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Zusammenfassung

Das Studium der evolutiondren Beziehungen zwischen Lebewesen ist seit jeher ein grundle-
gendes Forschungsgebiet der biologischen Wissenschaften. In den letzten Jahrzehnten haben
grofte Fortschritte der Sequenziertechnologien fiir einen enormen Anstieg der Verfiigbarkeit
von molekularen Sequenzdaten gesorgt. Zeitgenossische Methoden fiir die Ermittlung von
evolutioniren Spezies-Beziehungen basieren von daher auf der Bestimmung von Ahnlichkeiten
und Unéhnlichkeiten zwischen ihren biologischen Sequenzdaten. Das Ergebnis solcher phylo-
genetischer Studien wird oftmals als Stammbaum oder Netzwerk dargestellt. Wahrend friiher
jeder Organismus separat sequenziert wurde, ist es heutzutage moglich alle vorhandenen
Sequenzdaten aus einer Umweltprobe gleichzeitig zu extrahieren. Dadurch entstehen grofie
Mengen kurzer Sequenzabschnitte deren Ursprungsorganismus unbekannt ist. Ein wesentlicher
Schritt der bioinformatischen Aufbereitung solcher Daten befasst sich mit der taxonomischen
oder phylogenetischen Identifizierung dieser Sequenzen; aufgrund der groften Anzahl der
zugrunde liegenden Sequenzen kénnen dafiir keine Methoden zur de-novo Rekonstruktion von
Phylogenien mehr eingesetzt werden. Stattdessen stellt die Methode der phylogenetischen
Platzierung eine zukunftsfihige Alternative dar: Die phylogenetische Verwandtschaft einer
Eingabe-Sequenz wird bestimmt, indem sie direkt in einen bestehenden phylogenetischen
Baum aus Referenz-Sequenzen eingeordnet wird. In dieser Arbeit stellen wir eine neue,
vielseitige Methode zur phylogenetischen Platzierung vor. Im Gegensatz zu bisherigen An-
sdtzen zur phylogenetischen Platzierung ist die vorgestellte Methode nicht abhéngig von der
Verfiigbarkeit von alignierten oder assemblierten Referenzen. Stattdessen verwendet unser
Algorithmus APP-SPAM eine Vielzahl kurzer, nicht-konsekutiver Sequenz-Worte, um eine
geeignete Platzierung abzuleiten. Als Grundlage fiir die Schatzung von Platzierungen dient
sowohl die Anzahl der gefundenen Worte als auch eine daraus berechnete phylogenetische
Distanz zu allen Referenz-Sequenzen. Wir présentieren eine umfangreiche Evaluation, die
APP-SPAM mit anderen Programmen zur phylogenetischen Platzierung hinsichtlich seiner
Genauigkeit und Effizienz vergleicht. Unsere Analysen zeigen, dass die Prézision von ApPP-
SPAM vergleichbar ist mit der Prézision von existierenden maximum-likelihood Methoden,
wobei es zwei bis dreimal schneller ist als diese. Im Anschluss stellen wir weitere Versionen des
Algorithmus vor, insbesondere erweiterte Platzierungs-Heuristiken, ein Mafs fiir die Unsicher-
heit der abgeleiteten Platzierungen und die Verwendung von stochastischen Stichproben, um
eine Skalierbarkeit auf langen Referenz-Sequenzen zu gewéhrleisten. Zusétzlich diskutieren
wir mehrere Anwendungsfélle der phylogenetischen Platzierung mit APP-SPAM und zeigen
deren Umsetzbarkeit an exemplarischen Experimenten. Dabei betrachten wir primar die
iterative Ergénzung von bestehenden Stammb&umen, sowie die Detektion von Gen- oder
Speziesausreifiern.






Abstract

The study of the evolutionary interrelations of living organisms has been at the heart of
biological sciences all along. A revolution in sequencing techniques in the past decades has
caused a massive increase in molecular sequence data. As a result, contemporary methods
assess evolutionary relationships between organisms by quantifying the degree of similarity
between their biological sequence data. The discovered relationships of phylogenetic studies
are commonly represented and visualized by phylogenetic trees or networks. Traditionally,
sequences have been extracted from single organisms; however, recent technological progress
has enabled the retrieval of sequence data directly from environmental samples. In doing so,
large numbers of short sequencing reads arise that may originate from all organisms present in
the respective environment. One major subsequent objective is the taxonomic or phylogenetic
identification of those sequencing reads. However, longstanding maximum-likelihood-based de-
novo phylogeny reconstruction methods are limited in their applicability by their computational
demands; typically, they cannot be applied when the available molecular sequences are present
in great numbers or are of great length. Fortunately, phylogenetic placement offers a unique
approach to identify large sets of query reads within their phylogenetic context by inserting
them into an existing phylogenetic tree comprising a set of reference sequences. Here, we present
a new alignment- and assembly-free approach to phylogenetic placement, the Alignment-free
phylogenetic placement algorithm based on Spaced-word Matches (APP-SPAM). APP-SPAM
extracts short, non-contiguous subwords to detect homologies between the query and reference
sequences, a method known as the spaced-word matches approach. It counts the number
of such words and utilizes them to infer the average number of nucleotide substitutions
between each read and each reference sequence. Then, it uses fast heuristics to infer a suitable
placement position within the reference tree. We assessed how APP-SPAM compares to existing
algorithms for phylogenetic placement with respect to accuracy and computation speed in
a comprehensive evaluation. We demonstrate that APP-SPAM is on par with maximum-
likelihood-based algorithms on metataxonomic data sets. In addition, APP-SPAM is two to
three orders of magnitude faster than the next fastest programs while its memory demands
stay low. We extensively discuss APP-SPAM’s advantages and drawbacks and propose several
additional features to improve upon its original version: For this, we evaluate a set of novel
placement heuristics, the use of sampling techniques to allow an improved scalability with the
length of the reference sequences, and a measure for the uncertainty of proposed placement
positions. Subsequently, we present a variety of novel use cases of phylogenetic that are
made uniquely possible by ApP-SPAM’s versatility with respect to its potential input data.
These applications include, in particular, the iterative augmentation of existing species trees
by means of phylogenetic placement and the screening for outlier genes or species prior to
phylogeny reconstruction.

iii






Acknowledgements

My thanks go to Burkhard Morgenstern for his supervision, support, and encouragement
during the last four years. Burkhard is an excellent scientific advisor and it was my honor to
work alongside him and receive his thought-out advice and helpful guidance. Furthermore, he
always supported me personally and endorsed a healthy balance between work and private
life that enabled the satisfying work environment I experienced. I will remember my time as
a PhD student happily and ascribe this largely to Burkhard.

