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"Personally I’m always ready to learn, although I do not always like being taught."

Winston Churchill
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Executive summary
In times of reduced monetary policy leeway, COVID-19 and the energy crisis as well
as long-term challenges related to demographic change and the transition towards
net-zero economies, more and more policymakers turn to fiscal policy as a rem-
edy. However, resorting to fiscal instruments as a means of fulfilling policy goals
is not a free lunch, as fiscal stimulus might endanger the sustainability of public fi-
nances, thus restricting policymakers’ maneuvering room (fiscal space) to address
economic challenges. The fact that there is a potential downside of fiscal stimulus
implies a trade-off between macroeconomic stabilization and fiscal sustainability,
which should be accounted for when designing fiscal policies.

This dissertation, comprising three academic papers, deals with the trade-off
along both dimensions, that is, fiscal sustainability and macroeconomic stabiliza-
tion. More precisely, the first and second paper focus on the sustainability of public
finances, while the third assesses the effectiveness of fiscal policies in terms of the
state of the economy.

The first paper, joint with Tino Berger and Ruben Schoonackers, examines the
specification of fiscal reaction functions, which capture the fiscal response (as mea-
sured by a country’s primary balance) to changes in public debt and other economic
conditions. We argue that the fiscal response to public debt is varying over time,
finding formal evidence in favor of our time-varying parameter specification for a
sample of five EU countries. We then link this non-linear fiscal response to changes
in the interest rate-growth differential and the level of public debt.

In the second paper, a fiscal reaction function, featuring time-varying parame-
ters, is embedded in a debt sustainability analysis framework to forecast the short-
term evolution of the primary balance and public debt for a sample of ten OECD
countries. The results suggest that debt sustainability analyses featuring time-
varying parameter fiscal reaction functions perform competitively compared to a
time-invariant coefficient pendant and even outperform the European Commission
Economic Forecasts at certain horizons.

The third paper, joint with Tino Berger, assesses government spending policies
based on their effects on the output gap in the United States. While the fiscal multi-
plier literature focuses on fiscal policies’ effects on levels and growth rates, we can
directly make statements about fiscal policy’s impact on the business cycle by means
of the Beveridge-Nelson decomposition. We find that the dosage of expansionary
fiscal policy is key: Pronounced fiscal stimulus does increase the output gap, but
can lead to an overheating economy and increasing public debt levels. While this
finding is in line with standard macroeconomic models, our approach can guide
policymakers in quantifying a policy’s impact on the business cycle.
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Kurzfassung
In Zeiten mangelnden geldpolitischen Spielraums, COVID-19 und der Energiekrise
sowie langfristigen Herausforderungen im Zuge des demographischen Wandels
und dem Übergang hin zu einer CO2-neutralen Wirtschaft gewinnt die Fiskalpoli-
tik zunehmend an wirtschaftspolitischer Bedeutung. Fiskalische Maßnahmen sind
allerdings mit Kosten verbunden: So können Konjunkturprogramme die Tragfä-
higkeit öffentlicher Finanzen gefährden und damit den fiskalpolitischen Spielraum,
wirtschaftspolitische Ziele zu verfolgen, einschränken. Diese Kehrseite von Kon-
junkturprogrammen impliziert einen möglichen Zielkonflikt zwischen makroöko-
nomischer Stabilisierung und fiskalischer Tragfähigkeit, für den Entscheidungsträ-
ger bei der Strukturierung von Fiskalpaketen Sorge tragen sollten.

Diese Dissertation besteht aus drei Forschungspapieren, die sich diesem Zielkon-
flikt sowohl im Hinblick auf die fiskalische Tragfähigkeit (Papiere eins und zwei) als
auch auf die makroökonomische Stabilisierung (Papier drei) widmen.

Das erste Papier (mit Tino Berger und Ruben Schoonackers) untersucht die Spez-
ifikation von Fiskalreaktionsfunktionen, die die fiskalische Antwort (Veränderung
des Primärsaldos eines Landes) auf eine Veränderung der Staatsverschuldung und
anderer ökonomischer Größen messen. Wir argumentieren, dass die fiskalische Re-
aktion auf eine Veränderung der Staatsverschuldung zeitvariabel ist, und finden für
unsere Stichprobe von fünf europäischen Ländern formale empirische Evidenz für
diese Zeitvariabilität. In einem zweiten Schritt finden wir, dass diese nicht-lineare
fiskalische Reaktion durch Änderungen des Zins-Wachstums-Differentials sowie die
Höhe der Staatsverschuldung getrieben werden.

Im zweiten Papier werden Fiskalreaktionsfunktionen mit zeitvariablen Parame-
tern im Rahmen der Schuldentragfähigkeitsanalyse eingesetzt, um den Primärsaldo
und die Staatsverschuldung in der kurzen Frist für zehn OECD-Länder zu prog-
nostizieren. Schuldentragfähigkeitsanalysen dieser Art liefern „wettbewerbsfähige“
Prognosen, insbesondere im Vergleich mit entsprechenden Modellen ohne zeitvari-
able Parameter. Auch im Vergleich zu den „Economic Forecasts“ der Europäischen
Kommission liegen für einige Prognosehorizonte Performance-Vorteile vor.

Im dritten Papier (mit Tino Berger) werden die Effekte von Staatsausgabenpoli-
tik auf die Outputlücke in den USA untersucht. Über die Nutzung der Beveridge-
Nelson-Zerlegung treffen wir direkte Aussagen über fiskalpolitische Effekte auf den
Konjunkturzyklus, während der Fokus der Literatur fiskalischer Multiplikatoren
auf Level- und Wachstumsvariablen liegt. Unseren Ergebnissen zufolge ist die Do-
sierung von Konjunkturpaketen entscheidend: Expansive Fiskalpolitik in Krisen
führt zu einer schnelleren Schließung der Outputlücke, kann aber zu Überhitzung
und hoher Staatsverschuldung führen. Während dieser Befund den Ergebnissen
von Standardmodellen der Makroökonomik entspricht, gibt unser Ansatz Entschei-
dungsträgern ein Modell an die Hand, das die Quantifizierung der Effekte einer
fiskalischen Maßnahme auf den Konjunkturzyklus ermöglicht.
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Chapter 1

Introduction

After the Great Recession hit the United States in late 2007, policymakers engaged
in massive monetary stimulus. In fact, so massive was the stimulus that the Fed-
eral Funds Rate swiftly approached the zero-lower bound – notwithstanding levels
above 5% in mid-2007 – where it would remain for many years. As a result, the Fed’s
leeway to stimulate the economy by conventional means became severely limited.
Due to similar developments in many industrialized economies, countries increas-
ingly turned to fiscal policy as a means of macroeconomic stabilization. In the words
of former Fed chairman Ben Bernanke: "Monetary policy has less room to maneuver
when interest rates are close to zero, while expansionary fiscal policy is likely both more ef-
fective and less costly in terms of increased debt burden when interest rates are pinned at low
levels."1

Clearly though, resorting to fiscal measures for stabilization purposes is far from
being a free lunch. In the above words of Bernanke: Expansionary fiscal policy be-
ing less costly near the zero-lower bound (in terms of the resulting debt burden) does
not mean it is without costs. More precisely, fiscal policy’s leeway to fulfill macroeco-
nomic stabilization goals is constrained by the magnitude of the public debt position
and the creditors’ willingness to finance it: If financial markets question the sustain-
ability of a country’s debt and deficit positions, higher refinancing costs might arise,
further weighing on the sustainability of public finances and starting a vicious cycle.

Figure 1.1 depicts the evolution of public debt-to-GDP ratios ("debt ratios") for
a selection of industrialized economies from 1995 to 2022.2 First, note that debt ra-
tios have been rising steadily. In eight out of eleven countries, debt ratios have in-
creased from 1995 to 2022, in some cases drastically: For France, Greece, Japan and
the United States, this increase is well above 50 percentage points. Rising debt ratios
– both in the past and in the future – are not surprising, given long-term challenges
in many industrialized economies such as an increasing financial burden related to
demographic change as well as the (at least initially) costly transition towards low-
carbon economies.

Second, attempts to stabilize the economy in response to major economic crises
seem to have caused a deterioration in fiscal positions: Debt ratios in all displayed

1https://www.federalreserve.gov/newsevents/speech/bernanke20140103a.htm.
2The selection of countries coincides with the sample countries chosen in the following chapters of

this dissertation.

https://fred.stlouisfed.org/series/FEDFUNDS
https://fred.stlouisfed.org/series/FEDFUNDS
https://www.federalreserve.gov/newsevents/speech/bernanke20140103a.htm
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FIGURE 1.1: Evolution of public debt ratios in industrialized
economies

Notes: This figure shows the evolution of public debt in percent of GDP for a se-
lection of industrialized economies from 1995 to 2022. The countries displayed are
those countries used in the samples of chapters 2, 3 and 4. Data source: AMECO
database.

countries have risen in the aftermath of the Global Financial Crisis – and in some
cases strongly – thus reducing governments’ "fiscal space".3 Similar dynamics can
be seen for the COVID-19 crisis, where debt ratios have, at least in 2020, increased
in all depicted countries. Thus – while effective at the zero-lower bound according
to Bernanke – excessive fiscal stimulus might induce high costs related to a growing
public debt stock, at least partially offsetting the benefit from the fiscal expansion.4

The fact that there is a potential downside from fiscal stimulus implies a trade-
off between macroeconomic stabilization and fiscal sustainability goals (see e. g. Haupt-
meier and Kamps, 2022). Any prudent fiscal authority should properly take fiscal
(public debt) sustainability into account when designing a stimulus package. This
dissertation attempts to contribute with respect to these two competing fiscal policy
goals: Chapters 2 and 3 address the adequate assessment of public debt sustain-
ability. Chapter 4 analyzes the efficacy of fiscal policy in terms of macroeconomic
stabilization. These chapters may be seen as steps towards a comprehensive, model-
based analysis of an "optimal" fiscal policy design.5

3See Ghosh et al. (2013), who state that fiscal space can be understood as the distance of the actual
public debt level from a limit beyond which the debt position becomes unsustainable.

4Note that increasing debt ratios can also come about due to falling GDP levels. However, due
to the major fiscal stimulus packages implemented in the depicted countries in the aftermath of the
Global Financial Crisis as well as in response to the COVID-19 shock, fiscal stimulus is certainly at
least partly to blame for the increase.

5It should be noted, though, that whether fiscal stimulus indeed worsens a country’s debt position
is not necessarily straightforward, as growth effects from fiscal stimulus might (partially or fully) offset
the deficit-induced debt ratio hike (see e. g. McCausland and Theodossiou, 2015). Nevertheless,
running fiscal deficits can severely jeopardize fiscal sustainability by reducing creditors’ trust in the

https://economy-finance.ec.europa.eu/economic-research-and-databases/economic-databases/ameco-database_en#database
https://economy-finance.ec.europa.eu/economic-research-and-databases/economic-databases/ameco-database_en#database
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Chapter 2, which is joint work with Tino Berger (University of Göttingen) and
Ruben Schoonackers (National Bank of Belgium, Vrije Universiteit Brussel), attempts
to contribute along the lines of public debt sustainability by addressing adequate
model selection. Fiscal empiricists have frequently used fiscal reaction functions (FRFs)
– behavioral equations for fiscal authorities – to assess public debt sustainability (see
especially the pioneering work of Bohn, 1995, 1998, 2008). Bohn argues that, if a gov-
ernment on average increases its primary balance (its policy variable) in response to
rising government debt, this would be a sufficient condition for public debt to be
sustainable. As outlined in Everaert and Jansen (2018), FRFs can conveniently be
embedded in stochastic debt sustainability analysis (SDSA) frameworks, where future
primary balance and public debt paths are simulated to judge the sustainability of
public finances by means of fan charts, depicting projected distributions of the vari-
ables of interest, allowing the researcher or policymaker to make probabilistic state-
ments about the variables’ future evolution (e. g. probabilities for certain thresholds
being reached; see e. g. Medeiros, 2012, Celasun et al., 2006). Everaert and Jansen
(2018) stress that, since FRFs play an important role in (stochastic) debt sustainabil-
ity analysis, it is crucial they be appropriately specified. Only if this is the case will
it be possible to adequately assess fiscal sustainability.

Addressing this argument on the importance of correctly specifying FRFs, we
argue that there is reason to believe that the fiscal reaction to public debt (by means
of the primary balance) may vary over time. First, such time variation might come
about due to differences in fiscal responsiveness at varying levels of debt. As argued
by Ghosh et al. (2013), the fiscal reaction to debt might be increasing with the level
of debt up to a certain point, from which onward the primary balance cannot keep
up with ever-rising amounts of public debt – "fiscal fatigue" settles in. Second, debt
dynamics crucially depend on the interest rate-growth differential: While higher
growth implies higher tax generation capacities and lower unemployment benefit
expenses (as well as a higher denominator in the debt ratio), higher interest rates on
the debt, demanded by financial markets, imply higher debt service costs (see e. g.
Blanchard, 2019). Thus, both variations in growth and interest rates render any given
level of debt more or less sustainable, potentially implying the necessity to adjust
fiscal behavior. Our baseline model thus features a time-varying primary balance
reaction to public debt. Additionally, we use a formal model selection algorithm to
assess the "probability" of our specification, given data and prior. Thus, we directly
address the above-mentioned importance of correctly specifying FRFs, given their
role in debt sustainability analysis. We find strong evidence for a time-varying fiscal
reaction to public debt. In a second step, we seek to explain this observed time
variation, enriching our model by including the interest rate-growth differential as
well as the level of public debt itself as explanatory variables for the time-varying
fiscal reaction to debt. We find that both covariates have some explanatory power,

sustainability of a rising public debt stock, thus increasing debt service costs and weighing on growth
and debt sustainability.
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while other (not considered) determinants appear to play a role, too.
Just as chapter 2, chapter 3 (a revised version is accepted for publication in Ap-

plied Economics) is concerned with model specification, thus attempting to contribute
along the lines of proper fiscal sustainability evaluation. Unlike in chapter 2, where
the focus is on the correct FRF specification based on models’ in-sample fit, in chap-
ter 3 I am focusing on the out-of-sample forecasting performance of SDSA frame-
works that feature time-varying parameter FRFs, using vintage datasets. Such "real-
time" fiscal forecasting exercises to judge debt sustainability analysis models have
not been treated very prominently in the relevant literature, certainly at least partly
due to difficulties in retrieving relevant data. This chapter tries to fill this gap. Vari-
ous model specifications are judged based on whether they have produced primary
balance and public debt forecasts close to actual ex-post values. For this purpose,
SDSA models in spirit of Medeiros (2012) and Celasun et al. (2006) are employed.
That is, next to a FRF, a vector autoregressive model (VAR) to capture the correla-
tions between macroeconomic variables that affect the fiscal variables is included
in the framework. Unlike in Medeiros (2012) and Celasun et al. (2006), FRFs and
VARs in the specifications in chapter 3 feature time-varying parameters, thus al-
lowing for changes in underlying relationships over time. Assume, for example,
that the actual data-generating process of the fiscal reaction to public debt in the
FRF is time-varying. If, in the current period, the true parameter is significantly be-
low its mean and will stay there for some time, using a fixed coefficient FRF within
a debt sustainability framework can lead to sustainability risks being severely un-
derestimated. Using SDSA frameworks with time-varying parameters can mitigate
misleading inference resulting from such situations.

I find that SDSA models featuring time-varying parameter FRFs and VARs per-
form competitively in terms of mean squared error and forecast bias against a state-
of-the-art (Medeiros, 2012-style) SDSA model without time-varying parameters and
the European Commission Economic Forecasts at short horizons (up to two years
ahead), in particular for public debt. Thus, SDSA frameworks featuring FRFs (and
VARs) with time-varying parameters should serve as a complementary tool to debt
sustainability analyses conducted in academia and at policy institutions.

While chapters 2 and 3 address the debt sustainability goal of fiscal policy, chap-
ter 4, which is joint work with Tino Berger, looks at the economic stabilization part
of the trade-off: Given that (massive) fiscal stimulus potentially weighs on fiscal sus-
tainability, how effective were certain stimulus programs in reaching policy goals?
To answer this question, we look into the efficacy of hypothetical government spend-
ing scenarios in terms of stabilizing the US economy in major crises in history. Fiscal
policy effects on the macroeconomy are usually quantified by means of fiscal multi-
pliers. For example, an answer to the question "how much Dollar in GDP are gen-
erated from a one Dollar government spending expansion?" is provided (see e. g.
Caldara and Kamps, 2017 for a detailed overview on fiscal multipliers). However,
the literature on fiscal multipliers is vague when it comes to quantifying effects on



5

the business cycle. Looking into business cycle effects can be fruitful since, next to
adversely affecting public finances, a fiscal expansion might lead to an overheating
of the economy with distortionary effects arising from the implied increase in in-
flation. Thus, assessing effects on the business cycle provides a clearer picture on
the state of the economy compared to fiscal multipliers and is therefore the more
policy-relevant measure.

We contribute to the debate on fiscal policy efficacy in terms of business cycle
stabilization on the government spending side. We identify the business cycle from
a multivariate Beveridge-Nelson decomposition based on a VAR in spirit of Morley
and Wong (2020) and look into counterfactual scenarios for government spending,
asking "what would the path of the business cycle have looked like if government
spending growth had been x% higher for some periods?". We look into four major
economic crises in US history, finding that the "dosage" of the stimulus packages is
crucial. More precisely, higher government spending growth does have a positive
effect on the business cycle. That said, there is a real danger from "overspending",
leading to pronounced overheating and debt sustainability risks, the latter of which
reduces the fiscal space for tackling future crises. Thus, while government spend-
ing increases can certainly be used to overcome adverse macroeconomic conditions,
these downside risks should be taken into account when designing a fiscal stimu-
lus package. While these findings are well-known, we provide policymakers with
a framework to quantify opportunities and challenges of a planned stimulus pro-
gram within a model that does not require restrictive identification assumptions to
identify fiscal shocks.

As outlined above, this dissertation contributes along the lines of the two po-
tentially competing fiscal policy goals of macroeconomic stabilization and public
debt sustainability. Chapters 2 and 3 focus on the debt stabilization goal, contribut-
ing to the literature by operationalizing in- and out-of-sample model selection in a
fiscal policy context and providing formal evidence in favor of debt sustainability
frameworks featuring time-varying parameter models. Chapter 4 analyzes the ef-
fectiveness of fiscal policy in terms of business cycle stabilization, providing a tool
to quantify fiscal policy effects on the business cycle that is independent of the iden-
tification strategy of fiscal shocks. Future work could combine the components of
these chapters in a holistic approach to designing effective, sustainable fiscal policy.
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Chapter 2

Fiscal prudence: It’s all in the
timing – Estimating time-varying
fiscal policy reaction functions for
core EU countries
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Abstract

When estimating fiscal policy reaction functions (FRF), the literature has well rec-
ognized the importance of non-linearities. However, there is yet very little attempt
to formally test for the presence and potential sources of a non-linear fiscal respon-
siveness. In this paper we address this gap by formally addressing model specifi-
cation of the FRF in a panel of five EU countries. Employing a Bayesian stochastic
model specification search algorithm, we provide formal evidence for time-varying
fiscal prudence over the last 50 years. The primary balance responsiveness exhibits
smooth but significant variation over time and thus confirms the necessity of a non-
linear model. Moreover, the extended results show that dynamics can be partially
linked to the interest rate growth differential and the level of public debt itself. How-
ever, no clear evidence is found in favor of the fiscal fatigue proposition.

Keywords: Fiscal reaction function, time-varying parameters, state-space models,
MCMC, stochastic model specification search
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2.1 Introduction

With the policy rate at the zero lower bound the ability of monetary policy to en-
courage economic growth is limited. As a result, the role of fiscal policy to stabilize
the economy has become increasingly important in recent years. Moreover, for euro
area countries fiscal policy is the only instrument that allows for country-specific
economic policy. There is an extensive and ongoing discussion in the literature on
fiscal sustainability. While the importance of safe debt levels is well recognized, re-
cent events seriously challenge the sustainability of public finances.

To counteract the consequences of the COVID-19 induced recession, govern-
ments responded with unprecedented spending. In the euro area, the government
deficit increased to 8.8% of GDP in 2020 and the gross public debt ratio reached a
level of 101.7% of GDP. With low economic growth and prolonged stimulus pack-
ages, these numbers are likely not to decline quickly over the next few years. Addi-
tionally, rising age-related public expenditures and low expected potential growth
further challenge the sustainability of public finances.

In assessing sovereign vulnerabilities, stochastic debt sustainability analysis
(DSA) frameworks play an important role. They make use of simulated stochas-
tic debt trajectories that reflect the interplay of model-based projections for relevant
macroeconomic variables with an expected fiscal policy response, based on the es-
timation of a fiscal policy reaction function (FRF) that describes how the primary
balance responds to changes in public debt. Besides its importance for DSA, the esti-
mation of a FRF yields information on the type and strength of fiscal policy reactions
governments had in the past and can be helpful in providing signals for potential
future sustainability issues. In order to obtain reliable debt projections, a correctly
specified FRF is thus essential.

The FRF literature has well recognized the importance of non-linearities for cor-
rectly specifying the FRF. Ghosh et al. (2013), for example, find strong evidence for
the existence of a non-linear FRF that exhibits fiscal fatigue which is very well ap-
proximated by a cubic relationship between public debt and the primary balance.
When the level of inherited debt increases, the primary balance responsiveness also
increases but eventually starts to decrease and at high levels of debt finally becomes
negative. Recent studies such as Fournier and Fall (2017) attempt to derive these
thresholds endogenously by employing regime-switching models, while others such
as Weichenrieder and Zimmer (2014), explicitly link the fiscal reaction to a specific
event such as Euro membership.

Despite the emerging consensus regarding the importance of correctly model-
ing the FRF, there is yet very little attempt to formally test for the presence and the
potential source of non-linearities. In this paper we address this gap in the liter-
ature by formally addressing model specification of the FRF in a panel of five EU
countries. Specifically, we employ a Bayesian model specification search to test for
time-variation in the responsiveness in the primary balance to the gross public debt
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ratio. The responsiveness parameter is allowed to vary according to a random walk
and thus allows for various forms of non-linear reaction. We then test how much of
the time-variation can be explained by the interest rate growth differential and the
lagged squared debt ratio. The latter essentially tests for the fiscal fatigue proposi-
tion of Ghosh et al. (2013).

We find strong evidence for time-variation in the FRF over the last 50 years. The
primary balance responsiveness to debt exhibits smooth but significant variation
over time and thus confirms the necessity of a non-linear model. The dynamics can
be partially linked to the interest rate growth differential. Less evidence is found in
favor of the fiscal fatigue proposition.

The remainder of the paper is structured as follows. In Section 2.2, we discuss the
empirical setup. More specifically, we focus on the role of FRFs in debt sustainability
analysis and we elaborate on our empirical specification. Section 2.3 focuses on the
econometric approach for estimating our FRF, while in Section 2.4 results of our
empirical analysis are discussed. Section 2.5 concludes.

2.2 Empirical setup

2.2.1 Estimating a FRF: The basics

Is government policy in line with fiscal solvency? This is a question that fea-
tures promintently in the academic and policy debate and boils down to assessing
whether the debt-to-GDP ratio belongs to a dynamically stable trajectory.3

To analyze fiscal solvency, recall the public debt accumulation equation,

∆dt ≡ dt − dt−1 =
rt − gt

1 + gt
dt−1 − pbt, (2.1)

where dt and pbt respectively stand for the debt-to-GDP and the primary balance
ratio in period t. The interest rate on the outstanding amount of debt is represented
by rt whereas nominal GDP growth equals gt. From equation (2.1) one can immedi-
ately see that debt dynamics are driven by two opposing forces, (i) the interest-rate
growth differential (IRGD) (rt − gt) and (ii) the primary balance.

If then the fiscal reaction to debt is represented by

pbt = βdt−1, (2.2)

one can derive that to ensure a dynamically stable public debt trajectory, i. e. a
mean-reverting public debt ratio, on average the following condition needs to hold:

β >
r − g
1 + g

(2.3)

3A very interesting overview of key economic principles and statistical methods used in debt sus-
tainability analysis is given in Debrun et al. (2019). This section is indebted to their lecture.
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The fiscal reaction to debt – and estimating a FRF – can thus be used to assess the
sustainability of public finances.

