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Chapter 1

Introduction

The world around us is made up of various, very di�erent states of matter, which dis-
play a plethora of properties. Some are known from everyday life like a solid piece of
metal used as cutlery or the liquid that is the essential ingredient for life: water. There
are other clusters of matter, which are more exotic: gigantic objects like the sun, in
which new elements are created through fusion processes, or fascinating alien objects
like black holes, which eat up everything. Common to all is the insight that their basic
constituents are microscopically small atoms and molecules. Instead of the extreme
cases, which are addressed by particle physics or cosmology, condensed matter the-
ory focuses on the intermediate scales of matter. Since it is still macroscopic in size,
it follows that a huge number of particles is involved. The progress of science over
the last centuries has exposed that matter does not show the behavior of the extensive
number of often identical particles, but that it is rather the interaction among them
that gives rise to the wealth of emergent macroscopic properties that we observe. The
aggregation of mutually interacting degrees of freedom creates a collective behavior,
which can be radically di�erent from the individual nature. An example is a metal
made of many atoms: Whereas a single atom core attracts its electrons restricting
their movement, many atoms in a crystalline structure lead to a delocalization of the
valence electrons, which can propagate freely through the lattice-de�ning properties
like electric current or heat capacity.
The huge number of degrees of freedom, however, renders the mathematical descrip-
tion of matter to be extremely complex. Although it is often possible to write down
the microscopic laws of motion for each particle, their solution and the subsequent
derivation of the macroscopic behavior are out of reach. For the noble goal to provide
a satisfying and universal understanding, it is therefore necessary to �nd appropriate
simpli�cations to make predictions feasible without neglecting important aspects.
Historically, this was �rst resolved by classical thermodynamics, which focuses on
the description of the time-independent thermodynamic equilibrium where no macro-
scopic currents are present. Instead of modeling all microscopic processes, this phe-
nomenological theory describes macroscopic states of matter in an average sense.
Moreover, it also allows to take into account the environment, which can also a�ect
the system.

1



2 Chapter 1. Introduction

However, when studying thermodynamic processes, one realizes that many states that
we observe are in non-equilibrium, e. g. the earth, which is in the steady state of being
constantly exposed to the energy supplied by the sun or, on small scales, the melting
ice cube in the glass of water. Experiments show that non-driven systems in a generic
(non-equilibrium) state, like the last example, will eventually relax to and remain in
the thermodynamic equilibrium, if one just waits long enough. The transition process
is called thermalization and is one major topic of this thesis.

In the last century, it was discovered that in certain regimes, namely at very low
temperatures or short time scales, the classical description is insu�cient and a dif-
ferent, more sophisticated theory is required: quantum mechanics. And although one
mostly experiences classical physics in everyday life, it turns out that some aspects of
the physical world, like chemical processes, �nd their origin in quantum mechanics.
Moreover, quantum mechanics allows for a successful understanding of fascinating
properties of matter like superconductivity.
In the language of quantummechanics, the description of amany-body system is based
on quantum states, which are represented by a wave function and which dynamics are
goverend by the axiomatic linear Schrödinger equation. However, this does not gen-
erally reduce the complexity, but it rather increases it through additional properties
like a postulated special symmetry of the wave function. This symmetry originates in
the axiomatic quantum statistics and a�ects the behavior in addition to the interaction
and the environment. Futhermore, the number of possible states grows exponentially
with system size; a fact also named exponential explosion. Finally, one observes new
phenomena only found in the quantum world like entanglement. Most of the men-
tioned topics will be discussed brie�y in later parts of this thesis.

A major challenge arises when studying thermalization in isolated quantum systems.
Since the quantum language is conceptually di�erent from classical mechanics, the un-
derstanding of thermalization in many-body quantum systems requires a new frame-
work. One very prominent concept to understand the thermalization in these sys-
tems is the Eigenstate Thermalization Hypothesis (ETH), which will be explained in
Section 2.2.2 (Deutsch 1991; Srednicki 1994). However, up until now, there is little an-
alytical evidence supporting the hypothesis or related statements (see also D’Alessio
and Polkovnikov (2013)). One successful example is an argument by Deutsch, which
is based on random matrices (Deutsch 1991). This thesis addresses the question of
thermalization in many-body quantum systems by justifying the ETH from a micro-
scopical point of view. The results presented in this work suggest that the argument
by Deutsch can be extended to generic quantum systems providing a strong con�rma-
tion of the proposed thermalization mechanism in quantum systems.

The remaining parts of the introduction are organized as follows: the next section
brie�y introduces major concepts of classical and statistical thermodynamics in clas-
sical systems. The goal here is to give a general background of the description of the
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dynamics of many-body classical systems, because some concepts can be extended to
quantum systems and often form a strong starting point of the understanding. How-
ever, to make the di�erences clear, the part is followed by the corresponding quantum
analogue in part 1.2. Thereafter, section 1.3 presents the most important experimental
realizations of quantum simulators, which are the basic tools to study the dynamics
of many-body systems in the quantum regime. This is followed by section 1.4, which
contains an overview of theoretical approaches to quantum many-body theory, which
form the base of the mathematical description in this work. Finally, an outline of this
thesis and the main results are presented in section 1.5.

1.1 Many-body systems in classical physics:
equilibrium and dynamics

The purpose of this section is to give an overview of the understanding of the dynam-
ics in classical systems, which are systems where quantum e�ects can be neglected.
This is particularly necessary for a profound picture of thermalization in these systems
(see 2.1). This part begins with the explanation of the macroscopic theory, which also
de�nes the �nal state of the dynamics, which is the thermodynamic equilibrium. This
is followed by the microscopic picture of the underlying theory, which is statistical
thermodynamics, introducing the important concept of an ensemble. The equilibrium
description is contrasted with the approach based on the equations of motion for each
particle condensed in the Hamilton formalism.

The most prominent example of a macroscopic approach to matter is the empiri-
cal classical thermodynamics as mentioned in the previous part. This theory e�ec-
tively reduces the extensive number of degrees of freedom to only a handful param-
eters called state variables (like temperature, pressure or volume), which describe a
macrostate. Besides, it was found that there is a quantity called entropy, which, for iso-
lated systems, grows over time (irreversible process) unless the system never leaves the
thermodynamic equilibrium during the unspeci�ed time evolution (reversible process)
(Clausius 1856). This was the �rst time that a distinct direction of time was suggested.
Thermodynamics cannot explain how one can derive state variables from the knowl-
edge about the positions andmomenta of all particles. Moreover, it was desired to have
a microscopic interpretation of entropy. The following development of the atomic gas
theory marked the starting point for the formulation of statistical thermodynamics.
This is a probabilistic approach that connects the microscopic picture to the macro-
scopic properties via the concept of phase space (Gibbs 2014). The phase space al-
lows for a condensed representation of the generalized coordinates 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑁 )
and canonical momenta 𝒑 = (𝑝1, 𝑝2, . . . , 𝑝𝑁 ) of 𝑁 particles as a point (𝒒,𝒑) in a high-
dimensional space. Each degree of freedom of each particle adds one dimension to the
construction. Obviously, a phase point needs to be consistent with the total energy,
spatial con�nement or other constraints of the system. For simplicity, the system is
assumed to be completely isolated from the environment such that neither particles
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nor energy can be exchanged. If the system evolves over time, each point in phase
space follows a trajectory on the energy hypersurface. The dynamics of the point is
determined by the dynamics of each particle, which itself is governed by Hamilton’s
equations of motion. Thus, it is in principle possible to calculate the state exactly at
all times.
The idea of statistical thermodynamics is that the exact initial positions and momenta
of all particles cannot be known and that instead a probabilistic interpretation is re-
quired. Instead of a single phase point one can assume that there is an entire region of
microscopic con�gurations (microstates) denoted by the phase space density 𝜌(𝒒,𝒑, 𝑡 ).
The entire region then evolves via Liouville’s equation

𝜕

𝜕𝑡
𝜌(𝒒,𝒑, 𝑡 ) = −{𝜌(𝒒,𝒑, 𝑡 ), 𝐻 (𝒒,𝒑)}, (1.1)

where {·, ·} denotes the Poisson bracket (Gibbs 2014; Tolman 1979). The expectation
value of any measurable quantity𝑂(𝒒,𝒑), also called observable, is then determined as
〈𝑂(𝑡 )〉 =

∫
d𝜇 𝜌(𝒒,𝒑, 𝑡 )𝑂(𝒒,𝒑), where d𝜇 = 𝐶 d𝒒 d𝒑 is the measure in phase space with

an appropriate constant.
If 𝜌 is constant over time, i. e. in a steady state, it is de�ned to be in equilibrium. As
one can show, this can only happen if it can be expressed in terms of conserved quan-
tities. It is important to note that although 𝜌 does not evolve over time, the particles
themselves are in constant motion.
A special equilibrium distribution is the microcanonical ensemble, which is de�ned to
be the set of all possible microstates that are consistent with the constraints of the
system as mentioned above. If the number of microstates in this set is denoted by
𝑊 , it is postulated that each point of this set can be assigned an identical probability
1/𝑊 , since this construction contains the least amount of knowledge about the inter-
nal interactions (“maximum ignorance”). Interestingly, this postulate can be justi�ed
by the principle of maximum entropy (Jaynes 1957a,b). In mathematical terms, the mi-
crocanonical ensemble is represented by a joint probability density function in phase
space and reads

𝜌mc(𝒒,𝒑) =
1
𝑊
. (1.2)

In a more generic formulation,𝑊 is chosen, such that
∫
d𝜇 𝜌mc(𝒒,𝒑) = 1 (see Eq. (2.1)).

Beyond the microcanonical ensemble there are other equilibrium ensembles like the
canonical ensembles, which also allow heat exchange with an attached bath, and the
grandcanonical ensemble, which, on top of heat exchange, includes particle exchange
(Gibbs 2014). The three ensembles are the natural extension of thermodynamic equi-
librium in the statistical thermodynamics language. They represent the average over
many repetitions of identical experiments where only macroscopic variables like the
total energy can be controlled. The microscopic details are, however, not precisely
speci�ed and vary from one to another. An important and related result is the Max-
well-Boltzmann distribution for a rare�ed ideal gas, which can be derived from each
ensemble (Maxwell 1860b,a; Boltzmann 1872; Tolman 1979).
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A �nal remark about extending the concept of an ensemble to special non-equilibrium
situations: in these cases it is possible to de�ne ensembles that change over time or to
take ensembles of non-isolated systems. However, this is not the focus of this thesis.
Finally, it remains to connect the microscopic to the macroscopic world. This was
achieved by Boltzmann with his famous equation

𝑆 = 𝑘𝐵 ln𝑊, (1.3)

which relates the entropy 𝑆 to the number of possible microstates of the system in
phase space𝑊 (Boltzmann 1872, 1866). It also provides an interpretation for the en-
tropy: in ordered systems there are fewer microstates than in completely disordered
systems. This led to the prominent conclusion that the entropy is a measure for the
disorder in the system.
Boltzmann’s entropy equation can be regarded as a special case of the more general
entropy formula by Gibbs

𝑆 = −𝑘𝐵
∑︁
𝑖

𝑝𝑖 ln𝑝𝑖 (1.4)

by setting 𝑝𝑖 = 1/𝑊 for all 𝑖 (Gibbs 2014). The latter equation is also valid for a canoni-
cal ensemble when each microstate is weighted with the Gibbs’ factor 𝑝𝑖 = 𝑒−𝛽𝐻 (𝒒,𝒑)/𝑍 ,
where 𝛽 denotes the inverse temperature and 𝑍 the partition function.
Having de�ned the ensembles as the microscopic counterpart to the thermodynamic
equilibrium, one is appropriately equipped to study the thermalization process in clas-
sical systems in more detail. One aspect is to �nd out which systems thermalize and
which do not. Moreover, one would like to answer the following questions: How is it
possible that a phase space density, which depends on time, agrees with an ensemble
that is independent of time? Additionally, how can one reconcile the laws of motion,
which are time-reversible1, to a quantity that is irreversible under time and what hap-
pens to the huge amount of information about the initial positions and momenta of
the particles in the thermalization process?
Historically, the last question is connected to the arrow of time, a phrase coined by Ed-
dington in 1927 (Eddington 2012). It describes an apparent direction of time observed
inmany natural processes: buildings collapse, co�ee cupsmix and cool and eggs break.
But even before, the question of irreversibility was approached by Boltzmann, who for-
mulated his famous 𝐻 -theorem (Boltzmann 1872). However, this evoked several ob-
jections, among them the prominent dispute with Loschmidt (Loschmidt paradoxon)
(William Thomson 1874; Loschmidt 1877) and with Poincaré (Sklar 1995). In the mod-
ern understanding, thermalization in classical systems is related to dynamical chaos
and requires concepts like ergodicity and mixing. Although there is no full proof and
some aspects are still unresolved, it is explained in more detail in Section 2.1. That
part also presents the notion of integrability, which can be considered as an indicator
that shows whether a system thermalizes or not.

1It is neglected here that the weak interaction violates the CP-invariance.
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1.2 Quantum dynamics: unitarity
and non-equilibrium

There is a broad consensus that the world of very small scales or times can be de-
scribed by quantum mechanics. However, this theory contains abstract, non-intuitive
concepts that often elude the human experience. The following parts brie�y explain
the most important notions that are the very core of quantum theory. It starts with the
fundamental description of the dynamics of many-body quantum systems. The main
di�erence to the classical case is that the language of quantum theory is based on
energy eigenstates instead of phase points. Thereafter, the most important quantum
features or phenomena that appear in the theory are introduced.

1.2.1 Mathematical formulation of quantum dynamics
According to the basic axioms of quantum mechanics the description of a physical
system takes place in a complex Hilbert space H . In this space a pure quantum state
is represented by a ray |𝜓 〉. The number of all mutually orthogonal pure states de�nes
the dimension of the Hilbert space and can be �nite or in�nite. The equation of motion
for a pure state is given by the linear Schrödinger equation

𝑖ℎ̄
𝜕

𝜕𝑡
|𝜓 〉 = 𝐻 |𝜓 〉 (1.5)

where 𝐻 is the many-body Hamiltonian operator of the system and ℎ̄ the reduced
Planck constant (Schrödinger a,b,c,d). In the following, ℎ̄ = 1. As any other observable
the Hamiltonian is required to be self-adjoint. This ensures that expectation values,
which are the ones measured in experiments, are real. If the Hamiltonian is indepen-
dent of time, the solution of the Schrödinger equation, which de�nes how a state at
time 𝑡 = 0 evolves to time 𝑡 , is calculated to be

|𝜓 (𝑡 )〉 = 𝑒−𝑖𝐻𝑡 |𝜓 (0)〉 = 𝑈 (𝑡 ) |𝜓 (0)〉 , (1.6)

with the newly de�ned time evolution operator 𝑈 (𝑡 ), which is unitary, i. e. 𝑈𝑈 † = 1,
because the Hamiltonian is Hermitian.
Generically, a quantum state |Ψ〉 does not need to be described by a pure state, but by
a mixture of pure states. It is called a mixed state and is de�ned by a density operator
𝜌 via

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖〉〈𝜓𝑖 |, (1.7)

where the 𝑝𝑖 are positive-valued fractions that sum up to 1 (Tr(𝜌) = 1), and |𝜓𝑖〉〈𝜓𝑖 | are
the projectors onto the pure state |𝜓𝑖〉 (von Neumann 1927; Landau 1927; Dirac 1981).
The fractions denote the probabilities to end up in the respective pure state when
performing a measurement. If 𝜌 has rank 1 or Tr(𝜌2) = 1, the state is in a pure state. In
this sense, the density operator can be interpreted as a statistical ensemble. The time
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evolution of the physical system must be re�ected by a time-evolved density operator
𝜌(𝑡 ). It is determined by the projectors |𝜓𝑖 (𝑡 )〉〈𝜓𝑖 (𝑡 )| at later times, which themselves
are given by Eq. (1.6), such that 𝜌(𝑡 ) = 𝑒−𝑖𝐻𝑡𝜌(0)𝑒𝑖𝐻𝑡 . Applying the time derivative to
this equation yields the von-Neumann equation

𝑖ℎ̄
𝜕

𝜕𝑡
𝜌(𝑡 ) = −[𝜌(𝑡 ), 𝐻 ] (1.8)

which can be thought of as a quantum analogue to the Liouville equation Eq. (1.1).
The correspondence is based on identifying the quantum commutator 1

𝑖ℎ̄ [·, ·], which is
de�ned as [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 with the Poisson bracket {·, ·}. Furthermore, the operator
𝜌(𝑡 ) does not depend on additional phase space variables as the classical phase space
density function 𝜌(𝒒,𝒑, 𝑡 ), but is de�ned on an orthogonal basis. According to the
principle of maximal entropy, one can then de�ne the microcanonical ensemble as the
sum of the projectors to the energy eigenstates of a certain energy window [𝐸−∆𝐸, 𝐸+
∆𝐸] centered around the mean total energy 𝐸 = Tr(𝜌mc𝐻 ):

𝜌mc =
1

𝑍 (𝐸,∆𝐸)
∑︁
𝑖

|𝐸𝑖−𝐸 |≤∆𝐸

|𝐸𝑖〉〈𝐸𝑖 |. (1.9)

The number of states in the window 𝑍 (𝐸,∆𝐸) is required to properly normalize the
density operator (Tr(𝜌mc) = 1) and is typically very large. In this sense, one can inter-
pret 1/𝑍 as the identical probability and thus the quantum counterpart to 1/𝑊 in the
classical case. As will be explained in part 2.2 it is important in the context of thermal-
ization that the energy window contains an exponentially large number of states for
an extensive number of degrees of freedom.
Using the fact that every self-adjoint operator can, in principle, be diagonalized, it is
possible to compute the eigenbasis of the Hamiltonian. This basis, which consists of
the energy eigenstates, is denoted by

𝐻 |𝐸𝑚〉 = 𝐸𝑚 |𝐸𝑚〉 (1.10)

where 𝑚 ∈ N0 and can be ordered, such that 𝐸𝑚+1 ≥ 𝐸𝑚 . In this basis the matrix
elements of the time-evolved density operator take on the form

𝜌𝑚𝑛(𝑡 ) = 〈𝐸𝑚 |𝜌(𝑡 )|𝐸𝑛〉 = 𝜌𝑚𝑛(0)𝑒−𝑖(𝐸𝑚−𝐸𝑛)𝑡 . (1.11)

Clearly, a pure state will always remain pure. Hence, 𝜌(𝑡 ) can never become a thermal
density matrix, e. g. of a microcanonical ensemble 𝜌mc. The von-Neumann equation
has important consequences on the dynamics of quantum states: using the cyclic in-
variance property of the trace operation one can show that the trace of the squared
density operator remains constant over time, i. e. 𝜕

𝜕𝑡 Tr(𝜌
2(𝑡 )) = 0. Hence, mixed states

remain mixed, whereas pure states remain pure over time. It follows that a pure state
can not equilibrate to a thermal state, which is a mixed state, by unitary time evolu-
tion. A thorough discussion of these intriguing observations follows in chapter 2.2.
However, already von Neumann realized that it is observables and not wave functions
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that are measured in experiments, such that the study of thermalization needs to focus
on those quantities (Neumann 1929).
According to the current interpretation of quantum mechanics a measurement of a
quantum state with an observable𝑂 projects the quantum state into one of the eigen-
states of 𝑂 (“collapse of the wave function”). The expectation value of an observable
for a density operator is calculated as

〈𝑂(𝑡 )〉 =
∑︁
𝑖

𝑝𝑖 〈𝜓𝑖 (𝑡 )|𝑂 |𝜓𝑖 (𝑡 )〉 = Tr(𝜌(𝑡 )𝑂), (1.12)

where 〈𝜓𝑖 (𝑡 )|𝑂 |𝜓𝑖 (𝑡 )〉 is the contribution from each state of the density operator. Per-
forming the trace over the energy eigenbasis this becomes

〈𝑂(𝑡 )〉 =
∑︁
𝑚,𝑛

𝜌𝑚𝑛(0)𝑒−𝑖(𝐸𝑚−𝐸𝑛)𝑡 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 . (1.13)

A special class of observables, namely those that commute with the Hamiltonian, are
called conserved quantities. Their expectation value is independent of time, which be-
comes clear by inserting 𝜌(𝑡 ) = 𝑒−𝑖𝐻𝑡𝜌(0)𝑒𝑖𝐻𝑡 in Eq. (1.12). If the observable 𝑂 com-
mutes with the unitary operator, the latter drops out via the cyclic property of the
trace.
The generic setting is to consider the non-trivial unitary time evolution of an initial
state of the system after a global quench. Although, there are phenomena like re-
currences, the observation of time-evolved observables show equilibration. To under-
stand why thermalization in quantum systems requires certain conditions to be met
one can start with the time evolution of a generic initial state |𝜓 (𝑡 = 0)〉 = |𝜓0〉. This
state can be expressed in the energy eigenbasis, such that at 𝑡 = 0 it reads

|𝜓 (0)〉 =
∑︁
𝑚

〈𝐸𝑚 |𝜓 (0)〉︸     ︷︷     ︸
𝑐𝑚

|𝐸𝑚〉 . (1.14)

In this basis the calculation of the general solution of the Schrödinger equation Eq. (1.6)
for 𝑡 ≥ 0 becomes

|𝜓 (𝑡 )〉 = 𝑒−𝑖𝐻𝑡 |𝜓 〉 =
∑︁
𝑚

𝑒−𝑖𝐸𝑚𝑡𝑐𝑚 |𝐸𝑚〉 . (1.15)

The expectation value of the total energy of this state is given by

𝐸 = Tr(𝜌𝐻 ) =
∑︁
𝑚

𝐸𝑚 |𝑐𝑚 |2 (1.16)

with the variance

∆𝐸2 = Tr
(
𝜌(𝐻 − 𝐸)2) = ∑︁

𝑚

(
𝐸2𝑚 |𝑐𝑚 |2

) − 𝐸2 (1.17)

that is small compared to 𝐸, i. e. ∆𝐸 � 𝐸.
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A time-evolved observable in the energy eigenbasis reads

𝑂(𝑡 ) = 〈𝜓 (𝑡 )|𝑂 |𝜓 (𝑡 )〉 =
∑︁
𝑚,𝑛

𝑐∗𝑚𝑐𝑛𝑒
𝑖(𝐸𝑚−𝐸𝑛)𝑡𝑂𝑚𝑛 (1.18)

=
∑︁
𝑚

|𝑐𝑚 |2𝑂𝑚𝑚 +
∑︁
𝑚,𝑛 6=𝑚

𝑐∗𝑚𝑐𝑛𝑒
𝑖(𝐸𝑚−𝐸𝑛)𝑡𝑂𝑚𝑛 (1.19)

where 𝑂𝑚𝑛 = 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 denotes the eigenstate expectation value (EEV). Studying
this equation in more detail one notices that the time evolution leads to a dephasing
among the energy eigenstates (assuming no degeneracies), whereas the diagonal part
is constant over time. In an in�nite-time average 〈·〉𝑡 only the �rst term, which is
de�ned via the diagonal ensemble (DE) where

𝜌DE = 𝜌 := lim
𝑡0→∞

1
𝑡0

𝑡0∫
0

𝜌(𝑡 ) d𝑡 =
∑︁
𝑚

𝜌𝑚𝑚 |𝐸𝑚〉〈𝐸𝑚 |, (1.20)

survives, such that

〈𝑂(𝑡 )〉𝑡 =
∑︁
𝑚

|𝑐𝑚 |2𝑂𝑚𝑚 = Tr (𝜌DE𝑂) . (1.21)

Hereby, it is assumed that no degeneracies are present in the system. Moreover, it
is clear that if a system thermalizes, it must thermalize to the in�nite-time average
value.
If the system is isolated, one assumes that the corresponding ensemble, the system
thermalizes to, is given by the microcanonical ensemble, because all microstates are
assumed to have an equal probability (Eq. (1.9)).

It remains to �nd a quantum mechanical analog to the entropy of the classical case
in Eq. (1.4). A common choice is the von Neumann entropy

𝑆(𝜌) = −Tr(𝜌 ln 𝜌) = −
∑︁
𝑖

𝑝𝑖 ln(𝑝𝑖 ), (1.22)

which vanishes for pure states and is maximal with 𝑆 = ln(dim(H )) for maximally
mixed states (𝑝𝑖 = 1/dim(H ) for all 𝑖). The latter case can be regarded as a measure
for the unpredictability of the system and is the quantum counterpart to Boltzmann’s
Eq. (1.3).

1.2.2 Inherent quantum features

In this section some of the quantum features that are inherent in the theory are brie�y
introduced.
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Exponential explosion

The major di�erence between the quantum picture and the classical language is the
pivotal insight that the states that describe matter “live” in an exponentially large
Hilbert space H . To give an example one can think of a spin system consisting of 𝑁
spins, which can either point up or down. The corresponding dimension of the Hilbert
space is then given by dim(H ) = 2𝑁 . For macroscopic matter, however, the number
of spins is of order 1023 and thus dim(H ) = 21023 . This is an incredibly huge number
that makes any exact numerical treatment that takes into account every possible state
e�ectively impossible. As a consequence, exact diagonalization techniques are limited
to a number of lattice sites of 50 depending on the size of the local Hilbert space and
the number of symmetries that can be used. This inherent complexity of quantum
mechanics is sometimes called exponential explosion and requires special approaches
like the ones listed in part 1.4.

Superposition

A second fundamental aspect of quantum mechanics is superposition. This principle
originates from the linearity of the Schrödinger equation (1.5), which de�nes the dy-
namics of quantum systems. As a result, linear combinations of solutions of the equa-
tion are also solutions. This means that the most general quantum state is a sum of all
possible distinct states where each summand has a “weight” given by a complex num-
ber. Superposition is the key to the immense power of quantum logics that depend on
a mixture of several quantum states, e. g. |𝜓 〉 = 𝑎 |0〉 + 𝑏 |1〉.

Entanglement

The most non-intuitive phenomenon is arguably entanglement. It roughly describes
the fact that the state of individual particles in composite quantum systems cannot be
described independently, but requires the full quantum state. Entanglement has been
phrased as the essential ressource of quantum computing in the sense that this is the
reason why quantum computers outperform classical ones (Steane 1998; Preskill 2000;
Nielsen and Chuang 2010).
The combined Hilbert space of composite systems is constructed as the tensor product
of the individual Hilbert spaces. For a bipartite system this is given byH = H𝐴 ⊗H𝐵 .
Each basis state of the composite system has the form |𝑖 𝑗〉𝐴𝐵 := |𝑖〉𝐴 ⊗ | 𝑗〉𝐵 such that
a generic state |𝜓 〉𝐴𝐵 = ∑

𝑖, 𝑗 𝑐𝑖 𝑗 |𝑖 𝑗〉𝐴𝐵 , where the sums run over the respective Hilbert
space dimensions of 𝐴 and 𝐵. A state |𝜓 〉𝐴𝐵 is called separable, if and only if it can be
written as the tensor product of states that only live in the respective Hilbert spaces,
i. e. |𝜓 〉𝐴𝐵 = |𝜙〉𝐴 ⊗ |𝜒〉𝐵 . If this cannot be done, the state is de�ned to be entangled.
An illustrative example for demonstrating entanglement are the four Bell states. The
generic state of one qubit is described by |𝜙〉 = 𝑎 |0〉 + 𝑏 |1〉 (e. g. a spin-1/2 degree
of freedom), where 𝑎 and 𝑏 are always chosen to normalize |𝜓 〉. A generic separable
state of the composite system is then given by |𝜓 〉 = (𝑎𝐴 |0〉 +𝑏𝐴 |1〉) ⊗ (𝑎𝐵 |0〉 +𝑏𝐵 |1〉).
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However, the full Hilbert space also contains states like

|𝜓 〉 = 𝑎 |01〉 + 𝑏 |10〉 (1.23)
and |𝜓 〉 = 𝑎 |00〉 + 𝑏 |11〉 , (1.24)

which cannot be constructed from separable states and hence are entangled. Setting
𝑎 = 1/

√
2 and 𝑏 = ±1/√2 yields the four Bell states. These are maximally entangled

two-qubit states, which form an orthonormal basis and are also used in the quantum
computation context.
To measure the entanglement, it is helpful to �rst de�ne a special form of the den-
sity operator for a pure state in a bipartite system: the reduced density matrix 𝜌𝐴 =
Tr𝐵(|𝜓 〉〈𝜓 |𝐴𝐵), which sums over the basis of system 𝐵 (“tracing out part 𝐵”). One quan-
tity to measure the entanglement is the von Neumann entropy of one of the reduced
density matrices, the so-called entanglement entropy (EE):

𝑆EE(𝜌𝐴) = −Tr(𝜌𝐴 log 𝜌𝐴) = −Tr(𝜌𝐵 log 𝜌𝐵) = 𝑆EE(𝜌𝐵). (1.25)

For separable states 𝑆EE(𝜌) = 0, whereas maximally entangled states are identi�ed
via 𝑆EE(𝜌) = 1. For instance, one can immediately derive for the Bell state |𝜓4〉 =
(|00〉 + |11〉)/√2 that 𝜌𝐴 = 1

2 (|0〉〈0|+|1〉〈1|). Taking the trace then yields 𝑆(𝜌𝐴) = 1.
From this follows that the Bell states are maximally entangled. The entanglement
entropy for mixed states can also be de�ned (Horodecki et al. 2001).
An important quantity in this context is the connected correlation function

𝐶(𝑂𝐴,𝑂𝐵) = 〈(𝑂𝐴 − 〈𝑂𝐴〉) (𝑂𝐵 − 〈𝑂𝐵〉)〉, (1.26)

which measures the correlation of the �uctuations of observables in the regions𝐴 and
𝐵 around their respective averages. For product states that are not entangled the �uc-
tuations in di�erent regions are completely independent from each other such that
this quantity vanishes for all observables.
The most famous controversy connected to entanglement is certainly the EPR para-
doxon (Einstein et al. 1935). In this thought experiment two particles initially interact
before moving in opposite directions. Since the particles are now entangled, they still
depend on each other, although being separated by a huge distance. This is what led
the authors to phrase entanglement as “spooky action at a distance”. In their work,
the authors tried to show that quantum mechanics is incomplete and that there are
additional local degrees of freedom that are hidden. The EPR paradoxon is thought to
be resolved by two di�erent approaches. The �rst explanation is that quantum me-
chanics contains local hidden variables. However, this was ruled out later by Bell’s
famous inequality theorem (Bell 1964; Clauser et al. 1969). Bell’s theorem was con-
�rmed by several experiments without loopholes (Hensen et al. 2015). In the current
understanding, the only interpretation that remains states that quantum mechanics is
not a locally realistic theory, which means that it is required to describe the system as
a whole.
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1.2.3 Methods to drive an isolated system into non-equilibrium

In order to study thermalization, it is obvious that the system of choice has to be in
non-equilibrium initially. This means that energy or particles need to be pumped into
the system (Polkovnikov et al. 2011). This can be done in several ways: quantum
quenches, open systems and driven systems. It is important to note that it is possible
to create setups, where a system is in non-equilibrium by continuously perturbing it
(e. g. by optical pulses like in Mitrano et al. (2016)). These systems cannot be regarded
to be isolated. Due to the focus on the thermalization in isolated systems, this shall
not be discussed further.
The quantum quench is a simple and clean procedure to create non-equilibrium situa-
tions, which is not only used theoretically (Calabrese and Cardy 2005, 2006), but has
also found its application in many experiments (e. g. Bloch et al. 2008; Mitrano et al.
2016). There are basically three groups of quantumquenches: global, local and geomet-
ric quenches (Eisert et al. 2015). A quantum quench is either local or global depending
on the amount of energy that is pumped into the system. Both quench protocols have
in common that initially a state is prepared with respect to some Hamiltonian 𝐻0 that
depends on several parameters 𝝀 = (𝜆1, 𝜆2, . . .). It can be either a pure state (e. g. the
ground state) or a mixed state de�ned by the canonical ensemble 𝜌c = 𝑒−𝛽𝐻0 . At time
𝑡 = 0 one or several system’s parameters (e. g. the interaction strength among parti-
cles) are suddenly changed to new values (“quenched”), which yields the Hamiltonian
𝐻 . The system then unitarily evolves in time until a measurement is done.

1.3 Experimental realizations of quantum systems:
quantum simulators

Just like in classical physics it is often possible to write down the quantummechanical
laws of physics, describing all aspects of a real many-body system including all
present particles and interactions. However, the equations are usually too complex to
tackle. For this reason, the paradigmatic approach is to analyze an idealized model
of the real system (e. g. by ignoring relativistic e�ects). Even then, though, analytical
solutions are rare and often impossible for most cases and higher dimensions. A
possible alternative is to compute properties with numerical techniques. This path has
been thriving for the past decades due to the enormous growth of (classical) computer
power. However, due to the immense complexity, which naturally accompanies an
exponentially large Hilbert space, a straightforward exact diagonalization routine
that includes all states is often simply not feasible for larger systems on a classical
computer (even in one dimension).
The obvious solution is to invent new methods and algorithms that focus only on the
relevant physics while neglecting other aspects. Some of the methods are introduced
in part 1.4. As a consequence of the special purpose the methods are designed for, they
can encounter problems in di�erent regimes. For example, the approach that relies
on taking into account only the most important states is limited by the entanglement
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(e. g. time-dependent Density Matrix Renormalization Group (tDMRG) (Daley et al.
2004b; White and Feiguin 2004; Vidal 2004)). For approximation methods that treat
more complex systems, the question always arises how accurately the obtained
results describe the desired models (e. g. Density Functional Theory (DFT) (Verma
and Truhlar 2020)).
The most universal option in computing generic quantum systems would be to leave
the realm of classical computation and to use the bene�ts of quantum computation
instead. This has already been pointed out in the early 1980’s (Benio� 1980; Manin
1980; Feynman 1982). Of course, a universal quantum computer as devised by Deutsch
and Penrose (1985), Deutsch and Jozsa (1992) and Lloyd (1996) would meet the needs,
because it consists of a series of quantum gates that allow for the encoding of any
quantum state and the implementation of any desired model Hamiltonian. This also
includes non-local Hamiltonians (Dodd et al. 2002; Masanes et al. 2002; Bennett et al.
2002). Therefore, this machinery is often called to be digital in reference to classical
computers. In addition, it has been suggested that a universal quantum computer
would be a very powerful tool, outperforming classical counterparts in many ways
(Deutsch and Jozsa 1992; Shor 1994; Grover 1997), yet this is work in progress.
The technological precursor of the universal quantum computer is the analog quantum
simulator, and it is often su�cient for the desired purposes (Abrams and Lloyd 1997;
Somma et al. 2002). A quantum simulator describes a table-top experiment with a
highly controllable system, which Hamiltonian emulates a desired model Hamiltonian
(Buluta and Nori 2009). The underlying trick is that there is map between the two
Hamiltonians, such that one can study the quantum e�ects of a model by simulating
another one in experiment, e. g. atoms in a magni�ed lattice can simulate quantum
magnetism. The advantage of quantum simulators in contrast to the universal
quantum computer is certainly the fact that no error correction and less accuracy
is needed (Buluta and Nori 2009). Nevertheless, the challenges for an experimental
realization are high: to ensure coherent dynamics it is required to prevent the system
from energy loss and dephasing. Consequently, one needs to maintain near-perfect
isolation from the surrounding environment and very low temperatures. Moreover, a
precise handling of the system’s parameters is essential in order to perform quantum
quenches or to do other manipulations like the preparation of the initial state in
the simulator. Equally important is the extraction of the desired information out
of the system through a speci�cally tailored measurement process. Many of these
demanding technical requirements for the realization of quantum simulators have
been solved over the past decades such that, nowadays, there are plenty of di�erent
experiments (see e. g. reviews Buluta and Nori 2009; Ladd et al. 2010; Georgescu
et al. 2014). They range from all-optical setups (O’Brien 2007), experiments using
NMR (Somaroo et al. 1999; Du et al. 2010), quantum dots (Manousakis 2002) to
superconducting circuits (van Oudenaarden and Mooij 1996).
The last two classes both use electromagnetic �elds and laser cooling to con�ne the
degrees of freedom, which are ions or atoms, respectively. The main di�erence is the
depth of the trapping potential, which is either the strong Coulomb interaction or a
shallow laser-induced dipole interaction as explained in the following.
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The general concept to entrap ions with electromagnetic �elds is known under the
name of ion traps. It has been proposed in several forms (Cirac and Zoller 1995;
Poyatos et al. 1996; Porras and Cirac 2004; Schmied et al. 2008; Blatt and Roos 2012),
some of which have been realized (for a list see e. g. Wineland et al. (1998)). The
general idea is to entrap ions using electromagnetic �elds, e. g. with a combination of
static electric and magnetic �elds (Wineland et al. 1983) or rf-�elds (Dehmelt 1968,
1969). While the strong Coulomb interaction con�nes the ions, they are cooled down
by lasers in various ways, which are explained in more detail below (Wineland et al.
1978; Neuhauser et al. 1978). This setting o�ers a precise control that also allows
for quantum information processing (Monroe et al. 1995; Blatt and Wineland 2008;
Hä�ner et al. 2008). More recent advances have demonstrated that it is possible to
study the time evolution of di�erent observables to learn, e. g., about the spreading of
entanglement in ion crystals (Kim et al. 2009; Jurcevic et al. 2014). Other phenomena
that can be observed are dynamical quantum phase transitions (Jurcevic et al. 2017)
and discrete time crystals (Zhang et al. 2017).
Beyond ions, it is also possible to entrap atoms in ultracold atomic gas experiments.
In contrast to ion traps the neutral atoms are not trapped by rather strong Coulomb
forces, but through weaker radiation-pressure traps (Pritchard et al. 1986; Raab et al.
1987), magnetic traps (Migdall et al. 1985; Bergeman et al. 1987) or optical traps
(Bjorkholm et al. 1978; Chu et al. 1986). The last of the mentioned mechanisms
yields the shallowest potentials and is thus able to reach the lowest temperatures
(Grimm et al. 2000). In the following, it is explained how this technique can be used
to create a regular potential energy landscape, named optical lattice. Ultracold atomic
gas experiments have proven to be very successful, which is why various reviews
especially focus on this concept e. g. Lewenstein et al. (2007); Bloch et al. (2008);
Cazalilla et al. (2011); Bloch et al. (2012); Langen et al. (2015) and Gross and Bloch
(2017).
The following part gives an overview of the general setup of the experiment, how the
entrapping works, how manipulations are done and, �nally, what measurements and
phenomena can be realized with the present knowledge.
The idea to entrap atoms in an optical potential was introduced in the 60s (Askar’yan
1962; Letokhov 1968), initially in the context of laser spectroscopy of a trapped
single atom (Letokhov 1975). The general idea is as explained in the next paragraph
(following Grimm et al. (2000)).
If an atom is exposed to light, a small oscillating dipole moment is induced, propor-
tional to the complex polarizability. This dipole now interacts with the light yielding
an interaction potential, which is proportional to the �eld intensity of the driving
electric �eld of the light and to the real-part of the polarizability. Moreover, the
gradient of the potential de�nes a conservative force on the dipole. However, the
atom is also absorbing energy proportional to the imaginary-part of the polarizability.
This can be interpreted as a photon scattering process and leads to dipole radiation
due to spontaneously emitted photons. The interaction potential and the scattering
rate are the de�ning quantities of the atom in the light �eld. By calculating the
polarizability both quantities can be rewritten with respect to the �eld intensity and
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Figure 1.1: Left-hand side: Light shifts induced by a red-detuned laser for a two-level
system. The ground state is shifted down and the excited state up. Right-hand side:
A Gaussian laser beam creates a potential well, which can trap an atom. Reprinted from
Grimm et al. (2000), with permission from Elsevier.

the di�erence of the driving light frequency to the frequency of the optical transition.
If this di�erence is negative (so-called red-detuned light), the interaction minima are
found to be at the locations of the intensity maxima, therefore “pulling” the atoms
into the light �eld. In order to determine the e�ect of the laser light on the energy
levels of a more complicated atom one can perform a second-order time-independent
perturbation theory for non-degenerate states (Grimm et al. 2000). In a two-level
system, this leads to a shift in the ground state and excited state with di�erent signs
(see Fig. 1.1 for red-detuned light), which is exactly given by the interaction potential.
This is called “light shift”or “ac Stark shift” and helps to con�ne the atoms in the
light induced trap by lowering the corresponding energies (in a red-detuning setting).
The choice of the atom is de�ned by the ability to be strongly polarized in order to
yield a convenient spectral range, which is why one usually prefers Alkali metals
(Grimm et al. 2000). However, the trapping potential of the a simple laser beam is
usually too weak to con�ne an atom in the potential energy landscape. Therefore,
di�erent trapping techniques using several beams have been envisioned, one of them
the “standing-wave” setting. In this setting two counter-propagating laser beams
interfere to create standing light patterns, which o�er extremly tight traps for the
atoms and which can be thought of as representing a “light crystal” (Grimm et al.
2000).
Before the atoms can be con�ned in the optical lattice, it is necessary to cool them
down. This is, because the thermal energy of room-temperature atoms is orders
of magnitude larger than the trapping potential (Grimm et al. 2000). A necessary
requirement for the realization of ultracold atomic gases was therefore the successful
development of e�ective cooling mechanisms (Hänsch and Schawlow 1975). To
achieve a low enough temperature several di�erent cooling processes are successively
performed for the preparation of an ultracold atomic gas. Usually, it begins with
Doppler-cooling and following by the combination of evaporative cooling and
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laser cooling. The term “ultracold” usually describes temperatures of 𝑇 < 1mK as
e. g. in ultracold photoassociation spectroscopy experiments (Jones et al. 2006). It
corresponds to a situation where only s-wave scattering can occur. Nowadays, it is
even possible to achieve temperatures 𝑇 < 10pK (Bloch et al. 2012). The two most
important parameters of optical lattices are the well depth and the geometry, which
can be tuned precisely. This provides a huge amount of versatility: it is easy to
change the geometry or the e�ective dimension of the system, the disorder or the
depth as demonstrated �rst by Greiner et al. (2002a). The laser trapping allows for
one-dimensional, two-dimensional and three-dimensional lattices (Köhl et al. 2005)
and also o�er to set up systems with weak or strong interaction. They can even be
adjusted, so that there is an enormously strong e�ective magnetic �eld (Goldman
et al. 2016).