My thanks go to the members of my thesis advisory committee Johannes Séding and
Christoph Bleidorn. With his thoughtful and constructive criticism, Johannes elicited my
scientific diligence, expanded my knowledge, and improved my work substantially. Christoph
incited my interest in the biological realm, especially the field of biodiversity, which also led
to my uptake of new personal hobbies. The obtained perspectives will outlast this work.

My thanks go to the members of our working group, specifically Peter Meinicke for prolific
discussions, Thomas Dencker for his valued input on being a PhD student and software design,
and Rasmus Steinkamp and Britta Leinemann for their swift help regarding all matters. I also
thank the reliable and motivated students I had the pleasure working with: Sarah Wendte,
Clara Gisela Kohne, Dark Engel, Rebecca Fee Dietlinde Regendantz, and Patricia-Franziska
Romer.

My thanks go to my friends. Most of all, I thank Leo for his continued support in all
phases of life, for challenging my work and working practices, for proofreading this manuscript,
for joint vacations, rare visits, frequent calls, and for being there in difficult situations. I also
thank Birte, Marlene, Salomea, Stefan, and Tobias for nurturing our long-standing friendships
even though I have been unresponsive at times. Moreover, I thank Immo, Justus, Malte, and
all the wonderful people at Bouldern in G&ttingen who share the enjoyment of our common
sport.

My thanks go to my family: I thank Tilman for discussions that covered every aspect
of life there is to cover, for his many invitations I declined, and for his honest disinterest in
my work that puts things into perspective—after all, there is more to life, isn’t it? I thank
Ulrike for her amiable understanding of personal matters, her kindness and uplifting attitude,
and her unwavering support in all stages of my studies and life. I thank Eberhard for his
empathetic and congenial participation in my work, our soothing hikes outdoors, and our
endless debates on scientific and unscientific matters that continue to widen my horizons. I
could not be more fortunate than to have this loving family.

Lastly, my thanks go to Adrienne who filled the last years with the life they needed. Thank
you for your energy and excitement in mundane routines, for the countless tours in nature,
for being there in challenging hours, and for sharing with me this ongoing adventure of life.
There is a great comfort in knowing you by my side.






Contents

1 Introduction
1.1 Motivation . . . . . . . . e e
1.2 Structure and Overview . . . . . . . . . . ..

2 Foundations

2.1 Genetics . . . . oL e

2.2 Definitions . . . . . . .o

2.3 Alignment-Based Sequence Comparison . . . . . . ... ... ... ......
2.3.1 Models of Sequence Evolution . . . . . . . ... ... ... .......
2.3.2 Calculating Sequence Alignments . . . . . . .. ... ... ... ....
2.3.3 Applications of Sequence Alignments . . . . . . .. ... ... .....

2.4 Alignment-Free Sequence Comparison . . . . . . . .. .. ... ... .....
2.4.1 Information Theory-Based Methods . . . . .. ... ... .. .....
2.4.2 Word-Based Methods . . . . . . .. ... ... ... L.
2.4.3 Filtered Spaced-Word Matches . . . . . . ... .. ... ... ....
2.4.4 Applications of Alignment-free Sequence Comparison Methods

2.5 Phylogenetics . . . . . ..
2.5.1 Phylogenetic Trees . . . . . . . . .. .. Lo
2.5.2 Distance-Based Methods . . . . . . . ... ... ... ..
2.5.3 Maximum Parsimony . .. .. ... ... ... 0oL
2.5.4 Maximum Likelihood . . . . . . . . . . .. ... ... ... ... ...

2.6 Genomics and Metagenomics . . . . . . .. ..o o oo oo
2.6.1 DNA Sequencing . . . . . . . . ..
2.6.2 Metagenomic Methods . . . . . . . . ... ... oo
2.6.3 Read Assignment . . . . . . ... L

2.7 Phylogenetic Placement . . . . . . ... ... oL
2.7.1 Approaches to Phylogenetic Placement . . . . . . . . ... ... ....
2.7.2  Further Considerations . . . . . . . . . . . . . . .. ...,
2.7.3 Evaluating Phylogenetic Placement Algorithms . . . . . . ... .. ..

3 Alignment-free Phylogenetic Placement with App-SpaM
3.1 Alignment-free Phylogenetic Placement based on Spaced-Word Matches
3.1.1 Algorithmic Methodology and Evaluation Setup . . . .. ... .. ..
3.1.2 Evaluation Results . . . . . .. ... ... oo
3.1.3 Discussion . . . . . .. L

vii

10
10
13
15
17
17
18
21
24
25
25
28
31
32
34
34
37
39
42
42
47
48



4 Improving Alignment-free Phylogenetic Placement
4.1 Estimating Evolutionary Distances with Spaced Words . . . . . . . .. .. ..
4.2 Placement Heuristics . . . . . . . . . . . .o
4.3 Using Sampling Techniques . . . . . . . .. .. . . . . L.
4.4 Assessing Placement Uncertainty . . . . . . .. .. .. ... ... ... ...

5 Iterative Update of Phylogenetic Trees
5.1 Continuous Augmentation of Phylogenetic Trees . . . . . ... .. ... ...
5.1.1 Methods . . . . . . . .
5.1.2 Results . . . . . . e e
5.1.3 Discussion . . . . . . . ..o Lo
5.2 Gene and Species Outlier Detection. . . . . . .. ... ... .. ... .....

6 Side Projects
6.1 A Phylogeny of Old World Monkeys . . . . ... ... ... ... .......
6.2 Using Simon’s Congruence to Estimate Sequence Similarity . . . . . .. . ..

7 Discussion
7.1 Evaluating Phylogenetic Placement Algorithms . . . . . ... ... ... ...
7.2 Applications of Phylogenetic Placement . . . . . . . ... ... ... .....
7.3 Conclusion . . . . . . . .

Glossary
List of Acronyms
List of Figures
List of Tables
Bibliography
Appendices
A App-SpaM
A1 Methods . . . . . . . . e

A2 Results. . . . . . . . e
A.3 Pruning Difficulty . . . . . ...

B Revisiting App-SpaM
B.1 Estimating Evolutionary Distances . . . . . .. ... ... .. ... ... ..
B.2 Sampling Spaced Words . . . . . . . .. .. L oo
B.3 Assessing Placement Uncertainty . . . . . . .. . ... .. ... ...