In a seminal paper, Bohn (1998) was the first to analyze this kind of FRF. More
specifically, Bohn’s (1998) model-based sustainability test (MBS) consists of estimat-
ing

pbt = βdt−1 + Xtγ + ϵt, (2.4)

where X captures a set of other determinants explaining the evolution in the pri-
mary balance and ϵt represents a white noise error term. Bohn (1998) showed that,
under a set of regularity conditions, a positive primary balance reaction to changes
in the debt ratio (i. e. β > 0) is sufficient evidence for an economy to be fiscally sus-
tainable and satisfying its intertemporal budget constraint. Applications of Bohn’s
MBS differ mainly regarding the covariates included in X and the empirical setting,
i. e. the country and time coverage. Two interesting and comprehensive overviews
of existing FRF studies are given by Berti et al. (2016) and Checherita-Westphal and
Žd’árek (2017).

Another major contribution to the FRF literature is the often cited paper of Ghosh
et al. (2013). In their analysis, the authors argue that an average positive fiscal re-
action to debt (β > 0) should be labeled as a "weak" sustainability criterion as this
implies that an ever-increasing debt-to-GDP ratio is not excluded.4 For instance, this
is the case if the increase in the primary balance is lower than the IRGD. They ad-
vocate a stricter sustainability criterion – the public debt ratio converging to some
finite proportion of GDP – and argue that a sufficient condition for this is a primary
balance reaction that on average exceeds the interest-rate growth differential.

A key issue in the fiscal austerity debate – and in the estimation of FRFs – is
whether the degree of fiscal responsiveness to public debt changes with the level of
debt. Specifically, the hypothesis of fiscal fatigue has been tested. Ghosh et al. (2013),
for example, find strong support for a non-linear relationship between the primary
balance and the lagged debt ratio that exhibits fiscal fatigue. More precisely, they
find a cubic relation: At low levels of debt, the relationship between the primary
balance and debt is barely existent. But as debt increases, the primary balance reacts
positively and increases (more than proportionally) with the stock of debt. Eventu-
ally, the response starts to weaken and even decreases at very high levels of debt.
Thus, at very high debt levels, the fiscal effort – in the form of raising extra taxes
or cutting primary spending – required to "keep up" with debt becomes unfeasable
and/or undesirable. In more recent publications, Fournier and Fall (2017) confirm
the fiscal fatigue property for a group of OECD countries, while Everaert and Jansen

4This is in contrast to Bohn (1998), who considers β > 0 – under reasonable regularity conditions
– to be a sufficient condition to meet fiscal solvency.
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(2018) find it not to be a general characteristic of the FRF when allowing for country-
specific fiscal reactions to public debt.5 Testing for the presence of fiscal fatigue is
important as this implies the existence of a debt level – the debt limit – where the
debt dynamics become explosive and the government will inevitably default.6

By analyzing the fiscal fatigue property, the literature obviously recognizes that
the primary balance reaction could display significant variation over time. How-
ever, accounting for a non-linear relationship between the primary balance and pub-
lic debt by adding potencies of the debt variable to the regression equation – as in
Ghosh et al. (2013), where squared and cubic debt terms are added – only allows
for a very specific, deterministic source of time variation. A time-varying policy re-
sponse could also be due to different sources, such as the response to a changing
IRGD. Others, like Weichenrieder and Zimmer (2014) have tried to link fiscal re-
sponsiveness to Euro membership.7 More generally, explicitly allowing and testing
for significant time variation in β and – in a stochastic approach – linking it to a set
of potential determinants could be very relevant. In the remainder of the paper, we
will analyze this type of FRF.

The importance of analyzing whether or not there is significant time variation in
β is also recognized by Debrun et al. (2019) and relates to the long-term perspective
when using FRFs as a test of fiscal sustainability. Debrun et al. (2019) state that in
order for the outcome of FRF-based sustainability tests to be meaningful, the fiscal
policy response to lagged public debt must be sufficiently systematic and stable over
time. In other words, if the response is positive for a couple of years but becomes in-
significant afterwards, no clear-cut indication can be given in terms of whether fiscal
policy is sustainable or not – unless the time variation can be linked to conditions
that are in correspondence with fiscal solvency.

So far, only few studies have modeled time-varying FRFs in a stochastic way.
Among the notable exceptions are Legrenzi and Milas (2013), who employ a regime-
switching model to investigate the relationship of the primary balance with debt and
other variables for Greece, Ireland, Portugal and Spain. More closely related to our
approach is Burger et al. (2011), who cast their FRF, featuring a time-varying fiscal
response to debt, in state-space form, finding a time-dependent fiscal reaction for
their South African sample. However, they do not formally test for the presence of
time variation.

5As Everaert and Jansen (2018) note, this it at least not the case for the range of debt levels observed
in their sample of 21 OECD countries over the period 1970-2014.

6This is the case even when a risk-free interest rate is assumed and thus abstraction is made from
the endogeneity of the risk premium on government debt.

7In their panel regression, Weichenrieder and Zimmer (2014) find a systematic reduction in fiscal
prudence when becoming a Eurozone member. However, their result is not robust to excluding Greece
from the sample, which leads to the conclusion that Eurozone membership does not significantly de-
crease fiscal prudence.
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2.2.2 The empirical specification

To identify a governments’ fiscal reaction to a changing debt ratio, we employ a
dynamic specification of the FRF. As noted by, amongst others, Everaert and Jansen
(2018), the highly politicized nature of the public budgeting proces makes it hard
to react immediately to changes in debt and other economic conditions. Moreover,
as the implementation of budgetary policies and new fiscal measures takes time,
the primary balance pbit is considered to be a very persistent series. A dynamic
specification is thus highly justified,8

pbit =αi + δt + ϕpbi,t−1 + βtdi,t−1 + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ), (2.5)

where subscripts i and t respectively denote the ith country and tth period.
Country fixed effects αi are included to account for country-specific time-

invariant factors that affect the primary balance and are not included in Xit. Next
to that, time-fixed effects δt are also present to control for the impact of global eco-
nomic shocks such as the Financial and Economic Crisis of 2007-2008.

The vector Xit represents a 1xk vector of k explanatory variables that can have a
direct impact on pbit. The set of variables present in Xit resembles standard choices in
the literature (see, among others, Ghosh et al., 2013, Everaert and Jansen, 2018, Berti
et al., 2016, Checherita-Westphal and Žd’árek, 2017). A first variable included in Xit

is a measure of the economic cycle, the output gap (OGit), to control for the reaction
of fiscal variables to the business cyle. Next to that, a measure of inflation (πit) is
added to account for bracket creep effects, i. e. in a progressive tax system where
tax brackets are not fully indexed, rising inflation induces more than proportional
changes in tax revenue (see, amongst others, Saez, 2003). An election cycle dummy
variable (elecit) is also taken into account to control for the possible presence of a
political budget cycle, meaning that governments tend to increase their spending in
election years to increase the probability of being re-elected (see for example, Debrun
et al., 2008). Finally, the implicit interest rate on the outstanding amount of public
debt (rit) is included to capture potential offsetting changes in the primary balance
due to changing debt services in order to reach a nominal balance target.

Naturally, we are mainly interested in the relation between pbit and di,t−1 which
represents the one-period-lagged debt-to-GDP ratio. We consider this relationship
to be time-varying and allow the parameter βt to change over time according to a
random walk process,

βt = βt−1 + ηt, ηt ∼ N(0, σ2
η). (2.6)

8By allowing for a dynamic specification, potential spurious regression issues are circumvented,
i .e. by adding the lagged dependent variable a potential random walk of the dependent variable is
nested in the model, leading to estimates that are valid even in the case of non-stationarity.
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This specification allows for a very flexible evolution of the parameter βt over time.
A random walk process is particularly convenient to capture smooth transition and
structural changes. As such, by letting βt evolve according to a random walk, we
allow for frequent changes of a government’s fiscal reaction to the debt ratio without
forcing parameters to change.9

Consequently, the model that will be estimated and tested for the presence of
time variation in the reaction of the primary balance to changes in the lagged public
debt ratio is represented by equations (2.5)-(2.6).

Conditional on finding evidence for time variation in βt, a model extension will
be considered where we account for the possibility of observed variables playing
a role in the determination of the time-varying path of βt. More specifically, the
following extended model will be estimated:

pbit = αi + δt + ϕpbi,t−1 + βitdi,t−1 + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ). (2.7)

βit = β∗
t + Gitκ (2.8)

β∗
t = β∗

t−1 + η∗
t , η∗

t ∼ N(0, σ2
η∗). (2.9)

In the model (2.7)-(2.9), the primary balance responsiveness to public debt (βit) is
modeled as a linear combination of a random walk component β∗

t and a set of ex-
planatory variables Git. A first variable to be included in Git is the lagged public
debt ratio (di,t−1) and its square term. By doing so, we explicitly take into account
the possible presence of non-linearities in the relation between public debt and the
primary balance. Moreover, by including the squared debt term, which in fact im-
plies a cubic relation between pbit and di,t−1, we are able to test the fiscal fatigue
property as found in the seminal paper of Ghosh et al. (2013). An advantage of our
approach, compared to Ghosh et al. (2013) and others, is that we do not consider
the relationship to be deterministic but account for it in a stochastic way, i. e. ac-
knowledging that other factors also drive the relation between debt and the primary
balance. As such, if, empirically, a non-linear relation is found, this is not the result
of ignoring other potential sources of time variation.

As can be seen from equation (2.1), the IRGD plays an essential role in public
debt management. A declining, but positive, IRGD differential reduces the primary
surplus needed for debt stabilization. When the IRGD becomes negative, the debt
ratio can decline even when running a primary deficit. Consequently, in this type of
situation one could argue that the government’s fiscal responsiveness to public debt
fades. Therefore, the IRGD will be included in Git. More specifically, we use the
IRGD at the beginning of the period, i. e. IRGDi,t−1, as this is the relevant indicator
that impacts on the discretionary fiscal policy behavior in period t.

9The fixed parameter specification constitutes a special case of the random walk process, with the
time-varying parameter βt in equation (2.6) being constant for σ2

η = 0.
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Note that other possible determinants of the time-varying responsiveness of the
primary balance to public debt, not present in Git, are captured by the random walk
process β∗

t . Testing for the presence of significant time variation in β∗
t can therefore

be very interesting. If no significant time variation is found, this implies the vari-
ables in Git fully explain the existing time variation in βt, σ2

η∗ will equal zero and β∗
t

becomes a constant.

2.2.3 Data and Sources

In the empirical analysis a balanced panel of yearly data is used for 5 core EMU
countries, covering a period from 1970-2019. The included countries are Austria,
Belgium, France, Germany and the Netherlands. The choice of countries is limited
to – as we believe – a somewhat homogeneous group of countries. The reason being
that as our model (2.5)-(2.6) indicates, we assume a homogenous primary balance re-
action to the included covariates (see section 2.3 for details on why this is important).
Extending the number of countries would probably contradict that assumption.

The main data source for our analysis is the AMECO database. For the fiscal vari-
ables pbit, di,t−1 and rit, data before 1995 are retropolated using the historical public
finance database prepared by Mauro et al. (2015). The inflation variable πit is con-
structed using the GDP deflator while the IRGD represents the difference between
rit and the nominal GDP growth rate. The OGit is also taken from AMECO and is
calculated using the commonly agreed production function methodology (for more
details on this methodology, see Havik et al., 2014). Finally, data on elecit are taken
from the Database of Political Institutions (DPI) version 2017, and where necessary
complemented with data from older versions.

2.3 Estimation methodology

To estimate our empirical model represented by equations (2.5) - (2.6) or the ex-
tended model, (2.7) - (2.9), a number of methodological or econometrical choices
need to be made. In what follows, some details are provided on these choices and
on the actual methodology used to estimate the different models.

2.3.1 The choice of a homogeneous panel specification

When considering debt-to-GDP ratios, the variation over time is often limited.
By increasing the covered time period, this could, at least partially, be overcome.
However, in our empirical model the size of the time-varying parameter vector
β = (β1, β2, ..., βT)

′ grows linearly with the number of time periods. As such, in-
creasing the sample size along the time dimension generally does not lead to an
identification improvement. Hence, to mitigate the degree of uncertainty around
the estimated path of debt coefficients βt and to ensure that there is sufficient infor-
mation present in the data, the number of observations needs to be increased along
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the cross-sectional dimension. Of course, to benefit from this a homogeneous reac-
tion to debt will be assumed.

However, as shown by Everaert and Jansen (2018), unmodeled slope heterogene-
ity in the reaction to lagged public debt can lead to the false conclusion that fiscal
fatigue is present in the data.10 Taking into account their results, we will therefore
limit our sample to what we believe to be a somewhat homogeneous group of coun-
tries.

2.3.2 Dealing with endogeneity issues

When estimating our empirical specification, a potential source of reverse causality
or endogeneity is the relationship between pbit and OGit. Fiscal policy, and thus pbit,
has an impact on the state of the economy, making the output gap an endogeneous
regressor. If not properly accounted for, this might induce (severely) biased esti-
mates. In order to deal with this endogeneity issue, a two-step instrumental variable
procedure is employed. The first step constitutes an auxiliary regression that in-
volves regressing OGit on the exogeneous covariates in Xit and following Berti et al.
(2016) the first and second lag of OGit as instruments for OGit.11 In the second step
and for the remainder of the analysis, in the vector Xit we replace OGit by the fitted
values of the first-step regression, ÔGit.

2.3.3 Cross-sectional dependencies in the error term

In macroempirical analysis cross-sectional dependencies are more likely to be the
rule than the exception, because of strong economic linkages between countries
(see Westerlund and Edgerton, 2008). Empirically, this results in significant cross-
sectional correlation in the error terms. To deal with this, country and year fixed
effects (αi, δt) are employed in equations (2.5) and (2.7). As noted by Eberhardt
and Teal (2011), for country and year effects to be efficacious in dealing with cross-
sectional correlated error terms, an identical impact of the existing cross-sectional
dependence across all countries in the sample needs to be assumed. As our sample
is limited to a homogeneous group of core EU countries, we believe this assumption
not to be too stringent.

To test whether the included fixed effects adequately control for the pres-
ence of cross-sectional dependencies, the average of the country-by-country cross-
correlation in the estimated error terms, ϵ̂it, is calculated. Next to that, we test for
the presence of first-order serial correlation in ϵit, using the Cumby and Huizinga

10If there are countries with a weaker reaction to increases in public debt, these countries will even-
tually end up with a higher debt level. Estimating a homogeneous debt reaction will therefore incor-
rectly capture this as the presence of fiscal fatigue, while in fact this can be explained by unmodeled
slope heterogeneity.

11Given the rather high R2 of the auxiliary regression, the chosen instruments can be regarded as
strong. Results from the auxiliary regressions are available upon request.
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(1992) test, the reason being that significant autocorrelation would render di,t−1 and
its powers endogenous.12

2.3.4 Formally testing for time variation in the baseline model

In our empirical specifications, we assume βt to be time-varying. More precisely,
we assume that βt follows a random walk process. As such, we are estimating a
time-varying parameter model. A key issue for the model specification is whether
the fiscal policy responsiveness truly varies over time or is constant.

Stated otherwise, the question whether the time variation in βt is relevant im-
plies testing σ2

η = 0 against σ2
η > 0, which constitutes a non-regular testing problem

as the null hypothesis lies on the boundary of the parameter space. This motivates
employing a Bayesian stochastic model specification search (SMSS) algorithm. In a
Bayesian setting, each of the potential models is assigned a prior probability and
the goal is to derive the posterior probability for each model conditional on the
data. The modern approach to Bayesian model selection is to apply Monte Carlo
Markov Chain (MCMC) methods by jointly sampling model indicators and param-
eters. Frühwirth-Schnatter and Wagner (2010) developed this model selection ap-
proach for Unobserved Components (UC) models. Their approach relies on a non-
centered parameterization of the UC model in which (i) binary stochastic indicators
for each of the model components are sampled together with the parameters and
(ii) the standard inverse gamma (IG) prior for the variances of innovations to the
time-varying components is replaced by a Gaussian prior centered around zero for
the standard deviations. In what follows, the exact implementation applied to our
baseline model ((2.5)-(2.6)) is outlined.13 14

Non-centered parameterization

As argued by Frühwirth-Schnatter and Wagner (2010), a first piece of information on
the hypothesis whether the variance of innovations to a state variable is zero or not
can be obtained by considering a non-centered parameterization. This implies rear-
ranging the random walk process for the time-varying parameter βt, i. e. equation
(2.6):

βt =β0 + ση β̃t, (2.10)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1), (2.11)

where β0 is the initial value of βt if this coefficient varies over time (ση > 0), while
being the constant value of βt in case that there is no time variation (ση = 0).

12As dit is impacted by a contemporaneous shock in the pbit.
13This can easily be extended to the more refined specification for β, represented by equations (2.8)-

(2.9).
14The implementation and description of this approach draws heavily on earlier work from the

authors, such as Berger et al. (2016) and Everaert et al. (2017).
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A crucial aspect of the non-centered parameterization is that it is not identified:
The signs of ση and β̃t can be exchanged without affecting their product. This implies
that (i) in the situation where ση > 0, the marginal likelihood and therefore the
marginal posterior distribution are bimodal with modes +ση and −ση and (ii) when
ση = 0, the marginal likelihood and posterior will be unimodally centered around
zero. As such, allowing for non-identification of ση provides useful insights about
the degree of time variation governing the debt ratio coefficient.

Parsimonious specification

In the non-centered parameterization, the question whether the fiscal responsiveness
to the debt ratio varies over time or not can be expressed as a standard variable
selection problem. To this end, a binary indicator that can take the values 0 or 1 is
introduced and sampled together with the model’s other parameters (see Frühwirth-
Schnatter and Wagner, 2010). More precisely, (2.10) becomes

βt =β0 + λση β̃t, (2.12)

where λ ∈ {0, 1} is the binary indicator. If λ = 0, the time-varying component of
βt drops, implying a constant debt ratio coefficient. That is, βt = β0 for all t. If
λ = 1, the parameters {β̃1, β̃2, ..., β̃T} and ση (together representing the time-varying
component of βt) are sampled along with the remaining parameters. We assume a
uniform prior distribution for the binary indicator, making both candidate models
– the one with a time-varying and the one with a constant debt ratio coefficient –
equally likely a priori. Hence, the prior probability is set to p0 = 0.5.

Gaussian priors centered at zero

Our Bayesian estimation approach requires choosing prior distributions for the
model parameters. When using the standard inverted Gamma (IG) prior for the
variance parameter, the choice of the shape and scale hyperparameters – that define
this distribution – has a strong influence on the posterior distribution when the true
value of the variance is close to zero (see Frühwirth-Schnatter and Wagner, 2010 and
Everaert et al., 2017). As a result, this choice of prior distribution has a tendency to
overstate σ2

η , especially if the true value of σ2
η is small.15 In other words, the actual

degree of time variation would be overstated.
When making use of the non-centered parameterization in (2.10)-(2.11) , where ση

is a regression coefficient, this issue can be resolved. In fact, this allows us to replace
the standard IG prior on the variance parameter σ2

η by a Gaussian prior centered at
zero on ση . As the standard deviation ση is centered around zero both for σ2

η > 0
and σ2

η = 0, this makes sense. Frühwirth-Schnatter and Wagner (2010) show that the

15More specifically, as the IG distribution does not have probability mass at zero, using it as a prior
distribution tends to push the posterior density away from zero.
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posterior density of ση is much less sensitive to the hyperparameters of the Gaussian
distribution and is not pushed away from zero when σ2

η = 0.

2.3.5 Estimating the FRF using a Markov Chain Monte Carlo algorithm

For the baseline specification, the system of equations represented by (2.5), (2.12)
and (2.11) constitutes a state-space model, where the measurement equation is repre-
sented by (2.5) and the state equation for βt by (2.12) and (2.11). Due to the presence
of the time-varying parameter, βt, and the utilization of the SMSS outlined above,
this state-space model is non-standard. We follow Everaert et al. (2017) and employ
a Gibbs sampler to estimate the parameters of the state-space model. More specifi-
cally, by simulating draws from conditional distributions, thereby breaking the com-
plex estimation problem into easier to handle pieces, a MCMC algorithm is used to
obtain approximations of intractable marginal and joint posterior distributions:

For convenience, define θ ≡ (β0, ση , α′, δ′, ϕ, γ′)′, β ≡ (β1, β2, ..., βT)
′ and

β̃ ≡ (β̃1, β̃2, ..., β̃T)
′, where γ ≡ (γ1, γ2, ...γk)

′ with k being the number of con-
trol variables contained in the predictor matrix X. Next, define a data matrix
Y = (pb, d−1, X), where pb, d−1 and X contain all observations i = 1, 2, ..., N,
t = 1, 2, ..., T of pbit, di,t−1 and Xit. That is, observations are stacked over cross sec-
tions and time periods, with the cross-sectional being the slower index. The resulting
MCMC scheme is then given by the following blocks:16 17

1. Sample the binary indicator λ from p(λ|β̃, Y), marginalizing over the parame-
ters in θ and σ2

ϵ , then sample the unrestricted parameters in θ and σ2
ϵ .

2. Sample the random walk component β̃ from p(β̃|λ, θ, σ2
ϵ , Y).

3. Perform a random sign switch for ση and the elements in β̃. That is, draw from
{−1, 1} with equal probability of both outcomes and multiply by ση and β̃,
implying a 50 percent chance of ση and β̃ being multiplied by (-1). The time-
varying parameter vector can then be constructed from its components (based
on equation (2.12)).

Given a sufficiently long burn-in phase, the MCMC scheme outlined above produces
samples of the parameters that converge to the intractable joint and marginal pos-
terior distributions. We set the total number of Gibbs iterations to 200,000, with a
burn-in phase of 80,000. We store every 10th of the remaining 120,000 draws, leav-
ing us with 12,000 retained draws.

16Further details of this procedure are laid out in the appendix.
17In a separate appendix, more details on the MCMC scheme for the extended model, represented

by equation (2.7)-(2.9), are outlined.



19

2.4 Empirical results

Turning to the empirical results, we first discuss our baseline model in Section 2.4.1.
In Section 2.4.2, the model extension is considered, where we allow observed vari-
ables to impact on the time-varying path of the primary balance responsiveness.

2.4.1 Baseline specification

The baseline specification refers to the pure random walk model and is represented
by equations (2.5), (2.10) and (2.11). As our Bayesian estimation approach requires
choosing prior distributions for the model parameters, we will first discuss our prior
choices. Then, the results of the SMSS procedure are analyzed, followed by a discus-
sion of the model the SMSS procedure favours, i. e. the parsimonious model.

Prior choices

Summary information on the prior distributions for the unknown parameters is re-
ported in Table 2.1. For the variance σ2

ϵ of shocks hitting the primary balance in
equation (2.5), an inverse Gamma prior distribution is used, that is σ2

ϵ ∼ IG(c0, C0),
where the shape c0 = v0

2 NT and scale C0 = c0σ2
0 parameters are calculated from

the prior belief σ2
0 and the prior strength v0, which are expressed as a fraction of the

sample size NT.18 Our prior belief for σϵ is 1.18, implying that 90% of primary bal-
ance shocks lie between -1.99 and 1.99%.19 Note that the prior is fairly loose as the
strength of σ2

ϵ is set to ν0 = 0.05.
For the remaining parameters, Gaussian prior distributions, N(a0, V0), are used.

Technically, we assume Gaussian parameters and the inverted Gamma distributed
regression error variance to jointly follow a dependent Normal-inverted Gamma
distribution a priori. This implies the normally distributed parameters to depend on
σ2

ϵ .20 V0 then equals σ2
2 A0. When discussing our Gaussian prior choices, first con-

sider the time-varying fiscal responsiveness to the lagged public debt ratio, βt. For
β0, the prior is given by β0 ∼ N(0, 1.182 ∗ 0.322) (with σϵ ≈ 1.18), which reflects
our belief that if no time variation is present in βt (i. e. ση = 0), then fiscal respon-
siveness ranges from roughly −0.62 to 0.62. This covers a wide range of parameter
values found in the literature.21 For the standard deviation ση of the innovations
to the time-varying part in βt, a Gaussian prior centered at zero is chosen as well
(ση ∼ N(0, 1.182 ∗ 0.12)). Note that the prior standard deviation of 0.1 implies a very
loose prior as it allows that 90% of the innovations to βt lie between −0.19 and 0.19.

