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Es genügt nicht bloss die bewusste Absicht dazu, jetzt mit dem einen Auge zu sehen,

dann mit dem anderen, sondern man muss sich eine möglichst deutliche sinnliche

Vorstellung hervorrufen von dem, was man zu sehen wünscht. Dann tritt dies auch in

der Erscheinung hervor.

—Hermann von Helmholtz über die Gesichtswahrnehmungen (1871)
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Abstract

How someone’s face is perceived is not only influenced by their facial expression but also largely
by the situational context as well as by previous experiences with that person. Although emo-
tional expressions of faces and voices are relevant social cues that have been suggested to enjoy
a prioritized role in attentional selection processes, the connection between processing inherent
emotional and associated valence is yet not well understood. In this PhD project, a set of behav-
ioral and event-related potential (ERP) studies were conducted to examine the temporal dynamics
and degree to which affective social cues are prioritized over neutral social cues and learned un-
der different task constraints. In Studies 1 to 3, faces were cross-modally associated with affective
vocalizations. Associated valence in learning and retrieval were tested in a valence-implicit Pavlo-
vian conditioning paradigm (Studies 1 and 2) in which only gender information was task-relevant.
In Study 3, the retrieval of faces previously associated with valence was contrasted for a valence-
implicit and valence-explicit task. The influence of physical stimulus properties, e.g., frequency
spectra and size, on valence effects was addressed in Studies 4 and 5. Although the neural (Study
1) and behavioral (Study 2) results suggested sensitivity for the voices’ valence, there was little
evidence for the acquired valence effects in the conditioned faces. In contrast, by relaxing task
constraints during the learning of the face-voice pairs (Study 3), effects of associated valence were
observable in both valence-implicit and -explicit tasks during retrieval. Effects on early visual
processing were not observable for emotional stimuli but shown for the extensively trained stim-
ulus features (gender) in Study 1. At mid-latencies, both positive and negative facial expressions
affected ERPs (Study 5), whereas the effects of associated valence were restricted to negative as-
sociations. Valence effects on later processing appeared particularly sensitive to task requirements
(Studies 3 and 5). In summary, the findings suggest a differential prioritization of valence in emo-
tional expressions of the face and voice compared to associated valence. Moreover, tasks steering
attention away from the stimulus’ valence might strongly impair the acquisition of valence-based
associations, whereas the retrieval of already acquired associations, similar to inherent emotional
expressions, can influence attentional processes also in valence-implicit contexts.

v
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Zusammenfassung

Wie das Gesicht einer Person wahrgenommen wird, hängt nicht nur von ihrem Gesichtsausdruck
ab, sondern auch weitgehend vom situativen Kontext sowie von früheren Erfahrungen mit dieser
Person. Obwohl Emotionsausdrücke in Gesicht und Stimme relevante soziale Reize sind, von de-
nen angenommen wurde, dass sie eine vorrangige Rolle bei selektiven Aufmerksamkeitsprozessen
spielen, ist der Zusammenhang zwischen der Verarbeitung inhärenter Emotion und assoziierter
Valenz noch nicht gut verstanden. Im Rahmen dieser Dissertation wurden eine Reihe von Ver-
haltensstudien und Studien zu ereigniskorrelierten Potentialen (EKPs) durchgeführt, welche die
zeitliche Dynamik und das Ausmaß untersuchen, in dem affektive gegenüber neutralen, sozialen
Reizen unter verschiedenen Aufgabenbedingungen priorisiert und gelernt werden. In den Stu-
dien 1 bis 3 wurden Gesichter modalitätsübergreifend mit affektiven Vokalisationen assoziiert.
Die assoziierte Valenz beim Lernen und Abrufen wurde in einem valenz-impliziten, klassischen
Konditionierungsparadigma getestet (Studien 1 und 2), in welchem nur die Geschlechterinforma-
tion aufgabenrelevant war. In Studie 3 wurde der Abruf von Gesichtern, die zuvor mit Valenz
assoziiert wurden, in einer valenz-impliziten und einer valenz-expliziten Aufgabe verglichen. In
den Studien 4 und 5 wurde der Einfluss physikalischer Stimuluseigenschaften, z.B. Frequenzspek-
trum und Größe, auf Valenz-Effekte untersucht. Obwohl die neuronalen (Studie 1) und verhaltens-
bezogenen (Studie 2) Ergebnisse auf eine Sensitivität für Valenz in der Stimmverarbeitung hin-
deuteten, gab es kaum Hinweise auf erworbene Valenz-Effekte für konditionierte Gesichter. Im
Gegensatz dazu waren die Effekte von assoziierter Valenz sowohl bei valenz-impliziten als auch
-expliziten Aufgaben während des Abrufs zu beobachten, wenn keine Fokussierung auf spezifis-
che Stimuluseigenschaften während des Lernens der Gesichter-Stimmen-Paare durch die Aufgabe
vorgegeben wurde (Studie 3). Frühe visuelle Verarbeitungseffekte waren für emotionale Stimuli
nicht zu beobachten, zeigten sich aber für die intensiv trainierten Stimulusmerkmale (Geschlech-
terinformation) in Studie 1. EKPs mittlerer Latenz wurden sowohl durch positive als auch negative
Gesichtsausdrücke moduliert (Studie 5), während die Effekte assoziierter Valenz auf negative As-
soziationen beschränkt waren. Valenzeffekte auf spätere Verarbeitungsstufen schienen besonders
empfindlich auf die spezifischen Aufgabenanforderungen zu reagieren (Studien 3 und 5). Zusam-
menfassend deuten die Ergebnisse auf eine unterschiedliche Priorisierung von Valenz bei Emo-
tionsausdrücken in Gesicht und Stimme im Vergleich zu assoziierter Valenz hin. Darüber hinaus
scheinen Aufgaben, die die Aufmerksamkeit von der Valenz des Stimulus ablenken, den Erwerb
valenzbasierter Assoziationen stark zu beeinträchtigen, während der Abruf bereits erworbener As-
soziationen, ähnlich wie bei inhärenten emotionalen Ausdrücken, auch in valenz-impliziten Kon-
texten Aufmerksamkeitsprozesse beeinflussen kann.
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Chapter 1

Introduction

Learning about others is essential for the coordination of social interactions, and thus it is a

vital mechanism for all social species, including humans. Knowledge about regularities in others’

behavior and outcomes of previous interactions can help us to predict their future behavior and to

respond to it accordingly. An important source of social information and signals is other people’s

faces (Haxby et al., 2000). If we are unsure whether the person walking in front of us is our

friend, we usually want to confirm our hypothesis by seeing their face. Recognizing familiar faces,

considering their complexity and similarity, requires comparatively little time and is only one of

several fast cognitive processes associated with face perception. Every time we encounter other

people, a cascade of cognitive processes is running, of which many are extremely fast and based on

heuristics, e.g., people can decide about facial attributes like trustworthiness and aggressiveness at

very short presentation and, remarkably, these quick assessments do not change significantly with

longer presentation times (Todorov et al., 2015). Some information even seems automatically

activated when seeing a face, e.g., with only little effort, we process and infer attributes that are

inherent in the other person’s face, including social dimensions such as gender and age (Dobs et

al., 2019) and variable ones such as their facial expression (for a review, see Palermo & Rhodes,

2007). However, other information needs to be retrieved more intentionally, e.g., retrieving a

person’s name (Borghesani et al., 2019).

An influential cognitive model of face perception was brought forward by Vicki Bruce and

Andy Young (1986). The authors proposed independent processing of identity and emotional fea-

tures based on findings of cognitive and neuropsychological studies of healthy individuals and

prosopagnosic individuals. Briefly summarized, the model predicts hierarchical processing, start-

ing with the structural encoding of the face, generating a view-centered representation which is

the basis for the two separate tasks, namely the analysis of changing properties (as expression and

speech analysis) and an abstract representation of the face (independent of pose and expression)

1
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for identity recognition. Identity recognition can be separated into three different chunks, with the

lowest level comparing face structure with face recognition units. If face recognition units match

the structure, person-related knowledge will be activated, which can lastly lead to higher-order

retrieval, such as the generation of the person’s name (for a review, see Young, 2018). With the

advances in neuroimaging research, the findings about the neuroanatomy underlying face process-

ing became remarkably close to the proposed model of Bruce and Young, although newer find-

ings suggest that identity and facial expressions are not processed completely independently (e.g.,

Atkinson et al., 2005; Kaufmann & Schweinberger, 2004). There have been several face-sensitive

areas defined: the fusiform face area and a face-selective area in the posterior part of the superior

temporal sulcus (Kanwisher et al., 1997), the occipital face area located in the inferior occipital

gyrus (Haxby et al., 1999), and, more recently, also anterior areas, e.g., the anterior temporal lobe

(e.g., Tsao et al., 2008), the anterior superior temporal sulcus (Pitcher et al., 2011) which responded

strongly to dynamic faces, and the inferior frontal gyrus (Fox et al., 2009). For a review of face-

selective areas and their functional role, see Duchaine and Yovel (2015).

However, factors outside the face are largely ignored in this model, such as the respective

situational context and our expectations which can modulate both face recognition (Watkins et al.,

1976) and face perception. For example, one might not immediately recognize colleagues from

workwhen running into themwhile on vacation (Brown, 2020) or if they have a new haircut (Frowd

et al., 2012). Context has important implications not only on the recognition of faces but also on

how faces are perceived (for a review, see M. J. Wieser & Brosch, 2012), including the perceiver’s

“internal context”, such as their mood (e.g., An & Hsiao, 2021; Bouhuys et al., 1995; Curby et

al., 2012; Forgas & East, 2008; Hills et al., 2011; Hills & Lewis, 2011), attentional capacity (for

a review, see Palermo & Rhodes, 2007) and task-goals (e.g., Rellecke et al., 2012a; Yan et al.,

2019). Although context effects on perception have also been established for other types of stim-

uli (e.g., Gerdes et al., 2013; Jamal et al., 2017; Leo et al., 2011; Shams et al., 2000; Todorović,

2010), arbitrary facial expressions, such as non-expressive neutral faces and faces expressing sur-

prise seem particularly susceptible for contextual information (Cooney et al., 2006; Hester, 2019;

Yoon & Zinbarg, 2008), possibly due to the high social relevance of inferring about other people’s

intentions.

In line with this, person perception outside the laboratory is usually not restricted to the vi-

sual domain but occurs in a multimodal and dynamic fashion (Jessen & Kotz, 2013; Schirmer &

Adolphs, 2017). There is evidence for efficient and supra-additive multi-sensory integration, par-

ticularly for facial and vocal information (Pan et al., 2017; Pourtois & Dhar, 2012; Watson et al.,

2014), although it seems not independent of competing attentional effects (Dessel & Vogt, 2012;

2
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Ho et al., 2015). The integration of vocal information is tightly bonded to, e.g., the perception

of gender (Masuda et al., 2005; Smith et al., 2007) and the processing of facial expressions (e.g.,

Dolan et al., 2001; Gelder & Vroomen, 2000; Kokinous et al., 2014; V. I. Müller et al., 2011; Skuk

& Schweinberger, 2013; Watson et al., 2013).

Given the many levels of social and emotional information related to a person’s face, voice,

and situational context, and since our cognitive system is limited, one might wonder how infor-

mation is prioritized and what information is learned. Theories of attention aim to describe and

explain selection processes for information to become available to sensation (e.g., Lachter et al.,

2004; Treisman, 1964). Which social information is preferentially processed and learned can be

moderated by different factors, such as stimulus-driven effects (e.g., biologically “hard-wired” fea-

tures that don’t require learning or experimental manipulation to capture attention, e.g., Öhman et

al., 2001; Pool et al., 2016) and goal-directed effects (e.g., directing the focus to an anticipated

stimulus location; Eimer, 2000; Hillyard & Anllo-Vento, 1998; Russo, 2003; or a specific stimu-

lus feature; Hillyard & Anllo-Vento, 1998; Summerfield & Egner, 2016; Zani & Proverbio, 1995).

The dichotomous account of stimulus-driven and goal-directed effects has been frequently criti-

cized, partly for the difficulty in truly separating both processes (as highlighted by B. Anderson,

2011; Theeuwes, 2013; Yantis & Jonides, 1990) and partly for not fully capturing phenomena like

memory-driven effects of previously learned selection-strategies (“attentional sets,” e.g., Kim &

Anderson, 2019; Leber et al., 2009), or value-driven effects (e.g., B. A. Anderson et al., 2011;

B. A. Anderson & Halpern, 2017; Antono et al., 2022; Hammerschmidt et al., 2017; Lunghi &

Pooresmaeili, 2023; Pooresmaeili et al., 2014; Rossi et al., 2017; Schacht et al., 2012). A third

class of attentional processes, experience-driven attention, was instated by B. A. Anderson et al.

(2011), describing the mechanism for previous experience exerting direct influence on attentional

control (e.g., through selection history and associations with rewarding or aversive outcomes).

To understand attentional processes in social cognition, independent of what drives atten-

tion, it is also essential to identify the time scales of the attentional processes, i.e., whether they

reflect early selection through sensory gain processes (e.g., Hillyard et al., 1998) or later selection

through post-perceptual processes (e.g., Fockert et al., 2001). Event-related potentials (ERPs),

with their high temporal resolution, are an excellent tool for measuring the dynamics of larger-

scaled changes in cortical activity. ERPs are time-locked and averaged voltage changes measured

at the scalp’s surface, predominately reflecting the postsynaptic, summed activity of pyramidal

neurons in the cortex (S. J. Luck, 2005). Typical ERP components related to face perception are

the P1, N170, EPN, and LPC. The P1, a bilateral occipital positivity generated from the extrastri-

ate cortex (Hillyard & Anllo-Vento, 1998; Russo, 2003), peaks around 100 ms after the onset of a

3
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visual stimulus and has shown enhanced amplitudes for stimuli presented in an attended location

(Clark & Hillyard, 1996; S. J. Luck et al., 2000; Pourtois, 2004). Some studies reported P1 effects

for emotional compared to neutral facial expressions (e.g., Batty & Taylor, 2003; Bublatzky et

al., 2014; Foti et al., 2010; Hammerschmidt et al., 2017; Müller-Bardorff et al., 2018; Rellecke

et al., 2011; Valdés-Conroy et al., 2014), and faces compared to other objects (Neumann et al.,

2011). Since its enhancement was inconsistently found for faces with emotional expressions (for

a review, see Schindler & Bublatzky, 2020) and it is known to be particularly sensitive to physical

stimulus properties (e.g., Allison, 1999; De Cesarei et al., 2013), the underlying causes for P1 dif-

ferences between physically different stimuli (such as emotional compared to neutral expressions)

have been seen as controversial (e.g., Schindler, Bruchmann, Gathmann, et al., 2021). The P1 is

followed by the N170 component, a negative deflection over occipito-temporal regions, peaking

around 170 ms. Unlike its well-replicated sensitivity for faces compared to other objects (Bentin et

al., 1996; Bentin &Deouell, 2000; Rossion et al., 2000), also N170modulations by face familiarity

(Caharel & Rossion, 2021) have been reported, suggesting that structural processing and the face

identification of well-known faces are temporally close to each other. Although comparatively

more often than effects on the P1, modulations of the N170 by emotional expressions have only

been inconsistently found (see, e.g., Hinojosa et al., 2015; Rellecke et al., 2012b). In contrast, the

early posterior negativity (EPN; Schupp et al., 2006), a relative negativity over occipitotemporal

regions, has been related to the selective differentiation between affective and neutral stimuli and

has been found robustly across several stimulus domains (e.g., Bayer & Schacht, 2014; Schacht

& Sommer, 2009). For faces with emotional expressions, it is most pronounced around 200–300

ms (e.g., Hammerschmidt, Kulke, et al., 2018; Hammerschmidt et al., 2017; Weidner et al., 2022).

Longer latency ERPs such as the late positive complex/potential (LPC/LPP), starting from 300 ms

with a more parietal distribution, have been demonstrated to be augmented by facial expressions,

particularly for aversive expressions (e.g., Bayer & Schacht, 2014; Recio et al., 2014; Schacht &

Sommer, 2009; Schupp et al., 2004). However, later processing seems more strongly affected by

specific task requirements (e.g., Rellecke et al., 2012a; Schacht et al., 2008).

Despite the temporal variation in the unfolding of emotional information in expressions of the

voice, attentional effects between affective and neutral sounds on auditory processing have been

reported for semantic speech (e.g., Kotz & Paulmann, 2007) and particularly for rapidly unfolding

expressions like affect bursts (e.g., Pell et al., 2015; Scherer, 2013) and prosody (e.g., Paulmann et

al., 2013). Similar to the visual domain, earlier auditory ERPs, e.g., the N1, are held to be rather

stimulus-driven, whereas the auditory P2 has been related to early relevance-detection. In contrast

to the P2 (e.g., T. Liu, Pinheiro, Deng, et al., 2012; Paulmann et al., 2013; Sauter & Eimer, 2010;
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Schirmer et al., 2012; Spreckelmeyer et al., 2009), emotion effects have been less consistently

reported for the N1 (e.g., Iredale et al., 2013; T. Liu, Pinheiro, Deng, et al., 2012; Pell et al., 2015).

Especially the question about unintentional or automatic processing of emotional expressions

of the face and the voice compared to other kinds of stimuli has remained controversial (e.g., M.

M. Müller et al., 2007; Pessoa, McKenna, et al., 2002; Pourtois et al., 2013; Straube et al., 2011;

Vuilleumier, 2005; Whalen et al., 1998), possibly due to conceptual questions about the underlying

mechanism behind early effects, e.g., whether certain low-level features such as spatial frequency

of pitch characteristics might serve as cues for early but not for late selection. However, the gen-

eral potential of emotional stimuli to “capture attention” has led some researchers to consider that

emotional attention might form an extra class of attention processes that can occur on several lev-

els, i.e., stimulus-driven and goal-directed, although it was proposed that they are more similar

to early, stimulus-driven attentional processes (for a review, see Pourtois et al., 2013). Whereas

it might be methodologically difficult to resolve to which degree physical stimulus characteris-

tics modulate early effects of emotional stimuli, research on associative learning has shown that

also early processing is influenced by stimulus valence. Beyond methodological advantages, also

content-related questions about the similarities and differences between the processing of inherent

hedonic stimuli and stimuli that acquired valence through learning have been addressed: Impor-

tantly, not only do expressions of emotions carry relevant social information but also knowledge

and previous experience with a person do. ERP research has provided evidence for modulations of

face processing for various types of context information associated to faces, ranging from descrip-

tions about a person (e.g., Abdel Rahman, 2011; Baum et al., 2020; Kissler & Strehlow, 2017;

Luo et al., 2016; Suess et al., 2014; Xu et al., 2016), and verbal statements of a person (M. J.

Wieser, Gerdes, et al., 2014), over more abstract hedonic value such as monetary reward and loss

(Hammerschmidt, Kagan, et al., 2018; Hammerschmidt, Kulke, et al., 2018; Hammerschmidt et

al., 2017), to stimuli presented in different sensory channels such as unpleasant odor (Steinberg et

al., 2012), aversive noise bursts (Watters et al., 2018) and fear-conditioning research (Camfield et

al., 2016; Rehbein et al., 2014; Schellhaas et al., 2020; Sperl et al., 2021; Wiemer et al., 2021; for

a review see Miskovic & Keil, 2012).

Compared to the relatively large amount of research on the interplay between attentional

processes and inherent expressions of emotion (for reviews, see Pourtois et al., 2013; Schindler &

Bublatzky, 2020), only a few studies included expressions of emotion as unconditioned stimuli in

associative learning paradigms (e.g., Haddad et al., 2013). This is remarkable, given the reports on

early and involuntary processing of emotional expressions suggesting them to be effective uncon-

ditioned stimuli (US). Moreover, since faces and voices co-occur with high probability in natural
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communicative situations, they should form stimulus pairs with higher biologically shared rel-

evance (“belongingness”; Garcia & Koelling, 1966; Rescorla, 2008), which has been shown to

facilitate associative learning processes (Seligman, 1970).

The first ERP evidence for successful associations of faces with emotional expressions was

provided by a study byAguado and colleagues (2012), in which non-expressive faces (CS) were as-

sociated with images of the same identities expressing happiness or anger. Compared to neutrally-

associated faces, anger- and happiness-associated faces showed enhanced P1 amplitudes, followed

by amodulation of the N170 for anger-associated faces, i.e., both relatively early processing stages.

In contrast, cross-modal associations of fearful screams on non-expressing faces modulated ERPs

beginning at the N170, EPN, and LPC, as shown in a recent study by Bruchmann et al. (2021).

Unlike the overall evidence for experience-driven attention effects for associated faces, it is

less clear what drives the effects on early selection and sensory gain, and post-perceptual selec-

tion. Although the first intuition might suggest an intramodal advantage for early selection by

increased resource allocation to the same modality in order to optimize the processing of the fol-

lowing US, it fails to explain findings on very early effects of cross-modal associations (e.g., E.

M. Mueller & Pizzagalli, 2015; Sperl et al., 2021; Steinberg et al., 2012; Steinberg, Bröckelmann,

Dobel, et al., 2013; Steinberg, Bröckelmann, Rehbein, et al., 2013) and associations with verbal

semantics (Morel et al., 2012) or monetary reward (Hammerschmidt et al., 2017). On the contrary,

intra-modally presented stimuli might, under certain circumstances, compete stronger for atten-

tion compared to cross-modally presented stimuli (e.g., Duncan et al., 1997; Schupp et al., 2008;

Soto-Faraco & Spence, 2002) and impair learning. Moreover, findings about multimodal integra-

tion of faces and voices (for a review, see Klasen et al., 2012) and affective priming studies (e.g.,

Garrido-Vásquez et al., 2018) suggest that information of the face and voice are easily, if not to

some degree automatically, integrated and show strong cross-modal interactions, possibly because

vocal expression and facial expression usually co-occur with high contiguity and have overlapping

functional domains (e.g., Gelder & Vroomen, 2000; Shams et al., 2000; Wang et al., 2016).

Since competition between stimuli can attenuate learning, it seems reasonable to assume that

also situational factors, such as the task(-demands), affect learning. There have only been a few

associated learning studies with tasks in which valence or the conditioned category was irrelevant

for learning (Abdel Rahman, 2011; Hammerschmidt, Kagan, et al., 2018) or retrieval (Hammer-

schmidt et al., 2017; Luo et al., 2016; Pooresmaeili et al., 2014; Rossi et al., 2017) or in which

task-relevance was systematically manipulated (Bruchmann et al., 2021). A further important fac-

tor for learning is stimulus intensity (e.g., Bevins, 1997; Bradfield & McNally, 2008; Odling-

Smee, 1975). Electric shocks or loud noise burst resemble strong aversive stimuli, which should
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be learned with high priority. It is less clear whether the biological and social relevance suffices to

associate valence of medium-intense emotional expressions. Moreover, there are functional prop-

erties of expressions of emotion in the face and voice that might prevent associative learning: One

of the characteristic properties of emotional expressions is their inter- and intraindividual variabil-

ity (people rarely always smile, nor do they always frown). In particular, the variability makes

them a communicative tool, which is also reflected in the capability of the receiver to detect these

changes, e.g., the sensitivity to the change of emotional expressions has been shown to be higher

compared to invariant attributes such as identity (Taubert et al., 2016). It was a priori unknown

whether faces could be associated with unconditioned stimuli which are known to be variable.

Some contemporary theories of learning propose that attention is increased to uncertain stimuli

with the internal goal of learning about yet unpredictable events in the environment, while others

would predict increased attention to the most predictive cues. (for a discussion, see Pelley et al.,

2012).

Aim and overview of this thesis

The present thesis aims at addressing these gaps by investigating the acquisition and retrieval

of valence-based associations in faces, specifically in the context of cross-modal associative learn-

ing of medium-intense emotional stimuli, building upon and connecting findings on face percep-

tion and attentional effects of emotion and intention. Addressing the question of (in-)voluntary

processing of associated valence, a focus of this thesis is the temporal dynamics of face process-

ing, to elude at which point prioritization of emotional information might occur. The method of

choice was event-related potentials (ERPs), but behavioral measures (response times and accuracy

if applicable) and pupil size as a physiological measure were included to obtain a more global per-

spective on the effects of associated valence.

To test whether faces conditioned with emotional expressions of the voice would gain addi-

tional relevance even to the point where emotion was not relevant for the task, we pre-registered

and conducted an associative learning study (Study 1) in which faces with neutral expressions

were cross-modally conditioned with affect bursts of emotional or neutral valence. During learn-

ing and delayed test, only gender-related decisions on the presented stimuli had to be made. In

both sessions, we recorded typical face- and emotion-sensitive ERP components (P1, N170, EPN,

and LPC), pupil diameter, and behavior (response times, accuracy, and likability ratings of faces).

Study 2was conducted to gain insights into the learning dynamics of the task-irrelevant cross-

modal associations of emotion in faces. In this study, response times and accuracy of two inde-

7
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pendent but similarly designed associative learning studies were compared. We used both a distri-

butional and a mechanistic (drift-diffusion) approach to explore differences between emotion and

task-relevant influences on behavior over the course of learning and extinction.

The focus of Study 3 was on attention effects during the retrieval of faces associated with

emotional valence. In this pre-registered study, a novel, flexible learning paradigm was applied in

which participants studied face-voice pairs with the aim of correctly matching the faces and their

corresponding neutral or emotional voices. In a delayed ERP test session, an emotion-implicit

and an emotion-explicit task were performed on the previously learned faces to compare at which

processing stages intentional and automatic effects of associated valence occur.

In addition to the three main studies, two studies were conducted not directly related to as-

sociative learning but either served as a supplementary study (Study 4) or emerged from the main

studies (Study 5). The aim of Study 4 was to validate different auditory scrambling methods ap-

plied to affect bursts in order to create reference stimuli with comparable low-level features but

eliminating semantic or valence information, similar to scrambled visual stimuli. The potential

benefits and pitfalls of using these stimuli were discussed. In Study 5, we tested the interaction of

stimulus size and facial expression on early, mid-, and late face-sensitive ERP components. Since

we did not find consistent modulations of early visual processing for emotion-based associations

in Study 1 and Study 3 (cf. Aguado et al., 2012; Hammerschmidt et al., 2017; Muench et al., 2016;

Schindler et al., 2022) we wanted to exclude the alternative explanation that the comparatively

small size of the presented stimuli made stimuli less effective. To investigate at which processing

stage size of face stimuli interacts with emotional information, as a first step, we tested faces with

emotional expressions since they have been robustly shown ERP modulations, especially at mid-

latency components (EPN, e.g., Hammerschmidt, Kagan, et al., 2018; Hammerschmidt, Kulke, et

al., 2018; for a review, see Schindler & Bublatzky, 2020).

Chapters 2 and 3 were devoted to the investigation of learning of associated emotion in faces

in an emotion-implicit setting. Chapter 4 addresses the question about motivated attention during

the retrieval of associated valence in faces. Chapters 5 and 6 include the two supplementary studies

of this project. The general discussion of the findings, implications, and concluding remarks are

summarized in Chapter 7.

A brief note on terminology. Dipping into the research fields of emotion, attention, and

learning, one challenge is the heterogeneous use of common terms and constructs or even an ax-

iomatic assumption of their existence, as pointed out by researchers in the field (B. Anderson,

2021, 2011; B. A. Anderson, 2021; Cabanac, 2002; Duffy, 1941). If it was possible to overcome
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this issue, it would clearly be beyond the scope of this thesis. Nevertheless, I attempted to pro-

vide working definitions or exemplary descriptions for clarification of what was investigated as

part of this PhD project. For example, the working definition for prioritized processing for visu-

ally presented stimuli in this thesis is the increased allocation of resources, measured as enhanced

neural or physiological activation, based on the early selection hypothesis (e.g., Treisman, 1964),

which predicts an enhancement for attended stimuli. This becomes relevant at the point where

automatic, involuntary processing, and capacity-free processing make different predictions about

the measured neural signals, although, in the literature, all have been interpreted as a prioritiza-

tion of emotional compared to neutral stimuli. Moreover, the operationalization of prioritization

as differences in neuro-physiological activation for emotional vs. neutral conditions can include,

but does not automatically imply, observable behavioral effects (e.g., response time differences or

differences in accuracy). A dissociation between behavioral, neural, and physiological responses

is not uncommon (e.g., Antov et al., 2020; Apergis-Schoute et al., 2014; Bublatzky et al., 2019;

C. C. Luck & Lipp, 2015, 2016). Notably, the prioritization of emotional stimuli can have oppos-

ing outcomes on behavior, depending on the current (task-defined) goals of an individual and the

outcome measure (Bradley et al., 2012): For instance, prioritization of stimuli classified as being

emotional can lead to faster/more accurate responses in detection tasks (e.g., Öhman et al., 2001),

but also result in the opposite, i.e., slower/inaccurate responses when emotion is not task-relevant

(e.g., Schacht & Sommer, 2009).
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Cross-modal affective learning of vocalizations requires task relevance of emotion:

Evidence from electrophysiological and pupillary responses

Abstract

Social and emotional cues from faces and voices are highly relevant and have been reliably

demonstrated to attract attention involuntarily. However, there are mixed findings as to which de-

gree associating emotional valence to faces occurs automatically. In the present study, we tested

whether inherently neutral faces gain additional relevance by being conditioned with either pos-

itive, negative, or neutral vocal affect bursts. During learning, participants performed a gender-

matching task on face-voice pairs without explicit emotion judgments of the voices. In the test

session on a subsequent day, only the previously associated faces were presented and had to be

categorized regarding gender. We analyzed event-related potentials (ERPs), pupil diameter, and

response times (RTs) of N = 32 subjects. Emotion effects were found in auditory ERPs and RTs

during the learning session, suggesting that task-irrelevant emotion was automatically processed.

However, ERPs time-locked to the conditioned faces were mainly modulated by the task-relevant

information, i.e., the gender congruence of the face and voice, but not by emotion. Importantly,

these ERP and RT effects of learned congruence were not limited to learning but extended to the

test session, i.e., after removing the auditory stimuli. These findings indicate successful associative

learning in our paradigm, but it did not extend to the task-irrelevant dimension of emotional rele-

vance. Hence, associations of emotional relevance might not be completely automatic but seem to

depend on context specifics such as task requirements.1

1This manuscript has been submitted for publication and is currently in revision.
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2.1 Introduction

In the most everyday encounter with another person, we automatically extract a variety of

information from their face (Haxby et al., 2000). To effectively behave in a social situation, it is

equally important to recognize the other’s emotions and intentions and to consider the current con-

text and previous experience with this person. It has been demonstrated that the affective context of

the same and other modalities modulates face perception (Aviezer et al., 2011; Hassin et al., 2013;

McCrackin & Itier, 2018; for a review, see M. J. Wieser & Brosch, 2012). However, there are open

questions about the conditions under which context is integrated and associated with faces, e.g.,

how people automatically gain knowledge about others and how this generalizes to other situa-

tions. Aiming to fill this research gap, we investigated whether the perception of novel and neutral

faces changes when associated with task-irrelevant emotional context and whether these associ-

ations transfer to a different test setting. To this aim, we implemented a cross-modal associative

learning paradigm and recorded emotion-sensitive event-related brain potentials (ERPs), pupil size

changes, and behavioral measures.

Research on Pavlovian aversive conditioning has repeatedly shown that faces as conditioned

stimuli (CS+) can acquire negative valence when being paired with biologically aversive uncon-

ditioned stimuli (US), e.g., aversive odor (Steinberg et al., 2012), electric shocks (Rehbein et al.,

2014) or loud noise bursts (Watters et al., 2018) as US (for a review: Miskovic &Keil, 2012). Neu-

tral faces have also been shown to acquire positive valence, e.g., when associated with monetary

reward (Hammerschmidt, Kagan, et al., 2018; Hammerschmidt, Kulke, et al., 2018; Hammer-

schmidt et al., 2017). The CS+ faces can then evoke physiological reactions (CR) like changes in

skin conductance, heart rate, pupil size, and enhanced neural processing, e.g., in evoked steady-

state potentials (ssVEP, e.g., M. J. Wieser, Miskovic, et al., 2014), neural oscillations (e.g., Chen

et al., 2021), and ERPs: To better understand the mechanisms underlying associative learning,

several studies compared ERP modulations of conditioned faces to the typical effects of inherent

emotional facial expressions, ranging from early sensory processing to higher cognitive evalua-

tions.

The P1 reflects early attention and usually peaks around 100 ms after stimulus onset with a

bilateral occipital positivity generated from the extrastriate cortex (Hillyard & Anllo-Vento, 1998;

Russo, 2003). It was found to be enhanced for emotional compared to neutral facial expressions

(Bublatzky et al., 2014; Foti et al., 2010; Hammerschmidt et al., 2017; Rellecke et al., 2011),

although other studies reported a lack of modulations of the P1 by emotional expressions (for a

review, see Schindler & Bublatzky, 2020). The P1 is followed by the face-sensitive N170 com-
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ponent, a negative deflection over occipito-temporal regions, peaking around 170 ms, typically

enhanced for faces compared to other objects (Bentin et al., 1996; Rossion et al., 2000). Similar to

P1 modulations, emotion effects on the N170 have inconsistently been reported, potentially due to

the use of different stimuli across studies, and thus variations in low-level visual factors like con-

trast (Bobak et al., 1987), size (Kornmeier et al., 2011; Yiannikas & Walsh, 1983), or luminance

(Bieniek et al., 2013). Since differences in low-level features can be controlled by randomizing

the CS-US pairing, both P1 and N170 components allow insights into the early processing of as-

sociated relevance without being confounded with perceptual stimulus features related to the face.

The early posterior negativity (EPN), a relative negativity most pronounced around 200–300 ms

over occipitotemporal regions, was reported robustly in several ERP studies for emotional versus

neutral stimuli across several stimulus domains (e.g., Bayer & Schacht, 2014; Schacht & Sommer,

2009), and has been assumed to reflect the facilitation of sensory encoding and selective attention

mechanisms (Schupp et al., 2006). Later ERP modulations like the LPP/LPC seem to be more

strongly affected by specific task requirements (e.g., Rellecke et al., 2012a) but have reliably been

demonstrated to be augmented by particularly facial expressions of aversive emotions (Schindler

& Bublatzky, 2020; Schupp et al., 2004).

ERP findings on faces with associated relevance

There is a long tradition of conditioning research with faces serving as CS+ and different

kinds of (mostly aversive) US stimuli showing that face perception can change at different pro-

cessing stages (for a review: Miskovic & Keil, 2012). Aside from the described ERP components,

few studies reported effects on early processing stages, observable already before 100 ms after

the CS+ onset (Morel et al., 2012; E. M. Mueller & Pizzagalli, 2015; Sperl et al., 2021; Steinberg

et al., 2012; Steinberg, Bröckelmann, Dobel, et al., 2013; Steinberg, Bröckelmann, Rehbein, et

al., 2013), and, remarkably, for different kinds of unconditioned stimuli (US), like odor, auditory

startle, and electric shocks (Steinberg, Bröckelmann, Rehbein, et al., 2013). Typical ERP modula-

tions for Pavlovian or evaluative conditioning and instrumental learning paradigms were reported

at latencies from 100 ms on, during short- (P1, N170), mid- (EPN), and long- (LPC) latencies.

Enhanced amplitudes for faces with associated relevance have been reported for the P1 (mone-

tary reward: Hammerschmidt et al., 2017; facial emotional expressions: Aguado et al., 2012),

N170 (fear-conditioning: Camfield et al., 2016; Schellhaas et al., 2020; Sperl et al., 2021; aversive

screams: Bruchmann et al., 2021; person knowledge: Luo et al., 2016; Schindler, Bruchmann, Kra-

sowski, et al., 2021; facial emotional expressions: Aguado et al., 2012), EPN (fear-conditioning:

Bruchmann et al., 2021; Sá et al., 2018; Schellhaas et al., 2020; person knowledge: Abdel Rah-
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man, 2011; Luo et al., 2016; Suess et al., 2014; Xu et al., 2016; affective communication: M.

J. Wieser, Gerdes, et al., 2014) and the LPC (fear-conditioning: Panitz et al., 2015; Rehbein et

al., 2018; Sá et al., 2018; Sperl et al., 2021; Wiemer et al., 2021; aversive screams: Bruchmann

et al., 2021; monetary reward: Hammerschmidt, Kulke, et al., 2018; person knowledge: Abdel

Rahman, 2011; Baum et al., 2020; Kissler & Strehlow, 2017; Schindler, Bruchmann, Krasowski,

et al., 2021; Xu et al., 2016). Despite this evidence, there is still uncertainty under which bound-

ary conditions associated effects occur, e.g. regarding the need for explicit awareness of a CS-US

contingency for stable associations (Mertens & Engelhard, 2020). Implicit conditioning usually

refers to the subliminal presentation of the CS+ and not the US. Furthermore, many studies use

salient aversive stimuli like electric shocks as US or explicit instructions to draw attention to the

contingency between the CS+ and the US, e.g., by picturing actions or encounters of the CS+ face

(Aguado et al., 2012; Verosky et al., 2018). Moreover, very few studies investigated whether and

how robustly emotional contextual information becomes (automatically) associated even when this

information is not task-relevant. Task-irrelevant emotional stimuli have been supposed to capture

attention (J. Armony, 2002; Morris et al., 1998; Öhman et al., 2001), in bottom-up or top-down

ways, respectively, which is a prerequisite for automatic associations. In this line, amygdala acti-

vations have been reported for emotional visual stimuli, even when emotion was not task-relevant,

but only if the task load was not too high (Pessoa, McKenna, et al., 2002; Pessoa, Kastner, et al.,

2002). In contrast, emotional auditory stimuli appear to be more robust against distractors as long

as the attentional focus stays within the auditory modality (e.g., Ethofer et al., 2006; Quadflieg et

al., 2008; Sander et al., 2005; cf. Bach et al., 2008). However, there is not much known about the

cross-modal transfer of emotional information, particularly when features other than the emotional

content of the US are relevant for the task during associative learning.

Aim of the study

The present study aimed to fill this gap and specifically tested whether inherently neutral

faces gain additional relevance when being associated with either positive or negative compared

to neutral vocal affect bursts when the emotion of the burst is not task-relevant. We recorded

ERPs and pupil size during a learning and a delayed test phase to investigate the temporal dy-

namics of the acquisition and extinction of the associated reactions. Based on previous research

(Hammerschmidt, Kagan, et al., 2018; Hammerschmidt et al., 2017; Schacht et al., 2012; Sperl et

al., 2021), we set an approximate 24-hour break between learning and test to allow for memory

consolidation (Menz et al., 2016; Pace-Schott et al., 2015; Sopp et al., 2017). We chose to asso-

ciate neutral faces with vocal affect bursts because faces and voices are considered socially and
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biologically relevant, naturally co-occurring and usually integrated into a whole-person percept

(Freeman & Ambady, 2011a). Neutral facial expressions are more likely to be perceived as am-

biguous (Schwarz et al., 2012; M. J. Wieser, Gerdes, et al., 2014; Yoon & Zinbarg, 2008) and suit

well as CS+ stimuli (Bublatzky et al., 2020). We presented vocal affect bursts as US, as they do not

have the segmental structure of speech or pseudo speech, are relatively short in length, and unfold

the emotional information rapidly. To ensure active processing of the auditory US, we presented

gender-matching or gender-mismatching face-voice pairs during learning, where participants per-

formed gender-congruence decisions. Since face-voice pairing and thus gender congruence was

fixed for every trial, we randomly interspersed no-go trials (beep sound instead of the US) to coun-

teract cross-modal inhibition (Johnson & Zatorre, 2006) and responses solely based on the target

face after its repeated presentation.

Hypotheses

Our overall hypothesis was that inherently neutral faces acquire emotional relevance through

learned associations with affective (CS+: CS+pos, CS+neg) but not neutral (CSneu) vocal bursts.

Emotional relevance was operationalized in terms of differential neural responses towards the faces

as a function of learning and extinction and different speed and accuracy measures when perform-

ing a gender matching (learning session) or gender (test session) decision.

During learning, we expected slower responses and lower accuracy for emotional (CS+:

CS+pos, CS+neg) compared to neutral (CSneu) face-voice pairs according to findings about the at-

tentional binding of emotional information (A. K. Anderson, 2005; Gutiérrez-Cobo et al., 2019)

that slow down tasks in which other information has to be processed (Schacht & Sommer, 2009;

X. Zhang et al., 2019; cf: Roesch et al., 2010) and due to the emotional incongruence between the

neutral faces and emotional voices (Föcker et al., 2011). Higher sensitivity to threatening stimuli

(Öhman et al., 2001) should additionally lead to lower accuracy for angry (CS+neg) compared to

happy (CS+pos) or neutral (CSneu) face-voice pairs. Furthermore, we expected slower RTs and lower

accuracy for gender-mismatching compared to -matching face-voice pairs since the conflicting in-

put signals between both modalities would interfere with an automatic and integrated perception of

gender (Freeman & Ambady, 2011a). Heightened arousal and attention should increase the pupil

size (e.g., Cosme et al., 2021; Kret et al., 2013), triggered by the CS+ faces predicting an emo-

tional auditory burst during learning (for a review on pupil dilation in conditioning, see Finke et

al., 2021). On the neural level, the gain of CS+ faces should modulate early processing (P1) and

subsequent processing stages (i.e., N170, EPN, LPC). We expected enhanced P1 amplitudes for
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CS+ faces, whereas for the N170, EPN, and LPC2, we expected a difference between CS+ and CS

faces but were unsure about the direction due to mixed findings in the literature.

In the test session after overnight consolidation, we investigated the dynamics of the ex-

tinction of the associated effects. Because of a more intense processing, behavioral effects for CS+

faces should be reversed compared to learning: Gender decisions on CS+ faces would be faster and

more accurate than on CSneu faces, with happy associations (CS+pos) boosting task performance

more than angry associations (CS+neg), based on unpublished pilot data. We included a likability

rating at the end of the test session and predicted that emotion-based associations should manifest

in the ratings with CS+pos > CSneu > CS+neg (similar to Suess et al., 2014). According to Ham-

merschmidt, Kagan, et al. (2018), effects of associated emotional relevance should not become

evident in pupil size but in the same ERPs that would be modulated during learning, even if we as-

sumed to observe partly extinction over the course of the session. We had no specific ERP-related

hypotheses regarding differences between the gender-matching and mismatching conditions.

2.2 Method and Materials

The study was pre-registered prior to data collection (https://osf.io/b3fh2).

Stimuli

We selected sixteen frontal portrait photographs of faces with a neutral expression from the

Göttingen Faces Database (Kulke et al., 2017). The faces were presented with their natural color on

a light grey background, and edited and combined with a transparency mask covering the hairline,

ears, and neck. They had a visual angle of about 3.16 × 5.14 degrees and a 200 × 300 pixels

resolution. Images were controlled for luminance (MHSV = 0.47, SD = 0.01, 𝜒2(225) = 240, p

= .235; Dal Ben, 2019). Vocal stimuli were taken from the Montreal Affective Voices database

(Belin et al., 2008). Based on findings by Lausen & Schacht (2018), we chose twelve sounds with

the highest recognition of emotion (angry, happy, neutral) and gender (female, male). The duration

of the selected sounds ranged from 511 ms to 1831 ms. Their maximum intensity was digitally set

equal (Praat; Boersma & Weenink, 2018) and resulted in a mean peak sound level of M = 47 dB

(SD = 1.8 dB) at the participants’ head position. The ‘beep’ tone for no-go trials was a sine wave

sound of 630 Hz, 300 ms, with a 30 ms amplitude ramp in the beginning. We presented 12 unique

face-voice pairs whereby one face stimulus was contingently paired with one voice stimulus for
2For the expected LPC effects, ongoing face processing and the overlapping sound onset might be hard to disentangle

and thus require additional caution
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each participant. Half of the face-voice pairs were gender congruent (i.e., face and voice female

or face and voice male), and the other half were gender in-congruent pairs (e.g., female face and

male voice). We measured an asynchrony between face offset and voice onset, ranging between

-9 and +9 ms and occurring independently from certain stimuli or conditions.

Randomization

We counterbalanced the sound stimuli (based on how well emotion and gender were recog-

nized in Lausen & Schacht, 2018) between congruence conditions across participants. The allo-

cation of the face stimuli to the voices was fully randomized: We drew 12 out of 16 face stimuli

(assuring six male and six female faces) and combined them with the 12 voices. The four remain-

ing faces were used as new, i.e., not associated, faces only for the likeability rating. Stimuli were

presented in 50 blocks, with each block containing a random sequence of the 12 stimuli (learning

session: face-sound pairs; test session: faces only). For the memory checks after the learning and

the test session, the order of the 12 faces and the emotion category labels’ positions were also ran-

dom.

Procedure

Before the experimental sessions, participants filled out an online questionnaire of the Ger-

man version of the Social Interaction Anxiety Scale (SIAS, Stangier et al., 1999). The sessions

in the laboratory took place on two subsequent days, each lasting approximately two hours. At

the beginning of each session, participants gave written consent to participate voluntarily in the

study. At the beginning and the end of each session, we assessed their current mood with the

German version of the positive and negative affect schedule (PANAS, Breyer & Bluemke, 2016,

see Table A1). Additionally, we assessed socio-demographic data and handedness (day one) and

quality of sleep with a modified version of the Pittsburgh Sleep Quality Index (PSQI, Buysse et al.,

1989) (day two). Participants were seated in front of a computer screen in a dimly lit, electrically

shielded, and sound-attenuated room at a distance of approx. 78 cm between eyes and presented

face stimuli. They positioned their chin in a height-adjustable chin rest to avoid head movements.

Two speakers were located on the left and right and at the monitor’s height. For the presentation of

the experiment, we used Python (2.7), including the modules PsychoPy (Peirce, 2009), PyGame

(Shinners, 2011), and PyGaze (Dalmaijer et al., 2013) amongst standard modules. At the begin-

ning of both sessions, we presented detailed instructions about the task on screen, and participants

completed six practice trials (incl. feedback). After ensuring that the task was understood and cal-
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ibrating the eye-tracker, the main experimental task began. For a visualization of the procedure,

see Figure 2.1.

Figure 2.1
Procedure of the learning and test session.

Learning session. The task was to indicate as fast and accurately as possible via key press

whether the gender of the face and voice match. At the center of the screen, first, a fixation cross

and then the neutral face stimulus was presented, each for 500 ms. The vocal stimulus (negative,

neutral, or happy affect burst) set in with face offset. Participants could respond as soon as the

voice set in. The next trial started after a response was given and a variable inter-trial interval

(M = 1800 ms; SD = 200 ms) automatically. At random positions, we included filler trials (90

no-go trials, and 30 one-back tasks) to motivate participants to stay focused. The no-go condition,

in which a beep sound followed the face and in which participants shall not press any key, was

implemented to ensure that attention was paid to the auditory stimulus. Hence it was not sufficient

to learn/know the assignment of a face to a response key (which was always consistent within each

participant). Every participant completed 50 × 12 = 600 trials (+ filler trials). After every 120

trials, there was a short break to rest. Memory check. Following the learning session, we assessed

whether participants were able to allocate the faces and the emotional categories of the voices,

although they were not instructed at any time to memorize the faces or face-voice pairs. We pre-

sented each face individually, and participants had to click on one of three labeled buttons (happy,

angry, neutral) around the face to indicate the emotional category of the associated voice.
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Test session. The following day, participants performed a gender decision task on the previously

associated faces but without any voices or sounds present. Faces were displayed for 1000 ms, and

the response was indicated via key press. Again, participants completed 50 blocks of the shuffled

12 faces and 60 additional one-back tasks.

Likability rating and second memory check. After completing the main part of the test ses-

sion, all previously associated faces, intermixed with four new faces, were presented once each,

and participants had to judge the faces concerning their likability on a 7-point Likert scale (1 =

“unlikeable”, 7 = “likable”). Subsequently, the same explicit memory check of the first session

took place. At the very end, participants were debriefed about the study’s aims and could clarify

open questions with the experimenter.

Sample size and power analysis. The study had a 2 (gender congruence: match/mismatch) ×
3 (emotion: angry/happy/neutral) within-subject design. As there is no standardized way to do a

power analysis and sample size estimation for linear mixed models, we based the power estimation

on a within-factors repeated-measures ANOVA (G*Power 3.1.9.2, Erdfelder et al., 1996), assum-

ing a correlation among the repeated factors of .50. However, it served only as a rough estimate

because it did not exactly reflect the planned and performed analyses. We stopped data collection

after 41 participants completed both sessions successfully and refrained from collecting more due

to a very uneven data loss for both sessions and measures. Especially for the learning session, we

had more ERP trials with artifacts than we initially anticipated. To make the data from the learn-

ing and test session comparable, we also excluded the data for the other measures and sessions to

ensure the same group of 32 participants in the learning and testing session.

Participants

Our final sample consisted of 32 participants (22 female, 10 male, 0 diverse; Age: 19-34,

Mean = 23.5). All participants were right-handed (according to Oldfield, 1971), fluent in German,

and did not self-report any (neuro-)psychiatric disorders. Participants with sight correction of more

than plus/minus one diopter or any self-reported hearing difficulties were excluded. Participants

were recruited through advertisements on campus and social network groups in Göttingen; hence

the sample consisted mainly of students (29 out of 32). Participation was reimbursed by a fixed

amount of money or course credit. The study was conducted following the Declaration of Helsinki

(WMA, 1964), and all participants signed informed consent prior to both experiment sessions. The
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mean SIAS score of our sample was 23.19 (range: 7 to 44) out of max. 80. Seven 3 participants

showed elevated scores (>30, Stangier et al., 1999).

EEG recording and pre-processing

We recorded EEG from 64 (+6 external) electrodes during the learning and test session. Par-

ticipants wore an electrode cap (Easy-Cap, BioSemi, Amsterdam, Netherlands) according to the

extended 10-20 system (Pivik et al., 1993). External electrodes were positioned at the left and

right mastoids, at the outer canthi of and below both eyes to record electro-oculograms. Common

Mode Sense (CMS; active) and Driven Right Leg (DRL; passive) are special “ground” electrodes

serving as an online reference during recording (see www.biosemi.com/faq/cms&drl.htm). Con-

tinuous EEG was recorded with a sampling rate of 512 Hz and a bandwidth of 102.4 Hz. Offline,

the raw data was pre-processed in MATLAB (2018) with EEGLAB (v2019.0, Delorme &Makeig,

2004). We shifted all event markers by a constant of 24.3 ms to account for the monitor’s sys-

tematic delay in stimulus appearance. Data was re-referenced to average (whole head) reference

excluding external electrodes and filtered with a 0.01 Hz high-pass filter. The plugin “CleanLine”

(v1.04, Mullen, 2012) was used to remove 50 Hz line noise. Data was epoched from -500 ms to

2000 ms and corrected to a 200 ms pre-stimulus baseline. We performed Independent Component

Analysis (ICA) on a 1 Hz high-pass filtered copy of the dataset and subsequently transferred the

resulting ICA weights to the original 0.01 Hz filtered dataset. ICA components were used to detect

eye and muscle-related activity in the data. Data was corrected by removing components with a

high probability of being labeled as such (muscle >80%, eye-related >90% or channel noise >90%)

using “IClabel” (v1.2.4, Pion-Tonachini et al., 2017). Consequently, channels were interpolated if

classified as bad. We trimmed epochs to -200 ms to 1000 ms and performed trial-wise rejections:

amplitudes exceeding -100/100 𝜇𝑉 (Learning: avg. 7.7%; Test: 7.4%) during face presentation,

steep amplitude changes (5000𝜇𝑉 within epoch; Learning: avg. 3.9%; Test: 2.8%) or improbable

activation (>5 deviation of mean distribution for every time point; Learning: avg. 11.9%; Test:

12.8%) were excluded. Overall, there was a mean rejection rate of 17.3% (range: 9.7-36.8%) of tri-

als for the learning session and 17.2% (range: 6.5-36.2%) for the test session due to these artifacts.4

As eye-blinks were corrected with ICA, we extracted blink information from the pupil data to reject

trials in which participants blinked during face presentation. We defined the time windows and re-

gions of interest (ROIs) electrodes for the ERP components of interest based on previous research

with similar stimuli and settings (face-locked ERPs: Hammerschmidt et al., 2017; voice-locked

3IDs: 6, 7, 21, 28, 23, 36, 40
4referring to the reported 32 data sets.
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ERPs: Paquette et al., 2020; Pell et al., 2015) as follows: For the visual (face-locked) components:

a) P1: mean and peak amplitudes, 80-120 ms; occipital electrode cluster: O1, O2, and Oz; b)

N170: mean and peak amplitudes, 130 and 200 ms; occipito-temporal electrode cluster: P10, P9,

PO8, and PO7 5; c) EPN: mean amplitudes, 250 - 300 ms; occipito-temporal cluster: O1, O2, P9,

P10, PO7, and PO8; d) LPC: mean amplitudes, 400 and 600 ms; occipito-parietal electrode clus-

ter: Pz, POz, PO3, and PO4.In addition to the pre-registered face-locked components, we analyzed

voice-locked 6 ERPs with the following ROIs taken from Paquette et al. (2020) as they also used

stimuli of the Montreal Affective Voices database (MAV, Belin et al., 2008): N1-P2 complex with

N1 (90 - 145 ms) and P2 (165 - 300 ms), both with the identical fronto-central electrode cluster:

F3, F1, Fz, F2, F4, FC1, FC3, FC2, FC4, C3, C1, Cz, C2, C4, CP1, CP3, CPz, CP2, and CP4.

Pupil recording and pre-processing

Pupil size was recorded binocularly in pixels with a sampling rate of 500 Hz using the Eye-

Link 1000 desktop mount eye tracker (SR Research, Mississauga, ON, Canada). Before the start of

the experiment, a nine-point eye-tracking calibration- and validation procedure was performed. We

based artifact detection in pupil samples on the guidelines proposed by Kret & Sjak-Shie (2018).

The pupil time series was time-locked to the onset of the face stimulus, and all artifact detection

was performed sequentially. Samples were classified as blinks or invalid when both eyes were lost.

We marked invalid samples and specific trial windows to flag trials in which the participant missed

the stimulus (-onset), e.g., during baseline, face presentation, or later. Median absolute deviation

(MAD) speed was estimated, and samples with a higher speed than 16 times MAD were flagged

as artifacts. A smoothed trend line was calculated, and clusters of samples with a strong deviation

from the trend line were flagged (in four iterations). Isolated samples within longer periods of

missing data (separated clusters) were dismissed. Samples at the border of a gap were trimmed

(50 samples pre- and post-gap, i.e., “extended blinks”) and interpolated but only for gaps that were

maximally 125 samples of missing data. The eye with fewer invalid trials was selected, and a

baseline adjustment was performed (samples were subtracted by the mean of the baseline period

from -200 ms to face onset). The time course of a trial was segmented into 60 bins, and outlier

samples within a bin were flagged (>3 standard deviations from the bin mean). A trial was rejected

if > 75% of its samples or pre-specified time windows of the trial were invalid. A smoothing 4 Hz

filter was applied to the data before averaging by participant and condition.

5PO9 and PO10 were replaced by PO8 and P07 as they were not part of the used EEG recording system.
6Our setting allowed measuring the exact voice onset with an audio-photo-diode only without the use of the speakers

and not during the actual experiment. For the target event to epoch the data, we used the offset of the face stimulus.
Due to a slight jitter, the timing of the auditory ERPs is less precise compared to the visual ERPs.
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Statistical analysis

Tables with statistical models (incl. estimates, confidence intervals, stability measures, and

likelihood ratio tests) are in the Appendix A. We used linear mixed models to analyze RTs and

neurophysiological data, aggregated by participant and condition, using the function “lmer” of the

package “lme4” (Bates et al., 2015). All statistical analysis was conducted in R (v 4.0, R Core

Team, 2020). For parameter estimation, we chose the maximum likelihood (ML) method. The

model predictors are the emotion of the associated sounds (“neutral”, “angry”, “happy”), gender-

congruence of the face-voice pairs (“match”, “mismatch”), and a random intercept (participant) to

consider the dependency in the data due to the repeated-measures design and variability between

participants. We compared models (full model including the interaction, additive models, and

leaving out each predictor) with goodness of fit tests, known as likelihood ratio (LR) chi-square

difference tests, to identify which predictors add significantly to explaining variance in the data

(Snijders & Bosker, 2012). For likelihood ratio tests (LRT), we used the “mixed” function of the

package “afex” (Singmann et al., 2020). Regression coefficients (𝛽), Standard Errors (SE), 95 %
Confidence intervals (CI) and stability of the coefficients are reported. To obtain CIs, we used a

parametric bootstrap (N = 1000). We estimated the stability of model coefficients by fitting the

same model on subsets of the data (dropping one random effect at a time). Residuals of the models

were inspected visually, and potential collinearity among predictors was determined with Variance

Inflation Factors (VIF), which will be reported if model assumptions appeared violated. Reference

levels in all models were “match” for congruence and “neutral” for emotion, respectively. The fol-

lowing linear mixed models are sum-contrast-coded, reflecting main effects rather than marginal

effects. Here, the intercept corresponds to the (unweighted) grand mean, and lower-level effects

are estimated at the level of the grand mean. This coding implies that the reference factor level

(“match” or “neutral”, respectively) receives a value of -1 on all contrast variables, whereas all

other factor levels are mapped onto exactly one contrast variable with a value of 1. This implies

that for every factor with k levels, k-1 parameters are estimated and cannot be directly mapped to

the factor levels. Post-hoc Šidák adjusted tests were used to test the difference between levels of

factors with more than two levels, using “emmeans” (Lenth, 2020).