C Continuous Augmentation of Phylogenetic Trees
C.1 Ordered Augmentation Process . . . . . . . . . ... ... ... ... ... ..
C.2 Gene and Species Outlier Detection. . . . . . .. ... ... ... .......

D A Phylogeny of Old World Monkeys

Simon’s Congruence

viii

109
110
112
116
117
121

127
127
132

139
141
144
146

149

151

152

155

157

183
183
185
203

206
206
212
214

215
218
219

220

221



CHAPTER 1

Introduction

Life on Earth is complex and diverse. It is estimated that the first forms of life existed in
hydrothermal vents on the ocean floor more than 3 billion years ago [1]. Since then, over
thousands of millions of years [1, 2], a multitude of different forms of life have emerged and
vanished again. It is extremely difficult to estimate the number of unique organisms that
live today, and current estimates range from 8.7 million species [3] up to 1 trillion species [4].
This plethora of organisms varies in their size and shape, in their abundance and abode,
and in their metabolism and morphology. However, all organisms are also connected to one
another: The fundamental information that defines all organisms is encoded in their DNA,
the hereditary material. DNA is passed on from parent to offspring or shared via a variety of
complex mechanisms between living organisms [5]. From the smallest bacteria to the largest
mammal, organisms share a common history through evolution and are related to one another
with regard to their genetic content. Observing and measuring such relationships between
organisms from all areas of the tree of life has always been an essential part of biological
analyses. The study of evolutionary relationships between organisms is called phylogenetics.
There are a wide variety of inference methods that study phylogenetic relationships, and the
results are commonly represented and visualized as phylogenetic trees.

In early phylogenetic research, phylogenetic trees were created based on the apparent
visual characteristics of a species, its phenotype. The phenotypes of organisms were used to
group species together and determine their degree of relatedness; by now, however, phylo-
genetic analyses predominantly study the genetic material of organisms, the genotype. Thus,
phylogenetic inference today is performed by analyzing the similarity of biological sequences.
On the one hand, this change is motivated because the genotype offers much more detailed
information about the evolutionary history than the phenotype. On the other hand, this
process was also fueled by the drastic decrease in sequencing costs and the associated rise
in available sequencing data. The development of sophisticated sequencing techniques also
allowed the retrieval of DNA directly from environmental samples instead of only from a
single species. This area of research has been termed metagenomics. The most common
sequencing data in metagenomics are large collections of short DNA fragments, called reads.
Metagenomics is especially suitable for studying the composition of bacterial communities,
but several related fields of application have emerged within metagenomics [6].

Advances in sequencing technologies also entailed larger computational demands: Early
algorithms for sequence comparison are no longer suited to appropriately process the amounts
and types of sequence data that arise in metagenomics. Reasonable processing time and mem-
ory requirements are important characteristics of algorithms to be able to handle metagenomic
data sets. One of the most important tasks in many metagenomic studies today is to identify
which species are present in an environmental sample |7]. This task is commonly referred to
as read assignment. A multitude of programs have been developed to perform this task on a
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taxonomic basis. Short reads are queried against large annotated reference databases, and the
taxonomic labels of the most similar reference sequences are transferred to the query reads.
Nonetheless, this approach may fail for query reads if no similar references are present in the
database or if the taxonomic annotation of database entries is faulty. Another approach to
read assignment is via the phylogenetic context of the reads. This procedure is known as
phylogenetic placement. In phylogenetic placement, all query reads are assigned to a specific
position in an existing phylogenetic tree of a set of reference sequences. Thus, the resulting
positions in the tree can not only be used to infer taxonomic labels for the queries, but also
their phylogenetic relation to all reference sequences. So far, information obtained through
the process of phylogenetic placement is predominantly used synonymously with taxonomic
read assignment in metagenomic studies.

1.1 Motivation

Phylogenetic placement is a valid alternative to taxonomic read assignment to identify species
membership for short reads from metagenomic experiments. However, with todays speed and
variety of sequencing data, new use cases for phylogenetic placement emerge. The algorithms
initially developed for phylogenetic placement depend on time-intensive multiple sequence
alignments and are limited with respect to their applicability to large data sets with many
references or many query reads. Additionally, the dependence on multiple sequence alignments
restricts the potential input data types and, by this, the applications in which phylogenetic
placement can be used in the first place. The reference sequences need to be assembled,
which requires high sequencing coverage or long reads, as well as laborious assembly pipelines.
Furthermore, the reference sequences need to be sufficiently short to be able to compute a
multiple sequence alignment. This is not only due to the computational demands of sequence
alignments but also because longer sequences may exhibit rearrangements, duplications, or
other evolutionary events that alter the overall sequence order and hinder the creation of
meaningful multiple sequence alignments. Both requirements are regularly not met, for
example, in low-coverage whole genome shotgun sequencing studies [8, 9]. As a result,
phylogenetic placement has only been used in a similar manner to taxonomic read assignment,
with the overall goal of classifying reads from metagenomic experiments in their phylogenetic
context to derive a taxonomic label.

Although it has been claimed that phylogenetic placement is more accurate than taxonomic
read assignment, especially when there are no close reference sequences [10], the use cases of
phylogenetic placement are more diverse. An algorithm that does not depend on multiple
alignments comes with several benefits: First, it accepts nearly arbitrary reference and query
sequences as input. This includes, for example, sets of unassembled reads from single genes or
whole genomes that are utilized as reference sequences, or query reads that are arbitrarily
long. Furthermore, such an approach would enable a multitude of use cases for phylogenetic
placement at the interface of metagenomics and phylogenetics other than read assignment.
Potentially, it could perform rapid identification of new metagenomic reads, binning of scaffolds,
fast integration of new species into existing phylogenetic trees, or detection of outlier genes or
species with respect to their evolutionary history.

For these reasons, we implemented an assembly- and alignment-free algorithm for phylo-
genetic placement, called the alignment-free phylogenetic placement algorithm based on
spaced-word matches (APP-SPAM). ApP-SPAM is based on filtered spaced-word matches [11]
to estimate the average number of nucleotide substitutions between every query and reference
sequence. Subsequently, different placement heuristics are used to insert a given query read into
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the phylogenetic reference tree based on its estimated distances to each reference sequence. We
studied the accuracy of APP-SPAM for the task of taxonomic read assignment across a broad
variety of potential scenarios in comparison to a variety of other alignment-based programs |10,
12-15|. Moreover, we examined the benefits and drawbacks of different algorithmic strategies
and investigated additional potential use cases for alignment-free phylogenetic placement.
These include the iterative augmentation of phylogenetic trees, and species and gene outlier
detection in phylogenetic reconstruction studies. We propose techniques to perform these
tasks based on the placement information of DNA sequences created with ApP-SPAM or other
alignment-free phylogenetic placement algorithms and assess their potential use in biological
studies.