18Since the prior is conjugate, v0NT can be interpreted as the number of "fictitious" observations
used to construct the prior belief σ2

0 (see also Iseringhausen and Vierke, 2019).
19The choice of the prior belief for the standard deviation of σ0 ≈ 1.18 is based on a standard

regression for pbit, estimated with Ordinary Least Squares, where the debt ratio coefficient, β, enters
the equation as a constant.

20More formally, it holds that θ ∼ N(a0, σ2
ϵ A0) and σ2

ϵ ∼ IG(NT ν0
2 , NT ν0

2 , where
θ ≡ (β0, ση , α′, δ′, ϕ, γ′)′. Details are provided in appendix 2.A.

21Again, we refer the reader to the excellent literature review of Checherita-Westphal and Žd’árek
(2017).
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TABLE 2.1: Prior choices for the baseline specification

Gaussian priors
∼ N(a0, σ2

ϵ A0) a0
√

A0 5% 95%
Initial state β0 0 0.32 −0.62 0.62
Standard deviation state error ση 0 0.1 −0.19 0.19
AR(1) parameter ϕ 0.7 0.32 0.06 1.30
Parameters of control variables and
fixed effects

(γ′, α′, δ′)′ 0 0.32I −0.62 0.62

Inverted Gamma prior
∼ IG(NT ν0

2 , NT ν0
2 σ2

0 ) σ0 ν0 5% 95%
Measurement error variance σϵ 1.18 0.05 0.90 2.36

Notes: For the inverted Gamma prior, we display the prior belief about standard deviation σ0 instead
of the corresponding variance parameter as this is easier to interpret. Likewise, we report

√
A0 instead

of A0 for the Gaussian priors. For the priors on γ, 0 is a K x 1 vector of zeros, and I is the identity
matrix of dimension KxK, with K being the number of control variables and fixed effects.

Simulations of the random walk specification for βt, based on the prior distribu-
tion for ση , reveal that the resulting random walk process covers all possible realistic
values for the debt ratio coefficient.22

For the coefficient on the lagged primary balance, ϕ, a Gaussian prior centered
around 0.7 is chosen, roughly in line with estimates found in the literature (see for
example Everaert and Jansen, 2018). Although the prior is not centered around 0, we
are equally uninformative for ϕ, implying a 90% prior density interval that roughly
ranges from 0.06 to 1.30. For the other parameters, i. e. the coefficients on the control
variables and the country and time fixed effects, the prior distribution is centered
around zero, with the prior standard deviation

√
A0 being 0.32. As a result, the 90%

prior density interval spreads from approximately −0.62 to 0.62, thereby covering a
wide range of parameter values found in the literature.

Stochastic model specification search

First, we estimate the unrestricted model, represented by equations (2.5), (2.10) and
(2.11). That is, we set the binary indicator λ in (2.12) to 1 to generate a posterior
distribution for the standard deviation (ση) of the shocks to βt. If this distribution is
bimodal, with low or no probability mass at zero, this can be taken as a first indica-
tion of a time-varying primary balance reaction to public debt. Figure 2.1 presents
the resulting posterior distribution. Obviously, a clear-cut bimodality in the poste-
rior distribution, with almost no probability mass at zero, is present. This indicates
that σ2

η indeed appears to be greater than zero.
As a more formal test for the presence of time variation, we next sample the

stochastic binary indicator λ along with the unknown parameters. For the binary
indicator λ, we choose a Bernoulli prior distribution with a prior probability p0 of

22The simulation results are available upon request.
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FIGURE 2.1: Posterior distribution for ση , when the binary indicator
λ = 1

being included in the model, i. e. p(λ = 1) = p0. As our benchmark, we set p0 to 0.5,
implying indifference between a time-varying and a constant debt ratio coefficient
a priori. We further analyze results for the more informative priors p0 = 0.25 and
p0 = 0.75. The posterior inclusion probability for the binary indicator is then calcu-
lated as the average selection frequency over all iterations of the Gibbs sampler.23

By looking at the posterior inclusion probability, we obtain valuable information on
the question whether time variation is present in the debt ratio coefficient or not.

Table 2.2 displays posterior inclusion probabilities for λ for different prior vari-
ances of ση and different prior inclusion probabilities. In the baseline case (see Ta-
ble 2.1), A0 is set to 0.01 and p0 = 0.5. The posterior inclusion probability of the
stochastic binary indicator clearly exceeds 50% and is almost equal to 1. Clearly,
based on this result, time variation is present in the fiscal responsiveness to public
debt. As a first robustness check, we further consider other values for A0, given the
non-informative prior inclusion probability of λ, p0 = 0.5: For a somewhat stricter
prior variance A0 = 0.001, i. e. when placing more weight on values near zero,
and a variety of looser prior variances of 0.1, 1 and 10, results are almost equal. In
particular, being less informative with respect to ση by increasing A0 hardly brings
down the probability of a time-varying fiscal reaction to debt. Thus, even for the
very uninformative prior, where A0 = 10, the posterior inclusion probability still
amounts to 98.35%. Moreover, the high probability of a time-varying fiscal reaction
remains when being more informative with respect to p0: As expected, when setting
p0 = 0.75, posterior inclusion probabilities for λ are even higher. Even when we

23In other words, the posterior inclusion probability is the ratio of iterations in which λ = 1 relative
to the absolute number of draws.
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TABLE 2.2: Posterior inclusion probabilities for the binary indicator λ

Priors Posterior
p0 A0,ση λ

0.25 0.001 0.9992
0.25 0.01 0.9979
0.25 0.1 0.9938
0.25 1 0.9772
0.25 10 0.9399
0.5 0.001 0.9999
0.5 0.01 0.9991
0.5 0.1 0.9985
0.5 1 0.9925
0.5 10 0.9835
0.75 0.001 0.9999
0.75 0.01 0.9997
0.75 0.1 0.9994
0.75 1 0.9978
0.75 10 0.9928

Note: Results are based upon various prior inclusion probabilities for λ, including a non-informative
prior, i. e. p0 = 0.5.

set p0 = 0.25, so that our model favors the finding of no time variation in the fis-
cal reaction to debt a priori, the posterior inclusion probability clearly exceeds 90%
for all four values of A0. Our evidence regarding time variation in βt is thus very
convincing.24

Results parsimonious model

As can be seen from the results in Table 2.2, the SMSS procedure clearly favors a
model with the stochastic binary indicator λ set to 1, and where the debt ratio co-
efficient is allowed to vary over time. In what follows, results of this parsimonious
model are discussed.25

Table 2.3 shows the estimation results for our set of control variables included in
Xit. More precisely, as coefficients are sampled along with the other parameters, we
report the posterior means as well as the 5th and 95th percentiles of the marginal
posterior distributions. The results are broadly in line with the existing literature on
FRFs. In particular, we find a positive reaction of the primary balance to an increas-
ing output gap, indicating that fiscal policy is on average countercyclical and thus

24While in this paper we focus on a group of what we labeled "core" EU countries, we additionally
tested whether a time-varying fiscal response to debt was present in a sample of Southern EU coun-
tries, namely Greece, Italy, Portugal and Spain. However, for this sample, the finding of time variation
is mixed at best, with a posterior inclusion probability of the stochastic binary indicator being approx-
imately 0.36 in the baseline model. Results are available upon request.

25The model is labeled the "parsimonious" model as λ is fixed and thus not sampled along with the
other parameters.
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can be considered to be an effective stabilization tool.26 Moreover, inflation is found
to have a positive impact on the primary balance, which could be linked to bracket
creep effects. Somewhat counterintuitive, according to our results an increase in the
interest cost on servicing the public debt would lead to a lower primary balance.
As this implies interest costs to rise, one would expect an offsetting impact of the
primary balance – as our set of core EU countries is bounded by the nominal deficit
rule. Although the mean of the coefficient on the election cycle variable shows that
governments tend to increase their spending in election years, the 90% highest pos-
terior density interval clearly encompasses zero. We thus refrain from statements on
the effect of a potential political budget cycle. Finally, the posterior distribution for
the lagged primary balance coefficient clearly indicates a pronounced sluggishness
in the budgeting process.

Note that the bottom of table 2.3 contains information on the possible presence
of autocorrelation and cross-sectional dependence in the error term. We follow Ever-
aert and Jansen (2018) in employing the Cumby and Huizinga (1992) test to examine
first-order serial correlation in the error terms. An advantage of this test is that it
is valid even in the presence of instrumented regressors (and heteroscedasticity).
The results suggest that there is no first-order autocorrelation present in the residu-
als. Related to instrument validity, this implies the lagged endogenous variables are
predetermined. Moreover, and equally important, the presence of serial correlation
would have rendered dt−1 and its powers endogenous. Next to that, the calculated
average pairwise correlation in the estimated errors is relatively small, indicating
that including country and time fixed effect is sufficient to deal with the possible
presence of cross-sectional correlation in the errors.

Of course we are mainly interested in the estimated time-varying path of the
debt ratio parameter, βt, which is displayed in Figure 2.2. The blue line represents
the average of the posterior distribution of the time-varying fiscal responsiveness to
the public debt ratio, with the shaded area showing the evolution of the 90% highest
posterior density interval. The average fiscal responsiveness over time is displayed
as a gray line and amounts to 0.013, indicating that Bohn (1998)’s weak sustainability
criterion has been fulfilled on average. It should be noted that this value is clearly
located near the lower end of the spectrum of debt ratio coefficient estimates found
in the literature.

The path shows a weak fiscal reaction to debt in the seventies – with fiscal policy
barely responding to changes in debt, as indicated by the 90% highest posterior den-
sity interval. However, starting in the beginning of the eighties, the fiscal reaction
picked up substantially, with a first peak in the mid-eighties. Subsequently, fiscal
responsiveness seemed to stabilize for a certain period, followed by a small increase
towards the end of the nineties. The small growth in fiscal responsiveness seems

26From a policy point of view, we can make no inference on the relative strength of automatic
stabilizers and discretionary fiscal policy. When interested in the relative importance of discretionary
fiscal policy as a stabilization tool, one could opt to use the cyclically adjusted primary balance as a
dependent variable. This is, however, not the scope of this paper.
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TABLE 2.3: Posterior distribution of main parameters in the parsimo-
nious baseline model

Sample: 1970-2019, 5 core EU countries
Parameter Posterior mean 5% 95%

Slope parameters
Output gap γ1 0.347 0.224 0.468
Inflation γ2 0.142 0.066 0.218
Election cycle γ3 -0.134 -0.388 0.122
Implicit interest rate γ4 -0.186 -0.275 -0.096
Lagged primary balance ϕ 0.522 0.435 0.608
Variance parameters
State error variance σ2

η 3.5e−5 1.0e−5 7.5e−5
Measurement error variance σ2

ϵ 1.339 1.149 1.550
Residual diagnostics
Cumby-Huizinga autocorrelation
test statistic

0.824 (0.36)

Average pairwise cross-sectional
correlation coefficient

-0.076

Note: For the Cumby-Huizinga test, the corresponding p-value is put in brackets.

FIGURE 2.2: Time-varying βt in the baseline specification

Notes: The blue line represents the posterior mean of βt with the 90% highest poste-
rior density interval as shaded area (left y-axis), while the green line represents the
interest-rate growth differential in percent (sample country average, right y-axis).
The average debt ratio coefficient is depicted as a gray line. Some milestones of Eu-
ropean integration have been added as vertical lines, including the Maastricht Treaty,
the Stability and Growth Pact (SGP) as well as the more recently implemented Fiscal
Treaty.



25

to coincide with the period between signing the Maastricht Treaty and the start of
the common currency, a possible explanation being that countries needed to fulfill
the convergence criteria for adopting the Euro. Afterwards, while the Stability and
Growth Pact required continued fiscal efforts from goverments, it seems that fiscal
responsiveness dropped signficantly. This preliminary finding confirms the results
of Weichenrieder and Zimmer (2014), who relate the drop in fiscal responsiveness af-
ter entering the Eurozone to the frequent breaches of the 3% deficit rule, the implicit
weakening of the rules and the moral hazard effects from implicit bailout guaran-
tees. The Fiscal Treaty, enforced in 2013, does not appear to have reinforced fiscal
prudence, at least according to our anecdotal evidence.

The European Monetary Union has led to a narrowing of spreads among member
countries (see amongst others, Turner and Spinelli, 2011), resulting in a downward
effect on the IRGD. As such, the downward trend in fiscal responsiveness after Euro-
zone acceptance could be due to a decreasing IRGD. We therefore also plot the IRGD
– averaged over our sample countries – in figure 2.2 in green, with the corresponding
values on the right y-axis. Comparing its evolution with the path of the debt ratio
coefficient is instructive: In particular, one might argue that the unsubstantial fiscal
responsiveness in the seventies might stem from the negative IRGDs at that time.
Likewise, the increase in fiscal responsiveness in the eighties as well as the fall after
the introduction of the Euro is roughly accompanied by movements of the IRGD in
the same direction. A notable exception to this apparent correlation is the spike in
IRGDs in the aftermath of the Financial and Economic Crisis of 2007-2008, implied
by both lower growth rates and higher refinancing costs in the sample countries as
spreads widened. This was due to a sharp increase in public debt ratios and growing
concerns from financial markets regarding countries’ ability to pay back their debts.

2.4.2 Model extension: Drivers of a time-varying debt coefficient β

As results from the baseline specification show, there is clear evidence of significant
time variation in βt. In a model extension, represented by equations (2.7), (2.8) and
(2.9), we therefore model the time-varying fiscal reaction to public debt as a linear
combination of a random walk component and a set of covariates (see Section 2.2.2
for more details.), which leads to a country-specific βit. This enables us to shed
some light on potential drivers of the observed time-variation in a country’s fiscal
responsiveness to public debt.

Moreover, by formally testing for time variation in the random walk component
by means of the SMSS algorithm, we are able to determine whether there is signifi-
cant time variation left that cannot be explained by the variables included in Git.

Choice of variables included in Git

As elaborated upon in Section 2.2.2, our analysis focuses on the role of (i) the IRGD
and (ii) the level of the public debt ratio in explaining the time variation in fiscal
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responsiveness to public debt.

• IRGD: Focusing on the IRGD is an obvious choice as it plays an essential role
in public debt management.27 If the implicit interest rate on the outstanding
amount of debt increases, and thus if debt service costs rise, governments are
forced to react stronger to rising public debt ratios in order to prevent an ex-
plosive debt path. On the contrary, a higher nominal GDP growth rate tends
to lower the debt-to-GDP ratio by increasing the denominator. A lower pri-
mary balance will thus be needed to stabilize the public debt ratio. All in
all, higher economic growth makes any public debt position more sustainable
(ceteris paribus), which justifies a lower fiscal responsiveness to debt. In our
empirical analysis, we also allow for an asymmetric government reaction to
positive and negative IRGDs. If the IRGD < 0, and nominal interest rates are
expected to remain below growth rates for a long time, public debt may have
no fiscal costs and only limited welfare costs (see Blanchard, 2019 for an in-
teresting discussion on this topic). On the contrary, a positive and increasing
IRGD will lead to a higher primary surplus needed to stabilize or reduce debt.
As such, this should lead to an increase in fiscal responsiveness.

• Lagged debt ratio: As stated before, an important element in the fiscal aus-
terity debate is whether fiscal responsiveness is impacted by the level of debt
itself. By including the lagged debt ratio in Git we actually allow for the pres-
ence of non-linearities in the relation between pbit and di,t−1, that are caused
by the level of public debt itself. More specifically, taking into account the
level of the lagged debt ratio as a covariate in Git implies in fact a parabolic
relationship between pbit and di,t−1.

To see this, first consider the non-centered parameterization for equation (2.9),

β∗
t = β∗

0 + λση∗ β̃t, (2.13)

β̃t = β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1). (2.14)

The extended model is then represented by equations (2.7), (2.8), (2.13) and (2.14), as
elaborated upon more thoroughly in appendix 2.B. Now assuming that di,t−1 is the
only covariate contained in Git, we can write

pbit =αi + δt + ϕpbi,t−1 + (β∗
0 + λση∗ β̃t + di,t−1κ)︸ ︷︷ ︸

βt

di,t−1 + Xitγ + ϵit.

Thus, in this case β∗
0 captures the constant, linear component of the debt ratio coef-

ficient while κ captures the impact of the quadratic term. A positive but decreasing
response of the primary balance to rising debt – and thus a first indication of fiscal
fatigue, would show up as κ < 0.

27As argued in Section 2.2.2, we will employ the IRGD at the beginning of period t, IRGDi,t−1, as
this is the relevant indicator that impacts on the discretionary fiscal policy behavior in t.
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Next, and in line with Ghosh et al. (2013), we will allow for a cubic specification
to test for the presence of fiscal fatigue in our sample. Analogously to the expla-
nation above, this can be done by including the square of di,t−1 in Git. A negative
coefficient on the squared debt term in Git could be seen as evidence for fiscal fatigue.

Finally, recall that an advantage of our approach – compared to Ghosh et al.
(2013) and others – is that we also acknowledge that other factors have an impact
on βt. They are captured by the random walk component. As such, possible non-
linearities caused by the actual level of public debt are not the result of ignoring
other sources of time variation.

Prior choices

As for the baseline model, our Bayesian estimation approach requires choosing prior
distributions for the model parameters in the extended specification. For the param-
eters already present in the baseline specification, the prior choices are retained. For
the new parameter vector κ, a Gaussian prior centered around zero is chosen with
the prior standard deviations

√
A0 being approximately 0.32. Hence, for κ we are

also highly uninformative for these parameters as the 90% prior density interval
ranges from approximately −0.62 to 0.62.

Stochastic model specification search

As already mentioned, using the SMSS algorithm allows us to make inferences about
the importance of including the random walk component in the extended specifica-
tion for β, i. e. equation (2.8). Results for the SMSS are reported in the upper panel of
Table 2.4. Various specifications are estimated, which differ in the variables included
in Git. Results show that for all specifications, the posterior inclusion probability
p(λ|data) of the stochastic binary indicator clearly exceeds 50% and even fluctuates
around 90%. This indicates that there is significant time variaton left in the fiscal re-
sponsiveness to the public debt ratio that cannot be explained by the variables in Git.
However, note that in all specifications, the posterior inclusion probability p(λ|data)
drops with respect to the baseline model, due to the inclusion of covariates explain-
ing a share of the time variation in βt. Similarly, the posterior mean of the variance
of innovations to the random walk component, σ2

η , falls for most specifications. Both
can be interpreted as preliminary signs that the variables included in Git are indeed
explaining part of the observed time variation in fiscal prudence.

Results parsimonious model

The discussion above shows that the SMSS obviously favors a model where the
stochastic binary indicator is set to 1 in (2.13). The lower panel of Table 2.4 reports
the results for this parsimonious model. More precisely, it presents the posterior
mean and the 5th and 95th percentile of the marginal posterior distributions of the
impacts (κ) – over different combinations of variables included in Git – on βit.
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When looking at the results, one immediately notices that the posterior distribu-
tions of the coefficients κ are centered around small numbers. This, however, does
not imply that the impact of the included variables is negligible. As the determi-
nants included in Git are trying to explain part of the time variation in β – which
is on average equal to 0.013 in our baseline model – it is logical that coefficients are
much smaller.28

Our empirical results show that the IRGD seems to have no clear impact on a
government’s fiscal responsiveness. Although the posterior mean has the right pos-
itive sign, over the different specifications the 90% highest posterior density interval
contains zero (see specifications 1, 5 and 7). However, as the distribution is not cen-
tered around zero, this could still be taken as a weak sign that an increase in the
IRGD leads to a higher fiscal responsiveness. Moreover, this result could be due
to an asymmetric reaction of governments to positive and negative IRGDs. When
the IRGD is negative, results clearly show no impact of this determinant on fiscal
responsiveness. On the contrary, when the IRGD is positive, an increase in it leads
to a rise in fiscal responsiveness. This is expected as a growth in a positive IRGD
enlarges the cost for governments of being fiscally irresponsible. This can mainly
be seen in specification 2, while in specification 6 and 8 the posterior distribution
includes zero but is firmly skewed to the right, with the majority of the probability
mass located in the positive area.

Finally, results on potential non-linearities in the fiscal reaction to the public debt
ratio show that – at least for our sample – governments tend to respond more when
the debt ratio is high. This is clearly confirmed when only including the level of
the debt ratio in Git (see specification 3, 5 and 6). When explicitly testing for fiscal
fatigue, and thus including a squared debt term in Git, our findings do not provide
evidence for the fiscal fatigue proposition of Ghosh et al. (2013) (see specifications
4, 7 and 8). Our results are closer to Everaert and Jansen (2018), who also do not
find fiscal fatigue to be a robust characteristic of the fiscal reaction function. How-
ever, this does not imply that there is no such debt threshold from where fiscal effort
becomes unfeasible or undesirable. But for the debt ratios observed in our homo-
geneous sample of core EU countries – and when allowing for other determinants
driving fiscal responsiveness – we do not find any signs of the fiscal fatigue property.

28More precisely, the coefficient vector κ measures the impact on β of a one %-point increase in the
corresponding variable.
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2.5 Conclusion

The fiscal policy response to the COVID-19 crisis has put severe pressure on public
finances in the EU. Against the backdrop of low expected potential economic growth
and sharply rising age-related public expenditures, this has revived the debate on
the sustainability of public finances. Estimating FRFs and empirically analyzing
whether countries react to a growing public debt ratio by tightening the fiscal policy
stance can shed light on a country’s degree of fiscal prudence.

The FRF literatue has well recognized the importance of non-linearities for cor-
rectly specifying the FRF. A key issue is whether the degree of fiscal responsiveness
changes with the level of debt. Specifically, as introduced by Ghosh et al. (2013), the
hypothesis of fiscal fatigue has been tested, implying that at a certain debt level the
fiscal response starts to weaken and even decreases.

In this paper, we formally test for the presence and potential sources of non-
linearities by allowing for a time-varying fiscal responsiveness to debt. This ap-
proach is related to commonly used FRF specifications that embed the fiscal fatigue
proposition, but is more flexible as it allows non-linearities in the fiscal reaction to
debt to arise stochastically by means of a time-varying parameter model.

Having employed a Bayesian SMSS testing procedure to formally test for the
presence of time variaton in the responsiveness in the primary balance to the gross
public debt ratio, we find strong evidence for time-variation in the FRF over the last
50 years. Governments’ fiscal stance to debt exhibits smooth but significant variation
over time and thus confirms the necessity of a non-linear model.

In a model extension, we explicitly try to make inferences about potential driving
forces of the time varyings fiscal responsiveness. As such, we are able to test for
the presence of fiscal fatigue in a stochastic way, i. e. acknowledging the potential
presence of other sources of time variation.

Our results provide preliminary evidence that the fiscal response to debt seems
to be partly explained by changes in the IRGD, at least when the IRGD is positive. In
that case, an increase in the IRGD reinforces the cost of being fiscally irresponsible.
Governments will therefore react by tightening their fiscal policy stance.

When allowing for non-linearities caused by the level of public debt, our model
does not provide robust evidence of the fiscal fatigue proposition of Ghosh et al.
(2013). On the contrary, the results indicate that – for our sample – governments
tend to increase fiscal responsiveness when the debt ratio increases. As such, these
results are more in line with the findings of Everaert and Jansen (2018), who also
do not find fiscal fatigue to be a robust characteristic of the FRF. However, this does
not imply that no such debt threshold exists from which the fiscal effort becomes
unfeasible or undesirable. It is just not observed in our sample of public debt ratios.

Our findings further indicate that a significant fraction of the time variation gov-
erning the fiscal reaction coefficient is not explained by our set of predictors. Future
research on potential other sources of the observed time variation could therefore
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be very clarifying and help in explaining countries’ fiscal stances to debt. More pre-
cisely, it could be interesting to look explicitly into the relevance of financial market
pressure and the role of political economy determinants, such as the political orien-
tation of governments.

