exist to resolve a phylogenetic
tree based on a phenotype matrix, for example, by utilizing the Shannon entropy. However,
the use of phenotypic features has drawbacks: It is time intensive to assess the phenotypes
of a large number of species, and the presence or absence of a phenotype cannot always be
identified without ambiguity. Furthermore, since the number of observable phenotypes is
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Figure 2.9 – Two possible phylogenetic trees (left and right) based on a matrix (middle)
involving four phenotypes (colored circles) and five species (S1 to S5). The topologies of both
trees represent the evolutionary relationships of the species equally well, given the limited
information of the four phenotypes: Those species that share the same phenotypes are grouped
together, while those species that display different phenotypes are separated. Species S3

shares one phenotype with S1 and S2 and another phenotype with S4 and S5. Additional
data is required to further resolve the correct bifurcating topology.

limited, trees cannot always be completely resolved, especially when many species are involved.
Consequently, phylogenetic trees are usually reconstructed by using the genetic content of the
involved species nowadays. Using genomes or parts thereof to infer evolutionary relationships
is also referred to as phylogenomics. However, it is not obvious which parts of the genetic
content can or should be used when reconstructing phylogenetic relationships and there are
many pitfalls when constructing phylogenies based on genomic data [188]. For eukaryotes,
there is not only chromosomal DNA but also mitochondrial DNA, and for plants additionally
chloroplast DNA. All are influenced by evolution in various ways and, as such, have different
advantages and drawbacks for the reconstruction of phylogenies [189–191]. But even within the
chromosomal DNA, the content of the genome varies considerably between different regions,
evolves at differing rates, and is subject to diverse internal and external pressures [192]. Thus,
the use of different genomic regions is likely to result in different phylogenetic trees. And,
more importantly, contradicting phylogenetic signals in DNA are common and have to be
resolved; especially when performing phylogeny reconstruction based on the whole genome.
One possibility to circumvent this problem is to deliberately choose a genomic region that
suits itself to phylogenetic studies. Such a region should be conserved across all species under
investigation to acknowledge its homologous nature while simultaneously providing sufficient
phylogenetic signal to build a robust tree. Genomic regions typically considered for this task
are single genes that are present in all involved organisms, in this context also referred to
as marker genes. However, the choice of a marker gene largely depends on the organisms
under consideration and a variety of suggestions for appropriate markers exist [193–195]. Any
phylogenetic analysis that depends on a single gene inevitably reconstructs the phylogenetic
history of the chosen gene, not of the species that carry it. Thus, a common distinction is
drawn between species trees and gene trees. Whereas gene trees are constructed from single
genes, species trees represent the combined phylogenetic information from a multitude of genes
or the whole genome in a single tree. For this, any conflicting signals must be resolved; however,
this is especially difficult when contradictory phylogenetic signals are supported equally well
by the data. One solution is to represent complicated evolutionary relations by phylogenetic
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networks instead of bifurcating trees. A network G may contain cycles or multifurcations;
every node might be present in an arbitrary number of edges, allowing organisms to have
a network of adjacent organisms. As a consequence, networks represent all kinds of DNA
movements between organisms in addition to inheritance, such as horizontal gene transfers
or hybridization events. Biological mechanisms that cause non-tree-like relationships are
also called reticulate evolution and can only be described by phylogenetic networks. The
application of phylogenetic networks in phylogenomics has been intensively studied [196, 197]
and different methods exist to infer phylogenetic networks based on maximum likelihood [198]
and maximum parsimony [199]. By now, multiple tools have been developed to reconstruct
and work with phylogenetic networks [200, 201] and attempts have been made to combine the
results from phylogenetic trees and networks [202]. For distantly related species, it is also
feasible to infer species phylogenies solely from their gene content and the order of genes [203].

Despite the fact that phylogenetic networks provide a proficient answer for reticulate
evolution, phylogenetic trees often remain the primary method of choice for multiple reasons:
Phylogenetic tree reconstruction methods have a long history of advancement and existing
methods are well designed, easy to use, and resulting trees and auxiliary information are
straightforward to interpret. In contrast, methods that reconstruct phylogenetic networks are
not as sophisticated yet [192]. Due to their comparatively little use, progress remains slow
and the number of available methods is limited. Phylogenetic networks are also more difficult
to comprehend and more challenging to visualize, contributing to their low popularity. Also,
it is not necessary to use phylogenetic networks when little or no reticulate evolution has
happened in the first place. This is often the case when organisms have limited possibilities for
DNA exchange other than reproduction or if they are closely related to one another. Only the
construction and use of phylogenetic trees is discussed in the following. Methods for inferring
phylogenetic trees from genetic content are grouped into three categories: Approaches based
on a matrix of distances calculated between every pair of sequences; methods that use the
maximum parsimony optimality criterion to infer trees; and lastly, probabilistic methods such
as Maximum Likelihood or Bayesian inference.

2.5.2 Distance-Based Methods

Distance-based methods estimate a phylogenetic tree from a matrix of pairwise distances
between all species that has been calculated in a preceding step. More specifically, given m
sequences labeled from 1 to m, each entry Mij , i, j ∈ [m] in a distance matrix M ∈ Rm×m
stores the distance between the sequences Si and Sj . How the distances in M were calculated
does not influence the tree reconstruction process; this makes distance-based methods notably
versatile. For example, many alignment-free methods generate such distance matrices, see
Subsec. 2.4, but distance matrices are also derived from alignments with distance measures such
as the Hamming distance. Hierarchical clustering algorithms, in particular UPGMA, neighbor
joining, and variants thereof, are among the most widely used methods for reconstructing trees
from distance matrices. Here, each sequence is treated as a single cluster at the beginning and
distances between clusters are set to those specified in M. Then, to construct a phylogenetic
tree T , clusters are iteratively merged into larger ones by repeatedly grouping the two most
similar clusters together until only a single one remains. The order in which the sequence
clusters are grouped defines the topology of T . Furthermore, branch lengths are inferred
during each clustering step such that the resulting tree adequately represents the distances
in M. Distance-based methods differ with respect to the estimation of cluster-to-cluster
distances and with respect to the calculation of branch lengths.
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UPGMA The unweighted pair group method with arithmetic mean (UPGMA) [204] is
a hierarchical bottom-up clustering algorithm to reconstruct a phylogenetic tree T . Given
m sequences, a sequence cluster S ⊂ [m] is a subset of sequence identifiers. The set of all
clusters is called C. The distance between two sequence clusters S, T ∈ C is denoted as
d(S, T ). Initially, every cluster comprises exactly one sequence and for two clusters S = {i}
and T = {j} that represent the sequences Si, Sj i, j ∈ [m], respectively, the distance is set
to d(S, T ) = Mij . The distance between two clusters S and T is calculated as the average
distance between all pairs of sequences in the clusters:

d(S, T ) =
1

|S| · |T |
∑
s∈S

∑
t∈T

Mst . (2.11)

In every step, the two sequence clusters S and T that satisfy

arg min
S,T∈C,S 6=T

d(S, T ) (2.12)

are merged to form a new cluster U = S ∪ T . The distance of U to every other cluster
V ∈ C \ {S, T} is updated as the average of d(S, V ) and d(T, V ) weighted by the sizes of S
and T :

d(U, V ) =
|S| · d(S, V ) + |T | · d(T, V )

|S|+ |T |
, ∀V ∈ C . (2.13)

Every generated cluster corresponds to a node in T . The primary clusters that contain single
sequences are the leaves of T and every merged cluster U corresponds to the LCA of all
sequences in U . For a newly merged cluster U = S ∪ T , the branch lengths w(U, S) and
w(U, T ) between U and its two descendants S and T are always set to be half the distance
between S and T :

w(U, S) = w(U, T ) =
d(S, T )

2
. (2.14)

Including the sizes of the merged clusters S and T for the estimation of d(U, V ) implies that
all sequences in a cluster have equal influence on the overall cluster-to-cluster distances. Thus,
the method is referred to as unweighted (U) PGMA. In contrast, if the newly calculated
distances d(U, V ) are simply averaged without compensating for the sizes of the merged
clusters, the algorithm is referred to as the weighted pair group method with arithmetic mean
(WPGMA) and the distance update is defined as

d(U, V ) =
d(S, V ) + d(T, V )

2
, ∀V ∈ C . (2.15)

UPGMA assumes a molecular clock and produces a tree where all leaves have the same
distance from the root, a so-called ultrametric tree.

Neighbor Joining Like UPGMA, the neighbor joining (NJ) method [205] is a hierarchical
bottom-up clustering algorithm but differs with respect to how inter-cluster distances and
branch lengths are calculated. Neighbor joining does not assume that all species evolved at a
uniform rate and, thus, will not create an ultra-metric tree. In each step, given the set C of
existing clusters, two clusters S, T ∈ C are merged. For this, NJ calculates

d′(S, T ) = (|C| − 2) · d(S, T )−
∑
V ∈C

d(S, V )−
∑
V ∈C

d(T, V ) (2.16)
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and selects
arg min
S,T∈C,S 6=T

d′(S, T ) (2.17)

to form the new cluster U = S ∪ T . The lengths of the branches between U and the two
merged clusters S and T are estimated individually by accounting for their average distance
to all other clusters:

w(U, S) =
d(S, T )

2
+

1

2 · (|C| − 2)

(∑
V ∈C

d(S, V )−
∑
V ∈C

d(T, V )

)
, (2.18)

w(U, T ) =
d(S, T )

2
+

1

2 · (|C| − 2)

(∑
V ∈C

d(T, V )−
∑
V ∈C

d(S, V )

)
. (2.19)

The distance of the new cluster U to all other clusters is updated as

d(U, V ) =
d(S, V ) + d(T, V )− d(S, T )

2
, ∀V ∈ C . (2.20)

Selecting the next clusters to be merged according to Eq. 2.17 is greedy: The merging always
chooses those clusters that result in the smallest immediate increase in branch lengths.

Given a set of topologically different trees with defined branch lengths, the principle of
minimum evolution (ME) always chooses the tree with the smallest total sum of all branch
lengths, also called the tree size [206]. NJ is closely related to the ME approach and can
be described as a variant thereof. A common group of methods to estimate branch lengths
for ME are least-squares methods, but any other estimation procedure is feasible as well.
One variation of ME is balanced minimal evolution (BME): The branch lengths of different
topologies are chosen as a weighted version of the predefined distance matrix between all
involved species [207]. BME overcomes the necessity to calculate branch lengths explicitly and
instead directly allows the computation of the overall tree sizes. BME has been demonstrated
to be statistically consistent and a software to calculate BME is available [208]. Still, listing
all possible tree topologies is not feasible, and reducing the search space of tree topologies
is difficult in practice. Thus, several modified implementations of NJ exist that implement
advanced heuristics to traverse the space of tree topologies or to speed up computations.
FastME 2.0 [209] performs NJ while also implementing nearest-neighbor interchanges to
increase the probability of finding a suitable tree. BIONJ [210] improves the distance matrix
by incorporating covariances estimated from alignments. Such approaches have also been
extended to efficiently deal with incomplete distance matrices [211]. Furthermore, NJ was
adapted to be used for the construction of species trees from a set of gene trees. For this, the
distance matrix is constructed such that each entry specifies the average gene-tree inter node
distances [212]. ASTRID [213] is an extension of this approach designed for fast computation
when a large number of taxa are involved.

Least Squares The method of least squares is a popular method for formulating optimiza-
tion problems. The idea is that those model parameters that minimize the sum of squared
residuals are the best, whereby a residual is the difference between an observed quantity and
the value provided by the parameterized model. In the case of phylogenetic reconstruction,
least-squares methods search the tree T that minimizes the sum of squared distances between
a distance matrix M and the distances of the branch lengths in T . The weight of the path
between the leaves labeled with sequences i, j ∈ [m] is denoted as dij(T ). Then, the tree that
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minimizes the sum of squared differences

arg min
T

m∑
i,j=1

(Mij − dij (T ))2 (2.21)

is the best one according to the least-squares approach. Solving this for a single topology is
straightforward and has been used in conjunction with minimum evolution [208]. However,
determining the overall tree that satisfies Eq. 2.21 also involves the exploration of all tree
topologies; this is challenging as there are (2m − 4)! /

(
(m − 2)! · 2m−2

)
different unrooted

trees with m distinct leaves [214]. For any significant number of species, it is impossible to
check all topologies. Instead, heuristics to explore the tree space are essential to arrive at
a solution. Furthermore, the formula shown in Eq. 2.21 assumes that all distance measures
Mij are independent. When distances are derived from sequence data, the distance estimates
covary as evolutionary events at inner branches of the tree effect multiple species at once.
This is countered by introducing a weighting term that is incorporated into the optimization
problem:

arg min
T

∑
i,j∈[m]

wij (Mij − dij(T ))2 . (2.22)

A common choice for the initialization of the weights wij is to set them as the inverse of the
covariance matrix of M, provided the covariance can be estimated reasonably well. Eq. 2.22 is
referred to as ordinary least squares; additional least squares formulations exist that account
for different biases in the data [214–216]. Most often, a phylogenetic generalized least squares
optimization is performed in which the covariances between species sequences are estimated
based on the existing knowledge of phylogenetic relationships [217].

2.5.3 Maximum Parsimony

The maximum parsimony (MP) criterion assumes that the tree T that requires the smallest
number of evolutionary events to explain the provided data is the best one. Historically, the
most parsimonious tree was estimated from a matrix that specified the presence or absence
of different observed phenotypes of the species. In the case of molecular data, the input
matrix is a MSA of the reference sequences where the features are nucleotides (or proteins)
of the aligned sequence positions. Minimizing the number of evolutionary events implies
that the tree generated from MP has the least amount of homoplasy possible. This idea is
comparable to Occam’s razor, as it assumes that the most simple model is the preferable one.
It also has certain parallels to the notion of minimum evolution; however, unlike minimum
evolution, MP has been shown to be inconsistent [218]. Also, if homoplasy is present in the
data, the fundamental assumption of MP is violated and the amount of divergence between
species is systematically underestimated as a result; this problem is also known as long-branch
attraction, as very divergent species can be grouped together by MP even though they belong
to different evolutionary branches.

Without loss of generality, it is assumed that the tree is reconstructed on the basis of a
MSA A. Solving MP consists of two sub-problems: the small parsimony problem and the
maximum parsimony problem. The small parsimony problem is defined as finding the minimal
number of evolutionary changes required to explain A, provided a fixed topology of T . The
positions of A are assumed to be independent from each other. Consequently, it is possible to
calculate the small parsimony problem for each alignment column independently and sum
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the minimal number of inevitable substitutions over all columns. For each individual column,
this is carried out efficiently by traversing T from the leaves toward the root and noting the
set of symbols at every internal node that minimizes the number of mutations in the clade
below via dynamic programming [219, 220]. The MP problem finds the optimal overall tree
topology for T such that the number of evolutionary events is minimized. In contrast to the
small parsimony problem, there is no known method to efficiently reach the optimal solution
to the MP problem, as it is NP-complete [221]. Determining the most parsimonious tree
requires to list all trees and calculate their parsimony score, which is practically impossible
for large sets of species. Instead, algorithms that perform phylogeny reconstruction with
MP utilize heuristics that only traverse parts of the complete tree space; for this, they start
with an initial tree topology and gradually explore neighboring tree topologies with improved
parsimony scores. The neighboring topologies are obtained via different operations on the
tree topology such as nearest-neighbor interchanges, subtree-pruning and regrafting, or subtree
bisection and reconnection. The accuracy of morphologically-based MP has been studied in
detail as MP provides a straightforward framework to generate trees from phenotypes [222].
Several universal software programs support MP estimation of phylogenetic trees [223–225]
and MP has also been combined with the maximum likelihood method under a simple model
of site substitution [226]. However, the complexity of different approaches to the small and
maximum parsimony problems varies greatly [227]. Recently, a fast MP algorithm has been
released that also estimates branch support by bootstrapping [228].

2.5.4 Maximum Likelihood

In general, the likelihood function for a fixed data set D and a hypothesis H, also called the
model, is defined as

L
(
H
)

= P
(
D | H

)
. (2.23)

L(H) is the probability of observing the data D under the assumption that H holds. However,
the likelihood function L is not a probability measure when D is fixed and H varies and there
are infinite potential hypotheses H. Maximum likelihood (ML) estimation searches for the
hypothesis H that explains the data D best. Thus, it solves

arg max
H

L(H) (2.24)

to obtain the hypothesis that maximizes the likelihood function. For ML-based phylogeny
reconstruction, the model consists of the tree topology T , its branch lengths b, and the
specified evolutionary model M(t) as introduced in Subsec. 2.3.1. The data is typically a
MSA A, thus:

L(H) = P
(
A | T , b,M(t)

)
. (2.25)

Here, A comprises m sequences over n sites. Furthermore, it is assumed that the aligned
positions of A are independent of each other. Hence, as in maximum parsimony, the likelihood
can be calculated over all aligned positions independently and then multiplied over all columns.

Computing the likelihood for a given tree is performed with dynamic programming,
traversing the tree from the leaves toward the root. Following the notation introduced in
Subsec. 2.3.1, alignments over the alphabet Σ are considered and the probability that symbol
σi ∈ Σ changed to symbol σj ∈ Σ in time t is denoted as Mij(t) with rate r. When considering
a single column u ∈ [n] of the alignment and an internal node A of T , LA is defined to be
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the set of all leaves below A. Furthermore, Pu(LA | σi) is the probability of observing the
nucleotides of column u of the sequences at the leaves below A when the symbol σi is present
at node A. The calculations are performed from the leaves upward: Thus, for the two children
nodes B and C of A, it is assumed that Pu(LB | σj), ∀σj ∈ Σ and Pu(LC | σj), ∀σj ∈ Σ are
already known. Furthermore, the branch lengths between A and its children are denoted as
bAB and bAC , respectively, and Pu(LA | σi) is calculated as

Pu(La | σi) =

∑
σj∈Σ

Mji(r · bAB) · Pu(LB | σj)

 ·
∑
σj∈Σ

Mji(r · bAC) · Pu(LC | σj)

 .

(2.26)
Intuitively, this computation sums up the probability over all configurations of possible states
of symbols from Σ at the child nodes B and C. For each leaf node F annotated with symbol σi
and its corresponding aligned sequence SF

Pu(LF | σi) =

{
1 if σi = SF [u]

0 otherwise
(2.27)

is defined. The overall likelihood for the alignment column u ∈ [n] at the root R of T is
inferred as

Lu =
∑
σi∈Σ

πi · Pu(LR | σi) (2.28)

whereas πi is the base frequency of symbol σi ∈ Σ. The likelihood over all aligned columns in
A is then calculated as the product of the likelihoods for all single columns:

L =
n∏
u=1

Lu .

While maximum parsimony considers only a single combination of symbols at inner tree nodes,
ML takes all possible configurations of symbols at ancestral sequences into account. Due to
computational limitations when calculating the product of small numbers, the logarithm of
the likelihood is normally considered instead:

Llog =
n∑
u=1

logLu .

This algorithm [229] does not take into account that evolutionary rates vary across different
sites, but there are adjusted versions that do [230]. Although long branch attraction is mostly
associated with maximum parsimony, it can also affect ML trees [231]. However, it is thought
that the effects are not as pronounced when using maximum likelihood [232]. It is mandatory
though to choose an evolutionary model M(t) in order to estimate trees with ML. There
are a variety of models to choose from and there are different strategies to select the best
model for the data at hand [233]. However, a recent study also suggests that sophisticated
model selection is not necessary, and instead it is best to always employ the model with the
most parameters [234]. As for other tree reconstruction approaches, a variety of programs
exist that are tailored to the calculation of ML trees [235–237]. Furthermore, ML is used
to infer phylogenetic networks as well [238]. ML is currently the most popular and trusted
approach to reconstruct phylogenetic trees and several large-scale studies applied ML to
generate phylogenetic trees that span whole kingdoms or phyla of species, for example, for
vertebrates [239], fungi [240], or bacteria and archaea [241].
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2.6 Genomics and Metagenomics

As explained in Sec. 2.1, the order of nucleotides in DNA encodes hereditary information and is
responsible for the complexity of all functioning organisms. In pursuit of understanding life as
we know it, assessing similarities and divergences in different DNA sequences is essential and
often among the first tasks in any bioinformatic analysis. But first, the order of nucleotides
in a DNA sequence must be determined, a process called sequencing. A wide variety of
sequencing methods exist and the appropriate method has to be chosen with respect to
the available biological sample and the specific bioinformatic task planned. The sequencing
technique strongly influences the potentials and limitations of subsequent data processing
steps.

Analyzing genomes of deliberately selected organisms is called genomics. In contrast,
metagenomics is the study of the entirety of all genomic data present in an environmental
sample. Thus, it considers organisms that are directly recovered from the environment, often
with the goal of characterizing the environment and not the organisms themselves [6, 242]. The
concept was first termed the metagenome of soil [243]; but later, the term metagenomics was
introduced to deal with biological sequencing data from environmental samples in general [244].
The rise of metagenomics enabled the insight that most of microbial life has been missed
by earlier sequencing approaches due to methodological restrictions [6]. The sequencing
technologies used for metagenomics aim to reproduce a complete portrayal of all organisms
present in the environment. However, biases regarding the sequenced organisms still occur
frequently [245].

Resulting sequence information takes on different forms and may be used in many contexts:
One of the primary questions in metagenomic studies is to determine the presence or absence
of species in the environment, as well as their respective abundances. If properly sequenced
and processed, metagenomic data can also answer questions regarding the influence of
environmental factors on the species community, the interaction of organisms with the
environment, the interaction of organisms with each other, or the functional abilities of the
species community [246]. Hence, metagenomics is also referred to as environmental genomics.

A metagenomic study comprises many consecutive steps, called a pipeline, which can be
divided into two parts: The first part comprises the sampling effort in the environment, the
sample preparation, and the sequencing itself. The second part includes the computational
steps in which the sequenced data is cleaned and analyzed. To understand the intricacies
of metagenomic approaches, it is mandatory to reflect on both of these parts. Thus, the
following sections first discuss common sequencing techniques and then a selection of research
areas and their computational steps within the field of metagenomics.

2.6.1 DNA Sequencing

Methods for DNA sequencing are commonly grouped into three technological eras that
correspond to their time of development and coincide with their methodological approach
to sequencing [247, 248]. As a consequence, they differ with respect to their sequencing
speed, their sequencing accuracy, the resulting number of sequences, and the length of these
sequences: First-generation DNA sequencing methods are characterized by the sequencing
of clonal DNA with relatively low throughput. Second-generation sequencing added large
parallelization to sequencing procedures, resulting in high sequence throughput in little time.
Third-generation sequencing is marked by techniques that are able to sequence single molecules,
often with great length.
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In the early stages of sequencing, the first-generation technologies, only single species
could be sequenced via clonal approaches [249]. In these approaches, the target sequence
molecule to be cloned is combined with a sequence molecule of a living host, called the vector
DNA, to form recombinant DNA (rNDA). The rDNA is inserted into the living host organism,
which is then repeatedly replicated resulting in a large population of host organisms, all of
which contain identical rDNA with the target DNA [250]. The first widespread sequencing
method based on clonal populations is known as Sanger sequencing [251, 252] and was used
to sequence the first DNA genome in 1977 [253]. Sanger sequencing follows the sequencing-by-
synthesis approach where a DNA polymerase synthesizes a complementary DNA strand to
the given DNA template. Modified chain-terminating nucleotides halt the synthesis when
incorporated into the new DNA strand. Additionally, the modified nucleotides may be either
radio- or fluorescently-labeled. Thus, it is possible to detect which molecule is incorporated
into the sequence at each step and the complete sequence of the DNA template molecule
is reconstructed. The detection step was first performed manually by electrophoresis on
polyacrylamide gels before being automated, resulting in the first commercial sequencing
machines [254].

Sanger sequencing, although very accurate, is a time-intensive approach where only
sequencing speeds well below one megabase per hour are reached [255, 256]. The produced
sequences have a length of up to 1000 bp [247]. Another first-generation technique is Maxam-
Gilbert sequencing [257]. Instead of sequencing-by-synthesis, Maxam-Gilbert sequencing
breaks a DNA molecule of radio-labeled nucleotides into fragments by treating it with
chemicals. Again, the order of nucleotides is determined when running the resulting fragments
with different lengths through a polyacrylamide gel [249]. Further scientific advances such as
the polymerase chain reaction (PCR) [258] greatly accelerated the emergence of improved
sequencing protocols. However, both Sanger and Maxim-Gilbert sequencing rely on cultured
organisms or PCR-amplified DNA, posing a severe limitation to their applicability: While
microorganisms account for the majority of living life on the planet [259], the vast majority
of them cannot be cultured. Thus, by only using the Sanger or Maxam-Gilbert method, most
organisms cannot be sequenced and remain unknown.

Therefore, several improved sequencing methods emerged that are generally termed second-
generation or next-generation sequencing (NGS) techniques. These methods were developed
in the first decade of the twentieth century, a period also referred to as the sequencing
revolution [260]. NGS techniques share the property of generating a large number of short
sequence fragments of the DNA or RNA present in a sample, often by performing sequencing
steps in a greatly parallelized manner. These sequence fragments are commonly referred to as
reads. Pyrosequencing was one of the first next-generation techniques and also follows the
sequencing-by-synthesis paradigm [261, 262]. However, in comparison to Sanger sequencing,
nucleotides are detected via luminescence during pyrophosphate synthesis. To detect the
next nucleotide in the sequence, four solutions containing one of the nucleotides are added
sequentially to the to-be-sequenced DNA. If a nucleotide is incorporated into the template
strand by the DNA polymerase enzyme, light is emitted and recorded. This approach
was highly parallelized in 2005 and led to the first commercially available next-generation
sequencing platform [263]. Another group of next-generation sequencing techniques is known
as Solexa sequencing [264] or Illumina sequencing [265] and uses a sequencing process called
bridge amplification. Compared to other techniques, bridge amplification enables the possibility
to sequence a given DNA strand from both directions. This has been termed paired-end
sequencing and has several potential advantages for the accuracy of post-processing steps [247],
see Subsec. 2.6.2. Subsequently, Illumina developed a variety of sequencing platforms, all with
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different properties regarding sequence accuracy, read lengths, and sequencing speed [266].
Furthermore, a commonly used technology is the sequencing by oligonucleotide ligation and
detection (SOLiD) system [267] which does not conform to the principle of sequence-by-
synthesis, but instead utilizes a sequence-by-ligation approach. The mentioned sequencing
technologies led to a large improvement in sequencing speed and accuracy [268]. Current
Illumina systems can sequence more than 6 gigabases per hour, resulting in unprecedented
sequencing speeds [269]. Additionally, compared to first-generation sequencers that are
dependent on clonal cell populations, second-generation sequencers utilize DNA isolated
directly from environmental samples [270]. This paradigm change had a large impact on
genomics and put forth the field of metagenomics as it is today [271]. The emerging data also
entailed large computational demands for the post processing of the sequencing data, and
thus algorithms had to scale with sequencers. Especially in the area of biodiversity studies,
many new algorithmic techniques were developed that focus on massive amounts of data with
increasing complexity [242].

Unfortunately, sequencing errors are an integral part of all sequencing platforms and, hence,
every metagenomic study. Sequencing errors are introduced not only during sequencing itself,
but also during handling of samples in the wet lab, for example, during library preparation and
PCR enrichment [272]. Second-generation sequencing platforms usually provide an estimate of
their accuracy, the error profile. Error profiles are important for quality control and filtering
of generated reads [273, 274]. All commonly used first- and next-generation techniques use
short DNA fragments, called primers, to initiate the sequencing reaction. Thus, the choice
of primers determines at which position the DNA sequencing starts in the first place, see
Subsec. 2.6.2.

In recent years, another type of sequencing methods has been developed; they are char-
acterized by the property to produce long reads at fast paces. Another feature of these
methods is their ability to sequence single DNA molecules. These methods are commonly
referred to as third-generation sequencing techniques, although there is some debate on
their defining features [247]. Pacific Biosciences developed the first techniques commonly
attributed to third-generation sequencing, namely the single-molecule real-time platform [275].
In contrast to second-generation sequencers, the reads produced by these sequencers are orders
of magnitude longer. The biggest competitor today in the area of third-generation sequencing
is the Nanopore sequencing platform. In contrast to all previously developed techniques that
depend on either PCR amplification or chemical labeling, nanopore techniques require neither.
Instead, base detection of DNA is performed by measuring changes in electrical current in an
electrophoresis solution while the DNA strand passes through a nanopore in a membrane [276].
While the method cannot yet produce reads as accurate as other methods, it has the ability
to create reads with lengths above one megabase; more common are read lengths between 10
and 30 kilobases though [277]. One of the available sequencers is also the smallest sequencing
machine created so far with a size similar to that of a USB flash drive that allows sequencing
directly in the field [278, 279]. By now, there is a wide range of long-read sequencers [280] and
comprehensive reviews about their trade-offs exist [281]. Long reads with high error rates are
a great gain for the area of genomics and metagenomics, but the opportunities also come with
great challenges [277]. On the one hand, there are numerous applications that benefit greatly
from long-read techniques, especially for de-novo assembly of unknown genomes or when
dealing with human genomes [151, 282]. On the other hand, NGS techniques are still equally
important for a wide range of applications where high accuracy is necessary. Ultimately, the
proper choice of sequencing techniques depends on the research question at hand.
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2.6.2 Metagenomic Methods

There has been some debate about the accurate designation of different methodological
approaches in metagenomics. Here, the vocabulary proposed by Marchesi and Ravel [283] and
extended by Breitwieser et al. [7] is used to differentiate between three essential approaches:
Metataxonomics, metagenomics, and meta-transcriptomics, which are discriminated primarily
with respect to the type of sequence data under study. Metataxonomics is only based on
sequencing data from specific genetic regions of organisms, called marker genes or marker
regions. Marker genes are specifically selected for the task of identifying organisms present in
an environmental sample. Typical marker genes exhibit sufficient variability to differentiate
between a large number of species. However, their flanking regions are highly conserved,
which allows the design of specific primers in order to retrieve only the desired genes from
an environmental sample. Depending on the organisms of interest, different genes are
frequently used as markers: Among the most common are the 16S rRNA for prokaryotes,
the 18S rRNA for eukaryotes, and the ITS region for fungi [193, 194]. ITS has also been
used for plants, especially algae [195]. Since these genes act like a barcode for species,
metataxonomics is also commonly referred to as metabarcoding or amplicon sequencing. In
contrast, following the conventions of Breitwieser et al., the term metagenomics specifically
refers to shotgun whole genome sequencing (WGS). Here, the phrase ’shotgun’ is used to
refer to the fact that the sequencing effort is not targeted to specific regions such as marker
genes but yields DNA reads across all available genomes at random. For eukaryotes, this
includes not only the chromosomal DNA but also the mitochondrial DNA and for plants
also the chloroplast DNA. Thus, amplicon sequencing in metataxonomics and shotgun WGS
sequencing in metagenomics cater to fundamentally different needs and must be employed
accordingly. Meta-transcriptomics studies messenger RNA, the transcribed DNA, extracted
from the environment. The resulting sequences provide information on genes that are actively
transcribed in a species community. It also provides an opportunity to investigate the
expression levels of the active genes. Other congruent approaches to examine community-
based molecular processes include metaproteomics and meta-metabolomics [7]. Here, the
focus is primarily on metataxonomics and metagenomics, thus, sequencing data obtained
either from targeted amplicon sequencing or from shotgun WGS sequencing.

According to the definitions introduced, the sequencing data present in metagenomic studies
are short sequencing reads, commonly produced by next-generation sequencing techniques.
The short reads obtained from the sequencing machine contain errors and biases from the
sampling steps, the wet lab preparation, or the sequencing itself. Thus, the first step in
metagenomic pipelines is the trimming of reads and filtering out erroneous reads, reads that
are too short, or reads that exhibit other unusual behaviour. Hereby, error profiles provided
by the sequencing platforms guide the process of quality control. Many programs are available
that perform read trimming [284, 285] and quality control [286, 287], resulting also in a wide
variety of pre-packaged pipelines for these tasks [288, 289]. The subsequent objectives strongly
diverge depending on the goal of the analysis; several reviews offer an overview of the potential
steps performed in metagenomics [6, 246] and the most prevalent of them are introduced here.

Assembly is the process of constructing longer sequence segments from short reads, a
common task in metagenomics. The objective is to concatenate short reads that originate
from the same genome into fragments that are as long as possible. The assembled fragments
are called contigs. A collection of contigs that covers a significant proportion of a genome
is referred to as a scaffold. In the optimal case, the assembly of short reads results in the
reconstruction of whole genomes of one or more species present in the sample. This process is
called de-novo assembly and the resulting genomes are called metagenome-assembled genomes
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(MAGs). The quality of assembled genomes is highly dependent on the sequence coverage;
here, the coverage of a genome in a given set of short reads is a measure of the prevalence of
the genome within the reads. More specifically, it is defined as the number of times a position
of the original genomic sequence is present in a read averaged over all sequence positions. The
higher the coverage of a genome, the easier it is to assemble long contigs, scaffolds, or even the
complete genome. The de-novo assembly of a previously unknown sequence from a set of short
sequencing reads is NP-hard [290] and, thus, no feasible solution exists to construct the correct
solution in an acceptable time frame. However, heuristic methods perform the task reasonably
well. The most widely implemented strategies are greedy methods, overlap-layout consensus
approaches, and De Bruijn graph assemblers based on k-mers extracted from the reads [291].
Popular programs for sequence assembly that follow these principles are (meta)SPAdes [292,
293] and SKESA [294]. Since the rise of third-generation sequencing techniques, it is becoming
evident that combining short reads from NGS techniques with long reads from new sequencers
greatly improves the resulting assemblies and novel programs are released that pursue such a
hybrid approach [295, 296]. A more detailed summary of assembly methods can be found in
the literature [291, 297].

Reads obtained in metagenomic and metataxonomic studies are inherently of unknown
taxonomic origin. The identification of the taxonomic or phylogenetic affiliation of reads is
a key step; however, the means by which this identification is performed vary. In general,
this process is termed taxonomic profiling of reads or read assignment, see Subsec. 2.6.3.
Taxonomic profiling may not only be concerned with the question which species are present
in a given environmental sample, but also how abundant the present organisms are. The most
straightforward approach to taxonomic profiling is to label each read individually based on a
comparison with reference databases. However, it is often preferred to first group the reads.
This reduces computational overhead in assigning taxonomic labels to the vast number of
reads that are generated in metagenomic experiments. The taxonomic grouping of reads is
also referred to as binning and the resulting groups as bins [298]. Subsequently, each bin is
assigned a joint taxonomic label. Another approach to taxonomic profiling that yields more
specific information about individual reads is read mapping : The reads from metagenomic
experiments are aligned against reference databases to derive their exact location within a
reference genome [299]. With such information, it is possible to transfer existing annotations
from the references to the metagenomic sequences. This may include information about which
genes are present in a metagenomic data set (gene annotation or gene calling) or about the
function of present genes (functional annotation). Alternatively, gene annotation is performed
for assembled contigs [300] or does not rely on alignments [301]. Taxonomic profiling can
also be performed based on contigs [302]; while this requires a computationally expensive
assembly and hence high read coverage, taxonomic labels derived from contigs are usually
more accurate due to their increased length.

In metataxonomics, reads are usually grouped into operational taxonomic units (OTUs)
or amplicon sequence variants (ASVs). OTUs group sequence reads that share a significant
sequence similarity that is often set at 97%. This grouping drastically reduces the number of
reads that have to be labeled. However, some information about closely related species might
get lost in the process, especially when only a single taxonomic label is specified for each
OTU. Common programs for OTU analysis include mothur [303, 304] and QIIME [305].
When ASVs are created, supposedly erroneous reads are removed and the remaining ASVs
represent sequences with single nucleotide differences. Common methods to create ASVs from
metagenomic experiments include DADA2 [306], UNOISE [307], or Deblur [308]. All of
these approaches come with advantages and drawbacks and comparative studies have been
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conducted for varying methods [309]. The comparison of metagenomic samples among each
other is called comparative metagenomics. Often, the compared samples stem from different
sample locations, or originate from the same location but were taken at different points in
time. The comparison of metagenomes may involve the qualitative or quantitative species
content [310], the functional characteristics of the metagenomes [311], or their environmental
differences. Due to the amount of sequencing data present in metagenomics, the approaches
mentioned above often follow alignment-free procedures; however, alignment-based techniques
are used if high accuracy is mandatory. In particular, the problem of read assignment is
among the most common problems in metagenomics.

2.6.3 Read Assignment

One fundamental task in metagenomics is the grouping of short reads based on their similarity,
called binning. Binning can be performed reference-free or reference-dependent [312]: In the
former case, single reads are mapped against genomes in a reference database. Subsequently,
they are grouped according to the references they were mapped to. In the latter case, the
short reads are directly clustered into groups without the help of external references. The task
of taxonomic read assignment, also known as metagenomic classification, is closely related to
binning and is an equally integral part of many metagenomic analyses. In taxonomic read
assignment, a distinct taxonomic label is assigned to each read of a sequencing sample. Solving
one of the two tasks also entails a possible solution for the other one: When reference-based
binning is performed, the resulting bins simultaneously yield a taxonomic classification of
the reads by means of the labeled reference sequences. Vice versa, every form of taxonomic
classification also groups reads with respect to their assigned taxonomic labels and, thus,
results in a collection of bins.

All methods for read assignment depend on an existing database of known organisms that
are already taxonomically labeled and serve as a reference. For every read, the reference
database is searched for similar sequences and their taxonomic labels are transferred to the
input reads. In this context, reads are also called query sequences as they are queried against
the database. As a result, every approach to taxonomic labeling is inherently dependent on
the size and quality of the underlying reference database [313]. Generally, the more sequences
are available in the reference database and the more accurate their taxonomic labels are,
the better is the taxonomic identification of the queries [313]. However, if the reference
database grows in size, there is also a necessity to store and query it efficiently to be able
to process the large amounts of reads produced in metagenomic studies. Furthermore, most
organisms in environmental samples may not be available in reference databases, as discussed
above [288]. Additionally, the number of sequenced organisms is growing rapidly and reference
databases have to be updated regularly, both on their official channels as well as on the
machines of end users. All of the issues above pose serious limitations on algorithms for
metagenomic classification which have to be adequately addressed when performing taxonomic
read assignment. Thus, taxonomic classification methods differ with respect to their underlying
database, the sequence similarity search method used to query the reads against the database,
and the manner in which a distinct taxonomic label is selected from the most similar database
entries. Several reviews on methods for read assignment are available [7, 288] and Fig. 2.10
shows the typical process of read assignment.

One straightforward approach to performing read assignment is the use of alignments to
find similar sequences in a reference database. Such a procedure can be easily implemented
with BLAST on a comprehensive database such as RefSeq [314]. The probability to discover
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Figure 2.10 – A typical pipeline for the task of read assignment: The input is a set of query
sequences from a metagenomics experiment. The reads are then preprocessed, potentially
involving steps such as demultiplexing, trimming, and quality control. Subsequently, the
cleaned reads are either grouped into bins or directly queried against a reference database.
Taxonomic labels for each read or bin are inferred by algorithms such as BLAST, MEGAN,
KRAKEN, or Kaiju. The output is a taxonomic labeling and grouping of the query reads.

a closely related sequence by a BLAST-based taxonomic assignment is high, however, the
speed of the assignment does not scale with the amount of sequencing data produced in
second-generation sequencing techniques. On the one hand, this is due to the algorithmic
complexity of the necessary alignment step, on the other hand, due to the large size of the
reference databases BLAST is usually associated with. Another more fundamental problem
in the use of large-scale databases lies in the fact that they undergo little editorial monitoring.
As a consequence available reference sequences are, potentially, annotated insufficiently or
even wrongly and inferred taxonomic labels are unreliable. In addition, querying a single
read often causes hundreds or thousands of equally likely hits with varying annotations and
it remains unclear how a single taxonomic label can or should be selected in such cases.
MEGAN, the MEtaGenome ANalyzer [315], was one of the first general algorithmic
frameworks developed to overcome the mentioned limitations. It builds upon a reference-
based taxonomic assignment algorithm, such as BLAST, and adds additional functionalities:
MEGAN proposes a simple algorithm to select a singular taxonomic label from all database
hits: each query read is assigned to the lowest common ancestor of all sequences that
emerged from the database search. Furthermore, MEGAN provides comprehensive tools for
the evaluation and visualization of generated results. MEGAN is still actively maintained
and additional features have been released recently [316, 317]. Since then, a multitude of
programs with varying trade-offs have been designed to perform read assignment: Phymm and
PhymmBL [318] utilize Markov models for read assignment and are specialized for short reads
down to 100 bp. DIAMOND [319] uses a double-indexing structure for protein alignments to
greatly improve the speed over BLAST while maintaining its sensitivity. Certainly, the recent
rise of commercially available sequencing platforms that produce long reads has also caused a
demand for adapted algorithms. MetaMaps [320] is specifically designed for such long-read
data and performs accurate read assignment as well as estimation of sample composition.
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It does not calculate exact alignments, but instead it utilizes a minimizer strategy [321] to
find, for a given read, the most promising locations where it might occur in the references;
from this, alignment locations and sequence identity are estimated. MEGAN has also been
adapted to handle longer reads [317].

In contrast to all these methods, an entirely different approach to read assignment is to
determine taxonomic labels of reads from their composition of k-mers. The idea is that the
presence or number of k-mers in a read carries sufficient information to infer its taxonomic
affiliation by comparing it to a pre-computed database of k-mer compositions from reference
sequences. One of the first approaches to pursue this paradigm was Kraken [148]. Kraken
creates a database that maps k-mers to specific taxonomic annotations as follows: Based
on a set of reference sequences, Kraken extracts all words of length k from the sequences.
For each k-mer, it finds the taxonomic label of the last common ancestor of all references
that share this k-mer and associates it with the corresponding k-mer; these k-mer-label-pairs
constitute the reference database. For a given query read, all k-mers of the query are matched
against the reference database; each k-mer of the query casts a vote for the associated node
within the taxonomy of all references, resulting in a tree structure of taxonomic labels in
which nodes are weighted by the number of k-mers that voted for the respective node. The
taxonomic tree is then traversed from its root towards the leaves, following the highest
weighted path of votes until the lowest node that still has a weight larger than zero. The
taxonomic designation of this node is used to label the query sequence. After building the
reference database of k-mers once, the computational effort to infer a taxonomic label for a
read is low. As a result, Kraken achieves high speeds while maintaining decent accuracy for
the resulting taxonomic labels. Since its release, Kraken has received several updates with
further improvements: Kraken 2 improves the classification speed and memory requirements
by enhancing data storage techniques [322]. KrakenUnique utilizes the insight that the
use of unique k-mers reduces false-positive identifications in a metagenomic setting [323].
Kaiju performs taxonomic classification by first translating DNA or RNA reads to amino acid
sequences before it searches a reference database for maximum exact matches, a technique
which, in contrast to k-mers, also allows mismatches [175]. A more versatile approach is taken
by MMSeqs2 (Many-against-Many sequence searching) [324]: MMSeqs2 is used similarly
to BLAST to query sequences against large biological sequence databases; however, it is
orders of magnitude faster by combining three search stages of increasing sensitivity. The
first stage utilizes a fast word-based search that uses long non-exact words. Subsequently,
these non-exact matches serve as seeding areas in the next two stages in which increasingly
accurate alignments with references are created. Other tools combine multiple steps from
typical bioinformatics pipelines or are designed for specific types of data. For example,
Bracken [325] is an extension of Kraken to estimate abundance profiles of microbial
communities from metagenomic data, and metakallisto [326] combines read assignment
of metagenomic studies with abundance estimation of transcripts in RNA-Seq data. Several
benchmark studies for taxonomic classification tools exist [327, 328]. Depending on the type
and amount of accessible data, read assignment comes at a price: First, its accuracy is largely
dependent on the availability and quality of reference sequences that are present in reference
databases. Only when closely related reference sequences are available for all query sequences,
a high accuracy can be achieved. If there are no closely related references for a query it will
be either not classified or misclassified. Second, a classification based on taxonomic labels is
potentially misleading when interpreted in an evolutionary context. One possible approach to
avoid these difficulties is by means of phylogenetic placement.
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2.7 Phylogenetic Placement

In phylogenetic placement (PP), in addition to the reference sequences themselves, their
evolutionary history is provided by means of a phylogenetic tree, called the reference tree. A
query sequence is placed within the reference tree, and thus one can derive its phylogenetic
relationship to the references directly. Phylogenetic placement solves the problem of unclassified
or misclassified query sequences: Queries that are closely related to reference sequences are
placed close to the leaves of the tree. In contrast, queries without closely related references
are placed towards the root instead. By this, it is immediately apparent for which queries no
closely related references exist while their evolutionary context remains evident.