The number of models that ultracold atomic gases are able to simulate is large. In
the late 1990s, Jaksch et al. (1998) demonstrated that dilute ultracold atomic gases
con�ned in an optical lattice are able to approximately simulate the dynamics of the
Bose-Hubbard lattice model under certain conditions, which are discussed in more
detail below (Hubbard and Flowers 1963; Kanamori 1963; Gutzwiller 1963). The Bose-
Hubbard model is a variant of the original Hubbard model, but with spinless bosons
instead of fermions as the fundamental particles. The Hamiltonian reads

𝐻 = −𝑡
∑︁
〈𝑖, 𝑗〉

𝑏†𝑖+1𝑏 𝑗 +
𝑈

2
∑︁
𝑖

𝑛𝑖 (𝑛𝑖 − 1) − 𝜇
∑︁
𝑖

𝑛𝑖, (1.27)

where 〈𝑖, 𝑗〉 denotes the sum over all lattice sites 𝑖 and all of its neighbors 𝑗 . The
behavior of this model is de�ned by the structure of the lattice and the size and sign
of the ratio of the hopping parameter 𝑡 to the density-density interaction strength 𝑈 ,
namely 𝑡/𝑈 . If one assumes translational invariance, the hopping parameter 𝑡 is iden-
tical for every site. One important phenomenon that is captured in a Bose-Hubbard
model is the Mott-super�uid transition (Fisher et al. 1989; Tasaki 1998). If the ratio
𝑡/𝑈 is very large, the kinetic part dominates and the bosons can move, whereas if it is
small enough, the interaction restrains the particles from propagating and the system
is insulating. A �rst major achievement in the development of ultacold atomic gases,
which also served as a proof of principle, was that Greiner et al. (2002a) were able
to show the Mott-super�uid transition experimentally after it had been proposed by
Jaksch et al. (1998).
In the following years, also dynamical quantities like the e�ect of damping on the
transport were studied (Fertig et al. 2005). Moreover, the techniques were improved
and re�ned with various quench protocols and parameter tunings. For example, it has
been developed to employ a global quench from a shallow to a deep lattice (Greiner
et al. 2002b; Sebby-Strabley et al. 2007) and to vary the lattice depth in a soft-core
boson model (Tuchman et al. 2006).
In general, it was suggested that optical lattices can be used to simulate a wide
range of condensed matter systems (Lewenstein et al. 2007) and even build universal
quantum computers (Brennen et al. 1999; Jané et al. 2003). One group has proposed to
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Figure 1.2: Collapse and revival experiment in a Bose-Einstein condensate. The �g-
ure shows the dynamical evolution, obtained by time of �ight measurments, of the
matter wave interference pattern after a quench, which increases the depth of the po-
tential well. Ater some time, the interference pattern is seen to come to its initial state
(revival). From Greiner et al. (2002b). Reprinted with permission from Springer Nature Publishing
AG.

realize quantum logic gates using ultracold atomic gases in optical lattices (Brennen
et al. 1999). However, the research is not restricted to bosonic lattice systems, but
also fermionic lattices can be realized (Esslinger 2010; Schreiber et al. 2015). If the
fundamental particles are fermions, i.e. the original Hubbard model, phenomena like
magnetism and superconductivity can be studied (Esslinger 2010). If the depth of the
potential wells is large enough, it is also possible to see the antiferromagnetic Néel
state (Koetsier et al. 2008). Moreover, one can add the interaction among the particles
in order to get an interacting Fermi gas in an optical lattice and study Mott Physics
in fermionic atoms (Jördens et al. 2008; Schneider et al. 2008).

Not all fundamental questions related to thermalization can be answered by
ultracold atoms on a lattice. Some of them are addressed using models like a
one-dimensional Bose gases in continuum. Here, the setting allows for the study
of the time evolution of the system, e. g. to analyze the relaxation in these models,
which shows di�erent regimes (Ho�erberth et al. 2007). Other experiments focus on
the relaxation after a rapid split of a 1D Bose gas and suggest that the �nal state is a
prethermal state, representable by a Generalized Gibbs Ensemble (GGE) (Gring et al.
2012), and how prethermal correlations emerge (Langen et al. 2013).

Other experiments study the relaxation of observables (Trotzky et al. 2012; Kaufman
et al. 2016) (see Fig. 1.3). Famous examples for cases, where no thermalization was
seen, is the collapse-and-revival experiment (Greiner et al. 2002b) (see Fig. 1.2) or the
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Figure 1.3: Analysis of local observables in a state after a global quench. (A) The
ground state of the initial system quenches to a large number of eigenstates of the
new Hamiltonian. The system is then evolved. (B) Measures show that the expecta-
tion value of observables agrees with the corresponding statistical ensembles. (C) The
number statistics suggest thermalization for several temperatures. (D) The interac-
tion energy is found to thermalize in agreement with the numerical simulation. From
Kaufman et al. (2016). Reprinted with permission from AAAS.

experiment with a “quantum Newton’s cradle’" in Fig. 1.4. The observed revivals are
attributed to the system being close to an integrable point. The conserved quantites
prevent the system from thermalizing.
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Figure 1.4: A quantum Newton’s cradle. In this experiment, the momentum distribu-
tion is measured using time-of-�ight adsorption images. It does not show any sign of
thermalization due to the integrablity of the system. From Kinoshita et al. (2006). Reprinted
with permission from Springer Nature.
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1.4 Theoretical descriptions of quantummany-body
systems

As explained before, the theoretical description of a quantum many-body system is
often very challenging. To render the problem more feasible, one can simplify the sys-
tem to an e�ective model, which is valid in the scale that contains the relevant physics.
In general, it is most desirable to �nd an analytical solution, but this is only possible for
a few systems. And almost all the solvable models are de�ned over one-dimensional
lattices.
In the following, a short list of methods, which are employed to study di�erent phys-
ical phenomena in quantum systems, is given.
Analytical methods for quantummany-body systems at non-equilibrium are challeng-
ing. As mentionend before, there is the class of integrable models (solvable models),
which are models that have an extensive number of conserved quantities, which can
be exploited to �nd an explicit or implicit analytical solution (Bethe 1931). Another
analytic method is the Keldysh formalism, which allows for the derivation of quan-
tum kinetic equations (Kamenev and Andreev 1999). With the progress in the de-
velopment of modern computers numerical methods have seen wide application. A
method, which does not make any approximations, is the exact diagonalization tech-
nique (ED). In this method, the entire Hamiltonian is constructed and diagonalized
such that all the eigenenergies and eigenstates are available. Using these, all desired
properties can be calculated. The backside of this method is that only small systems
are feasible, because the exponential growth of the Hilbert space leads to challenges
with disk space and computer time. The exact diagonalization method is used in this
work and presented in detail in Chapter 4. Other numerical methods are the Density
Functional Theory (DFT), which aims at computing complex crystal structures (Ho-
henberg and Kohn 1964; Kohn and Sham 1965) or the Density Matrix Renormalization
Group technique (DMRG) to model mostly ground state properties (White 1992, 1993;
Schollwöck 2011; Manmana et al. 2005; Schollwöck 2005). While the former method
can include assumptions, which are hard to check, the latter method su�ers from the
constraint that in time-dependent calculations it is hard to reach long times due to the
growth of the entanglement in the system (Daley et al. 2004a; White and Feiguin 2004;
Vidal 2004; Manmana et al. 2007). Another class of methods are stochastic methods
like Quantum Monte Carlo, which has been successfully applied for di�erent models
(McMillan 1965; Suzuki 1993; Foulkes et al. 2001; Kolorenč and Mitas 2011). However,
since this method may su�er from the infamous sign problem, which limits the acces-
sible times (Troyer and Wiese 2005), the application is more successfully for bosons.
Overall, it must be decided on a case by case basis, which method serves the best.
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1.5 Outline and main results of this work
This thesis addresses the question of thermalization in closed quantum many-body
systems. It answers the question whether it is possible to extend the reasoning of
Deutsch to generic microscopic many-body Hamiltonians (Deutsch 1991). The exten-
sive numerical analysis presented in this work supports the hypothesis that this is
indeed possible.
The remainder of this thesis is organized as follows: The next chapter covers the the-
oretical background and previous achievements in the context of thermalization in
closed systems. This starts from the treatment of classical systems and the de�nition
of ergodicity, continues with semi-classical approaches and concludes with a explana-
tion of the Eigenstate Thermalization Hypothesis and Deutsch’s work. Following this,
Chapter 3 states the main idea and discusses what observations are necessary to jus-
tify it. In addition, the method, which is applied to address the problem is outlined. In
Chapter 4 the consideredmodel and its representation is presented. It is followed by an
introduction of the various algorithms to solve the �ow equation and its implementa-
tions. Finally, it treats the exact diagonalization procedure and exploited symmetries.
The main results of this work are then presented in Chapter 5 which is divided into
a part about the Hamiltonian and a part about the observables. Finally, this work
concludes with Chapter 6, which discusses the �ndings and suggests future projects.





Chapter 2

Thermalization in isolated systems

For the purposes of this thesis, “Thermalization” is de�ned to be the process of
equilibration of an isolated system at non-equilibrium to a thermal state. The thermal
state can be understood as the asymptotic state, which can be described by only a few
macroscopic variables like the total energy. Other de�nitions de�ne the thermal state
to be the state, which is described by the means of statistical physics.
Thermalization is a very intriguing phenomenon, because, on �rst sight, it touches
the very foundations of physics. The main motivation for the development of physics
is to obtain the ability to predict a system’s behavior in the future from knowing
its current state. In this sense, it is widely accepted that, if the laws of physics are
correct and all relevant microscopic interactions and processes within the system and
with its environment are taken into account, the initial knowledge is enough to make
predictions about the time evolution of the system. Despite the technical impossibility
to solve equations for a macroscopic piece of matter with 1023 atoms or particles, it is
believed that, in principle, the physics are correctly described.
It turns out, though, that measurements of macroscopic properties (observables) do
not depend on the precise knowledge of all microscopic constituents before the
experiment starts. A box of particles, where all particles are con�ned to one half, will
mix irreversibly to a state with an isotropic density over time, even, if one repeats
the exact experiment with some or even all particles moved slightly. In general, one
observes that, if an experiment runs longer and a thermal state has been reached,
it is not possible anymore to �nd out anything about the initial state except for a
few conserved quantities like the total energy. Macroscopically, it seems as if the
system has forgotten the information about the initial state. It is the independence
of the microscopic details of the initial state, which leads to an identical behavior on
the macroscopic scale after thermalization. This observation contains the essence of
thermalization and shows the close connection to irreversibility and the Second Law
of Thermodynamics, which, in rudimentary terms, de�nes a direction of the time
�ow.
However, the process of thermalization in quantum systems has not been satisfacto-
rily understood, yet. Historically, it remained a mystery for long times what systems
do thermalize or what do not. To understand this in more detail one usually begins by

23
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analyzing the universal behavior of the dynamics, e. g. after a quantum quench, and
what properties the equilibrated state has, if there is any (Polkovnikov et al. 2011).
Any thorough understanding of thermalization must eventually explain why some
systems, like the ones that feature many body localization (MBL) do not thermalize,
whereas other systems seem to do so (Geraedts et al. 2016). In this sense, it is the goal
to have an unambiguous method to clearly distinguish both classes (Deutsch 2018).
The thermal state, which, if the system thermalizes, de�nes the asymptotic endpoint
of the time evolution, depends on the degree of isolation of the environment. The
most isolated thermal state is given by the microcanonical ensemble, where neither
energy nor particles can be exchanged with the surrounding world. If a bath is added,
such that energy can move from or to the system, the corresponding ensemble is
given by the canonical ensemble. Finally, an additional particle exchange leads to an
asymptotic behavior as given by the grand canonical ensemble.
To understand thermalization in its most profound case one is usually interested in
the completely isolated case as predicted by the microcanonical ensemble. This is,
because, for a system with an attached bath, one could ask how thermalization occurs
for the extended system that consists of the initial system plus the bath and thus one
would end up with an isolated system again.
Although any experiment in the real world will always be connected to its environ-
ment, because perfect isolation is impossible, this thesis only treats the latter case of
perfectly isolated systems. Finally, if thermalization is understood for the isolated
system, it is, in general, possible to reconstitute the other two cases by splitting the
system into parts and treating one of them as the bath.

Although the concepts for understanding thermalization in isolated classical or
quantum systems share similarities, they also display di�erences. One major di�er-
ence concerns the “loss of information”: In the classical treatment the system initially
contains much information about the degrees of freedom (e. g. particle positions and
velocities). The description of a thermal state, however, only requires few parameters
like the total energy. It follows that over the process of thermalization the system
“loses” information, but the question remains how this is possible. One widely
accepted explanation involves the concepts of ergodicity and mixing.
In quantum mechanics the loss of information corresponds to the independence of
the thermal state from the initial preparation. Many di�erent preparations yield an
identical thermal state after a long time evolution. Since ergodicity and mixing are not
concepts, which can be straightforwardly extended to genuine quantum systems, the
major question arises, how this can be understood. Hence, one �nds that the essential
questions of thermalization are how a thermal state can be reached through a unitary
time evolution, which is time-reversal invariant, and what systems do thermalize and
what do not.

This consideration hints at the fact that the description of thermalization is
fundamentally di�erent in the classical and quantum regime, because the underlying
mathematical formulation bases on an entirely di�erent foundation. In classical
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systems, the thermal state is believed to be formed over the course of time, whereas
in quantum systems it must be encoded in the energy eigenstates. And although the
understanding is far from complete for both cases, the next two parts are intended
to give an overview about some of the similarities and di�erences when studying
thermalization in the classical and quantum regime (Jaynes 1957a).

There are many reviews and books about this topic which discuss the topic in
varying elaborateness, e. g. Balescu (1975); Reichl (1980); Wallis and Gutzwiller
(1990); Balian et al. (2006); U�nk (2006); Gallavotti (2013) for classical systems and
e. g. Polkovnikov et al. (2011); Eisert et al. (2015); Gogolin and Eisert (2016); D’Alessio
et al. (2016) for quantum systems. The following parts combine and summarize the
content of some of them.

2.1 Thermalization in classical systems

In classical systems, thermalization is related to chaos, ergodicity and mixing
(Lebowitz and Penrose 1973; Lichtenberg and Lieberman 1992; Cvitanovic et al. 2005;
Singh 2013). This topic, however, remains full of controversies and disagreements.
This brief section is intended to present these concepts to better understand the di�er-
ences and similarities to the quantum case, which understanding is heavily motivated
by its classical counterpart. To do this one imagines a classical situation: particles in an
isolated container. The only constraints are the spatial borders and the conservation
of the total energy. The interaction among the particles is governed by an idealized
Hamiltonian 𝐻 (𝒑, 𝒒), which depends on the canonical or generalized coordinates 𝒒
and conjugated momenta 𝒑 of all involved particles. The initial state of the system is
then de�ned by a point in the phase space. The Hamiltonian governs how this point
evolves in time under the given constraints. Statistical physics then provides the pro-
cedure for a probabilistic analysis: one de�nes a �ctitious microcanonical ensemble as
a joint probability density function in phase space. It includes all points in phase space
that obey the constraints and every member of the ensemble is assumed to have the
identical probability, if it falls within the energy constraint. This is to ensure that the
average value stays constant over time. As it turns out, this construction agrees very
well with experiments. The reason for this remains unclear so far. Two di�erent lines
of thoughts have been proposed to explain the underlying physics. One is based on
dynamical chaos and ergodicity and the other one on a typicality argument (D’Alessio
et al. 2016).
The �rst is based on the concept on ergodicity, namely in the form of the ergodic hy-
pothesis (Penrose 2005). The ergodic hypothesis states that every possible region of the
phase space will be covered over the course of the dynamics and that the time spent
in each region is proportional to its volume. It follows that the time average is equal
to the ensemble average. For a few systems this way of reasoning was proved, e. g.
the Sinai billiard (Sinai 1963, 1970) and the Bunimovich stadium (Bunimovich 1979)
(see Fig. 2.1). However, for other systems the ergodic hypothesis is not ful�lled. These
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systems have an extensive number of conserved quantities and are called integrable
systems.
The second explanation is called the typicality argument. If one assumes that all mi-
crostates in the set, which yields an identical macroscopic observation, have an identi-
cal probability, then one can say that the number of typical states is vastly larger than
the number of atypical states. An example for an atypical state is the state, where all
particles in a box are con�ned to one side (D’Alessio et al. 2016). As a consequence,
one would often see atypical states to evolve to typical states.
To get a more general formulation the construction includes a range of total energies
of width 2∆𝐸 around the peak 𝐸0.

𝜌mc(𝒒,𝒑) =
1

ℎ𝑁𝐶

1
𝑊
𝑓

(
𝐻 − 𝐸0
2∆𝐸

)
(2.1)

where 𝑓 (𝑥 ) is a sharply peaked function with width 2∆𝐸, 𝐻 the Hamiltonian of the
system which returns the total energy, ℎ a constant which de�nes the volume of a
single phase point and 𝐶 an over-counting factor. With this de�nition, it is possible
to study the expectation value of a classical observable 𝑂(𝒒,𝒑) with respect to the
ensemble. The so-called ensemble average 〈·〉𝑆 is given as the average over the entire
set of phase points of the ensemble

〈𝑂(𝒒,𝒑)〉𝑆 =
∫
𝑂(𝒒,𝒑)𝜌(𝒒,𝒑) d𝒒 d𝒑 (2.2)

The ergodic hypothesis then states that Ergodicity means that for most initial states
the long-time average covers the phase space uniformly (Boltzmann 1872; Ehrenfest
and Ehrenfest 2002). From this follows that the in�nite-time average "equals" the
statistical prediction, which is given by the average over many initial states (Gogolin
and Eisert 2016). Other motivation for the ergodic hypothesis is that almost all mi-
croscopic states lead to the same values of the macroscopic observables. This means
that di�erent con�gurations in phase space do not di�er in measurements, although
they contain microscopic variations. Despite these successes, several problems have
not been resolved: experiments seem to thermalize much faster than the exponential
amount of time needed to explore all regions of the phase space. Secondly, the ergodic
hypothesis makes statements about long-time averages instead of instants in time
after a long-time. This is sometimes called thermalization in a weak sense.

2.2 Thermalization in quantum systems
Quantum systems are fundamentally di�erent from classical systems. It is therefore
not at all obvious, whether and how the concepts of thermalization in classical systems
translate to the quantum case. Since thermalization in classical systems is understood
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Figure 2.1: Classical trajectories of a billiard moving inside of two di�erent two-
dimensional cavities. (a) If the shape of the cavity is circular there are two conserved
quantities: the total energy and the angular momentum. Since the number of inte-
grals of motion matches the number of degrees of freedom the system is said to be
integrable. It follows that the uniform population of the phase space is prevented. The
system is regular and non-ergodic.
(b) If the shape of the cavity is the Bunimovich stadium, there is no additional inte-
gral of motion such that the model is non-integrable. All phase space points with a
matching total energy are evenly covered over time. The system is chaotic and ergodic
(Bunimovich 1979). Reprinted from Stöckmann (2010).

with the concept of ergodicity and deterministic chaos, the attempt to extend these
notions to quantum systems seems natural. However, as will be explained in the
following, it is not immediately clear how to de�ne quantum ergodicity or how to
de�ne quantum chaos. The main di�erence between classical and quantum systems
resides in the respective de�nitions of a microstate and the phase space. A point in
the classical phase space, which is denoted as a microstate, is described by generalized
coordinates and conjugated momenta of all involved degrees of freedom. Quantum
systems on the other hand obey Heisenberg’s uncertainty relation, which states that no
simultaneous measurements of the positions and momenta are possible with arbitrary
precision. As a consequence, a point in phase space is not well de�ned and therefore
the canonical phase space does not exist. One attempt to �x this is to construct a
semi-classical phase space of eigenstates of the Hamiltonian instead. This is known
as the “Wigner-Weyl formalism” and explained in more detail in Section 2.2.3. While
it o�ers more insight into the thermalization processes in quantum systems that
do have a classical limit pendant, it does not provide an understanding of genuine
quantum systems, where the classical limit is not known.
As it turns out, a possible solution to this, which also �nds plausible arguments, is
that the thermal properties are encoded in each eigenstate. This is the main idea of the
Eigenstate Thermalization Hypothesis and is explained in more detail in Section 2.2.2.
Overall, it remains an intriguing question how a quantum state, de�ned by a wave
function, can be explained to thermalize. It has already been pointed out by Neumann
(1929) that one should rather study observables, i. e. the operators describing a
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measurement, which act on a quantum state as becomes clear in the later chapters.

Interestingly, it turns out that this question not only appears in the research of
condensed matter (Kollath et al. 2007; Eckstein et al. 2009; Moeckel and Kehrein 2010),
but also in other �elds like cosmology (Kofman et al. 1996; Podolsky et al. 2006) and
high-energy physics (Berges et al. 2004; Braun-Munzinger et al. 2001).
The generic setting is to consider the non-trivial unitary time evolution of an initial
state of the system after a global quench. Although there are phenomena like
recurrences, the study of time-evolved observables show equilibration. To understand
why thermalization in quantum systems requires certain conditions to be met, one
can start with the time evolution of an isolated pure state. Every �nite dimensional
Hamiltonian can, in principle, be brought into a diagonal form, if the chosen basis
consists of the energy eigenstates.

𝐻 |𝐸𝑚〉 = 𝐸𝑚 |𝐸𝑚〉 (2.3)
𝐻 =

∑︁
𝑚

𝐸𝑚 |𝐸𝑚〉 〈𝐸𝑚 | (2.4)

If this basis is used to express any quantum state |𝜓 〉 at time 𝑡 = 0 via

|𝜓 (0)〉 =
∑︁
𝑚

〈𝐸𝑚 |𝜓 (0)〉︸     ︷︷     ︸
𝑐𝑚

|𝐸𝑚〉 , (2.5)

the calculation of the general solution of the Schrödinger equation (Eq. (1.6)) for 𝑡 ≥ 0
is trivial:

|𝜓 (𝑡 )〉 = 𝑒−𝑖𝐻𝑡 |𝜓 〉 =
∑︁
𝑚

𝑒−𝑖𝐸𝑚𝑡𝑐𝑚 |𝐸𝑚〉 . (2.6)

It is evident that the density matrix 𝜌(𝑡 ) = |𝜓 (𝑡 )〉〈𝜓 (𝑡 )| will always remain pure
(𝜌2(𝑡 ) = 𝜌(𝑡 )) at all times. Hence, 𝜌(𝑡 ) can never become a thermal density matrix
of the appropriate ensemble 𝜌mc. However, already von Neumann realized that it is
observables and not wave functions that are measured in experiments, such that the
study of thermalization needs to focus on those quantities (Neumann 1929). A time-
evolved observable in the energy eigenbasis reads

𝑂(𝑡 ) = 〈𝜓 (𝑡 )|𝑂 |𝜓 (𝑡 )〉 =
∑︁
𝑚,𝑛

𝑐∗𝑚𝑐𝑛𝑒
𝑖(𝐸𝑚−𝐸𝑛)𝑡𝑂𝑚𝑛 (2.7)

=
∑︁
𝑚

|𝑐𝑚 |2𝑂𝑚𝑚 +
∑︁
𝑚,𝑛 6=𝑚

𝑐∗𝑚𝑐𝑛𝑒
𝑖(𝐸𝑚−𝐸𝑛)𝑡𝑂𝑚𝑛 (2.8)

where 𝑂𝑚𝑛 = 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 denotes the EEV. Studying this equation in more detail, one
notices that the time evolution leads to a dephasing among the energy eigenstates
(assuming no degeneracies), whereas the diagonal part is constant over time. In a
long-time average 〈·〉𝑡 only the �rst term, which is de�ned via the DE where

𝜌DE := lim
𝑡0→∞

1
𝑡0

𝑡0∫
0

𝜌(𝑡 ) d𝑡 =
∑︁
𝑚

𝜌𝑚𝑚 |𝐸𝑚〉〈𝐸𝑚 |, (2.9)
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survives, such that

〈𝑂(𝑡 )〉𝑡 =
∑︁
𝑚

|𝑐𝑚 |2𝑂𝑚𝑚 = Tr (𝜌DE𝑂) . (2.10)

Hereby, it is assumed that no degeneracies are present in the system. Moreover, it is
clear that if a system thermalizes, it must thermalize to the long-time average value.
An observable is de�ned to thermalize, if the average expectation value of this
observable matches the microcanonical ensemble value after some time and if it
then stays close to it for most later times. From Eq. (2.8), it becomes clear that this
can only be achieved, if the diagonal matrix elements agree with the microcanonical
ensemble and if the o�-diagonal matrix elements are quasi vanished. It is immediately
clear, though, that the diagonal ensemble strongly depends on the initial, state via
the coe�cients 𝑐𝑚 . This is a major di�erence to the classical picture, where the
time average only depends on the total energy. Hence, it remains to be explained
how the diagonal ensemble can agree to the microcanonical ensemble, which is
independent of the initial state (Rigol et al. 2008). This is the major question of
thermalization in quantum systems. Several ways of thought have been proposed;
some are presented in Section 2.2. The most promising ideas have culminated in the
Eigenstate Thermalization Hypothesis (ETH), which is explained in the next section. As
it turns out, the hypothesis requires an exponentially small average level spacing as
it is present in systemswith an extensive number of degrees of freedom (Deutsch 2018).

Finally, there remains another major di�erence between classical and quantum
systems: in quantum systems not every generic observable will thermalize. This
can easily be seen by considering the projection operator onto an energy eigenstate,
which does commute with the Hamiltonian. Therefore, it is a constant of motion
as any other function of the Hamiltonian. This can also be seen from the set of
coe�cients 𝑐𝑚 = 〈𝐸𝑚 |𝜓 (0)〉, which appear in the time-evolved state in Eq. (2.6).
Analogously to classical conserved quantities, they will not change over time even
in classically chaotic systems. In other words, there are many additional integrals of
motion, which do not appear in the classical case.

2.2.1 Strong vs. weak thermalization

It turns out that, in quantum systems, thermalization can happen without time-
averaging (Srednicki 1994). It follows that it is important to distinguish two di�erent
situations. The �rst one, which is called strong thermalization, means that the observ-
able evaluated after a long time

𝑂(𝑡 ) → 𝑂micro (2.11)

thermalizes, i. e. agrees with the microcanonical ensemble value, and remains close
to it for most times (recurrences at exponentially long (in the number of degrees of
freedom) times are not relevant in macroscopic systems. This is what is mostly seen
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in experiments (D’Alessio et al. 2016). The other case is called weak thermalization,
which only makes statements about the long-time average

𝑂(𝑡 ) := lim
𝑡0→∞

1
𝑡0

𝑡0∫
0

d𝑡 𝑂(𝑡 ) → 𝑂micro. (2.12)

Strong thermalization implies weak thermalization.

2.2.2 Eigenstate Thermalization Hypothesis (ETH)
Historically, it was Neumann (1932), who studied the thermalization in generic quan-
tum systems �rst and who pointed out that it is observables, which one must analyze.
The analytic calculation for the time-evolved observable yields Eq. (2.12). Therefore,
it becomes clear that thermalization can only occur if the diagonal ensemble average
equals the microcanonical ensemble and the o�-diagonal contributions are negligible.
This, however, leads to questions that need to be answered, e. g. how the information
of the initial state encoded in the 𝑐𝑚 can be “lost”? Secondly, in many-body systems
with an exponentially small level spacing, how long does one have to wait until the
�uctuations average out (D’Alessio et al. 2016)?
A major development in the understanding of quantum thermalization was the ansatz
for the mechanism behind it. It was achieved by Deutsch (1991) and then Srednicki
(1994, 1996, 1999). Their culminated in the ansatz, which known under the name
Eigenstate Thermalization Hypothesis (ETH), and which comes in a mathematically
very precise form. It states that the matrix elements of observables in the eigenbasis
of a Hamiltonian 𝐻 are given by

𝑂𝑚𝑛 = 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 = 𝑂(𝐸)𝛿𝑚𝑛 + 𝑒−𝑆(𝐸)/2𝑓𝑂 (𝐸,𝜔)𝑅𝑚𝑛, (2.13)

where 𝐸 = (𝐸𝑚+𝐸𝑛)/2 denotes the average,𝜔 = 𝐸𝑛−𝐸𝑚 the di�erence of the eigenstates
and 𝑆(𝐸) is the thermodynamic entropy at energy 𝐸 (which scales linear with system
size) (D’Alessio et al. 2016). Furthermore, the two functions 𝑂(𝐸) and 𝑓𝑂 (𝐸,𝜔) are
smooth functions, and𝑂(𝐸) agrees with the microcanonical expectation value. Lastly,
𝑅𝑚𝑛 is a random number with zero mean and unit variance.
It is believed that ETH holds for few-body observables (Rigol et al. 2008; Biroli et al.
2010; Rigol and Srednicki 2012) (see also (Hosur and Qi 2016)). Some authors argue
that ETH holds for all observables, if the support of the observable is small compared
to the system size (Garrison and Grover 2018). The conjecture corresponds to saying
that the reduced density matrix of a high-energy eigenstate, where the complement
of the operator’s support has been traced out, is given by the density operator of a
canonical (or in some cases microcanonical) ensemble at the same energy (Garrison
and Grover 2018). It follows that a single high-energy eigenstate already encodes all
thermodynamical properties of the system at that temperature. In other words, in the
intuitive picture, one can understand thermalization as the e�ect that the subregion
of a few-body operator is thermalized by the the rest of the system, which acts as the
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environment.
ETH implies that the expectation values of few-body observables in isolated quantum
systems at non-equilibrium relax to the value, which is predicted by statistical physics
(D’Alessio et al. 2016). Inserting the ansatz Eq. (2.13) into Eq. (2.8) and the de�nition
of the microcanonical ensemble shows that both side agree:

〈𝑂(𝑡 )〉𝑡 ≈ 𝑂(〈𝐸〉) ≈ 〈𝑂〉𝑚𝑐, (2.14)
Moreover, the form of the o�-diagonal matrix elements assures that the �uctuations
remain small. ETH can also be used to solve the paradox, how the information about
the initial state can be lost in a unitary time-evolution. The solution is that the infor-
mation is not lost, but it is spread over the entire system, which makes it inaccessible
for local measurements. Small subsystem, however, can thermalize, because the re-
mainder of the isolated system acts a the reservoir. ETH implies that the initial state
has already thermal properties on the level of the energy eigenstates. This was phrased
as “every eigenstate is thermal” (Srednicki 1999). For a window of many eigenstates,
one then basically can de�ne an ensemble of single state energy eigenstates (Nandk-
ishore and Huse 2015).
ETH has been successfully veri�ed for a variety of discrete quantum systems in 1D
systems (Rigol et al. 2008; Rigol 2009b; Santos and Rigol 2010b; Rigol and Santos 2010;
Steinigeweg et al. 2013; Ikeda et al. 2011; Dubey et al. 2012; Beugeling et al. 2014),
2D systems (Mondaini et al. 2016) and for semi-classical systems (Feingold and Peres
1986a; Feingold et al. 1989a). The earliest numerical results were obtained by Jensen
and Shankar (1985) for quantum spin systems (later also (Bohigas et al. 1984)). How-
ever, the strong limitations in the computing power and memory available at that time
only allowed for small system sizes and hence a clear understanding of the di�erence
of integrable and non-integrable systems was not possible. More recent numerics are
not only able to clearly distinguish the two cases, but they also seem to indicate that
strong ETH is valid (Kim et al. 2014).
The systems, which are not expected to thermalize, fall into two groups: integrable
systems and systems, which showMany-Body Localization (MBL). Integrable systems
have an extensive number of conserved quantities, which prevent thermalization, such
that they equilibrate to the GGE instead (Rigol et al. 2007; Cassidy et al. 2011; Caux
and Essler 2013)). Therefore, integrable systems do not ful�ll ETH. The other group
are systems, which show Many-Body Localization (MBL). This is partially understood
for fully MBL (FMBL) by the construction of conserved charges (Serbyn et al. 2013a,b;
Huse et al. 2014). For systems, which show weak disorder, however, ETH seems to be
valid (Pal and Huse 2010).
It is helpful to compare Eq. (2.13) to the prediction of a full randomHamiltonianmatrix
of dimension D. If the Hamiltonian is fully random, its eigenstates consist of Gaus-
sian distributed entries, which as a whole ful�ll the orthonormality condition. The
expression for the matrix elements of a local observable is then found to be

𝑂𝑚𝑛 ≈ 𝛿𝑚𝑛 1
D

∑︁
𝑖

𝑂𝑖 +

√︄
𝑂2

D 𝑅𝑚𝑛, (2.15)
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where𝑅𝑚𝑛 denotes a random number with a vanishing average and unit variance (vari-
ance is 2 if the Hamiltonian is drawn from the GOE, see below). By comparing this
expression with Eq. (2.13), it is clear that the radical fully random ansatz is extreme
in the way that the diagonal ensemble value does not depend on the index𝑚 and that
therefore the thermalization is reached, because the average of the observable can be
pulled out of the sum in Eq. (2.10) and the dependence on the initial state vanishes.

2.2.3 Semi-classical approach I: Berry’s conjecture
Important works in the topic of thermalization have been the semi-classical ap-
proaches (Berry 1977b,a; Srednicki 1994). Their aim is to use the understanding of
classical chaos to understand the chaos in quantum physics. The main idea is to ex-
tend the concept of phase space to the quantum world, which has been in the 1940’s
(Groenewold 1946; Moyal 1949). Both approaches base on ideas �rst put forward by
Weyl andWigner, which is why this formalism is calledWigner-Weyl formalism (Weyl
1927; Wigner 1932). The important quantity is the Wigner function, which is the
Wigner-Weyl transformation of the density operator. It plays the role of the proba-
bility distribution in phase space (Polkovnikov 2010). For a pure state, one �nds

𝑊 (𝒙,𝒑) = 1
(2𝜋ℎ̄)3𝑁

∫
d3𝑁 𝜉 𝜓 ∗

(
𝒙 + 𝝃

2

)
𝜓

(
𝒙 − 𝝃

2

)
exp

[
−𝑖𝒑𝝃2

]
, (2.16)

with 𝒙,𝒑 are the coordinates and momenta of the 𝑁 particles, which span the 6𝑁 -
dimensional phase space (D’Alessio et al. 2016). Using Eq. (2.16), one can calculate
expectation value for observables via

〈𝑂〉 =
∫
d3𝑁𝑥d3𝑁𝑝𝑂𝑊 (𝒙,𝒑)𝑊 (𝒙,𝒑), (2.17)

where 𝑂𝑊 is the Wigner-Weyl transform of the Observable (D’Alessio et al. 2016)

𝑂𝑊 (𝒙,𝒑) = 1
(2𝜋ℎ̄)3𝑁

∫
d3𝑁 𝜉

〈
𝒙−

𝝃

2
|𝑶 | 𝒙+

𝝃

2

〉
exp

[
−𝑖𝒑𝝃2

]
. (2.18)

Berry’s conjecture now states that the high-energy wave functions in a time-reversal
invariant and ergodic system, i. e. where the classical counterpart is chaotic, are su-
perpositions of random plane waves〈

𝜓 ∗
(
𝑥 − 𝑠

2

)
𝜓

(
𝑥 + 𝑠2

)〉
= 1
Ω

∫
d3𝑁𝑝 exp

[
𝑖

ℎ̄
𝒑𝒙

]
𝛿(𝐸 − 𝐻 (𝒙,𝒑)), (2.19)

where 𝐻 (𝒙,𝒑) is the classical Hamiltonian, 𝐸 the energy of the eigenstate and Ω =∫
d𝒙d𝒑𝛿(𝐸 − 𝐻 (𝒙,𝒑) (Berry 1977b). Using this expression in Eq. (2.17) means taking

the ensemble average over eigenstates, which condenses to the microcanonical aver-
age. This can be regarded, in essence, as a semi-classical version of the ETH.
One famous application of Berry’s conjecture was the analytical thermalization study
of Srednicki (1994) for a hard sphere gas, who was able to demonstrate thermaliza-
tion and to derive the Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein distribution,
depending on the symmetries.
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2.2.4 Random matrix theory and level statistics

A �eld that is nowadays widely applied in physics and, in particular, in the context
of thermalization and the study of chaotic behavior is random matrix theory (RMT)
(Forrester et al. 2003). The quintessential paradigm is that a real deterministic sys-
tem is modeled by the average behavior of an ensemble of random matrices, which are
formed according to a set of parameters to display certain statistical properties.
A fundamental cornerstone of quantum mechanics by Wigner states that any sym-
metry operator of a Hamiltonian is either unitary or antiunitary (Wigner 1931). A
very important example for the latter is certainly the time reversal operation 1. This
understanding was used to de�ne the two major types of a random matrix ensemble
(RME), i. e. a matrix which elements are random variables, which are the invariant
RME and the non-invariant RME (Leitner and Cederbaum 1993). The �rst is invariant
under basis transformations 𝐻 → 𝑈𝐻𝑈 −1 with a real orthogonal matrix 𝑈 , which is
why their probability density is given as 𝑝(𝐻 ) ∝ exp (−Tr𝑉 (𝐻 )), where 𝑉 (𝐻 ) is an
arbitrary function, which is analytic in 𝐻 = 0. One important version of this is given
by

𝑝(𝐻𝑖 𝑗 ) = 𝐴 exp
(
− 1
4𝑎

(∑︁
𝑖

𝐻 2
𝑖𝑖 + 2

∑︁
𝑖< 𝑗

𝐻 2
𝑖 𝑗

))
(2.20)

and denotes the famous Gaussian orthogonal ensemble (GOE) de�ned by Wigner
and Dyson (also called Wigner-Dyson ensemble) (Mehta 2004). All 𝐻𝑖 𝑗 , 𝑘 ≤ 𝑗
are statistically independent random variables, which are Gaussian distributed, i. e.
𝐻𝑖 𝑗 , 𝐻𝑖𝑖 ∼ N (𝜇, 𝜎2), where N (𝜇, 𝜎2) denotes the Gaussian (or normal) distribution
with mean 𝜇 and variance 𝜎2 and a corresponding probability density function (PDF)
𝑓 (𝑥 ) = 1/(𝜎

√
2𝜋 ) exp[−(𝑥 − 𝜇)2/(2𝜎2)]. For di�erent symmetries of 𝐻 , i. e. hermiticity

or self-duality one �nds the corresponding Gaussian unitary ensemble or Gaussian
symplectic ensemble (Tao 2012). Since the ensemble is invariant under basis trans-
formations, one can bring the matrix 𝐻 to diagonal form and express the probability
density solely by the eigenvalues. One can derive the famous semi-circle law, which
is given as the probability density distribution for the eigenvalues and reads

𝜎(𝑥 ) = 1
2𝜋

√
4 − 𝑥2. (2.21)

Historically, this type of random matrices has �rst been devised for its use in
multivariate statistics by Wishart (1928). The �rst application in physics, which later
led to the name, was the seminal work by Wigner, who suggested that the energy
level spacings in the spectra of heavy nuclei can be modeled by those of random
matrices (Wigner 1951b; Lane et al. 1955). He realized that in the low-energy part
of the spectrum, the complete picture is often desired, whereas in the high energy

1This can be seen from the canonical commutator [𝑥, 𝑝] = 𝑖ℎ̄, which is preserved under time reversal.
Since a time reversal operation changes the sign of the momentum and leaves the position untouched,
an additional complex conjugation is required to assure the invariance.
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region, where density is high, it is su�cient to focus on statistical properties such
that random matrices become viable (Wigner 1957b). He and others subsequently
developed an extensive theory, which is nowadays known under the term RMT (see
also the books on random matrix theory by Mehta (2004); Edelman and Rao (2005)
and Tao (2012)).
Random matrix theory is a valid description of a real, i. e. deterministic, physical sys-
tem, because the correlation between the "true" matrix elements of the Hamiltonian
and the components of the initial wave function are negligible (Borgonovi et al. 2016).
If the local level density is high enough, the superposition of neighboring energy
eigenstates in the mean-�eld basis becomes complicated enough that a statistical
description reveals universal features.
Beyond the aforementioned heavy nuclei, complex atoms (Porter and Rosenzweig
1960; Camarda and Georgopulos 1983) and many-electron molecules (Haller et al.
1983), connections between random matrix theory and other topics of condensed
matter theory have been successfully established, e. g. in the study of conductivity
in disordered metals or of elastodynamic properties of structured materials (Mehta
2004) or in the form of a banded random matrix to study quantum chaos in the
quantum-kicked rotor model (Izrailev 1990). Moreover, it has also been related to
more exotic areas like the zeros of the Riemann 𝜁 -function and two-dimensional
quantum gravity (Forrester et al. 2003). Later on, it was Balian, who derived the
Gaussian random matrix ensembles from minimizing the information entropy (Balian
1968).