Given their prominence in stochastic DSA, a correctly specified FRF is of utmost
importance. In our analysis, we propose a careful assessment of whether potential
parameter instability should be accounted for in the sample of interest. Our results
clearly indicate that time-varying FRFs appear to be an adequate choice.
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Appendix

2.A Gibbs sampling procedure pure random walk model

In this section, we provide details on the Gibbs sampling algorithm for the "pure
random walk model". The full model in this case consists of the equations (2.5),
(2.12) and (2.11), restated here for convenience (with the slight notational difference
that the regressor matrices corresponding to the fixed effects are now contained in
X, the parameters α ≡ (α1, α2, ..., αN)

′ and δ ≡ (δ2, δ3..., δT)
′ thus contained in γ):

pbit =ϕpbi,t−1 + βtdi,t−1 + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ), (2.15)

βt =β0 + λση β̃t, (2.16)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1). (2.17)

In what follows we provide details on the MCMC algorithm employed to jointly
sample the time-varying parameter vector β, the hyperparameters collected in θ

and σ2
ϵ and the stochastic binary indicator λ. The outlined procedure is based on

Frühwirth-Schnatter and Wagner (2010) and Berger et al. (2016).

2.A.1 Sampling the stochastic binary indicator and the hyperparameters

In this block, we sample the stochastic binary indicator λ and the hyperparameters,
collected in θ and σ2

ϵ . For notational convenience, define a general regression model

y = χmθm + e, e ∼ N(0, Σ), (2.18)

where y is the dependent variable vector and χ is an unrestricted predictor matrix
corresponding to the parameter vector θ ≡ (β0, ση , ϕ, γ′)′. For both y and χ, obser-
vations are stacked over cross-sectional and time units, that is, over i = 1, 2, ..., N
and t = 1, 2, ..., T, with i being the slower index. Correspondingly, χm and θm are the
restricted predictor matrix and parameter vector, where ση and its associated predic-
tor vector are excluded from θ and χ if the binary indicator λ is zero. The covariance
matrix of the error term e is a diagonal matrix simply given by Σ = diag

(
σ2

ϵ INT
)
,

where INT is the identity matrix of dimension NT with N and T being the numbers
of cross-sectional and time units in the sample, respectively. σ2

ϵ is a scalar. Thus, we
assume homoscedasticity.
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Note that simply drawing from p(λ|θ, σ2
ϵ , β̃, y, χ) and p(θ, σ2

ϵ |λ, β̃, y, χ) does not
yield an irreducible Markov chain as a draw of λ = 0 implies that ση will also be zero,
which leads to the Markov chain having absorbing states. We follow Frühwirth-
Schnatter and Wagner (2010) in resolving this by marginalizing over the parameters
in θ and σ2

ϵ when drawing λ and subsequently sampling from p(θ, σ2
ϵ |λ, β̃, y, χ).

The posterior distribution of λ is obtained from Bayes’ rule:

p(λ|β̃, y, χ) ∝ f (y|λ, β̃, χ)p(λ), (2.19)

where f (y|λ, β̃, χ) is the marginal likelihood of the regression model in (2.18), having
integrated out θ and σ2

ϵ , and p(λ) is the prior distribution of λ.
Given homoscedasticity, a dependent Normal-inverted Gamma prior with

θm ∼ N(am
0 , Am

0 σ2
ϵ ) and σ2

ϵ ∼ IG(c0, C0), with c0 and C0 being the shape and scale
parameters of the prior distribution for the measurement error variance, is conju-
gate, implying the closed form solution of the marginal likelihood29

f (y|λ, β̃, χ) ∝
|Am

T |0.5

|Am
0 |0.5

Γ(cT)C
c0
0

Γ(c0) (Cm
T )

cT
, (2.20)

where

am
T =Am

T

(
(χm)′y + (Am

0 )
−1am

0

)
, (2.21)

Am
T =

(
(χm)′χm + (Am

0 )
−1

)−1
, (2.22)

cT =c0 +
NT
2

, (2.23)

CT =C0 + 0.5
(

y′y + (am
0 )

′ (Am
0 )

−1 am
0 − (am

T )
′ (Am

T )
−1 am

T

)
. (2.24)

The above can then be applied to the state-space model in equations (2.15), (2.16)
and (2.17).

Inserting (2.16) into (2.15) yields

pbit =ϕpbi,t−1 + β0di,t−1 + λση β̃tdi,t−1 + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ), (2.25)

which can be written as

pbit︸︷︷︸
yit

=
[
di,t−1 λβ̃tdi,t−1 pbi,t−1 Xit

]
︸ ︷︷ ︸

χm
it


β0

ση

ϕ

γ


︸ ︷︷ ︸

θm

+ϵit. (2.26)

29Note that we follow Berger et al. (2016) in employing a dependent Normal-inverted Gamma prior due
to the assumption of homoscedasticity. Hence, the prior variance parameters V0 ≡ σ2

ϵ A0 cannot simply
be interpreted as the prior covariance matrix of the normally distributed parameters, as V0 depends on
σ2

ϵ . Details can be found in Koop (2003), who uses precision instead of variance parameters, however
(and therefore works with Normal-Gamma, not Normal-inverted Gamma distributions).
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Note that the second elements of χm
it and θm are excluded (set to zero) if λ = 0,

while for λ = 1, ση is sampled along with the other parameters in θ. The marginal
likelihood f (y|λ, β) is then given by (2.20), and the stochastic binary indicator λ can
be sampled from the Bernoulli distribution:

p(λ = 1|β, y, χ) =
f (λ = 1|β, y)

f (λ = 0|β, y) + f (λ = 1|β, y)
(2.27)

Given λ, θm and σ2
ϵ can then be sampled jointly from θm, σ2

ϵ ∼ NIG(am
T , Am

T , cT, CT),
where the posterior moments are given by (2.21), (2.22), (2.23) and (2.24).

2.A.2 Sampling the time-varying parameter

In this block, we employ the forward-filtering backward-sampling procedure of
Carter and Kohn (1994) to sample the time-varying component β̃ given θ, σ2

ϵ and
λ. Our conditional linear Gaussian state-space model is given by:

yt = Hm
t sm

t + et, et ∼ MN(0N , R), (2.28)

st = Fst−1 + Ktvt, s0 ∼ N(b0, V0), vt ∼ N(0, Q), (2.29)

where yt is an N x 1 vector of observations and Hm
t is the restricted version of the

predictor matrix, with sm
t being the corresponding time-varying parameter vector,

for which Hm
t = Ht and sm

t = st in the unrestricted case. The matrices χ, F, K, R, Q as
well as the expected value and variance of the initial state s0, that is, b0 and P0, are
assumed to be known (conditioned upon). The disturbances et and vt are assumed to
be serially uncorrelated and independent of each other for t = 1, 2, ..., T. For details
on the linear Gaussian state-space model, we refer to Durbin and Koopman (2012).

We can then employ the Kalman filter on this linear Gaussian state-space model
to filter the unknown state st (forward-filtering). st can then be sampled from its con-
ditional distribution (backward-sampling), as described in Carter and Kohn (1994).

Rearranging terms in equation (2.25) and restating the state equation (2.17) yields
the unrestricted conditional state-space model for β̃t:

yit︷ ︸︸ ︷
pbit − ϕpbi,t−1 − di,t−1β0 − Xitγ =

Hm
t︷ ︸︸ ︷

di,t−1λση

sm
t︷︸︸︷

β̃t +

eit︷︸︸︷
ϵit , ϵit ∼ N(0,

R︷︸︸︷
σ2

ϵ ),

(2.30)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, η̃t ∼ N(0, 1︸︷︷︸
Q

).

(2.31)

Notice that sm
t is a scalar as we assume the time-varying parameter to be homoge-

neous across countries, as outlined above. Stacking observations over i = 1, 2, ..., N,
this can be written as
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yt︷ ︸︸ ︷
pb1t − pb1,t−1ϕ − d1,t−1β0 − X1tγ

...
pbNt − pbN,t−1ϕ − dN,t−1β0 − XNtγ

 =

Hm
t︷ ︸︸ ︷

d1,t−1λση

...
dN,t−1λση


sm

t︷︸︸︷
β̃t +

et︷ ︸︸ ︷
ϵ1t
...

ϵNt

, (2.32)

et︷ ︸︸ ︷
ϵ1t
...

ϵNt

 ∼




0
...
0

 ,

R︷ ︸︸ ︷
σ2

ϵ


1

. . .

1




, (2.33)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, (2.34)

η̃t︸︷︷︸
vt

∼N(0, 1︸︷︷︸
Q

), (2.35)

The time-varying component β̃t is initialized with mean and variance b0 = 0 and
P0 = 0.00001. By doing so, we ensure that the time-varying parameter βt is initial-
ized with its first value, β0.

The unobserved state vector β̃ is then extracted using standard forward-filtering
and backward-sampling. Instead of taking the entire N x 1 observational vector yt

as the item of analysis, we follow the univariate treatment of the multivariate series
approach of Durbin and Koopman (2012), in which each of the elements in yt is
brought into the analysis individually. This offers significant computational gains
and reduces the risk of the prediction error variance matrix becoming nonsingular
during the Kalman filter procedure.

In the restricted model, that is, for λ = 0, χm and sm are empty. Thus, no forward-
filtering and backward-sampling is applied. In this case, β̃t is sampled directly from
its prior, that is, from (2.17).

Lastly, given its components β0, ση and β̃, the time-varying parameter vector β

can be constructed from (2.16).
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2.B Gibbs sampling procedure extended model

In this section, we lay out the Gibbs sampling procedure for the "extended model",
where the time-varying parameter equation contains a set of covariates G. Formally,
this entails employing the non-centered parameterization for β̃t and introducing a
stochastic binary indicator, sampled along with the other parameters, analogous to
the model in equations (2.5), (2.12) and (2.11) referred to in section 2.3.5 and ap-
pendix 2.A (we will refer to this model as the "simpler model" below). This implies
that the extended model is comprised of the following set of equations (analogous
to the notation in appendix 2.A):30

pbit = pbi,t−1ϕ + di,t−1βit + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ), (2.36)

βit = β∗
t + Gitκ, (2.37)

β∗
t = β∗

0 + λση∗ β̃t, (2.38)

β̃t = β̃t−1 + η̃t, η̃t ∼ N(0, 1), (2.39)

where (2.9) has been replaced by (2.38) and (2.39) and G is a set of covariates po-
tentially driving the time variation in the fiscal reaction to debt. By sampling the
stochastic binary indicator λ along with the other parameters, we obtain useful in-
formation as to whether the time-varying component ση∗ β̃t contains any further in-
formation beyond that in the covariates G.

To simplify notation, we now include the parameters of the covariates G, that is
κ, in the parameter vector θ, so that θ ≡ (β0, ση , ϕ, γ′, κ′)′, with κ ≡ (κ1, κ2, ..., κs),
where s is the number of explanatory variables included in the state equation, and
β̃ ≡ (β̃1, β̃2, ..., β̃T)

′. Analogous to the simpler model, the MCMC scheme splits the
estimation problem into three blocks where the parameters are drawn from condi-
tional distributions:

1. Sample the binary indicator λ from p(λ|β̃, Y), marginalizing over the parame-
ters in θ and σ2

ϵ , then sample the unrestricted parameters in θ and σ2
ϵ .

2. Sample the time-varying parameter vector β̃ from p(β̃|λ, θ, σ2
ϵ , Y).

3. Perform a random sign switch for ση∗ and the elements in β̃. That is, draw
from {−1, 1} with equal probability of both outcomes and multiply by ση∗ and
β̃, implying a 50 percent chance of ση∗ and β̃ being multiplied by (-1). β∗ and β

can then be constructed from their components.

In what follows, we lay out this MCMC scheme in more detail. Given the similarity
of this approach with that of the simpler model, the following sections are mainly
concerned with elaborating on the differences between the two.

30In addition to the sources mentioned in appendix 2.A, this section draws from Iseringhausen and
Vierke (2019).
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2.B.1 Sampling the stochastic binary indicator and the hyperparameters

Analogously to the procedure in the pure random walk case, insert (2.37) in (2.36),
using the expression for β∗

t in (2.38) to obtain

pbit︸︷︷︸
yit

=
[
di,t−1 di,t−1λβ̃t di,t−1Git pbi,t−1 Xit

]
︸ ︷︷ ︸

χm
it


β∗

0

ση∗

κ

ϕ

γ


︸ ︷︷ ︸

θm

+ϵit. (2.40)

Thus, θm now additionally contains the parameters of the covariates in the state
equation κ, and the sampling scheme laid out in section 2.A.1 can be employed.

2.B.2 Sampling the time-varying parameter

As before, in this block we set up the conditional state-space model for β∗
t :

yit︷ ︸︸ ︷
pbit − ϕpbi,t−1 − di,t−1β∗

0 − di,t−1Gitκ − Xitγ =

Hm
t︷ ︸︸ ︷

di,t−1λση∗

sm
t︷︸︸︷

β̃t +

eit︷︸︸︷
ϵit , ϵit ∼ N(0,

R︷︸︸︷
σ2

ϵ ),

(2.41)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, η̃t ∼ N(0, 1︸︷︷︸
Q

),

(2.42)

for each i = 1, 2, ..., N and t = 1, 2, ...T. Given this conditional state-space model, the
time-varying parameter β̃t is sampled just as in the baseline model in section 2.A.2.
Lastly, given β∗

0, ση∗ and β̃, β∗ and β can be constructed from their components.
As for the simpler model, we set the total number of Gibbs iterations to 200,000,

with a burn-in phase of 80,000, keeping every 10th draw of the remaining 120,000,
which leaves us with 12,000 retained draws.
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Chapter 3

Stochastic debt sustainability
analysis using time-varying fiscal
reaction functions – An agnostic
approach to fiscal forecasting

accepted for publication in Applied Economics

Abstract

This paper presents a model-based approach for stochastic primary balance and
public debt simulations to assess fiscal sustainability in selected OECD countries.
Fiscal behavior is modeled by means of a fiscal reaction function with time-varying
coefficients, which is then, together with a time-varying coefficient vector autore-
gression, embedded in a stochastic debt sustainability analysis framework. In a
pseudo-out-of-sample forecasting exercise using vintage datasets, the model is
evaluated against its frequently used fixed coefficient pendant and the European
Commission’s Economic Forecasts at different horizons. The results indicate that
stochastic debt sustainability analyses based on time-varying fiscal reaction func-
tions and vector autoregressions perform competitively in terms of mean squared
error and forecast bias at different horizons, especially with respect to public debt
as well as short-term primary balance forecasts. Thus, models of this sort should be
considered for complementary use at policy institutions, using them together with
more "discretionary" approaches to fiscal sustainability analysis.

Keywords: Stochastic debt simulation, fiscal reaction function, time variation,
state-space models, MCMC

JEL Codes: E62, H68, C32
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3.1 Introduction

The industrialized world is debt-struck. Both the Global Financial Crisis and the
European Sovereign Debt Crisis have put pronounced pressure on many countries’
public finances. While an unfavorable demographic transition that will drive many
governments’ age-related expenditures for decades to come, the recent "COVID-19
crisis" and the corresponding fiscal countermeasures undertaken by governments to
stabilize economies around the globe have dimmed the fiscal outlook further. Re-
cently, accelerating inflation dynamics have brought monetary hawks back to the
scene, potentially further weighing on debt service costs and thus on the sustain-
ability of public finances.

As a result of these developments, fiscal policy’s leeway to achieve policy goals
(the fiscal space) is severely constrained. Moreover, given a dire public finance out-
look, pressure from financial markets might exacerbate the situation, endangering
fiscal solvency and further restricting governments’ fiscal space, requiring a balanc-
ing act between stabilization and sustainability objectives.

Amid those times of elevated fiscal distress, Blanchard et al. (2021) recently ar-
gued in favor of rethinking European fiscal rules. Against the frequently proposed
reinstallation of those rules, the authors argue that alternative measures of judging
fiscal sustainability be superior to the Maastricht criteria, granting more flexibility
in uncertain times. At the center of the authors’ proposal is the concept of stochas-
tic debt sustainability analysis (SDSA), which is used both in academia and at policy
institutions, see for example Celasun et al. (2006) or Medeiros (2012).

Employing SDSA to assess the sustainability of public finances has several ad-
vantages: As it incorporates fiscal reaction functions (FRFs), SDSA is based upon
(past) fiscal behavior, thus providing a less arbitrary way of evaluating fiscal sustain-
ability than more judgement-based approaches like the Maastricht criteria or deter-
ministic DSA. Moreover, by estimating the distributions of macroeconomic shocks
of interest and then repeatedly drawing from their joint distribution to ultimately
obtain projections of the primary balance and public debt, SDSA neatly incorporates
the probabilistic nature of public debt projections (see Everaert and Jansen, 2017 and
Medeiros, 2012).

With FRFs being a key ingredient of SDSA, it is crucial they be correctly speci-
fied. If, instead, a misspecified FRF is used, the implied debt projections could be
(severely) misleading. In a recent paper, Berger et al. (2021) argue in favor of spec-
ifying FRFs featuring time-varying coefficients: In particular, they propose mod-
eling the fiscal responsiveness to public debt in a time-varying manner, with the
fiscal responsiveness potentially driven by debt thresholds, the macroeconomic en-
vironment (encompassing interest rates and growth prospects) or political factors.
Equally significant is the specification of vector autoregressions (VARs), which con-
stitute the second major building block of SDSAs of the sort conducted by Medeiros
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(2012): Consistently with the argument for time-varying coefficient FRFs, the em-
pirical importance of employing time-varying coefficient VARs has been stated by
many researchers (see for example Koop and Korobilis, 2013). In this paper, I am
building on these findings on the usefulness of time-varying coefficient FRFs and
VARs by embedding them in a SDSA and assessing such models’ ability in fore-
casting the short-run development of fiscal variables. To this aim, primary balance
and debt forecasts of selected OECD countries are evaluated at various horizons and
compared to forecasts of a state-of-the-art fixed coefficient model similar to Medeiros
(2012), as used for example by Everaert and Jansen (2017) or Paret (2017). Addition-
ally, the forecast performance is judged by comparison with official forecasts of the
European Commission (EC).

The contribution of this paper is twofold: First, a simple public debt projection
framework featuring time-varying coefficients is provided, aimed at being used (in
this or a more extensive form) at policy institutions, jointly with other approaches
already in place. For example, these models could be employed in model-averaging
forecast exercises to mitigate the potential performance loss resulting from model
uncertainty (see e. g. Moral-Benito, 2015). In this regard, the SDSA framework
provided here can be thought of as complementary to existing fiscal forecasting ap-
proaches. Second, a vintage data-based forecast assessment framework is provided,
allowing for more realistic real-time forecast evaluations than "ex-post" forecasts that
use data unknown to the forecaster at the time the forecast is made. Frameworks of
this kind can be used in the future to assess the forecasting performance of various
(S)DSA models.

My findings suggest that SDSA based on time-varying FRFs in spirit of Berger
et al. (2021), combined with a simple public debt projection exercise featuring time-
varying coefficient VARs (called the "benchmark model" below), provides competi-
tive primary balance and especially public debt forecasts in terms of mean squared
errors (MSEs) for a sample of ten OECD countries. The models employed here out-
perform a time-invariant ("fixed") coefficient pendant in terms of public debt fore-
casts at all horizons considered and fare similarly with respect to primary balance
projections. Moreover, the benchmark model’s forecasts come close to European
Commission forecasts for public debt and the primary balance at most horizons. In
terms of forecast bias, the EC and the benchmark model perform similarly, but while
the EC primary balance nowcasts are biased, the benchmark model’s are not. Thus,
making use of SDSA with time-varying coefficient FRFs and VARs to nowcast fis-
cal variables might help overcoming the well-documented bias often found in fiscal
projections (see e. g. Frankel, 2011). The above findings are quite robust to changes
in the sets of predictors of fixed and time-varying parameters, although excluding
the output gap coefficient from the set of time-varying coefficients in the VAR ham-
pers the primary balance forecast performance. Despite the sample of forecast errors
being limited, especially at the two-year-horizon, the adequate short-term forecast
performance of the benchmark model motivates its use in model-averaging exercises
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at policy institutions.
The remainder of the paper is structured as follows. Section 3.2 elaborates on the

basics of SDSA and lays out the benchmark SDSA model. In section 3.3, data, priors
and the results are presented. Section 3.4 concludes.

3.2 Literature review and model

This section briefly reviews the literature and lays out the state-of-the-art fixed co-
efficient model as well as the SDSA model featuring time-varying coefficients (the
benchmark model).

3.2.1 SDSA basics

SDSA provides a neat way of assessing the state of governments’ public finances
and is thus widely used at policy institutions such as the IMF, the European Com-
mission (EC) or the ECB.1 The groundwork for SDSA has been laid out by Celasun
et al. (2006), which more recent studies such as Medeiros (2012), Everaert and Jansen
(2017) or Paret (2017) have built upon. The basic idea of these approaches is to fore-
cast public debt by means of a debt accumulation equation:

debtt =
1 + it

1 + gt
debtt−1 − pbt, t = 1, 2, ..., T, (3.1)

where debtt is the public debt-to-GDP ratio (debt ratio) in period t, it is the respective
nominal interest rate on the debt outstanding, gt is the nominal GDP growth rate and
pbt is the primary balance (the government budget balance net of interest payments
on the debt outstanding). While the primary balance is typically simulated based
on a FRF, the remaining determinants’ evolution is captured using forecasts from a
VAR containing a set of macroeconomic variables. The joint usage of an FRF and
a VAR is motivated by the low frequency of fiscal decision-making: While (major)
budget decisions are often made on a yearly base, it is advisable to employ macroe-
conomic variables such as real interest rates, GDP or inflation at a higher (quarterly)
frequency to "capture the signal" in the variables’ short-run dynamics.

1A nice overview of a comprehensive DSA framework, as conducted at policy institutions, is pro-
vided by Bouabdallah et al. (2017), who elaborate on deterministic DSA and stochastic DSA (as well as
on other fiscal sustainability indicators). While the deterministic DSA – as the name suggests – covers
a variety of scenarios regarding the future evolution of the determinants of fiscal variables (such as
interest rates, inflation and output growth) that are defined by the researcher/ policy maker, the stochastic
DSA is more agnostic in the sense that it uses a purely data-driven approach to determine the evolution
of macroeconomic and fiscal indicators. While discretion and therefore deterministic DSA is certainly
helpful for policymakers to gauge a country’s fiscal sustainability – especially given the amount of
information available at major institutions – this paper intends to make a contribution along the lines
of stochastic DSA, where discretion plays little to no role. Both approaches, together with other sustain-
ability indicators, can then be combined by the policymaker to make an informed decision about the
(future) state of public finances.
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More precisely, SDSA based on Celasun et al. (2006) or Medeiros (2012) is con-
ducted using the following steps:2

1. Estimate a FRF and a VAR to obtain estimates of their (reduced-form) coeffi-
cients and the distributions of shocks to fiscal and macroeconomic variables.

2. Drawing from the distribution of shocks to macroeconomic variables, feed the
VAR forecasts of macroeconomic variables – properly transformed – into the
FRF to simulate the primary balance.

3. Use the primary balance forecasts obtained in the previous steps to project the
public debt ratio.

4. If applicable: Using this forecast, repeat steps 2 and 3 to obtain primary balance
and debt forecasts for horizons h = 2, 3, ...H.

5. Repeat these steps R times to obtain distributions for the future paths of the
primary balance and debt ratios, where R is a sufficiently high number chosen
by the researcher.

3.2.2 The fiscal reaction function

Clearly, the FRF is a crucial determinant of primary balance and public debt projec-
tions of the sort laid out in the previous chapter. If misspecified, inference based on
the SDSA framework might be misleading. In spirit of Berger et al. (2021), this paper
addresses the specification of FRFs, arguing in favor of a time-varying parameter
model. More specifically, consider a standard FRF based on Bohn (1998), such as

pbt = α + debtt−1β1 + Xtγ + ϵt, (3.2)

where α is a constant, Xt is a set of additional regressors (next to the lagged debt ra-
tio) and ϵt is a normally distributed error term. However, as argued in Berger et al.
(2021), assuming that the coefficients in α, β1 and γ are constant over time might be
too restrictive: The fiscal reaction to changes in public debt might be altered by vari-
ous things. Among them, the fiscal responsiveness may depend on the level of debt,
as argued in Ghosh et al. (2013). For example, governments might be slow to adjust
the primary balance at very low debt ratios, more alert once debt rises and "giving
up" on fiscal sustainability at very high debt levels.3 Additionally, macroeconomic
factors such as the growth rate of the economy (among other things by altering the
country’s "tax generating capacities") or the interest rate on the debt (with higher
debt service costs reducing fiscal space) may drive the fiscal reaction to debt.