The input data for PP consists of a set of m reference sequences, a reference phylogeny Tref
with m leaves labeled with the reference sequences, and a set of query sequences. If an
alignment of the references is available, it is denoted as Aref. The query sequences are to
be placed within the reference phylogeny by specifying a precise location: For every query
sequence Sq an existing branch eq of Tref is selected and divided into two branches eq1 and eq2
by a new node nq. The two new branches eq1 and eq2 are referred to as the proximal and
distal branches, respectively, whereas the distal branch is located towards the leaves of the
tree. The node nq is connected to a new leaf n′q with a new branch e′q and the leaf is labeled
with the query sequence Sq, see Fig 2.11. The branch e′q is referred to as the pendant branch.
Thus, a placement position of a query Sq is uniquely defined by the insertion edge eq, the
distal branch length, and the pendant branch length. The proximal branch length is defined
by and inferred from the distal branch length. Based on the specified placement position for
each query Sq, a new phylogenetic tree with n+ 1 organisms — n references and the query Sq
— could be reconstructed, resulting in a placement tree denoted as Tq. However, the reference
tree is generally not altered during PP. Instead, the placement position of each query is stored
by specifying the placement branch eq, the length of e′q, and the length of the distal branch.
All placement positions are typically recorded in a single file following the JPlace format [329].

2.7.1 Approaches to Phylogenetic Placement

There are two main categories of algorithms for phylogenetic placement: character-based
methods and distance-based methods. The former are based on alignments between query
and reference sequences and infer ML values in order to find placement positions. The latter
methods calculate distance measures between query and reference sequences, which are then
used to infer adequate positions in the reference tree. ML-based approaches to PP require
multiple alignments: In general, for every query sequence Sq that has to be placed, a multiple
sequence alignment comprising Sq and all m reference sequences is mandatory. In practice,
the procedure is as follows: First, the MSA Aref of all m references is built. Second, a query
sequence Sq is aligned against Aref only for the purpose of inferring its placement position.
For this, Sq is temporarily added to Aref and removed again after its placement so that Sq
does not influence other query sequences. This procedure assumes that the query at hand
fits well into the structure of the predefined reference alignment. If the query possesses long
insertions or many mutations, its alignment against the references may be sub-optimal and
the accuracy of the phylogenetic placement is effected negatively.

Two of the first approaches that performed phylogenetic placement were EPA [10] and
pplacer [12]. Both algorithms are based on the maximum likelihood principle to determine
optimal placement positions, and their underlying algorithm is very similar: Each query
sequence is placed at every internal branch of Tref. Thus, for a tree with m references, there
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Figure 2.11 – Phylogentic placement of a single query sequence Sq onto a reference tree.
Alterations to the reference tree are indicated (blue). An existing branch eq is chosen such
that the query fits well with respect to its evolutionary context. A new node nq is added
that divides eq into two branches, the proximal and distal parts (eq1 and eq1). A new leaf
node labeled with Sq is added to Tref and connected to nq via a new branch e′q, the pendant
branch. The resulting tree with all reference sequences and Sq is called Tq. All added nodes
and branches (blue) are not permanent changes to Tref, but rather hypothetical alterations
that characterize the phylogenetic relationship between Sq and the references.

are 2 · (m − 3) possible locations. At each location an approximate maximum likelihood
score is calculated for the resulting tree with m + 1 sequences and the query is placed
at the position with the maximal score. EPA-ng [15] is a recently released upgrade to
EPA that is designed for large collections of data sets by adding multi-core processing and
improved heuristics for faster computations. The software RAPPAS [14] is also based on
reference sequence alignments, but does not use maximum likelihood to infer placement
positions. Instead, RAPPAS calculates contiguous k-mers based on the references that
occurred with high probability at inner nodes of the reference tree. These k-mers are inferred
from ancestral sequences at the inner nodes—using ancestral sequence reconstruction—and
saved in a database. Queries are placed with respect to their k-mers that are also found in
this database. On the contrary, APPLES [13] is a distance-based method for PP. It estimates
phylogenetic distances between queries and references and specifies the optimal placement
position to be the one that minimizes the sum of squared differences between the sequence
distances present in the tree and the ones calculated. APPLES does neither necessarily
depend on a reference MSA nor on assembled reference sequences. Figure 2.12 provides an
overview of the procedure of phylogenetic placement and available algorithms.

pplacer pplacer offers a Bayesian and a ML placement mode. In its Bayesian mode, it
evaluates the posterior probability of potential placements conditioned on the fixed phylogenetic
tree and branch lengths. In its ML-mode, pplacer calculates likelihood values for each
placement position in order to find the branch eq in Tref such that the likelihood of the
resulting tree Tq is maximal. The basis for the ML inference is an existing alignment of
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each query against all reference sequences. Then, Sq is inserted at all possible 2 · (m − 3)
branches of Tref. pplacer normalizes the calculated likelihood values across all branches to
one. The normalized likelihood values are referred to as likelihood weight ratios (LWRs). Each
query is not only placed at a single, but at multiple potential locations in the tree according
to and weighted by the LWRs. pplacer also introduced a measure to quantify placement
uncertainty, the expected distance between placement locations (EDPL). The EDPL measures
the sum of distances between placement locations weighted by their LWR. For two placement
positions i and j of the same query Sq their likelihood weight ratios are denoted as LWRi and
LWRj , the distance between i and j as dij(Tref), and the total length of Tref as L(Tref). Then

EDPL(Sq) =
∑
ij

LWRi · LWRj · dij(Tref)
L(Tref)

(2.29)

is the expected distance between the placement locations for a query Sq. A large EDPL
indicates high placement uncertainty since the proposed positions of the query sequence occur
in spatially distant regions of the reference tree. If the placement of a query sequence is
rather uncertain, it may be discarded prior to downstream analysis using the EDPL. pplacer
restricts the ML computation time by applying several heuristics and optimizations during
the placement process: Branch lengths are not optimized for all possible placement positions;
instead, a search process termed the baseball heuristic is used. For this, a conditional maximum
likelihood vector is calculated at the midpoint of each edge as explained in Subsec. 2.5.4.
Given a query sequence, the edges are then sorted by their potential best fit and examined
in this order. Full branch length optimization is successively performed for each edge in the
specified order until several edges with low log-likelihood values come up. This greatly reduces
the number of edges that need to be examined in detail, resulting in faster runtimes. pplacer
also offers another option to speed up the placement called friend finding process. Here, every
query is compared to queries that were already placed on the tree. If a query Sq exceeds a
specified similarity threshold to a previous query Sp, Sq adopts the placement location from
Sp. Otherwise, the branch length optimization for Sq is initialized with the branch lengths
that were already chosen for the most similar previous query sequence. Recently, the updated
version pplacerDC has been published, which is optimized for large data sets [330].

EPA and EPA-ng The evolutionary placement algorithm (EPA) [10] approaches PP
similar to pplacer. Again, it places a query on multiple branches in Tref according to the
calculated and normalized likelihood values. As pplacer, EPA does not calculate the exact
likelihood of all possible placement trees but instead provides a fast approximation method as
well as a slower but more accurate approach. In both methods, the branch lengths are fixed
except for the newly added branch e′q and the two parts eq1 and eq2 of the placement edge eq.
The fast method simply sets the lengths of the distal and proximal branches to half the original
length of eq, therefore l(eq1) = l(eq2) = l(eq)/2, and the length of the pendant branch l(e′q) to
a default value. The slow method optimizes the three branch lengths of eq1, eq2, and e′q with
the Newton–Raphson method. Based on the presented experimental results, it is argued that
this approximation results only in little loss of accuracy and a more computationally intensive
re-calculation of all branch lengths is not required. EPA-ng is a newer version of EPA
that comes with additional heuristics to greatly speed up the placement procedure. It also
introduces parallelization designed for the placement of large collections of query sequences
from metagenomic experiments. The two main improvements are a preplacement step and a
masking heuristic. Evaluating the likelihood at all possible branches of Tref is computationally
expensive, especially when a large number of references is available. The preplacement step
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Figure 2.12 – Overview of the phylogenetic placement process and the algorithms currently
available. The input consists of reference sequences, a reference phylogeny, and a set of query
sequences. Different placement algorithms are grouped according to their requirements for
aligned or assembled sequences. The result is a hypothetical position for each query sequence
in the reference tree, usually stored in JPlace files. Each entry in the JPlace file corresponds
to the placement of a query onto the reference tree.

circumvents this problem by selecting a subset of candidate branches that are likely to yield
high likelihood values; an idea that is similar to the baseball heuristic of pplacer. The
thorough placement via ML is then performed only on these candidate branches. The masking
heuristic eliminates columns from Aref, which are determined to have little influence on the
likelihood calculations. Additionally, for a query Sq the core alignment is defined as only
those columns that remain after pruning leading and trailing spaces around Sq when aligned
against Aref. EPA-ng only uses the masked core alignment when calculating the likelihood
values for placement positions. EPA-ng achieves comparable accuracy to EPA and pplacer,
however, with greatly accelerated runtimes.

RAPPAS and LSHPlacer The program RAPPAS [14] takes a different approach
compared to the algorithms introduced so far: It bases the placement on a pre-computed
set of ’phylogenetically informing’ k-mers that have a decent probability to occur in query
sequences that are related to the reference sequences. These k-mers are termed phylo-k-mers
and they are calculated based on the reference alignment via ancestral sequence construction.
The placement process consists of two steps: In the first step, a database of phylo-k-mers is
constructed from the reference alignment, the so-called pkDB. In the second step, queries
are placed on the reference phylogeny based on their k-mers that are also present in the
pkDB. Given the reference MSA Aref over n sites and their phylogenetic tree Tref, the pkDB is
inferred as follows: At every internal branch b of Tref a new hypothetical node hb is added that
divides b evenly into two new branches of identical length. For every node hb another new leaf
node lb is added with a new branch connecting hb and lb. The length of this new branch is
chosen as the average length of all paths from hb to all leaves below. The newly added nodes
hb and lb are referred to as ghost nodes. For each ghost node and each possible k-mer, the
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probability of observing this k-mer at this node is computed. For this, a matrix G = R|Σ|×m is
created at each ghost node where each element gσ,j in G represents the marginal probability of
observing the symbol σ ∈ Σ at site j ∈ [n] at the ghost node. Then, the probability to observe
a k-mer with the symbols σ1σ1 . . . σk starting at position i ∈ [n− k + 1] of the alignment is
calculated as

P (σ1σ1 . . . σk) =
k∏
l=1

gσl,i+l−1 .

Each k-mer with a probability above a defined threshold is recorded in the pkDB together with
its original branch b and its associated probability. The resulting k-mers do not have to occur
in the reference sequences themselves, but the pkDB is rather a collection of those k-mers that
have a high similarity to k-mers of the references. Thus, they are likely to occur in unknown
queries with a phylogenetic origin at internal branches of Tref. Thus, while RAPPAS still
depends on the reference MSA, it does not depend on the query alignment any more. Given
an existing pkDB, a voting procedure determines the placement positions for the queries:
For a query Sq, all k-mers from the query are extracted. Every k-mer of Sq is then matched
against the pkDB and casts votes according to its entries in the pkDB. A k-mer votes for
every internal branch of Tref where it occurs, weighted by its occurrence probability as stored
in the pkDB. Then, the top weighted internal branches are considered as possible placement
locations and recorded in a JPlace file. After constructing the pkDB once, multiple runs with
different input query reads can be performed, making RAPPAS a good choice when a fixed
set of references is used for several experiments.

The program LSHPlacer [331] has an algorithmic structure similar to RAPPAS. It also
performs ancestral sequence reconstruction at the inner nodes of Tref, resulting in an extended
set of reference sequences. To find a placement position for a query sequence Sq locality
sensitive hashing is utilized: Thus, the idea is to create a set of randomized hash tables that
holds the extended set of reference sequences. The hash tables are designed so that hashing
Sq will likely result in a collision with those (ancestral) reference sequences that exhibit a
large similarity with Sq. From this, a single, possibly ancestral, reference Sr is determined
that has the highest similarity to Sq; the query is then inserted into the tree at a branch near
the node associated with Sr using a local search procedure. As for RAPPAS, the hash tables
only need to be constructed once and then allow repeated usage with different queries.

APPLES and APPLES-II Another software for PP is the Accurate Phylogenetic Place-
ment using LEast Squares program, called APPLES [13]. In contrast to pplacer and EPA,
APPLES is a distance-based method that does not require aligned reference sequences. While
other programs focus primarily on short genes and marker regions, APPLES also considers
long references that do not necessarily originate from homologous regions. Additionally,
those sequences do not have to be assembled; it is sufficient to supply a set of reads for each
reference or merely a distance matrix that quantifies the distances between all query-reference
pairs. This flexibility is achieved by relying solely on distance estimates between query and
reference sequences to calculate placement positions: Similarly to least-squares phylogeny
reconstruction, APPLES performs a least-squares optimization that minimizes the difference
between calculated distances for a query Sq to all references and the distances given in the
placement tree Tq. For a query Sq and reference sequences Si, i ∈ [m], the distance between Sq
and each reference is designated as δiq, i ∈ [m]. Then, APPLES solves

arg min
Tq

m∑
i=1

wiq (δiq − diq (Tq))2 (2.30)
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whereas diq(Tq) is the distance between Si and Sq in Tq. For this, Sq has to be inserted at every
possible branch of Tref and branch lengths are adapted. Again, as discussed in Subsec. 2.5.2,
different values are plausible for the weights wiq; for example, δ−2

iq is used as default in
APPLES-II to reduce the effect of large distances on the estimation process. APPLES uses
dynamic programming to solve Eq. 2.30 in linear time. Alternatively to Eq. 2.30, APPLES
provides the possibility to produce a placement tree that satisfies the minimum evolution
principle. The more recent version APPLES-II [332] adds a divide-and-conquer search
strategy for the placement of queries. This addition allows APPLES-II to process data sets
that comprise thousands of references, as promising placement regions are quickly located
within the reference tree.

2.7.2 Further Considerations

The presented algorithms constitute a common framework to perform PP and provide results
in the standardized JPlace format [329]. However, the preparation of appropriate input data
requires more detailed considerations. Subsection 2.6.3 already discussed the importance of
reference databases for the task of read assignment, including their size, completeness, and
correctness, in order to derive taxonomic labels of high accuracy. Similarly, methods for PP
are highly dependent on the reference alignment Aref and the reference tree Tref. Besides the
number of reference sequences, the means by which they were chosen from available databases
with respect to the anticipated queries is of relevance. Optimally, the references are sampled
equally among those taxonomic groups that are expected to appear in the query sequences.
In case of doubt, the sample should comprise more taxonomic groups, as this provides the
possibility to perform placements at deep inner branches of the reference tree. Nevertheless, a
dense sampling of multiple sequences from closely related organisms should be avoided: If
multiple similar organisms are present in the references, for example, multiple strains of the
same species, query placements belonging to a single organism are distributed among multiple
branches of Tref which limits the specificity of the placements and skews subsequent analysis
steps. Efforts have been made to automatically infer appropriate sets of references from large
databases or to perform placement in ’nested’ phylogenies to overcome these issues [333]. Still,
it is argued that manual curation of reference sequences remains indispensable [334] and, thus,
the selection of an adequate set of references continues to be a labor intensive bottleneck for
placement studies.

Most PP methods require an alignment Aref of the references as input to derive ML values
or phylo-k-mers. It is important that Aref is of high quality and that the same evolutionary
model is used for the construction of Aref as for the ML-based placement programs. In most
cases, Tref is also reconstructed from Aref using ML phylogeny reconstruction. The need for
alignments restricts the application of PP programs to assembled sequences of limited length.
As a consequence, the most common use case of PP has been metataxonomics. One advantage
of this area of application is the existence of large annotated databases from which references
can be chosen effortlessly; see Sect. 2.6.2. Sometimes, database entries are also associated
with existing phylogenetic trees; in the optimal case, those trees are supplied by the respective
research communities that focus on the organisms under consideration. PP then performs a
phylogenetic classification of the unidentified query sequences from upcoming metataxonomic
experiments. In contrast, performing alignment-based PP in metagenomics is more difficult:
it requires that appropriate sequences of all reference organisms have been assembled prior to
constructing the reference alignment. The references must span the same genomic regions
which comprise, in many cases, the whole genome. In addition to Aref, multiple programs
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for PP also require an alignment of the query sequences against Aref. It is beneficial to use
phylogenetic information to improve the query alignment. For this, several phylogeny-aware
alignment tools exist that align short reads to existing MSAs [335, 336]. Other tools, such as
MAFFT [87], provide specific options to align short reads against longer alignments without
altering the existing alignments. This saves significant computational time and gives better
results than using regular multiple sequence aligners [336]. While several placement algorithms
place a single query at multiple branches of Tref, it is often sufficient or recommended to specify
only a single placement position, for example, when visualizing placements of many queries or
when comparing the diversity between samples. Multiple specified placement positions are
usually weighted, for example, by likelihood-weight ratios inferred from ML methods. If the
specification of a single placement branch is required, a consensus placement can be inferred
from the multiple weighted placements. The most straightforward strategy is to simply choose
the highest weighted placement branch within Tref as consensus placement.

Besides algorithms that perform phylogenetic placement, a variety of ancillary and affiliated
tools exist that focus on the pre- or post-processing of PP data. The C++ libraries Genesis
and Gappa offer broad functionality to operate on placement data and JPlace files efficiently.
In addition to basic input-, output-, and parsing-functions, they also implement a variety of
sophisticated methods to analyze metagenomic samples by means of their placement data;
for example, they provide PP-based distance measures between samples, several PP-based
clustering algorithms, and the so-called Edge-PCA, a principal component analysis that
operates on a feature space formed by the placement weights scattered across the branches
of Tref. SCRAPP [337] is another advanced analysis method based on phylogenetic placement
data. SCRAPP calculates a phylogeny-aware measure of the within-sample diversity—also
referred to as α-diversity—based on the distribution of read placements across the branches
of Tref. For this, SCRAPP infers new phylogenetic trees for all those query sequences that are
placed on the same branch in Tref; this constitutes a novel approach and the resulting trees
are termed ’branch query phylogenies’. Another recently proposed use case for phylogenetic
placement is the rooting of phylogenetic trees [334]. For this, sequences of an outgroup are
placed on a tree and resulting placement branches indicate where the root may reside. Likewise,
many other algorithms utilize the output of phylogenetic placement programs for purposes
other than metagenomic read identification or within- and between-sample comparisons.
Two prominent examples are CheckM [338] and PICRUSt2 [339]. CheckM estimates
the completeness and contamination of genomes by incorporating reference sequences from
the evolutionary neighborhood of query sequences. PICRUSt2 predicts the functions of
metagenomic communities by incorporating PP data. There is an excellent review that
discusses all of these aspects in great detail [334].

2.7.3 Evaluating Phylogenetic Placement Algorithms

The evaluation of phylogenetic placement algorithms is far from trivial. In a real-world scenario,
the prerequisites for performing PP are a set of reference sequences, a reference phylogeny,
and a set of query reads. Here, the reference phylogeny Tref refers to the inferred phylogenetic
tree estimated from the reference sequences with any feasible method for phylogenetic tree
inference. In contrast, the true underlying phylogenetic tree is referred to as T ∗. This tree is
generally unknown when working with real-world data. Optimally, Tref coincides with T ∗
but in practice the inferred tree is usually different. By the definition of PP, the correct—or
’best’—placement position of the query reads in Tref is also unknown. Additionally, it is
challenging to specify which position qualifies as the ’best’ position in the inferred phylogenetic
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tree in the first place; even with knowledge about its true position within T ∗. As an example,
lets assume that a query Sq belongs to a species that branched off at an internal branch b∗

of the true underlying phylogeny T ∗ (the species itself is not contained in T ∗). The branch
b∗ divides all nodes of T ∗ into two distinct groups; such a bipartite grouping of nodes is a
split of the tree. Each branch induces a distinct split of nodes within the tree. However, the
split induced by b∗ might not be present in the inferred phylogeny Tref. Or, in other words,
there is not always a branch b in Tref that induces the same split as b∗ in T ∗. Thus, it is
impossible to determine the ’correct’ placement position with respect to T ∗ in most cases.
Instead, a branch b from Tref has to be determined whose split is most similar to the split
of nodes that b∗ induces in T ∗. And even if the split induced by b∗ is also present in Tref, it
is unknown which of the branches in Tref actually corresponds to b∗ in a real-world scenario.
Three different approaches are considered to solve this dilemma in practice. Each of them
represents a proxy to measure the quality of inferred placement positions with respect to the
true placement position in T ∗.

The first approach operates directly on the supplied real-world data by comparing the
congruence between placement positions inferred from several placement programs. This idea
is termed evaluation by reconciliation. Each query Sq is placed on Tref with a set of chosen
programs. The result is a collection of weighted placement positions for each program and the
congruence among the results provides information about the accuracy of the programs. For
simplicity, only the consensus placement for each query and for each program is considered,
respectively; however, the concept can be easily extended to incorporate a set of weighted
placement positions for each program. Intuitively, if one placement program P calculates
a placement location that substantially deviates from the placement locations of the other
programs, it may be considered less accurate. In contrast, if the position determined by P
corresponds to the positions of the other programs, it may be considered a reliable placement.
This approach expects that the involved placement programs have either no placement biases
or different biases that balance each other out. Thus, the reconciliation process assumes that
the consensus placement of several programs is an unbiased estimate of the most appropriate
placement position in Tref; while this assumption is difficult to prove, the reconciliation
still constitutes a reasonable basis to evaluate the divergence of placement estimates when
using different approaches to PP. Furthermore, it highlights potential differences in PP
programs and is a useful tool to assess advantages and drawbacks of the programs when
used in conjunction with other evaluation methods. The reconciliation process is especially
appropriate when a subset of the participating programs has already undergone other external
accuracy evaluations, see below. Then, the placement positions of those programs serve as
a baseline for the placement positions of new programs. For example, EPA-ng performed
an accuracy evaluation through reconciliation by comparing its placements with those of
pplacer and EPA. To compare the likeness of query placements between programs, the
phylogenetic Kantorovich-Rubinstein (PKR) metric was used: Given two weighted distributions
of placement positions across branches of Tref, PKR is defined as the minimal amount of
work required to transfer one distribution to the other one. Work is defined as the weight
of a placement position multiplied by the distance it has to travel in the phylogenetic tree
measured by the number of nodes. For two programs, the minimum amount of work is
averaged over all corresponding query placement distributions to obtain a single measure for
their placement similarity. Although reconciliation procedures are easy to perform, they do
not consider the true tree T ∗ in any way. Furthermore, they cannot ultimately discriminate
which of the involved programs performs better or worse.

49



Chapter 2. Foundations

The second approach contrasts the first one and was first proposed in APPLES [13]:
Instead of using real-world data to evaluate the accuracy, the data is simulated from scratch in
order to have full information about the correct placement locations. First, the true reference
tree T ∗ is simulated for m species. Then, according to T ∗, the sequences of the m species
at the leaves are simulated, resulting in the true reference alignment A∗. Estimating the
placement accuracy directly on T ∗ and A∗ is unrealistic as neither of them contain errors. To
better replicate the real-world scenario, the unaligned sequences of A∗ are realigned to create
an inferred MSA Aref, which is used to calculate an inferred tree Tref. Thus, both Aref and Tref
now may contain errors. Query sequences are derived by a leave-one-out procedure: A single
sequence Sq is removed from Aref and Tref. The resulting pruned tree is called Tref|Sq

, whereas
T ∗|Sq

is the true tree without Sq. Sq is then placed back onto Tref|Sq
resulting in the placement

tree Tq. The placement of Sq in Tq can now either be compared to its position in Tref or to its
original position in T ∗. However, both cases do not account for the discrepancies between the
true and inferred tree. Instead, APPLES uses a metric called delta error. Let B(T ) be the
set of all splits of T induced by its branches. The delta error is defined as

∆e(Tq) = |B(T ∗) \B(Tq)| − |B(T ∗|Sq
) \B(Tref|Sq

)| .

Thus, the delta error measures the difference in the number of splits between Tq and T ∗ that
are solely introduced by the placement of Sq and that do not originate from other discrepancies
between the true tree and the inferred tree. The whole procedure is performed for multiple
different query sequences taken from Aref and the delta error is averaged over all repetitions
to measure the overall accuracy of the software under evaluation. If Tref and T ∗ are different
the delta error is greater than zero even when Sq is placed at the exact location of Tref where
it was pruned from. To obtain a low delta error, Sq must be placed optimally with respect
to T ∗. Thus, the delta error assumes that the phylogenetic placement of Sq should result in an
improved position of the species compared to its position in the reconstructed Tref. However,
both the placement and the tree reconstruction are based on the same data—Aref—and,
hence, it is questionable to assume that placement algorithms achieve a higher accuracy
with respect to the true underlying tree than phylogenetic reconstruction algorithms. If
this would be the case, phylogenetic reconstruction should be skipped altogether and trees
should be inferred iteratively via placement to achieve the highest accuracy, see also Sec. 5.1.
Although there might be rare instances where placement indeed provides a better resolution
of a species placement, it is improbable that placement generally achieves a higher accuracy
than phylogenetic reconstruction.

The third approach to evaluating PP programs uses real-world data for Tref and Aref
together with artificially created query sequences. The most common course of action, first
conducted in pplacer and EPA [10, 12], follows a pruning-based procedure: In one pruning
event a single reference sequence Sq is pruned from Tref resulting in the pruned tree Tref|Sq

.
The internal branch where Sq previously branched off is called bs. The same sequence Sq is
also removed from Aref resulting in Aref|Sq

. Then, the branch lengths of Tref|Sq
are re-optimized

and Sq is placed back onto the pruned reference tree resulting in Tq. The original position
of Sq in Tref|Sq

is known, namely the branch bs. This branch is considered to be the correct
placement branch for the query sequence. The proposed placement position of a PP program
is compared to this correct position. The closer the query is placed to bs, the higher the
accuracy of the placement algorithm. Again, it is not taken into account that Tref might
differ from the true topology T ∗ as the true topology is unknown anyway. Let bq be the
proposed placement branch of Sq. There are different metrics that measure the accuracy
of the proposed placement branch bq with respect to the correct placement branch bs. The
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Figure 2.13 – Pruning-based accuracy evaluation procedure for phylogenetic placement
algorithms: A data set consisting of a reference tree and reference sequences is provided. A
random reference is chosen and removed from the tree (red node and branch) and from the
reference alignment (red sequence). The location where the reference was pruned is indicated
in the tree (blue branch). Then, reads are simulated from the removed sequence and placed
back onto the pruned tree. The accuracy is measured as the average number of nodes (ND)
between the proposed placement position and the true position. The procedure is repeated
multiple times. In PEWO, instead of removing a single sequence, a random node is chosen
and all sequences below are pruned.

simplest metric, called node distance, counts the number of nodes that separate the two
branches bs and bq. If the query is placed exactly at the location where Sq was pruned, the
accuracy is optimal with a node distance of 0. Alternatively, branch lengths may be included
in the metric by calculating the sum of all branch lengths between the proposed and correct
placement positions. When multiple proposed placement positions for a single query exist,
the weighted average node distance over all proposed locations is called the expected node
distance [340]. Multiple pruning events are performed consecutively, and the average of all
pruning events serves as an overall accuracy measure for an algorithm; see Fig. 2.13.

Variations of the pruning-based procedure differ mainly with respect to the generation
of query sequences. Instead of placing the whole pruned sequence Sq it is also possible to
simulate short reads from Sq to mimic a metagenomic scenario. As previously, the simulated
reads are then placed onto the pruned reference tree and their average accuracy with respect
to the correct branch is calculated. Query reads may be simulated in different ways; for
example, by simply splitting Sq into reads of a specified length. Other solutions include
the sampling of reads from a uniform distribution over the sequence positions of Sq until
a specified coverage is reached, or the simulation of reads with a specified error profile
according to common sequencing platforms. For the latter approach, a variety of tools
exist: ART [341] simulates reads with different characteristics derived from large sequencing
platforms. MetaSim [342] generates metagenomic reads from a whole genome database to
simulate common mixed metagenomic datasets, and NanoSim [343] simulates long reads from
recent sequencing platforms such as Oxford Nanopore Technologies [278]. The pruning-based
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accuracy evaluation described so far only prunes a single reference sequence in each pruning
event. However, this results in rather homogeneous pruning events when Tref is an evenly
sampled reference tree. To better mimic real-world scenarios where query sequences might
have no closely related relatives in Tref—or originate from deep inner nodes—it is advisable to
generate more diverse pruning events. One solution is to alter the number of pruned reference
sequences in each pruning event, for example, by pruning random subtrees from Tref instead
of only single sequences. Then, all removed sequences are placed back onto the pruned tree.

The Placement Evaluation WOrkflows (PEWO) [340] is a software for the evaluation
of PP algorithms with respect to their accuracy and speed. PEWO offers three different
evaluation workflows, namely the pruning-based accuracy evaluation (PAC), a likelihood-based
accuracy evaluation (LAC), and the resources workflow (RES). The PAC is identical to the
third evaluation procedure described above with the following specifications: In each pruning
event, a randomly selected node in Tref is chosen and all references below that node are pruned.
Then, query reads of a specified length are simulated by splitting the pruned sequences in
segments of the specified length and every read is placed back onto the tree. The average
accuracy over all query placements is measured by the node distance and expected node
distance metrics. The pruning process is repeated multiple times with different subtrees and
the average accuracy over all pruning events constitutes the overall performance.
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Alignment-free Phylogenetic
Placement with App-SpaM

The content of this chapter is derived from the peer-reviewed open-access publication
Matthias Blanke and Burkhard Morgenstern.
"App-SpaM: Phylogenetic placement of short reads without sequence alignment."
In: Bioinformatics Advances (2021).

All text has been thoroughly adapted and new content has been added by Matthias Blanke
to fit this thesis. All figures are original works created by Matthias Blanke.

Phylogenetic placement (PP) is a unique approach to characterizing biological sequences that
interconnects the areas of metagenomics, metataxonomics, and phylogenetics. Most programs
that perform PP are dependent on alignments and do not scale well with the amount and
diversity of sequencing data made available by recent sequencing technologies. Until now, PP
programs were mainly used to assess the composition and abundance of species in samples
from metataxonomic experiments by placing a set of query reads into comprehensive reference
phylogenies. Alignment-free programs provide an unparalleled opportunity to promote the
field of PP as they are capable of handling large amounts of diverse sequencing data; in
addition, they are applicable in challenging circumstances, for example, when sequences are
not or only partially assembled, or when sequences are under the influence of large-scale
evolutionary events. We believe that an alignment-free program for general use PP is a useful
addition to the programs and libraries for PP currently available. Furthermore, it opens the
door to novel use cases in addition to the identification of metataxonomic samples, which we
discuss in more detail in Chpt. 5.

One method for alignment-free distance estimation is the spaced-word matches approach
that finds non-exact gap-free micro-alignments to estimate the average number of nucleotide
substitutions between two sequences. Its implementation FSWM and variants thereof produce
distance estimates on par with other state-of-the-art alignment-free programs [344]. Here, we
present the Alignment-free phylogenetic placement algorithm based on Spaced-word Matches
(App-SpaM). App-SpaM employs filtered spaced-word matches to quickly calculate query-
reference distances and performs phylogenetic placement using fast heuristics.

3.1 Alignment-free Phylogenetic Placement Based on
Spaced-Word Matches

As for other placement programs, the input to App-SpaM consists of m reference sequences,
an edge-weighted phylogenetic tree Tref comprising the m references, and a set of query
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sequences to be placed onto Tref. Unlike other programs, App-SpaM does not require that
reference sequences are aligned or assembled. Instead, we use a distance-based strategy
comprising three consecutive steps: First, we calculate filtered spaced-word matches between
all queries and references; see Subsec. 2.4.3 for an introduction to this technique. Second,
we filter out non-homologous matches, count the remaining ones between each query and
reference, and use them to estimate query-reference distances. Third, a placement position is
specified for each query using fast heuristics, and the results are saved in the JPlace format.
We performed a comprehensive evaluation of App-SpaM and demonstrated that its proposed
query placements are of high quality and on par with ML-based approaches when applied to
metataxonomic data. Furthermore, App-SpaM requires orders of magnitude less computation
time and has a low memory consumption compared to other programs. These results are valid
for a wide range of program parameters, such as the number of patterns, their length, and
weight. We also applied App-SpaM to unassembled reference sequences as a proof of concept;
the placement accuracy remains stable for a high coverage of the references and declines
with lower coverages as expected. We tested multiple algorithmic variations of our program,
including a sampling procedure for spaced words and the use of different evolutionary models,
and present detailed results of their advantages and drawbacks.

3.1.1 Algorithmic Methodology and Evaluation Setup

We first introduce the algorithmic procedure of App-SpaM including certain technical aspects
that affected its design choices, followed by a detailed description of the performed evaluation.
As the first step, App-SpaM extracts all spaced words from the input sequences with respect
to a predefined binary pattern P . It is important to consider the structure of P and, in
particular, its length l and the number of match positions. Spaced-word matches are detected
based on identical match positions; a lower number of match positions (also called the pattern
weight w) entails a larger number of potential matches that are evaluated in the filtering
procedure. On the contrary, using a higher pattern weight results in fewer spaced-word
matches; this reduces computation time, but homologous regions might be missed in exchange.
This trade-off is comparable to the choice of k when using approaches based on continuous
words. Generally, using a lower pattern weight is necessary for more dissimilar sequences.
The first software program FSWM that employed filtered spaced-word matches was designed
to calculate distances between assembled whole genomes. It uses a default pattern with a
weight of w = 12 and l = 112 don’t care positions since those parameters yielded consistent
results across several tested data sets. However, these parameters were tailored to the task
of comparing two whole genomes and do not necessarily work for other types of sequencing
data. For example, the program Prot-SpaM uses a weight of w = 6 and a pattern length
of l = 40. This adjustment was carried out to meet the requirements of protein sequences,
since they are defined over a larger alphabet (|Σ| = 20) and evolve at slower rates than DNA
sequences. Accordingly, the weight and length of the pattern were also adjusted in App-SpaM:
By default, we use a single pattern created by the software rasbhari [165] with length l = 44
and weight w = 12. The choice of shorter word lengths is motivated by the nature of the
query sequences: Especially in applications such as metataxonomics, short query reads are
prevalent. A shorter pattern entails substantially more spaced words that arise from a single
read. For example, a single read with a length of 150 bp produces 39 spaced words when
using l = 112 as in FSWM; however, when the pattern length is reduced to l = 44 a total
of 107 spaced words emerge. This constitutes an increase in the number of spaced words of
274%. This effect becomes even stronger when read lengths are shorter than 150 bp. Another
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main motivation to choose such short patterns is the computational benefit that is gained,
see below.

We term the string of match positions of a spaced word as its key K. We determine all
spaced words with respect to P for all reference sequences and save them in a list Lr ordered
by their key. Accordingly, another ordered list Lq is created for the spaced words of all query
sequences. For each spaced word in Lr and Lq we also store the input sequence it originated
from and its location within this sequence. Then both lists are divided into blocks consisting
of identical spaced words with respect to their key. The ordered blocks of Lr and Lq are
traversed simultaneously such that both blocks corresponding to a single key K are selected
at once. Each pair of spaced words with one word from each selected block constitutes a
spaced-word match with identical match positions. Thus, each pair represents a spaced-word
match of the spaced word W with key K between two spaced-word occurrences (W, i) in a
query sequence Sq at position i and (W, j) in a reference sequence Sr at position j. For each
such spaced-word match, its score is calculated as the sum of all substitution scores of the
nucleotides at their don’t care positions according to the substitution matrix HOXD70 [345].
Spaced-word matches with a score below the predefined threshold t are removed; on default, t
is set to zero as in FSWM. This filtering procedure ensures that only matches from homologous
sequence fragments remain. Matches that occurred purely by chance are filtered out and are
not included in any subsequent analysis steps. For each query Sq and reference Sr we save
the number of spaced-word matches s(Sq, Sr) with score above t. In addition, we calculate
the phylogenetic distance d(Sq, Sr) between each query and reference. For this, we count the
average number of nucleotide substitutions p(Sq, Sr) at the don’t care positions of the spaced
words and correct it using the Jukes-Cantor formula [346]:

d(Sq, Sr) = −3

4
ln

(
1− 4

3
· p(Sq, Sr)

)
. (3.1)

After both lists Lr and Lq are fully traversed, s(· , ·) and d(· , ·) are utilized to infer placement
positions in Tref.

We propose and evaluate five heuristics to place a query Sq on Tref based on its phylogenetic
distances d(Sq, Sr), r ∈ [m] and the numbers of spaced-word matches s(Sq, Sr), r ∈ [m]. Each
heuristic chooses a branch eq in Tref where Sq is placed. As explained in Subsec. 2.7.1, eq
is split into a proximal part eq1 and distal part eq2 by the newly added insertion node nq.
A new pendant branch e′q is added that connects nq with the new leaf node n′q which is
annotated with the query sequence Sq. Subsequently, each heuristic in App-SpaM specifies
the length of the newly added distal branch l(eq2) and the pendant branch l(e′q). The length
of the proximal branch is always defined as l(eq1) = l(eq) − l(eq2). The heuristics select eq
and calculate branch lengths for the placement of a query sequence as follows:

Min-Dist — This heuristic is a vast simplification of the complex placement process and
serves as a basic benchmark. Min-Dist selects the reference Sr that minimizes the distance
d(Sq, Sr) across all reference sequences:

arg min
Sr, r∈[m]

d(Sq, Sr) . (3.2)

The placement edge eq is defined as the single edge in Tref that is adjacent to the leaf labeled
with Sr. In the rare case that multiple references have the same smallest distance to Sq, one
of them is chosen at random. We distinguish two situations to infer branch lengths: When
d(Sq, Sr)/2 < l(eq) the lengths of eq2 and e′q are set to l(e′q) = l(eq2) = d(Sq, Sr)/2. Choosing
the lengths of e′q and eq2 to be identical is comparable to the assumption of an ultrametric
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Figure 3.1 – The process of App-SpaM: First, a binary pattern is defined using the software rasbhari.
Alternatively, multiple patterns may be used. The queries are enumerated numerically (1, 2, 3), and the
references alphabetically (A, B). Spaced words (short fragments) are extracted from the queries and references.
Spaced words with the same key are highlighted (colored fragments), in contrast to spaced words with singular
keys (gray fragments). The lists Lr and Lq are created, sorted by their key, and buckets (gray boxes) with
identical key K are delimited (for clarity, words with singular keys are omitted in the depiction). For each
bucket, scores between all spaced-word matches with one spaced word from Lr and another one from Lq are
calculated. Spaced-word matches with a score below the predefined threshold t are discarded. The remaining
spaced-word matches are used to calculate the number s(Sq, Sr) of matches and the phylogenetic distance
d(Sq, Sr) between each query Sq and each reference Sr. One of the six proposed placement heuristics is used
to place each query onto Tref.
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tree in UPGMA. This case represents a scenario where it is rather reasonable to place Sq on
the branch directly above its next similar reference as d(Sq, Sr)/2 is smaller than the distance
between Sr and its parental node in Tref. Under the assumption of an ultrametric tree, the
suggested placement of Sq is natural. However, if d(Sq, Sr)/2 ≥ l(eq), we set l(eq2) = l(eq),
and l(e′q) = d(Sq, Sr)− l(eq). This creates an implicit trifurcation at the node above n′q as
the length of the proximal branch eq1 is set to zero. In this second case, the distance between
Sq and the most similar reference Sr is greater than the distance between Sr and its parental
node. The placement of Sq at eq is only reasonable if Sq has evolved more rapidly from the
parental node of Sr than Sr itself. Otherwise, a placement position of Sq at inner branches of
the tree explains the large distance d(Sq, Sr) better.

SpaM-Count — Like Min-Dist, this heuristic places queries only on branches directly
above the leaves. But instead of selecting the reference sequence Sr that minimizes the
distance to Sq, SpaM-Count selects the branch above the reference that satisfies

arg max
Sr, r∈[m]

s(Sq, Sr) . (3.3)

The chosen sequence maximizes the number of spaced-word matches to Sq with a score larger
than t. The distance calculation of branch lengths is identical to that in Min-Dist.

LCA-Dist — This heuristic is in direct contrast to the previous two: it identifies the
two reference sequences Sr1 and Sr2 with the lowest distances d(Sq, Sr1) and d(Sq, Sr2). While
queries are placed exclusively on branches directly above the leaves with Min-Dist and
SpaM-Count, placements with LCA-Dist are placed solely above inner nodes of Tref. Let
nlca be the lowest common ancestor of the two leaves labeled with Sr1 and Sr2 in Tref. The
edge in Tref that connects nlca with its parental node is chosen as the placement edge eq. Let
l(Sr1 , nlca) be the sum of edge lengths between Sr1 and nlca, and accordingly l(Sr2 , nlca) the
sum of edge lengths between Sr2 and nlca. We define

d̂(Sq) =
d(Sq, Sr1) + d(Sq, Sr2)

2
(3.4)

as the average estimated distance between Sq and the two chosen references. Furthermore, we
define

d̂(nlca) =
l(Sr1 , nlca) + l(Sr2 , nlca)

2
(3.5)

as the average distance from the internal node nlca to the two chosen references in Tref. To
determine the new edge lengths of eq2 and e′q, we distinguish three situations: If d̂(Sq) <

d̂(nlca), we set l(eq2) = 0, l(eq1) = l(eq), and the length of e′q is set to l(e′q) = 0. In this
case, no placement position with positive branch lengths adequately reflects the calculated
distances. Setting a negative branch length for the pendant branch would comply with the
distance estimates; however, we decided to simply reduce the branch length to zero, since
negative branch lengths limit subsequent processing and lack a clear biological meaning. If
d̂(nlca) ≤ d̂(Sq) ≤ 2 · l(eq) + d̂(nlca), the lengths of eq2 and e′q are set to

l(eq2) = l(e′q) =
d̂(Sq)− d̂(nlca)

2
(3.6)

and, as before, l(eq1) is set to l(eq)− l(eq2): The placement of Sq fits well onto the selected
branch with respect to the estimated mean distance d̂(Sq) and the branch lengths in Tref.
In the last case d̂(Sq) > d̂(nlca) + 2 · l(eq) is satisfied and the heuristic sets l(eq2) = l(eq),
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l(eq1) = 0, and l(e′q) = d̂(Sq) − d̂(nlca) − l(eq). Again, an implicit trifurcation with branch
lengths of 0 occurs in the first and last case.

LCA-Count — As in the previous approach, queries are placed only at inner nodes.
But instead of using the reference sequences Sr1 and Sr2 that minimize the distance to Sq,
we select the two references Sr1 and Sr2 with the maximum number of spaced-word matches
to Sq with scores larger than t. We then calculate the lengths of the newly generated edges as
in LCA-Dist.

SpaM-X — The four previous heuristics produce placements only on branches directly
above the leaf nodes, or only on branches above inner nodes of Tref. This is not optimal,
as placements for a set of query sequences are likely to occur across the whole reference
tree. Thus, SpaM-X combines the previous approaches: For the most similar reference Sr1
and the second most similar reference Sr2 according to the distance estimates inferred from
spaced-word matches, SpaM-X evaluates whether

|s(Sq, Sr1)− s(Sq, Sr2)| > s(Sq, Sr1) + s(Sq, Sr2)

X
(3.7)

holds. If so, Sq is placed directly above the reference Sr1 according to SpaM-Count.
Otherwise, Sq is placed according to LCA-Count. Consequently, the SpaM-X heuristic
places Sq above the leaf annotated with Sr1 if and only if the number of matches between Sq
and Sr1 is substantially higher than the number of matches to the next similar sequence Sr2 . If
the difference in the number of matches is small, the query is placed above their lowest common
ancestor instead. A disadvantage of this heuristic is that it requires a hyper-parameter X.
We set X = 4 as default and refer to the heuristic as SpaM-4. Possible choices for X and
how to infer it experimentally are discussed below.

SpaM+APPLES — In addition to the five placement heuristics above that are natively
included in App-SpaM, we also use the least-squares optimization criterion of APPLES to
calculate placement positions. For this, we forward a matrix with our distance estimates
d(Sq, Sr), r ∈ [m] for all queries to APPLES. APPLES then finds the position within Tref
such that the sum of squared differences between estimated distances and distances present
in the tree is minimal, as explained in Subsec. 2.7.1. Using APPLES has the advantage
that placements are inferred with a solid framework of phylogenetic tree inference. However,
it comes with increased computational demands and requires that the distances of Tref are
in accordance with the distance estimates inferred by App-SpaM; this means that branch
lengths of Tref have to correspond to the average number of nucleotide substitutions under the
Jukes-Cantor model of sequence evolution. If the origin of Tref and, thus, the nature of the
branch lengths is unknown, they can be re-estimated on the basis of an existing alignment
using programs such as FastTree [347]. However, this again requires the existence of a
reference MSA, limiting the applicability of this heuristic.