Level statistics

In his seminal paper, Wigner found that the statistical analysis of the spectra ("level
statistics") of certain random matrices o�ers a feasible way to describe the nuclei with
their huge number of energy levels from a theoretical point (Wigner 1951a, 1955,
1957a). Wigner designed the random matrix as the sum of two parts: The equally
spaced diagonal part is thought of describing the non-interacting nucleons in the
heavy nuclei in the mean-�eld representation, whereas the o�-diagonal banded part
introduces the interaction between them. In this way, the banded Wigner matrix was
invented. While the choice that𝐻𝑖 𝑗 are statistically independent is arti�cial, the second
condition, that all 𝑝(𝐻𝑖 𝑗 ) are invariant under basis transformation, i. e. 𝐻 → 𝑈 −1𝐻𝑈 ,
is natural, because it gives all kinds of interactions equal weight (Dyson 1962d). 1 year
after Wigner, the assumption for the level spacing on the diagonal of unperturbed
was extended from constant (Wigner) to Poissonian distributed (Gurevich and Pevs-
ner 1956). To describe the distribution of the spacing of neighboring levels Wigner
derived the famousWigner surmise (or Wigner-Dyson distribution), which reads

𝑝𝑊 (𝑠) = 𝜋𝑠2 𝑒
− 𝜋𝑠2

4 , (2.22)

where 𝑠 = 𝑆/𝐷 is a level spacing 𝑆 divided by the mean distance between levels 𝐷
(Wigner 1957b). The key feature of Eq. (2.22) is the level repulsion. This means that for
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small 𝑠 → 0 also 𝑝𝑊 (𝑠) → 0. Dyson connected the Gaussian randommatrix ensembles
to the integrability of a model (Dyson 1962b,c). Later, the GOE predictions have been
compared in detail with di�erent experimental data of compound-nucleus resonances
and found to agree satisfyingly, both showing the level repulsion (Haq et al. 1982; Bo-
higas et al. 1983). Moreover, it was shown that the level statistic as predicted by the
GOE (Wigner-Dyson distribution) is consistent with the level statistic of the quan-
tum Sinai’s billiard demonstrating the universality of RMT also for a small number
of degrees of freedom (Bohigas et al. 1984) (later also atomic levels have been ana-
lyzed (Rosenzweig and Porter 1960; Camarda and Georgopulos 1983)). On the other
hand, it has been shown for integrable systems with more than one degree of freedom
that the level spacings are expected to be uncorrelated with a Poissonian distribution
(Berry et al. 1977). Nowadays, the level statistics is the main indicator for the lack
of integrability (Santos and Rigol 2010b). Level repulsion has also been demonstrated
for quantum versions of the stadium (McDonald and Kaufman 1979) and Sinai billiard
(Berry 1981), which are known to be chaotic classically.
Wigner’s ansatz to model a system has not changed. Usually one designs the Hamil-
tonian to consist of an integrable system 𝐻0, to which an integrability-breaking term
𝐻1, which consists of random variables, is added:

𝐻 = 𝐻0 + 𝐻1 (2.23)

The added perturbation𝐻1 can have di�erent forms and properties. It can be described
by a full or banded random matrix, sparse or not sparse, and can have a vanishing
(quantum kicked rotor, (Izrailev 1988)) or non-vanishing diagonal (Feingold et al.
1991).
Banded random matrices have the advantage that they are thought to describe typical
realistic models, because there is no in�nite rank of inter-particle interaction (there is
a maximal number𝑛 < ∞ of𝑛-body interaction terms) (Izrailev 1995, 1990). Therefore,
the eigenstates do not spread over the entire basis of𝐻0. Full randommatrix, however,
can be regarded as an extension to banded random matrix theory (Bohigas 1991).
Their description of real world models is hindered, because the level density has the
nonphysical semicircle form. In the late 1990’s Feingold et al. (1989b) showed how, for
few-body Hamiltonians, banded random matrices appear in a semiclassical picture.
In the following, this insight was extended to explain how semi-classical constraints
create a level statistic, which assumes the Brody distribution, thereby connecting the
banded random matrices with integrability (Feingold et al. 1991).
The idea was re�ned by many contributors to the important insight that the Hamil-
tonian in a "non-�ne-tuned" basis looks random - a result, which predates the basic
assumption of Deutsch’s argument (see Section 2.2.5) (Porter and Rosenzweig 1960;
Dyson 1962d,a,b). It is important to note that Wigner considered a genuinely quantum
system and not a semi-classical limit.

Random matrix theory has allowed for a deeper understanding of the level statistics
of many-body quantum systems. It showed that the analysis of the level statistics
provides many insights about the system of study. In a system, where the matrix ele-
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ments of the corresponding Hamiltonian are Gaussian distributed, the distribution of
the level spacings features two generic properties: (1) it decays as a Gaussian for large
energy spacings and (2) it features the so-called "level repulsion", i. e. the probability
of two energy levels being very close together drops to 0.
Randommatrix theory can also be used to determine the onset of quantum chaos (Bor-
gonovi et al. 2016). In particular, it has been found that the distribution of the spacings
of the energy eigenvalues ("energy levels"), also called "level statistic", is an immediate
indicator for integrability and hence the question, whether the system thermalizes or
not. They have been studied and compared to experimental data of realistic systems,
for which they have served as a reference. To get the full understanding of the on-
set of thermalization, however, one needs to focus on the structure of the eigenstates.
Hence, the level statistic can be thought of as a condensed version of the complemen-
tary information stored in the eigenstates.

2.2.5 Deutsch’s argument

This part summarizes the reasoning by J. Deutsch, in this thesis also called Deutsch’s
argument, as published by Deutsch (1991). Extensive notes containing all the calcula-
tions have never been published, but are accessible online on his website.
Historically, Deutsch’s approach is the �rst analytic result in the context of ETH,
even before the hypothesis was given a name. It is motivated by �nding an analogue
to classical ergodicity for quantum systems. However, in his work, Deutsch is not
interested in establishing a semi-classical argument, but instead aims at considering
genuine isolated quantum systems. Nevertheless, the terminology and the way of
thinking is often based on the classical treatment of thermalization. More speci�cally,
Deutsch asks what quantum analogue of ergodicity and chaos can be de�ned that
ensure thermalization in generic, non-integrable systems. Moreover, he emphasizes
that it is essential that any concept of the thermalization process must be able to
distinguish these systems from integrable systems, which are thought to equilibrate
di�erently (see GGE) (Deutsch 2018). His argument can be regarded as combining the
concept of a random matrix
The case Deutsch considers is motivated by an ideal gas, where small random
interactions are added. Classically, an ideal gas will not thermalize, because there are
no interactions among the gas particles. However, by increasing their diameter to a
�nite value it can be assured that the entire phase space is covered over time, which
leads to ergodicity and �nally thermalization (see Section 2.1).
Deutsch’s approach follows the same track by modeling the quantum system to
consist of a diagonal integrable part ("ideal gas"), which describes the kinetic energy
or "hopping" of particles, and a small perturbation, which is supposed to represent
the interaction. This interaction is added in the form of a banded random matrix and
renders the system to be non-integrable (Deutsch 2018). In the following analysis,
he then shows that under certain conditions generic observables thermalize, i. e.
agree to their microcanonical expectation values, if one averages over many di�erent
realizations of randommatrices. As will be explained below, it turns out to be essential
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to assume that the number of degrees of freedom is huge such that the level spacing is
su�ciently small. Deutsch’s argument has been re�ned by Nation and Porras (2018)
and further extended by Reimann through several works (Reimann 2015; Reimann
and Dabelow 2021). The following part explains Deutsch’s argument in greater detail.

In his paper Deutsch (1991) studies the question of thermalization for observ-
ables, since these are the quantities that are measured in experiments, as explained
before. Instead of talking about thermalization, Deutsch uses the phrase “ergodicity”,
which he de�nes to mean that the expectation value of a time-averaged observable
𝑂 agrees with the microcanonical ensemble value. Deutsch de�nes “ergodicity” by
the agreement between the time average of the expectation value of an operator and
the expectation value over a small energy window de�ned by the function ∆(𝐸, 𝐸𝑚),
which is sharply peaked where 𝐸 = 〈𝐸𝑚 |𝐻 |𝐸𝑚〉. The de�ntion reads

〈〈𝜓 |𝑂 |𝜓 〉〉𝑡 =
∑︁
𝑚

∆(𝐸, 𝐸𝑚)𝑂𝑚𝑚 (2.24)

with the eigenstate expecation value 𝑂𝑚𝑛 = 〈𝐸𝑚 |𝑂 |𝐸𝑚〉 as in Eq. (2.8). This is the
essential equation, which one would like to derive.
The ansatz by Deutsch can be regarded as being motivated by earlier works using
random matrices by Wigner and others (see Section 2.2.4) and by the semi-classical
arguments, which experienced a lot of numerical evidence (Berry 1977b; Feingold and
Peres 1986a; Feingold et al. 1989a). Like in the previous chapter, the assumption, which
Deutsch makes, is that the model Hamiltonian 𝐻 consists of a non-ergodic, integrable
part 𝐻0, which, e. g., contains the hopping or kinetic energy of a large number of non-
interacting particles ("ideal gas"), and an additional banded random contribution 𝐻1,
which is a real symmetric matrix. Overall, he de�nes the Hamiltonian to be

𝐻 = 𝐻0 + 𝐻1 (2.25)

The integrable part 𝐻0 has a mean level spacing of 𝜖 . The 𝐻1 part is introduced to
make the system ergodic (in the sense of "non-integrable") and can be regarded as
modeling the interaction among the particles (e. g. two-body interaction) (Deutsch
2018). However, instead of doing this in an explicit manner, Deutsch assumes a real
symmetric matrix with its elements randomly taken from a GOE with zero mean and
a variance 𝜎2 (Reimann and Dabelow 2021). In the integrable basis |𝐸0𝑛〉 the matrix
elements of the integrability-breaking interaction term are given as

ℎ𝑚𝑛 = 〈𝐸0𝑚 |𝐻1 |𝐸0𝑛〉 . (2.26)

It is assumed that ℎ𝑚𝑛 ∝ exp(−𝛽 |𝐸0𝑚 − 𝐸0𝑛 |) for 𝛽 |𝐸𝑚 − 𝐸𝑛 |� 1. This can be motivated
by semi-classical phase space arguments (see Deutsch (1991) and Appendix B in the
corresponding unpublished notes) and is an often used way to mimic short-range in-
teraction. It is important to note that the matrix elements are known and �xed, but
sampled from the mentioned random ensemble. This idea follows along the lines of
previous papers (Berry 1977b; Feingold and Peres 1986b; Feingold et al. 1989a).
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The perturbation 𝐻1 has the e�ect of mixing eigenstates of 𝐻0, which are close in en-
ergy. Even for a very small window, there will be an exponentially large number of
eigenstates, which mix (Reimann and Dabelow 2021), so that one expects that the per-
turbation could be made smaller than the average level spacing of 𝐻0 and still have a
large e�ect. The assumption now is that the two basis of eigenstates mix in a small en-
ergy window with random phases. This is motivated by the work in the semi-classical
realm of Berry (1977b), who conjectured that the eigenstates of 𝐻 in the basis that di-
agonalizes 𝐻0 are random superpositions. As phrased by Deutsch (2018): The typical
eigenstate of a non-integrable system is the random superposition of integrable states
in some narrow energy shell, such that with

|𝐸𝑚〉 =
∑︁
𝑛

𝑐𝑚𝑛 |𝐸0𝑛〉 , (2.27)

the overlaps 𝑐𝑚𝑛 = 〈𝐸𝑚 |𝐸0𝑛〉 are random, because 𝐻1 is random. The ingenuity of
Deutsch is that he was able to calculate the probability distribution for the elements
𝑐𝑚𝑛 and he showed that they are given by the Lorentzian

Λ(𝑚,𝑛) = 1
𝜋

𝜋𝜎2/𝜖

(𝑚 − 𝑛)2 + 𝜋2𝜎4/𝜖2
, (2.28)

such that

〈𝑐𝑚𝑛𝑐𝑖 𝑗 〉rand = 𝛿𝑚𝑖𝛿𝑛𝑗Λ(𝑚,𝑛), (2.29)

(see (Deutsch 1991; Deutsch; Reimann and Dabelow 2021)). To do this he assumed that
the overlaps are statistically independent Gaussian random variables.
Then, under the assumption of self-averaging, one can express the EEVs of an observ-
able in the basis of 𝐻 as

〈𝐸𝑚 |𝑂 |𝐸𝑚〉 = 𝑂𝑚𝑚 =
∑︁
𝑖, 𝑗

𝑐𝑚𝑖𝑐𝑚𝑗𝑂
0
𝑖 𝑗 ≈

∑︁
𝑖

Λ(𝑚, 𝑖)𝑂0
𝑖𝑖, (2.30)

which implies a smoothing of neighboring diagonal elements 𝑂𝑚𝑚 just as in the ETH
(Deutsch 1991; D’Alessio and Polkovnikov 2013). 𝑂0

𝑛𝑛 denote the EEV of the unper-
turbed system.
The question is, whether the Deutsch argument can provide the ETH prediction for
o�-diagonal matrix, as well. Since they average to 0, it is better to study the square
modulus

|𝑂𝑚𝑛 |2𝑚 6=𝑛=
∑︁
𝑖, 𝑗

𝑐𝑚𝑖𝑐𝑛𝑖𝑐𝑚𝑗𝑐𝑛𝑗𝑂
0
𝑖𝑖𝑂

0
𝑗 𝑗 . (2.31)

Then, one �nds that only some terms survive the double sum and it reads

|𝑂𝑚𝑛 |2𝑚 6=𝑛=
∑︁
𝑖, 𝑗

|𝑐𝑚𝑖 |2 |𝑐𝑛𝑖 |2(𝑂0
𝑖𝑖 )2 ≈

∑︁
𝑖

Λ(𝑚, 𝑖)Λ(𝑛, 𝑖)(𝑂0
𝑖𝑖 )2, (2.32)
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which matches the ETH assumption (Reimann and Dabelow 2021). The above equa-
tion is only true, if one assumes uncorrelated coe�cients 𝑐𝑚𝑖 , this condition, however,
can be relaxed (Nation and Porras 2018).
With these results, one can �nally tackle the time-evolution of an initial state, i. e.
Eq. (2.24). Before studying the generic case for any initial state, the calculation fo-
cuses on the time evolution of an eigenstate of 𝐻 : Since Eq. (2.10) predicts that the
in�nite time average is given by the diagonal ensemble, one can insert the Lorentzian
into this equation and obtains the microcanonical average. Finally, one can use the
sharply peaked property of ∆ in Eq. (2.24) together with ?? to show the thermalization
of the generic initial state. Interestingly, a similar result as Deutsch’s has been derived
by Wigner decades earlier (Wigner 1955; Reimann and Dabelow 2021). Finally, it re-
mains to emphasize that his approach is special, because it is an ansatz, simple enough
to be analytically tractable, that still allows for non-trivial results.
Furthermore, there is another numerical study addressing the question of thermaliza-
tion in small Hubbard lattices, which show that the Hamiltonian can be modeled as a
banded matrix (Genway et al. 2012).





Chapter 3

Microscopic justi�cation of the
Eigenstate Thermalization
Hypothesis

This chapter explains themain goal of this thesis. Motivated by the �ndings of Deutsch
as outlined in part 2.2.5 the idea is to extend the argument to generic microscopic
Hamiltonians. This requires a thorough study of the Hamiltonian and few-body ob-
servables, which are accessible in experiments for di�erent systems. The next part
contains the main line of thought and how the theory can be veri�ed by the results. It
is followed by a brief explanation of the applied method: the �ow equation approach.

3.1 Extending Deutsch’s argument

In Section 2.2.5 the reasoning of Deutsch was presented in detail. The argumental
chain, on which he builds up the analytical arguments for thermalization, base
on the assumption that the Hamiltonian has the form of a banded random matrix
(Deutsch 1991). He was then able to demonstrate that, for a large class of operators,
thermalization can be shown (Deutsch 1991).
The hypothesis is that Deutsch’s argument with the random matrix ansatz holds
for a generic non-random quantum system de�ned by a microscopic Hamiltonian.
However, to �nd general analytic arguments is a very hard problem. To quote P.
Reimann: "Providing a more rigorous justi�cation of this well-established common
lore in random matrix theory is a long-standing, very di�cult task [...]" (Reimann and
Dabelow 2021). This project tries to justify the assumptions made by Deutsch in his
argument using a numerical ansatz.

The idea of this project is that any Hamiltonian representing a generic system,
which is usually set up in a designated basis (e. g. spatial basis), can be unitarily trans-
formed to a di�erent basis, in which it takes on a form as imagined by Deutsch. More
precisely, the idea is that the Hamiltonian in the new basis takes on a banded form
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with matrix elements that appear as if they were drawn from a Gaussian ensemble. In
other words, it must be ensured that the matrix elements are pseudo-random with the
demanded properties. It is, of course, possible to use a random unitary transformation
to introduce the randomness in the Hamiltonian, but this does not lead to the banded
form (see Fig. 5.4 in Chapter 5). So the �rst main challenge is to �nd a transformation,
which has the desired e�ect on the Hamiltonian.
The second part of the argument deals with observables. Since it is believed that
only few-body observables ful�ll the ETH, which is the main concept of quantum
thermalization, it is important to verify that the basis, which brings the Hamiltonian
to a banded form, does not “destroy” few-body property of the observables. In order
to do that, the scaling of the occupied phase space is analyzed for di�erent lattice
sizes in the new basis. If it shows a non-extensive behavior, one would conclude that
few-body still look “few-body”in the changed basis.
The reasoning is that if both conditions, i. e. the banded “random” structure of the
Hamiltonian and the “few-bodiedness” of the thermalizing observables, are ful�lled,
then it is possible to apply Deutsch’s argument. By doing so, one would have shown
that the system is indeed thermalizing.
This project addresses this question by testing the above requirements for a 1D
hardcore model numerically. If it was ful�lled for this system, this would support the
hypothesis that it is indeed true for generic Hamiltonians. The next step would be to
think about analytic arguments supporting this, although it is not clear, whether this
is actually achievable, at all.
The model, which is used, “lives” on a one-dimensional lattice with a two-dimensional
local Hilbert space (like spin-1/2 models) in order to keep the Hilbert space at a
manageable size (see exponential growth as explained in the introduction). Moreover,
all possible symmetries, which are present in the system are taken into account to
further reduce the Hilbert space dimension and for other reasons, which are described
later.
To test the idea, which is outlined in the previous part, one needs a method to �nd
the desired basis with the required properties. The method must not change the
spectrum of the Hamiltonian, therefore it needs to be a unitary transformation. One
straightforward way would be to create a random unitary matrix, because this assures
that the matrix elements will look completely random. However, it is very unlikely
that this choice will meet the other requirements, because it will generally neither
lead to a banded form, nor conserve the few-body property of the observables.
A method that seems promising is the �ow equation method, which uses continuous
unitary transformations (CUTs). This method, which leads to a band-diagonalization
of the Hamiltonian matrix 𝐻 , is introduced in the following section.

3.2 Flow equation method

This part treats the �ow equation method, which is the method of choice used to bring
the tested Hamiltonians into a band-diagonal form.
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H(B = 0)

H(B = ∞)

Wegner flow

Spatial basis

Preflow trafo Wigner-Dyson ensemble

Figure 3.1: Schematic depiction of the Wegner �ow creating a more band-diagonal
Hamiltonian. The Wigner-Dyson ensemble contains all Hamiltonian matrices, which
can be reached via unitary transformations and which therefore share the identical
level spacing statistic. The matrix in the spatial basis, at 𝐵 = 0 and at 𝐵 = ∞ are rare
occurences, since they can only be found with a vanishing measure, whereas most
matrices have a full random matrix form. The regular Wegner �ow as de�ned by the
�ow equation band-diagonalizes a matrix by construction until the fully diagonalized
form (𝐵 = ∞) is reached. The statistical properties of the Hamiltonian 𝐻 over the
�ow are studied and compared to Deutsch’s requirements. Moreover, four observables
are created, transformed in the corresponding �ow basis, and analyzed, whether they
retain their few-body structure throughout the �ow.

3.2.1 Motivation

The underlying motivation for the development of the �ow equation method is
identical to the other approaches described in chapter 1.4: the attempt to reduce the
complexity of complicated condensed matter systems in order to make statements
about their physical nature and understand observed phenomena. Within this group,
it falls into the category of perturbative analytical approaches, more precisely into
the subcategory of renormalization schemes (Kehrein 2007). The motivation for the
development of these techniques stems from the fact that there can be all kinds of
energy scales present in a complex condensed matter system as already mentioned
in the introduction. They can be apart by several orders of magnitude, which
makes it di�cult to treat the problem in its entirety. The optimal way, of course,
would be to solve the Hamiltonian, i. e. to bring it into the diagonal form. Then all
eigenstates and their energies would be available. However, in many cases, this is
not feasible. Another way is to focus on the relevant energy scales and “integrate
out” the unimportant ones, also called energy scale separation to successively reduce
the maximal energy scale, given by the cuto� ΛRG, down to the relevant energy scale
(see Kehrein (2007)). This renormalization process creates a new e�ective model with
a decreased maximal energy scale, which still shows the same physics as the original
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Figure 3.2: Di�erent rescaling procedures shown by their e�ect on a many-particle
Hamiltonian 𝐻 . The matrix is initially sorted in ascending order according to the
single-particle energies on the main diagonal. (a) The usual renormalization inte-
grates out degrees of freedom with high energies reducing the Hilbert space to the
new UV-cuto� ΛRG = Λ − 𝛿Λ. (b) The �ow equation de�nes an alternative scaling
method, which successively eliminates large energy di�erences and results in a band-
like structure with a band width Λfeq (de�ned in Eq. (3.14)). Taken with permission
from the monography written by Kehrein (2007).

model.
One simple example was given by Kehrein (2007) and describes an impurity scattering
model in an electron gas with a point-like interaction strength. In a discretized form
(a �xed number of states) the corresponding Hamiltonian matrix takes on a solvable
quadratic form of 𝑐†

𝑘
𝑐
𝑘 ′-terms, which describes the scattering of plain waves. As a

consequence, it can be casted into matrix form as depicted in Fig. 3.2 on the left.
The entire matrix can be sorted according to the diagonal that contains the kinetic
energy. The o�-diagonal matrix elements contain the scattering terms, which are
proportional to the interaction strength (grey shaded areas indicate non-vanishing
terms). The conventional rescaling or renormalization is shown in the top row
in Fig. 3.2. The procedure treats the initial interaction or coupling strength in a
perturbative way. This makes it possible to integrate out the degrees of freedom with
the highest energies, yielding a reduced cuto� ΛRG. In the process the coupling or
interaction strength changes as de�ned by a scaling equation. One ends up with a
reduced Hilbert space, which still correctly describes the low-energy physics of the
model (Kehrein 2007).
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The idea for the �ow equation follows the same line of thought. Instead of integrating
out degrees of freedom with high single-particle energies as before, the �ow equation
formalism is designed to successively eliminate matrix elements, which correspond
to large energy transfers. To derive the equation, which de�nes the �ow, one can
start from the initial goal: to �nd a unitary transformation 𝑈 , which changes the
initial basis to a di�erent one, in which the Hamiltonian takes on a more diagonal
form. This method eliminates matrix elements, which couple states with large
energy di�erences. In matrix form this corresponds to a band-diagonalization of the
Hamiltonian matrix 𝐻 , if the initial diagonal is ordered.

The �ow equation method is named after its de�ning di�erential equation

d𝐻
d𝐵 = [𝜂(𝐵), 𝐻 (𝐵)], (3.1)

which introduces the �ow parameter 𝐵 and the generator 𝜂(𝐵). The canonical choice
is to use the Wegner-Wilson-Glazek (WWG) generator, which is basically a method of
steepest descent and leads to a high speed of band-diagonalization (Wegner; Głazek
and Wilson 1993). It is given by 𝜂(𝐵) = [𝐻diag(𝐵), 𝐻int(𝐵)] and is used in this work.
Here, 𝐻diag denotes the diagonal of 𝐻 (𝐵), while 𝐻int describes the o�-diagonal part.
However, the generator can be de�ned in other ways with varying properties (Hénon
1974; White 2002; Morris et al. 2015; Savitz and Refael 2017). The �ow runs from
𝐵 = 0 to 𝐵 = ∞, which is when the Hamiltonian is completely diagonalized and thus
𝜂(𝐵 = ∞) = 0.
Closely related to the �ow equation is the di�erential equation, which describes the
corresponding unitary transformation𝑈 (𝐵) that connects the initial Hamiltonian with
its transformed version via the similarity relation 𝐻 (𝐵) = 𝑈 (𝐵)𝐻 (0)𝑈 †(𝐵). It is given
as

d𝑈
d𝐵 = 𝜂(𝐵)𝑈 (𝐵). (3.2)

The unitary matrix 𝑈 (𝐵) as the basis transformation matrix is also used to transform
other observables into the new basis and hence completes the picture. The �ow equa-
tion method is explained in detail in chapter 3.2.2.
With the �ow equation method at hand, the project’s goals can be approached. By
continuously transforming the Hamiltonian, it steadily becomes more diagonal creat-
ing the required band structure. Since the numerics are exact and contain all matrix
elements, the matrix elements can be analyzed with regard to the degree of random-
ness and their distribution. Furthermore, the unitary matrix𝑈 (𝐵) makes it possible to
compute any observable in the new basis and allows for the study of “few-bodiedness”
with various tools. The mathematical details of the �ow equation method are outlined
in the next chapter.
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3.2.2 Mathematical formulation

In other words, one would like to perform a unitary transformation such that 𝐻 ′ =
𝑈𝐻𝑈 † is more band diagonal. Since any unitary can be rewritten as 𝑈 = 𝑒𝜂 , where 𝜂
denotes an anti-hermitian matrix (𝜂† = −𝜂), one can expand the exponential to yield

𝑈 = 𝑒𝜂 = 1 + 𝜂 − 1
2𝜂

2 + . . . (3.3)

For a very small transformation ∆𝐵𝜂 it is su�cient to include only the zeroth and �rst
order terms and the transformed Hamiltonian becomes

𝐻 ′ =(1 + ∆𝐵𝜂)𝐻 (1 − ∆𝐵𝜂) = 𝐻 + ∆𝐵 [𝜂𝐻 − 𝐻𝜂] . (3.4)

This equation can be rewritten to

𝐻 ′ − 𝐻
∆𝐵 = [𝜂, 𝐻 ] , (3.5)

which is the �ow equation Eq. (3.1) in the in�nitesimal limit ∆𝐵 → d𝐵.
For the implementation several matrices are required. It is useful to focus on the ma-
trix elements, before zooming out again to full matrices. To begin with it is useful to
start with the �ow equations and write them in terms of concrete matrix elements.
The procedure and notation here closely follows Savitz and Refael (2017). First, the
diagonal and o�-diagonal parts of the Hamiltonian are de�ned:

𝐷𝑎 :=𝐻𝑎𝑎 (3.6)
𝐽𝑎𝑏 :=𝐻𝑎𝑏 𝑎 6= 𝑏 (3.7)

with 𝐽𝑎𝑏 = 𝐽𝑏𝑎 . Additionally, one can de�ne 𝑋𝑎𝑏 := 1
2 (𝐷𝑎 − 𝐷𝑏). Obviously, 𝑋𝑎𝑎 = 0 and

𝑋𝑎𝑏 = −𝑋𝑏𝑎 . For matrix elements the WWG-�ow reads

𝜂𝑎𝑏 =[𝐻diag, 𝐻 ]𝑎𝑏 = (𝐻𝑎𝑎 − 𝐻𝑏𝑏)𝐻𝑎𝑏 = 2𝑋𝑎𝑏 𝐽𝑎𝑏 (3.8)
¤𝐻𝑎𝑏 =[𝜂, 𝐻 ]𝑎𝑏 =

∑︁
𝑐

(𝜂𝑎𝑐𝐻𝑐𝑏 − 𝐻𝑎𝑐𝜂𝑐𝑏) (3.9)

If 𝑎 = 𝑏, this simpli�es to

¤𝐷𝑎 = 2
∑︁
𝑐 6=𝑎

𝜂𝑎𝑐 𝐽𝑐𝑎, (3.10)

whereas for 𝑎 6= 𝑏 terms with 𝜂𝑎𝑎 vanish, such that

¤𝐽𝑎𝑏 = − 4𝑋 2
𝑎𝑏 𝐽𝑎𝑏 +

∑︁
𝑐 6=𝑎,𝑏

(𝜂𝑎𝑐 𝐽𝑐𝑏 − 𝐽𝑎𝑐𝜂𝑐𝑏) (3.11)

= − 4𝑋 2
𝑎𝑏 𝐽𝑎𝑏 + 2

∑︁
𝑐 6=𝑎,𝑏

(𝑋𝑎𝑐 + 𝑋𝑏𝑐 )𝐽𝑎𝑐 𝐽𝑐𝑏 (3.12)
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Eq. (3.12) can be solved by �rst-order perturbation theory. If |𝐽𝑎𝑏 |� |𝑋𝑎𝑏 |= |𝐻𝑎𝑎 −𝐻𝑏𝑏 |,
the second term can be neglected and one �nds the linearized solution

𝐽𝑎𝑏(𝐵) ≈ 𝐽𝑎𝑏(0)𝑒−𝐵 |𝐻𝑎𝑎(𝐵)−𝐻𝑏𝑏 (𝐵)|2 . (3.13)

It follows that the o�-diagonal matrix elements decay exponentially, if the di�erence
of their respective diagonal matrix elements is large. Since the basis of the initial
Hamiltonian matrix is chosen to be the integrable basis (momentum basis), i. e. the
basis where 𝐻 is diagonal if 𝑉2 = 0 (𝑉1 = 𝑉2 = 0), the �ow will successively remove
all the o�-diagonal elements with increasing �ow, until only the diagonal is left in the
limit 𝐵 → ∞. Moreover, one can estimate that elements, where this di�erence 𝑋𝑎𝑏
ful�lls

𝑋𝑎𝑏 = |𝐻𝑎𝑎 − 𝐻𝑏𝑏 |< Λfeq :=
1√
𝐵

(3.14)

have not decayed signi�cantly (or mostly by approximately 1/𝑒). This in turn de�nes
the width of the band in Fig. 3.2.

For With these equations the �rst derivative is given by

¤𝜂𝑎𝑏 =[ ¤𝐻diag, 𝐻 ]𝑎𝑏 + [𝐻diag, ¤𝐻 ]𝑎𝑏 = 2
∑︁
𝑐

(𝜂𝑎𝑐𝐻𝑐𝑎𝐻𝑎𝑏 − 𝐻𝑎𝑏𝜂𝑏𝑐𝐻𝑐𝑏) (3.15)

+
∑︁
𝑐

(𝐻𝑎𝑎𝜂𝑎𝑐𝐻𝑐𝑏 − 𝐻𝑎𝑎𝐻𝑎𝑐𝜂𝑐𝑏 − 𝜂𝑎𝑐𝐻𝑐𝑏𝐻𝑏𝑏 + 𝐻𝑎𝑐𝜂𝑐𝑏𝐻𝑏𝑏) (3.16)

Not only ¤𝜂 is required, but all of the following derivatives are needed for the numerical
implementation:

𝜂 =[𝐻diag, 𝐻 ] (3.17)
¤𝐻 =[𝜂, 𝐻 ] (3.18)
¤𝜂 =[ ¤𝐻diag, 𝐻 ] + [𝐻diag, ¤𝐻 ] (3.19)
¥𝐻 =[ ¤𝜂, 𝐻 ] + [𝜂, ¤𝐻 ] (3.20)
¥𝜂 =[ ¥𝐻diag, 𝐻 ] + 2[ ¤𝐻diag, ¤𝐻 ] + [𝐻diag, ¥𝐻 ] (3.21)

This results from the fact that the explicit algorithm used, the Stable Unitary Integrator
(SUI), approximates an exponential in Eq. (4.36). The �ow equation can be simpli�ed
to

d𝐻
d𝐵 =𝐻diag𝐻𝐻 − 𝐻𝐻diag𝐻 − 𝐻𝐻diag𝐻 + 𝐻𝐻𝐻diag

=𝐻diag𝐻𝐻 − 2𝐻𝐻diag𝐻 + 𝐻𝐻𝐻diag (3.22)

where numerically 𝐻diag is always given by the diagonal of the current matrix 𝐻 (𝐵).
The calculation of the corresponding unitary transformation𝑈 (𝐵) which is de�ned as

𝑈 (𝐵) = 𝑇𝐵 exp
(∫𝐵

0
d𝐵′𝜂(𝐵′)

)
(3.23)
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can be done via Eq. (3.2). The �ow eventually completely diagonalizes 𝐻 such that

𝐻𝑖 𝑗 (𝐵 = ∞) = 𝐷𝑖 (𝐵 = ∞) (3.24)

with 𝐷𝑖 (𝐵 = ∞) = 𝐸𝑖 denoting the 𝑖-th eigenvalue.

¤𝑈 = 𝜂𝑈 (3.25)

Another way of writing Eq. (3.1) is

𝐻 (𝐵) = 𝑒𝜂(𝐵)𝐻 (0)𝑒−𝜂(𝐵) (3.26)

where 𝜂(𝐵) = −𝜂†(𝐵) denotes the anti-hermitean generator.

Since the �ow eventually diagonalizes 𝐻 it is possible to write 𝐻 (𝐵) = 𝑈 (𝐵)𝐻 (0)𝑈 †(𝐵)
in terms of the eigenvalues of 𝐻 : 𝐻𝑖 𝑗 (𝐵 = ∞) = 𝛿𝑖 𝑗𝐸𝑖 . Using the property that the
trace is invariant under cyclic permutations and thus invariant under unitary basis
transformations it is possible to transform 𝐻 (𝐵 = ∞) into any basis, i. e. into each
basis of the �ow. Hence, one �nds that the sum over the eigenvalues is conserved
over the course of the �ow:∑︁

𝑖

𝐸𝑖 = Tr(𝐻 (𝐵 = ∞)) = Tr(𝑈 (𝐵 → ∞)𝐻 (𝐵)𝑈 †(𝐵 → ∞)) = Tr(𝐻 (𝐵)) (3.27)

Using the property that a trace is invariant under unitary transformations it turns out
that all integer powers of the Hamiltonian are conserved throughout the �ow:

Tr(𝐻𝑝 (𝐵 = ∞)) =
∑︁
𝑖

𝐸
𝑝
𝑖 = Tr(𝐻𝑝 (𝐵)) = Tr((𝑈 (𝐵 → ∞)𝐻𝑝 (𝐵)𝑈 †(𝐵 → ∞))𝑝 )

= Tr(𝑈 (𝐵)𝐻𝑝 (0)𝑈 †(𝐵)) = (3.28)

Mean of diagonal elements 𝐼1/𝑛 is conserved:

𝐼1 :=
∑︁
𝑖

𝐸𝑖 =
∑︁
𝑖

𝐷𝑖 (𝐵) = Tr(𝐻 (𝐵)) (3.29)

𝐼2 is the Frobenius norm of the Hamiltonian 𝐻 squared:

𝐼2 := 𝐼𝐷2 + 𝐼 𝐽2 =
∑︁
𝑖

𝐸2𝑖 =
∑︁
𝑖, 𝑗

|𝐻𝑖 𝑗 (𝐵)|2= Tr(𝐻 2(𝐵)) (3.30)

being conserved follows that

d𝐼𝐷2
d𝐵 = −d𝐼

𝐽
2

d𝐵 . (3.31)

So if all o�-diagonal matrix elements decrease in size, the diagonal must grow. More
information on the Stable Unitary Integrator and the implementation of the �ow equa-
tion can be found in Buono and Lopez (1999), Savitz and Refael (2017), Thomson and
Schiró (2018).



Chapter 4

Models and methods

This chapter introduces the models, which are studied in this project, and the basic
description, which is the binary representation in the occupation number basis.
Real materials are simpli�ed in order to be tractable for analytical or numerical cal-
culations. In nature, most materials have an extensive number (≈ 1023) particles and
an isotropic mutual interaction among them. However, this is still beyond a possible
calculation, because the Hilbert space scales exponentially with the particle number.
Moreover, it is too complicated to model the di�erent ranges of interactions such that
it is required to be simpli�ed. A common approximation is to represent the crystal
structure by a lattice and to restrict the analysis to one dimension, which is also the
choice in this work. Moreover, the interaction is reduced to only nearest-neighbor
(NN) or next-to-nearest-neighbor (NNN) interaction.
As in most many-body studies the occupation number representation (also second quan-
tization) is used throughout the entire work. This formalism assures the correct
(anti-)symmetrization of states intrinsically and thereby makes all calculations sim-
pler and more comprehensible.

4.0.1 Second quantization

In the formalism any𝑁 -particlemany-body state |𝜓 〉 of a �nite one-dimensional lattice
with 𝐿 sites is given by

|𝜓 〉 =
∑︁

𝑛 𝑗=0 ∀𝑗∑
𝑛 𝑗=𝑁

𝑐𝑛1,𝑛2,... |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 (4.1)

where the 𝑛 𝑗 = 𝑐†𝑗 𝑐 𝑗 (𝑏
†
𝑗𝑏 𝑗 ) denote the occupation numbers (i. e. number of particles)

at site 𝑗 for fermions (bosons). For fermions, it is famously known by Pauli’s exclusion
principle that only one fermion is allowed per state. Since in this work the fermions
are considered to be spinless, this principle manifests itself in a bounded local energy
density, i. e. the occupation numbers 𝑛 𝑗 in Eq. (4.1) can only be 0 or 1. This is di�erent
in a generic bosonic model, where the local occupation numbers are unconstrained. To
reduce the complexity of the boson site occupations to the fermionic case the bosons
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can be made hardcore (Matsubara and Matsuda 1956). Hardcore bosons are de�ned to
be impenetrable and have an altered commutation relation for identical indices which
resembles the fermionic canonical anti-commutation relation:

Fermions: {𝑐†𝑖 , 𝑐 𝑗 } = 𝛿𝑖 𝑗 {𝑐𝑖 , 𝑐 𝑗 } = {𝑐†𝑖 , 𝑐†𝑗 } = 0 (4.2)

Hardcore bosons: [𝑏†𝑖 , 𝑏 𝑗 ] = 0 [𝑏𝑖 , 𝑏 𝑗 ] = [𝑏†𝑖 , 𝑏
†
𝑗 ] = 0 𝑖 6= 𝑗 (4.3)

{𝑏†𝑖 , 𝑏𝑖 } = 1 {𝑏𝑖 , 𝑏𝑖 } = {𝑏†𝑖 , 𝑏†𝑖 } = 0 𝑖 = 𝑗

In other words, it is [𝑏𝑖 , 𝑏
†
𝑗 ] = 𝛿𝑖 𝑗 (1 − 2𝑛𝑖 ). It follows that hardcore bosons behave like

bosons (i. e. they commute for di�erent lattice sites), but they do not occupy a site with
more than one particle. In other words, the spatial creation and annihilation operators
for both fermions and hardcore bosons are de�ned in the same way:

Fermions: 𝑐 𝑗 |0 𝑗 〉 = 0 𝑐†𝑗 |0 𝑗 〉 = |1 𝑗 〉 𝑐 𝑗 |1 𝑗 〉 = |0 𝑗 〉 (4.4)

Hardcore bosons: 𝑏 𝑗 |0 𝑗 〉 = 0 𝑏†𝑗 |0 𝑗 〉 = |1 𝑗 〉 𝑏 𝑗 |1 𝑗 〉 = |0 𝑗 〉 (4.5)

It is the “binary behavior”, which vastly reduces the Hilbert space dimension and why
it becomes feasible to perform exact diagonalization studies (see Section 4.3).
Having de�ned the creation operators the basis or Fock states on the right hand side
of Eq. (4.1), which span the Fock space, can be de�ned. A Fock state is given by

|𝑛1, 𝑛2, . . . 𝑛𝐿〉 =
∏
𝑗

(
𝑎†𝑗

)𝑛 𝑗 |0〉 = (
𝑎†1

)𝑛1 (
𝑎†2

)𝑛2
. . .