For the ERPs (P1, N170, EPN, and LPC) and pupil size, in addition to overall effects, we planned

to investigate the dynamics of the acquisition of the association during the learning and a possi-

ble extinction during the test session (only for ERPs). To reduce the number of statistical tests

and differently from what we preregistered, we only analyzed the dynamics if an overall effect

of a predictor was present. To do so, we used an exploratory data-driven approach and fitted

GAMLSS-models (generalized additive model of location scale and shape, Rigby & Stasinopou-
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los, 2005) with a Gaussian outcome distribution, including the variables emotion, congruence, and

experiment block (i.e., repetition of the face-voice pairs but averaged across conditions) as well as

a random intercept for participant ID. Block was included as a non-linear, P-spline (Eilers &Marx,

2010) smoothing function, of which its degree of smoothness (lambda) was estimated automati-

cally via a local Maximum Likelihood method. We used a backward step-wise method to detect

the model with the lowest generalized Akaike criterion (GAIC), starting from a full interaction

model with the three-way interaction of the fixed effects Emotion × Congruence × pb(Block) +
random(participant). We reported the predictors of the final model but visualized the fitted values

of the full model, allowing for a three-way interaction. Note that we used this approach to explore

the data. Due to general issues with step-wise model selection methods, we refrain from reporting

any p-values or making statements about the data-generating process.

Exclusion criteria and re-coding. We detected unexpected systematic errors in some of the par-

ticipant’s behavioral data. To preserve as much power as possible, we decided to apply additional

criteria for exclusion or re-coding in the following cases: a) Same errors occurring consistently

(i.e., at least in two-thirds of trials) for a specific stimulus pair (face + voice): As for the learning

session it was not distinguishable whether the participants had difficulties identifying the gender

of the face or the gender of the voice, we re-coded only cases in which both, in the learning and

the test session, the same faces were constantly misclassified. This happened in four cases: VP

35 (l10_neu_m.png), VP 27 (l5_neu_f.png), VP 7 (l5_neu_f.png) and VP 36 (l2_neu_f.png). In

these cases, previously wrong answers were recoded to correct, and the congruence of the stimulus

pair was changed (if originally mismatch to match and vice versa). b) All trials with (systematic)

errors which occurred only in the learning session but not in the test session were excluded and not

recoded. c) One participant (VP 25), initially mixed up the key assignment and answered all trials

incorrectly. After re-instructing the participant, all subsequent trials were answered correctly. We

did not recode the answers of this participant but excluded the trials before the re-instruction. Un-

like preregistered and due to the unexpected systematic error patterns, we only report descriptive

statistics of the accuracy data in this study.

Outlier removal and model robustness. Despite the EEG and eye-tracking clean-up, pro-

nounced variability and outlier observations were still present in some components and measures.

Instead of excluding a participant if they lost more than 25% of their trials as preregistered, we

set the lower limit of 30 valid trials per condition. To enhance model stability and robustness, we

excluded observations consistently for all pupil size and ERP models in both sessions for which
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Table 2.1
Means and standard deviations of the main ERP, Pupil and behavioral measures for the learning
session

match mismatch

neutral happy angry neutral happy angry

Measure Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

P1 3.95 3.16 3.58 3.03 3.50 3.07 3.87 3.05 3.85 2.97 3.87 3.25
P1.peak 6.30 3.59 5.90 3.29 5.76 3.32 6.08 3.34 6.01 3.27 6.17 3.66
N170 -5.80 3.44 -5.52 3.23 -5.37 3.33 -5.51 3.29 -5.26 3.35 -5.44 3.02
N170.peak -10.27 4.77 -10.07 4.55 -10.02 4.65 -10.04 4.61 -9.77 4.60 -10.00 4.44
EPN 0.27 3.75 0.23 3.95 0.38 3.40 0.84 3.78 0.61 3.62 0.55 3.61

LPC 3.09 2.35 3.23 2.20 3.14 2.46 2.99 2.30 2.95 2.20 2.78 2.37
N1(auditory) -0.83 0.77 -0.69 0.81 -0.59 0.79 -0.72 0.79 -0.69 0.72 -0.72 0.77
P2(auditory) 1.12 1.35 1.38 1.29 1.29 1.26 0.79 1.16 0.88 1.19 0.97 1.28
Pupil.early -20.20 40.13 -18.26 40.30 -21.34 48.05 -20.22 38.52 -25.69 40.72 -28.59 45.55
Pupil.late 83.83 75.15 91.02 80.75 81.21 80.91 100.38 88.49 90.33 86.34 79.17 84.82

RT 691.94 165.66 734.95 165.24 713.70 162.32 785.11 164.11 833.31 192.28 791.97 173.74
Accuracy 94.34 11.78 96.41 3.93 93.62 10.76 93.06 13.60 96.06 8.86 88.66 17.48

Notes: Response times are in ms, ERP amplitudes in 𝜇V, and Pupil size in pixels.

their cook’s distance was larger than 0.5 in any model. Due to these exclusion methods, the total

sample size for all ERP measures resulted in 32 participants.

2.3 Results

Implicitness of the association learning

Participants differed in their ability to recall the emotion category of the voices when faces

were presented separately from the voices. Some participants performed significantly above

chance, i.e., ≥ 8 out of 12 faces correct, corresponding to a 2-sided Exact Binomial Test with p ≤
.05. After the learning session, 5 out of 32 participants and after the test session, 3 out of 32 met

this criterion. However, only one participant performed above chance across both session checks

and would therefore not be considered an implicit learner.

Learning session

Table 2.1 contains all means and standard deviations of the visual and auditory ERPs, pupil

size, and behavioral measures.

Face-locked ERPs. P1: P1 mean amplitudes were not significantly modulated by emotion

(𝜒2(2) = 3.91, p = .141). There was a trend towards an effect of gender-congruence (𝜒2(1) =

3.41, p = .065) with larger mean amplitudes (dmismatch-match = 0.19 𝜇𝑉 ) in gender-mismatching

than matching trials. The interaction between emotion and congruence was not significant (𝜒2(2)
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= 3.6, p = .165). There were no significant effects on P1 peak amplitudes, neither for emotion

(𝜒2(2) = 2.86, p = .239), congruence (𝜒2(1) = 0.68, p = .409), nor their interaction (𝜒2(2) = 4.05,

p = .132).

N170: There was a trend for N170 mean amplitudes to be modulated by emotion (𝜒2(2) =

5.75, p = .057), with happy (-5.39 𝜇𝑉 ) and angry (-5.40 𝜇𝑉 ) descriptively being less negative

compared to neutral-associated faces (-5.66 𝜇𝑉 ) when averaged across gender-congruence con-

ditions. However, post-hoc contrasts between emotion levels were not significant (all ps >= .05).

There was no significant modulation by congruence (𝜒2(1) = 2.47, p = .116) and no significant

interaction between congruence and emotion (𝜒2(2) = 2.6, p = .273). N170 peak amplitudes were

not significantly modulated by emotion (𝜒2(2) = 2.24, p = .327), nor congruence (𝜒2(1) = 2.03, p

= .155) nor their interaction (𝜒2(2) = 0.82, p = .664).

EPN: Themean amplitudes of the EPN component were not significantly modulated by emo-

tion (𝜒2(2) = 0.73, p = .693) but by congruence (𝜒2(1) = 7.49, p = .006) with less negative am-

plitudes for gender-mismatching (0.67 𝜇𝑉 ; 𝛽mismatch = 0.19, SE = 0.07, t = 2.72) compared to

matching trials (0.29 𝜇𝑉 ). No interaction between congruence and emotion was present (𝜒2(2)

= 1.47, p = .480). EPN during learning: To investigate the dynamics of the EPN component

during learning we fitted a GAMLSS model. The model with the lowest GAIC included the main

effects for emotion, congruence, and block, a one-way interaction between emotion and block, and

the random factor subject ID. A visualization of the fitted values of the full model (allowing for

all interactions) is shown in Figure 2.2D. A non-linear function of the amplitudes for the learning

session is observable.

LPC: LPC mean amplitudes were not significantly modulated by emotion (𝜒2(2) = 0.84, p

= .658), but there was a main effect of congruence (𝜒2(1) = 4.21, p = .040). Gender-matching

trials (3.15 𝜇𝑉 ) had more positive amplitudes compared to mismatching trials (2.91 𝜇𝑉 ; 𝛽mismatch

= -0.12, SE = 0.06, t = -2.03). The interaction between congruence and emotion (𝜒2(2) = 0.84,

p = .657) was not significant. LPC during learning: The model for the LPC over time with

the lowest GAIC was a model including congruence and block and the random factor subject ID.

Neither emotion nor any interactions were included in the final model. A visualization of the fitted

values of the full model (allowing for all interactions) can be found in Figure 2.3D.

Voice-locked ERPs. N1: For the N1 component, neither emotion (𝜒2(2) = 3.35, p = .187) nor

congruence (𝜒2(1) = 0.01, p = .918) nor their interaction (𝜒2(2) = 2.98, p = .226) were significant.

P2: The P2 component was modulated both by emotion (𝜒2(2) = 6.3, p = .043) and congru-
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Figure 2.2
Face-locked EPN in the learning session.

Notes: AGrand average ERP of the averaged ROI channels. The highlighted area displays the ROI
time window. The zoomed-in window shows the main difference of gender-congruence, averaged
over all emotion conditions. B Grand averaged ERP amplitudes of the ROI, contrasted for all
conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies of the ERP distribution for
gender-congruent faces and the difference between gender-incongruent and congruent faces. ROI
channels are highlighted in pink. DMean EPN amplitudes over the course of the learning session.
Dots represent the grand averages per block and condition. The curves represent the fitted values
of the GAMLSS model.
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Figure 2.3
Face-locked LPC in the learning session.

Notes: AGrand average ERP of the averaged ROI channels. The highlighted area displays the ROI
time window. The zoomed-in window shows the main difference of gender-congruence, averaged
over all emotion conditions. B Grand averaged ERP amplitudes of the ROI, contrasted for all
conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies of the ERP distribution for
gender-congruent faces and the difference between gender-incongruent and congruent faces. ROI
channels are highlighted in pink.DMean LPC amplitudes over the course of the learning session.
Dots represent the grand averages per block and condition. The curves represent the fitted values
of the GAMLSS model.
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ence (𝜒2(1) = 29.51, p <.001). However, there was no interaction between congruence and emotion

(𝜒2(2) = 1.44, p = .486). Gender-mismatching trials (0.88 𝜇𝑉 ; 𝛽mismatch = -0.19, SE = 0.03, t =

-5.6) had a smaller P2 amplitude compared to matching trials (1.26 𝜇𝑉 ). Emotional voice stimuli

(angry: 1.13 𝜇𝑉 ; 𝛽angry = 0.06, SE = 0.05, t = 1.22; happy: 1.13 𝜇𝑉 ; 𝛽happy = 0.06, SE = 0.05, t =

1.27) elicited more positive P2 amplitudes compared to the neutral voice stimuli (0.95 𝜇𝑉 ). When

adjusting for multiple comparisons, pairwise comparisons failed significance. Descriptively, the

largest difference was between neutral and happy (dhap-neu = 0.18, p = .090) bursts followed by

neutral and angry bursts (dang-neu = 0.18, p = .097). Both, happy and angry bursts showed a similar

pattern (dhap-ang = 0.00, p = 1.000). P2 during learning: The model for the P2 over time with the

lowest GAIC included emotion, congruence, block, and the random factor subject ID. No interac-

tions were in the final model. For the full model (allowing for all interactions), see Figure 2.4.

Pupil size modulations. For the early time window (0 - 1000 ms after face onset), which mainly

reflects a modulation of the pupil constriction, there was no significant modulation of the pupil

size by emotion (𝜒2(2) = 3.69, p = .158) but there was a main effect of congruence (𝜒2(1) =

5.7, p = .017), with a stronger constriction for mismatching stimuli (dmismatch-match = -4.90, p =

.019). No interaction between emotion and congruence was present (𝜒2(2) = 2.86, p = .240). In

a later time window (1000 - 2000 ms after face onset), the pupil size was significantly modulated

by emotion (𝜒2(2) = 8.07, p = .018). Pairwise comparisons revealed significant differences in

pupil size between the angry and neutral condition (dang-neu = -11.92, p = .031), but no significant

differences between happy and neutral trials (dhap-neu = -1.43, p = .986) and happy and angry trials

(dhap-ang = 10.49, p = .070). There was nomain effect of congruence in the later timewindow (𝜒2(1)

= 1.55, p = .214). Although there was only a trend for interaction between emotion and congruence

(𝜒2(2) = 5.16, p = .076), the interpretation of the main effect shall be taken with caution. Pupil size

during learning: Models with the lowest GAIC for both time windows of pupil size (constriction

and dilation) over experiment blocks included the main effect of emotion, congruence, and block

and the random factor subject ID. No interactions were in the final model.

Behavioral measures. Accuracy: Prior to any re-coding or rejection, the overall accuracy in

the gender matching task was 94% (N = 32), with descriptively higher accuracy for match- (95%)

than for mismatch trials (93%). The accuracies for each emotion category were 96% for happy,

91% for angry and 94% for neutral trials. None of the subjects fell into the exclusion criteria

(>25% incorrect trials). After re-coding systematic error patterns (see sec. Exclusion criteria and re-

coding), the overall accuracy was 94%. Again, match trials had a higher accuracy (95%) compared
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Figure 2.4
Voice-locked N1 and P2 in the learning session.

Notes: ROI channels are highlighted in pink and identical for the N1 and P2. A Grand average
ERP of the averaged ROI channels. The highlighted areas display the ROI time windows of the
N1 (left) and P2 (right). B Grand-averages of the N1 ROI (left panel) and P2 ROI (right panel),
contrasted for all conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies of the
ERP distribution of the P2, depicting the main effects of congruence and emotion: Neutral bursts
(collapsed across gender-congruence levels), pairwise differences of the emotion levels, and gender
congruent bursts (collapsed across emotion levels) compared to gender-incgonruent bursts. ROI
channels are highlighted in pink.
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Figure 2.5
Pupil size results of the learning session.

Notes: A Grand average pupil size time series. Bar plots refer to the pupil size in each condition
for the respective marked time windows. B Pupil size time series across the experiment for the
early time window (0 - 1000 ms; upper panel) and the later time window (1000 - 2000 ms; lower
panel).
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Table 2.2
Means and standard deviations of the main ERP, Pupil and behavioral measures for the test session

match mismatch

neutral happy angry neutral happy angry

Measure Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

P1 5.05 3.54 5.09 3.29 4.85 3.37 5.30 3.29 5.35 3.30 5.17 3.50
P1.peak 7.26 3.91 7.46 3.53 7.18 3.56 7.64 3.51 7.73 3.58 7.43 3.82
N170 -5.86 3.95 -5.82 3.98 -5.73 3.76 -5.47 3.80 -5.69 3.96 -5.85 3.85
N170.peak -10.65 5.32 -10.56 5.33 -10.47 5.09 -10.31 5.10 -10.49 5.24 -10.59 5.22
EPN -0.17 3.92 -0.26 4.27 -0.11 4.16 0.33 4.21 0.13 4.31 -0.03 3.96

LPC 4.09 2.95 4.00 2.64 3.76 2.81 3.88 2.53 3.90 2.71 4.00 2.88
Pupil.early 5.04 58.53 3.94 52.73 5.82 54.67 6.94 54.33 4.04 56.83 3.28 57.30
Pupil.late 32.52 73.50 35.18 65.22 37.63 68.88 37.25 67.76 36.26 74.92 29.48 63.64
RT 596.42 56.33 593.67 58.20 598.61 56.85 603.77 62.27 598.65 56.80 601.33 59.00
Accuracy 98.41 1.34 97.80 3.94 96.71 7.71 96.29 9.70 98.32 1.85 96.85 7.78

Notes: Response times are in ms, ERP amplitudes in 𝜇V, and Pupil size in pixels.

to mismatch trials (93%), and concerning emotion categories, happy trials (97%) had a higher

accuracy compared to neutral (94%) and angry (92%) trials.

Response Time (RT): RT data was analyzed only for correctly answered trials. First, we

trimmed RTs using a maximum cut-off of 5000 ms. Then, we applied a skewness-adjusted boxplot

method to exclude extreme values separately for every subject, using the function “adjbox” of

the package “robustbase” (Maechler et al., 2021; based on: Hubert & Vandervieren, 2008). The

overall (non-aggregated) mean RT for the gender-matching task of the learning session was 758 ms

(SD = 369 ms). We based the RT-model estimation on aggregated data, taking the mean for each

condition (emotion, congruence) and subject.7 Results showed a modulation by both, congruence

(𝜒2(1) = 71.84, p <.001) and emotion (𝜒2(2) = 15.49, p <.001) but there was no interaction (𝜒2(2)

= 0.81, p = .667). Matching trials (714 ms) were answered faster compared to mismatching trials

(803 ms; 𝛽mismatch = 44.97, SE = 4.8, t = 9.37). Neutral trials were answered fastest (739 ms),

followed by angry (753 ms; 𝛽angry = -5.66, SE = 6.79, t = -0.83) and happy trials (784 ms; 𝛽happy =

25.63, SE = 6.79, t = 3.78). Pairwise comparisons revealed that estimated RT differed significantly

between neutral (fastest) and happy (slowest) trials (dhap-neu = 46 ms, p <.001) and between happy

and angry trials (dhap-ang = 31 ms, p = .025).

Test session

Table 2.2 contains all means and standard deviations of the visual ERPs, pupil size, and

behavioral measures.

7Taking the median instead of the mean did change parameters slightly but not the direction or significance of the
effects.
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Face-locked ERPs. P1: P1 mean amplitudes were not significantly modulated by emotion

(𝜒2(2) = 2.73, p = .255), but by congruence (𝜒2(1) = 6.3, p = .012). No interaction was found

(𝜒2(2) = 0.08, p = .963). Similar to the learning session, gender-mismatching trials (5.27 𝜇𝑉 ;

𝛽mismatch = 0.14, SE = 0.06, t = 2.49) had a descriptively higher P1 amplitude than matching trials

(5.00 𝜇𝑉 ), although the sound stimuli were not presented anymore. A similar pattern was found

for P1 peak amplitudes, which were not modulated by emotion (𝜒2(2) = 3.52, p = .172), but by

congruence (𝜒2(1) = 5.52, p = .019). Again, no interaction between emotion and congruence was

found (𝜒2(2) = 0.19, p = .910). P1 during extinction: Similar to the learning phase, we were

interested in the temporal dynamics during extinction. We used the same model structure as we

did for the learning data. The data-driven selected model for the P1 mean amplitudes over time

with the lowest GAIC was the full model, including all main and interaction effects. Panel D of

Figure 2.6 shows the fitted values. All model results can be found in Appendix A.

N170: N170 mean amplitudes were not significantly modulated by emotion (𝜒2(2) = 1.7,

p = .428) or congruence (𝜒2(1) = 2.66, p = .103), but there was a significant interaction between

emotion and congruence (𝜒2(2) = 6.16, p = .046), with the difference between previously matching

and mismatching trials was larger for neutrally associated faces (0.38 𝜇𝑉 , t = 2.68, p = .008)

compared to faces previously associated with affective sounds (𝛽happy = 0.13𝜇𝑉 , t = 0.92, p = .361;

𝛽angry = -0.12 𝜇𝑉 , t = -0.81, p = .421). For neutrally associated faces in previously mismatching

trials (-5.47 𝜇𝑉 ), the N170 showed a less negative deflection compared to matching trials (-5.86

𝜇𝑉 ). In contrast to N170 mean amplitudes, peak amplitudes were neither significantly modulated

by emotion (𝜒2(2) = 0.18, p = .914), nor congruence (𝜒2(1) = 0.98, p = .323) nor their interaction

(𝜒2(2) = 3.25, p = .197). N170 during extinction: For the N170 over time of the test session, a

model with emotion, congruence, block, and all two-way and three-way interactions had the lowest

GAIC.

EPN: For EPN mean amplitudes, no significant modulation by emotion was present (𝜒2(2)

= 1.59, p = .451). There was a main effect for congruence (𝜒2(1) = 8.91, p = .003), with smaller

amplitudes for faces associated with gender-mismatching compared to matching sounds, similar

to the learning phase. The interaction between congruence and emotion (𝜒2(2) = 2.8, p = .247)

was not significant. EPN during extinction: Looking at the EPN during extinction over time, the

data-driven selected model included the main effects of emotion, congruence, and block, as well

as the interaction between emotion and congruence. No interaction with the factor block was in

the final model.

LPC: LPCmean amplitudes were neither significantly modulated by emotion (𝜒2(2) = 0.8, p

= .669), nor by congruence (𝜒2(1) = 0.04, p = .843), nor their interaction (𝜒2(2) = 3.33, p = .189).
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Figure 2.6
Face-locked P1 in the test session.

Notes: A Grand average ERP of the averaged ROI channels. The highlighted area displays the
ROI time window. The zoomed-in window shows the main difference of gender-congruence, av-
eraged over all emotion conditions. B Grand-averages of the ROI mean amplitudes (upper panel)
and peak amplitudes (lower panel), contrasted for all conditions. Errorbars indicate +/- 1 SE of
the mean. C Topographies of the ERP distribution for gender-congruent faces and the difference
between gender-incongruent and congruent faces. ROI channels are highlighted in pink. DMean
P1 amplitudes over the course of the test session. Dots represent the grand averages per block and
condition. The lines represent the fitted values of the GAMLSS model.
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Figure 2.7
Face-locked N170 in the test session.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. The zoomed-in window shows the main difference of gender-
congruence, averaged over all emotion conditions. B Grand-averages of the ROI mean amplitudes
(upper panel) and peak amplitudes (lower panel), contrasted for all conditions. Errorbars indicate
+/- 1 SE of the mean. C Topographies of the ERP distribution for faces associated with neutral
compared to emotional bursts, separately for gender-congruent and -incongruent faces. ROI chan-
nels are highlighted in pink. D Mean N170 amplitudes over the course of the test session. Dots
represent the grand averages per block and condition. The lines represent the fitted values of the
GAMLSS model.
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Figure 2.8
Face-locked EPN in the test session.

Notes: AGrand average ERP of the averaged ROI channels. The highlighted area displays the ROI
time window. The zoomed-in window shows the main difference of gender-congruence, averaged
over all emotion conditions. BGrand-averages of the ROI amplitudes, contrasted for all conditions.
Errorbars indicate +/- 1 SE of the mean. C Topographies of the ERP distribution for gender-
congruent faces and the difference between gender-incongruent and congruent faces. ROI channels
are highlighted in pink. DMean EPN amplitudes over the course of the test session. Dots represent
the grand averages per block and condition. The lines represent the fitted values of the GAMLSS
model.
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Pupil size modulations. For the pupil early time window (0 - 1000 ms) there were no significant

effects of emotion (𝜒2(2) = 1.05, p = .591) nor congruence (𝜒2(1) = 0.01, p = .911) nor their

interaction (𝜒2(2) = 1.23, p = .540). Similarly, pupil size was not modulated in a later time window

(1000 - 2000 ms) by emotion (𝜒2(2) = 0.37, p = .832) or congruence (𝜒2(1) = 0.07, p = .791) nor

their interaction (𝜒2(2) = 3.37, p = .185).

Behavioral measures. Accuracy: Prior to any re-coding or rejection, the overall accuracy for

the gender decision task was 97% (N = 32), thereby higher than for the learning task. Accuracy

was similar between match (98%) and mismatch trials (97%). The accuracies for each emotion

category were 98% for happy, 97% for angry, and 97% for neutral trials. None of the subjects fell

into the exclusion criteria (> 25% incorrect trials). After the re-coding of certain systematic error

patterns, the overall accuracy was 97% for both faces, independent of whether they were presented

in match (97%) or mismatch trials (97%), happy (98%), angry (96%) or neutral (98%) trials during

learning.

Response Time: The overall mean (non-aggregated) RT for the test session was 598 ms

(SD = 119 ms). The RT-model estimation on aggregated data was conducted analogously to the

learning session. RTs showed a modulation only by congruence (𝜒2(1) = 5.06, p = .024) but not

by emotion (𝜒2(2) = 2.7, p = .259), nor by the interaction between both factors (𝜒2(2) = 0.73, p =

.694). Gender decisions to faces previously presented with gender matching bursts (596 ms) were

answered faster than those presented with mismatching sounds (601 ms; 𝛽mismatch = 2.51, SE =

1.12, t = 2.23).

Likeability rating: We ran two cumulative linked mixed models to account for the ordinal

scale of the likability ratings; one model only included the associated faces, comparing gender-

congruence and emotion levels, and a second for the previously associated compared to novel

faces. In both models, random intercepts for participant ID and face stimulus were included. First,

when comparing the full with reduced models via likelihood ratio tests, a model including only

congruence was significant (𝜒2(1) = 4.371, p = .037). However, when allowing for the congruence

× emotion interaction, there were no statistically significant differences in likability ratings (allCIs

of the OR included 1). Second, there was a significant difference between associated and novel

faces (𝜒2(1) = 140.32, p = <.001), with novel being rated as less likeable (OR = 0.45 [0.31;0.65]).

The predicted probabilities of both models for the likability ratings are shown in Figure 2.9. Both

models’ odds ratios and 95% CI can be found in Table A22 of Appendix A.
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Figure 2.9
Likability rating of associated and novel faces.

Notes: A Barplots represent the likability ratings per condition, averaged within and across sub-
jects. B Fitted values as predicted probabilities of the ordinal models. The upper panel shows the
model including emotion and congruence. Please note that within the gender-mismatching con-
dition, the dotted line for happy (blue) is mostly overlapping with the neutral (black) and hence
difficult to see. The lower panel shows the collapsed familiar faces versus the novel faces.

2.4 Discussion

Prior work has documented that faces can gain additional relevance when associated with

affective context information. Not only highly aversive stimuli such as loud noise bursts or electric

shocks modulated face processing (for a review, see: Miskovic & Keil, 2012), but also verbal

descriptions of behavior (Abdel Rahman, 2011; Baum et al., 2020; Kissler & Strehlow, 2017; Luo

et al., 2016; Schindler, Bruchmann, Krasowski, et al., 2021; Suess et al., 2014; Xu et al., 2016),

social and affective signals (Aguado et al., 2012; Bruchmann et al., 2021; M. J. Wieser, Gerdes, et

al., 2014), and abstract forms of context like monetary reward and loss (Hammerschmidt, Kulke,

et al., 2018; Hammerschmidt et al., 2017). In the present ERP and pupillometry study, we applied

an emotion-implicit cross-modal association paradigm, with separate learning and test sessions, to

investigate whether and how robustly neutral faces might acquire additional relevance, even if the

emotional quality of the US, i.e., the affect burst, is not task-relevant.

Although we observed differences in the neural and behavioral responses towards emotional

compared to neutral face-voice pairs, faces do not seem to have acquired additional relevance

by their associations with emotional voices. During learning, we found emotion effects ranging

from auditory processing (auditory P2) to pupil changes and behavioral responses, presumably

triggered by the affect bursts. Hence, emotional sounds were automatically processed and elicited
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typical responses at the neuro-physiological level. However, these emotion-based effects were

not transferred to the conditioned faces (CS+pos and CS+neg), and emotion did not modulate face-

locked ERPs as expected. Remarkably, faces acquired a different quality according to the task-

relevant congruent or incongruent gender information, which was present in the behavior, auditory

ERPs, and mid- and long-latency visual ERPs during learning. Most astonishingly, congruence

effects were also present in the behavior, early and mid-latency visual ERP components during the

delayed test session, indicating a substantial role of task-relevant stimulus features for successful

associative learning. Thus, the absence of the associated relevance of the emotional voices cannot

be attributed to a general disregard of the (emotional) voice stimuli since gender congruence was

transferred from learning to testing. These findings suggest that sufficient associations of emotional

valence to faces require explicated attention, as previously indicated by Hammerschmidt, Kagan,

et al. (2018). In the following, we will discuss the emotion-related effects occurring during the

learning phase and the conditioned effects visible both in the learning and test session. We will

use the term “face-voice pairs” instead of CS+ and CS- faces for pupil size, auditory ERPs, and

RTs of the learning session in which it is impossible to disentangle immediate processing (e.g.,

reacting towards the affective voices) and effects that might have occurred because the faces gained

predictive value.

Emotion and congruence effects of face-voice pairs

As hypothesized, during acquisition, gender-matching decisions were slower in emotional

compared to neutral face-voice pairs. This finding corroborates studies demonstrating that task-

irrelevant emotional stimuli aremore difficult to disengagewith andwithdraw attentional resources

from the actual task (Carretié, 2014; Dresler et al., 2008; Hur, Iordan, Dolcos, et al., 2016; Kotz

& Paulmann, 2007; Schimmack, 2005; Vuilleumier, 2005). In addition, the conflicting emotional

information of neutral faces and positive/negative affect bursts might have counteracted integrated

person percepts (Föcker et al., 2011; Gelder & Vroomen, 2000). Presumably, this type of con-

flicting information is more detrimental for naturally co-occurring stimuli like faces and voices

than for abstract stimuli. Independent of emotion, responses for mismatching compared to match-

ing face-voice pairs were slower, replicating previous findings (Huestegge et al., 2019; Latinus et

al., 2010). Gender-mismatching8 information might be more difficult to integrate because of the

long-term and repeated strengthening of the associations of gender-congruent faces and voices.

To investigate at which point the emotion and congruence differences were reflected at the neural

8We are only referring to trials in which the participant’s response was correct; hence, subjective gender-mismatching
corresponded to objective gender-mismatching according to our stimulus database.
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level and additionally to the preregistered visual ERPs, we explored auditory ERPs (N1 and P2),

time-locked to the voice-onset. We did not find a modulation of the N1 by emotion or congru-

ence. There was an enhancement of the auditory P2 component for happy and angry compared

to neutral face-voice pairs, similar to T. Liu, Pinheiro, Deng, et al. (2012). This difference might

reflect the prediction effect of the emotion-congruence, i.e., pairs of a neutral face and a neutral

voice, as shown in several studies: Typically, auditory suppression effects have been found when

a preceding visual stimulus predicted the occurrence of a sound (Vroomen & Stekelenburg, 2010).

These suppression effects were also reported in the context of dynamic faces and spoken utter-

ances (Ho et al., 2015; Wassenhove et al., 2005) or emotionally congruent vocalizations (Jessen &

Kotz, 2013; Kokinous et al., 2014). We also found a gender-congruence effect on the auditory P2

component with larger amplitudes for gender-matching compared to mismatching voices. These

increased amplitudes might reflect “attention allocation costs”, as described by the predictive cod-

ing framework (Feldman & Friston, 2010). With the specific task demands of gender-congruence

decisions, feature-based attention towards gender-congruent voices might have led to prioritized

processing over the course of learning, also reflected later in shorter RTs. The dissociation between

emotional congruence and gender congruence at the level of the auditory P2 amplitudes provides

novel evidence for its sensitivity to attention and predictive processing. This is in line with studies

demonstrating a sensitivity of the P2 component to various types of incongruence (Stekelenburg

& Vroomen, 2007; Vroomen & Stekelenburg, 2010) and to interactive processes of prediction and

attention (Schröger et al., 2015).

In our study, we expected that face-voice pairs containing affective compared to neutral bursts

would elicit higher arousal and hence, larger pupil dilation, and that this response would be shifted

towards the predicting face stimulus. In the time window of 0-1000 ms after face onset, overall,

gender-mismatching trials elicited a stronger pupil constriction compared to matching trials, being

most pronounced for face-voice pairs containing affective bursts. However, in the time window

from 1000 to 2000 ms after face-onset and hence, covering the dilation of the pupil as well as the

presentation of the voices, pupil size was impacted by emotion. Trials with neutral bursts elicited

an overall larger dilation compared to affective bursts, which was most pronounced in gender-

mismatching trials. This contradicts previous findings (e.g., Burley et al., 2017; Finke et al., 2021;

Hammerschmidt, Kagan, et al., 2018; Schindler et al., 2022), with motivationally relevant and af-

fective stimuli eliciting larger pupil dilation. However, pupil size also enlarges with increases in

cognitive load (Oliva & Anikin, 2018; for a review on pupil size correlations see Zekveld et al.,

2018). While our data indicates that both the predictability of emotional and gender congruence

were interacting, it remains unclear which functional interaction between emotion and congruence
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took place. Remarkably, there was no direct correspondence between pupil size and RTs during

learning. To better understand these results, we looked at the habituation effects of the pupil during

the learning phase across conditions. We found typical decreasing pupil responsiveness (especially

reduced dilation magnitudes) from the beginning of the experiment towards the end. However, no

systematic pattern was observable regarding emotion (e.g., no differences in the speed of habitua-

tion between emotion conditions).

Associated effects

Neither RTs, pupil size measures nor auditory ERPs can be treated independently from learn-

ing. Our conditioning paradigm allowed us to distinctively map the face-locked ERP modulations

to different learning processes according to our experimental conditions both for the learning and

the test session. Our main hypothesis was that positive and negative CS+ faces would be processed

differently than CSneu. However, virtually none of the pre-registered ERP components indicated

a modulation by emotion. Instead, several ERP components, pupil size, and RTs were modulated

by (the previously conditioned) gender congruence of the face-voice pairs.

Learning session. Already in the learning session, we found a difference between the gender-

matching andmismatching conditions on the EPN, with an enhanced negative amplitude for match-

ing trials. The EPN is usually associated with the attentive encoding of emotional or motivational

relevance (Schupp et al., 2006). Evidence from associative learning studies is mixed, with some

reports of enhanced ERP negativities for CS+ compared to CS- (Bruchmann et al., 2021; Sá et

al., 2018; Schellhaas et al., 2020) and others demonstrating differences between EPN effects of

acquired and inherent relevance (Aguado et al., 2012; Hammerschmidt et al., 2017). Taking the

functional link of the EPN to other attention-related ERP components (Schupp et al., 2007; Schupp

et al., 2006) into account, it remains open whether the gender congruence manipulation in our study

induced a kind of emotional relevance or whether the EPN effects reflect rather general (emotion-

independent) attention processes.

Test session. In the test session, in line with our predictions, pupil size did not show mod-

ulations by emotion or congruence. Physiological measures have been shown to extinguish fast

even when differentiation in neural measures is still persistent (e.g., Hammerschmidt, Kagan, et al.,

2018; Pastor et al., 2015). Similar to the learning session but differently from what we expected,

virtually all ERP modulations were related to gender congruence. These findings indicate a gen-

eralization of some processing differences to a different task. The most unexpected finding was

the modulation at early processing stages, reflected in enhanced P1 amplitudes for the faces of the
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previously gender-incongruent condition. The P1 has mostly been associated with the processing

of lower-level stimulus properties, as well as with the rapid detection of conditioned motivated or

emotional salience (e.g., Aguado et al., 2012; Hammerschmidt et al., 2017; Müller-Bardorff et al.,

2018; but cf. Bruchmann et al., 2020). In general, early visual processing is influenced by task

demands and perceptual load (Handy et al., 2001; Pratt et al., 2011). However, the CS-US pairing

for each participant was fully randomized. Hence, even though some voices or faces might have

been more difficult to extract gender information from, physical stimulus characteristics cannot

explain this effect. Since participants could not anticipate whether a congruent or incongruent face

would be presented due to the randomized order of presentation, P1 differences are necessarily

related to the processing of the stimuli. Unlike other fear-conditioning studies with faces, which

reported an enhancement of the CS+, Sperl et al. (2021) found an increased response for CS- faces

in occipito-temporal channels at the typical P1 time window. The authors suggested that smaller

P1 amplitudes for CS+ might be caused by prolonged attention during learning and hence a smaller

prediction error for CS+. This illustrates an interesting dissociation between early (P1) and the sub-

sequent processing stages. Y. Liu et al. (2011) analyzed P1 amplitudes as a function of stimulus

repetition and found larger P1 amplitudes for CS+ at the beginning with a switch towards the end of

the experiment in favor of CS- stimuli. In our study, gender-incongruent face-voice pairs seemed

to be processed less elaborately, indicated by a larger prediction error with increased amplitudes

of the P1 and decreased mid-latency and late ERPs, as well as slower RTs during learning. This

prediction error apparently even remained present during extinction. The only preregistered visual

ERP component that was modulated by an interaction of congruence and emotion was the N170

component during the test session, which was characterized by a smaller mean (but not peak) am-

plitude for the conditioned incongruent CSneu faces compared to all others. However, we expected

that, if at all sensitive to our experimental condition, it would show an enhancement for matching

and emotionally, especially negatively conditioned faces, as found in other studies (e.g., Bruch-

mann et al., 2021). We cannot exclude that (neutral) faces with neutral gender-mismatching voices

elicited a stronger interference for configural processing of the faces, again implying functional dis-

sociation of the N170 to the other components, although this assumption would need to be tested

by future studies. Noticeably, the interaction effect was only significant for the N170 mean but

not peak amplitudes. As the preregistered N170 component was measured at partly overlapping

electrodes as the EPN component, the mean amplitude effect during the N170 time window might

already represent a mixture of configural face processing and relevance encoding (for a discus-

sion about distinct N170 and EPN emotion effects, see Rellecke et al., 2012b). However, for the

EPN, the interaction between conditioned emotion and congruence failed significance, whereas the
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difference between conditioned gender-matching and mismatching conditions became more pro-

nounced. The latter finding is, albeit unexpected, interesting in several aspects: First, the pattern

of the EPN differences between all conditions was very similar across both sessions and seemed

to be robust enough over time and across different task demands. Second, the scalp topography

of the congruence effect showed high conformity to typical emotion-based effects known from

studies with inherent emotional salience like emotional expressions of faces, words, or complex

scenes (e.g., Bayer & Schacht, 2014). The EPN modulation by conditioned gender congruence is

corroborated by indicators of overt behavior, i.e., faster gender decisions during the test session.

Eventually, gender-matching faces acquired positive valence because they were easier to process

during learning. In comparison, gender-mismatching faces did not seem to acquire strong nega-

tive valence but were probably more treated as an artificial by-product of the task. Alternatively,

gender-incongruent voices might have introduced uncertainty about the gender of the face due to

a reflexive integration of the face and the voice towards a whole-person concept, which was not

overcome by the repetitions of the learning session. Even when the voice was no longer present

in the test session, this learned uncertainty made it more difficult to decide on the gender of the

face. Finally, the LPC component was neither modulated by emotion nor by congruence in the test

session, probably due to task settings (e.g., Hammerschmidt et al., 2017; Rossi et al., 2017)

Neural dynamics of learning and extinction

We investigated the dynamics of learning and extinction of the emotion- and congruence-

based cross-modal associations. Y. Liu et al. (2011) described the learning-related temporal dy-

namics of the P1 component as non-linear, consisting of three phases: an initial decrease, a sub-

sequent increase, and habituation. Similarly, we allowed for potential non-linear relationships

between repetitions and ERP amplitudes as a function of learning. We averaged stimuli per block

and condition to avoid arbitrary bin sizes, despite a lower signal-to-noise ratio. However, since

our model does not capture rapid changes, the overall patterns of effects are similar up to a certain

minimum number of bins. In Appendix A, we provide visualizations of the ERP amplitudes over

the course of the session with different bin sizes. Sperl et al. (2021), who used electric shocks,

reported very fast differentiation between CS+ and CS- stimuli within the first five repetitions in

P1 and N170 time windows. We aimed to observe gradual associative strengthening between the

CS+ and US using medium-intense US. In our study, only the EPN appeared to change non-linearly

across learning. Analogously, during extinction, only mean N170 and EPN amplitudes appeared to

follow a non-linear function, with an initial decrease phase and then slowly returning to baseline.

The exploratory results are data-driven and should be understood as an impetus for further research
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and replication with an independent sample. For example, in our data amplitudes of the auditory

P2 differentiated between both gender congruence and emotion levels quite consistently over the

entire learning session. Similarly, LPC amplitudes during learning were best explained by a model

with the factors congruence and block, like in the averages across the whole session. In contrast,

for the EPN during learning and test and the P1 at test, models including the factor emotion could

explain the overall data significantly better, even though averaged across the session, emotion was

not significant. Unexpectedly, the reduced negative amplitude for the mismatching CSneu in the

N170 time window was apparent virtually throughout the test session. Moreover, when comparing

ERP dynamics of the P1, N170, and EPN in the test session, we found more positive amplitudes

for the mismatching CSneu relative to the other conditions. This changed only towards the end

of the session when it converged with the mismatching CS+pos. However, although these models

show emotion-based effects in some of the ERP components, the effects of gender congruence

were overall larger and more robust.

Emotional implicitness of the task

We expected emotional vocalizations to capture increased attention due to their social and bi-

ological relevance (Johnstone & Scherer, 2000) and to transfer relevance via associative learning

to the faces. Looking at the acquisition period, when faces were conditioned with inherent emo-

tional vocalizations, we found that the RTs were affected not only by the gender (in-)congruence

but also by the emotion of the vocalization. Thus, emotional relevance indeed affected behavior

as expected, but it did not transfer to learning to the same degree as the task-relevant gender con-

gruence. Possible reasons will be discussed in the following:

Can faces be conditioned with auditory emotional expressions? Emotional expressions of the

face and voice naturally show variations within people and among situations. One could argue that

faces naturally show some “resistance” to be conditioned with information that is naturally very

variable and not stable. However, Aguado et al. (2012) successfully associated faces with positive

and negative emotional expressions of the identically portrayed individual (samemodality). Cross-

modal associations have also been demonstrated in fear-conditioning studies (Miskovic & Keil,

2012), with some of them using aversive screams (Bruchmann et al., 2021; Glenn et al., 2012;

Schindler et al., 2022).

How much attention towards the US is needed to form stable associations? Crucially, in

many fear-conditioning paradigms, the unconditioned stimuli were not task-relevant but consisted

of highly aversive stimuli. If stimuli of lower intensity were used, most task instructions aimed
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at making CS-US contingencies explicit. In contrast, we did not instruct participants about the

CS-US contingency but implemented a task in which specific features, i.e., gender information,

of the stimuli were relevant. In fact, the majority of participants were not aware of the emotional

CS-US contingency, as indicated by our memory checks. Still, our task ensured that they attended

to both the CS and US.

Attention and executive load can modulate conditioning effects also with stronger aversive

stimuli like electric shocks (Hur, Iordan, Berenbaum, et al., 2016). Despite the high accuracy in

the gender-matching task, one possible limitation of our study is that the gender-matching task

might have prevented emotional conditioning, as indicated by the long-lasting and robust gen-

der congruence effects on ERP measures. Therefore, it seems plausible that drawing attention to

other (non-emotional) features of the same stimulus might have suppressed associative learning of

emotion, although emotional vocalizations were processed differently from neutral sounds. Asso-

ciative learning thus seems to depend on how much feature-based attention can be devoted to the

US.

Future directions

We only tested the explicit CS-US contingency related to emotion. To rule out that the miss-

ing effect was caused by the missing CS-US contingency awareness, future studies should assess

whether the gender congruence is explicitly retrievable. More generally, we used a paradigm in

which emotion was neither task-relevant during learning nor test. It should therefore be inves-

tigated in a systematic cross-over setting what specific role feature-based attention during condi-

tioning and retrieval plays. Investigating feature-based attention in the context of fear-conditioning

and extinction might ultimately contribute to improving therapeutic interventions (e.g., exposure-

therapy) in the context of clinical research.

Conclusion

We implemented an associative learning paradigm to investigate whether neutral faces auto-

matically acquire emotional relevance when associated with cross-modal emotion from the voice,

while emotion was not task-relevant. Emotion effects were limited to auditory ERPs, pupil size,

and RTs in the acquisition period, possibly being promptly elicited by the emotional burst. In con-

trast, the task-relevant gender-congruence of the face-voice pairs impacted virtually all measures

during acquisition. However, more strikingly, it modulated neural (P1, N170, and EPN) and be-

havioral responses towards previously conditioned faces during test on the following day and in a
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different task. Our results indicate that associative learning of emotional relevance prerequisites

global attention to the emotional stimulus and specific (feature-based) attention toward the emo-

tional quality of the stimulus to be integrated.
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Modelling response times in an associative learning task with delayed responses:

A GAMLSS and drift diffusion approach

Abstract

From an evolutionary perspective, stimuli of higher biological relevance, such as social and

emotional stimuli, should be preferentially processed and learned, and show slower extinction.

Learning and extinction of faces (CS) conditioned with affective and neutral bursts (US) were

investigated in two independent experiments (NExp.1 = 40, NExp.2 = 41) using emotion-implicit

Pavlovian conditioning paradigms in which only the gender information of the faces and voices

were task-relevant. We used a distributional (GAMLSS) approach to analyze response times (RTs)

to capture the potential non-linearity of learning and extinction. In addition, we applied amechanis-

tic (drift-diffusion) approach to identify underlying processes accounting for differences between

emotion conditions in RTs and choices beyond practice effects. In both experiments, learning was

characterized by a general acceleration of responses, particularly at the beginning of the session,

and by facilitation of gender-congruent compared to gender-incongruent face voice pairs. In con-

trast to our expectation, in both experiments, overall, participants responded fastest to neutral face-

voice pairs, which was mainly reflected in the starting point parameter of the drift-diffusion model,

indicating that the decision process started before the US. However, learning curves differed be-

tween emotion levels, with steeper learning curves for anger-related face-voice pairs. Responses

in the test sessions were faster and showed fewer dynamics than learning sessions. Conditioned

effects of emotion were only apparent in Exp.1. In contrast, conditioned gender-congruence ef-

fects were present throughout the test session in Exp.2. The applied methods revealed dynamics

between valence conditions which would largely remain hidden when averaging RTs over the ses-

sions.

47

doi: 10.53846/goediss-9841



Chapter 3

3.1 Introduction

Early on, we learn about the contingencies of stimuli in our environment (e.g., the color of a

cloud can be a good predictor of rain), about consequences of our own behavior (e.g., dropping a

watermelon from a high building will probably make a big mess), about the meaning of words and

the tastes of different types of food. Associative learning might also be one of the most important

features of navigating the social environment. We learn about other people, their preferences and

beliefs, which might change how we interact with and perceive them. To anticipate another per-

son’s behavior is beneficial in several ways, e.g., to react promptly to someone who is a physical

or social threat and to respond differently to a known-to-be-friendly person.

The aim of this study was to investigate associative learning in the context of the perception

and processing of faces associated with auditory laughter, screams, or neutral tone. Situational

or learned contextual cues can alter the way we perceive and respond to faces (for reviews, see

Miskovic & Keil, 2012; M. J. Wieser, Gerdes, et al., 2014). In an associative learning study of

Aguado et al. (2012), non-expressive faces, which were repeatedly followed by an image of the

same person’s face with a different facial expression, elicited differential neural responses de-

pending on whether the second facial expression was an emotional or non-emotional expression,

suggesting that also emotional information can be associated to faces. As their study conditioned

faces within the same (i.e., visual) modality, it had yet to be tested whether associative learning of

emotion can occur similarly across modalities, and, in particular when emotion was not relevant

for the current task goals during learning.

The underlying theoretical assumption of affective learning is that emotional stimuli are more

salient (A. K. Anderson, 2005; Frischen et al., 2008; Hansen & Hansen, 1988) and increase the as-

sociative strength of the predicting stimulus and, in consequence, the learning rate, especially if the

stimuli share (biological) relevance (Öhman, Erixon, et al., 1975; Öhman, Eriksson, et al., 1975).

From this perspective, relevant stimuli should lead to faster learning and facilitated information

uptake, possibly through attentional prioritization (e.g., Öhman & Mineka, 2001). We hypoth-

esized that faces associated with affect bursts would gain additional relevance and thus become

behaviorally more effective than faces conditioned with neutral bursts, although emotion was not

task-relevant. With two different methods, we analyzed data from two independent experiments in

which faces with neutral expressions (conditioned stimuli; CS) were cross-modally associated with

affect bursts (unconditioned stimuli; US).Wewere particularly interested in two aspects: first, how

emotional relevance influences responses to visually presented faces when the emotional context

is not task-relevant, and second, how responses change as a function of associative learning and
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extinction over time.

As it is difficult (if not impossible) to measure learning processes directly, their investiga-

tion requires the reduction to measurable behavior. Compared to explicit ratings (e.g., perceived

differences before and after learning), the use of performance measures, such as response times

(RTs) and (correctness of) choice reduces response biases by social desirability and the attempt to

answer consistently (Nederhof, 1985; Nichols & Maner, 2008). Performance measures have been

frequently used in psychological research, and the understanding of what affects RTs and their link

to cognitive processes has constantly been growing, although it is far from being complete (for a re-

view, see Schall, 2019). Studies on Pavlovian conditioning often have focused on behavior which

is in part automatic, e.g., neural or physiological responses (for an overview, see Ojala & Bach,

2020). Whereas several studies have included RT measures as responses to inherently emotional

stimuli in attentional tasks (e.g., Puls & Rothermund, 2017; Rooijen et al., 2017; Theodoridou et

al., 2013) or in emotional priming studies (e.g., LeMoult et al., 2012; Purcell & Stewart, 2016; Sim

et al., 2020; Voyer & Myles, 2017; Wagenbreth et al., 2016), in the context of associative learning

of social and emotional CS stimuli, studies often reported response times only in addition to neural

or physiological responses (e.g., Beckes et al., 2013; Björkstrand et al., 2022; Critchley et al., 2002;

Dirikx et al., 2004; Pischek-Simpson et al., 2009; Watters et al., 2018). One reason might be that

the relationship between task-relevant behavior and associative learning is not always clear. Dif-

ferent from studies on instrumental learning, in which the relation between acquired associations

and behavioral responding is more direct, in Pavlovian conditioning, certain assumptions have to

be made to relate intentional and task-dependent responses (e.g., a key press) to typical conditioned

responses toward a stimulus. One of the assumptions in our study was that performance measures

could indirectly capture the associative strength between stimuli, such that RTs would change as

a function of learning and depending on the stimulus relevance. More precisely, if faces could

gain additional relevance by being conditioned with affective bursts, we expected RT differences

between the emotional and neutral face-voice pairs over the course of learning.

We were explicitly interested in the capacity of emotional US to be conditioned to faces

when emotion was not task-relevant. To obtain overt and measurable responses, we implemented

a gender-matching task of the face and the burst, ensuring that both stimuli were processed and at-

tended to, but for which the emotional valence of the voices was irrelevant. We originally predicted

faster responses in both the learning and test/extinction phase for faces associated with emotional

compared to neutral voices. However, we did not specify predictions about gender-congruence

effects as they were not the main focus of the study but included this factor in the model to control

for potential differences in emotion effects between gender-matching and mismatching face-voice
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pairs. Moreover, different from instrumental learning tasks, in our design, all information to make

the correct choice was present in every trial. Thus, we expected that the accuracy of the gender-

matching task and the gender-decision task would not change drastically with learning, but rather

that learning was reflected in the speed of responding. Due to controversial findings in the litera-

ture about the attentional effects of conditioned stimuli and how they translate to response times

(see, e.g., Ojala & Bach, 2020), we modeled learning over time to detect potential differences in

learning curves between emotion categories which might not be detected when averaging over

the whole experimental session. Different ways to analyze RT data have been discussed in the

literature (e.g., Baayen & Milin, 2010; Green, 1971; Lo & Andrews, 2015; Marmolejo-Ramos,

Barrera-Causil, et al., 2022; Ranger & Kuhn, 2013) to account for their typical properties: RTs can

only be positive and are usually positively skewed (i.e., mode, mean and median differ), and par-

ticipants additionally show inter-individual motor limits as well as intra-individual variation (e.g.,

due to differences in fatigue levels). Furthermore, not only the mean but also the spread of the

response time distribution can be affected by task properties, e.g., by increases in task difficulty

through less intense or ambiguous stimuli (e.g., Wagenmakers & Brown, 2007). To account for

that, we followed two complementary approaches in the present study, of which the first aimed

at monitoring changes over time for correct responses allowing for a higher temporal resolution,

whereas the second targeted both accuracy and response times and interpretable parameters on a

larger time scale.

First, we modeled the effects of emotion and gender congruence on RT changes over time

to get better insight into the dynamics between emotion and congruence conditions. To do so, we

fitted a generalized additivemodels of location scale and shape (GAMLSS, Rigby&Stasinopoulos,

2005), separately for the learning and test session of two independent experiments. GAMLSS

models belong to the class of semi-parametric distributional models (see Kneib, 2013) and allow

to model not only the mean but further parameters of the response distribution as a function of the

predictor variables. As effects of learning and practice typically co-occur with fast improvements

at the beginning of a new task (e.g., Dutilh et al., 2011, 2009; Heathcote et al., 2000), we used a

penalized spline function to capture this potential non-linear effects in a data-driven way.

Second, we applied drift-diffusion (i.e., mechanistic) models on both experiments and ses-

sions’ RT and choice data. Mathematical models of RTs and accuracy have become increasingly

popular (Voss et al., 2013), as some were specifically designed to provide interpretable coefficients

to disentangle cognitive processes in binary choice tasks (and extensions thereof), e.g., to estimate

speed-accuracy trade-offs. Moreover, they have been shown to have a very good fit for RT data

(Wagenmakers, 2009), and some of them enable to model RTs and accuracy data concurrently.
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One of these models is the diffusion model, sometimes also called the Ratcliff diffusion model

(Ratcliff & McKoon, 2008), which belongs to the class of sequential sampling models (Ratcliff et

al., 2016; Ratcliff & Smith, 2004). The main assumption of the diffusion model is that in a speeded

binary-choice task, the decision can be described as the accumulation of information over time until

reaching one of two thresholds. The accumulation process can be described by a Wiener diffusion

process characterized by a systematic drift 𝑣 and Gaussian noise (Voss et al., 2015) and capturing
a decisional process’s systematic influence and random noise. The drift-diffusion model compro-

mises several parameters for flexibility. The four main parameters are the drift rate 𝑣, which is a
measure of the speed of information uptake, the starting point 𝑧𝑟 reflecting a pre-decisional bias

towards one of the boundaries, the boundary separation 𝑎 informing about a certain decision crite-
rion, and the non-decision time 𝑡0 accounting for processes outside of the decisional process, e.g.,

the execution of a motor response or early stimulus encoding. With the drift-diffusion approach,

we aimed to explore which changes in response times over learning would be accounted for by

which parameters to possibly disentangle, e.g., effects of encoding and decision. An illustration of

the diffusion process is shown in Figure 3.1.

Reports are mixed about what can be modeled with the drift-diffusion approach and about

the specific requirements of the task. The basic drift-diffusion model was developed to handle

rather fast decisional processes, e.g., excluding tasks with RT averages above 1.5 seconds (Ratcliff

& McKoon, 2008) and multi-stage processes. However, simulation studies showed some robust-

ness against changing parameters over time (e.g., Ratcliff & Tuerlinckx, 2002). Nevertheless, a

minimum of trial numbers has been shown to be necessary for fitting. To account (partly) for this,

we implemented a moving window approach to obtain a rough estimation for parameter changes

across the learning and test sessions. Importantly, for uncontaminated data (i.e., no unsystematic

slow or very fast responses), trial numbers of up to 200 to 500 trials per condition are beneficial

for unbiased parameter estimation (Lerche et al., 2016). Not seldom, between 1000 to 10000 trials

per participant have been reported (e.g., Dutilh et al., 2009). However, studies with fewer trials

per condition also exist (C. J. Mueller & Kuchinke, 2016, 2015). Due to our learning paradigm,

there was a natural limit of trial numbers per participant, condition, and stimulus repetition. Thus,

we will report and discuss the findings of this exploratory approach while being aware that model

estimates might lack some robustness.

We expected a general acceleration of RTs for all faces as a function of learning and not only

practice with the task: At the beginning of the learning session, the processing of the face and

the voice would be necessary to make the correct decision about whether they match their gender.

However, with successful learning, the face itself would become more and more informative for
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Figure 3.1
Illustration of ten trials of a simulated decision process.

Notes: The basic assumption of the drift-diffusion model is that information is accumulated over
time, resembled by the drift rate v. The decision process ends with hitting one of the two thresholds
(lower threshold 0 result in wrong answers depicted in yellow, upper threshold a results in correct
answers depicted in turquise). The starting point zr in this example is half the distance from 0
to a, but can theoretically be closer to one of the boundaries, which would result in a response
bias (thus, the starting point is sometimes also called bias). The non-decision time t0 subsumes
all non-decisional processes, e.g., stimulus encoding and the motor response and corresponds to a
shift in the RT distribution but does not affect accuracy. The histograms on top and below show
the response times for the correct answers (top) and wrong answers (bottom). The RTs for the
histograms were obtained by simulating 1000 trials of the depicted decision process with the same
parameter values.
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the correct decision, as the voice (and also the response key) were fixed for each face (and coun-

terbalanced between participants). A further aspect, which might not be obvious at the first sight,

is that participants might learn not only which voice would be presented but, in general, when a

voice would be presented and can plan the motor response accordingly. Taken together, both asso-

ciations should result in faster responses. Our main predictions for the drift-diffusion parameters

were as follows: With learning, the informativeness of the face would lead to a time-shift of the

decision process, i.e., the decision process would start earlier. However, the face’s informative-

ness would only be indirectly captured due to the delayed response design (responses were only

recorded after the onset of the voice, and whether a response had been recorded was indicated

by the colour of a fixation cross). Thus, learning about the face would be reflected in a change

of the starting point (𝑧𝑟), i.e., a bias toward one of the boundaries. In addition to learning about

the face, familiarity with the vocal stimulus might enhance its information uptake (Dutilh et al.,

2009) and lead to faster recognition of the voice’s gender, which should be reflected in positive

changes in the drift rate 𝑣. However, 𝑣 would resemble a mixture of the decision process about the
face and the voice and its integration, especially at the beginning of learning when the decisional

process would not be finished during face presentation. Moreover, in one of the experiments, we

implemented a go/no-go condition, in which the participant had to await the onset of the sound

stimulus to execute or inhibit responses. We suspected that with more familiar vocal stimuli, also

this execution/inhibition process would be faster, leading to overall faster responses.

3.2 Method

The data in experiment one (Exp.1) were prepared and collected by Brückner (2019) as part of

her Master’s thesis. The data from experiment two (Exp.2) was part of the event-related potential

(ERP) study described in Chapter 2 of this thesis. As many aspects were the same in both studies,

we will highlight differences, which are, from our view, important for the interpretation of the

results.