Several additional caveats apply to the established heuristics: Tref must be rooted in order
for LCA-Dist, LCA-Count, and SpaM-X to work. Only when Tref is rooted, the lowest
common ancestor is uniquely defined. We expect any end user to supply a rooted tree; if
no root is specified for the input tree, App-SpaM automatically roots Tref at its midpoint
and warns the user that placement results should be taken with caution. Furthermore, there
is the hypothetical possibility that no match is found for a query Sq. We try to prevent
this from happening by choosing a short word length l = 44 with w = 12 match positions.
Still, it might occur for distantly related or erroneous query sequences. In the event that
no spaced-word matches are found between Sq and any reference, we place Sq at the root
of Tref with a predefined default branch length for the pendant branch. The existence of such
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placements for multiple query sequences could indicate that the set of references is insufficient
and that it does not represent a good sample among the species present in the query sequences.
Accordingly, we observed that ML-based placement programs do not find sensible placement
locations for queries where App-SpaM detects zero spaced-word matches. The complete
algorithmic design of App-SpaM is outlined in detail in Fig. 3.1.

App-SpaM works on DNA sequences over the alphabet Σ = {A, C, G, T}. Each of the
four symbols is internally encoded in 2 bits, A as 00, C as 01, G as 10, and T as 11. Thus,
we can represent up to 32 DNA symbols with a single 64-bit integer value. Limiting the
number of don’t care positions to 32 entails that the memory requirements for spaced words
and spaced-word matches as well as the overhead to maintain and handle the associated
data structures stay as minimal as possible. The data structure to save a single word in
App-SpaM uses a total of 28 bytes: 8 bytes each to save the match and don’t care positions,
respectively, and another 12 bytes to save auxiliary information about the words including
in which sequence and at which position within the sequence they were found. All spaced
words that contain symbols that are not present in Σ are removed from further consideration
all together. Saving the match and don’t care positions explicitly within the spaced-word
data structure has the drawback that large amounts of information are stored repeatedly.
Each two bits that encode a single symbol of an input sequence are saved in a total of l
spaced words for a pattern length of l. In contrast, it is also conceivable that a spaced-word
data structure only saves its match position, the sequence from which it originates, and the
location within this sequence (and it is implemented in this manner by FSMW). Although
this only requires 12 bytes for each spaced word, the strategy used in App-SpaM has large
computational gains later on: When evaluating the don’t care positions of identical words, it
is not required anymore to look up the nucleotides at the original sequence positions. Such a
lookup constitutes a bottleneck, especially when Tref consists of many references, as entirely
different sequence regions must be stored in main memory and are accessed consecutively.
The computer system cannot perform any cache optimization for such unstructured accesses,
as it is unknown from which sequences consecutive spaced words originate. By saving the
don’t care positions together with each spaced in consecutive word blocks, no such lookup has
to take place. When the lists of identical spaced words from query and reference sequences
are traversed simultaneously, the don’t care positions are retrieved immediately and their
score is calculated straight away. Still, our method runs into computational difficulties when
large amounts of long reference sequences are present. To counteract this, we use a sampling
strategy proposed in Sec. 4.3.

The list Lr that contains spaced words from all references is computed once and stored in
main memory because it is accessed for each query sequence. In contrast, the spaced words
for a query are required only once, and there are potentially large amounts of query sequences
in metataxonomic use cases. Thus, to limit the memory consumption, the query sequences
are divided into batches and each batch is processed consecutively. When a query batch is
processed, the according list Lq of all spaced words from this batch is created and placement
positions are inferred as described earlier. Then, the list Lq is deleted and the next batch
is processed. This also allows for a straightforward parallelization strategy: Multiple query
batches are processed simultaneously by multiple computing cores without interfering with
each other since queries do not influence each others placement position. App-SpaM uses a
default batch size of 100 000 query sequences.

We evaluated the accuracy and speed of App-SpaM compared to other state-of-the-
art programs using PEWO. PEWO is a framework that provides reproducible evaluation
workflows for phylogenetic placement that allow for a standardized evaluation process across
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multiple data sets and programs. Internally, it relies on the workflow tool Snakemake [348]
and uses Conda to manage the evaluation environment. The installation of PEWO also
comes with the most recent software version of all associated placement tools; currently, these
tools include pplacer, EPA, EPA-ng, RAPPAS, APPLES, and App-SpaM. The PEWO
repository is mainly intended to host the evaluation workflows and is not designated as a data
repository; still, it includes several data sets that are ready to be used for evaluation purposes.
PEWO is a recent development and has not been used for any comprehensive evaluation of
multiple or all placement programs so far. Thus, the conducted evaluation not only serves
as a means of evaluating App-SpaM, but is also a first step toward a common benchmark
including all currently available programs.

The pruning-based accuracy evaluation (PAC) workflow provided by PEWO assesses
placement accuracy, while the resources evaluation (RES) workflow identifies the time and
memory requirements of PP software programs. Additionally, there exists a likelihood-based
accuracy evaluation (LAC) workflow that is intended for ML-based methods. As described in
Subsec. 2.7.3, the PAC workflow follows a pruning-based process: The user specifies a data
set consisting of the reference tree Tref and the corresponding MSA Aref, the programs to
be evaluated and their parameters to be tested, and a fixed number of iterations. In each
iteration, PEWO selects a random node of Tref and prunes the entire subtree attached at this
node. The corresponding reference sequences of the pruned leaves are removed from Aref as
well. The branch to which the pruned subtree was attached is the expected placement branch
and represents the optimal placement location for every pruned sequence. Then, query reads
of a specified length are simulated from all pruned sequences by simply splitting the sequences
into shorter non-overlapping segments. By default, reads with a length of 150 bp are created,
and resulting reads with a length below 50 bp are dropped. The query reads are placed back
onto the pruned tree by each specified program with all chosen parameter combinations. We
call the placement branch determined by a program its proposed placement branch. Some
PP programs output multiple proposed placement branches for each single query weighted
by the according likelihood values. The proposed placements of each query are compared to
the expected placement location using two metrics: The node distance (ND) measures the
number of nodes between the expected placement branch and the proposed placement branch;
only the branch with the highest weight is considered when multiple placement branches are
specified. The expected node distance (eND) calculates the average number of nodes across
all proposed placement branches for a query weighted by their likelihood-weight-ratios.

We used ten data sets for the evaluations; an overview of them is provided in Tab. 3.1.
These data sets were compiled from different sources and vary with respect to their size
(number of reference sequences and their length), locus, tree structure, and composition of
reference sequences. We refer to each data set by an abbreviation consisting of its name
followed by the number of reference sequences it comprises. The main focus of this evaluation is
to compare App-SpaM to existing tools for PP with respect to its accuracy and computational
demands; as several of the other tools rely on alignments and involve computationally expensive
ML-calculations, the selection of data sets is oriented towards the exemplary use case of short
read assignment by means of phylogenetic placement. Thus, the sequences span single marker
genes which are handled effortlessly by all PP programs. We also apply App-SpaM to other
use cases of PP that involve more diverse data sets, see below and Chpt. 5.

The first two data sets (bac-150, hiv-104) were acquired from the PEWO repository.
bac-150 represents a typical metataxonomic setting in which 16S sequences are used to
identify query sequences. The latter (hiv-104) is a collection of complete HIV genomes. Three
additional data sets (neotrop-512 [349], tara-3748 [350], and bv-797 [351]) were taken
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Table 3.1 – Data sets used in the PAC and RES evaluations.

abbreviation locus mean length (bp) query length (bp)

bac-150 16S 1 256 150
hiv-104 viral genomes 9 096 150, 500

neotrop-512 16S 1 766 150, 300
tara-3748 16S 1 406 150, 300

bv-797 16S 1 341 150
epa-218 16S 1 483 150
epa-628 5.8S 780 150
epa-714 16S 1 169 150

wol-43 microbial genomes 52 768 066 150

CPU-652 16S 1 315 150
CPU-512 16S 1 766 150

Each data set is abbreviated by its name and the number of reference sequences that it comprises. In
their order of appearance, the columns present the abbreviation of the data sets, the locus from which
the sequences originate, the mean sequence length of the references, and the simulated read lengths
chosen for the evaluation. The first eight data sets are used in the PAC workflow, wol-43 is used to
evaluate App-SpaM, and the RES workflow is applied to the last two data sets. This table is adapted
from App-SpaM: Phylogenetic placement of short reads without sequence alignment, in: Bioinformatics
Advances, 2021.

from the accuracy evaluation carried out by EPA-ng; they also consist of 16S sequences. The
next three data sets (epa-218, epa-628, epa-714) comprise the marker genes 16S or 5.8S and
originate from the EPA evaluation. The wol-43 data set consists of 43 complete genomes
of different Wolbachia species and was only used for App-SpaM due to its size (the average
reference sequence length is 52 768 066 bp). The last two data sets (CPU-652 and CPU-512)
assess computational demands; the first one is also taken from the PEWO repository, while
the second one is identical to the neotrop-512 data set.

We performed several test runs with the PAC and RES workflows on the data sets to
examine the capabilities and limits of App-SpaM with respect to placement accuracy, speed,
and memory requirements. First, we evaluated App-SpaM under varying settings to analyze
the influence of the choice of parameters on its placement accuracy. For this, we ran App-
SpaM on the bac-150 and hiv-104 data sets with varying pattern weights w ∈ {8, 12, 16}
and all five placement heuristics. For SpaM-X we used X = 2 and X = 4. We also ran
SpaM+APPLES on the bac-150 data set. The number of don’t care positions was always
fixed at 32. The length of the simulated query reads was set to 150 bp for the bac-150 data
set comprising short 16S sequences and to 150 bp or 500 bp for the longer viral genomes
of the hiv-104 data set. For each combination of parameters, 100 random prunings were
performed with PEWO. In each pruning, a random node within Tref is chosen and the subtree
below it is pruned. Thus, prunings vary with respect to the number of pruned reference
sequences and the size of the remaining tree. Most prunings comprise only a single or very few
reference sequences (half of the nodes of a balanced bifurcating tree are its leaves), but some
prunings also comprise more than half of the original sequences. This represents any real-world
example reasonably well when it is assumed that the chosen reference tree comprises a good
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Figure 3.2 – Number of pruned leaves (y-axis, log-scale) for the bac-150 and hiv-104 data
sets (x-axis) and 100 pruning events. The number of removed leaves is illustrated for each
pruning event (black dots) and statistics across all 100 prunings are indicated (box plots).
Since half of the nodes in any balanced tree are its leaves, most pruning events contain only a
single reference sequence.

representation of the species that are also present in the queries. Under this assumption and a
largely balanced reference tree, most query sequences have closely related references (instances
in the simulation where single sequences are pruned), while cases with no closely related
references are rare (large pruning events in the simulation that comprise many references).
Figure 3.2 displays the number of pruned leaves for each of the 100 pruning events for the
data sets bac-150 and hiv-104 as an example. The random prunings for all other data sets
are expected to exhibit a comparable distribution.

App-SpaM is able to use multiple spaced-word patterns simultaneously: If this option is
turned on, it invokes rasbhari to create the specified number of patterns while minimizing
their overlap complexity. rasbhari is initialized with a random seed and, thus, different
runs of App-SpaM will use different pattern sets. We tested the influence of the number of
patterns on the placement accuracy as well as the variance across different pattern sets of
identical size. For this, we ran App-SpaM with the LCA-Count and SpaM-4 heuristics on
the bac-150 and bv-797 data sets and varied the size of the pattern set from a single pattern
up to five patterns with 100 random pruning events each. We repeated each experiment with
five different pattern sets using different random seeds to initialize rasbhari to assess the
variance with respect to the structure of the patterns.

In addition to running App-SpaM on its own, we conducted a comprehensive evaluation
of the placement accuracy of all placement programs currently available in PEWO (pplacer,
EPA, EPA-ng, RAPPAS, APPLES, and App-SpaM) in the metataxonomic setting. For
this, we ran the PAC workflow for each data set (except wol-43 due to its size, and the
two data sets intended for the RES workflow) including each program with a variety of
program parameters. Seven of the eight data sets comprise a single marker gene and thus
have a similar sequence alignment length. The eighth data set comprises the 104 viral
genomes and its sequences are longer by approximately a factor of eight. However, the data
sets vary considerably with respect to the group of organisms they comprise, the number
of reference sequences that are available, and the degree of similarity between reference
sequences, see Suppl. Tab. A.1. For each program, the parameters were chosen according
to their manuals and additional instructions provided by PEWO. A complete table of all
parameter combinations is to be found in Suppl. Tab. A.2. The read length was fixed at 150 bp,
a common length produced by popular Illumina sequencing platforms [352]; additionally we
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performed experiments with a query read length of 500 bp for hiv-104, and a length of
300 bp for neotrop-512 and tara-3748. Again, 100 pruning events were conducted for each
experiment, respectively.

In all experiments so far, the query reads are created by simply splitting the pruned
references into reads of a predefined fixed length. As a result, the queries do not exhibit errors
or biases that would normally occur from the sequencing preparation, the sequencing itself,
or common preprocessing steps. We extended PEWO with the functionality to simulate
query sequences from the pruned references using error profiles of common sequencing
technologies [353]. For this, we integrated ART [341] into the existing PAC workflow so that
it simulates a fixed number of queries for each pruned reference sequence. With this setup, we
ran all PP programs with default parameters on the bac-150, hiv-104, and neotrop-512
data sets with 50 pruning events, respectively. We used the Illumina HiSeq 2500 error profile
of ART with its default parameters to simulate 50 query reads for each pruned reference
sequence. For most data sets, this corresponds to a coverage of approximately five; we assume
that increasing the number of query sequences beyond that would not alter the observed
placement accuracy.

Furthermore, we tested App-SpaM’s unique capability of working with unassembled
reference sequences. With the general increase in sequencing efforts comes an ever-growing
amount of sequence data that remain without assembly [354]; this includes scaffold bins
from metagenome assembled genomes [9, 355], short reads thereof, or NGS single cell DNA
or RNA sequencing data [356]. We evaluated the performance of App-SpaM with regard
to unassembled reference sequences with varying coverages on hiv-104 and wol-43. We
transformed both data sets so that each reference consists of a bin of short query reads with
a length of 150 bp with a coverage C ∈ {4, 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125}. Reads were
simulated by repeatedly drawing 150 consecutive nucleotides, starting at random positions of
the original sequence until the specified coverage was reached. As PEWO does not support
this kind of data, we implemented a simple leave-one-out pipeline to assess the placement
accuracy: In every pruning event, a bin of a single reference sequence is removed from the
data set and the according reference is pruned from the tree. Then, the according reads are
placed back onto the tree and the average ND is measured across all reads. The procedure is
repeated for every reference sequence in the data set.

We used PEWO’s RES workflow to measure the runtime (preprocessing and main
computations) and peak memory usage of all six programs on the two data sets CPU-652
and CPU-512. The preprocessing steps do not include the creation of the reference alignment
Aref, but only the alignment of query sequences against Aref or comparable steps such as
the creation of the phylo-k-mer database. Instead of a pruning-based evaluation, PEWO
simply places a set of supplied query reads onto the reference phylogeny. In five repetitions,
we placed 100 000 query reads on the CPU-652 data set and 10 000 query sequences on the
CPU-512 data set. The number of query sequences in these experiments is chosen rather low
due to excessive runtimes of certain ML-based programs. Thus, we also run App-SpaM on
the largest metataxonomic data set tara-3748 by simulating 3748 · 10n, n ∈ {1, 2, 3, 4} reads
of length 150 bp for each reference, resulting in up to 37 480 000 query reads. We placed the
reads with App-SpaM using weights of w = 12 and w = 16 using 30 cores concurrently. Each
experiment was performed twice. All of the above experiments were carried out on Intel(R)
Xeon(R) E7-4850 CPUs with 2 GHz.
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3.1.2 Evaluation Results

Unlike programs based on ML, App-SpaM and APPLES do not specify multiple placement
branches for a single query Sq. Such weighted placement positions provide information about
the placement uncertainty of Sq. This is helpful in certain instances, for example, when high
accuracy is desired and uncertain placements shall be discarded from subsequent analysis.
However, the first placement position with the highest weight is sufficient in many cases:
for example, to uniquely annotate queries or when visualizing placements of multiple query
sequences. Thus, we primarily report node distance (ND) values throughout this section, as
they allow a direct comparison between all involved programs. In most cases, the expected
ND (eND) and ND values for any program hardly differ; ML-based programs often perform
slightly better under the eND metric than under the ND metric. We point out those instances
where eND values deviate substantially from the provided ND values. We always report the
node distance rounded to two decimal places; the appendix contains detailed tables with exact
values for all presented results, including the eND.

For each experimental setup, the placement results are presented as a combination of box
plots and strip plots. Each black dot in a strip plot indicates the average ND across all query
sequences of a single pruning event. The horizontal spread of black dots is a purely visual aid.
Each box plot summarizes statistics for an experimental setup across all pruning events : The
box itself delineates the lower and upper quartiles of the distribution, while the line in the
middle indicates the mean. The extent of the remaining node distances that are contained
within 1.5 times the interquartile range is indicated by the whiskers. All other data points
outside the whiskers are specified as outliers.

The average performance for different heuristics with the default weight w = 12 across
100 pruning events on the bac-150 data set is illustrated in Fig. 3.3. SpaM-4 has the
lowest average ND of 4.65, closely followed by LCA-Count with a ND of 4.73. Thus, the
proposed placement position of a query is, on average, 4.65 nodes (or 4.73 nodes) away from
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Figure 3.3 – Node distance (ND) of placements (y-axis) inferred with App-SpaM over
100 repetitions for the default pattern weight of w = 12 with different placement heuristics
(x-axis, different colors) on the bac-150 data set. The mean ND across all queries for a
single repetition is shown (black dots), as well as the distribution of NDs across all repetitions
(box plots). This figure was adapted from App-SpaM: Phylogenetic placement of short reads
without sequence alignment, in: Bioinformatics Advances, 2021.
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Figure 3.4 – Node distance (ND) of placements (y-axis) inferred with App-SpaM over 100
repetitions for different pattern weights w ∈ {8, 12, 16} (different hues) and different placement
heuristics (x-axis, different colors) on the bac-150 data set. The mean ND across all queries
for a single repetition is shown (black dots), as well as the distribution of NDs across all
repetitions (box plots). This figure was adapted from the Supplementary Material of App-
SpaM: Phylogenetic placement of short reads without sequence alignment, in: Bioinformatics
Advances, 2021.

the expected placement position in the pruned reference tree. With a mean ND of 5.81, the
proposed placement positions of SpaM+APPLES are on average more than one node further
away from the expected position than those placements from SpaM-4 and LCA-Count. The
other three heuristics (SpaM-Count ND of 8.31 , Min-Dist ND of 8.98, LCA-Dist ND of
8.22) perform significantly worse. The exact statistics of the box plots in Fig. 3.3 are given in
Suppl. Tab. A.4.

Figure 3.4 presents the accuracy results for App-SpaM on the bac-150 data set when
using different pattern weights for different placement heuristics. Here, the SpaM-X heuristic
is additionally displayed for X = 2. Although the average accuracy differs substantially
among placement heuristics, it differs little between varying pattern weights, regardless of
the underlying heuristic. The divergence between the best and worst performing weights is
only 0.12 nodes on average. No pattern weight consistently performs the best or worst across
the heuristics; w = 8 is the best in two instances, w = 12 works best in four heuristics, and
w = 16 for one heuristic. The variance of the node distance is large in each setting: the
standard deviation of the ND in each experiment is on average 2.02. Thus, the quality of
placements varies considerably between different pruning events. When taking into account
all combinations of pattern weights and heuristics, SpaM-4 with w = 12 performs again best
with an average node distance of 4.65. The SpaM-4 heuristic with w = 12 is closely followed
by all other experiments that employ SpaM-X or LCA-Count. The exact statistics for
Fig. 3.4 are found in Suppl. Tab. A.3.
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(a) Accuracy of different App-SpaM heuristics and varying pattern weights for a query read length of
150 bp.
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(b) Accuracy of different App-SpaM heuristics and varying pattern weights for a query read length of
500 bp.

Figure 3.5 – Node distance (ND) of placements (y-axis) inferred with App-SpaM over
100 repetitions for different pattern weights w and different placement heuristics (x-axis).
The mean ND across all queries for a single repetition is shown (black dots), as well as the
distribution of NDs across all repetitions (box plots) on the hiv-104 data set. The upper
plot (a) shows the results for a query read length of 150 bp and the lower plot (b) for an
increased query read length of 500 bp. This figure was adapted from the Supplementary
Material of App-SpaM: Phylogenetic placement of short reads without sequence alignment, in:
Bioinformatics Advances, 2021.

To ensure that these observed results are not specific to the chosen data set and used
query read lengths, we repeated the tests for hiv-104: Fig. 3.5 shows the accuracy of different
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Figure 3.6 – Summary of Fig. 3.5. Average node distance (ND) of placements (y-axis) across
pruning events for different pattern weights w ∈ {8, 12, 16} (different hues) and different
placement heuristics (x-axis, different colors) on the hiv-104 data set with query read lengths
of 150 bp or 500 bp. The mean ND across all repetitions for each weight is specified (colored
dots, color marking as in Fig. 3.5), as well as the distribution of average NDs across all weights
(box plots).

App-SpaM heuristics and different pattern weights across 100 random pruning events for the
hiv-104 data set for a query read length of 150 bp (Fig. 3.5a) or of 500 bp (Fig. 3.5b). Here,
we dropped SpaM+APPLES and only included those heuristics that are natively included
in App-SpaM. As before, SpaM-2, SpaM-4, and LCA-Count perform equally well and are
robust for different values of the pattern weight. In contrast to the bac-150 data set, the
accuracy varies considerably for different values of w when using the Min-Dist or LCA-Dist
heuristics. For both, the average node distances increase with larger pattern weights. These
results hold true irrespective of the query read length. However, all heuristics consistently
perform better when query read lengths are longer, no matter which pattern weight is used.

A summary of Fig. 3.5 is given in Fig. 3.6: Here, the mean ND for all repetitions in each
experiment is depicted as a single colored dot. By this, the difference of the mean accuracy
and its variance with respect to the read length becomes apparent. The best parameter
configuration (SpaM-4 with w = 8) improves from a ND of 4.07 to a node distance of 2.98
when the lengths of query reads are prolonged from 150 bp to 500 bp; a drop of approximately
27%. The mean performance also improves substantially for longer query sequences when
using other heuristics. The observed effect of worsening placement locations for increasing
pattern weights in the Min-Dist and LCA-Dist heuristics is more severe for long queries. On
the contrary, the weight of the pattern has little influence when used with the LCA-Count
and SpaM-X heuristics. Based on these experiments, we assume that the SpaM-4 heuristic
with w = 12 is a robust choice for a wide range of data sets and query lengths. Subsequent
tests confirm that these parameters produce consistent results. In Fig. 3.6, w = 8 sometimes
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Figure 3.7 – Average accuracy measured as ND (y-axes) for the LCA-Count (left) and
SpaM-4 (right) heuristics dependent on the number of patterns (x-axes). The mean of 100
iterations is given for five repetitions (blue dots, different hues) for each pattern set size.
Pattern sets were compiled with different random seeds using rasbhari.

produces better results than w = 12; however, choosing a lower weight comes with the
downside that runtimes may be significantly longer. This is due to the increase in the number
of spaced-word matches that occur purely by chance rather than from homologous sequence
positions. Each of these spaced words is subjected to the time-intensive filtering procedure by
which it is (presumably) discarded. This effect is especially severe when whole genomes are
used as references. As depicted in Fig. 3.5, the weight of the pattern has little influence on
the placement accuracy when used together with the LCA-Count or SpaM-X heuristics.
However, it is important to also analyze the influence of the size of the pattern set and the
pattern structures themselves on the placement accuracy. Here, the internal structure of
a pattern P refers to the exact locations of the match positions within P . For the default
parameters w = 12 and l = 44 there are a total of 21 090 682 613 different patterns from which
rasbhari chooses a subset of the specified size.

Figure 3.7 illustrates the variation in placement accuracy when pattern sets of varying
sizes are used. The evaluation was carried out with App-SpaM on the bac-150 data set using
the heuristics LCA-Count and SpaM-4 with w = 12 and l = 44. Here, a repeat refers to a
single experiment with a fixed random seed that comprises 100 pruning repetitions. The figure
illustrates the average ND of each repeat across all repetitions and the box plots indicate the
variation between repetitions with five sets of identical pattern sizes generated from different
random seeds. Additionally, Fig. 3.8 shows the overall statistics for all 100 repetitions for each
repeat in more detail. The accuracy of App-SpaM barely changes across all repeats. The
standard deviation of the mean node distance across all repeats is merely 0.06. Thus, neither
the specific patterns used nor the number of patterns has a notable influence on the placement
accuracy for the bac-150 data set. The described trends hold also true for the bv-797 data
set, see Suppl. Fig. A.1 and the statistics in Suppl. Tab. A.7 and Suppl. Tab. A.8.
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Figure 3.8 – Accuracy measured as ND (left y-axes) of the LCA-Count and SpaM-4
heuristics (outer x-axis) dependent on the number of used patterns (right y-axis). Five
repetitions for each pattern set size are shown (inner x-axes, different hues). This figure was
adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of short
reads without sequence alignment, in: Bioinformatics Advances, 2021.
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Figure 3.9 – Accuracy measured as ND for six PP programs (x-axes) on eight data sets
(individual boxes). The ND scales (y-axes) differ between the data sets due to the large
variation in the size of the reference trees and, accordingly, the resulting node distances. The
average accuracy across all queries for each pruning event is shown (black dots) as well as
overall statistics for each program on each data set across all 100 pruning events (colored box
plots). The best performing program (lowest mean ND) for each data set is highlighted (red
star). This figure was adapted from App-SpaM: Phylogenetic placement of short reads without
sequence alignment, in: Bioinformatics Advances, 2021.

A summary of the comprehensive accuracy evaluation, including all six placement programs,
is provided in Fig. 3.9. The figure displays the accuracy for all eight data sets with the default
parameters of each program as indicated in Tab. 3.2. The absolute accuracy of all programs
varies strongly between data sets due to the differing number of reference sequences. Generally,
large reference trees entail a higher ND for all programs. RAPPAS performs best on average
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Figure 3.10 – Accuracy measured as the ND (y-axes) for six PP programs (x-axes) on three
data sets (individual boxes) with query read length other than 150 bp. The read lengths are
set to 500 bp for hiv-104, 300 bp for neotrop-512, and 300 bp for tara-3748). This figure
was adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of short
reads without sequence alignment, in: Bioinformatics Advances, 2021.

and achieves the lowest average ND on the bac-150, bv-797, epa-218, and epa-714 data
sets. EPA-ng has the lowest average ND on the neotrop-512 and hiv-104 data sets. On
the epa-628 and tara-3748 data sets, App-SpaM performs best. The mean accuracy of
App-SpaM across all data sets is 0.04 nodes better than the mean accuracy of all placement
programs across all data sets; if APPLES is left out from this consideration, App-SpaM is
on average 0.01 nodes worse than the mean accuracy of all other placement programs. Thus,
on average App-SpaM performs slightly better (or slightly worse when APPLES is neglected)
than the other available programs. For each data set, the programs demonstrate a similar
standard deviation across the 100 pruning events. One exception is the hiv-104 data set;
here, App-SpaM’s mean accuracy is sub-par and its standard deviation across the pruning
events is large.

Fig. 3.10 shows the accuracy for read lengths other than 150 bp on three data sets. Due
to excessive memory consumption, only 5 repetitions were performed for RAPPAS on the
neotrop-512 data set. The results closely follow those observations of Fig. 3.9. EPA-ng
performs best on the hiv-104 and neotrop-512 data sets, and App-SpaM performs best on
the tara-3748 data set. In general, all programs perform better when the length of the query

Table 3.2 – Default program parameters.

App-SpaM RAPPAS APPLES EPA-ng EPA pplacer

w = 12 k = 8 method: FM heuristic: 1 g = 0.1 ms = 6
omega: 1.5 sb = 3

m: EXP-4 reduction: 0.99 criteria: MLSE g = 0.999 mp = 40

Default parameters that were used to generate the results displayed in Fig. 3.9 and Fig. 3.10. For
additional parameter combinations for each program and results thereof, we refer to the appendix.
This table was adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of
short reads without sequence alignment, in: Bioinformatics Advances, 2021.
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Figure 3.11 – Accuracy of PP programs when using query reads simulated with ART. The
accuracy is measured as the ND for six PP programs (x-axes) on three data sets (individual
boxes). The ND scales (y-axes) differ between the data sets due to the large variation in the
size of the reference trees, and accordingly the resulting node distances. The average accuracy
across all queries for each pruning event is shown (black dots) as well as overall statistics for
each program on each data set (colored box plots) across all 50 pruning events. The best
performing program (lowest mean ND) for each data set is highlighted (red star). This figure
was adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of short
reads without sequence alignment, in: Bioinformatics Advances, 2021.

reads increases: More data is available to infer superior placement positions. For App-SpaM
specifically, longer query sequences entail significantly more spaced words that can produce
homolog matches to the reference sequences. The decrease in ND for longer reads is strongest
for RAPPAS (average ND drops 36% across the three data sets) and less pronounced for
App-SpaM (25%) and APPLES (11%). The other ML-based programs (pplacer, EPA,
EPA-ng) also have a greater benefit from longer queries than the alignment-free approaches.

The results obtained for query reads simulated with ART are presented in Fig. 3.11.
Unlike the default version of PEWO, ART simulates a specified number of query reads with
sequencing errors from the set of pruned reference sequences. We simulated 50 query reads
of each pruned sequence for 50 pruning events. The results deviate severely from those of
the PEWO framework illustrated in Fig. 3.9: The accuracy of App-SpaM is almost not
affected by the introduced sequencing errors and the mean accuracy closely follows the mean
accuracy from before. The loss of accuracy amounts to 0.18% averaged over all three data
sets. However, all other PP programs exhibit a significant drop in placement accuracy when
query reads are simulated by ART. The average ND roughly doubles for the other programs
compared to using reads from the PEWO workflow. For RAPPAS, the ND even increases
by 146% from an average of 3.73 to 9.18 nodes on the hiv-104 data set. These results should
be taken with caution, as discussed in more detail in Sec. 3.1.3.

We performed phylogenetic placement with App-SpaM on sets of unassembled reference
sequences of varying coverages as a proof of concept. For this, we used the two data sets hiv-
104 and wol-43 consisting of long reference sequences (9 096 bp and 52 768 066 bp on average,
respectively) and sampled reads of length 150 bp for a range of coverages. In each experiment,
each reference was then represented by a bag of reads of a given coverage. App-SpaM was
run with default parameters for all experiments. Using low coverages drastically reduces the
number of reads for each reference sequence, which results in fewer spaced words. Thus, we
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Figure 3.12 – Accuracy of App-SpaM on unassembled reference sequences. The accuracy is
measured as the mean ND (y-axes) with respect to the reference coverage (x-axes) on two data
sets (wol-43 and hiv-104). Error bars indicate standard deviations across 50 repetitions
for each experiment. Three controls are supplied: The accuracy when App-SpaM is run on
assembled references (assembled), the accuracy when each query is placed at the root of Tref
(root control), and the accuracy when each query is placed at the midpoint of Tref. This figure
was adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of short
reads without sequence alignment, in: Bioinformatics Advances, 2021.

additionally used w = 8 to counteract this effect and amplify the number of spaced-word
matches. The corresponding results are presented in Fig. 3.12 for sequence coverages C from
1
32 up to four in steps of powers of two. Three controls are presented to judge the quality
of inferred placement positions: The accuracy of App-SpaM when executed with assembled
reference sequences (assembled), the accuracy when every query is placed on the root of the
tree (root control), and the accuracy when every query is placed on the midpoint of the tree
(midpoint control). In general, the placement accuracy of App-SpaM is lower on unassembled
reference sequences in all experiments compared to its accuracy on assembled sequences.
For a coverage of four and w = 12 the ND increases by 14% for hiv-104 and by 15% for
wol-43. For lower coverages, the accuracy discrepancy between assembled and unassembled
sequences amplifies: For a coverage of one and w = 12 the ND is already 30% (hiv-104) and
31% (wol-43) higher than with assembled references. Since the average sequence length
of hiv-104 is only 9 096 bp, the results deteriorate quickly for even lower coverages. When
C = 1

16 every reference genome is merely represented by a bag of reads containing 3.8 reads
on average. In this case, App-SpaM is incapable of extracting useful placement information,
and its proposed placements are only as good as when placing each query on the root straight
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Table 3.3 – Runtime comparison of programs.

App-SpaM RAPPAS APPLES EPA-ng EPA pplacer
w = 12 w = 16 k = 6 k = 8

CPU-652
preproc. - - 651 7 253 3 437 3 437 3 437 3 437
placement 152 79 710 454 2 804 1 315 194 338 9 257
total 152 79 1 361 7 707 6 241 4 752 197 775 12 694

CPU-512
preproc. - - 1 070 12 144 1 879 1 879 1 879 1 879
placement 34 22 254 185 348 127 6 626 1 976
total 34 22 1 324 12 329 2 227 2 006 8 505 3 855

Comparison of runtimes for all programs on two data sets. 10 000 queries were placed for
CPU-512 and 100 000 queries for CPU-652. All runtimes are denoted in seconds. For each
data set, we present the time for preprocessing (preproc.), placement, and the total sum of
preprocessing and placement with default parameters. The preprocessing steps include the
generation of the query alignment and building the phylo-k-mer database for RAPPAS. This
table is adapted from App-SpaM: Phylogenetic placement of short reads without sequence
alignment, in: Bioinformatics Advances, 2021.

away. Here, it is likely that no spaced-word matches are found for many query sequences
and App-SpaM places such queries at the root anyway. For the same reason, no results are
supplied for C = 1

32 on the hiv-104 data set. In contrast, the average placement accuracy on
wol-43 stays below the control methods for all sampling ratios.

The results of the runtime evaluation of all PP programs are outlined in Tab. 3.3. It shows
the runtime of all programs in seconds (s) divided into the time requirements for preprocessing
steps, the placement process itself, and the total sum of both. The preprocessing steps
include the alignment of query sequences against the reference MSA or the construction
of the phylo-k-mer database (pkDB) in RAPPAS. The preprocessing time is also declared
for APPLES as it calculates query-reference distances based on the query alignments on
default. There is no preprocessing step for App-SpaM. RAPPAS requires significant time to
construct the pkDB; however, the database only must be built once for any reference data set.
Then, multiple runs with different query reads may be performed consecutively without the
need to rebuild the pkDB. The runtime of App-SpaM and RAPPAS is heavily dependent
on the weight of the pattern or the size of the k-mers in the pkDB, respectively. Thus, for
both programs, we report different runtimes with respect to these parameters. For all other
programs, the runtimes are rather constant across all parameter combinations. The reported
runtimes also depend on the utilized computing infrastructure and their absolute values carry
little information. Instead, the relative in- or decrease of runtimes between the programs is of
interest. App-SpaM requires the least time to place all query reads on both data sets. With
default parameters, it requires 152 s on CPU-652 and 34 s on CPU-512. For comparison,
the alignment-based programs EPA-ng and EPA require 4 752 s and 197 775 s, respectively.
For EPA-ng, the runtime is primarily spent on the preprocessing step (3 437 s preprocessing,
1 315 s placement), while for EPA the total runtime is dominated by the placement (3 437 s
preprocessing, 194 338 s placement). APPLES, the only other program that can perform
alignment-free placement, requires 2 804 s to place the queries on CPU-652 and 348 s on
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Table 3.4 – Memory usage of programs.

App-SpaM RAPPAS APPLES EPA-ng EPA pplacer
w = 12 w = 16 k = 6 k = 8

CPU-652
preproc. - - 2 738 2 739 577 577 577 577
placement 253 235 1 606 2 513 561 669 5 575 995
max 253 235 2 738 2 739 557 669 5 575 995

CPU-512
preproc. - - 3 305 3 602 122 122 122 122
placement 250 248 1 491 2 677 217 557 681 447
max 250 248 3 305 3 602 217 557 681 447

Comparison of peak memory usage for all PP programs on the CPU-652 and CPU-512 data
sets. Memory usage is always indicated in MB and is taken from the column PSS of the
results from the RES workflow of PEWO. This table is adapted from the Supplementary
material of App-SpaM: Phylogenetic placement of short reads without sequence alignment, in:
Bioinformatics Advances, 2021.

CPU-512; this amounts to 18 times (CPU-652) and ten times (CPU-512) the runtime of
App-SpaM. Thus, App-SpaM runs 30-60 times faster than the next fastest program EPA-ng
(excluding RAPPAS with k = 6 since its accuracy deteriorates quickly) and three to five
times faster than the placement step of RAPPAS.

The memory requirements for all programs are summarized in Tab. 3.4. All values are
indicated in mega bytes (MB) and describe the peak memory usage of the programs measured
as the proportional set size (PSS) by the RES workflow of PEWO. PSS is a reasonable
estimate of the total peak memory requirement of a program where the memory usage of
shared libraries is counted once. App-SpaM has the lowest memory requirement (253 MB)
on CPU-652 and the third lowest (250 MB) on CPU-512 behind APPLES and pplacer.
The pkDB of RAPPAS requires the largest amount of memory (2 739 MB on CPU-652 and
3 602 MB on CPU-512).

We also used App-SpaM to place up to 37 480 000 query reads onto the tara-3748 data
set to demonstrate its placement capabilities. The results of these experiments are shown in
Fig. 3.13. With parallel execution on 30 cores and default parameters, App-SpaM placed the
37 480 000 reads in 613 minutes. Increasing the pattern weight to w = 16 reduces the runtime
to 475 minutes. The growth in runtime is linear with respect to the number of query sequences.
This is expected since each query is placed individually on Tref and does not influence previous
or future placements. Thus, the computational load grows linearly with the number of query
reads. No other program completed the placement of 37 480 000 on our system (note, however,
that the used computing infrastructure does not comprise state-of-the-art components). A
similar runtime study was conducted in the evaluation of EPA-ng [15].

3.1.3 Discussion

Phylogenetic placement (PP) is the task of integrating biological sequences of unknown origin
into a known phylogeny of reference organisms to phylogenetically characterize the query
sequences. The field of PP has experienced profound advancements during the last decade [334],
including a variety of new software programs [14, 15, 332], a range of associated tools to
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Figure 3.13 – Runtime of App-SpaM on the tara-3748 data set with large amounts of
query reads. The runtime is shown in seconds (y-axes) with respect to the number of query
reads (x-axes) for pattern weights of w = 12 and w = 16. Each bar represents the mean
across two repeats. This figure was adapted from the Supplementary Material of App-SpaM:
Phylogenetic placement of short reads without sequence alignment, in: Bioinformatics Advances,
2021.

handle phylogenetic placement data [333, 340, 357], and frameworks to evaluate and visualize
the resulting placements [358]. PP has been predominantly applied in metataxonomics to
identify short sequencing reads from metagenomic experiments. Its area of application has
been limited mainly due to the nature of PP software: All previous programs for phylogenetic
placement require a multiple sequence alignment of the reference sequences, and for most
programs, the alignment is also required to include the query sequences.

We presented App-SpaM, a software program that performs phylogenetic placement
without requiring reference or query alignments. The software is freely available via its
Github page [359] and accessible as a Conda package on the Bioconda channel [360]. With
App-SpaM, we pursue to continue the advancement of the domain of PP by introducing
a novel alignment-free strategy to derive placement locations. Thereby, App-SpaM opens
the possibility to process novel types of sequencing data for which phylogenetic placement
was impossible previously. App-SpaM relies on spaced words that it extracts from all input
sequences with respect to a predefined binary pattern. It then detects homologous sequence
fragments, so-called spaced-word matches, between query and reference sequences using a
filtering procedure as proposed in the program FSWM. However, App-SpaM is a novel
implementation of this approach and is designed to perform phylogenetic placement for large
amounts of sequencing data. We performed an extensive evaluation to assess the capabilities
and limits of App-SpaM and the impact of different algorithmic designs on its placement
accuracy. Furthermore, we conducted a thorough accuracy assessment, including five other
programs for PP on a wide variety of metataxonomic data sets. To the best of our knowledge,
no such comprehensive analysis for the evaluation of placement programs and their parameter
settings has been performed previously. For this, we deployed the pruning-based accuracy
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workflow of the recently developed PEWO framework. We also extended PEWO to be able
to simulate query reads with error profiles from common sequencing platforms by using the
ART software and examined the quality of placements inferred with App-SpaM when only
unassembled references are available; a scenario that is becoming more abundant, but cannot
be handled natively by any other placement program other than App-SpaM.

When placing short query reads, App-SpaM is on par with other state-of-the-art ML-based
programs, as indicated in Fig. 3.9. We measured the placement accuracy as the number of
nodes in the reference tree between the proposed and expected placement branch, the so-called
node distance (ND), and use both terms (ND and accuracy) interchangeably. App-SpaM’s
mean accuracy closely follows those of ML-based programs. In addition, it outperforms
APPLES, the only other program that can perform reference-alignment-free placement. Note,
however, that APPLES also uses query-reference alignments by default (and in our accuracy
evaluation) to infer query-reference distances. App-SpaM has the best average performance
of all programs in two of the eight inspected data sets. Furthermore, it is consistently on
par with the other programs on the remaining data sets with the exception of hiv-104 and
epa-714 where it does not quite reach the accuracy of the other programs. The variance of
App-SpaM’s placement accuracy across multiple pruning iterations is comparable to that
of other programs. These results cover the metataxonomic setting (with the exception of
the hiv-104 data set), the major field of application for phylogenetic placement [334, 361].
It is currently also the singular use case where all programs can be applied equally with
respect to potential input data and without excessive runtimes. The program RAPPAS
performs exceptionally well and reaches the lowest average ND overall and on four of the
eight data sets specifically. RAPPAS is not based on the ML principle, but instead uses a
pre-constructed database of k-mers that are presumed to be phylogenetically informing; it
also does not require query alignments, but instead matches all k-mers of a query against the
database to infer placement positions. As expected, all programs show an enhanced accuracy
when longer query reads are used, see Fig. 3.10. This effect is stronger for ML-based programs
and RAPPAS than for App-SpaM and APPLES.

App-SpaM relies on the SpaM approach where predefined patterns are utilized to find
micro-alignments between query reads and reference distances. Our presented placement
heuristics depend either on the number of spaced-word matches that pass the filtering step
or on the estimated phylogenetic distances that are inferred by the Jukes-Cantor corrected
average number of nucleotide substitutions at the don’t care positions. This integral part
of App-SpaM’s algorithm implies its virtues but also causes troubles on the flip side. The
advantages are evident: No time-intensive calculation of alignments is required, neither of the
reference sequences nor of the query sequences. This allows App-SpaM to function in domains
where it was impossible to apply phylogenetic placement previously, see Chpt. 5. In addition,
App-SpaM is very fast compared to other PP programs, as demonstrated in Tab. 3.3; this
applies even if the calculation of alignments is not taken into account. The spaced words
are position independent and not affected by the presence of genomic rearrangements, gene
duplications, gene deletions, or similar large-scale evolutionary effects. In general, they are
a solid basis for the estimation of phylogenetic distances between whole genomes or bags
of reads, as demonstrated in previous work [11, 166]. However, there are also drawbacks
to consider when working with spaced words: First, our approach is not sensitive to short
insertions or deletions, in contrast to alignment-based methods. The micro-alignments that are
constituted by spaced-word matches have a fixed length and do not allow a shift of nucleotides
in one of the two involved sequences. If an indel occurs at a sequence position App-SpaM
most likely does not find spaced-word matches that include this position. If it still does, the
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match is found by pure chance because the nucleotides at the match positions on one side
of the indel are identical by accident. Such a spurious spaced-word match is then subjected
to the filtering procedure, where it is presumably filtered out, depending on the position of
the indel within the spaced word. Thus, indels are unlikely to directly affect our distance
estimates; instead, they lower the number of spaced-word matches because SpaMs are unable
to model indels explicitly. For example, with a pattern length of l = 44, a single indel in
the middle of a query sequence with 150 bp reduces the number of potential homologous
spaced-word matches by roughly 41%. With each additional indel that is present in a query
read, it becomes more improbable that App-SpaM finds a sufficient number of SpaMs to infer
a well-founded placement position.