1.2 Structure and Overview

We present the foundations for all of our work in Chpt. 2. This includes relevant basics of
genetics, alignment-based and alignment-free sequence comparison methods, foundations of
genomics and phylogenomics, an introduction to metagenomics, and lastly the concepts of
read assignment and phylogenetic placement. The foundations are followed by a detailed
description of APP-SPAM in Chpt. 3. ApPP-SPAM performs alignment-free and assembly-free
phylogenetic placement with high accuracy that is on par with other alignment-based software
tools. Furthermore, it enables the use of phylogenetic placement for a range of data sets with
arbitrary sequence lengths and versatile sequence types such as draft genomes as references.
The chapter includes a comprehensive evaluation of ApPP-SPAM on simulated and real-world
data sets and highlights its shortcomings. Chapter 4 presents a variety of variations of App-
SPAM which include, in particular, different placement heuristics, the use of other evolutionary
models to estimate sequence similarity, different strategies to sample spaced words to enhance
its runtime, and approaches to assess the uncertainty of inferred placements. We evaluate and
discuss relevant shortcomings of and potential future work on these ideas in detail. Chapter 5
presents how phylogenetic placement may be used to iteratively update phylogenetic species
trees with new species based on individual gene placements. We employ APP-SPAM to
augment existing trees with multiple additional species and evaluate the topological accuracy
of resulting trees. Additionally, we demonstrate how the detection and removal of outlier
genes or species can improve the accuracy of resulting tree topologies. Subsequently, two
smaller side projects are presented in Chpt. 6: First, we apply alignment-free methods to
reconstruct the phylogeny of eight Old World monkeys and second, we assess how the Simon’s
congruence behaves for simulated DNA sequences. Lastly, Chpt. 7 contains a comprehensive
discussion about the advantages and drawbacks of our presented techniques and how our
analyses fit into the overall metagenomic and phylogenomic research context of today.






CHAPTER 2

Foundations

In the field of biology, tazonomy refers to the study of arranging organisms into hierarchically
organized groups with respect to their similarity. Taxonomy also aims to name the defined
groups and to specify their characteristics. The latest taxonomy groups living organisms
into three major domains of life, namely, Archaea, Bacteria, and Eukarya [16]. Organisms
without a cell nucleus are referred to as prokaryotes — the two domains of Archaea and
Bacteria contain all prokaryotes. On the contrary, the domain Eukarya contains all organisms
that do have a cell nucleus, the eukaryotes. The cell nucleus encloses the genetic material of
the cell and separates it from the surrounding cytoplasm. The cytoplasm contains several
other subunits of the cell that perform different functions, called organelles. Mitochondria are
organelles that act as energy suppliers of eukaryotic cells; plant cells have further organelles
referred to as plastids, such as the chloroplasts. Mitochondria and plastids contain their own
genetic material that is independent of the one in the cell nucleus.

The vast majority of all organisms are classified as prokaryotes, and only a small proportion
of organisms are classified as eukaryotes [17|. Furthermore, most prokaryotic life is unknown
today due to the sheer number of existing organisms and the difficulty in finding and identifying
them. Below the three domains of Archaea, Bacteria, and Eukarya, living organisms are
grouped into the seven kingdoms of Bacteria, Archaea, Protozoa, Chromista, Plantae, Fungi,
and Animalia [18]. Subsequently, the organisms are hierarchically grouped into the taxonomic
categories phylum, class, order, family, genus, and species. Creating a taxonomy is only
meaningful because organisms pass on and exchange their genetic material, which causes the
similarities and differences that are used for grouping and delineating species. The field of
genetics studies how, where, when, and by which processes heredity takes place in organisms.

2.1 Genetics

Deozyribonucleic acid (DNA) is the genetic material in both prokaryotes and eukaryotes. The
DNA contains all genetic information necessary for the complete functioning of an organism,
including information on growth and reproduction. DNA was first isolated in 1869 [19] and in
1944 it was demonstrated to be responsible for heredity [20]. Figure 2.1 shows a schematic
representation of the DNA structure. The DNA molecule consists of two strands that are
intertwined in a double helix structure [21]. Each strand is a chain of consecutive nucleic
acids, also called nucleotides, each formed from a sugar, a phosphate group, and one of the
nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T). Based on their chemical
structure, A and G are classified as purines and C and T are classified as pyrimidines. In each
strand, the sugar of one nucleotide is connected to the phosphate group of the next one. The
two strands are complementary: the same pair of nucleotides are always opposite to each other

5
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Figure 2.1 — Schematic representation of the double helix structure of DNA. The helix
backbone of alternating sugar and phosphate molecules (grey) acts as a scaffold for the
nucleobases of each nucleotide (colored bars). The same two nucleotides always form a base
pair, and thus, the same colors are always opposite to each other: adenine (orange) pairs with
thymine (blue) and cytosine (cyan) pairs with guanine (red). The genetic information of an
organism is encoded in the sequence of nucleotides.

on both strands and form a base pair (bp). Hydrogen bonds between the complementary
nucleotides stabilize the DNA molecule. A and T form a base pair with two hydrogen bonds,
and C and G form a base pair with three hydrogen bonds. The complementary structure of
DNA implies that one strand can be reconstructed by knowing the other and vice versa.

In eukaryotes, DNA inside the cell nucleus is packaged into chromatin. Several chromatin
complexes form multiple linear chromosomes. In most prokaryotes, DNA is packaged into a
single circular chromosome instead. The complete genetic material of an organism is called
its genome and the study of the structure and function of genomic regions is called genomics.

The genetic information of the DNA is encoded by the sequence of the nucleotides. DNA
regions that code for the synthesis of biological products are called genes. Genes are also
referred to as coding regions, while other parts of the DNA are called non-coding regions.
During the process of gene expression, genes are first transcribed to ribonucleic acid (RNA).
RNA has only a single strand, compared to the double-stranded DNA, and folds onto itself.
Furthermore, the nucleotide uracil (U) is used instead of thymine. There are many different
kinds of RNA that serve a variety of biological purposes, for example, in the regulation
and expression of genes [22, 23]. However, in most cases, the transcribed RNA serves as
messenger RNA and is used as a template for the construction of proteins during the process
of translation in ribosomes. Here, three consecutive nucleotides, called a codon, are translated
into one amino acid. Amino acids are organic compounds that come in a great variety: The
DNA codes for 20 different amino acids, but approximately 500 amino acids are naturally
occurring. With 4 different nucleotides there are 4% = 64 different possible codons for only
20 amino acids. As a consequence, multiple codons encode the same amino acid. Thus, any
DNA sequence can be unambiguously translated into a sequence of amino acids, while the
converse does not apply.