2Some additional information on the "fixed coefficient approach" can be found in appendix 3.B.4.
3Loosely speaking, a debt-dependent fiscal responsiveness of this sort is what has been called fiscal

fatigue in the literature (see Ghosh et al., 2013).
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The fiscal responsiveness to other predictors could be time-varying, too. Assume
that the lagged primary balance and a measure of the output gap are contained in Xt

above. Then γ – as well as β1 – may be driven by determinants such as the state of
the economy (see for example Égert (2014) on differences in the fiscal responsiveness
in up- and downturns), institutional changes (for example the Maastricht criteria or
the Fiscal Treaty in the European Union) or changes in the political landscape (for
example the political orientation of the government, or so-called electoral business
cycles, see e. g. Alesina et al., 1993).

For these reasons, instead of using the specification in (3.2), I follow Berger et al.
(2021) in estimating a FRF of the form

pbit =αi + Hitβt + Xitγ + ϵit, (3.3)

ϵit =µt + ρϵi,t−1 + uit, uit ∼ N(0, σ2
ui
), i = 1, 2, ..., N, t = 1, 2, ..., T, (3.4)

where Hit is the predictor matrix corresponding to the time-varying parameters, βt,
and Xit corresponds to the fixed parameters, γ. Depending on the specification, Hit

and Xit contain the lagged debt ratio, the lagged primary balance (capturing slug-
gishness in fiscal policy making) and the output gap. By allowing the parameters
corresponding to these three predictors to be time-varying, this FRF constitutes a
flexible framework to account for changes in the underlying relationship between
the predictors and the primary balance.

Note that, as ultimately any SDSA model should be judged by its forecasting
abilities, the final choice of time-varying and fixed parameters will be based on the
forecasting performance of the different specifications. Further note that this "speci-
fication search" is mostly for illustrative purposes, demonstrating that various mod-
els featuring time-varying parameters are capable of producing competitive primary
balance and public debt forecasts.

Next to time-varying parameters and estimating a dynamic FRF (by adding the
lagged primary balance as a predictor), the benchmark specification presented above
tackles further specification issues, thus differing from the standard specification
presented in (3.2):

1. Since the inclusion of up to three time-varying coefficients leads to a prolif-
eration of parameters, observations along the cross-sectional dimension are
included. That is, by employing a fixed effects panel model and pooling βt

and γ along the cross-sectional dimension, identification of the parameters is
facilitated. The coefficients αi, i = 1, 2, ..., N constitute the country-specific con-
stants and are dealt with using within-group demeaned transformations of the
variables.4

4Employing panel models to estimate FRFs is quite common in the literature (see, among others,
Ghosh et al., 2013 or Checherita-Westphal and Žd’árek, 2017).
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2. Following Ghosh et al. (2013), the model allows for an AR(1) error term, thus
accounting for autocorrelation in the residuals not captured by the lagged pri-
mary balance term.

3. The model is further enriched by letting the variance of the Gaussian white
noise process, uit, be country-specific. This means that the model features an-
other source of cross-country heterogeneity (next to the country-specific ef-
fects), accounting for the possibility that the average shock to the primary bal-
ance might differ in size between countries.

4. To account for (time-varying) unobserved components, affecting all sample
countries, a time-varying component (or time fixed effects) µt is included in
the error term process.

In what follows, a couple of estimation and specification issues will be elaborated
upon.

Endogeneity

Clearly, fiscal policy might have a contemporaneous effect on the business cycle,
rendering the output gap potentially endogenous in the FRF, which is why it is
commonly instrumented in the literature. I will proceed similarly by running an
auxilliary regression of the output gap on the exogenous regressors in (3.3) and in-
struments of the output gap (its first two lags, following for example Berger et al.,
2021) to obtain a fitted, exogenous pendant of the output gap, which is then used in
the estimation algorithm outlined below.5

Variable choice

The variable choice employed here is obviously not exhaustive. However, this paper
provides a simple framework that can serve as a starting point for future research
into SDSA models based on time-varying FRFs. While one reason for the small set
of predictors is parsimony and an attempt to avoid overfitting, the other is data
availability: The forecast performance evaluation conducted here is based on an ex-
tensive dataset. For example, the inclusion of a ("source-consistent") expenditure
gap measure would drastically decrease the sample size, rendering the highly pa-
rameterized model (nearly) infeasible. Moreover, candidate predictors would have
to be (- again, "source-consistently" -) available for any of the vintages considered,
thus further reducing the choice of potential regressors.

5More extensive ways to deal with endogenous regressors in a time-varying parameter model are
thinkable, see for example Everaert et al., 2017 or Kim and Kim, 2011, where the coefficients of the
auxiliary regression are obtained directly from the joint parameter distribution. However, the model
presented here serves the main purpose of illustrating that time-varying parameter models in general
should be considered in SDSA frameworks. More extensive specifications are left for future work.
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Non-centered parameterization

So far, nothing has been said about the exact specification of the time-varying pa-
rameters, βt. A common choice would be to model βt as a random walk, that is,
βt = βt−1 + ηt, where ηt is an independent white noise process with variance σ2

η .
However, as σ2

η is non-negative, for any prior belief on σ2
η unequal to zero, one is

enforcing a certain degree of time variation, as for any σ2
η > 0, the process βt would

be – governed by a certain degree of time variation. In other words, one would be
informative as to whether time variation is present in βt. Employing a non-centered
parameterization provides a neat solution to this problem (see Frühwirth-Schnatter
and Wagner, 2010). It is given by:6

βt =β0 + ση β̃t, (3.5)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1). (3.6)

By setting a non-informative prior, centered around zero, one is uninformative with
respect to the question of whether the respective parameter is governed by time
variation or not. Thus, to be as agnostic as possible, the NCP will be used instead
of the random walk specification in the estimation algorithm presented in the next
subsection. Lastly, note that the components of ση and β̃t are only jointly identified.
However, as elaborated upon in Frühwirth-Schnatter and Wagner (2010), this can be
"solved" by introducing a random sign switch of the components in the estimation
routine, which is outlined in the next section and the appendix.

Estimation algorithm for the FRF

In the following, the estimation algorithm for the FRF will be laid out. Note that
the system of equations in (3.3), (3.4), (3.5) and (3.6) can be cast into state-space
form. Note that the approach below refers to within-group-demeaned variables to
get rid of the country-specific intercepts, αi, i = 1, 2, ..., N. Estimating the model
using within-group-demeaned variables has the advantage of reducing the amount
of parameters to be estimated, while the coefficients of interest should be equal to the
model without demeaning (Frisch-Waugh-Lovell theorem, see e. g. Baltagi, 2013).

The estimation algorithm outlined here draws from Berger et al. (2021) and Blake
and Mumtaz (2015).7 Intuitively, the estimation algorithm approximates intractable
joint and marginal parameter distributions by repeatedly drawing the parameters
from conditional distributions by means of a Markov-Chain-Monte-Carlo (MCMC)
algorithm. For notational convenience, define θ ≡ (β′

0, σ′
η , γ′)′, β̃ ≡ (β̃1, β̃2, ..., β̃T)

′,
σ2

u ≡ (σ2
u,1, σ2

u,2, ..., σ2
u,N)

′, µ ≡ (µ1, µ2, ..., µT) and y and χ as the dependent variable

6Note that the non-centered parameterization (NCP) is simply a reparameterization of the random
walk process.

7A detailed version of the algorithm can be found in the appendix.
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and the predictor matrix. The estimation algorithm is conducted using the following
steps:

1. Sample the normally distributed coefficients β0, ση and γ conditional on the
remaining parameters. That is, draw from p(θ|β̃, ρ, µ, σ2

u , y, χ).

2. Sample the time-varying parameters β̃ given the remainder of parameters, that
is, draw from p(β̃|θ, ρ, µ, , σ2

u , y, χ). Next, perform a random sign switch for ση

and β̃. That is, randomly multiply both sets of parameters with -1 or 1 with the
same probability. Finally, construct βt from its components.

3. Conditional on the remaining parameters, sample the AR(1) parameter of the
error term (ρ) and the unobserved component vector µ, then sample the regres-
sion error variances σ2

u . That is, draw from an independent Normal-inverted
Gamma distribution, p(ρ, µ, σ2

u |θ, β̃, y, χ).

4. Repeat steps 1. to 3. 2*R times and discard the first R draws. If R is a suffi-
ciently high number, the retained R draws provide adequate approximations
to the marginal posterior distributions of the parameters.

3.2.3 BVAR methodology

Following Celasun et al. (2006) and Medeiros (2012), a VAR is used to estimate the
correlations between the macroeconomic variables linked to the primary balance
and the public debt evolution. Given estimates of these correlations and of the joint
distribution of shocks to these variables, one can compute forecasts that can be fed
into the primary balance and the debt accumulation equation.

Unlike Celasun et al. (2006) or Medeiros (2012), I employ a VAR that fea-
tures time-varying slope coefficients, consistent with the time-varying FRF outlined
above. Thus, for each country, the VAR model in reduced form can be written as

yt = ϕ1,tyt−1 + ϕ2,tyt−2 + ... + ϕp,tyt−p + ut, ut ∼ N(0, Σ), (3.7)

Φt = Φt−1 + et, et ∼ N(0, Q), (3.8)

t = {1, 2, ..., Tq}, where Tq is the number of quarterly observations in the VAR,
yt is a M × 1 vector of demeaned endogenous variables, ϕj,t, j = 1, 2, ..., p are
M × M coefficient matrices corresponding to the respective lag matrix yt−j and ut

is a M × 1 vector of reduced-form shocks. The time-varying parameters are col-
lected in Φt ≡ (vec(ϕ1,t), vec(ϕ2,t), ..., vec(ϕp,t))′ and are assumed to follow random
walk processes with joint error covariance matrix Q, as outlined in (3.8).

Notice that, since the VAR is country-specific and the amount of data available
for estimating the VAR is restricted, I follow Celasun et al. (2006) and Medeiros
(2012) in setting the number of lags in the VAR to two. Parameter proliferation
due to time-varying slope coefficients puts further strain on estimation feasibility.
To overcome this, a Bayesian VAR (BVAR) is employed: By combining the data with
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prior information, one can drastically improve upon estimation efficiency. Details
on the Bayesian estimation of the VAR are outlined below.8

Variable choice

The variable choice for the VAR is broadly in line with Medeiros (2012): Among the
variables included are the quarterly growth rate of real GDP, the GDP deflator-based
inflation rate and an unweighted average of short-term and long-term real interest
rates (see appendix for details). For all countries, the real GDP growth rate and the
above-defined average real interest rate for Germany are included (obviously, except
for Germany). I deviate from Medeiros (2012) by not including the natural logarithm
of the real effective exchange rate, as its inclusion would significantly decrease the
sample size.

Estimation algorithm for the BVAR

Analogously to the FRF estimation algorithm outlined above, an MCMC scheme
is employed to approximate the posterior distributions of interest. In particular,
following Blake and Mumtaz (2015), the algorithm consists of the following steps:9

1. Sample the time-varying coefficients Φt for t = 1, 2, ..., Tq conditional on the
other parameters of the model. That is, draw from p(Φt|Σ,Q,y), using the
forward-filtering backward-sampling algorithm of Carter and Kohn (1994).

2. Sample the state disturbance variance-covariance matrix of the time-varying
parameter equation (Q) from its conditional distribution. That is, draw from
an inverse Wishart distribution, p(Q|Φ,Σ,y), where Φ ≡ (Φ′

1, Φ′
2, ..., Φ′

Tq
)′.

3. Sample the variance-covariance matrix of the measurement disturbance (Σ)
conditional on the other parameters, again from an inverse Wishart distribu-
tion. That is, draw from p(Σ|Φ,Q,y).

4. Repeat steps 1. to 3. 2*R times and discard the first R draws. If R is a suffi-
ciently high number, the retained R draws provide adequate approximations
to the marginal posterior distributions of the parameters.

3.2.4 Simulation of the primary balance and public debt

In this section, the simulation algorithm that repeatedly samples the primary balance
and the public debt ratio is laid out. Again, this approach broadly follows Medeiros

8While in many applications Σ is allowed to be time-varying (see for example Primiceri, 2005 or
Clark and Ravazzolo, 2015), in this model Σ is assumed to be constant over time. This is mainly a
practical choice: Adding time-varying volatility to the model drastically increases the number of draws
required for adequately approximating the posterior distributions of interest. In fact, it turns out that
the number of draws required for convergence is increased so much that running the full SDSA (for all
vintages) featuring such a VAR model is not feasible given the computing power at my disposal and
is thus left for future work.

9For more details on the algorithm, see appendix 3.B.2.
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(2012), but differs at some stages, mainly due to the MCMC algorithms employed
for the estimation of the FRF and BVAR coefficients above. The chosen approach
will be briefly outlined here. For more details, the reader is referred to the appendix.

Given the parameter estimates of the FRF and the BVAR, the projection algorithm
comprises repeatedly drawing future realizations of the macroeconomic variables in
the VAR, and then feeding their realized paths into the FRF and the debt accumula-
tion equation. Thus, the algorithm consists of the following steps:

1. Draw shocks to the VAR from their joint distribution, forecast the VAR vari-
ables (using equations (3.7) and (3.8)) and transform them adequately. That is,
convert the forecasts to yearly data and compute yearly GDP growth for the
debt accumulation equation and construct an output gap forecast to be fed into
the FRF to forecast the primary balance.10

2. Given a sample of T yearly observations, simulate the primary balance for
period T + 1, using equations (3.3), (3.4), (3.5) and (3.6) and the output gap
forecast obtained in the previous step.

3. Feed the T + 1 forecast for the primary balance, together with the relevant VAR
forecasts, into the debt accumulation equation (3.1) to obtain debtT+1.11

4. Using the forecast for debtT+1, go back to steps 2 and 3. Repeat them for period
T + 2.

5. Save the realizations for the primary balance and the public debt ratio and
repeat the above steps R times, where R is the number of retained draws in
the MCMC algorithm outlined above. This means that for any retained set of
parameter draws in the FRF and the VAR, a path for the primary balance as
well as the public debt ratio are obtained. In this way, unlike in the case of
Frequentist estimation, the uncertainty surrounding the parameter estimates
is directly embedded in the projection exercise.

3.3 Results

This section covers the data employed for the estimation, the priors as well as the
results of the SDSA. Note that, to be as agnostic as possible, in the benchmark model
all three explanatory variables of the FRF (that is, the lagged primary balance-to-
GDP ratio, the lagged debt ratio and the output gap) are modeled featuring time-
varying parameters. Due to the use of the non-centered parameterization, together
with the agnostic prior on ση (as elaborated upon below), this does not mean that
time variation is enforced upon the parameters a priori. Instead, the amount of

10The output gap is obtained as the cyclical component of the (one-sided) Hodrick-Prescott filtered
output series. As typical for quarterly data, λ is set to 1600.

11As outlined in the appendix, I follow Medeiros (2012) in using the implicit interest rate on the debt
outstanding as the relevant measure for the nominal interest rate in the debt accumulation equation.
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time variation in the coefficients βt is governed by the data. If the amount of time
variation in βt is limited, its estimated path will simply display little time variation
and will not deviate much from its time-invariant component (β0). Hence, the model
with three time-varying parameters will be considered below (before robustness is
dealt with).

3.3.1 Data

In the following, the data used for both FRF and BVAR are outlined. For reasons of
consistency, the EC’s semi-annual AMECO Economic Forecast and the OECD’s Eco-
nomic Outlook database vintage datasets are employed from a period spanning from
autumn 2014 to spring 2019 (see appendix 3.A for more details on the sample selec-
tion). Since the datasets are published twice a year, ten vintages are used in total. For
each of the vintages, a sample of ten countries is then used, including Austria, Bel-
gium, Finland, France, Germany, Greece, Ireland, Italy, Japan and the Netherlands.
The choice of countries is motivated by the availability of data for the pseudo-real
time forecast exercise based on vintage data: All OECD countries for which fore-
casts of the primary balance and the public debt ratio are available from the primary
source used here, that is, from AMECO, were considered candidates for the sample.
For all of these OECD countries, where reliable vintage data for all variables of the
FRF and the BVAR were available from the below-mentioned sources, are then in-
cluded in the sample. This leads to a total of ten countries.12 More details on the
data, including the choice of the vintage datasets, are provided in appendix 3.A.

3.3.2 Priors

In this section, the priors for the Bayesian estimation procedure for the FRF and the
BVAR are laid out.

FRF priors

First, the priors employed in the FRF are outlined. Notice that, since some of these
priors are derived from sample data, the corresponding prior moments differ (very
slightly) between vintages. As such, the priors presented here are exemplary and
refer to the final vintage in the sample, that is, the spring 2019 vintage.

12However, note that some data issues remain even for some of the ten sample countries. In par-
ticular, there is missing data in two of the OECD vintages: In the "autumn" 2015 vintage, both the
nominal GDP series and the GDP deflator series are missing for Belgium, while in the "autumn" 2018
vintage, long-term and short-term interest rates, nominal GDP and the GDP deflator series are missing
for Greece. This is dealt with in the following way: Where VAR data are missing, data from the pre-
vious vintage are included. This implies that instead of actual observations, for the last two quarterly
sample observations in these vintages, forecasts are used instead of observations.
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Gaussian priors

First, parameters with Gaussian priors are outlined. That is, the respective parame-
ters are – a priori – following a Normal distribution of the sort N(a0, A0), where a0

is the prior mean and A0 is the prior variance. The normally distributed parameters
include the prior on the m × 1 vector β0 (containing the time-invariant parts of the
time-varying parameter processes), the prior on the state error standard deviations
ση and the prior on the k slope coefficients of the regression (measurement) equation,
γ.

Prior statistics for the final vintage are presented in table 3.1. The table shows the
prior means of the respective parameters together with the prior standard deviation
and the 5th and 95th percentiles of the implied prior distribution. The prior on the
m× 1 vector β0, which can be interpreted as the coefficient vector of the time-varying
parameter processes if no time variation was present in those coefficients, is set with
means equal to the (Frequentist) within-group two-stage least squares estimates of
the model, where all coefficients are fixed (that is, constant over time).13 Given the
limited sample sizes and thus limited information in the data, each parameter in β0

is assumed to have a prior variance of 0.01, amounting to a prior standard deviation
of 0.1. Thus, the 90% prior density intervals include a wide range of parameter
estimates of the respective parameters found in the literature (see e. g. Checherita-
Westphal and Žd’árek, 2017 for an extensive overview).

For ση , the m × 1 vector of standard deviations of the state disturbances, a prior
mean vector with all elements equal to zero is assumed. Thus, time variation is not
"forced" upon the parameters a priori. In fact, for a prior mean for ση equal to 0,
its prior distribution will be unimodal and centered around zero, such that – on av-
erage – βt will remain close to β0 for all t = 1, 2, ..., T a priori. The prior variances
of the vector ση are set to 0.1 (implying prior standard deviations of approximately
0.32), which implies quite non-informative prior distributions, where 90% of the in-
novations to the time-varying components of the time-varying parameters (βt) lie
between -0.526 and 0.526.

In the benchmark model, the parameter vector γ is empty, as the parameters cor-
responding to the output gap, the lagged primary balance and the lagged debt ratio
are assumed to follow time-varying processes (implying that X is empty). Thus,
there are no prior moments for γ displayed in table 3.1. In the robustness section
below, where some of the slope parameters are assumed to be time-invariant (and
where thus γ is not an empty vector), the prior on γ is the same as the prior on
β0 for the respective component, the reason being that β0 can be interpreted as the
time-invariant component of βt.

13Note that these fixed coefficients are simply the estimates of the fixed coefficient model ("fixed
model"), presented in appendix 3.B.4.
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TABLE 3.1: Prior choices for the benchmark specification, final vin-
tage

Gaussian priors
∼ N(a0, A0) a0

√
A0 5% 95%

Initial state output gap β0,1 0.046 0.1 −0.118 0.211
Initial state lagged primary balance β0,2 0.760 0.1 0.596 0.925
Initial state lagged debt β0,3 0.010 0.1 −0.155 0.174
Standard deviation state error (output
gap)

ση,1 0 0.32 −0.526 0.526

Standard deviation state error (lagged pri-
mary balance)

ση,2 0 0.32 −0.526 0.526

Standard deviation state error (lagged
debt)

ση,3 0 0.32 −0.526 0.526

Residual autocorrelation parameter ρ 0 3.2 −5.264 5.264
Time fixed effects µ 0 3.2I −5.264 5.264

Inverted Gamma prior
∼ IG(T ν0,i

2 , T ν0,i
2 σ2

0,i) σ0,i ν0,i 5% 95%
Regression standard deviation, Belgium σu,1 0.251 0.1 0.185 0.405
Regression standard deviation, Germany σu,2 0.304 0.1 0.224 0.491
Regression standard deviation, Ireland σu,3 0.382 0.1 0.281 0.617
Regression standard deviation, Greece σu,4 0.685 0.1 0.504 1.104
Regression standard deviation, France σu,5 0.290 0.1 0.213 0.468
Regression standard deviation, Italy σu,6 0.325 0.1 0.239 0.524
Regression standard deviation, Nether-
lands

σu,7 0.296 0.1 0.218 0.477

Regression standard deviation, Austria σu,8 0.201 0.1 0.148 0.324
Regression standard deviation, Finland σu,9 0.468 0.1 0.344 0.755
Regression standard deviation, Japan σu,10 0.410 0.1 0.302 0.662

Notes: This table summarizes the prior distributions for the final vintage (spring 2019) for the bench-
mark specification. For the inverted Gamma priors, the prior belief about the standard deviation σ0 is
displayed instead of the corresponding variance parameter as this is easier to interpret. Likewise, for
the Gaussian priors,

√
A0 is reported instead of A0. For the priors on µ, 0 is a T x 1 vector of zeros, and

I is the identity matrix of dimension TxT, with T being the number of time periods in the sample.
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Inverted Gamma priors

The country-specific variances, σ2
u,i, i = 1, 2, . . . , N, are assumed to follow inverted

Gamma distributions. That is, for each i, σ2
u,i ∼ IG(c0,i, C0,i), where the shape param-

eters are given by c0,i = ν0,i/2 ∗ T and the scale parameters by C0,i = c0,i ∗ σ2
0,i, where

σ2
0,i constitutes the prior belief about the respective regression error variance and ν0,i

the corresponding prior strength. σ2
0,i is set to be the regression error variance from

country-specific (Frequentist) regressions of the primary balance on its first lag, an
(instrumented) output gap, lagged debt and a constant. Table 3.1 summarizes this
information for the sample countries. This implies, for example for Greece, that 90%
of the shocks to the primary balance lie between -0.86 and 0.86 percent of GDP.

Random walk components of the time-varying parameter processes

For the random walk components of βt, that is, β̃t, a forward-filtering backward-
sampling algorithm is employed. Thus, its priors are based on the Kalman filter (see
appendix for more information on the forward-filtering backward-sampling algo-
rithm).

BVAR priors

This section outlines the priors for the BVAR in equations (3.7) and (3.8).14

Inverted Wishart priors

Both the variance-covariance matrix of the VAR errors, Σ, and the variance-
covariance matrix of the state errors, Q, are assumed to follow inverted Wishart dis-
tributions a priori. In particular, as outlined in Blake and Mumtaz (2015), the prior
for Σ is given as p(Σ) ∼ IW(Σ0, TΣ0), where Σ0 is the error variance-covariance
matrix of the time-invariant pendant of the VAR in equation (3.7), estimated with
ordinary least squares. The shape parameter TΣ0 is simply the sample size of this
VAR. Note that usually the training sample, used to inform the priors, is excluded in
the main estimation algorithm. However, given the limited sample size at hand for
some vintages and countries, the priors here are informed using the whole sample,
without exclusion of some observations in the Gibbs sampling scheme.

The prior for Q is given by p(Q) ∼ IW(Q0, T0), with the prior scale parameter
being defined as Q0 = P ∗ T0 ∗ τ. Again, the time-invariant coefficient pendant of
the VAR in (3.7) is used to compute P = Σ0 ⊗ (X′X)−1, X being the predictor matrix
of the VAR. The prior shape parameter T0 is again the sample size (implying that
T0 = TΣ0 = Tq). τ is a scaling parameter governing the amount of time variation in
the slope coefficients inherent in the prior. Following Blake and Mumtaz (2015), this
is set to a very small number of 3.51−4, implying an uninformative prior.