When using spaced-word matches, caution is also advised when low-complexity regions are
present in the input sequences. We recommend end users to filter out all genomic segments of
low complexity from the query and reference sequences, especially those regions that contain
repeating sequence successions. This especially applies to eukaryotic sequences where such
regions are more abundant than in prokaryotic genomes [362, 363]. The presence of repeats
in a reference or query sequence results in a linear increase in spaced-word matches with
respect to the length of the repeats. If they are present in reference and query sequences,
the number of spaced-word matches grows quadratically. But not only does the runtime of
App-SpaM suffer from repeats in the input sequences, but also the filtering procedure that
detects homologous sequence positions becomes ineffective: Many spaced-word matches may
pass the filtering step even if they do not originate from homologous sequence segments. This
skews the number of spaced-word matches as well as the estimated substitution frequencies.
Several programs exist to remove low-complexity regions [364, 365] and if such segments are
suspected in the input sequences, they should be redacted prior to applying App-SpaM. We
discuss the effect and handling of repetitive regions also in Sec. 6.1.

While App-SpaM’s heuristics are extremely fast, they are also a simplification of the
complex placement process and neglect considerable amounts of the available data. While ML-
based programs infer near-optimal positions based on a detailed model of sequence evolution,
App-SpaM simply performs placement based on those two references that have (or the single
reference that has) the largest number of spaced-word matches to a query Sq. In contrast to
APPLES, App-SpaM does not integrate the distances between Sq and all references into
the designation of the placement branch or the assignment of branch lengths. It is striking
that the accuracy of App-SpaM is on par with other placement programs nonetheless. This
suggests that the gain in precision that is normally associated with ML-based methods is
canceled out by the increase in the associated model complexity: The parameterization of the
underlying evolutionary model and the construction of query alignments might counterbalance
any gains in accuracy for ML-based programs and App-SpaM’s lack of a sophisticated
placement strategy is its curse and blessing at once. Furthermore, it is a surprising result
that both heuristics that depend on estimated phylogenetic distances (Min-Dist and LCA-
Dist) perform universally worse than those heuristics that solely depend on the number of
spaced-word matches (LCA-Count and SpaM-X), see Fig. 3.4 and Fig. 3.5. The latter figure
also indicates that Min-Dist and LCA-Dist get substantially worse with increasing pattern
weights. We are unsure about the exact reasons for this behaviour. Again, one hypothesis is
the aforementioned trade-off that comes with an increased model complexity: we suspect that
the phylogenetic distances are not estimated reasonably well, especially under the presence of
query sequences with short length. High weights reduce the number of spaced-word matches
such that insufficient matches remain; see Fig. 3.14. Alternatively to SpaM-X, we also used a
corresponding heuristic based on distance estimates instead of the number of spaced-word
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Figure 3.14 – Number of spaced-word matches with respect to the pattern weight w ∈
{8, 9, 10, 11, 12, 13, 14, 15, 16} for three data sets.

matches; the results of this heuristic were equally poor as for Min-Dist and LCA-Dist and,
therefore, it is not shown in the evaluation. We discuss additional placement heuristics for
App-SpaM in Sec. 4.2.

The current implementation of App-SpaM considers the reverse complement of sequences.
This is essential, as the original strand of a sequence read by an NGS machine is not necessarily
known. App-SpaM considers the references only in the singular direction of the supplied input
data; but for each query Sq, spaced words are also extracted from its reverse complement
in addition to its supplied direction. By this, we ensure that homologies between different
sequence strands are taken into account. Admittedly, this strategy is not particularly memory
efficient, since twice as many spaced words are stored for each query than necessary. Instead,
an improved strategy that is regularly utilized in k-mer approaches is the use of canonical
k-mers [148, 366]: The canonical version of any k-mer K is the lexicographically smaller string
of K and its reverse complement. This concept can be directly transferred to spaced words: A
canonical spaced word W ∈ Σ∪{∗} is the lexicographically smaller string of W and its reverse
complement, whereas the wildcard character ∗ is its own complement. Note that storing the
reverse complement of W also requires to store the reverse complement of the associated don’t
care positions. The current strategy does not exacerbate memory issues in most cases though:
The memory usage of App-SpaM is dominated by two data structures whose sizes depend on
the number and lengths of the input sequences. The first data structure keeps the two lists Lr
and Lq of all extracted spaced words. Each spaced word, including all bases at the match and
don’t care positions, are saved in 28 bytes. Thus, the extraction of all spaced-words from a
text file of sequences where every symbol is stored in a single bit requires 28 times the size of
the file. This is solely relevant for the reference sequences since queries are processed in small
batches and, consequently, do not cause excessive memory usage. Since queries are processed
in batches, it is also not detrimental to store the reverse complement of each spaced-word
explicitly with respect to the memory requirements. In addition to saving all spaced words,
the second fundamental data structure stores the resulting statistics that are necessary to infer
placement positions. This includes the number of spaced-word matches and the number of
nucleotide mismatches between each query and reference sequence. Here, for m references and
n queries per batch, the structure requires roughly 16 ·n ·m bytes. When using short reference
sequences such as single marker genes, the second data structure dominates the memory
footprint of App-SpaM. This is also the case in the results of the RES workflow shown in
Tab. 3.4. However, for long references the storage of the associated spaced-words dominates
the overall memory usage. This is a hindrance in the broad application of App-SpaM and we
discuss strategies to overcome this limitation in Sec. 4.3
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In previous work, it was suggested that using a set of multiple patterns improves the
accuracy of alignment-free spaced-word methods over just using a single pattern [367]. Fur-
thermore, it was discovered that a set of patterns that minimizes either the overlap complexity
or the variance of the number of pattern-based matches reduces the variance of the accuracy
between program runs and improved the overall accuracy of dependent methods [165]. With
the results presented here, we cannot affirm that either of those two observations holds for
App-SpaM: As shown in Fig. 3.7, increasing the number of patterns does not significantly alter
the average accuracy, no matter which placement heuristic is employed. It appears that an
increasing number of patterns restricts the ND variance over multiple program runs. However,
this visual observation is not supported by statistical analyses: Using Levene’s test [368] with
a significance level α = 0.05, there is no significant difference in the variance of the mean
node distance between repetitions of the same pattern set size (compare Fig. 3.8), nor is there
a significant difference in the variance of the mean accuracy across different pattern sizes
(compare Fig. 3.7). There is also no significant difference between the average accuracy when
using pattern sets of different sizes. Furthermore, the runtime grows linearly with the pattern
set size; even if there was a significant drop in the ND variance, the small effect size would
not compensate for the lengthened runtimes. Thus, like FSWM, App-SpaM uses a default
pattern set size of one and we discourage the end user from increasing the number of used
patterns to keep the runtime and memory requirements minimal. In general, App-SpaM
exhibits excellent runtimes on the presented data sets and is ahead of the other programs
by a wide margin; see Tab. 3.3. In the presented examples, the preprocessing of ML-based
programs by itself takes longer than the overall time that App-SpaM requires for the whole
placement. When preprocessing is excluded, the gap between App-SpaM and the more recent
programs APPLES, RAPPAS, and EPA-ng shrinks, but the difference still remains at
least an order of magnitude. The substantial reduction in runtime for EPA-ng compared to
EPA also highlights the importance of improved heuristics for ML-based programs and the
substantial progress that has been made in recent years.

ML-based programs for PP assign multiple weighted placement locations to each single
query Sq according to their normalized likelihood values. This is useful when the placement
of Sq is uncertain and can guide decision making in subsequent analysis steps. Supplementary
figures A.2 to A.12 show that the information carried by multiple weighted placement locations
is superior for all ML-based programs than only considering their highest weighted placement:
eND values are generally lower, indicating better performance than their respective ND values.
Yet, the magnitude of this effect is negligible for most datasets. The software RAPPAS also
reports weighted placement positions, even though it does not calculate likelihood values.
Instead, it uses a measure associated with the logarithm of the product of the weighted
phylo-k-mers on each placement edge to weight multiple placement branches. App-SpaM does
not offer the possibility to specify multiple placement positions. However, different strategies
to provide a measure of placement uncertainty for App-SpaM’s placements are conceivable,
see Sec. 4.4. The specification of placement uncertainty would constitute a beneficial feature
for future versions of App-SpaM.

We extended the PEWO framework with the program ART to simulate sequencing reads
of common sequencing platforms. The conspicuous results of this analysis are depicted in
Fig. 3.11. PEWO performs query-to-reference alignments internally by using the hmm-align
tool of the HMMER-suite [369]. All programs that rely on these query alignments show a
severe drop in accuracy when ART-simulated reads are used. In this setting, they exhibit
roughly double the node distance, as opposed to when reads are created by simply splitting
the pruned references into shorter fragments. In contrast, the accuracy of App-SpaM barely
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changes, no matter how the provided query reads were generated. In general, we believe that
App-SpaM is indeed robust to nucleotide substitution errors by design: Spaced words are
an adaptive approach that is rarely affected by nucleotide mismatches compared to other
alignment-free methods that rely on continuous k-mers. This is also supported by Fig. 3.11
which shows the small loss of accuracy when PEWO-generated reads are exchanged for
ART-simulated reads. Contrarily, the simulated errors of ART might cause imprecise query
alignments in PEWO’s query alignment procedure. However, the reads generated by ART
in our experiment follow a default error profile of the Illumina sequencing platforms and
are expected to exhibit an average of approximately 0.0011 nucleotide substitutions per
sequence position with 0.00009 insertions and 0.00011 deletions. For such low substitution
and indel frequencies, it is not expected that the query alignments diverge notably. The
results presented here are also in direct contradiction to the accuracy evaluation performed in
RAPPAS where the loss of placement accuracy was examined in direct dependence on the
indel and substitution rate of query reads. There, only little loss of accuracy was observed for
the programs EPA, EPA-ng, pplacer, and RAPPAS. Despite thorough investigation, we
were unable to determine the underlying reason for these discrepancies. They are likely to
originate from the interaction of PEWO and ART in our implementation, which is freely
accessible [353]. More careful tests are required to assess and interpret our results to determine
their origin. For this, it would be beneficial if upcoming PEWO versions natively support the
simulation of sequencing errors in the query reads according to common sequencing platforms,
preferably with the option to adjust substitution and indel frequencies. Apart from this, the
PEWO framework is a valuable tool to compare and assess PP programs, either on their
own or among each other. Yet, another area of PEWO requires further attention: The PAC
workflow uses the ND or eND as a measure of accuracy for PP programs. Both metrics are
intrinsically coupled to the size of the reference tree and an identical ND has considerably
different meanings for reference trees of varying sizes. For example, increasing the density of
the taxon sampling in Tref implies larger node distances even when queries are placed equally
well in the same neighborhood of reference sequences. Thus, both metrics remain specific to
singular reference trees and cannot be compared between different data sets. Normalizing
the values of ND and eND by the total number of nodes in Tref or the total size (sum of all
branch lengths) of Tref might alleviate some of these shortcomings. Furthermore, ND and
eND do not take branch lengths into account, and additional metrics that incorporate the
(normalized) sum of branch lengths between expected and proposed placement locations would
be beneficial.

To assess the accuracy of all placement programs, PEWO performs multiple repetitions
in each of which a random subtree from Tref is pruned, a so-called pruning event. Pruning
events are very disparate with respect to the size and topology of the remaining reference tree.
The results in Fig. 3.9 suggest that certain pruning events are more challenging than others;
in all data sets and for all PP programs, we observe outlier repetitions with a highly increased
ND. Equally, we also note that the node distance approaches zero in some prunings. Hence,
it seems evident that pruning events vary with respect to their ’difficulty’ or ’complexity’;
however, it remains unclear what features of a pruning event constitute its difficulty. We
propose two properties of a pruning event that might be a proxy for its complexity. Let
s(Tref) be the total sum of branch lengths of Tref. The first hypothesis is that the difference in
the sum of branch lengths between Tref and the pruned reference tree T −ref is an indication
for pruning difficulty. We term this quantity (s(Tref) − s(T −ref)) also the size of a pruning
event. This difference is large if long branches or large clades are pruned from Tref. In the
first case, the to-be-placed sequences are far away from their evolutionarily related next
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Figure 3.15 – Relation between two proxies for the difficulty of an pruning event and the
according placement accuracy. The upper part (a) shows the relation between the size of a
pruning event and the placement accuracy for all six programs. The lower part (b) shows
the relation between the location of the expected placement branch within Tref and the
placement accuracy for all six programs. This figure was adapted from the Supplementary
Material of App-SpaM: Phylogenetic placement of short reads without sequence alignment, in:
Bioinformatics Advances, 2021.
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neighbors; in the latter case, a large amount of data is lost due to the pruning. Both cases
could constitute a more complex placement scenario. In addition to the size of a pruning
event, another indicator of pruning difficulty might be the location of the expected placement
branch in the pruned tree T −ref. We refer to the number of nodes on the longest path from the
expected placement branch towards any leaf below as its height. The minimal height of 1 is
reached when the expected placement branch is adjacent to a leaf node. The larger the height
of the expected placement branch is, the more distant are the next reference sequences at
the leaves and inferring secure placement branches might become more difficult. To assess
whether one of these two properties is indeed an indicator of pruning difficulty, Fig. 3.15
illustrates the difficulty of pruning events with respect to the placement accuracy attained by
each program on the bac-150 data set. Supplementary Figure A.13 and Suppl. Fig. A.14
show additional results for neotrop-512 and bv-797, respectively. By visual inspection of
Fig. 3.15a, no obvious trend is apparent: The accuracy for pruning events of all sizes varies
considerably for all programs. Certain small pruning events have a large associated ND and,
vice versa, large pruning events can exhibit small NDs. The same holds true for Fig. 3.15b
which indicates that the height of the expected placement branch has no apparent impact
on the ND of any program. We also calculated Spearman correlation coefficients between
both proxies for pruning difficulty and the mean accuracy of all PP programs on the three
data sets. When setting the significance level α = 0.05, we report a significant correlation
between the difference of sum of branch lengths and the ND for App-SpaM on all three data
sets. The same significant correlation also exists for all other programs on neotrop-512, for
all programs except APPLES and RAPPAS on bv-797, and only for EPA on bac-150.
For the second proxy (height of expected placement branch), no significant correlations are
present on the bac-150 and neotrop-512 data sets; on bv-797 positive correlations are
significant for all programs except APPLES and EPA. When considering these results, it
has to be taken into account that larger prunings entail smaller reference trees, which in turn
imply lower average node distances, no matter the relative quality of the placements. Given
these results, the size of a pruning event indeed seems to be an adequate indication of the
difficulty of a pruning event. Again, this shows that a proper sampling of reference organisms
in Tref is vital to ensure a high quality of placements.

App-SpaM, as presented here, is already a full-fledged tool for performing fast alignment-
free phylogenetic placement on diverse sequence data. However, we also observed some
shortcomings of App-SpaM with respect to its accuracy, the requirement of computational
resources, and limitations with respect to specific properties of biological sequence data. In all
these areas, there is promising potential to further improve App-SpaM and we believe that it
is worthwhile to address these issues to improve its capabilities. Nevertheless, App-SpaM
already presents a useful method to PP that offers a divergent strategy compared to previous
approaches while providing similar accuracy and greatly accelerated runtimes.
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Chapter 4

Improving Alignment-free
Phylogenetic Placement

This chapter is derived from preliminary and subsequent work to the peer-reviewed open-
access publication

Matthias Blanke and Burkhard Morgenstern.
"App-SpaM: Phylogenetic placement of short reads without sequence alignment."
In: Bioinformatics Advances (2021).

All text has been written exclusively for this thesis by Matthias Blanke, who also prepared
all figures. Parts of Sec. 4.3 are derived from preliminary work by Christoph Elfmann
(Department of Bioinformatics, Georg-August-Universität Göttingen) who applied iterative
hash-based sampling to FSWM [370].

Using spaced words as the basis for phylogenetic placement involves multiple algorithmic
decisions that influence the accuracy and speed of the placement process. During the design
and implementation of App-SpaM we explored alternatives to the algorithmic procedure
presented in Sec. 3.1. These alternatives include different placement heuristics, the use of
evolutionary substitution models other than Jukes-Cantor, and the employment of spaced
phylo-k-mers to perform a preselection of potential placement branches. We devised additional
enhancements to App-SpaM after its publication; these enhancements include a sampling step
for spaced words to minimize memory demands on large data sets and the computation of a
measure of placement uncertainty. In the following, we revisit and evaluate all of App-SpaM’s
design decisions in detail.

4.1 Estimating Evolutionary Distances with Spaced Words

The evolutionary distance between two organisms is commonly represented by the number of
nucleotide substitutions that occurred between their DNA sequences. Under the assumption
of constant nucleotide substitution rates and independent sites, the number of substitutions
between two sequences grows linearly with their evolutionary distance, as discussed in more
detail in Subsec. 2.3.1. However, estimating the actual frequency of nucleotide substitutions
is challenging in practice: The number of observed substitutions differs, potentially severely,
from the true underlying frequency because occurrences of multiple mutations at the same
sequence position are unidentifiable. Thus, a variety of models estimate the true number
of nucleotide substitutions from the observed ones. Such models are parameterized by
counting the observed substitutions in similar sequencing data, for example, from alignments;
this prerequisite can often not be fulfilled when using alignment-free methods. In general,
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parameter-rich models tend to perform better when sufficient homogeneous data is available to
estimate their parameters robustly. We refer to the true number of nucleotide substitutions per
site between two sequences S1 and S2 as d(S1, S2). For closely related sequences, the observed
number of differences, also known as the Hamming distance or p-distance (see. Eq. 2.1), is a
decent approximation for d. However, for larger evolutionary distances, the Hamming distance
p(S1, S2) consistently underestimates the true phylogenetic distance d(S1, S2). Like FSWM
and Multi-SpaM, App-SpaM uses the Jukes-Cantor (JC) model to estimate d from p. JC
assumes that the base frequencies of all nucleotides are identical (πA = πC = πG = πT = 0.25)
and that all nucleotide substitutions are of equal probability. Then, the distance between two
sequences is estimated as

d(S1, S2) = −3

4
ln

(
1− 4

3
· p(S1, S2)

)
.

Using the Jukes-Cantor formula grants the advantage that only p must be estimated. Thus,
App-SpaM simply counts the total number of nucleotide substitutions at the don’t care
positions and uses this single value as input for the JC correction. This not only provides
efficient runtimes, but is also beneficial if no data is available to estimate parameters from.

We tested whether using the 2-parameter K80 model [46] instead of the Jukes-Cantor model
influences the performance of App-SpaM. The K80 model distinguishes between transitions
and transversions. Given a rate matrix Q such as in Eq. 2.5, the rate of all transitions are
chosen to be equal (b = e) while another rate is specified for the transversions (a = c = d = f).
For many DNA sequences, for example, in eukaryotic mitochondrial DNA [371], transitions are
more frequent than transversion. If this is the case, the Jukes-Cantor formula underestimates
d, unless the two involved sequences are closely related. We augmented App-SpaM with
the possibility to distinguish between transitions and transversions when observing the don’t
care positions of those SpaMs that pass the filtering step. App-SpaM counts the number of
transitions q(Sq, Sr) and the number of transversions r(Sq, Sr) between each query Sq and
each reference Sr. Then, their phylogenetic distance is estimated as

d(Sq, Sr) = − ln

(
1− 2 · q(Sq, Sr)− r(Sq, Sr)

2

)
+ ln

(
1− 2 · r(Sq, Sr)

4

)
. (4.1)

The corresponding placement heuristics and branch length calculations are then carried out
based on the K80-distances.

Using a different substitution model in App-SpaM has two effects: The direct influence
of the chosen model on the distance estimates; and the indirect influence on the quality of
inferred placement locations. The difference in the distance estimates between JC and K80
is exemplarily visualized in Fig. 4.1 for the hiv-104 data set. The figure shows distance
estimates between three randomly selected query sequences and 30 randomly selected references.
Additional results for the bac-150 and neotrop-512 data sets are shown from Suppl. Fig. B.1
to Suppl. Fig. B.4. We refer to the distance estimates of App-SpaM as dJC and dK80, depending
on the employed model. All results show that dJC < dK80 consistently holds; thus, more
transitions than transversions are present in the data sets. The deviation between dJC and
dK80 across all query-reference distances is minimal though: For more than 69% of all pairwise
distance estimates in hiv-104, dJC and dK80 differ less than 0.005. This ratio rises to over
86% for a difference less than 0.01. These results hold across all query-reference distances in
all three data sets. In accordance with these results, we observe that the choice between these
two substitution models has a negligible effect on the accuracy of the resulting phylogenetic
placements. The ND metric remains identical regardless of which of the two models is used.
Only the inferred branch lengths themselves differ slightly between the two models.
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Figure 4.1 – Difference in estimates of the phylogenetic distance d depending on the
substitution model when using App-SpaM on the hiv-104 data set. We denote the estimate
of the Jukes-Cantor model as dJC and the estimate of the K80 model as dK80. Shown is
dJC − dK80 (colored dots) in a heatmap for three randomly selected query sequences (y-
axis) and 30 randomly selected reference distances (x-axis). Missing dots indicate that no
spaced-word match was found between the respective query and reference.

While we observed that the relative difference between dJC and dK80 is minimal and the
selected model does not influence the placement accuracy, it remains unclear how robust App-
SpaM’s distance estimates are in the first place. Thus, we compared its distance estimates
with those inferred from alignments. For this, we calculated pairwise Hamming distances
pMSA between all sequences in the reference alignment. As in App-SpaM, we ignored any
undetermined sequence positions (typically marked with the character N) and gaps. We
then applied either the JC correction to pMSA (resulting in dMSA(JC)) or the K80 correction
(dMSA(K80)). Following the pruning-based procedure of PEWO, we placed short reads from
all pruned reference sequences and compared the distance estimates of App-SpaM averaged
across all reads from the same reference to dMSA(JC) or dMSA(K80), depending on the model
employed by App-SpaM. We performed five pruning events for each data set. Exemplary
results from this procedure for three randomly selected queries and 30 randomly selected
references are visualized in Fig. 4.2 for the hiv-104 data set. Note that each row represents
the average distance of all query reads belonging to the same pruned reference sequence. The
mean deviation between dJC and dMSA(JC) is only −0.005 across all repetitions on the hiv-104
data set. However, App-SpaM’s distances deviate strongly between different query sequences
from −0.06 to 0.06 for the JC model and from −0.09 to 0.06 for the K80 model. The variation
in distance divergence is greater for the K80 model across all data sets. These results are
consistent across all query-reference distances in the three data sets with the exception of
certain sequences in the bac-150 data set; here, 25 out of the 150 references exhibit large
evolutionary distances to all other queries with a mean distance larger than 0.5. All distance
estimates that involve such references, or derived queries thereof, are severely underestimated
compared to those distances inferred from alignments; see, for example, Suppl. Fig. B.2.
Otherwise, the observations for the hiv-104 data set are consistent with observations on the
bac-150 and neotrop-512 data set, see Suppl. Fig. B.1 to Suppl. Fig. B.4.

When dMSA(JC) and dMSA(K80) are assumed to be robust estimates of the true distance d,
the presented results indicate that the distance estimation for short reads using the filtered-
spaced words technique is challenging. The program Read-SpaM demonstrates that distances
between two bags of reads from two genomes are accurately estimated using the spaced-word
matches approach. In contrast, App-SpaM estimates distances to single read sequences with
a length of only 150 bp in the presented experiments. Although a deviation from the true
distances is expected for short queries, we did not expect the pronounced discrepancy of
average distances between all query sequences derived from a single reference, as observed in
Fig. 4.2. However, even the total number of queries originating from a single pruned reference
often stays below ten when the reference comprises a single marker gene. In comparison,
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(a) The difference dMSA(JC) − dJC for the distance estimates of the Jukes-Cantor model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

References

Query 1
Query 2
Query 3

Difference
0.09
0.06
0.03

0.00
0.03
0.06

(b) The difference dMSA(K80) − dK80 for the distance estimates of the Kimura model.

Figure 4.2 – Divergence of App-SpaM’s phylogenetic distance estimates from the ’true’
distance on the hiv-104 data set. The true distances were calculated from multiple sequence
alignments as the average number of nucleotide substitutions per sequence position, corrected
with the Jukes-Cantor or K80 formula. We denote App-SpaM’s estimates dJC and dK80 for the
Jukes-Cantor and Kimura 2 parameter model, respectively. Shown is the difference between
those estimates and true distances (colored dots) in heatmaps for three randomly selected
query sequences (y-axis) and 30 randomly selected reference distances (x-axis). Missing dots
indicate that no spaced-word match was found between the respective query and reference.

Read-SpaM’s bags of reads evaluation had orders of magnitude more reads available, even
when using genomes of low coverage.

The absolute difference between App-SpaM’s distance estimates and dMSA is not the
only decisive factor for inferring placement positions with distance-based heuristics. Many
alignment-free programs for phylogeny reconstruction estimate pairwise sequence distances
that bear no biological meaning after all; however, their values are consistent among each
other, thus allowing the reconstruction of topologically correct phylogenetic trees. Similarly,
App-SpaM’s estimated p-distances might not coincide with dMSA, but could be consistent
among each other. For this, we calculated Pearson’s correlation coefficient between dJC
and dMSA(JC) for query-reference distances on the hiv-104, bac-150, and neotrop-512
data sets. Across all distances in five pruning events, the correlation coefficient is 0.352
for bac-150, 0.877 for hiv-104, and 0.372 for neotrop-512. Interestingly, the highest
correlation by far occurs for hiv-104, the data set for which App-SpaM’s results are inferior
to those of the alignment-based programs as visualized in Fig. 3.9. Apparently, App-SpaM
has good placement results despite its rather unstable distance estimates. When moving from
the JC model to the K80 model, we also observed that the variance of distance estimates
increased across all experiments. This was to be expected since estimating both transitions
and transversions instead of only substitutions from the limited number of available base
pairs is challenging. Therefore, we assume that the use of even more parameter-rich models
such as the GTR model is unlikely to improve App-SpaM’s distance estimates. Similarly,
we do not expect that the use of such models would improve our placement results. The
presented findings are also indicative of why distance-based heuristics perform worse than
those heuristics that are based on the number of spaced-word matches; the latter metric
might be a better indicator of sequence similarity after all. Furthermore, the discrepancy
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between App-SpaM’s p-distances and pMSA indicates that spurious spaced-word matches
are mistakenly involved in the distance calculation. However, both propositions require a
closer observation of the number and distribution of spaced-word matches between query and
reference sequences, all of which depend on the filtering procedure.

In addition to the implemented substitution models, the matrix M that specifies the
substitution scores for the filtering procedure as well as the filtering threshold t are other
components that could influence the precision of App-SpaM. Both have a direct impact on
the number and composition of spaced-word matches that are considered in all subsequent
steps. App-SpaM uses the HOXD70 matrix as a default for M which is defined as

M = MHOXD70 =


91 −114 −31 −123
−114 100 −125 −31
−31 −125 100 −114
−123 −31 −114 91

 (4.2)

whereas every entry Mij represents the substitution score for the symbols σi and σj in
Σ = {A, C, G, T}. HOXD70 was originally designed to score large alignments between the
genomes of human and mouse [345]. As such, it is not evident whether it also works well for
sequences of other origin and type, such as short marker genes present in metataxonomics.
The main purpose ofM is to separate random background matches from valuable matches that
originate from homologous sequence positions. For this, every spaced-word match is assigned
a score with respect to M that is calculated as the sum of substitution scores of corresponding
nucleotides at every don’t care position. The two score distributions of background and
homologous matches are clearly separated when complete genomes are compared [167]. The
heights of both distributions and their overlap depend on the similarity and length of the two
compared sequences. The filtering procedure uses the threshold t = 0 to remove all matches
with a score below t. In the optimal case, the distributions of background and homologous
matches have very little overlap and t separates them appropriately.

Spaced-word histograms, also referred to as spamograms, are a useful technique to visualize
the distribution of homologous and background matches. Given a set of spaced-word matches,
a spamogram displays how the matches are distributed with respect to their score. This
provides information on if and how well the score distributions of background and homologous
matches are separated. We examined the distribution of spaced words with respect to their
score for different data sets to analyze whether the default parameters of t and M are chosen
appropriately for App-SpaM. In addition to the HOXD70 substitution matrix, we assessed
how the simple binary matrix

M = Mbin =


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 (4.3)

affects spamograms and whether it improves the differentiation between homologous and
background matches. For this, we recorded all spaced-word matches together with the
sequences they originated from when performing placement on the bac-150 and wol-43 data
sets.

For FSWM, a spamogram contains the complete set of spaced-word matches between two
genomes. In contrast, a single run of App-SpaM generates a separate set of spaced-word
matches for each query-reference pair. It is beneficial to plot each of these sets as a single
spamogram. Figure 4.3 displays a typical example of a spamogram for the wol-43 data set
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Figure 4.3 – A spaced-word histogram for SpaMs between all queries and a single reference.
The distribution of background matches (all SpaMs on the left with negative score) are clearly
separated from the homologous matches on the right.

where references comprise whole genomes. The spamogram comprises matches between all
queries of a single run of App-SpaM to a single reference sequence with length 52 768 066 bp.
One such spamogram exists for each reference sequence in Tref. These spamograms resemble
what was observed in FSWM and Prot-SpaM: two clearly separated peaks for the homologous
and background matches exist. However, the shape of the homologous peak is dubious. It
does not follow a normal distribution as observed in Prot-SpaM; instead, it has multiple
smaller peaks, for example, at a score of 2 800 and at a score of 3 000. This is due to the
varying similarities of the short query reads depending on their region of origin in the pruned
reference sequence. Accordingly, Suppl. Fig. B.11 shows a spamogram between all SpaMs
that occur during a program run of App-SpaM. Several millions of spaced-word matches arise
between the input sequences and have to be processed. The height of the background peak
depends predominantly on the pattern weight w; a lower weight causes higher background
peaks. Additional spamograms between a single query read of length 150 bp and a single
reference and between a single query and all references are provided in Suppl. Fig. B.12 and
Suppl. Fig. B.13, respectively. For a single query read, there are roughly 160 homologous
spaced-word matches on which the inferred placement position is based. When all references
are taken into account, the homologous peak suggests a larger variance of scores.

Figure 4.4 displays multiple spamograms between a single query Sq and different references
for both the HOXD70 and the binary substitution matrix on the wol-43 data set. The
augmented density estimates allow for a direct assessment of the similarity between Sq and
each reference: references with high-scoring homologous peaks are assumed to have very similar
sequence fragments to Sq while those references with lower average scores are more disparate.
The number of homologous spaced-word matches in each spamogram is 160 on average, as
indicated in Suppl. Fig. B.12. Some references do not have a homologous peak. There is little
difference between the overall form of the spamograms for the different substitution matrices.
In both cases, the background distribution extends slightly above a score of zero. All of these
results are in accordance with previous findings of other SpaM-approaches: In the presence of
long reference sequences, there are many spaced words for each query sequence. The SpaMs
split into a background peak and a homologous peak which are clearly separated from one
another. There is an apparent need to remove SpaMs with low scores, as they likely occurred
by pure chance. A filtering threshold of t = 0 or slightly higher is an appropriate choice to
separate the SpaMs accordingly.

However, the spamograms for data sets that comprise short marker genes deviate substan-
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Figure 4.4 – The number of spaced-word matches with a specific score (y-axis) between a
single query Sq to a set of randomly chosen references (x-axis) using either (a) the HOXD70
matrix or (b) a binary matrix of substitution scores. Each violin plot (green patch) is a
density estimate of a single spamogram.

tially from those of wol-43. Figure 4.5 shows spamograms between a single query and 20
references on the bac-150 data set. Here, most spamograms exhibit only a single homologous
peak and have no matches with a score below zero, apart from a few exceptions. The reason
for this is that the references are short marker genes; in this scenario the vast majority of all
matches are homologous and random matches are rare. Furthermore, most references provide
a homologous segment for each query, resulting in large homologous peaks. Supplementary
Figure B.7 shows the distribution of all spaced-word matches from a single run of App-SpaM
on the bac-150 data set. Here, the distributions of background and homologous matches
are overlapping. This is mainly due to the specific properties of the bac-150 data set, which
has a small portion of disparate reference sequences with strongly divergent evolutionary
relationships. Thus, considering all SpaMs at the same time implies that very different scores
occur among query and reference sequences. This is resolved when singular spamograms are
plotted for each query or reference, respectively. Again, using a smaller pattern weight causes
large amounts of background matches, even for the metataxonomic data sets as demonstrated
in Suppl. Fig. B.8. This observation is supported by Suppl. Fig. B.9 and Suppl. Fig. B.10,
both of which display results for the data sets hiv-104 and neotrop-512 for pattern weights
of w = 12 and w = 8.

The filtering procedure is an essential step in order to remove spaced-word matches that
occurred purely by chance. These background matches skew the estimate of the number
of homologous matches and of inferred query-reference distances. Therefore, choosing an
appropriate substitution matrix M and filtering threshold t is critical as they determine
which matches are kept and which are discarded. In all presented examples, we observe that
homologous matches are clearly separated from background matches when a single query
sequence is considered. This finding is independent of the choice of the substitution matrix
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Figure 4.5 – The number of spaced-word matches with a specific score (y-axis) between a
single query Sq to a set of randomly chosen references (x-axis) using the default HOXD70
substitution matrix. Each violin plot (blue patch) is a density estimate of a single spamogram.

M , as it has little influence on the overall form of distribution of SpaM-scores. The number
of SpaMs varies greatly and depends on the length of the input sequences. Longer input
sequences entail larger numbers of background matches, as does lowering the pattern weight.
When App-SpaM is used for metataxonomic data with its default weight w = 12, the filtering
procedure is not necessarily required since there are only a few background SpaMs at most.
However, when lowering w or using longer input sequences, the filtering procedure becomes
indispensable in order to remove random SpaMs from further consideration. The presented
spaced-word histograms suggest that the default threshold t = 0 is slightly too low as the
distribution of background matches seems to exceed zero regularly. It might be beneficial
to increase t, for example t = 500, to ensure that all background matches are discarded.
According to our results, raising the threshold does not cut off the homologous distribution in
most cases, apart from the diverse bac-150 data set. In general, choosing an appropriate
threshold becomes more difficult, as the reference sequences exhibit a diverse range of distances
to the queries. The homologous distribution shifts towards a lower mean for distantly related
references and can overlap with the background distribution, see Suppl. Fig. B.7. App-SpaM
would benefit from a dynamic adjustment of t that is determined with respect to the observed
overlap between the distributions. Fixing t at any value always results in a trade-off in terms
of sensitivity and specificity for the selection of homologous SpaMs.

4.2 Placement Heuristics

App-SpaM performs phylogenetic placement in a two-step procedure: First, it finds all spaced-
word matches between every query read and reference sequence, removes those that have a
score below the threshold t, and uses the remaining ones to calculate the number of SpaMs s
and the phylogenetic distance d as discussed in detail previously. Second, App-SpaM uses one
of several placement heuristics to insert a query sequence into Tref based on either the number
of SpaMs remaining after filtering or the estimated phylogenetic distance to each reference
sequence. However, both sources of information are not combined in a single heuristic. In this
section, we present multiple additional heuristics for placement that extend upon the principles
introduced in Sec. 3.1. We assume that a query sequence Sq is placed onto the phylogenetic
tree Tref comprising m leaves labeled with m reference sequences {S1, S2, . . . , Sm}. For this,

92



4.2. Placement Heuristics

an existing placement edge eq is split into two parts by inserting a new node nq. The proximal
part of the divided edge is called eq1 and the distal part eq2. Then a new leaf node n′q is
added to Tref which is connected to nq via a new edge e′q. Branch lengths must be specified
for eq1, eq2, and e′q, whereas the restriction l(eq1) + l(eq2) = l(eq) is imposed. The resulting
placement tree is denoted as Tq. To select a suitable placement edge eq we use the information
calculated between Sq and all references represented by the leaves in Tref: For each reference
sequence Sr at each leaf lr, r ∈ [m] we know the number s(Sq, Sr) of filtered SpaMs as well
as the calculated phylogenetic distance d(Sq, Sr).

Methods

To determine a placement branch, the first group of heuristics traverses Tref from its root
towards its leaves following the branches along an appropriate path with respect to the leaf
annotations s and d. The traversal stops at a suitable branch eq where Sq gets inserted. For
this, we introduce several measures for the internal nodes of Tref derived from the spaced-word
statistics at the leaves. For an inner node u of the rooted reference tree, we denote the set of all
references in the clade induced by u as Su = {Sr | Sr is a leaf in the subtree induced by u}.
Furthermore, we define the three measures

savg(Sq,Su) =
1

|Su|
·
∑
Sr∈Su

s(Sq, Sr) , (4.4)

ssum(Sq,Su) =
∑
Sr∈Su

s(Sq, Sr) , (4.5)

smax(Sq,Su) = max
Sr∈Su

s(Sq, Sr) . (4.6)

Thus, savg(Sq,Su) is the average number of SpaMs of each reference below u, ssum(Sq,Su) is
the total number of SpaMs across all references below u, and smax(Sq,Su) is the maximal
number of spaced words of any reference below u. Similarly, we define for the Jukes-Cantor
corrected distances the two measures

davg(Sq,Su) =
1

|Su|
·
∑
Sr∈Su

d(Sq, Sr) , (4.7)

dmin(Sq,Su) = min
Sr∈Su

d(Sq, Sr) . (4.8)

We traverse Tref starting at its root; since it is strictly bifurcating, every internal node has
two descendant nodes u and v. Let s?(· , ·) denote one of the three measures from Eq. 4.4
to Eq. 4.6. At each internal node, we evaluate whether s?(Sq,Su) > s?(Sq,Sv) holds; if so,
the search is continued at node u, otherwise at node v. For Eq. 4.7 and Eq. 4.8 the search
is continued at node u if d?(Sq,Su) < d?(Sq,Sv). Thus, the search progresses from the root
towards the leaves along a path that has either many SpaMs or low distance estimates. This
procedure would progress until a single leaf node is reached. For smax and dmax, the resulting
heuristics would then be identical to SpaM-Count and Min-Dist, respectively. However, we
use a stopping criterion that potentially halts the search before a leaf node is reached. Here,
the idea is to stop at an inner node for which s?(Sq,Su) and s?(Sq,Sv) (or d?(Sq,Su) and
d?(Sq,Sv)) are similar to each other and both subtrees induced by u and v provide plausible
placement positions. In such instances, it is not possible to reach an informed decision about
which subtree is ’better’ for the placement of Sq. We propose two stopping criteria: The first
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one evaluates whether

⊗1 = |s?(Sq,Su)− s?(Sq,Sv)| >
s?(Sq,Su) + s?(Sq,Sv)

r
(4.9)

holds. The ⊗1 criterion is parameterized by r for which we use values of r ∈ {2, 5, 10}. We
also use this stopping criterion for d(· , ·). The second stopping criterion is defined as

⊗2 = |s?(Sq,Su)− s?(Sq,Sv)| > ssum(Sq,Sroot) · r . (4.10)

This criterion considers the difference between s?(Sq,Su) and s?(Sq,Sv) depending on the
total number of spaced-word matches across all reference sequences. Here, we use values of
r ∈ {0.01, 0.05, 0.1}.

Another group of placement heuristics chooses the branch above the LCA of a set
of references that have an exceptionally high number of spaced-word matches or par-
ticularly low distance estimates to Sq. For this, we consider the list of SpaM-counts
s = [s(Sq, S1), s(Sq, S2), . . . , s(Sq, Sm)] between Sq and each reference sequence. The first
quartile Q1 is the median of the lower half of all values in s and Q3 the median of the upper
half of the values in s. The interquartile range is defined as IQR = Q3 −Q1. We determine a
threshold b = Q3 + r · IQR that is parameterized by r. The first heuristic determines the set
Sb = {Sr | s(Sq, Sr) ≥ b} and chooses the branch above the LCA of all references in Sb to be
the placement branch eq. We test this heuristic for the parameter values r ∈ {1.1, 1.3, 1.5}.
The second heuristic is based on the distance estimates and chooses the branch above the
LCA of {Sr | d(Sq, Sr) ≤ b} for b = Q1 − r · IQR; again, we test r ∈ {1.1, 1.3, 1.5} for this
heuristic.

As established earlier, the distance estimates of single query reads inferred with App-SpaM
are not accurate. Thus, it is questionable whether they are suited for finding appropriate
placement positions. Both originally proposed heuristics Min-Dist and LCA-Dist were
inferior to SpaM-based heuristics and their accuracy varied considerably with respect to
other parameters such as the pattern weight. Still, our distance estimates showed significant
correlation with distances estimated from alignments, although the effect size varied strongly
between different data sets. Combining the distance measure d with the number of spaced-
word matches s might overcome the limitations we noticed when only using d. We combine
the leaf annotations d and s by assigning each leaf a score m defined as m = d

s : The distance
annotation at each leaf is weighted by the inverse of the number of spaced-word matches for
the same reference sequence. Leaves with a low distance and many spaced-word matches
receive a low score and are likely close relatives. On the contrary, it is improbable that leaves
with only a few spaced-word matches are closely related to Sq. We define three heuristics
based on this measure that follow our previous approaches: The first heuristic simply chooses
the branch above the leaf with the highest score. The second heuristic chooses the branch
above the LCA of the two leaves with highest score. The third heuristic uses a tree descent
from the root towards the leaves as described above and follows the path along the internal
nodes according to Eq. 4.7 and Eq. 4.8.

Results

We evaluated all above heuristics with different parameters by running PEWO’s pruning
based accuracy evaluation workflow on the five data sets bac-150, hiv-104, neotrop-512,
bv-797, and epa-628 with 50 iterations each. We recorded the average node distance,
subsequently also referred to as accuracy, of each heuristic across all iterations. Table 4.1
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Table 4.1 – Additional placement heuristics of App-SpaM.

name SpaMs Dist m(· , ·) Stopping
Criterion r

TD-SpaM-Count-Max smax(Sq,Su) ⊗1 {2, 5, 10}
TD-SpaM-Count-Avg savg(Sq,Su) ⊗1 {2, 5, 10}
TD-SpaM-Count-Sum ssum(Sq,Su) ⊗1 {2, 5, 10}
TD-SpaM-Count-Max-Alt smax(Sq,Su) ⊗2 {2, 5, 10}
TD-SpaM-Count-Avg-Alt savg(Sq,Su) ⊗2 {2, 5, 10}
TD-SpaM-Count-Sum-Alt ssum(Sq,Su) ⊗2 {2, 5, 10}
TD-Dist-Min dmin(Sq,Su) ⊗1 {2, 5, 10}
TD-Dist-Avg davg(Sq,Su) ⊗1 {2, 5, 10}
LCA-IQR-SpaM-Count {.01, .05, .1}
LCA-IQR-Dist {.01, .05, .1}
Best-Score
LCA-Score
TD-Score-Max {.01, .05, .1}

Additional placement heuristics for App-SpaM. In their order of appearance, the columns
present the name of the placement heuristic, whether they utilize the number of spaced-
words (SpaMs), whether they utilize the distance estimates (Dist), with which formula s?(· , ·)
or d?(· , ·) the tree traversal is performed, which stopping criterion they rely on, and the
parameters they are tested with. TD is the short form for Tree-Descent. When referring
to a parameterized version of a heuristic, the parameter is appended to its name. For example,
TD-SpaM-Count-Max-2 refers to the TD-SpaM-Count-Max heuristic with r = 2.

gives an overview of all heuristics, their properties, and designated names that are used in
the following. Fig. 4.6 displays all newly introduced heuristics that depend solely on the
number of spaced-word matches. In addition, it shows the accuracy of the default heuristic
SpaM-X, the LCA-Count heuristic, and the accuracy of the program EPA-ng with default
parameters. Accordingly, Fig. 4.7 displays the accuracy of all other newly introduced heuristics
that depend solely on the distance estimates or on both the number of spaced-word matches
and distance estimates. No single heuristic performs best on all five data sets. Certain
heuristics perform well on a subset of data sets: The TD-SpaM-Count-Sum-2 performs
a tree descent along the path that has the highest overall number of spaced-word matches
and stops according to ⊗1. This heuristic performs best in three of the five data sets with
statistically significant improvements over other heuristics in the data sets bac-150 and
hiv-104 (P < .01 in more than 90% of cases, otherwise P < .05). However, it performs
slightly worse than App-SpaM’s default heuristic on the bv-797 data set and substantially
worse on the epa-628 data set. On the contrary, the TD-SpaM-Count-Max-Alt heuristic
performs well on the data sets bv-797 and epa-628, but is sub-par on the other three data
sets. The LCA-Score heuristic that uses both the number of spaced-word matches and
estimated distances is close to optimal on the hiv-104 and neotrop-512 data sets but not as
accurate on the other three. Some of the tested heuristics produce poor placement results on
all data sets, such as the TD-SpaM-Count-Sum-Alt heuristic for all three parameter values
of r, and most of the TD-Dist-heuristics. The performance of the TD-SpaM-Count-Avg
heuristic varies greatly across all data sets. Here, we suspect the cause to be the averaging
of the SpaM-counts across all leaves in both subtrees. The resulting average values depend
predominantly on the topology of the tree itself. For example, if the reference sequence with
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Figure 4.6 – Average accuracy (colored squares) of those heuristics that solely depend on the
number of spaced-word matches (x-axis) for five data sets (y-axis). The values for parameter r
are appended behind the name of each heuristic. The color coding highlights the performance
and is scaled identically to Fig. 4.7.

the most SpaMs resides in a large clade, the average number of SpaMs per reference in this
clade remains low, and the search is continued in the ’wrong’ subtree instead.