When a sequence of nucleotides is translated into amino acids, the starting position of the
translation is essential. Shifting the starting position by a single nucleotide in either direction
will result in different amino acids because the shift results in different codons. Six different
reading frames of a DNA sequence are possible when considering both strands of a DNA.
Typically, there is only a single biologically relevant reading frame for each DNA sequence
called its open reading frame (ORF). The translated amino acids form a chain, a so-called
polypeptide, that in turn forms a protein. Proteins ensure the proper functioning of organisms
and are responsible for a wide variety of vital tasks.

6
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Figure 2.2 — The relationship between different fields of genome science: Genomics studies
the DNA of the whole genome, transcriptomics the transcribed RNA of the transcriptome,
and proteomics investigates translated proteins. Furthermore, the field of metabolomics (not
shown) studies all metabolites within a cell or organism.

The proportion of coding to non-coding regions differs greatly between organisms. The
estimated proportion of coding regions in the human genome is estimated to be approximately
1.5 percent of the total genome [24]. The coding regions encode an estimated number of 20 000
genes [25], however, there are different estimates that also depend on the implied definition of
a gene [26]. On the contrary, most prokaryotic genomes are densely packed with genes, and
the proportion of coding regions is often greater than 85% [27].

Similarly to genomics studying the genome, the complete collection of RNAs of a system
is called its transcriptome and is studied in the field of transcriptomics. The proteome of
an organism is its collection of proteins and is studied in the field of proteomics. Figure 2.2
shows a schematic representation of the relationship between genomics, transcriptomics, and
proteomics. Thus, biological sequence data is available as either DNA, RNA, or as a protein
sequence. All genetic material within an organism is called the genotype of the organism.
Through transcription, translation, and further biological processes, the genotype is directly
responsible for the visible features that define an organism, the phenotype. Organisms are
related to another with respect to their DNA content.

The DNA within a cell is subject to change through a variety of biological processes.
This results in genetic variability between cells, and accordingly between organisms and
species. In sexual organisms, recombination is a major source of genetic variability: During
reproduction, genetic material is transferred from ancestors to offspring. The DNA of the
offspring is a recombination of the corresponding chromosomes of the two parental cells. In
organisms that have more than two copies of each chromosome, so-called polyploid organisms,
the number of possible genetic recombinations is amplified. DNA from organelles, such as
mitochondrial DNA, is transferred directly from the maternal organism and is not subject
to recombination. In asexual organisms, the offspring receives an almost exact copy of the
parental genome. Here, horizontal gene transfer (HGT) is one of the main processes of genetic
exchange between cells: During an HGT, DNA or RNA is transferred from a living cell to
another by a variety of mechanisms [5, 28]. HGT occurs mostly in prokaryotes; however,
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it also exists in certain eukaryotes |29, 30|, and between pro- and eukaryotes [31|. Another
important source of genetic variability is through mutations. Mutations are alterations of
DNA or RNA within a cell. They usually occur through errors during the replication of a
sequence, but many other reasons exist such as error-prone DNA repair processes [32, 33|.
The alteration arises as an insertion, a deletion, or a mutation. Insertions occur when one or
multiple new nucleotides are incorporated into the sequence. Deletions occur when one or
more nucleotides are removed from the sequence. A mutation is the exchange of one or more
nucleotides for other nucleotides. Point mutation are mutations of single nucleotides in the
sequence. A transition is a point mutation between purines (A, G) or between pyrimidines
(C, T). Conversely, a transversion is a point mutation from a purine to a pyrimidine or vice
versa. Transitions occur more often than transversions in most biological sequences [34]. If a
point mutation is present in multiple organisms in a species population, it is also called a
single-nucleotide polymorphism (SNP).

Generally, somatic mutations are differentiated from germline mutations. The former
occur in somatic tissue and are not passed on to the sexual offspring, while the latter occur
in reproductive cells and are passed on to the offspring [35]. Genetic variability is affected
by the process of evolution, resulting in biodiversity. Natural selection is one of the major
evolutionary processes. It describes the effect that genetic changes with phenotypes that grant
a higher chance of reproduction for the organism become more common in a population. In
contrast, genetic changes that impede the chances of reproduction of an organism become less
common. If two organisms share a common feature that descends from the same origin, that
feature is called a homology. Analogously, if DNA segments in different organisms descended
from the same DNA segment through evolutionary processes, they are called homologous
sequences. Homologies in the DNA are further classified into ortholog and paralog sequences
depending on the evolutionary event that caused the homology. Ortholog sequences are the
result of speciation events: the same DNA sequence evolved differently in groups of organisms
that diverged into different species. Paralog sequences originate from a gene duplication
event where a DNA fragment is duplicated and both copies of the original fragment evolve
independently.

The study of evolutionary relationships between organisms is known as phylogenetics. The
relationship between species and their evolutionary history is typically analyzed in phylogenetic
trees. However, the use of phylogenetic trees assumes that transfer of genetic information
only occurred from parent to offspring and represents the species relations accordingly: A
phylogenetic tree has a root that represents the last common ancestor of all species within
the tree. Each bifurcation from the root towards the tips of the tree represents a speciation
event and constitutes the last common ancestor of all species in the subtree below. This
representation is simplified and does not account for processes where DNA is passed by
other means than from parent to offspring. For example, in hybrid speciation offspring is
produced from two different species, a common incident in plants [36]. Hybridization cannot
be represented by phylogenetic trees, and the same applies for horizontal gene transfers. Thus,
evolutionary relationships of prokaryotes with many such transfers are often represented in
phylogenetic networks instead.