14The prior choices are similar to Blake and Mumtaz (2015), the main exception being that more
data is used to inform the priors, as elaborated on below.
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Time-varying slope coefficients

The random walk components collected in Φ are sampled using the Carter and Kohn
(1994) forward-filtering backward-sampling algorithm, where the priors of Φ are
based on the Kalman filter. For more information on the forward-filtering backward-
sampling algorithm, the reader is referred to the appendix.

Finally, note that since for each vintage the whole sample is used to inform the
prior, the prior moments differ slightly across vintages, just as for the FRF priors
outlined above.

3.3.3 FRF results

In this section, the FRF results are outlined. Note that for each vintage dataset, the
FRF is estimated anew. Given that, due to the similarity of the datasets, the results
per vintage are similar and for the sake of clarity, solely the results for the latest
vintage (that is, the spring 2019 AMECO vintage) are displayed here, as there the
longest available sample is used.

Figure 3.1 displays the paths of the three time-varying parameters, including
their 90% credible sets. The top-most panel displays the evolution of the coefficient
on the output gap. First, note that there appears to be a certain degree of time vari-
ation present. Such non-linearities in the fiscal response to the business cycle are
broadly in line with the literature, in the sense that often an asymmetric response
to the cycle in expansions and recessions is modeled (see for example Égert, 2014).
Most notably, a pronounced increase in the governments’ counter-cyclicality in the
aftermath of the Global Financial Crisis is visible: In times of economic distress, sta-
bilizing fiscal measures had been taken to mitigate the effects of the downturn. This
effect slowly dissipated over time.

The second panel displays the time-varying parameter linked to the lagged pri-
mary balance. This parameter evolves more smoothly (less time-varying) and in-
dicates a high degree of sluggishness in fiscal policy making, again in line with the
literature, which argues that it takes time for fiscal policy changes to come about (see
Checherita-Westphal and Žd’árek, 2017 and Everaert and Jansen, 2018).

The third panel shows the evolution of the time-varying fiscal reaction to public
debt. Clearly, the parameter exhibits a substantial degree of time variation, which
can be partly explained by the fact that the majority of sample countries are Euro-
zone members: A decreasing fiscal reaction from the EMU "aspiration period" (i. e.
before being granted membership to the Eurozone) to the financial crisis is clearly
visible. Additionally, the plot shows a pronounced increase in fiscal prudence at the
onset of the European Sovereign Debt Crisis.

All said, it is reassuring that the results are broadly in line with the literature,
despite the extensive estimation approach and the limited amount of data. How-
ever, the overall focus of this paper is to judge the models by the respective forecast
performance, which will be done in the next section. Moreover, clearly, changing
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FIGURE 3.1: Evolution of the time-varying parameters (βt) in the
benchmark specification, final vintage

Notes: The blue lines represent the posterior means of the respective time-varying parameter for the
final vintage (spring 2019), with the 90% highest posterior density interval as shaded area. "log" refers
to the parameter for the output gap, "lpb" to the lagged primary balance coefficient and "ldebt" to the
lagged debt coefficient.

the set of covariates contained in X and H in (3.3) will affect in which time-varying
parameter paths the variance inherent in the data will show up. Looking at vari-
ous models in turn, with differing choices of X and H and comparing their forecast
performances is advisable (see also the robustness section).

Further results for the benchmark specification are displayed in table 3.2. Note
that in the baseline specification, X and γ in (3.3) are empty, since the coefficients
of the lagged primary balance, the lagged debt ratio and the (instrumented) output
gap are all modeled in a time-varying manner. Thus, table 3.2 displays only the
AR(1) coefficient of the error term, the country-specific variances of the residuals as
well as the variances of the state disturbances implied by the estimate for ση in the
non-centered parameterization.

3.3.4 SDSA results

In this section, the results of the primary balance and public debt projection exercise
are outlined. More precisely, the forecasting performance of the model with respect
to forecasting both the primary-balance-to-GDP ratio as well as the public debt ra-
tio are presented. These forecasts are evaluated along two dimensions: The mean
squared error (MSE) and the forecast bias from the “true observations” as found in
the latest considered vintage of AMECO data (that is, the spring 2022 vintage). The
forecast performance of the benchmark SDSA framework, featuring a time-varying
coefficient VAR and a panel time-varying coefficient FRF, is compared to the per-
formance of the fixed coefficient model laid out in section 3.2.1 and appendix 3.B.4
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TABLE 3.2: Posterior distributions in the benchmark model, final vin-
tage

Sample: 1970-2019, 10 OECD countries
Parameter Posterior mean 5% 95%

AR(1) parameter of regression error ρ1 0.516 0.397 0.632
Measurement error variance, Belgium σ2

u1 0.068 0.047 0.095
Measurement error variance, Germany σ2

u2 0.090 0.064 0.123
Measurement error variance, Ireland σ2

u3 0.233 0.162 0.327
Measurement error variance, Greece σ2

u4 0.420 0.283 0.603
Measurement error variance, France σ2

u5 0.057 0.040 0.079
Measurement error variance, Italy σ2

u6 0.077 0.054 0.107
Measurement error variance, Nether-
lands

σ2
u7 0.081 0.058 0.111

Measurement error variance, Austria σ2
u8 0.044 0.030 0.063

Measurement error variance, Finland σ2
u9 0.230 0.163 0.316

Measurement error variance, Japan σ2
u10 0.162 0.104 0.245

Implied state error variance, output
gap

σ2
η1 0.0056 0.0021 0.0011

Implied state error variance, primary
balance lag

σ2
η2 0.0001 0.0000 0.0005

Implied state error variance, debt lag σ2
η3 0.0002 0.0001 0.0003

Notes: This table summarizes the posterior distributions for the final vintage (spring 2019) for the
benchmark specification. The state disturbance variances, σ2

η , are not estimated directly but implied
from the estimate of ση in the non-centered parameterization. That is, "Implied state error variance,
primary balance lag" is the implied variance of the state disturbance of the time-varying parameter
process for the lagged primary balance, and likewise for the fitted output gap and the lagged debt
ratio. For reasons of visibility, the nuisance parameters (time fixed effects) are not displayed.
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as well as the European Commission forecast, which has been considered compet-
itive in the past (see Leal et al., 2008).15 Note that the EC’s semi-annual AMECO
Economic Forecast features forecasts for the current year, one-year-ahead and – for
all autumn publications – two-year-ahead point forecasts. Thus, the forecast per-
formance evaluation will be conducted for these horizons. This means that, for any
year, two "zero-period-ahead" forecasts (or “nowcasts”), two one-period-ahead fore-
casts and one two-period-ahead forecasts are made. That is, the forecasts made for
2016 in 2016, both in the spring and the autumn vintage, are considered nowcasts
below. The forecasts for 2017 made in 2016 are one-period-ahead-forecasts and the
2018 forecast made in autumn 2016 is the two-period-ahead forecast of the year 2016.

In tables 3.3 - 3.5, the forecast performance of the model outlined here is com-
pared with those of the EC and the fixed coefficient model. In particular, MSE ra-
tios of the benchmark and the fixed model forecasts against the EC forecasts are
displayed, where values smaller than one indicate an advantage of the respective
model against the EC. Additionally, the p-values corresponding to the null hypoth-
esis of unbiased forecasts for all three models are presented. Table 3.3 shows the
performances for the zero-period forecast horizon (nowcasts) for both the primary
balance and public debt. Clearly, the benchmark model performs better than the
fixed model in terms of MSE for both the primary balance and public debt forecasts.
When it comes to public debt nowcasts, the benchmark model even outperforms
the EC. Additionally, while EC primary balance nowcasts appear to be biased, both
the fixed and the benchmark model provide unbiased nowcasts for a significance
level of 5%. Regarding the public debt forecasts, all models’ nowcasts are biased ac-
cording to the results based on the sample at hand. However, taken together, these
findings clearly motivate the benchmark model’s use in model averaging exercises
to be conducted at policy institutions, such that pure model-based forecasts like the
one presented here can be combined with judgement in order to optimize the fiscal
forecast performance.

The above findings are to some extent confirmed for the 1-year-ahead and the
2-year-ahead horizons, as indicated by the results in tables 3.4 and 3.5. At both hori-
zons, the benchmark model produces unbiased public debt forecasts, with low MSE
ratios against the EC forecast, and clearly outperforming the fixed model. While the
benchmark’s MSE ratios for the primary balance forecasts are higher (thus worse)
than those of the fixed model, the difference is rather small, and with those ratios in
the range of 1.2 to 1.3, both models perform quite competitively against the EC. On
the downside, the primary balance forecasts of both models are biased, while the EC
forecasts are unbiased at least at the one-period-ahead horizon.

15More recent evidence is mixed, with the Commission’s performance dependent on the country
of interest (see Rybacki et al., 2020). However, their finding that the EC forecasts perform similar to
national authorities’ forecasts at the horizons considered here still makes the EC projections a valid
benchmark for forecast evaluation: If a model’s forecast performance comes close to the EC/ national
authorities’ forecasts, employing it in a sort of model averaging forecast exercise could benefit forecast
optimization, as elaborated upon above.
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TABLE 3.3: Forecast performance evaluation for the primary-balance-
to-GDP and the public debt-to-GDP ratios, nowcasts

Model Primary balance Public debt
rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)

European
Commission

- 0.001 - 0.000

Fixed model 1.823 0.974 0.948 0.000
Benchmark
model

1.567 0.086 0.898 0.001

Notes: Presented are Mean Squared Error ratios (rMSEs) of the fixed coefficient model and the bench-
mark model against the European Commission forecast. Ratios greater than one indicate that the Euro-
pean Commission forecast is superior. Additionally, the table contains p-values for a test of biasedness
of forecast errors. That is, the null hypothesis of α = 0 in pbit − pbF

itH = α + uitH is tested, where pbit
is the actual primary balance in period t for country i and pbF

itH is the corresponding forecast made for
period t at period H (similar to An et al., 2018). The results presented here are based on a total of 100
forecast errors.

TABLE 3.4: Forecast performance evaluation for the primary-balance-
to-GDP and the public debt-to-GDP ratios, one-period-ahead fore-

casts

Model Primary balance Public debt
rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)

European
Commission

- 0.265 - 0.201

Fixed model 1.213 0.005 1.229 0.077
Benchmark
model

1.279 0.000 1.102 0.380

Notes: Presented are Mean Squared Error ratios (rMSEs) of the fixed coefficient model and the bench-
mark model against the European Commission forecast. Ratios greater than one indicate that the Euro-
pean Commission forecast is superior. Additionally, the table contains p-values for a test of biasedness
of forecast errors. That is, the null hypothesis of α = 0 in pbit − pbF

itH = α + uitH is tested, where pbit
is the actual primary balance in period t for country i and pbF

itH is the corresponding forecast made for
period t at period H (similar to An et al., 2018). The results presented here are based on a total of 100
forecast errors.
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TABLE 3.5: Forecast performance evaluation for the primary-balance-
to-GDP and the public debt-to-GDP ratios, two-period-ahead fore-

casts

Model Primary balance Public debt
rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)

European
Commission

- 0.045 - 0.987

Fixed model 1.231 0.006 1.706 0.370
Benchmark
model

1.293 0.000 1.361 0.880

Notes: Presented are Mean Squared Error ratios (rMSEs) of the fixed coefficient model and the bench-
mark model against the European Commission forecast. Ratios greater than one indicate that the Euro-
pean Commission forecast is superior. Additionally, the table contains p-values for a test of biasedness
of forecast errors. That is, the null hypothesis of α = 0 in pbit − pbF

itH = α + uitH is tested, where pbit
is the actual primary balance in period t for country i and pbF

itH is the corresponding forecast made for
period t at period H (similar to An et al., 2018). The results presented here are based on a total of 50
forecast errors.

Finally note that, given the limited number of vintages, the number of forecast
errors to compare is somewhat limited.16 For each of the nowcasts and one-period-
ahead forecasts, 100 forecast errors are given (that is, two forecasts for ten countries
per year), while for the two-period-ahead forecasts only 50 forecast errors are avail-
able. Thus, especially the two-period-ahead forecasts should be interpreted with
caution. Nevertheless, all results point to the forecast performance of the bench-
mark model being somewhat competitive in relation to both the fixed model and
even the EC model.17

A formal test that complements the above findings is the Pesaran et al. (2009)
panel data version of the Diebold and Mariano (2002) test, which compares the fore-
casts of two models of interest.18 Define the quadratic loss function of a certain
variable as

zit =
[
e(h)A

it

]2
−

[
e(h)B

it

]2
, (3.9)

i = 1, 2, ..., N, t = 1, 2, ..., T, where e(h)A
it is the h-period-ahead forecast error for

country i in period t for the benchmark model featuring a time-varying coefficient
FRF and e(h)B

it is the respective forecast error of the model of comparison, that is,
either the fixed coefficient model or the EC forecast. Pesaran et al. (2009) then test

16The selection of the vintages employed here is based on data consistency reasons, as elaborated
upon in the appendix.

17Although the models presented here provide biased forecasts for some horizons and variables,
this issue might be mitigated in a model averaging exercise. The usage of such a model averaging
exercise, featuring FRFs and VARs with time-varying coefficients, is the main proposition of this paper.

18The following remarks closely follow Pesaran et al. (2009). For simplicity, whenever it does not
contradict the notation used so far, their notation is used.
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TABLE 3.6: Diebold-Mariano panel test results

Model Primary balance Public debt
0p 1p 2p 0p 1p 2p

European Commission 1.430 2.148 1.205 -0.414 0.986 1.520
Fixed model -1.729 1.491 1.516 -1.716 -1.093 -1.656

Notes: This table presents the results of the Pesaran et al. (2009) panel data version of the Diebold-
Mariano test, where the benchmark model featuring time-varying coefficients is tested against the
European Commission forecast and the forecast of the fixed coefficient model. "0p" is the nowcast,
"1p" the one-year-ahead and "2p" the two-year-ahead forecasts, respectively. The test is a one-sided
test with the null hypothesis that the forecasts from the two models are not significantly different,
the alternative hypothesis being that the benchmark model’s forecasts are significantly better. The 5%
critical value is -1.645. Thus, values smaller than -1.645 indicate superiority of the benchmark model’s
forecasts at the respective horizon.

the null hypothesis that αi = 0 for all i = 1, 2, ..., N in

zit = αi + ϵit, ϵit ∼ I ID(0, σ2
i ), (3.10)

the alternative hypothesis being that αi < 0 for some i. The test statistic is computed
as

DM =
z̄√

V(z̄)
∼ N(0, 1), (3.11)

with z̄ ≡ 1
N ∑N

i=1 z̄i, z̄i ≡ 1
T ∑T

t=1 zit, V(z̄) ≡ 1
NT

[
1
N ∑N

i=1 σ̂2
i

]
, σ̂2

i ≡ ∑T
t=1(zit−z̄i)

2

T−1 . For
the one-period-ahead and two-period-ahead forecasts (h = 2 and h = 3), the test
statistic is modified to account for autocorrelation in the forecast errors by using a
Newey-West type version of Var(z̄i), see for example Ghysels and Marcellino (2018).

Table 3.6 displays the results of this test. Values smaller than the 5% critical value
of -1.645 indicate a significantly better performance of the benchmark time-varying
coefficient model. The strong performance of the benchmark model is confirmed
especially by the results against the fixed model, where the DM statistic provides
formal evidence for the superiority of the benchmark model in terms of MSE for
the nowcasts as well as at the two-period-ahead horizon. At the same time, the
benchmark’s debt forecast is not outperformed by the EC at any forecast horizon.

Additionally, the table shows that the benchmark’s primary balance nowcasts are
significantly better than those of the fixed model, while once again the EC forecasts
do not have a clear edge over the benchmark model. However, the primary bal-
ance forecast performance at the one- and two-period horizon is worse, with the EC
forecast’s superiority over the benchmark model even being statistically significant
for the one-period horizon. Nevertheless, the DM test results clearly show that a
model averaging forecast approach that encompasses an SDSA model that features
a time-varying coefficient FRF and VAR might be a helpful contributor to overall
fiscal forecasting performance.
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3.3.5 Robustness

In this section, summarized results for two alternative specifications are presented.
The second specification is motivated by the fact that the time-varying parameter
of the lagged primary balance displays little time variation (see figure 3.1). In this
specification, the coefficient for the lagged primary balance is included as a time-
invariant parameter. That is, the lagged primary balance is included as a regressor
in X with the corresponding coefficient being included in γ (see equation (3.3)). The
third specification follows the baseline specification in Berger et al. (2021), who find
formal evidence for time variation in the lagged debt parameter. Thus, in this spec-
ification, only the lagged debt ratio is contained in the matrix H, while the output
gap as well as the lagged primary balance are included in X. Thus, their parameters
are treated as fixed (in the sense of not time-varying) in this specification.

Table 3.7 illustrates the forecast performance of all three specifications for all
three forecast horizons. The table also repeats the results of the fixed model for rea-
sons of comparability. Clearly, the differences in forecast performance between the
benchmark specification and specification 2 are negligible. While the competitive
public debt forecast performance is also visible for specification 3, its primary bal-
ance forecasts are somewhat worse, especially with respect to the nowcasts. Given
the amount of time variation of the output gap coefficient in the benchmark speci-
fication, displayed in figure 3.1, the poor forecast results might be seen as a prelim-
inary indication of model misspecification stemming from forcing the output gap
coefficient to be time-invariant in specification 3. However, as indicated by the Pe-
saran et al. (2009) test results in table 3.8, the fixed model still does not (significantly)
outperform the benchmark model in terms of primary balance forecast at any hori-
zon. Thus, even specification 3 might be worth considering in a model averaging
forecast exercise, especially due to its strong public debt forecast performance.

Taken together, these findings provide some evidence that simple SDSA mod-
els featuring time-varying coefficient FRFs and VARs deserve some praise when it
comes to fiscal forecasting. This finding is robust to changes in the specification,
especially when it comes to the public debt forecast performance.
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TABLE 3.7: Forecast performance evaluation for the primary-balance-
to-GDP and the public debt-to-GDP ratios, all horizons, alternative

specifications

- Nowcasts -
Model Primary balance Public debt

rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)
Fixed model 1.823 0.974 0.948 0.000

Benchmark model 1.567 0.086 0.898 0.001
Specification 2 1.558 0.062 0.894 0.001
Specification 3 2.314 0.000 0.833 0.009

- One-period-ahead forecasts -
Model Primary balance Public debt

rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)
Fixed model 1.213 0.005 1.229 0.077

Benchmark model 1.279 0.000 1.102 0.380
Specification 2 1.286 0.000 1.100 0.404
Specification 3 1.358 0.000 0.988 0.820

- Two-period-ahead forecasts -
Model Primary balance Public debt

rMSE pval (H0: Unbiased) rMSE pval (H0: Unbiased)
Fixed model 1.231 0.006 1.706 0.370

Benchmark model 1.293 0.000 1.361 0.880
Specification 2 1.289 0.000 1.356 0.902
Specification 3 1.589 0.000 1.275 0.391

Notes: Presented are Mean Squared Error ratios (rMSEs) of the fixed coefficient model, the benchmark
model as well as two further specifications of the benchmark model (specifications 2 and 3) against
the European Commission forecast. Ratios greater than one indicate that the European Commission
forecast is superior. Additionally, the table contains p-values for a test of biasedness of forecast errors.
That is, the null hypothesis of α = 0 in pbit − pbF

it = α + uitH is tested, where pbitH is the actual
primary balance in period t for country i and pbF

itH is the corresponding forecast made for period t at
period H (similar to An et al., 2018). The results are based on 100 forecast errors for the nowcast and
one-period-ahead horizon and 50 forecast errors for the two-period-ahead horizon.



66

TABLE 3.8: Diebold-Mariano panel test results

Model Primary balance Public debt
0p 1p 2p 0p 1p 2p

Benchmark vs. EC 1.430 2.148 1.205 -0.414 0.986 1.520
Benchmark vs. fixed model -1.729 1.491 1.516 -1.716 -1.093 -1.656
Specification 2 vs. EC 1.365 2.168 1.319 -0.452 0.988 1.524
Specification 2 vs. fixed model -1.717 1.520 1.447 -1.790 -1.112 -1.652
Specification 3 vs. EC 1.738 1.502 2.278 -1.505 0.672 1.662
Specification 3 vs. fixed model -0.264 0.315 1.527 -1.907 -1.251 -1.567

Notes: This table presents the results of the Pesaran et al. (2009) panel data version of the Diebold-
Mariano test, where specifications 2 and 3 are tested against the European Commission forecast and
the forecast of the fixed coefficient model. "0p" is the nowcast, "1p" the one-year-ahead and "2p" the
two-year-ahead forecasts, respectively. The test is a one-sided test with the null hypothesis that the
forecasts from the two models are not significantly different, the alternative hypothesis being that the
benchmark model’s forecasts are significantly better. The 5% critical value is -1.645. Thus, values
smaller than -1.645 indicate superiority of the benchmark model’s forecasts at the respective horizon.

3.4 Conclusion

In times of COVID-19 and the corresponding countermeasures, taken by govern-
ments around the globe to stabilize struggling economies, questions of public debt
sustainability are as relevant as ever. This article looks at fiscal sustainability in spirit
of Blanchard et al. (2021), who argue in favor of a rethinking of European fiscal rules,
with stochastic debt sustainability analysis (SDSA) playing a key role in their pro-
posal.

The above findings suggest that SDSAs based on time-varying fiscal reaction
functions in spirit of Berger et al. (2021) and time-varying coefficient vector autore-
gressions, combined with a simple public debt projection exercise as in Medeiros
(2012), provide competitive primary balance and especially public debt forecasts in
terms of mean squared errors (MSEs). The benchmark model outperforms a time-
invariant coefficient pendant with respect to public debt forecasts and additionally
fares better in terms of primary balance nowcasts. Moreover, the mostly low MSE
ratios in comparison to the European Commission forecast indicate a considerable
forecast precision of the benchmark model. In terms of forecast bias, the models
often perform similarly, but EC primary balance nowcasts are biased, while the
benchmark model delivers unbiased forecasts. Thus, when used complementary,
the benchmark model might be a contributor to tackling the well-documented fiscal
forecast bias (see e. g. Frankel, 2011).

Given the adequate forecast performance of the SDSA frameworks featuring
time-varying FRFs and VARs presented here, I argue that such models should be
considered for usage in broader DSA frameworks as conducted at policy institu-
tions, for example by means of model averaging exercises to mitigate the potential
performance loss resulting from model uncertainty (see e. g. Moral-Benito, 2015).
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Time-varying FRFs can and should be used in model-averaging forecast exer-
cises at policy institutions. However, extensions to the simple illustrative model
presented here could be considered. First, the set of covariates employed in the FRF
(as well as the VAR) is not extensive, which is partly owed to data limitations that
occurred due to the usage of vintage datasets for the pseudo-out-of-sample fore-
cast evaluation. If data issues might (at least for some countries) be resolved, one
might consider using more predictors (for example an expenditure gap as in Bohn,
1998). Moreover, looking into alternative forms of non-linearities in the FRF, such
as regime-switching rules (see for example Legrenzi and Milas, 2013) might be fruit-
ful. Further aspects to be investigated are the handling of endogenous regressors
(see e. g. Kim and Kim, 2011) or accounting for the feedback link of fiscal policy
on the macroeconomy (see e. g. Everaert and Jansen, 2017). Regarding the VAR
specification, one might consider incorporating time-varying volatility parameters
as in Primiceri (2005) or Clark and Ravazzolo (2015), especially if equipped with the
necessary computing power.