Participants

We analyzed data from 81 participants (Exp.1: 22 female, 18 male, 0 diverse, 19-31 years,

Mage= 24, SD = 3.19; Exp.2: 30 female, 11 male, 0 diverse, 19 - 34 years, Mage = 23, SD = 3.59).

Participants were reimbursed for their participation with either money (12 EUR in Exp.1, 8 EUR/h

in Exp.2) or equivalent course credit.
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Stimuli

Face stimuli were colored frontal portrait photographs with a neutral expression from the

Göttingen Faces Database (Kulke et al., 2017). Theywere edited and combinedwith a transparency

mask covering the hairline, ears, and neck and saved with a 200 × 300 pixels resolution. They

were presented at visual degrees of approximately 8.09 × 12.08 (Exp.1) and 3.16 × 5.14 (Exp.2).

Vocal stimuli were selected from the Montreal Affective Voices database (Belin et al., 2008) and

consisted of laughter (happy), yells (angry), and sustained neutral tone (neutral). The selected

stimuli for both experiments are listed in Table B1 of Appendix B.

Experimental Procedure

Both experiments were conducted in accordance with the Declaration of Helsinki and ap-

proved by the Ethics committee of the Institute of Psychology at the University of Göttingen. All

participants gave written informed consent to participate in the study at the beginning of each ses-

sion. The learning and test sessions took place on consecutive days.

Apparatus. Experiment 1: A maximum of six participants were tested simultaneously in a group

laboratory with visual shielding between the participants. The computer-based studywas presented

with the Python module PsychoPy (Peirce, 2009) on Dell Notebooks (E5530) at a distance of ap-

prox. 50 cm from the participant. Auditory stimuli were presented at a constant volume for all par-

ticipants over headphones (Beyerdynamic, DT 770 PRO). Experiment 2: Participants were tested

individually in a sound-attenuated and electrically shielded testing room (in Exp.2, we simulta-

neously recorded the participant’s EEG). The face stimuli were presented on a 24 inch monitor

(BenQ, Zowie XL2411) with a distance of approx. 78 cm. Auditory stimuli were presented via

speakers located at the monitor’s height.

Learning task. In a Pavlovian procedure, we conditioned non-expressive faces (CS) with un-

conditioned stimuli (US) in the form of either happy (UShap), angry(USang), or neutral affect bursts

(USneu), which could be either of the same gender as the face or of a different gender. The 12 face-

voice pairs (50% with gender matching, 50% mismatching) were fixed within participants. Thus,

every face predicted a specific burst and, at the same time, the correct response (gender matching

vs. mismatching). Only in Exp.2 was face-voice pairing pseudo-randomized between participants

(keeping the gender conditions balanced), whereas, in Exp.1, face-voice pairs were identical for

all participants. The experimental task during learning was to decide whether the face-voice pairs
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matched regarding gender. Each trial started with a central black fixation cross (500 ms), followed

by the individual face stimulus (500 ms). A grey fixation cross and the auditory burst set in with

the face offset. Participants were instructed to respond as fast and accurately as possible via key

press as soon as the voice set in. In Exp.1, the two response keys were colored marked keys (“F”

and “#”, German keyboard layout) which participants pressed with their index fingers; in Exp.2,

participants used their dominant (right) hand only to press the answer keys (arrow keys). The key

assignment was counterbalanced between participants. As soon as a response was recorded, the

grey fixation cross was disabled. The next trial started earliest after the sound offset and a fixed

2000 ms inter-trial interval in Exp.1 or a variable inter-trial interval (M = 1800 ms; SD = 200 ms)

in Exp.2. In addition, only Exp.1 included a time limit of 5 seconds, after which the next trial

started irrespective of the recording of a response. Short breaks to rest after every fifth block were

included in both experiments. One block was defined as the shuffled set of the 12 face-voice pairs,

i.e., one repetition of a stimulus(-pair). Importantly, Exp.1 had an additional no-go condition with

randomly interspersed no-go trials (90 trials) in which a beep was presented instead of the burst,

and participants were instructed not to press any key. Furthermore, it entailed one-back tasks (30

trials) at random positions in which participants had to decide via key press (top and down keys)

whether the face was the same as in the previous trial.

Test task. Only the previously conditioned faces without bursts or sounds were presented during

the test session. Participants performed a gender decision of the face. Trials started with a black

fixation cross (500 ms) which was replaced by the face stimulus (1500 ms in Exp.1, 1000 ms in

Exp.2). Participants could respond via key press as soon as the face set in. Similar to the learning

session, Exp.1 had a time limit to respond of 5 seconds, and Exp.2 contained interspersed one-back

tasks (60 trials).

Data preprocessing. The lengths of Exp.1 and Exp.2 differed, with Exp.1 having 30 blocks

during learning and 20 during test and Exp.2 having 50 blocks each. First, we trimmed RTs using

a maximum cut-off of 5000 ms, resulting in a loss of 1% of trials for each experiment and session.

It has been frequently proposed to trim data to a fixed minimum cut-off (e.g., 100 - 200 ms).

However, due to the design of our study, such trimming could likely introduce a systematic bias

in our data. In our experiment, for highly (en-)trained participants, it should have been feasible

to time their responses close to the point of the onset of the voice. Thus, instead of setting a

global cut-off value, we defined extremely fast responses based on the individual participant’s

range, which has been shown to result in a higher power (Ratcliff 1995). To do so, we applied
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a skewness-adjusted boxplot method to exclude extreme values separately for every subject and

session, using the function “adjbox” of the package “robustbase” (Maechler et al., 2021; based

on: Hubert & Vandervieren, 2008). With this method, 501 (3.5%) observations for learning and

616 (6.4%) observations for test of Exp.1, 569 (2.3%) observations for learning and 1258 (5.1%)

observations for test of Exp.2 were excluded.

3.3 Descriptive results

Figure 3.2
Median response times and accuracy per condition, session, and experiment.

Notes: Values are averaged over participants. Error bars are 95% non-parametric bootstraped
Confidence Intervals around the mean. A shows response times in seconds for correct answers, B
for wrong answers. C shows the accuracy as averaged percentages over participants.

Overall, behavioral responses differed between learning and test session and, albeit to a lesser

degree, between the two experiments. As can be seen in Figure 3.2, correct responses in the learn-

ing sessions were slower in Exp. 1 with less pronounced differences between gender-matching

and mismatching face-voice pairs. However, during learning, both experiments showed the fastest

correct responses for neutral face-voice pairs. During the test session of Exp.1, faces conditioned

with happy and angry gender-mismatching voices were responded to fastest, but there was an

overall larger variation between participants’ answers. In contrast, RTs in the test session of Exp.2

were overall comparable between conditions, with a small difference between conditioned gender-
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matching and -mismatching faces. A commonality between experiments was that during learning,

wrong responses were slower than correct responses, whereas, during the test sessions, correct and

incorrect responses were more similar. Moreover, the overall accuracy was comparable between

experiments, although descriptively, during learning, Exp.1 showed higher accuracy for gender-

mismatching face-voice pairs, whereas, for Exp.2, the gender-matching face-voice pairs’ accuracy

was higher. Accuracies in the test sessions were higher in both experiments. However, for Exp.2,

accuracies were comparable between conditions, whereas, for Exp.1, faces conditioned with neu-

tral bursts had lower accuracy within the conditioned gender-mismatching trials. Thus, in Exp.1,

participants responded to faces conditioned with neutral bursts not only more slowly, but they ap-

peared to be also more unsure about the faces’ gender, indicated by the lower accuracy.

3.4 GAMLSS approach

We included only RT data of correctly answered trials in the GAMLSS model and analyzed

each experiment and session independently. In the first step, we tested potentially suitable con-

ditional distributions for the response time variable. Some theoretical distributions that account

for typical RT properties (e.g., skewness, Luce et al., 1986) are the Lognormal (Zandt, 2002), the

exponentially-modified Gaussian (ex-Gaussian) (e.g., Brewer, 2011; Hohle, 1965; Lacouture &

Cousineau, 2008; Navarro-Pardo et al., 2013; Ratcliff & Murdock, 1976), the Gamma (e.g., J. R.

Anderson, 1974; McGill & Gibbon, 1965), and the Weibull distribution (e.g., Palmer et al., 2007;

for a comparison of these and others, see Zandt, 2000). For both experiments, we first fitted inter-

cept models (without predictors) and compared the residuals. Moreover, we compared the density

of the model distribution (by random sampling from the distributions) with the approximated den-

sity of the experimental data (see Figure B1 of Appendix B). The ex-Gaussian distribution matched

visually the data best and in terms of the generalized Akaike Criterion (GAIC, Akaike, 1983), likely

for the flexibility of a third parameter. The GAMLSS package includes a variety of different classes

of distributions, of which also distributions with more than three parameters are available. A few

distributions showed a similar or even a slightly better fit when more parameters were included

(see Table B4 in Appendix B). However, to make results more comparable with previous RT stud-

ies, we restricted ourselves to a maximum of three parameters, of which the ex-Gaussian had the

best fit for both experiments and sessions, although it did not capture the very left and right tail of

the response distribution appropriately.

The ex-Gaussian is the convolution of two additive processes, a Gaussian (normal) function

and an exponential function (Luce et al., 1986). The probability density function of the ex-Gaussian
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distribution is defined as

𝑓𝑌 (𝑦|𝜇, 𝜎, 𝜈) = 1
𝜈 exp(𝜇 − 𝑦

𝜈 + 𝜎2

2𝜈2 ) Φ (𝑦 − 𝜇
𝜎 − 𝜎

𝜈 )

with −∞ < 𝑦 < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0 and 𝜈 > 0, where Φ is the cumulative

distribution function of the standard normal distribution. The mean of the ex-Gaussian is described

as 𝜇 + 𝜈 and the variance as 𝜎2 + 𝜈2. The parameter 𝜈 is the mean of the exponential component

and informs about the skewness of the distribution (Lacouture & Cousineau, 2008).

Model choice

The candidate model was set by our research question, i.e., we included the factor emotion

(happy, angry, neutral), the factor congruence (match, mismatch), and block (z-transformed) and

all higher-order interactions between the three variables in our model. To account for dependency

in the data, we started with a maximum random structure (Barr et al., 2013; Marletta & Sciandra,

2020) and omitted random effects until convergence was reached, leaving intercepts for partici-

pants and a random slope for blocks for the estimation of the 𝜇 parameter. Thus, we estimated

population effects for emotion, congruence, and block and their interactions on the expectation

and variance of response times, while taking into account that participants might differ in how fast

they respond in general and over time. By omitting random effects of emotion and congruence we

could not account for individual differences in learning curves for each emotion and congruence

level over time, which, from a theoretical point of view, would have seem plausible. However,

this would have required different data or estimation methods due to the sparseness of the present

data (Increasing the trial number per participant and condition without increasing the number of

stimulus repetitions would have only been possible by including more distinct face-voice pairs).

Following the notation of Marmolejo-Ramos, Tejo, et al. (2022), the GAMLSS model can

be described as follows,

𝑔𝑘 (𝜃𝑘) = X𝑘𝛽𝑘 +
𝐽𝑘

∑
𝑗=1

Z𝑗𝑘𝛾𝑗𝑘,

where gk(⋅) is the specific link function for each parameter 𝜃𝑘 (e.g., the distributional param-

eters 𝜇, 𝜎 and 𝜈 in the ex-Gaussian case), the term X𝑘𝛽𝑘 is the product of the covariate design

matrix and the vector of fixed effects. The second term
𝐽𝑘
∑
𝑗=1

Z𝑗𝑘𝛾𝑗𝑘 includes the the covariate de-

sign matrix 𝑍𝑘 and the vector of random effects 𝛾𝑗𝑘.
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The model formula of the full model in common R syntax would be

responsetime ~ emotion * congruence * pb(block.z) + re(random = ~block.z|sub_id),

sigma.formula = ~ emotion * congruence * pb(block.z),

nu.formula = ~ emotion * congruence * pb(block.z)

Here, * abbreviates both the additive and the interaction term, e.g., emotion * congruence

can also be rewritten as emotion + congruence + emotion:congruence. pb(block.z) is

the penalized spline function for the z-transformed vector of blocks. We limited the number of

knots for the splines relative to the number of blocks included in the data, which was different

between experiments and sessions. For readability, we will in the following use the term “block”

while referring to pb(block.z) if not explicitly stated otherwise. Note that the term for the ran-

dom slope and random intercept for participant was only included in the formula for ̂𝜇, which
is represented by the first line. The models were “treatment”-contrast coded, i.e., the intercept

refers to the estimated value of the reference levels, here: “neutral” (for emotion) and “match” (for

congruence), and the estimates ̂𝛽 to the respective slopes (or differences for factors). Block was

z-standardized for each experiment and session, i.e., the obtained estimates refer to the midpoint

of the respective experimental session.

We reported likelihood ratio tests (LRT) to compare the full model with a subset of reduced

models (excluding one predictor at a time) in explaining the importance of a predictor for the

overall model. Theoretically, it would be possible for predictors to impact, e.g., only 𝜇 but not 𝜎
or any other combination. However, since we did not have specific predictions about effects on

individual parameters (𝜇, 𝜎 and 𝜈), we only looked at the effects of the predictors on the whole
distribution, thus dropping one term each from the full model in all parameters simultaneously. As

a consequence, results inform only about the overall contribution of a predictor but not whether it

affected exclusively the mean, the variance, or both. Since reporting model coefficients, including

a non-linear function of time and interactions with the predictors for emotion and congruence, is

not fully informative, we visualized the model-predicted averaged RTs in Figure 3.3 and Figure

3.5 for the learning and the test session, respectively, to give a better overview over the differences

between conditions. The tables with the model coefficients for the learning and the test session

can be found in Table B2 and Table B3 of Appendix B.

Results of the learning sessions

Exp.1 included 30 blocks and was shorter than Exp.2, which included 50 blocks of stimulus

repetitions. Averaged over the learning session and irrespective of the condition, responses were
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slower in Exp.1 (M = 848 ms, SD = 324) compared to Exp.2 (M = 774 ms, SD = 414). However,

note that Exp.1 had fewer blocks, and responses became faster over time in both experiments. For

both Exp.1 and Exp.2, according to LRTs, including a smoothing function for block resulted in

a significantly better fit compared to including a linear function of block (Exp.1: 𝜒2(292.32) =

11.57, p <.001; Exp.2: 𝜒2(679.72) = 10.81, p <.001). Moreover, in both experiments, results of

the LRTs of nested models suggested that the full model, including the three-way interaction of

emotion × congruence × block, overall contributed significantly to explaining the variance in the

data (Exp.1: 𝜒2(27.51) = 15.15, p = .026; Exp.2: 𝜒2(46.75) = 15.16, p <.001). This was similarly

reflected by the comparison of the relative importance via GAIC for different penalties, although

in Exp.1, not the full model but a model including block and interaction between emotion and

congruence ranked highest (AIC = -4508.72, df = 109.2, k = 2). Increasing the penalty for the

number of parameters, an additive model with emotion, congruence, and block but no interaction

showed the best relative fit (GAIC = -3658.0, df = 103.2, k = 10). In contrast, in Exp.2, the full

model (AIC = -3766.5, df = 125.1, k = 2) ranked highest. Increasing the penalty, the model with

emotion, congruence, and block without interactions ranked highest(GAIC= -2920.3, df = 103.8,

k =10). The results of the LRT models for learning are shown in Table 3.1.

Estimated moments of the RTs in learning session. The model-predicted global RT means and

variances over blocks for both experiments are presented in Figure 3.3. Shaded areas depict the

range of the predicted RTs based on all leave-one-out models as a model-stability measure. The

predicted distributions and differences between condition levels for the learning sessions are shown

in Figure 3.4. For learning, in both experiments, a non-linear change in RTs over time was observ-

able, with the fastest decrease of RT at the beginning of the session. Moreover, there was some

indication of different changes between emotion and congruence conditions over time. Moreover,

not only the mean but also the variance of RTs decreased over time, as visible in the shape of the

distributions. Overall, mismatching trials were slower than matching trials in both experiments,

whereas the difference was more pronounced in Exp.2. Remarkably, the RT differences between

gender congruent and incongruent trials remained relatively stable across emotion categories or

increased even slightly, with the exception of the happy condition in Exp.1 for which the dif-

ferences decreased. Another similarity between experiments was that overall, neutral face-voice

pairs were responded to faster than the other emotional categories across congruence conditions.

Within matching pairs, the interaction between angry trials and block indicated that, despite start-

ing slower, angry trials showed a stronger RT decrease over time than neutral and happy pairs,

particularly in Exp.2. There were also differences between experiments: Emotion effects were
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Figure 3.3
Model-predicted RT mean and variance of the learning sessions.

Notes: All estimates are based on the full model and included only correct answers. A.1 displays
the predicted RT mean in seconds over blocks of Exp 1., B.1 the predicted variance. Shaded areas
show the range of predicted values for the leave-one-out models, i.e. predictions when exclud-
ing one participant. C.1 represents the predicted emotion differences of mean RTs separately for
matching and mismatching trials. D.1 represents the predicted congruence difference of mean RTs
separately for each emotion level. A.2, B.2, C.2, and D.2 show the corresponding values for Exp
2.
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Table 3.1
LRT of the GAMLSS models of the learning sessions

Exp1 Exp2

LRT:Model 𝜒2 𝑑𝑓 𝑝 𝜒2 𝑑𝑓 𝑝
pb(block) vs. block in the full model (FM) 11.57 292.32 <.001 10.81 679.72 <.001

emo × cong + pb(block) vs. FM 15.15 27.51 .026 15.16 46.75 <.001
cong × pb(block) + emo vs. FM 18.06 55.01 <.001 18.22 43.44 <.001
emo × pb(block) + cong vs. FM 15.17 56.92 <.001 15.11 34.58 .003

emo + cong + pb(block) vs. emo × cong + pb(block) 6.00 36.25 <.001 6.07 10.84 .097

emo + cong + pb(block) vs. emo × pb(block) + cong 5.97 6.84 .333 6.13 23.01 <.001
emo + cong + pb(block) vs. cong × pb(block) + emo 3.08 8.75 .035 3.02 14.15 .003

emo × pb(block) vs. emo × pb(block) + cong 2.90 43.04 <.001 2.91 686.94 <.001
cong × pb(block) vs. cong × pb(block) + emo 6.25 188.85 <.001 6.28 97.99 <.001

emo × cong vs. emo × cong + pb(block) 13.43 368.78 <.001 12.23 1025.21 <.001

Notes: FM = full model including all interactions in 𝜇, 𝜎 and 𝜈; pb(block) = penalized spline smoothing function for
the z-transformed block variable; emo = emotion, cong = congruence; the model formulas for 𝜇, 𝜎 and 𝜈 was kept parallel,
i.e. dropping one factor of a model means dropping this factor for 𝜇, 𝜎 and 𝜈.All models included the random intercept of
participant and slope of block for 𝜇.

overall more pronounced in Exp.1 than in Exp.2, and dynamic differences between emotion levels

within the mismatch condition were larger for Exp.1, whereas they were largely absent in Exp.2.

Results of the test sessions

Responses of the test session were, on average, faster than RTs of the learning session. More-

over, responses were faster in Exp.1 (M = 563 ms, SD = 181) than in Exp.2 (M = 617 ms, SD =

206), but, similar to the learning session, the test session of Exp.1 contained data of only 20 blocks,

whereas Exp.2 included 50 blocks. LRTs suggested that in the test session, including a smoothing

function for block instead of a linear function resulted only in a better fit in Exp.1 (𝜒2(92.20) = 8.19,

p <.001), but not in Exp.2 (𝜒2(6.55) = 3.79, p = .144). Moreover, in neither of the experiments,

the full model, including the three-way interaction, significantly improved the data fit compared

to a model with block as an additive factor (Exp.1: 𝜒2(18.35) = 14.67, p = .226; Exp.2: 𝜒2(15.05)

= 15.04, p = .451). In Exp.1 and Exp.2, the two-way interaction of emotion × congruence was

significant (Exp.1: 𝜒2(116.86) = 6.05, p <.001; Exp.2: 𝜒2(16.73) = 6.20, p = .012). In Exp.1,

there was also a trend for the interaction between emotion × block (𝜒2(11.98) = 5.85, p = .058).

In contrast, in Exp.2, none of the models which included the interaction with block improved the

data fit significantly. According to ranked GAICs, in Exp.1, the model involving the interaction

between emotion and congruence and an additive term for block was the best (GAIC = -10734.88,

df = 100.1, k = 2), also when increasing the penalty (GAIC = -9934.44, df = 100.1, k = 10). In

Exp.2, the highest ranking model included the main effects and interaction between congruence

and emotion, but not block (k = 2; GAIC = -38265.49, df = 92.95). Increasing the penalty (k = 10)

for Exp.2, the null model had the lowest GAIC (-37559.28, df = 77.83). The results of the LRT
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Figure 3.4
Predicted density plots over block for the learning sessions.

Notes: A.1 shows the predicted RT densities of Exp.1 over blocks. B.1 shows pairwise compar-
isons between emotion levels within congruence levels and differences between congruence levels
within emotion levels for Exp.1. A.2, B.2 show the predicted distributions and differences for Exp
2.
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Table 3.2
LRT of the GAMLSS models of the test sessions

Exp1 Exp2

LRT:Model 𝜒2 𝑑𝑓 𝑝 𝜒2 𝑑𝑓 𝑝
pb(block) vs. block in FM 8.19 92.20 <.001 3.79 6.55 .144

emo × cong + pb(block) vs. FM 14.67 18.35 .226 15.04 15.05 .451
cong × pb(block) + emo vs. FM 17.70 133.64 <.001 18.24 31.12 .030
emo × pb(block) + cong vs. FM 14.88 123.24 <.001 15.00 21.17 .132

emo + cong + pb(block) vs. emo × cong + pb(block) 6.05 116.86 <.001 6.20 16.73 .012

emo + cong + pb(block) vs. emo × pb(block) + cong 5.85 11.98 .058 6.24 10.62 .113
emo + cong + pb(block) vs. cong × pb(block) + emo 3.02 1.58 .669 2.99 0.66 .882

emo × pb(block) vs. emo × pb(block) + cong 3.04 21.93 <.001 3.02 76.65 <.001
cong × pb(block) vs. cong × pb(block) + emo 6.81 193.87 <.001 6.05 19.38 .004

emo × cong vs. emo × cong + pb(block) 9.68 110.96 <.001 6.80 8.83 .248

Notes: FM = full model including all interactions in 𝜇, 𝜎 and 𝜈; pb(block) = penalized spline smoothing function
for the z-transformed block variable; emo = emotion, cong = congruence; the model formulas for 𝜇, 𝜎 and 𝜈 was kept
parallel, i.e. dropping one factor of a model means dropping this factor for 𝜇, 𝜎 and 𝜈. All models included the random
intercept of participant and slope of block for 𝜇.

models for the test session are shown in Table 3.2.

Estimated moments of the RTs in the test session. As can be seen in Figure 3.5, leave-one-

out estimates were more variable in Exp.1 compared to Exp.2, suggesting stronger influences on

the model by individual participants and thus lower stability of estimates. Remarkably, in Exp.1

but not in Exp.2, the happy and angry mismatching trials were, relative to neutral trials, overall

slower in the learning session but then faster in the test session. Furthermore, in Exp.2, differences

between emotion categories were smaller compared to Exp.1, and emotional and neutral matching

trials were largely overlapping, particularly toward the end of the test session. In Exp.2, differences

between (previously) matching and mismatching trials, albeit smaller compared to learning, were

still observable during test. The differences between emotion effects in Exp.1 and Exp.2, as well

as the larger consistency of congruence effects in Exp.2, are well observable when comparing the

differences of the RT distributions (see Panels B of Figure 3.6).

3.5 Drift diffusion approach

For the diffusion models, we included both correct and incorrect answers in the data. It has

been suggested to exclude especially fast RTs (Voss et al., 2015), as those can bias estimates par-

ticularly. However, in the case of our learning paradigm, very fast responses do not necessarily

correspond to unintentional responses but could be meaningfully interpreted as the result of train-

ing. The anticipation of the exact point in time when answering was allowed (i.e., with face offset)

could be an important consequence of learning, i.e., learning both about the “when” and not only
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Figure 3.5
Model-predicted RT mean and variance of the test sessions.

Notes: All estimates are based on the full model and included only correct answers. A.1 displays
the predicted RT mean in seconds over blocks of Exp 1., B.1 the predicted variance. Shaded areas
show the range of predicted values for the leave-one-out models, i.e. predictions when exclud-
ing one participant. C.1 represents the predicted emotion differences of mean RTs separately for
matching and mismatching trials. D.1 represents the predicted congruence difference of mean RTs
separately for each emotion level. A.2, B.2, C.2,and D.2 show the corresponding values for Exp
2.
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Figure 3.6
Predicted density plots over block for the test sessions.

Notes: A.1 shows the predicted RT densities of Exp.1 over blocks. B.1 shows pairwise compar-
isons between emotion levels within congruence levels and differences between congruence levels
within emotion levels for Exp.1. A.2, B.2 show the predicted distributions and differences for Exp
2.
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about the “what” (Balsam et al., 2010). Thus, we did not set a fixed lower threshold for responses

but used the same adjusted-boxplot method as for the correct RTs to detect extreme values sep-

arately for every participant and condition. Nevertheless, two participants (ID25 and ID32) did

not provide enough trials for the parameter estimation of all conditions of interest and hence were

excluded from all drift-diffusion models.

Model estimation was carried out using the software fast-dm-30.2 (Voss et al., 2015). The

data for the models were accuracy coded, such that the upper boundary resembles correct responses

and the lower boundary incorrect responses. The models were fitted for each participant and ses-

sion separately, including a global model over the whole experimental session (without a variable

of experiment time or stimulus repetition). As we were interested in the change of parameters

over time, but the estimation of the drift-diffusion parameters requires a minimum number of data

points, we additionally fitted sub-models, including a subset of blocks in a sliding window fashion,

for which we created dummy variables with ten blocks each in steps of five (i.e., blocks 1-10, 6-15,

11-20, an so on) for each participant, condition, and parameter set. We fitted models with differ-

ent parameter sets on the data and tested whether data fit improved when the drift or/and starting

point were allowed to vary with the conditions of interest. The full model included both 𝑧𝑟 and

𝑣 depending on emotion and congruence. The boundary separation 𝑎 and the non-decision time

𝑡0 were always estimated globally, and the remaining available parameters were fixed (for more

details, see Voss et al., 2015) to reduce the complexity of the model for estimation of sparse data

(Lerche et al., 2018). In addition, to account for the small trial numbers per condition, we used the

Kolmogorov-Smirnov (KS) method, which has been reported to have the highest robustness in the

case of outliers (Lerche et al., 2016). When comparing fits, the full model, allowing both 𝑧𝑟 and 𝑣
to depend on emotion and congruence, showed overall the best fit. The estimated parameters of the

full model for both sessions and experiments were averaged over participants, and non-parametric

bootstrapped 95% CIs were obtained. The results for the drift-diffusion parameters are shown in

Figure 3.7. We inspected model fits by comparing empirical median RTs with theoretical median

RTs based on the model parameters for each participant, block window, and condition. The mod-

els showed a good fit for correct answers, but there were substantially larger misfits for wrong

answers, such that the largest differences between predicted and observed median RTs included

mainly overestimations of RTs for incorrect answers, likely due to the low amount of incorrect

answers overall. To check whether the stability of findings was affected by these specific model

misfits, we compared the drift-diffusion parameters, including all participants, with those obtained

when excluding participants for which models showed strong misfits. As a cut-off for being clas-

sified as a misfit, we chose all predicted RTs exceeding 5000 ms, which was also the overall upper
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cut-off of our study. This eliminated not all but the majority of strongly deviating predictions.

The comparison of estimated diffusion parameters for both the full and the reduced participant set

suggested overall similar results. Observed vs. predicted median RTs before and after exclusion

for Exp.1 can be found in Figure B2 and for Exp.2 in Figure B3 of Appendix B. The drift-diffusion

parameter estimates of the subset (excl. misfits) are shown in Figure B4 of Appendix B.

Results of the learning sessions

Independent of the model (global vs. time), in both experiments, there was a difference in

the starting point 𝑧𝑟 for match and mismatch trials, with larger values for the matching condition.

Moreover, starting points of the matching condition shifted towards the upper bound as a function

of block in both experiments, especially within the first 30 blocks. However, for the mismatching

condition, there was no such shift. With regard to emotion, in both experiments, the starting point

was overall highest for the gender-matching neutral condition. A difference between matching

happy and angry pairs appeared only in Exp.1, with higher 𝑧𝑟 for angry pairs, whereas levels

were comparable in Exp.2. Moreover, within the mismatching condition, differences in emotion

levels were more pronounced in Exp.1 compared to Exp.2. In contrast, drift rates 𝑣 were slightly

increasing in both congruence conditions and experiments over time. While for Exp.1, the drift rate

increased more strongly for the mismatching trials, for Exp.2, it was for the matching trials. The

largest emotion difference in the drift rate was in Exp.1 between happy and the other emotion levels

of the mismatching condition. Both 𝑎 and 𝑡0 decreased over time in both experiments, i.e., correct

and incorrect answers became faster over time (due to 𝑡0), and correct responses became even faster

while maintaining high accuracy (due to lower 𝑎 and higher 𝑣). Notably, when comparing average
parameters of the global model and the models over time, in both experiments, the non-decision

time parameter 𝑡0 of the global model was closer to the minimum of 𝑡0 over time, opposite to the

boundary separation 𝑎, which was globally closer to the maximum over time. 𝑧𝑟 in the global

model tended to be smaller compared to 𝑧𝑟 over time. For 𝑣, there was no such systematic bias.

Results of the test sessions

Compared to learning in both experiments, the global model of the test session showed overall

lower values for the boundary separation 𝑎, i.e., a lower response caution. Non-decision times
𝑡0 were more similar between Exp.1 and Exp.2 compared to the learning session. Both starting

point 𝑧𝑟 and drift rates 𝑣 tended to be more homogeneous between emotion levels in Exp.2 than

in Exp.1. Most notably, drift rates in the test session were, irrespective of the condition, overall
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Figure 3.7
Averaged drift diffusion parameters for the learning and test session.

Notes: The left panel shows the parameters for the learning sessions, the right for the test sessions.
Error bars indicate 95%non-parametric bootstrapped confidence intervals around the samplemean.
The boundary separation a and the non-decision time t0 were estimated independent of the stimulus
conditions. The starting point zr and drift rate v were allowed to vary between conditions, i.e., we
obtained separate estimates for each emotion and congruence level. A shows the global model
across the sessions. B shows parameters changes as a function of stimulus repetition. Here, the
x-axis refers to the sliding block windows of the experiment, of which one corresponds to blocks
1-10, two to 6-15, etc.
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higher compared to learning. Parameter estimates for the boundary separation and non-decision

times were largely constant over time in both experiments. Regarding the starting point 𝑧𝑟 and

the drift rate 𝑣 of Exp.1, it is noteworthy that within mismatching trials, there was a difference

between emotional and neutral conditions with lower values for neutral. In contrast, in Exp.2, the

mismatching condition showed more similar estimates for the emotion categories compared to the

matching condition. Descriptively, there was a slight tendency for neutral matching trials in Exp.2

to have a higher drift rate and a lower starting point, which was different from the learning session.

3.6 Discussion

We used a distributional and amechanistic approach to gain insight into the dynamical change

of response times (RTs) as a function of learning and extinction in cross-modal associative learning

studies. In the two studies from which the data were analyzed, non-expressive faces were associ-

ated with either happy, angry, or neutral affect bursts of the same or different gender as the face.

The participant’s task was emotion-unrelated, and they had to decide about the gender-congruence

of the face-voice pairs (learning) or the gender of the face (test). Despite similar stimuli and asso-

ciative paradigms, the experimental designs of the two studies differed in several aspects, including

total duration, randomization, and, most importantly, the paradigm of Exp.2 included a go/no-go

task. Although the task of both studies obtained delayed answers during learning (answers could

be given with the onset of the voice), Exp.2 included an additional decision process to execute or

inhibit responses and thus allowed to compare performance results for the two experiments with

different stages of decisional processes. To be able to compare RTs over time and to capture the dy-

namics for the individual emotion and congruence levels, we used GAMLSS models and included

a non-linear function for stimulus repetition. Using drift-diffusion models, we aimed to obtain

interpretable parameters that help disentangling the effects of practice with the task and learning

about the conditioned stimuli. In addition, we estimated and compared standard drift-diffusion pa-

rameters for the learning and test sessions of the two associative learning studies to explore which

parameters change as a function of learning. Moreover, we explored whether the standard drift

diffusion parameters would be responsive at all for our experimental task which included delayed

responses and entailed multiple-stage decision processes.

Our overall hypothesis was that faces associated with emotional voices would gain more rel-

evance than those with neutral voices. Thus, emotional relevance would facilitate decisional pro-

cesses, which would translate to faster, correct answers. Across experiments, participants showed

clear signs of practice and became faster throughout the learning session, especially at the begin-
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ning (similar to Dutilh et al., 2011, 2009; Heathcote et al., 2000). Because accuracy was overall

high, we focussed on the correct answers in the GAMLSS approach and included wrong responses

only in the drift-diffusionmodels. In contrast to the emotional-relevance hypothesis, for correct an-

swers during learning, not the emotional but the neutral face-voice pairs resulted in the fastest RTs

across experiments, whereas faces associated with happy voices were responded to slowest. More-

over, gender-mismatching face-voice pairs differed from matching face-voice pairs, particularly in

Exp.2, which showed faster responses for congruent pairs (see also Huestegge et al., 2019; Latinus

& Taylor, 2006). Both results suggest that congruent information, i.e., emotional (neutral-neutral)

and gender congruence, facilitated information uptake and decision in the gender matching task.

Possibly, emotional voices were more difficult to disengage with (e.g., Carretié, 2014; Dresler et

al., 2008; Hur, Iordan, Dolcos, et al., 2016; Schimmack, 2005) and impaired focussing on the ac-

tual, gender-matching task, whereas (perceived) gender-mismatching face-voice pairs might have

interfered the integrated person perception (Föcker et al., 2011; Gelder & Vroomen, 2000).

In addition to the general acceleration of RTs during learning, both experiments showed simi-

lar dynamics between emotion levels. Whereas on average, matching neutral trials were the fastest,

matching angry trials showed steeper slopes, i.e., became relatively faster over time in both exper-

iments. In Exp.2, which had a longer session duration and more repetitions, matching angry pairs

even surpassed neutral pairs toward the end. A further common result between the experiments was

the difference between gender-matching and mismatching pairs, which became more pronounced

over the course of the session, i.e., increased with learning.

As hypothesized, drift-diffusion parameters of the learning sessions changed over time, i.e.,

with stimulus repetitions. We expected mainly changes in the starting point 𝑧𝑟 as a function of

learning, as the decision process might have already been at an advanced stage before the voice

onset (i.e., before the actual response was recorded). Indeed, such a shift was apparent in both

experiments and was most likely a result of the delayed response task (cf. Dutilh et al., 2011).

Remarkably, 𝑧𝑟 increased more in the gender-matching trials, whereas for the mismatching trials,

𝑧𝑟 remained largely constant and at a lower level. Moreover, matching neutral trials overall had the

highest 𝑧𝑟, corroborating that neutral matching trials were fast and accurate. A small difference

between matching and mismatching 𝑧𝑟 was already observable at the beginning of the session

in both experiments, possibly due to the overall difficulty of integrating subjective mismatching

gender information of face-voice pairs. Unfamiliarity with stimulus categories, e.g., words vs. non-

words, has been shown to bias responses toward the more familiar answer, especially without

previous practice (Dutilh et al., 2011, 2009). The differences between matching and mismatching

and emotion levels of 𝑧𝑟 suggest that the changes in starting point indeed reflect learning processes
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about the stimulus and not merely the effects of becoming familiar with the task. However, also

non-decision times 𝑡0 became shorter, and boundary separations 𝑎 became smaller throughout

the learning session. To truly disentangle whether those changes reflect practice with the task or

stimulus-specific effects, it would be necessary to include novel stimuli intermixed with the learned

ones, similar to Dutilh et al. (2011). The effect of practice on non-decision times has been related to

the facilitation of memory access and stimulus encoding. Perceptual learning of a specific stimulus

and changes in early sensory areas constitute part of the total learning effect (Gilbert et al., 2001;

Petrov et al., 2011). However, these effects are not always observable, e.g., C. C. Liu &Watanabe

(2012) related all practice effects to the decision time, whereas early encoding or motor responses

were unaffected by training. In both of our experiments, drift rates 𝑣 increased over time. In

Exp.1, both matching and mismatching trials benefited from stimulus repetition. This was slightly

different for Exp.2, in which matching face-voice pairs showed a slightly stronger increase in 𝑣.
We suspect that either sensory encoding (𝑡0) and the starting point 𝑧𝑟 only partly captured the

acceleration of response times, and thus, the remaining variation needed to be accounted for by

the drift rate, or the increase in 𝑣 described the learning about the vocal stimulus. In Exp.1, there

was an overall higher drift rate for mismatching happy pairs but also a lower starting point for this

condition, which needs to be considered together. We observed the effects of learning on several

parameters, which could indicate functional dissociable mechanisms (e.g., Voss et al., 2004; J.

Zhang & Rowe, 2014).

The experimental design of our studies allowed not only for learning about the face-voice

pairs but also about the timing when stimuli will be presented. We included fixed durations of the

fixation cross and the face stimulus. Thus, participants could learn not only about which voice

would follow a face but also when faces and voices would become available. How temporal syn-

chronization might help to time the decision process was tested in Petrov et al. (2011). Using

a beep that systematically preceded the stimulus onset, they tested whether participants would

use the temporal structure to synchronize the decision process to the stimulus onset. The authors

reported a decrease in non-decision times and their variability with practice, suggesting that the

temporal synchronization contributed to the learning process. In addition, increased drift rates

were found to be partially stimulus-specific, indicating that learning improved the quality of the

sensory input. Unfortunately, we can not disentangle stimulus encoding from motor planning pro-

cesses in our design, as both the onset of the facial stimulus and the onset of the voice could have

been learned. Therefore, future studies could systematically vary the predictability of encoding

the stimulus vs. planning the motor response to give insight into the relative contributions on ac-

celeration that are comprised in non-decision times.

72

doi: 10.53846/goediss-9841



Chapter 3

The test sessions differed from the learning sessions in that way that only a single decision

process and no delayed task were present. Only previously conditioned faces were presented (with-

out voices) that had to be categorized into male and female faces. Thus, when referring to emotion

or congruence levels, we exclusively refer to what was associated during learning.

Overall, RTs of the test session were faster compared to the learning session, suggesting that

the decision on the gender on the face was easier than the gender-matching decision on face-voice

pairs. Although tasks of the test session did not differ between the experiments, RTs in Exp.1 were

faster than RTs in Exp.2 and showed more variation over the course of the session and between

conditioned emotion levels. Whereas general variability might be traced back to a shorter learning

session in Exp.1, the greater emotion effects were in contrast to our predictions. Remarkably, in

Exp.2, there was still a gender-congruence effect present with faster decisions for faces previously

associated with a gender-matching voice. Since conditioned gender-congruence was irrelevant

for the task in the test session, and all faces were presented equally often during learning, this

effect has to be caused by the learned association between faces and voices. Gender-mismatching

face-voice pairs could have introduced some uncertainty about the gender of the face, which, in

consequence affected the gender-decision on the face also in, and importantly, throughout the test

session. Alternatively, the gender-congruence effect of the test session could have been caused by

a more general impaired processing and integration of mismatching stimulus pairs in learning (see,

e.g., Huestegge et al., 2019; Latinus et al., 2010). However, since congruence was not relevant for

the task in the test session, we would have expected to see this difference rather at the beginning

of the session and then to decrease over time.

Participants of Exp.1 showed an overall acceleration at the beginning of the test session,

which was not apparent in Exp.2. Notably, there was no observable change in 𝑡0 at the beginning

of the test sessions. Dutilh et al. (2011) reported decreased 𝑡0 for repeated compared to novel

stimuli and interpreted this as a facilitation of the perceptual process, which is included in the non-

decision time. Possibly, due to the high number of repetitions during learning, familiarity with

the stimulus was already established such that more repetitions at test did not improve encoding

significantly. Moreover, lower boundary separation 𝑎 and high starting point values 𝑧𝑟 indicate that

the task during test (gender decision of the face) was overall easier compared to learning (gender-

congruence decision of the face-voice pair). That correct responses were faster compared to wrong

responses was indicated by 𝑧𝑟 being closer to the upper boundary.

Parameter differences between emotion levels were only observable in Exp.1, with faster

responses for mismatching emotional compared to mismatching neutral faces, reflected in pro-

nounced differences for 𝑧𝑟 and 𝑣. Other influences of emotion on drift-diffusion parameters were
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inconclusive, e.g., the higher drift rate in Exp.2 for matching neutral faces corresponded to smaller

𝑧𝑟 in some of the time windows, probably reflecting model instability.

Limitations

The application of the drift-diffusion account to our specific experimental design had, aside

from interesting findings, also some limitations. First, the small number of trials per condition

might have caused issues with parameter estimation despite using a rather robust method (KS).

Moreover, although there exist applications of diffusion models in learning, e.g., reinforcement

learning (e.g., Fontanesi et al., 2019; Pedersen & Frank, 2020), only a few studies reported changes

of diffusion parameters as a function of other types of learning, e.g., practice (e.g., Dutilh et al.,

2011, 2009) and perceptual learning (e.g., J. Zhang & Rowe, 2014). A commonality of these

studies is that they usually still include a larger number of trials per condition and block (usually at

least > 200, e.g., Dutilh et al., 2009), whereas we included 20 per condition and window. Although

it was reported that reliable results could even be obtained for small trial numbers (e.g., Lerche et

al., 2018; Metin et al., 2013), future studies should replicate the findings with an increased number

of face-voice pairs.

Some results of our study were difficult to interpret. For example, the non-decision times of

learning in Exp.1 were overall longer compared to Exp.2, which could not be explained by the dif-

ferent settings or hardware equipment. If that had been the case, we would have expected a similar

pattern in the test session, which we did not find. Moreover, it seemed not very plausible that due

to the individual testing situation in the EEG study (Exp.2), participants might have tried not to

make mistakes (higher 𝑎) or that less distraction might have facilitated sensory encoding (smaller
𝑡0). On the contrary, it would have been more intuitive if 𝑡0 had been longer in Exp.2 during learn-

ing because of the no-go condition. In the end, it was for this specific task that participants had to

wait for the auditory stimulus to decide on the execution or inhibition of their response. Moreover,

the change of direction of the effects in Exp.1 from learning to test was contrary to our intuition.

Although it could be argued that the facilitation of emotion-based associations on RT might rather

be present during test, i.e., when emotional sounds were not distracting, it is difficult to explain

why this should be stronger for previously gender-mismatching faces. In line with this, partic-

ularly problematic is the missing randomization or counterbalancing in Exp.1 of the face-voice

pairs. Hence, potential emotion and congruence effects in this study might at least partly be due to

specific effects of the face or voice stimulus (e.g., some were more distinctive compared to others

and thus easier to learn). Lastly, we would like to acknowledge that the Cognitive Sciences have

produced a variety of theoretical and computational models of associative learning (e.g., Cochrane

74

doi: 10.53846/goediss-9841



Chapter 3

et al., 2022; Gershman & Niv, 2012; Luzardo et al., 2017; Melinscak & Bach, 2020; Pearce &

Bouton, 2001; Rescorla, 1988), which make precise predictions about learning curves and in the

end, help to map behavioral and neural measures to one another (Schall, 2019). However, since

the design of our study involved a multi-stage learning and decision process, including practice,

familiarizing with the stimuli, learning about the contingency of the face-voice pairs, and learning

about the contiguity of stimulus presentations, we decided, as a first step, in favor of an approxi-

mate, data-driven approach.

3.7 Conclusion and outlook

We applied two complementary methods, one distributional and one mechanistic approach,

to model RTs as a function of cross-modal associative learning. This allowed us to reveal dynamics

between our experimental conditions that, simply averaged, would not have been apparent. Across

experiments, we observed an overall high performance for neutral and gender-matching face-voice

pairs during learning and a steeper learning curve for angry face-voice pairs. Moreover, gender-

congruence effects increased slightly during learning, suggesting that the potential “surprise” of

hearing a gender-mismatching voice was not overcome with learning trials. Astonishingly, in

Exp.2, this gender-congruence effect was still to some degree present. Overall, performance for

emotional face-voice pairs was lower than neutral, matching face-voice pairs. Replications of these

effects with a different, e.g., emotion-related task, could reveal whether it is emotional congruence

or task intention (focus) that caused this effect.

There exist implementations of (hierarchical) Bayesian drift-diffusion models that handle

smaller trial numbers and covariates such as block or time more robustly (e.g., Bürkner, 2019;

Wiecki et al., 2013) and estimate the effects on a population level, instead of averaging individual

estimates over participants. However, the number of parameters per condition is (to date) not

trivial to implement, requires informative priors, and is computationally expensive when including

a relatively large number of participants (see, e.g., Weindel et al., 2021). Although it is not in the

scope of the present thesis, investigating associative learning over time with (hierarchical) drift-

diffusion models would be very valuable for the generalizability of effects. In general, future

studies might implement specifically designed paradigms that include more trials per condition,

e.g., by including more different face-voice pairs to increase trial number and difficulty with the

advantage of slowing down learning and making changes better observable. Moreover, the delayed

responding task and the no-go task led to multi-stage decisional processes, whichmight not be fully

captured by the standard drift-diffusion model but require customized models.
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Motivated attention and task relevance in the processing of crossmodally associated

faces: Behavioral and electrophysiological evidence

Abstract

It has repeatedly been shown that visually presented stimuli can gain additional relevance

by their association with affective stimuli. Studies have shown effects of associated affect in

event-related potentials (ERP) like the Early Posterior Negativity (EPN), Late Positive Complex

(LPC), and even earlier components as the P1 or N170. However, findings are mixed as to the ex-

tent associated affect requires directed attention to the emotional quality of a stimulus and which

ERP components are sensitive to task instructions during retrieval. In this preregistered study

(https://osf.io/ts4pb), we aimed to test cross-modal associations of vocal affect-bursts (positive,

negative, neutral) to faces displaying neutral expressions in a flash-card-like learning task, in

which participants studied face-voice pairs and learned to correctly assign them to each other.

In the subsequent EEG test session, we applied both an implicit (‘old-new’) and explicit (‘valence-

classification’) task to investigate whether the behavior at retrieval and neurophysiological acti-

vation of the affect-based associations depended on the type of motivated attention. We collected

behavioral and neurophysiological data from N = 40 participants who reached the preregistered

learning criterium. Results showed EPN effects of associated negative valence after learning and

independent of the task. In contrast, modulations of later stages (LPC) by positive and negative

associated valence were restricted to the explicit, i.e., valence-classification, task. These findings

highlight the importance of the task at different processing stages and show that cross-modal affect

can successfully be conditioned to faces.1

1This manuscript has been submitted for publication and is currently in revision.
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4.1 Introduction

The human brain navigates the complexities of our everyday social lives very efficiently,

e.g., by quickly extracting various information from other people’s faces (Haxby et al., 2000).

Research has repeatedly shown that what we know about a person and what is relevant for us

affects how we perceive that person (e.g., Bublatzky et al., 2014; Davis et al., 2009; Heisz &

Shedden, 2009; for a review, see M. J. Wieser & Brosch, 2012). This includes, but is not limited to,

biographical information and relevant experiences with that person. In the laboratory, relevance

is often manipulated through associations with valence-laden stimuli and actions, ranging from

receiving monetary (Hammerschmidt, Kagan, et al., 2018; Hammerschmidt, Kulke, et al., 2018;

Hammerschmidt et al., 2017) or social reward and punishment (Aguado et al., 2012; M. J. Wieser,

Gerdes, et al., 2014) to highly aversive stimuli like loud noise bursts (Watters et al., 2018) or electric

shock (Rehbein et al., 2014). It has been repeatedly shown that various types of affective stimuli

impact face processing promptly (for a review, see M. J. Wieser & Brosch, 2012) and through

learned associations (for a review, see Miskovic & Keil, 2012).

Although the term attention is not clearly defined in the literature, there is consensus that

certain stimuli are preferentially processed to others, because they are physically salient, they re-

semble targets matching our current goals, or because we have learned their relevance through past

experience. Especially experience-driven attention (B. A. Anderson et al., 2021) aims to explain

phenomena like impaired performance in the presence of learned aversive distractors (e.g., Öhman

et al., 2001; Vuilleumier, 2005) or self-referential cues as described in the cocktail party effect

(e.g., Röer & Cowan, 2021). To date, there is more evidence for conditioning effects with threat-

related stimuli. However, also appetitive cues have been shown to be associated to different types

of stimuli, e.g., faces, objects, or abstract stimuli like meaningless words (e.g., Aguado et al., 2012;

Blechert et al., 2016; Davis et al., 2009; Hammerschmidt, Kagan, et al., 2018; Hammerschmidt,

Kulke, et al., 2018; Hammerschmidt et al., 2017; Rossi et al., 2017; Steinberg, Bröckelmann,

Rehbein, et al., 2013; Ventura-Bort et al., 2016). Although recognizing and reacting to both, ap-

petitive and aversive environmental cues appears adaptive, the necessity to detect and respond fast

is higher for a threatening environment (Öhman et al., 2001). Also, avoiding predictable and un-

pleasant situations may be preferred over detecting potentially pleasant ones (e.g., Gottfried et al.,

2002).

Neurophysiological research allows to investigate processes beyond overt behavior and has

demonstrated that some acquired associations with affective stimuli elicit differential neural re-

sponses, even if a conditioned behavioral or physiological response has extinguished (Antov et
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al., 2020; Apergis-Schoute et al., 2014). However, in the case of absent effects in behavioral and

neural measures, it remains open whether the information was learned at all, or whether it did not

show under the specific test condition.

The overarching aim of this study was to investigate how directed, experience-driven atten-

tion through task requirements impacts face perception on different levels (i.e., early/automatic

vs. later/elaborate processing). More specifically, we tested whether the retrieval of valence-

implicit or valence-explicit features moderates the neurophysiological and behavioral response

to valence-based associations in faces. Several affect-sensitive ERPs have been related to differ-

ent stages of the processing of associated faces: The P1 usually peaks around 100 ms after face

onset with an occipital, bilateral positivity. It is generated from the extrastriate cortex (Hillyard &

Anllo-Vento, 1998; Russo, 2003), and has been reported to be enhanced for faces associated with

affect-laden or valent stimuli, e.g., monetary reward (Hammerschmidt et al., 2017), emotional

expressions of the associated face (Aguado et al., 2012), and threatening stimuli, although some

fear-conditioning studies reported even earlier effects (e.g., Steinberg, Bröckelmann, Rehbein, et

al., 2013). More reliably than for the P1, associated and conditioned effects were reported for the

N170 and subsequent components. The N170 is a face-sensitive neural marker in the form of a neg-

ative deflection peaking around 170 ms over occipito-temporal region, generated to a large extent

by the fusiform face area (Gao et al., 2019). N170 effects of conditioned faces have been reported

for a number of fear-conditioning studies (e.g., Bruchmann et al., 2021; Camfield et al., 2016;

Schellhaas et al., 2020; Sperl et al., 2021) and for studies on associated person knowledge (Luo

et al., 2016; Schindler, Bruchmann, Krasowski, et al., 2021) and conditioned facial expressions

(Aguado et al., 2012). Modulations of the early posterior negativity (EPN), a relative negativity

over occipito-temporal regions related to the early detection of emotional relevance and most pro-

nounced around 200-300 ms for face stimuli, have also been reported for conditioned faces with

different kinds of unconditioned stimuli (US), e.g., in conditioned fear (e.g., Bruchmann et al.,

2021; Sá et al., 2018; Schellhaas et al., 2020), and verbal descriptions about a person (e.g., Luo

et al., 2016; Suess et al., 2014; Xu et al., 2016) and produced by a person (M. J. Wieser, Gerdes,

et al., 2014). Sustained motivated attention has been related to the late positive complex (LPC).

Effects on the LPC, a centro-parietal positivity, have been reported in the context of the perception

of faces associated with different context for fear-conditioning (Bruchmann et al., 2021; Panitz

et al., 2015; Rehbein et al., 2018; Sá et al., 2018; Sperl et al., 2021; Wiemer et al., 2021), re-

ward (Hammerschmidt, Kulke, et al., 2018), and person knowledge studies (Abdel Rahman, 2011;

Baum et al., 2020; Kissler & Strehlow, 2017; Xu et al., 2016). While there are several studies

on cross-modal perception that include faces and affective voices (e.g., Gelder & Vroomen, 2000;
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Pell et al., 2022), to our knowledge, the processing of faces that previously have been associated

with both positive and negative affect bursts has not yet been tested.

The relevance of information for a specific situational task or context has been shown to play

an important role both in learning and in retrieval (Shin et al., 2020). In learning, task-relevant (and

hence context-congruent) information is supposed to be integrated more easily into a pre-activated

schema (Kesteren et al., 2010). However for retrieval the relationship between task-relevance and

context is not as straight-forward, considering reports of generalized effects across different tasks.

Similar to the processing of faces with emotional expressions (Hudson et al., 2021; Rellecke et al.,

2012a; Schindler et al., 2020; Valdés-Conroy et al., 2014) and affective stimuli in general (Olofsson

& Polich, 2008), task requirements likely moderate conditioned effects especially at later stages of

processing (Schupp et al., 2006). That early and late effects have been reported in (not necessarily

the same) fear-conditioning studies may primarily be caused by the use of intense and highly arous-

ing stimuli. Additionally, most fear-conditioning studies have implemented valence and arousal

ratings of the conditioned stimuli (CS faces), before and after the conditioning phase (e.g., Panitz

et al., 2015; Rehbein et al., 2018; Sá et al., 2018; Sperl et al., 2021), which might influence the

attentional processes in other tasks, i.e. during learning and retrieval. Previously target-defining

features of a stimulus have been reported to automatically draw processing resources away even

when not anymore task-relevant (e.g., Kyllingsbæk et al., 2014). Nevertheless, conditioned effects

have also been reported for valence-unrelated tasks, e.g. in old-new categorization of faces (e.g.,

early effects: Hammerschmidt et al., 2017; late effects: Abdel Rahman, 2011; Baum et al., 2020;

Kissler & Strehlow, 2017), and passive-viewing tasks (e.g., Xu et al., 2016).

Only a few studies systematically investigated the role of attention on the perception of

faces associated with context information. Three recent studies tested the effects of feature-/

and memory-based attention with different tasks, which included a) discrimination of lines that

overlayed the faces, b) the faces’ gender (Bruchmann et al., 2021; Schindler et al., 2022) or age

(Schindler, Bruchmann, Krasowski, et al., 2021), and c) the associated CS category. In their threat-

conditioning study, Schindler et al. (2022) reported interactions between task and conditioning for

the P1 and the EPN, but not for the N170 and LPC components and hence show no clear distinction

between task influences on early and later processing. In contrast, associated verbal descriptions of

crime-related actions in Schindler, Bruchmann, Krasowski, et al. (2021) differentially moderated

early and late processing, of which the N170 was enhanced in all tasks for negatively associated

faces, whereas both associated effects on the EPN and LPC were only reported for the valence-

focussing condition. In these studies, associated context information was presented also during

the test, either interspersed (in 33% of trials in Bruchmann et al., 2021; Schindler et al., 2022) or
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at the beginning of each task (Schindler, Bruchmann, Krasowski, et al., 2021). In experimental

studies, researchers often have used intense and highly aversive stimuli to maximize differentia-

bility between conditions. While this is valid and important to demonstrate a general potential of

associated context to faces, it neglects the real and true diversity of affective context, especially

positive associations. Moreover, it has not been particularly well researched whether associating

affective stimuli of lower intensity and whose contextual relevance was not made explicit for learn-

ing also elicit robust effects in face perception. Expressions in faces and voices naturally co-occur

and construct a perception of the whole person (Freeman & Ambady, 2011b). On the one hand,

emotional expressions in both modalities are situation-dependent and naturally vary within indi-

viduals. On the other hand, expressions in the face and voice share inherent social and biological

relevance (Straube et al., 2011). Both factors might impact the effectiveness of using these stimuli

in associative learning and thus make them a compelling research topic.

Aim of the study

To address this gap, we investigated the role of attentional focus in the retrieval of faces as-

sociated with cross-modal affect. To do so, we applied a valence-implicit (old-new) and valence-

explicit (valence-classification of the associated voices) task in a delayed test session to investigate

associated valence in different attention conditions while recording face-sensitive ERPs. For learn-

ing, we paired faces displaying neutral expressions with short auditory affect bursts of positive,

negative, and neutral valence because they unfold emotional information rapidly and do not have

the segmental structure of speech. In our newly developed internet-based learning phase, unlike

in classical (Pavlovian) or instrumental learning paradigms, our participants studied the face-voice

pairs to correctly assign them to each other (similar to learning with flashcards). Moreover, we

did not provide further information about the task requirements of the test session to not prompt

participants to pay attention to specific stimulus features.

Hypotheses

Our global hypothesis was that task requirements during the test would activate (goal-

directed) memory-based attention to the associated face-voice pairs, which in turn would

modulate the processing of the faces. More precisely, we expected the differential effects of task

on different processing stages of valence-based associations, with early processing being less

impacted than later, more elaborate processing (according to Rellecke et al., 2012a). In this sense,

goal-directed attention through the task and experience-based attention through the relevance
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association would produce additive effects on visually-evoked potentials.

Learning. In our online learning hub, participants could study the face-voice pairs flexibly and

according to their own schedules. As a result, we expected high variability in the individual learn-

ing styles and the time needed until reaching the predefined learning criterion (95% correct in 24

subsequent test trials) and analyzed learning data only in an exploratory way.