When networks are used to study phylogenetic relationships, it is also called reticulate
evolution. The most common approach to calculate phylogenetic trees or networks is by means
of multiple sequence alignments. An alignment relates homologous nucleotides of the involved
sequences to one another and enables the estimation of sequence divergence times based on
given evolutionary models. Similarly, sequence alignments allow the calculation of the 'most
likely’ phylogenetic tree with standard Bayesian statistics.
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2.2 Definitions

The subsequent notations are used to denote important concepts throughout this work: The
set of numbers {1,2,3,...,n} is denoted as [n]. An alphabet X is a set of distinct elements,
called characters or symbols. Here, it is usually assumed that ¥ is the alphabet of nucleotides
> = {A,C,G,T}. Other common alphabets in bioinformatics include the slightly modified
alphabet for RNA sequences ¥ = {A, C, G, U}, or the set of 20 distinct amino acids. It is also
assumed that the elements of X are ordered, meaning that the relations < and > are defined
for the symbols in . The size of the alphabet is denoted as |X| = o. Each character o € ¥
is assigned its index ¢ € [o] of the ordered list of all characters. Hence, o; refers to the i-th
character of the ordered alphabet. Thus, for any two indices i, j € [o] with i < j the relation
0; < 0 holds. A sequence S is defined over an alphabet 3 and is a finite and ordered list of
elements of ¥. A sequence is also called a string or a word. The number of elements |S| in
a sequence is called the length of S and is denoted as n = |S|. A sequence with |S| = k is
also called a k-mer. The characters in S are numbered from 1 to n and the ¢-th character is
denoted by S[i]. A substring of S from the i-th character to the j-th character where i < j is
the string of characters S[i], S[i +1],..., S[j] and denoted as S[i..j]. A substring S[i..j] where
i = 11is called a prefiz of S. A substring S[i..j] where j = n is called a suffiz of S. In contrast
to substrings, a subsequence of S is a non-contiguous sequence of S. Thus, a subsequence

of length k is defined by k indices i1,...,4; where i1 < io < --- < i; the subsequence is
the concatenation of the symbols S[i1], S[iz], ..., S[ik]. If there are m sequences, they are
numbered from 1 to m and denoted as Si, ... ,Sp. Two strings S; and S; can be compared

in the lexicographic order induced by . For strings of different lengths where one string is a
prefix of the other, the shorter string is considered to be smaller. The Hamming distance
between two strings 51 and So of the same length n is the number of symbols at corresponding
sequence positions that differ:

Ham(S1, S2) = |{S1[i] # Sali, i € [n]} . (2.1)

For identical sequences, Ham(S1,S2) = 0 applies, while Ham(S1, S2) = n holds when the
sequences do not have identical nucleotides at any given sequence position. The Fdit distance
between two sequences S7 and Sy with lengths ny and no, respectively, is defined as the
minimal number of operations required to transform one sequence into the other, whereby
allowed operations include the insertion of a symbol into a sequence, the deletion of a symbol
from a sequence, or the substitution of a symbol in a sequence by another symbol.
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2.3 Alignment-Based Sequence Comparison

Sequence alignments are one approach to compare two or more DNA or protein sequences
with respect to their evolutionary history. For this, alignments identify and relate homologous
regions between the sequences to one another. Pairwise sequence alignments (PSAs) involve
exactly two sequences and are distinguished from multiple sequence alignments (MSAs) which
align more than two sequences. A PSA can be conceived of as a matrix with two rows, one
for each sequence, and multiple columns. For DNA sequences, nucleotides of both sequences
reside in the same column if the corresponding nucleotides are presumed to be homologous.
Between homologous nucleotides, gaps are added to either of the two sequences to account for
evolutionary events such as insertions or deletions (indels). Gaps are marked with a hyphen
character at the according position in the alignment matrix; thus, sequence alignments for
sequences over an alphabet 3 are constructed over an extended alphabet ' = X U {—}.
Likewise, the concept of PSAs is applicable to multiple sequences, resulting in a MSA. A
MSA for m sequences has m rows, one for every sequence; hence, a PSA is a MSA for m = 2.
A MSA for m sequences S, ... ,S,, is represented as a matrix A € ¥'"*" with m rows and
n columns with n > max; |S;|, see Fig. 2.3 for an example.

Another differentiation is often made between global and local sequence alignments: Global
alignments assume an underlying homology that spans the entirety of the sequences. This is
primarily the case if only site-level events have happened since the sequence divergence such
as character substitutions or indels. Conversely, if biological events occurred that changed the
whole sequence succession, for example, gene duplication or loss, translocations, inversions, or
horizontal gene transfers, the sequences cannot be globally aligned in any meaningful way.
Hence, global alignments are sensible when the sequences at hand are homologous in their
entirety [37]; otherwise, only local alignments should be produced.

Sequence alignments were first used in 1963 to compare homologous amino acid se-
quences [38]. Soon after, the development of new technologies resulted in a rapid increase in
the availability of DNA and RNA sequences. To properly analyze these sequences, alignments
were also applied to DNA and RNA sequences [39, 40]. The number of generated sequences
quickly surpassed the threshold where it was feasible to generate alignments manually, and
thus, first automated programs for sequence alignments emerged. The well-known Needle-
man—Wunsch algorithm for the alignment of biological sequences was published in 1970 [41].
Hence, sequence alignments were one of the first approaches to methodologically compare the
similarity of sequences and are still one of the most important tools in modern bioinformatics.

2.3.1 Models of Sequence Evolution

In order to judge the quality of a generated sequence alignment, an optimality criterion must
be defined. Only then is it possible to search for the optimal alignment with respect to the
defined criterion. Any optimality criterion inherently depends on an underlying model of
sequence evolution that is assumed to have produced the sequences at hand. Optimality
criteria are also referred to as scoring schemes and usually consist of two parts: a scoring
matriz and gap penalties. A scoring matrix S with o rows and o columns defines a score Sj;
for each pair of nucleotides (o4,0;) € %2, For a given scoring matrix S and a defined gap
penalty, a score is assigned to an alignment by adding the respective scores and gap penalties
across all columns. The resulting total score represents the quality of the alignment. The
sequence alignment with the highest score out of all possible sequence alignments is considered
the optimal one; the score of this 'best’ alignment is also a measure for the similarity of the
involved sequences. For nucleotides, such scoring schemes might be as simple as defining a
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Figure 2.3 — A global pairwise sequence alignment (PSA) and a global multiple sequence
alignment (MSA) between DNA sequences. The input DNA sequences (left) are allowed to
have differing lengths. The alignment process adds gap characters to the input sequences in
order to compute alignments (right). Each column represents those sequence positions that
are assumed to be homologous. Indels are marked with a gap character in the corresponding
other sequences. Both alignments were created with a freely accessible web service [42].

positive score s for identical nucleotides, and the negative of s for different nucleotides:

Sij = { ” 1“ ! (2.2)
—s, ifi#7

However, the simple scoring scheme illustrated in Eq. 2.2 has little connection to observed

substitution frequencies as it is not inferred from real sequence data.