Discussion

Choosing an ’optimal’ placement heuristic poses inherent risks: The performance of different
placement heuristics varies greatly with different data sets at hand and their associated
parameters. The best heuristic for any specific data set is generally unknown and cannot be
determined prior to the placement procedure. To select a default heuristic for App-SpaM
that performs well in many scenarios, a validation on a broad variety of data sets is necessary.
The best performing heuristic of the validation is then chosen as the default. However, the
error rate that the selected heuristic achieves on the validation data is an underestimate of its
true error rate on unknown data. Thus, it is indispensable to test any default heuristic on
unknown data to determine its quality outside the validation environment. In the version
of App-SpaM presented in Sec. 3.1 we did not strictly divide the validation and test data.
Instead, we evaluated the performance of all heuristics and pattern parameters on bac-150
and hiv-104; both data sets were subsequently also included in the test cases of the overall
accuracy evaluation. Hence, the accuracy of App-SpaM on bac-150 and hiv-104 should be
taken with caution as the true error may be underestimated. Still, the chosen heuristic proved
to provide the best average accuracy across the six remaining data sets as well. Similarly, the
default heuristics of several other placement programs besides App-SpaM achieved the best
accuracy out of all heuristics in the majority of data sets. This indicates that the selection of
the eight data sets is a representative sample of common use cases that were also considered
in the evaluation of other programs. As a consequence, we argue that our presented results for
all additional placement heuristics are also representative of their performance on unknown
metataxonomic data sets.
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Figure 4.7 – Average accuracy (colored squares) of those heuristics that depend on the
distance estimates (x-axis) for five data sets (y-axis). The values for parameter r are appended
after the name of each heuristic. The color coding highlights the performance and is scaled
identically to Fig. 4.6.

Figure 4.6 and Fig. 4.7 indicate that the placement accuracy of several heuristics varies
strongly between different data sets. We suspect that these heuristics exhibit various biases
when choosing placement positions: The LCA-approaches will never place a read on a branch
directly above a leaf and, vice versa, some heuristics place reads exclusively on branches
adjacent to a leaf. Depending on the topology of Tref, we surmise that such biases affect the
placement accuracy positively or negatively, and hence, the accuracy varies for different data
sets. Only SpaM-X and the tree descent heuristics overcome this limitation and are able to
place query reads anywhere in the tree. Still, they are subject to the topology of Tref when savg
or ssum are used to determine the path through which Tref is traversed. Thus, we conceptually
prefer the tree descent heuristics that use smax or dmin as stopping criteria, although they
perform worse with respect to the mean ND. All other newly introduced heuristics that utilize
distance estimates perform generally worse than those heuristics that rely on the number of
spaced-word matches. This result is in accordance with our previous analysis; see Fig. 3.5.
The default heuristics LCA-Count and SpaM-X demonstrate a stable performance across
all data sets, and we continue to use SpaM-X as default.

4.3 Using Sampling Techniques

SpaM approaches have distinct advantages over other alignment-based methods: They are
flexible and versatile with respect to their applications [372] while offering great computational
efficiency. They have been demonstrated to outperform other methods with respect to speed
and, in several cases, the quality of their results is equivalent or superior [11, 166, 177].
However, there are instances where SpaM approaches cannot compute sequence distances
in a reasonable time frame. For example, FSWM reaches its limits on a current standard
personal computer when comparing large genomes with multiple gigabases, Read-SpaM is
restricted with respect to the coverage of shotgun WGS input data, and large reference data
sets comprising thousands of whole genomes cause problems for App-SpaM. An approach to
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overcome the scalability issue in such cases is the use of sampling techniques to reduce the
runtime.

The application of sampling methods for alignment-free programs is a common idea to
limit the amount of data that must be processed. Especially for word-based methods, the
sampling of k-mers greatly reduces the time and space complexity. It has been suggested
that a k-mer subset of appropriate size is often sufficient to estimate the similarity between
sequences to a satisfactory degree: For example, MASH [149] estimates the distance between
two sequences by calculating the Jaccard index of their k-mer sets, as discussed in Subsec. 2.4.2.
Subsequently, the Jaccard index is used to infer the Hamming distance. However, computing
the Jaccard index based on the complete sequence data may be difficult, as the total number
of k-mers is large for long sequences. Thus, instead of comparing the complete k-mer sets,
MASH creates so-called sketches of the sequences by taking random samples from their
k-mer sets. The Jaccard index is then calculated directly from these sketches; the result is an
unbiased estimate for the real Jaccard index. The expected error of the estimator depends
only on the size of the sketches and not on the size of the original sequences [373], making the
approach suitable for whole genome comparisons. The resulting distance matrices are used,
for example, to construct phylogenetic trees [374].

In general, hashing techniques that summarize sequences by means of sketches are termed
locality-sensitive hashing (LSH) methods [375]. These techniques achieve sublinear space
requirements and execution times with respect to the sequence length. For LSH techniques, the
similarity of the original sequences is estimated from the similarity of the created sketches. LSH
techniques have been used with great success, for example, to pre-filter reference databases for
the most promising reference sequences in metagenomic profiling [376], to screen sequencing
reads for their taxonomic diversity [377], or to scan sequences for the most promising alignment
sites under the presence of uneven k-mer distributions [378].

Given the extensive existing research on sampling techniques for word-based sequence
similarity methods, it is evident that sampling could also be a tool to overcome the limitations
of SpaM approaches by reducing the amount of data that is processed. Although SpaM ap-
proaches demonstrate reasonable scalability, especially compared to alignment-based methods,
they are impeded by the quadratically growing number of background matches for long input
sequences. Additionally, it is unclear how many homologous spaced words are required to
robustly estimate distances between sequences. It may well be that the distance estimates
do not improve after a certain number of homologous spaced-word matches have been found.
However, the number of homologous spaced words grows with increasing sequence similarity
and the length of homologous sequence segments.

In general, sampling is performed either among spaced words or among filtered (or
unfiltered) spaced-word matches. Here, with sampling, we refer to the process of selecting a
subset of all spaced words, or of all spaced-word matches, respectively. For a given sequence S
of length n and for the underlying pattern P of length l, the total number of spaced-word
occurrences extracted from S for further processing is n− l + 1: one spaced word starts at
every position of S. The number of spaced-word occurrences, thus, is merely determined
by the length of S. We refer to the set of all spaced-word occurrences of S as S, hence
|S| = n− l + 1. A sampling procedure R chooses a subset S ′ ⊂ S from the occurrences of S.
We call r = |S′|

|S| the sampling ratio of R. Inherently, sampling among S also reduces the
number of spaced-word matches that are generated. Depending on the implementation of the
underlying SpaM approach and on the type of sampling strategy that R uses, the gain in
computational time may be particularly large: Depending on the implementation, evaluating
spaced-word matches may require consecutive memory access from different regions in the

98



4.3. Using Sampling Techniques

main memory. This kind of memory access poses a bottleneck in SpaM approaches because
the underlying computational system can perform hardly any cache optimization.

One simple method to sample spaced words is to deliberately omit some spaced words
for a sequence S directly when reading the sequence. To reach a given sampling ratio r, we
consider two simple methods: Either, only those spaced words that occur at a position of S
that is a multiple of 1

r are approved and all others are discarded; we term this approach the
position-based sampling (Rpos). Or, each potential spaced word is approved with a probability
of r, and discarded otherwise; we term this approach the randomized sampling (Rrand). The
difference of the two approaches lies in the distribution of the positions of the retained spaced
words in S ′ across S: For position-based sampling, the chosen words are equally spaced along
the given sequence and no computational overhead is necessary for the selection process itself.
On the contrary, the positions are chosen at random in Rrand and, thus, the retained spaced
words represent a random sample with a uniform distribution from S. For both approaches,
however, there are unfavourable implications on the number of resulting spaced-word matches:
When sampling spaced words from two input sequences S1, S2 with Rpos and a sampling ratio
of r, the amount of spaced-word matches depends heavily on the number and location of
indels, as well as their starting points. Assuming two identical sequences, all spaced words
chosen by Rpos are homologous and form spaced-word matches. However, in any real-world
scenario, it is likely that the chosen spaced-word matches do not correspond to homologous
positions due to indels or different start sites of the two sequences. Thus, we assume that the
number of spaced-word matches is drastically reduced for Rpos. For Rrand with a sampling
ratio r, the amount of homologous spaced-word matches drops by a factor of r2. The reason
is that a spaced word in S1 with a homologous position in S2 is chosen in both sequences
only with a probability of 1

r . Hence, the decrease in the number of spaced-word matches is
detrimental in both methods, as the amount of lost information increases disproportionately
to the gain in computational complexity with respect to speed and memory.

Hence, it is essential to use a sampling method that overcomes this limitation. A suitable
approach for this is hash-based sampling [375]. The idea is to choose the same subset of spaced
words with respect to their match positions from both sequences to ensure that potential
homologous SpaMs are retained. Consequently, each SpaM that is present when all spaced
words are used is still present when the according spaced word is sampled. More specifically,
the nucleotides at the match positions of a spaced-word occurrence are represented as a
32 bit integer; subsequently, this is referred to as its key K. Given a hash function h and
applying it to K, its value is h(K) ∈ [0, hmax]. We define the sampling method Rhash with two
parameters z and t as follows: A spaced word—represented by K—is considered as part of
the sample if h(K ⊕ z) < t. Otherwise, the spaced word is discarded. Here, ⊕ is the bit-wise
XOR-operation: the match positions are scrambled with a fixed but randomly chosen 32 bit
integer z. This ensures that the resulting values of h are not dependent on the nucleotide
composition of S. The parameter t is the sampling threshold that adjusts how many spaced
words are retained. If the values of h are assumed to be uniformly distributed between 0 and
hmax and, furthermore, it is assumed that all spaced words occur on average with identical
frequency, a desired sampling ratio r is achieved by setting the threshold t as r · hmax. In
practice, we use a fast implementation of the CRC32 algorithm [379] as h. Thus, the first
assumption is met because the values of h(K ⊕ z) are uniformly distributed. The second
assumption is violated in most real-world cases, since spaced words do not occur with equal
frequencies. However, a slight deviation in the obtained sampling ratio does not influence our
proposed procedure in practice, see below.
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Results

We evaluated the use of the hash-based sampling technique Rhash within App-SpaM. For
this, we compared the accuracy of App-SpaM’s placement with and without applying Rhash
on three different data sets. We used varying values for the sampling ratio r that determines
the sampling threshold t. Thereby, we were able to study the loss of accuracy depending on r
with respect to different data sets. Here, we only investigate how the quality of the placements
changes when sampling is applied. We do not evaluate the accuracy of the derived distance
estimates; this was already done in a similar study for the use of sampling techniques in the
software FSWM [370].

Figure 4.8 shows the loss of accuracy of App-SpaM on the vir-104 data set. We varied r
from 0.1 (on average, 10% of all spaced-words are used) to 1 (all spaced words are used) in
steps of 0.1. For each value of r we recorded the average accuracy of App-SpaM’s placements
over the same 50 random prunings. The accuracy is measured by means of the node distance.
When all spaced words are taken into account, the accuracy of App-SpaM is 3.18. The
accuracy slowly declines with lower sampling ratios and reaches its minimum at r = 0.1 with
a node distance of 4.05. Large standard deviations arise from the wide variation of scenarios
that occur in the random pruning process of the PEWO software. Standard deviations of
similar extent were measured for all placement programs in the PEWO evaluation procedure,
see Subsec. 3.1.2. As identical prunings were used for all sampling ratios, the increase in
standard deviation for lower sampling ratios is explained by the sampling itself. The number
of spaced-word matches decreases linearly with decreasing sampling ratio, as expected.

Analogous to Fig. 4.8, Fig. 4.9 displays the accuracy of App-SpaM for sampling ratios
from 0.0001 to 1 in logarithmic steps. For small sampling ratios (1% and below), the accuracy
of App-SpaM declines strongly. For sampling ratios of 0.1% and below, the quality of
placements is as poor as that of the root control method, where each query is simply placed
at the root (compare Fig. 3.12). Furthermore, the standard deviation increases strongly for
decreasing values of r. Both these observations are explained by the number of spaced-word
matches that arise for low sampling ratios: Although there are approximately 200 matches
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Figure 4.8 – Accuracy of App-SpaM depending on the sampling ratio r on the vir-104 data
set. The sampling ratio is given as the percentage of spaced words that were used (x-axis).
The average node distance across 50 random prunings (left y-axis, blue) and the number of
spaced-word matches (right y-axis, orange) are given. Vertical blue lines indicate the standard
deviation of a given value of r across 50 prunings.
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Figure 4.9 – Accuracy of App-SpaM depending on the sampling ratio r on the vir-104
data set. The sampling ratio is given as the percentage of spaced words that were used.
The average node distance across 50 random prunings (left y-axis, blue) and the number of
spaced-word matches (right y-axis (log-scale), orange) are shown. Vertical blue lines indicate
the standard deviation for a given r across the 50 prunings.

for r = 0.001 across all reads to be placed, for r = 0.0001 there is less than one match found
per pruning for all to-be-placed reads. Therefore, there is no remaining information to infer
proper placement positions when low sampling ratios are used for metataxonomic data sets.
The accuracy of App-SpaM remains comparable between different placement modes and
weights when Rhash is applied, as shown in Suppl. Fig. B.14. Similarly, the trends that we
observed on the hiv-104 data set also hold for the bac-150 and tara-3748 data sets; see
Suppl. Fig. B.15.

To conclude the above experiments, we also ran App-SpaM on the wol-43 data set that
comprises whole prokaryotic genomes. We performed a leave-one-out evaluation for each of the
43 reference genomes and evaluated two different scenarios: First, we partitioned the pruned
reference sequence in each pruning experiment into short reads with 150 bp lengths and
placed each read individually. Second, we placed the singular pruned reference without further
processing onto Tref. Figure 4.10 illustrates the accuracy of App-SpaM across sampling ratios
from 0.01% up to 100% as well as runtimes for both experimental setups. When placing short
reads, the results are in accordance with those from previous data sets, see Fig. 4.10a. The
accuracy of App-SpaM remains near constant for a sampling ratio between r = 1 and r = 0.1;
for lower values of r, the accuracy drops substantially. The largest gain in computation
speed occurs for large sampling ratios: The runtime drops by 56% from r = 1 to r = 0.1; in
comparison, it drops only by 12% from r = 0.1 to r = 0.00001. When single whole genomes
are used as query sequences instead of multiple short reads, the results deviate substantially
from previous observations, as shown in Fig. 4.10b. Overall accuracy improves significantly
for all values of r and remains steady even for low sampling ratios. For r = 1 the ND is 1.8
times higher when the complete genome is divided into short reads. There is no degradation
of the accuracy up until r = 0.0001. In contrast, the gain in computation speed is identical to
what was observed previously.
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(a) The pruned genomes are partitioned into short reads with length 150 bp and each read is placed
individually.
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(b) Here, the pruned genome is placed as a single query sequence onto Tref.

Figure 4.10 – Accuracy of App-SpaM depending on the sampling ratio r on the wol-43
data set. The sampling ratio is given as the percentage of spaced words that were used. The
average node distance across a leave-one-out evaluation (left y-axis, blue) and the runtime
(right y-axis (log-scale), red) are shown. Vertical blue lines indicate the standard deviation
across all experiments. The upper part (a) shows results for short query sequences of 150 bp
while the lower part (b) shows results for query sequences that span the entire pruned genome.

Discussion

A given sampling strategy has to be evaluated primarily with respect to the change in accuracy
and speed in contrast to not using any sampling. The loss in accuracy describes the degree to
which distance estimates deteriorate in dependence on the sampling ratio or total size of S ′.
Here, another important attribute to consider is the robustness of the distance estimates, i.e.,
the standard deviation across multiple repeats with different sampled subsets. The speed can
be measured as the absolute amount of time required for the computation, or as the speed up
that could be gained over the according SpaM approach without sampling. In the optimal
case, the accuracy of the results is not directly dependent on r, but instead only on |S ′|,
implying that a constant number of randomly chosen spaced words is sufficient to determine

102



4.3. Using Sampling Techniques

sequence similarity to a satisfactory degree. In this case, the computational complexity of the
algorithm is no longer dependent on the length of the input sequences, but instead only on
the number of input sequences.

We applied the min-hash sampling technique to App-SpaM to reduce the number of
spaced-word matches that need to be processed, and accordingly, its runtime. By using the
min-hash principle, the number of SpaMs is reduced linearly with the predefined sampling
ratio r. This approach is common among word-based methods for metagenomic tasks when
large quantities of sequence data are processed. Although it was already examined how
various sampling techniques influence the distance estimates of the software FSWM [370], the
applications of FSWM and App-SpaM are fundamentally different. For FSWM the input
sequences comprise complete genomes; this allows the use of low sampling ratios without losing
essential information. In such a scenario, the use of sampling is comparable to a sketching
approach, where a sequence is summarized by a compact representation (the set S ′ of sampled
spaced words). Whereas sampling in FSWM had great success, the results presented here
highlight that sampling is of little benefit when App-SpaM is applied to short and independent
sequencing reads from metagenomic experiments. The number of spaced-word matches per
read drops rapidly, and consequently, it becomes impossible to determine precise placement
locations for each short read. However, when App-SpaM is applied for long queries (for
example, whole genes, draft genomes, or scaffolds), sampling is an attractive opportunity to
handle large amounts of query sequences because low sampling ratios r do not entail a low
number of spaced-word matches.

Thus, the usefulness of min-hash sampling in App-SpaM depends on the use case at
hand: The benefit of sampling techniques is limited when short query sequences are present.
Although the speedup is linear with respect to the sampling ratio r, the accuracy is constrained
by the average number of spaced-word matches obtained per query sequence. However, the
number of SpaMs also declines linearly with the sampling ratio r. To grasp the influence
of this effect when short query sequences are present, it is useful to consider a simplified
example that highlights the decline of expected SpaMs: For a sampling ratio of r = 0.1 and a
query sequence Sq with 150 bp, the number of spaced-word matches between the query and
an identical reference drops to only 10.7 matches on average. Lowering the sampling ratio
to r = 0.01 results in only 1.7 expected matches per query. Furthermore, it is unlikely that
the most closely related reference sequence represents exactly the organism from which Sq
originates. Instead, the true number of SpaMs is presumably lower than the stated numbers.
Given these considerations, it seems unreasonable to expect App-SpaM to infer proper
placement positions of short query reads when sampling is applied. Only when the length of
the query sequences increases, sampling becomes worthwhile.

The presented results are in accordance with this proposition: First, the number of
spaced-word matches exhibits a linear decrease with respect to the sampling ratio r as implied
by Fig. 4.8 and Fig. 4.9. Second, the accuracy of App-SpaM drops significantly for low
sampling ratios r < 0.1 when query reads are short. This is the norm when dealing with
metataxonomic data and implies that sampling is of limited use in this area of application.
However, App-SpaM does not require sampling in this use case anyway: When query and
reference sequences comprise single marker genes, App-SpaM is the fastest program to
perform phylogenetic placement and its speed is not limited by the amount of SpaMs. In
contrast, sampling is of great use when reference and query sequences comprise long genomes
as visualized in Fig. 4.10. Here, the accuracy of App-SpaM remains stable up to a sampling
ratio of r = 0.0001. In Fig. 4.10b, the largest time gain is between r = 1 and r = 0.1, and
the time remains close to constant for all ratios r ≤ 0.1. This is due to the fact that the
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runtime of App-SpaM is dominated by processing steps other than the comparison of SpaMs
when only a single query sequence is present. When using multiple query sequences, the
runtime exhibits a reduction across the entire sampling range, see Suppl. Fig. B.16. This
makes sampling with low ratios r extremely powerful for data sets of ever-increasing sizes.

Sampling of SpaMs is another piece of the puzzle that enhances App-SpaM, with the
caveat that it is only useful when query sequences have a sufficient length. This prerequisite is
commonly met, for example, when bags of reads, draft genomes, or scaffolds are placed onto
reference phylogenies. The proposed sampling technique is available in the newest publicly
available version of App-SpaM and may be applied to appropriate data sets. Although it
would be best to enforce a minimal number of matches for each read that must be obtained
when sampling is applied, the current implementation simply uses the supplied sampling ratio
r. Thus, end users have to be aware of the implied changes in accuracy, depending on the
type of input data used.

4.4 Assessing Placement Uncertainty

Instead of indicating a single placement position for a query Sq, placement programs may
provide multiple potential placement locations for Sq and weight them according to their
plausibility or uncertainty. For maximum likelihood-based placement programs, this approach
seems evident as they already calculate likelihood values for several or all branches of the
reference tree. Then, they simply infer a weight for each placement from the likelihood value
associated with it: The weight of each placement location is its likelihood normalized by the
total sum of likelihoods across all placement locations; by this, the sum of placement weights
for a query sums up to 1. Accordingly, the weight is also referred to as likelihood-weight
ratio (LWR). The weights for a query can be interpreted as a probability distribution across
the branches of Tref. As such, they also provide an opportunity to assess the uncertainty
concerning the placement of Sq: If multiple placement locations with similar weights are
specified for Sq, its correct placement position is uncertain. Vice versa, if most of the weight is
assigned to a single location, the according query placement is more certain. LWR values have
been demonstrated to correlate strongly with posterior probabilities and also with the precision
of placements [12]. The uncertainty of placements may guide decision processes in subsequent
analyses; for example, it might be sensible to discard queries with uncertain placements
from further analysis steps, such as the estimation of metagenomic sample composition or
taxonomic identification.

The declaration of multiple weighted placement positions for a single query is not limited
to ML-based programs in principle. For example, the phylo-k-mer-based approach RAPPAS
also generates multiple placement positions with LWR-like weights for each query. For this,
RAPPAS calculates a measure of placement uncertainty from the weighted distribution of
the ancestral k-mer sequences at inner nodes of Tref that are associated with the query. In
contrast, both methods APPLES and App-SpaM do not inherently provide the possibility
to specify placement uncertainty. However, App-SpaM saves the number of spaced-word
matches as well as the pairwise distance estimates between Sq and each reference sequence.
We consider these two sources of information as leaf annotations in Tref as each leaf represents
a single reference sequence. Just like for placement heuristics, the leaf annotations then
provide information that may serve as a basis for inferring LWR-like values. The uncertainty
of a placement may be specified as a function of the leaf annotations in the subtree below the
placement branch, or of all leaf annotations in the whole tree. For example, such a function
may incorporate the difference in the number of SpaMs between the two subtrees below the
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placement branch, or the relative number of SpaMs below the placement branch with respect
to the total number of observed SpaMs across all reference sequences.

Methods

We extended App-SpaM with the ability to specify multiple placement locations for a single
query that are weighted according to their certainty. In accordance with RAPPAS and the
standardized JPlace file format, we refer to these weights as likelihood-weight ratios (LWRs)
even though they are not derived from likelihoods. This ensures that several subsequent
programs interpret these LWR-like weights as a probability distribution of potential placement
locations over the branches of Tref. To infer the weights, we propose two weighting schemes
for the inner nodes of Tref that are based on the leaf annotations. Each weighting scheme
simultaneously constitutes a new placement heuristic in addition to those presented in Sec. 4.2.
The underlying process for all new heuristics is identical and analogous to ML-based programs:
A query is placed on every branch of Tref resulting in 2 · (m− 3) placement positions for a tree
with m organisms. Subsequently, the branch b of each placement position receives a weight wb
that indicates the plausibility that Sq really belongs onto branch b. Then the weights of all
branches are normalized, resulting in a probability distribution across all branches in Tref. The
best five placement positions are reported in the JPlace output file; the number of reported
positions can be modified when running App-SpaM with these modes.

Similar to the placement heuristics introduced earlier, each weight wb for a branch b
is dependent on the distribution of the SpaMs below b. We refer to the subtree that is
induced by b as Tb. Let u and v be the two distal branches directly below b; we define the
set Sb = {Si | Si ∈ Tb} to comprise all reference sequences below b. We refer to the total
number of SpaMs that occurred between Sq and any reference in Tb as

sb =
∑
Si∈Sb

s(Si, Sq) . (4.11)

The first heuristic assumes that a placement on b is uncertain when the SpaMs below b are
equally distributed among the two subtrees Tu and Tv. On the other hand, if the SpaMs of
most references in Tb belong to either Tu or Tv, the placement is rather certain. This measure
of dispersion is then multiplied by the relative number of SpaMs that occurred in Tb:

wb =

(
1− |su − sv|

su + sv

)
︸ ︷︷ ︸

dispersion

·
(

sb
sroot

)
. (4.12)

Thus, the weight of a branch located directly above a leaf is given as the relative number of
SpaMs of the respective reference sequence.

For inner branches, the weight approaches zero if all SpaMs below b belong to the same
subtree; in this case, a better placement is expected within the subtree where the SpaMs
occur. In contrast, if the SpaMs are equally distributed among the subtrees, the weight
evaluates to the relative weight of all SpaMs in Tb. The second heuristic uses the minimal
number of SpaMs in Tb to determine the placement certainty of Sq weighted by |Sb|, the total
number of leaves in Tb. Here, the assumption is that the minimal number of SpaMs to any
reference sequence influences the quality of placement results, as discussed in Subsec. 3.1.3.
Simultaneously, the probability of a reference with a low number of SpaMs increases with the
size of Tb:

wb = min
Si∈Sb

s(Si, Sq) · |Sb| . (4.13)
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Figure 4.11 – Expected node distance (blue) compared to the node distance (orange) of
App-SpaM on three different data sets (three subplots) for three different heuristics (x-axes).
Accuracy was measured using the pruning-based accuracy evaluation with 50 repetitions (each
dot is the average (expected) node distance of a single repetition).

We refer to the first placement heuristic in Eq. 4.12 as Rel-Diff and to the second heuristic
defined by Eq. 4.13 as Min-Leaf.

Discussion

The evaluation of LWR-like values is challenging because each query read has a single clearly
defined position in Tref. For this purpose, the PEWO framework provides the expected ND
(eND) metric. The eND is defined as the sum of NDs across all proposed placements for Sq
weighted by their LWRs. If the LWRs are of high quality, the eND distance is expected to
outperform the ND metric over multiple pruning experiments: The average distance across the
weighted placement positions is a better estimate of the true placement position than a single
placement position is on average. Correspondingly, ML-based programs exhibit an improved
accuracy under the eND metric compared to the ND metric, see our comprehensive evaluation
in Sec. 3.1.2 and Suppl. Fig. A.2 to Suppl. Fig. A.9. When subsequent processing steps
require a singular placement branch, only the placement with the highest LWR is used. We
evaluated Rel-Diff and Min-Leaf by running the PAC workflow on the bac-150, hiv-104,
and bv-797 data sets with 50 iterations each. Besides the two new heuristics, placements
were also carried out with the default version of App-SpaM.

Figure 4.11 shows the accuracy of our two proposed methods with respect to SpaM-X
over 50 pruning iterations on each of the three data sets. Both new heuristics perform
significantly worse than App-SpaM’s default version with node distances that are at least
twice as high on all data sets. For both new heuristic, eND values are significantly better
than ND values, indicating that the weighted average placements are superior to the single
placement with highest weight. These unsatisfactory results demonstrate that the suggested
placement heuristics do not work as intended. Although both methods outperform the control
methods introduced in Sec. 3.1.1, the improvement remains small. For example, averaged
over all queries, the highest weighted placement by Rel-Diff on the hiv-104 data set is only
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SpaMs
Similarity

Figure 4.12 – Tree with LWR-like values on the bac-150 data set. App-SpaM infers multiple
weighted placement positions for a single query Sq on the bac-150 data set. The two outer
rings highlight the leaf annotations from App-SpaM’s internal algorithm: The bars of the
inner ring (blue) indicate the number of spaced word matches between Sq to each reference.
The height of each bar is normalized by the maximal number of SpaMs that occur to any
reference sequence. The bars of the outer ring (orange) indicate the similarity of Sq to each
reference. The size and color of each node indicates the weight of the branch above.

0.9 nodes better than placing each query at the midpoint of the tree. With respect to the
expected node distance, weighted placements of Rel-Diff improve on average by 2.4 nodes
compared to the midpoint control method. Similar effect sizes are prevalent for bac-150 and
bv-797.

One reason for the loss in accuracy is visualized in Fig. 4.12: Often, the number of
SpaMs are only marginally different between multiple reference sequences distributed among
the whole reference tree. In those cases, the proposed weighting schemes also infer similar
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LWR-like values for nodes across the whole reference tree instead of local groups of nodes.
The figure illustrates such an example for a single query Sq and a single pruning experiment
on the bac-150 data set. One counter example where placement accuracy is high is given in
Suppl. Fig. B.17 for the bv-797 data set; here, the leaf annotations create little ambiguity
about fitting placement positions. The difference to the example in Fig. 4.12 is that reference
sequences are evolutionarily less related in bv-797. In those cases where a query sequence
produces a high number of SpaMs to multiple or all references, it becomes all the more
important to determine those references that indeed have the highest number of SpaMs, as
done by the SpaM-X heuristic. Another approach could be to include the distance estimates
in addition to number of SpaMs. As visualized in Fig. 4.12, inferred distances exhibit a larger
variation across the reference sequences. However, we did not devise or test any joint measures
that produce adequate LWR values and perform better than the two proposed heuristics so
far. In this context, Suppl. Fig. B.17 also highlights another problem: In certain cases, a
low number of highly similar SpaMs are reported between the query and a distant reference
sequence. The discrepancy between the number of SpaMs and the corresponding distance
estimates renders the combination of both difficult. Our current approach to infer LWRs
from the distribution of leaf annotations might be fundamentally flawed. After all, the leaf
annotations might provide too little information to infer reasonable weights for inner nodes of
the reference tree. Besides combining SpaM counts and distance estimates, two additional
approaches may be pursued in future research.

First, deriving additional information about inner nodes could be achieved by employing
phylo-k-mers. The software RAPPAS first introduced phylo-k-mers for the task of phylo-
genetic placement. In RAPPAS, a phylo-k-mer is a word of length k that is derived from the
reference sequences and carries phylogenetic information which can be utilized for placement,
see Subsec. 2.7.1. We adapted this idea to the application of spaced phylo-k-mers and evaluated
whether spaced phylo-k-mers can guide the placement process [380]. To account for potential
ancient k-mers that are not present in the given references, RAPPAS infers a set of appropri-
ate phylo-k-mers via ancestral sequence reconstruction. When using spaced phylo-k-mers, it
is instead acceptable to use a sufficiently low pattern weight w. More specifically, we annotate
each inner branch b of Tref with spaced words that occur exclusively in the subtree Tb. These
monophyletically occurring spaced words characterize the references in the respective clades.
After computing a database of spaced phylo-k-mers in a preprocessing step, they guide the
placement process. While the integration of spaced phylo-k-mers into the current version
of App-SpaM is challenging, it might alleviate the troubles that we experienced with the
heuristics Rel-Diff and Min-Leaf.

Second, placement uncertainty may be quantified for existing heuristics, such as SpaM-
X, by using adapted bootstrapping approaches. Recently, it has been demonstrated that
non-parametric bootstrapping works well for alignment-free PP programs, especially for long
query sequences [381]. Similarly, randomly selected subsets of spaced words across multiple
program runs can be used to assess the variation of placement positions. The variation then
constitutes a measure for the uncertainty associated with the resulting placements. Outside of
metataxonomics, this idea is similar to placing multiple genes of the same species to infer an
overall species position, see Chpt. 5. In summary, the indication of placement uncertainty in
alignment-free placement programs is not as evident as for Maximum likelihood (ML)-based
programs. Overall, our experiments revealed a strong drop in accuracy for the two newly
introduced heuristics that quantify placement uncertainty and they are not fit for use in their
current state.
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Iterative Update of
Phylogenetic Trees

Matthias Blanke conceived, planned, and supervised all work presented in this chapter. The
implementation and execution of experiments in Sec. 5.1 was carried out jointly by Dark
Engel (Department of Bioinformatics, Georg-August-Universität Göttingen) and Matthias
Blanke. The implementation and execution of experiments in Sec. 5.2 was carried out jointly
by Patricia-Franziska Römer (Department of Bioinformatics, Georg-August-Universität
Göttingen) and Matthias Blanke.

The characterization of short sequencing reads from metagenomic amplicon experiments has
been the main focus of phylogenetic placement algorithms [10, 12, 15, 335], of associated
software that deals with placement data [194, 334, 337, 339, 382], and of studies that
use phylogenetic placement software [383, 384]. This confined use is caused by the high
computational demands of existing placement programs and their dependence on sequence
alignments, which limits their applicability and excludes sequencing data that span longer
regions, or are only available as short reads or incomplete scaffolds; such sequencing data
are commonly generated, for example, from metagenome assembled genomes [9], or from
low to ultra-low sequencing experiments in whole genome association studies or conservation
biology [8, 385]. Studies with the purpose of finding phylogenetic relationships for a single
species often apply de-novo tree reconstruction methods based on multiple marker genes [386–
390]. Although these studies also term their process as ’phylogenetic placement’, they do
not perform rigorous placement into existing trees as described in Sec. 2.7. Consequently,
they also do not use available high-quality trees and the respective software tools tailored
for phylogenetic placement. Although de-novo reconstruction can be more accurate than
phylogenetic placement, de-novo reconstruction involves many resource-intensive steps that
are in a disproportionate relation to the potential gain in accuracy. These steps involve the
collection, processing, and curation of sequencing data, as well as the computation of the
reference tree. Each of these steps requires careful consideration to mitigate errors that may
distort the resulting tree. On the contrary, the use of existing trees, which were calculated from
curated data sets and built by experts from the respective research communities, illustrates
the potential benefits of placement. Performing real phylogenetic placement in these instances
also facilitates the efficient screening of large amounts of new sequencing data that cannot be
processed with more time-intensive methods.

The modest usage of phylogenetic placement in a phylogenomic context may also be
explained by the fact that PP programs were not designed to handle unstructured sequence
data up until now. However, an algorithm such as App-SpaM enables the augmentation of

109



Chapter 5. Iterative Update of Phylogenetic Trees

existing phylogenetic species trees with a single or a whole set of species based on arbitrary
sequence data, such as their entire genome, a set of genes, or a collection of short reads. This
novel opportunity allows the application of phylogenetic placement outside the metagenomic
field. An obvious usage of App-SpaM is the continuous augmentation of phylogenetic trees
with new species, but there are various other emerging uses for phylogenetic placement where
reference sequences may be unaligned. In the following sections, we present use cases in which
App-SpaM has distinct advantages over ML-based programs and evaluate its accuracy and
feasibility for these tasks.

5.1 Continuous Augmentation of Phylogenetic Trees

The field of phylogenetics addresses the reconstruction of phylogenetic relationships based
on molecular data from a set of species, usually by reconstructing a phylogenetic tree [391]
or a phylogenetic network [392]. When sequencing data was still sparse, the phylogenies
of species were reconstructed on the basis of single genes, called marker genes, which were
determined to provide a sufficient resolution to identify the relationships between all species
under investigation. However, phylogenetic trees that are based on only a single gene are not
necessarily representative of the evolutionary relationships of the species itself. The history of a
single gene deviates, sometimes profoundly, from the history of the species itself. Furthermore,
it is difficult to choose the appropriate gene for phylogenetic analyses, and sensible genes
vary between different groups of species [393–395]. Finally, another inherent problem is
the limited resolution that a single gene offers: The number of available sequence positions
is scarce for a single marker gene, which may cause statistical errors in the phylogenetic
estimation process, especially if a large number of species is considered in the analysis.
To overcome these limitations and as more sequencing data became readily available, the
approach has shifted to the use of multiple genes or even the complete genomic data from
the species at hand, to determine their phylogenetic relationship. This field is also referred
to as phylogenomics and it is commonly accepted that increasing the amount of genomic
data results in phylogenetic trees that are better resolved and highly supported [396–398]
and there have been many theoretical and practical approaches to reconstruct phylogenies
based on whole genome sequencing data [397–399]. However, the use of increasing amounts of
data may also result in systematic biases, for example, due to an increasing level of noise or
due to model violation [400]. Thus, it is not always possible or feasible to use the complete
genomic data of all species [401]. Therefore, it is common practice to use a large number
of carefully selected homologous genes from all organisms of interest to infer a phylogenetic
tree [402]. There are two primary approaches to using gene sequences for the reconstruction
of species phylogenies: One straightforward approach is to construct an alignment for every
gene and subsequently concatenate all gene alignments into one single super-alignment. These
approaches have also been termed supermatrix methods [403]. Methods for character-based
phylogenetic reconstruction, such as maximum likelihood or maximum parsimony, are then
used on the super-alignment as presented earlier. There are several methodological pitfalls of
supermatrix methods that must be considered during the analysis [404]. Additionally, they
exhibit practical problems with respect to scalability: Building a multiple alignment and
inferring the phylogenetic tree by means of maximum likelihood is resource-intensive, both
with respect to human and computational resources.

After the same set of genes is sequenced from all organisms of interest, they are curated
so that only those genes that exhibit favorable qualities are taken into account. Genes with
an evolutionary history that deviates strongly from the expected species history are labeled
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as outlier genes [405]; it has been demonstrated that including even a small number of outlier
genes in the analysis may significantly alter resulting species trees [406]. The outlier detection
is often performed by human experts who screen all gene trees and remove any problematic
sequences from subsequent analyses, which constitutes a time intensive step. Furthermore, the
time required for the maximum likelihood calculation of a tree involving a large set of genes
and species can take several days to weeks of processing time and requires a large amount of
memory [236, 407]. Another approach to infer species phylogenies is by means of so-called
supertree methods [408], such as ASTRAL [409]. Here, the basic idea is to construct a set
of phylogenetic trees that correspond to the evolution of the sequenced genes, respectively.
Subsequently, all gene trees are merged into a single species tree that represents the overall
species phylogeny. In doing so, a fundamental concern is that gene trees are conflicting, which
means that the species tree cannot adhere to the topology of each gene tree, but instead must
resolve the discordance among the gene trees. Different methods are available for the merging
of the gene trees; in case of ASTRAL, the merging is performed according to quartet trees.
A quartet tree is an unrooted phylogenetic tree with exactly four leaf nodes and two inner
nodes. A phylogenetic tree with m leaves induces

(
n
4

)
distinct quartet trees, in each of which

all nodes are removed except for four distinct leaf nodes and two internal nodes such that
their relationship in the original tree is retained. ASTRAL finds the species tree that agrees
with the largest number of quartet trees induced by the gene trees. Finding this optimal tree
is NP-hard, and thus ASTRAL offers heuristics to find non-optimal trees in an acceptable
time.

No matter whether supermatrix or supertree methods are used for phylogenetic reconstruc-
tion, a newly sequenced species cannot be inserted into an existing tree using the traditional
methods for phylogeny reconstruction. Instead, the whole tree reconstruction process must be
started from scratch, which poses a substantial bottleneck for the integration of new sequencing
data into ongoing projects based on existing phylogenetic trees. Structured placement of
new species into existing trees has been attempted only rarely; one example is the custom
workflow MGPlacer, which was used to infer the relationship of historical tuberculosis
strains from metagenomic data [410]. Thus, it is desirable to streamline the process of inserting
new species into existing trees to keep them up-to-date. So far, only two publicly available
methods have attempted to systematically insert new species into existing species trees while
considering gene discordance. The first method is INSTRAL [411], an extension of the
ASTRAL program. In addition to an existing species tree T Sref, a query sequence Sq, and
corresponding data of all gene sequences of the reference and query sequences, INSTRAL
also requires all gene trees as input. INSTRAL then places each gene of Sq on its respective
gene tree using any algorithm for phylogenetic placement. Subsequently, as in ASTRAL, it
determines the location in T Sref that coincides with most of the quartet trees induced by the
updated gene trees that include Sq. Although this procedure accounts for discordance in the
gene trees and is statistically consistent, it also requires the storage, handling, and update
of all gene trees, and thus, ’complicated analyses pipelines’ [412]. INSTRAL cannot only
add single species, but also provides two options to add multiple species to an existing tree:
Multiple species are added either independently or consecutively, thus resolving their mutual
relations. Another recent approach is DEPP [412], which accounts for discordance among gene
trees by employing a supervised machine learning approach: DEPP trains a convolutional
neural network that embeds the input species in a high-dimensional Euclidean space such
that the distances between their sequences is represented. New species can be added to the
embedded space even if only a single gene sequence is available. Subsequently, distance-based
placement programs may infer the position of the query species in the overall species tree.
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An updated version of DEPP uses a hyperbolic space instead of a Euclidean space for the
embedding and produces more accurate species trees compared to the original version [413].
The limitations and challenges of the calculation and update of large-scale phylogenetic trees,
as well as recent technological advances, have been discussed in detail [414].

5.1.1 Methods

We implemented and evaluated a simple process for the augmentation of existing phylogenetic
trees with additional species by means of phylogenetic placement. We assume that there is
an initial tree to which additional species are added and that the tree was constructed on
the basis of multilocus genomic data; we also assume that the gene sequences of all involved
species are available. Sequence data for the to-be-placed species are also present as multilocus
genomic data. Our proposed method adds these species consecutively to the existing tree,
thus augmenting it permanently. For a given query species Sq, our procedure first determines
a single placement location for each gene of Sq, and subsequently merges all gene placements
into a single species location. This procedure is considerably faster than existing procedures
for de-novo tree reconstruction, because phylogenetic placement with App-SpaM is efficiently
possible for a large number of genes and species. Furthermore, the augmentation pipeline
is straightforward to use, requires little knowledge from the end user, and does not involve
additional preprocessing of the sequence data.

More specifically, we receive a set of m species Si, i ∈ {1, . . . ,m} together with their
available sequence data Di, i ∈ {1, . . . ,m}. We assume that the sequencing data for each
species comprise a set of o homologous genes. However, the approach can be easily generalized
to any reference or query species that comprises only a subset of the o genes. Additionally,
a phylogenetic tree T 0 is given whose leaves are labeled from 1 to m, corresponding to the
m species. Then, for a new query species Sq and its sequence data Dq, our proposed method
inserts Sq into a position of T 0 that is deemed appropriate and outputs the tree T 1 that
comprises m+ 1 species. Subsequently, the procedure is repeated for additional query species
to iteratively update T 1, resulting in continuously augmented trees T 2, T 3, T 4, . . . , and so
on. For a set SQ = {Sqi , i ∈ {1, . . . , k}} of k new species, we term the tree that results after
inserting all species of SQ one after the other as T k.

The location of each single query species Sq is determined with respect to the location of
all gene placements of its gene sequences in Dq. The insertion of Sq into T is a three-step
process: First, a phylogenetic placement software P places each gene from Sq into T . Second,
the information from all gene placements is merged to infer a single placement position
within T . Third, the new species is inserted at the specified position, new branch lengths
are determined, and the updated tree with m+ 1 species is returned. The accuracy of gene
and species placements depends on the properties of the organisms under consideration; this
includes, in particular, the degree of relatedness between the species in SQ and the species
present in the tree, the size and density of the taxon sampling in T 0, and the evolutionary
congruence between single gene trees. For example, if many HGTs occurred between the input
species, the positions of gene placements of a single species may be spread across different
branches of T . The reason is that the placement position of each horizontally transferred gene
is inferred from the species tree topology, which is not congruent with the topology of the
according gene trees. In addition to HGTs, other biological mechanisms may cause similar
effects that skew the estimation of the species placement position in the second step. For
now, we ignore this issue and assume that the resulting placements of HGT-genes simply
differ compared to congruent gene placements; we discuss further solutions to this problem
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in Sec. 5.2. To properly assess the quality of a tree T k after inserting all species from SQ,
we employ the use of artificially generated data sets. This allows us to control all data set
properties individually and to evaluate their influence on the augmented tree. Furthermore,
similar to the evaluation of phylogenetic placement, we employ a pruning-based evaluation
procedure in order to know the true underlying tree. We create the set SQ by pruning species
from an existing ground-truth tree T ∗; then, the pruned species are placed back onto the
pruned tree T 0, resulting in T k. Appropriate metrics are then used to evaluate the accuracy
of T k with respect to T ∗ as described below.