Test: Behavioral hypotheses. We expected an effect of task difficulty with slower responses

and lower accuracy for the valence-classification task (3-choice-responses) compared to the old-

new-task (2-choice-responses). Furthermore, we expected an interaction effect of task × valence

with larger RT and accuracy differences between the affectively and neutrally associated faces for

the valence-classification task compared to the old-new task, as the latter required only superficial

recognition of the faces. Regarding the valence effect in the valence-classification task, we ex-

pected higher accuracy for affectively compared to neutrally associated faces. Furthermore, faces

previously associated with voices expressing elation and amusement should be rated as more lik-

able than faces associated with neutral bursts, and analogously, bursts of negative emotions should

be rated as less likable compared to neutral bursts (similar to but not as pronounced as in Suess et

al., 2014).

Test: ERP hypotheses. We expected that the visually evoked potentials related to face percep-

tion would be modulated by the emotional valence of the associated voices. Additionally, we

expected modulatory effects of task, and interaction effects of task × valence, especially on the

mid- (EPN) and long- (LPC) latency ERPs. However, for comparability with other studies and due

to inconsistent findings on the influence of goal-directed attention (via task demands), we tested

the interaction (task × valence) in all of our models. We predicted larger (mean and peak) am-

plitudes of the P1 for affectively (i.e., positive or negative) than neutrally associated faces and

similar effects in both tasks. Although we expected valence-based modulations of the N170 and

EPN, we did not specify the direction of effects, as effects of associated valence have only incon-

sistently been reported for these components. In contrast to the P1 and N170, we expected that

EPN differences between affectively and neutrally associated faces would be more pronounced

in the valence-classification task. The EPN is suggested to reflect enhanced sensory encoding of

valence-laden stimuli (independent of the task). However, it is unknown whether recently con-

ditioned faces would also produce an EPN component modulated by the associated valence in a

superficial task like the old-new task (e.g., Rellecke et al., 2012a for reduced emotion effects on
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the EPN for facial expressions in superficial tasks). Lastly, we did not expect effects of associated

valence the LPC due to non-reported effects in similar studies. However, in the case of effects by

associated valence, we expected it to be exclusive for the valence-classification task.

4.2 Method and Materials

This study was preregistered on https://osf.io/ts4pb.

Participants

Of the 61 participants, who signed up for the study, 54 started learning, and 43 completed

the EEG test session, of which our target sample size, i.e., 40 participants, matched the required

number of trials (min. 30 valid EEG trials per valence condition and task after artifact rejection).

Our sample consisted mainly of students (38 out of 40; 30 female, 10 male, 0 diverse; Age: 18 -

32,M = 21.62 years), reporting normal or corrected-to-normal vision (max. +/- 1 diopter), normal

hearing, and no neurological or psychiatric disorders. All participants were right-handed, accord-

ing to Oldfield (1971), and proficient in German. We recruited via advertisements on campus and

postings on social media, the university’s job portal, the website of the Institute for Psychology,

and the department’s recruitment database. Participants were reimbursed with a fixed amount of

money for completing the online learning phase and an additional hourly rate for the test session

in the laboratory or an equivalent amount of course credits.

Stimuli

Twenty-four faces were selected from the Goettingen Faces Database (Kulke et al., 2017)

and presented with their natural color on a light grey background. Face stimuli were edited and

combined with a transparency mask that covers the hairline, ears, and neck. In the test session, they

had a visual angle of approx. 3.2 × 4.8 degrees and a resolution of 200 x 300 pixels. The mean

luminance (HSV; Dal Ben, 2019) of images ranged from 0.45 to 0.48 (M = 0.47; 𝜒2(528) = 550, p

=.246). Affect bursts (happy, elated, angry, and disgusted) were selected from a validated database

(Cowen et al., 2019) and supplemented with neutral vocalizations (clearing throat, yawning) from

the social media platform “youtube”. All silent periods at the beginning and the end of the sound

files were trimmed manually and normalized to -23 LUCS (Loudness Units Full Scale) with the

open-source software Audacity(R) (v.2.4.2, Audacity Team, 2021). The perceived loudness of

the audio files was normalized based on an algorithm following the EBU R 128 recommendation
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(https://tech.ebu.ch/docs/r/r128.pdf) on limiting the loudness of audio signals. Compared to other

normalization methods (peak- and RMS normalization), this method resulted in the smallest range

of estimated loudness across stimuli using the R package Soundgen (Anikin, 2019). There were

two separate stimulus sets for faces. One set included the 12 CS+ faces used in the learning and

test phase, and the other set contained 12 new faces, which were used for the old-new and rating

task of the test session. The assignment of the CS+ faces to the US voices was counterbalanced

and matched for gender. Every emotion category (amusement, elation, yawning, throat-clearing,

disgust, and anger) of the voices entailed two stimuli in our experiment (one female and one male).

Hence, every valence category entailed four stimuli (four positive, four negative, and four neutral),

resulting in a total of 12 face-voice pairs included in the learning phase. There were six different

versions of the learning set for the face-voice pairs. Participants were pseudo-randomized to one

of the six versions to ensure a balanced distribution of stimulus-set versions.

Procedure

The study was approved by the local ethics committee and conducted according to the Dec-

laration of Helsinki. Before participation, interested participants visited a website that informed

them about the complete procedure, inclusion criteria, data policy, corona regulations, and remu-

neration of the online learning phase and EEG session. They were redirected to a form to indicate

contact and socio-demographic information if they gave their consent. We set appointments for

the EEG sessions with eligible participants and created personalized links and participant codes

for the learning platform (learning hub). The link was activated six days before the scheduled

EEG session. To participate in the EEG testing in the laboratory, participants must have achieved

a learning criterion (95% correct out of 24 test trials) during one of the learning sessions and, in-

dependently of that, completed obligatory learning checks on the first four days. Participants were

free to choose the length and number of learning sessions, repetitions, and learning checks within

the learning phase. An overview over the learning and test procedure is shown in Figure 4.1.

Learning phase (online). The online experiment was programmed in JavaScript with self-

written and existing functions from the open-source library jsPsych (v6.3.1, Leeuw, 2014). The

experiment was integrated into JATOS (v3.5.8, Lange et al., 2015) on a local server installation at

the University of Goettingen for data management. Participants could start the learning sessions

with a personalized link and participation code. Instructions were given compulsorily at the

beginning; for later sessions, they were optionally displayed. When participants logged in for the

first time, they rated the valence of the auditory stimuli: On two sliders (without initial thumb),
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Figure 4.1
Procedure of the online learning phase and test session.

Notes: After general information about the study procedure and the collection of socio-
demographic and eligibility information, an appointment was made for the EEG session. Par-
ticipants started the learning phase (online) six days before the EEG session. On the fifth day,
ie the day before the EEG session, participants completed a questionnaire about their individual
learning strategies. Participants were invited to the EEG session if they had reached the pre-defined
learning criterion. The EEG session had the same fixed order for all participants: Refresher of the
face-voice pairs, the old-new task, a second block of refresher trials, the valence classification task,
and the likability rating of the faces.
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they were asked to rate 1) how positive vs. negative the mood of the speaker expressing the

vocalization was and 2) how pleasant vs. unpleasant they found the auditory stimulus. Following

that and independent of their ratings, we individually presented all auditory stimuli with emotion

labels to set an anchor for stimuli that may have been ambiguous for the participant. Subsequently,

participants were redirected to the learning hub, where they could start their first learning session.

During the learning (association) phase, participants aimed to learn the pairing of the 12 face-

voice stimuli (i.e., which face belonged to which voice) within four days by using the learning hub.

The main page consisted of 12 preview cards showing blurred versions of the 12 faces. Clicking

on one of the blurred cards started a conditioning trial of a central fixation cross, followed by the

unblurred CS+ face and the auditory US starting with face offset. The number of conditioning

trials per CS-US pair was recorded for each session and in total. To assess whether they were

able to allocate the face-voice pairs, participants needed to do at least one obligatory learning

check (including 24 test trials, approx. two minutes) per day. A learning check trial consisted of a

pseudo-randomly selected US voice, played while participants had to select the correct face out of

five gender-matching faces. Immediate feedback on the correctness of the answer was provided. If

the latest 24 learning check trials within any session were answered correctly in 95% of trials, the

learning criterium had been reached. To prevent early and late learners from having different time

delays between learning and test, we required daily learning checks independent of the learning

criterium. On top of the learning deck, information about the number of repetitions (conditioning

trials) per session and in total, as well as the accuracy in learning checks for the session and the last

24 learning checks, was displayed. The order of the preview cards was shuffled at the beginning of

each new session. For learning checks, a list of all face-voice pairs was shuffled, and the number

of test trials was sampled from this list without replacement. The order of faces to choose from

in the learning checks was also random. Participants could cancel their participation in the online

study at any time and request the deletion of their data. Once participation was canceled, it was

impossible to resume or restore the data or participate in the EEG test session.

Questionnaire about learning strategies: One day before the test session, participants com-

pleted a questionnaire about their strategies to study the face-voice pairs. Participants who reached

the learning criterium were informed in more detail about the procedure and the safety regulations

and asked for their confirmation of the test session.

Test session. After giving written consent, participants were prepared for the EEG session and

seated in a dimly lit, electrically shielded room in front of a computer screen at a distance of ap-

prox. 78 cm. Two speakers were located on the left and right at the monitor’s height. Participants
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positioned their chins in a height-adjustable chin rest. For the presentation of the laboratory ex-

periment, along with standard Python (2.7) libraries like NumPy and SciPy we used functions of

PsychoPy (Peirce, 2009) for the presentation of the faces, PyGame (Shinners, 2011) as the audio

library, and PyGaze (Dalmaijer et al., 2013) for the communication with the eye-tracker. After

a welcoming message, the eye tracker was calibrated with a 9-point calibration. For all partici-

pants, the test session had the same order: Refresher trials I (5 × 12 trials), Old-new task (25 ×
18 trials), refresher trials II (5 × 12 trials), valence-classification task (25 × 12 trials), and a lika-

bility rating (24 trials). To not reveal that any emotion- or valence-relevant task would be part of

the experiment, the specific task instructions were shown before each task. Refresher trials were

passive-viewing trials in which participants did not need to respond. However, we instructed them

to focus on the face-voice pairs to “refresh” what they had learned. For the other tasks, specific

instructions were followed by four example trials using not real faces and the correct answer as a

label on top to familiarize with the response keys. Only here participants got feedback on whether

they were correct and had the possibility to clarify the remaining questions with the experimenter.

Breaks to stretch and relax were scheduled between tasks, and additionally, there were four breaks

within the old-new task and three within the valence-classification task. A drift correction of the

eye-tracker (1-point-calibration) was implemented to resume or start the next task.

In all tasks, the order of faces or face-sound combinations was shuffled at the beginning of

each block, with each block consisting of a single set of associated faces (or all 12 associated faces

plus six randomly selected faces from the set with the novel faces). Assignments of response keys

were alternated between participants. We instructed participants to answer as accurately and fast

as possible and guess if unsure. Refresher trials started with a black fixation cross at the center of

the screen for 500 ms, which was replaced by one of the CS+ faces displayed for 500 ms. With the

offset of the face, the US set in (duration varied between stimuli). After a jittered inter-trial interval

(M = 2800 ms, SD = 200 ms), the subsequent trial started. In the old/new-task, the participant’s

task was to decide if a face was known from the online learning phase or of a novel set of faces.

A black fixation cross was displayed for 500 ms at the center of the screen replaced by either a

CS+ face from the learning phase or a CS- face (novel). All faces were presented individually for

1000 ms and participants could respond as soon as the face stimulus set in. With the offset of the

face, a grey fixation cross was displayed if no answer had been registered yet and continued until

an answer was given via keypress. After the face-offset and a registered response, the next trial

started after an additional jittered inter-trial interval (M = 1800 ms, SD = 200 ms). In the valence-

classification task, participants had to recall the valence category (negative, positive, neutral) of

the associated voices, while seeing only the CS+ faces. The presentation duration of trial elements
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(fixation cross, face, response fixation cross, inter-trial interval) was identical to the old-new task.

At the end of the test session, participants rated the likability of the CS+ and the novel CS- faces.

Faces were presented individually for 1000 ms and rated on a Likert scale in the appearance of a

1-7 slider positioned below the faces. There was no value or choice shown by default. A value

was selected by clicking with the mouse on the slider but had to be confirmed to start the next trial.

At the very end of the session, participants were informed about the main aims and background of

the study (presented on the computer screen) and could clarify questions with the experimenter.

Collected data

For every learning session, the number of conditioning trials for each individual face-voice

pair and the accuracy of learning checks trials was recorded. In the test session, in addition to

performance (RT and accuracy), we recorded EEG and pupil during the refresher, old-new, and

valence-classification tasks. No neurophysiological measures were collected during the likability

rating.

EEG recording and preprocessing

The continuous EEG was recorded with a sampling rate of 512 Hz (bandwidth: 102.4 Hz) at

64 active electrodes (AgAgCl) mounted in an electrode cap (Easy CapTM). The arrangement was

based on the extended 10-20 system (Pivik et al., 1993). Additionally, two external electrodes were

used, one each for the left and right mastoids. Reference electrodes were the common mode sense

(CMS) active electrode and as ground electrode, the driven right leg (DLR) passive electrode.

The scalp voltage signals were amplified by a BiosemiActiveTwo AD-Box and recorded with

the software ActiView. The data was preprocessed offline in MATLAB (2018) with functions

of the toolbox EEGLAB (2019.9, Delorme & Makeig, 2004). To account for a systematic delay

that was measured with a photodiode, event markers were shifted by a constant of 26 ms. The

continuous data was re-referenced to average reference (excl. external electrodes), filtered with a

0.01 Hz second-order Butterworth filter, and the remaining 50 Hz line-noise was corrected with

a function of the plugin “CleanLine” (v1.04, Mullen, 2012). Prior to performing independent

component analysis (ICA), data was epoched from -500 ms to 1000 ms around face-onset and the

mean of the pre-stimulus baseline (-500 ms to 0 ms) was subtracted. Extended Infomax ICA was

performed after a PCA reduction to 63 channels on a 1 Hz high-pass filtered copy of this dataset.

The resulting ICA weights were transferred to the original 0.01 Hz filtered dataset. Independent

components (ICs) were removed if labeled as muscle (>80%), eye (>90%), and channel-noise
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(>90%) components using “IClabel” (v1.2.4, Pion-Tonachini et al., 2017). Remaining diverging

channels (>3 SD) were spherically interpolated. Then, epochs were trimmed to -200 - 800 ms

and baseline-corrected (-200 ms to 0 ms). Trial-wise artifact rejection was performed: amplitudes

exceeding -100/100 𝜇V (M = 42.15; 4.84%), steep amplitude changes (> 100 𝜇Vwithin an epoch;

M = 3.80; 0.44%), improbable activation (>3 SD of the mean distribution for every time point;M

= 108.33; 12.4%) were excluded. Overall the mean rejection rate was 15.29%. Eye blinks during

baseline or face presentation were excluded in a separate step using pupil data. We extracted the

following ERPs based on time windows and regions of interest (ROI) electrodes of a previous

study (Ziereis & Schacht, submitted): Mean and peak amplitudes for the P1 (80 - 120 ms) at an

occipital electrode cluster (O1, O2, and Oz); mean (and peak)2 amplitudes for theN170 (130 - 200

ms) at an occipitotemporal electrode cluster (P10, P9, PO8, PO7); mean amplitudes for the EPN

(250-300 ms) at an occipitotemporal cluster (O1, O2, P9, P10, PO7, and PO8); mean amplitudes

for the LPC (400 - 600 ms) at an occipito-parietal electrode cluster (Pz, POz, PO3, and PO4).

Moreover, we investigated ERP effects between familiar and novel identities in the old-new task,

we included two further ERPs, which we included in the Appendix C, together with details on

pupil-related results of this study.

Statistical analysis

Tables with statistical models (incl. estimates, confidence intervals, stability measures, and

likelihood ratio tests) are in Appendix A. All statistical analysis was conducted in R (v 4.0, R Core

Team, 2020). All statistical models but the beta inflated distribution model (see below) were sum-

contrast-coded, reflectingmain effects rather thanmarginal effects. Here, the intercept corresponds

to the (unweighted) grand mean, and lower-level effects are estimated at the level of the grand

mean. The significance of the predictors was tested with likelihood ratio tests (LRT) of models

including the predictor against reduced models and a null model. Post-hoc contrasts were used to

test the difference between factor levels using “emmeans” (Lenth, 2020). We used the conventional

significance level 𝛼 = 0.05 (two-sided) and for posthoc tests Šidák-correction to adjust for multiple

comparisons. To estimate the parameters in the analyses, we used the maximum likelihood (ML)

estimator. For the 95% confidence intervals we used non-parametric bootstrapping (nsim = 999)

if not specified otherwise.

Ratings of the voices. Due to the nature of the slider response measure with lower and upper

bounds, we used a beta inflated distribution model (GAMLSS family “BEINF,” Stasinopoulos
2not preregistered
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& Rigby, 2007) to estimate the ratings of the voice stimuli. The model allows zero and one as

values for the response variable. The beta inflated distribution is given as 𝑓(𝑦) = 𝑝0, if (y = 0),
𝑓(𝑦) = 𝑝1, if (y = 1), and 𝑓(𝑦|𝛼, 𝛽) = 1

𝐵(𝛼,𝛽)𝑦𝛼−1(1 − 𝑦)𝛽−1 for y ∈ (0,1).

The full model included the predictors emotion of the voice stimulus, type of the rating (va-

lence of the voice vs. personal reaction to the voice), their interaction, and a random intercept for

participant ID.

Learning phase (learning speed). We modelled accuracy of the learning check trials until the

learning criterium was reached (for the first time) with a binomial mixed model (GLMM). Predic-

tors of the binomial mixed model were valence, number of learning checks (per valence), and their

interaction. We included random slopes of valence and check number and the random intercept

participant ID.

Test session. For response time data, only correct trials were selected. Separately for every par-

ticipant, task and condition, data was trimmed to a maximum cutoff of 5000 ms post face onset and

a skewness adjusted boxplot method to exclude extreme values (function “adjbox” of the package

“robustbase,” Maechler et al., 2021; based on Hubert & Vandervieren, 2008). After averaging

across participant and conditions, response time data still resulted in skewed residuals. By taking

the natural log of the averaged response times, the distribution of residuals became less skewed.

We report all model parameters on the log scale. Our model included valence, task, the valence ×
task interaction as fixed effects, valence and task as random slopes and participant ID as random

intercept. The model allowed random slopes and the random intercept to be correlated. Addition-

ally, for the old-new task, we tested response time differences between familiar and novel faces in

a separate model by adding the level (“novel”) to the predictor variable valence.

We ran mixed logistic regression models (binomial GLMMs) on accuracy data. The predictor

variables (UVs) were task (old-new and valence-classification), valence of the associated sounds

(negative, neutral, positive) and their interaction. Because we detected overdispersion in the pre-

registered model (which included only participant ID as a random intercept), we maximized the

random effects structure for the model including valence with a random intercept of participant

ID, a random slope for valence and a random slope for task. Including a slope for the interaction

between valence and task resulted in singularity issues and was dropped from the model.

For the likability rating, we ran ordinal-mixed-models with valence (incl. novel) or emotion

as fixed effect and random intercepts for face and participant ID. Model estimates and their 95%

confidence intervals are reported as Odds ratios.
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For the ERP analysis only correctly answered trials were included. The study had a 2(task:

old-new / valence-classification) × 3 (valence: negative/positive/neutral) within-subject design.

For all outcomes (P1, N170, EPN and LPC amplitudes), mixed models with the fixed effects va-

lence (positive, negative, neutral), task (old-new and valence-classification), their interaction, and

the random effect (intercept) participant ID were analyzed. In addition to these ERPs, for the old-

new task, we analyzed the FN400 and LPON in a separate models and added the level (“novel”) to

the predictor variable valence (see Appendix C). Furthermore, we explored auditory processing of

the refresher trials in voice-locked N1-P2 ERP complex with N1 (90 - 145 ms) and P2 (165 - 300

ms), both with the identical fronto-central electrode cluster: F3, F1, Fz, F2, F4, FC1, FC3, FC2,

FC4, C3, C1, Cz, C2, C4, CP1, CP3, CPz, CP2, and CP4. Although we expected the associated

effects to reflect valence rather than the individual emotion categories, we analyzed all ERPs with

the fixed effects task and emotion (6 levels) and their interaction.

4.3 Results

Learning session

Valence rating of the voices. Before the first learning session, participants evaluated the in-

dividual voices along the dimensions “valence of the speaker’s expression” and “reaction to the

burst”. The zero-one-inflatedmodel showed amain effect of emotion (𝜒2(0.7) = 6, p = .008), rating

type (valence rating vs. reaction: 𝜒2(23.1) = 828.21, p <.001) and a significant emotion × rating

type interaction (𝜒2(6.34) = 137.78, p <.001). In line with the pre-specified valence categories,

participants rated the bursts as negative, neutral and positive vocal expressions. However, their

overall personal reaction towards the stimuli was more homogeneous across emotion categories,

with less positive reactions to elation (𝛽elation_reaction = -1.48, CI = [-1.85; -1.12]) and amusement

(𝛽amusement_reaction = -0.84, CI = [-1.2; -0.48]) and less negative reactions to anger (𝛽anger_reaction =

0.67, CI = [0.3; 1.04]), see Figure 4.2.

Repetitions of face-voice pairs. The number of repetitions of face-voice pairs varied across

participants, with a total number of repetitions ranging from 18 to 428 and, for a given valence

group, from 4 to 7 to 125 to 157. When proportions were considered, positive face-voice pairs

were repeated least frequently (median = 32%) but had the largest range (25% - 47%), followed

by neutral (33%; 22% - 41%) and negative (35%; 26% - 45%) face-voice pairs.
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Figure 4.2
Rating of the vocal bursts (pre-learning).

Notes: Stimuli were rated regarding the speakers’ emotional valence (positive/negative) and the
personal reaction towards the stimuli (unpleasant/pleasant) on separate sliders with no initial
thumb. Dots represent the raw rating data per stimulus and participant. Crosses represent the
predicted values per participant based on the zero-one-inflated GAMLSS model.

Learning speed (accuracy) by valence. There was a main effect of number of learning checks

(𝜒2(1) = 51.09, p <.001), no effect of valence (𝜒2(2) = 1.9, p = .387), but a valence× check number

interaction (𝜒2(2) = 7.95, p = .019). Until the learning criterium was met, there were differences

in learning speed between valence categories. Positive face-voice pairs were significantly learned

faster compared to negative face-voice pairs at early check trials (predicted accuracies were outside

95% point-wise CI of the other valence category between the second and sixth learning checks per

valence category). Differences between other valence categories over time were not significant

(see Figure 4.3).

Learning strategies. Except for the mandatory learning checks, the learning phase could be

organized flexibly by participants. To gain more knowledge about how they experienced learning

(i.e., perceived difficulty and subjective learning styles) we asked all participants to complete an

online questionnaire the day before the lab session. Overall, participants varied in how difficult

they rated the learning task. On a Likert scale from 1 (very hard) to 5 (very easy), studying the

face-voice pairs and reaching the learning criterium were rated on average as rather easy (M =

3.76, SD = 0.85). All participants indicated certain face-voice pairs to be harder to memorize.

However, participants differed in what they specified as difficult: high similarity between faces

(n = 23), lack of distinctive facial features (n = 16), gender of the face (female faces easier (n =

3), male faces easier (n = 5)), emotion (neutral more difficult (n = 4), anger and disgust within
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Figure 4.3
Predicted accuracy for learning checks.

Notes: The x-axis refers to the number of learning checks separately per valence category, the y-
axis to the predicted probability of a correct answer in a learning check. The light-grey highlighted
area reflects significant differences between valence categories (predicted accuracy of one curve
outside of 95% CI of the other).

male faces more difficult (n = 1)), and subjective mismatch between faces and voices (n = 4). The

majority of participants (n = 33) indicated that they used at least one specific strategy to study the

face voice pairs, of which mnemonic device (n = 28) was mentioned most often, followed by focus

on specific distinct facial features (n = 26) in order to be able to distinguish faces. Less frequently,

they reported to form sub-groups of stimuli (e.g., female pairs first) and learned them separately

(n = 5). Most participants began by using the card deck (n =25). However, after a while some (n =

6) preferred to use mainly the learning checks to look at the faces for a longer duration and to get

feedback on which faces still needed practice. Only two participants used spatial information of

the preview cards at the beginning but stopped because the positions in each session were shuffled.

Participants rated their everyday ability to memorize faces on a 5-point Likert scale from 1

(very hard) to 5 (very easy) as rather high (M = 3.92, SD = 1.1). This self-reported ability did not

significantly correlate with the number of learning checks needed until the learning criterium was

met (r(36) = -0.24, p = .814).
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Table 4.1
Means and standard errors for accuracy, RTs, and ERP amplitudes of the test session for valence and emotion by task

neutral positive negative novel

Task Measure avr.neu yawning clearthroat avr.pos elation amusement avr.neg disgust anger novel

Acc.Test 98.6 (4.04) 99.1 (1) 98.1 (7.69) 98.83 (3.23) 99.45 (1) 98.2 (6.19) 98.35 (3.17) 98.25 (4.53) 98.45 (3.72) 98.45 (1.76)

RT 725 (136) 726 (149) 723 (121) 722 (139) 721 (137) 723 (146) 733 (144) 743 (164) 724 (133) 756 (116)

P1 4.05 (4.22) 4.02 (4.32) 4.04 (4.25) 4.08 (4.08) 3.98 (4.06) 4.17 (4.25) 4.08 (4.05) 4.16 (3.96) 3.93 (4.17)

P1.peak 7.04 (4.15) 7.2 (4.36) 7.51 (4.16) 6.93 (3.8) 7.06 (3.9) 7.4 (3.94) 6.88 (3.89) 7.32 (3.8) 7.1 (4.05)

N170 -6.73 (3.78) -6.87 (4.01) -6.55 (3.74) -6.61 (3.9) -6.75 (3.82) -6.49 (4.04) -6.74 (3.85) -6.51 (3.91) -7.05 (3.86)

N170.peak -10.73 (4.57) -11.14 (4.69) -10.97 (4.55) -10.7 (4.68) -10.97 (4.62) -10.96 (4.8) -10.88 (4.56) -10.93 (4.6) -11 (4.54)

EPN -2.08 (3.3) -2.21 (3.48) -1.91 (3.31) -2.19 (3.25) -2.38 (3.11) -2.03 (3.5) -2.51 (2.97) -2.33 (3.23) -2.73 (2.89)

old-new

LPC 5.32 (3.07) 5.25 (3.04) 5.36 (3.25) 5.25 (3.45) 5.21 (3.52) 5.28 (3.51) 5.24 (3.19) 5.39 (3.6) 5.1 (2.91)

Acc.Test 95.38 (9.5) 96.2 (9.11) 94.55 (11.84) 97.08 (4.58) 97.05 (6.23) 97.1 (5.51) 96.7 (6.09) 97 (8.66) 96.4 (8.46)

RT 957 (148) 943 (152) 974 (167) 930 (143) 919 (122) 944 (187) 934 (178) 928 (182) 945 (202)

P1 4.08 (4.41) 3.97 (4.43) 4.14 (4.46) 3.96 (4.18) 3.98 (3.92) 4 (4.6) 3.98 (4.01) 4.02 (3.96) 3.91 (4.2)

P1.peak 6.81 (4.26) 7.07 (4.24) 7.34 (4.26) 6.91 (3.99) 7.2 (3.67) 7.2 (4.46) 6.86 (4.08) 7.12 (4.02) 7.05 (4.35)

N170 -7.04 (3.7) -7.14 (3.76) -6.99 (3.75) -7.15 (3.76) -7.2 (3.79) -7.12 (3.82) -7.28 (3.8) -7.21 (3.78) -7.38 (3.84)

N170.peak -10.71 (4.4) -11.2 (4.51) -10.9 (4.41) -10.86 (4.46) -11.18 (4.51) -11.15 (4.51) -10.86 (4.47) -11.08 (4.48) -11 (4.53)

EPN -2.06 (3.21) -2.1 (3.36) -2.03 (3.3) -2.16 (3.45) -2.2 (3.75) -2.12 (3.36) -2.58 (3.1) -2.52 (3.34) -2.74 (3.09)

valence-class

LPC 5.06 (3.42) 5.06 (3.38) 5.16 (3.57) 5.61 (3.8) 5.7 (3.96) 5.55 (3.78) 5.55 (3.46) 5.63 (3.56) 5.51 (3.54)

Notes: Accuracy is in %, Response times are in ms, and ERP amplitudes in 𝜇V
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Test session

Response times. Associated valence: In line with our hypothesis, responses were slower in

the valence-classification task than the old-new task (diffvalclass-oldnew = 212 ms; 𝜒2(1) = 56.42,

p <.001). There was no main effect of valence (𝜒2(2) = 2.14, p = .343), but an interaction between

valence and task (𝜒2(2) = 6.55, p = .038). In the valence-classification task, neutral trials were

descriptively slower than positive (and to a lesser extend also negative) trials but post-hoc differ-

ences were not significant (all adjusted p >.05). Associated emotion: Due to singularity issues we

reduced the model structure to a random intercept model with participant ID. Also in this model

there was a main effect of task (diffvalclass-oldnew = 213 ms; 𝜒2(1) = 406.07, p <.001). However, nei-

ther emotion (𝜒2(5) = 2.68, p = .749), nor the interaction between emotion and task was significant

(𝜒2(5) = 4.64, p = .461). Old/new task comparison: When comparing the valence categories and

novel stimuli in the old new task, participants responded more slowly to novel faces compared to

faces known from the learning phase, irrespective of their valence (𝜒2(3) = 19.67, p <.001). The

largest difference was between positive and novel faces (diffpos-nov = -37 ms, p <.001).

Accuracy. Associated valence: A hypothesized, the valence-classification task had significantly

more errors compared to the old-new task (ORvalclass/oldnew = 0.32, 𝜒2(1) = 13.85, p <.001). Valence

was not significant (𝜒2(2) = 0.13, p = .938) and there was also no significant interaction between

task and valence (𝜒2(2) = 0.56, p = .756). Associated emotion: A model with single emotion

levels resulted again in a main effect of task (𝜒2(1) = 14.16, p <.001). There was no main effect

of emotion (𝜒2(5) = 2.74, p = .740) but a significant interaction between task and emotion (𝜒2(5)

= 12.72, p = .026). Post-hoc tests showed that for all emotion categories but anger (OR = 0.61

p = .198) and elation (OR = 0.48 p = .051) the valence-classification task had a significant lower

accuracy compared to the old-new task (all p <=.05).

ERP results.

P1. Associated valence: P1 mean amplitudes were neither modulated by task (𝜒2(1) = 0.46, p =

.497) nor valence (𝜒2(2) = 0.14, p = .931) nor their interaction (𝜒2(2) = 0.54, p = .764) Similarly,

P1 peak amplitudes were neither modulated by task (𝜒2(1) = 0.67, p = .413) nor valence (𝜒2(2)

= 0.22, p = .896) nor their interaction (𝜒2(2) = 0.91, p = .635). Associated emotion: Replacing

valence with the single emotion categories did not change results of P1 mean amplitudes (task:

𝜒2(1) = 0.26, p = .607; emotion: 𝜒2(5) = 2.07, p = .839; task × emotion: 𝜒2(5) = 0.96, p = .965).
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Similarly, a model including emotion did not explain P1 peak amplitudes significantly (task :𝜒2(1)

= 0.99, p = .319; emotion: 𝜒2(5) = 5.33, p = .377; task × emotion: 𝜒2(5) = 1.41, p = .923).

N170. Associated valence: N170 mean amplitudes were not modulated by valence (𝜒2(2) = 2.1,

p = .350), but there was a main effect of task (𝜒2(1) = 28.72, p <.001). Mean amplitudes averaged

across valence conditions were significantly more negative in the valence-classification task (-7.16

𝜇𝑉 ; 𝛽valclass = -0.23, SE = 0.04, t = -5.49) compared to the old-new task (-6.69 𝜇𝑉 ). No interaction

between valence and task (𝜒2(2) = 1.69, p = .430) was present. N170 peak amplitudes were not

modulated by valence (𝜒2(2) = 1.65, p = .437), task (𝜒2(1) = 0.21, p = .648) or the valence ×
task interaction (𝜒2(2) = 0.77, p = .681). Associated emotion: Looking at emotion categories

separately, N170 mean amplitudes were significantly modulated by emotion (𝜒2(5) = 13.67, p =

.018), with disgust showing an enhanced negative mean amplitude (-7.21 𝜇𝑉 ; 𝛽dis = -0.28, SE =

0.09, t = -3.04). Also, in this model, a main effect of task was present (𝜒2(1) = 32.96, p <.001)

with more negative mean amplitudes for the valence-classification task (-7.17 𝜇𝑉 ; 𝛽valclass = -0.23,

SE = 0.04, t = -5.78). However, there was no interaction between task and emotion present (𝜒2(5)

= 3.58, p = .612). Similar to mean amplitudes, emotion significantly modulated peak amplitudes

(𝜒2(5) = 11.58, p = .041) with enhanced peak amplitudes for disgust (-11.42 𝜇𝑉 ; 𝛽dis = -0.31, SE

= 0.1, t = -3.01). There was no effect of task (𝜒2(1) = 0.76, p = .383) and no interaction between

emotion and task (𝜒2(5) = 1.66, p = .894).

EPN. Associated valence: There was amain effect of valence on EPN amplitudes (𝜒2(2) = 10.86,

p = .004). This was due to enhanced negative amplitudes for negatively (-2.54 𝜇𝑉 ; 𝛽neg = -0.28,

SE = 0.09, t = -3.23) compared to neutrally (diffneu-neg = 0.47, p = .006) and positively (diffpos-neg
= 0.37, p = .045) associated faces. There was no no main effect of task on EPN amplitudes (𝜒2(1)

= 0.01, p = .925) and no interaction between valence and task (𝜒2(2) = 0.13, p = .936). Associated

emotion: Looking at emotion categories separately, there was a main effect on EPN amplitudes by

emotion (𝜒2(5) = 21.61, p = <.001) due to enhanced negative amplitudes for disgust (-2.73 𝜇𝑉 ;

𝛽dis = -0.46, SE = 0.12, t = -3.79) compared to the neutral categories throatclearing (diffdis-clt =

-0.58, p = .031) and yawning (diffdis-yaw = -0.76, p = <.001) and compared to the positive category

elation (diffdis-el = -0.66, p = .008), collapsed across tasks. Also in this model, task did not modulate

EPN amplitudes (𝜒2(1) = 0.04, p = .838) and the emotion × task interaction (𝜒2(5) = 1.47, p =

.917) was not significant.
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Figure 4.4
Face-locked N170 by emotion.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area dis-
plays the ROI time window. B Grand-averages of the ROI mean amplitudes (left panel) and peak
amplitudes (right panel), contrasted for the implicit and explicit task and all emotion conditions.
Errorbars indicate +/- 1 SE of the mean. C Topographies of the ERP distribution for faces associ-
ated with disgust bursts contrasted with all other emotion conditions, averaged across the implicit
and explicit tasks. ROI channels are highlighted in pink.
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Figure 4.5
Face-locked EPN by valence and emotion.

Notes: A Grand average ERP time series of the averaged ROI channels for valence (left panel)
and emotion (right panel). The highlighted area displays the ROI time window. B (valence) and
D (emotion): Grand-averages of the ROI mean amplitudes, contrasted for the implicit and explicit
task and all valence/emotion conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies
of the ERP distribution for faces between valence conditions, averaged across the implicit and
explicit tasks. E Topographies of the ERP distribution for faces associated with disgust bursts
contrasted with all other emotion conditions, averaged across the implicit and explicit tasks. ROI
channels are highlighted in pink.

98

doi: 10.53846/goediss-9841



Chapter 4

LPC. Associated valence: LPC amplitudes did not show a modulation by valence (𝜒2(2) = 2.64,

p = .268) or task (𝜒2(1) = 1.08, p = .298). Although, the valence× task interaction was not signifi-

cant, (𝜒2(2) = 4.46, p = .108), looking at the time course of the component, affectively compared to

neutrally associated faces appeared to show a different activation in the valence classification task.

Post-hoc tests showed that there was a trending positive difference between positive and neutral

(diffpos-neu = 0.55, p = .054), and there was a trending positive difference between negative and

neutral categories (diffneg-neu = 0.49, p = .098) which was only present in the valence classification

task. Associated emotion: LPC amplitudes were not significantly explained by single emotion lev-

els (𝜒2(5) = 5.01, p = .414), or task (𝜒2(1) = 2.46, p = .117) or an emotion× task interaction (𝜒2(5)

= 6.2, p = .287). Descriptively, in the valence classification task, the neutral categories resulted in

lower amplitudes, but also here, none of the post-hoc contrasts was significant.

Likability rating. We ran two (one for valence and one for emotion levels) cumulative linked

mixed models to account for the ordinal scale of the likability ratings. In both models, random

intercepts for participant and face-stimulus were included. Likelihood ratio tests of both models

and a model without a fixed effect showed that valence significantly explained the variance of the

rating data (𝜒2(3) = 96.19, p = <.001). However, separating emotion categories did not explain the

data better compared to the valence categories (𝜒2(3) = 0.79, p = .851). The odds ratios and 95%

CI of both models are in Table C20 of Appendix C. Mean ratings and model predictions are shown

in Figure 4.7. Associated valence: Associated valence modulated the likability ratings in line with

our hypothesis, with positively associated faces being rated as most likable compared to negatively

associated faces as the least likable. With the exception of novel and negatively associated faces, all

pairwise differences between valence categories were significant (all adjusted p <.01). Associated

emotion: The ordinal model including emotion categories showed a grouping of levels according

to the pre-specified valence categories. There was no significant differences within valence cat-

egories (neutral: throat-clearing and yawning; negative: anger and disgust; positive: amusement

and elation). Pairwise comparisons of emotion categories between valence levels were significant

(all adjusted p <.05), with the exception of throat-clearing and all positive categories, yawning and

amusement, and novel and all negative categories.

4.4 Discussion

The present study aimed to investigate memory-based attention effects on the retrieval of

valence-based associations in face perception. After having faces associated with affective bursts
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Figure 4.6
Face-locked LPC by valence.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. B Grand-averages of the ROI mean amplitudes, contrasted for
the implicit and explicit task and all valence conditions. Errorbars indicate +/- 1 SE of the mean.
C Topographies of the ERP distribution for faces between valence conditions, separately for the
implicit (old-new) and explicit (valence class.) tasks. ROI channels are highlighted in pink.
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Figure 4.7
Likability rating of faces.

Notes: Left panels show the likability by valence, right panels by emotion; A Barplots represent
the likability ratings per condition, averaged within and across subjects. Errorbars show +/- 1 SD.
B Fitted values are presented as predicted probabilities of the ordinal models.
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in an online learning paradigm, we measured short-, mid-, and long-latency ERPs to faces asso-

ciated with positive, neutral, or negative valence in a valence-implicit and a valence-explicit task.

Consistent with our hypotheses and previous research, we found that faces previously associated

with affective bursts were not only rated according to the valence of the context but also elicited

differential neural responses from faces associated with a neutral context. Moreover, associated ef-

fects in late components were strongly affected by task requirements, suggesting that goal-directed

attention on specific associated features affected especially later, more elaborate processing of the

faces.

The first associated effect was present in the N170. Although the averaged associated va-

lence did not moderate N170 amplitudes, there were differences between single emotion levels,

with an enhanced negative amplitude for disgust-associated faces. A number of studies reported

N170 effects for valence-associations (e.g., Aguado et al., 2012; Bruchmann et al., 2021; Cam-

field et al., 2016; Luo et al., 2016; Schellhaas et al., 2020; Schindler, Bruchmann, Krasowski, et

al., 2021; Sperl et al., 2021). Due to its measured spatial overlap with the EPN, the N170 has been

suggested to represent a mixture of configural face processing and relevance encoding (Rellecke

et al., 2012b). In addition, there was an independent effect of task starting in the N170 time win-

dow and extending to a positive-going deflection over the lateral occipito-temporal areas peaking

around 200 ms (similar to findings by Itier & Neath-Tavares, 2017; Schindler, Bruchmann, Kra-

sowski, et al., 2021). The interpretation of this effect is not straightforward: the visually evoked P2

component has been linked to higher-order configural processing (Latinus & Taylor, 2006), differ-

ences in task difficulty (Philiastides, 2006), tasks requiring expertise to subgroups of faces (Stahl

et al., 2008), and face typicality (Pell et al., 2022), all of which could be roughly related to deeper

processing demands (Banko et al., 2011) of faces in the valence-classification task and differences

in processing depth (Itier & Neath-Tavares, 2017). Remarkably, these early task differences did

not extend to the EPN time window.

EPN amplitudes were modulated by associated valence, with enhanced amplitudes for the

negative compared to the positive and neutral conditions. Several studies reported enhanced neural

processing towards negatively but not positively associated faces (e.g., Luo et al., 2016; Suess et al.,

2014; M. J. Wieser, Gerdes, et al., 2014). This negativity bias has also been shown for threatening

facial expressions (e.g., Schupp et al., 2004; for a review, see Schindler & Bublatzky, 2020). That

negatively-associated faces were preferentially processed in our study is remarkable in that affect

bursts resemble rather low-intense stimuli. In addition, task neither modulated EPN amplitudes

nor did it moderate valence effects, suggesting a fast and automatic allocation of attention toward

negative information related to faces (similar to Baum & Rahman, 2021; Bruchmann et al., 2021;
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cf. Schindler, Bruchmann, Krasowski, et al., 2021). Similar to the N170, EPN amplitudes were

particularly pronounced for disgust-related faces. Usually, expressions of disgust serve to detect

and reject things potentially offensive, toxic, or contaminating to keep oneself safe and healthy

(e.g., spoiled food or open wounds). Expressions of disgust directed at us could also serve as a

social-communicative signal and be interpreted as a risk of social exclusion (e.g., Amir et al., 2005;

Gan et al., 2022; Judah et al., 2015). Although facial expressions of disapproval, disgust, and anger

have been shown to trigger different neural processes (Burklund et al., 2007), auditory expressions

of disgust could be perceived as more ambiguous and give more room for interpretation of social

disapproval.

We hypothesized that the attentional focus of the task would especially affect later processing.

Consistent with this hypothesis and previous research on the processing of faces with emotional

expressions (for a review, see Schindler & Bublatzky, 2020) and conditioned faces (Schindler,

Bruchmann, Krasowski, et al., 2021; cf. Bruchmann et al., 2021), associated valence modulations

of the LPC were only descriptively present in the valence-explicit task. While early ERPs in the

test session showed only effects of negative associations and specifically of disgust-related faces,

later processing was modulated by both negatively and positively associated faces with no such

strong differences between single emotion categories. Moreover, also positively associated valence

was not extinguished but instead triggered by goal-directed memory retrieval, although it did not

show in the valence-implicit task. In our study, LPC effects are strongly related to the task-relevant

goals while at the same time differentiating between affective and neutral but not between positive

and negative associations. Our results add to findings of previous research reporting LPC effects of

positively associated faces Hammerschmidt, Kagan, et al. (2018) and other kinds of visual stimuli

(e.g., Schacht et al., 2012) and show that also positive affect burst can be cross-modally associated

to faces.

P1 amplitudes were not modulated by task and, differently from what we predicted, not mod-

ulated by associated valence. The P1 has been related to the processing of lower-level stimulus

properties, and selective attention through sensory gain mechanisms (Hillyard & Anllo-Vento,

1998; Russo, 2003). Although several studies have reported a sensitivity for valence-based as-

sociations of the P1 (e.g., Aguado et al., 2012; Hammerschmidt et al., 2017; Muench et al., 2016;

Schacht et al., 2012) and even earlier processing (e.g., Rehbein et al., 2014; Sperl et al., 2021;

Steinberg et al., 2012), other studies have not investigated (e.g., Baum & Rahman, 2021) or re-

ported P1 effects (e.g., Hammerschmidt, Kulke, et al., 2018; Schindler, Bruchmann, Krasowski,

et al., 2021). It is possible that the association with affective vocal stimuli of lower intensity in our

study was not sufficient to elicit differential activation of the P1. Although associated emotional
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expressions of the face have been shown to modulate P1 amplitudes (Aguado et al., 2012), and

comparable effect sizes of cross-modal and within-modal associations have been reported (Hof-

mann et al., 2010), the variability in learning might have played a more important role. As other

studies reported stable associations after very few conditioning trials ( e.g., Rehbein et al., 2014;

Steinberg, Bröckelmann, Rehbein, et al., 2013; Ventura-Bort et al., 2016), it is unclear what drives

neural changes at early processing of conditioned stimuli (e.g., the number of CS-US couplings,

the (dis-) similarity between CS, the intensity of the US, the stimulus duration, or the consolidation

period, etc.). By including a learning criterium in our study, we ensured associations between the

faces and affective bursts. In addition, we included refresher trials between the valence-implicit

and valence-explicit task to counteract extinction. However, the number of face-voice conditioning

trials varied between participants and thus differed from typical conditioning studies. Some par-

ticipants developed their own strategies and preferred studying the pairs by doing learning checks,

which allowed them to see the faces longer and to get feedback on their answer. However, in these

trials, not one face but five faces and the voice were presented simultaneously. Possibly, the asso-

ciation of the face and the voice occurred here on a more explicit level and was rather defined by

attending to specific facial features then gradually tuning sensory discrimination through associa-

tive learning.

We included valence ratings of the voices prior to any association with faces. Overall, par-

ticipants rated the vocal expressions according to our pre-specified valence categories. Interest-

ingly, ratings on their reaction towards the bursts were less extreme than the expression ratings

and showed a larger inter-individual variation. Behavioral performance between valence cate-

gories only differed in the learning phase of our study, in which faces with positive bursts were

learned faster (similar to reward-associated faces in Hammerschmidt, Kulke, et al., 2018; Ham-

merschmidt et al., 2017; and reward-associated words or symbols Bayer et al., 2018; Kulke et al.,

2019; Rossi et al., 2017). In contrast, during test, there was no clear evidence for accuracy and re-

sponse times being affected by associated valence, although descriptively, in the valence-explicit

task, responses for the neutral condition were slower than the positive and negative conditions.

Nevertheless, as expected, RTs were shorter and accuracy higher in the old-new task than in the

valence-classification task, probably due to the number of choices (two vs. three) and required

depth of processing needed (recognition vs. explicit recall). The old-new task might have become

more difficult over time due to the repetition of the novel faces. However, the behavioral results

suggest that, overall, the valence-classification task was more difficult than the old-new task. If

only cognitive load suppressed ERP effects of associated valence, we would have expected it to

occur in the more difficult, i.e. in the valence-classification task.
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The likability rating at the end of the test session was affected by associations with voices

expressing positive and negative emotions during the learning (similar to Suess et al., 2014). More

specifically and as we hypothesized, ratings were according to our pre-specified valence cate-

gories, while emotion within valence categories did not differ. It is possible that valence rather

than the specific emotion category changed decisions on likability, although we cannot rule out

the possibility that the preceding valence-classification task increased homogenization within va-

lence conditions. Although likability ratings supported the ERP results, in our opinion, the ratings

may resemble rather contingency awareness then true changes in likability and furthermore might

be biased due to the focus on valence differences in the preceding task.

Our novel learning paradigm allowed participants to study face-voice pairs flexibly, which

participants made use of, as documented by the learning strategy questionnaire. Despite some

variation, participants followed similar self-chosen strategies to memorize the pairs, although we

did not include any hints or recommendations on how to study the face-voice pairs. Participants

actively searched for distinct facial features to combine them with what, in their view, would fit the

emotional valence of the voice (e.g., the man with tired eyes yawned, the woman with warm brown

eyes giggled). As the pairing of the faces and voices was randomized, participants reported taking

whatever features would differentiate best between the faces and voices, and some participants

even took notes to study. Hence, the type of learning was very different from classical Pavlovian

conditioning or instrumental learning, in which associations might form more gradually. It is re-

markable that faces associated with moderately negative bursts elicited distinct neural activation

irrespective of the task requirements and despite this variability in learning. One limitation of the

studymight be that, although we chose this option deliberately, we fixed the order of the tasks in the

test session (refresher I, old-new task, refresher II, and the valence-classification task). To ensure

that only the valence-classification task would trigger explicit attention to the valence-based asso-

ciations and to prevent spill-over effects to the valence-implicit task, we set the valence-explicit

task at the last position of the experimental part, in which we recorded ERPs . Nevertheless, early

effects were similar between tasks and the valence effects in the LPC occurred only in the valence-

classification, i.e., second task, which should have been more prone to be affected by extinction of

the associations or simply fatigue.

The study provides new evidence that faces cross-modally associated with affective stim-

uli of both positive and negative valence have the potential to elicit neurophysiological responses

similar to inherent affective stimuli. During test, task demands affected later, more effortful pro-

cessing, whereas earlier processing indicated an automatic discrimination of negative from other

information across both tasks. We demonstrated that associations with even mildly negative stim-
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uli, flexibly acquired through our novel learning paradigm, could influence face processing even in

a valence-implicit task, suggesting a fast prioritization of learned negative context as a protection

against potential threats (e.g., Lundqvist & Öhman, 2005; Öhman et al., 2001) largely independent

of goal-directed attention. Moreover, positive associations were learned faster and affected later

processing, but only in the presence of goal-directed attention toward valence.
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Validation of scrambling methods for vocal affect bursts

Abstract

Neuroscientific studies require methods to disentangle basic sensory processing of physical

stimulus properties and the recognition and processing of the semantics of a stimulus. Similar

to image scrambling, the scrambling of auditory signals aims at creating stimulus instances that

are not recognizable but have comparable low-level features. In the present study, we generated

scrambled stimuli with four different methods (frequency-, phase-, and two time-scrambling trans-

formations) of short vocalizations taken from the Montreal Affective Voices database (Belin et al.,

2008). The original stimuli and scrambled versions were validated by N = 60 participants for the

apparency of a human voice, gender, and valence of the expressions, or if no human voice was

detected, for the valence of the subjective response toward the stimulus. The human-likeness was

reduced for all scrambled versions, albeit to a lesser degree for phase-scrambled versions of neutral

bursts. For phase-scrambled neutral bursts, valence ratings were equivalent to the ratings of the

original neutral burst. All other scrambled versions were rated as slightly unpleasant, suggesting

that although valence differences between emotions were reduced, they should be used with cau-

tion due to their potential aversiveness.
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5.1 Introduction

Are emotional stimuli processed differently from non-emotional stimuli? As simple as this

question appears, and irrespective of the stimulus modality, it is methodologically challenging to

disentangle the impacts of emotional quality and of other stimulus properties. For example, the

image of a smiling person and an image of the same person with a neutral facial expression differ in

terms of emotional valence but also, to some degree, in their low-level properties. In this example,

local differences in low-level properties might even increase with the intensity of emotional expres-

sions shown, e.g., smiling with the mouth open and showing teeth will result in a higher number of

bright pixels at the mouth region compared to the corresponding closed mouth or a neutral expres-

sion. Especially physical stimulus features like luminance, size, and contrast impact early visual

processing (e.g., Bobak et al., 1987; Johannes et al., 1995; Korth &Nguyen, 1997; Marcar &Wolf,

2021), leading to problematic confounds of emotion-related effects and other stimulus effects, par-

ticularly relevant for electrophysiological and imaging research. Furthermore, any modification of

a stimulus will result in changes of both the stimulus and its processing. However, not all stimulus

properties are related to the inherent emotional meaning of a stimulus. Thus, to differentiate be-

tween emotion-sensitive and emotion-insensitive functional processing units (e.g., single neurons

or larger spatial and temporal regions of interest), one would need to keep low-level properties

comparable but eliminate the properties related to the emotional value of an image. For instance,

the face-sensitive N170 event-related potential (ERP) component (e.g., Bentin et al., 1996) has

been suggested to be already sensitive to emotional expressions (for reviews, see Hinojosa et al.,

2015; Schindler & Bublatzky, 2020; but see Rellecke et al., 2012b). Whether such early differenti-

ation of a signal is based on a functional detection of an emotional quality or on the reactivity to the

confounded low-level features has important implications for theoretical models of face percep-

tion (Bruce & Young, 1986). One frequently used method is to compare the processing of intact

images with scrambled versions of the images. There are different forms of visual scrambling, for

example, shuffling individual or chunks of pixels (used in, e.g., Cano et al., 2009; George et al.,

1996; Herrmann et al., 2004; Latinus & Taylor, 2006; Linkenkaer-Hansen et al., 1998), or shuf-

fling windows in the frequency or phase domain (used in, e.g., Jacques & Rossion, 2004; Rossion

& Caharel, 2011; Schindler, Bruchmann, Gathmann, et al., 2021), combinations thereof (used in,

e.g., Coggan et al., 2017; Sadr & Sinha, 2004), using cyclic wavelet transformations (Koenig-

Robert & VanRullen, 2013), or computational models of object recognition (Stojanoski & Cusack,

2014). All methods have in common that they are implemented with the aim to preserve some of

the low-level properties (e.g., luminance, color histograms, frequency spectrum, contrast) and, at

the same time, eliminate the identifiability or the semantic properties of a stimulus.
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Analogously to the visual domain, the same potential confounds apply in the context of au-

ditory processing. Thus, the investigation of emotional sounds and affective prosody in speech

or non-speech vocalizations requires methods to create non-emotional references with comparable

low-level properties (Jürgens et al., 2018; Lausen & Hammerschmidt, 2020). Scrambled ver-

sions of auditory stimuli have been particularly implemented to detect voice-sensitive and voice-

selective areas in the human auditory cortex (e.g., Belin et al., 2002). Scrambling has also been

used in investigations on the sensitivity of the amygdala, insula, and superior temporal sulcus to

emotional sounds and human vocalizations (Zhao et al., 2016) and in research on music (Menon &

Levitin, 2005). Similar to the visual domain, auditory scrambling involves procedures such as time

scrambling, i.e., cutting the signal into time bins and shuffling them (used in, e.g., Angulo-Perkins

& Concha, 2019; Jiang et al., 2013; Menon & Levitin, 2005; Wilf et al., 2016), phase scrambling

(e.g., Gazzola et al., 2006; Y. Zhang et al., 2021), frequency scrambling (Barbero et al., 2021; e.g.,

Belin et al., 2002), gammatone filter banks (Minagawa-Kawai et al., 2010; Patterson et al., 1995),

or combinations of methods (Coggan et al., 2016; e.g., Dormal et al., 2018), preserving different

kinds of low-level features of the stimulus. The emerging question is, which method (incl. specific

parameters) shall be used? In some cases, the method of choice might be directly related to the

to-be-preserved stimulus features. However, in other cases, one might investigate which low-level

features elicit the (neural or behavioral) effects of interest.

The aim of the present validation study was to compare different scrambling methods to

create neutrally valenced instances of human non-speech vocalizations (affect bursts). Moreover,

we were interested in how the scrambled versions would be rated in terms of their valence and

whether certain levels of stimulus semantics would be preserved, e.g., if a human voice or/and the

speaker’s gender would be detectable. The two main reasons for this were to a) find stimuli for

experimental tasks (e.g., a gender decision task) other than passive-listening or no-go tasks and b)

investigate potential valence effects of stimuli as a result of the scrambling procedures.

5.2 Method

Participants

Data was collected from 62 participants, of which two were excluded from the following

analysis as they did not differentiate between the original stimuli. The remaining 60 participants

(41 female, 19 male, 0 diverse;Mage = 29.2 years, rangeage = [18; 70]) reported normal or corrected

to normal hearing. Participants were informed about the procedure of the study and data policy,
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and informedwritten consent was obtained. For reimbursement, participants could choose between

course credit or a sound file of a scrambled version of their voice.

Stimuli

Original sound stimuli were short affect bursts, i.e., non-speech vocalizations, of a validated

database, (“Montreal Affective Voices,” Belin et al., 2008). We selected affect bursts of ten dif-

ferent speakers, half of which were female and half male (ID6m, ID42m, ID45f, ID46f, ID53f,

ID55m, ID58f, ID59m, ID60f, and ID61m). From every identity, we included bursts expressing

anger, happiness or a sustained neutral tone. The stimuli were of variable duration, ranging from

0.24 to 2.61 seconds.

Scrambling

We used four different scrambling methods to manipulate the original stimuli: frequency

scrambling, phase scrambling, and two versions of time scrambling. All methods resulted in dif-

ferent acoustic aspects. The amplitude envelope remained similar for the frequency sampling,

whereas all other methods changed the envelope towards a more uniform shape, with more spiky

envelopes for the time-scrambled versions. Frequency and phase scrambling preserved the overall

energy, which was to some degree reduced for the time scrambling due to the implementation of

amplitude ramps (see below). The Python code for the different scrambling methods and scram-

bled versions of the stimuli can be found at https://osf.io/uat6m. An exemplary visualization of the

sound envelopes and frequency spectra of one original and its manipulations are shown in Figure

5.1.

Frequency scrambling. We used an adapted version of the frequency scrambling of (Belin et

al., 2002): after importing the audio files of the original stimuli and normalizing the amplitudes,

we trimmed the array of samples to obtain full-sized windows (1024 samples per window) for

the Fourier transformation. In incremental steps of 512 samples, we used the real fast Fourier

transformation and shuffled the respective frequencies (by shuffling the positions of the Fourier

transformed values) while keeping the amplitude as of the original window. After applying the

inverse fast Fourier transformation, all windows were combined and normalized.

Phase scrambling. The phase scrambling was oriented to the idea by Gazzola et al. (2006). In-

stead of using an arbitrary threshold, we used stimulus-specific frequency thresholds to account for
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gender and valence-specific differences. The median pitch of every stimulus was extracted with

the software Praat (Boersma & Weenink, 2018). Based on descriptions by Belin et al. (2008), we

used a larger pitch analysis range (75 to 2000 Hz) for the pitch extraction to account for female

and male affective bursts. Differently from the frequency scrambling method, after Fourier trans-

formation, frequencies were separated based on the threshold frequency (pitch). We scrambled the

phases of the higher frequencies by power-transforming the amplitudes, taking the arc tangent, and

shuffling the array. The inverse transformed array was then merged with the unshuffled values,

back-transformed into the time domain, and normalized.