To derive scoring matrices from real-world data, a substitution matriz M is used. Similarly
to S, M is a 0 x 0 matrix where o = |¥| and each entry M;; defines a substitution score between
the pair of symbols (o;,0;) € 2. A substitution score M;; represents the likeliness that a
substitution from symbol o; to symbol o; happened. Substitution matrices are often chosen to
be symmetric with M;; = M;;. Thus, it is implied that the direction of the substitution does
not matter. Furthermore, a frequency vector 7w defines the base frequencies of the symbols in
Y. There are different methods to derive a scoring matrix from M, but often the log-odds

approach
1 M;;
=11 2.
%i </\> Og<7fz"7fj> (23)

is used [43], whereby A is a scaling factor and ; is the frequency of symbol o;.

To model the evolution of DNA or protein sequences over a time period, the model is
usually extended to be dependent on the time ¢ and the resulting models are referred to as
continuous-time Markov chains. A Markov chain is defined by a rate matriz () that defines
the rate at which symbols of the alphabet change between one another, see Fig. 2.4. The
time-dependent transition matriz M (t) is derived from @ by matrix exponentiation:

M(t) = e (2.4)

Each entry M;;(t) for two states (0;,0;) € ¥? represents the probability for the mutation
from o; to o; in time ¢. Evolutionary models are usually considered to be stationary Markov
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Figure 2.4 — Transition probabilities of a stationary Markov chain process for DNA evolution.
The four states (round circles) correspond to the four nucleotides ¥ = {A,C,G, T} and the
transition probabilities (black arrows) between the states are marked with g;;, i,j € X.

processes. This means that the rate matrix Q does not change over time but stays constant.
A transition matrix is called time reversible if the probability of a mutation between two
characters is not dependent on the direction of time: M;;(t) = Mj;(t). Most continuous-time
Markov chains used to model the evolution of DNA are time reversible.

Continuous-time Markov chains for DNA alignments differ with respect to the chosen rate
matrix () and the base frequency vector m = (ma, ¢, g, 71). Generally, @ and 7 are either
inferred from the data of the current analysis at hand, or they are estimated from a large
and representative data sample and reused for multiple analysis. The most general model for
DNA sequences over the alphabet ¥ = {A,C,G, T} is the generalised time reversible (GTR)
model [44] with a total of nine free parameters. The rate matrix

7(Cbﬂ'c+b7T(;+C7TT) a - T b'ﬂ'(; C-TT
0= a-m —(amy + dmg + emr) d- e e T (2.5)
b'ﬂ'A d'Tl'c —(b7l’A+d7rc+f7l'T) f'T('T :
c- T e - ¢ f 7 —(ema + emc + fme)

has six free parameters (a to f) that define the rate changes between nucleotides. The lower
left and upper right of () are dependent on each other to satisfy the time-reversibility. The
base frequency vector sums up to 1 and thus has three free parameters. Several simpler
models with a reduced number of free parameters exist: The Jukes-Cantor model [45] is the
simplest and assumes equal base frequencies as well as equal substitution probabilities between
all nucleotides. The K80 model [46] distinguishes between transitions and transversions.
Thus, K80 reflects the difference in mutation frequency in the model by assigning lower
mutation rates for transversion events than for transition events; the base frequencies are set
to equal. There are many additional models for the evolution of DNA that allow a subset
of the parameters of the GTR model [47-51]. Amino acids vary in their similarity based
on their structure and chemical properties. This results in strongly differing substitution
probabilities [52|. Thus, estimating accurate substitution models for amino acid sequences is
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more complex. Substitution matrices have been inferred from the relative substitution events
observed in reference data sets on several occasions: Common models include position accepted
mutation matrices [53|, and many variants thereof [54]. Another set of often used matrices are
block substitution matrices [43]. Many iterations of updated substitution matrices for amino
acid sequences emerged, such as improved versions of PAM [54], matrices based on larger
datasets [55], or matrices estimated with other methods such as the maximum likelihood
principle [56].

For both nucleotides and amino acids, alignment gaps are penalized with a negative score.
With a linear gap penalty, each gap character receives the identical negative score. An affine
gap penalty differentiates between the new opening of a gap and the extension of an existing
gap. It is common practice to consider all nucleotide sites in the alignment to be independent
from each other. The total score of a PSA with respect to a scoring scheme is then the sum
over all scores of each nucleotide column in the alignment plus the gap penalties. For multiple
sequence alignments, the total score is often calculated with the Sum-of-Pairs approach: Here,
the scores of all possible pairs of sequences in the MSA are calculated first, and all pairwise
scores are summed up subsequently. It is also possible to account for rate heterogeneity [57];
then, the parameterization of the substitution model and base frequencies is adjusted for
different columns of the alignment.

2.3.2 Calculating Sequence Alignments

Calculating pairwise and multiple sequence alignments is computationally expensive with
respect to time and memory requirements. For two sequences of length n there are already
(2n)!/n!? possible sequence alignments [58]. Finding the optimal PSA with respect to a scoring
criterion takes time in the order of O(n?). Calculating an optimal MSA is NP-hard [59] and,
therefore, there is no feasible algorithm to compute the optimal MSA for any substantial
number of sequences. Instead, algorithms calculate MSAs by using approximate heuristics to
drastically speed up the computations, at the cost of suboptimal solutions. One of the first
algorithms for pairwise sequence alignments, the Needleman-Wunsch algorithm [41], calculates
the optimal global alignment between two sequences using dynamic programming: In the first
step, the algorithm iteratively determines optimal alignments for prefixes of increasing length
and creates a table of all respective alignment scores. In the second step, a traceback through
the obtained scoring table of all prefix alignments yields the optimal global alignment. For two
sequences of lengths n; and ng, the Needleman-Wunsch algorithm runs in O(ny - ny/logni)
time complexity and O(ny - ng) space complexity [60]. In contrast, the Smith-Waterman
algorithm [61] finds an optimal local sequence alignment between two sequences and operates
similarly to the Needleman-Wunsch algorithm. And, likewise, it requires quadratic time and
space with respect to the product of the lengths of both input sequences. Many variants
of both algorithms exist that use modern computer architecture or novel data structures to
improve upon the original versions, such as GPU-accelerated versions |62, 63|, a version that
requires only linear space [64], or a version that brings further speed improvements [65].