(
𝑎†𝐿

)𝑛𝐿 |0〉 (4.6)

where 𝑎†𝑗 creates a particle at site 𝑗 , i. e. 𝑎
†
𝑗 = 𝑐

†
𝑗 (𝑏

†
𝑗 ) creates a fermion (hardcore boson)

(|0〉 = ∏
𝑗 |0 𝑗 〉 denotes the vacuum). The order of the 𝑎†𝑗 -operators is a convention,

which is �xed for the rest of the calculation. A properly ordered state is called normal
ordered. It only plays a role for fermions, because bosons and spins on di�erent lattice
sites commute. In the following the notation solely focuses on fermions, because the
hardcore bosonic case is analogous, onlywithout the fermionic sign factors. The action
of the ladder operators on a basis state is then

𝑐†𝑗 |𝑛1, 𝑛2, . . . 𝑛𝐿〉 =
{
(−1)∑𝑙< 𝑗 𝑛𝑙 |𝑛1, 𝑛2, . . . , 1 𝑗 , . . . , 𝑛𝐿〉 if 𝑛 𝑗 = 0
0 if 𝑛 𝑗 = 1

(4.7a)

𝑐 𝑗 |𝑛1, 𝑛2, . . . 𝑛𝐿〉 =
{
(−1)∑𝑙< 𝑗 𝑛𝑙 |𝑛1, 𝑛2, . . . , 0 𝑗 , . . . , 𝑛𝐿〉 if 𝑛 𝑗 = 1
0 if 𝑛 𝑗 = 0

(4.7b)

The sign factor in front of the state appears because of the anticommutation relation
and only occurs for fermions.
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4.1 Model Hamiltonians
This project studies the question, if or to what extent any generic Hamiltonian, can be
brought to a banded form, which is identi�able with a banded random matrix, while
preserving the few-body structure of physical observables. This hypothesis, which is
outlined in Chapter 3, is analyzed numerically with a model Hamiltonians, which, in
the easiest form, can be formulated using hard-core bosons or spinless fermions. Both
options are closely related, yet di�erent as explained in the following. The Hamil-
tonian is de�ned on a one-dimensional lattice of 𝐿 sites and contains a kinetic term
de�ned by the nearest neighbor (NN) and next-to-nearest neighbor (NNN) hopping
amplitudes 𝑡1 and 𝑡2 and an interaction term, which describes a NN and NNN repul-
sive density-density interaction proportional to strengths 𝑉1 and 𝑉2 (𝑉1,𝑉2 ≥ 0).
Although the models seem basic with only hopping between close sites and a simple
form of interaction, it features a gapless super�uid phase for 𝑉2 < 2 (and 𝑡1 = 𝑉1 = 1)
and a gapped insulator phase for 𝑉2 > 2 with the critical point at 𝑉2 = 2 (Zhuravlev
et al. 1997). This richness coupled with its simplicity is why it has become paradig-
matic in exact diagonalization studies. The version, which is considered in this work,
is also discussed e. g. in Refs. Rigol (2009a) and Santos and Rigol (2010b) in the context
of quantum chaos and thermalization. It is given in general operators 𝑎†𝑗 and 𝑎 𝑗 by

𝐻 = − 𝑡1
𝐿∑︁
𝑗=1

(
𝑎†𝑗+1𝑎 𝑗 + 𝑎

†
𝑗𝑎 𝑗+1

)
− 𝑡2

𝐿∑︁
𝑗=1

(
𝑎†𝑗+2𝑎 𝑗 + 𝑎

†
𝑗𝑎 𝑗+2

)
+𝑉1

𝐿∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+1 − 1

2

)
+𝑉2

𝐿∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+2 − 1

2

)
. (4.8)

The Hamiltonian in Eq. (4.8) has the property that it conserves the total number of
particles, because the creation and annihilation operators appear in each term each
either once or twice (see also Section 4.3.1). Other properties depend on the type of
the fundamental particles, the boundary conditions and system parameters. They are
discussed in more detail in the following sections.

4.1.1 Hardcore boson model
If the fundamental particles are hardcore bosons, i. e. the creation and annihilation
operators are 𝑏†𝑗 and 𝑏 𝑗 , respectively, the model is called the hardcore boson model
(abbreviated as HCB). For this model two di�erent boundary conditions are discussed:
periodic boundary conditions and open boundary conditions.

Hardcore bosons model with periodic boundary conditions

If the boundary conditions are assumed to be periodic, i. e. 𝑏†𝑗+𝐿 = 𝑏†𝑗 (abbreviated as
PBC) the Hamiltonian takes on a form, which has already been studied extensively in
Refs. Rigol (2009a,b); Rigol and Santos (2010); Santos and Rigol (2010a,b) (and supple-
mentary material). In the following, the energy scale is set by �xing 𝑡1 = 1 and𝑉1 = 1,
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if not mentioned otherwise.
If 𝑡2 = 0 and 𝑉2 = 0, the Hamiltonian is integrable through the Bethe ansatz (Bethe
1931). Therefore, the terms proportional to 𝑡2 and 𝑉2 are also called the integrability
breaking terms. For 𝑡2 = 0 and 𝑉2 < 2 the model describes a Luttinger liquid and
features a metal-insulator transition at 𝑉 crit

2 = 2 and half-�lling (Des Cloizeaux and
Gaudin 1966; Yang and Yang 1966). It is found that in the metallic phase the ground
state is a gapless super�uid, whereas it is a gapped charge-density-wave insulator for
𝑉2 ≥ 2 (Zhuravlev et al. 1997). The critical value depends on the �lling, such that the
metal-insulator transition shifts to higher values of 𝑉1 and 𝑉2 for smaller �llings and
disappears completely otherwise (e. g. for 𝑁 = 𝐿/3, 𝑉1 < 3 and 𝑉2 > 0) (Zhuravlev
et al. 1997; Schmitteckert andWerner 2004). In its generic form with 𝑡2 > 0 and𝑉2 > 0,
the system is more complicated and additional phases can appear (Schmitteckert and
Werner 2004).
The hard-core boson model has been veri�ed to ful�ll the ETH numerically (Santos
and Rigol 2010a). In particular, the study of localization measures has been used in this
model, mostly to study the degree of complexity of energy eigenstates in a particular
basis. Santos and Rigol (2010b) have suggested that the smoothness of the localization
measures of the overlaps 〈𝜙𝑖 |𝐸𝑛〉 for a �xed 𝑛 over all basis states 𝑖 might serve as
an indicator for quantum chaos. In particular, it has been shown that the localization
measures vary depending on the size of 𝑉2. If 𝑉2 = 0, the system is integrable and the
localization measures �uctuate for neighboring eigenstates heavily as expected (San-
tos and Rigol 2010b). For 𝑉2 > 0, but not too large, there is a smooth behavior with
respect to the energy of the eigenstates showing delocalization in the center of the
spectrum. On the other hand, if 𝑉2 is very large, bands are formed and the localiza-
tion measures signal delocalization in the momentum basis. With periodic boundary
conditions the Hamiltonian in Eq. (4.8) becomes invariant under translations, which
allows for the decomposition of the Hilbert space into di�erent crystal momentum sec-
tors (see Section 4.3.1). Other symmetries of the Hamiltonian are the space inversion
or re�ection symmetry, if the total momentum is 𝑘 = 0 or 𝑘 = 𝜋 , and the particle-hole
exchange symmetry at half-�lling, i. e. 𝑁 = 𝐿/2 (see Section 4.3.1 and Section 4.3.1).
If 𝑡2 = 0, the hardcore bosonmodel can bemapped onto the spinless fermionmodel (see
Section 4.1.2) via the Jordan-Wigner transformation 𝑏†𝑗 = 𝑒𝑖Φ𝑗𝑐†𝑗 , 𝑏 𝑗 = 𝑒−𝑖Φ𝑗𝑐 𝑗 , where
the phase Φ 𝑗 = 𝜋

∑ 𝑗−1
𝑙=1 𝑐

†
𝑙
𝑐
𝑙
depends on all occupation numbers left of the current po-

sition (Jordan andWigner 1928; Lieb et al. 1961). It is obvious that this "Jordan-Wigner
string" does not change the densities 𝑛 𝑗 , it introduces, however, a phase factor due to
the hopping over the boundary. One �nds that

𝐻HCB = − 𝑡1
𝐿−1∑︁
𝑗=1

(
𝑐†𝑗 𝑐 𝑗+1 + 𝑐

†
𝑗+1𝑐 𝑗

)
− 𝑡1

(
𝑒𝑖Φ𝐿−1𝑐†𝐿𝑐1 + 𝑐

†
1𝑒

−𝑖Φ𝐿−1𝑐𝐿

)
+𝑉1

𝐿∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+1 − 1

2

)
+𝑉2

𝐿∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+2 − 1

2

)
= 𝐻SLF + 𝑡1

(
±1 ∓ 𝑒𝑖𝜋 (𝑁𝑓 −1)

) (
𝑐†𝐿𝑐1 + 𝑐

†
1𝑐𝐿

)
(4.9)
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The sign in front of the 1 indicates the fermionic boundary conditions of the SLFmodel,
where ’+’ means PBC and ’−’ means APBC, and the sign in front of the exponential
depends on the boundary conditions of the HCB model, where ’−’ means PBC and ’+’
means APBC. The mapping is valid, if the second term in Eq. (4.9) vanishes, which
hence depends on the boundary conditions of both models. If the same boundary con-
ditions are imposed on both models, i. e. both have either PBC or APBC, the number
of fermions 𝑁 𝑓 needs to be odd. Likewise, if the boundary conditions are di�erent and
𝑁 𝑓 is even, the mapping is also ful�lled. In other words, if 𝑁𝑏 = 𝑁 𝑓 is odd, one can
assume identical boundary conditions, e. g. both have PBC, whereas for 𝑁𝑏 = 𝑁 𝑓 even
the boundary conditions need to be di�erent.
Although the Jordan-Wigner transformation identi�es the Hamiltonians with each
other and even shows that their spectra is identical in the thermodynamic limit, ob-
servables, which depend on o�-diagonal terms, di�er in general (e. g. the momentum
distribution function in Section 4.2.1).
Finally, it is possible to relate the HCB model to the XXZ model, which describes spin-
1/2 degrees of freedom on a lattice. Since a spin at site 𝑗 is either up (𝑆𝑧𝑗 = ↑) or down
(𝑆𝑧𝑗 = ↓), it can be mapped to the occupation number representation with a trivial
version of the Holstein-Primako� transformation (Holstein and Primako� 1940). It is
given as

𝑆𝑧𝑗 = 𝑛 𝑗 − 1/2 (4.10a)
𝑆+𝑗 = 𝑆𝑥𝑗 + 𝑖𝑆

𝑦
𝑗 = 𝑏

†
𝑗 (4.10b)

𝑆−𝑗 = 𝑆𝑥𝑗 − 𝑖𝑆𝑦𝑗 = 𝑏 𝑗 (4.10c)

with the usual spin-�ip operators 𝑆+𝑗 and 𝑆−𝑗 . Since spins on di�erent lattice sites com-
mute, spin-1/2 degrees of freedom are naturally related to hardcore bosons instead of
fermions, for which a Jordan-Wigner transformation would su�ce. With the trans-
formation in Eq. (4.10) it is straightforward to map the HCB Hamiltonian to a generic
XXZ chain as de�ned by Santos et al. (2012a) (but now with PBC) by setting 𝑡1 = −𝐽/2,
𝑉1 = 𝜇𝐽 , 𝑡2 = −𝜆𝐽/2 and𝑉2 = 𝜆𝐽 𝜇. This corresponds to a HCB model, where 𝑡2 = −𝑉1/2
and 𝑉2 = 𝜇𝑉1.
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Hardcore boson model with open boundary conditions

Another possibility for the hardcore boson model is to impose open-boundary con-
ditions (OBC). In that case, the Hamiltonian remains basically the same and only the
sums are adjusted to not go around the boundary, e. g. the NNN-contribution runs
only from 𝑗 = 1 to 𝑗 = 𝐿 − 2. Moreover, since the chain is open, one cannot simply
exploit the translation invariance. Therefore, it is required to break this symmetry in
order to avoid degeneracies. This is done by adding a small on-site potential propor-
tional to 𝜖 on only one lattice site (chosen to be on the �rst site). This also destroys the
space inversion symmetry. The Hamiltonian, which is described and studied in Ref.
Santos et al. (2012b), then reads

𝐻 = 𝜖
(
𝑛1 − 1

2

)
− 𝑡1

𝐿−1∑︁
𝑗=1

(𝑏†𝑗𝑏 𝑗+1 + 𝑏
†
𝑗+1𝑏 𝑗 ) − 𝑡2

𝐿−2∑︁
𝑗=1

(𝑏†𝑗𝑏 𝑗+2 + 𝑏
†
𝑗+2𝑏 𝑗 )

+𝑉1
𝐿−1∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+1 − 1

2

)
+𝑉2

𝐿−2∑︁
𝑗=1

(
𝑛 𝑗 − 1

2

) (
𝑛 𝑗+2 − 1

2

)
. (4.11)

It is planned to use this model in a future study.

4.1.2 Spinless fermion model
The system de�ned via interactions and hoppings as in Eq. (4.8) can be �lled with
spinless fermions, as well. If the fundamental particles are spinless fermions, i. e. the
creation and annihilation operators are 𝑐†𝑗 and 𝑐 𝑗 , respectively, the model is called the
spinless fermion model (abbreviated as SLF). For this model the boundary conditions
are assumed to be periodic, i. e. 𝑐†𝑗+𝐿 = 𝑐

†
𝑗 (abbreviated as PBC).

The SLF model shares most of its properties with its HCB counterpart in Section 4.1.1:
it features the translational, space inversion and particle-hole exchange symmetry and,
if 𝑡2 = 𝑉2 = 0, it is Bethe integrable (Yang and Yang 1966).
Furthermore, if 𝑡2 = 0, the Jordan-Wigner transformation as de�ned in Section 4.1.1
can be inverted such that the spinless fermion version of Eq. (4.8) can be mapped to
its hardcore boson counterpart. If 𝑡2 > 0, this mapping changes to a di�erent type of
hardcore boson model. In addition, this destroys the particle-hole exchange symme-
try, which is present in the hardcore boson case for any 𝑡2.
Another di�erence is that although some observables in the fermionic case like the ki-
netic or interaction energy can be matched to their HCB analogue, other observables
like the momentum distribution function strongly depend on the fermionic anticom-
mutation sign and behave therefore di�erently (see also Section 4.2). The results for
this model, however, are not included here.
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4.2 Observables
The observables need to be set up in the same basis as the initial Hamiltonian in order
to be properly transformed into a new basis. Therefore, it is required that they have the
same symmetries as the Hamiltonian (see Section 4.3.1). Two natural observables are
the kinetic energy𝐾 and the interaction energy 𝐼 . While the �rst is de�ned as the non-
interacting "hopping" part of the Hamiltonian, the latter consists of the remainder, i. e.
the terms proportional to𝑉1 and𝑉2. They are both local observables, in the sense that
they do not describe long-range hoppings or interactions on the lattice. They di�er
in the fact that the kinetic energy is a one-body observable, whereas the interaction
energy is a two-body observable. Together with the momentum distribution function
and the density-density correlation structure factor, which are non-local one-body and
two-body observables, this set represents the �rst choice to cover aspects of generic
observables.

4.2.1 Momentum distribution function
The momentum distribution function 𝑛(𝑘) is the Fourier transform of the one-particle
correlation operator 𝜌𝑙𝑚 = 𝑐†

𝑙
𝑐𝑚 and a non-local one-body observable. Sometimes, it

is also called mode occupation, because it measures what modes are occupied or not.
The operator, which is often measured in time-of-�ight experiments with ultracold
atomic gases (see Section 1.3), is de�ned as

𝑛(𝑘) = 𝑎†
𝑘
𝑎
𝑘
= 1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)𝑎†
𝑙
𝑎𝑚 . (4.12)

However, since𝑛(𝑘) has a designated direction, it does not commute with the re�ection
operator. In order to use the re�ection symmetry, the observable, which is analyzed
in Chapter 5, combines 𝑛(𝑘) and 𝑛(−𝑘) to

𝑛sym(𝑘) = 1
2(𝑛(𝑘) + 𝑛(−𝑘)). (4.13)

In this work only 𝑛(𝑘 = 0) is analyzed, such that the symmetrization is not necessary.
In the case of hardcore bosons, the symmetrized observable also commutes with the
particle-hole exchange operator as can be seen in Appendix A.4.1.

4.2.2 Density-density correlation structure factor
The density-density correlation structure factor is a two-body non-local operator,
which is given by the Fourier transform of the density-density correlation operator
𝑁𝑙𝑚 = 𝑛𝑙𝑛𝑚 , i. e. the product of two occupation number (density) operators at posi-
tions 𝑙 and𝑚. In mathematical terms it reads

𝑁 (𝑘) = 1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)𝑛𝑙𝑛𝑚 . (4.14)
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4.3 Exact diagonalization

This section contains the procedure of implementing a �nite lattice Hamiltonian with
a binary local Hilbert space on a computer. Since the number of states grows exponen-
tially with the system size, i. e. with ∼ 2𝐿 , it is, in general, not feasible to study lattices,
which are larger than ∼16 sites. One way to circumvent this is to use all available
symmetries to split the Hilbert space into smaller parts. Each sector is then de�ned by
a set of quantum numbers and can be studied independently. This procedure, which is
described in the following section and more detailed in Appendix A, leads to the basis,
which is summarized in Section 4.3.2.

4.3.1 Symmetries

A symmetry in quantum mechanics is de�ned to be a transformation, which does not
change the outcome of a measurement. In this context, this requires the symmetry
generating operator to commute with the Hamiltonian and to be unitary. One can
then �nd a simultaneous eigenbasis, which allows the break up of the entire Hilbert
space into sectors of the corresponding set of commuting operators. Each sector is
identi�ed by a set of corresponding quantum numbers. If the basis is changed into
one, which takes into account all symmetries, the independent blocks become small
in contrast to the full Hilbert space. As a result, it becomes possible to perform the
continuous unitary transformation �ow on each block each represented by a di�erent
matrix.
The usage of symmetries in combination with exact diagonalization is a widespread
technique, e. g. when studying the Eigenstate Thermalization Hypothesis in di�er-
ent lattice systems (Rigol 2009a; Santos and Rigol 2010b; Rigol and Srednicki 2012;
Santos et al. 2012b). In many cases, however, not all, but only some symmetries of the
Hamiltonian are used, e. g. one considers only the translational symmetrywhile break-
ing or ignoring the space inversion symmetry (parity) and the particle-hole exchange
symmetry (by not considering half-�lling and a momentum sector with 𝑘 6= 0). As a
consequence, the size of the Hamiltonian (dimension of the biggest symmetry sectors)
remains rather huge for lattice sizes like 𝐿 = 20 and 22. For the previously mentioned
works this is not a problem, though, since it is only required to diagonalize the Hamil-
tonian once to obtain all the necessary information (eigenvalues and -vectors).
In this work the goal is to band-diagonalize the Hamiltonian with the �ow equa-
tion method which requires many recurrent matrix-matrix multiplications, which are
costly for large matrices. It is, of course, desirable to make statements about systems
with lattice sizes as large as possible. Preferably, the sizes are comparable to the ones
considered in the literature. In order to achieve that all possible symmetries are taken
into account to reduce the size of the symmetry blocks as far as possible. Another rea-
son is that the �ow does not di�erentiate between degenerate states, i. e. o�-diagonal
matrix elements will remain persistent, since matrix elements decay approximately
with ∼ exp

(−𝐵(𝐻𝑖𝑖 − 𝐻 𝑗 𝑗 )2
)
(see below).

The symmetries are the conservation of particle number (total spin) and the invari-
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ance under lattice translations, space inversion (or re�ection) and the particle-hole
exchange (spin-�ip). In the following part it is explained in detail how the symmetries
of the systems are used to reduce the e�ective Hilbert space dimension signi�cantly.
It is based on the recipe provided by Sandvik (2010).

Particle number conservation

The �rst simpli�cation is that the particle number given by

𝑁 =
𝐿∑︁
𝑗=1
𝑛 𝑗 (4.15)

is conserved by the Hamiltonian, i. e. [𝐻, 𝑁 ] = 0 (for XXZ model: the number of
particles is interpreted to be the number of ↑-spins, such that one can de�ne the derived
quantity named magnetization 𝑀 = 2𝑁 − 𝐿). As it turns out, the fact that the total
particle number does not change is directly visible from the expression, which de�nes
the Hamiltonian: The kinetic energy part describes the hopping of particles, i. e. a
particle is annihilated at some site and created at another. Since the interaction part
only counts neighboring particles, the total number of particles is entirely untouched.
Mathematically speaking, this constant of motion re�ects the 𝑈 (1)-symmetry of the
Hamiltonian, which can be seen bymultiplying the creation and annihilation operators
in the Hamiltonian by a phase factor, i. e. (𝑎†𝑗 , 𝑎 𝑗 ) → (𝑒𝑖𝜙𝑎†𝑗 , 𝑒−𝑖𝜙𝑎 𝑗 ). It follows that the
full Hamiltonian splits into di�erent particle number (magnetization) sectors, which
do not interact with each other. This is why the �rst simpli�cation is to use the basis,
where all states belong to the subspace of the Fock spacewith a chosen particle number
𝑁 (or magnetization).

Translational symmetry

Amajor reduction of complexity happens by exploiting the translational symmetry of
the Hamiltonian, if periodic boundary conditions (PBC), i. e. 𝑎†𝐿+1 = 𝑎†1 , are imposed.
The translational symmetry means that the Hamiltonian remains unchanged, if all
operators are shifted according to (𝑎†𝑗 , 𝑎 𝑗 ) → (𝑎†𝑗+1, 𝑎 𝑗+1). In other words, it is invariant
under translations and commutes with the translation operator T , which shifts the
lattice sites by one to the right:

T |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 = 𝑠𝑛𝐿T |𝑛𝐿, 𝑛1, . . . , 𝑛𝐿−1〉 . (4.16)

The sign factor 𝑠T = (−1)(𝑁−1) only appears, if the particles are fermions and ensures
that the state remains normal ordered when a fermion moves across the (periodic)
boundary. It will introduce the sign, which is needed to hop the fermion over the
remaining 𝑁 − 1 fermions to the leftmost site. It is important to notice that 𝑠T does
not show up, if 𝑛𝐿 = 0. Moreover, if 𝑁 is odd, the hopping fermion permutes 𝑁 − 1
times, which is then an even number, such that it is always 1. Therefore, in order to
make the calculation easier in the case of fermions, one could use an odd number of
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fermions in the system to return to the hardcore boson case (see Section 4.1.1). Finally,
it is clear that T is unitary, because the scalar product of two arbitrary states remains
the same, if the basis is shifted for both states equally, i. e. 〈T𝜑 |T𝜓 〉 = 〈𝜑 |𝜓 〉.
In order to �nd the eigenbasis one can show1 that 𝐿 shifts by 1 return the state to itself,
hence T 𝐿 = 1. It follows that the eigenvalues of T are all lying on the unit circle and
that the eigenvectors |𝑎(𝑘)〉 are de�ned by

T |𝑎(𝑘)〉 =𝑒𝑖𝑘 |𝑎(𝑘)〉 (4.17)

where 𝑘 = 2𝜋
𝐿
𝑚 and 𝑚 ∈ Z. (4.18)

The values for𝑚 are chosen to be −𝐿
2 < 𝑚 ≤ 𝐿

2 for 𝐿 even, such that 𝑘 ∈ (−𝜋, 𝜋], and
−𝐿−1

2 ≤ 𝑚 ≤ 𝐿−1
2 for 𝐿 odd, such that 𝑘 ∈ (−𝜋, 𝜋 ). The variable 𝑘 is interpreted as

(crystal) momentum, because it is possible to de�ne the momentum operator Π, which
generates the translations and ful�lls 𝑒𝑖Π = T (Essler et al. 2005).
Finally, it remains to be shown that the translation operator commutes with the Hamil-
tonian, i. e. [𝐻,T ] = 0. Only then the eigenbasis of T can be used as a simultaneous
eigenbasis of both the translation operator and the Hamiltonian. Since the transforma-
tion of the Hamiltonian with the translation operator just induces a shift in the indices
(see Eq. (A.3) in Appendix A.1), it is straight forward to realize that a simple renaming
of the indices together with the periodic boundary conditions map the Hamiltonian
onto itself. Thus, it follows that the Hamiltonian indeed splits up into di�erent mo-
mentum sectors each with a basis set identi�ed by the momentum 𝑘 . The calculation
of the expression for this set, i. e. |𝑎(𝑘)〉, yields Eq. (A.4) and is described in more de-
tail in Appendix A.1. Numerically, the Hamiltonian is implemented in matrix form,
which elements are determined by the action of 𝐻 on a basis momentum state |𝑎(𝑘)〉
as explained in Appendix A.1.2.

Re�ection symmetry

The re�ection symmetry (sometimes called space inversion symmetry) describes the
transformation of a spatial coordinate into its mirror image by �ipping its sign. The
de�ning operator is the parity operatorP, which swaps the positions from 𝑗 → 𝐿− 𝑗+1.
It is given as:

P |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 = 𝑠P |𝑛𝐿, 𝑛𝐿−1, . . . , 𝑛1〉 . (4.19)

with the fermionic sign factor 𝑠P = (−1)𝑁 (𝑁−1)/2. It is clear that the action of P2 re-
turns a state to itself (𝑠2P = 1, because 𝑁 (𝑁 − 1) is always even), which means that the
eigenvalues must be 𝑝 = ±1. Furthermore, P is unitary, because the scalar product
between two arbitrary states does not change, if both basis are re�ected with respect
to the boundary.

1In the case of fermions there are 𝑁 sign factors, which each yield a minus sign such that the overall
sign factor will be (−1)𝑁 (𝑁−1), which is always 1.
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In order to use the re�ection symmetry in combination with the translational symme-
try, one needs to �nd a simultaneous eigenbasis for both T and P. It is not possible to
simply take the eigenbasis of the translation operator, though, because the two sym-
metry operators do not generally commute. This can be seen from

PT |𝑛1, . . . , 𝑛𝐿〉 =P𝑠𝑛𝐿T |𝑛𝐿, 𝑛1, . . . , 𝑛𝐿−1〉 = 𝑠𝑛𝐿T 𝑠P |𝑛𝐿−1, . . . , 𝑛1, 𝑛𝐿〉
=T †𝑠P |𝑛𝐿, . . . , 𝑛1〉 = T †P |𝑛1, . . . , 𝑛𝐿〉 ,

i. e. PT = T †P. However, for the eigenstates with momenta 𝑘 = 0 and 𝑘 = 𝜋 , which
do not have a designated direction, both operators do commute. This is the motivation
to construct semi-momentum states by combining positive and negative 𝑘-blocks by
both adding (𝜎 = 1) and subtracting (𝜎 = −1) states with ±𝑘 from another. As a re-
sult, one �nds semi-momentum2 states |𝑎(𝑘, 𝑝)〉, for which P |𝑎(𝑘, 𝑝)〉 = 𝑝 |𝑎(𝑘, 𝑝)〉 and
[P,T ] = 0 holds. Finally, it remains to show that [𝐻,P] = 0. A complete derivation is
given in part A.2.

Particle-hole symmetry

At half-�lling, i. e. 𝑁 = 𝐿/2, an even number of lattice sites 𝐿 and no NNN hopping
(i. e. 𝑡2 = 0) the systems can feature the particle-hole symmetry, i. e. the Hamiltonian
is invariant under the transformation, which exchanges 𝑎†𝑗 → (−1) 𝑗𝑎 𝑗 and vice-versa.
The minus sign is only present in the case of fermions and assures the correct order
of the terms. The action on a Fock state is simply

Z |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 = |1 − 𝑛1, 1 − 𝑛2, . . . , 1 − 𝑛𝐿〉 , (4.20)

because the sign factor can be determined to be 1 (see Appendix A.3).

4.3.2 Full representation basis and matrix elements
The �nal basis depends on the combination of symmetries, which are taken into ac-
count. The Hamiltonian is complex, if only the translational symmetry is considered
as can be seen in Eq. (A.13). If all symmetries are taken into account, the �nal basis is
chosen such that a basis state is given by all translations, space inversions and particle-
hole exchanges (if applicable) and all combinations thereof of a chosen reference state
|𝑎〉:

|𝑎𝜎 (𝑘, 𝑝, 𝑧)〉 = 1√︁
𝐿𝜎𝑎

𝐿−1∑︁
𝑟=0

𝐶𝜎𝑘 (𝑟 )(1 + 𝑝P)(1 + 𝑧Z)T 𝑟 |𝑎〉 (4.21)

The action of this state on an operator 𝑂 , which commutes with all symmetry opera-
tors is then

𝑂 |𝑎𝜎 (𝑘, 𝑝, 𝑧)〉 = 1√︁
𝐿𝜎𝑎

𝐿−1∑︁
𝑟=0

𝐶𝜎𝑘 (𝑟 )(1 + 𝑝P)(1 + 𝑧Z)T 𝑟𝑂 |𝑎〉 (4.22)

2In the following no distinction is made between the semi-momentum 0 < 𝑘 < 𝜋 and the conven-
tional crystal momentum 𝑘 = 0, 𝜋 , such that 0 ≤ 𝑘 ≤ 𝜋 .
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and therefore de�ned by the action on the reference state𝑂 |𝑎〉. Generally, the opera-
tors have the form

𝑂 =
𝐿−1∑︁
𝑠=0

𝑜𝑠, (4.23)

where𝑜𝑠 only acts on the lattice site 𝑠 and𝑜𝑠=0 contains the part, which does not change
|𝑎〉, at all.

T𝑚P |𝑎〉 6= |𝑎〉 T𝑚Z |𝑎〉 6= |𝑎〉 T𝑚PZ |𝑎〉 6= |𝑎〉 𝑐 = 1
T𝑚P |𝑎〉 = |𝑎〉 T𝑚Z |𝑎〉 6= |𝑎〉 T𝑚PZ |𝑎〉 6= |𝑎〉 𝑐 = 2
T𝑚P |𝑎〉 6= |𝑎〉 T𝑚Z |𝑎〉 = |𝑎〉 T𝑚PZ |𝑎〉 6= |𝑎〉 𝑐 = 3 (4.24)
T𝑚P |𝑎〉 6= |𝑎〉 T𝑚Z |𝑎〉 6= |𝑎〉 T𝑚PZ |𝑎〉 = |𝑎〉 𝑐 = 4
T𝑚P |𝑎〉 = |𝑎〉 T𝑚Z |𝑎〉 = |𝑎〉 T𝑚PZ |𝑎〉 = |𝑎〉 𝑐 = 5

𝐿𝜎𝑎 = 2𝐿2
𝑅𝑎𝑔𝑘

×



1 𝑐 = 1
1 + 𝜎𝑝 cos(𝑘𝑚) 𝑐 = 2
1 + 𝑧 cos(𝑘𝑚) 𝑐 = 3
1 + 𝜎𝑝𝑧 cos(𝑘𝑚) 𝑐 = 4
(1 + 𝜎𝑝 cos(𝑘𝑚))(1 + 𝑧 cos(𝑘𝑛)) 𝑐 = 5

(4.25)

The matrix elements are then calculated to be

〈𝑏𝜎𝑗 (𝑘, 𝑝, 𝑧)|𝑂 𝑗 |𝑎𝜎 (𝑘, 𝑝, 𝑧)〉 = 𝑜 𝑗 (𝑎)(𝜎𝑝)𝑞 𝑗𝑧𝑔 𝑗
√︄
𝐿𝜏
𝑏 𝑗

𝐿𝜎𝑎


cos(𝑘𝑙 𝑗 ) 𝑐 = 1, 3
cos(𝑘𝑙 𝑗 )+𝜎𝑝 cos(𝑘(𝑙 𝑗−𝑚))

1+𝜎𝑝 cos(𝑘𝑚) 𝑐 = 2, 5
cos(𝑘𝑙 𝑗 )+𝜎𝑝𝑧 cos(𝑘(𝑙 𝑗−𝑚))

1+𝜎𝑝𝑧 cos(𝑘𝑚) 𝑐 = 4
(4.26)

〈𝑏−𝜎𝑗 (𝑘, 𝑝, 𝑧)|𝑂 𝑗 |𝑎𝜎 (𝑘, 𝑝, 𝑧)〉 = 𝑜 𝑗 (𝑎)(𝜎𝑝)𝑞 𝑗𝑧𝑔 𝑗
√︄
𝐿𝜏
𝑏 𝑗

𝐿𝜎𝑎


− sin(𝑘𝑙 𝑗 ) 𝑐 = 1, 3
−𝜎 sin(𝑘𝑙 𝑗 )+𝑝 sin(𝑘(𝑙 𝑗−𝑚))

1−𝜎𝑝 cos(𝑘𝑚) 𝑐 = 2, 5
−𝜎 sin(𝑘𝑙 𝑗 )+𝑝𝑧 sin(𝑘(𝑙 𝑗−𝑚))

1−𝜎𝑝𝑧 cos(𝑘𝑚) 𝑐 = 4
(4.27)
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4.4 Measures for localization
The hypothesis of this work is that observables retain their few-body property, where
the Hamiltonian appears to be drawn from an ensemble of banded random matrices.
“Few-bodiedness” is a di�erent concept than “locality (in a speci�c basis)” and only
quanti�able through the comparison of di�erent lattice sizes. A few-body observable
is de�ned in Section 2.2.2 and means an observable, where all contributing terms are
𝑛-body operator with 𝑛 being not extensive with respect to the system size 𝐿, i e. 𝑛 �
𝐿 (D’Alessio and Polkovnikov 2013). This property can be veri�ed by analyzing the
scaling of “locality measures” over lattice size. A locality measure is usually a quantity
that addresses states. It measures how many states of a chosen basis are required to
describe the state entirely. If the number is small, the state is said to be local with
respect to the chosen basis. Observables can be completely local in one basis and
delocalized in another, e. g. the kinetic energy is local in momentum space, whereas it
is delocalized in the spatial basis. However, by analyzing the localization in a speci�c
basis over di�erent lattice sizes, it is possible tomeasure howmuch of the Hilbert space
is required to correctly express the observable. If the scaling shows that a constant or
growing fraction of the Hilbert space is occupied, then the observable is de�ned to
not have a few-body structure. In other words, if the locality measure does not scale
extensively with respect to the lattice size, the observable is considered to be of the
few-body type. In this sense, the “few-bodiedness” can be understood as “locality in
the Hilbert space”, which is why the term “locality” is used.
In the following two measures for localization are presented. They are generalized to
quantities that measure the locality of observables.

4.4.1 Inverse participation ratio
One important tool to measure the localization of a state with respect to a given basis
is the participation ratio. It is given by the sum over the entire Hilbert space of all
the overlaps of the state with a basis state to the power 4. Historically, it was �rst
introduced for the study of atomic vibrations by Bell and Dean (1970). Nowadays,
its inverse, the inverse participation ratio (IPR), is chosen more often to quantify the
spreading of a state over a basis (Edwards and Thouless 1972; Wegner 1980; de For-
crand 2007).
The inverse participation ratio (IPR) in the classical sense is a measure for how local-
ized a state |𝜓 〉 is with respect to a chosen basis |𝑖〉. The usual de�nition reads

IPR :=

∑
𝑖
|〈𝑖 |𝜓 〉 |4

(∑
𝑖
|〈𝑖 |𝜓 〉 |2)2 (4.28)

where the sum runs over the entire Hilbert space. This de�nition, which also works for
unnormalized states |𝜓 〉, simpli�es to the known form IPR = ∑

𝑖 |〈𝑖 |𝜓 〉 |4 for normalized
states. The IPR attains its maximal value 1, if |𝜓 〉 exactly matches a single basis state.
Hence, this value describes perfect localization. Contrarily, if |𝜓 〉 is spread over all
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basis states evenly, i. e. delocalizes entirely, |〈𝑖 |𝜓 〉 |= 𝐶 where 𝐶 denotes a constant,
the IPR becomes minimal with 1/𝐷 , where 𝐷 = dim(H ) denotes the corresponding
Hilbert space dimension.
The traditional de�nition of the IPR in Eq. (4.28) considers states, however it is possible
to extend this de�nition to work with operators. The IPR for an operator 𝑂 in matrix
form is de�ned via its matrix elements 𝑂𝑖 𝑗 = 〈𝑖 |𝑂 | 𝑗〉 in a speci�c basis |𝑖〉 to be

IPR(𝑂 𝑗 ) :=

∑
𝑖
|𝑂𝑖 𝑗 |4

(∑
𝑖
|𝑂𝑖 𝑗 |2)2

. (4.29)

Again, the denominator assures proper normalization. This can be done for all indices
𝑗 , i. e. over the entire spectrum yielding a full picture of the localization at di�erent en-
ergies. The IPR for operators behave analogously to the traditional IPR. The maximal
value of the IPR is 1 and occurs, if only one |𝑂𝑖 ′ 𝑗 |> 0 while |𝑂𝑖 𝑗 |= 0 for all other 𝑖 6= 𝑖′.
Thus, this situation corresponds to a perfect localization of the operator. Generally,
localization means that only very few basis states are needed to describe the operator
correctly. In a physical picture this means that the operator does not mix the states in
the chosen basis much and that the eigenstates of𝑂 are a superposition of only a few
basis states. Like in the previous case, the minimal value is the reciprocal dimension
of the Hilbert space dim(H )−1 and can only be reached if all 𝑂𝑖 𝑗 are equal in size, i. e.
if |𝑂𝑖 𝑗 |= 𝐶 where 𝐶 describes a constant. Physically, this situation describes the delo-
calization of the operator over all basis states.
The IPR of random numbers distributed according to the GOE is given by 𝐷/3 and
o�ers the comparison to yet another important case (Zelevinsky et al. 1996). The IPR
is often used in to probe the localization, mostly to study the localization in the inte-
grable (mean-�eld) basis or in the momentum basis (Santos and Rigol 2010b; Rigol and
Santos 2010; Santos and Rigol 2010a).

4.4.2 Shannon entropy
The Shannon entropy is another quantity, which is sometimes used to measure the
localization of states in a speci�c basis |𝜙 𝑗 〉:

𝑆𝛼 =
𝐷∑︁
𝑗=1

|〈𝜙 𝑗 |𝜓𝛼〉|2ln|〈𝜙 𝑗 |𝜓𝛼〉|2 (4.30)

It is 𝑆GOE ∼ ln(0.48𝐷𝑘 ) for a random matrix from the GOE. The de�nition for observ-
ables can be done as

𝑆𝑖 = −
𝐷∑︁
𝑗=1

|𝑂𝑖 𝑗 |2∑
𝑗
|𝑂𝑖 𝑗 |2 ln

|𝑂𝑖 𝑗 |2∑
𝑗
|𝑂𝑖 𝑗 |2 (4.31)

The values of the Shannon entropy are in away reciprocal to the IPR, because a small 𝑆𝑖
indicates localizationwith the extreme case of full localization, i. e. only one element at
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𝑆𝑖 = 0. On the other hand, if 𝑂𝑖 𝑗 = 𝐶 , for all 𝑗 , one �nds that 𝑆𝑖 = ln𝐷 and the system
displays perfect delocalization. In some cases the IPR and the Shannon entropy are
combined into the “structural entropy” 𝑆str = 𝑆 − ln IPR (Santos and Rigol 2010a; Pipek
and Varga 1992). This is summarized in Table 4.1.

Measure localized random matrix delocalized
IPR 1 3/𝐷 1/𝐷
Shannon entr. 0 ln (0.48𝐷) ln𝐷

Table 4.1: Extrema values for the measures for delocalization. The value for a random
matrix is in between fully localized and delocalized (𝐷 denotes the dimension of the
corresponding Hilbert space) (Izrailev 1990; Zelevinsky et al. 1996).

4.5 Implementation of the �ow equation method
This section describes the algorithm to solve the �ow equation with the Wegner-
Wilson-Glazek generator (WWG), given by Eq. (3.1) and Eq. (3.2), numerically. In ad-
dition, some details of the implementation are provided.
The straightforward way to solve these equations numerically would be a 4+1-order
(or even 8th-order) Runge-Kutta (RK) solver with an adaptive stepsize based on the
Dormand-Prince method (Press et al. 2007; Dormand and Prince 1980). After each in-
tegration step 𝐻 (𝐵) is used to compute the unitary matrix𝑈 (𝐵) via Eq. (3.2). Although
the error of an 𝑛th-order RK solver grows with O(ℎ𝑛+1), the method su�ers from other
di�culties and drawbacks (Savitz and Refael 2017). One problem is that simple RK-
algorithms lose the unitarity property of 𝑈 over the course of the �ow. This leads to
a growing error, until 𝐻 (𝐵) does not obey the similarity relation anymore (to a given
precision).
Another problem is the so-called "sti�ness" of theWWG-�ow: Any o�-diagonalmatrix
element decays exponentially depending on the di�erence of its respective diagonal
matrix elements. It follows that o�-diagonal matrix elements where the diagonal cor-
respondents are close by rotate out only after an exponentially long �ow. One way to
circumvent the slow decay is to implement other �ows like the uniform tangent decay
�ow as developed by Savitz and Refael (2017). Although this algorithm represents an
alternative method to understand the main questions of this project, this work is solely
using the WWG-�ow.