Time scrambling. The resolution for temporal differences in human hearing is around 4 ms

(Samelli & Schochat, 2008). Based on this, we cut the normalized sound files into 6 ms (and 12

ms) windows, shuffled them, and added a one ms amplitude ramp at the beginning and end of

each bin to erase crackling noise between recomposed windows. The sound files were normalized

before their export.

Procedure of the validation study

We tested a maximum of ten participants at the same time in a group laboratory. All par-

ticipants were seated in front of separated test cubicals provided with headphones (Beyerdynamic

DT 770 PRO) and laptops (Dell Notebook E5530), all set at a constant, medium volume level.

For the stimulus presentation and ratings, we used the survey tool formR (Arslan et al., 2019).

After general information about the study and after having provided written consent and sociode-

mographic information, participants were presented with an example sound stimulus together with

the respective rating scales. Before starting with the main validation, open questions about the pro-

cedure could be clarified with the experimenter. Participants were instructed to assess the presented

sounds along different dimensions. There was a total of 150 stimuli (10 identities × 3 valences ×
5 manipulations) to be rated by each participant. The stimuli were presented in random order and

in individual trials. The questions and rating scales of the validation study are shown in Figure

5.1. Every trial started with the sound file played once automatically and the question, whether a

human voice was apparent in the audio sample together with a four-point Likert scale, of which

the extremes were labelled with “not at all apparent” (1) to “clearly apparent” (4). Depending on

the response provided in this rating, different follow-up questions were presented. If participants

indicated (1) or (2) in the initial rating concerning the presence of a human voice they judged,

“what effect does the audio example have on you personally?”. If participants rated the presence

of a human voice with (3) or (4), they were asked about the speaker’s gender (“not identifiable”,
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Figure 5.1
Example of the amplitudes (envelope) and the power spectral density of the original stimulus and
scrambled versions.

Notes: A original, angry bursts stimulus of ID46. B Frequency-scrambled version, C phase-
scrambled version with scrambling frequencies above the median pitch of the stimulus. D Time-
scrambling of 12 ms windows, E Time-scrambling of 6 ms windows. Both time-scrambling ver-
sions include amplitude ramps of 1 ms at the beginning and end of each window and thus differed
from the original stimulus also in the overall energy.
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“female”, “male”) and the emotional expression of the voice on a slider with labeled poles (left:

“extremely negative” and right: “extremely positive”; as in Belin et al., 2008). The same response

slider as for the expression rating was shown. Only the poles of the response sliders were shown

and no ticks. However, internally, values were recorded from 0 to 100 in steps of 1. Participants

could listen again to the audio file by clicking on a button presented centrally at the top of the

window. Before submitting ratings and continuing with the next audio sample, answers could be

changed. After responding, it was not possible to return to previous audio samples.

Figure 5.2
Procedure of the valence rating.

Notes: Two example trials of the valence ratings are shown. Auditory stimuli are played automat-
ically at the beginning of a trial. However, participants could listen more often to a stimulus by
clicking on ’listen again’. The first question was always about the identifiability of a human voice
in the stimulus. InA, a participant indicated that no human voice was recognizable. Consequently,
they rated the stimulus on their subjective reaction. However, in B, participants indicated that a
human voice was present in the stimulus. In this case, they were asked whether the speaker’s gen-
der was identifiable and how they would judge the valence of the speaker’s expression. Note that
the slider poles and appearance were the same for both valence ratings, but the questions differed.
After submitting their answers by clicking on ’continue’ participants could not go back to previous
stimuli.
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5.3 Results

Valence ratings. The type of valence rating depended on whether participants detected a human

voice in the sound file. For the original samples, almost all participants detected human voices,

whereas, for the manipulated stimuli, participants varied in terms of the human voice categoriza-

tion, which led to unbalanced group sizes of the ratings and rating types. Panel A of Figure 5.3

shows the mean ratings of the speaker’s expression in case of a detected human voice. Analo-

gously, panel B shows the mean ratings of the participant’s reaction toward the stimulus in case no

human voice was detected in the sample.

Gender classification and accuracy. If participants indicated the presence of a human voice in

a stimulus, they were asked to categorize the speaker’s gender. Accuracy of the gender decision

was highest for the original stimuli, although for female anger and female neutral stimuli, there

existed some uncertainty. Although overall scrambling introduced more uncertainty, more correct

compared to incorrect, and more correct than unsure gender ratings were obtained (see Table 5.1).
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Figure 5.3
Mean valence ratings by rating type, stimulus ID, valence, and manipulation method.

Notes: Expression and reaction ratings are shown separately for every speaker ID (y-axis) and
emotion category. A displays mean valence ratings of stimuli, in which a human voice was de-
tected. Values represent the rated valence of the speaker’s expression. B displays mean valence
ratings of stimuli in which no human voice was detected. Here, valence ratings refer to the partici-
pants’ reported reaction toward the stimulus. Both sliders’ poles included the labels 0 = ’extremely
negative’ and 100 = ’extremely positive’. Error bars show ±1 SE.
As unequal numbers of ratings contributed to the valence rating means, we included dot size as a
proxy for the number of ratings on which the mean was calculated. Smaller dots indicate fewer
ratings, i.e., fewer participants rating the stimulus with regard to the respective rating type (expres-
sion vs. reaction).
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Table 5.1
Accuracy of gender ratings of the voices in case a voice was detected.

Original Phase.Scr Freq.Scr Time12.Scr. Time6.Scr

Valence StimID total corr. wrong unsure total corr. wrong unsure total corr. wrong unsure total corr. wrong unsure total corr. wrong unsure

f45 60 55 5 47 32 2 13 17 13 1 3 9 8 1
f46 58 53 5 21 13 8 12 9 3 8 7 1
f53 60 52 2 6 42 30 3 9 26 21 1 4 15 12 3
f58 57 42 3 12 33 21 1 11 17 16 1 11 9 1 1
f60 59 51 8 43 25 2 16 21 16 5 14 12 2
m42 58 58 52 47 5 1 1 24 17 1 6 20 14 3 3
m55 59 58 1 55 51 4 33 29 4 20 19 1
m59 59 59 47 46 1 20 20 7 5 2
m6 60 60 55 53 2 28 26 2 9 8 1

neutral

m61 60 59 1 55 53 2 21 19 2 14 11 1 2

f45 59 53 1 5 12 5 1 6 12 11 1 7 6 1
f46 60 49 1 10 4 2 2 3 3 1 1
f53 59 47 3 9 8 3 5 7 7 5 4 1
f58 59 42 8 9 25 8 4 13 13 11 2 4 3 1
f60 58 34 12 12 5 2 3 5 2 1 2
m42 58 58 28 18 10 8 5 3 4 1 2 1
m55 59 59 32 29 3 10 10 4 4
m59 59 59 8 4 1 3 12 8 1 3 12 11 1
m6 59 59 3 2 1 5 4 1 2 2

anger

m61 59 59 20 13 7 3 1 2

f45 60 57 1 2 10 5 1 4 3 1 2 7 5 2 1 1
f46 59 58 1 11 10 1 1 1
f53 58 57 1 8 3 1 4 2 2 14 12 2 3 3
f58 59 59 2 1 1 2 2 30 29 1 6 5 1
f60 59 59 1 1 6 3 3 1 1
m42 58 57 1 5 3 2 4 4 13 9 4 1 1
m55 59 59 6 3 3 1 1 5 3 2
m59 59 56 2 1 5 2 3 2 2 7 2 3 2 1 1
m6 59 58 1 5 3 2 4 2 2 7 3 4 1 1

happiness

m61 59 59 5 2 3 4 1 3 3 2 1

Notes: Counts of correct, wrong and unsure answers per stimulus ID, valence and manipulation. Gender classifications were only obtained from participants if they classified a stimulus as entailing
a human voice (total). The maximum number of counts equals the number of participants (N = 60)

116

doi: 10.53846/goediss-9841



Chapter 5

Emotional valence of the scrambled affect bursts. To investigate how the scrambled stimuli

were perceived in terms of their emotional valence, we decided to collapse ratings irrespectively of

whether participants rated their emotional reaction to the voice or whether they rated the valence of

the speakers’ expression (see Figure 5.2), although we are aware that ratings differ in their mean-

ing. Since the original stimuli were almost exclusively rated regarding the valence of the speaker’s

expression, the participant’s personal reaction can not be inferred from these types of ratings. The

opposite applies to the frequency-scrambled stimuli. On the one hand, by collapsing ratings, we

decided on a relatively liberal criterion for being categorized as neutral, e.g., if participants were

unsure about the valence of the speaker’s expression, they might have been more likely to catego-

rize them as neutral. On the other hand, in order for a stimulus to be “truly” neutral, neither the

participant’s reaction toward the stimulus nor the speaker’s expression should be identified as very

negative or positive. Instead of comparing ratings to a fixed point (e.g., the center of the scale), we

compared ratings of all manipulations and valence categories with the original, neutral stimulus

ratings, see Figure 5.4.

Equivalence tests of valence ratings on the scrambled voices. We conducted two one-sided

tests of equivalence for paired samples to test whether the mean of differences between the scram-

bled and original stimuli of neutral valence are statistically equivalent. The hypothesis testing

of this approach is different from normal paired sample tests, in which the null hypothesis states

that the mean of the differences between two samples that are paired is zero. The null hypothesis

of equivalence tests for paired samples states that the mean of differences is outside the equiva-

lence interval (−𝛿, 𝛿), of which 𝛿s have to be chosen a priori. When the null hypotheses H0(1):

𝜇1 − 𝜇2 ≥ 𝛿 and H0(2): 𝜇1 − 𝜇2 ≤ −𝛿 can be rejected, it can be inferred that the mean of the

differences lays within the equivalence interval. Due to the non-normality of the voice ratings, we

used a non-parametric version of the two one-sided test of equivalence for paired samples (NPAR,

Mara & Cribbie, 2012). We chose 𝛿 as the standard deviation of ratings of the original, neutral

burst (𝛿 = 8.63) and compared it to each manipulation and each valence. We estimated 95% non-

parametric bootstrapped confidence intervals (nboot = 10000) around the differences.

Only phase-scrambled versions of neutral affect bursts were equivalent to the original neutral

affect burst ratings (est = 1, CI = [-2.15, 4.35]). No other combination of scrambling method and

original valence could be regarded as equivalent based on the ratings we obtained. Moreover, dif-

ferences were negative throughout manipulations and valences, indicating a shift towards negative

ratings compared to the original, neutral stimuli. The results of the model are shown in Table 5.2.
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Figure 5.4
Scatterplots of individual valence ratings of the scrambled vs. the original stimuli.

Notes: Every dot represents the rating per stimulus ID and participant, where on the x-axis, the
respective manipulated version is plotted against the rating of the unmanipulated, i.e., the original
version on the y-axis. A shows ratings of the frequency scrambled, B of the phase scrambled,
C of the 12 ms time scrambled, and D of the 6 ms time scrambled stimuli. Colors represent the
valence category of the original stimulus. Densities of the valence ratings per valence categories
are displayed at the top and right sides of the scatterplots.
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Table 5.2
Results of the two one-sided equivalent tests for the scrambled stimuli.

Comparison Difference 𝐶𝐼
Freq.Scr neutral -17.55 [-32.95,-11.25]
Freq.Scr anger -15.55 [-26.45, -7.40]
Freq.Scr happiness -6.60 [-17.85, -3.90]
Phase.Scr neutral 1.00 [ -2.15, 4.35]
Phase.Scr anger -8.20 [-13.60, -5.45]

Phase.Scr happiness -15.45 [-18.30,-12.75]
Time12.Scr neutral -14.65 [-18.75,-10.85]
Time12.Scr anger -16.25 [-18.70,-12.05]
Time12.Scr happiness -7.05 [ -9.75, -4.35]
Time6.Scr neutral -18.90 [-21.40,-14.85]

Time6.Scr anger -16.00 [-18.70,-12.00]
Time6.Scr happiness -8.75 [-15.75, -5.25]

Notes:
All stimuli were compared to the ratings on the original
version of neutral stimuli. 𝐶𝐼 = 95% non-parametric boot-
straped confidence intervals.

5.4 Discussion

The present study compared valence ratings for auditory affect bursts and for different types

of their scrambled versions, namely frequency, phase, and two time-scrambling approaches, with

the aim of finding neutralized versions of affective stimuli while preserving some of their low-level

features. All scrambling approaches decreased overall valence differences which were present be-

tween originally happy, neutral and angry affect bursts. However, none of the scrambling methods

used in this study was able to create “neutralized” versions of all stimuli due to differential effects

scrambling methods had on the original valence categories.

In addition to valence ratings, wewere interested in whether stimuli still were perceived as en-

tailing a human voice and gender information depending on the level of distortion of the scrambling

methods. Both the judgments on how human-like the stimulus sounded and about the speaker’s

gender were affected by the scrambling method and by the valence category. Thus, none of the

scrambling methods preserved gender information in all stimuli. Phase scrambled versions of neu-

tral but not happy bursts tended to be rather classified as entailing a voice compared to not entailing

a voice. The rate was also higher for the 12 ms time scrambling as for the 6 ms time scrambling

and overall more pronounced for bursts that were of neutral valence originally. Possibly, this was

due to the monotonous melody of neutral bursts, which did not change with the destruction of the

temporal coherence. Although the frequency scrambling led to the lowest rate of recognizing a

human voice in the stimulus descriptively, of these stimuli, the happy frequency-scrambled bursts
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had the highest rate for detecting a human voice, probably, due to the very characteristic sound

envelope of happy bursts (piecewise melody with many brief pauses in between). We observed

that in cases a human voice was detected, gender information was still preserved to some degree,

although scrambling increased the perceiver’s uncertainty about the speaker’s gender, shown by

the accuracy of gender categorizations.

The applied scrambling methods failed to create truly neutral versions of the affect bursts.

The clear separation between valence categories that was observable for the original stimuli was

diminished but not completely eliminated for the scrambled versions. The largest difference be-

tween valence categories was found for the phase-scrambling. Participants’ reaction ratings of

phase-scrambled versions of originally neutral stimuli were overall closest to the center of the rat-

ing scale, i.e., “neutral” and thus descriptivelymore positive compared to phase-scrambled versions

of happy and angry stimuli (a few participants mentioned that the neutral phase-scrambled stim-

uli sounded like synthesized sounds of a choir). Particularly phase-scrambled versions of happy

bursts were rated descriptively as the most unpleasant of all manipulated happy stimuli. Never-

theless, when testing whether scrambling-valence combinations were equivalent to the original

neutral stimulus category, only the phase-scrambled versions of originally neutral stimuli could be

regarded as equivalent in terms of valence ratings. Moreover, other stimulus properties, such as

gender information, were detected in phase-scrambled neutral stimuli to a higher degree.

Notably, there was a tendency for scrambled stimuli to be rated as more unpleasant than their

original versions. To our knowledge, only a few studies included explicit valence and arousal

ratings of scrambled stimuli. In contrast to our findings, Zhao et al. (2016) presented frequency-

scrambled sounds and reported comparable valence and arousal ratings for scrambled and neutral

sounds, besides that stimuli were rated as meaningless. However, time-scrambled classical music

excerpts in Menon & Levitin (2005) were both rated as less pleasant compared to the original stim-

uli and as rather unpleasant. To detect potential response tendencies, we investigated the whole

rating distributions (Figure 5.4) of the original stimuli and scrambled versions. Several things were

noteworthy: therewas some asymmetry observable for the original stimuli withmore extreme (pos-

itive) valence ratings for happy stimuli, compared to the angry stimuli and neutral, original stimuli

tended to be rated slightly positive. For all scrambling methods and the neutral, original stimuli,

there were inflated ratings for the midpoint of the response scale. Due to the nature of the slider

responses with initial thumb values, the resolution around the center is low, as participants tend

to leave the slider with its default value if it is subjectively close to their (latent) rating. Notably,

frequency-scrambled versions seemed bimodally distributed with a second peak at the negative

end of the rating scale, i.e., some participants rated them as highly unpleasant.
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Implications

Weused explicit valence ratings in our study. Explicit ratings or categorizations can be seen as

the integrated and cumulative outcome of encoding and appraisal processes and do not necessarily

correspond to valence-driven effects at earlier, automatic processing stages (e.g., Hammerschmidt

et al., 2017; Rossi et al., 2017; Roux et al., 2010; Walla et al., 2013; M. Wieser et al., 2006).

Thus, our findings do not suggest that scrambled versions of auditory stimuli should not be used

in investigations of auditory (emotion) processing. However, the assumption of using them as a

neutral control may be flawed and may overshadow emotion effects in processing phases that are

sensitive to general valence or arousal effects. Moreover, it might be problematic to use scrambled

versions as references for differencemeasures (e.g., negative-scrambled vs. positive-scrambled), as

sometimes used in imaging studies. In the case of valence differences between scrambled versions,

the valence effects of interestmight be falsely detected or not detected at all. If it cannot be excluded

that measures of interest are insensitive to valence differences, it might be beneficial to test the

homogeneity of scrambled stimulus responses beforehand.

Based on our findings, the question emerges whether there is a fundamental difference be-

tween visual and auditory scrambling. Visual scrambling methods have been criticized (e.g., Dakin

et al., 2002; Stojanoski & Cusack, 2014) mainly for maintaining or non-maintaining important

low-level features. However, only a few studies included assessments of valence and arousal for

scrambled images, possibly due to the intuitive assumption that without recognizability of affec-

tive stimuli, there would be no valence effects (e.g., Braly et al., 2021). Another important aspect

is that different low-level features might serve as general valence cues for recognizing emotional

stimuli. For example, Delplanque et al. (2007) reported a confound of spatial frequencies and

emotion effects for pictures selected from the IAPS database (Lang et al., 2005). Thus, valence

effects can remain even in the absence (or reduction) of object recognition and even in the case of

earlier processing. For example, arousal and valence of the original stimuli affected mid-latency

event-related potentials (ERPs) and their spatially scrambled versions in Rozenkrants et al. (2007).

In contrast, no valence effects on mid-latency ERPs of spatially-scrambled emotional pictures were

reported by Cano et al. (2009).

This study does not come without its limitations. Due to the choice of different types of

valence rating (i.e., rating the valence of the expression vs. the subjective reaction towards a stim-

ulus), we could not directly compare ratings of all scrambled versions with the original stimuli.

It would have been interesting to test the correlation between the rated valence of the expression

and the personal reaction to the original stimuli (one might find a laughter highly unpleasant and
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accurately classify the speaker’s expression as positive). However, by including the expression

ratings, we identified lower accuracies of the gender classification in some of the original stimuli

and more variability in valence ratings for angry bursts. Thus, these stimuli might be problematic

for certain experimental tasks. As our participants’ age range was larger than the one of the original

validation study by Belin et al. (2008), we checked whether the valence effects were related to the

participants’ age or gender, which was not the case.

Outlook

Different stimulus categories are potentially affected in different ways when being scram-

bled. Social stimuli like faces and voices might form special categories due to their high biological

relevance (e.g., Belin, 2017) and typicality, e.g., faces have been shown to require a higher degree

of scrambling before becoming unrecognizable (Stojanoski & Cusack, 2014). There might be a

modality-specific divergence of scrambling effects between visual and auditory stimuli. Different

from uncanny-valley effects (for a review, see Kätsyri et al., 2015) for only slight modifications of

a facial stimulus (e.g., preserving external facial features but scrambling the eye and/or mouth re-

gion), strongly distorted auditory stimuli potentially becomemore aversive. For example, bursts of

white noise are an effective aversive stimulus in fear-conditioning research (Sperl et al., 2016). The

specific (non-linear) function of valence effects of visual and auditory scrambling is an interesting

field for future research, especially in the context of research with artificial agents (e.g., Meah &

Moore, 2014). A systematic comparison of scrambling methods on various distortion/preservation

levels for social stimuli could help find adequate comparator stimuli and, at the same time, give

insight into which low-level properties are relevant cues for social (re-)cognition and their sub-

domains, including the identification of emotional expression, gender, age, and identity.

Conclusion

Despite their benefits and intuitive use for being used as baseline or reference stimuli, scram-

bled versions of stimuli should be used with caution. The scrambling method should be selected

based on specific hypotheses about which relevant low-level properties should be preserved or

eliminated. If these are unknown, different scrambling methods can be compared. In the present

study, we showed that for the auditory domain, scrambling methods could interact with the un-

derlying stimulus category and produce potentially aversive stimuli. At least for emotion-related

research, valence effects of scrambled stimuli should be explicitly tested and controlled for and

not merely presumed to be “neutral”.
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Additive effects of emotional expression and stimulus size on the perception of genuine

and artificial facial expressions: An ERP study

Abstract

Seeing an angry person in close physical proximity will not only result in a larger retinal

representation of this person but might also increase the motivation for rapid visual processing and

action preparation. The present study examined the effects of stimulus size and emotional expres-

sions on the perception of faces expressing happiness, anger, non-expressive faces, and scrambled

faces. We analyzed event-related potentials (ERPs) and behavioral responses from N = 40 par-

ticipants who performed a naturalness-classification task on genuine or artificially-created facial

expressions. Whereas the difference in accuracy to detect artificial faces for emotional expressions

was modulated by stimulus size, ERPs only showed additive effects of stimulus size and expres-

sion but no interaction with size, unlike previous research on emotional scenes and words. Effects

of size were present in all included ERPs, whereas emotional expressions affected the N170, EPN,

and the LPC, but not the P1, irrespective of size. The present findings suggest that the decoding

of emotional valence in faces can already occur for small stimuli. Supra-additive effects in faces

might require larger size ranges or dynamic stimuli that increase arousal.
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6.1 Introduction

Being approached by a person staring angrily at you requires fast detection, interpretation of

the situation, and prompt response - even more so if the person is already close by. Over decades,

research has accumulated evidence in favor of the preferential processing of emotional facial ex-

pressions compared to neutral expressions (e.g., Bublatzky et al., 2014; Eastwood et al., 2003;

Esteves, Dimberg, et al., 1994; Frischen et al., 2008; for a review, see Schindler & Bublatzky,

2020), likely due to their biological relevance (e.g., Dimberg & Öhman, 1996). However, also

boundary conditions could be identified which moderated the emotion effects, such as task re-

quirements (competing/high demanding tasks, e.g., Rellecke et al., 2012a; Schindler et al., 2020;

Tannert & Rothermund, 2020) or re-appraisal (Bublatzky et al., 2018; e.g., Herbert et al., 2013).

As face perception is strongly context-dependent (for a review, see M. J. Wieser & Brosch, 2012),

also the (perceived) physical distance might modulate how we process faces and their relevance.

The main goal of the present study was to systematically investigate the influence of stimulus size

as a proxy for physical distance on the perception and processing of emotional facial expressions.

To this end, we presented faces with real or manipulated happy, angry, or neutral expressions of

different sizes and implemented a go/no-go task, in which participants decided on the natural-

ness of the emotional expression. Moreover, we included scrambled faces of different sizes as

emotionally-meaningless control stimuli (no-go condition).

There are at least two different ways in which stimulus size can affect the processing of faces:

First, especially early visual processing is affected by several dimensions, such as luminance (Bie-

niek et al., 2013), contrast (Bobak et al., 1987), and spatial frequencies (Zani & Proverbio, 1995),

which can be indirectly also affected by a stimulus’ retinal size (Loftus & Harley, 2005). Thus,

stimuli of the same physical size but at close proximity will result in different visual processing,

irrespective of their semantic meaning. Second, stimulus size correlates with the perceived physi-

cal proximity and distance, at least for stimuli of which the real size is known. The question arises

whether the perception of biologically relevant stimuli, such as faces, would be intensified with in-

creasing stimulus size, resulting in stronger emotion-based effects for emotional facial expressions

compared to neutral expressions. There is some evidence in favor of amodulating effect of physical

proximity. For instance, pictures of emotional and neutral scenes resulted in differences in auto-

nomic responses, depending on the presented picture size (Codispoti & Cesarei, 2007). Similarly,

skin conductance effects were larger between arousing and non-arousing video clips presented on

big compared to small screens (Reeves et al., 1999). Noticeably, only a few studies have inves-

tigated the influence of stimulus size on the neurophysiological processing of emotional stimuli
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using event-related potentials (ERPs) (e.g., words: Bayer et al., 2012; emotional scenes: Cesarei

& Codispoti, 2006; feedback processing: Pfabigan et al., 2015; faces with administered pain: Lo-

moriello et al., 2018; and peripheral looming fearful and neutral faces Martin et al., 2021) and not

all investigated both early and late processing. Bayer et al. (2012) and Cesarei & Codispoti (2006)

reported interactions of stimulus size and valence condition at mid-latency occipito-temporal com-

ponents (for pleasant compared to neutral scenes during 150-300 ms Cesarei & Codispoti, 2006;

for positive and negative compared to neutral words from 340-480 ms Bayer et al., 2012), whereas

both studies did not find interactions between emotion and size at earlier and late processing. In

contrast, the face-sensitive N170 distinctively increased for looming fearful faces, and increased

P3 effects of larger faces in different (administered) pain conditions were reported by Lomoriello

et al. (2018), suggesting that for faces, early and late processing of emotion might be affected by

size.

Particularly for early visual components, which are known to be sensitive to size, evidence

for sensitivity to emotional expressions is inconclusive (Schindler & Bublatzky, 2020), leaving the

question open about potential supra-additive effects of emotion and stimulus size, e.g., emotion

effectsmight only become detectable when the size of a face exceeds a certain threshold. Moreover,

despite the large body of research on emotional face perception, to the best of our knowledge,

a systematic investigation of potential interactions between emotional expressions and the size

of the face presentation is still outstanding. With the present study, we aimed to contribute to a

better understanding of the emotion specificity of commonly reported ERPs in face perception

and to identify one potential reason for the heterogeneous findings of early emotion effects in the

literature.

To investigate the effects of emotion and size on face processing, we tested ERP components

that have been related to the visual processing of faces and facial expressions of emotion: The P1 is

an occipital positivity with a bilateral distribution, usually peaking around 100 ms after the onset of

a visual stimulus. Only a minority of studies reported modulations of the P1 by facial expressions

(e.g., Bublatzky et al., 2014; Foti et al., 2010; Hammerschmidt et al., 2017; Rellecke et al., 2011).

Its sensitivity for size has been reported in studies on the perception of other, more abstract stimuli

(e.g., Busch et al., 2004; Kornmeier et al., 2011). The N170, a negative deflection over occipito-

temporal regions, peaking around 170 ms, has been typically related to face perception due to

its enhancement for faces compared to other objects (Bentin et al., 1996; Rossion et al., 2000).

Emotion-related effects on the EPN, the early posterior negativity, have been reported not only for

faces but also for other stimulus domains (e.g., Bayer & Schacht, 2014; Schacht & Sommer, 2009),

which is why it is generally assumed to reflect selective attention to hedonic and arousing stimuli
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(Schupp et al., 2006). The late positive complex (LPC, sometimes also late positive potential or

LPP) appears to be sensitive to task requirements (e.g., Rellecke et al., 2012a), and emotion effects

have been reported particularly for tasks that involved attending toward the affective content of

stimuli (Schindler & Bublatzky, 2020).

Hypotheses

Overall, we hypothesized that different stages of face processing would be differentially af-

fected by stimulus size, with stronger size effects irrespective of the emotional content in early

processing and size-emotion interactions appearing rather at those processing stages which are

sensitive for relevance detection. Moreover, due to the general task dependency of later process-

ing, we hypothesized that the influence of size would depend on whether its internal representation

is beneficial for the current task goals. Based on the biological relevance hypothesis, all size ×
emotion interactions should result in greater differences between emotional and neutral expressions

in larger faces compared to smaller faces. More specifically, for the P1, we expected main effects

of size with larger peak amplitudes and shorter latencies for larger stimuli (similar to Kornmeier et

al., 2011) and differences between scrambled and intact faces due to the different contrast config-

urations. We were specifically interested in whether emotion effects on the P1 would be present

for large faces, compared to small, to identify a potential reason for the inconclusive findings of

emotion effects on the P1. Regarding the N170, we expected to replicate the face vs. non-face

effect (e.g., Bentin et al., 1996) between intact and scrambled stimuli, which we also tested for

differential modulations by size. As latency effects might carry over from earlier processing, we

expected a latency effect of size on the N170 peak latency but not on amplitude. Moreover, faces

with emotional expressions, especially angry faces, should produce a more pronounced N170 com-

pared to faces with neutral expressions (Schindler & Bublatzky, 2020). In line with Bayer et al.

(2012) and Cesarei & Codispoti (2006), we predicted for theEPNmean amplitude, a main effect of

size, with more negative amplitudes for larger stimuli, a main effect of emotion with more negative

amplitudes for happy and angry compared to neutral faces, and an interaction between emotion and

size with pronounced emotion effects for larger stimuli. In addition, we predicted that intact faces

would result in more negative amplitudes compared to scrambled stimuli. The LPC component

should be modulated by size with larger stimuli leading to larger positive amplitudes. We expected

that the naturalness decision for large faces would be performed with higher motivation, as facial

features were presented with more detail, leading to a sustained motivation of large intact faces.

We also expected a main effect of emotion with larger amplitudes for happy and angry compared to

neutral expressions, as our task required focussing and evaluating the facial expressions, although
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explicit emotional valence was not task-relevant. We have had no directed hypothesis regarding

the influence of stimulus size on response times (RT), as studies were inconclusive regarding the

direction (Busch et al., 2004; Cesarei & Codispoti, 2006). Similarly, emotion effects on RTs seem

to depend on the specific task requirements. A number of studies reported processing advantages

of angry faces, leading to faster responses (e.g., Öhman et al., 2001; Valk et al., 2015), whereas

delayed disengagement from angry faces might result in slower responses (e.g., Eastwood et al.,

2003; Schacht & Sommer, 2009). Regarding emotion, the naturalness decision for neutral faces

should be rather difficult due to only subtle changes to the original stimuli. Thus, we expected

happy faces to be responded to fastest and show the highest accuracy, but we had no clear pre-

diction regarding the differences between neutral and angry faces. Due to the nature of the task,

we did not expect a high rate of false alarms to scrambled images and therefore disregarded no-go

trials for the behavioral data analysis.

6.2 Method

We preregistered this study on https://osf.io/7eyz6.

Participants

Data was analyzed from 40 participants (29 female, 11 male, 0 diverse; Mage= 22.98 years,

SDage= 3.23), our preregistered sample size. Of the originally recorded 43 participants, three

datasets had to be excluded due to excessive artifacts resulting in less than 30 trials per condi-

tion. All participants had a good command of German, were right-handers (according to Oldfield,

1971), and reported no (neuro-) psychiatric disorders. We only included participants with normal

or within plus/minus one diopter corrected-to-normal vision. Participants were recruited through

the department’s participant recruitment database, flyers distributed on campus, postings on social

media (Twitter, Facebook), the online notice board of the university, and the website of the Insti-

tute of Psychology. Participants were reimbursed at an hourly rate (8.50 EUR) for the EEG session

in the lab or course credits.

Stimuli

Faces were selected from the Göttingen Faces Database (Kulke et al., 2017) and the Radboud

Faces Database (Langner et al., 2010). The faces were presented in greyscale on a light grey

background. The face stimuli were edited and combined with a transparency mask that covers the
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hairline, ears, and neck. Of 90 face identities, 45 displayed the original facial expression, whereas

the other 45 (all of which had a neutral expression in their original version) were manipulated

using a generative adversarial network (GAN) to create instances of neutral, angry, and happy

expressions by scaling the intensities of selected action units (see below). Stimuli were presented

in three different sizes at a viewing distance of approximately 78 cm. Measured sizes were for

large stimuli 8.3 × 5.8 cm (6.09 × 4.26 visual degree (vd)), medium stimuli 5.5 × 3.9 cm (4.04

× 2.86 vd), and small stimuli 2.7 × 1.9 cm (1.98 × 1.40 vd). Stimuli had a resolution of 261 ×
353, 172 × 232, and 86 × 116 pixels, respectively. Participants only saw one facial expression

per identity and size. In addition, scrambled versions of a subset of faces were created by shuffling

squares of pixels of the area of the face and adding a mask to account for the “ziggy”-edges. Due to

the different lighting, images differed in terms of their luminance and contrast between databases,

which we could not totally diminish without creating visible artifacts. Also, scrambling made

stimuli slightly brighter despite scrambling within the facial area, probably due to the masking and

edge effects. Quantiles of luminance per group and condition are shown in Figure D2 of Appendix

D. Due to this confound, we refrained from directly comparing the effects of face artificiality but

collapsed fake and real expressions per emotion and stimulus size.

Creating fake expressions. Although we were curious whether participants would be sensitive

to real and manipulated facial expressions, the main reason for creating these stimuli was to have

a larger stimulus set of different identities with comparable attributes. Classic face databases in

neuro/physiological research, which include emotional expressions of the face, often have a limited

number of identities and can not easily be combined due to their big differences in brightness, color,

and contrast. Our study design required a large number of individual faces of different expressions

to avoid memory and transfer effects of seeing the same face in different sizes (e.g., processing

of a small face might be facilitated if one has already seen the same face in a larger version). A

high-quality face database with many different identities is the Göttingen faces database (Kulke et

al., 2017), with the limitation that it only includes faces with neutral expressions. With advances

in the field of computer vision and artificial intelligence, fast and easily accessible applications

for face processing, including facial expressions, have become available. Although they provided

impressive results when manipulating single faces, the obtained results were highly susceptible to

artifacts. Importantly, when including a range of stimuli, it became apparent that facial features

were homogenized, and identities became poorly distinguishable once hair and image background

was removed. Both freely available apps and commercial tools had a further disadvantage, such

that image rights were not cleared. For some tools, image information would be used for the train-
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ing and optimization of the algorithms. Since the licenses of the databases we were interested in

using did not allow the transfer of data to third parties and facial information counts as sensitive

data, we decided for an in-house solution to create happy and angry and neutral(-ized) expressions

from previously non-expressing faces. An illustration of the procedure can be found in Figure

D1 in Appendix D. In the first step, we used OpenFace landmark detections (Baltrusaitis et al.,

2016) to automatically align, rotate and scale faces in an image. Images were then cropped and

downsized to 128 × 128 pixels for the GAN. Expression manipulations were performed using

the publicly available GAN Ganimation-replicate (Pumarola et al., 2018), which includes the pre-

trained model EmotionNet and allows to customize action units intensities (AUs, Baltrusaitis et

al., 2015; Ekman & Friesen, 1978). As the resulting images had a resolution of 128 × 128 pix-

els and contained face distortions, we used a different GAN devoted to restoring and upscaling

small images containing faces and images of low quality, GFPGAN (Wang et al., 2021). Although

preserving crucial identity information in the face, faces appeared a little posterized and “shiny”.

Thus, we also resized faces with real expressions to 128 × 128 pixels and upscaled them with GF-

PGAN to diminish differences due to image restoration. Next, images were scanned for remaining

strong artifacts/distortions, and a subset of identities and expressions were selected. An oval mask

was then applied to all images to exclude extra-facial features, and all stimuli were converted to

greyscale and normalized. To create scrambled versions of images, we used scrambpy (v0.5.0,

GitHub - Snekbeater/Scrambpy, n.d.). We only shuffled chunks of pixels within the facial area to

avoid including pixels from the image background and to keep the amount of bright and dark pixels

constant but still be differentiable from the background. In the last step, images were resized to

the respective small, medium, and large presentation sizes for our study.

Randomization

The stimulus set included 90 different face identities × 3 sizes + 36 scrambled images × 3

sizes. To ensure an equal number of images for each size and no image is presented in different

sizes, we pseudo-randomized the size of each face and scrambled stimulus for each participant at

the beginning of their session. All participants saw all face identities and all scrambled images;

however, one respective stimulus only in one size. Participants performed 7 repetitions of the

respective 90 + 36 = 126 images. For each block of repetitions, the 126 images were shuffled,

resulting in 882 trials for the whole session.
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Procedure

The study was conducted in accordance with the Declaration of Helsinki and approved by

the local ethics committee of the Institute of Psychology at the University of Göttingen. Partici-

pants were fully briefed on the study process (all study steps, compensation, and approximate time

required) at recruitment when signing up and at the beginning of the experimental session. So-

ciodemographic information was obtained when participants signed up for the study to assess their

eligibility, and written informed consent was obtained at the beginning of the experimental session.

Participants were seated in a dimly-lit and electrically shielded room in front of a computer screen

at a distance of approx. 78 cm between eyes and presented face stimuli. To avoid head movements,

participants positioned their chins in a height-adjustable chin rest. The experiment was presented

using functions of PsychoPy (Peirce, 2009) in Python (v2.7). We used PyGaze (v0.6.5, Dalmaijer

et al., 2013) for communication with the eye-tracker. After calibrating the eye-tracker (9-point cal-

ibration), participants were instructed about the task and performed four example trials, on which

they obtained feedback on whether they responded correctly. Participants were instructed at the

beginning that they would see faces with happy, neutral, or angry expressions, of which some

were manipulated, whereas others would be real. We explained that manipulation was performed

with a “neural network”, which could alter the facial expression (i.e., the person depicted might

have shown a different expression at the time the picture was taken). The participant’s task was

to indicate via key press whether the presented face showed a natural or an artificial expression.

In case a pixelated (i.e., scrambled) image was shown, no answers should be given (no-go con-

dition). An illustration of the procedure and example stimuli can be found in Figure 6.1. No

information about how many images were manipulated (50%) or hints about how to detect them

were given. Feedback about correct and wrong answers was not given throughout the main task,

but participants could choose to see their performance in the end. After ensuring that the task was

understood, participants started with the experiment. Behavioral data (response times, hit rate) and

psychophysiological data (electroencephalography (EEG), eye gaze and pupil size) was collected

during the main experiment. A trial started with a black fixation cross presented at the center of

the screen for 0.4 - 0.6 sec. (uniformly distributed). Following that, a face or scrambled stimulus

was presented for 0.2 sec, which was replaced by a white fixation cross displayed until response,

or for 0.2 sec in case of no-go trials. The next trial started after an inter-trial interval of 1.5 - 2.2

sec (uniformly distributed), showing a blank screen. During the main part, after every 100 trials,

there was a break for recovery. Before resuming the task, we re-calibrated the eye-tracker (1-point

calibration/drift correction). The experiment could be paused and resumed, e.g., to fix noisy elec-

trodes. In the end, participants were debriefed about the main aims and background of the study
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(presented on the computer screen) and could ask the experimenters for additional information.

Figure 6.1
Procedure of the naturalness-classification task of the facial expression.

Notes: After a black fixation cross with variable duration, an individual face or scrambled stimulus
is presented in the center of the screen. The different sizes in which stimuli could be presented are
indicated as the coloured ovals (only for illustrational purposes). Size ratios between ovals and
the box correspond to the presented stimuli and the display size of the monitor. The size of the
fixation crosses were increased in this figure for visibility. All exemplary faces show manipulated,
i.e., fake expressions.

EEG recording and processing

Electrophysiological data were recorded with a sampling rate of 512 Hz and a bandwidth of

102.4 Hz using a Biosemi ActiveTwoEEG AD-Box with 128 active electrodes (AgAgCl) mounted

in an electrode cap (Easy Cap™) and the software ActiView. The arrangement was based on the

ABC radial layout electrode positioning. Additionally, six external electrodes were used, one each

for the left and right mastoids, one below and next to the left and right eye. The common mode

sense (CMS) active electrode and as ground electrode the driven right leg (DLR) passive electrode

served as reference electrodes. We determined the time windows and regions of interest (ROIs)

electrodes for the ERP components of interest based on previous studies in the lab (Hammerschmidt

et al., 2017) which is in line with typical ERP studies on emotional face processing (Schindler &

Bublatzky, 2020). We confirmed the time windows and topographical ROIs with pilot data (N=4)

which was not included in the analysis. The following ERPs for the visual (face-locked) com-

ponents were extracted: P1: Peak amplitudes and peak latency, 80-120 ms; occipital electrode

cluster: A8, A9, A10, A15 (O1), A16, A17, A28 (O2), A29, A30, B5, B6, B7; N170: Peak ampli-

tudes and peak latency, 130 - 200 ms; occipitotemporal electrode cluster: D32 (P9), A10 (PO7),
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A11, A12, B10 (P10), B7 (PO8), B8, B9; EPN: mean amplitudes, 250-300 ms; occipito-temporal

cluster: A10 (PO7), A11, A12, A14, A15 (O1), D32 (P9), A24, A25, A26, A27, A28 (O2), B7

(PO8), B8, B9, B10(P10); LPC: mean amplitudes, 400 - 600 ms; occipito-parietal electrode clus-

ter: A4, A19 (Pz), A20, A21 (POz), A5, A32, A18, A31, A17 (PO3), A30 (PO4).

Preprocessing. The continuous EEG was pre-processed offline using functions of EEGLAB

(v2019.0, Delorme & Makeig, 2004) in MATLAB (2018). Event triggers were shifted by a con-

stant of 26 ms to account for the systematic delay of stimulus appearance on the monitor. We

re-referenced data to average, excluding external electrodes. The continuous data was 0.01 Hz

high-pass filtered, and 50 Hz line noise was reduced by using “CleanLine” (v1.04, Mullen, 2012),

an EEGLAB plugin, to remove sinusoidal noise. Then, data was epoched from -500 to 1000 ms

around stimulus onset and corrected to a 200 ms pre-stimulus baseline. For artifact correction, we

performed Independent Component Analysis (ICA) on a 1 Hz high-pass filtered version of the data

and transferred ICA weights on the original 0.01 Hz filtered data. Independent Components were

removed if classified as eye, muscle, or channel noise components with a probability of >90%using

“ICLabel” (v1.2.4, Pion-Tonachini et al., 2017). The remaining noisy channels were interpolated.

We performed trial-wise rejections of epochs trimmed to -200 to 1000ms with rejecting amplitudes

exceeding -100/100 𝜇𝑉 during -200 and 600 ms (avr. 5.3%), steep amplitude changes (>100 𝜇𝑉
within the epoch; avr. 5.9%) and improbable activation (deviation >3 of the mean distribution for

every time point; 0%). For the final subsample of participants, there was an overall mean rejection

rate of 7.8% (range 0.1% - 38.2%) of trials due to these artifact rejection methods. Information

about eye blinks was obtained by analysis of the pupil data and independently applied to exclude

ERP trials with blinks during baseline and time windows of interest. To monitor the pupil size and

gaze, we used a desktop-mounted eye tracker (EyeLink 1000 CL 1 - AAD01, SR Research) and

the corresponding software in version 4.56. We measured pupil size and gaze (in pixels) to detect

blinks and fixation deviations from the target stimulus and included these measures in exploratory

analysis, which is not part of this manuscript.

Statistical analysis

All statistical analysis was conducted in R (v4.0, R Core Team, 2020). To analyze the be-

havioral and ERP data, we used (generalized) linear mixed models and used the maximum like-

lihood (ML) estimator to estimate parameters. Separate models for each response variable (AV)

were conducted. Statical significance was inferred through likelihood ratio tests (LRT), by test-

ing a model against a reduced model which does not include the predictor of interest. In the case
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of significant LRTs, we reported post-hoc contrasts for the difference between the factor levels.

The conventional significance level 𝛼 = 0.05 (two-sided) was applied, and post-hoc tests were

Šid'ak‘-corrected to adjust for multiple comparisons. We inspected the models for potential vari-

ance inflation and model residuals for potential misspecification of the model. Tables of results for

all models, including regression coefficients 𝛽, Standard Errors (SE), 95 % nonparametric boot-

strapped Confidence Intervals (CI), and stability of the coefficients (leave-one(participant)-out),

are included in Appendix D. We preregistered two models for each ERP component of interest: a)

a model including stimulus size (with three levels) × Emotion+Scram (with four levels: scrambled

(reference), happy, angry, neutral) and b) stimulus size (with three levels) × Face+Scram (with two

levels: scrambled (reference), intact faces). However, as the ERPs of scrambled stimuli were very

distinct from all face categories, we dropped this factor in model a) as it is already included in

b) and to not confuse a significant effect of the “Emotion+Scram” factor with differences between

emotion levels. The originally preregistered model with all levels can be found in Appendix D.

Behavioral analysis was only applied to intact stimuli, as scrambled versions were “no-go” condi-

tions. We included correct and incorrect answers and trimmed RTs to an upper threshold of 5000

ms. A skewness-adjusted boxplot method was applied to exclude extreme values separately for

every participant and condition (Hubert &Vandervieren, 2008; “adjbox” function from the R pack-

age “robustbase,” Maechler et al., 2021). RT-model estimation was based on mean responses per

condition and participant. We used a linear mixed model to estimate the RT effects of emotion,

stimulus size, and their interaction and included a random intercept for participant ID. The anal-

ysis of hit rates (accuracy) was exploratory and not a priori preregistered. We conducted a mixed

logistic regression with emotion, stimulus size, and their interaction as fixed effects. In addition

to the random intercept of participant ID, we included random slopes of emotion and stimulus size

to reduce the overdispersion of the model.

6.3 Results

ERP results

Emotion by stimulus size. P1: Mean amplitudes were not modulated by emotion (𝜒2(2) = 3.62,

p = .163) but there was a main effect of stimulus size (𝜒2(2) = 8.83, p = .012), with larger mean

amplitudes for medium and large faces compared to small faces (diffmedium-small = 0.31, p = .028;

difflarge-small = 0.30, p = .038). Medium and large faces did not differ significantly (diffmedium-large
= 0.01, p = .999). There was no interaction between emotion and stimulus size (𝜒2(4) = 2.50, p

= .645). Similarly, peak amplitudes were not modulated by emotion (𝜒2(2) = 4.14, p = .126) but
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by stimulus size (𝜒2(2) = 42.68, p <.001) with larger mean amplitudes for medium and large faces

compared to small faces (diffmedium-small = 0.65, p <.001; difflarge-small = 0.83, p <.001), similarly to

P1 mean amplitudes. Medium and large faces did not differ significantly (diffmedium-large = -0.18, p

= .413) and the interaction between emotion and stimulus size was not significant (𝜒2(4) = 0.82,

p = .935). P1 peak latency showed a main effect of emotion (𝜒2(2) = 6.94, p = .031). However,

adjusted post hoc contrasts showed only a trend for happy faces having shorter latencies compared

to neutral and angry faces (diffhap-ang = -2.08, p = .054; diffhap-neu = -1.89, p = .095). There was a

main effect of stimulus size (𝜒2(2) = 40.24, p <.001) with shorter latencies for large faces compared

to medium (difflarge-medium = -2.23, p .035) and shorter latencies for medium compared to small

faces (diffmedium-small = -3.42, p = <.001). The interaction between emotion and stimulus size was

not significant (𝜒2(4) = 0.52, p = .971).

N170: N170 mean amplitudes were modulated by emotion (𝜒2(2) = 19.78, p <.001), and

by stimulus size (𝜒2(2) = 40.72, p <.001), but not by their interaction (𝜒2(4) = 0.46, p = .977).

Across stimulus sizes, happy and neutral faces (diffhap-neu = -0.41, p = .016), as well as angry and

neutral faces (diffang-neu = -0.65, p <.001) differed significantly, with the emotional expressions

eliciting more pronounced negative amplitudes. Stimulus size was negatively related to ampli-

tude. Small faces elicited more negative amplitudes than medium (diffsmall-medium = -0.52, p =

.001), and medium faces than large faces (diffmedium-large = 0.44, p = .010). Also, peak amplitudes

were modulated by emotion (𝜒2(2) = 30.63, p <.001), and by stimulus size (𝜒2(2) = 11.36, p =

.003), but not by their interaction (𝜒2(4) = 0.93, p = .920). Like mean amplitudes, peak ampli-

tudes differed between happy and neutral faces (diffhap-neu = -0.46, p <.001), and angry and neutral

faces (diffang-neu = -0.67, p <.001), with the emotional expressions eliciting pronounced negative

amplitudes. Regarding stimulus size, peak amplitudes differed only between medium and small

(diffmedium-small = -0.36, p = .010) and between medium and large faces (diffmedium-large = -0.35, p

= .014) but not between large and small faces (difflarge-small = -0.02, p = .999). N170 peak latency

was not modulated by emotion (𝜒2(2) = 3.66, p = .160) but there was a main effect of stimulus size

(𝜒2(2) = 337.03, p <.001) with shorter latencies for large faces compared to medium (difflarge-medium
= -2.41, p <.001) and shorter latencies for medium compared to small faces (diffmedium-small = -8.12,

p <.001). The interaction between emotion and stimulus size was not significant (𝜒2(4) = 2.21, p

= .697).

EPN:There was a main effect of emotion on EPN amplitudes (𝜒2(2) = 29.42, p <.001), with

larger negative amplitudes for happy faces (diffhap-neu = -0.69, p <.001) and angry faces (diffang-neu
= -0.54, p <.001) compared to neutral faces. Amplitudes between happy and angry faces did not

differ significantly (diffhap-ang = -0.15, p = .615). Also stimulus size modulated EPN amplitudes
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Figure 6.2
P1 by emotion and stimulus size.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. B Grand averages of the ROI mean amplitudes and C peak am-
plitudes, and D peak latencies, contrasted for stimulus sizes and all emotion conditions. Errorbars
indicate +/- 1 SE of the mean. E Topographies of the ERP distribution for small faces and pairwise
differences of size levels, averaged over emotion levels. The highlighted channels depict the ROI
channels.
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Figure 6.3
N170 by emotion and stimulus size.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. B Grand averages of the ROI mean amplitudes and C peak am-
plitudes, and D peak latencies, contrasted for stimulus sizes and all emotion conditions. Errorbars
indicate +/- 1 SE of the mean. E Topographies of the ERP distributions. The left column shows
the main effect of emotion, with the topography for neutral expressions, and the pairwise differ-
ences between emotion levels (all averaged over sizes). The right column shows the main effect of
size, with the topography of small faces and pairwise differences of size levels (all averaged over
emotion levels). The highlighted channels depict the ROI channels.
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(𝜒2(2) = 64.14, p <.001). Stimulus size was negatively related to EPN amplitudes with the most

negative amplitudes for small faces, followed by medium and large stimuli (diffmedium-small = 0.60,

p <.001; difflarge-medium = 0.50, p <.001). However, there was no interaction between emotion and

stimulus size (𝜒2(4) = 5.00, p = .287).

LPC: LPC amplitudes were modulated by emotion (𝜒2(2) = 17.32, p <.001) and stimulus size

(𝜒2(2) = 23.90, p <.001). As for the other ERP components, the interaction between emotion and

stimulus size was not significant (𝜒2(4) = 2.20, p = .700). Happy faces elicited larger amplitudes

compared to neutral faces (diffhap-neu = 0.41, p <.001) and angry faces (diffhap-ang = 0.32, p = .006).

Amplitudes between angry and neutral faces did not differ (diffang-neu = 0.09, p = .778). Amplitudes

for small stimuli differed from medium (diffmedium-small = 0.29, p = .016) and large (difflarge-small =

0.50, p <.001), whereas they did not differ between medium and large (diffmedium-large = -0.21, p =

.107).

Face intactness (faces vs. scrambled stimuli) and stimulus size. ERP results of face intactness

(faces vs. scrambled stimuli) and stimulus size are shown in Figure 6.6.

P1: Mean amplitudes differed between faces and scrambled stimuli (𝜒2(1) = 21.42, p <.001),

with smaller amplitudes for faces (diffface-scrb = -0.72). There was also an effect of stimulus size

(𝜒2(2) = 14.03, p <.001), with differences between medium and small, large and small, but not

between medium and large stimuli (diffmedium-small = 0.55, p = .011; difflarge-small = 0.66, p = .002;

diffmedium-large = -0.11, p = .916). The interaction with stimulus size was not significant (𝜒2(2) =

3.80, p = .149). Peak amplitudes were modulated by intactness of the face (𝜒2(1) = 27.55, p <.001),

stimulus size (𝜒2(2) = 44.34, p <.001) and their interaction (𝜒2(2) = 6.84, p = .033). Peak ampli-

tudes differed significantly between face and scrambled stimuli of medium sizes (diffm.face-m.scrb =

-0.88, p = .002) and large sizes (diffl.face-l.scrb = -1.37, p <.001) but not of small sizes (diffs.face-s.scrb =

-0.34, p = .222). Peak latency showed only a trend modulation of the face intactness (𝜒2(1) = 2.92,

p = .087), with longer latencies for faces compared to scrambled stimuli (diffface-scrb = 1.73). There

was a main effect of stimulus size (𝜒2(2) = 37.11, p <.001), analogously to the emotion model. No

interaction between face intactness and size was present (𝜒2(2) = 3.26, p = .196).

N170: N170 mean amplitudes were only significantly modulated by intactness of the face

(𝜒2(1) = 302.79, p <.001), with more pronounced negative amplitudes for intact faces (diffface-scrb
= -6.89). Neither stimulus size (𝜒2(2) = 1.86, p = .395), nor the interaction with intactness was

significant (𝜒2(2) = 3.93, p = .140). However, peak amplitudes were affected both by intactness

(𝜒2(1) = 310.77, p <.001), with more negative amplitudes for intact faces (diffface-scrb = -8.13), and

by stimulus size (𝜒2(2) = 8.01, p = .018). There was a trend for an interaction (𝜒2(2) = 5.38, p =
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Figure 6.4
EPN by emotion and stimulus size.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. B Grand averages of the ROI mean amplitudes contrasted for
stimulus sizes and all emotion conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies
of the ERP distributions. The left column shows the main effect of emotion, with the topography
for neutral expressions, and the pairwise differences between emotion levels (all averaged over
sizes). The right column shows the main effect of size, with the topography of small faces and
pairwise differences of size levels (all averaged over emotion levels). The highlighted channels
depict the ROI channels.
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Figure 6.5
LPC by emotion and stimulus size.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area
displays the ROI time window. B Grand averages of the ROI mean amplitudes contrasted for
stimulus sizes and all emotion conditions. Errorbars indicate +/- 1 SE of the mean. C Topographies
of the ERP distributions. The top row shows the main effect of emotion, with the topography for
neutral expressions, and the pairwise differences between emotion levels (all averaged over sizes).
The bottom row shows the main effect of size, with the topography of small faces and pairwise
differences of size levels (all averaged over emotion levels). The highlighted channels depict the
ROI channels.
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Figure 6.6
ERPs (P1, N170, EPN, and LPC) of scrambled vs. intact faces by stimulus size.

Notes: Grand average ERP time series of the averaged ROI channels. The highlighted areas display
the respective ROI time window. Dotplots show the grand averages, contrasted for stimulus sizes
and all emotion conditions. Errorbars indicate +/- 1 SE of the mean. A left: P1 ERP time series,
right: grand averages of the ROI mean and peak amplitudes and peak latencies. B left: N170 ERP
time series, right: grand averages of the ROI mean and peak amplitudes and peak latencies. C top:
EPN ERP time series, bottom: grand averages of the ROI mean amplitude. D top: LPC ERP time
series, bottom: grand averages of the ROI mean amplitude.
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.068). Post-hoc contrasts showed that the size effect was only apparent within scrambled stimuli,

with differences between medium and small (diffscrb.medium-small = -1.54, p = .010), as well as large

and small stimuli (diffscrb.large-small = -1.67, p = .005) but not between medium and large stimuli

(diffscrb.medium-large = 0.13, p = .967). Within faces, sizes effects were all insignificant (all p >.05).

Similar to P1 peak latencies, N170 peak latencies showed a trend for face intactness (𝜒2(1) =

3.69, p = .055), with longer latencies for intact faces (diffface-scrb = 1.36). However, N170 peak

latency was affected by stimulus size (𝜒2(2) = 104.57, p <.001), with shorter latencies for large

stimuli, compared to medium and medium compared to small stimuli (difflarge-medium = -2.22, p =

.036; diffmedium-small = -7.50, p <.001; difflarge-small = -9.72, p <.001; ). No interaction between face

intactness and size was present (𝜒2(2) = 0.53, p = .766).

EPN: There was a difference between faces and scrambled stimuli for EPN amplitudes (𝜒2(1)

= 156.68, p <.001), with more negative amplitudes for faces (diffface-scrb = -3.40). Also stimulus

size modulated EPN amplitudes (𝜒2(2) = 7.76, p = .021). Stimulus size only differed between large

and small stimuli (difflarge-small = 0.74, p = .022) and there was no interaction between intactness

and stimulus size (𝜒2(2) = 2.52, p = .283).

LPC: LPC amplitudes were only affected by intactness of the face (𝜒2(1) = 184.64, p <.001)

with larger amplitudes for faces compared to scrambled stimuli (diffface-scrb = 3.24). Neither stim-

ulus size (𝜒2(2) = 2.94, p = .230) nor the interaction between intactness and stimulus size were

significant (𝜒2(2) = 0.25, p = .881).

Behavioral outcomes

Descriptively, accuracy was highest for happy expressions, followed by angry and neutral

expressions. Whereas for angry and happy expressions, accuracy increased with stimulus size, for

neutral expressions, it decreased. Responses were descriptively slowest for angry and fastest for

happy expressions. Small stimuli showed the largest variability in RTs between emotion levels.

Figure 6.7 shows accuracy and RT results of the naturalness classification task.

Accuracy. There was a main effect of emotion (𝜒2(2) = 26.90, p <.001) on accuracy, with higher

accuracy for happy compared to angry faces (ORhap/ang = 1.39, p = <.001), and angry compared to

neutral faces (ORang/neu = 1.36, p = <.001). Stimulus size did not affect accuracy (𝜒2(2) = 0.13,

p = .938), but there was a significant emotion × stimulus size interaction (𝜒2(4) = 16.17, p =

.003). Within a stimulus size, accuracy differences were significant between all emotion levels but

it reached only a trend for the difference between small angry and small neutral faces (ORs.ang/s.neu
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Figure 6.7
Accuracy and response times in the naturalness classification task.

Notes: A shows the average accuracy in percent andB the response times in ms. Mean values were
averaged per emotion and stimulus size over participants. Errorbars depict 95% non-parametric
bootstrapped Confidence Intervals.