As sequence alignments are one of the major approaches to quantify sequence similarity
in an evolutionary context, they play an essential role in diverse use cases: Determining DNA
or protein homology, screening unknown sequences against existing databases for sequence
identification, SNP analysis [66], genome assembly, building phylogenetic trees, and many
more [67], see Subsec. 2.3.3. However, it is often not imperative, and due to the time
complexity not advisable, to calculate an optimal MSA. Instead, even when multiple sequences
are involved, using PSAs between a subset of sequence pairs or using suboptimal MSAs
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inferred with adequate heuristics is often sufficient to answer common research questions.
But even calculating optimal PSAs between many pairs of sequences is too time-intensive
for most applications. Thus, several tools exist that compute approximate pairwise sequence
alignments or derived similarity measures thereof. One of the most influential tools for
sequence comparison is the basic local alignment search tool, or short BLAST [68]. BLAST
is designed to efficiently align a single query sequence to multiple other sequences within a
database by employing fast heuristics. The output of BLAST is a collection of high-scoring
local alignments between the query sequence and database entries. However, BLAST does not
guarantee to find the overall optimal local alignment for a given query. The general idea is to
rapidly detect candidate regions in the database sequences that have a high probability to form
high-scoring alignments with the query. This approach is also known as seeding. In BLAST,
the seeding approach works as follows: The query sequence S, over the alphabet X is divided
into words wy, of a specified length & that form a set K, = {wy, wy, is substring of S;}. Then,
a word wj, € ¥* is called a neighboring word to a word wy, € K, with respect to a substitution
matrix M when the score between wj, and wy, is above a defined threshold ¢. Here, the score
between wy, and wy, is calculated as if the two words would constitute a sequence alignment
without gaps. BLAST determines all neighboring words wj, to any word wy, € K5, and stores
them in a set. Thus, the resulting set of neighboring words represents all words that are
identical or exhibit at least a certain similarity to any word of length k£ in S;. The reference
database is then searched for all neighboring words of S; and the according sequences are
extracted; these exact word matches represent the initial seeds for local alignments. Each seed
in each reference sequence is extended in both directions to form a local sequence alignment
based on the substitution matrix M. Extension of alignments is stopped when the score
decreases over multiple consecutive nucleotides. All resulting alignments between the query
and any database sequence that exceed a predefined similarity threshold are kept as the
output of BLAST. By now, a whole family of different BLAST algorithms for a multitude of
applications exists: GAPPED BLAST, PSI-BLAST [69], and BLAT [70] are faster versions
with improved heuristics for the seeding and alignment extension, PLAST [71] is a parallelised
version, MEGA-BLAST [72] performs additional preprocessing of the database to speed up the
database search, and MAGIC-BLAST [73] is designed to handle RNA data. There is a wealth
of other sequence similarity search tools such as FASTA [74]|, UBLAST and USEARCH [75],
or PATTERNHUNTER |[76]. All of these programs are predominantly designed to search large
reference databases for entries that are similar to a supplied query sequence and likely to
produce high-scoring pairwise alignments.

There are also many tools available for the calculation of multiple sequence alignments.
Due to the large time and space requirements when constructing MSAs, present sequence
aligners use ever-improving heuristics to compute near-optimal alignments in a fast manner:
The most common approach is the progressive construction of alignments [67]. Progressive
alignment algorithms iteratively combine pairwise alignments, from the most similar sequences
to the least similar ones [77]. Often, a guide tree is used that specifies the order in which
PSAs are combined to arrive at the final MSA. The guide tree is determined from a fast
initial pairwise sequence similarity comparison. In some algorithms pairwise alignments are
fixed, while in other implementations pairwise alignments can be adapted later on when
incorporating new sequences. One of the first popular software tools that pursued this
paradigm was CLUSTALW 78|, as well as its extension CLUSTALX [79] which provides a
graphical user interface. Compared to CLUSTALW, the program DIALIGN [80] and its
successor DIALIGN-T [81] follow a segment-based approach to create DNA and protein
MSAs. Here, the MSA is based on pairwise sequence similarities of local scope; based on such
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highly similar substrings between sequence pairs, it is possible to combine distantly related
sequences in a single MSA. The resulting alignments are of high quality, especially for locally
related sequences. MAFFT [82] is a popular progressive sequence alignment method that
relies on the Fast Fourier Transform to quickly determine homologous regions between input
sequences. In general, progressive alignment methods are susceptible to differences in the guide
tree and a bad guide tree may cause sub-par results [83]. Thus, many progressive alignment
programs, such as MSAPROBS [84], employ a step referred to as iterative refinement to
overcome such limitations. Subsequent versions of MAFFT also include iterative refinements
of the produced sequence alignments [85], as well as parallelization [86], and a multitude of
further enhancements [87, 88|. Other alignment tools that follow a progressive procedure are,
for example, T-COFFEE [89] and MUSCLE [90]. Hidden Markov models (HMMs) are another
strategy for the construction of multiple sequence alignments [91]. In HMMs, alignments are
represented as directed acyclic graphs where sequence characters are represented as nodes,
also called observed states. The hidden states are characters of the mutual ancestral sequence
of all aligned sequences. HMMs are not only used for the construction of MSAs, but also with
respect to a variety of other tasks in biological sequence analysis, such as the classification of
sequences, annotation of genes, or database similarity search [92]. Normally, profile HMMs
are employed which encode not only nucleotide frequencies but also insertions and deletions,
all of which are encoded position specific [93, 94]. Hence, profile HMMs are probabilistic
models capable of comprehensively representing whole sequence sets or gene families when
parameterized accordingly. SAM [91| was one of the first approaches to use HMMs for
building MSAs. HMMER [95] is a popular tool for sequence alignments and database search
based on HMMs. CLUSTAL OMEGA [96] uses a combined approach of progressive sequence
alignments and HMMs based on the HH-SUITE [97]. It is also possible to compare profile
HMMs with each other; this enables the detection of even more distant relationships between
sequences and is, for example, utilized by the program HHsearch [98]. Another group of
MSA algorithms are phylogeny-aware sequence aligners. The main distinguishing factor
of phylogeny-aware approaches is their focus on the construction of alignments that also
integrate the phylogenetic context of the sequences into the estimation procedure. As a
consequence, a resulting alignment is not necessarily the one that maximizes the similarity
between the sequences [67]. Currently, various software packages are available that perform
phylogeny-aware multiple sequence alignment [99-101]| and several comprehensive reviews on
multiple sequence alignment tools in general exist [67, 102, 103].

2.3.3 Applications of Sequence Alignments

The applications of sequence alignments are broad and varied. Alignm