4.5.1 Algorithm
The �rst problem concerning the loss of unitarity can be circumvented by choosing
a speci�cally designed algorithm, which preserves the unitarity (Shadwick and Buell
1997). The group of integrators, which does that, are called unitary integrators and
will be explained in the following (Savitz and Refael 2017). The algorithm focuses on
breaking down the �ow to small integration steps and approximating each of them
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independently (Shadwick and Buell 1997). This basically corresponds to simply taking
the �rst-order forward Euler integrator. Therefore, the �ow is restricted to a very small
rotation from 𝐵 → 𝐵 + ∆𝐵 (∆𝐵 � 1), i. e.

𝐻 (𝐵 + ∆𝐵) = 𝑒∆𝐵𝜂(𝐵)𝐻 (𝐵)𝑒−∆𝐵𝜂(𝐵). (4.32)

Accordingly, the unitary transformation in Eq. (3.23) is given by

𝑈 (𝐵 → 𝐵 + ∆𝐵) = 𝑇𝐵 exp
(∫𝐵+∆𝐵

𝐵
d𝐵′𝜂(𝐵′))

)
≈ exp (∆𝐵 𝜂(𝐵))) , (4.33)

because𝜂(𝐵′) is assumed to be constant and equal to the initial value𝜂(𝐵) in the interval
[𝐵, 𝐵 + ∆𝐵]. Instead of assuming that 𝜂 is constant, one can also include higher order
terms from the Taylor expansion about 𝐵, which is given by

𝜂(𝐵′) ≈ 𝜂(𝐵) + ¤𝜂(𝐵)(𝐵′ − 𝐵) + 1
2 ¥𝜂(𝐵)(𝐵

′ − 𝐵)2 + O((𝐵′ − 𝐵)3) (4.34)

where ¤𝜂 and ¥𝜂 denote the �rst and second derivative of 𝜂 with respect to 𝐵. After
inserting the higher order terms into Eq. (4.34) one �nds

𝑈 (𝐵 → 𝐵 + ∆𝐵) =𝑇𝐵 exp
(∫𝐵+∆𝐵

𝐵
d𝐵′(𝜂(𝐵) + ¤𝜂(𝐵)(𝐵′ − 𝐵) + 1

2 ¥𝜂(𝐵)(𝐵
′ − 𝐵)2

)
=𝑇𝐵 exp

(
𝜂(𝐵)∆𝐵 + 1

2 ¤𝜂(𝐵)∆𝐵
2 + 1

6 ¥𝜂(𝐵)∆𝐵
2
)

≈ exp (∆𝐵𝜁 (∆𝐵)) (4.35)

where the 𝐵-ordering was approximated by a Magnus expansion and

𝜁 (∆𝐵) = 𝜂(𝐵) + 1
2 ¤𝜂(𝐵)∆𝐵 + 1

12(2 ¥𝜂(𝐵) − [𝜂(𝐵), ¤𝜂(𝐵)])∆𝐵2. (4.36)

Finally, it remains to compute the exponential of a matrix in Eq. (4.35) which can be
quite di�cult (Moler and Van Loan 2003). The simplest method which just sums the
(Taylor) series expansion terms is disadvantageous, because it creates truncation er-
rors and can lead to dangerous "cancellation catastrophies" which origin in the chosen
arithmetic of the computer (cf. "round-o� errors") (Moler and Van Loan 2003).
Another method is the "scaling and squaring" algorithm which is most widely used in
linear algebra libraries. It basically splits the exponential into 𝑒𝐴 = (𝑒𝐴/𝑗 ) 𝑗 with 𝑗 being
the smallest even number for which | |𝐴| |/𝑗 < 1. Then, 𝑒𝐴/𝑗 is computed with either
the series expansion method or the Padé approximation (e. g. expmat-function in
armadillo or expm-function in MATLAB) (Blanes et al. 2009).
The Padé approximation of order (𝑝, 𝑞) is de�ned by

𝑒𝐴 ≈ 𝑅𝑝𝑞(𝐴) = [𝐷𝑝𝑞(𝐴)]−1𝑁𝑝𝑞(𝐴) (4.37)
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with

𝑁𝑝𝑞(𝐴) =
𝑝∑︁
𝑗=0

(𝑝 + 𝑞 − 𝑗 )!𝑝!
(𝑝 + 𝑞)! 𝑗 ! (𝑝 − 𝑗 )! 𝐴

𝑗 (4.38)

and

𝐷𝑝𝑞(𝐴) =
𝑞∑︁
𝑗=0

(𝑝 + 𝑞 − 𝑗 )!𝑞!
(𝑝 + 𝑞)! 𝑗 ! (𝑞 − 𝑗 )! (−𝐴)

𝑗 . (4.39)

It can be used whenever | |𝐴| | is not too big. Since ∆𝐵 is small and thus | |∆𝐵𝜂 | |, the
exponential is simpli�ed using the corresponding (2,2)-Padé approximant (Blanes et al.
2009):

𝑒∆𝐵𝜁 (𝐵) ≈ 12 + 6∆𝐵𝜁 (∆𝐵) + ∆𝐵2𝜁 2(∆𝐵)
12 − 6∆𝐵𝜁 (∆𝐵) + ∆𝐵2𝜁 2(∆𝐵) . (4.40)

4.5.2 Implementation and technical details
This section deals with the implementation and its technical details.
It explains how a Fock state as in Eq. (4.6) with a binary local Hilbert space is rep-
resented in the exact diagonalization formalism. Since all considered systems have a
binary local (site) basis, i. e. 0 or 1 (or spin up or down), it is possible to identify a state
with an integer 𝑠 over its representation in the dual basis as a bitstring via

|𝑛1, 𝑛2, . . . , 𝑛𝐿〉 ∼= [𝑛1𝑛2 . . . 𝑛𝐿]2 =
𝐿∑︁
𝑗=1
𝑛 𝑗2𝐿− 𝑗 = 𝑠, (4.41)

e. g. 𝑐†2𝑐
†
3𝑐

†
5𝑐

†
7 |0〉 = |0110101〉 = [1010110]2 = 86. It is important to note that the bit-

string ordering is de�ned to have the reverted order of the site ordering (from right to
left). This convention is chosen in order to connect the binary integer representation,
which starts at the right end to the lattice site numbering, which is from left to right.
Any operation on the particles or spins like creation, annihilation or swapping of parti-
cles or spins can then be implemented straightforwardly. A swapping operation on the
state above like (𝑐†4𝑐3+𝑐

†
3𝑐4) |0110101〉 = (𝑐†4𝑐3 +𝑐

†
3𝑐4)𝑐

†
2𝑐

†
3𝑐

†
5𝑐

†
7 |0〉 = 𝑐†2𝑐†4𝑐3𝑐†3𝑐†5𝑐†7 |0〉+0 =

𝑐†2𝑐
†
4𝑐

†
5𝑐

†
7 |0〉 = |0101101〉 is translated into a bitswap [10101↔10]2 = [1011010]2 = 90. It

becomes more di�cult, though, if the hopping is over the boundaries, and there is an
even number of fermions. Then an additional minus sign might be needed in order to
reorder the creation operators in the correct way. Since for this work, only the results
for hard-core bosons are presented, this is not discussed here.

Technical details

In order to bene�t from a simpli�ed syntax the library Armadillo is used, but just as a
wrapper (Sanderson and Curtin 2016; Eddelbuettel and Sanderson 2014). The written
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code of the programs used to produce and analyze the data, as well supplementary
�les and scripts can be accessed via https://gitlab.gwdg.de/stefan-kehrein-condensed-
matter-theory/nils-abeling/�ow_equation_project. Processed data and data used for
the plots can be found under https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-
theory/nils-abeling/�ow_equation_data. To get access to any of the repositories please
ask Stefan Kehrein via email to stefan.kehrein@theorie.physik.uni-goettingen.de.

https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/nils-abeling/flow_equation_project
https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/nils-abeling/flow_equation_project
https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/nils-abeling/flow_equation_data
https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/nils-abeling/flow_equation_data
mailto:stefan.kehrein@theorie.physik.uni-goettingen.de


Chapter 5

Results

This chapter contains the main results of this thesis. It is divided into di�erent parts.
The �rst part addresses the study of the structure and statistical properties of the
Hamiltonian over the �ow. The second part contains the discussion of the behavior of
the four observables de�ned in Section 4.2 and the projection operator over the �ow
and treats the question, whether the few-body structure of the observables is retained
throughout the �ow (see Chapter 3).
In addition, most results obtained from the directed regular �ow (“Wegner �ow”),
which is de�ned by the �ow equation in Eq. (3.2), are compared with the results from a
random unitary transformation. This means that the Hamiltonian and the observables
at 𝐵 = 0 are transformed with the random unitary matrix 𝑈rand into a random basis,
i. e. 𝐻rand = 𝑈rand𝐻 (𝐵 = 0)𝑈 †

rand and likewise for an observable.
The model is the hardcore boson model as given in Eq. (4.8) with parameters 𝑡 = 1.0,
𝑉1 = 1.0, 𝑉2 = 0.96 (non-integrable) and periodic boundary conditions. The next-to-
nearest-neighbor interaction parameter 𝑉2 is chosen to allow for a comparison with
the literature in Santos and Rigol (2010a) and to be able to study the behavior in steps
of 0.12 (not shown here). The system sizes are chosen to be 𝐿 = 16 (usually depicted
with the color green), 18 (red), 20 (blue) and 22 (purple) and the number of bosons is
set that the system is half-�lled. For 𝐿 = 22 only the symmetry sectors 𝑘 = 0, 𝜋 are
taken into account, because the other symmetry sectors are computationally not fea-
sible. A pre�ow basis transformation is the initial transformation before the regular
(“Wegner”) �ow. Two di�erent pre�ow basis transformations are discussed: the �rst is
the transformation into the “integrable” part of the Hamiltonian (“mean-�eld basis”).
It is de�ned as the basis, which diagonalizes the integrable version of the Hamilto-
nian, i. e. where 𝑡 = 𝑉1 = 1.0 and 𝑉2 = 0. The second pre�ow basis transformation is
the momentum basis, which is the basis where the kinetic part of the Hamiltonian is
diagonal, i. e. 𝑡 = 1 and 𝑉1 = 𝑉2 = 0. The results for the latter case are presented in
Section 5.3.
The algorithm to solve the �ow equations is the stable unitary integrator as described
in Section 4.5. The stepsize is chosen to be ∆𝐵 = 0.001 and constant.
In the following, matrices are depicted with a logarithmic color scale from negative
(blue) to positive (red) with white indicating matrix elements smaller than 10−7. This
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ensures that o�-diagonal matrix elements, which can be several orders of magnitude
smaller than the dominating diagonal matrix elements, are still visible. The position
of the matrix elements is usually depicted depending not on their indices (𝑚,𝑛), but on
the “eigenenergy per site” (𝐸𝑚/𝐿, 𝐸𝑛/𝐿). All small rectangles, which represent the ma-
trix elements in the plot, are enlarged until they touch a neighboring site. Therefore,
there are larger rectangles in areas where the spectrum is less dense, i. e. close to the
borders. A matrix element can be thought of as residing in the center of a rectangle.
This decision allows comparisons of di�erent system sizes, because the energy per site
(or energy density) is the de�ning quantity.
The results in the following chapters are mostly depicted in two groups: the symmetry
sectors, where 𝑘 = 0 or 𝑘 = 𝜋 and the other ones, i. e. 𝑘 6= 0, 𝜋 . The other quantum
numbers like the parity 𝑝 and particle-hole symmetry 𝑧 are all considered, such that
the group of 𝑘 = 0, 𝜋 contains the combinations (𝑘, 𝑝, 𝑧) = (0,±1,±1) and (𝜋,±1,±1),
while 𝑘 6= 0, 𝜋 consists of (1, 1,±1), . . . (𝐿/2 − 1, 1,±1) (see Section 4.3.1). This is done,
because the dimensions of the Hilbert spaces of the two groups do di�er strongly ( Ta-
ble D.1). Since a state can delocalize more in a larger Hilbert space, this is a common
technique (Santos and Rigol 2010a).

5.1 Flow and statistics of the Hamiltonian
This part addresses the Hamiltonian matrix, which is the main protagonist of the �ow.
The following analysis begins by explaining how and why a basis transformation is
performed before the �ow. After that, the level statistic of the Hamiltonian is shown in
order to demonstrate that the system with the chosen parameters indeed describes a
non-integrable model. This part is followed by the statistical analysis in Section 5.1.5,
which examines, in what ways the Hamiltonian can be regarded as a random matrix
in a di�erent basis.

5.1.1 Pre-�ow basis transformation into the integrable basis
Initially, the Hamiltonian is set up in the spatial basis as described in Section 4.3.2 and
is shown in Fig. 5.1a. One immediately notices that it is only sparsely populated on
the o�-diagonals with a dominating main diagonal. This, of course, results from the
interaction terms being diagonal in the spatial basis, whereas the hopping terms can
lead to an overlap of di�erent states. Before the �ow starts the Hamiltonian matrix is
transformed to a di�erent basis. This is done to match the requirements in Deutsch’s
argument (see Section 2.2.5), who assumed in Eq. (2.25) that

𝐻 = 𝐻0 + 𝐻1,

where 𝐻0 describes the integrable part and 𝐻1 is the interaction, which creates the
“quantum ergodicity” (Deutsch 1991). There are three important basis: the spatial or
site basis, which becomes important when studying spatial localization. It is the ba-
sis, which is used to set up the Hamiltonian with the Exact Diagonalization technique.
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Figure 5.1: The pre-�ow basis transformation into the integrable basis. (a) TheHamil-
tonian matrix for a hardcore boson system with 𝑡 = 1, 𝑉1 = 1 and 𝑉2 = 0.96 of the
symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1) and a lattice size 𝐿 = 18. On both axis the index is
mapped to the corresponding “eigenenergy per site”, i. e. 𝑛 → 𝐸𝑛/𝐿. Only few non-
vanishing values can be seen compared to the size of the matrix, which shows the
sparsity of the Hamiltonian in the spatial basis. Due to the negative sign in front of
𝑡 in Eq. (4.8) all o�-diagonal matrix elements are negative. (b) The Hamiltonian ma-
trix after the transformation to the mean-�eld basis, which diagonalizes the integrable
Hamiltonian that only contains the terms (𝑡 = 𝑉1 = 1, 𝑉2 = 0). The matrix is densely
populated. All o�-diagonal matrix elements are by construction proportional to 𝑉2.

Other options are themomentum basis, which is relevant if𝑉2 is large, or the integrable
basis, i. e. the basis formed by the eigenstates of the Hamiltonian when𝑉2 = 0 (Santos
and Rigol 2010b). In this case, the model becomes Bethe integrable, such that the basis
can be denoted as the “mean-�eld” basis (Santos and Rigol 2010a). It is assumed to be
the best choice to distinguish global from local behavior (Zelevinsky et al. 1996). This
integrable basis is the one, which is mainly used in this work. After a transformation
the entire Hamiltonian is sorted in the way, which sorts the main diagonal in ascend-
ing order, to both match the conditions in Deutsch’s argument and to provide a more
precise understanding when studying the exponential decay of each matrix element
(see below). The resulting Hamiltonian for the integrable pre�ow basis is depicted in
Fig. 5.1b and marks the start of the �ow (𝐵 = 0). Due to the transformation in the
integrable basis, it follows that all o�-diagonal matrix elements must be proportional
to the next-to-nearest neighbor (NNN) interaction𝑉2. Since it breaks the integrability,
it is also known as the “integrability breaking” term.
In Section 5.3 the analysis is repeated, but this time for the �ow starting in the mo-
mentum basis, i. e. the basis where the hopping part of the Hamiltonian (proportional
to 𝑡1) is diagonal (Santos and Rigol 2010a). It follows that the o�-diagonal part is only
given by the density-density interaction (NN and NNN, proportional to 𝑉1 and 𝑉2, re-
spectively).
In matrix plots two variables shown are the �ow variable 𝐵 and Λfeq/Λ. The latter
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Figure 5.2: (a) Spectrum of the Hamiltonian. Since the �ow equation applies unitary
transformations, the spectrum does not change. The center area (i. e. with 20% cuto�
on both ends) between the arrows is the bulk of the spectrum, which the following
analysis focuses on. (b) Statistic over the spacings of the energy eigenvalues (level
statistic) in the center of the spectrum (20% cuto� at both ends). The degree of the
�tting polynomial of the unfolding procedure (see Appendix C.1) is chosen to be 13 and
the binsize is 0.1. The histogram agrees with theWigner surmise (solid red line), which
approximately describes the level statistic of a matrix from the GOE. This also serves
as the indicator for the non-integrability (see Section 2.2.4). If a system is integrable,
it is expected to follow the Poissonian prediction (blue dashed line).

denotes the fraction of the matrix that still needs to be “rotated out” by the �ow and
is explained in the next Section (see also Section 3.2.2).

5.1.2 Spectrum and level statistic
This part addresses spectral properties of the Hamiltonian. By analyzing the spec-
trum it is possible to check, whether the implemented �ow equation method is indeed
unitary, and to specify the “bulk region”, which is the region that is studied in the
consecutive parts. Fig. 5.2a shows the spectrum (i. e. the sorted eigenvalues) for the
given Hamiltonian for 𝐿 = 22 in the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1). By comparing
the spectra for 𝐵 = 0 and 𝐵 = 60, one immediately notices that the �ow conserves
the full spectrum and is thus unitary. A more detailed check reveals that the level of
error in the center of the spectrum is approximately < 2 × 10−12 for the chosen �ow
integration step size. The �gure also shows two black arrows, which de�ne the border
of the “bulk region”. This is the section of the spectrum where the eigenvalues are
densely distributed without any sudden jumps or other anomalies. For the statistical
analysis, this region, i. e. the central 60%, is analyzed. The right �gure 5.2b shows the
level statistics of the bulk. It approaches the Wigner-Dyson surmise and indicates the
non-integrability due to the non-vanishing next-to-neighbor (NNN) interaction called
level-repulsion (see Section 2.2.4).
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5.1.3 Progress of �ow and convergence
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Figure 5.3: Di�erences between the diago-
nal elements 𝐷𝑖 of the sorted Hamiltonians
in Fig. 5.6 and the corresponding eigenval-
ues 𝐸𝑖 for di�erent points in the �ow.
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Figure 5.4: The Hamiltonian matrix as in
Fig. 5.1b, when transformed by a random
unitary matrix, for the symmetry sector
(𝑘, 𝑝, 𝑧) = (1, 0, 0) and 𝐿 = 20.

The focus of this section is to examine the �ow inmore detail. The aim is to understand
how the �ow changes the Hamiltonian and to measure the e�ects of the convergence.
The action of the �ow on the Hamiltonian of the hardcore boson model is depicted in
Fig. 5.6. The initial matrix is the Hamiltonian in the sorted integrable basis, such that
the diagonal is increasing in size. Using Eq. (3.14) a ratio Λfeq/Λ is de�ned, which can
be interpreted as a measure for the approximated fraction of the matrix that still needs
to be eliminated (“rotated out”) before reaching the purely diagonal Hamiltonian. The
Λfeq can be identi�ed via Eq. (3.14) to the reduced energy bandwidth. Using this def-
inition, it is possible to compute lines, which indicate the matrix elements that have
decayed to a chosen fraction of their initial size. In Fig. 5.6 solid (dashed) black lines
are included to indicate a decay to 1/3 (1/100) of the initial value.
When studying the Hamiltonian over the course of the �ow in Fig. 5.6, it is striking
how fast it converges to the diagonal. At 𝐵 = 0.01 (Section 5.1.3), which corresponds
to only 10 integration steps, already more than half of the matrix has been eliminated.
This can be explained by the huge di�erence in the corresponding diagonal matrix
elements, which de�ne a very fast decay, because 𝐻𝑖 𝑗 (𝐵) behaves approximately as
𝐻𝑖 𝑗 (𝐵) ∝ exp(−𝐵(𝐻𝑖𝑖 − 𝐻 𝑗 𝑗 )2) (see Eq. (3.13)). At 𝐵 = 10 less than 1.5% of subdiagonals
have values, which contribute signi�cantly. However, since for a matrix element close
to the main diagonal the di�erence in the diagonal elements is exponentially small,
they take exponentially long to rotate out. The longest �ow that is feasible to reach
numerically is 𝐵 = 100, where the matrix consists of the closest 0.4% of subdiagonals.
Although it is not possible to reach 𝐵 = ∞ from the start of the �ow, it can, however,
be done via diagonalization of the initial Hamiltonian, because the approach is based
on exact diagonalization. In other words, a straight forward diagonalization allows for
the study of the Hamiltonian at 𝐵 = ∞, which is depicted in Section 5.1.3, which is, of



72 Chapter 5. Results

−8
0

8

0 1000 2000𝐷
𝑖(𝑈

ra
nd
)−

𝐸
𝑖

Figure 5.5: Di�erences between 𝐷𝑖 of the sorted Hamiltonian in a random basis in
Fig. 5.4 and the corresponding eigenvalue 𝐸𝑖 .

course, diagonal in its eigenbasis.
Figure 5.6 is ideal to understand that the Wegner �ow has the property of “band-
diagonalization”. A transformation via a random unitary leads to a random Hamil-
tonian, which has a thoroughly di�erent appearance as can be seen in Fig. 5.4. In the
next chapters the results for the Wegner �ow are compared with the transformation
of a true random unitary matrix in order to show the similarities and di�erences.
Since the Hamiltonian 𝐻 (𝐵 = ∞) only consists of the eigenvalues on the diagonal, it
can be concluded that the diagonal matrix elements𝐷𝑛 of the sorted Hamiltonian con-
verge as 𝐷𝑛(𝐵) → 𝐷𝑛(𝐵 = ∞) = 𝐸𝑛 (after sorting). This behavior is studied in Fig. 5.3,
where the di�erence 𝐷𝑖 (𝐵) − 𝐸𝑖 is plotted versus the index of the Hamiltonian matrix
(𝐿 = 20, (𝑘, 𝑝, 𝑧) = (0, 1, 1)). It shows that after 100 integration steps, at 𝐵 = 0.1, the dif-
ference is already smaller than 0.1 in the bulk of the spectrum. At later �ows, though,
when the Hamiltonian is narrowly banded and the remaining subdiagonals are very
close to the diagonal, it becomes expoenentially hard to band-diagonalize further. In
a physical picture, this means that it is hard to eliminate interaction matrix elements,
which only transfer small amounts of energy. Hence, the �ow is not making much
progress, anymore, and the convergence of 𝐷𝑛 → 𝐸𝑛 seems stopped. Since all the
diagonal matrix elements 𝐷𝑛 represent the eigenvalues of the “unperturbed” Hamilto-
nian 𝐻0 in Deutsch’s picture, they are used as a point of reference in a similar way as
Deutsch did. Therefore, one can de�ne the eigenbasis of the unperturbed Hamiltonian
at �ow 𝐵 via𝐻0(𝐵) |𝐷𝑛(𝐵)〉 = 𝐷𝑛(𝐵) |𝐷𝑛(𝐵)〉. If 𝐵 = ∞, the eigenbasis of the current �ow
becomes the eigenbasis of the full Hamiltonian 𝐻 . It follows that the matrix elements
of the full Hamiltonian 𝐻 (𝐵) are given by

〈𝐷𝑚(𝐵)|𝐻 (𝐵)|𝐷𝑛(𝐵)〉 = 𝐷𝑛(𝐵)𝛿𝑚𝑛 + 〈𝐷𝑚 |𝐻1(𝐵)|𝐷𝑛(𝐵)〉 , (5.1)

where 𝐻1(𝐵) denotes the current o�-diagonal part. Since a single point in the �ow
represents a possible Hamiltonian in the picture of Deutsch, the basis |𝐷𝑛(𝐵)〉 is used
in the following part. However, when comparing quantities over �ow, it does not
matter, whether the energy density is considered with respect to 𝐵 = ∞ or 𝐵 < ∞,
because they di�er only by a slight margin.
This observation can be contrasted to the random unitary transformation, where the
di�erence between the eigenvalues and the diagonal is huge (see Fig. 5.5).
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Figure 5.6: The Hamiltonian matrix 𝐻 (𝐵) for parameters 𝑡1 = 1,𝑉1 = 1,𝑉2 = 0.96,
symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1) and lattice size 𝐿 = 18 over the course of the �ow
that started in Fig. 5.1b. The axis have been recasted from (𝑚,𝑛) → (𝐸𝑚/𝐿, 𝐸𝑛/𝐿).
The size of matrix elements is enlarged to its neighboring sites, whereas the value
is unchanged. Each matrix is sorted to give a sorted diagonal before display. Since
the Wegner �ow leads to an approximate exponential decay, the solid (dashed) line
borders the region, which has approximately decayed to 33% (1%) of its initial value at
𝐵 = 0. Similarly, Λfeq/Λ denotes the fraction of the Hamiltonian that still needs to be
diagonalized. At 𝐵 = 10 about 1.4% remains to be diagonalized. The matrix at 𝐵 = 100
is so narrow that it almost looks like the diagonalized Hamiltonian (𝐵 = ∞).
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Figure 5.7: Matrix elements in the window𝑊 = [0, 3] in units of level spacing of
𝐿 = 20, (0, 1, 1). It is (a) symmetry sector (0,1,1) (b) symmetry sector (5,1,1)

5.1.4 Statistical analysis

This part deals with the statistical analysis of the Hamiltonian. In his argument,
Deutsch assumed that the o�-diagonal band consists of identically distributed, inde-
pendent random variables, each with a Gaussian distribution of mean zero and the
variance 𝜎2 (Deutsch 1991). Since the �ow equation create band-diagonal matrices by
construction, the bandedness of the Hamiltonian is already ful�lled. The Gaussianity
of the matrix elements, however, is still to be veri�ed. Although it might be obvious,
it is important to stress that the �ow cannot create true random variables, because it
is deterministic. If the �ow was repeated from the same point with the same condi-
tions and parameters, it would end up at the same point. The only property, one can
hope to �nd, is that the matrix elements are distributed as if they were drawn from
a similar ensemble. In other words, if one was given a banded matrix and it was very
di�cult or impossible to tell that they result from a deterministic �ow equation, one
could reasonably argue that the properties must be close to identical to those of a real
random matrix.
There are two arguments, why this can be expected to be true. The �rst argument
is related to the level statistic, which shows a form predicted by the Wigner-Dyson
distribution (see Fig. 5.2b). Since the Wigner-Dyson or Gaussian Orthogonal ensem-
ble describes the level statistic of a typical random matrix under certain conditions,
one could assume that other “typical” matrices with the same level statistic have sim-
ilar properties (like the Gaussianity). However, it is necessary to be careful, because
among the matrices in the GOE, there are also matrices like the Hamiltonian in the
spatial basis or in the eigenbasis, which feature the same statistic (they are all con-
nected via unitary transformations, i. e. the de�nition of the GOE). These matrices are
rare, though, and can be assumed to have a vanishing measure.
The second argument is that the �ow equation de�nes a set of highly coupled non-
linear di�erential equations, which create a very complicated deterministic path. From
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Figure 5.8: Mean and variance of all matrix elements in a window over �ow for di�er-
ent lattice sizes in the symmetry sector 𝑘 = 0, 𝜋 . The window𝑊 is chosen to contain
the elements of up to 3 times the average di�erence of neighboring eigenvalues of
𝐿 = 20 in symm. sector (0,1,1), i. e. approximately [0, 0.0125]. Therefore, for this lattice
size and in this sector, the window comprises roughly the 3 �rst subdiagonals. For
larger system sizes it will be more, for smaller less. A similar window in a di�erent
symmetry sector is depicted in Fig. 5.7a.

a numerical point of view, this is expressed in the fact that one matrix element at �ow
𝐵 > 0 is the result of thousands of large matrix-matrix multiplications, which mix
matrix elements in a manner, which is, although not analytically, but e�ectively un-
predictable. The central limit theorem then suggests that the matrix elements at later
�ows are normally distributed.
Due to the construction of the �ow, o�-diagonal matrix elements will shrink exponen-
tially at points far away from the main diagonal. Therefore, it is necessary to look at
regions parallel or close to parallel to the main diagonal, because in those regions the
exponential fallo� is approximately identical for all matrix elements. If the region is
de�ned too large, a substantial number of elements will have fallen o� by several mag-
nitudes compared to the largest ones. This would include a huge number of “zeros”,
which in�uence the statistic heavily. As a consequence, it is a more promising idea to
consider regions that have a similar behavior with respect to �rst-order perturbation
theory. Equation (3.13) suggests that one can group the matrix elements, whose dif-
ferences of the corresponding main diagonal elements |𝐻𝑖𝑖 (𝐵) − 𝐻 𝑗 𝑗 (𝐵)| are within a
chosen range [𝑠𝑙 , 𝑠𝑢]. The boundaries of the region can be de�ned using the average
spacing of diagonal matrix elements with the distance 𝑑 = |𝑖 − 𝑗 | in their indices via

𝑠𝑑 (𝐵) :=
1

𝑁elem − 𝑑
𝑁elem−𝑑∑︁
𝑖=1

|𝐻𝑖,𝑖 (𝐵) − 𝐻𝑖+𝑑,𝑖+𝑑 (𝐵)|. (5.2)
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By construction one can approximate that 𝑠𝑑 ≈ 𝑑𝑠1 and thus choose a window, which
is de�ned to be the set of matrix elements

𝑊 (𝑚,𝑛) = {𝐻𝑖 𝑗 (𝐵)|𝑚𝑠1 < |𝐻𝑖𝑖 (𝐵) − 𝐻 𝑗 𝑗 (𝐵)|< 𝑛𝑠1} (5.3)

with 𝑛 > 𝑚. As a consequence, the corresponding decay factor is within
[𝑠𝑚, 𝑠𝑛] = [𝑒−𝐵𝑛2𝑠21 , 𝑒−𝐵𝑚2𝑠21 ]. The thinnest window possible using this de�nition
is when 𝑛 =𝑚 + 1 and contains matrix elements mostly found around the subdiagonal
𝑚. The analysis in the following parts is done over subdiagonals and windows of
o�-diagonal matrix elements. In order to be able to compare di�erent lattice sizes,
the window is in most cases de�ned in units of the di�erence between neighboring
energy eigenstates of 𝐿 = 20 in the sector (0, 1, 1). If the window is given in absolute
numbers, the location of the matrix elements depend strongly on the system size.
However, this ensures that matrix elements are included in the statistic, which have
experienced the same decay, and which yields comparability between di�erent lattice
sizes.
Figure 5.7 shows the window [0, 3] in units of 0.004167, i. e. [0, 0.012501] for two
di�erent symmetry sectors for di�erent �ows. The dimension of the matrix of sector
(5,1,1) is approximately twice as large, which is why there are more elements in
Fig. 5.7b. The matrix elements show the expected shrinking over the �ow. Futher-
more, a broad estimation by eye suggests that they become more even in size. Since
there is no apparent reason, why positive or negative numbers should be preferred,
it is expected that values are normal distributed with a vanishing mean. This can be
studied in Fig. 5.8a, which shows the mean over the �ow for di�erent system sizes for
the same window in all symmetry sectors 𝑘 = 0, 𝜋 . While the smaller lattice sizes still
show �uctuations, the larger sizes like 𝐿 = 20 and 𝐿 = 22 feature a vanishing mean.
In the neighboring plot in Fig. 5.8b contains the corresponding variance over �ow.

5.1.5 Histograms
In order to study the “the degree of randomness” and “normality” the data sets are
analyzed with two di�erent methods: visual (also graphical) tests and a normality in-
dicator.
First of all, a useful and necessary method, which cannot be neglected, is to use the
studied eye to study the form of di�erent histograms over the data (Mohd Razali and
Yap 2011). Even though this could seem to be exposed to a subjective interpretation,
this prevents the data from showing numerical artifacts. Together with an appropriate
�t to di�erent distribution functions this already provides a lot of information. The
visual inspection and a consecutive estimation of the “degree of normality” is needed
to get a �rst impression and to rule out numerical anomalies, which cannot be detected
by later methods (D’Agostino 1986). The histograms are �tted to several standard dis-
tribution functions: the Gaussian distribution, the logistic distribution, which is more
heavy-tailed than the Gaussian, an exponential to probe for the exponential decay, and
a Lorentzian, which is more sharply peaked than the others. In addition, the Gaussian
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is plotted, which would be predicted by the mean and variance of the data set (orange).
The histogram for a band of the closest 1% of the subdiagonals is depicted in Fig. 5.10
for symmetry sectors 𝑘 = 0, 𝜋 and in Fig. 5.11 for the other sectors. At very early �ows
(Appendix B) the histogram shows an overhang of small or zero values, which can be
understood by the small number of matrix-matrix multiplications that have already
been performed. Numerically, it is expected that speed with which normal distribution
is reached grows with the system size, because larger matrices mean more elements
that mix. Since the distribution is sharply peaked, the Lorentzian is the �rst, which
�ts adequately at 𝐵 = 1 in Appendix B. Even later in �ow, there seems to be a moment,
when the exponential is the best �t (Appendix B). At very late �ows, in Appendix B,
the distribution is close to a logistic or Gaussian distribution. In this case, also the
Gaussian, which is de�ned by the mean and the variance of the data set, is starting to
be a useful guide. Overall, it can be stated that the behavior is complicated. Between
the points in the �ow the distribution changes a lot. However, at very large �ows, a
Gaussian can be regarded as a possible candidate. For the other symmetry sector the
behavior is easier to interpret, because much more data is available. The histograms
in Section 5.1.5 seem to follow a normal distribution everywhere. Moreover, the Gaus-
sian de�ned by the data does agree with the histograms, as well. Since more than 2
million data points is a huge number, the next analysis focuses on the small window
𝑊 = [0, 3] (in units of nearest-neighbor eigenenergy di�erence of 𝐿 = 20, (0, 1, 1), see
above). For the small band, where the matrix elements have been particularly chosen
depending on their expected exponential decay, the �ts in Fig. 5.9 seem to be satisfy-
ing, although the data set is much smaller than in Fig. 5.10. The same holds true for
the corresponding analysis in the other symmetry sectors depicted in Fig. 5.12. The
histograms for another window, which is farther from the main diagonal, are depicted
in Fig. B.1 and Fig. B.2. They agree with the previous results.

5.1.6 Normality indicator

After the visual test has not rejected the hypothesis of normal distributed matrix val-
ues, the next step is to use more formal procedures, which means quantities, which
can condense this information, such that it is not required to look at every histogram.
A simple test for normality of a data set with elements 𝑥𝑖 is to calculate the ratio

Γ = |𝑥𝑖 |2/|𝑥𝑖 |2 (5.4)

of the average of the squared elements to the square of the average of the elements
(Geary 1947). If the data is normally distributed with zero mean and standard devia-
tion 𝜎 , the expectation value of the numerator is found to be |𝑥𝑖 |2 = 𝜋

2𝜎
2, whereas the

denominator value is 𝜎2, such that Γ = 𝜋/2 (D’Agostino 1986). It has also seen applica-
tion in condensed matter physics, namely in the veri�cation of the ETH (LeBlond et al.
2019). The plots of Γ over the �ow for di�erent system sizes are depicted in Fig. 5.13. In
Fig. 5.13a for 𝑘 = 0, 𝜋 a clear tendency to 𝜋/2 is visible. However, the �ow seems to be
not far enough, yet, to truly converge to 𝜋/2. It is di�erent, though, for the symmetry
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Figure 5.9: Histograms over the �ow for energy window [0, 0.012501] for the symme-
try sectors 𝑘 = 0, 𝐿/2 and both other symmetry quantum numbers, i. e. 𝑝 = ±1, 𝑧 ± 1
and lattice size 𝐿 = 20. Each shows the relative frequency over bins of size 0.001.

sectors 𝑘 6= 0, 𝜋 in Fig. 5.13b. There, the picture agrees with the expectation from the
histograms that the set of the large number of data points is normally distributed. In
this case, the value for Γ can be not be distinguished from the corresponding value of
a Hamiltonian transformed via a true random unitary, which is depicted in Fig. B.3.
To use an even more formal procedure, a null hypothesis signi�cance test (NHST) has
been done for di�erent normality tests for the data (Field 2013). The �nding is, how-
ever, that the null hypothesis that the data is normally distributed is rejected almost
all the time, which contradicts the previous �ndings. This is a well-known problem,
though, which is called the “p-value problem” (Lin et al. 2013).
Other alternatives one can use are normal probability plots (Altman and Bland 1995),
but this has not been done here, because it is more important to rule out, whether the
data contradicts normality and this has been done with a high degree of con�dence
(Elliott and Woodward 2007). Finally, it is known that regardless of the true shape, the
distribution of large sets of data always look normal (Field 2013).
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Figure 5.10: Histograms over the �ow for a band comprising the closest 1% of sub-
diagonals for the symmetry sectors 𝑘 = 0, 𝐿/2 and both other symmetry quantum
numbers, i. e. 𝑝 = ±1, 𝑧 ± 1 and lattice size 𝐿 = 20. Each shows the relative frequency
over bins of size 0.001. Initially, the sparsity of the matrix creates a huge overhang
of vanishing matrix elements. The peak then broadens and resembles a Lorentzian
distribution (𝐵 = 1), then an exponential distribution (𝐵 = 10) until it approximates
a Gaussian or a logistic distribution due to the heavy tails. The orange curve shows
the Gaussian that is de�ned by the mean and standard deviation of the corresponding
data set.
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Figure 5.11: Histograms over the �ow for a band comprising the closest 1% of subdiag-
onals for the symmetry sectors 𝑘 6= 0, 𝐿/2, so 𝑘 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and both other
symmetry quantum numbers, i. e. 𝑝 = ±1, 𝑧 ± 1 and lattice size 𝐿 = 20. Each shows the
relative frequency over bins of size 0.001. Initially, the sparsity of the matrix creates a
huge overhang of vanishing matrix elements. The peak then broadens and resembles
a Lorentzian distribution (𝐵 = 1), then an exponential distribution (𝐵 = 10) until it
approximates a Gaussian or a logistic distribution due to the heavy tails. The orange
curve shows the Gaussian that is de�ned by the mean and standard deviation of the
corresponding data set.
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Figure 5.12: Histograms over the �ow for energy window [0, 0.012501] for the sym-
metry sectors 𝑘 6= 0, 𝐿/2 and both other symmetry quantum numbers, i. e. 𝑝 = ±1, 𝑧±1
and lattice size 𝐿 = 20. Each shows the relative frequency over bins of size 0.001.
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Figure 5.13: The Γ-normality indicator for three energy windows in units of 𝑠1 over
the course of the �ow for di�erent lattice sizes and the symmetry sectors (a) 𝑘 = 0, 𝐿/2
and (b) 𝑘 6= 0, 𝐿/2 and all other combinations of symmetry quantum numbers, i. e.
𝑝 = ±1, 𝑧 ± 1. The window contains approximately the closest 3 subdiagonals next
to the main diagonal of the Hamiltonian for 𝐿 = 20. For Gaussian distributed values
it is Γ = 𝜋

2 . It seems that the Γ-value of the data set asymptotically approaches 𝜋/2
from above for 𝑘 = 0, 𝐿/2. For 𝑘 6= 0, 𝐿/2 the value for Γ seems to be converged to
𝜋/2 at 𝐵 = 0 already. The Γ-indicator in the symmetry sectors 𝑘 6= 0, 𝜋 is almost
undistinguishable from the corresponding value of a random unitary transformation
(see Fig. B.3).
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5.2 Localization of observables
This part treats the question whether the few-body structure of observables is retained
over the �ow. In the previous section it was found that the �ow equation can indeed
be used to transform the Hamiltonian into a basis, where its structure and statistical
properties are similar to a banded random matrix. Since the main idea is to justify
Deutsch’s argument, which is closely related to the ETH (see Section 2.2.2), and since
the ETH is believed to hold for few-body observables, it remains to be shown that the
�ow does not destroy the few-body property of observables in order to make a viable
justi�cation of Deutsch’s argument (see Chapter 3). If, however, this transformation
destroyed the few-body property of observables (see Section 4.2) in the sense that they
populated an extensive part of the Hilbert space in the new basis, then it would not be
possible to verify Deutsch’s argument numerically (Chapter 3).
In the following four observables as de�ned in Section 4.2 will be studied. They cover
all combinations from local and non-local, one-body and two-body operators and rep-
resent the class of few-body observables. They are often used in numerical studies
(e. g. by Santos and Rigol (2010a,b)).
To contrast the behavior of the observables another operator is studied, namely the
projection operator P𝐸=0, which is de�ned to be the operator that projects into the
eigenstate with vanishing energy, which is in the bulk of the spectrum. It is de�ned
via

P𝐸=0 := |𝐸 = 0〉〈𝐸 = 0| (5.5)

and can be constructed numerically in the energy eigenbasis, where it is just a single
’1’ on the diagonal. It is then transformed back into the initial basis by the basis trans-
formation that already diagonalizes the Hamiltonian, if written in the initial basis.
When the energy eigenbasis is reached at �ow 𝐵 = ∞, the projector will be completely
localized, because only one element is non-zero. The projection operator commutes
with the Hamiltonian by construction and is therefore conserved, moreover, its projec-
tion onto a certain eigenstate prohibits thermalization in a mathematical sense (Sec-
tion 2.2.2). It has been argued that they are neither few-body nor extensive (D’Alessio
and Polkovnikov 2013). Finally, the properties of the observables over the regular �ow
are also compared to those obtained through a random unitary transformation 𝑈rand
as it has been done in the previous part.
To study the behavior of the few-body property over the �ow two “localization mea-
sures” are used: the IPR and the Shannon entropy (see Section 4.4). However, one
cannot simply calculate the quantity and interpret it, since its value depends on the
chosen basis. In the basis, which diagonalizes an observable, the observable looks fully
localized, whereas it can be more spread out in a di�erent basis, e. g. in the spatial ba-
sis, as can be seen later. Therefore, one can only study “localization” by examining the
scaling over di�erent lattice sizes and by comparing it to the fully localized and delocal-
ized limit (see Section 4.4). The delocalization limit is antiproportional to the Hilbert
space dimension 𝐷 , which grows exponentially with lattice size 𝐿, i. e. 𝐷 ∝ exp(𝐿).
Hence, it is possible to detect exponential growth of the number of the required basis
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Figure 5.14: Interaction energy for 𝐿 = 18 in the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1)
(a) in the spatial basis, (b) at 𝐵 = 0, (c) at 𝐵 = 1 and at 𝐵 = ∞. In the spatial basis the
matrix only consists of diagonal matrix element due to the fact that density operators
cannot change the state they are acted upon. The later progress of the �ow does not
show easily visible developments in the center of the matrix, but only at the edges.

states of an observable by comparing the IPR to the delocalization limit. The oppo-
site point of reference is the localized limit, where only one basis state is needed and
therefore IPR = 1.