Similar to what has been done here, one might evaluate the quality of alterna-
tive models through the lens of their forecasting performances, using fiscal vintage
data. Given the results at hand, this might certainly be worth considering. In spirit
of Blanchard et al. (2021), one might come up with a full-fledged framework to com-
plement fiscal sustainability measures currently in place.
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Appendix

3.A Data

This section provides details about the data used in this paper. Table 3.A.1 summa-
rizes the information for the data used for the FRF. Note that for the fiscal reaction
function, for the primary balance-to-GDP ratio and the debt-to-GDP ratio, AMECO
data are used as long as available. For those countries where fiscal AMECO data
are not dating back all the way to the beginning of the sample – that is, to 1970 –
the respective series is complemented using data from Mauro et al. (2015), using
retropolation as in Berger et al. (2021). Thereby, a higher number of observations
along the time dimension is obtained, with the panel dataset being balanced, en-
suring that at any point in time, the degree of time variation in the time-varying
parameters is driven by all countries jointly and not only by a subgroup of them.
Implicit interest rates and stock-flow adjustments, obtained from AMECO as well,
are used in the debt accumulation equation, as elaborated upon below.

For the VAR part, quarterly data are employed to capture correlations between
the variables of interest that are more frequent than the yearly frequency for AMECO
data. The variables used in the VAR and its sources are summarized in table 3.A.2.
Further note that the data limitations faced in the VAR part differ between countries.
For each VAR, the longest sample available is used. Country-specific data availabil-
ities are summarized in table 3.A.3.

Handling of the vintages and data issues

To assess the pseudo-real time forecasting performance of primary balance and pub-
lic debt projections, ten vintages with yearly data are used. The choice of vintages is
motivated by reasons of consistency: The first vintage used is the AMECO dataset
from autumn 2014, being the first dataset based on the European system of accounts
(ESA) 2010. Using vintages before that would be problematic especially with respect
to the output gap variable, as the change in accounting standards implied major re-
visions in the series. Thus, all vintages based on ESA 2010 standards are used for the
forecasting performance evaluation to ensure a high degree of consistency between
datasets. As "true values", primary balance and public debt ratios using the latest
available vintage, i. e. the spring 2022 vintage, are used. This implies that the "true
values" for the periods for which the latest forecasts are made (that is, 2019-2020 in
the spring 2019 vintage) have all been subject to at least two revisions.
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TABLE 3.A.1: Data description for the fiscal reaction function and the
debt accumulation equation

Series name Sources Transformation
Primary balance Mauro et al. (2015), AMECO’s "Net

lending (+) or net borrowing (-) ex-
cluding interest: general government
:- Excessive deficit procedure"

Percentages of
GDP

Public debt Mauro et al. (2015), AMECO’s "Gen-
eral government consolidated gross
debt :- Excessive deficit procedure
(based on ESA 2010) and former defi-
nitions (linked series)"

Percentages of
GDP

Output gap AMECO’s "Gap between actual and
potential gross domestic product at
2010 reference levels"

Percentages of
potential GDP

Implicit interest rate AMECO’s "Implicit interest rate: gen-
eral government :- Interest as percent
of gross public debt of preceding year
Excessive deficit procedure (based on
ESA 2010)"

Percentages of
gross public
debt

Stock-flow adjustments AMECO’s "Stock-flow adjustment
on general government consolidated
gross debt :- Excessive deficit proce-
dure (based on ESA 2010) "

Percentages of
GDP

TABLE 3.A.2: Data description for the vector autoregression

Series name Sources Transformation
Real Gross Domestic
Product (GDP)

OECD Economic Outlook database
series "Gross domestic product, nom-
inal value, market prices", deflated
by "Gross domestic product, market
prices, deflator"

∆ln

Real interest rate Unweighted average of the OECD
Economic Outlook database series
"Long-term interest rate on govern-
ment bonds" and "short-term interest
rate", adjusted for year-on-year infla-
tion using the GDP deflator

-

Inflation OECD Economic Outlook database
series "Gross domestic product, mar-
ket prices, deflator"

-
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TABLE 3.A.3: Data availability in the VAR

Country Earliest data availability
Austria 1970 Q1
Belgium 1960 Q1
Finland 1970 Q1
France 1970 Q1
Germany 1991 Q1
Greece 1995 Q1
Ireland 1990 Q1
Italy 1971 Q1
Japan 1969 Q1
Netherlands 1960 Q1

In order to realistically assess the forecasting performance of the SDSA – to avoid
hindsight bias – at the moment of forecasting, only the data already available to the
forecaster can be used. This implies two things:

1. For the data taken from AMECO, at each point in time, the respective vintage
publishing the EC forecasts is used.

2. For the OECD data (used for the VAR), the latest vintage available at the mo-
ment the EC vintage is published, is used.

There is one restriction to the second rule: While the AMECO vintages are always
published in May (spring release) and November (autumn release) of the respective
year, the OECD vintage publication date varies slightly from year to year for the
respective releases. For example, most of the time, when the AMECO spring vin-
tage is released, the OECD vintage containing information up to the first quarter of
the respective year is available. However, in some cases, the OECD release occurs
after the AMECO release date. If that is the case, technically, information (for one or
two quarterly observations) is used that would not be available to the forecaster the
moment the forecast is made, implying a slight information advantage for the fore-
casts made here. However, this advantage is small and is still a major improvement
over systematically using ex-post data such as the latest data available. Given that
very few observations in the sample are concerned, this circumstance is ignored for
simplicity.

There is another data-related issue concerning the OECD vintages: In the "au-
tumn" 2015 OECD vintage, both the nominal GDP series and the GDP deflator series
are missing for Belgium, while in the "autumn" 2018 vintage, long-term and short-
term interest rates, nominal GDP and the GDP deflator series are missing for Greece.
This is dealt with in the following way: Where VAR data are missing, data from the
previous vintage are included. This implies that instead of actual observations, for
the last two quarterly sample observations (only), forecasts are used instead. Again,
only few observations are affected.
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3.B Stochastic debt sustainability analysis algorithm

This section lays out the complete stochastic debt simulation analysis employed
here. The procedure will be outlined in three subsections, dealing with the empirical
FRF, the BVAR and the fiscal projection algorithm in turn.

3.B.1 Fiscal reaction function

In this section, the Gibbs sampling algorithm, used to estimate the coefficients of the
time-varying panel FRF, is laid out. The full model consists of the equations (3.3),
(3.4), (3.5) and (3.6), restated here for convenience (with slight notational differences,
as elaborated upon below):

pbit =Hitβt + Xitγ + ϵit, (3.B.1)

ϵit =µt + ρϵi,t−1 + uit, uit ∼ N(0, σ2
ui
), (3.B.2)

βt =β0 + ση β̃t, (3.B.3)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1), (3.B.4)

where i = 1, 2, ..., N, t = 1, 2, ..., T, pbit is the primary balance, Hit is the matrix of
predictors corresponding to the m × 1 vector of time-varying parameters, βt, Xit is
the predictor matrix corresponding to the coefficients that are assumed to be fixed
(γ). Note that all variables are within-group demeaned. For simplicity and for reasons
of parsimony, the demeaning as well as the auxilliary regression to account for the
endogeneity of the output gap, elaborated upon above, are conducted prior to the
Markov-Chain-Monte-Carlo algorithm presented here. Following, among others,
(Ghosh et al., 2013), some persistence (autocorrelation of order 1) is accounted for
in the regression (measurement) error (ϵit). Additionally, time-varying unobserved
components (time fixed effects) are accounted for by including µt.

(3.B.3) and (3.B.4) constitute a non-centered parameterization (NCP) of the time-
varying parameters (see e. g. Frühwirth-Schnatter and Wagner, 2010). While a
simple random walk parameterization of the time-varying parameters would "force"
the parameters into a time-varying direction for any state error disturbance with
variance greater zero (see e. g. Berger et al., 2021), this parameterization has the
advantage that it is quite agnostic as to whether time variation is present in the data.
This is the case since ση is assumed to be normally distributed in the NCP, with an
assumed prior mean equal to zero. Thus, if the data informs βt to be constant for
t = 1, 2, ...T, the βt based on the NCP will not wander off significantly from β0.

In what follows, details on the MCMC algorithm to jointly sample the time-
varying parameter vectors in β, the hyperparameters β0, ση , γ, µ, ρ and σ2

u are pro-
vided. This section draws from Berger et al. (2021).
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Sampling the parameters β0, ση and γ

In this block, the regression parameters β0, ση and γ are sampled conditionally on the
time-varying parameters (βt), the AR(1) coefficient of the autocorrelated error terms
(ρ), the time fixed effects (µt) and the country-specific regression error variances,
collected in σ2

u . For notational convenience, define a general regression model

y = χθ + e, e ∼ N(0, Σ), (3.B.5)

where y is the dependent variable vector and χ is a predictor matrix corresponding
to the parameter vector θ ≡ (β′

0, σ′
η , γ′)′. For both y and χ, observations are stacked

over cross-sectional and time units, that is, over i = 1, 2, ..., N and t = 1, 2, ..., T, with
i being the slower index. The covariance matrix of the error term e is a diagonal
matrix given by Σ = diag

(
σ2

u ⊗ ιT
)
, where σ2

u is the N × 1 vector of country-specific
variances (σ2

u ≡ (σ2
u,1, σ2

u,2, ...σ2
u,N)

′) and ιT is a T × 1 vector of ones.
A Normal prior with θ ∼ N(a0, A0) is assumed, where a0 is the vector of prior

means of the respective parameters and A0 is the prior variance-covariance ma-
trix. As this prior is conjugate, it implies a normally distributed posterior, that is,
p(θ|β̃, µ, ρ, σ2

u , y, χ) ∼ N(aT, AT), where

aT =AT

(
χ′Σ−1y + A−1

0 a0

)
, (3.B.6)

AT =
(

χ′Σ−1χ + A−1
0

)−1
. (3.B.7)

The above can then be applied to the state-space model in equations (3.B.1)-(3.B.4):
First, transform the measurement equation such that its error terms are white noise.
That is, insert (3.B.2) into (3.B.1) and rewrite to obtain:

pb∗it =H∗
itβt + X∗

itγ + uit, (3.B.8)

where pb∗it = pbit − µt − ρpbi,t−1 and analogously for H∗
it and X∗

it. Note that the
errors in the transformed model, uit = ϵit − µt − ρϵi,t−1 are normally distributed.
Next, inserting (3.B.3) into (3.B.8) yields

pb∗it = H∗
itβ0 + H∗

itση β̃t + X∗
itγ + uit, uit ∼ N(0, σ2

ui
), (3.B.9)

which can be written as

pb∗it︸︷︷︸
yit

=
[

H∗
i,t H∗

i,t β̃t X∗
it

]
︸ ︷︷ ︸

χit

β0

ση

γ


︸ ︷︷ ︸

θ

+uit. (3.B.10)
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θ can then be sampled from p(θ|β̃, µ, ρ, σ2
u , y, χ) ∼ N(aT, AT), where the posterior

moments are given by (3.B.6) and (3.B.7).

Sampling the time-varying parameters

In this block, the forward-filtering backward-sampling procedure of Carter and
Kohn (1994) is employed to sample the time-varying component β̃ given θ, µ, ρ and
σ2

u . The conditional linear Gaussian state-space model is given by

yt = Htst + et, et ∼ MN(0N , R), (3.B.11)

st = Fst−1 + Ktvt, s0 ∼ N(b0, V0), vt ∼ N(0, Q), (3.B.12)

where yt is an N x 1 vector of observations and Ht is the predictor matrix, with st

being the corresponding time-varying parameter vector. The matrices χ, F, K, R, Q
as well as the expected value and variance of the initial state s0, that is, b0 and P0, are
assumed to be known (conditioned upon). The disturbances et and vt are assumed to
be serially uncorrelated and independent of each other for t = 1, 2, ..., T. For details
on the linear Gaussian state-space model, see Durbin and Koopman (2012).

The Kalman filter can then be employed on this linear Gaussian state-space
model to filter the unknown state st (forward-filtering). st can then be sampled from
its conditional distribution (backward-sampling), as described in Carter and Kohn
(1994).

Rearrange terms in equation (3.B.9) to obtain, together with the state equation
(3.B.4), the conditional state-space model for β̃t:

yit︷ ︸︸ ︷
pb∗it − H∗

itβ0 − X∗
itγ =

Ht︷ ︸︸ ︷
H∗

itση

st︷︸︸︷
β̃t +

eit︷︸︸︷
uit , uit ∼ N(0,

R︷ ︸︸ ︷
diag(σ2

u)), (3.B.13)

β̃t︸︷︷︸
st

= Im︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ Im︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, η̃t ∼ N(0, Im︸︷︷︸
Q

), (3.B.14)

where Im is the identity matrix of dimension m, m being the number of time-varying
parameters in the model. Note that the 1 × m vector of states, st, is assumed to
be homogeneous across countries for each j = 1, ..., m. Stacking observations over
i = 1, 2, ..., N, this can be written as
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yt︷ ︸︸ ︷
pb∗1t − H∗

1tβ0 − X∗
1tγ

...
pb∗Nt − H∗

Ntβ0 − X∗
Ntγ

 =

Ht︷ ︸︸ ︷
H∗

1tση

...
H∗

Ntση


st︷ ︸︸ ︷
β̃1

t
...

β̃m
t

+

et︷ ︸︸ ︷
u1t
...

uNt

, (3.B.15)

et︷ ︸︸ ︷
u1t
...

uNt

 ∼




0
...
0

 ,

R︷ ︸︸ ︷
σ2

u1
. . .

σ2
uN




, (3.B.16)

β̃t︸︷︷︸
st

= Im︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ Im︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, (3.B.17)

η̃t︸︷︷︸
vt

∼N(0, Im︸︷︷︸
Q

). (3.B.18)

The time-varying component β̃t is initialized with mean and variance b0 = 0 and
P0 = 0.00001. Thus, it is ensured that the time-varying parameters βt are initialized
with their starting values, collected in β0.

The unobserved state vector β̃ is then extracted using standard forward-filtering
and backward-sampling. Instead of taking the entire N x 1 observational vector yt as
the item of analysis, the approach taken here follows the univariate treatment of the
multivariate series of Durbin and Koopman (2012), in which each of the elements
in yt is brought into the analysis individually. This offers significant computational
gains and reduces the risk of the prediction error variance matrix becoming nonsin-
gular during the Kalman filter procedure.

Lastly, given the components β0, ση and β̃, the time-varying parameter matrix β

(of dimension T × m) can be constructed from (3.B.3).

Sampling the autoregressive coefficient, the unobserved component of the regres-
sion error process and the regression error variances

In this block, the autoregressive coefficient of the regression error process, ρ, the un-
observed component, collected in µ, and the country-specific regression error vari-
ances, collected in σ2

u , are drawn.
Note that, given draws of θ and βt, ϵit and its lags are known. Thus, (3.B.2)

breaks down to a conditional linear regression model, where ρ, µ and σ2
u can

be obtained using a conjugate independent Normal-Inverted Gamma prior with
ρ, µ ∼ N(a0,{ρ,µ}, A0,{ρ,µ}) and σ2

ui
∼ IG(c0,i, C0,i), with c0,i and C0,i being the country-

specific shape and scale parameters of the prior distribution for the measurement er-
ror variance. As this prior is conjugate, it implies an (independent) Normal-Inverted
Gamma posterior distribution. That is, p(ρ, µ|σ2

u , β̃, θ, y, χ) ∼ N(aT,{ρ,µ}, AT,{ρ,µ})
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and p(σ2
u |ρ, µ, β̃, θ, y, χ) ∼ IG(cT,i, CT,i), i = 1, 2, ..., N, where cT,i and CT,i are the

respective shape and scale parameters of the posterior distribution for the measure-
ment error variance of country i. Defining ϵ as the N × (T − 1) vector of stacked
regressions error residuals, ϵ−1 as its lag, and ui as the (T − 1)× 1 vector of resid-
uals obtained from solving (3.B.2) for u for the respective country i, the posterior
moments of the independent Normal-Inverted Gamma distribution are given by:

aT,{ρ,µ} =AT,{ρ,µ}

(
χ′Σ−1y + A−1

0,{ρ,µ}a0,{ρ,µ}

)
(3.B.19)

AT,{ρ,µ} =
(

χ′Σ−1χ + A−1
0,{ρ,µ}

)−1
(3.B.20)

cT,i =c0,i + (T − 1)/2 (3.B.21)

CT,i =C0,i + u′
iui/2 (3.B.22)

ρ, µ and σ2
u can then be sampled from p(ρ, µ|σ2

u , β̃, θ, y, χ) ∼ N(aT,{ρ,µ}, AT,{ρ,µ}) and
p(σ2

u |ρ, µ, β̃, θ, y, χ) ∼ IG(cT,i, CT,i) for i = 1, 2, ..., N.
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3.B.2 Bayesian Vector Autoregression

Drawing heavily from Blake and Mumtaz (2015), this section lays out the BVAR with
time-varying coefficients in quarterly frequency, which is used to estimate the cor-
relations between the macroeconomic variables to draw realizations of the primary
balance and public debt in the fiscal projection exercise, elaborated upon in appendix
3.B.3.

For each of the ten sample countries, consider a time-varying coefficient VAR(p)
model in reduced form, written as

yt = ϕ1,tyt−1 + ϕ2,tyt−2 + ... + ϕp,tyt−p + ut, ut ∼ N(0, Σ), (3.B.23)

Φt = Φt−1 + et, et ∼ N(0, Q), (3.B.24)

t = {1, 2, ..., Tq}, where Tq is the number of quarterly observations available for the
VAR. yt is a M × 1 vector of demeaned endogenous variables, ϕj,t, j = 1, 2, ..., p are
M × M coefficient matrices corresponding to the respective lag matrix yt−j and ut is
a M × 1 vector of reduced-form shocks. The time-varying parameters are collected
in Φt ≡ (vec(ϕ1,t), vec(ϕ2,t), ..., vec(ϕp,t))′ and are assumed to follow random walk
processes with joint error covariance matrix Q, as outlined in (3.B.24). The distur-
bances ut and et are assumed to be serially uncorrelated and independent of each
other for t = 1, 2, ..., Tq.

With Σ and each ϕj,t, j = 1, 2, ...p, t = 1, 2, ..., Tq being of dimension M × M and
Q being of dimension M2 p × M2 p, the high number of parameters to be estimated
motivates Bayesian estimation techniques. Following Blake and Mumtaz (2015), a
Gibbs sampling algorithm to approximate the model’s joint and marginal posterior
distributions is employed. The following sections briefly outline this algorithm.

Sampling the time-varying parameters Φ

First, the time-varying parameters, collected in Φ, are sampled from their condi-
tional posterior distributions: Express the system of equations in (3.B.23) and (3.B.24)
as

yt = (IM ⊗ Xt)Φt + ut, ut ∼ N(0, Σ), (3.B.25)

Φt = Φt−1 + et, et ∼ N(0, Q), (3.B.26)

where IM is the identity matrix of dimension M and Xt ≡ (y′t−1, y′t−2, ..., y′t−p). Con-
ditionally on the data (y), Σ, Q as well as the expected value and variance of the
initial state, Φ0, the system in equations in (3.B.25) and (3.B.26) constitutes a linear
Gaussian state space model.

Following Blake and Mumtaz (2015), the expected value of Φ0, B0, is set to
vec(Φ̂), where Φ̂ = (X′X)−1X′y is the OLS estimate of the time-invariant coefficient
version of (3.B.23). Consistently, the variance of the initial state, VB0 = Σ̂ ⊗ (X′X)−1,
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with Σ̂ = (y−XB0)
′(y−XB0)

T−K , where K is the number of slope coefficients in the time-
invariant VAR. Then, analogously to the respective block in the FRF algorithm, the
Kalman filter can be employed to filter the unknown state Φt (forward-filtering step)
and subsequently sample Φt from its conditional distribution (backward-sampling
step), as described in Carter and Kohn (1994).

Sampling the variance-covariance matrix of the state disturbances Q

Next, the variance-covariance matrix of the state disturbances, Q, is sampled from
its conditional posterior distribution. Assuming that Q follows an inverted Wishart
distribution a priori and given a draw of Φt, Q can be sampled from an inverted
Wishart distribution. That is,

p(Q|Φ, Σ, y) ∼ IW(Q1, T1), (3.B.27)

where the posterior scale and shape parameters are given by

Q1 = (Φt − Φt−1)
′(Φt − Φt−1) + Q0,

T1 = Tq + T0.

T0, the prior shape parameter, is the number of observations to inform the prior. It
can be interpreted as the number of fictitious observations added to the model from
the prior. Q0 is the prior scale matrix.

Sampling the variance-covariance matrix of the VAR disturbances Σ

In this block, the variance-covariance matrix of the VAR disturbances, Σ, is sampled
from its conditional posterior distribution. In particular, conditionally on Φt and
assuming an inverted Wishart prior for Σ, it holds that

p(Σ|Φ, Q, y) ∼ IW(Σ1, TΣ), (3.B.28)

where the posterior scale and shape parameters are given by

Σ1 = u′u + Σ0,

TΣ = Tq + TΣ0 ,

with u ≡ (u1, u2, ..., uTq), ut = yt − (IM ⊗ Xt), t = 1, 2, ..., Tq. TΣ0 is the prior shape
parameter, that is, the number of "artificial” observations added to the sample from
the prior. Σ0 is the prior scale matrix.
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3.B.3 Fiscal projection algorithm

Given parameter estimates for the FRF and VAR coefficients, the algorithm used to
repeatedly draw realizations – thus obtaining forecast distributions – of the primary
balance- and the public debt-to-GDP ratios can be laid out. The approach presented
in this section largely follows Celasun et al. (2006) and Medeiros (2012) but deviates
occasionally due to the usage of Bayesian estimation techniques both in the FRF and
the VAR block.

More precisely, future paths of the primary balance and the public debt ratios
are repeatedly drawn from the FRF and a debt accumulation function. The primary
balance forecast for country i is obtained from

pbi,T+h = α̂i + Hi,T+h β̂T+h + Xi,T+hγ̂ + ϵi,T+h, (3.B.29)

with h = 1, 2, 3 being the respective forecast horizon and h = 1 being the end-
of-the-year forecast ("nowcast") of the respective vintage, h = 2 is the forecast
for the subsequent year and h = 3 is the two-year-ahead forecast. α̂i is the es-
timate of the country-specific constant and can be recovered from the estimated
FRF from α̂i = p̄bi − H̄i β̄ − X̄iγ̂, where p̄bi, H̄i and X̄i are country-specific means

and β̄ = ∑T
t=1 β̂t

T (barring the time-varying parameters, see for example Baltagi, 2013).
The forecast for β̂T+h is obtained using the non-centered parameterization and thus
given by β̂T+h = β̂0 + σ̂η +

ˆ̃βT + ∑h
j=1 η̃j.

Note that the matrices H and X contain the fitted values of the output gap (hav-
ing used an auxilliary regression to account for the variable’s endogeneity as elabo-
rated upon above) and the lagged primary balance and lagged public debt ratio. To
obtain a forecast for h = 1, the latter two are simply their end-of-sample observa-
tions, that is, pbiT and debtiT. For the output gap on the other hand, the realization in
T + 1 is unobserved and needs to be forecasted: First, the (quarterly) ln(GDP) series
is forecasted using the VAR and then used to get an estimate of the cycle based on the
the Hodrick-Prescott filter (where a value of λ = 1600, as conventional for quarterly
data, is used). The resulting output gap in quarterly frequency is then annualized
for consistency with FRF data.19

Note that the simulation is done R times, where R is the number of retained
draws from the MCMC algorithms elaborated on in 3.B.1 and 3.B.2. This is conve-
nient as for each draw r = 1, 2, ..., R, the respective draws of the posterior distribu-
tions – that is βr

T (to compute βr
T+h), γr et cetera – can be used to come up with one

forecasted path of the fiscal variables. Likewise, the respective set of forecast errors
ϵr

it is used to come up with the realizations of ϵr
i,T+h for each respective draw: From

equation (3.B.2), it follows that ϵr
i,T+h = µr

T+h + ρrϵr
i,T+h−1 + ur

i,T+h. In the benchmark
specification, µr

T+h is set to µr
T. However, a second alternative, of setting µT+h = 0,

19To avoid the end-point problem (see e. g. Everaert and Jansen, 2017), log(output) is forecasted
four quarters further into the future before computing the output gap.



82

hardly changes the results.20 ur
i,T+h is obtained using bootstrapping, as in Medeiros

(2012). Due to the assumption of country-specific error variances σ2
i , i = 1, 2, ..., N,

this is done for each country separately. Lastly, note that for h = 1, ϵi,T+h−1 = ϵiT

is observable, such that all components to compute ϵi,T+1 are known. Given ϵi,T+1,
ϵi,T+2 can then be obtained, and so can ϵi,T+3.