We simulated several artificial data sets with varying parameters using the Artificial Life
Framework (ALF) [415]. ALF simulates the evolution of a base genome consisting of m
species along a phylogenetic tree T ∗, which is either provided as input to ALF, or generated
at random. We use the latter option and let ALF generate a random backbone tree in all
experiments. Starting with the base genome at the root of T ∗, ALF simulates its evolution
along the branches of the tree, following the probabilistic rules of a specified evolutionary
model. This process results in one genome for each leaf in T ∗. The main simulation parameters
of interest are the number of species, the number of genes per species, and the overall mutation
rate that determines the degree of relatedness between the genomes. Except for the mutation
rate, we do not change any parameters for local-scale evolutionary processes for the simulation
of the DNA sequences: By default, ALF uses the TN93 model to simulate substitutions [48],
the Zipf distribution for indels which adequately represent insertions and deletions [416, 417],
and the Gamma distribution to simulate variation among sites. Furthermore, ALF can also
simulate large-scale evolutionary events such as genome rearrangements, gene gain and loss,
gene duplication, HGT events, and more. Although we disabled these options by default,
we also repeated each simulation with the additional simulation of HGT events. Our Base
data set comprises 100 species with 50 genes each, for an average mutation rate of 0.05
substitutions per sequence position. Additional data sets vary with respect to the mutation
rate, the number of genes, and the number of organisms; an overview is given in Tab. 5.1.

The pruning-based evaluation procedure takes the true tree T ∗, comprising m species and
their sequence data, as input. Then, k sequences are selected at random and pruned from T ∗,
forming the reference tree T 0. After placing all k species, the resulting tree T k is compared
to the original tree T ∗ to judge the quality of the augmentation process. There are several
methods that compare the similarity between phylogenetic trees, the most ubiquitous being
the Robinson-Foulds (RF) metric [418]. For a given tree T , each branch b of T induces a
split Sb, that is a distinct bipartition of the leaf nodes into two sets A and B. In a trivial
split, one of the two sets A or B comprises exactly one leaf. All trivial splits are contained in
each tree that is defined on the same set of leaf nodes. Let ST = {Sb, b is branch in T} be
the set of all splits in T . The RF distance dRF between two trees T1 and T2 over the same set
of leaf nodes is defined as the number of splits that are unique to either T1 or T2:

dRF(T1, T2) = ST1 \ ST2 + ST2 \ ST1 . (5.1)

The RF distance depends on the overall size of the input trees, and larger trees yield higher
RF distances on average. Normalizing the RF metric, for example, by the maximum possible
number of non-trivial splits, overcomes this issue. Although the RF metric is regularly used
to quantify the similarity between phylogenetic trees [11, 409, 419], it has been criticized that
its values lack a clear meaning and that it exhibits undesired biases such as a fast saturation
rate [420]. Even if both input trees vary only with respect to a single leaf node, the RF
distance may reach its maximum possible value. Removing the single differing leaf from both
trees results in dRF = 0. This problem arises since the RF distance only considers identical
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splits; the similarity between two near-identical splits is not taken into account by Eq. 5.1.
To mitigate these issues, generalized RF distances follow an adapted approach: For two splits
S1 and S2, they define a measure ψ(S1, S2) that quantifies the similarity between the splits.
For two input trees, they then find a matching

M = {(Sb1 , Sb2), b1 is branch in T1, b2 is branch in T2} (5.2)

that assigns each split of one tree to exactly one split of the other tree and vice versa. The
overall score Ψ(M) of a matching M is defined as the sum of all matched split similarities:

Ψ(M) =
∑
m∈M

ψ(m) . (5.3)

The matching with the lowest score is considered to be the overall generalized RF distance dgRF
between T1 and T2:

dgRF(T1, T2) = min
M

Ψ(M) . (5.4)

There are several generalized RF metrics that differ from each other with respect to the
definition of ψ(S1, S2) [421–423]. Here, we use the clustering information distance (CID) [420],
a generalized RF metric which uses concepts from the field of Information Theory to score split
similarities between trees: For a split S1 that implies the two leaf sets A1 and B1, let P (A1)
be the probability that a randomly selected leaf belongs to set A1, thus P (A1) = |A1|/m, and
accordingly P (B1) = |B1|/m. Likewise, the split S2 is a bipartition of all m leaves into two
sets A2 and B2. The entropy of a split S1 is given as

E(S1) = −P (A1) · logP (A1)− P (B1) · logP (B1) . (5.5)

Furthermore, let P (A1, A2) = |A1 ∩A2|/m be the probability that a randomly selected leaf is
in both leaf sets A1 and A2. Then, the mutual clustering information IMCI(S1, S2) between
two splits is defined as

IMCI(S1, S2) =
∑

L1∈{A1,B1}
L2∈{A2,B2}

P (L1, L2) · log

(
P (L1, L2)

P (L1)P (L2)

)
(5.6)

To convert IMCI(S1, S2) into a distance measure ψMCI(S1, S2) it is subtracted from the total
entropy of all splits in both trees divided by two [420].

We infer a placement position for Sq via one of three different approaches. The first
approach simply calculates a singular placement branch based on the complete data in Dq

using any program for phylogenetic placement, instead of placing each gene of Dq individually.
We term this approach the collective species placement. The other two approaches first infer
placements for each individual gene in Dq, and then find a placement for the species Sq based
on the distribution of the gene placements across the branches of the tree. More specifically,
the second approach is a top-down tree traversal similar to the placement heuristics proposed
in Sec. 4.2. We assign a weight w(b) to each branch b of the reference tree that is equivalent
to the total sum of gene placements occurring at b or in the subtree below b. We then follow
the highest weighted path from the root of the tree towards the leaves. Let u and v be the
two branches below b; the traversal is either stopped when reaching a branch above a leaf
node, or when

⊗1 = |w(u)− w(v)| > w(b)

2
(5.7)
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Table 5.1 – Simulated data sets for the evaluation of continuous tree augmentation.

abbreviation # organisms # genes mutation rate HGT rate

base 100 50 0.05 0 / 0.5 /
High-MR 100 50 0.01 0 / 0.5
Many-Genes 100 100 0.05 0 / 0.5
Many-Species 200 50 0.05 0 / 0.5

We performed experiments on four data sets that differ with respect to the number of organisms,
number of genes, and applied mutation rate. Each data set was simulated once without HGT
events and once with HGT events of the specified rate. The first column indicates the name
for each data set.

holds; we term this method the tree traversal species placement. The third approach is called
the clustering method for species placement: Here, we segment the branches of the tree
into clusters according to their corresponding gene placements and use the centroid branch
of the largest cluster as the species placement location. Again, we define the weight w(b)
of a branch b to be the number of gene placements that occur on b (this differs from to
the tree traversal method where the weight sums up all placements below branch b). We
define two branches b1 and b2 to be adjacent when the levels of their attached parental
nodes differ by exactly 1. A group of l branches C = {bi, i ∈ [l]} forms a single cluster if
w(bi) > 0, i ∈ [l] applies and if for any two branches bi1 , bi2 ∈ C a chain of adjacent edges
bi1 , . . . , bj , . . . , bi2 , bj ∈ C exists. According to these rules, we group the branches of the tree
into unique clusters based on their weights. Given a cluster C, the centrality c(bi) of a branch
bi ∈ C is defined as the total amount of force required to transfer the weights from all other
branches bj , j 6= i, j ∈ [l] within C to bi. Here, the force is defined as the weight of bj times
the number of nodes between bi and bj . The centroid bC of a placement cluster C is defined as

bC = arg min
b∈C

c(b) . (5.8)

The clustering method chooses the centroid of the largest cluster as the overall species
placement location for the query species Sq.

Although this process may be applied for any phylogenetic placement program P, App-
SpaM is particularly suited due to its fast placement speed and applicability in the absence
of gene alignments. In addition to App-SpaM, we also used EPA-ng in order to compare the
achieved results. When using EPA-ng, we calculate an alignment for each gene of Sq with
the software MAFFT, concatenate all gene alignments, and infer a single placement position
for the aligned sequence. This leads to better placement results than merging individual gene
placements with one of the heuristics described above. For each of the data sets given in
Tab. 5.1, we performed pruning experiments with ten pruned sequences. For each experiment,
we measured the accuracy of all proposed methods as the CID distance from the original tree
over five repetitions. Additionally, we conducted experiments with 20 and 50 pruned reference
sequences for App-SpaM, respectively. We also tested the influence of the parameter of
App-SpaM’s default SpaM-X heuristic and ran additional experiments with a larger number
of HGT events.
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5.1.2 Results

Due to the stochastic nature of the data set simulation in our analysis pipeline, different
sequences were pruned for the evaluation of App-SpaM and EPA-ng. We expect that any
differences that might improve or worsen the augmentation process balance out over the five
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(a) Simulated ground truth tree.
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(b) Augmented tree with App-SpaM.
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(c) Augmented tree with EPA-ng.

Figure 5.1 – Exemplary phylogenetic trees augmented with new species by App-SpaM or
EPA-ng. Part (a) shows the true underlying tree as simulated with ALF. The sequences to
be pruned are highlighted in color for App-SpaM (red) and EPA-ng (orange). Part (b) shows
the augmented tree after placing the pruned sequences with App-SpaM and the clustering
method. The augmented sequences are highlighted in green, unless they were incorrectly
placed (red, bold font). Part (c) shows the augmented tree after placing the ten pruned
sequences with EPA-ng. The augmented sequences are highlighted in green, unless they were
incorrectly placed (orange, bold font).
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repetitions of each experimental setup. Figure 5.1 shows the simulated tree T ∗ of the first
repetition for the Base data set as an example. In addition, two trees are presented that were
augmented with App-SpaM and the clustering method, and EPA-ng, respectively. In this
specific example, App-SpaM places 7 of the 10 pruned species at their correct location, while
EPA-ng places 8 of the 10 species correctly. All incorrectly placed species deviate from their
original position by exactly one node for both App-SpaM and EPA-ng. On visual inspection,
most other test cases exhibit similar properties with respect to the ratio of correctly placed
sequences as well as their degree of accuracy. For App-SpaM, two of the wrongly placed
sequences belong to the same clade of three pruned sequences; thus, the sequences were placed
one after another, utilizing branches that were added in previous iterations.

Figure 5.2 summarizes the CIDs between the reconstructed trees and the respective original
trees on all data sets shown in Tab. 5.1, either with or without simulated HGT events. Again,
due to the nature of the stochastic simulation, the number of HGT events varies between
the experimental setups: For the data set Base, 52 genes out of 5 000 originate from an
HGT rather than from inheritance. Accordingly, High-Mut has 76, Many-Genes has 101,
and Many-Species has 55 HGTs. EPA-ng was executed with default parameters on the
concatenated query genes, resulting in a single collective placement position.

In general, all trees augmented with EPA-ng display a high similarity to the original trees,
regardless of the presence of HGTs. In 30% of cases, the augmented tree topology is identical
to the true topology. The variation of the CID across the five repetitions remains below 0.02
for all data sets processed by EPA-ng. In contrast, trees augmented with App-SpaM have a
CID that is twice to three times as high. We proposed three methods to merge individual
gene placements to a single species placement position, namely, the collective method, the
tree traversal approach, and the clustering procedure. All augmented trees illustrate similar
deviations from true trees, no matter which of the three methods was employed. Similarly to
EPA-ng, the presence of HGT events does not have a significant influence on the results of
App-SpaM. For both programs, we observe a drop in the CID for the Many-Species data set;
however, the decline of the CID is caused by the increase in tree size rather than improvements
in the quality of augmented trees. App-SpaM was executed with default parameters and
used the SpaM-X heuristic with X = 4.

Using different values for X drastically changes the accuracy of the augmented trees, as
seen in Fig. 5.3. Using X = 500, thus shifting gene placements toward more distal leaves,
substantially improves the quality of augmented trees: The CID drops by at least 50% for
all four data sets. When more than 10% of species are pruned from the reference trees, the
CID increases roughly linear with the number of species for App-SpaM, see Suppl. Fig. C.2.
Increasing the number of HGT events by a factor of four has a significant influence onto the
placement accuracy as illustrated in Suppl. Fig. C.1. One possible solution to this problem
is presented in the next section. App-SpaM performed the consecutive augmentation of
10 species on the Base data set—comprising 90 species with 50 genes each—on an Intel(R)
Core(TM) i5-2500K CPU with 3.30 GHz and 8 GB RAM in 149 seconds (average over five
repeats). On the same system, EPA-ng did not finish due to the limited RAM; instead, we
ran EPA-ng on our local computing cluster comprising 30 Intel(R) Xeon(R) E7-4850 CPUs
with 2 GHz and 1 TB RAM where it required 4 699 seconds (average over five repeats).

5.1.3 Discussion

We presented a straightforward procedure to iteratively update phylogenetic species trees
with additional organisms, a process that we also refer to as tree augmentation. We used three
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Figure 5.2 – Accuracy of tree augmentation using App-SpaM and EPA-ng on four artificial
data sets without (left side, blue background) and with (right side, orange background)
simulated HGT events. Roughly 1% to 2% of genes originate from an HGT when the HGT
simulation is turned on. All three methods to infer species placement positions are presented
for App-SpaM. From left to right, these methods are the collective placement (orange),
the clustering approach (blue), and the tree traversal method (red). For EPA-ng only the
collective placement (orange) was performed. Additional results for App-SpaM are given in
Suppl. Fig. C.3 and Suppl. Fig. C.4 which show that App-SpaM’s accuracy improves when
using X = 500 instead of its default version.
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Figure 5.3 – Mean accuracy of tree augmentation using App-SpaM and EPA-ng on four
artificial data sets without simulated HGT events. For App-SpaM, two different values (x = 4
and x = 500) are shown for the parameter x of the SpaM-X heuristic for each of the three
consensus methods. For EPA-ng, we only used the default parameters with the collective
species placement method.

techniques to find appropriate species placements: The first approach simply uses existing
placement software on the concatenated sequence data to directly determine a single species
placement. For the latter two approaches, first, each gene of a query Sq is placed onto the
existing tree with common placement programs and, second, all gene placements are merged
to a single species placement location using a tree traversal or clustering approach. Neither of
these approaches explicitly accounts for the potential discordance between genes of Sq; instead
we assume that the consensus of all genes in a query resolves any potential conflicts and
approximates the correct species position sufficiently accurate. When genes are placed with
EPA-ng, the augmented trees are of high quality and near identical to correct trees. However,
trees augmented by App-SpaM with default parameters are considerably less accurate than
those augmented by EPA-ng with respect to the CID. Using non-default parameters for
App-SpaM improves the quality of the augmented trees considerably. Incorrectly placed
species are always placed close to their correct position for both placement programs. The
moderate occurrence of HGT events does not influence the accuracy of augmented trees, but
the quality of augmented trees deteriorates when an increased number of HGTs is simulated.
Although the augmentation accuracy with App-SpaM requires further improvement, it only
requires a fraction of the time compared to using EPA-ng. Even for small data sets, it was
not possible to execute EPA-ng on a current standard personal computer.

The results presented here are not in direct agreement with the results presented in
Sec. 3.1.2. There, we demonstrated that the accuracy of App-SpaM is comparable to
alignment-based placement programs when placing short read sequences from metagenomic
experiments. Multiple reasons are conceivable for why EPA-ng outperforms App-SpaM
in the task of tree augmentation. One reason could be the length difference of the query
sequences; when read lengths are increased from 150 bp to 300 bp, we already observed that
alignment-based programs have an enhanced accuracy compared to App-SpaM, see Fig. 3.10.
Using even longer sequences, such as whole genes, could further amplify this effect and may
result in the difference in precision that we observed in Fig. 5.2. Another potential reason
may be the setup of our evaluation procedure: Including a larger variety of data sets with
respect to their size, sequence similarity, and tree structure might yield an explanation for
our observations. Especially the strong improvement of the augmented trees when increasing
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the SpaM-X parameter to X = 500 suggests that the relative positions of pruned sequences
impact the quality of resulting trees: With higher values of X, gene placements are shifted
toward the leaves of the reference tree. Consequently, if species are only pruned from distal
branches of the reference tree, the placement accuracy of genes might improve. Note, however,
that we did investigate this in Sec. 3.1.3 and that we did not observe such an effect for short
read sequences. The true underlying reason for the observed results remains unclear for now;
in the future, a structured analysis should be performed that focuses on the number and
relative location of the pruned sequences to assess the influence of the proposed effects, both
for App-SpaM and for other placement tools.

Two other software packages—INSTRAL and DEPP—have recently been introduced for
the update of large phylogenetic trees. Neither of these tools were publicly available when
we conducted our analyses. INSTRAL places the genes of Sq onto their respective gene
trees and uses the consensus among derived quartet trees to find a species placement position.
DEPP utilizes deep learning to find species placements even when only a few genes or a
single gene of Sq are available. Similarly to our evaluation procedure, INSTRAL has been
compared with EPA-ng for the placement of single species, or the consecutive placement of
multiple species; it has been reported that INSTRAL outperforms EPA-ng, especially when
the discordance among gene trees is high [411]. DEPP has been compared to INSTRAL,
EPA-ng, and APPLES with the contradictory result that DEPP and EPA-ng are on par
and generally perform better than INSTRAL and APPLES, especially if new species are
placed on the basis of only a few genes [412]. These divergent results are probably explained by
the differences in the evaluation pipelines. Only when species positions are inferred from many
genes, the precision of INSTRAL is comparable with other programs. Because our results
show that App-SpaM does not reach the accuracy of EPA-ng, it is evident that our current
procedure for the iterative augmentation does not produce phylogenetic trees as accurate as
those from INSTRAL or DEPP. However, our pipeline has the advantage of being easy to
use and fast to execute. Furthermore, it can be based on any phylogenetic placement program
other than App-SpaM and EPA-ng. In general, the proposed method should be considered
as a general boosting technique that broadens the applicability of existing placement programs
rather than an individual software program.

Regardless of the reported results, discrepancies in evaluation procedures among different
approaches remain an issue and prohibit meaningful comparison. While we used ALF to
simulate artificial data sets, DEPP and INSTRAL employed the SimPhy software [424]
and simulated incomplete lineage sorting instead of horizontal gene transfer to model gene
tree discordance. Furthermore, the evaluation of DEPP and INSTRAL utilizes the original
RF distance to calculate tree dissimilarities instead of generalized RF distance measures.
Additionally, all evaluation pipelines only consider the topology of augmented trees and not
the branch lengths of newly added species. These are just a few of the many differences
between existing evaluation procedures; it would be highly beneficial for future research efforts
to develop a common framework for the evaluation of tree augmentation programs, similar to
the PEWO framework for phylogenetic placement. Such a framework should include multiple
workflows that assess different aspects of the augmentation task, such as independent and
consecutive augmentation, or metrics that include branch lengths versus metrics that only
consider tree topologies. Furthermore, no systematic studies exist that compare how accurate
the update of phylogenetic trees is compared to de-novo tree reconstruction. INSTRAL
reports that there is decent loss in accuracy when performing an iterative update of existing
trees compared to applying de-novo reconstruction with ASTRAL, but it is not clear under
which conditions and to what extent these discrepancies occur.
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Another factor in this regard may be the order in which species are added to the tree. So
far, all programs performed the iterative augmentation in a random order. Although there
ought to be no dependency between the augmentation order and the quality of resulting trees
in the optimal case, it is conceivable that the order influences the results after all: Inserting
’difficult’ species with a high placement uncertainty as late as possible ensures that additional
information from previously placed species is available on the basis of which the placement
may be improved. We performed a brief analysis of this idea—as explained in detail in Suppl.
Chpt. C—but discovered no such effect for App-SpaM, see Suppl. Fig. C.5.

5.2 Gene and Species Outlier Detection

Gene discordance is the disparity in evolutionary history among genes that originate from the
same organism. Discordance between genes originates from a variety of different mechanisms
and has a major impact on phylogeny reconstruction [425–427]. Correspondingly, it also
influences tree augmentation on the basis of multi-locus data as performed in the preceding
section. While our results indicate that the simulation of a few HGTs does not affect the
quality of updated trees, the presence of many HGTs does worsen the results substantially,
see Suppl. Fig. C.1. Similarly, incomplete lineage sorting affects the update of phylogenetic
trees [411]. During tree augmentation, INSTRAL accounts for gene discordance by placing
each gene on its individual gene tree and merging the placements via the combined information
of quartet trees. However, this procedure requires the continuous storage and maintenance
of all gene trees, which can pose a substantial practical hurdle, especially if many genes are
available. In contrast, the program DEPP proposed a deep learning framework to update
species trees even on the basis of single genes. Similarly, it is common practice to remove
genes or species with challenging evolutionary histories prior to de-novo tree reconstruction,
and case studies have demonstrated that the removal substantially improves resulting tree
topologies [428]. According genes or species are also called outlier genes or outlier species.
However, the identification of these genes often involves a time-consuming manual inspection
of all gene trees. Only a few methods exist that detect and remove outliers automatically.
One such method is Phylo-MCOA, which identifies both gene and species outliers by a
simultaneous inspection of all gene tree topologies using multiple co-inertia analysis [405].
Likewise, we evaluated whether alignment-free programs are suitable to detect gene or species
outliers prior to de-novo phylogeny reconstruction in earlier work [429]. Given a dataset
of m sequences with l genes each, we constructed a m×m/2 dimensional vector of pairwise
distances for each of the l loci using Read-SpaM or FSWM. Then, we reconstructed all l gene
trees with NJ based on the distance estimates and calculated pairwise CIDs between all gene
trees. To flag outlier genes, we either used statistical measures based on the pairwise gene tree
distances, or the clustering algorithm DBSCAN [430] on the vectorized between-loci distances.
The former approach is inspired by the analysis of tree spaces with multidimensional scaling
and the effect of different tree-to-tree distances on tree spaces [431, 432]. The advantage of
using alignment-free methods is their fast computation speed, which allows the analysis of
large amounts of genes in little time. On the downside, the topologies of the resulting gene
trees are generally less reliable than ML-based trees which renders the detection of spurious
gene trees more difficult.

Here, we transfer our approach to gene or species outlier detection from de-novo recon-
struction to the augmentation of existing trees. In contrast to INSTRAL, our approach
does not need to store and update individual gene trees. The tree augmentation procedure
proposed in Sec. 5.1 involved an implicit integration of outlier genes by using consensus
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criteria among all gene placements. While this worked for a low number of HGT events, the
accuracy decreased sharply when more HGTs were present, see Suppl. Fig. C.1. Therefore,
we extend our approach from Sec. 5.1 by explicitly identifying and removing outlier genes
or species and evaluate whether the tailored approach produces improved results. We treat
outlier detection as a binary classification process where each gene or species either qualifies
or does not qualify as an outlier. A classification method for outliers assigns a label to each
gene that indicates its membership to one of the two classes. To identify and remove spurious
genes or species, we performed a pre-placement step similar to the ordered placement that
we analyzed in Suppl. Sec. C.1. During pre-placement, each gene of each query species Sq is
independently placed onto T 0 and information about individual gene placements is gathered
for each species. More specifically, we calculate a set of features for each gene of each species,
as well as an independent set of features for each species. The outlier detection is performed
based on these feature matrices. The set of gene features comprises its placement level
in T 0, its average distance to all other gene placements, information about which reference
sequences are contained in the subtree below its placement position, the number of SpaMs to
each reference sequence, the estimated distances to each reference sequence, and information
about the relative deviation of its placement compared to genes of the same loci in other
organisms. The set of species features comprises information on the distribution of its gene
placements among T 0, the variation of the number of SpaMs to each reference sequence among
its genes, and the variation of the distance estimates to each reference sequence among its
genes. When T 0 comprises m species, the total number of features for each gene and species
is 3 ·m+ 4 and 8 ·m+ 5, respectively. A detailed overview of all features and their derivation
is given in Suppl. Sec. C.2. After pre-placement and feature creation, one feature matrix
contains all to-be-placed species, and additionally single feature matrices contain all genes for
each to-be-placed species. We applied Isolation Forests to each feature matrix individually to
label genes or species as outliers. All identified gene or species outliers are removed from the
data and placement is performed with the remaining ones.

To evaluate our method, we repeated our experimental setup from Subsec. 5.1.1: We
simulated five artificial data sets using ALF with 100 species with 50 genes each with an
average mutation rate of 0.05 substitutions per sequence position. For another five artificial
data sets, we additionally turned on the simulation of HGT events with the high rate that
led to deteriorated results in the previous experiments. With the specified rate, we observe
that between 4% and 8% of all 5 000 genes in each data set originate from HGTs. For each
experiment, we prune ten random organisms and place them back onto the tree with all three
proposed augmentation heuristics. The placement is performed once without the removal of
outliers, once with the removal of gene outliers, and once with the removal of gene and species
outliers. For the outlier detection, we ran an Isolation Forest on each feature matrix using the
scikit-learn [433] implementation with default parameters. We compare all resulting trees
with the known correct trees using the CID metric. To assess the precision of the resulting
labels, we assume that each horizontally transferred gene qualifies as an outlier. We do not
take into account between which species the gene transfer occurred. We also do not explicitly
simulate species outliers; implicitly, those species for which many genes were transferred
horizontally are expected to be more difficult to place.

Figure 5.4 shows how the quality of augmented phylogenetic trees depends on the removal
of outlier genes or species. As before, a higher rate of HGTs strongly reduces the quality of
augmented trees, and the CID rises significantly compared to data sets without simulated
HGT events. Removing all outlier genes with our proposed procedure improves the accuracy
substantially for all three methods and heuristics, but trees do not attain the same quality
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Figure 5.4 – Accuracy of tree augmentation with and without outlier detection. Each
plot (left, middle, right) shows the accuracy of augmented trees with a different program
(App-SpaM with X = 4 on the left, App-SpaM with X = 500 in the middle, EPA-ng on
the right). The accuracy is measured by the clustering information distances (CID, y-axes).
For each program, we compare the results for a data set without simulation of HGTs (Base),
and with the simulation of HGTs. In the latter case, we compare augmented trees without
outlier detection (Many HGTs), with gene outlier detection (No Gene Outliers), and
with gene and species outlier detection (No Gene and Species Outliers). As before, we
use all three augmentation heuristics for App-SpaM (differently colored markers).

as without HGTs. If gene and species outliers are removed, resulting trees are consistent
with those augmented trees where no HGTs were present. Again, this observation holds for
App-SpaM for all three species placement heuristics as well as for EPA-ng. Note, however,
that the trees in the last scenario do not include all 100 species; after removing species outliers,
an average of 94.4 species remain. The average accuracy of inferred labels is 95.34% (SD
1.75) with a recall of 93.92% (SD 2.34). Thus, most of the true outliers are detected by our
approach; see the exemplary confusion matrices in Fig. 5.5. At the expense of the high recall,
the average precision reaches only 60.18% (SD 5.25). This means that a large portion of
genes flagged as outliers are genes which were not transferred horizontally. Figure 5.6 is a
simplified visualization of our gene feature space including 50 genes of a single species in a
single experiment. For this particular species, four out of five outlier genes were recognized
correctly. Another four genes were incorrectly labeled as outliers although they were not
transferred horizontally between organisms.

Our presented study implies that the presence of discordant gene histories impacts the
augmentation of existing phylogenetic trees. As a proof of concept, we devised, implemented,
and evaluated a process to detect and remove outlier genes or species based on the placement
data of a pre-placement step of the to-be-added species. Augmenting trees after removing
gene and species outliers results in significantly better quality. In contrast, removing only gene
outliers improves the trees, but not to the same extent. As suggested in an earlier analysis, this
effect only applies when sufficiently large gene discordance is present; the presence of only a
few HGT events does not significantly influence the proposed heuristics for tree augmentation.
On average, our approach detects and removes most outlier genes at the cost of also removing
some non-outlier genes; however, the false-positive rate stays below 5% on average, meaning
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Figure 5.5 – Confusion matrices for detecting gene outliers in three exemplary experiments.
Each confusion matrix shows the number of correctly and incorrectly detected outlier genes
and non-outlier genes (one circle each, sizes correspond to the displayed counts).

that only a fraction of the overall gene content is discarded for the benefit of removing most
outliers. If the proportion of outlier genes is further increased, it might become necessary to
find a better balance between recall and precision.

We performed anomaly detection with the implementation of scikit-learn’s Isolation
Forests with default parameters on the basis of a broad selection of features for genes and
species, respectively. The features represent how genes were placed in the pre-placement,
the distance and spaced-word statistics from spaced-word matches, and varying metrics that
describe the consensus among gene placements. The contamination parameter of Isolation
Forests fundamentally drives the amount of samples that will be labeled as outliers. A higher
ratio of samples is labeled as outliers when raising the parameter, while lowering it will reduce
the number. This affects the trade-off between precision and recall and should be taken
into account accordingly in the future. Tuning the contamination parameter to the data
set at hand, potentially with prior knowledge of the expected proportion of outlier genes,
could further improve the classification process. Furthermore, a multitude of other advanced
anomaly detection algorithms exist and may be used instead of Isolation Forests [434]. The
performance of different algorithms also depends on the number and nature of features for both
genes and species, as feature selection plays an important role in outlier detection [435]. Our
feature space simply represents a first draft and is neither polished nor exhaustive. Discarding
futile features or supplementing additional ones that encode contrasting properties could
additionally improve the predictive capacity.

Our results presented here are in agreement with other studies that demonstrate the
impact of gene outliers on the update of phylogenetic trees [428]. However, sufficiently many
HGTs must be present before their negative influence is observable in our experiments. Besides
HGTs, the simulation of other biological mechanisms, such as incomplete lineage sorting, may
have additional impact on the augmentation of phylogenetic trees. In future work, including
and comparing a wider array of mechanisms that result in gene discordance is necessary to
assess whether our methods lead to comparable results in more general settings. We also
simplified the problem by treating outlier detection as a binary classification problem: We
assumed that each horizontally transferred gene is an outlier. However, the donor and target
organisms between which the HGT occurred dictate the influence of the gene on the overall
tree augmentation or de-novo reconstruction. Assessing the magnitude of the discordance
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Figure 5.6 – Gene outlier detection for a single species visualized with multidimensional
scaling (MDS). We applied MDS to reduce the gene feature matrix of a single organism to a
4-dimensional Cartesian space (dimensions w, x, y, z are annotated at each axes). Each gene
of the species is represented by a single point (50 genes in total). Each gene originates from
an HGT event (TP and FN) or from inheritance (TN and FP). Genes that originate from
an HGT and were correctly labeled as an outlier are referred to as a true positive (TP, blue
dots). Genes that originate from an HGT and were not labeled as an outlier are referred
to as false negative (FN, green dot). Accordingly, correctly identified regular genes are true
negatives (TN, red dots), and regular genes incorrectly labeled as outliers are false positives
(FP, orange dots). One such plot may be created for the genes of each organism.

125



Chapter 5. Iterative Update of Phylogenetic Trees

might shed further light on the intricacies of our method: HGTs that result in low discordance
are presumably more difficult to classify unambiguously. Furthermore, although we performed
species outlier removal, we did not explicitly simulate species outliers in the first place. Future
tests for the detection of species outliers could simulate reticulate evolution to derive species
for which a non-tree-like history is present. Still, we believe that our analysis showcases that
discordance among genes negatively influences the augmentation of existing phylogenetic
species trees. This especially holds true for procedures that use a consensus among gene
placements such as the one presented in Sec. 5.1, but probably also applies for any other
method, similar as in de-novo tree reconstruction. The presented procedure quickly assesses
and discards HGT genes, and augmentation results improve considerably for those data sets
where HGTs are removed. App-SpaM is also ideally suited in this case, because the necessary
pre-placement step, as well as the handling of potentially many long gene sequences, is too
computationally expensive for ML-based placement programs.
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Side Projects

Rebecca Fee Dietlinde Regendantz (Department of Bioinformatics, Georg-August-
Universität Göttingen) and Matthias Blanke jointly conceived, planned, and executed
all experiments in Sec. 6.1 [436]. Jakob Störiko (Institute of Computer Science, Georg-
August-Universität Göttingen), implemented and provided the algorithm utilized in Sec. 6.2.
Matthias Blanke conceived, implemented, and executed all experiments in Sec. 6.2.

We outlined common tasks in the fields of phylogenomics and metagenomics in Sec. 2.6
and specifically addressed the problem of phylogenetic placement by presenting a novel
algorithmic approach in Chpt. 3 and its potential applications in Chpt. 5. We evaluated
our method App-SpaM on simulated and real-world data sets for different applications
to assess its accuracy and robustness; although its placement accuracy is of high quality,
we observed that distance estimates derived from spaced-word matches sometimes deviate
from expected distances, see Sec. 4.3. The magnitude of this deviation seems to be mainly
influenced by the underlying sequence data. Here, we further investigate this interrelation
for the task of phylogeny reconstruction on an intricate real-world data set using another
spaced-word matches approach: In Sec. 6.1, we apply the alignment-free method Read-SpaM
to reconstruct a phylogenetic tree of eight Old World monkeys from ancient DNA. In doing
so, we specifically examine the accuracy of Read-SpaM’s distance estimates and their effect
on inferred phylogenetic trees. While it has been demonstrated that spaced words can be
used successfully to infer phylogenetic trees [11], our use case presented here is unique with
respect to its noisy eukaryotic sequencing data compiled from museum exhibits.

We also restrained our underlying methodological approach to the exclusive use of spaced-
word matches so far. In general, most alignment-free methods are based on continuous
or non-continuous words of a fixed length [137]. However, other properties of molecular
sequencing data may also offer information on evolutionary relationships without relying on
multiple sequence alignments. For example, it has been recently suggested that insertions
and deletions provide information on the similarity of sequences [437]. Finding new sources
of information that characterize the degree of relatedness between molecular sequences is
indispensable to promote the field of alignment-free methods. New approaches may provide
sufficient information to be used alone, or they can be used together with existing approaches
to jointly improve distance estimation. We study the use of an alignment-free measure that is
inferred from subsequences of arbitrary length, the Simon’s congruence, in Sec. 6.2.

6.1 A Phylogeny of Old World Monkeys

Spaced-word approaches have been shown to accurately estimate distances from simulated and
real-world data [11]. However, the majority of data sets comprised sequences of prokaryotic
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origin. Prokaryotic DNA is predominantly made up of functional regions and is comparably
short with a maximal length of 12 mega base pairs [438]; in contrast, eukaryotic DNA is
generally several magnitudes longer and more complex than eukaryotic DNA. The relative
amount of intron-exon structures in eukaryotic DNA is rather low, and the total fraction
of protein-encoding exons is estimated to be only approximately 1.9% [439]. The majority
of eukaryotic DNA consists of repetitive regions, such as long terminal repeats, interspaced
nuclear elements, transposable elements, or satellite DNA. For example, the proportion
of repetitive regions in human DNA is estimated to be between 50% [440] and 66% [441].
Moreover, the degree of conservation varies strongly between different non-coding regions in
human DNA [442].

The program Read-SpaM is a reimplementation of FSWM and uses filtered spaced-word
matches to estimate phylogenetic distances between bags of reads [166]. Here, a ’bag of
reads’ refers to a loose collection of short sequencing reads that belong to the same organism;
subsequently, we simply use the word sequence to also refer to a bag of reads. Just like
FSWM, Read-SpaM considers each pair of input sequences individually and extracts all
spaced words from the two target sequences. Then, it creates spaced-word matches using
the same greedy procedure as in FSWM and discards all matches with a score below the
predefined threshold. Phylogenetic distances are estimated from the don’t care positions of
the remaining spaced-word matches by applying the Jukes-Cantor formula. For prokaryotic
sequences, the resulting distance estimates are of high quality, even for very low coverage of the
input reads. However, the underlying experiments were carried out in a controlled environment,
either between a real E. coli genome and an artificially modified version of it, or between
two different E. coli strains. The accuracy of the distance estimates was not evaluated for
eukaryotic genomes, although whole genome shotgun sequencing methods commonly produce
short reads that originate from any region of the target genome, as discussed in Sec. 2.6.
In the context of our observations regarding inaccurate distance estimates of App-SpaM,
it remains unclear under which preconditions SpaM approaches produce accurate distance
estimates in general; especially in the presence of highly complex eukaryotic data sets from
low-coverage whole genome sequencing experiments, distance estimates likely depend on the
composition of genetic regions present within the target genomes.

Thus, as an exemplary study, we applied Read-SpaM to a collection of molecular sequences
of eight Old World monkeys, taxonomically designated as Cercopithecidae. Sequencing data
was derived from up to 150 years old museum exhibits. The raw paired-end sequences from
whole-genome shotgun sequencing were provided to us as unassembled forward and backward
reads. Due to the nature of the samples, the sequencing reads achieve coverages of merely
0.1X to 0.4X of the underlying primate genomes. This made it impossible to create longer
contigs or assemblies of the nuclear genomes and no phylogenetic analysis could be conducted
using conventional ML or MP methods based on the nuclear genome. Instead, we attempted
to infer the phylogenetic relationships of the eight species by processing the provided data set
with Read-SpaM and NJ. The two major goals of this study were to assess the accuracy
of Read-SpaM’s distance estimates when challenged with sequencing data of questionable
quality, and to analyze the accuracy of inferred phylogenetic trees.

In the following, we provide a brief summary of our methodological approach; a complete
overview is given in previous work [436]. We first applied Trimmomatic [284] to perform
basic quality control and trimming of the reads. We did not merge paired-end reads, but
instead used the joint collection of forward and backward reads of each organism as input
for Read-SpaM. To this end, we extended Read-SpaM to consider only the canonical
version of each spaced word, see also Subsec. 3.1.3. Although the reads in this data set have
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Figure 6.1 – Accuracy of distances calculated with Read-SpaM and Skmer. No exact
reference distances are available for the eight species under consideration. Instead, we roughly
estimated their sequence similarity from the most closely related species for which divergence
times were given in literature. We refer to the estimates as de. The heat map on the left
shows the difference dRead-SpaM(primates-base)−de (red) and dSkmer(primates-base)−de
(blue). For certain pairs of species, no reference distances could be deduced (blank squares).
The heat map on the right shows the difference dRead-SpaM(primates-nr) − de (red) and
dSkmer(primates-nr)− de (blue).

undergone basic quality control, they still originate from both nuclear and mitochondrial
DNA. In addition, they may also be contaminated by other microbial organisms. Therefore,
we applied the program Kaiju [175] to remove all microbial DNA from the data set. Kaiju
screens the reads against a large reference database of microbial sequences and assigns the
appropriate taxonomic labels. The program provides several readily prepared reference
databases; we used the collection nr+euk which contains sequences from the domains of
Bacteria, Archaea, Viruses, Fungi, and microbial eukaryotes. We refer to the resulting data set
with exclusively nuclear and mitochondrial DNA from the target primates as primates-base.
We separated mitochondrial reads from nuclear reads in primates-base by performing a
local BLASTn search against a large selection of mitochondrial genomes sampled from
NCBI. The two resulting data sets are termed primates-nuclear and primates-mito,
respectively. Furthermore, we removed all repetitive regions from primates-base by applying
RepeatMasker [364] with default parameters; the data set without repeats is referred to as
primates-nr. For each of the four data sets, we calculated pairwise distances between the
eight samples with Read-SpaM and constructed a phylogenetic tree based on the resulting
distance matrix using Neighbour-Joining. In addition to Read-SpaM, we also applied other
alignment-free and assembly-free programs, namely AAF [443] and Skmer [444]. This allows
us to compare the distance estimates of the programs with each other. Normally, it would be
best to also compare the computed distances with robust reference distances, for example,
inferred from whole genome alignments. However, no publicly available reference genomes
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Figure 6.2 – Pairwise distance estimates of Read-SpaM, FSWM, Skmer, and AAF
between four Great Apes—resulting in six distances each—of the UCSC data set. Distances
were either calculated from the whole genomic data (blue dots) or from genomic data without
repetitive regions (orange dots). The error (y-axes) is the absolute deviation of distance
estimates from the respective alignment-free program compared to distances calculated from
alignments.

exist for the eight species under consideration. Instead, we prepared a data set, called UCSC,
of four closely related species of Great Apes retrieved from the UCSC genome browser [445].
We calculated pairwise distances for this data set with Read-SpaM, FSWM, AAF, and
Skmer. As a reference, we also computed distances by counting nucleotide mismatches of the
corresponding whole genome alignments.

The analyses provided several insights: The first main finding is that Read-SpaM’s
distance estimates must be taken with caution on complex eukaryotic data sets that originate
from whole genome shotgun sequencing. An overview of the precision of pairwise distances
from Read-SpaM and Skmer is illustrated in Fig. 6.1. Read-SpaM severely overestimates
distances on the primates-base data set, often up to 0.18 mutations per sequence position.
Similarly, Skmer overestimates the distances, but with a magnitude that is half as large as
that of Read-SpaM. When repetitive regions are removed from the genomes, the distance
estimates of Read-SpaM improve significantly and their error drops up to 80% for many
species; still, they remain rather inexact for several species pairs, especially those involving
Macaca nigrescens. In contrast, Skmer is very accurate regardless of the presence of repetitive
regions, but its distances get slightly worse when repetitive regions are removed. We confirmed
these observations with the auxiliary UCSC data set of fully assembled genomes. The
difference between the reference distances and the distances computed by the alignment-free
programs is shown in Fig. 6.2. As before, Read-SpaM and FSMW strongly overestimate
pairwise distances in the presence of repetitive regions, while distance estimates of Skmer
are accurate. Without repetitive regions, Read-SpaM and FSWM produce very accurate
distances, while Skmer gets slightly worse. The distance estimates of AAF are inaccurate
throughout, regardless of whether or not there are repetitive regions.

The second main insight is that the quality of inferred phylogenetic trees does not correlate
with the absolute accuracy of distance estimates. Figure 6.3 presents four phylogenetic trees:
The true known tree based on curated marker genes from mtDNA, and three trees inferred
by Read-SpaM based on the data sets primates-base, primates-mito, and primates-nr.
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Figure 6.3 – Phylogenetic trees for the eight Old World monkeys inferred with Read-SpaM
from different data sets, as indicated. The first three trees (a) to (c) differ only with respect
to the clade of three Presbytis species. The last tree (d) is inferred from repetitive regions
and varies with respect to the location of Macaca nigrescens.

All trees are presented as cladograms without branch lengths. The only difference between
the topology of the first three trees is the arrangement of three distal branches that comprise
closely related species of the genus Presbytis. The topology of the primates-base tree is
also identical to topologies based on distances from Skmer and AAF; thus, it appears that
this topology is robust when all nuclear data is taken into account. In contrast, the topology
of the last tree, which is based on the data set primates-nr, deviates from the other trees
with respect to the position of Macaca nigrescens. This species is incorrectly placed within
the clade of the other Presbytis species. However, for this data set, the absolute error in the
distance estimates was the lowest out of all data sets. This constitutes a discrepancy between
the precision of distance estimates and tree topologies: the only data set where the error of
estimated distance decreases—namely primates-nr—is also the only data set with a strongly
divergent tree.

These observations imply several conclusions: First, methods based on spaced-word
matches struggle to deal with repetitive regions. We infer this from the strong improvement of
distance estimates when repetitive regions are removed in any data set compared to including
repetitive regions. This observation is most likely explained by the very nature of our method:
Estimating the number of nucleotide substitutions per sequence position precisely requires
that all spaced-word matches from non-homologous sequence positions are excluded. With
our current filtering procedure, it is highly unlikely that this precondition holds: The presence
of repetitive regions causes many spaced-word matches from non-homologous sequence regions
with unusually high similarity. Although these matches pass the filtering threshold, they share
fewer similarities than true homologous regions. We confirmed this theory by investigating
spamograms of varying data sets. We observed that a distinct homologous peak was missing
in the presence of repetitive regions; instead, a wide and flat distribution of scores above
zero occurred with a mean score well below what is expected. On the contrary, a distinct
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homologous peak reappeared when repetitive regions were removed, see Suppl. Fig. D.1.
Second, repetitive regions are not the only artifact that leads to inaccurate distance

estimates in primates-base. We come to this conclusion because Read-SpaM and Skmer
are very accurate on the UCSC reference data set, but not on the primates-base data
set. Furthermore, the number of identified repetitive regions varies strongly between the
eight species and is the lowest for Macaca nigrescens: For this species, the distance estimates
remained largely incorrect (see Fig. 6.1) and its position within the inferred trees was wrong.
We assume that its corresponding sample contains sequencing errors or biases that we did not
catch in our preprocessing steps. Such artifacts might originate from the sequencing itself,
from unidentified repetitive regions, from particularly low or biased sequence coverage, or
from other unidentified organisms that were not detected by Kaiju.