5.2.1 Behavior of the observables over the �ow
Before the �ow starts the observables receive a similar treatment as the Hamiltonian,
which means that they are constructed in the same spatial basis and then transformed
using the same basis transformation into the integrable basis. Then, any resorting
of the basis states, which is performed on the Hamiltonian, is also performed on the
observable. This procedure yields an observable (or operator), which is in the basis of
the �ow 𝐵, i. e. 𝑂(𝐵). To improve readibility only the interaction energy is depicted
here, while the other matrices can be found in the appendix showing all observables in
the spatial basis in Fig. B.4, at early �ows in Fig. B.7 and at late �ows in Fig. B.8. If 𝐵 =
∞, the basis is the eigenbasis of the Hamiltonian and the matrix elements 〈𝐸𝑚 |𝑂 |𝐸𝑛〉,
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Figure 5.15: Vertical cuts through Fig. 5.14b at di�erent energies per site 𝐷𝑛/𝐿 (for
better visibility plotted over the indices 𝑛). The two top plots show all the matrix
elements at the lower end (𝐷𝑛/𝐿 = −0.45) and at the low-to-mid (𝐷𝑛/𝐿 = −0.15) part
of the bulk. Very few very large matrix elements dominate the picture. At the center
of the bulk (bottom two plots) the matrix elements become smaller, but the number of
matrix elements, which have an equally large value is higher.

which has been analyzed before (Santos and Rigol 2010a). As far as it can be compared,
the �ndings from the literature agree with the ones here (e. g. Fig. 5.15).
To provide a better understanding of the structure of the observables over the �ow the
interaction energy 𝐼 is depicted in the spatial basis, at 𝐵 = 0, i. e. before the �ow in
the integrable basis, at intermediate �ow 𝐵 = 1 and at 𝐵 = ∞, i. e. in the eigenbasis
of the Hamiltonian. The matrix elements are not plotted with their indices, but over
the corresponding value of the energy per site 𝐸𝑛/𝐿, similar to the Hamiltonian. The
�rst observation, which strikes the eye is that the interaction energy (as well as the
other observables) already takes on a banded matrix form in the integrable basis, i. e.
before the �ow ( Fig. 5.14b). Although one must be careful with the interpretation
using the colored logscale for the matrix values, there are large white corners, which
indicate exponentially small regions creating the band diagonal form. This becomes
more clear, when the observables are compared to the observables in a random basis,
i. e. in the basis, which is reached by a random unitary (see Fig. B.6a).
The localization measures are computed for a chosen column in the sense that they
measure how many basis states are needed in order to express 𝑂(𝐵) |𝑛〉, where |𝑛〉
corresponds to a chosen energy per site 𝐷𝑛/𝐿. For 𝐵 = 0 four vertical cuts are depicted
in Fig. 5.15 for the four values of “energy per site”, which represent the lower end of
the bulk, an intermediate region and the center of the bulk. It is not easy to capture all
the matrix elements in one �gure, because they vastly di�er in size. Therefore, the cuts
are also shown on a logscale in Fig. B.10, as well as for the other observables in Fig. B.9.
The vertical cuts in Fig. 5.15 (see also the logscale plot in Fig. B.10a) show that at 𝐵 = 0
and at the lower end of the bulk (top plot) very few very large matrix elements greatly
outscale themajority of the rest, whichmeans that the basis states at the energy, where
the overlap is large, approximately describe the state 𝑂 |𝑛〉. Moreoever, it is expected
that these cases lead to a large localization, i. e. a large IPR and small Shannon entropy.
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Figure 5.16: The projection operator P𝐸=0 for the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1)
and 𝐿 = 18 for the �ows 𝐵 = 0 and 𝐵 = 10. (a) The dense structure that was present in
the spatial basis (see Fig. B.5) is still visible at 𝐵 = 0, although it appears to have lead
to a strong concentration on the area, where the ’1’ can be seen at 𝐵 = ∞ (The plot for
𝐵 = ∞ is not shown, because a single 1 is not visible.) (b) At late �ows the projection
operator only consists of matrix elements in the vicinity of the projection.

In the bulk however, at 𝐷𝑛/𝐿 = −0.02 and 𝐷𝑛/𝐿 = 0.1, the number of equally large
matrix elements increases, which in turn yields lower values of the localization.
A more detailed analysis shows that the dominating matrix elements are located on
the main diagonal. This can be understood as the consequence of the construction of
the �ow and the fact that the sum of the kinetic and interaction energy is equal to the
Hamiltonian. At late �ows the Hamiltonian is approximately diagonal, such that the
diagonal is very close to the eigenvalues of the system. Therefore, the absolute values
of the Hamiltonian diagonal must be large in size compared to the rest of the matrix.
Since𝐻 = 𝐾 +𝐼 , the main diagonal elements of the kinetic and interaction energy must
also be large in size with their o�-diagonal elements having opposite signs (see also
the IPR plot in Fig. B.12). Now, mathematically speaking, it could be that also the o�-
diagonal elements are large, but this is not to be expected, because both observables
are found to ful�ll ETH in the non-integrable case and therefore have exponentially
small o�-diagonal elements (Santos and Rigol 2010a). The work by Santos and Rigol
(2010a) allows for a comparison of the vertical cuts through the observables here. The
authors study the same observables in the EEV for the identical system at various next-
to-nearest neighbor interaction 𝑉2. For 𝑉2 = 1, which is close to 𝑉2 = 0.96 used here,
and a very large system (𝐿 = 22) they �nd at an energy density of approximately −0.15
that the EEV is extremely sharply peaked with respect to eigenstates, which are close
in energy. This data point can be seen in Fig. 5.15 in the second plot, almost with the
same amplitude, although it is for 𝐵 = 0. However, as will be seen in the next part,
the IPR seems to be stable over the �ow indicating that this data point is related to
the corresponding point in the energy eigenbasis at 𝐵 = ∞. To contrast with results
of the observables with an operator, which has no few-body structure, the projection
operator is analyzed in the next parts, as well. It is shown in Fig. 5.16 and shows a
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convergence to a singular ’1’ at the position of the eigenstate the projection is focused
on (here 𝐸 = 0).

5.2.2 Quantifying localization: IPR and Shannon entropy

This part addresses the analysis of the localization of the observables and the pro-
jection operator. The observation that the observables as depicted in Fig. 5.14 or the
other observables in Fig. B.7 and Fig. B.8 do not change much over the �ow is neither
completely true nor wrong as it shall be explained in the following sections. But even
more so, it is dangerous to deduce from the logscale plot and the very small dots in the
center that a localization measure like the IPR or Shannon entropy as de�ned in Sec-
tion 4.4 is constant everywhere. To study this in more detail the localization measure
is computed for each column like the ones in Fig. 5.15, and plotted vs. the energy per
site, e. g. IPR(𝑛) = IPR(𝐷𝑛/𝐿).

Inverse Participation Ratio IPR

The IPR for the four observables in the symmetry sectors 𝑘 = 0, 𝐿/2 for the early �ows
𝐵 = 0 and 𝐵 = 1 are depicted in Fig. 5.17 and for the late �ows 𝐵 = 10 and 𝐵 = ∞ in
Fig. 5.18. The other plots for the symmetry sectors 𝑘 6= 0, 𝐿/2 can be found in Fig. B.13
and Fig. B.14. The interpretation of the �gures for 𝑘 = 0, 𝜋 and 𝑘 6= 0, 𝜋 is similar,
although the spread of the data points is reduced signi�cantly for the symmetry sectors
𝑘 6= 0, 𝜋 . The better convergence of the symmetry sectors 𝑘 6= 0, 𝜋 in the center of the
spectrum has already been seen in other works, however, for the study of the IPR of
an eigenstate in the momentum basis (Santos and Rigol 2010a).
The black lines denote moving averages of the di�erent system sizes over windows
of approx. 4% of the spectrum (dotted for 𝐿 = 16, dash-dotted for 𝐿 = 18, solid for
𝐿 = 20 and dash-dash-dotted for 𝐿 = 22). An immediate observation of looking at the
overall picture of all 8 plots is that the moving averages of the IPRs of all observables
are robust with respect to the �ow. Even more so, it does not make a big di�erence,
whether the �ow is done or not, because the general behavior is often similar between
𝐵 = 0 (before the �ow) and 𝐵 = ∞ (at the end of the �ow). Besides a better convergence
to the moving average, the IPR of early �ows only di�ers from the IPR at 𝐵 = ∞ in
details, which shall be discussed in the following.

Interaction energy 𝐼 The top row shows the interaction energy and displays an
IPR, which heavily depends on the point in the spectrum that you look at. The ma-
jority of points near the lower end of the bulk of the spectrum have a larger IPR and,
thus, are more localized than at the center of the bulk (in�nite temperature). How-
ever, although the moving averages of the di�erent system sizes do agreely nicely, the
variance around the mean is very large at early �ows. It follows that for a single en-
ergy density 𝐷𝑛/𝐿 the vertical cut can look either very delocalized or localized. The
variance is reduced over the course of the �ow until the well-studied behavior in the
energy eigenbasis (Santos and Rigol 2010a). Since the data points seem to converge
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better the larger the system is, one expects that the IPR varies smoothly with the en-
ergy density in the thermodynamic limit. Finally, it can be seen that the center of the
bulk becomes more delocalized the larger the system is. Later, in Section 5.2.4, a de-
tailed discussion of this scaling is given. If the IPR is analyzed for an entire column
〈𝑚 |𝑂(𝐵)|𝑛〉 without the largest element, it becomes clear that the largest element on
the diagonal de�nes the form of the IPR (see Fig. B.12). Without it the IPR becomes
�at.

Kinetic energy 𝐾 The kinetic energy is very localized at the edges of the spectrum
with a delocalized “dip” in a small region in the center of the bulk. The form of the
IPR is heavily determined by the size of a single very large matrix element that is the
diagonal element (see Fig. B.12b and also Fig. B.10b at 𝐷𝑛/𝐿 = −0.45). Since the matrix
elements in the basis, which sorts the Hamiltonian, are also often sorted (as explained
in Section 5.2.1), the IPR decreases with the shrinking matrix element on the diagonal
(see second row in Fig. B.9b). A detailed analysis of the IPR without the dominating
matrix element con�rms this and yields a �at IPR (parallel to the 𝑥 axis, not shown in
this thesis). In the delocalized bulk section, where the sorted eigenvalues change from
negative to positive, the diagonal matrix element is similar in size to the o�-diagonals,
such that no dominating element is present and the IPR is small (see Fig. B.10b).

Momentum distribution function 𝑛(𝑘 = 0) The IPR of the momentum distribu-
tion function is more independent of where one looks at it. The value of the IPR
indicates that no part of the spectrum is speci�cally localized or delocalized. Overall,
the size suggests a delocalization, which does not change with the system size, hence
hinting at no exponential growth of the occupied Hilbert space (see next section for
the detailed analysis). The spread of the data points seem to reduce like for the other
observables the larger the system is. It is remarkable, however, that the observable dis-
plays a similar behavior in both the integrable and the eigenbasis of the Hamiltonian.
This can be understood as a degree of robustness against unitary transformations.

Density-density structure factor 𝑁 (𝑘 = 𝜋 ) The behavior of the density-density
interaction is similar to the behavior of the momentum distribution function. The IPR
suggests that the observable is delocalized to a certain extent and is very robust with
respect to the present transformations.
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Figure 5.17: The IPR for all observables and a moving average (black) over a window
of size 0.06 (≈ 4% of the spectrum) for the symm. sectors 𝑛𝑘 = 0, 𝐿/2 and an early �ow.
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Figure 5.18: The IPR for all observables and a moving average (black) over a window
of size 0.06 (≈ 4% of the spectrum) for the symm. sectors 𝑛𝑘 = 0, 𝐿/2 and a late �ow.
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The only results from the literature these results for the IPR of the observables can be
compared to is the analysis of the IPR of eigenstates in the momentum basis (Santos
and Rigol 2010a), to the IPR of eigenstates in the integrable basis when 𝑡2 is used as the
integrability breaking term (Santos and Rigol 2010b) or to the same system with dif-
ferent parameters and �lling (Rigol and Santos 2010). For states the IPR is de�ned in a
slightly di�erent way (see Eq. (4.28) in Section 4.4), however the interpretation remains
identical. Santos and Rigol (2010a) have studied the IPR (speci�cally 1/IPR as de�ned
here) for eigenstates in the momentum basis and �nd that the energy eigenstates de-
localize in the center of the spectrum, whereas they are localized at the edges, i. e. in
the low-energy region. Likewise it has been shown by Santos and Rigol (2010b) that
the same behavior holds for the IPR of eigenstates in the integrable basis, if 𝑡2 > 0.96
is used as the integrability breaking term (and not𝑉2 as here). This complexity, i. e. the
delocalization of the eigenstates, in the center of the spectrum in the momentum or
integrable basis, has been proposed to help achieving thermalization along the lines of
Berry’s conjecture (Santos and Rigol 2010b). Their results can be related to the study
of the IPR in this work through the following argument. The observable in the �ow
or initial basis |𝑖〉 is related to the eigenbasis |𝐸𝑛〉 via

〈𝑖 |𝑂 | 𝑗〉 =
∑︁
𝑛,𝑚

〈𝑖 |𝐸𝑚〉 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 〈𝐸𝑛 | 𝑗〉 . (5.6)

Since 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 is strongly peaked for eigenstates close in energy (Santos and Rigol
2010b; Rigol 2009a), a large delocalization of the eigenstates in the chosen basis, as e. g.
observed by Santos and Rigol (2010b), means that 〈𝑖 |𝑂 | 𝑗〉 is very much delocalized, as
well. To see this analytically, one can consider the arti�cial extreme case, where one
assumes the perfect delocalization of the eigenstates |〈𝑖 |𝐸𝑚〉 |∝ 1/𝐶 for all 𝑖 , 𝐸𝑚 in
the center of the spectrum and 𝐶 large and 〈𝐸𝑚 |𝑂 |𝐸𝑛〉 ≈ 𝑂𝑛𝑛𝛿𝑚𝑛 neglecting the o�-
diagonal matrix elements. In this case, it follows that

〈𝑖 |𝑂 | 𝑗〉 ∝ 1
|𝐶 |2

∑︁
𝑛

𝑂𝑛𝑛 (5.7)

would be delocalized in the center of the spectrum, as well. This could be the starting
point for a further analysis. Overall, one can note that observables, which are closely
related to the Hamiltonian and therefore to the eigenstates like the kinetic energy
and the interaction energy, do show delocalization behavior in a related sense to the
behavior that has been observed for the eigenstates in the momentum and integrable
basis.

Projection operator

In the next step, the IPR of the observables is contrasted with the IPR of the projection
operator. The projection operator neither thermalizes nor has a few-body structure
(see Section 2.2 and D’Alessio and Polkovnikov (2013)). The IPR of the projection op-
erator is depicted in Fig. 5.19 and indicates a strong delocalization in the integrable
basis before the �ow (for the other symmetry sectors see Fig. B.16). Over the course
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Figure 5.19: The IPR for the projection operator P𝐸=0 and a moving average (black)
over a window of size 0.06 (≈ 4% of the spectrum) before the �ow (𝐵 = 0) and at 𝐵 = 10
for the symm. sectors 𝑛𝑘 = 0, 𝐿/2.

of the �ow all other matrix elements rotate out leading to a complete localization be-
ginning at the edges (The IPR of vanishing values is de�ned to be 1). The convergence
to a small area around the singular ’1’ at 𝐵 = ∞ (see Fig. 5.16b) does increase the IPR
continuously until the entire matrix is fully localized.

Comparison to random unitary �ow

Finally, the IPR of the four observables and the projection operator over the Wegner
�ow are compared to the IPR in a random basis reached via 𝑈rand. Since a random
unitary transformation yields a random sorting of the basis states, the IPR is expected
to be �at, i. e. to barely depend on the energy per site 𝐷𝑛/𝐿. This can be seen in
Fig. 5.20, which shows the IPR of the interaction energy and the momentum distri-
bution function in a random basis. It turns out that the �atness of the IPR is present
for all observables (see Fig. B.15). How much an observable is delocalized, however,
depends on the observable. The momentum distribution function in Fig. 5.20b and
the density-density structure factor are more localized in the random basis than the
interaction and kinetic energy, although not as much as over the �ow (see Fig. 5.17
and Fig. 5.18). The di�erence of the IPR of the kinetic and interaction energy between
the regular and the random �ow is clearly visible. The scaling analysis in Section 5.2.4
will show, whether the delocalization is truly extensive (i. e. it grows with the Hilbert
space dimension) or not.
The observation that the observables are a�ected by the random unitary transforma-
tion in di�erent ways is surprising, because, without further knowledge, one could
assume that all observables do di�erentiate a random basis from a distinguished basis
like the eigenbasis of 𝐻 (at 𝐵 = ∞) or the integrable basis (at 𝐵 = 0). However, the
�nding that the two observables 𝑛(𝑘 = 0) and 𝑁 (𝑘 = 𝜋 ) demonstrate a high robustness
of the IPR with respect to the underlying basis means that for them already a special
basis like the eigenbasis is only slightly di�erent from a random basis. This is di�erent
for the other two observables, where the IPR’s behavior is completely destroyed. One
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basis (𝑛𝑘 = 0, 𝐿/2)

Figure 5.20: (a) The interaction energy 𝐼 in a random basis and (b) the momentum
distribution function 𝑛(𝑘 = 0). The IPR of the interaction energy takes on a complete
di�erent form compared to the one of the Wegner �ow in Fig. 5.17a. (a) The transfor-
mation into a random basis via random unitary delocalizes the entire observable. The
scaling with respect to the system size is studied later. (b) The momentum distribution
function is robust with respect to the random transformation (see Fig. 5.17e. In that
sense it can be understood of not distinguishing much between the integrable basis,
the energy eigenbasis or a random basis.

explanation for this is that the close relation of the interaction and kinetic energy to
the Hamiltonian de�nes the IPR of the regular �ow. As it has been discussed before,
one �nds that the Hamiltonian maintains a main diagonal, which is very large in size
compared to the o�-diagonal matrix elements throughout the �ow. As 𝐾 and 𝐼 , i. e.
both parts of the Hamiltonian, must add up to yield the large diagonal, it is expected
that the size of the diagonal matrix elements determines large IPRs at the edges of the
spectrum for both 𝐾 and 𝐼 . In a random basis, this property is not required such that
the delocalization can be strong.
The projection operator in the random basis does delocalize strongly (see Fig. B.17).
There is no property, which would suggest a di�erent behavior, because it is already
very much delocalized in the initial integrable basis.

Shannon entropy

The other quantity, which is often used to measure localization, is the Shannon or
information entropy as de�ned in Eq. (4.31) (Santos and Rigol 2010b; Rigol and Santos
2010). It is useful to look at the Shannon entropy, because in combination with the IPR
(sometimes even de�ned together as the quantity structural entropy) both can discover
information, which is unaccessible for the other quantity, especially in the delocalized
region (Santos and Rigol 2010a). It is important to note that the Shannon entropy
ranges between 0 (completely localized) and ln𝐷 (completely delocalized), where 𝐷
denotes the dimension of the Hilbert space (Section 4.4). Broadly speaking, it can be
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interpreted like 1/IPR. As almost all results of the IPR do agree with the results of the
Shannon entropy, they are only brie�y discussed and can be found in the appendix.
The Shannon entropy of the four observables before (𝐵 = 0) and after the �ow (𝐵 = ∞)
are depicted in Fig. B.18 for the symmetry sectors 𝑘 = 0, 𝜋 and in Fig. B.19 for all other
symmetry sectors. The interpretation of the Shannon entropy agrees with the previous
�ndings for the IPR. All observables share the behavior that the spread of the data
points is reduced over the �ow to yield a smooth appearance, which is appropriately
expressed by the moving averages. The values for the Shannon entropy in symmetry
sectors 𝑘 6= 0, 𝜋 are already well converged at 𝐵 = ∞, such that the development over
the �ow is even smaller (Fig. B.19).
The interaction energy at 𝐵 = ∞ displays a very distinct scaling in the upper center
of the bulk of the spectrum, which identi�es a region where the observable becomes
more delocalized over the �ow. This has also been seen in the corresponding IPR plot
in Fig. 5.18b. It grows over the �ow and is studied in detail in the next section.
The same holds true for the kinetic energy, where a thin region in the bulk of the
spectrum scales with the system size, whereas the edges remain localized.
The Shannon entropy of the momentum distribution function and the density-density
structure factor, though, do not change much over the course of the �ow. A behavior,
which has already been seen in the IPR in Fig. 5.17 and Fig. 5.18. Beyond the smaller
broadness of the data points both observables show a slight delocalization in the bulk
of the spectrum.
Also the projection operator P𝐸=0 in Fig. B.21 shows the expected behavior, which is
reciprocal to the behavior for the IPR due to the de�nition of the Shannon entropy.
The Shannon entropy in the random basis displays �at regions like for the IPR, but
this time in a reciprocal way as plateaus.
The important scaling over the lattice sizes is done in Section 5.2.4.

5.2.3 IPR over �ow
The previous Section has shown that both localization measures are not expected to
change much over the �ow. Therefore, it is su�cient to show only the IPR over the
course of the �ow for the interaction energy and the kinetic energy, because in those
cases the changes are largest. To show the development of the IPR the moving average
of the IPR is plotted at di�erent values of “energy per site”. Moreover, the moving
average is rescaled to the value of IPR(𝐵 = 0) of the system 𝐿 = 18 in order to identify
whether di�erent lattice sizes converge to di�erent points. The IPR over the �ow for
the interaction and kinetic energy is shown in Fig. 5.21. The other observables, as
well as the projection operator, show a similar behavior, which is why they are not
provided here. This holds also true for the Shannon entropy.
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Figure 5.21: IPR over �ow for (a) the interaction energy and (b) the kinetic energy
for di�erent values of energy per site 𝐷𝑛/𝐿 in the symmetry sectors 𝑘 = 0, 𝜋 . The
displayed value is the moving average of the IPR in the �gures of the previous section.
All points are rescaled to the value IPR(𝐵 = 0) of the system with 𝐿 = 18 in order to
identify di�erent scalings. The black lines describes the value at the end of the �ow,
i. e. the IPR(𝐵 = ∞). The energies per site 𝐷𝑛/𝐿 = −0.45,−0.15,−0.02 correspond to
the low-end, low-to-mid, center of the bulk of the spectrum. The IPR can be seen to be
quite stable over the course of the �ow. The bad scaling in the left plot for𝐷𝑛/𝐿 = −0.45
results from the energy density to be too low such that the moving average is not well
de�ned (see Fig. 5.18a and Fig. 5.18b).
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5.2.4 Scaling of the localization measures
It is believed that the ETH holds for few-body observables, which are observables that
only contain terms with a limited product of operators (D’Alessio and Polkovnikov
2013). A term can only contain a number of operators, which is not extensive, i. e.,
which is not proportional to the system size. In the following the scaling for both the
IPR and the Shannon entropy is analyzed to detect, whether the Hilbert space that an
observable populates grows extensively or not. Since both measures have a distinct
limit for localization and delocalization, it is possible to compare the numerical
data with these limits. For the IPR the fully delocalized limit is given by 1 over the
Hilbert space dimension 𝐷 of the symmetry sectors, i. e. IPR = 1/𝐷 (the Hilbert
space dimensions are averaged over the included symmetry sectors). In this limit all
elements are identical in size and hence the observable is completely delocalized. The
localized limit occurs when only one element is non-zero, which leads to IPR = 1. For
the Shannon entropy the corresponding limits are given by 0 (localized) and ln(𝐷)
(delocalized) (see Section 4.4). In the following �gures the delocalized (localized) limit
is depicted via a dash-dotted (dashed) line. In addition, one can compare the scaling
to the scaling of a random matrix taken from the GOE, which is known to scale as
3/𝐷 for the IPR and ln(0.48𝐷) for the Shannon entropy (Izrailev 1990; Zelevinsky
et al. 1996) (see also Section 4.4).

Scaling of the IPR

Figure 5.22 shows the scaling of the averages of the IPR with respect to the lattice
sizes for the four observables at (left) 𝐵 = 0 and (right) 𝐵 = ∞ over a logscale axis
and the symmetry sectors 𝑘 = 0, 𝜋 . Additional plots for 𝐵 = 0 (Fig. B.23), 𝐵 = 10
(Fig. B.24) and 𝐵 = ∞ (Fig. B.25) including all symmetry sectors can be found in
Appendix B. Full points in Fig. 5.22 denote the Wegner �ow, whereas star symbols
describe the values obtained using a random unitary transformation 𝑈rand. Since
Hilbert space dimensions scale exponentially with system size, i. e. 𝐷 ∝ exp(𝐿), the
IPR is depicted using a logscale. It follows that if the IPR scales parallelly to the slope
of the delocalized limit 1/𝐷 the number of elements that contribute to the IPR also
grow exponentially with 𝐿, which indicating the loss of the few-body structure. On
the other hand, if the IPR is parallel to the abscissa, i. e. constant, it does not scale
with the growth of the Hilbert space dimension indicating that its structure does not
change.
The scaling of the IPR is depicted for the same four di�erent fractions of “energy per
site” 𝐷𝑛/𝐿, which have been analyzed in the previous parts. Hereby, 𝐷𝑛/𝐿 = −0.45
represents the lowest end of the bulk, 𝐷𝑛/𝐿 = −0.15 the low-to-mid part and
𝐷𝑛/𝐿 = −0.02 and 𝐷𝑛/𝐿 = 0.1 the central parts of the bulk behavior of the spectrum.
The last two points are chosen, because the kinetic energy (interaction energy)
delocalizes the most at 𝐷𝑛/𝐿 = −0.02 (𝐷𝑛/𝐿 = 0.1) (see Section 5.2.2).
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Comparing the left side of Fig. 5.22 to the right side means comparing the scaling of
the IPR at 𝐵 = 0 to 𝐵 = ∞. The �rst impression one gets is that there are almost
no di�erences between the the observables except for the bulk of the spectrum in the
top two rows, which show the scaling of the IPR of the interaction energy and the
kinetic energy. Hence, it can be concluded that in most cases it does not matter at
what �ow value 𝐵 the scaling is studied. In the following, the details of the scaling are
discussed. It follows that neither the Wegner nor the random unitary �ow do destroy
the localization of the observables by much. Since this Section analyzes the scaling of
the localization measures, it is su�cient to mainly focus on a single �ow 𝐵.

Interaction energy 𝐼 The interaction energy 𝐼 (top row) shows ambiguous be-
havior, because at the lower end of the bulk of the spectrum (𝐷𝑛/𝐿 = −0.45) and
𝐷𝑛/𝐿 = −0.15)) the IPR scales as the localized limit, i. e. parallel to 1. However, at
𝐵 = ∞ and in the center of the bulk at 𝐷𝑛/𝐿 = 0.1, where 𝐼 has been seen to be de-
localized, the scaling of the IPR is parallel to the delocalized limit (triangular shaped
points). The intermediate value at 𝐷𝑛/𝐿 = −0.02 �lls the gap. Although close to par-
allel at 𝐵 = 0, the slope for 𝐷𝑛/𝐿 = −0.15 shrinks over the �ow, but not to an extent
that it falls o� like the delocalization limit. In contrast, it seems to follow the behav-
ior of the random unitary transformation (empty points), which has a clear convex
development to the localization axis indicating a polynomial behavior. It is, however,
striking that the random unitary transformation does not yield the scaling of a delo-
calized observable. It seems as if the structure of the interaction energy is too robust
to be changed by any transformation. In the symmetry sector 𝑘 6= 0, 𝜋 the center of
the bulk is already delocalized at 𝐵 = 0 (Fig. 5.23a). This means that in this case the
�ow barely changes the structure of the observable.

Kinetic energy 𝐾 The kinetic energy 𝐾 (second row) does not lose its few-body
structure over the �ow, because for the more central parts of the bulk of the spectrum
the IPR scales as the localized limit, i. e. parallel to 1. The only cut, which behaves
slightly di�erent, occurs at the energy per site 𝐷𝑛/𝐿 = −0.02, where the observable is
delocalized the most. Although parallel at 𝐵 = 0, the slope shrinks over the �ow, but
displays a subexponential fallo�.
Another striking feature is that the IPR of the kinetic energy in a random basis is
identical to the IPR of a randommatrix and therefore falls of exponentially. This means
that the kinetic energy in a random basis loses its few-body structure and looks like a
randommatrix of the GOE. The structure of the kinetic energy seems to be much more
susceptible to a transformation into a random basis. In the symmetry sector 𝑘 6= 0, 𝜋
the momentum distribution function seems to be more delocalized in the center of the
spectrum, however, without an extensive population of the Hilbert space.
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Figure 5.22: The scaling of the IPR over lattice sizes for di�erent energy densities and
all observables and the symmetry sectors 𝑛𝑘 = 0, 𝐿/2 at (left) 𝐵 = 0 and (right) 𝐵 = ∞.
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Figure 5.23: The scaling of the IPR over lattice sizes of the (left) interaction energy
and (right) momentum distribution function for di�erent energies per site and in the
symmetry sectors 𝑛𝑘 6= 0, 𝐿/2 at 𝐵 = 0. (a) In all other symmetry sectors than 𝑘 = 0, 𝜋
the scaling of the IPR is already extensive at 𝐵 = 0 in the center of the spectrum (com-
pare with Fig. B.23a). (b) The center of the bulk of the spectrum is more delocalized
than the edges of the bulk. The scaling is not parallel to the delocalization limit and,
hence, not extensive (compare with Fig. B.23e).

Momentum distribution function 𝑛(𝑘 = 0) The momentum distribution function
remains localized throughout the �ow and does not lose its few-body structure. More-
over, it seems as if the amount of delocalization is independent from the position in the
spectrum in the symmetry sectors 𝑘 = 0, 𝜋 . In all other symmetry sectors, however, it
becomes more delocalized in the bulk of the spectrum as depicted in Fig. B.23 (𝐵 = 0),
Fig. B.24 (𝐵 = 10) and Fig. B.25) (𝐵 = ∞). The scaling is not extensive, though.
In summary, one �nds that the “few-bodiedness” is not lost through a random trans-
formation. The observable looks more delocalized in a random basis (logscale) for all
areas in the spectrum in all symmetry sectors, except for the center of the bulk of the
spectrum if 𝑘 6= 0, 𝜋 .

Density-density structure factor 𝑁 (𝑘 = 𝜋 ) The same holds true for the density-
density structure factor. Here, the �ow causes the same amount of delocalization as a
random unitary transformation in the symmetry sectors 𝑘 = 0, 𝜋 , because the plots lie
on top of each other. If 𝑘 6= 0, 𝜋 , though, the bulk displays a larger delocalization.

Projection operator P𝐸=0 The scaling of the IPR of the four observables in Fig. B.23
is clearly di�erent from the scaling of the IPR of the projection operator P𝐸=0 in
Fig. 5.24. While the observables clearly show their few-body structure at 𝐵 = 0, the
projection operator is completely delocalized as expected. Later, when more and more
regions are rotated out by the �ow, only a small region around the projection survives,
which leads to full localization of a growing part of the spectrum (IPR of zeros is de-
�ned as 1). At 𝐵 = ∞ only a single matrix element is non-zero: the ’1’ at energy per
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Figure 5.24: The scaling of the IPR over lattice sizes for the projection operator P𝐸=0
for di�erent energy densities and the symmetry sectors 𝑛𝑘 = 0, 𝐿/2 at (left) 𝐵 = 0 and
(right) 𝐵 = ∞.

site 𝐷𝑛/𝐿 = 0, which means full localization.
The IPR of the projection operator in a random basis lies on top of the line indicating
the IPR of a matrix from the GOE. As the projection operator is simple, this is a rare
case, where one can �nd analytical arguments for this behavior. When performing a
random unitary transformation the starting basis does not matter, because any other
basis transformation could be seen as a consecutive transformation of the random
transformation. Hence, one could also begin in the basis at 𝐵 = ∞, where only a single
’1’ is present at index 𝑙 in the matrix. If this is transformed via a random unitary matrix
with matrix elements 𝑢𝑚𝑛 , the resulting transformed matrix has the matrix elements
𝑢𝑙𝑚𝑢𝑙𝑛 , where 𝑚 and 𝑛 denote the row and column and 𝑙 is �xed by the position of
the ’1’. Thus, one ends up with a full matrix, which elements are products of random
variables, which need to ful�ll the unitarity of𝑈rand, though (Brody et al. 1981). Since
𝑢𝑙𝑛 is present in every element in column 𝑛 and can be factorized, one �nds that the
IPR is that of a random unitary matrix, which is 3/𝐷 (Zelevinsky et al. 1996).

Scaling of the Shannon entropy

The �gures for all observables and symmetry sectors can be found in Fig. B.28 for 𝐵 = 0
and in Fig. B.29 for𝐵 = ∞. The interpretation of the plots agrees inmany caseswith the
interpretation of the IPR in the previous chapter, although they can be less conclusive
for the Shannon entropy. As an example the scaling of the Shannon entropy of the
kinetic energy, which is depicted in Fig. 5.25 at (a) 𝐵 = 0 and (b) 𝐵 = ∞ in the symmetry
sector 𝑘 = 0, 𝜋 , is discussed. The corresponding scaling of the IPR in Fig. B.29c is
found to signal localization everywhere in the spectrum and at all �ows. The Shannon
entropy in this case, however, boasts a line already at 𝐵 = 0, which, albeit not being
parallel to the delocalization limit, seems to lack any curvature. Evenmore so, at𝐵 = ∞
in Figs. B.29c and B.29d, it seems to be almost parallel to the delocalization limit. Thus,
it is not clear, whether the data for this part of the spectrum can be completely trusted.
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(a) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)
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(b) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)

Figure 5.25: The scaling of the Shannon entropy of the kinetic energy versus lattice
size for di�erent regions in the spectrum and in the symmetry sectors 𝑘 = 0, 𝜋 at (left)
𝐵 = 0 and (right) 𝐵 = ∞. The delocalized limit is depicted with the dash-dotted black
line and the GOE value by the solid black line. A concave form of the scaling would
indicate a subexponential scaling of the Shannon entropy, hence, signaling localiza-
tion. The data points for 𝐷𝑛/𝐿 = −0.45 and 𝐷𝑛/𝐿 = −0.15 have this behavior, whereas
the center of the spectrum is parallel or close to parallel to the delocalization limit.

The cuts at the lower end of the spectrum including the lower end of the bulk, though,
con�rm the interpretation of the IPR results that the observables retain their few-body
structure throughout the �ow.
The same interpretation can be applied to the interaction energy in Fig. B.29a and
Fig. B.29b. Only at 𝐷𝑛/𝐿 = −0.45 and 𝐷𝑛/𝐿 = −0.15 a concave curvature hinting at
subexponential scaling can be assumed.
For the other observables the picture is identical. They also feature the interesting
fact that some regions in the spectrum delocalize more than the same observable in a
random unitary basis, if 𝑘 6= 0, 𝜋 (see e. g. Fig. B.19f).

5.2.5 Summary of the localization scaling analysis
The analysis of the scaling of both localization measures is summarized as follows.
The IPR data suggests that the interaction energy and the kinetic energy retain their
few-body structure except for the center of the bulk of the spectrum, i. e. for high
energy eigenstates. This can also be seen in the case of the momentum distribution
function and the density-density structure factor. In general, it is found that the ob-
servables in the symmetry sectors 𝑘 = 0, 𝜋 are always more localized than in the other
symmetry sectors, i. e. 𝑘 6= 0, 𝜋 . This has also been seen in other works, although for
the IPR of di�erent quantities (IPR of eigenstates in a speci�c basis) (Santos and Rigol
2010a). The explanation for this is that the symmetry sectors 𝑘 6= 0, 𝜋 are larger, in fact
approximately twice as large, as their pendants at 𝑘 = 0, 𝜋 , which means that a bigger
Hilbert space is available for possible delocalization. Following this line of thought,
the curvature of the IPR observed in the symmetry sector 𝑘 6= 0, 𝜋 at large system sizes,
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which is interpreted as signaling localization, can be regarded as a strong indicator for
localization.
The scaling of the localization measures of the observables in a random basis o�ers
additional insights beyond being a benchmark test. First of all, it is seen that the level
of delocalization of the interaction energy, the momentum distribution function and
the density-density structure factor in a random basis does not coincide with the cor-
responding value of a randommatrix from the GOE (solid black lines). This is not com-
pletely surprising, because a randommatrix consists of independent random variables,
which do not have any correlation like one can assume for any physical observable.
This does not only include the setup in the spatial basis, but also the pre�ow transfor-
mationwith amatrix of orthonormal basis states. At the same time, though, it is visible
that these three observables in a random basis often show a similar behavior like their
counterparts obtained through the Wegner �ow. The level of delocalization is often
comparable, but mostly smaller in random basis. Hence, it can be concluded that the
observables do not strongly distinguish the Wegner �ow from random unitary trans-
formation. Here, the only exception is the kinetic energy in the random basis, which
displays a drastically di�erent form of the IPR. Primarily, the scaling is found to be
extensive in Hilbert space and thus the few-body structure of the kinetic energy is
destroyed in the random basis. In fact, this is also the only case, where the localization
measures in a random basis agree with the GOE prediction. In other words, it can be
deduced that the kinetic energy takes on a form in a random basis, where its matrix
elements appear to have no correlation among each other and look like a random ma-
trix. While this behavior can be demonstrated analytically for the projection operator
(see below), no such methods are known for this case. It remains an open question,
which requires further studies.
Finally, it remains to summarize the analysis of the projection operator, whichmatches
the expectation. Initially, the operator is delocalized over an extensive region of the
Hilbert space until the �ow converges and a fully localized ’1’ is left. In a random basis
the operator delocalizes to the GOE value, which can be understood using analytical
arguments (see Section 5.2.4).