= 1.2, p = .096).

Response times. Response times were modulated by emotion (𝜒2(2) = 85.57, p <.001) with

happy faces being responded to fastest (esthap = 1002 ms), followed by neutral (estneu = 1032

ms) and angry faces (estang = 1090 ms). All pairwise comparisons between emotion levels were

significant on p < .01 (adjusted) . There was also an effect of stimulus size (𝜒2(2) = 7.37, p = .025)

with large stimuli being significantly slower than medium-sized stimuli (difflarge-medium = 24.14,

p = .025), but not between large and small (difflarge-small = 15.79, p = .230) or medium and small

(diffmedium-small = -8.35, p = .737). The interaction between stimulus size and emotion was not

significant (𝜒2(4) = 5.25, p = .263).

6.4 Discussion

This study investigated the potential influences of stimulus size on the perception of emo-

tional expressions in faces. We presented a large set of faces with angry, happy, or neutral ex-

pressions in three different sizes and tested size, emotion, and interaction effects systematically

on early, mid-latency, and long-latency event-related potentials (ERPs). The experimental task

was to decide about the naturalness of briefly presented faces, of which the expression could be

real or manipulated. We expected general effects of size and emotion on ERP components but

were specifically interested in whether emotion effects would be enhanced with increasing face
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sizes. We found greater differences in accuracy among emotion levels for large images, suggest-

ing, indeed, an interaction of facial expression and stimulus size on how accurate real and artificial

expressions could be detected. However, electrophysiological responses suggested an overall ad-

ditive and not interactive effect of emotion and stimulus size. Whereas stimulus size affected all

ERP components, effects of emotion were observable for the N170, Early Posterior Negativity

(EPN), and Late Positive Complex (LPC). Importantly, for none of the ERP components, the in-

teraction between emotion and stimulus size was significant, at variance with the findings of Bayer

et al. (2012) and Cesarei & Codispoti (2006). However, when aggregating intact faces and com-

paring them with scrambled stimuli, early visual processing was differently affected by stimulus

size, suggesting distinct effects of size on (specific) low-level stimulus properties.

Effects of emotional expression and stimulus size

As we hypothesized, P1 amplitudes were affected by stimulus size, with larger amplitudes

and shorter latencies for larger stimuli, as in (Busch et al., 2004; Kornmeier et al., 2011). However,

emotional expressions of the face did not affect P1 amplitudes, although there was a trend to shorter

peak latencies for faces with happy expressions. The earliest significant emotion effect in our

study was apparent in the N170 component. N170 peak amplitudes were both affected by emotion

and size, but there was no interaction between both. In accordance with our hypotheses, negative

expressions, and to a lesser degree also positive expressions, elicited enhanced negative amplitudes

compared to neutral expressions, adding evidence that facial expressions of anger and threat-related

stimuli (see, e.g., Hammerschmidt, Kagan, et al., 2018; Schindler & Bublatzky, 2020) and to a

lesser degree for happy faces (for a review, see Hinojosa et al., 2015) affect the N170. As N170

peak latencies differed between sizes, possibly as a continuation of earlier processing, the effect

of size on mean amplitudes should be interpreted accordingly. Noticeably, N170 peak amplitudes

weremost pronounced for medium-sized faces across expression levels, suggesting size-invariance

of emotion effects of the N170 but not size-invariance of the N170 in general. Rolls and Baylis

(1986) reported size-invariance for themajority of face-selective neurons in themacaques’ superior

temporal sulcus, but aminority of neurons responded distinctively to retinal angle and absolute size,

for which the authors suggested both contribute to size-invariant recognition of faces, including

descriptors for plausible absolute sizes of faces.

As hypothesized, emotion effects also extended to the EPN component (for a discussion on

the functional distinction between the N170 and EPN, see Rellecke, 2012). However, the EPNwas

modulated by both happy and angry faces (e.g., Hammerschmidt, Kagan, et al., 2018; Sommer et

al., 2013; Wronka &Walentowska, 2011) and did not differ between emotional expressions (Recio
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et al., 2011; cf. Valdés-Conroy et al., 2014). Contrary to our prediction, size did not modulate

emotion effects of the EPN, but there was a general effect of size on the EPN. Noticeably, small

stimuli resulted in enhanced negative amplitudes (cf. Bayer et al., 2012), and descriptively, also the

difference between emotional and neutral expressions was greatest within small stimuli, although

the interactionwas not significant. This was opposite to our prediction about the potential relevance

effect transmitted through size and requires further investigation, particularly because the effects

of size were consistent with our predictions for the other ERPs. In alignment with our predictions,

the LPC was modulated by stimulus size and emotion but not their interaction (similar to Bayer et

al., 2012; Cesarei & Codispoti, 2006). Medium and large stimuli elicited more pronounced LPC

amplitudes than small stimuli when testing across emotion levels, indicating sustained attention

as a function of stimulus size. LPC amplitudes were the largest for happy expressions across all

stimulus sizes. Descriptively, also amplitudes for angry faces were larger than for neutral faces.

However, the difference between neutral and angry faces was not significant, contradicting, in

particular, our prediction about a general negativity bias for anger stimuli (Schacht & Sommer,

2009; Schupp et al., 2004).

Effects of face intactness and stimulus size

We included scrambled versions of faces as control stimuli to estimate whether stimulus size

would differentially affect stimuli of the same retinal size but a different configuration. Throughout

processing, ERPs differed between scrambled and intact faces. P1 mean and peak amplitudes

were larger for scrambled stimuli (see Gliga & Dehaene-Lambertz, 2005; Schindler, Tirloni, et al.,

2021; cf. Herrmann et al., 2004; Schindler, Bruchmann, Gathmann, et al., 2021; Zion-Golumbic &

Bentin, 2006). Probably, this effect occurred due to a reduced perceivable contrast of stimuli due to

the scramblingmethod. However, we alsomeasured a small but systematic difference in luminance

for scrambled images (see Figure D2), which might have contributed to increased P1 amplitudes

(Johannes et al., 1995). Remarkably, P1 peak amplitudes showed an interaction between stimulus

size and face intactness, such that only medium and large scrambled stimuli and faces differed,

but not small versions. A similar effect was found for peak latencies, which were shortest for

large scrambled stimuli and longest for small scrambled and intact stimuli. The random allocation

of pixel chunks in scrambled stimuli reduced particularly low spatial frequencies but increased

medium frequencies (see Figure D3). Although both low and high spatial frequencies have critical

functions in face perception and were shown to be selectively used depending on the current task

(Cesarei & Codispoti ((2013), especially low frequencies have been suspected to affect coarse and

fast initial visual processing (e.g., Bar et al., 2006; Willenbockel et al., 2012). As edge contrasts
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were relatively well preserved in small faces, the low contrast of scrambled stimuli would make

them blend more into the background (individual dark and bright pixels would be perceived as

grey). The well-replicated face-sensitivity effect on the N170 (e.g., Bentin et al., 1996; Herrmann

et al., 2004) was also corroborated by our results that showed enhanced negative amplitudes for

intact faces compared to scrambled stimuli. Also, the EPN differed between scrambled and intact

stimuli, possibly as attention to scrambled faces should drastically decrease as soon as they are

identified as such, as no decision or response was required. The influence of size on the EPN was

similar between intact and scrambled faces, and thus potentially still being affected by low-level

stimulus features (e.g., luminance). Whether the (insignificant) larger effect of size for intact faces

reflected attentional effects of the face or task-specific relevance is unclear. Similar to the findings

of the EPN. Also, the effects of size on the LPC were diminished when collapsing face stimuli

and contrasting them against scrambled stimuli. Inspecting the ERP time series, the size effect

appeared to be most pronounced for all stimuli (before and) at the beginning of the LPC window

and to decrease over time.

Our findings on emotion-related and face-intactness effects should not be seen independently

of the particular task participants performed on the faces. We chose the naturalness-decision task

to motivate the processing of the facial expressions without explicitly deciding about their va-

lence. Since emotion effects on later ERPs have been shown to be task-sensitive (e.g., Rellecke

et al., 2012a), we were interested in detecting emotion effects also when not performing a typical

valence-classification of the expression but still aiming for deeper processing compared to tasks

like passive-viewing or gender-decisions. Behavioral results of the naturalness classification task

revealed both emotional expression and stimulus size effects on response times, as well as an in-

teraction effect of emotion and stimulus size on accuracy. As expected, participants were overall

more accurate when deciding about the artificiality of happy expressions, and their decisions were

also faster than for the other emotion categories, suggesting an overall facilitated information pro-

cessing of relevant facial characteristics, which possibly was also reflected by the LPC amplitudes.

Furthermore, angry stimuli slowed response times, as similarly shown in previous research for neg-

ative or threat-related information where the valence detection was not task-relevant (e.g., Cesarei

& Codispoti, 2006; Eastwood et al., 2003; Schacht & Sommer, 2009; Sommer et al., 2013). How-

ever, it is possible that the slowing of responses was at least partly caused by decision difficulty.

When accounting for both accuracy and response times, angry faces were responded to slowest,

but importantly, accuracy was only slightly above chance level, indicating that participants were

unsure about whether angry expressions were real or artificial. Interestingly, neutral expressions,

for which the decision should have been rather difficult as their difference from the original was
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marginal, overall resulting in below chance accuracy levels.

Stimulus size overall did not affect accuracy, but there was an effect on RTs with slower re-

sponses for large compared to medium-sized stimuli. On average, response times were relatively

slow compared to two-forced choice tasks, e.g., gender or valence classification (e.g., Hammer-

schmidt et al., 2017; Rellecke et al., 2012a). Possibly, participants focussed rather on accuracy

than on speed, trying to detect fake expressions. However, we cannot differentiate whether partic-

ipants actually made use of the higher resolution of facial details in larger stimuli and intentionally

processed the faces longer or whether expressions in small faces were processed more efficiently

due foveal presentation of relevant facial features. There might be an optimal retinal stimulus size

for information extraction in experimental tasks. For example, Busch et al. (2004) reported the

fastest responses to medium-sized stimuli. However, we suspect that speed measures for faces

might be less affected by size due to the relatively high size-invariance for faces compared to less

familiar objects. Nevertheless, our results show that the discriminability of facial expressions was

still sufficient also in small faces.

Because the individual effects of the actual and perceived artificiality of faces (see, e.g.,

Tauscher et al., 2021; Tucciarelli et al., 2022) is beyond the focus of this study but a time-relevant

and interesting research question itself, we planned to investigate and discuss them separately.

However, we will briefly discuss potentially relevant factors that might have contributed to the

present findings: Real and manipulated happy (more than angry and neutral) faces differed in

several dimensions, which participants might have learned to use as discriminative cues over the

course of the experiment. Among these potential cues for being a real face were a) the overall

variability of expression intensities, b) the variability of the mouth region (particularly of teeth,

as the GAN had no information about how the person’s teeth actually look), and eye region with

stronger activation of the orbicularis oculi (cheek raiser) affecting the perceived intensity of the

smile (Gunnery & Ruben, 2015). Expression-unrelated cues were the illumination of the face due

to the different lighting conditions between databases that partly remained in the processed stimuli.

Learning about these cues might have triggered focusing on specific facial features, potentially

biasing not only behavioral responses. For example, LPC effects might have been partly caused

by different processing demands and motivation to integrate indicative facial cues, which was

probably easier for happy and more difficult for neutral expressions.
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Summary and Outlook

We found additive effects of emotion and stimulus size in face-sensitive ERP components,

suggesting that the differential processing of facial expressions of emotion is relatively size-

invariant. Both the face-sensitive N170 and EPN were enhanced for happy and angry compared to

neutral expressions. LPC amplitudes and the accuracy of naturalness classification were greatest

for happy faces. Moreover, stimulus size modulated all ERP amplitudes, with more substantial

effects on early components. However, unlike what studies on interactive effects of stimulus size

and emotional words or scenes predicted, we did not find emotion effects moderated by stimulus

size. At least within the range of sizes, our findings suggest that discriminability between facial

expressions was sufficient to produce typical emotion effects. The inclusion of extremely large

stimuli might lead to higher arousal and stronger emotion effects. However, side effects such

as eye movements are likely to happen and require different, sensible methods. In our study,

there were stronger size effects on scrambled compared to intact faces. The specificity of the

relative size-invariance for faces resembles an interesting target for future research. Moreover,

another approach to test the interactive effects of emotion and physical size might induce perceived

physical proximity through (additional) contextual cues and not exclusively by retinal size. Lastly,

although stimuli were homogenized in some of their low-level features, physical differences in

emotional expressions are inherent to the stimulus (equal stimuli can not simultaneously express

different emotions). However, faces have been shown to elicit emotion-based effects when

associated with hedonic stimuli. Full control over physical stimulus features between valence

categories could be achieved by presenting associated faces in different sizes.
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General Discussion

Psychological research has ever since its beginning aimed at understanding the interplay be-

tween inherent and learned processes, especially in the context of the perception of emotional

stimuli (Cardinal et al., 2002; Gore et al., 2015). Seemingly inconsistent findings on the prior-

itization of emotional cues in social stimuli such as faces and voices (at what processing stage,

for which stimuli/features) have motivated, and will continue to motivate, further research under

which boundary conditions effects of prioritization occur. With this dissertation, I aimed at con-

tributing to the understanding of how emotional relevance shapes learning and retrieval processes

in the perception of two social cues: faces and voices. The studies included in this thesis particu-

larly targeted the questions of whether affective information would be preferentially selected, and

how stimulus-external factors, such as motivation and current goals, influence the learning and

retrieval processes of cross-modally associated faces. In the following discussion, I first present

the extent to which these studies provide evidence for the preferential processing of inherently af-

fective stimuli, such as affect bursts, which served as unconditioned stimuli in Studies 1, 2, and 3,

and emotional expressions of faces in Study 5. In the second section, I review the results on the

acquisition and extinction of valence-based associations and how the task might have influenced

their processing and learning (Studies 1, 2, and 3). In the third section, I present open questions

and suggestions for further research.

The automaticity of processing inherent emotional social stimuli

Several studies have shown differential processing for emotional and neutral stimuli, in visual

search tasks (e.g., Becker et al., 2017), concurrent tasks with emotional distractors (e.g., Deweese

et al., 2016), and even emotion-implicit tasks (e.g., Gutiérrez-Cobo et al., 2019; Rellecke et al.,

2011; Valdés-Conroy et al., 2014; for a review, see Carretié, 2014). Early emotion effects were
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explained by reciprocal projections of sensory regions and the amygdala, such that sensory regions

can be influenced by the amygdala before a cortical representation is completed (LeDoux, 2000;

Vuilleumier et al., 2004). Similar activation of the superior temporal sulcus and amygdala for

emotion-explicit and -implicit tasks suggests that processing of emotion in the auditory domain

might occur involuntarily to some degree (Grandjean et al., 2005; Sander et al., 2005). More-

over, effects of emotion were also found in cross-modal priming (Doi & Shinohara, 2013) and

cross-modal binding studies (Maiworm et al., 2012), which speaks to a rather seamless integra-

tion of emotional information from different modalities. Whereas the majority of studies show

that emotional stimuli can be prioritized under different conditions, there is also evidence that the

effects of emotion are not immune against current task demands and perceptual load (for a re-

view, see Straube et al., 2011). Several studies have been aimed at approaching the threshold for

emotion effects with different tasks and types of distractors (e.g., Lim et al., 2008; Mitchell et al.,

2007; Pessoa, McKenna, et al., 2002; Puls & Rothermund, 2017; Rellecke et al., 2012a; Tannert

& Rothermund, 2020; Victeur et al., 2019) and have tested modality-specific attention effects. For

example, emotion presented in the auditory modality has been shown to be particularly affected by

cross-modally presented distractors (Johnson & Zatorre, 2006), although intra-modal competition

seems generally stronger than cross-modal competition (Zeelenberg & Bocanegra, 2010).

Given the mixed findings on automatic processing in the presence of distracting stimuli or

distracting tasks, in our studies we either circumvented or explicitly addressed this issue by choos-

ing an experimental design, in which all stimuli were consistently relevant for the task (i.e., there

were no intramodal or crossmodal distractor stimuli included). Instead, we manipulated which

property of the stimulus would be task-relevant. In Study 1, we applied an emotion-implicit as-

sociative learning paradigm in which participants had to decide about the gender-congruence of

face-voice pairs. The conditioning procedure encompassed perfect contingency between a specific

face, voice, and correct key to answer. Thus, with learning, faces gained the predictive value of the

answer (gender-matching/mismatching) which made voices gradually obsolete for this decision.

However, by including a go-no/go condition, the processing of the voice was necessary to decide

whether to execute or inhibit a response. During both decisions, the gender matching and response

execution can be considered as emotion-implicit. Yet, the emotion of the bursts modulated the

auditory P2 component (similar to T. Liu, Pinheiro, Zhao, et al., 2012), suggesting an early rele-

vance detection of the burst’s valence (T. Liu, Pinheiro, Deng, et al., 2012; Paulmann et al., 2013;

Sauter & Eimer, 2010; Schirmer et al., 2012; Spreckelmeyer et al., 2009). In contrast, the audi-

tory N1 was not significantly modulated by emotion, indicating that not only low-level stimulus

differences (Pell et al., 2015) elicited the P2 effect of valence. Moreover, pupil dilation during
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learning was larger for neutral (mismatching) face-voice pairs compared to angry face-voice pairs

(cf., Cosme et al., 2021). Potential explanations for the (unexpected) increase in pupil size for the

gender-mismatching face-voice pairs will be discussed separately below. The emotional valence

of the auditory stimuli also influenced the task performance; differences in response times between

emotional and neutral face-voice pairs were present in Study 1 and replicated in a larger sample as

well as in an independent experiment (Study 2). In both studies, happy and angry affect bursts led

to slower responses, suggesting a distraction or impairment of the processing of the task-relevant

information (similar to Schacht & Sommer, 2009).

Taken together, the findings of Studies 1 and 2 suggest that affect bursts attracted attention

independent of the current task goals, i.e., the gender-matching task of the face-voice pairs did not

inhibit emotional processing. To investigate whether the affective processing of the auditory bursts

would be sufficient for the faces’ acquisition of emotional valence, we tested whether responses to

the conditioned faces would show modulations of associated valence in response times in Study 2,

and in face-locked event-related potentials (ERPs) and pupil size both during the acquisition and

extinction phases in Study 1 and during the extinction phase in Study 3.

The automaticity of learning and retrieval of valence associations in social stimuli

The processing of inherent emotional cues can be affected by current task goals. But how

much attention towards the conditioned and unconditioned stimulus (features) is needed to as-

sociate valence to a second stimulus? Studies on implicit conditioning addressed the question

of whether stimulus awareness is even necessary to form associations between the unconditioned

stimulus (US) and the conditioned stimulus (CS) (e.g., Balderston et al., 2014; Balderston &Helm-

stetter, 2010; Schultz & Helmstetter, 2010). In a fear-conditioning study by Balderston et al.

(2014), masked faces (CS) were associated with electric shock in a trace conditioning paradigm

(i.e., without timely overlap between the presentation of the face and the shock). The authors ar-

gued that the amygdala activity triggered by faces might have supported learning, suggesting the

facilitating role of biologically relevant stimuli like faces for learning. Another debated factor in

the literature is contingency awareness, with evidence against the necessity (Brockelmann et al.,

2011; Houwer et al., 1997; Junghöfer et al., 2016; Roesmann et al., 2020; Schultz & Helmstetter,

2010; Steinberg et al., 2012; Steinberg, Bröckelmann, Rehbein, et al., 2013) and evidence speak-

ing against conditioning when fully unaware of the CS-US contingency (Dawson et al., 2007; Hur,

Iordan, Berenbaum, et al., 2016; Marcos & Marcos, 2021; for a review, see Mertens & Engelhard,

2020). Other studies reported associated valence effects when implementing tasks in which the

valence of the US was irrelevant for learning (Abdel Rahman, 2011; Hammerschmidt, Kagan, et
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al., 2018) or retrieval (Bruchmann et al., 2021; Hammerschmidt et al., 2017; Luo et al., 2016;

Pooresmaeili et al., 2014; Rossi et al., 2017). However, it was not only the type of hedonic stimuli

(e.g., monetary reward, person knowledge) but also the temporal course of valence effects that

differed between these studies (early vs. later processing).

In Studies 1 and 2, we investigated whether faces would acquire additional relevance when

conditioned with affect bursts of which the valence was not task-relevant. In both studies we found

effects of emotion for affect burst despite them being task-irrelevant. Little evidence in favor of

automatic valence associations to the faces was shown by the electrophysiological results of Study

1. Neither during learning nor extinction were ERPs modulated by emotion, except for a signifi-

cant interaction between emotion and congruence of the N170 mean (but not peak) amplitudes in

the test session (amplitudes were smaller for neutral mismatching faces, whereas the other condi-

tions showed similar values). This was in contrast to our prediction since we expected effects of

associated valence to occur either independently of the conditioned gender-congruence, or, in the

case of an interaction effect, to be more pronounced in the gender-matching condition, since there

would be less interference by gender-incongruence. A critical question to address is whether our

conditioning paradigm might have failed. Did participants not acquire associations between the

faces and voices?

The overall results from Studies 1 and 2 provide strong evidence against this notion. Partic-

ipants did not only attend to the faces and the voices but also learned about their contingencies.

During learning in Study 1, conditioned gender-congruencemodulated the face-locked Early Poste-

rior Negativity (EPN) and Late Positive Complex (LPC), and there was a trend for a P1 modulation

by gender-congruence during learning. Remarkably, effects of conditioned gender-congruence on

the P1 and EPN were also present during extinction, i.e., on the subsequent day, where only the

face’s gender was task-relevant and no sounds were played. Moreover, response times of the test

session in Exp.2 of Study 2 indicated a behavioral advantage for previously gender-congruent faces.

The increased allocation of attention to gender-related cues would fit into the framework of atten-

tional effects driven by selection history (B. A. Anderson et al., 2021; Failing & Theeuwes, 2017)

and perceptual learning theories (Seitz & Watanabe, 2005). Although gender-related cues were

elements of the presented visual and auditory stimuli (which also entailed valence information),

selection history might have enhanced the discriminatory control over gender-related cues within

the stimulus.

Assuming that this was true, further explanation for the differential processing of gender-

congruent and -incongruent information is required. In Studies 1 and 2, gender-congruent and

-incongruent face-voice pairs were presented equally often, thus an effect of the probability of
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occurrence can be excluded. Nevertheless, behaviorally, gender-matching face-voice pairs might

have resembled the “default” option in the gender-matching task of the face-voice pairs, and thus

responses for “matching” were overall faster compared to mismatching. Studies have shown fa-

cilitated processing of congruent information (e.g., Laeng et al., 2010; Sim et al., 2020) which

is corroborated by the observation that not only gender-congruence but also the emotional con-

gruence of neutral faces and neutral voices facilitated processing during learning, reflected by the

fastest responses for neutral gender-matching face-voice pairs. A further possibility is that gender-

mismatching pairs have not only introduced general interference, but also uncertainty about the

face’s gender, changing the internal representation of the face. This second option might be sup-

ported by the effects in pupil dilation, which was enhanced for neutral gender-mismatching face-

voice pairs. An increase in pupil size was reported for changes to a different representation of a

bistable image, such as a Necker cube (Einhäuser et al., 2008). If gender information was detected

best in neutral face-voice pairs, gender-mismatching voices should produce the strongest represen-

tational changes.

Potential explanations for the null effects of associated valence are as follows. First, the

emotional valence of the affect bursts was not associated to the face because emotional cues did

not attract enough attention. It is possible that while emotional cues sufficed for the momentary

processing of the emotion in the voice, by directing the participant’s attention to the gender infor-

mation, gender-informative cues might have overshadowed the emotional cues in the cross-modal

associations. Stimulus salience is a crucial factor for associative learning (e.g., Bevins, 1997; Brad-

field & McNally, 2008; Odling-Smee, 1975). However, participants might have habituated faster

to the affect bursts (irrespective of their emotional quality) than they would have to more potent and

arousing US, such as electric shock (Glenn et al., 2012) or aversive white-noise bursts (Sperl et al.,

2016). The regulating function of the amygdala on the cortex facilitates highly danger-signaling

stimuli even at less attended spatial locations (J. Armony, 2002; J. L. Armony et al., 1997) or pos-

sibly also in competing tasks. Thus, it is likely that effects of associated valence would be found

with the same paradigm but different stimulus material, such as panicking screams (e.g., Bruch-

mann et al., 2021), making the affective quality of the US relatively more salient over the gender

information. However, highly aversive US are targeting different types of social affective stimuli,

which are not directly comparable to angry or happy bursts that resemble stimuli that people en-

counter on a daily basis.

Second, participants might have learned about the emotional valence of the stimulus but our

selected measures did not capture it. The processing of emotional and social stimuli has been

related to a distributed set of brain regions (e.g., Haxby et al., 2000; Ishai, 2008). Although we
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based our focus of investigation on the most frequently investigated and reported ERPs evoked by

visually presented affective scenes and faces (Schindler & Bublatzky, 2020; Schupp et al., 2006),

there is a high chance that effects of emotion effects were expressed in other areas which were

not captured by the ERPs selected in this project. Nevertheless, with our task and our measures,

typical emotion-related ERPs in face processing were more affected by the task-relevant gender-

congruence condition than by the emotional valence of the voice, suggesting a non-negligible in-

fluence of task-relevance on face processing during learning and extinction.

Third, participants might have learned about the emotional valence of the stimulus but the

associated effects required tasks that activate valence-related memory traces to become measur-

able. A dissociation between learning and performance has been addressed in the comparator

hypothesis (e.g., Blaisdell et al., 1999; Matzel et al., 1985; McConnell et al., 2010), in which the

recovery of a blocked or overshadowed stimulus can retrospectively be achieved by extinguishing

the blocking or overshadowing stimulus. In a similar way, we tested whether a specific task during

retrieval would uncover effects of associated valence, although further excitatory learning about

the stimulus is not possible, i.e., associations would have to be already acquired. To this end, we

conducted Study 3, which also served to exclude the alternative explanation that happy and angry

affect bursts were generally too weak for association and retrieval. In this study, we employed a

different learning paradigm in which participants had to study face-voice pairs with the aim of be-

ing able to match the faces and voices. Although instructions did not prompt participants to focus

on specific stimulus features, they reported categorizing the stimuli into separate gender and emo-

tion levels to better discriminate the face-voice pairs. Moreover, they acquired explicit knowledge

about the valence associations, although not instructed to, reflected by the high accuracy in the

valence-classification task of the test sessions, in which participants had to retrieve the valence of

the previously associated voices. The valence associations were similarly reflected in the likability

ratings of the faces, which clustered in valence categories and less in individual emotion levels.

The explicit knowledge about valence contingencies was accompanied by effects in the EPN

and a trending LPC effect in the explicit valence classification task (similar to Bruchmann et al.,

2021). Importantly, valence effects in the EPN were similarly present in the preceding valence-

implicit (old/new) task, suggesting that, once learned, valence associations in faces could attract

attention, although no focus on valence or emotion was prompted by the task (similar to Abdel

Rahman, 2011; Luo et al., 2016). This might particularly apply to tasks in which no other stimulus

features compete strongly for attention as it is in the old-new task. Notably, our implementation

of the old-new task in Study 3 was comparatively difficult for participants due to the stimulus

material and task-design since only the inner facial features served to distinguish between iden-
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tities and since non-associated (“new”) faces were also repeatedly presented. In contrast, later,

more elaborate processing, as measured in the LPC, seemed to more strongly depend on intention.

This was indicated by substantially larger differences between valence categories in the valence-

classification task (cf. Bruchmann et al., 2021).

Contrary to our prediction, associated valence did not modulate early processing (cf. Aguado

et al., 2012; Hammerschmidt et al., 2017; Muench et al., 2016; Rehbein et al., 2014; Schacht

et al., 2012; Sperl et al., 2021; Steinberg et al., 2012). Unlike in Study 1, in which faces were

repeatedly and systematically conditioned with the US in a similar context, learning in Study 3

showed more variation in individual learning styles, as learning was distributed over days and

contexts and, importantly, appeared to be more explicit since participants invented mnemonics to

study the face-voice pairs. Possibly, the effects of associated valence in Study 3 occurred after

the structural encoding of the face and might have been bound to the recognition of the individual

face. How these differences in learning procedures modulate the effects of perceptual learning and

interact with stimulus potency would be an interesting target for further research, particularly since

already very few conditioning trials in the context of fear conditioning were shown to affect visual

processing at an early stage (e.g., Rehbein et al., 2015; Rehbein et al., 2014).

In summary, we demonstrated that faces can be associated even with stimuli of moderate

intensity if the task focus is not directed to another emotion-independent feature during learn-

ing. The dissociation between valence effects in the EPN and LPC depending on the task show a

multifaceted interplay of task relevance and experience-driven attention for retrieval of associated

valence. Moreover, with extensive training on specific CS-US features, such as face-voice gender-

congruence in Study 1, we potentially identified signs of perceptual learning and selection history.

Superiority of valence-specific information

So far, general effects of valence in comparison with non-expressive (“neutral”) stimuli have

been presented. However, it has not been discussed whether there were differences between non-

expressive stimuli or effects of associated valence that differed between valences. All studies in

this thesis included stimuli of both positive and negative affect (Studies 1, 2, and 4 included happy

and angry affect bursts; Study 3, happiness, elation, anger, and disgust expressing vocal bursts;

Study 5 showed happy and angry facial expressions). However, not all measures were equally

affected by positively and negatively valenced stimuli.

Behavioral differences for angry and happy affect bursts were apparent in response times

of the Studies 1 and 2 during learning, with the slowest responses for happy bursts, largely sta-
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ble throughout the learning sessions, and a steeper learning curve for angry bursts. Although it

is possible that angry bursts were learned faster due to their biological relevance (e.g., Siegman

et al., 1990), the most parsimonious explanation would be that gender information unfolds at dif-

ferent speed in happy and angry affect bursts (compare with emotional unfolding Schaerlaeken &

Grandjean, 2018; cf. Fecteau et al., 2007). This alternative explanation could be excluded with a

replication implementing a task independent of other stimulus features that potentially differ be-

tween bursts. Moreover, in the more flexible learning task of Study 3, positive face-voice pairs

were learned faster than negative face-voice pairs, i.e., they required fewer repetitions to correctly

match faces and voices. A learning bias for positive over neutral or negative outcomes has also

been reported in reward-learning studies (Bayer et al., 2018; e.g., Hammerschmidt, Kulke, et al.,

2018; Hammerschmidt et al., 2017; Kulke et al., 2019; Rossi et al., 2017).

Electrophysiological effects differed for mid- and long latencies between positive and nega-

tive valences. For the affect bursts in Study 1, the auditory P2 (i.e., mid-latency ERP) showed no

difference between happy and angry affect bursts (as in Pell et al., 2015). Similarly to the auditory

modality, both happy and angry facial expressions in Study 5 were enhanced for the face-locked

N170 (Aguado et al., 2012; Bublatzky et al., 2014; Müller-Bardorff et al., 2016; cf. Aguado et

al., 2012; Hammerschmidt, Kagan, et al., 2018) and EPN (e.g., Aguado et al., 2012; Bublatzky et

al., 2014; Calvo & Beltrán, 2013; Kulke et al., 2021; Recio et al., 2014; Rellecke et al., 2012a;

cf. Valdés-Conroy et al., 2014). In contrast, the effects of associated valence on the face-locked

EPN (Study 3) were enhanced for negative associations (similar to Abdel Rahman, 2011; Baum &

Rahman, 2021; Luo et al., 2016; Suess et al., 2014; M. J. Wieser, Gerdes, et al., 2014), but not for

positive associations (cf. Abdel Rahman, 2011). Moreover, in Study 3 associated disgust affected

already the N170, which would require further research on whether this effect is due to the special

role of disgust-related cues or whether it might resemble a potential threat of social exclusion. This

was different for the associated valence effects on the LPC in Study 3, with no differences between

positive and negative associations, whereas the effects of inherent expressions on the LPC in Study

5 were only significantly enlarged for happy facial expressions (cf. Calvo & Beltrán, 2013; Ham-

merschmidt, Kulke, et al., 2018; Schacht & Sommer, 2009). Possibly, the superiority of happy

faces in Study 5 was driven by searching for artifacts in the artificial happy faces.

In sum, faces and voices expressing emotion showed similar effects for positive and negative

valences during mid-latency processing stages but differed at later processing and in the behavioral

measures, possibly due to interactions with the task. In contrast, the effects of associated valence

were more pronounced for negative valences, evident in the N170 and EPN. Since later processing

(LPC) included effects of both valences, we conclude that also positive valence was associated to
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the faces but required intentional retrieval to become effective whereas associated negative infor-

mation was effective irrespective of the task, suggesting a threat-related bias (Dimberg & Öhman,

1996; Esteves, Dimberg, et al., 1994; Esteves, Parra, et al., 1994; Öhman, 2005).

Future directions

Whereas specific limitations have been discussed in the previous chapters, there are also

general limitations of this dissertation. With the experimental approaches implemented, we took

neither amolecular nor amolar perspective on the fundamental research question about the process-

ing of social cues: We tried to aim for high experimental control while at the same time including

complex stimuli such as faces and voices that naturally differ on several dimensions. The choice

of reducing faces to their inner part or even presenting them in greyscale (Study 5) might raise

questions about the generalizability to the naturalistic context in which usually faces and voices

are perceived (but see Schindler et al., 2019 for manipulations of face naturalness). However, the

general mechanism behind prioritization and attention effects are often tested with more controlled

visual and auditory stimuli (e.g., grating patterns and sine waves), which allows for isolating the

processes of interest. By using social stimuli like faces and voices of different identities, the stim-

ulus variability requires relatively large numbers of trials to un-blur the targeted processes, while

increasing the number of trials poses further issues of habituation effects, specifically for affective

content. The biggest challenge might be to find the balance between isolating the processes of

interest through experimental control and at the same time not experimentally eliminating them.

Several follow-up studies might be conceived to address open questions that emerged from

the findings of the presented studies: We observed additive effects of valence and stimulus size on

the processing of inherent facial expressions (Study 5). In contrast, stimuli like emotional words

which at some point acquired valence indicated interaction effects of stimulus size and valence, it

would be interesting to compare size effects in various domains, i.e., with stimuli of inherent and

acquired valence (e.g., words, associated faces, faces with inherent expressions, and scenes).

The main aim of the thesis was to test whether we could associate the valence of affect bursts

cross-modally to faces. In Study 3, we confirmed that affect bursts could be associated to faces

and that faces associated with cross-modal valence showed prioritization also during extinction.

However, to test the comparator hypothesis that also in the emotion-implicit learning task (Studies

1 and 2), valence associations in the face were acquired but not activated due to persistent focus

on gender-information, it would be interesting to replicate Study 1 with the identical learning task

but a test task which is valence specific, e.g., the valence-classification task of Study 3.
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A further remarkable finding was the conditioned gender-congruence effects on early visual

processing in the test session of Study 1. The prioritization of task-relevant features in the face dur-

ing learning was continued in the test session, despite the slightly different task setting. I proposed

that it was the sensory learning that drove the effect, although this would imply that not only a spe-

cific previously trained stimulus or its location can lead to sensory learning but also target-specific

features within one stimulus (such as gender-related cues). It would be interesting to replicate this

effect for other facial features, such as age-related cues.

An open question is to what extent sensory learning is facilitated by biologically relevant

information since it also has been shown in studies with arbitrary stimuli (e.g., Kim & Anderson,

2019). Results from Study 1 indicated that the crossmodal associations of affective bursts were not

sufficient to elicit effects of associated valence during learning and test when valence was task-

irrelevant. Nevertheless, gender information resembles no completely arbitrary feature but can be

regarded as biologically and socially relevant. Contrasting the association of faces with arbitrary

congruent or incongruent information or biologically/socially relevant information might uncover

the domain generality of this learning mechanism.

Furthermore, the relationship between sensory preconditioning and sensory learning would

be an interesting topic for future research to test especially the early effects of acquired valence in

more naturalistic settings, where exactly the same perceptual stimulus configuration of the learning

situation will unlikely occur twice. Research on the generalizability of sensory learning effects in

faces might address issues on the prioritization of identity vs. general stimulus similarity. One

option would be to test to which extent sensory learning generalizes to pre-conditioned alternative

representations of a face (e.g., slightly different lighting, view, etc., cf. Unkelbach et al., 2012) or

only to stimuli that share general perceptual similarity (Haddad et al., 2013; Whalley, 2015).

Conclusion

In this dissertation, I showed how task-relevance and emotional valence interact in the learn-

ing and retrieval of socially relevant stimuli, such as faces and voices, in a multi-method approach

including behavioral and (electro-)physiological measures. The present research provides evidence

for both preferential processing of emotional over neutral information on different time scales,

ranging from early to later processing, and, importantly, that attention effects of emotional infor-

mation are not immune against task requirements. The extensive training of discriminating task-

relevant stimulus features produced effects of perceptual learning that were evident after overnight

consolidation in early visual processing, in line with the proposed selection-history account by B.
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A. Anderson et al. (2011). Furthermore, emotional expressions in the face and voice of both

positive and negative valence impacted the EPN and auditory P2, respectively, indicating pref-

erential processing of biologically prepared and socially relevant stimuli. Moreover, it could be

shown that also non-expressive faces can gain additional relevance when cross-modally associated

with affective vocalizations, with EPN effects for associations of negative valence, irrespective of

whether valence was task-relevant. Since attentional effects of associated valence were tested in a

controlled experimental laboratory setting, I suspect that further empirical examinations in a more

natural and dynamic environment will bring out boosted effects of social relevance, as it has been

shown similarly with dynamic expressions of emotion (e.g., Recio et al., 2011, 2014). In summary,

there is evidence for both the prioritization of inherent emotional expressions and faces having ac-

quired relevance through their association with affective social cues, possibly for resembling an

adaptive mechanism to navigate through the social environment.
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Appendices

A Appendix of Study 1

Momentary affect (PANAS)

Besides the expected main effect of the negative vs. positive affect subscales (𝛽neg = -8.57, SE

= 0.3, t = -28.99, p <.001), we found a trend between learning and test session (𝛽test = -0.57, SE =

0.3, t = -1.92, p = .053)1. Descriptively, there was a small difference of positive affect between pre-

and post-assessment for the learning session (Mpre-post = 2.46). However, none of the interaction

terms reached significance (all p > .05). Experimenters inquired about participants’ mood after

each session, and while there were no noticeable changes for most participants, a few indicated

that concentrating on both, the visual and auditory stimuli during the learning session was more

challenging compared to the purely visual task in the test session. Participants were aware at all

times that they could discontinue the study at any time without receiving any disadvantage.

Table A1
Momentary affect (PANAS) of the learning and test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) 20.16 0.67 29.89 18.86 21.43 19.92 20.40 (Intercept) - - -

prepostr_post-g.m -0.43 0.30 -1.47 -1.04 0.12 -0.52 -0.37 prepostr 2.21 1 .137

affect_negative-g.m -8.57 0.30 -28.99 -9.17 -8.00 -8.77 -8.29 affect 354.75 1 <.001

session_test-g.m -0.57 0.30 -1.92 -1.16 0.03 -0.61 -0.48 session 3.75 1 .053

prepostr_post-g.m:affect_negative-g.m 0.13 0.30 0.44 -0.43 0.71 0.06 0.22 prepostr:affect 0.2 1 .658

prepostr_post-g.m:session_test-g.m 0.31 0.30 1.04 -0.26 0.85 0.24 0.38 prepostr:session 1.12 1 .290

affect_negative-g.m:session_test-g.m 0.00 0.30 -0.01 -0.56 0.57 -0.07 0.17 affect:session 0 1 .989

prepostr_post-g.m:affect_negative-g.m:session_test-g.m -0.24 0.30 -0.81 -0.78 0.33 -0.30 -0.17 prepostr:affect:session 0.67 1 .413

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one participant
at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

1Please note, that for sum.contrast coding the estimates 𝛽 reflect the difference to the group mean (e.g. for affect
with two levels (pos. and neg.) it resembles half of the difference between positive and negative affect)
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Learning session.

Table A2
Statistical results for the response times of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 758.50 28.24 26.86 702.65 812.53 750.05 766.49 (Intercept) - - - -

emotion_happy-g.m 25.63 6.79 3.78 11.65 38.68 23.52 27.45

emotion_angry-g.m -5.66 6.79 -0.83 -18.29 8.05 -8.32 -3.92
emotion 15.49 2 <.001 0.10

congruence_mismatch-g.m 44.97 4.80 9.37 36.06 54.29 42.18 46.63 congruence 71.84 1 <.001 0.57

emotion_happy-g.m:congruence_mismatch-g.m 4.22 6.79 0.62 -9.06 17.61 1.77 6.05

emotion_angry-g.m:congruence_mismatch-g.m -5.83 6.79 -0.86 -19.03 7.63 -8.56 -3.23
emotion:congruence 0.81 2 .667 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one participant
at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A3
Statistical results for the P1 mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 3.77 0.53 7.05 2.72 4.85 3.57 3.96 (Intercept) - - - -

emotion_happy-g.m -0.05 0.07 -0.76 -0.20 0.08 -0.08 -0.01

emotion_angry-g.m -0.09 0.07 -1.19 -0.23 0.05 -0.12 -0.04
emotion 3.91 2 .141 0.02

congruence_mismatch-g.m 0.09 0.05 1.83 -0.01 0.19 0.08 0.11 congruence 3.41 1 .065 0.02

emotion_happy-g.m:congruence_mismatch-g.m 0.04 0.07 0.54 -0.10 0.18 0.02 0.06

emotion_angry-g.m:congruence_mismatch-g.m 0.09 0.07 1.29 -0.05 0.24 0.06 0.12
emotion:congruence 3.6 2 .165 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A4
Statistical results for the P1 peak amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 6.04 0.59 10.30 4.89 7.18 5.82 6.25 (Intercept) - - - -

emotion_happy-g.m -0.08 0.09 -0.90 -0.25 0.09 -0.11 -0.04

emotion_angry-g.m -0.07 0.09 -0.77 -0.25 0.11 -0.10 -0.02
emotion 2.86 2 .239 0.02

congruence_mismatch-g.m 0.05 0.06 0.81 -0.07 0.18 0.03 0.08 congruence 0.68 1 .409 0.00

emotion_happy-g.m:congruence_mismatch-g.m 0.00 0.09 0.05 -0.17 0.20 -0.01 0.04

emotion_angry-g.m:congruence_mismatch-g.m 0.15 0.09 1.70 -0.02 0.33 0.11 0.20
emotion:congruence 4.05 2 .132 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table A5
Statistical results for the N170 mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -5.48 0.57 -9.65 -6.59 -4.41 -5.63 -5.26 (Intercept) - - - -

emotion_happy-g.m 0.09 0.07 1.26 -0.05 0.23 0.07 0.11

emotion_angry-g.m 0.08 0.07 1.12 -0.06 0.23 0.04 0.12
emotion 5.75 2 .057 0.04

congruence_mismatch-g.m 0.08 0.05 1.55 -0.02 0.18 0.06 0.10 congruence 2.47 1 .116 0.02

emotion_happy-g.m:congruence_mismatch-g.m 0.05 0.07 0.66 -0.09 0.19 0.02 0.08

emotion_angry-g.m:congruence_mismatch-g.m -0.12 0.07 -1.58 -0.26 0.03 -0.13 -0.10
emotion:congruence 2.6 2 .273 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A6
Statistical results for the N170 peak amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -10.03 0.80 -12.54 -11.55 -8.44 -10.26 -9.69 (Intercept) - - - -

emotion_happy-g.m 0.11 0.09 1.17 -0.07 0.29 0.08 0.14

emotion_angry-g.m 0.02 0.09 0.20 -0.16 0.21 -0.02 0.07
emotion 2.24 2 .327 0.01

congruence_mismatch-g.m 0.09 0.07 1.41 -0.03 0.23 0.06 0.13 congruence 2.03 1 .155 0.01

emotion_happy-g.m:congruence_mismatch-g.m 0.06 0.09 0.64 -0.13 0.24 0.02 0.09

emotion_angry-g.m:congruence_mismatch-g.m -0.08 0.09 -0.86 -0.27 0.11 -0.12 -0.06
emotion:congruence 0.82 2 .664 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one par-
ticipant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A7
Statistical results for the EPN mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 0.48 0.63 0.76 -0.79 1.75 0.20 0.76 (Intercept) - - - -

emotion_happy-g.m -0.06 0.10 -0.64 -0.25 0.12 -0.10 -0.04

emotion_angry-g.m -0.01 0.10 -0.15 -0.22 0.18 -0.05 0.02
emotion 0.73 2 .693 0.00

congruence_mismatch-g.m 0.19 0.07 2.72 0.06 0.32 0.15 0.21 congruence 7.49 1 .006 0.05

emotion_happy-g.m:congruence_mismatch-g.m 0.00 0.10 0.02 -0.20 0.19 -0.04 0.03

emotion_angry-g.m:congruence_mismatch-g.m -0.10 0.10 -1.05 -0.30 0.08 -0.13 -0.07
emotion:congruence 1.47 2 .480 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A8
Statistical results for the LPC mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 3.03 0.39 7.86 2.29 3.81 2.90 3.16 (Intercept) - - - -

emotion_happy-g.m 0.06 0.09 0.73 -0.10 0.24 0.04 0.10

emotion_angry-g.m -0.07 0.09 -0.82 -0.24 0.10 -0.11 -0.04
emotion 0.84 2 .658 0.01

congruence_mismatch-g.m -0.12 0.06 -2.03 -0.25 -0.01 -0.14 -0.10 congruence 4.21 1 .040 0.03

emotion_happy-g.m:congruence_mismatch-g.m -0.01 0.09 -0.17 -0.19 0.16 -0.04 0.01

emotion_angry-g.m:congruence_mismatch-g.m -0.06 0.09 -0.68 -0.22 0.11 -0.09 -0.03
emotion:congruence 0.84 2 .657 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table A9
Statistical results for the auditory N1 mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.71 0.12 -5.86 -0.92 -0.46 -0.74 -0.66 (Intercept) - - - -

emotion_happy-g.m 0.02 0.04 0.45 -0.06 0.10 0.00 0.03

emotion_angry-g.m 0.05 0.04 1.29 -0.03 0.13 0.04 0.07
emotion 3.35 2 .187 0.02

congruence_mismatch-g.m 0.00 0.03 -0.10 -0.06 0.05 -0.02 0.02 congruence 0.01 1 .918 0.00

emotion_happy-g.m:congruence_mismatch-g.m 0.00 0.04 0.04 -0.08 0.09 -0.01 0.02

emotion_angry-g.m:congruence_mismatch-g.m -0.06 0.04 -1.50 -0.15 0.02 -0.08 -0.04
emotion:congruence 2.98 2 .226 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A10
Statistical results for the auditory P2 mean amplitudes of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1.07 0.21 5.14 0.68 1.47 1.00 1.16 (Intercept) - - - -

emotion_happy-g.m 0.06 0.05 1.27 -0.04 0.15 0.04 0.08

emotion_angry-g.m 0.06 0.05 1.22 -0.03 0.15 0.04 0.08
emotion 6.3 2 .043 0.04

congruence_mismatch-g.m -0.19 0.03 -5.60 -0.26 -0.12 -0.21 -0.18 congruence 29.51 1 <.001 0.20

emotion_happy-g.m:congruence_mismatch-g.m -0.06 0.05 -1.18 -0.15 0.03 -0.08 -0.04

emotion_angry-g.m:congruence_mismatch-g.m 0.03 0.05 0.63 -0.06 0.12 0.01 0.05
emotion:congruence 1.44 2 .486 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A11
Statistical results for the pupil size (constriction) of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -22.38 7.12 -3.14 -36.70 -9.47 -25.09 -18.39 (Intercept) - - - -

emotion_happy-g.m 0.41 1.46 0.28 -2.50 3.44 -0.56 1.00

emotion_angry-g.m -2.58 1.46 -1.77 -5.35 0.17 -3.24 -1.02
emotion 3.69 2 .158 0.02

congruence_mismatch-g.m -2.45 1.03 -2.37 -4.46 -0.44 -2.96 -1.99 congruence 5.7 1 .017 0.04

emotion_happy-g.m:congruence_mismatch-g.m -1.27 1.46 -0.87 -4.16 1.80 -1.86 -0.94

emotion_angry-g.m:congruence_mismatch-g.m -1.17 1.46 -0.80 -4.04 1.53 -1.57 -0.43
emotion:congruence 2.86 2 .240 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A12
Statistical results for the pupil size (dilation) of the learning session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 87.66 14.03 6.25 60.85 113.12 81.52 92.62 (Intercept) - - - -

emotion_happy-g.m 3.02 2.65 1.14 -1.79 8.35 1.50 3.96

emotion_angry-g.m -7.47 2.65 -2.81 -12.64 -2.51 -8.11 -4.79
emotion 8.07 2 .018 0.05

congruence_mismatch-g.m 2.30 1.88 1.23 -1.47 5.94 1.42 3.00 congruence 1.55 1 .214 0.01

emotion_happy-g.m:congruence_mismatch-g.m -2.65 2.65 -1.00 -7.63 2.63 -3.55 -1.74

emotion_angry-g.m:congruence_mismatch-g.m -3.32 2.65 -1.25 -8.48 2.07 -4.10 -2.22
emotion:congruence 5.16 2 .076 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one par-
ticipant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Test session.

Table A13
Statistical results for the response times of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 598.74 9.99 59.93 579.44 620.03 594.99 602.42 (Intercept) - - - -

emotion_happy-g.m -2.58 1.59 -1.62 -5.56 0.63 -3.18 -1.81

emotion_angry-g.m 1.23 1.59 0.77 -1.75 4.43 0.67 1.81
emotion 2.7 2 .259 0.02

congruence_mismatch-g.m 2.51 1.12 2.23 0.40 4.60 1.97 2.98 congruence 5.06 1 .024 0.03

emotion_happy-g.m:congruence_mismatch-g.m -0.01 1.59 -0.01 -3.35 3.03 -0.82 0.44

emotion_angry-g.m:congruence_mismatch-g.m -1.15 1.59 -0.73 -4.24 2.22 -1.70 -0.69
emotion:congruence 0.73 2 .694 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one partici-
pant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A14
Statistical results for the P1 mean amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.14 0.58 8.78 3.93 6.33 4.91 5.36 (Intercept) - - - -

emotion_happy-g.m 0.08 0.08 1.05 -0.06 0.24 0.05 0.12

emotion_angry-g.m -0.13 0.08 -1.61 -0.29 0.02 -0.16 -0.09
emotion 2.73 2 .255 0.02

congruence_mismatch-g.m 0.14 0.06 2.49 0.03 0.24 0.11 0.15 congruence 6.3 1 .012 0.04

emotion_happy-g.m:congruence_mismatch-g.m -0.01 0.08 -0.09 -0.16 0.15 -0.03 0.01

emotion_angry-g.m:congruence_mismatch-g.m 0.02 0.08 0.27 -0.13 0.17 0.00 0.05
emotion:congruence 0.08 2 .963 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A15
Statistical results for the P1 peak amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 7.45 0.63 11.84 6.10 8.57 7.23 7.66 (Intercept) - - - -

emotion_happy-g.m 0.15 0.09 1.59 -0.03 0.32 0.12 0.18

emotion_angry-g.m -0.15 0.09 -1.62 -0.33 0.03 -0.18 -0.11
emotion 3.52 2 .172 0.02

congruence_mismatch-g.m 0.15 0.06 2.33 0.02 0.26 0.12 0.17 congruence 5.52 1 .019 0.04

emotion_happy-g.m:congruence_mismatch-g.m -0.02 0.09 -0.16 -0.18 0.18 -0.04 0.01

emotion_angry-g.m:congruence_mismatch-g.m -0.02 0.09 -0.26 -0.21 0.15 -0.05 0.01
emotion:congruence 0.19 2 .910 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table A16
Statistical results for the N170 mean amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -5.74 0.68 -8.43 -7.03 -4.44 -5.94 -5.44 (Intercept) - - - -

emotion_happy-g.m -0.02 0.06 -0.34 -0.13 0.09 -0.05 0.01

emotion_angry-g.m -0.05 0.06 -0.90 -0.16 0.06 -0.08 -0.02
emotion 1.7 2 .428 0.01

congruence_mismatch-g.m 0.07 0.04 1.61 -0.02 0.15 0.05 0.08 congruence 2.66 1 .103 0.02

emotion_happy-g.m:congruence_mismatch-g.m 0.00 0.06 -0.02 -0.11 0.12 -0.02 0.02

emotion_angry-g.m:congruence_mismatch-g.m -0.12 0.06 -2.13 -0.23 -0.01 -0.14 -0.11
emotion:congruence 6.16 2 .046 0.04

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A17
Statistical results for the N170 peak amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -10.51 0.91 -11.49 -12.47 -8.64 -10.76 -10.04 (Intercept) - - - -

emotion_happy-g.m -0.01 0.07 -0.17 -0.16 0.13 -0.05 0.01

emotion_angry-g.m -0.02 0.07 -0.25 -0.16 0.12 -0.05 0.01
emotion 0.18 2 .914 0.00

congruence_mismatch-g.m 0.05 0.05 0.98 -0.05 0.16 0.04 0.07 congruence 0.98 1 .323 0.01

emotion_happy-g.m:congruence_mismatch-g.m -0.02 0.07 -0.20 -0.16 0.13 -0.03 0.01

emotion_angry-g.m:congruence_mismatch-g.m -0.11 0.07 -1.43 -0.26 0.05 -0.13 -0.08
emotion:congruence 3.25 2 .197 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one par-
ticipant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A18
Statistical results for the EPN mean amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.02 0.72 -0.03 -1.43 1.32 -0.45 0.28 (Intercept) - - - -

emotion_happy-g.m -0.04 0.08 -0.55 -0.19 0.11 -0.07 -0.01

emotion_angry-g.m -0.05 0.08 -0.70 -0.20 0.10 -0.08 -0.03
emotion 1.59 2 .451 0.01

congruence_mismatch-g.m 0.16 0.05 2.98 0.06 0.26 0.14 0.18 congruence 8.91 1 .003 0.06

emotion_happy-g.m:congruence_mismatch-g.m 0.03 0.08 0.45 -0.12 0.19 0.01 0.06

emotion_angry-g.m:congruence_mismatch-g.m -0.12 0.08 -1.60 -0.27 0.03 -0.15 -0.08
emotion:congruence 2.8 2 .247 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A19
Statistical results for the LPC mean amplitudes of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 3.94 0.47 8.33 3.02 4.88 3.76 4.06 (Intercept) - - - -

emotion_happy-g.m 0.01 0.07 0.15 -0.14 0.14 -0.01 0.04

emotion_angry-g.m -0.06 0.07 -0.83 -0.20 0.08 -0.09 -0.03
emotion 0.8 2 .669 0.01

congruence_mismatch-g.m -0.01 0.05 -0.20 -0.11 0.09 -0.05 0.01 congruence 0.04 1 .843 0.00

emotion_happy-g.m:congruence_mismatch-g.m -0.04 0.07 -0.49 -0.18 0.11 -0.07 -0.01

emotion_angry-g.m:congruence_mismatch-g.m 0.13 0.07 1.75 -0.02 0.28 0.10 0.16
emotion:congruence 3.33 2 .189 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table A20
Statistical results for the pupil size (constriction) of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.84 9.68 0.50 -13.75 23.40 1.54 9.80 (Intercept) - - - -

emotion_happy-g.m -0.85 1.18 -0.72 -3.22 1.53 -1.21 -0.57

emotion_angry-g.m -0.29 1.18 -0.25 -2.58 1.98 -0.70 0.15
emotion 1.05 2 .591 0.01

congruence_mismatch-g.m -0.09 0.83 -0.11 -1.70 1.47 -0.37 0.30 congruence 0.01 1 .911 0.00

emotion_happy-g.m:congruence_mismatch-g.m 0.14 1.18 0.12 -2.16 2.41 -0.28 0.66

emotion_angry-g.m:congruence_mismatch-g.m -1.18 1.18 -1.00 -3.53 1.13 -1.84 -0.66
emotion:congruence 1.23 2 .540 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A21
Statistical results for the pupil size (dilation) of the test session

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 34.72 11.75 2.95 10.41 57.85 30.93 39.40 (Intercept) - - - -

emotion_happy-g.m 1.00 2.11 0.47 -3.03 5.20 0.20 1.67

emotion_angry-g.m -1.16 2.11 -0.55 -4.83 3.26 -2.36 -0.39
emotion 0.37 2 .832 0.00

congruence_mismatch-g.m -0.39 1.49 -0.26 -3.12 2.38 -1.11 0.18 congruence 0.07 1 .791 0.00

emotion_happy-g.m:congruence_mismatch-g.m 0.93 2.11 0.44 -3.13 4.92 0.32 2.24

emotion_angry-g.m:congruence_mismatch-g.m -3.69 2.11 -1.75 -7.72 0.65 -4.23 -2.91
emotion:congruence 3.37 2 .185 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table A22
Statistical results of the ordinal mixed model for the likability rating

OR Full model OR Old-New model

emotionangry 1.53 [0.84;2.79]

emotionhappy 0.99 [0.54;1.81]

congruencematch 1.41 [0.75;2.63]

emotionangry:congruencematch 0.91 [0.38;2.17]

emotionhappy:congruencematch 1.21 [0.51;2.91]

oldnewnovel 0.45 [0.31;0.65]

1|2 0.01 [0.01;0.04] 0.01 [0;0.02]

2|3 0.08 [0.04;0.18] 0.06 [0.03;0.12]

3|4 0.42 [0.19;0.9] 0.3 [0.16;0.56]

4|5 1.41 [0.66;3.01] 1.03 [0.55;1.91]

5|6 7.29 [3.33;15.98] 5.6 [2.95;10.61]

6|7 49.75 [20.38;121.47] 35.31 [16.84;74.03]

Note: Model estimates and threshold coefficients in Odds Ratios (OR) of the

ordinal models (left: full emotion × congruence model, right: familiar vs. novel

faces).Brackets indicate the 95% confidence intervals of the OR.
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Exploratory models for ERPs and pupil size over the course of the experiment

To model the possible non-linear learning function over the learning and extinction sessions,

we used P-splines with different bin sizes of averaged trials across the session times (50, 25, 10).