Third, the tree topology recovered from the complete nuclear DNA of the samples indicates
that the three species of the genus Presbytis might have hybridized. They all occur in the
same geographical area on the island of Borneo and their hybridization is possible [pers. comm.
with C. Roos (German Primate Center), April 2021]. This theory is promoted by our findings
that the tree inferred from mitochondrial DNA deviates from all trees inferred from nuclear
DNA, regardless of which alignment-free program was employed.

Although the results of this study remain inconclusive with respect to the accuracy of
distance estimates, the quality of the available ancient DNA samples, and the true reason
for the observed differences in tree topologies, our analyses brought valuable insights for the
application of SpaM-based methods on eukaryotic data sets. These insights will shape future
work on the development and application of SpaM methods, especially in regard to considering
eukaryotic sequence data. Furthermore, we also noticed inconsistencies in the distance
estimates of both other alignment-free methods, which demands a more detailed analysis. In
general, alignment-free methods should be continuously integrated into studies that focus on
more complex real-world data as also postulated by efforts such as AFproject [344].

6.2 Using Simon’s Congruence to Estimate Sequence Similar-
ity

A plethora of methods are available that estimate the similarity of two or more DNA or protein
sequences. We discussed alignment-based approaches in Sec. 2.3 and alignment-free approaches
in Sec. 2.4. A large subgroup within the latter are word-based methods which characterize the
input sequences by transforming them to new feature spaces: The most common approach is
the use of contiguous substrings of a fixed length, also referred to as words or k-mers. The
similarity between sequences can then, for example, be estimated from the presence, absence,
or abundance profiles of the k-mer sets present in the sequences [446, 447]; even the succession
of multiple k-mers has been examined in this context [448]. Specialized programs have been
developed that extract and save k-mers with high speed and low memory demands [449, 450].
In some approaches, the length of the words is not fixed but may vary, for example, when
determining shortest unique substrings [154] or longest common substrings [451] between
sequences. Furthermore, non-contiguous words of a fixed length have been employed to assess
sequence similarity; here, one example are the SpaM approaches [452] which are discussed in
detail in Subsec. 2.4.3. All of the above methods rely either on non-contiguous or contiguous
words of a fixed length or on contiguous words of a variable length. To the best of our
knowledge, no approach exists that employs non-contiguous words of a variable length to
measure the similarity between molecular sequences.

132



6.2. Using Simon’s Congruence to Estimate Sequence Similarity

As defined in Sec. 2.2, for a sequence S with |S| = n, a subsequence of length k <= n
is a non-contiguous string of symbols S[i1]S[i2] . . . S[ik] defined by k indices i1, . . . , ik with
iq < ir for q < r, q, r ∈ [k]. In contrast to substrings, the use of subsequences has found little
interest in computational bioinformatics (note that several authors use the term subsequence
to refer to a contiguous substring). One reason for this could be the increase in computational
complexity when considering subsequences. While the number of substrings of a fixed length k
grows linearly with sequence length n, the potential number of subsequences of fixed length k
increases as a polynomial function of order k with increasing n: the number of subsequences is
given as

(
n
k

)
= n!

k!(n−k)! . Thus, it is unfeasible to use all subsequences of a molecular sequence
for any real world use case where genes, scaffolds, or genomes have to be compared. Instead,
we examine one specific measure between two strings that is based on subsequences, namely,
the Simon’s congruence: For a sequence S, let Sk be the set of all distinct subsequences
of S with length k. Two sequences S1 and S2 are Simon-k-congruent—also written as the
equivalence S1 ∼k S2—if Sk1 = Sk2 . In other words, the set of subsequences of length k are
identical in S1 and S2. The problem of finding the largest k ∈ N for which S1 ∼k S2 holds is
known as MaxSimK. Recently, the first algorithm to solve MaxSimK in linear time with
respect to the sum of the lengths of the input sequences has been published [453] and an
implementation of this algorithm has been made available to us. While the Simon’s congruence
has applications in learning theory and linguistics [453], it has never been used for biological
sequence comparison as far as we are aware. On the most fundamental level, we explore
whether MaxSimK carries any signal to deduce the similarity of biological sequences.

For this, we designed multiple simple experiments to explore the behaviour of MaxSimK
with respect to sequence length, sequence similarity, and further biological evolutionary effects
such as indels. To have maximal control over the sequence properties, we created sequences
artificially using a straightforward simulation framework: We simulate novel sequences over
the alphabet Σ = {A, C, G, T} using a uniform distribution over the nucleotides and independent
sequence positions. For a simulated sequence S of length n, we add a mutation by choosing
a sequence position i ∈ [n] uniformly at random and exchanging the nucleotide at S[i] by
another nucleotide. For a specified mutation rate r, we perform such an exchange repeatedly
for exactly r · n times. We simulate an insertion or deletion (indel) by choosing a sequence
position i ∈ [n] uniformly at random. Next, we decide whether to simulate an insertion or
deletion at random; although deletions are more common in some real-world data [416], we
assume that insertions and deletions occur with equal probability. This ensures that the
expected sequence length remains n on average when adding multiple indels. We determine
the length ni of the indel by drawing a random sample from the Zipf power law distribution
with parameter a = 1.7. However, we limit the maximal length of an indel to 10 bp. For a
deletion, we remove the sequence elements S[i : i+ ni]; if i+ ni is larger than n, we delete
the last ni elements of S instead. For an insertion, we insert a newly simulated sequence of
length ni into S, starting after nucleotide S[i]. For a specified indel rate r, we perform this
operation repeatedly for exactly r · n times.

First, we tested how MaxSimK behaves for two sequences of the same length n. We
simulated ten DNA sequences of fixed length n = 500 and calculated MaxSimK for each
sequence pair, resulting in 100 measurements. The procedure was repeated for further lengths
n ∈ {1 000, 1 500, . . . , 4 000}. Figure 6.4 displays the average value of MaxSimK of all 100
simulated sequences of identical length, dependent on the sequence length. There is a distinct
linear relationship between the length of the involved sequences and MaxSimK. The variance
of MaxSimK across all sequence pairs of the same length is minimal (note that the standard
deviations in Fig. 6.4 are multiplied by a factor of 50). A linear regression based on all
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Figure 6.4 – Average MaxSimK between sequences of length n with respect to n. The
sequence length n is increased from 500 bp to 4, 000 bp in steps of 500. For each value of n,
the average MaxSimK of pairwise comparisons between ten sequences is shown (blue dots).
Error bars indicate 50 times the standard deviation.

pairwise values yields the relationship

MaxSimK(n) = 0.1203 · n− 4.372 (6.1)

that describes the expected value of MaxSimK for two sequences of length n; the linear
relationship is well supported (r2 = 0.9998).

Second, we evaluated how MaxSimK behaves for two input sequences of different lengths.
For this, we simulated five DNA sequences of length n ∈ {500, 1 000, . . . , 5 000}, respectively.
Then, we calculated MaxSimK between each sequence pair regardless of their length. Fig-
ure 6.5 shows MaxSimK between sequence pairs when the length n1 of one of the two
sequences is fixed while the length of the other sequence varies. These experiments are further
broken down in Fig. 6.6, which shows pairwise MaxSimK values for each combination of
sequence lengths separately. The figures reveal that MaxSimK depends almost exclusively
on the length of the shorter sequence and is very robust therein. For example, all pairwise
comparisons involving the five simulated sequences with length n1 = 5 000 closely follow the
linear relationship specified in Eq. 6.1 with respect to the length of the second sequence.

Third, we simulated 20 base sequences of length n = 500. For each sequence, we created
nine mutated copies for mutation ratios of r ∈ {0.1, 0.2, . . . , 0.9}, resulting in a total of
200 sequences. For each of the base sequences, we calculated MaxSimK to each of its mutated
versions. Figure 6.7 shows all resulting MaxSimK values with respect to the respective
mutation rates. Equally, Suppl. Fig. E.1 presents results for sequences of length n = 1 000.
On average, MaxSimK stays near constant across the mutation rates. A Welch t-test between
any two mutation rates is non-significant (P > 0.05) for both n = 500 and n = 1 000. As
before, MaxSimK solely depends on the length of the sequences according to Eq. 6.1.

Fourth, we repeated the above experiments, but this time with added insertions and
deletions (indels) of a specified rate in addition to mutations. Again, we used sequences
with a length of n = 500 while the mutation and indel rate was either kept low with values
of r ∈ {0.01, 0.02, . . . , 0.09} or r ∈ {0.1, 0.2, . . . , 0.9}. The incorporation of indels barely
influences the results, see Suppl. Fig. E.2 and Suppl. Fig. E.3. Again, there is no statistically
significant trend of the average MaxSimK with respect to the mutation and indel rate. We
also altered the experimental setup by simulating all mutated sequences from the same base
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Figure 6.5 – MaxSimK between sequences of different length. For all sequences of length n1,
the average MaxSimK to all other sequences of any length n2 ∈ {500, 1 000, . . . , 5 000} are
shown.
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Figure 6.6 – MaxSimK between sequences of different length. For each sequence of length n1,
the MaxSimK to all other sequences of any length n2 are shown (individual plots). Each dot
represents the MaxSimK value for exactly one pair of sequences.
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Figure 6.7 – MaxSimK between sequences of length 500 with different hamming distances.
We calculated MaxSimK between sequence pairs for which mutations with a rate r were
simulated. Mutation rates were varied from 0.1 up to 0.9 average substitutions per sequence
position.

sequence and calculating MaxSimK between all pairs of sequences with the same mutation
and indel rate. The according results for low rates r are presented in Fig. 6.8, and for high
rates in Suppl. Fig. E.4. In contrast to previous experiments, here we observe an unambiguous
increase in variance for larger mutation rates. Between any two mutation rates, the variance is
statistically significant as assessed by Levene’s test [368] with a significance level of α = 0.05.
The increase in variance most likely originates from the simultaneous increase in variance of
the sequence length that is caused by higher indel rates in the experimental setup.

Fifth, we calculated MaxSimK for all sequence pairs of a real-world data set comprising
150 16S genes. The results are visualized as a heat map in Fig. 6.9. In accordance with
our previous observations, MaxSimK is always driven by sequences that possess unusual
subsequences and thus, result in small MaxSimK values. The heat map reveals an according
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Figure 6.8 – MaxSimK between sequences of length 500 with simulated indels. MaxSimK
was calculated between all sequence pairs for which mutations and indels were simulated
with the same rate r (black dots). Mutation rates were varied from 0.01 up to 0.09 average
substitutions per sequence position. Average statistics are over all sequence pairs of the same
mutation rate are shown (box plots).
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Figure 6.9 – MaxSimK between sequence pairs of bacterial 16S sequences. Each colored
square represents MaxSimK for a single sequence pair. The data set comprises 150 bacterial
sequences, resulting in 22 500 pairwise comparisons. MaxSimK varies from 109 to 152.

’checkerboard’ pattern where low MaxSimK values are dominant for the respective sequences.
We converted the MaxSimK values to a distance matrix and applied NJ to reconstruct a
phylogenetic tree. The resulting tree bears little resemblance to reference trees constructed
from multiple sequence alignments and exhibits a nearly maximal RF distance to those trees.

The presented results suggest that the Simon’s congruence does not provide helpful
information to assess the similarity of DNA sequences. Instead, our experiments demonstrate
that MaxSimK has no correlation with the degree of relatedness of the input sequences, see
Fig. 6.7. This applies to sequences of different Hamming distances, as well as to sequences
with simulated indels. Instead, MaxSimK is solely dependent on the length of the shorter
of the two input sequences where longer sequences entail higher values of MaxSimK. The
algorithm calculates MaxSimK in linear time with respect to the sum of the lengths n1 + n2

of the two input sequences. We were supplied the very first implementation of the algorithm
which is written in the programming language Python. Although the algorithm theoretically
runs in O(n1 + n2), the provided implementation has limited computation speed due to high
constant operational costs. If MaxSimK were to be applied for large data sets or for sequences
spanning large regions of a genome, an updated implementation would be necessary. The
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algorithm does not only supply the answer to MaxSimK but may also output any sequence of
length k+ 1 which is present in one of the two sequences and not the other. We did not utilize
this information so far, but including it in future work might create novel opportunities.

Our evaluation pipeline was deliberately kept simple and did not use sophisticated sequence
simulation frameworks to reduce any effects that may stem from the simulation itself. While
this provides clear results, it also limits the extent to which our results can be generalized.
For example, all sequences were simulated with a uniform distribution over Σ; however, real
sequences often exhibit regions which are not uniformly distributed; for example, a GC bias is
present in most sequence regions. Any such irregularity will also affect MaxSimK, but the
extent to which this happens requires further examination. One idea to overcome the observed
limitations was to group nucleotide sequences into consecutive k-mers and consider those
k-mer sequences instead of the original ones. We tested this approach for k = 2 by translating
input DNA sequences into another alphabet Σ′ with |Σ′| = 16 and ran MaxSimK on the
altered sequences. However, increasing the size of the alphabet causes a strong reduction in
MaxSimK values. Often, already two or three consecutive symbols of Σ′ occur exclusively
in a single sequence, limiting MaxSimK values between any two sequences to 2 or 3, see
Suppl. Fig. E.5. Further experiments could consider the minimal diverging subsequence that
is output by the algorithm or refrain from the use of the Simon’s congruence altogether.
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Discussion

Exploring the relationships of Earth’s enormous diversity of living organisms based on
molecular sequence data has been at the heart of biological sciences for nearly 50 years [454].
Characterizing similarities and differences between organisms has a long history, from analyzing
morphological features to individual genes, to whole genomic, transcriptomic, and proteomic
data. Thereby, the field of phylogenetics—as well as phylogenomics—emerged: the study
of the evolutionary relationships of species by investigating their DNA, RNA, or protein
sequence data. Thus, there is a steady and continuous change of the very thing that is at the
core of phylogenetic analyses. This observation also yields the insight that it is not about
observing and modeling processes of nature, but about how nature is observed and modelled.
Each model represents only one of many approaches to generate a consistent framework and
may become inconsistent or outdated at any time. By analyzing how the model came to be,
how it is utilized, and how it holds up to current research, we may learn about its virtues and
flaws. In this spirit, I attempt to not only summarize what we observed, but also how we
observed and how this may guide future research to create improved models.

Phylogenetic inference is at the basis of all analyses presented here. The universal goal
is the reconstruction of a phylogenetic tree that showcases the evolutionary relationships of
the involved entities; in the biological sciences, these entities are usually species or genes.
However, phylogenetic analyses have also been used, for example, in linguistics [455] or for the
examination of the history of law [456]. The sentiment of representing the evolutionary history
of species in a tree-like manner has been popular since Charles Darwin proposed a tree-like
structure instead of independent lineages to interrelate a group of finches [457]. The nodes in
a phylogenetic tree represent ancient species for which a speciation event occurred, while the
branches depict evolutionary alterations of the species. Although it is well known by now
that biological processes do not necessarily behave in a tree-like manner, phylogenetic trees
remain the most common form of representing evolutionary relationships up until today. Two
examples of processes that conflict with the assumption of tree-like evolution are horizontal
gene transfers and hybridization events. In the former, one or multiple genes are transferred
from one organism to another, resulting in a genome composition that does not follow a single
evolutionary path; instead the genome may be comprised of segments from multiple other
organisms. Similarly, hybridization is the fusion of species and cannot be represented by a tree
structure: a hybridization violates the acyclic nature of a tree and can be seen as the opposite
to a speciation event. Therefore, the adequacy of using networks instead of trees to model and
visualize phylogenetic relationships has been extensively discussed [458, 459]. However, there
is substantial uncertainty as to what extent horizontal gene transfer impacts phylogenetic
relationships. After all, the prevalence of horizontal gene transfer varies considerably between
different phyla. Although there are prominent examples of lasting HGT events [460, 461],
it has been argued that the influence of HGTs in the large picture of evolution has been
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overstated and that HGT events rarely consolidate in a species population [462]. HGT may
still be prevalent in certain taxonomic groups, such as in bacterial evolution; it is also known
that HGT occurs regularly in the mitochondrial genomes of plants, although the mechanisms
by which these transfers occur are not yet clear [463]. In contrast, HGT in plants occurs
rarely in the chloroplast and nuclear genomes [463].

In general, phylogenetic trees are a subtype of phylogenetic networks, whereas the structural
constraints of trees prevent their applicability to all evolutionary relations. Although these
considerations suggest that phylogenetic networks are superior to phylogenetic trees, the
latter also offer advantages: Phylogenetic trees are easier to represent and comprehend. They
also have a long and extensive history of usage, which resulted in sophisticated and versatile
tree reconstruction algorithms and a broad assortment of additional frameworks that center
and operate on phylogenetic trees. This environment facilitates the further use of trees in
contemporary research, even in those cases where networks may be more appropriate. For
similar reasons, we exclusively used tree-like representations of phylogenetic relationships,
undoubtedly an inherent limitation of our work. Nevertheless, the use of phylogenetic trees
remains reasonable in many real-world scenarios that are concerned about the evolutionary
development of species where reticulate evolution is infrequent. In addition, the use of
alignment-free methods in general is not limited to phylogenetic trees, but the resulting
distance matrices can also be used to infer networks with appropriate software [464, 465].
However, studies that assess the precision and biological significance of the resulting networks
are limited.

For a long time, the reconstruction of phylogenies based on molecular data has mainly
relied on sequence alignments and maximum likelihood (ML) estimation based on DNA,
RNA, or protein sequences [466]. Other common approaches to infer phylogenies include
Bayesian estimation, alignment-free methods, and maximum parsimony, all of which come
with advantages and drawbacks. ML and Bayesian methods are among the most precise,
while alignment-free distance-based methods compensate for lower accuracy with reduced
time and memory requirements; thus, the latter can be used on large data sets where
ML methods are not applicable. Especially the emergence of second- and third-generation
sequencing techniques that produce large amounts of data made it necessary to devise more
efficient methods. Another drawback of both ML and Bayesian methods is their reliance
on sophisticated evolutionary models. Specifying adequate model parameters can be an
additional source of error, and the choice of an optimal model and its parameters remains an
ongoing debate in phylogenetics [234, 467]. On the contrary, Maximum Parsimony (MP) does
not assume an underlying model and performs best when the number of evolutionary changes
remains low [468]. The spaced-word matches (SpaM) approaches are a group of distance-based
methods that tackle tasks within phylogenetics and metagenomics. In contrast to many other
alignment-free word-based methods, SpaM approaches do not use contiguous words. Instead,
they find segments in the input sequences that share identical nucleotides with respect to a
predefined binary pattern. In doing so, they estimate the evolutionary distance between the
input sequences by calculating the average number of nucleotide substitutions per sequence
position. The term alignment-free may be misguided: Although SpaM methods do not rely
on local or global alignments in the traditional sense, pattern-based matches can be seen as a
large collection of micro-alignments.

Despite algorithmic advances, phylogenomic methods barely keep up with processing
the large volume of molecular data produced on a daily basis. A substantial amount of the
produced data consists of short sequencing reads of unknown origin, and their taxonomic
identification—the read assignment—is often one of the first steps in subsequent processing
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pipelines. A promising approach that blends the areas of phylogenetics, phylogenomics, and
metagenomic read assignment is phylogenetic placement (PP). In PP, molecular sequences are
placed onto an existing reference phylogeny to characterize their phylogenetic relationships
with the reference sequences of the provided tree. By its very design, PP aims to circumvent
some of the basic problems that subsist in phylogenetics: Not only does it require a fixed
phylogenetic tree as input, but it furthermore assumes that this tree has been created with
state-of-the-art standards and represents the underlying evolutionary relationships between
the species as best as possible. Here, App-SpaM has been presented, a novel alignment-free
approach to PP that is based on spaced-word matches and provides intriguing and novel
applications for PP.

7.1 Evaluating Phylogenetic Placement Algorithms

Phylogenetic placement presents a unique mechanism to observe the evolutionary relationships
of sequences: By placing query sequences directly into an existing phylogenetic tree, the
time-intensive step of de-novo tree reconstruction is omitted; this allows the phylogenetic
characterization of a large number of reads based on high-quality reference phylogenies. Several
algorithms for PP have been developed in recent years that pursue different strategies to
derive suitable placement locations. Although the first approaches were based on maximum
likelihood calculations on the basis of multiple sequence alignments [10, 12, 15, 330], more
recent methods pursue alignment-free or mixed strategies [13, 14, 177, 332]. Due to the
computational demands of ML-based methods, PP has been applied mainly for amplicon-
based sequencing studies where reference and query sequences originate solely from designated
short genomic regions. Furthermore, such types of sequencing data allow the straightforward
construction of multiple sequence alignments. We proposed the alignment-free PP tool
App-SpaM, which performs placement based on filtered spaced-word matches, a versatile
technique that allows App-SpaM to function on both assembled or unassembled DNA or
RNA. Consequently, it is possible to apply App-SpaM on a wide variety of data sets where
PP could not be applied previously. The only other tool that currently works on unassembled
data is APPLES, however, it also infers phylogenetic distances from alignments in its default
version.

Like for alignment-free phylogeny reconstruction, the typical trade-off between speed and
accuracy also applies for phylogenetic placement. Which PP algorithm is the ’best’ depends
on the type of input sequences, the available computational resources, the proficiency of the
user, and the requirements on the quality of resulting placements. The large variety of PP
approaches demands a comprehensive evaluation; not only to illustrate their advantages and
drawbacks, but also to guide end users to an informed decision about which tool to use with
respect to their data and research question at hand. However, no universal evaluation of
all available methods has been conducted so far. Instead, each software performed separate
benchmarks following various workflows and employing different metrics to measure placement
accuracy; see also Subsec. 2.7.3. We identified three distinct factors which are responsible
for this: First, there was no single established evaluation procedure that has been generally
accepted by the research community. Second, different accuracy metrics are available and have
been used in different works. Third, several approaches have been developed and published
concurrently in recent years, making it challenging to compare them among each other.
Fortunately, the first two issues were recently addressed by the Placement Evaluation
Workflows (PEWO). PEWO offers a common foundation for the analysis of PP tools and
proposes reproducible workflows and clearly defined metrics. Internally, PEWO is based on
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the Snakemake framework [348], which allows an easy extension of PEWO as well as its
integration into other software packages.

Based on PEWO, we performed a comprehensive evaluation of all readily available
placement programs with which we compared our novel approach App-SpaM. One strength
of PEWO is the unification all placement programs in a single Conda environment that can
be installed effortlessly by end users. We ran PEWO’s pruning-based accuracy evaluation
(PAC) workflow on a broad array of metataxonomic data sets compiled from different sources.
Our evaluation revealed that App-SpaM is on par with alignment-based programs under
the ND metric on a wide variety of metataxonomic data sets, although App-SpaM only
applies rough heuristics to infer placement positions. Furthermore, its runtime is two to
three orders of magnitude faster than that of the next fastest PP programs. The results
are consistent for a large number of parameter configurations of App-SpaM, especially with
respect to the number and structure of the binary patterns that are employed. An in-depth
analysis of those results is given in Subsec. 3.1.2 and we refer to Subsec. 3.1.3 for a detailed
discussion of the advantages and disadvantages of our algorithmic approach. In Sec. 4.3,
we proposed a sampling procedure for App-SpaM that greatly accelerates its placement
speed and is especially useful when large collections of unassembled sequencing reads are
available as reference sequences. In addition, we suggested a simple measure to specify the
placement uncertainty of App-SpaM, see Sec. 4.4. By this, it would be possible to filter
placements with respect to their reliability; unfortunately, our presented method did not
produce reasonable results so far. Still, we believe that the novel design of App-SpaM and
our associated developments are an important contribution to promote and diversify the field
of phylogenetic placement algorithms. App-SpaM does not only handle novel use cases for
PP, but also raises questions about the current state of PP tools, frameworks, and their
evaluation in general.

PEWO constitutes an important milestone in the development and progression of phylo-
genetic placement algorithms and efforts must be made to promote its role within the
community. Nonetheless, PEWO also has shortcomings that should be addressed to ensure
its longevity: The PAC workflow of PEWO delineates the main approach to determine
the quality of placement programs. Although we agree that the underlying PAC procedure
constitutes a reasonable basis to assess placement accuracy, it is not versatile enough in its
current state to handle the variety of disparate input and output data that may be subject
to phylogenetic placement. Currently, the workflow is limited to typical metataxonomic
data sets and requires an alignment of the reference sequences. Performing placement on
unaligned references is not possible, even if the algorithms under consideration do not require
aligned sequences. Furthermore, we have argued that there is no compelling need for the
reference sequences to be assembled, see Subsec. 3.1.3; instead, PEWO should allow the use
of standardized file formats for assembled and unassembled reference sequences as long as
subsequent placement programs can handle such data. Moreover, query sequences are simply
created by splitting the pruned reference sequences into fragments of equal length. The length
of the query sequences is a major driving factor for the accuracy of placement programs, as
shown in Fig. 3.10 and discussed further for the placement of complete genes in Subsec. 5.1.3.
In addition to the query length, the possibility to simulate query reads of arbitrary coverage
and with varying degrees of sequencing errors should be added, since the impact of such
alterations remains unclear; see, for example, Fig. 3.11. In addition, PEWO only implements
two metrics to describe placement accuracy; namely, the node distance (ND) and expected
node distance (eND). Although these metrics are useful for gaining basic insights into the
accuracy of placement programs, they only capture one aspect of the multifaceted placement
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quality. The metrics ND and eND are both conditioned on the total number of leaves present
in the reference tree; a normalized ND metric that is independent of the size and structure
of the reference tree would allow the comparison of placement accuracies between data sets.
More specifically, as introduced in Subsec. 3.1.1, control methods are a powerful tool to assess
how much a placement program improves upon random or simplistic placement methods.
Control methods can be as simple as placing each query at the root, at the midpoint, or at
the topological midpoint of Tref (whereas the topological midpoint is the branch that has
the lowest average node distance to every leaf). Considering the normalized difference in
placement accuracies between PP methods and control methods would be a powerful tool to
establish an independent accuracy measure.

Additional metrics, besides those that utilize a—potentially normalized—ND metric, might
comprise the delta metric for simulated data sets where the underlying real tree is known, or
the KR distance between the placements of different program runs, see Subsec. 2.7.3. The
latter would be an efficient manner to quantify pairwise differences between all programs
under consideration in a single program run. All of the above metrics neither take into account
the topology of the reference tree, nor do they incorporate the inferred branch lengths for the
pendant, proximal, and distal branches. A straightforward extension of the ND metric would
be to calculate the difference in branch lengths between the proposed and expected placement
locations instead of the number of nodes. We would expect that non-likelihood-based programs
such as App-SpaM and RAPPAS may perform slightly worse when branch distances are
incorporated as they do not rely on sophisticated evolutionary models. However, even certain
ML-based methods such as EPA-ng merely use predefined default values for the newly added
branches by default in order to speed up computation time. When exact branch lengths are
calculated, their computational needs increase even further. Dedicated tests are required to
appropriately evaluate these speculations.

Although there is a variety of potential input file formats for PP programs, their output is
standardized by the JPlace format [329]. Since JPlace builds on the versatile json format [469],
JPlace files are flexible and can, in theory, accommodate information about any aspect of
the placement process and placement locations. However, the originally proposed version of
JPlace suggests only five distinct values for each query, indicating the placement branch, the
likelihood score, the likelihood-weight-ratio, the pendant branch length, and the distal branch
length. Additionally, the same placement information can be assigned to multiple query
sequences, and a multiplicity may be encoded for query sequences, for example, to retain count
values from operational taxonomic units. This implementation of the JPlace format is now
commonly integrated in associated software programs. Any additional information within the
placement file is poorly understood at best, or brakes JPlace parsers and associated software
tools at worst. Due to the recent diversification of use cases for PP methods, a universally
accepted update of the JPlace format that retains additional information is vital. Such
information should comprise general remarks on the types of input sequences—for example,
whether reference sequences are assembled or aligned—or the method by which the reference
tree was deduced. Query-specific information may contain details about the origin of samples,
sample identifiers, and other associated information. Furthermore, additional query data
should contain word count statistics for alignment-free programs. An extension of JPlace
files has been suggested previously [334]. Despite these deficiencies of PEWO, we encourage
the community to utilize this precious resource. A common framework is valuable, and its
extension by the community is indispensable to overcome its deficits. Unfortunately, some
recent work does not take advantage of this opportunity and instead uses separate evaluation
procedures based on the delta error [332]. Although there may be convincing arguments to
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use other error metrics than ND and eND, and although there may be justified criticism on
aspects of the PEWO framework, the evaluation of PP programs with non-publicly accessible
evaluation software should be discouraged. It would be far better to extend the PEWO
framework as a community effort to arrive at a common evaluation procedure.

While we discussed the potentials and shortcomings of evaluation methods in detail, we
skipped one of the most important factors that influences evaluation efforts: The underlying
data sets that are used. The choice of data sets is tightly coupled with other properties
of the evaluation procedure, especially with respect to four key issues: First, for certain
metrics—such as the delta error—the use of purely simulated data sets is inherently mandatory.
Second, depending on the PP programs involved in the evaluation, the input data must comply
to certain requirements; for example, it may need to be aligned or of a confined size due to
runtime issues. Third, the data sets should not have been used for the evaluation of any of the
PP programs itself, an issue that we ourselves violated as discussed in Subsec. 3.1.3. Fourth,
the reference tree should be of high quality and suited for the placement task and query
sequences at hand. We believe that an evaluation that is performed purely on synthetic data
sets is hardly meaningful when its results are transferred to real-world data. Consequently, the
exclusive use of the delta error might underestimate the error when placement is performed
on real-world data sets. In this respect, there is additional work to be done for our evaluation
on the continuous augmentation of phylogenetic trees and the detection of gene and species
outliers. A comprehensive evaluation for a specified area of application should contain a
variety of data sets from mixed sources. We hope that a collection of data sets for each area
of application will crystallize from the recent efforts on phylogenetic placement. Furthermore,
such data sets should be made publicly available, comparable to existing collections of data
sets for wide-ranging tasks in alignment-free programs [344].

7.2 Applications of Phylogenetic Placement

Given an appropriate selection of reference sequences for the query sequences under considera-
tion, phylogenetic placement is a valuable tool in phylogenetics and metagenomics: The major
application of phylogenetic placement has been the identification of short metataxonomic
read sequences [470–472]. Here, placement results provide information on the identity and
evolutionary context of short sequencing reads. In this sense, PP is comparable to taxonomic
read assignment with the difference that evolutionary relationships are directly estimated. In
contrast, the use of taxonomic reference databases for read assignment can pose difficulties
because common taxonomies differ from each other [473]; merging taxonomic and phylogenetic
information into a singular tree has been attempted, but proves to be challenging [474]. After
placing short reads, the results are commonly used to answer questions about the abundance
of organisms in different environments, about the functional profiles of metagenomes, or about
the inter- or between-sample diversity [382]. In metagenomics, PP has also served as a means
to cluster sequences into operational taxonomic units [475]. There exists a comprehensive
review on metagenomic data analysis using PP in general [334]. In addition to metagenomics,
PP has also been applied for the approximation of the quality and completeness of microbial
genomes [338], or for the identification of ancient DNA sequences [476]. As discussed in
much detail in Sec. 5.1, three recent methods perform the iterative augmentation of existing
phylogenetic trees by means of PP. Most of the mentioned programs have been published
very recently, highlighting the great interest and rapid development of PP techniques in
general. In contrast to using metagenomic sequences, metataxonomics has been the main
focus because large data bases for different marker genes are readily available, and curated
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reference phylogenies exist. Restricting the analysis to single marker genes also scales well
with ML programs, while using metagenomic read sequences with whole-genome references
is often too computationally demanding. The assessment of the associated uncertainty of
inferred placement positions is an important aspect during read identification. Several algo-
rithms produce a measure of uncertainty; for ML-based methods, this measure is commonly
derived from normalized likelihood values across all potential placement positions. We also
presented such a measure for our alignment-free approach App-SpaM in Sec. 4.4 and, likewise,
parametric and non-parametric bootstrapping have been proposed to assess uncertainty in
APPLES [381]. Indicating placement uncertainty for short query reads is beneficial for guiding
decisions in subsequent processing steps. For example, it may serve as a quality control by
removing reads with high associated uncertainty. In addition to the uncertainty of a single
query, it may be useful to describe placement variety among all queries. In a metataxonomic
or metagenomic setting, placement variety also describes the within-sample diversity. The
idea to utilize the query placement distribution for this purpose was already implemented
and provided with pplacer by computing the expected distance between placement locations
(EDPL) measure [12]. Subsequently, several other measures have been proposed to describe
the diversity within or between samples based on phylogenetic placements [337]. In contrast to
metagenomics, EDPL and associated measures can also describe the uncertainty of a species
position when query sequences are whole genes or contigs from the same species. When a high
degree of precision is mandatory, one possibility is to merge placement results from multiple
PP programs. Joint placement is generally more accurate than single placements on their
own [477].

It is commonly known that taxon sampling has a large impact on phylogenetic inference
in general [478]; likewise, the composition of reference sequences has large implications on
resulting placements. Accordingly, generating appropriate reference trees for phylogenetic
placement has been an ongoing subject of study [333]. In general, a dense taxon sampling
among the species that are expected to occur in the query sample is ideal. Placement algorithms
simply assume that the taxon sampling in the provided reference tree is appropriately chosen
by the end user for the placement task ahead. However, this assumption may be naive
considering the increasing interest in and use of placement algorithms. Instead, programs
may warn end users if the taxon sampling in the reference tree is insufficient, especially if a
large number of query sequences is affected. Again, the uncertainty of a placement may be
utilized for this purpose, as it also provides implicit information about the taxon sampling
in the reference tree. Repeated placements at deep inner nodes with large uncertainty are
a typical indicator of a deficit in taxon sampling. The necessity for a dense taxon sampling
poses another risk for the application of placement programs: The use of large backbone
trees is computationally challenging, especially if the reference sequences comprise parts
of or complete genomes. Meanwhile, the continued increase in the amount of next- and
third-generation sequencing data available [479] facilitates the use of large reference trees.

The memory demand and speed of most programs scale linearly with the number of refer-
ence sequences (assuming an existing reference alignment). Although the recent development
of alignment-free programs has alleviated this problem to some degree, ML programs have
been excluded from this progress until lately. In order to shift from a few hundred to tens
of thousands of references, a sublinear scaling with respect to the number of references is
required. Thus, simultaneous to the advancement of alignment-free PP programs, several
boosting techniques have been proposed that attempt to scale ML-based placement programs to
large reference phylogenies. Three prominent examples of such procedures are SCAMPP [480],
pplacerDC [330], and pplacer-XR [481]. The general approach of all these approaches
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is to sample a subtree T ′ref from Tref that has a high probability of containing the correct
placement edge from Tref. After placing a query on T ′ref, the results are transferred back to
the original tree Tref. SCAMPP has been applied to trees with more than 200 000 reference
sequences, and its results outperform those of APPLES and APPLES-II [480]. However, the
disadvantage of these approaches is their continued reliance on multiple sequence alignments;
accordingly, the evaluated sequence data span at most a single marker gene and have a mean
alignment length of 2 570 bp. Based on the time and memory demands of App-SpaM for a
large number of queries shown in Sec. 3.1.2, we also expect its seamless operation on large
reference trees comprising single marker genes. However, experiments should be carried out
that prove this hypothesis and quantify its actual speed. Furthermore, such efforts should
include the placement on large reference trees that comprise whole genomes.

Only recently, the possibility of placing longer sequences has been tested more thoroughly,
mostly driven by the development of novel PP programs. This development fits well into the
growing number of metagenome assembled genomes and long-read sequencing techniques,
and a whole new world of possibilities opens up that is being actively explored. Besides
the update of large phylogenetic trees, other potential applications may be the mapping of
genome scaffolds prior to assembly, the rooting of phylogenetic trees by placing species of
an outgroup, or the estimation of contamination and completeness of assembled genomes
as, for example, performed by BUSCO [482] and CheckM [338]. Although there has been
a broad expansion of PP approaches and their applications, there is still much to discover:
So far, all alignment-free methods are word-based methods because they utilize contiguous
or non-contiguous k-mers of a fixed length. This causes inherent trade-offs, for example,
between speed and accuracy for RAPPAS and APPLES. In this regard, we also determined
multiple limitations of our approach App-SpaM, for example, regarding faulty distance
estimates as discussed in Sec. 4.1. Furthermore, for a weight of w = 12, App-SpaM also
encounters computational difficulties for large genome databases due to the quadratic increase
in background matches, which can be alleviated by applying sampling or increasing the weight.
However, as presented in Sec. 2.4, a broad range of other alignment-free approaches is still
waiting to be utilized for phylogenetic placement and may promote new insights and new
purposes. Only time will tell how PP algorithms and their wide-ranging possibilities will
shape the field of phylogenomics in the years to come.

7.3 Conclusion

First envisaged for metataxonomic read identification, phylogenetic placement has found
wide-ranging applications by now. This process has been driven by the development of a
variety of alignment-based and alignment-free methods and associated tools. However, PP
programs are most often applied by the same members of the scientific community who
developed the programs in the first place. The uptake of PP programs by the wide range of
potential end users and the number of metagenomic studies which utilize placement remains
limited so far. One reason for this has been the effort, care, and knowledge of bioinformatic
pipelines that has to be brought along to be able to practically apply PP tools. We believe
that App-SpaM offers an easy entry point to the application of phylogenetic placement
on diverse data sets because little preprocessing has to be performed. Another hurdle has
been the insufficient presentation and explanation of phylogenetic placement, including its
advantages and limitations, which recently have been covered comprehensively in a review [334].
Furthermore, the PP community should push to extend common standards for input and
output file formats, openly accessible evaluation procedures, and standardized evaluation

146



7.3. Conclusion

metrics. While the application of metataxonomic and metagenomic read identification has been
adequately tested and presented in multiple instances, the usage of phylogenetic placement
for other use cases requires more thorough testing to recognize under which circumstances
placement produces reliable results. Such use cases include, for example, the update of large
phylogenetic species trees under the presence of gene discordance, the detection of gene or
species outliers, the estimation of contamination and completeness of assembled genomes,
the binning of contigs, or the rooting of existing trees. Still, we believe that PP algorithms,
together with existing frameworks that focus on phylogenetic data, already constitute an
appealing group of well-tested methods to tackle a variety of metataxonomic, metagenomic,
and phylogenomic research questions. Due to its unique approach, phylogenetic placement has
already proven itself to be a valuable asset in the bioinformaticians toolbox, especially with
regard to pressing issues in modern society: Phylogenetic placement is already regularly used
in clinical studies [384, 483] and has been applied to the real-time tracking of pandemics [484].
Moreover, it may contribute to exploring and characterizing the diverse biospheres of Earth
in a period where the rapid decline of animal and plant populations has taken place and will
continue to take place in future decades and centuries [485, 486]. After all, there waits a lot
to be discovered as life on Earth is complex and diverse.
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Chapter A

App-SpaM

App-SpaM is publicly and freely available for download on its Github repository, including a
detailed documentation, at www.github.com/matthiasblanke/App-SpaM.

A.1 Methods

Supplementary Table A.1 contains additional information on all data sets besides those listed
in Tab. 3.1. In their order of appearance, columns contain:

abbreviation The name of the dataset.
df
dc

The fraction of the distance between the root and the farthest leaf node (df )
and the distance between the root and the closest leaf node (dc).

lmax − lmin The absolute difference in sequence length between the longest and shortest
reference sequence.

lmin
lmax

The relative difference in sequence length between the longest and shortest
reference sequence.

We performed a comprehensive evaluation including a large range of parameters for each
program. All tested parameter combinations of all PP programs are contained in Suppl.
Tab. A.2, together with a short description of each parameter. App-SpaM uses a placement
heuristic, also referred to as its mode, to infer placement positions from spaced-word matches
statistics. We tested all of the introduced modes with varying pattern weights w ∈ {8, 12, 16}.
In the accuracy evaluation, spaced words are extracted on the basis of a single pattern. Only
in dedicated experiments, multiple patterns were employed; see, for example, Suppl. Fig. A.1.
The placement criteria (crit) of APPLES are least squares phylogenetic placement (MLSE),
minimum evolution (ME), or a combination of both (HYBRID). Three least squares methods
(meth) are implemented and were tested, see Eq. 2.22: OLS is ordinary least squares with
k = 0, BE uses k = 1, and FM k = 2. For RAPPAS, the value k of the phylo-k-mers greatly
influences its performance: for larger values of k results are more accurate but execution speed
is slower. pplacer follows its ’baseball’ heuristic which is based upon three parameters (ms,
sb, mp). For EPA-ng we tested the newest and fastest heuristic (h = 1) and an older heuristic
equivalent to the one employed in EPA (h = 2). For the older heuristic (and for EPA), a
single parameter g specifies the proportion of branch lengths for which full branch length
optimization is performed. In both cases, we tested g = 0.01 and g = 0.1. All notations follow
the abbreviations used within the configuration files of PEWO. Parameters were chosen based
on available documentations of the software packages themselves and information provided by
the PEWO framework.
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Table A.1 – Additional information on data sets used in the PAC and RES evaluations.

abbreviation df
dc

lmax − lmin
lmin
lmax

bac-150 129.9 264 0.79
hiv-104 8.67 1781 0.81
neotrop-512 17.86 1895 0.35
tara-3748 72.68 605 0.63
bv-797 341.42 1653 0.24
epa-218 37.76 217 0.86
epa-628 21.85 780 0.22
epa-714 13.89 396 0.68

wol-43 2.12 1136292 0.37

CPU-652 45.32 1055 0.34
CPU-512 17.86 1895 0.35

Table A.2 – Parameter choices for each placement program.

program parameter choices description

App-
SpaM

mode
SpaM-2, SpaM-4,

Min-Dist,LCA-Dist,
Min-Count, LCA-Count

placement heuristics

w 8, 12, 16 weight of patterns
pattern 1 number of patterns

APPLES
meth BE, FM, OLS least squares method
crit HYBRID, ME, MLSE placement criterion

RAPPAS
k 6, 7, 8 size of phylo-k-mers
o 1.5, 2.0 probability threshold for RAPPAS

red 0.99
reduction: gap/non-gap ratio above
which site of alignment is ignored

ar RAXMLNG software for ancestral state
reconstruction

pplacer
ms 1, 3, 6 max-strikes
sb 1, 3, 6 strike-box
mp 40 max-pitches

EPA-ng
h 1, 2 heuristic

EPA

g 0.01, 0.1
proportion of top scoring branches

for which full optimization is
computed
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A.2 Results

The subsequent tables contain detailed statistics for the box plots of the accuracy evaluation
shown in Sec. 3.1.2. The rows in their order of appearance in each table contain:

w Pattern weight for App-SpaM. Only given if applicable, otherwise the default
w = 12 was used.

count The number of pruning repetitions in the box plot.

mean The average ND over all repetitions.

std The standard deviation over all repetitions.

min The minimal ND across all repetitions.

25 The first quartile of ND across all repetitions.

50 The second quartile of ND across all repetitions.

75 The third quartile of ND across all repetitions.

max The maximal ND across all repetitions.

Heuristics and pattern weight

The following tables show detailed statistics for Fig. 3.3 to Fig. 3.5, which show average node
distances for App-SpaM dependent on the employed heuristics for the data sets bac-150 and
hiv-104.