5.3 Pre�ow transformation to the momentum basis

The basis of the Hamiltonian before the �ow (pre�ow) in the previous chapters has
been the integrable (mean-�eld) basis. In this basis the Hamiltonian consists of an in-
tegrable diagonal part and an o�-diagonal part, which is proportional 𝑉2 and breaks
the integrability. Another possibility, which is often used, is to transform the Hamil-
tonian into the momentum basis (Santos and Rigol 2010a,b). In the momentum basis
the kinetic energy of the Hamiltonian is diagonal, such that the o�-diagonals are de-
termined by the interaction 𝑉1 and 𝑉2. To provide a full picture the results of a �ow
starting in the momentum basis are presented in this chapter.
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5.3.1 Statistical analysis of the Hamiltonian
As in the previous case, a statistical analysis is performed with respect to the Hamil-
tonian at di�erent points of the �ow. The histograms over the matrix elements of a
band of 1% of the dimension of the matrix is depicted in Fig. 5.27 for 𝑘 = 0, 𝜋 and in
Fig. B.30 for𝑘 6= 0, 𝜋 . The visual check con�rms that similar to the previous case, where
the Hamiltonian started in the integrable basis, the matrix elements show a Gaussian
distribution at later �ows. The probe the normality of the data the Γ-quantity is com-
puted like in the previous case. It is depicted in Fig. 5.26 and suggests normality for
�ows from 𝐵 = 20. There is one major detectable di�erence to the previous case in
Fig. 5.13. This time also the symmetry sector 𝑘 = 0, 𝜋 shows clear normal distributed
subdiagonals. Although this requires further analysis, it is proposed for the moment
that in the momentum basis more “weight” is put on the o�-diagonal, because it is not
proportional to𝑉2, but also to𝑉1. In the integrable basis, only terms proportional to𝑉2
were “rotated out” to the o�-diagonal, while all terms proportional to 𝑡1 and𝑉1 are on
the main diagonal only. In the momentum basis, both𝑉1 and𝑉2 terms are transformed
to the o�-diagonal, which might lead to a larger number of large values. These large
values compare better to the main diagonal and lead to a normal distribution for only
some iteration steps. Beyond this di�erence, the analysis does not show di�erences to
the case studied in Section 5.1.5.
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Figure 5.26: The Γ-normality indicator for three energy windows in units of 𝑠1 over
the course of the �ow where the initial basis is the momentum basis in the symmetry
sectors (a) 𝑘 = 0, 𝐿/2 and (b) 𝑘 6= 0, 𝜋 . For Gaussian distributed values it is Γ = 𝜋

2 .
It seems that the Γ-value of the data sets quickly converges to 𝜋/2 from above for
all momenta sectors. The convergence seems to be better than in the case, when the
Hamiltonian starts in the integrable basis.
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Figure 5.27: The pre�ow basis is the momentum basis. Histograms over the �ow for
a band comprising the closest 1% of subdiagonals for the symmetry sectors 𝑘 = 0, 𝐿/2
and both other symmetry quantum numbers, i. e. 𝑝 = ±1, 𝑧 ± 1 and lattice size 𝐿 = 20.
Each shows the relative frequency over bins of size 0.001. Initially, the sparsity of the
matrix creates a huge overhang of vanishing matrix elements. The peak then broadens
and resembles a Lorentzian distribution (𝐵 = 1), then an exponential distribution (𝐵 =
10) until it approximates a Gaussian or a logistic distribution due to the heavy tails. The
orange curve shows the Gaussian that is de�ned by the mean and standard deviation
of the corresponding data set.
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5.3.2 Scaling of the IPR
The situation is identical for the analysis of the scaling of the IPR in Fig. B.32 and
Fig. B.33, where extracts are depicted here for the interaction and kinetic energy in ??.
While the scaling at 𝐵 = ∞ does not di�er from the corresponding counterpart for the
integrable basis as the pre�ow basis (see Fig. B.23c), it features complete localization at
𝐵 = 0. Since the pre�ow basis is the momentum basis, i. e. the eigenbasis of the kinetic
energy, this is well expected. Overall, it turns out that a di�erent pre�ow basis does
not reveal any di�erent behavior. In this way, it is similar to the localization analysis
of the eigenstates in the integrable and momentum basis by Santos and Rigol (2010a)
and other works (Rigol and Santos 2010; Santos and Rigol 2010b).
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(a) Interaction energy 𝐼 (𝑛𝑘 = 0, 𝐿/2)
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(b) Interaction energy 𝐼 (𝑛𝑘 = 0, 𝐿/2)
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(c) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)
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(d) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)

Figure 5.28: Scaling of the IPR for the interaction energy and the kinetic energy 𝐾 at
(left) 𝐵 = 0 and (right) 𝐵 = ∞ in the symmetry sectors 𝑘 = 0, 𝜋 . The pre�ow basis is the
momentum basis. The interaction energy looks similar to the case in the integrable
pre�ow basis. (c) The kinetic energy is diagonal and fully localized at 𝐵 = 0, because
it is initially in its eigenbasis. At the end of the �ow there is no di�erence to the case
in Fig. 5.22 for the integrable pre�ow basis.





Chapter 6

Conclusions

The project of this work was to justify the ETH for generic models using Deutsch’s
argument. The idea was to study, whether amicroscopic Hamiltonian can ful�ll the as-
sumptions of Deutsch, such that his analytical reasoning for thermalization would be
applicable. To demonstrate the requirements the Hamiltonian has to be brought into a
banded form with speci�c statistical properties. Since a deterministic calculation can
not yield true randomness, it is argued that a pseudo-random appearance, which can
not be distinguished from the random version, is su�cient. Since the ETH is believed
to hold for few-body observables, the structure of several observables is analyzed in the
second part of the argument. If the observables display few-body properties, which
are tested using localization measures, throughout the �ow, the line of argument is
complete and the thermalization of a generic model along the lines of Deutsch has
been successfully motivated. The banded shape of the Hamiltonian of consideration is
created using continuous unitary transformations de�ned by the �ow equation. The
starting point of the �ow is the Hamiltonian of the full Hilbert space, which has been
set up using exact diagonalization techniques. The �ow is then performed numerically
using the stable unitary integrator algorithm to preserve unitarity.
The chosen model is a one-dimensional lattice, which is half-�lled with hardcore
bosons. Together with periodic boundary conditions, this allows for taking advan-
tage of all symmetries to split the exponentially large Hilbert space into feasible di-
mensions. Before the �ow the Hamiltonian is transformed from the spatial basis to
a pre�ow basis to comply with Deutsch’s ansatz. Two initial basis are compared, i. e.
the integrable and the momentum basis. Finally, all results are compared to the case
of a random unitary transformation.

6.1 Banded pseudo-random Hamiltonian

The analysis of the Hamiltonian contained several steps. First of all, it was illustrated
how fast the �ow converges. After the initial depictions of fundamental statistical
properties including the level statistics and how they develop over the �ow, his-
tograms over various windows and subdiagonals were analyzed visually. It was
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shown that the symmetrically distributed data approximates di�erent distributions
depending on the �ow and the chosen symmetry sector. At late �ows the normal
distribution is a satisfying �t to the data. In addition, the Γ test indicator has been
computed. It suggested a normal distribution for late �ows in the smaller symme-
try sectors and already for early �ows in the larger symmetry sectors. This was
attributed to the huge data set, which was available through the consideration of all
symmetry sectors. The comparison to the case of a random unitary transformation
showed a very good agreement. Lastly, it was argued that more formal tests like
the null hypothesis signi�cance tests are not useful to underline the hypothesis
of normality of the studied data. Overall, it was justi�ed that the Hamiltonian can
be transformed into a banded pseudo-random formmatching Deutsch’s requirements.

6.2 Few-body structure of the observables

In the second part, the few-body structure of four observables were studied. The main
question was, whether the few-body structure is retained over the �ow. As an ap-
propriate tool to quantify this property, the Inverse Participation Ratio (IPR) and the
Shannon entropy were introduced. The di�erent depictions revealed similarities and
distinctions among the observables. To distinguish the results from a case, where the
hypothesis is not believed to be correct, the projection operator was included in the
analysis.
The �rst main �nding was that the �ow does not have a profound e�ect on the local-
ization in many regions of the spectrum. The data suggests that in many cases even
the level of localization remains comparable throughout the �ow. Only in speci�c re-
gions like in the center of the bulk, the interaction energy and kinetic energy showed
delocalization at very late �ows, which has been suggested to be related to results for
a di�erent quantity from the literature (Santos and Rigol 2010a,b). It has been demon-
strated that the IPR can be rather small, although large matrix elements are present
like in the case of the momentum distribution function and the density-density struc-
ture factor (see also Fig. B.9 and Fig. B.10). Similar to the statistical analysis of the
Hamiltonian, the �nding that larger symmetry sectors, i. e. 𝑘 6= 0, 𝜋 , tend to have
more delocalized observables, has been attributed to the larger space, to which a state
𝑂(𝐵) |𝐷𝑛(𝐵)〉 can spread to.
In the next step, the conservation of the few-body structure of the observables was
studied using the scaling of the localization measures over lattice sizes. One �nds that
for all observables the low to mid-energy regions in the spectrum do not show the
extensive population of the Hilbert space, thereby retaining their few-body structure.
In the case of the momentum distribution function and the density-density structure
factor, this is true for the entire energy range. The kinetic energy in the center of the
bulk delocalizes more over the �ow, although it is not losing its “few-bodiedness”. The
only case, where the obtained numerical data suggests an extensive scaling of the IPR
is observed for the interaction energy in the bulk center. There, the localization mea-
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sures show similar behavior as found for the projection operator before localization
(compare with Fig. B.26a). It is unclear, however, whether the numerics are su�cient,
because, in this case, the kinetic energy has been shown to obey ETH (Santos and Rigol
2010a).
In this context, it is important to note that the ETH is believed to hold for the bulk of
the spectrum, i. e. high-energy states away from the edges (D’Alessio and Polkovnikov
2013). The EEVs of observables for low-energy eigenstates are generally not expected
to be equal to the thermal distribution (Santos and Rigol 2010a). This has also been
veri�ed numerically in the identical model as studied here, where large �uctuations
of the EEVs of the momentum distribution function and the density-density structure
factor indicate a breakdown of thermalization at low energies (Rigol 2009a). How this
relates to Deutsch’s argument requires further investigations. A better understanding
could also shine light on the di�cult interpretation of the scaling of the other local-
ization measure, the Shannon entropy.
Overall, one can conclude that, in general, the scaling analysis showed that the �ow
does not destroy the few-body structure. In the case, where a violation of this claim
was observed, i. e. center of spectrum for the interaction energy, arguments like that
in this case ETH is ful�lled, contribute to the assessment that a more elaborate analy-
sis is be required.
Interestingly, it turns out that all observables, except the kinetic energy, feature a high
degree of robustness against basis transformations, because a random unitary trans-
formation does not destroy few-body property either. It follows that for these observ-
ables a random basis must “feel” similar to a speci�c basis like the eigenbasis. It is
not known, why the kinetic energy loses its few-body strucutre in a random basis and
delocalizes to the value of a GOE-matrix like the projection operator.
In conclusion, it can be summarized that the hypothesis of this work that a generic
system can be brought to a form, such that Deutsch’s argument is applicable without
destroying the properties of the observables, was justi�ed successfully.

6.3 Outlook

The numerics that were displayed in this work were comprehensive, although not
perfect. Especially the question of the interpretation of the Shannon entropy might
bene�t from additional e�ort.
To extend the scope of the considered models, the natural choice is to use di�erent sys-
tem parameters to probe, e. g. other phases like the strongly interacting case, where a
very large 𝑉2 is expected to put more weight on the o�-diagonals.
Beyond the hardcore boson model, other models, especially the closely related spin-
less fermion model, could be worth studying. Although some properties are identi-
cal, there are some observables like the momentum distribution function, which show
distinct fermionic properties (e. g. 𝑛2(𝑘) = 𝑛(𝑘)). Moreover, it has been shown that
the o�-diagonal matrix elements of the �ow endpoint 〈𝐸𝑚 |𝑛(𝑘 = 0)|𝐸𝑛〉 are larger for
fermions than for bosons, especially close to the main diagonal (Rigol 2009a). This can
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be interpreted that also the earlier �ow is di�erent and features a better delocalization.
Without a doubt, the holy grail would be an analytic argument, which is nowhere in
sight.



Appendix A

Symmetries and basis construction

This appendix contains further explanations and calculations, which can be helpful
when understanding the symmetries used in this work. Moreover, it treats the con-
struction of the basis, which is dependent on the present symmetries, in greater detail.
It speci�cally deals with the challenge of handling the signs, which appear in the case
of fermions due to the anticommutation relation (see Eq. (4.2)). For spins and hardcore
bosons this is not a problem, because the commutation relation is much simpler (see
Eq. (4.3)).

A.1 Translational symmetry
The translation generating operator T , which has been de�ned via Eq. (4.16), is the
most essential symmetry operator, because it allows the splitting of the Hilbert space
into many smaller subspaces each de�ned by a momentum.
First of all, it is helpful for the following parts to evaluate the action of the translation
operator on a creation or annihilation operator. Therefore, one calculates

T𝑎†𝑗 |𝑛1, . . . , 𝑛𝐿〉 =T (−1)
∑𝑗−1

𝑙=1 𝑛𝑙 |𝑛1, . . . , 1 𝑗 , . . . , 𝑛𝐿〉
=(−1)𝑁𝑛𝐿 (−1)

∑𝑗−1
𝑙=1 𝑛𝑙 |𝑛𝐿, 𝑛1, . . . , 1 𝑗 , . . .〉 . (A.1)

Comparing the last result with

𝑎†𝑗+1T |𝑛1, . . . , 𝑛𝐿〉 =(−1)(𝑁−1)𝑛𝐿 |𝑛𝐿, 𝑛1, . . . , 𝑛𝐿−1〉
=(−1)(𝑁−1)𝑛𝐿 (−1)𝑛𝐿+

∑𝑗−1
𝑙=1 𝑛𝑙 |𝑛𝐿, 𝑛1, . . . , 1 𝑗 , . . .〉 , (A.2)

it follows that

T𝑎†𝑗T † = 𝑎†𝑗+1 (A.3)

for both fermions and hardcore bosons. It is straight forward to show that the relation
also holds for the annihilation operator.

111



112 Appendix A. Symmetries and basis construction

In order to �nd the expression for the eigenvectors of the translation operator
de�ned in Eq. (4.16) an ansatz is made, which consists of a superposition of a chosen
reference state |𝑎〉 and all its translations:

|𝑎(𝑘)〉 = 1√
𝐿𝑎

𝐿−1∑︁
𝑟=0

𝑒−𝑖𝑘𝑟T 𝑟 |𝑎〉 . (A.4)

The constant 𝐿𝑎 is introduced to ensure the correct normalization 〈𝑎(𝑘)|𝑎(𝑘)〉 = 1 and
will be determined below. As one can easily show, it is indeed T |𝑎(𝑘)〉 = 𝑒𝑖𝑘 |𝑎(𝑘)〉 as
required by Eq. (4.17).
The main goal is to use the states to form a complete orthonormalized basis. However,
a state |𝑎(𝑘)〉 is not necessarily orthogonal to a state |𝑏(𝑘)〉 unless their representatives
can not be mapped onto each other via any number of translations, i. e. T 𝑟 |𝑎〉 6= |𝑏〉
for all 𝑟 . If this is ensured, the basis can be used and only a small set of representatives
{|𝑎〉} is needed to cover all states. The calculation of the normalization constant 𝐿𝑎
is connected to the number of truly di�erent states in the sum in Eq. (A.4), because it
can happen that the state |𝑎〉 maps onto itself after 𝑅𝑎 translations, i. e. T 𝑅𝑎 |𝑎〉 = |𝑎〉
with 𝑅𝑎 < 𝐿. A simple example is the state |001001001〉, for which it is T 3 |𝑎〉 = |𝑎〉
and therefore 𝑅𝑎 = 3. As a consequence, there are multiple instances of the same
state in the sum, which needs to be taken care of. The number 𝑅𝑎 is called periodicity
with 𝑅𝑎 ∈ {1, . . . , 𝐿}1. It plays an important role in the following calculation of the
normalization 𝐿𝑎 , because instead of adjusting the sum to only run until 𝑅𝑎 − 1, it is
better to alter the norm to take this into account.
If the system describes fermions, a fermionic commutation sign due to Eq. |0101〉, for
which T 2 |0101〉 = − |0101〉 and the periodicity is 𝑅𝑎 = 2 with an additional minus
sign. In more general terms, it is de�ned that T 𝑅𝑎 |𝑎〉 = 𝑠𝑎 |𝑎〉 with 𝑠𝑎 ∈ {−1, 1} (XXZ,
hardcore bosons: 𝑠𝑎 = 1 ∀ |𝑎〉).

1According to Lagrange’s theorem 𝑅𝑎 must be a divisor of 𝐿, such that 𝑅𝑎 ∈ {1, . . . , 𝐿4 , 𝐿3 , 𝐿2 , 𝐿}.
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To determine the normalization factor 𝐿𝑎 one calculates

〈𝑎(𝑘)|𝑎(𝑘′)〉 = 1
𝐿𝑎

𝐿−1∑︁
𝑟,𝑠=0

𝑒−𝑖𝑘
′𝑟+𝑖𝑘𝑠 〈𝑎 |T −𝑠T 𝑟 |𝑎〉

= 1
𝐿𝑎

𝐿−1∑︁
𝑟=0

[
𝑟∑︁
𝑠=0

𝑒−𝑖𝑘
′𝑟+𝑖𝑘𝑠 〈𝑎 |T 𝑟−𝑠 |𝑎〉 +

𝐿−1∑︁
𝑠=𝑟+1

𝑒−𝑖𝑘
′𝑟+𝑖𝑘𝑠 〈𝑎 |T 𝑟−𝑠 |𝑎〉

]
= 1
𝐿𝑎

𝐿−1∑︁
𝑟=0

[
0∑︁
𝑢=𝑟

𝑒−𝑖𝑘
′𝑟𝑒𝑖𝑘(𝑟−𝑢) 〈𝑎 |T𝑢 |𝑎〉 +

𝑟+1∑︁
𝑢=𝐿−1

𝑒−𝑖𝑘
′𝑟𝑒𝑖𝑘(𝑟−𝑢+𝐿) 〈𝑎 |T (𝑢−𝐿) |𝑎〉

]
= 1
𝐿𝑎

𝐿−1∑︁
𝑟=0

[
𝑟∑︁
𝑢=0

𝑒−𝑖𝑘
′𝑟𝑒𝑖𝑘(𝑟−𝑢) 〈𝑎 |T𝑢 |𝑎〉 +

𝐿−1∑︁
𝑢=𝑟+1

𝑒−𝑖𝑘
′𝑟𝑒𝑖𝑘(𝑟−𝑢) 〈𝑎 |T𝑢 |𝑎〉

]
= 𝐿

𝐿𝑎

1
𝐿

𝐿−1∑︁
𝑟=0

𝑒𝑖(𝑘−𝑘
′)𝑟︸          ︷︷          ︸

=𝛿𝑘𝑘 ′

𝐿−1∑︁
𝑢=0

𝑒−𝑖𝑘𝑢 〈𝑎 |T𝑢 |𝑎〉

= 𝛿𝑘𝑘 ′
𝐿

𝐿𝑎

𝐿/𝑅𝑎−1∑︁
𝑛=0

𝑒−𝑖𝑘𝑛𝑅𝑎 〈𝑎 |T 𝑛𝑅𝑎 |𝑎〉 = 𝛿𝑘𝑘 ′
𝐿

𝐿𝑎

𝐿/𝑅𝑎−1∑︁
𝑛=0

𝑒−𝑖𝑘𝑛𝑅𝑎𝑠𝑛𝑎 (A.5)

where it was used that everytime 𝑟 − 𝑠 is a multiple of 𝑅𝑎 , i. e. 𝑟 − 𝑠 = 𝑛𝑅𝑎 with
𝑛 = 0, 1, . . . , 𝐿/𝑅𝑎 − 1, one gets a contribution (〈𝑎 |𝑎〉 = 1) with an additional sign 𝑠𝑎 for
fermions. The remaining geometric sum in Eq. (A.5) can be determined, which yields

𝐿/𝑅𝑎−1∑︁
𝑛=0

𝑒±𝑖𝑘𝑛𝑅𝑎𝑠𝑛𝑎 =


𝐿/𝑅𝑎−1∑
𝑛=0

𝑒±𝑖𝑘𝑛𝑅𝑎 = 𝐿
𝑅𝑎

if 𝑘𝑅𝑎 = 2𝜋𝑚 and 𝑠𝑎 = 1
𝐿/𝑅𝑎−1∑
𝑛=0

𝑒±𝑖𝑘𝑛𝑅𝑎+𝑖𝜋𝑛 = 𝐿
𝑅𝑎

if 𝑘𝑅𝑎 = (2𝑚 + 1)𝜋 and 𝑠𝑎 = −1
0 otherwise2

(A.6)

where𝑚 ∈ Z. The vanishing sum in Eq. (A.6) de�nes what representatives are allowed
to describe the basis state |𝑎(𝑘)〉. A representative |𝑎〉 is only permitted, if the equation

𝑘 = 2𝜋
𝑅𝑎

(
𝑚 + 1 − 𝑠𝑎

4

)
, 𝑚 = 0, 1, . . . , 𝑅𝑎 − 1 (A.7)

that connects the momentum, as given in Eq. (4.18), to the representive |𝑎〉 is ful�lled.
The norm then reads

𝐿𝑎 =
𝐿2

𝑅𝑎
. (A.8)

2To show this one requires some additional e�ort. One calculates the geometric sum to be (1 −
exp(±𝑖𝑘𝐿))/(1 − exp(±𝑖𝑘𝑅𝑎)) for 𝑠𝑎 = 1 and (1 − exp(±𝑖𝑘𝐿 + 𝑖𝜋𝐿/𝑅𝑎))/(1 − exp(±𝑖𝑘𝑅𝑎 + 𝑖𝜋 )) for 𝑠𝑎 = −1.
In order to vanish the numerator must be zero. For the case 𝑠𝑎 = 1, where the second summand in the
exponential is not there, this is trivially ful�lled via 𝑘𝐿 = 2𝜋𝑚 (Eq. (4.18)). In the second case, however
one needs that if 𝑠𝑎 = −1, 𝐿/𝑅𝑎 is always an even number, which can be derived from |𝑎〉 = T 𝐿 |𝑎〉 =
(T𝑅𝑎 )𝐿/𝑅𝑎 |𝑎〉 = 𝑠𝐿/𝑅𝑎

𝑎 |𝑎〉.
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If a momentum state has a vanishing norm or, equivalently, a representative is not
conformwith themomentum, it cannot be used for the basis. Moreover, the periodicity
is re�ected in the formula, such that one can be sure that only one representative is
included in the sum in Eq. (A.4). For states with no smaller periodicity than the full
cycle, i. e. 𝑅𝑎 = 𝐿, the norm reduces to the intuitive form 𝐿𝑎 = 𝐿. The orthonormality of
the basis follows naturally, since 〈𝑏 |𝑎〉 = 𝛿𝑎𝑏 by construction and hence 〈𝑏(𝑘′)|𝑎(𝑘)〉 =
𝛿𝑎𝑏𝛿𝑘𝑘 ′ . The completeness of the basis results from the fact that a representive |𝑎〉
appears in 𝑅𝑎 di�erent 𝑘-sectors (Eq. (A.7)) and that each representive represents 𝑅𝑎
di�erent states in |𝑎(𝑘)〉.

A.1.1 Commutation with the Hamiltonian
As a last step, it must be demonstrated that the translation operator commutes with
the Hamiltonian, i. e. [𝐻,T ] = 0. The kinetic part contains hopping terms like 𝑐†𝑗+1𝑐 𝑗 ,
which describes the shift of the particle from site 𝑗 to 𝑗+1. With Eq. (4.7a) and Eq. (4.7b),
it becomes clear that the permutation sign for fermions vanishes, because 𝑗 and 𝑗 + 1
are neighboring sites, unless the jump is across the boundary. Hence, one can show
that

𝑐†𝑗+1𝑐 𝑗 |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 =
{
𝑠T |1, 𝑛2, . . . , 0〉 if 𝑗 = 𝐿

|𝑛1, . . . , 0 𝑗 , 1 𝑗+1, . . .〉 otherwise
(A.9)

where the abbreviated notation 𝑛 𝑗 + 1 = 1 𝑗 and 𝑛 𝑗 − 1 = 0𝑖 was used. For the purpose
of improved brevity most vanishing contributions are not explicitly mentioned (Re-
minder: 𝑐 𝑗 |0 𝑗 〉 = 𝑐†𝑗 |1 𝑗 〉 = 0, see Section 4.0.1). Acting with T on the state Eq. (A.9)
yields

T𝑐†𝑗+1𝑐 𝑗 |𝑛1, . . . , 𝑛𝐿〉 =

𝑠T |0, 1, . . . , 𝑛𝐿−1〉 if 𝑗 = 𝐿
𝑠T |1, 𝑛1, . . . , 0〉 if 𝑗 = 𝐿 − 1
𝑠𝑛𝐿T |𝑛𝐿, . . . , 0 𝑗+1, 1 𝑗+2, . . .〉 otherwise

Now the order of the operators is swapped and one calculates

𝑐†𝑗+1𝑐 𝑗T |𝑛1, . . . , 𝑛𝐿〉 = 𝑐†𝑗+1𝑐 𝑗 𝑠𝑛𝐿T |𝑛𝐿, 𝑛1, . . . , 𝑛𝐿−1〉

=


𝑠T |0, 1, . . . , 𝑛𝐿−1〉 if 𝑗 = 1
𝑠T |1, 𝑛1, . . . , 0〉 if 𝑗 = 𝐿
𝑠𝑛𝐿T |𝑛𝐿, . . . , 0 𝑗−1, 1 𝑗 , . . .〉 otherwise

It is important to note that the numbering of the operators is done with respect to the
underlying lattice, which is also used to name the initial occupations. Since the kinetic
energy part of the fermionic Hamiltonian with periodic boundary conditions contains
sums over all lattice sites, a short calculation using the results from above shows that

T
𝐿∑︁
𝑗=1
𝑐†𝑗+1𝑐 𝑗 =

𝐿∑︁
𝑗=1
𝑐†𝑗+1𝑐 𝑗T . (A.10)
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Likewise, one can show the same for the hermitian conjugate part ∑
𝑐†𝑗 𝑐 𝑗+1. For the

XXZ- and hardcore boson-model, there are no fermionic signs, of course, and the
commutation relation is trivially ful�lled. The interaction energy consists of density-
density terms as 𝑛𝑖𝑛𝑖+𝑥 , where each 𝑛𝑖 = 𝑐†𝑖 𝑐𝑖 consists of two operators acting on the
same site. Therefore, it is clear that no fermionic sign can appear and the operator pair
is translationally invariant. In conclusion, one �nds that [𝐻,T ] = 0.

A.1.2 Matrix elements in the momentum eigenbasis
With the results above and the fact that the Hamiltonian can be written as a big sum
as for example in Eq. (??), it is straightforward to calculate the action of 𝐻 on |𝑎(𝑘)〉:

𝐻 |𝑎(𝑘)〉 = 1√
𝐿𝑎

𝐿−1∑︁
𝑟=0

𝑒−𝑖𝑘𝑟T 𝑟𝐻 |𝑎〉 = 1√
𝐿𝑎

𝐿∑︁
𝑗=0

𝐿−1∑︁
𝑟=0

𝑒−𝑖𝑘𝑟T 𝑟ℎ 𝑗 |𝑎〉 , (A.11)

where 𝐿𝑎 , as de�ned in Eq. (A.8), is the normalization factor of the state and |𝑎〉 is the
chosen reference state. The application of ℎ 𝑗 on |𝑎〉 for 0 < 𝑗 < 𝐿 yields ℎ 𝑗 |𝑎〉 =
ℎ 𝑗 (𝑎) |𝑏′𝑗 〉, where ℎ 𝑗 (𝑎) is the scalar according to the de�nitions of the Hamiltonian
(e. g. ℎ 𝑗>0(𝑎) = −𝑡 for the spinless fermion model, see Eq. (??)). If the hopping is
across the boundary (e. g. for 𝑗 = 𝐿 and a NN-hopping), the usual translational sign
factor 𝑠ℎ𝐿 = (−1)𝑛𝐿(𝑁−1) can appear in the previous equation depending on the exact
form of |𝑎〉. The resulting state |𝑏′𝑗 〉, which is not necessarily a reference state, can be
transformed to one by a suitable number of translations, i. e. |𝑏 𝑗 〉 = 𝑠𝑙 𝑗T 𝑙 𝑗 |𝑏′𝑗 〉, where
𝑙 𝑗 ∈ {0, 1, . . . , 𝐿 − 1} and 𝑠𝑙 𝑗 denotes the sign, which appears due to the 𝑙 𝑗 translations
of fermionic operators. Moreover, it must be ensured that |𝑏 𝑗 〉 is compatible with
the momentum 𝑘 , i. e. it must ful�ll Eq. (A.7). If this holds, it follows that ℎ 𝑗 |𝑎〉 =
ℎ 𝑗 (𝑎)𝑠𝑙 𝑗T −𝑙 𝑗 |𝑏 𝑗 〉. If it does not, the overlap is zero.
The action ofℎ0, which contains all the interaction part, is purely diagonal in the sense
that it does not change the state. Together, this allows for the calculation of all matrix
elements via the formulas

〈𝑏0(𝑘)|ℎ0 |𝑎(𝑘)〉 =𝛿𝑎𝑏 〈𝑎 |𝐻1 |𝑎〉 (A.12)

〈𝑏 𝑗 (𝑘)|ℎ 𝑗>0 |𝑎(𝑘)〉 =
√︄
𝐿𝑏 𝑗
𝐿𝑎
𝑠 𝑗ℎ 𝑗 (𝑎)𝑠𝑙 𝑗𝑒−𝑖𝑘𝑙 𝑗 (A.13)

where

𝑠 𝑗 =
{
(−1)𝑛𝐿(𝑁−1) if 𝑗 = 𝐿
1 otherwise.

In general, it often occurs that multiple contributions like Eq. (A.13) contribute to one
matrix element, because it can be that 𝐻 |𝑎〉 = 𝑠𝑙 𝑗𝑇

−𝑙 𝑗 |𝑏 𝑗 〉 and, additionally, 𝐻 |𝑎〉 =
𝑠𝑙 ′

𝑗
𝑇 −𝑙 ′𝑗 |𝑏 𝑗 〉 with 𝑙 𝑗 6= 𝑙′𝑗 . For bosonic systems both 𝑠 𝑗 and 𝑠𝑙 𝑗 are always 1, because the

ladder operators commute.
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A.2 Re�ection symmetry and semi-momentum

Like in the case of the translation operator, it is easier to calculate only with operators,
whenever possible. Therefore, one studies the transformation of a ladder operator
under re�ection, when both act on a Fock state with a certain normal order. It is

P𝑎†𝑗 |𝑛1, . . . , 𝑛𝐿〉 =P(−1)
∑𝑗−1

𝑙=1 𝑛𝑙 |𝑛1, . . . , 1 𝑗 , . . . , 𝑛𝐿〉
=(−1)𝑁 (𝑁+1)/2(−1)

∑𝑗−1
𝑙=1 𝑛𝑙 |𝑛𝐿, . . . , 1 𝑗 , . . . , 𝑛1〉 (A.14)

and, similarly,

𝑎†𝐿− 𝑗+1P |𝑛1, . . . , 𝑛𝐿〉 =𝑎†𝐿− 𝑗+1(−1)𝑁 (𝑁−1)/2 |𝑛𝐿, . . . , 𝑛1〉

=(−1)𝑁 (𝑁−1)/2(−1)
𝐿∑

𝑙=𝐿−𝑗+2
𝑛𝑙 |𝑛𝐿, . . . , 1𝐿− 𝑗+1, . . . , 𝑛1〉

=(−1)𝑁 (𝑁−1)/2(−1)𝑁−
𝑗−1∑
𝑙=1
𝑛𝑙 |𝑛𝐿, . . . , 1𝐿− 𝑗+1, . . . , 𝑛1〉

=(−1)𝑁 (𝑁+1)/2(−1)
∑𝑗−1

𝑙=1 𝑛𝑙 |𝑛𝐿, . . . , 1 𝑗 , . . . , 𝑛1〉 . (A.15)

Hence, it follows that

P𝑎†𝑗P† = 𝑎†𝐿− 𝑗+1 (A.16)

and analogous for 𝑎 𝑗 .

The motivation to build the semi-momentum states is to create states without
any designated direction, which are invariant under space inversion or re�ection
symmetry de�ned by the re�ection operator P. In a �rst step the states with ±𝑘 are
combined by summation (𝜎 = 1) and subtraction (𝜎 = −1) to yield

|𝑎𝜎 (𝑘)〉 = 1√
𝐿𝑎

𝐿−1∑︁
𝑟=0

𝐶𝜎𝑘 (𝑟 )T 𝑟 |𝑎〉 . (A.17)

Here, the function 𝐶𝑘 (𝑟 ) reads 𝐶1
𝑘
(𝑟 ) = cos(𝑘𝑟 ) and 𝐶−1

𝑘
(𝑟 ) = sin(𝑘𝑟 ). Since the sum

of the combination contains two states (even two times the same if 𝑘 = 0, 𝜋 ), the
normalization requires a rescaling to

𝐿𝑎 =
𝐿2𝑔𝑘
2𝑅𝑎

, (A.18)

where the factor 𝑔𝑘 = 1 if 0 < 𝑘 < 𝜋 and 𝑔𝑘 = 2 if 𝑘 = 0 or 𝜋 . The general overlap
〈𝑎𝜏 (𝑘)|𝑎𝜎 (𝑘′)〉 can be determined in a similar manner as in Eq. (A.5) by splitting the
sums appropriately through index substitutions and trigonometric identities. While
some terms vanish, because ∑

𝑛𝐶
−
𝑘
(𝑛𝑅𝑎)𝑠𝑛𝑎 = 0, the term ∑

𝑛𝐶
+
𝑘
(𝑛𝑅𝑎)𝑠𝑛𝑎 yields exactly



Section A.2. Re�ection symmetry and semi-momentum 117

the same result as in Eq. (A.6). One way to resolve the remaining sums, which are
combinations of 𝐶𝜏

𝑘
(𝑟 )𝐶𝜎

𝑘 ′(𝑟 ) is to use the following formulas:

𝐿−1∑︁
𝑟=0

𝐶+
𝑘 (𝑟 )𝐶

+
𝑘 ′(𝑟 ) =

𝐿−1∑︁
𝑟=0

cos(𝑘𝑟 ) cos(𝑘′𝑟 ) =
𝐿−1∑︁
𝑟=0

1
2 (cos((𝑘 − 𝑘′)𝑟 ) + cos((𝑘 + 𝑘′)𝑟 ))

=𝛿𝑘𝑘 ′
{
𝐿 if 𝑘𝐿 =𝑚𝜋, 𝑚 ∈ Z
𝐿
2 otherwise

(A.19)

𝐿−1∑︁
𝑟=0

𝐶−
𝑘 (𝑟 )𝐶

−
𝑘 ′(𝑟 ) =

𝐿−1∑︁
𝑟=0

sin(𝑘𝑟 ) sin(𝑘′𝑟 ) =
𝐿−1∑︁
𝑟=0

1
2 (cos((𝑘 − 𝑘′)𝑟 ) − cos((𝑘 + 𝑘′)𝑟 ))

=𝛿𝑘𝑘 ′
{
𝐿 if 𝑘𝐿 =𝑚𝜋, 𝑚 ∈ Z
𝐿
2 otherwise

(A.20)

𝐿−1∑︁
𝑟=0

𝐶+
𝑘 (𝑟 )𝐶

−
𝑘 ′(𝑟 ) =

𝐿−1∑︁
𝑟=0

cos(𝑘𝑟 ) sin(𝑘′𝑟 ) =
𝐿−1∑︁
𝑟=0

1
2 (sin((𝑘 − 𝑘′)𝑟 ) + sin((𝑘 + 𝑘′)𝑟 )) = 0

(A.21)

where it was used that cos2(𝑥 ) = (1 + cos(2𝑥 ))/2.
In a second step one extends the semi-momentum states to incorporate the parity
operation and de�nes

|𝑎𝜎 (𝑘, 𝑝)〉 = 1√︁
𝐿𝜎𝑎

𝐿−1∑︁
𝑟=0

𝐶𝜎𝑘 (𝑟 )(1 + 𝑝P)T 𝑟 |𝑎〉 (A.22)

for 0 ≤ 𝑘 ≤ 𝜋 . Using trigonometric functions it is straightforward to express Eq. (A.22)
in terms of the pure momentum basis given by Eq. (A.17):

|𝑎𝜎 (𝑘, 𝑝)〉 =
√︄
𝐿𝑎
𝐿𝜎𝑎

[ (
1 + 𝜎𝑝𝐶+

𝑘 (𝑚)
) |𝑎𝜎 (𝑘)〉 − 𝑝𝐶−

𝑘 (𝑚) |𝑎−𝜎 (𝑘)〉] (A.23)

This equation shows that the states |𝑎𝜎 (𝑘, 𝑝)〉 and |𝑎−𝜎 (𝑘, 𝑝)〉 are not generally orthog-
onal to each other. This can be dealt with by changing the normalization in Eq. (A.18)
to be dependent on 𝜎 . To calculate the norm one simply exchanges the exponential
phase factor in Eq. (A.5) for the combined factor 𝐶𝜎 (𝑘) and �nds that

〈𝑎𝜏 (𝑘)|𝑎𝜎 (𝑘)〉 = 1
𝐿𝑎

𝐿−1∑︁
𝑟,𝑠=0

𝐶𝜏𝑘 (𝑠)𝐶
𝜎
𝑘 (𝑟 )〈𝑎 |T 𝑟−𝑠 |𝑎〉 (A.24)

It is important to note that the normalization now depends on the indicator 𝜎 , because
it might be that T𝑚P |𝑎〉 = |𝑎〉. As required, the states ful�ll P |𝑎𝜎 (𝑘, 𝑝)〉 = 𝑝 |𝑎𝜎 (𝑘, 𝑝)〉.
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A.2.1 Commutation with the Hamiltonian

P𝑐†𝑗 |𝑛1, . . . , 𝑛𝐿〉 =P(−1)
𝑗−1∑
𝑙=1
𝑛𝑙 |𝑛1, . . . , 1 𝑗 , . . . , 𝑛𝐿〉

=(−1)𝑁 (𝑁+1)/2(−1)
𝑗−1∑
𝑙=1
𝑛𝑙 |𝑛𝐿, . . . , 1𝐿− 𝑗+1, . . . , 𝑛1〉

𝑐†𝐿− 𝑗+1P |𝑛1, . . . , 𝑛𝐿〉 =𝑐†𝐿− 𝑗+1(−1)𝑁 (𝑁−1)/2 |𝑛𝐿, . . . , 𝑛1〉

=(−1)𝑁 (𝑁−1)/2(−1)
𝐿−𝑗∑
𝑙=1

𝑛𝑙 |𝑛𝐿, . . . , 1𝐿− 𝑗+1, . . . , 𝑛1〉

=(−1)𝑁 (𝑁−1)/2(−1)𝑁−
𝑗−1∑
𝑙=1
𝑛𝑙 |𝑛𝐿, . . . , 1𝐿− 𝑗+1, . . . , 𝑛1〉 (A.25)

Therefore, P𝑐†𝑗P† = 𝑐†𝐿− 𝑗+1. Again, it must be shown that [𝐻,P] = 0. As before,
one �nds that the interaction part is trivially commuting, because it counts all the
nearest-neighbor or next-to-nearest-neighbor particle pairs, which do not change un-
der a space inversion. For the kinetic energy part one calculates

P𝑐†𝑗+1𝑐 𝑗 |𝑛1, . . . , 𝑛𝐿〉 = P |𝑛1, . . . , 0 𝑗 , 1 𝑗+1, . . . , 𝑛𝐿〉

=
{
𝑠P𝑠T |0, 𝑛𝐿−1, . . . , 1〉 if 𝑗 = 𝐿
𝑠P |𝑛𝐿, . . . , 1𝐿− 𝑗 , 0𝐿− 𝑗+1, . . .〉 otherwise

and likewise

𝑐†𝐿− 𝑗𝑐𝐿− 𝑗+1P |𝑛1, . . . , 𝑛𝐿〉 = 𝑐†𝐿− 𝑗𝑐𝐿− 𝑗+1𝑠P |𝑛𝐿, 𝑛𝐿−1, . . . , 𝑛1〉

=
{
𝑠P𝑠T |0, 𝑛𝐿−1, . . . , 1〉 if 𝑗 = 𝐿
𝑠P |𝑛𝐿, . . . , 1𝐿− 𝑗 , 0𝐿− 𝑗+1, . . .〉 otherwise.

𝑐†𝑗 𝑐 𝑗+1P |𝑛1, . . . , 𝑛𝐿〉 = 𝑐†𝑗 𝑐 𝑗+1𝑠P |𝑛𝐿, 𝑛𝐿−1, . . . , 𝑛1〉

=
{
𝑠P𝑠T |0, 𝑛𝐿−1, . . . , 1〉 if 𝑗 = 𝐿
𝑠P |𝑛𝐿, . . . , 1𝐿− 𝑗 , 0𝐿− 𝑗+1, . . .〉 otherwise.

In conclusion, one �nds that P ∑
𝑗 𝑐

†
𝑗+1𝑐 𝑗 = P ∑

𝑗 𝑐
†
𝑗 𝑐 𝑗+1. Together with the missing

hermitean conjugate (see e. g. Eq. (??)), it becomes clear that the kinetic energy part
commutes with the parity operator. The interaction term does not introduce any new
sign, as in the translational case, so the proof is complete.