A backward stepwise generalized additive regression of location shape and scale (GAMLSS) was

used to identify possible predictors of the ERP and pupil size outcomes. Each model started with

full interaction model with the three-way-interaction of the fixed effects Emotion×Congruence×
pb(Block) + random(participant). At each step, variables were dropped based on the generalized

Akaike information criterion.

Table A23
EPN learning: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

8829.76 53664.82 53761.29

- emotion:congruence:pb(block) 2.00 1.94 8831.76 53666.77 53759.24

- congruence:pb(block) 1.00 0.35 8832.77 53667.11 53757.58

- emotion:congruence 2.01 3.92 8834.77 53671.04 53757.49

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would be

removed.

Table A24
EPN learning: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) -0.03 (0.26) 0.21 (0.19) -0.07 (0.28) -0.001 (0.17) -0.12 (0.31) 0.04 (0.24)

emotionangry -0.01 (0.37) -0.48 (0.26) 0.02 (0.40) 0.13 (0.19) -0.09 (0.44) -0.32 (0.34)

emotionhappy 0.30 (0.37) -0.09 (0.26) 0.29 (0.40) -0.10 (0.19) 0.38 (0.44) 0.03 (0.34)

congruencemismatch 0.85 (0.37) 0.38 (0.11) 0.89 (0.40) 0.60 (0.19) 0.90 (0.44) 0.59 (0.20)

pb(block) 0.01 (0.009) 0.007 (0.006) 0.03 (0.02) 0.02 (0.008) 0.06 (0.05) 0.04 (0.04)

emotionangry × congruencemismatch -0.94 (0.53) -1.03 (0.56) -0.55 (0.27) -1.00 (0.62) -0.54 (0.29)

emotionhappy × congruencemismatch -0.80 (0.52) -0.64 (0.56) -0.14 (0.27) -0.78 (0.62) -0.08 (0.29)

emotionangry × pb(block) 0.007 (0.01) 0.02 (0.009) 0.008 (0.03) 0.05 (0.07) 0.09 (0.05)

emotionhappy × pb(block) -0.01 (0.01) -0.002 (0.009) -0.03 (0.03) -0.08 (0.07) -0.02 (0.05)

congruencemismatch × pb(block) -0.01 (0.01) -0.02 (0.03) -0.06 (0.07)

emotionangry × congruencemismatch × pb(block) 0.02 (0.02) 0.04 (0.04) 0.08 (0.10)

emotionhappy × congruencemismatch × pb(block) 0.02 (0.02) 0.04 (0.04) 0.13 (0.10)

(Intercept):sigma 1.60 (0.008) 1.60 (0.008) 1.34 (0.01) 1.34 (0.01) 0.94 (0.02) 0.94 (0.02)

Num.Obs. 8878 8878 4706 4706 1914 1914

AIC 53761.3 53757.5 26027.0 26022.4 9115.5 9111.3

BIC 54103.3 54064.0 26337.9 26301.0 9382.1 9361.2

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Note: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model refers

to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Table A25
LPC learning: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

8833.67 54478.08 54566.74

- emotion:congruence:pb(block) 2 1.28 8835.67 54479.36 54564.02

- emotion:congruence 2 1.52 8837.67 54480.87 54561.54

- congruence:pb(block) 1 0.55 8838.67 54481.43 54560.09

- emotion:pb(block) 2 3.82 8840.67 54485.25 54559.91

- emotion 2 0.74 8842.67 54485.99 54556.65

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would

be removed.

Table A26
LPC learning: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) 2.49 (0.27) 2.54 (0.13) 2.48 (0.30) 2.49 (0.14) 2.51 (0.33) 2.75 (0.24)

emotionangry -0.38 (0.39) -0.54 (0.43) -0.68 (0.46) -0.73 (0.33)

emotionhappy 0.28 (0.39) 0.30 (0.42) 0.21 (0.46) -0.15 (0.33)

congruencemismatch 0.21 (0.39) -0.26 (0.11) 0.19 (0.42) -0.27 (0.12) 0.29 (0.46) -0.20 (0.12)

pb(block) 0.02 (0.009) 0.02 (0.004) 0.05 (0.02) 0.05 (0.008) 0.11 (0.05) 0.08 (0.04)

emotionangry × congruencemismatch -0.31 (0.55) -0.12 (0.60) -0.11 (0.65)

emotionhappy × congruencemismatch -0.66 (0.55) -0.72 (0.60) -0.73 (0.65)

emotionangry × pb(block) 0.02 (0.01) 0.04 (0.03) 0.12 (0.07) 0.11 (0.05)

emotionhappy × pb(block) -0.007 (0.01) -0.01 (0.03) -0.03 (0.07) 0.03 (0.05)

congruencemismatch × pb(block) -0.01 (0.01) -0.02 (0.03) -0.06 (0.07)

emotionangry × congruencemismatch × pb(block) -0.0009 (0.02) -0.02 (0.04) -0.03 (0.10)

emotionhappy × congruencemismatch × pb(block) 0.02 (0.02) 0.04 (0.04) 0.10 (0.10)

(Intercept):sigma 1.65 (0.008) 1.65 (0.008) 1.41 (0.01) 1.41 (0.01) 0.99 (0.02) 0.99 (0.02)

Num.Obs. 8878 8878 4706 4706 1914 1914

AIC 54566.7 54556.7 26681.9 26673.0 9300.5 9293.7

BIC 54881.1 54807.2 26967.5 26900.4 9546.0 9511.4

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model

refers to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Table A27
P2 learning: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

9119.83 41558.46 41650.81

- emotion:congruence:pb(block) 1.99 0.95 9121.82 41559.42 41647.78

- congruence:pb(block) 1.00 0.27 9122.82 41559.69 41646.04

- emotion:pb(block) 2.01 2.41 9124.83 41562.10 41644.44

- emotion:congruence 1.99 3.30 9126.81 41565.40 41643.77

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would be

removed.

Table A28
P2 learning: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) 1.06 (0.12) 1.06 (0.07) 1.04 (0.13) 1.02 (0.07) 1.03 (0.15) 1.03 (0.08)

emotionangry 0.19 (0.17) 0.17 (0.06) 0.21 (0.19) 0.20 (0.06) 0.19 (0.21) 0.18 (0.07)

emotionhappy 0.22 (0.17) 0.19 (0.06) 0.23 (0.19) 0.20 (0.06) 0.26 (0.21) 0.17 (0.07)

congruencemismatch -0.26 (0.17) -0.40 (0.05) -0.27 (0.19) -0.39 (0.05) -0.26 (0.21) -0.40 (0.06)

pb(block) 0.002 (0.004) 0.004 (0.002) 0.005 (0.009) 0.009 (0.004) 0.02 (0.02) 0.02 (0.01)

emotionangry × congruencemismatch -0.16 (0.24) -0.16 (0.27) -0.15 (0.30)

emotionhappy × congruencemismatch -0.39 (0.24) -0.37 (0.27) -0.45 (0.30)

emotionangry × pb(block) -0.0007 (0.006) -0.001 (0.01) -0.0001 (0.03)

emotionhappy × pb(block) 0.003 (0.006) 0.004 (0.01) 0.004 (0.03)

congruencemismatch × pb(block) -0.003 (0.006) -0.004 (0.01) -0.01 (0.03)

emotionangry × congruencemismatch × pb(block) 0.006 (0.008) 0.01 (0.02) 0.02 (0.05)

emotionhappy × congruencemismatch × pb(block) 0.008 (0.008) 0.02 (0.02) 0.04 (0.05)

(Intercept):sigma 0.85 (0.007) 0.85 (0.007) 0.59 (0.01) 0.59 (0.01) 0.21 (0.02) 0.21 (0.02)

Num.Obs. 9166 9166 4740 4740 1916 1916

AIC 41650.8 41643.8 19135.2 19126.8 6329.1 6320.5

BIC 41979.7 41922.9 19429.8 19376.1 6575.7 6528.3

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model refers to

a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Table A29
Pupil size (T1) learning: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

9359.83 109977.8 110084.2

- emotion:congruence:pb(block) 2.00 2.17 9361.83 109980.0 110082.3

- emotion:pb(block) 2.00 1.79 9363.83 109981.8 110080.1

- congruence:pb(block) 1.01 0.81 9364.84 109982.6 110078.9

- emotion:congruence 2.00 3.18 9366.84 109985.8 110078.1

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would

be removed.

Table A30
Pupil T1 (learning) GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) -17.30 (4.28) -16.37 (2.30) -17.00 (4.51) -16.66 (2.40) -16.58 (5.00) -16.24 (2.62)

emotionangry -5.38 (6.08) -4.69 (2.11) -5.51 (6.38) -4.29 (2.18) -5.87 (7.06) -4.67 (2.31)

emotionhappy -1.92 (6.05) -1.37 (2.10) -3.06 (6.37) -1.18 (2.18) -3.93 (7.06) -1.56 (2.31)

congruencemismatch -0.91 (6.07) -3.81 (1.72) -2.36 (6.38) -4.13 (1.78) -1.48 (7.08) -3.93 (1.89)

pb(block) -0.11 (0.15) -0.07 (0.06) -0.27 (0.30) -0.14 (0.12) -0.70 (0.81) -0.39 (0.33)

emotionangry × congruencemismatch 4.69 (8.59) 5.91 (9.02) 6.09 (10.00)

emotionhappy × congruencemismatch -5.36 (8.58) -2.98 (9.02) -4.24 (10.00)

emotionangry × pb(block) 0.13 (0.21) 0.30 (0.43) 0.72 (1.14)

emotionhappy × pb(block) 0.16 (0.21) 0.41 (0.43) 1.06 (1.14)

congruencemismatch × pb(block) 0.05 (0.21) 0.18 (0.43) 0.31 (1.14)

emotionangry × congruencemismatch × pb(block) -0.40 (0.29) -0.87 (0.61) -2.11 (1.61)

emotionhappy × congruencemismatch × pb(block) -0.07 (0.29) -0.31 (0.61) -0.49 (1.61)

(Intercept):sigma 4.42 (0.007) 4.42 (0.007) 4.12 (0.01) 4.12 (0.01) 3.72 (0.02) 3.72 (0.02)

Num.Obs. 9413 9413 4773 4773 1916 1916

AIC 110084.2 110078.1 52962.0 52955.6 19788.3 19781.5

BIC 110464.4 110408.1 53298.7 53246.7 20051.9 20006.2

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model refers

to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Table A31
Pupil size (T2) learning: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

9390.52 120677.5 120770.5

- emotion:congruence:pb(block) 2 2.71 9392.51 120680.2 120769.2

- emotion:pb(block) 2 3.95 9394.52 120684.2 120769.2

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would

be removed.

Table A32
Pupil T2 (learning) GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) 137.11 (7.45) 135.92 (5.23) 138.03 (8.02) 136.05 (5.61) 140.56 (9.15) 136.50 (7.86)

emotionangry -5.24 (10.55) -5.11 (5.16) -5.18 (11.33) -3.43 (5.48) -4.48 (12.92) 6.93 (10.07)

emotionhappy 5.37 (10.51) 8.81 (5.16) 5.72 (11.32) 9.88 (5.47) 3.17 (12.92) 3.89 (10.07)

congruencemismatch 17.99 (10.53) 24.53 (7.40) 17.20 (11.34) 25.11 (7.93) 18.79 (12.94) 26.89 (8.93)

pb(block) -1.82 (0.25) -1.77 (0.15) -3.70 (0.54) -3.55 (0.31) -9.16 (1.47) -8.42 (1.20)

emotionangry × congruencemismatch 2.49 (14.91) -16.48 (7.31) 3.64 (16.03) -17.60 (7.75) 5.17 (18.28) -17.70 (8.46)

emotionhappy × congruencemismatch -18.19 (14.87) -18.99 (7.29) -17.49 (16.02) -19.94 (7.75) -18.80 (18.28) -20.23 (8.46)

emotionangry × pb(block) 0.005 (0.36) 0.13 (0.76) 0.05 (2.08) -2.02 (1.47)

emotionhappy × pb(block) 0.13 (0.36) 0.32 (0.76) 1.13 (2.08) 1.00 (1.47)

congruencemismatch × pb(block) -0.11 (0.36) -0.36 (0.21) -0.11 (0.76) -0.72 (0.44) -0.53 (2.08) -2.00 (1.20)

emotionangry × congruencemismatch × pb(block) -0.74 (0.51) -1.63 (1.08) -4.15 (2.94)

emotionhappy × congruencemismatch × pb(block) -0.03 (0.51) -0.19 (1.08) -0.26 (2.94)

(Intercept):sigma 4.97 (0.007) 4.98 (0.007) 4.69 (0.01) 4.69 (0.01) 4.32 (0.02) 4.32 (0.02)

Num.Obs. 9437 9437 4775 4775 1916 1916

AIC 120770.5 120769.2 58465.1 58462.9 22098.5 22097.0

BIC 121103.0 121073.0 58764.1 58736.0 22353.5 22340.8

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model refers to a

model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Figure A1
EPN amplitudes by block bins: Learning.

Notes: Face-locked EPN over the course of the learning session. The curves in the panels A-C
represent the fitted values of the full- GAMLSS model. ADots represent the grand averages in 𝜇V
per repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages
in 𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages
in 𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over
the whole learning session. Dots represent the grand averages per condition.
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Figure A2
LPC amplitudes by block bins: Learning.

Notes: Face-locked LPC over the course of the learning session. The curves in the panels A-C
represent the fitted values of the full- GAMLSS model. ADots represent the grand averages in 𝜇V
per repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages
in 𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages
in 𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over
the whole learning session. Dots represent the grand averages per condition.
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Figure A3
P2 amplitudes by block bins: Learning.

Notes: Voice-locked P2 over the course of the learning session. The curves in the panels A-C
represent the fitted values of the full- GAMLSS model. ADots represent the grand averages in 𝜇V
per repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages
in 𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages
in 𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over
the whole learning session. Dots represent the grand averages per condition.
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Figure A4
Pupil size (constriction) by block bins: Learning.

Notes: Pupilsize T1 (Constriction)over the course of the learning session. The curves in the panels
A-C represent the fitted values of the full- GAMLSS model. A Dots represent the grand averages
in pixel per repetition block (50 bins) of each stimulus and condition. B Dots represent the grand
averages in pixel of two repetition blocks each (25 bins) and condition. C Dots represent the
grand averages inpixel of five repetition blocks each (10 bins) and condition. DMean amplitudes
averaged over the whole learning session. Dots represent the grand averages per condition.
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Figure A5
Pupil size (dilation) by block bins: Learning.

Notes: Pupilsize T2 (Dilation)over the course of the learning session. The curves in the panels
A-C represent the fitted values of the full- GAMLSS model. A Dots represent the grand averages
in pixel per repetition block (50 bins) of each stimulus and condition. B Dots represent the grand
averages in pixel of two repetition blocks each (25 bins) and condition. C Dots represent the
grand averages inpixel of five repetition blocks each (10 bins) and condition. DMean amplitudes
averaged over the whole learning session. Dots represent the grand averages per condition.
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Table A33
P1 mean amplitudes test: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

8952.28 54865.56 54955

Note: Themodel selection started with the full model and

dropped each term unitl the smalles GAIC value was reached.

Each line shows model properties if this predictor would be

removed.

Table A34
P1 mean amplitudes test: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) 4.64 (0.27) 4.64 (0.27) 4.64 (0.28) 4.64 (0.28) 4.70 (0.29) 4.70 (0.29)

emotionangry -0.07 (0.38) -0.07 (0.38) -0.03 (0.40) -0.03 (0.40) -0.11 (0.41) -0.11 (0.41)

emotionhappy 0.51 (0.38) 0.51 (0.38) 0.59 (0.40) 0.59 (0.40) 0.59 (0.41) 0.59 (0.41)

congruencemismatch 0.84 (0.38) 0.84 (0.38) 0.97 (0.40) 0.97 (0.40) 0.80 (0.41) 0.80 (0.41)

pb(block) 0.02 (0.009) 0.02 (0.009) 0.04 (0.02) 0.04 (0.02) 0.07 (0.05) 0.07 (0.05)

emotionangry × congruencemismatch -0.33 (0.54) -0.33 (0.54) -0.50 (0.56) -0.50 (0.56) -0.38 (0.58) -0.38 (0.58)

emotionhappy × congruencemismatch -1.04 (0.54) -1.04 (0.54) -1.28 (0.56) -1.28 (0.56) -1.17 (0.58) -1.17 (0.58)

emotionangry × pb(block) -0.004 (0.01) -0.004 (0.01) -0.009 (0.03) -0.009 (0.03) -0.02 (0.07) -0.02 (0.07)

emotionhappy × pb(block) -0.02 (0.01) -0.02 (0.01) -0.04 (0.03) -0.04 (0.03) -0.09 (0.07) -0.09 (0.07)

congruencemismatch × pb(block) -0.02 (0.01) -0.02 (0.01) -0.06 (0.03) -0.06 (0.03) -0.11 (0.07) -0.11 (0.07)

emotionangry × congruencemismatch × pb(block) 0.01 (0.02) 0.01 (0.02) 0.03 (0.04) 0.03 (0.04) 0.07 (0.09) 0.07 (0.09)

emotionhappy × congruencemismatch × pb(block) 0.04 (0.02) 0.04 (0.02) 0.09 (0.04) 0.09 (0.04) 0.20 (0.09) 0.20 (0.09)

(Intercept):sigma 1.63 (0.007) 1.63 (0.007) 1.34 (0.01) 1.34 (0.01) 0.88 (0.02) 0.88 (0.02)

Num.Obs. 8997 8997 4733 4733 1915 1915

AIC 54955.0 54955.0 26210.3 26210.3 8879.1 8879.1

BIC 55272.7 55272.7 26499.1 26499.1 9127.5 9127.5

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model

refers to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.

Table A35
N170 mean amplitudes test: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

8948.38 51881.01 51978.24

Note: The model selection started with the full model and

dropped each term unitl the smalles GAIC value was reached.

Each line shows model properties if this predictor would be re-

moved.
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Table A36
N170 mean amplitudes test: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) -6.14 (0.23) -6.14 (0.23) -6.19 (0.24) -6.19 (0.24) -6.13 (0.26) -6.13 (0.26)

emotionangry 0.66 (0.32) 0.66 (0.32) 0.71 (0.34) 0.71 (0.34) 0.73 (0.37) 0.73 (0.37)

emotionhappy 0.41 (0.32) 0.41 (0.32) 0.48 (0.34) 0.48 (0.34) 0.53 (0.37) 0.53 (0.37)

congruencemismatch 0.85 (0.32) 0.85 (0.32) 0.96 (0.34) 0.96 (0.34) 0.88 (0.37) 0.88 (0.37)

pb(block) 0.009 (0.008) 0.009 (0.008) 0.02 (0.02) 0.02 (0.02) 0.04 (0.04) 0.04 (0.04)

emotionangry × congruencemismatch -1.25 (0.46) -1.25 (0.46) -1.30 (0.48) -1.30 (0.48) -1.15 (0.52) -1.15 (0.52)

emotionhappy × congruencemismatch -1.37 (0.46) -1.37 (0.46) -1.56 (0.48) -1.56 (0.48) -1.53 (0.52) -1.53 (0.52)

emotionangry × pb(block) -0.02 (0.01) -0.02 (0.01) -0.04 (0.02) -0.04 (0.02) -0.09 (0.06) -0.09 (0.06)

emotionhappy × pb(block) -0.01 (0.01) -0.01 (0.01) -0.03 (0.02) -0.03 (0.02) -0.07 (0.06) -0.07 (0.06)

congruencemismatch × pb(block) -0.01 (0.01) -0.01 (0.01) -0.04 (0.02) -0.04 (0.02) -0.07 (0.06) -0.07 (0.06)

emotionangry × congruencemismatch × pb(block) 0.02 (0.02) 0.02 (0.02) 0.04 (0.03) 0.04 (0.03) 0.08 (0.08) 0.08 (0.08)

emotionhappy × congruencemismatch × pb(block) 0.04 (0.02) 0.04 (0.02) 0.09 (0.03) 0.09 (0.03) 0.21 (0.08) 0.21 (0.08)

(Intercept):sigma 1.46 (0.007) 1.46 (0.007) 1.17 (0.01) 1.17 (0.01) 0.77 (0.02) 0.77 (0.02)

Num.Obs. 8997 8997 4733 4733 1915 1915

AIC 51978.2 51978.2 24604.9 24604.9 8467.7 8467.7

BIC 52323.7 52323.7 24917.5 24917.5 8735.9 8735.9

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model

refers to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.

Table A37
EPN mean amplitudes test: Stepwise model selection of the GAMLSS model including 50 blocks

Step Df Deviance Resid. Df Resid. Dev AIC

8948.86 54050.90 54147.19

- emotion:congruence:pb(block) 2 1.73 8950.86 54052.63 54144.92

- emotion:pb(block) 2 0.63 8952.85 54053.25 54141.55

- congruence:pb(block) 1 0.36 8953.86 54053.62 54139.91

Note: The model selection started with the full model and dropped each term unitl the

smalles GAIC value was reached. Each line shows model properties if this predictor would

be removed.
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Table A38
EPN mean amplitudes test: GAMLSS model results for different block bin sizes

Full mod 50 Red mod 50 Full mod 25 Red mod 25 Full mod 10 Red mod 10

(Intercept) 0.05 (0.26) 0.11 (0.16) -0.07 (0.27) 0.11 (0.16) 0.11 (0.30) 0.18 (0.17)

emotionangry 0.34 (0.36) 0.07 (0.18) 0.55 (0.38) 0.11 (0.18) 0.43 (0.42) 0.13 (0.19)

emotionhappy -0.01 (0.37) -0.11 (0.18) 0.17 (0.38) -0.09 (0.18) 0.13 (0.42) -0.05 (0.19)

congruencemismatch 0.82 (0.36) 0.59 (0.18) 0.96 (0.38) 0.62 (0.18) 0.79 (0.42) 0.60 (0.19)

pb(block) -0.009 (0.009) -0.01 (0.004) -0.01 (0.02) -0.03 (0.007) -0.06 (0.05) -0.07 (0.02)

emotionangry × congruencemismatch -1.14 (0.52) -0.61 (0.25) -1.35 (0.54) -0.67 (0.26) -1.24 (0.59) -0.68 (0.27)

emotionhappy × congruencemismatch -0.66 (0.52) -0.17 (0.25) -0.85 (0.54) -0.21 (0.26) -0.73 (0.59) -0.21 (0.27)

emotionangry × pb(block) -0.01 (0.01) -0.03 (0.03) -0.05 (0.07)

emotionhappy × pb(block) -0.004 (0.01) -0.02 (0.03) -0.03 (0.07)

congruencemismatch × pb(block) -0.009 (0.01) -0.03 (0.03) -0.03 (0.07)

emotionangry × congruencemismatch × pb(block) 0.02 (0.02) 0.05 (0.04) 0.10 (0.10)

emotionhappy × congruencemismatch × pb(block) 0.02 (0.02) 0.05 (0.04) 0.09 (0.10)

(Intercept):sigma 1.58 (0.007) 1.59 (0.007) 1.30 (0.01) 1.30 (0.01) 0.89 (0.02) 0.89 (0.02)

Num.Obs. 8997 8997 4733 4733 1915 1915

AIC 54147.2 54139.9 25812.8 25806.1 8943.1 8935.4

BIC 54489.2 54446.4 26123.3 26084.3 9209.1 9173.6

RMSE 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Model estimates (standard errors) of the gamlss models for different bin sizes of blocks of the experimental session. The full model

refers to a model including all main effects and interactions and the reduced model to the model with the lowest GAIC.
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Figure A6
P1 amplitudes by block bins: Test.

Notes: Face-locked P1 over the course of the test session. The curves in the panels A-C represent
the fitted values of the full- GAMLSS model. A Dots represent the grand averages in 𝜇V per
repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages in
𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages in
𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over the
whole test session. Dots represent the grand averages per condition.
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Figure A7
N170 amplitudes by block bins: Test.

Notes: Face-locked N170 over the course of the test session. The curves in the panels A-C repre-
sent the fitted values of the full- GAMLSS model. A Dots represent the grand averages in 𝜇V per
repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages in
𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages in
𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over the
whole test session. Dots represent the grand averages per condition.
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Figure A8
EPN amplitudes by block bins: Test.

Notes: Face-locked EPN over the course of the test session. The curves in the panelsA-C represent
the fitted values of the full- GAMLSS model. A Dots represent the grand averages in 𝜇V per
repetition block (50 bins) of each stimulus and condition. B Dots represent the grand averages in
𝜇V of two repetition blocks each (25 bins) and condition. C Dots represent the grand averages in
𝜇V of five repetition blocks each (10 bins) and condition. D Mean amplitudes averaged over the
whole test session. Dots represent the grand averages per condition.
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Table B1
Identification codes of stimuli used in Experiment 1 and Experiment 2.

faces_Exp1 voices_Exp1 faces_Exp2 voices_Exp

010ff32y 42_neutral 010mf24n 6_neutral

107mf23n 45_neutral 037mf25n 53_neutral

030ff20n 60_neutral 042mf24y 58_neutral

039mf26n 61_neutral 068mf19y 59_neutral

039ff20y 6_happiness 071mf20n 55_happiness

113mf23y 42_hapiness 073mf22y 58_happiness

076mf24n 46_happiness 107mf23n 59_happiness

162ff20n 58_happiness 152mf23y 60_happiness

030mf20n 6_anger 001ff20y 45_anger

086mf28y 45_anger 042ff21n 58_anger

113ff24y 59_anger 044ff22n 59_anger

026ff28n 60_anger 072ff26y 61_anger

074ff23y

128ff26n

135ff23n

122ff19y

Notes: Face stimuli were selected from the Goettingen Faces Database
(Kulke et al., 2017) and vocal stimuli selected from the Montreal Affective Voices
database (Belin et al., 2008). Please note that in Exp 2, face-voice pairs were pseu-
dorandomized (keeping the gender structure). 12 out of 16 face voice pairs were
sampled as conditioned stimuli, whereas the remaining 4 faces were used in a dif-
ferent task as novel stimuli (not used in the current study).
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Table B2
Statistical results of the full models of the learning sessions for Experiment 1 and Experiment 2.

Exp 1 Exp 2

𝛽 (𝑆𝐸) 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 𝑡 𝑝 𝛽 (𝑆𝐸) 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 𝑡 𝑝

(Intercept) 550.79 (3.14) 544.63 556.95 543.50 582.41 140.17 <.001 462.27 (2.51) 457.35 467.18 457.42 466.32 168.39 <.001

angry 39.10 (4.60) 30.09 48.11 36.39 42.58 8.51 <.001 11.78 (3.53) 4.86 18.69 9.48 13.92 3.34 <.001

happy 63.55 (4.71) 54.33 72.77 59.40 65.64 13.51 <.001 13.37 (3.48) 6.54 20.19 11.43 15.75 3.84 <.001

mismatch 32.56 (4.50) 23.74 41.37 28.68 35.85 7.24 <.001 45.97 (3.75) 38.62 53.32 43.09 48.15 12.27 <.001

pb(block.z) -63.23 (3.00) -69.12 -57.35 -65.79 -56.61 -21.06 <.001 -47.81 (1.93) -51.59 -44.03 -49.25 -44.66 -24.79 <.001

angry:mismatch -27.95 (6.44) -40.56 -15.33 -31.54 -24.77 -4.34 <.001 1.97 (5.32) -8.46 12.40 -2.05 6.21 0.37 .711

happy:mismatch -23.48 (6.41) -36.04 -10.92 -26.49 -16.21 -3.67 <.001 0.13 (5.31) -10.27 10.54 -3.31 2.15 0.03 .980

angry:pb(block.z) -16.19 (4.71) -25.42 -6.95 -18.54 -13.72 -3.44 <.001 -6.35 (2.83) -11.90 -0.80 -7.69 -5.64 -2.24 .025

happy:pb(block.z) -6.01 (4.53) -14.89 2.87 -9.53 -2.88 -1.33 .184 -8.46 (2.78) -13.91 -3.00 -9.82 -7.46 -3.04 .002

mismatch:pb(block.z) 11.31 (4.28) 2.93 19.70 8.06 13.49 2.65 .008 -12.06 (2.88) -17.72 -6.41 -13.87 -9.71 -4.18 <.001

angry:mismatch:pb(block.z) 8.35 (6.36) -4.11 20.82 4.46 11.75 1.31 .189 6.34 (4.22) -1.93 14.62 4.36 9.62 1.50 .133

mu

happy:mismatch:pb(block.z) -1.45 (6.19) -13.58 10.68 -5.93 1.71 -0.23 .815 2.56 (4.14) -5.56 10.67 -0.06 5.61 0.62 .537

(Intercept) 4.16 (0.04) 4.08 4.24 4.09 4.20 97.50 <.001 3.92 (0.04) 3.85 3.99 3.86 3.96 105.73 <.001

angry 0.13 (0.06) 0.02 0.24 0.03 0.18 2.23 .026 0.00 (0.06) -0.11 0.11 -0.08 0.05 0.04 .965

happy 0.29 (0.06) 0.16 0.41 0.24 0.34 4.62 <.001 -0.07 (0.06) -0.18 0.04 -0.10 -0.04 -1.23 .221

mismatch 0.07 (0.06) -0.04 0.19 -0.04 0.12 1.26 .209 0.23 (0.05) 0.13 0.34 0.21 0.27 4.27 <.001

pb(block.z) -0.37 (0.04) -0.45 -0.28 -0.41 -0.34 -8.54 <.001 -0.55 (0.03) -0.62 -0.48 -0.59 -0.52 -15.87 <.001

angry:mismatch -0.22 (0.08) -0.39 -0.06 -0.30 -0.10 -2.72 .007 0.03 (0.08) -0.12 0.19 -0.01 0.14 0.44 .662

happy:mismatch -0.40 (0.08) -0.56 -0.24 -0.48 -0.27 -4.83 <.001 0.08 (0.08) -0.07 0.24 0.04 0.12 1.05 .296

angry:pb(block.z) 0.03 (0.06) -0.09 0.15 -0.04 0.06 0.48 .629 -0.07 (0.06) -0.20 0.05 -0.14 -0.01 -1.19 .235

happy:pb(block.z) 0.02 (0.06) -0.10 0.14 -0.03 0.05 0.34 .732 -0.08 (0.06) -0.20 0.05 -0.12 -0.04 -1.20 .229

mismatch:pb(block.z) 0.03 (0.06) -0.08 0.14 -0.07 0.07 0.51 .609 0.07 (0.05) -0.04 0.17 0.04 0.12 1.23 .219

angry:mismatch:pb(block.z) -0.02 (0.08) -0.18 0.14 -0.07 0.10 -0.23 .818 0.13 (0.08) -0.03 0.30 0.07 0.21 1.58 .115

sigma

happy:mismatch:pb(block.z) 0.01 (0.08) -0.15 0.18 -0.03 0.11 0.18 .858 0.05 (0.09) -0.12 0.22 -0.02 0.10 0.57 .572

(Intercept) 5.57 (0.02) 5.53 5.61 5.52 5.58 283.67 <.001 5.63 (0.02) 5.60 5.67 5.60 5.64 308.86 <.001

angry 0.03 (0.03) -0.03 0.08 -0.01 0.04 0.92 .359 0.04 (0.03) -0.01 0.09 0.02 0.08 1.54 .123

happy -0.07 (0.03) -0.13 -0.02 -0.10 -0.05 -2.55 .011 0.04 (0.03) -0.01 0.09 0.03 0.07 1.67 .095

mismatch 0.01 (0.03) -0.05 0.07 -0.01 0.06 0.36 .721 0.07 (0.03) 0.02 0.12 0.06 0.10 2.87 .004

pb(block.z) -0.05 (0.02) -0.08 -0.01 -0.07 -0.03 -2.35 .019 -0.04 (0.02) -0.08 -0.01 -0.06 -0.03 -2.54 .011

angry:mismatch 0.06 (0.04) -0.02 0.14 0.03 0.08 1.52 .128 -0.04 (0.04) -0.11 0.03 -0.08 -0.01 -1.07 .285

happy:mismatch 0.03 (0.04) -0.05 0.11 -0.03 0.05 0.79 .428 0.01 (0.04) -0.06 0.08 -0.02 0.04 0.28 .777

angry:pb(block.z) 0.03 (0.03) -0.03 0.08 0.01 0.06 1.01 .313 -0.08 (0.02) -0.13 -0.03 -0.09 -0.07 -3.38 <.001

happy:pb(block.z) 0.05 (0.03) -0.01 0.11 0.03 0.07 1.57 .116 0.01 (0.02) -0.04 0.06 0.00 0.02 0.46 .645

mismatch:pb(block.z) 0.01 (0.03) -0.04 0.07 -0.02 0.03 0.41 .685 0.04 (0.02) -0.01 0.09 0.02 0.05 1.53 .126

angry:mismatch:pb(block.z) 0.00 (0.04) -0.08 0.08 -0.03 0.02 -0.02 .981 0.08 (0.03) 0.01 0.14 0.05 0.10 2.22 .026

nu

happy:mismatch:pb(block.z) -0.08 (0.04) -0.16 0.00 -0.11 -0.04 -1.88 .060 0.00 (0.03) -0.07 0.07 -0.01 0.02 0.06 .949

aic -2564.77 -2273.02

bic -1608.48 -1283.20

rmse 1.01 1.00

nobs 13873.00 21563.00

Notes: 𝛽 = model estimate, 𝑆𝐸 = standard error of the estimate, 𝐶𝐼 = lower and upper asymptotic confidence intervals, Stab = estimate ranges leaving out one participant at a time; Note

that 𝑆𝐸 and 𝐶𝐼 might not be reliable due to the involvement of smoothing terms. The estimates of 𝜎 and 𝜈 are on the log scale.

229

doi: 10.53846/goediss-9841



B Appendix of Study 2

Table B3
Statistical results of the full models of the test sessions for Experiment 1 and Experiment 2.

Exp 1 Exp 2

𝛽 (𝑆𝐸) 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 𝑡 𝑝 𝛽 (𝑆𝐸) 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 𝑡 𝑝

(Intercept) 450.18 (1.96) 446.33 454.03 445.16 472.09 181.04 <.001 497.74 (1.24) 495.31 500.17 488.51 700.61 225.11 <.001

angry 16.87 (2.87) 11.23 22.50 15.79 18.37 5.87 <.001 -1.62 (1.75) -5.06 1.82 -4.73 -0.87 -0.92 .356

happy 1.95 (2.66) -3.25 7.16 0.64 3.30 0.74 .462 -4.90 (1.75) -8.33 -1.47 -7.57 -3.81 -2.80 .005

mismatch 11.66 (3.03) 5.72 17.61 9.96 13.41 3.85 <.001 -4.41 (1.81) -7.95 -0.87 -5.38 -3.30 -2.44 .015

pb(block.z) -4.19 (1.87) -7.87 -0.52 -5.96 -2.62 -2.24 .025 1.49 (1.16) -0.79 3.77 0.61 3.44 1.28 .200

angry:mismatch -34.88 (4.07) -42.86 -26.90 -37.75 -32.54 -8.57 <.001 -3.51 (2.57) -8.54 1.52 -4.75 2.73 -1.37 .171

happy:mismatch -22.90 (3.87) -30.50 -15.31 -24.51 -20.53 -5.91 <.001 7.65 (2.55) 2.65 12.65 5.91 9.54 3.00 .003

angry:pb(block.z) 1.56 (2.84) -4.01 7.13 -0.15 4.31 0.55 .583 -5.87 (1.60) -9.01 -2.72 -6.38 -3.48 -3.66 <.001

happy:pb(block.z) -2.68 (2.62) -7.82 2.46 -4.15 -0.28 -1.02 .306 -3.29 (1.64) -6.51 -0.08 -4.34 -0.03 -2.01 .044

mismatch:pb(block.z) 5.07 (3.07) -0.96 11.09 3.43 7.07 1.65 .100 -2.39 (1.68) -5.68 0.90 -3.15 0.67 -1.42 .155

angry:mismatch:pb(block.z) -4.60 (4.19) -12.82 3.62 -7.89 -2.47 -1.10 .273 4.96 (2.34) 0.37 9.55 3.48 5.81 2.12 .034

mu

happy:mismatch:pb(block.z) -4.46 (3.92) -12.13 3.22 -6.83 -2.39 -1.14 .255 4.23 (2.38) -0.44 8.90 -0.42 5.40 1.77 .076

(Intercept) 3.65 (0.04) 3.56 3.73 3.59 3.69 84.16 <.001 3.63 (0.03) 3.56 3.69 3.59 3.75 109.71 <.001

angry 0.17 (0.05) 0.07 0.27 0.12 0.21 3.39 <.001 -0.01 (0.05) -0.10 0.09 -0.05 0.01 -0.13 .893

happy 0.03 (0.06) -0.08 0.15 0.02 0.07 0.58 .565 -0.02 (0.05) -0.11 0.08 -0.05 0.00 -0.33 .745

mismatch 0.25 (0.05) 0.14 0.36 0.18 0.27 4.54 <.001 -0.02 (0.05) -0.12 0.07 -0.04 -0.01 -0.49 .626

pb(block.z) -0.13 (0.04) -0.21 -0.06 -0.15 -0.09 -3.54 <.001 0.05 (0.03) -0.01 0.10 0.03 0.06 1.65 .098

angry:mismatch -0.50 (0.07) -0.64 -0.36 -0.52 -0.38 -6.93 <.001 0.00 (0.07) -0.14 0.13 -0.03 0.08 -0.04 .968

happy:mismatch -0.44 (0.08) -0.59 -0.28 -0.51 -0.37 -5.59 <.001 0.09 (0.07) -0.05 0.23 0.06 0.11 1.27 .204

angry:pb(block.z) 0.09 (0.05) -0.01 0.18 0.04 0.16 1.75 .079 -0.11 (0.04) -0.19 -0.03 -0.13 -0.06 -2.66 .008

happy:pb(block.z) 0.02 (0.05) -0.08 0.12 -0.01 0.11 0.42 .677 -0.06 (0.04) -0.15 0.02 -0.08 0.00 -1.48 .139

mismatch:pb(block.z) 0.13 (0.06) 0.02 0.24 0.03 0.20 2.38 .017 -0.04 (0.04) -0.13 0.04 -0.06 0.01 -0.98 .327

angry:mismatch:pb(block.z) -0.22 (0.08) -0.38 -0.05 -0.31 -0.12 -2.62 .009 0.06 (0.06) -0.07 0.19 0.02 0.08 0.96 .339

sigma

happy:mismatch:pb(block.z) -0.20 (0.07) -0.34 -0.06 -0.35 -0.09 -2.85 .004 0.10 (0.07) -0.03 0.23 0.01 0.12 1.45 .146

(Intercept) 4.80 (0.03) 4.75 4.85 4.76 4.82 190.96 <.001 4.76 (0.01) 4.73 4.78 4.57 4.77 408.87 <.001

angry -0.05 (0.03) -0.11 0.02 -0.06 -0.02 -1.33 .182 0.00 (0.02) -0.04 0.03 -0.01 0.07 -0.13 .896

happy -0.25 (0.03) -0.32 -0.18 -0.28 -0.22 -7.06 <.001 0.01 (0.02) -0.03 0.04 -0.01 0.07 0.28 .782

mismatch 0.07 (0.04) -0.01 0.14 0.04 0.09 1.80 .071 0.16 (0.02) 0.13 0.19 0.15 0.18 9.38 <.001

pb(block.z) 0.02 (0.03) -0.03 0.07 0.00 0.03 0.73 .466 -0.02 (0.01) -0.04 0.00 -0.03 0.01 -1.54 .123

angry:mismatch -0.19 (0.05) -0.28 -0.09 -0.23 -0.16 -3.86 <.001 0.03 (0.02) -0.01 0.08 -0.11 0.06 1.43 .153

happy:mismatch -0.04 (0.05) -0.14 0.05 -0.07 -0.01 -0.90 .371 -0.11 (0.03) -0.16 -0.06 -0.14 -0.07 -4.14 <.001

angry:pb(block.z) -0.14 (0.03) -0.21 -0.08 -0.17 -0.13 -4.16 <.001 0.06 (0.02) 0.03 0.10 0.02 0.08 3.73 <.001

happy:pb(block.z) -0.03 (0.04) -0.10 0.04 -0.08 -0.01 -0.79 .432 0.06 (0.02) 0.03 0.09 0.00 0.08 3.61 <.001

mismatch:pb(block.z) -0.06 (0.04) -0.13 0.01 -0.09 -0.04 -1.81 .071 0.01 (0.02) -0.02 0.04 -0.03 0.03 0.85 .395

angry:mismatch:pb(block.z) 0.12 (0.05) 0.03 0.22 0.10 0.15 2.47 .013 -0.03 (0.02) -0.08 0.01 -0.04 -0.02 -1.38 .167

nu

happy:mismatch:pb(block.z) 0.06 (0.05) -0.04 0.16 0.02 0.10 1.13 .258 -0.05 (0.02) -0.10 -0.01 -0.07 0.03 -2.21 .027

aic -16290.64 -38245.57

bic -15447.30 -37316.76

rmse 1.01 1.02

nobs 8979.00 23316.00

Notes: 𝛽 = model estimate, 𝑆𝐸 = standard error of the estimate, 𝐶𝐼 = lower and upper asymptotic confidence intervals, Stab = estimate ranges leaving out one participant at a time; Note

that 𝑆𝐸 and 𝐶𝐼 might not be reliable due to the involvement of smoothing terms. The estimates of 𝜎 and 𝜈 are on the log scale.
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Figure B1
Estimated densities of an intercept model vs. observed empirical densities.

Notes: Model-based distributional densities (coloured distributions) were compared with the ap-
proximated empirical density depicted by the black lines (upper panels). Lower panels show Q-Q
plots of the theoretical vs. observed residuals for intercept models with different distributions.
Among the selected distributions, the exGaussian showed the best fit for both experiments and
sessions. The learning sessions are shown in panels A.1 for Exp.1 and A.2 for Exp.2. The test
sessions are shown in panels B.1 for Exp.1, and B.2 for Exp.2.
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Table B4
Comparison of AICs for different fitted distributions by experiment and session.

L1 L2 T1 T2

exGAUS -337.63 2374.66 -6878.12 -29755.08

GB2 -284.93 2022.34 -6987.09 -31145.96

BCTo -274.31 1970.96 -6982.66 -31437.01

BCT -271.08 1970.63 -6982.45 -31436.76

BCPE 28.32 2970.05 -6794.12 -31212.73

BCCGo 28.38 8071.09 -6725.51 -31045.49

GG 29.51 1966.05 -6650.2 -30600.29

BCCG 31.38 8072.85 -6725 -31045.58

BCPEo 33.39 3019.95 -6794.61 -31212.94

LNO 36.58 2285.91 -5852.56 -25882.1

LOGNO 36.58 2285.91 -5852.56 -25882.1

LOGNO2 36.58 2285.91 -5852.56 -25882.1

GIG 115.3 1969.45 -6232.54 -28353.37

IGAMMA 147.5 1974.47 -6232.38 -28355.48

IG 272.2 2554.86 -5819.72 -25051.25

GA 292.47 3182.45 -5333.69 -21566.21

WEI 1990.51 5777.58 -3479.35 -5437.35

WEI3 1990.51 5777.59 -3479.35 -5437.35

WEI2 1990.51 5777.59 -3479.35 -5437.28

EXP 12143.39 18110.86 4063.68 24202.74

PARETO2o 12211.14 18234.31 4107.97 24415.37

GP 12215.54 18231.67 4112.41 24431.7

PARETO2 12215.54 18231.67 4112.41 24431.7

Notes: Values show the AICs produced by the function choose.Dist() of the GAMLSS R pack-
age. Bold values represent the lowest AIC, i.e., the best model fit. All models estimated 𝜇 only, in-
cluding the predictors emotion, congruence and the penalized spline function of block.z and their inter-
actions. No random terms were included. Included were all GAMLSS continuous distributions in the
positive real line, i.e., the exGaus: ex-Gaussian, GB2: generalized Beta type 2 and generalized Pareto,
BCTo/BCT: Box-Cox t, BCPE/BCPEo: Box-Cox Power Exponential, BCCG/BCCGo: Box-Cox Cole
and Green, GG: Generalized Gamma, LNO/LOGNO/LOGNO2: Log Normal, GIG: Generalized In-
verse Gaussian, IGAMMA: Inverse Gamma, GA: Gamma, WEI/WEI2/WEI3: Weibull, EXP: Expo-
nential, PARETO2/PARETO2o: Pareto, GP: Generalized Pareto distribution.
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Figure B2
Empirical RT medians vs. theoretical RT medians of the drift diffusion model for Exp.1.

Notes: A.1 shows the observed vs. predicted RT medians of the global model of the learning
session of Exp.1 with the upper panel displaying the original set of participants. The lower panel
displays the RT medians for when excluding participants which obtained predicted median RTs
larger than 5 seconds. A.2 shows the observed vs. predicted RT medians for every block window
for the original participant set, whereasA.3 shows the reduced participant set. Analogously, panels
B display the global and block window-wise values of the test session of Exp 1. Particularly, for
wrong decisions, the predicted RT medians deviated from the empirical data, with large prediction
errors in the test sessions, probably due to the small number of wrong answers.
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Figure B3
Empirical RT medians vs. theoretical RT medians for each block-bin drift diffusion model for the
learning session of Exp.2.

Notes: A.1 shows the observed vs. predicted RT medians of the global model of the learning
session of Exp.2 with the upper panel displaying the original set of participants. The lower panel
displays the RT medians for when excluding participants which obtained predicted median RTs
larger than 5 seconds. A.2 shows the observed vs. predicted RT medians for every block window
for the original participant set, whereasA.3 shows the reduced participant set. Analogously, panels
B display the global and block window-wise values of the test session of Exp 2. Particularly, for
wrong decisions, the predicted RT medians deviated from the empirical data, with large prediction
errors in the test sessions, probably due to the small number of wrong answers.
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Figure B4
Averaged drift diffusion parameters for the learning and test session based on a subset of partici-
pants.

Notes: Drift diffusion parameters were estimated for a reduced participant sample by excluding
participants for which predicted median RTs exceeded a 5 seconds threshold. The left panel shows
the parameters for the learning sessions, the right for the test sessions. Error bars indicate 95%
non-parametric bootstrapped confidence intervals around the sample mean. The boundary sepa-
ration a and the non-decision time t0 were estimated independent of the stimulus conditions. The
starting point zr and drift rate vwere allowed to vary between conditions, i.e., we obtained separate
estimates for each emotion and congruence level. A shows the global model across the sessions.
B shows parameters changes as a function of stimulus repetition. Here, the x-axis refers to the
sliding block windows of the experiment, of which one corresponds to blocks 1-10, two to 6-15,
etc.
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Learning

Table C1
Statistical results for the valence ratings of the affect bursts

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) -0.37 0.08 -4.79 -0.52 -0.22 - - - -

emotionyawning 0.29 0.11 2.68 0.08 0.50

emotionanger -1.74 0.15 -11.90 -2.03 -1.45

emotiondisgust -1.10 0.13 -8.75 -1.34 -0.85

emotionamusement 2.17 0.14 15.02 1.89 2.46

emotionelation 2.22 0.15 14.59 1.93 2.52

emotion 6 0.7 .008

typereaction 0.05 0.11 0.47 -0.16 0.26 type 828.21 23.1 <.001

emotionyawning:typereaction -0.01 0.15 -0.08 -0.31 0.29

emotionanger:typereaction 0.67 0.19 3.52 0.30 1.04

emotiondisgust:typereaction 0.20 0.17 1.17 -0.14 0.54

emotionamusement:typereaction -0.84 0.19 -4.52 -1.20 -0.48

emotionelation:typereaction -1.48 0.19 -7.91 -1.85 -1.12

emotion:type 137.78 6.34 <.001

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped
confidence intervals, LRT = Likelihood ratio test

Table C2
Statistical results for accuracy in learning checks during learning

𝛽 𝑆𝐸 𝑧 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) -0.07 0.17 -0.44 -0.41 0.25 -0.14 0.00 (Intercept) - - -

valence_positive-g.m 0.06 0.14 0.40 -0.25 0.39 0.01 0.13

valence_negative-g.m -0.18 0.13 -1.36 -0.47 0.12 -0.23 -0.14
valence 1.9 2 .387

checknr 0.45 0.05 8.49 0.36 0.56 0.42 0.47 checknr 51.09 1 <.001

valence_positive-g.m:checknr 0.05 0.02 2.77 -0.02 0.12 0.03 0.07

valence_negative-g.m:checknr -0.02 0.02 -1.15 -0.08 0.05 -0.04 0.00
valence:checknr 7.95 2 .019

Notes: beta = model estimate, SE = standard error of the estimate, CI = lower and upper 95 Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test
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Test

Table C3
Statistical results for log response times by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.20 0.02 -9.30 -0.25 -0.16 -0.21 -0.20 (Intercept) - - - -

valence_positive-g.m -0.01 0.01 -1.37 -0.02 0.00 0.01 0.01

valence_negative-g.m 0.00 0.01 -0.08 -0.02 0.01 0.00 0.00
valence 2.14 2 .343 0.05

task_valclass-g.m 0.13 0.01 10.99 0.11 0.15 -0.13 -0.12 task 56.42 1 <.001 3.10

valence_positive-g.m:task_valclass-g.m 0.00 0.00 -0.31 -0.01 0.01 -0.01 -0.01

valence_negative-g.m:task_valclass-g.m -0.01 0.00 -2.06 -0.02 0.00 0.01 0.01
valence:task 6.55 2 .038 0.09

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges
leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C4
Statistical results for log response times by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.20 0.02 -9.37 -0.24 -0.16 -0.21 -0.20 (Intercept) - - - -

emotion_elation-g.m 0.00 0.01 -0.33 -0.03 0.02 -0.01 0.00

emotion_amusement-g.m -0.01 0.01 -1.06 -0.03 0.01 -0.02 -0.01

emotion_disgust-g.m 0.00 0.01 -0.13 -0.02 0.02 -0.01 0.00

emotion_anger-g.m 0.00 0.01 0.07 -0.02 0.02 0.00 0.00

emotion_yawning-g.m 0.02 0.01 1.37 -0.01 0.04 0.01 0.02

emotion 2.68 5 .749 0.01

task_valclass-g.m 0.13 0.01 25.51 0.12 0.14 0.12 0.13 task 406.07 1 <.001 1.52

emotion_elation-g.m:task_valclass-g.m 0.00 0.01 0.24 -0.02 0.02 0.00 0.01

emotion_amusement-g.m:task_valclass-g.m -0.01 0.01 -0.51 -0.03 0.02 -0.01 0.00

emotion_disgust-g.m:task_valclass-g.m 0.00 0.01 -0.01 -0.02 0.02 0.00 0.00

emotion_anger-g.m:task_valclass-g.m -0.02 0.01 -1.60 -0.04 0.00 -0.02 -0.01

emotion_yawning-g.m:task_valclass-g.m 0.02 0.01 1.58 0.00 0.04 0.02 0.02

emotion:task 4.64 5 .461 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C5
Statistical results for log response times in the old-new task (reference = novel)

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.32 0.02 -13.04 -0.37 -0.27 -0.34 -0.32 (Intercept) - - - -

valence_positive-g.m -0.02 0.01 -2.35 -0.03 0.00 -0.02 -0.02

valence_negative-g.m 0.00 0.01 -0.32 -0.02 0.01 0.00 0.00

valence_neutral-g.m -0.01 0.01 -1.71 -0.03 0.00 -0.02 -0.01

valence 19.67 3 <.001 0.18

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab =
estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C6
Statistical results for accuracy by valence

𝛽 𝑆𝐸 𝑧 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) 4.73 0.19 25.33 4.38 5.12 4.66 4.78 (Intercept) - - -

valence_positive-g.m 0.05 0.13 0.36 -0.22 0.32 0.00 0.12

valence_negative-g.m -0.01 0.16 -0.03 -0.32 0.33 -0.06 0.04
valence 0.13 2 .938

task_valclass-g.m -0.57 0.15 -3.85 -0.86 -0.30 -0.61 -0.51 task 13.85 1 <.001

valence_positive-g.m:task_valclass-g.m -0.01 0.09 -0.16 -0.19 0.16 -0.15 0.07

valence_negative-g.m:task_valclass-g.m 0.07 0.09 0.73 -0.10 0.26 -0.01 0.16
valence:task 0.56 2 .756

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate
ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C7
Statistical results for accuracy by emotion