Table A.3 – Summary statistics for the box plots shown in Fig. 3.4.

mode w count mean std min 25 50 75 max
BESTCOUNT 8.00 100.00 8.28 1.78 3.00 7.37 8.09 9.15 15.00
BESTCOUNT 12.00 100.00 8.31 1.72 3.25 7.37 8.09 9.16 14.13
BESTCOUNT 16.00 100.00 8.27 1.70 3.63 7.30 8.12 9.10 13.56
BESTSCORE 8.00 100.00 8.71 1.88 4.19 7.55 8.54 9.94 14.31
BESTSCORE 12.00 100.00 8.98 2.08 4.00 7.69 8.57 10.20 15.75
BESTSCORE 16.00 100.00 9.01 2.06 4.03 7.69 8.69 10.12 16.31
LCACOUNT 8.00 100.00 4.78 1.92 1.00 3.59 4.39 5.63 10.63
LCACOUNT 12.00 100.00 4.73 1.79 1.00 3.66 4.41 5.62 9.75
LCACOUNT 16.00 100.00 4.82 1.83 1.25 3.63 4.53 5.70 9.84
LCASCORE 8.00 100.00 8.11 2.28 2.88 6.82 8.07 9.64 14.50
LCASCORE 12.00 100.00 8.22 2.36 2.31 6.88 8.20 9.69 14.75
LCASCORE 16.00 100.00 8.22 2.40 2.31 6.86 8.21 9.58 14.75
EXP2 8.00 100.00 4.70 1.93 1.00 3.50 4.36 5.32 10.63
EXP2 12.00 100.00 4.67 1.87 1.00 3.47 4.36 5.72 9.68
EXP2 16.00 100.00 4.76 1.94 1.00 3.59 4.50 5.88 9.70
EXP4 8.00 100.00 4.65 2.01 1.00 3.50 4.36 5.33 10.63
EXP4 12.00 100.00 4.65 1.94 1.00 3.47 4.40 5.70 9.68
EXP4 16.00 100.00 4.71 2.00 1.00 3.50 4.43 5.67 9.70
APPLES 8.00 100.00 5.90 2.32 2.19 4.20 5.59 7.24 13.63
APPLES 12.00 100.00 5.81 2.26 1.50 4.17 5.34 7.11 12.94
APPLES 16.00 100.00 5.97 2.24 1.50 4.35 5.69 7.06 12.81
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Table A.4 – Summary statistics for the box plots shown in Fig. 3.3.

mode w count mean std min 25 50 75 max

BESTCOUNT 12.00 100.00 8.31 1.72 3.25 7.37 8.09 9.16 14.13
BESTSCORE 12.00 100.00 8.98 2.08 4.00 7.69 8.57 10.20 15.75
LCACOUNT 12.00 100.00 4.73 1.79 1.00 3.66 4.41 5.62 9.75
LCASCORE 12.00 100.00 8.22 2.36 2.31 6.88 8.20 9.69 14.75
EXP4 12.00 100.00 4.65 1.94 1.00 3.47 4.40 5.70 9.68
APPLES 12.00 100.00 5.81 2.26 1.50 4.17 5.34 7.11 12.94

Table A.5 – Summary statistics for the box plots shown in Fig. 3.5a.

mode w count mean std min 25 50 75 max
SPAMCOUNT 8.00 100.00 5.23 1.37 1.49 4.59 5.37 5.98 9.16
SPAMCOUNT 12.00 100.00 5.23 1.37 1.47 4.70 5.34 5.87 8.88
SPAMCOUNT 16.00 100.00 5.32 1.33 1.57 4.73 5.39 6.02 8.48
MINDIST 8.00 100.00 5.74 1.47 1.55 5.12 6.00 6.62 9.06
MINDIST 12.00 100.00 6.35 1.52 1.80 5.66 6.60 7.34 9.32
MINDIST 16.00 100.00 6.72 1.62 1.93 6.06 6.99 7.74 9.92
LCACOUNT 8.00 100.00 4.08 1.23 1.61 3.31 3.95 4.85 8.00
LCACOUNT 12.00 100.00 4.14 1.25 1.54 3.29 4.09 4.86 8.02
LCACOUNT 16.00 100.00 4.22 1.29 1.54 3.36 4.12 4.93 8.23
LCADIST 8.00 100.00 4.46 1.43 1.58 3.49 4.38 5.23 8.73
LCADIST 12.00 100.00 4.84 1.60 1.75 3.70 4.77 5.72 9.88
LCADIST 16.00 100.00 5.03 1.68 1.80 3.73 4.92 5.97 9.76
EXP2 8.00 100.00 4.08 1.23 1.61 3.31 3.95 4.85 8.00
EXP2 12.00 100.00 4.13 1.26 1.49 3.29 4.09 4.87 8.02
EXP2 16.00 100.00 4.21 1.31 1.37 3.33 4.12 4.94 8.25
EXP4 8.00 100.00 4.07 1.24 1.33 3.27 3.96 4.85 8.00
EXP4 12.00 100.00 4.13 1.25 1.23 3.29 4.10 4.86 7.98
EXP4 16.00 100.00 4.21 1.27 1.27 3.42 4.09 4.97 8.17

Table A.6 – Summary statistics for the box plots shown in Fig. 3.5b.

mode w count mean std min 25 50 75 max
SPAMCOUNT 8.00 100.00 3.70 1.58 1.00 2.80 3.44 4.38 8.47
SPAMCOUNT 12.00 100.00 3.78 1.62 1.00 2.75 3.52 4.50 8.71
SPAMCOUNT 16.00 100.00 3.85 1.61 1.00 2.82 3.51 4.46 9.06
MINDIST 8.00 100.00 4.04 1.62 1.00 3.05 3.80 4.90 8.91
MINDIST 12.00 100.00 4.91 1.66 1.06 3.92 4.82 5.94 9.49
MINDIST 16.00 100.00 5.79 1.68 1.06 4.83 5.95 6.96 9.35
LCACOUNT 8.00 100.00 2.99 0.90 1.51 2.42 2.91 3.35 6.47
LCACOUNT 12.00 100.00 3.01 0.93 1.43 2.41 2.98 3.42 6.53
LCACOUNT 16.00 100.00 3.08 0.90 1.53 2.47 3.00 3.51 6.24
LCADIST 8.00 100.00 3.24 0.94 1.59 2.61 3.16 3.81 6.16
LCADIST 12.00 100.00 3.83 1.23 1.59 2.88 3.70 4.53 7.41
LCADIST 16.00 100.00 4.42 1.56 1.79 3.23 4.28 5.24 9.18
EXP2 8.00 100.00 2.98 0.91 1.39 2.42 2.91 3.35 6.47
EXP2 12.00 100.00 3.00 0.94 1.12 2.41 2.98 3.42 6.53
EXP2 16.00 100.00 3.07 0.92 1.07 2.47 3.00 3.51 6.24
EXP4 8.00 100.00 2.98 0.91 1.07 2.42 2.91 3.35 6.47
EXP4 12.00 100.00 2.99 0.95 1.01 2.38 2.97 3.42 6.53
EXP4 16.00 100.00 3.04 0.94 1.00 2.38 2.97 3.53 6.24
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Size of pattern sets

The following two tables show detailed statistics for the evaluation of pattern sets of varying
sizes on the bac-150 and bv-797 data sets. The names of the columns follow the conventions
introduced above in Suppl. Sec. A.2. Suppl. Fig. A.1 shows the average node distance for
App-SpaM dependent on the number of patterns for the bv-797 data set.

Table A.7 – Summary statistics for the box plots shown in Fig. 3.8.

mode w pattern count mean std min 25 50 75 max
LCACOUNT 1.00 1.00 100.00 4.74 1.80 1.00 3.50 4.36 5.82 9.68
LCACOUNT 1.00 2.00 100.00 4.82 1.90 1.00 3.59 4.58 5.60 10.25
LCACOUNT 1.00 3.00 100.00 4.81 1.88 1.00 3.63 4.44 5.95 9.88
LCACOUNT 1.00 4.00 100.00 4.78 1.87 1.00 3.59 4.48 5.69 9.85
LCACOUNT 1.00 5.00 100.00 4.78 1.87 1.00 3.59 4.50 5.72 10.63
LCACOUNT 2.00 1.00 100.00 4.73 1.92 1.00 3.50 4.36 5.64 10.00
LCACOUNT 2.00 2.00 100.00 4.79 1.87 1.00 3.50 4.44 5.76 10.00
LCACOUNT 2.00 3.00 100.00 4.79 1.88 1.00 3.50 4.50 5.71 10.88
LCACOUNT 2.00 4.00 100.00 4.77 1.82 1.00 3.49 4.63 5.73 9.88
LCACOUNT 2.00 5.00 100.00 4.77 1.85 1.00 3.38 4.50 5.72 10.00
LCACOUNT 3.00 1.00 100.00 4.71 1.87 1.00 3.48 4.27 5.75 10.35
LCACOUNT 3.00 2.00 100.00 4.72 1.87 1.00 3.59 4.45 5.68 10.25
LCACOUNT 3.00 3.00 100.00 4.77 1.90 1.00 3.58 4.50 5.63 10.15
LCACOUNT 3.00 4.00 100.00 4.72 1.89 1.00 3.47 4.40 5.53 9.83
LCACOUNT 3.00 5.00 100.00 4.77 1.92 1.00 3.47 4.44 5.67 10.25
LCACOUNT 4.00 1.00 100.00 4.79 1.88 1.08 3.63 4.40 5.73 9.88
LCACOUNT 4.00 2.00 100.00 4.77 1.85 1.00 3.63 4.54 5.58 9.88
LCACOUNT 4.00 3.00 100.00 4.73 1.87 1.00 3.48 4.56 5.61 9.93
LCACOUNT 4.00 4.00 100.00 4.77 1.88 1.00 3.38 4.50 5.65 9.68
LCACOUNT 4.00 5.00 100.00 4.76 1.92 1.00 3.50 4.49 5.66 10.38
LCACOUNT 5.00 1.00 100.00 4.79 1.85 1.00 3.63 4.50 5.76 9.29
LCACOUNT 5.00 2.00 100.00 4.76 1.85 1.42 3.50 4.38 5.64 9.88
LCACOUNT 5.00 3.00 100.00 4.74 1.85 1.21 3.47 4.50 5.64 10.13
LCACOUNT 5.00 4.00 100.00 4.76 1.84 1.08 3.61 4.50 5.53 9.53
LCACOUNT 5.00 5.00 100.00 4.74 1.85 1.08 3.59 4.47 5.62 10.08
SPAMX 1.00 1.00 100.00 4.65 1.94 1.00 3.47 4.40 5.70 9.68
SPAMX 1.00 2.00 100.00 4.71 2.03 1.00 3.50 4.54 5.51 10.25
SPAMX 1.00 3.00 100.00 4.70 2.00 1.00 3.59 4.32 5.71 9.88
SPAMX 1.00 4.00 100.00 4.66 1.99 1.00 3.50 4.36 5.61 9.85
SPAMX 1.00 5.00 100.00 4.69 1.99 1.00 3.50 4.50 5.68 10.63
SPAMX 2.00 1.00 100.00 4.63 2.04 1.00 3.47 4.25 5.49 10.00
SPAMX 2.00 2.00 100.00 4.69 1.99 1.00 3.50 4.36 5.63 10.00
SPAMX 2.00 3.00 100.00 4.69 2.00 1.00 3.50 4.45 5.69 10.88
SPAMX 2.00 4.00 100.00 4.65 1.95 1.00 3.45 4.50 5.59 9.88
SPAMX 2.00 5.00 100.00 4.67 1.98 1.00 3.38 4.50 5.63 10.00
SPAMX 3.00 1.00 100.00 4.60 1.98 1.00 3.39 4.25 5.76 10.35
SPAMX 3.00 2.00 100.00 4.60 1.97 1.00 3.50 4.34 5.45 10.25
SPAMX 3.00 3.00 100.00 4.67 2.01 1.00 3.43 4.41 5.45 10.15
SPAMX 3.00 4.00 100.00 4.63 2.01 1.00 3.38 4.30 5.50 9.83
SPAMX 3.00 5.00 100.00 4.66 2.04 1.00 3.38 4.39 5.53 10.25
SPAMX 4.00 1.00 100.00 4.69 1.99 1.00 3.50 4.37 5.75 9.88
SPAMX 4.00 2.00 100.00 4.65 1.98 1.00 3.38 4.47 5.52 9.88
SPAMX 4.00 3.00 100.00 4.61 1.97 1.00 3.39 4.50 5.50 9.93
SPAMX 4.00 4.00 100.00 4.67 2.00 1.00 3.38 4.44 5.56 9.68
SPAMX 4.00 5.00 100.00 4.67 2.03 1.00 3.45 4.37 5.45 10.38
SPAMX 5.00 1.00 100.00 4.69 1.98 1.00 3.50 4.50 5.63 9.29
SPAMX 5.00 2.00 100.00 4.64 1.95 1.00 3.42 4.38 5.63 9.88
SPAMX 5.00 3.00 100.00 4.64 1.96 1.00 3.42 4.50 5.63 10.13
SPAMX 5.00 4.00 100.00 4.65 1.96 1.00 3.54 4.44 5.51 9.53
SPAMX 5.00 5.00 100.00 4.64 1.96 1.00 3.50 4.43 5.50 10.08
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Figure A.1 – Accuracy (left y-axes) of the LCA-Count and SpaM-4 heuristics (outer
x-axis) dependent on the number of used patterns (right y-axis). For each pattern set, five
repetitions with different random seeds for rasbhari are shown (inner x-axes, different color
hues). Adapted from the Supplementary Material of App-SpaM: Phylogenetic placement of
short reads without sequence alignment, in: Bioinformatics Advances, 2021.
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Table A.8 – Summary statistics for the box plots shown in Suppl. Fig. A.1.

mode w pattern count mean std min 25 50 75 max
LCACOUNT 1.00 1.00 50.00 3.57 1.75 1.00 2.00 3.17 5.10 7.60
LCACOUNT 1.00 2.00 50.00 3.59 1.78 1.00 2.03 3.19 4.78 7.94
LCACOUNT 1.00 3.00 50.00 3.62 1.86 1.00 2.01 3.25 4.79 8.75
LCACOUNT 1.00 4.00 50.00 3.52 1.74 1.00 2.02 3.13 4.84 7.73
LCACOUNT 1.00 5.00 50.00 3.66 1.78 1.00 2.30 3.11 5.10 7.77
LCACOUNT 2.00 1.00 50.00 3.58 1.77 1.00 2.11 3.09 4.97 7.95
LCACOUNT 2.00 2.00 50.00 3.64 1.76 1.00 2.12 3.13 4.79 7.51
LCACOUNT 2.00 3.00 50.00 3.63 1.74 1.00 2.19 3.22 4.73 7.55
LCACOUNT 2.00 4.00 50.00 3.61 1.84 1.00 2.02 3.11 4.85 8.03
LCACOUNT 2.00 5.00 50.00 3.57 1.73 1.00 2.11 3.13 4.88 7.75
LCACOUNT 3.00 1.00 50.00 3.63 1.83 1.00 2.08 3.06 4.75 8.40
LCACOUNT 3.00 2.00 50.00 3.59 1.77 1.00 2.08 3.18 4.69 8.33
LCACOUNT 3.00 3.00 50.00 3.66 1.83 1.00 2.12 3.11 4.86 7.89
LCACOUNT 3.00 4.00 50.00 3.67 1.74 1.00 2.22 3.24 5.16 7.64
LCACOUNT 3.00 5.00 50.00 3.60 1.73 1.00 2.14 3.42 4.82 8.32
LCACOUNT 4.00 1.00 50.00 3.62 1.79 1.00 2.12 3.11 4.98 7.29
LCACOUNT 4.00 2.00 50.00 3.55 1.76 1.00 2.06 3.19 4.73 8.09
LCACOUNT 4.00 3.00 50.00 3.58 1.75 1.00 2.01 3.09 4.85 7.73
LCACOUNT 4.00 4.00 50.00 3.63 1.79 1.00 2.03 3.15 5.08 7.36
LCACOUNT 4.00 5.00 50.00 3.58 1.78 1.00 2.03 3.17 4.90 7.34
LCACOUNT 5.00 1.00 50.00 3.59 1.72 1.00 2.12 3.14 4.84 7.90
LCACOUNT 5.00 2.00 50.00 3.60 1.82 1.00 2.14 3.25 4.55 9.07
LCACOUNT 5.00 3.00 50.00 3.51 1.70 1.00 2.11 2.98 4.71 7.94
LCACOUNT 5.00 4.00 50.00 3.59 1.79 1.00 2.00 3.40 4.81 7.69
LCACOUNT 5.00 5.00 50.00 3.59 1.76 1.00 2.13 3.27 4.87 7.76
SPAMX 1.00 1.00 50.00 3.49 1.75 1.00 2.04 3.05 4.98 7.60
SPAMX 1.00 2.00 50.00 3.50 1.79 1.00 2.03 2.88 4.75 7.94
SPAMX 1.00 3.00 50.00 3.53 1.87 1.00 2.06 3.08 4.74 8.75
SPAMX 1.00 4.00 50.00 3.44 1.73 1.04 2.08 2.94 4.64 7.73
SPAMX 1.00 5.00 50.00 3.57 1.79 1.00 2.24 2.94 4.91 7.77
SPAMX 2.00 1.00 50.00 3.49 1.77 1.00 2.11 3.10 4.53 8.09
SPAMX 2.00 2.00 50.00 3.54 1.77 1.04 2.11 3.03 4.58 7.51
SPAMX 2.00 3.00 50.00 3.55 1.75 1.00 2.18 3.17 4.60 7.55
SPAMX 2.00 4.00 50.00 3.53 1.85 1.00 2.09 3.03 4.84 8.03
SPAMX 2.00 5.00 50.00 3.49 1.74 1.00 2.13 3.00 4.76 7.75
SPAMX 3.00 1.00 50.00 3.55 1.84 1.00 2.08 3.00 4.49 8.40
SPAMX 3.00 2.00 50.00 3.51 1.78 1.00 2.13 3.00 4.60 8.33
SPAMX 3.00 3.00 50.00 3.57 1.84 1.00 2.12 2.94 4.73 7.89
SPAMX 3.00 4.00 50.00 3.55 1.77 1.00 2.15 3.15 4.94 7.64
SPAMX 3.00 5.00 50.00 3.52 1.73 1.00 2.14 3.21 4.74 8.32
SPAMX 4.00 1.00 50.00 3.52 1.82 1.00 2.05 2.97 4.98 7.29
SPAMX 4.00 2.00 50.00 3.44 1.78 1.00 2.01 2.92 4.53 8.09
SPAMX 4.00 3.00 50.00 3.48 1.77 1.00 2.01 3.04 4.72 7.73
SPAMX 4.00 4.00 50.00 3.53 1.79 1.00 2.11 3.05 4.97 7.36
SPAMX 4.00 5.00 50.00 3.48 1.80 1.00 2.00 3.12 4.88 7.34
SPAMX 5.00 1.00 50.00 3.48 1.74 1.00 2.07 3.03 4.65 7.90
SPAMX 5.00 2.00 50.00 3.52 1.83 1.00 2.14 3.10 4.48 9.07
SPAMX 5.00 3.00 50.00 3.43 1.71 1.00 2.11 2.94 4.52 7.94
SPAMX 5.00 4.00 50.00 3.50 1.79 1.00 2.01 3.17 4.63 7.69
SPAMX 5.00 5.00 50.00 3.51 1.77 1.00 2.17 3.11 4.73 7.76

Comparison with other programs

The subsequent figures show results for varying parameters for each PP program on eight
data sets. Shown is the ND (y-axis, blue), and the eND for those programs that output
multiple placement locations (y-axis, orange). Each bar indicates the average accuracy over
100 pruning events. A detailed description of parameters is provided in Suppl. Tab. A.2. The
read length of the query sequences was always fixed to 150 bp, with the exception of hiv-104
(additional read lengths of 500 bp), neotrop-512 (additional read lengths of 300 bp), and
tara-3748 (additional read lengths of 300 bp).
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A.2. Results

Using different read lengths

The following three tables show detailed statistics for the use of different query read lengths
for the metataxonomic use case in Sec. 3.1.2. The statistics are divided accordingly to the
three plots shown in Fig. 3.10 for three different data sets.

Table A.9 – Summary statistics for the box plots shown in Fig. 3.10. Results are presented
for the hiv-104 data set with reads of length 500 bp.

mode count mean std min 25 50 75 max
appspam-r500 100.00 2.99 0.95 1.01 2.38 2.97 3.42 6.53
pplacer-r500 100.00 2.77 0.88 1.00 2.27 2.57 3.21 5.74
epa-r500 100.00 2.77 0.85 1.00 2.28 2.62 3.18 5.35
epang-r500 100.00 2.52 0.88 1.00 1.90 2.37 3.01 5.77
rappas-r500 100.00 2.43 0.83 1.00 1.81 2.40 2.72 5.32
apples-r500 100.00 3.30 1.21 1.00 2.44 3.10 4.01 7.21

Table A.10 – Summary statistics for the box plots shown in Fig. 3.10. Results are presented
for the neotrop-512 data set with reads of length 300 bp.

mode count mean std min 25 50 75 max
appspam-r300 100.00 5.86 3.21 1.00 3.75 5.40 7.17 19.00
pplacer-r300 100.00 4.57 2.78 1.00 2.40 3.62 6.24 14.00
epa-r300 100.00 4.47 2.76 1.00 2.60 3.65 5.40 13.33
epang-r300 100.00 4.45 2.88 1.00 2.40 3.73 5.40 15.00
rappas-r300 10.00 4.82 1.77 2.60 3.65 4.60 5.68 8.46
apples-r300 100.00 9.79 3.99 1.33 6.63 9.48 12.60 22.50

Table A.11 – Summary statistics for the box plots shown in Fig. 3.10. Results are presented
for the tara-3748 data set with reads of length 300 bp.

mode count mean std min 25 50 75 max
appspam-r300 100.00 6.72 4.97 1.00 3.50 4.75 9.25 30.25
pplacer-r300 100.00 6.69 5.30 1.00 3.25 5.32 9.19 40.00
epa-r300 100.00 6.62 5.53 1.00 3.25 5.50 8.84 45.75
epang-r300 100.00 7.61 6.55 1.00 3.23 5.97 10.41 47.44
rappas-r300 100.00 6.76 6.16 1.00 2.96 4.85 7.82 33.50
apples-r300 100.00 21.30 10.81 4.75 13.44 19.00 28.06 52.25
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Using query reads simulated by ART

The following three tables show detailed statistics when query reads are simulated by ART
for the metataxonomic use case in Sec. 3.1.2. The statistics are divided accordingly to the
three plots shown in Fig. 3.11 for three different data sets.

Table A.12 – Summary statistics for the box plots shown in Fig. 3.11. Query reads were
simulated by ART using the Illumina profile on the hiv-104 data set.

mode count mean std min 25 50 75 max
appspam-r150 50.00 4.06 1.32 2.06 3.11 3.89 4.58 8.62
pplacer-r150 50.00 6.83 1.71 4.33 5.62 6.61 7.55 11.66
epa-r150 50.00 6.60 1.60 4.14 5.60 6.62 7.41 12.14
epang-r150 50.00 6.33 1.62 2.61 5.11 6.23 7.20 11.07
rappas-r150 50.00 9.19 1.78 5.92 7.86 9.27 10.14 14.78
apples-r150 50.00 6.29 2.39 2.14 4.77 6.51 7.48 12.44

Table A.13 – Summary statistics for the box plots shown in Fig. 3.11. Query reads were
simulated by ART using the Illumina profile on the neotrop-512 data set.

mode count mean std min 25 50 75 max
appspam-r150 50.00 7.26 2.82 2.38 5.63 6.81 8.56 16.38
pplacer-r150 50.00 12.38 2.03 7.89 11.14 12.23 13.24 17.52
epa-r150 50.00 12.46 2.39 7.86 10.91 12.16 13.61 21.10
epang-r150 50.00 11.56 2.04 6.97 10.49 11.33 12.44 18.27
rappas-r150 50.00 14.50 2.33 9.43 13.22 14.47 15.49 21.55
apples-r150 50.00 15.03 2.73 10.41 12.86 14.48 16.12 21.66

Table A.14 – Summary statistics for the box plots shown in Fig. 3.11. Query reads were
simulated by ART using the Illumina profile on the tara-3748 data set.

mode count mean std min 25 50 75 max
appspam-r150 50.00 9.61 7.41 2.28 5.09 7.08 10.86 38.90
pplacer-r150 50.00 28.44 10.84 15.30 21.19 25.56 32.36 62.88
epa-r150 50.00 27.61 9.92 16.12 21.35 24.73 30.16 58.42
epang-r150 50.00 25.30 9.96 13.47 18.50 22.71 30.52 58.18
rappas-r150 50.00 24.55 11.38 11.75 16.50 21.17 29.63 57.92
apples-r150 50.00 24.63 11.90 5.80 16.43 21.95 27.53 57.60
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A.3. Pruning Difficulty

A.3 Pruning Difficulty

We proposed two proxies for the difficulty of pruning events when performing PEWO’s PAC
workflow to evaluate PP programs. The first one is the size of the pruning event, whereas
the size is defined as the total amount of branch lengths that were pruned from Tref. The
second one is the height of the expected placement branch, whereas the height of a node is
defined as the number of nodes to the farthest leaf below. Supplementary Figure A.13 and
Suppl. Fig. A.14 show scatter plots of these two relationships for all six placement programs on
the neotrop-512 and bv-797 data sets, respectively. Suppl. Tab. A.15 to Suppl. Tab. A.20
indicate the Spearman correlation coefficient (Spearman CC) and according P values for all
respective figures, as indicated.

Table A.15 – Spearman CCs and P val-
ues for plots in Fig. 3.15a.

Program Spearman CC P Value
App-SpaM 0.25 1.24 · 10−2

EPA-ng 0.13 0.20
RAPPAS 0.10 0.30
APPLES 0.17 9.68 · 10−2

pplacer 0.19 5.23 · 10−2

EPA 0.20 4.21 · 10−2

Table A.16 – Spearman CCs and P val-
ues for plots in Fig. 3.15b.

Program Spearman CC P Value
App-SpaM −0.18 6.77 · 10−2

EPA-ng −9.07 · 10−2 0.37
RAPPAS −8.07 · 10−2 0.43
APPLES −9.63 · 10−2 0.34
pplacer −7.77 · 10−2 0.44
EPA −0.11 0.26

Table A.17 – Spearman CCs and P val-
ues for plots in Suppl. Fig. A.13a.

Program Spearman CC P Value
App-SpaM 0.53 9.91 · 10−9

EPA-ng 0.67 2.52 · 10−14

RAPPAS 0.70 8.68 · 10−16

APPLES 0.33 8.29 · 10−4

pplacer 0.63 2.42 · 10−12

EPA 0.67 1.41 · 10−14

Table A.18 – Spearman CCs and P val-
ues for plots in Suppl. Fig. A.13b.

Program Spearman CC P Value
App-SpaM −4.73 · 10−2 0.64
EPA-ng −0.12 0.22
RAPPAS −0.18 6.77 · 10−2

APPLES −4.57 · 10−2 0.65
pplacer −0.10 0.30
EPA −0.14 0.16

Table A.19 – Spearman CCs and P val-
ues for plots in Suppl. Fig. A.14a.

Program Spearman CC P Value
App-SpaM 0.28 5.59 · 10−3

EPA-ng 0.21 3.61 · 10−2

RAPPAS 2.45 · 10−2 0.81
APPLES 0.11 0.28
pplacer 0.20 4.28 · 10−2

EPA 0.32 1.09 · 10−3

Table A.20 – Spearman CCs and P val-
ues for plots in Suppl. Fig. A.14b.

Program Spearman CC P Value
App-SpaM 0.13 0.20
EPA-ng 0.24 1.72 · 10−2

RAPPAS 0.27 6.04 · 10−3

APPLES 0.17 8.29 · 10−2

pplacer 0.26 7.88 · 10−3

EPA 0.16 0.11
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(a) Average node distance (y-axes) of each program (gray boxes) dependent on the difference in the
total sum of all branch lengths between Tref and the pruned reference tree (x-axes).
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Figure A.13 – Two proxies for the difficulty of each pruning event plotted against the
accuracy of placement programs on the neotrop-512 data set. This figure was adapted
from the Supplementary Material of App-SpaM: Phylogenetic placement of short reads without
sequence alignment, in: Bioinformatics Advances, 2021.
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(a) Average node distance (y-axes) of each program (gray boxes) dependent on the difference in the
total sum of all branch lengths between Tref and the pruned reference tree (x-axes).
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(b) Average node distance (y-axes) of each program (gray boxes) dependent on the level of the expected
placement branch (x-axes).

Figure A.14 – Two proxies for the difficulty of each pruning event plotted against the
accuracy of placement programs on the bv-797 data set. This figure was adapted from the
Supplementary Material of App-SpaM: Phylogenetic placement of short reads without sequence
alignment, in: Bioinformatics Advances, 2021.
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Chapter B

Revisiting App-SpaM

This chapter contains supplementary material for additional experiments that we performed
for App-SpaM in Chpt. 4. This comprises an analysis of the accuracy of App-SpaM’s
distance estimates in Suppl. Sec. B.1, spaced-word histograms in Suppl. Sec. B.1, additional
information about the sampling of spaced words in Suppl. Sec. B.2, and information on
assessing placement uncertainty in Suppl. Sec. B.3.

B.1 Estimating Evolutionary Distances

By default, App-SpaM estimates evolutionary distances by applying the Jukes-Cantor formula
to the number of substitutions per sequence position, which is calculated from the don’t
care positions of all spaced-word matches. Besides Jukes-Cantor, we tested whether using
the 2-parameter Kimura model improves distance estimates; the procedure is explained in
detail in Sec. 4.1. The subsequent figures show additional examples for the deviation of
distance estimates on different data sets. We denote App-SpaM’s distance estimate using
the Jukes-Cantor model as dJC and, accordingly, App-SpaM’s estimate using the Kimura 2
parameter model as dK80. Additionally, we compare the results with ’true’ distances estimated
from multiple sequence alignments. Hence, dMSA(JC) and dMSA(K80) indicate the Jukes-Cantor
and Kimura estimates based on alignments, respectively. For each plot, missing dots indicate
that no spaced-word match was found between the respective query and reference. Suppl.
Fig. B.1 complements the results on the hiv-104 data set shown in Sec. 4.1. Suppl. Fig. B.2
and Suppl. Fig. B.3 show how distance estimates deviate from the ground truth on the
bac-150 data set. Suppl. Fig. B.4 to Suppl. Fig. B.6 show results for neotrop-512.
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B.1. Estimating Evolutionary Distances
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Figure B.1 – Difference in App-SpaM’s distance estimates between using the Jukes-Cantor
model and the 2-parameter Kimura model on the hiv-104 data set. Shown is dJC − dK80
(colored dots) in a heatmap for three randomly selected query sequences (y-axis) and 30
randomly selected reference distances (x-axis).
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Figure B.2 – Divergence of App-SpaM’s distance estimates under the Jukes-Cantor model
from the ’true’ distance on the bac-150 data set. Shown is dMSA(JC) − dJC (colored dots) in
a heatmap for three randomly selected query sequences (y-axis) and 30 randomly selected
reference distances (x-axis).
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Figure B.3 – Divergence of App-SpaM’s distance estimates under the 2-parameter Kimura
model from the ’true’ distance on the bac-150 data set. Shown is dMSA(K80) − dK80 (colored
dots) in a heatmap for three randomly selected query sequences (y-axis) and 30 randomly
selected reference distances (x-axis).
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Figure B.4 – Difference in App-SpaM’s distance estimates between using the Jukes-Cantor
model and the 2-parameter Kimura model on the neotrop-512 data set. Shown is dJC−dK80
(colored dots) in a heatmap for three randomly selected query sequences (y-axis) and 30
randomly selected reference distances (x-axis).
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Figure B.5 – Divergence of App-SpaM’s distance estimates under the Jukes-Cantor model
from the ’true’ distance on the neotrop-512 data set. Shown is dMSA(JC) − dJC (colored
dots) in a heatmap for three randomly selected query sequences (y-axis) and 30 randomly
selected reference distances (x-axis).
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Figure B.6 – Divergence of App-SpaM’s distance estimates under the 2-parameter Kimura
model from the ’true’ distance on the neotrop-512 data set. Shown is dMSA(K80) − dK80
(colored dots) in a heatmap for three randomly selected query sequences (y-axis) and 30
randomly selected reference distances (x-axis).
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B.1. Estimating Evolutionary Distances

Spaced-word histograms (spamograms) The score of a spaced-word is defined as the
sum over all substitution scores of nucleotides at the don’t care positions, given a predefined
substitution matrix M . A spaced-word matches histogram (spamogram) displays the score
distribution of all spaced-word matches that occurred between the input sequences before the
filtering procedure is applied. App-SpaM considers all spaced-word matches between each
query and each reference sequence, thus, for mr references and mq queries, this amounts to
mr ·mq sequence pairs. Visualizing a spamogram for all SpaMs independent of their origin is
of little value because queries exhibit very different distances to different references. Instead,
spamograms are best visualized for all SpaMs between a single query sequence and a single
reference sequence. Spamograms are supposed to show two distinct peaks that we term as the
homologous peak and background peak. The gap between the two peaks as well as the overlap
of their respective distributions yields information about the relatedness of the two sequences.
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Figure B.7 – Single spamogram for all spaced-word matches between all query and all
reference sequences on the bac-150 data set. No clear separation between homologous and
background matches is visible.
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Figure B.8 – Spamograms (each violinplot) for a single query sequence and 20 reference
sequences (x-axis) for w = 8 on the bac-150 data set.
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Figure B.9 – Spamograms (each violinplot) for a single query sequence and 20 reference
sequences (x-axis) with respect to two different pattern weights on the hiv-104 data set: The
top shows spamograms for w = 12, the bottom for w = 8.
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Figure B.10 – Spamograms (each violinplot) for a single query sequence and 20 reference
sequences (x-axis) with respect to two different pattern weights on the neotrop-512 data
set: The top shows spamograms for w = 12, the bottom for w = 8.
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Figure B.11 – Spamogram for SpaMs between all queries and all references. The background
peak is clearly separated from the homologous peak. The background peak extends slightly
to the right of score 0, which is the default threshold t for the filtering procedure.
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Figure B.12 – Spamogram for SpaMs between a single query of length 150 bp and a single
reference sequence. The background peak is clearly separated from the homologous peak. The
total number of spaced-word matches on whose basis the placement is performed is about 160.
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Figure B.13 – Spamogram for SpaMs between a single query of length 150 bp and all
reference sequences. The background peak is clearly separated from the homologous peak.
The background peak extends slightly to the right of score 0, which is the default threshold t
for the filtering procedure. The homologous spaced-words suggest that multiple peaks exist
for the different reference sequences.
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B.2 Sampling Spaced Words

The time and memory efficiency of App-SpaM can be improved by performing a hash-based
sampling among the spaced-word matches. The sampling procedure ensures that the same
spaced words are selected from all input sequences, see Sec. 4.3. In short, the bits representing
the match positions of a spaced word (its key K) are scrambled with a random but fixed
integer z and a uniform hash function h is applied to K ⊕ z whereas ⊕ is the bit-wise XOR
operator. If the hash value h(K ⊕ z) is below a predefined threshold, the spaced word is part
of the sample; otherwise, it is discarded. The benefit of sampling within App-SpaM depends
on the trade-off between the gain in speed and the loss in accuracy. We discovered that
sampling is of limited use for data sets where queries are short, for example, for metagenomic
sequencing reads; see Fig. 4.9. The main problem is that the number of remaining spaced
words after sampling is not sufficient to specify a sensible placement position. In contrast,
sampling is of great use for data sets where query and reference sequences are long; thus,
exactly those applications where sampling would be needed. Suppl. Fig. B.14 shows that
there is little difference in performance of App-SpaM for varying placement heuristics and
pattern weights. Suppl. Fig. B.15 visualizes the loss in accuracy depending on the sampling
ratio for two metataxonomic data sets. Lastly, Suppl. Fig. B.15 shows that sampling is of
great use if multiple long query reads are present; here, the accuracy stays robust even for
very low sampling ratios while the speed is greatly reduced.
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Figure B.14 – Accuracy of App-SpaM depending on the sampling ratio r on the vir-104 data
set. The sampling ratio is given as the percentage of spaced words that were used. The average
node distance across 50 random prunings (left y-axis) is shown for two different placement
modes of App-SpaM with three different weights of the underlying pattern, respectively.
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Figure B.15 – Accuracy of App-SpaM depending on the sampling ratio r. The sampling
ratio is given as the percentage of spaced words that were used. The average node distance
across 50 random prunings is shown for two different data sets: a data set of 150 16S sequences
(left y-axis) and a data set of 3 784 16S sequences extracted from ocean water (right y-axis).
Standard deviations across the same 6 modes of App-SpaM that were used in Suppl. Fig. B.14
are shown as vertical bars.
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Figure B.16 – Applying sampling to multiple long query sequences on the wol-43 data set.
In contrast to other experiments with fewer reads (see Fig. 4.10b), here the gain in speed
remains high even when lower sampling ratios are applied.
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B.3 Assessing Placement Uncertainty

We discussed the specification of LWR-like placement weights that quantify the uncertainty of
placement positions in Sec. 4.4. Here, one problem is the discrepancy that can arise between
the number of SpaMs and the distance estimates as visualized in Suppl. Fig. B.17: For some
references, only a low number of SpaMs from a highly preserved region are present, which
results in low distances, although other sequence regions may only be distantly related.

SpaMs

Similarity

Figure B.17 – Tree with LWR-like values on the bv-797 data set. App-SpaM infers multiple
weighted placement positions for a single query Sq on the bv-797 data set. The two outer rings
highlight the leaf annotations from App-SpaM’s internal algorithm: The bars of the inner
ring (blue) indicate the number of spaced word matches between Sq to each reference. The
height of each bar is normalized by the maximal SpaMs that occur to any reference sequence.
The bars of the outer ring (orange) indicate the the similarity of Sq to each reference.
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Chapter C

Continuous Augmentation of
Phylogenetic Trees

We carried out additional experiments for the augmentation of phylogenetic trees as described
in Sec. 5.1. Supplementary Fig. C.1 shows how results degrade when more HGTs are simulated,
Suppl. Fig. C.2 the dependence between pruning size and accuracy. Lastly, Suppl. Fig. C.3
and Suppl. Fig. C.4 show additional results for all four data sets without or with HGTs,
respectively.
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Figure C.1 – Accuracy of augmentation process for App-SpaM and EPA-ng with respect
to the number of simulated HGT events. We distinguish between three scenarios: The first
has no HGTs (Base), for the second 1% to 2% of all genes have undergone an HGT event
(HGTs), and > 4% of all genes are HGTs in the last (Many HGTs).
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Figure C.2 – Accuracy of augmentation process (CID, y-axis) for App-SpaM with respect
to the number of pruned reference sequences (x-axis).
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Figure C.3 – Accuracy of augmentation process for App-SpaM and EPA-ng on four artificial
data sets without HGT events. For App-SpaM, the three described methods to infer a single
species placement position are presented, from left to right: tree traversal (orange), clustering
(blue), and collective placement (red). For EPA-ng only the collective placement (red) was
performed.
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Figure C.4 – Accuracy of augmentation process for App-SpaM and EPA-ng on four artificial
data sets with simulated HGT events. For App-SpaM, the three described methods to infer
a single species placement position are presented, from left to right: tree traversal (orange),
clustering (blue), and collective placement (red). For EPA-ng only the collective placement
(red) was performed.
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C.1 Ordered Augmentation Process

During continuous tree augmentation, new sequences are placed into the original tree in a
random order. However, the order might have an impact on the quality of resulting trees.
For example, placing ’difficult’ species might become easier as soon as other related species
have already been inserted into the tree. Following this approach, it is necessary to quantify
the ’difficulty’ of a species placement; we use the uncertainty of the placement as a proxy for
its difficulty as discussed earlier. We assess the uncertainty of a species placement from the
number, size, and distribution of gene placement clusters across the reference tree. Let C be
the set of all placement clusters according to Sec. 4.4. For c ∈ C, let l(c) be the number of
branches in c and w(c) the total number of placements in c. Then∑

c∈C
w(c)
l(c)

|C| ·
∑

c∈C w(c)
(C.1)

describes the overall placement certainty. To perform the ordered augmentation, we first place
each species independently on the original tree (without altering it) and calculate the certainty
with respect to Eq. C.1. We then sort the queries with respect to their descending certainty
and perform the augmentation in this order. The results of the ordered augmentation are
shown in Suppl. Fig. C.5. No improvement of the augmented tree is noticeable using this
process.
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Figure C.5 – Accuracy of augmentation process for App-SpaM with respect to the order in
which query organisms are added to the tree. For App-SpaM, the three described methods
to infer a single species placement position are presented: tree traversal (orange), clustering
(blue), and collective placement (red). In the first case (Base) the sequences are added
in a random order as in other experiments. In the second case (Ordered) an order of
the sequences is determined from the uncertainty associated with each species based on a
preplacement step. No experiments were carried our for EPA-ng due to excessive runtimes.
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C.2. Gene and Species Outlier Detection

C.2 Gene and Species Outlier Detection

We detect gene and species outliers using Isolation Forests on feature matrices constructed
from the individual gene placement locations during preplacement. For a reference tree with
m reference sequences and for mq species comprising l genes each, the gene feature vectors
comprise the following information:

• The number of SpaMs to each reference sequence (m features).

• The estimated phylogenetic distance to each reference sequence (m features).

• The level of its placement within Tref (one feature).

• A binary encoding of which reference sequence is contained in the subtree below its
placement location (m features).

• Three metrics for the uncertainty of the gene placement, calculated according to Sec. 4.4
(three features).

One such gene feature vector is created for each of the l genes, resulting in a gene feature
matrix comprising 3 ·m+ 4 features for each species. An Isolation Forest for each such gene
feature matrix determines the gene outliers of each species. One overall species feature matrix
is created with the following features:

• The variation of gene placement heights in Tref (one feature).

• The smallest, largest, and average height among all gene placements in Tref (three
features).

• The ’compactness’ of gene placements in Tref (one feature).

• The average, minimal, and maximal number of SpaMs to each reference sequence across
all genes (3 ·m features).

• The variation of the number of SpaMs to each reference across all genes (m features).

• The average, minimal, and maximal estimated distances to each reference sequence
across all genes (3 ·m).

• The variation of the estimated distances to each reference across all genes (m features).

After running an Isolation Forest on this matrix comprising 8 ·m + 5 features, all outlier
species are removed.
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Chapter D

A Phylogeny of Old World Monkeys

Plotting spamograms between the Old World monkey species provides many insights into the
plausibility of resulting distance estimates. We show two exemplary spamograms between
two species in Suppl. Fig. D.1; note, that the x-axis shows the number of mismatches instead
of the score in this case to allow for an easy interpretation. The upper spamogram shows
a typical distribution with two distinct peaks that represent background and homologous
regions. This distribution is only visible when repetitive regions are removed from the species.
In contrast, the lower distribution was created without removing repetitive regions. The
single visible peak contains spaced-word matches that pass the filtering threshold, but do not
originate from homologous regions (but from the repetitive regions instead). The magnitude
of this peak is enormous (the non-homologous peak vanishes due to the linear y-scale) because
a large number of SpaMs is formed in the repetitive regions.
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Figure D.1 – Exemplary spamogram between two species without (top) and with (bottom)
repetitive regions. In the upper example, all spaced-word matches are used, while a sampling
technique was applied in the bottom example. The y-axes indicate the number of SpaMs.
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Chapter E

Simon’s Congruence

The MaxSimK problem for two sequences S1 and S2 is defined as finding the highest k for
which the set of all subsequences of length k is identical for S1 and S2. In an attempt to utilize
MaxSimK for comparing the similarity of biological sequences, we performed several simple
experiments that calculate MaxSimK in dependence on the properties of simulated sequences.
Suppl. Fig. E.1 shows how MaxSimK behaves between sequences with varying similarity.
Suppl. Fig. E.2 to Suppl. Fig. E.4 visualize its dependence on indel and substitution rates.
Lastly, Suppl. Fig. E.5 shows how MaxSimK values shift when sequences are encoded as
2-mer sequences instead.
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Figure E.1 – Average MaxSimK between sequences with different hamming distances.
Mutation rates were were varied for r ∈ {0.1, 0.2, . . . , 0.9}.
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Figure E.2 – MaxSimK between sequences of length 500 with simulated indels. We calculated
MaxSimK between sequence pairs for which mutations and indels with a rate r were simulated.
Mutation rates were varied from 0.01 up to 0.09 average substitutions per sequence position.
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Figure E.3 – MaxSimK between sequences of length 500 with high indel rate. We calculated
MaxSimK between sequence pairs for which mutations and indels with a rate r were simulated.
Mutation rates were varied from 0.1 up to 0.9 average substitutions per sequence position.
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Figure E.4 – MaxSimK between all sequences of length 500 with simulated indels of a
higher rate. In contrast to the two preceding figures, here we calculate MaxSimK between
each sequence pair for which the same mutation and indel rate r from its respective base
sequence applies. Previously, we only calculated the distance between every base sequence
and its mutated version. Mutation rates were varied from 0.1 up to 0.9 average substitutions
per sequence position.
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Figure E.5 – Here, the experimental setup is identical to Suppl. Fig. E.1 with a sequence
length of n = 500. Then, we encoded each sequence by its ordered sequence of 2-mers instead,
resulting in sequences of length 250 bp over an alphabet with size o = 16. Then we calculated
MaxSimK between the adjusted sequences.
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