A.2.2 Matrix elements in the semi-momentum basis

A.3 Particle-hole inversion symmetry

Z =
𝐿∏
𝑗=1

(
𝑎†𝑗 + (−1) 𝑗𝑎 𝑗

)
, (A.26)
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A.3.1 Commutation with the Hamiltonian

Again, it must be shown that [𝐻,Z] = 0. This time, it is the kinetic energy part, which
is the one that is easier to tackle: With Eq. (??) one �nds thatZ𝑐†𝑖+1𝑐𝑖 = −𝑐†𝑖 𝑐𝑖+1Z. This
means that the hopping to the left becomes the hopping to the right and vice versa.
As before, one �nds that the interaction part is trivially commuting, because it counts
all the nearest-neighbor or next-to-nearest-neighbor particle pairs, which do not
change under a space inversion. For the kinetic energy part one calculates

Z𝑐†𝑖+1𝑐𝑖 |𝑛1, . . . , 𝑛𝐿〉 = . . .
(
𝑐†𝑖 + 𝑐𝑖

) (
𝑐†𝑖+1 + 𝑐𝑖+1

)
. . . 𝑐†𝑖+1𝑐𝑖 |𝑛1, . . . , 𝑛𝐿〉

= . . .
(
𝑐†𝑖 𝑐

†
𝑖+1 + 𝑐

†
𝑖 𝑐𝑖+1 + 𝑐𝑖 𝑐

†
𝑖+1 + 𝑐𝑖 𝑐𝑖+1

)
. . . 𝑐†𝑖+1𝑐𝑖 |𝑛1, . . . , 𝑛𝐿〉

=𝑛𝑖+1 |𝑛1, . . . , 𝑛𝐿〉 (A.27)

and likewise

𝑐†𝑖 𝑐𝑖+1P |𝑛1, . . . , 𝑛𝐿〉 = 𝑐†𝑖 𝑐𝑖+1(−1)𝑁 (𝑁−1)/2 |𝑛𝐿, 𝑛𝐿−1, . . . , 𝑛1〉

=
{
(−1)𝑁 (𝑁−1)/2(−1)𝑁−1 |0, 𝑛𝐿−1, . . . , 1〉 if 𝑖 = 𝐿
(−1)𝑁 (𝑁−1)/2 |𝑛𝐿, . . . , 1𝐿−𝑖, 0𝐿−𝑖+1, . . .〉 otherwise.

Z |𝑛1, 𝑛2, . . . , 𝑛𝐿〉 =
𝐿∏
𝑗=1

(
𝑐†𝑗 + (−1) 𝑗𝑐 𝑗

)
|𝑛1, 𝑛2, . . . , 𝑛𝐿〉(

𝑐†1 − 𝑐1
) (
𝑐†2 + 𝑐2

)
. . .

(
𝑐†𝐿 + 𝑐𝐿

) (
𝑐†1

)𝑛1 (
𝑐†2

)𝑛2
. . .

(
𝑐†𝐿

)𝑛𝐿 |0〉
=

(
𝑐†1 − 𝑐1

)
. . .

(
𝑐†𝐿−1 − 𝑐𝐿−1

) (
𝑐†1

)𝑛1 (
𝑐†2

)𝑛2
. . . (−1)

∑𝐿−1
𝑙=1 𝑛𝑙

(
𝑐†𝐿 + 𝑐𝐿

) (
𝑐†𝐿

)𝑛𝐿︸             ︷︷             ︸
=𝑛𝐿+1 mod2

|0〉

=
𝐿∏
𝑗=1

(−1) 𝑗𝑛 𝑗+
∑𝑗−1

𝑙=1 𝑛𝑙 |1 − 𝑛1, 1 − 𝑛2, . . . , 1 − 𝑛𝐿〉

The sign ofZ when acting on a Fock state is 1, because

𝑠𝑍 =
𝐿∏
𝑗=1

(−1) 𝑗𝑛 𝑗+
∑𝑗−1

𝑙=1 𝑛𝑙 = (−1)
𝐿∑
𝑗=1

(
𝑗𝑛 𝑗+

𝑗−1∑
𝑙=1
𝑛𝑙

)
(A.28)

=(−1)
𝐿∑
𝑗=1
( 𝑗𝑛 𝑗+(𝐿− 𝑗 )𝑛 𝑗)

= (−1)
𝐿

𝐿∑
𝑗=1
𝑛 𝑗

= (−1)2𝑁 2 = 1. (A.29)

The problem is, however, that in the case of spinless fermions a special ordering is re-
quired. Moreover, some observables like the momentum distribution function do not
commute with the particle hole exchange operatorZ such that these observables can-
not be formulated in the chosen basis easily. They would require di�erent symmetry
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sectors which contradicts the bene�ts one gets from the chosen basis.
Commutation with the Hamiltonian

Z
𝐿∑︁
𝑗=1

(
𝑐†𝑗+1𝑐 𝑗 + 𝑐

†
𝑗 𝑐 𝑗+1

)
=

𝐿∑︁
𝑗=1

(
(−1) 𝑗+1(−1) 𝑗𝑐 𝑗+1𝑐†𝑗 + (−1) 𝑗+1(−1) 𝑗𝑐 𝑗 𝑐†𝑗+1

)
Z

=
𝐿∑︁
𝑗=1

(
𝑐†𝑗 𝑐 𝑗+1 + 𝑐

†
𝑗+1𝑐 𝑗

)
Z (A.30)

A.4 Observables

This Appendix contains the veri�cations that the observables as introduced in Sec-
tion 4.2 do obey the symmetries as explained. The chosen basis as explained in the
previous part exploits the invariance of the Hamiltonian under several symmetry op-
erators. This is equivalent to saying that the action of the Hamiltonian leaves the mo-
mentum untouched, i. e. there are no matrix elements connecting di�erent 𝑘-sectors.
Analogously, the space inversion and particle-hole exchange symmetry can be used. In
order to retain the block structure of the basis only observables which obey the same
symmetries can be implemented. In the fermionic system only observables, which
commute with the fermionic parity operator (also called superselection rule), are al-
lowed. This is related to the fact that any Hilbert space containing fermions can be de-
composed into a direct sum of a two parts with an even and odd number of fermions,
respectively, using Majorana fermions. full basis which considers all necessary mo-
menta. An example for an operator that does not re�ect the translation symmetry is
the occupation number operator at site 𝑗 :

𝑛 𝑗 =
1
𝐿

∑︁
𝑘,𝑘 ′

𝑒𝑖(𝑘
′−𝑘) 𝑗𝑎†

𝑘
𝑎
𝑘 ′ . (A.31)

A.4.1 Momentum distribution function

If this operator is Fourier transformed and hence brought to the momentum basis, it
becomes themomentumdistribution function operator𝑛𝑘 , which obeys the translation
symmetry. This can be shown by acting with the translation operator on 𝑛𝑘

T𝑛(𝑘) = 1
𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)T𝑐†
𝑙
𝑐𝑚 = 1

𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙+1𝑐𝑚+1T , (A.32)

where a �nal renaming of the summation indices yields [T , 𝑛(𝑘)] = 0. The operator is
then split up into cases where𝑚 < 𝑙 ,𝑚 = 𝑙 and𝑚 > 𝑙 .

𝑛(𝑘) = 1
𝐿

𝐿−1∑︁
𝑙=0

𝑙−1∑︁
𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.33)



Section A.4. Observables 121

The �rst term can be rewritten swapping the sums such that

𝑛(𝑘) = 1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1∑︁
𝑙=𝑚+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.34)

=1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1−𝑚∑︁
𝑅=1

𝑒𝑖𝑘𝑅𝑐†𝑚+𝑅𝑐𝑚 + 1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

𝑒−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅 (A.35)

=1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.36)

In the last step we introduced the distance𝑅 to condense the sums to one. The operator
then becomes

𝑛(𝑘) =
𝐿−1∑︁
𝑙=0

𝑛̃𝑘 (𝑙 ) with 𝑛̃𝑘 ( 𝑗 ) =
1
𝐿
𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.37)

The remaining part is to study the action of 𝑐†
𝑙
𝑐𝑚 acting on a reference state which has

the form |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉. If 𝑙 < 𝑚 one leaves the order, whereas if 𝑙 > 𝑚 one swaps
the operators into 𝑐†

𝑙
𝑐𝑚 = −𝑐𝑚𝑐†𝑙 . One then �nds that for 𝑙 < 𝑚

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝑙 , . . . 𝑛𝑚, . . . 𝑛𝐿−1〉 (A.38)

=𝑐†
𝑙
(−1)

∑𝑚−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑙 , . . . 0𝑚, . . . , 𝑛𝐿−1〉 (A.39)

=(−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.40)

=(−1)
∑𝑚−1

𝑗=𝑙 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.41)

Technically, we measure the entire section ∑𝑚
𝑗=𝑙 𝑛 𝑗 including 𝑙 and 𝑚 of the original

state and then add 1, because initially 𝑛𝑚 = 1. Accordingly, for 𝑙 > 𝑚:

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉 = − 𝑐𝑚(−1)

∑𝑙−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑚, . . . 1𝑙 , . . . , 𝑛𝐿−1〉 (A.42)

= − (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑚, . . . , 1𝑙 , . . . 𝑛𝐿−1〉 (A.43)

= − (−1)
∑𝑙−1

𝑗=𝑚 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.44)

Using the measured section ∑𝑚
𝑗=𝑙 𝑛 𝑗 as before, this time initially 𝑛𝑙 = 0, such that no

additional minus sign is required.

Action of the re�ection operator

P𝑛(𝑘)P† =1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)P𝑐†
𝑙
𝑐𝑚P† = 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝐿−𝑙+1𝑐𝐿−𝑚+1

=1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝐿−𝑙+1−(𝐿−𝑚+1))𝑐†
𝑙
𝑐𝑚 = 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒−𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚

=𝑛(−𝑘) (A.45)
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Action of the particle-hole exchange operator

Z𝑛(𝑘)Z† =1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)Z𝑐†
𝑙
𝑐𝑚Z†

=1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)(−1)𝑙𝑐
𝑙
(−1)𝑚𝑐†𝑚 = 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)+𝑖𝜋 (𝑙−𝑚)
(
𝛿𝑙𝑚 − 𝑐†𝑚𝑐𝑙

)
(A.46)

=1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖(𝑘+𝜋 )(𝑙−𝑚)
(
𝛿𝑙𝑚 − 𝑐†𝑚𝑐𝑙

)
= 1 − 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒−𝑖(𝑘+𝜋 )(𝑚−𝑙 )𝑐†𝑚𝑐𝑙 (A.47)

=1 − 𝑛(−𝑘 − 𝜋 ) (A.48)

Z𝑛(𝑘)Z† =1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)Z𝑏†
𝑙
𝑏𝑚Z† = 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)𝑏
𝑙
𝑏†𝑚

=1
𝐿

𝐿∑︁
𝑙=1

(
1 − 𝑏†

𝑙
𝑏
𝑙

)
+ 1
𝐿

𝐿∑︁
𝑙,𝑚=1
𝑙 6=𝑚

𝑒𝑖𝑘(𝑙−𝑚)𝑏†𝑚𝑏𝑙

=1
𝐿

𝐿∑︁
𝑙=1

(1 − 2𝑛𝑙 ) +
1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒−𝑖𝑘(𝑚−𝑙 )𝑏†𝑚𝑏𝑙

=𝐿 − 2𝑁
𝐿

+ 𝑛(−𝑘) (A.49)

Similarly, for hardcore bosons one �nds

Z𝑛(𝑘)Z† =1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)Z𝑏†
𝑙
𝑏𝑚Z† = 1

𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)𝑏
𝑙
𝑏†𝑚

=1
𝐿

𝐿∑︁
𝑙,𝑚=1
𝑙 6=𝑚

𝑒𝑖𝑘(𝑙−𝑚)𝑏†𝑚𝑏𝑙 +
1
𝐿

𝐿∑︁
𝑙=1

𝑏
𝑙
𝑏†
𝑙

=1
𝐿

𝐿∑︁
𝑙,𝑚=1
𝑙 6=𝑚

𝑒𝑖𝑘(𝑙−𝑚)𝑏†𝑚𝑏𝑙 +
1
𝐿

𝐿∑︁
𝑙=1

𝑏†
𝑙
𝑏
𝑙
+ 1
𝐿

𝐿∑︁
𝑙=1

(𝑏
𝑙
𝑏†
𝑙
− 𝑏†

𝑙
𝑏
𝑙
)

=𝑛(−𝑘) + 1
𝐿

𝐿∑︁
𝑙=1

(1 − 2𝑏†
𝑙
𝑏
𝑙
) = 𝑛(−𝑘) + 1 − 2𝑁

𝐿
(A.50)

In the case of half-�lling it is 𝑁 = 𝐿/2, such that the additional summand in Eq. (A.50)
vanishes and it is simplyZ𝑛(𝑘)Z† = 𝑛(−𝑘).

A.4.2 Density-density correlation structure factor
It is evident that it only contains diagonal matrix elements in the spatial basis, because
the product 𝑛𝑙𝑛𝑚 does not alter the state. Both sites 𝑙 and𝑚 need to be occupied to give
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a contribution, which is then hit twice (double sum), unless 𝑙 = 𝑚. It follows that the
exponentials add up to a real cosine, which is also expected, because the observable is
hermitean. Hence, this simpli�es to

𝐷(𝑘) = 𝑁

𝐿
+ 2
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

cos(𝑘𝑅)𝑛𝑙𝑛𝑙+𝑅 . (A.51)

The observable 𝐷(𝑘) commutes with the translation operator T , because any shift
in the index (𝑙,𝑚) → (𝑙 + 1,𝑚 + 1) cancels through the minus sign. Moreover, it also
commutes with P, since 𝑛(

A.4.3 Momentum distribution function

The chosen basis as explained in the previous section exploits the invariance under
translations of the Hamilton operator. This is equivalent to saying that the action
of the Hamiltonian leaves the momentum untouched, i. e. there are no matrix ele-
ments connecting di�erent 𝑘-sectors. Analogously, the space inversion and particle-
hole exchange symmetry can be used. In order to retain the block structure of the
basis only observables which obey the same symmetries can be implemented. In the
fermionic system only observables, which commute with the fermionic parity oper-
ator (also called superselection rule), are allowed. This is related to the fact that any
Hilbert space containing fermions can be decomposed into a direct sum of a two parts
with an even and odd number of fermions, respectively, using Majorana fermions. full
basis which considers all necessary momenta. An example is the occupation number
at site 𝑗

𝑛 𝑗 =
1
𝐿

∑︁
𝑘,𝑘 ′

𝑒𝑖(𝑘
′−𝑘) 𝑗𝑎†

𝑘
𝑎
𝑘 ′ (A.52)

However, since 𝑛𝑘

T𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)T𝑐†
𝑙
𝑐𝑚 = 1

𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙+1𝑐𝑚+1T , (A.53)

a renaming of the summation indices yields [T , 𝑛𝑘] = 0. The operator is then split up
into cases where𝑚 < 𝑙 ,𝑚 = 𝑙 and𝑚 > 𝑙 .

𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑙=0

𝑙−1∑︁
𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.54)
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The �rst term can be rewritten swapping the sums such that

𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1∑︁
𝑙=𝑚+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.55)

=1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1−𝑚∑︁
𝑅=1

𝑒𝑖𝑘𝑅𝑐†𝑚+𝑅𝑐𝑚 + 1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

𝑒−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅 (A.56)

=1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.57)

In the last step we introduced the distance𝑅 to condense the sums to one. The operator
then becomes

𝑛𝑘 =
𝐿−1∑︁
𝑙=0

𝑛̃𝑘 (𝑙 ) with 𝑛̃𝑘 ( 𝑗 ) =
1
𝐿
𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.58)

The remaining part is to study the action of 𝑐†
𝑙
𝑐𝑚 acting on a reference state which has

the form |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉. If 𝑙 < 𝑚 one leaves the order, whereas if 𝑙 > 𝑚 one swaps
the operators into 𝑐†

𝑙
𝑐𝑚 = −𝑐𝑚𝑐†𝑙 . One then �nds that for 𝑙 < 𝑚

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝑙 , . . . 𝑛𝑚, . . . 𝑛𝐿−1〉 (A.59)

=𝑐†
𝑙
(−1)

∑𝑚−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑙 , . . . 0𝑚, . . . , 𝑛𝐿−1〉 (A.60)

=(−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.61)

=(−1)
∑𝑚−1

𝑗=𝑙 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.62)

Technically, we measure the entire section ∑𝑚
𝑗=𝑙 𝑛 𝑗 including 𝑙 and 𝑚 of the original

state and then add 1, because initially 𝑛𝑚 = 1. Accordingly, for 𝑙 > 𝑚:

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉 = − 𝑐𝑚(−1)

∑𝑙−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑚, . . . 1𝑙 , . . . , 𝑛𝐿−1〉 (A.63)

= − (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑚, . . . , 1𝑙 , . . . 𝑛𝐿−1〉 (A.64)

= − (−1)
∑𝑙−1

𝑗=𝑚 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.65)

Using the measured section ∑𝑚
𝑗=𝑙 𝑛 𝑗 as before, this time initially 𝑛𝑙 = 0, such that no

additional minus sign is required.

A.4.4 Density-density correlation structure factor

It is evident that the density-density correlation structure factor as de�ned in Eq. (4.14)
only contains diagonal matrix elements in the spatial basis, because the product 𝑛𝑙𝑛𝑚
does not alter the state. Both sites 𝑙 and𝑚 need to be occupied to give a contribution,
which is then hit twice (double sum), unless 𝑙 = 𝑚. It follows that the exponentials
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add up to a real cosine, which is also expected, because the observable is hermitean.
Hence, this simpli�es to

𝐷(𝑘) = 𝑁

𝐿
+ 2
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

cos(𝑘𝑅)𝑛𝑙𝑛𝑙+𝑅 . (A.66)

A.5 Implementation

When the basis is implemented, it is chosen to take the smallest integer of all transla-
tions as the reference state |𝑎〉.

A.5.1 Momentum distribution function

The chosen basis as explained in the previous section exploits the invariance under
translations of the Hamilton operator. This is equivalent to saying that the action
of the Hamiltonian leaves the momentum untouched, i. e. there are no matrix ele-
ments connecting di�erent 𝑘-sectors. Analogously, the space inversion and particle-
hole exchange symmetry can be used. In order to retain the block structure of the
basis only observables which obey the same symmetries can be implemented. In the
fermionic system only observables, which commute with the fermionic parity oper-
ator (also called superselection rule), are allowed. This is related to the fact that any
Hilbert space containing fermions can be decomposed into a direct sum of a two parts
with an even and odd number of fermions, respectively, using Majorana fermions. full
basis which considers all necessary momenta. An example is the occupation number
at site 𝑗

𝑛 𝑗 =
1
𝐿

∑︁
𝑘,𝑘 ′

𝑒𝑖(𝑘
′−𝑘) 𝑗𝑎†

𝑘
𝑎
𝑘 ′ (A.67)

However, since 𝑛𝑘

T𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)T𝑐†
𝑙
𝑐𝑚 = 1

𝐿

𝐿−1∑︁
𝑙,𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙+1𝑐𝑚+1T , (A.68)

a renaming of the summation indices yields [T , 𝑛𝑘] = 0. The operator is then split up
into cases where𝑚 < 𝑙 ,𝑚 = 𝑙 and𝑚 > 𝑙 .

𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑙=0

𝑙−1∑︁
𝑚=0

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.69)
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The �rst term can be rewritten swapping the sums such that

𝑛𝑘 =
1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1∑︁
𝑙=𝑚+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 + 1

𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1∑︁
𝑚=𝑙+1

𝑒𝑖𝑘(𝑙−𝑚)𝑐†
𝑙
𝑐𝑚 (A.70)

=1
𝐿

𝐿−1∑︁
𝑚=0

𝐿−1−𝑚∑︁
𝑅=1

𝑒𝑖𝑘𝑅𝑐†𝑚+𝑅𝑐𝑚 + 1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

𝑒−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅 (A.71)

=1
𝐿

𝐿−1∑︁
𝑙=0

𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.72)

In the last step we introduced the distance𝑅 to condense the sums to one. The operator
then becomes

𝑛𝑘 =
𝐿−1∑︁
𝑙=0

𝑛̃𝑘 (𝑙 ) with 𝑛̃𝑘 ( 𝑗 ) =
1
𝐿
𝑐†
𝑙
𝑐𝑙 +

1
𝐿

𝐿−1−𝑙∑︁
𝑅=1

(𝑒𝑖𝑘𝑅𝑐†
𝑙+𝑅𝑐𝑙 + 𝑒

−𝑖𝑘𝑅𝑐†
𝑙
𝑐𝑙+𝑅) (A.73)

The remaining part is to study the action of 𝑐†
𝑙
𝑐𝑚 acting on a reference state which has

the form |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉. If 𝑙 < 𝑚 one leaves the order, whereas if 𝑙 > 𝑚 one swaps
the operators into 𝑐†

𝑙
𝑐𝑚 = −𝑐𝑚𝑐†𝑙 . One then �nds that for 𝑙 < 𝑚

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝑙 , . . . 𝑛𝑚, . . . 𝑛𝐿−1〉 (A.74)

=𝑐†
𝑙
(−1)

∑𝑚−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑙 , . . . 0𝑚, . . . , 𝑛𝐿−1〉 (A.75)

=(−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.76)

=(−1)
∑𝑚−1

𝑗=𝑙 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.77)

Technically, we measure the entire section ∑𝑚
𝑗=𝑙 𝑛 𝑗 including 𝑙 and 𝑚 of the original

state and then add 1, because initially 𝑛𝑚 = 1. Accordingly, for 𝑙 > 𝑚:

𝑐†
𝑙
𝑐𝑚 |𝑛0, 𝑛1, . . . 𝑛𝐿−1〉 = − 𝑐𝑚(−1)

∑𝑙−1
𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑚, . . . 1𝑙 , . . . , 𝑛𝐿−1〉 (A.78)

= − (−1)
∑𝑚−1

𝑗=0 𝑛 𝑗 (−1)
∑𝑙−1

𝑗=0 𝑛 𝑗 |𝑛0, 𝑛1, . . . 0𝑚, . . . , 1𝑙 , . . . 𝑛𝐿−1〉 (A.79)

= − (−1)
∑𝑙−1

𝑗=𝑚 𝑛 𝑗 |𝑛0, 𝑛1, . . . 1𝑙 , . . . , 0𝑚, . . . 𝑛𝐿−1〉 (A.80)

Using the measured section ∑𝑚
𝑗=𝑙 𝑛 𝑗 as before, this time initially 𝑛𝑙 = 0, such that no

additional minus sign is required.

A.5.2 Density-density correlation structure factor

It is evident that the density-density correlation structure factor as de�ned in Eq. (4.14)
only contains diagonal matrix elements in the spatial basis, because the product 𝑛𝑙𝑛𝑚
does not alter the state. Both sites 𝑙 and𝑚 need to be occupied to give a contribution,
which is then hit twice (double sum) or once, if 𝑙 =𝑚. It follows that the exponentials
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add up to a real cosine, which is also expected, because the observable is hermitean.
Hence, the observable simpli�es to

𝐷(𝑘) = 𝑁

𝐿
+ 2
𝐿

𝐿∑︁
𝑙=1

𝐿−𝑙∑︁
𝑅=1

cos(𝑘𝑅)𝑛𝑙𝑛𝑙+𝑅 . (A.81)

The observable 𝐷(𝑘) commutes with the translation operator T , because any shift in
the index (𝑙,𝑚) → (𝑙 + 1,𝑚 + 1) cancels through the minus sign. Moreover, it also
commutes with P, since 𝐷(−𝑘) = 𝐷(𝑘). Furthermore, one �nds that 𝐷(𝑘 = 0) = 𝑁 /𝐿 +
2/𝐿(𝑁 (𝑁 − 1)/2) = 𝑁 2/𝐿. Finally, one calculates that

Z𝐷(𝑘)Z† =1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚)(1 − 𝑛𝑙 )(1 − 𝑛𝑚)

= 1
𝐿

𝐿∑︁
𝑙,𝑚=1

𝑒𝑖𝑘(𝑙−𝑚) − 1
𝐿

𝐿∑︁
𝑚=1

𝑒−𝑖𝑘𝑚
𝐿∑︁
𝑙=1

𝑒𝑖𝑘𝑙𝑛𝑙 −
1
𝐿

𝐿∑︁
𝑙=1

𝑒𝑖𝑘𝑙
𝐿∑︁

𝑚=1
𝑒−𝑖𝑘𝑚𝑛𝑚 + 𝐷(𝑘)

=𝐿𝛿𝑘,0 − 2𝛿𝑘,0𝑁 + 𝐷(𝑘), (A.82)

and hence Z𝐷(𝑘)Z† = 𝐷(𝑘) at half-�lling.
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Figure B.1: Histograms over the �ow for energy window [0.079173, 0.083340] for the
symmetry sectors 𝑘 = 0, 𝐿/2 and both other symmetry quantum numbers, i. e. 𝑝 =
±1, 𝑧 ± 1 and lattice size 𝐿 = 20. Each shows the relative frequency over bins of size
0.001.
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Figure B.2: Histograms over the �ow for energy window [0.079173, 0.083340] for the
symmetry sectors 𝑘 6= 0, 𝐿/2 and both other symmetry quantum numbers, i. e. 𝑝 =
±1, 𝑧 ± 1 and lattice size 𝐿 = 20. Each shows the relative frequency over bins of size
0.001.
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Figure B.3: The Γ-normality indicator for three di�erent windows over subdiagonals
for a true random �ow, i. e. for transformations with 100 di�erent random unitary
matrices. Di�erent lattice sizes and the symmetry sectors (a) 𝑘 = 0, 𝐿/2 and (b) 𝑘 6=
0, 𝐿/2. For Gaussian distributed values it is Γ = 𝜋

2 . The Γ-value of the data is always
very close to the normality value 𝜋/2 from above for all momenta 𝑘 as expected.
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Figure B.4: Observables for the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1) and 𝐿 = 18 in the
spatial basis. Since both the interaction 𝐼 and the den.-den. struc. fact. 𝑁 (𝑘 = 𝜋 )
only contain density operators, they cannot change a basis state and are con�ned to
the main diagonal. The kinetic energy 𝐾 is always negative, because of the negative
sign in front of 𝑡1 (𝑡1 > 0). The mom. distribution function 𝑛(𝑘 = 0) only accumulates
successful hoppings from site𝑚 to 𝑙 and is therefore positive (see ??).
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Figure B.5: The projection operator P𝐸=0 in the spatial basis. This operator can be
computed by using the transformation, which diagonalizes the Hamiltonian in the
spatial basis, to reversely transform a diagonal, which only contains a ’1’at the chosen
site. In the spatial basis it yields a densely populated form.
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Figure B.6: The interaction energy and the mom. distr. func. for the symmetry sector
(𝑘, 𝑝, 𝑧) = (0, 1, 1) and 𝐿 = 18 in a random basis. The other two observables look
similar. One can clearly see the di�erence compared to the Wegner �ow pendants (see
e. g. Fig. B.7b and Fig. B.7f).
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Figure B.7: Observables for the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1) and 𝐿 = 18
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Figure B.8: Observables for the symmetry sector (𝑘, 𝑝, 𝑧) = (0, 1, 1) and 𝐿 = 18
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Figure B.9: Matrix elements of the observables in the basis of 𝐵 = 0 for di�erent
energies per site, i. e. cuts through the spectrum.
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Figure B.10: Matrix elements of the observables in the basis of 𝐵 = 0 for di�erent
energies per site, i. e. cuts through the spectrum. The data is identical to the data in
Fig. B.9, this time, however, plotted over a logscale.
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Figure B.11: Matrix elements |〈𝑚 |P𝐸=0 |𝑛〉| at 𝐵 = 0 of the Projection operator P𝐸=0
for di�erent energies per site.
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Figure B.12: The IPR for the (a) interaction energy and (b) kinetic energy for three
di�erent data sets (𝐿 = 22, 𝑘 = 0, 𝜋 ). The IPR is computed not only for all matrix
elements (blue), but also for all but the largest (orange), all but the largest two (green)
matrix elements. It turns out that the largest element de�nes the overall form of the
IPR and that without it the IPR is �at also for 𝐼 and 𝐾 .
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Figure B.13: The IPR for all observables and a mov. avg. (black) over a 0.06 window
(≈ 4% of the spectrum) for the symm. sectors 𝑛𝑘 6= 0, 𝐿/2 and and early �ow.
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Figure B.14: The IPR for all observables and a mov. avg. (black) over a 0.06 window
(≈ 4% of the spectrum) for the symm. sectors 𝑛𝑘 6= 0, 𝐿/2 and and late �ows.
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0

0.2

0.4

0.6

0.8

1

−0.6 −0.3 0 0.3 0.6

IP
R
fo
r𝑈

ra
nd

Energy per site 𝐷𝑛/𝐿

𝐿 = 16
𝐿 = 18

𝐿 = 20

(f)Mom. distr. func. 𝑛(𝑘 = 0) (𝑛𝑘 6= 0, 𝜋 )

0

0.2

0.4

0.6

0.8

1

−0.6 −0.3 0 0.3 0.6

IP
R
fo
r𝑈

ra
nd

Energy per site 𝐷𝑛/𝐿

𝐿 = 16
𝐿 = 18

𝐿 = 20
𝐿 = 22

(g) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 =
0, 𝜋 )

0

0.2

0.4

0.6

0.8

1

−0.6 −0.3 0 0.3 0.6

IP
R
fo
r𝑈

ra
nd

Energy per site 𝐷𝑛/𝐿

𝐿 = 16
𝐿 = 18

𝐿 = 20

(h) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 6=
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Figure B.15: The IPR for all observables and mov. avg.s (black) over a 0.06 window
(≈ 4% of the spectrum) for all symm. sectors and a random unitary transformation.
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Figure B.16: The IPR of the projection operator P𝐸=0 and moving averages (black) for
di�erent �ows 𝐵 over a 0.06 window (≈ 4% of the spectrum) for the symm. sectors
𝑛𝑘 6= 0, 𝐿/2.
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(a) Projection operator P𝐸=0 (𝑛𝑘 = 0, 𝐿/2)
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(b) Projection operator P𝐸=0 (𝑛𝑘 6= 0, 𝐿/2)

Figure B.17: The IPR for the projection operator P𝐸=0 and a mov. avg. (black) over a
0.06 window (≈ 4% of the spectrum) for the symm. sectors (left) 𝑛𝑘 = 0, 𝐿/2 and (right)
𝑛𝑙 6= 0, 𝐿/2 and a random unitary transformation.
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(g) Density-density interaction 𝑁 (𝑘 = 𝜋 )
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(h) Density-density interaction 𝑁 (𝑘 = 𝜋 )

Figure B.18: The Shannon entropy for all observables and a mov. avg. (black) over
a 0.06 window (≈ 4% of the spectrum) for 𝐵 = 0 and 𝐵 = ∞ in the symm. sectors
𝑛𝑘 = 0, 𝐿/2.
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(g) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 )
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(h) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 )

Figure B.19: The Shannon entropy for all observables and a mov. avg. (black) over a
window 0.06 (≈ 4% of the spectrum) for (left) 𝐵 = 0 and (right) 𝐵 = ∞ in the symm.
sectors 𝑛𝑘 6= 0, 𝐿/2.
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(a) Interaction energy 𝐼 (𝑘 = 0, 𝜋 )
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(e)Mom. distr. func. 𝑛(𝑘 = 0) (𝑘 = 0, 𝜋 )
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(f) Mom. distr. func. 𝑛(𝑘 = 0) (𝑘 6= 0, 𝜋 )
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(g) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑘 = 0, 𝜋 )
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(h) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑘 6= 0, 𝜋 )

Figure B.20: The Shannon entropy for all observables and a mov. avg. (black) over a
0.06 window (≈ 4% of the spectrum) in a random basis for the sectors (left) 𝑛 = 0, 𝜋
and (right) 𝑛𝑘 6= 0, 𝐿/2.
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Figure B.21: The Shannon entropy of the projection operator P𝐸=0 and a mov. avg.s
(black) for di�erent �ows 𝐵 over a 0.06 window (≈ 4% of the spectrum) for the symm.
sectors 𝑛𝑘 6= 0, 𝐿/2.
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(a) Projection operator P𝐸=0 (𝑛𝑘 = 0, 𝐿/2)
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Figure B.22: The Shannon entropy for the projection operator P𝐸=0 and a mov. avg.
(black) over a window of size 0.06 (≈ 4% of the spectrum) for the symm. sectors (left)
𝑛𝑘 = 0, 𝐿/2 and (right) 𝑛𝑙 6= 0, 𝐿/2 and a random unitary transformation.
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Figure B.23: Scaling of the Shannon entropy over lattice sizes of all observables for
di�erent energy densities in all symmetry sectors at 𝐵 = 0.



Section 149

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(a) Interaction energy 𝐼 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(b) Interaction energy 𝐼 (𝑛𝑘 6= 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(c) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(d) Kinetic energy 𝐾 (𝑛𝑘 6= 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(e)Mom. distr. func. 𝑛(𝑘 = 0) (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(f)Mom. distr. func. 𝑛(𝑘 = 0) (𝑛𝑘 6= 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(g) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 =
0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
10
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(h) Den.-den. struc. fac. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 6=
0, 𝐿/2)

Figure B.24: Scaling of the Shannon entropy over lattice sizes of all observables for
di�erent energy densities in all symmetry sectors at 𝐵 = 10.
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Figure B.25: Scaling of the Shannon entropy over lattice sizes of all observables for
di�erent energy densities in all symmetry sectors at 𝐵 = ∞.
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Figure B.26: The scaling of the IPR over lattice sizes for three energy densities and for
the projection operator P𝐸=0 into the energy eigenstate with 𝐸 = 0 and all symmetry
sectors at 𝐵 = 0. The identical quantity but for a random unitary �ow is depicted with
star shaped symbols.
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Figure B.27: Scaling of the IPR over lattice sizes for three energy densities and for
the projection operator P𝐸=0 into the energy eigenstate with 𝐸 = 0 and all symmetry
sectors at 𝐵 = ∞. The identical quantity but for a random unitary �ow is depicted with
star shaped symbols.
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Figure B.28: Scaling of the Shannon entropy over lattice sizes of all observables for
di�erent energy densities in all symmetry sectors at 𝐵 = 0.
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Figure B.29: Scaling of the Shannon entropy over lattice sizes of all observables for
di�erent energy densities in all symmetry sectors at 𝐵 = ∞.
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Figure B.30: Histograms over the �ow for a band comprising the closest 1% of sub-
diagonals for the symmetry sectors 𝑘 6= 0, 𝜋 , so 𝑛𝑘 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and lattice
size 𝐿 = 20. The pre�ow basis is the momentum basis. Each �gure shows the relative
frequency over bins of size 0.001. Initially, the number of large matrix elements in
the subdiagonal window is huge, which leads to a very broad shape. At �ow 𝐵 = 1 it
looks more like a Gaussian or a logistic distribution, which is due to the heavy tails.
Even later in the �ow, the distribution seems to be well approximated by a Gaussian
distribution. The orange curve shows the Gaussian that is de�ned by the mean and
standard deviation of the corresponding data set.
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Figure B.31: The IPR for all observables and a mov. avg. (black) over a 0.06 window
(≈ 4% of the spectrum) for the symm. sectors 𝑛𝑘 = 0, 𝐿/2 and at �ow (left) 𝐵 = 0 and
(right) 𝐵 = ∞.



156 Appendix B. Supplementary plots

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
0)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(a) Interaction energy 𝐼 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
∞
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(b) Interaction energy 𝐼 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
0)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(c) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
∞
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(d) Kinetic energy 𝐾 (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
0)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(e)Mom. distr. func. 𝑛(𝑘 = 0) (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
∞
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(f)Mom. distr. func. 𝑛(𝑘 = 0) (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
0)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(g) Den.-den. inter. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 = 0, 𝐿/2)

0.0001

0.001

0.01

0.1

1

16 18 20 22

Av
er
ag
e
of

IP
R(
𝐵
=
∞
)

Lattice size 𝐿

𝐷𝑛/𝐿 = −0.45
𝐷𝑛/𝐿 = −0.15
𝐷𝑛/𝐿 = −0.02
𝐷𝑛/𝐿 = 0.10

𝑈Wegner
𝑈rand

(h) Den.-den. inter. 𝑁 (𝑘 = 𝜋 ) (𝑛𝑘 = 0, 𝐿/2)

Figure B.32: Scaling of the IPR over lattice size of all observables, when the pre�ow
basis is the momentum basis. Symm. sect. 𝑛𝑘 = 0, 𝐿/2 at (left) 𝐵 = 0 and (right) 𝐵 = ∞.
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Figure B.33: Scaling of the IPR over lattice size of all observables, when the pre�ow
basis is the momentum basis. Symm. sect. 𝑛𝑘 6= 0, 𝐿/2 at (left) 𝐵 = 0 and (right) 𝐵 = ∞.





Appendix C

Spectral analysis

It is believed that the level statistics is an immediate indicator of whether a system is
integrable or non-integrable (see Section 2.2). One of themost popular ways is to study
the level spacings or level ratios. In particular, one is interested in the distribution or
probability density of the level spacings. The interpretation is then simple: a vanishing
value at zero spacing means that level repulsion is present. This was �rst studied by
von Neumann and Wigner (1929), after it had been observed by Hund (1927). In order
to analyze the levels it is bene�cial to not simply look at the energy eigenvalues 𝐸𝑖 and
the spacings of neighboring levels ∆𝐸𝑖 = 𝐸𝑖+1 − 𝐸𝑖 (with 𝐸𝑖 sorted in ascending order).
This is, because the model might have a special energy density, which also depends on
the chosen parameters of the system. Since the goal is to study the generic behavior of
the levels, one would like to remove the in�uence of the system-speci�c level density,
instead. The canonical way of approaching this is to perform the so-called unfolding
procedure (Brody et al. 1981; Bohigas 1991). This method ensures that the mean level
spacing is approximately 1, independent of the considered model. It is discussed in
more detail in the appendix in Appendix C.1.

C.1 Unfolding procedure
In a �rst step, one calculates the cumulative spectral function 𝑁 (𝐸), which is a
staircase-function that counts the number of levels below a given level. The edges of
the spectrum are usually dominated by large �uctuations, which e. g. re�ect a di�erent
low-energy behavior, which is why they are neglected (usually 20% of the spectrum is
cut o� on both ends). The remaining levels of the bulk then form

𝑁 (𝐸) =
∑︁
𝑖

𝜃 (𝐸 − 𝐸𝑖 ) =
∑︁
𝐸𝑖≤𝐸

1. (C.1)

The function𝑁 (𝐸) consists of a smooth (or average) part plus a �uctuating contribution
on top of it. In the next step, the smooth part is computed by �tting a high-degree
polynomial to it (in our case: usually of degree 13). The �tted function 𝑁̃ (𝐸) is then
used to de�ne new energies 𝐸𝑖 = 𝑁̃ (𝐸𝑖 ), which have an average spacing unity and are
dimensionless. Based on the new variables one de�nes the level spacing 𝑠𝑖 = 𝐸𝑖+1 − 𝐸𝑖 .
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Its derivative is the density of states

𝜌(𝐸) = d𝑁
d𝐸 =

∞∑︁
𝑖=1

𝛿(𝐸 − 𝐸𝑖 ). (C.2)

Level spacing distribution for chaotic or non-integrable systems is the so-calledWigner
surmise, also called Wigner-Dyson distribution:

𝑃WD(𝑠) =
𝜋𝑠

2 exp
(
−𝜋𝑠

2

4

)
(C.3)

𝑃Poisson(𝑠) = 𝑒−𝑠 (C.4)



Appendix D

Dimensions of symmetry sectors

𝐿 16 18 20 22
k p z
0 1 1 257 765 2518 8359
0 1 −1 183 622 2234 7800
0 −1 1 158 602 2136 7721
0 −1 −1 212 715 2364 8186
1 1 1 392 1336 4587
1 1 −1 408 1364 4638
2 1 1 411 1364 4649
2 1 −1 397 1336 4601
3 1 1 392 1337 4587
3 1 −1 408 1366 4638
4 1 1 413 1364 4652
4 1 −1 396 1336 4598
5 1 1 392 1336 4587
5 1 −1 408 1364 4639
6 1 1 411 1366 4649
6 1 −1 397 1337 4601
7 1 1 392 1336 4587
7 1 −1 408 1364 4638
8 1 1 239 1364 4652
8 1 −1 166 1336 4598
9 1 1 715 4587
9 1 −1 602 4638
10 1 1 2453
10 1 −1 2173
11 1 1 8186
11 1 −1 7721
𝐿/2 −1 1 175 622 2197 7800
𝐿/2 −1 −1 230 765 2429 8359

Table D.1: Dimensions of the Hilbert spaces
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