𝛽 𝑆𝐸 𝑧 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) 5.00 0.19 25.72 4.66 5.44 4.93 5.07 (Intercept) - - -

emotion_yawning-g.m -0.26 0.24 -1.05 -0.73 0.26 -0.38 -0.03

emotion_anger-g.m 0.00 0.23 -0.01 -0.47 0.48 -0.08 0.08

emotion_disgust-g.m -0.05 0.24 -0.21 -0.52 0.53 -0.18 0.12

emotion_amusement-g.m 0.21 0.20 1.05 -0.21 0.72 0.11 0.30

emotion_elation-g.m -0.18 0.20 -0.88 -0.62 0.27 -0.29 -0.01

emotion 2.74 5 .740

task_valenceclass-g.m -0.57 0.14 -4.03 -0.89 -0.30 -0.63 -0.50 task 14.16 1 <.001

emotion_yawning-g.m:task_valenceclass-g.m -0.15 0.13 -1.18 -0.41 0.09 -0.40 -0.03

emotion_anger-g.m:task_valenceclass-g.m 0.33 0.13 2.60 0.08 0.60 0.17 0.42

emotion_disgust-g.m:task_valenceclass-g.m -0.11 0.13 -0.84 -0.40 0.15 -0.30 0.18

emotion_amusement-g.m:task_valenceclass-g.m -0.29 0.16 -1.89 -0.69 0.01 -0.43 -0.19

emotion_elation-g.m:task_valenceclass-g.m 0.21 0.12 1.73 -0.02 0.46 -0.03 0.35

emotion:task 12.72 5 .026

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C8
Statistical results for the P1 mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.04 0.65 6.22 2.76 5.21 3.78 4.30 (Intercept) - - - -

valence_positive-g.m -0.02 0.06 -0.23 -0.14 0.12 -0.04 0.01

valence_negative-g.m -0.01 0.06 -0.14 -0.15 0.12 -0.03 0.02
valence 0.14 2 .931 0.00

task_valenceclass-g.m -0.03 0.05 -0.67 -0.12 0.06 -0.05 -0.01 task 0.46 1 .497 0.00

valence_positive-g.m:task_valenceclass-g.m -0.03 0.06 -0.45 -0.16 0.10 -0.04 0.00

valence_negative-g.m:task_valenceclass-g.m -0.02 0.06 -0.26 -0.14 0.11 -0.03 0.00
valence:task 0.54 2 .764 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leav-
ing out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C9
Statistical results for the P1 mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.03 0.65 6.20 2.78 5.31 3.77 4.29 (Intercept) - - - -

emotion_yawning-g.m 0.06 0.10 0.61 -0.13 0.26 0.01 0.10

emotion_elation-g.m 0.06 0.10 0.58 -0.14 0.28 0.02 0.11

emotion_disgust-g.m -0.11 0.10 -1.04 -0.30 0.09 -0.16 -0.07

emotion_anger-g.m 0.06 0.10 0.59 -0.14 0.25 0.03 0.09

emotion_amusement-g.m -0.05 0.10 -0.45 -0.25 0.15 -0.08 0.00

emotion 2.07 5 .839 0.00

task_valenceclass-g.m -0.02 0.05 -0.51 -0.11 0.07 -0.05 -0.01 task 0.26 1 .607 0.00

emotion_yawning-g.m:task_valenceclass-g.m 0.07 0.10 0.70 -0.15 0.28 0.02 0.11

emotion_elation-g.m:task_valenceclass-g.m -0.06 0.10 -0.59 -0.26 0.14 -0.09 0.01

emotion_disgust-g.m:task_valenceclass-g.m 0.01 0.10 0.13 -0.18 0.23 -0.03 0.04

emotion_anger-g.m:task_valenceclass-g.m -0.05 0.10 -0.48 -0.25 0.14 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m 0.02 0.10 0.22 -0.16 0.24 -0.01 0.05

emotion:task 0.96 5 .965 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C10
Statistical results for the P1 peak amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 6.91 0.63 11.02 5.68 8.18 6.59 7.12 (Intercept) - - - -

valence_positive-g.m 0.02 0.08 0.23 -0.13 0.17 -0.03 0.04

valence_negative-g.m -0.03 0.08 -0.46 -0.18 0.12 -0.07 -0.01
valence 0.22 2 .896 0.00

task_valenceclass-g.m -0.04 0.05 -0.81 -0.15 0.06 -0.07 -0.02 task 0.67 1 .413 0.00

valence_positive-g.m:task_valenceclass-g.m 0.04 0.08 0.47 -0.11 0.18 0.01 0.06

valence_negative-g.m:task_valenceclass-g.m 0.04 0.08 0.47 -0.11 0.18 0.01 0.05
valence:task 0.91 2 .635 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C11
Statistical results for the P1 peak amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 7.21 0.63 11.52 6.08 8.50 6.91 7.44 (Intercept) - - - -

emotion_yawning-g.m 0.21 0.12 1.81 -0.01 0.44 0.17 0.25

emotion_elation-g.m 0.09 0.12 0.75 -0.14 0.32 0.04 0.13

emotion_disgust-g.m -0.14 0.12 -1.20 -0.35 0.09 -0.21 -0.09

emotion_anger-g.m 0.00 0.12 0.04 -0.23 0.22 -0.02 0.03

emotion_amusement-g.m -0.08 0.12 -0.73 -0.30 0.13 -0.13 -0.04

emotion 5.33 5 .377 0.01

task_valenceclass-g.m -0.05 0.05 -0.98 -0.15 0.04 -0.07 -0.04 task 0.99 1 .319 0.00

emotion_yawning-g.m:task_valenceclass-g.m -0.04 0.12 -0.32 -0.27 0.18 -0.10 0.00

emotion_elation-g.m:task_valenceclass-g.m -0.05 0.12 -0.43 -0.26 0.18 -0.08 0.03

emotion_disgust-g.m:task_valenceclass-g.m 0.02 0.12 0.21 -0.21 0.25 -0.03 0.05

emotion_anger-g.m:task_valenceclass-g.m -0.05 0.12 -0.43 -0.26 0.19 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m 0.12 0.12 1.06 -0.11 0.34 0.08 0.16

emotion:task 1.41 5 .923 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C12
Statistical results for the N170 mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -6.93 0.59 -11.68 -8.10 -5.74 -7.12 -6.73 (Intercept) - - - -

valence_positive-g.m 0.04 0.06 0.74 -0.08 0.15 0.02 0.06

valence_negative-g.m -0.09 0.06 -1.43 -0.20 0.03 -0.10 -0.06
valence 2.1 2 .350 0.01

task_valenceclass-g.m -0.23 0.04 -5.49 -0.31 -0.15 -0.25 -0.20 task 28.72 1 <.001 0.15

valence_positive-g.m:task_valenceclass-g.m -0.04 0.06 -0.66 -0.15 0.07 -0.06 -0.03

valence_negative-g.m:task_valenceclass-g.m -0.04 0.06 -0.62 -0.15 0.08 -0.05 -0.02
valence:task 1.69 2 .430 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C13
Statistical results for the N170 mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -6.94 0.59 -11.70 -8.09 -5.76 -7.13 -6.74 (Intercept) - - - -

emotion_yawning-g.m 0.17 0.09 1.85 0.00 0.37 0.14 0.20

emotion_elation-g.m 0.13 0.09 1.45 -0.04 0.30 0.10 0.16

emotion_disgust-g.m -0.28 0.09 -3.04 -0.44 -0.09 -0.30 -0.24

emotion_anger-g.m 0.08 0.09 0.88 -0.10 0.26 0.05 0.11

emotion_amusement-g.m -0.03 0.09 -0.37 -0.22 0.16 -0.07 0.00

emotion 13.67 5 .018 0.03

task_valenceclass-g.m -0.23 0.04 -5.78 -0.31 -0.16 -0.26 -0.20 task 32.96 1 <.001 0.08

emotion_yawning-g.m:task_valenceclass-g.m 0.02 0.09 0.20 -0.16 0.19 -0.01 0.05

emotion_elation-g.m:task_valenceclass-g.m -0.08 0.09 -0.85 -0.24 0.09 -0.11 -0.05

emotion_disgust-g.m:task_valenceclass-g.m 0.07 0.09 0.74 -0.11 0.24 0.03 0.11

emotion_anger-g.m:task_valenceclass-g.m -0.12 0.09 -1.29 -0.30 0.06 -0.14 -0.08

emotion_amusement-g.m:task_valenceclass-g.m 0.01 0.09 0.09 -0.17 0.18 -0.02 0.03

emotion:task 3.58 5 .612 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C14
Statistical results for the N170 peak amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -10.79 0.71 -15.26 -12.11 -9.43 -11.04 -10.54 (Intercept) - - - -

valence_positive-g.m 0.01 0.07 0.17 -0.12 0.15 -0.02 0.03

valence_negative-g.m -0.08 0.07 -1.18 -0.21 0.05 -0.11 -0.05
valence 1.65 2 .437 0.01

task_valenceclass-g.m -0.02 0.05 -0.45 -0.11 0.07 -0.05 0.00 task 0.21 1 .648 0.00

valence_positive-g.m:task_valenceclass-g.m -0.06 0.07 -0.86 -0.19 0.08 -0.08 -0.05

valence_negative-g.m:task_valenceclass-g.m 0.03 0.07 0.46 -0.11 0.16 0.01 0.05
valence:task 0.77 2 .681 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C15
Statistical results for the N170 peak amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -11.11 0.71 -15.76 -12.49 -9.69 -11.35 -10.86 (Intercept) - - - -

emotion_yawning-g.m 0.17 0.10 1.68 -0.03 0.37 0.14 0.21

emotion_elation-g.m 0.05 0.10 0.52 -0.14 0.27 0.02 0.09

emotion_disgust-g.m -0.31 0.10 -3.01 -0.51 -0.12 -0.35 -0.27

emotion_anger-g.m 0.11 0.10 1.04 -0.08 0.32 0.08 0.16

emotion_amusement-g.m 0.04 0.10 0.36 -0.18 0.24 0.00 0.07

emotion 11.58 5 .041 0.03

task_valenceclass-g.m -0.04 0.05 -0.86 -0.12 0.05 -0.06 -0.02 task 0.76 1 .383 0.00

emotion_yawning-g.m:task_valenceclass-g.m 0.07 0.10 0.72 -0.11 0.28 0.03 0.11

emotion_elation-g.m:task_valenceclass-g.m -0.06 0.10 -0.57 -0.26 0.13 -0.10 -0.03

emotion_disgust-g.m:task_valenceclass-g.m 0.08 0.10 0.76 -0.14 0.28 0.04 0.12

emotion_anger-g.m:task_valenceclass-g.m -0.04 0.10 -0.37 -0.24 0.17 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m -0.06 0.10 -0.62 -0.26 0.13 -0.10 -0.03

emotion:task 1.66 5 .894 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C16
Statistical results for the EPN mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -2.26 0.49 -4.62 -3.23 -1.33 -2.44 -2.11 (Intercept) - - - -

valence_positive-g.m 0.09 0.09 1.01 -0.08 0.24 0.06 0.11

valence_negative-g.m -0.28 0.09 -3.23 -0.44 -0.12 -0.32 -0.24
valence 10.86 2 .004 0.06

task_valenceclass-g.m -0.01 0.06 -0.09 -0.12 0.11 -0.04 0.03 task 0.01 1 .925 0.00

valence_positive-g.m:task_valenceclass-g.m 0.02 0.09 0.21 -0.14 0.18 0.00 0.04

valence_negative-g.m:task_valenceclass-g.m -0.03 0.09 -0.36 -0.19 0.14 -0.05 0.00
valence:task 0.13 2 .936 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C17
Statistical results for the EPN mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -2.27 0.49 -4.62 -3.28 -1.37 -2.45 -2.12 (Intercept) - - - -

emotion_yawning-g.m 0.30 0.12 2.51 0.07 0.55 0.25 0.36

emotion_elation-g.m 0.20 0.12 1.64 -0.04 0.43 0.17 0.24

emotion_disgust-g.m -0.46 0.12 -3.79 -0.69 -0.23 -0.50 -0.40

emotion_anger-g.m -0.15 0.12 -1.25 -0.39 0.10 -0.19 -0.11

emotion_amusement-g.m -0.01 0.12 -0.12 -0.24 0.22 -0.05 0.02

emotion 21.61 5 <.001 0.05

task_valenceclass-g.m -0.01 0.05 -0.20 -0.12 0.09 -0.04 0.03 task 0.04 1 .838 0.00

emotion_yawning-g.m:task_valenceclass-g.m -0.05 0.12 -0.42 -0.28 0.19 -0.09 -0.01

emotion_elation-g.m:task_valenceclass-g.m -0.04 0.12 -0.31 -0.28 0.21 -0.08 0.00

emotion_disgust-g.m:task_valenceclass-g.m 0.01 0.12 0.05 -0.24 0.23 -0.03 0.03

emotion_anger-g.m:task_valenceclass-g.m -0.08 0.12 -0.68 -0.32 0.15 -0.12 -0.04

emotion_amusement-g.m:task_valenceclass-g.m 0.10 0.12 0.84 -0.12 0.34 0.06 0.14

emotion:task 1.47 5 .917 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C18
Statistical results for the LPC mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.34 0.52 10.30 4.33 6.29 5.00 5.51 (Intercept) - - - -

valence_positive-g.m 0.09 0.09 0.98 -0.10 0.27 0.05 0.12

valence_negative-g.m 0.06 0.09 0.61 -0.11 0.24 0.04 0.08
valence 2.64 2 .268 0.01

task_valenceclass-g.m 0.07 0.07 1.03 -0.06 0.19 0.04 0.12 task 1.08 1 .298 0.01

valence_positive-g.m:task_valenceclass-g.m 0.11 0.09 1.16 -0.08 0.30 0.08 0.14

valence_negative-g.m:task_valenceclass-g.m 0.09 0.09 0.93 -0.10 0.27 0.06 0.11
valence:task 4.46 2 .108 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges
leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C19
Statistical results for the LPC mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.35 0.52 10.31 4.40 6.35 5.02 5.53 (Intercept) - - - -

emotion_yawning-g.m -0.09 0.12 -0.72 -0.32 0.17 -0.14 -0.06

emotion_elation-g.m 0.06 0.12 0.52 -0.18 0.30 0.00 0.11

emotion_disgust-g.m -0.05 0.12 -0.37 -0.28 0.21 -0.09 0.01

emotion_anger-g.m 0.16 0.12 1.33 -0.07 0.42 0.12 0.20

emotion_amusement-g.m 0.10 0.12 0.83 -0.13 0.35 0.06 0.14

emotion 5.01 5 .414 0.01

task_valenceclass-g.m 0.09 0.05 1.55 -0.01 0.19 0.05 0.13 task 2.46 1 .117 0.01

emotion_yawning-g.m:task_valenceclass-g.m -0.18 0.12 -1.49 -0.41 0.07 -0.21 -0.16

emotion_elation-g.m:task_valenceclass-g.m 0.05 0.12 0.39 -0.19 0.31 0.01 0.07

emotion_disgust-g.m:task_valenceclass-g.m 0.12 0.12 1.00 -0.12 0.35 0.09 0.16

emotion_anger-g.m:task_valenceclass-g.m 0.03 0.12 0.27 -0.21 0.26 0.00 0.07

emotion_amusement-g.m:task_valenceclass-g.m 0.16 0.12 1.29 -0.08 0.40 0.13 0.19

emotion:task 6.2 5 .287 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table C20
Statistical results of the ordinal mixed model for the likability rating

OR_val CI_val OR_emo CI_emo

neutral-g.m 1.64 [1.31;2.16]

negative-g.m 0.55 [0.4;0.69]

positive-g.m 3.62 [2.87;5.16]

clearthroat-g.m 1.47 [0.95;2.32]

yawning-g.m 1.32 [0.94;1.91]

anger-g.m 0.49 [0.31;0.71]

disgust-g.m 0.43 [0.26;0.63]

amusement-g.m 2.78 [1.89;4.47]

elation-g.m 3.37 [2.36;5.44]

1|2 0.02 [0.01;0.02] 0.01 [0.01;0.02]

2|3 0.10 [0.07;0.11] 0.08 [0.06;0.09]

3|4 0.39 [0.3;0.45] 0.33 [0.25;0.38]

4|5 1.30 [1.1;1.56] 1.10 [0.92;1.33]

5|6 6.52 [5.87;9.18] 5.51 [4.9;7.64]

6|7 36.57 [31.43;67.45] 30.99 [25.93;55.15]

Notes: Model estimates and threshold coefficients in Odds Ra-
tios (OR) of the ordinal models (left: valence model, right: emo-
tion model). Brackets indicate the 95% asymptotic confidence in-
tervals of the OR.
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Exploratory analyses

We analyzed a mid-frontal FN400 (300 - 500 ms, at Fc3, F3, Fc4, F4), which has been related

to familiarity of faces (Curran & Hancock, 2007), and a later parietal old/new component LPON

(500 - 800ms at CP1, CP2, P3, and P4), which has been related to episodicmemory and recollection

(Proverbio et al., 2019). Notably, the later old/new component overlaps in time and topography

with the LPC component.

FN400. Associated valence: FN400 mean amplitudes were only analyzed for the old-new task

to compare associated faces with novel faces. Two participants (IDs: 30, 7) were excluded from

this analysis due to influential observations and Cook’s distance >1 in the model with valence

as a predictor. To compare results, we also excluded them in the model with separate emotion

categories. There was no an effect of valence (𝜒2(3) = 2.73, p = .436).

Associated emotion: There was a trend for emotion (𝜒2(6) = 10.85, p = .093) but none of the

post-hoc tests was significant. The largest difference between categories was between yawning

and disgust (diffyaw-dis = -0.41, p = .137).

Table C21
Statistical results for the FN400 mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.86 0.28 -3.06 -1.42 -0.31 -0.96 -0.72 (Intercept) - - - -

valence_novel-g.m 0.00 0.07 0.00 -0.14 0.14 -0.04 0.02

valence_positive-g.m 0.01 0.07 0.11 -0.13 0.14 -0.03 0.03

valence_negative-g.m 0.09 0.07 1.28 -0.04 0.22 0.07 0.12

valence 2.73 3 .436 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals,
Stab = estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C22
Statistical results for the FN400 mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.87 0.28 -3.14 -1.41 -0.39 -0.97 -0.73 (Intercept) - - - -

emotion_yawning-g.m -0.20 0.10 -2.01 -0.40 -0.01 -0.22 -0.17

emotion_novel-g.m 0.02 0.10 0.16 -0.18 0.21 -0.03 0.04

emotion_elation-g.m -0.13 0.10 -1.34 -0.32 0.05 -0.16 -0.09

emotion_disgust-g.m 0.21 0.10 2.15 0.03 0.41 0.18 0.26

emotion_anger-g.m -0.03 0.10 -0.31 -0.23 0.15 -0.07 0.01

emotion_amusement-g.m 0.14 0.10 1.42 -0.06 0.34 0.09 0.18

emotion 10.85 6 .093 0.05

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab =
estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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LPON. Associated valence: We analyzed the LPON component only for the old-new task to

compare associated faces with novel faces. There was a main effect of valence (𝜒2(3) = 84.87, p

<.001) due to the difference between novel faces and all associated faces(diffnov-pos = 1.36, p <.001;

diffnov-neg = 1.30, p <.001; diffnov-neu = 1.17, p <.001). No other differences were significant.

Associated emotion: Analogously to the valence model, there was a main effect of emotion

(𝜒2(6) = 88.54, p <.001). This effect was driven by a difference between novel faces and other

emotion categories (all p- values < .01). None of the other post-hoc contrasts were significant.

Table C23
Statistical results for the LPON mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.46 0.28 15.76 3.92 4.98 4.34 4.55 (Intercept) - - - -

valence_novel-g.m 0.96 0.09 10.99 0.78 1.13 0.91 1.00

valence_positive-g.m -0.40 0.09 -4.59 -0.56 -0.22 -0.43 -0.37

valence_negative-g.m -0.34 0.09 -3.96 -0.52 -0.18 -0.39 -0.32

valence 84.87 3 <.001 1.11

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab
= estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C24
Statistical results for the LPON mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.33 0.28 15.44 3.73 4.86 4.21 4.42 (Intercept) - - - -

emotion_yawning-g.m 0.05 0.11 0.40 -0.17 0.27 0.01 0.10

emotion_novel-g.m 1.12 0.11 9.80 0.91 1.34 1.07 1.16

emotion_elation-g.m -0.14 0.11 -1.20 -0.35 0.08 -0.19 -0.10

emotion_disgust-g.m -0.35 0.11 -3.05 -0.57 -0.13 -0.38 -0.31

emotion_anger-g.m -0.07 0.11 -0.57 -0.27 0.16 -0.12 -0.03

emotion_amusement-g.m -0.39 0.11 -3.46 -0.62 -0.16 -0.44 -0.35

emotion 88.54 6 <.001 0.47

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab =
estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Figure C1
Face-locked later parietal old-new (LPON) by emotion.

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area

displays the ROI time window. B Grand-averages of the ROI mean amplitudes, contrasted for the

implicit (old-new) task and all emotion conditions. Errorbars indicate +/- 1 SE of the mean. C

Topographies of the ERP distribution for familiar contrasted with novel faces. ROI channels are

highlighted in pink.
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N1 (voice-locked). N1 amplitudes were not significantly modulated by valence (𝜒2(2) = 0.5, p

= .779).

Similarly, N1 amplitudes were not significantly modulated by emotion (𝜒2(5) = 3.65, p =

.601).

Table C25
Statistical results for the (auditory) N1 mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1.11 0.13 8.64 0.85 1.36 1.07 1.16 (Intercept) - - - -

valence_positive-g.m -0.04 0.09 -0.44 -0.21 0.13 -0.06 -0.01

valence_negative-g.m 0.06 0.09 0.69 -0.13 0.23 0.03 0.09
valence 0.5 2 .779 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals,
Stab = estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C26
Statistical results for the (auditory) N1 mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1.11 0.13 8.62 0.86 1.35 1.08 1.16 (Intercept) - - - -

emotion_yawning-g.m -0.19 0.13 -1.40 -0.46 0.08 -0.23 -0.12

emotion_elation-g.m -0.06 0.13 -0.44 -0.33 0.20 -0.09 0.00

emotion_disgust-g.m 0.13 0.13 0.95 -0.15 0.40 0.08 0.17

emotion_anger-g.m -0.02 0.13 -0.17 -0.31 0.23 -0.08 0.03

emotion_amusement-g.m -0.01 0.13 -0.06 -0.27 0.23 -0.04 0.03

emotion 3.65 5 .601 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab
= estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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P2 (voice-locked). Due to influential observations (Cook’s distance > 1) of one participant in the

valence model, this participant was also excluded of the emotion model to allow comparisons of

the results. P2 amplitudes were not significantly modulated by valence (𝜒2(2) = 2.79, p = .247).

However, when including emotion categories separately, there was a main effect of emotion

on P2 amplitudes (𝜒2(5) = 13.78, p = .017). Post-hoc tests showed that there was a significant

difference between the two neutral pre-specified emotion categories, yawning and throat-clearing

(diffyaw-clt = -0.67, p = .017). None of the other pairwise comparisons were significant.

Table C27
Statistical results for the (auditory) P2 mean amplitudes by valence

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1.84 0.15 12.24 1.55 2.15 1.79 1.89 (Intercept) - - - -

valence_positive-g.m -0.12 0.08 -1.45 -0.28 0.04 -0.15 -0.09

valence_negative-g.m 0.12 0.08 1.43 -0.04 0.28 0.09 0.15
valence 2.79 2 .247 0.04

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals,
Stab = estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table C28
Statistical results for the (auditory) P2 mean amplitudes by emotion

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1.85 0.15 12.33 1.58 2.16 1.80 1.90 (Intercept) - - - -

emotion_yawning-g.m -0.32 0.13 -2.42 -0.56 -0.06 -0.37 -0.28

emotion_elation-g.m -0.16 0.13 -1.24 -0.41 0.09 -0.20 -0.12

emotion_disgust-g.m 0.03 0.13 0.22 -0.24 0.27 -0.01 0.08

emotion_anger-g.m 0.17 0.13 1.27 -0.08 0.43 0.12 0.21

emotion_amusement-g.m -0.07 0.13 -0.53 -0.33 0.20 -0.10 -0.03

emotion 13.78 5 .017 0.07

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab =
estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Figure C2
Voice-locked N1 and P2 by emotion (refresher trials).

Notes: A Grand average ERP time series of the averaged ROI channels. The highlighted area

displays the ROI time window. B Grand-averages of the ROI mean amplitudes of the N1 (left

panel) and P2 (right panel), contrasted for all emotion conditions. Errorbars indicate +/- 1 SE of

the mean. C Topographies of the ERP distribution of the P2 for the two neutral emotion categories

’throatclearing’ and ’yawning’ and their difference. ROI channels are highlighted in pink.
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Pupil size. We used a desktop-mounted eye-tracker (EyeLink 1000 CL 1 - AAD01, SRResearch,

software version 4.56) to record the pupil size binocularly in pixels with a sampling rate of 500

Hz. Preprocessing was done in (R Core Team, 2020) and oriented to guidelines proposed by Kret

& Sjak-Shie (2018). The continuous data was epoched around the onset of the face stimulus, and

the mean of a 200 ms baseline time window was subtracted. Blinks were classified when samples

of both eyes were missing. Other invalid, isolated, or implausible samples due to fast changes or

deviations from a smoothed trend line were rejected. Additionally, trials were segmented into 60

bins, and outlier samples per bin (>3 SD from the bin mean) were excluded. If a trial contained less

than 75% of valid samples, the whole trial was rejected. A smoothing 4 Hz filter was applied before

trials were averaged by condition and participant. Pupil responses primarily served to identify eye

blinks. Additionally, we tested valence differences in the refresher trials as a proxy for arousal

without a preregistered hypothesis.

We analyzed pupil size during refresher trials to have an additional indicator for arousal of

the face-voice pairs. However, model diagnostics indicated that several observations had a strong

impact on model results, which hence might not be robust. Removing influential observations

(Cook’s distance >1) in several rounds led to other observations being classified as influential down

to a remaining sample size of 30 participants2. However, there was no significant modulation of

pupil size by valence for both, the full sample set (𝜒2(2) = 3.19, p = .203) and the subset of 30

participants (𝜒2(2) = 2.02, p = .365).

Table C29
Statistical results for pupil diameter during refresher trials

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -26.95 6.06 -4.45 -39.11 -15.14 -29.25 -25.49 (Intercept) - - - -

valence_positive-g.m -0.87 3.64 -0.24 -8.04 6.19 -2.30 0.40

valence_negative-g.m 5.99 3.64 1.65 -1.46 13.10 4.22 7.26
valence 3.19 2 .203 0.04

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab =
estimate ranges leaving out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

2excluded participant IDs were: 4, 5, 9, 13, 15, 16, 17, 48, 53, 56
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Table D1
Statistical results for the P1 mean amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.03 0.65 6.20 2.78 5.31 3.77 4.29 (Intercept) - - - -

emotion_yawning-g.m 0.06 0.10 0.61 -0.13 0.26 0.01 0.10

emotion_elation-g.m 0.06 0.10 0.58 -0.14 0.28 0.02 0.11

emotion_disgust-g.m -0.11 0.10 -1.04 -0.30 0.09 -0.16 -0.07

emotion_anger-g.m 0.06 0.10 0.59 -0.14 0.25 0.03 0.09

emotion_amusement-g.m -0.05 0.10 -0.45 -0.25 0.15 -0.08 0.00

emotion 2.07 5 .839 0.00

task_valenceclass-g.m -0.02 0.05 -0.51 -0.11 0.07 -0.05 -0.01 task 0.26 1 .607 0.00

emotion_yawning-g.m:task_valenceclass-g.m 0.07 0.10 0.70 -0.15 0.28 0.02 0.11

emotion_elation-g.m:task_valenceclass-g.m -0.06 0.10 -0.59 -0.26 0.14 -0.09 0.01

emotion_disgust-g.m:task_valenceclass-g.m 0.01 0.10 0.13 -0.18 0.23 -0.03 0.04

emotion_anger-g.m:task_valenceclass-g.m -0.05 0.10 -0.48 -0.25 0.14 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m 0.02 0.10 0.22 -0.16 0.24 -0.01 0.05

emotion:task 0.96 5 .965 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D2
Statistical results for the P1 peak amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 7.21 0.63 11.52 6.08 8.50 6.91 7.44 (Intercept) - - - -

emotion_yawning-g.m 0.21 0.12 1.81 -0.01 0.44 0.17 0.25

emotion_elation-g.m 0.09 0.12 0.75 -0.14 0.32 0.04 0.13

emotion_disgust-g.m -0.14 0.12 -1.20 -0.35 0.09 -0.21 -0.09

emotion_anger-g.m 0.00 0.12 0.04 -0.23 0.22 -0.02 0.03

emotion_amusement-g.m -0.08 0.12 -0.73 -0.30 0.13 -0.13 -0.04

emotion 5.33 5 .377 0.01

task_valenceclass-g.m -0.05 0.05 -0.98 -0.15 0.04 -0.07 -0.04 task 0.99 1 .319 0.00

emotion_yawning-g.m:task_valenceclass-g.m -0.04 0.12 -0.32 -0.27 0.18 -0.10 0.00

emotion_elation-g.m:task_valenceclass-g.m -0.05 0.12 -0.43 -0.26 0.18 -0.08 0.03

emotion_disgust-g.m:task_valenceclass-g.m 0.02 0.12 0.21 -0.21 0.25 -0.03 0.05

emotion_anger-g.m:task_valenceclass-g.m -0.05 0.12 -0.43 -0.26 0.19 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m 0.12 0.12 1.06 -0.11 0.34 0.08 0.16

emotion:task 1.41 5 .923 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D3
Statistical results for the P1 peak latency by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 100.51 1.64 61.24 97.23 103.90 100.07 100.94 (Intercept) - - - -

emotion_happy-g.m -1.32 0.51 -2.61 -2.33 -0.38 -1.45 -1.09

emotion_angry-g.m 0.76 0.51 1.50 -0.20 1.74 0.62 0.95
emotion 6.94 2 .031 0.02

stimsize_medium-g.m -0.40 0.51 -0.78 -1.39 0.53 -0.60 -0.13

stimsize_large-g.m -2.63 0.51 -5.17 -3.58 -1.60 -2.85 -2.35
stimsize 40.24 2 <.001 0.13

emotion_happy-g.m:stimsize_medium-g.m -0.40 0.72 -0.56 -1.82 0.94 -0.63 -0.19

emotion_angry-g.m:stimsize_medium-g.m 0.35 0.72 0.48 -1.05 1.73 0.10 0.56

emotion_happy-g.m:stimsize_large-g.m 0.27 0.72 0.37 -1.05 1.69 -0.13 0.53

emotion_angry-g.m:stimsize_large-g.m -0.40 0.72 -0.56 -1.81 1.00 -0.63 -0.23

emotion:stimsize 0.52 4 .971 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect sizeNote that the inspection of residuals indicated a potential misfit of the model, possibly due to the
temporal boundary of the ROI time window.

Table D4
Statistical results for the N170 mean amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -6.94 0.59 -11.70 -8.09 -5.76 -7.13 -6.74 (Intercept) - - - -

emotion_yawning-g.m 0.17 0.09 1.85 0.00 0.37 0.14 0.20

emotion_elation-g.m 0.13 0.09 1.45 -0.04 0.30 0.10 0.16

emotion_disgust-g.m -0.28 0.09 -3.04 -0.44 -0.09 -0.30 -0.24

emotion_anger-g.m 0.08 0.09 0.88 -0.10 0.26 0.05 0.11

emotion_amusement-g.m -0.03 0.09 -0.37 -0.22 0.16 -0.07 0.00

emotion 13.67 5 .018 0.03

task_valenceclass-g.m -0.23 0.04 -5.78 -0.31 -0.16 -0.26 -0.20 task 32.96 1 <.001 0.08

emotion_yawning-g.m:task_valenceclass-g.m 0.02 0.09 0.20 -0.16 0.19 -0.01 0.05

emotion_elation-g.m:task_valenceclass-g.m -0.08 0.09 -0.85 -0.24 0.09 -0.11 -0.05

emotion_disgust-g.m:task_valenceclass-g.m 0.07 0.09 0.74 -0.11 0.24 0.03 0.11

emotion_anger-g.m:task_valenceclass-g.m -0.12 0.09 -1.29 -0.30 0.06 -0.14 -0.08

emotion_amusement-g.m:task_valenceclass-g.m 0.01 0.09 0.09 -0.17 0.18 -0.02 0.03

emotion:task 3.58 5 .612 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D5
Statistical results for the N170 peak amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -11.11 0.71 -15.76 -12.49 -9.69 -11.35 -10.86 (Intercept) - - - -

emotion_yawning-g.m 0.17 0.10 1.68 -0.03 0.37 0.14 0.21

emotion_elation-g.m 0.05 0.10 0.52 -0.14 0.27 0.02 0.09

emotion_disgust-g.m -0.31 0.10 -3.01 -0.51 -0.12 -0.35 -0.27

emotion_anger-g.m 0.11 0.10 1.04 -0.08 0.32 0.08 0.16

emotion_amusement-g.m 0.04 0.10 0.36 -0.18 0.24 0.00 0.07

emotion 11.58 5 .041 0.03

task_valenceclass-g.m -0.04 0.05 -0.86 -0.12 0.05 -0.06 -0.02 task 0.76 1 .383 0.00

emotion_yawning-g.m:task_valenceclass-g.m 0.07 0.10 0.72 -0.11 0.28 0.03 0.11

emotion_elation-g.m:task_valenceclass-g.m -0.06 0.10 -0.57 -0.26 0.13 -0.10 -0.03

emotion_disgust-g.m:task_valenceclass-g.m 0.08 0.10 0.76 -0.14 0.28 0.04 0.12

emotion_anger-g.m:task_valenceclass-g.m -0.04 0.10 -0.37 -0.24 0.17 -0.08 -0.01

emotion_amusement-g.m:task_valenceclass-g.m -0.06 0.10 -0.62 -0.26 0.13 -0.10 -0.03

emotion:task 1.66 5 .894 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D6
Statistical results for the N170 peak latency by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 152.28 1.76 86.57 148.60 155.69 151.59 152.71 (Intercept) - - - -

emotion_happy-g.m 0.05 0.26 0.18 -0.45 0.57 -0.06 0.14

emotion_angry-g.m 0.41 0.26 1.54 -0.07 0.94 0.32 0.50
emotion 3.66 2 .160 0.01

stimsize_medium-g.m -1.90 0.26 -7.21 -2.42 -1.38 -1.98 -1.76

stimsize_large-g.m -4.31 0.26 -16.34 -4.78 -3.76 -4.45 -4.12
stimsize 337.03 2 <.001 1.87

emotion_happy-g.m:stimsize_medium-g.m 0.02 0.37 0.04 -0.78 0.76 -0.08 0.11

emotion_angry-g.m:stimsize_medium-g.m 0.29 0.37 0.78 -0.45 1.03 0.17 0.39

emotion_happy-g.m:stimsize_large-g.m -0.31 0.37 -0.83 -1.01 0.43 -0.37 -0.21

emotion_angry-g.m:stimsize_large-g.m -0.18 0.37 -0.48 -0.92 0.56 -0.29 -0.07

emotion:stimsize 2.21 4 .697 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D7
Statistical results for the EPN mean amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -2.27 0.49 -4.62 -3.28 -1.37 -2.45 -2.12 (Intercept) - - - -

emotion_yawning-g.m 0.30 0.12 2.51 0.07 0.55 0.25 0.36

emotion_elation-g.m 0.20 0.12 1.64 -0.04 0.43 0.17 0.24

emotion_disgust-g.m -0.46 0.12 -3.79 -0.69 -0.23 -0.50 -0.40

emotion_anger-g.m -0.15 0.12 -1.25 -0.39 0.10 -0.19 -0.11

emotion_amusement-g.m -0.01 0.12 -0.12 -0.24 0.22 -0.05 0.02

emotion 21.61 5 <.001 0.05

task_valenceclass-g.m -0.01 0.05 -0.20 -0.12 0.09 -0.04 0.03 task 0.04 1 .838 0.00

emotion_yawning-g.m:task_valenceclass-g.m -0.05 0.12 -0.42 -0.28 0.19 -0.09 -0.01

emotion_elation-g.m:task_valenceclass-g.m -0.04 0.12 -0.31 -0.28 0.21 -0.08 0.00

emotion_disgust-g.m:task_valenceclass-g.m 0.01 0.12 0.05 -0.24 0.23 -0.03 0.03

emotion_anger-g.m:task_valenceclass-g.m -0.08 0.12 -0.68 -0.32 0.15 -0.12 -0.04

emotion_amusement-g.m:task_valenceclass-g.m 0.10 0.12 0.84 -0.12 0.34 0.06 0.14

emotion:task 1.47 5 .917 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D8
Statistical results for the LPC mean amplitudes by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.35 0.52 10.31 4.40 6.35 5.02 5.53 (Intercept) - - - -

emotion_yawning-g.m -0.09 0.12 -0.72 -0.32 0.17 -0.14 -0.06

emotion_elation-g.m 0.06 0.12 0.52 -0.18 0.30 0.00 0.11

emotion_disgust-g.m -0.05 0.12 -0.37 -0.28 0.21 -0.09 0.01

emotion_anger-g.m 0.16 0.12 1.33 -0.07 0.42 0.12 0.20

emotion_amusement-g.m 0.10 0.12 0.83 -0.13 0.35 0.06 0.14

emotion 5.01 5 .414 0.01

task_valenceclass-g.m 0.09 0.05 1.55 -0.01 0.19 0.05 0.13 task 2.46 1 .117 0.01

emotion_yawning-g.m:task_valenceclass-g.m -0.18 0.12 -1.49 -0.41 0.07 -0.21 -0.16

emotion_elation-g.m:task_valenceclass-g.m 0.05 0.12 0.39 -0.19 0.31 0.01 0.07

emotion_disgust-g.m:task_valenceclass-g.m 0.12 0.12 1.00 -0.12 0.35 0.09 0.16

emotion_anger-g.m:task_valenceclass-g.m 0.03 0.12 0.27 -0.21 0.26 0.00 0.07

emotion_amusement-g.m:task_valenceclass-g.m 0.16 0.12 1.29 -0.08 0.40 0.13 0.19

emotion:task 6.2 5 .287 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D9
Statistical results for accuracy in the naturalness classification task by emotion and stimulus size

𝛽 𝑆𝐸 𝑧 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝

(Intercept) 5.00 0.19 25.72 4.66 5.44 4.93 5.07 (Intercept) - - -

emotion_yawning-g.m -0.26 0.24 -1.05 -0.73 0.26 -0.38 -0.03

emotion_anger-g.m 0.00 0.23 -0.01 -0.47 0.48 -0.08 0.08

emotion_disgust-g.m -0.05 0.24 -0.21 -0.52 0.53 -0.18 0.12

emotion_amusement-g.m 0.21 0.20 1.05 -0.21 0.72 0.11 0.30

emotion_elation-g.m -0.18 0.20 -0.88 -0.62 0.27 -0.29 -0.01

emotion 2.74 5 .740

task_valenceclass-g.m -0.57 0.14 -4.03 -0.89 -0.30 -0.63 -0.50 task 14.16 1 <.001

emotion_yawning-g.m:task_valenceclass-g.m -0.15 0.13 -1.18 -0.41 0.09 -0.40 -0.03

emotion_anger-g.m:task_valenceclass-g.m 0.33 0.13 2.60 0.08 0.60 0.17 0.42

emotion_disgust-g.m:task_valenceclass-g.m -0.11 0.13 -0.84 -0.40 0.15 -0.30 0.18

emotion_amusement-g.m:task_valenceclass-g.m -0.29 0.16 -1.89 -0.69 0.01 -0.43 -0.19

emotion_elation-g.m:task_valenceclass-g.m 0.21 0.12 1.73 -0.02 0.46 -0.03 0.35

emotion:task 12.72 5 .026

Notes: beta = model estimate, SE = standard error of the estimate, CI = lower and upper 95 Stab = estimate ranges leaving out one participant at a time,
LRT = Likelihood ratio test

Table D10
Statistical results for mean response times by emotion and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 1041.36 43.43 23.98 958.91 1121.84 1023.94 1053.68 (Intercept) - - - -

emotion_happy-g.m -39.22 5.25 -7.47 -49.76 -28.80 -41.26 -35.89

emotion_angry-g.m 48.30 5.25 9.20 38.11 59.20 44.82 49.86
emotion 85.57 2 <.001 0.31

stimsize_large-g.m 13.31 5.25 2.54 3.52 23.72 11.05 15.01

stimsize_medium-g.m -10.83 5.25 -2.06 -20.97 -1.10 -13.21 -8.41
stimsize 7.37 2 .025 0.02

emotion_happy-g.m:stimsize_large-g.m -0.92 7.42 -0.12 -15.58 12.97 -3.45 2.49

emotion_angry-g.m:stimsize_large-g.m -5.87 7.42 -0.79 -20.48 9.30 -8.04 -2.89

emotion_happy-g.m:stimsize_medium-g.m 11.36 7.42 1.53 -3.15 25.56 9.31 13.61

emotion_angry-g.m:stimsize_medium-g.m -8.86 7.42 -1.19 -23.50 5.07 -10.62 -4.01

emotion:stimsize 5.25 4 .263 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D11
Statistical results for the P1 mean amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 3.49 0.34 10.36 2.80 4.22 3.34 3.60 (Intercept) - - - -

facescr_face-g.m -0.36 0.08 -4.69 -0.51 -0.21 -0.38 -0.32 facescr 21.42 1 <.001 0.11

stimsize_medium-g.m 0.15 0.11 1.36 -0.06 0.36 0.11 0.19

stimsize_large-g.m 0.26 0.11 2.36 0.03 0.46 0.22 0.31
stimsize 14.03 2 <.001 0.07

facescr_face-g.m:stimsize_medium-g.m -0.04 0.11 -0.34 -0.24 0.16 -0.05 -0.02

facescr_face-g.m:stimsize_large-g.m -0.16 0.11 -1.48 -0.37 0.06 -0.18 -0.15
facescr:stimsize 3.80 2 .149 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D12
Statistical results for the P1 peak amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.24 0.38 13.88 4.49 5.97 5.08 5.37 (Intercept) - - - -

facescr_face-g.m -0.43 0.08 -5.37 -0.60 -0.27 -0.47 -0.40 facescr 27.55 1 <.001 0.15

stimsize_medium-g.m 0.16 0.11 1.43 -0.06 0.38 0.13 0.19

stimsize_large-g.m 0.59 0.11 5.18 0.37 0.82 0.54 0.63
stimsize 44.34 2 <.001 0.25

facescr_face-g.m:stimsize_medium-g.m -0.01 0.11 -0.08 -0.23 0.21 -0.02 0.01

facescr_face-g.m:stimsize_large-g.m -0.25 0.11 -2.22 -0.47 -0.02 -0.28 -0.23
facescr:stimsize 6.84 2 .033 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D13
Statistical results for the P1 peak latency by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 99.64 1.48 67.29 96.49 102.57 99.17 100.06 (Intercept) - - - -

facescr_face-g.m 0.87 0.51 1.69 -0.10 1.87 0.55 1.19 facescr 2.92 1 .087 0.01

stimsize_medium-g.m -0.83 0.72 -1.15 -2.27 0.64 -1.17 -0.58

stimsize_large-g.m -3.46 0.72 -4.79 -4.87 -2.06 -3.80 -3.25
stimsize 37.11 2 <.001 0.20

facescr_face-g.m:stimsize_medium-g.m 0.44 0.72 0.60 -0.99 2.01 0.19 0.62

facescr_face-g.m:stimsize_large-g.m 0.84 0.72 1.16 -0.56 2.20 0.60 1.04
facescr:stimsize 3.26 2 .196 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect sizeNote that the inspection of residuals indicated a potential misfit of the model, possibly
due to the temporal boundary of the ROI timewindow.

Table D14
Statistical results for the N170 mean amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -3.30 0.56 -5.92 -4.41 -2.26 -3.48 -3.00 (Intercept) - - - -

facescr_face-g.m -3.45 0.13 -26.29 -3.69 -3.19 -3.54 -3.34 facescr 302.79 1 <.001 3.54

stimsize_medium-g.m -0.12 0.19 -0.65 -0.49 0.24 -0.14 -0.10

stimsize_large-g.m 0.25 0.19 1.35 -0.13 0.61 0.22 0.30
stimsize 1.86 2 .395 0.01

facescr_face-g.m:stimsize_medium-g.m 0.15 0.19 0.80 -0.22 0.51 0.13 0.17

facescr_face-g.m:stimsize_large-g.m 0.22 0.19 1.16 -0.15 0.58 0.18 0.23
facescr:stimsize 3.93 2 .140 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D15
Statistical results for the N170 peak amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -7.06 0.64 -11.02 -8.34 -5.84 -7.23 -6.73 (Intercept) - - - -

facescr_face-g.m -4.07 0.15 -26.97 -4.37 -3.75 -4.17 -3.95 facescr 310.77 1 <.001 3.73

stimsize_medium-g.m -0.35 0.21 -1.66 -0.76 0.07 -0.38 -0.33

stimsize_large-g.m -0.24 0.21 -1.15 -0.63 0.17 -0.28 -0.20
stimsize 8.01 2 .018 0.04

facescr_face-g.m:stimsize_medium-g.m 0.12 0.21 0.55 -0.28 0.49 0.09 0.14

facescr_face-g.m:stimsize_large-g.m 0.36 0.21 1.67 -0.11 0.76 0.32 0.38
facescr:stimsize 5.38 2 .068 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D16
Statistical results for the N170 peak latency by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 150.96 1.81 83.52 147.30 154.58 150.12 151.34 (Intercept) - - - -

facescr_face-g.m 0.68 0.36 1.90 0.00 1.41 0.54 0.91 facescr 3.69 1 .055 0.02

stimsize_medium-g.m -1.76 0.51 -3.47 -2.79 -0.73 -1.89 -1.66

stimsize_large-g.m -3.98 0.51 -7.86 -4.95 -2.93 -4.15 -3.85
stimsize 104.57 2 <.001 0.71

facescr_face-g.m:stimsize_medium-g.m -0.22 0.51 -0.44 -1.21 0.75 -0.30 -0.11

facescr_face-g.m:stimsize_large-g.m -0.14 0.51 -0.27 -1.10 0.87 -0.25 0.01
facescr:stimsize 0.53 2 .766 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out
one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect sizeNote that one subject was removed from this model due to influential observations.

Table D17
Statistical results for the EPN mean amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 0.42 0.48 0.88 -0.47 1.34 0.17 0.59 (Intercept) - - - -

facescr_face-g.m -1.70 0.11 -15.23 -1.92 -1.48 -1.75 -1.58 facescr 156.68 1 <.001 1.19

stimsize_medium-g.m -0.10 0.16 -0.62 -0.41 0.22 -0.12 -0.08

stimsize_large-g.m 0.42 0.16 2.66 0.09 0.72 0.38 0.44
stimsize 7.76 2 .021 0.04

facescr_face-g.m:stimsize_medium-g.m 0.13 0.16 0.84 -0.21 0.44 0.11 0.15

facescr_face-g.m:stimsize_large-g.m 0.12 0.16 0.73 -0.18 0.42 0.09 0.15
facescr:stimsize 2.52 2 .283 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D18
Statistical results for the LPC mean amplitudes by facial intactness and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.07 0.33 12.46 3.44 4.68 3.96 4.17 (Intercept) - - - -

facescr_face-g.m 1.62 0.09 17.20 1.43 1.81 1.54 1.69 facescr 184.64 1 <.001 1.52

stimsize_medium-g.m 0.00 0.13 0.03 -0.26 0.27 -0.02 0.02

stimsize_large-g.m 0.19 0.13 1.46 -0.06 0.45 0.16 0.21
stimsize 2.94 2 .230 0.01

facescr_face-g.m:stimsize_medium-g.m 0.02 0.13 0.15 -0.22 0.28 0.01 0.04

facescr_face-g.m:stimsize_large-g.m 0.04 0.13 0.34 -0.21 0.29 0.03 0.06
facescr:stimsize 0.25 2 .881 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving
out one participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D19
Statistical results for the P1 mean amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 3.31 0.32 10.43 2.68 3.91 3.19 3.42 (Intercept) - - - -

emotion_scrambled-g.m 0.54 0.09 6.19 0.36 0.72 0.47 0.58

emotion_happy-g.m -0.29 0.09 -3.31 -0.45 -0.13 -0.31 -0.26

emotion_angry-g.m -0.06 0.09 -0.70 -0.23 0.11 -0.08 -0.04

emotion 40.07 3 <.001 0.10

stimsize_medium-g.m 0.13 0.07 1.80 -0.01 0.27 0.09 0.17

stimsize_large-g.m 0.18 0.07 2.47 0.03 0.32 0.14 0.22
stimsize 18.52 2 <.001 0.04

emotion_scrambled-g.m:stimsize_medium-g.m 0.06 0.12 0.45 -0.19 0.28 0.04 0.08

emotion_happy-g.m:stimsize_medium-g.m -0.05 0.12 -0.43 -0.28 0.17 -0.07 -0.04

emotion_angry-g.m:stimsize_medium-g.m 0.05 0.12 0.42 -0.20 0.28 0.03 0.07

emotion_scrambled-g.m:stimsize_large-g.m 0.24 0.12 1.95 -0.02 0.48 0.22 0.27

emotion_happy-g.m:stimsize_large-g.m 0.04 0.12 0.30 -0.20 0.28 0.00 0.05

emotion_angry-g.m:stimsize_large-g.m -0.11 0.12 -0.88 -0.35 0.12 -0.13 -0.08

emotion:stimsize 8.40 6 .210 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D20
Statistical results for the P1 peak amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 5.02 0.35 14.18 4.34 5.73 4.88 5.15 (Intercept) - - - -

emotion_scrambled-g.m 0.65 0.09 6.99 0.48 0.83 0.60 0.70

emotion_happy-g.m -0.34 0.09 -3.70 -0.52 -0.15 -0.36 -0.32

emotion_angry-g.m -0.08 0.09 -0.87 -0.26 0.10 -0.10 -0.06

emotion 50.20 3 <.001 0.12

stimsize_medium-g.m 0.16 0.08 2.10 0.01 0.30 0.13 0.19

stimsize_large-g.m 0.46 0.08 6.12 0.31 0.63 0.42 0.50
stimsize 69.08 2 <.001 0.17

emotion_scrambled-g.m:stimsize_medium-g.m 0.01 0.13 0.10 -0.23 0.27 -0.01 0.04

emotion_happy-g.m:stimsize_medium-g.m -0.05 0.13 -0.39 -0.30 0.21 -0.08 -0.03

emotion_angry-g.m:stimsize_medium-g.m 0.03 0.13 0.25 -0.23 0.27 0.01 0.07

emotion_scrambled-g.m:stimsize_large-g.m 0.38 0.13 2.89 0.11 0.64 0.35 0.42

emotion_happy-g.m:stimsize_large-g.m -0.04 0.13 -0.31 -0.30 0.22 -0.07 -0.02

emotion_angry-g.m:stimsize_large-g.m -0.15 0.13 -1.12 -0.39 0.11 -0.17 -0.12

emotion:stimsize 12.25 6 .057 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D21
Statistical results for the P1 peak latency by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 100.08 1.53 65.57 96.86 102.92 99.62 100.50 (Intercept) - - - -

emotion_happy-g.m -0.89 0.62 -1.43 -2.12 0.32 -1.05 -0.75

emotion_angry-g.m 1.19 0.62 1.92 0.00 2.44 0.97 1.54

emotion_neutral-g.m 1.00 0.62 1.60 -0.20 2.23 0.79 1.14

emotion 9.64 3 .022 0.02

stimsize_medium-g.m -0.61 0.51 -1.21 -1.60 0.35 -0.88 -0.38

stimsize_large-g.m -3.04 0.51 -6.00 -3.99 -2.04 -3.28 -2.80
stimsize 57.24 2 <.001 0.14

emotion_happy-g.m:stimsize_medium-g.m -0.18 0.88 -0.21 -1.94 1.45 -0.36 0.06

emotion_angry-g.m:stimsize_medium-g.m 0.57 0.88 0.64 -1.27 2.22 0.31 0.76

emotion_neutral-g.m:stimsize_medium-g.m 0.27 0.88 0.31 -1.42 2.06 -0.19 0.61

emotion_happy-g.m:stimsize_large-g.m 0.68 0.88 0.78 -1.10 2.49 0.29 0.93

emotion_angry-g.m:stimsize_large-g.m 0.02 0.88 0.02 -1.68 1.75 -0.17 0.21

emotion_neutral-g.m:stimsize_large-g.m 0.55 0.88 0.63 -1.16 2.30 0.38 0.84

emotion:stimsize 5.35 6 .499 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D22
Statistical results for the N170 mean amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -5.03 0.59 -8.52 -6.14 -3.86 -5.19 -4.74 (Intercept) - - - -

emotion_scrambled-g.m 5.17 0.14 35.84 4.89 5.45 5.01 5.31

emotion_happy-g.m -1.78 0.14 -12.35 -2.07 -1.48 -1.84 -1.73

emotion_angry-g.m -2.02 0.14 -13.99 -2.30 -1.75 -2.07 -1.96

emotion 611.31 3 <.001 3.01

stimsize_medium-g.m -0.05 0.12 -0.39 -0.29 0.19 -0.07 -0.03

stimsize_large-g.m 0.36 0.12 3.04 0.14 0.58 0.32 0.40
stimsize 11.06 2 .004 0.03

emotion_scrambled-g.m:stimsize_medium-g.m -0.22 0.20 -1.09 -0.63 0.16 -0.26 -0.20

emotion_happy-g.m:stimsize_medium-g.m 0.14 0.20 0.71 -0.22 0.56 0.12 0.17

emotion_angry-g.m:stimsize_medium-g.m 0.06 0.20 0.31 -0.35 0.44 0.04 0.10

emotion_scrambled-g.m:stimsize_large-g.m -0.32 0.20 -1.58 -0.71 0.06 -0.35 -0.27

emotion_happy-g.m:stimsize_large-g.m 0.10 0.20 0.47 -0.31 0.47 0.07 0.12

emotion_angry-g.m:stimsize_large-g.m 0.10 0.20 0.49 -0.29 0.50 0.07 0.13

emotion:stimsize 7.50 6 .277 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Table D23
Statistical results for the N170 peak amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -9.09 0.71 -12.85 -10.44 -7.75 -9.27 -8.78 (Intercept) - - - -

emotion_scrambled-g.m 6.10 0.16 38.21 5.81 6.42 5.92 6.25

emotion_happy-g.m -2.11 0.16 -13.25 -2.43 -1.78 -2.18 -2.05

emotion_angry-g.m -2.33 0.16 -14.58 -2.65 -2.02 -2.39 -2.27

emotion 653.86 3 <.001 3.42

stimsize_medium-g.m -0.30 0.13 -2.27 -0.55 -0.04 -0.31 -0.28

stimsize_large-g.m -0.07 0.13 -0.51 -0.32 0.18 -0.10 -0.03
stimsize 8.90 2 .012 0.02

emotion_scrambled-g.m:stimsize_medium-g.m -0.17 0.23 -0.77 -0.60 0.27 -0.21 -0.14

emotion_happy-g.m:stimsize_medium-g.m 0.12 0.23 0.54 -0.31 0.55 0.09 0.15

emotion_angry-g.m:stimsize_medium-g.m 0.04 0.23 0.19 -0.37 0.49 0.01 0.08

emotion_scrambled-g.m:stimsize_large-g.m -0.53 0.23 -2.36 -0.95 -0.08 -0.56 -0.48

emotion_happy-g.m:stimsize_large-g.m 0.16 0.23 0.69 -0.30 0.60 0.12 0.19

emotion_angry-g.m:stimsize_large-g.m 0.23 0.23 1.03 -0.19 0.65 0.19 0.27

emotion:stimsize 11.02 6 .088 0.03

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D24
Statistical results for the N170 peak latency by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 151.82 1.76 86.35 148.27 155.19 151.11 152.22 (Intercept) - - - -

emotion_happy-g.m 0.50 0.43 1.18 -0.38 1.34 0.38 0.69

emotion_angry-g.m 0.86 0.43 2.01 0.04 1.70 0.77 1.00

emotion_neutral-g.m 0.00 0.43 0.00 -0.83 0.79 -0.17 0.21

emotion 11.83 3 .008 0.03

stimsize_medium-g.m -1.68 0.35 -4.79 -2.35 -0.98 -1.87 -1.56

stimsize_large-g.m -4.15 0.35 -11.86 -4.85 -3.51 -4.26 -4.05
stimsize 229.54 2 <.001 0.68

emotion_happy-g.m:stimsize_medium-g.m -0.21 0.61 -0.35 -1.42 1.00 -0.33 -0.08

emotion_angry-g.m:stimsize_medium-g.m 0.07 0.61 0.11 -1.18 1.21 -0.08 0.17

emotion_neutral-g.m:stimsize_medium-g.m -0.54 0.61 -0.89 -1.73 0.67 -0.61 -0.38

emotion_happy-g.m:stimsize_large-g.m -0.47 0.61 -0.77 -1.68 0.78 -0.56 -0.34

emotion_angry-g.m:stimsize_large-g.m -0.34 0.61 -0.56 -1.62 0.84 -0.43 -0.16

emotion_neutral-g.m:stimsize_large-g.m 0.33 0.61 0.54 -0.88 1.47 0.16 0.40

emotion:stimsize 4.71 6 .582 0.01

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect sizeNote that one subject was removed from this model due to influential observations.
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Table D25
Statistical results for the EPN mean amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) -0.43 0.52 -0.82 -1.40 0.62 -0.69 -0.26 (Intercept) - - - -

emotion_scrambled-g.m 2.55 0.12 20.46 2.28 2.82 2.37 2.63

emotion_happy-g.m -1.13 0.12 -9.06 -1.37 -0.87 -1.16 -1.05

emotion_angry-g.m -0.98 0.12 -7.89 -1.24 -0.75 -1.03 -0.91

emotion 306.20 3 <.001 1.01

stimsize_medium-g.m -0.03 0.10 -0.32 -0.22 0.17 -0.05 -0.01

stimsize_large-g.m 0.48 0.10 4.69 0.26 0.67 0.44 0.51
stimsize 27.33 2 <.001 0.06

emotion_scrambled-g.m:stimsize_medium-g.m -0.20 0.18 -1.12 -0.57 0.16 -0.23 -0.16

emotion_happy-g.m:stimsize_medium-g.m 0.13 0.18 0.73 -0.22 0.45 0.10 0.15

emotion_angry-g.m:stimsize_medium-g.m 0.16 0.18 0.90 -0.20 0.51 0.13 0.18

emotion_scrambled-g.m:stimsize_large-g.m -0.17 0.18 -0.99 -0.50 0.16 -0.22 -0.13

emotion_happy-g.m:stimsize_large-g.m 0.17 0.18 0.98 -0.15 0.52 0.15 0.20

emotion_angry-g.m:stimsize_large-g.m -0.01 0.18 -0.03 -0.35 0.34 -0.04 0.03

emotion:stimsize 6.68 6 .351 0.02

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size

Table D26
Statistical results for the LPC mean amplitudes by emotion (incl. scrambled) and stimulus size

𝛽 𝑆𝐸 𝑡 𝐶𝐼𝑙 𝐶𝐼𝑢 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 𝑆𝑡𝑎𝑏𝑚𝑎𝑥 LRT:Model 𝜒2 𝑑𝑓 𝑝 𝑓2

(Intercept) 4.88 0.37 13.08 4.24 5.59 4.75 4.99 (Intercept) - - - -

emotion_scrambled-g.m -2.43 0.11 -22.92 -2.62 -2.22 -2.53 -2.31

emotion_happy-g.m 1.05 0.11 9.91 0.85 1.25 1.01 1.09

emotion_angry-g.m 0.73 0.11 6.92 0.53 0.95 0.69 0.78

emotion 354.61 3 <.001 1.24

stimsize_medium-g.m 0.01 0.09 0.17 -0.15 0.19 0.00 0.03

stimsize_large-g.m 0.22 0.09 2.50 0.05 0.38 0.19 0.23
stimsize 9.04 2 .011 0.02

emotion_scrambled-g.m:stimsize_medium-g.m -0.03 0.15 -0.20 -0.33 0.26 -0.06 -0.01

emotion_happy-g.m:stimsize_medium-g.m 0.11 0.15 0.75 -0.17 0.40 0.08 0.13

emotion_angry-g.m:stimsize_medium-g.m -0.09 0.15 -0.59 -0.40 0.18 -0.11 -0.05

emotion_scrambled-g.m:stimsize_large-g.m -0.07 0.15 -0.45 -0.36 0.21 -0.09 -0.04

emotion_happy-g.m:stimsize_large-g.m -0.05 0.15 -0.35 -0.34 0.25 -0.08 -0.01

emotion_angry-g.m:stimsize_large-g.m 0.10 0.15 0.69 -0.20 0.39 0.07 0.14

emotion:stimsize 1.22 6 .976 0.00

Notes: 𝛽 = model estimate, SE = standard error of the estimate, CI = lower and upper 95% bootstrapped confidence intervals, Stab = estimate ranges leaving out one
participant at a time, LRT = Likelihood ratio test, 𝑓2 = Cohen’s 𝑓2 effect size
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Figure D1
Illustration of the creation of expressive faces for the present study.

Notes: The top row show example for different image properties between frequently used face
databases: KDEF: Karolinska Directed Emotional Faces (Garrido, 2017, Front Psych, 8); AT-
TRACT: face database validated for attractiveness (Schacht, 2008, CABN, 8); GFDB: Goettingen
Face Database (Kulke, 2017, osf.io/4knpf ); Radboud: Radboud Faces Database (Langner, 2010,
Cogn Emot, 24). Stimulus processing starts with alignment, rotation, scaling and cropping of the
input image, automatically withOpenFace. The 128× 128 px image is the input for the first gener-
ative adversarial network (GAN), ’Ganimation-replicate’. An array of intensities for 17 available
action units has to be specified and passed to the model. Some example outputs are displayed
on the right. With increasing intensity, the model produced artefacts, especially at the mouth and
cheek region for happy and angry stimuli. Some were diminshed by the next step, restoring and
upscaling the expressive images using GFPGAN. Finally, an oval mask with gaussian blur was
applied to the image, the image was normalized and resized. Note, that we also created instances
of model-based neutral expressions with the first GAN (highlighted in pink).
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Figure D2
Quantiles of pixel RGB values as a measure of luminance per stimulus category.

Notes: Every cross represents an individual stimulus. The black horizontal line indicates the back-
ground luminance which corresponded to the median of stimuli. Medians of scrambled versions
had a slight positive offset (+3). Mean luminance and contrast differed between stimuli depicting
fake and real expressions despite normalization.

Figure D3
Averaged power spectrum of the spatial frequencies for intact and scrambled faces.

Notes: Scrambling by shuffling chunks of pixels resulted in a different power spectrum and im-
portantly, did not preserve the pronounced low frequencies of the intact facial stimuli.
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