The public debt ratio for country i is based on the following debt accumulation
equation (similar to Medeiros, 2012):

debti,T+h =
1 + iiri,T+h

1 + (∆yi,T+h + πi,T+h)
+ pbi,T+h + s f ai,T+h, (3.B.30)

where debt is the public debt-to-GDP ratio, iir is the implicit interest rate on the
debt outstanding (scaled by GDP), ∆y is GDP growth, π is inflation and s f a are
stock-flow adjustments of the stock of public debt (scaled by GDP), that is, one-off
adjustments to the level of public debt not attributable to the other components,
such as the privatization of public assets. While ∆y and π forecasts can be obtained
directly from the VAR, iir and s f a are taken from AMECO (see data appendix).

Note that the approach outlined here means that the real interest rate as defined
above is not used in the debt simulation. Nevertheless, it is included in the VAR
to adequately capture the variables’ correlations. Alternative debt forecasts based
on the real interest rate and not the implicit interest rate (adjusted for inflation) on
average perform slightly worse than the forecasts presented here.

The AMECO database contains only point forecasts. Thus, median forecasts for
each variable and horizon are computed and compared to the fixed coefficient model
forecast and the EC forecast, found in the AMECO vintages.

20Another approach would be to forecast µr
T+h, making use of its estimates given for periods

t = 1, 2, ..., T.
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3.B.4 The fixed coefficient model

This section briefly outlines the fixed coefficient model (the "fixed model") that is
used to judge the forecast performance of the benchmark model in the main paper.
First note that the fixed model uses the same set of predictors in its FRF part and the
same endogenous variables in the VAR part, as elaborated upon in section 3.2. The
FRF is given by

pbit =αi + Xitγ + ϵit, ϵit ∼ N(0, σ2
ϵ ), (3.B.31)

i = 1, 2, ..., N, t = 1, 2, ..., T. Note that in the fixed model, the lagged debt ratio
enters the predictor matrix X, as the corresponding slope coefficient is assumed to
be time-invariant. As before, X additionally contains the lagged primary balance
and the output gap. Similar to Everaert and Jansen (2018), the model is estimated
using a two-stage least squares instrumental variables estimator on the within-group
demeaned model to account for potential endogeneity of the output gap, which is
instrumented by its first and second lag.

The VAR in this case is the time-invariant coefficient pendant of equation (3.7):

yt = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ut, ut ∼ N(0, Σ), (3.B.32)

t = {1, 2, ..., Tq}, where Tq again is the number of quarterly observations in the
VAR, yt is a M × 1 vector of demeaned endogenous variables, ϕj, j = 1, 2, ..., p are
M × M coefficient matrices corresponding to the respective lag matrix yt−j and ut is
a M × 1 vector of reduced-form shocks, and the model is estimated using equation-
by-equation ordinary least squares.

The primary balance and debt projection block of the model mostly follows the
approach outlined in section 3.2.4, the main difference being that, unlike for the
Bayesian benchmark model, parameter uncertainty is not directly incorporated in
the fiscal projection exercise.
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3.B.5 Published version of the paper

The published version of this article, published online on 20 February 2023
by Taylor & Francis in the journal Applied Economics, is available here:
https://doi.org/10.1080/00036846.2023.2174500.

https://doi.org/10.1080/00036846.2023.2174500
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Chapter 4

Government spending effects on
the business cycle in times of crisis

with Tino BERGER1

Abstract

The literature on fiscal multipliers has long established a positive impact of public
spending on output. However, the size of this effect strongly depends on the
employed identification strategy. Moreover, fiscal multipliers are uninformative
as regards the state of the economy. Using counterfactual scenario analyses based
on a conditional forecast algorithm in combination with the Beveridge-Nelson
decomposition, we address both issues by assessing the effectiveness of public
spending in terms of its influence on the output gap. Our approach is independent
of the chosen identification strategy and allows us to make (quantitative) statements
about potential downsides from public spending measures by looking at its effects
on the business cycle. Using a US dataset and analyzing hypothetical government
spending scenarios in times of historical crises, we find that, to avoid an overheating
of the economy in combination with high inflation and public debt, the dosage of
fiscal stimulus is crucial for targeted fiscal policy measures and depends on the
severity of the crisis.

Keywords: Fiscal policy, output gap, conditional forecast, scenario analysis,
Bayesian vector autoregression

JEL Codes: E62, E37, C53

1University of Göttingen.
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4.1 Introduction

In times of the COVID-19 crisis, the energy crisis related to the Ukrainian-Russian
war as well as long-term developments such as climate and demographic change in
developed economies, government spending policies have many proponents. How-
ever, the excessive use of fiscal policy for stabilization and long-term purposes de-
teriorates public finances of many already debt-struck economies around the globe,
potentially alarming financial markets, thereby worsening governments’ refinanc-
ing conditions and thus their maneuverability to address policy goals (fiscal space).
Other possible drawbacks include inflationary effects stemming from enhanced ag-
gregate demand as well as potential unintended redistribution effects.

The fact that there is a noteworthy potential downside to excessive fiscal stimu-
lus raises the question of public spending’s effectiveness in terms of fulfilling policy
objectives. These objectives center, aside from employment and (more controver-
sial) redistribution goals, around the evolution of domestic output. Fiscal multipli-
ers have been frequently used to assess the effectiveness of government spending in
this way. However, their size strongly depends on the way the spending shocks are
identified (see Ramey, 2019 and Ramey, 2016 for excellent expositions of the fiscal
multiplier literature). Secondly, government spending multipliers give no indication
with respect to fiscal policies’ impact on the business cycle, thereby neglecting im-
portant implications for policymakers: For example, while according to data of the
Federal Reserve Bank of St. Louis real GDP growth in 2020Q2 in the United States
plummeted as a result of the COVID-19 outbreak, it jumped right back to +8% in the
very next quarter.2 The picture drawn here – that the economy was back on track
(or beyond) in 2020Q3 – is highly misleading as it neglects the persistent character
of the business cycle. Based on output gap data from the US Congressional Bud-
get Office, the recovery was completed as late as 2021Q4.3 The fact that the output
gap is much better suited in terms of capturing the persistence in the business cycle
therefore makes it the superior measure for policymaking: Central bankers might
be confronted with the decision whether to raise or reduce interest rates (expand or
shrink asset purchase programs). Knowing the state of the economy, in particular
whether there is a positive or negative output gap, will determine whether policy
rates are raised or lowered (whether balance sheets are shrunk or expanded). To
identify the unobservable output gap, a stream of recent literature has argued in fa-
vor of using multivariate approaches (see e. g. Barigozzi and Luciani, 2021, Morley
and Wong, 2020 or Berger et al., 2023).

In this paper, we try to overcome the two above-mentioned problems and ana-
lyze the business cycle effects of government spending policies in the United States.
In particular, we employ scenario (counterfactual) analyses for some major crises
in US history to assess public spending’s impact on the output gap in a unified

2For details on the data, see appendix 4.A.
3The respective data can be found at the Federal Reserve Bank of St. Louis (FRED) database (here).

https://fred.stlouisfed.org/graph/?g=f1cZ
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framework, operationalized using the multivariate Beveridge-Nelson (BN) decom-
position.

By tackling the two above-mentioned problems, we contribute to the literature
on the efficacy of government spending policies: First, we perform scenario analy-
ses which are "agnostic" in the sense that they are independent of the identification
strategy used to identify structural shocks (see Waggoner and Zha, 1999 or Blake and
Mumtaz, 2015). This avoids that results be dependent on the identification strategy
(for differences in fiscal policy efficacy arising due to differing identification assump-
tions in the fiscal multiplier literature, see e. g. Caldara and Kamps, 2017). Second,
by imposing various fiscal policy paths in the conditional forecasting exercise and
then computing implied paths of the output gap identified from a BN decomposi-
tion, we can make statements about fiscal policies’ effect on the business cycle.4

We find that, indeed, public spending positively affects output and reduces un-
employment. However, the potential downside from overspending, that is, an over-
heating economy with rising inflation and debt levels, implies that the dosage of
fiscal stimulus matters to achieve policy goals.

The remainder of the paper is structured as follows. Section 4.2 elaborates on the
multivariate BN decomposition and the scenario analyses (conditional forecasts).
Section 4.3 covers the estimation strategy and the data, while in section 4.4, the em-
pirical results are presented. Section 4.5 concludes.

4.2 Methodology

This section elaborates on the multivariate Beveridge-Nelson (BN) decomposition as
well as the conditional forecast algorithm employed to compute the counterfactual
scenarios.

4.2.1 The multivariate Beveridge-Nelson decomposition

In this section, we lay out the multivariate BN decomposition to compute the output
gap. In particular, we follow Morley and Wong (2020) and identify the output gap
as the cyclical component of the multivariate BN decomposition of the output series.

According to Beveridge and Nelson (1981), the trend of a time series
yt, t={1,2,...,T} can be defined as

τt = lim
h→∞

Et[yt+h − hµ], (4.2.1)

4Although this is not per se a ceteris paribus contemplation, we do get an idea of how different
spending paths affect the output gap given paths of tax revenues and monetary policy, as elaborated upon
below. Thus, grounding thoughts on fiscal effectiveness on differences in fiscal scenarios seems rea-
sonable.
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where h is the (long-run) forecast horizon and µ is a time-invariant drift. The BN
cycle is then obtained as

ct = yt − τt. (4.2.2)

To compute the multivariate BN cycle as in Morley and Wong (2020), consider a
standard VAR(p) model in reduced form, written as

yt = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ut, ut ∼ N(0, Σ), (4.2.3)

t = {1, 2, ..., T}, where yt is a N × 1 vector of demeaned stationary endogenous
variables, including government spending, output, inflation, the government’s tax
revenues, the unemployment rate and the interest rate on three-month treasury
bills. All variables are transformed to stationarity (see appendix for details). ϕj,
j = 1, 2, ..., p are N × N coefficient matrices corresponding to the respective lag ma-
trix yt−j and ut is a N × 1 vector of reduced-form shocks. Following Morley and
Wong (2020), express (4.2.3) in companion form:

Yt = FYt−1 + Hut, (4.2.4)

where Yt ≡ {y′t, y′t−1, ..., y′t−p+1}′, F is the companion matrix, and H is a matrix map-
ping the reduced-form errors to the companion form. The BN trend and cycle are
then given by

τt = Yt + F(I − F)−1Yt, (4.2.5)

ct = −F(I − F)−1Yt. (4.2.6)

Assuming that the output variable is the jth element of yt in (4.2.3), the period-t
output gap is the jth element of ct.

4.2.2 Assessing fiscal policy based on scenario analysis

In this section, we lay out the methodology used to compute the counterfactuals.
More precisely, given the multivariate (VAR) structure of the model, we can employ
conditional multivariate forecasts (scenarios) and compute the output gap forecasts
(scenarios) implied by the forecasts for the endogenous variables.

Assume that in period T, we have information about the future path of the fiscal
instruments. That is, we know the T + 1, T + 2, ..., T + h values of our government
spending and tax revenue variables, where h is the number of periods we have infor-
mation on the fiscal instruments for. That is, h is the scenario horizon. Now suppose
we are interested in knowing the values in T + 1, T + 2, ..., T + h for the model’s other
variables. Noting that, technically, such a scenario analysis is simply a conditional
forecast where we employ information on the fiscal instruments to forecast the re-
maining variables, our approach, outlined below, draws heavily from Waggoner and
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Zha (1999), Blake and Mumtaz (2015), Higgins et al. (2016) and Berger et al. (2023).
First, rewrite equation (4.2.3) as

yt = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + A−1
0 ϵt, ϵt ∼ N(0, I), (4.2.7)

having employed the relation ut = A−1
0 ϵt, where A−1

0 is a structural impact multi-

plier matrix, with Σ = A−1
0

(
A−1

0

)′
. That is, A−1

0 is the lower-triangular Cholesky

factor of Σ. ϵt are structural shocks.5

Rewriting (4.2.7) in companion form yields

Y t = FY t−1 + H A0
−1ϵt, (4.2.8)

where H is a matrix mapping the reduced-form shocks A0
−1ϵt to the companion

form, that is,

H =

[
IN

0N(p−1)×N

]
.

Iterating (4.2.8) h steps forward yields

Yt+h = FhY t +
h

∑
j=1

Fh−jH A0
−1ϵt+j. (4.2.9)

Letting Fk H A0
−1 := Mk be the impulse response matrix at horizon k, this can be

written as

Y t+h = FhY t +
h

∑
j=1

Mh−jϵt+j, (4.2.10)

h

∑
j=1

Mh−jϵt+j = Y t+h − FhY t. (4.2.11)

That is, given the model’s parameters, restricting some variables in Yt+h implies re-
strictions on the structural shocks ϵt. Conditional on this information as well as the
estimated reduced-form parameters, collected in F, the paths of the unconditioned
variables can be obtained. To see this, follow Higgins et al. (2016) and assume we
have an idea about the future path of the endogenous variables y and therefore re-

strict their future values to Y∗ =
(

Y∗′
T+1, ..., Y∗′

T+h

)′
, where the dimension of each Y∗

t

5Note that the conditional forecasts are not affected by the choice of identification schemes to re-
cover exogenous shocks (see Waggoner and Zha, 1999, Blake and Mumtaz, 2015). Thus, differences in
the effectiveness of fiscal policy paths do not stem from the choice of the structural impact multiplier
matrix, such that we do not need to engage in a discussion on how the chosen identification strat-
egy affects our results. This is a major advantage compared to approaches identifying fiscal policy’s
effectiveness from structural VAR or DSGE models.
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is Np × 1 (corresponding to the companion form vector Y t). Next, define the cor-

responding vector of unconditional forecasts as Yu =
(

Yu′
T+1, ..., Yu′

T+h

)′
. Given these

definitions, define r := Y∗ − Yu, ϵ := (ϵ′T+1, ϵ′T+2, ..., ϵ′T+h)
′ and

R :=


M0 0 · · · 0
M1 M0 · · · 0

...
Mh−1 Mh−2 · · · M0

 .

Note that we can conveniently summarize the restrictions imposed on the fu-
ture values of the endogenous variables y, conditional on the reduced-form
parameters of the VAR. To do this, collect the reduced-form parameters in
a := (vec(ϕ1)

′, vec(ϕ2)′, ..., vec(ϕp)′, vec(A−1
0 ))′ and stack (4.2.11) over the whole fore-

cast horizon {1, 2, ..., h}. That is, express (4.2.11) as

R(a)ϵ = r(a). (4.2.12)

In general, one is interested in restricting only a subset of the endogenous variables.
Similar to Higgins et al. (2016) and Blake and Mumtaz (2015), define R̃ and r̃ as the
respective matrices where the rows corresponding to the unrestricted variables are
excluded and define q as the number of endogenous variables with restricted future
paths. We can then rewrite (4.2.12) as

R̃(a)ϵ = r̃(a), (4.2.13)

where R̃(a) is of dimension qph × Nh, r̃(a) is qph × 1, and qh ≤ Nh. As shown
in Doan et al. (1984), the structural shocks ϵ can be estimated using ordinary least
squares. That is,

ϵ̂ = R̃′(R̃R̃′)−1r̃. (4.2.14)

With an estimate of the structural shocks ϵ̂ at hand, the conditional forecasts can
easily be recovered using equation (4.2.8).

Since we are interested in the effectiveness of public spending policies, we as-
sume various paths of government spending and analyze the implied scenarios for
the remaining variables. However, we constrain the path of tax revenue growth
so as to exclude the possibility that the scenario results are driven by changes on
the revenue side. At the same time, we condition the monetary policy variable in
the model – the first differenced three-month treasury bill rate – such that differing
scenario forecasts neither result from changes in monetary policy. Thus, the uncon-
ditioned variables are output growth, inflation and the unemployment rate. Details
on the conditions imposed in each of the scenarios are outlined in section 4.4.2.
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With the scenario paths of all variables at hand, we can compute our estimate of
the output gap in periods T + 1, T + 2, ..., T + h as in Berger et al. (2023):

ct+1 = −F(I − F)−1Yt+1. (4.2.15)

Again, assuming output growth is the jth variable in yt means that the output gap is
the jth element in ct+1.

4.3 Empirical framework

In this section, the estimation procedure as well as the data are outlined.

4.3.1 BVAR estimation using a Minnesota dummy observation prior

This section lays out the estimation approach for the VAR(p) model. In particular, we
use Bayesian estimation techniques, drawing from Berger et al. (2023) and Morley
and Wong (2020).

Consider again the standard VAR(p) model in reduced form of equation (4.2.3),
restated here for convenience:

yt = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ut, ut ∼ N(0, Σ),

t = {1, 2, ..., T}. With each ϕj, j = 1, 2, ..., p being of dimension N × N, the high num-
ber of parameters to be estimated for increasing N and p motivates Bayesian estima-
tion techniques. Following Morley and Wong (2020), a natural conjugate Minnesota
dummy observation prior is employed, which applies shrinkage on the model’s pa-
rameters and implies that the posterior means are obtainable as closed-form solu-
tion. For illustrative purposes, consider (4.2.3) in expanded form:

yt =


ϕ1,1

1 · · · ϕ1,N
1 ϕ1,1

2 · · · ϕ1,N
2 · · · · · · ϕ1,N

p
...

. . .
...

...
. . .

...
. . . . . .

...
ϕN,1

1 · · · ϕN,N
1 ϕN,1

2 · · · ϕN,N
2 · · · · · · ϕN,N

p




yt−1

yt−2
...

yt−p

+


u1,t

...
uN,t


(4.3.1)

As outlined in Morley and Wong (2020), the first two prior moments of ϕ
j,k
i , the slope

coefficient corresponding to the ith lag of the kth variable in the jth equation, are set
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as

E
[
ϕ

j,k
i

]
= 0, (4.3.2)

Var
[
ϕ

j,k
i

]
=


λ2

i2 , j = k,

λ2

i2

σ2
j

σ2
k

, else.
(4.3.3)

Thus, we follow Bańbura et al. (2010) in setting the first prior moment to 0 for all
slope parameters due to their "substantial mean reversion", following from the im-
position of stationarity on all series. The coefficient λ, which according to Bańbura
et al. (2010) governs the prior’s "overall shrinkage", is obtained from minimizing the
corresponding pseudo-out-of-sample one-period-ahead forecast errors of the real
GDP growth series, as in Morley and Wong (2020). Clearly, our loss function cen-
ters around real GDP as we want to optimize the model’s forecasting capacity with
respect to the output gap.

The choice of an out-of-sample loss function is to avoid overfitting that might be
more likely to occur when minimizing an in-sample forecast error (once again, see
Morley and Wong, 2020). The one-step-ahead root mean squared forecast error is
computed recursively, with an initial sample covering the first 80 observations (that
is, the first 20 years of the sample), then adding one observation in turn up to period
T − 1.

Intuitively, λ approaching zero is equivalent to the assumption that the variables
tend to be independent white noise processes. Further note that a common feature
of the Minnesota prior is the 1

i2 term in the prior variances of ϕ
j,k
i , which implies that

longer lags are shrunk more towards the mean, that is, towards zero. The σ2
j and σ2

k

terms stem from AR(4) processes of the respective variables, estimated with ordinary
least squares, as is common in the literature (see, among others, Berger et al., 2023
and Bańbura et al., 2010). Lastly, note that working with demeaned variables is
equivalent to employing constants with a flat prior in each equation.

Following Morley and Wong (2020) and Del Negro and Schorfheide (2011), the
model can be estimated by first embedding the above-specified prior by adding
dummy observations to the data set and then simply running least squares on the
extended data set, which is feasible due to the natural conjugacy of the prior.

4.3.2 Data

As mentioned above, our BVAR model includes six variables, namely real GDP,
CPI inflation, the unemployment rate, the three-month treasury bill rate, real gov-
ernment current receipts and real government spending, motivated by standard
choices in the fiscal multiplier literature (see for example Caldara and Kamps, 2017
or Ramey, 2019). Our quarterly dataset covers observations from 1952Q1 to 2022Q2.
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Non-stationary series are transformed to stationarity. Sources and transformations
of all series are provided in appendix 4.A.

4.4 Empirical results

In this section, our empirical results are presented. In section 4.4.1, we show our
ex-post output gap, based on the full sample information. Section 4.4.2 describes the
considered scenarios and lays out the results of the counterfactual analysis.

4.4.1 Ex-post output gap results

This section outlines the results of the estimated output gap based on the full infor-
mation dataset. That is, we use all observations, from 1952Q1 to 2022Q2, and apply
equation (4.2.6) to get the full information estimate of the Beveridge-Nelson output
gap.

Figure 4.1 shows this result. The thick blue line represents the posterior mean
of the output gap estimate, with the blue shaded area being the 90% credible set,
and the gray shaded vertical areas representing NBER recession dates. As can be see
from this figure, our estimated output gap captures the NBER recessions quite well,
with the First Oil Crisis, the recession of 1981 to 1982, the Great Recession and the
COVID-19 Recession being the most severe ones according to the respective business
cycle troughs. Moreover, note that our output gap estimate is quite similar to both
those in Berger et al. (2023) and Morley and Wong (2020), who use a higher number
of variables and, in the case of Berger et al. (2023), a higher data frequency for most
variables.

4.4.2 The fiscal scenarios

In this section, we analyze hypothetical macroeconomic consequences of various
fiscal scenarios for different economic crises in US history. That is, unlike in section
4.4.1, we now look into counterfactuals that – according to our model – would have
occurred for different paths of government spending. As explained above, in each
of the scenarios, we control for the path of tax revenue and our model’s nominal
interest rate measure, both of which are set to follow their actual (ex-post observed)
paths in each of the analyzed crisis scenarios.

Section 4.4.2 presents some details on the analyzed fiscal scenarios – from re-
strictive to "super-expansive". Section 4.4.2 briefly elaborates on the chosen crises.
Finally, the scenario results are presented in section 4.4.2.

The scenarios

We start by outlining the scenarios analyzed for each of the economic crises. For each
crisis, we present four scenarios, which all differ according to the "expansiveness" of
the government spending path. For all scenarios, using the ex-post information on
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FIGURE 4.1: Output gap based on full sample information

Notes: The thick blue line represents the posterior mean of the estimated output gap based on the full
information set, with the surrounding shaded area being the 90% credible interval of that estimate.
The gray shaded areas indicate NBER recession dates.

the reduced-form parameters (that is, using all information up to the final observa-
tion in 2022Q2), we consider the hypothetical case of forecasting output growth, the
unemployment rate, consumer price inflation and, by implication, the output gap,
at the time of the respective crisis, conditional on the assumption that our government
spending variable takes a certain path. At the same time, we control for the paths of
tax revenues and the nominal interest rate, which we restrict to have the same values
in each scenario. Thus, differences in the paths of the unrestricted variables – and
particularly the output gap – will not result from different tax or monetary policies.
The four scenarios can be described in the following way:

• Actual spending path: In this scenario, government spending follows its ac-
tual ex-post path. Assume we are interested in knowing what our model
would predict for the business cycle at the height of the Global Financial Crisis,
say at the end of 2008. The actual spending path scenario answers the question:
According to our model, what values would the output gap take in 2009-2013
if we knew the path government spending would take in 2009-2013 (and given the
ex-post reduced-form parameter estimates and the paths of tax revenues and
the nominal interest rate)?

• Restrictive spending path: In this scenario, we assume that government
spending growth is 1 percentage point lower than it actually was during the
whole scenario (forecast) horizon. Our Global Financial Crisis question be-
comes: How would the output gap be affected if in 2009-2013, government
spending growth would be 1 percentage point lower than it actually was
(given the same ex-post reduced-form parameter estimates and the paths of
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tax revenues and the nominal interest rate as in the actual spending path sce-
nario)?

• Expansive spending path: This time, we assume government spending
growth is 1 percentage point higher than it actually was for the whole scenario
(forecast) horizon.

• Super-expansive spending path: Finally, we consider a "super-expansive"
public spending scenario, where government spending growth is 5 percentage
points higher than it actually was during the whole scenario (forecast) horizon.

For all scenarios, tax revenue growth and the first difference of the three-month trea-
sury bill rate – the transformations we use in the model – will be conditioned to
follow their actual ex-post paths.

The crises

The previously outlined scenarios are analyzed for a variety of crises in US history.
In particular, we look into the four most severe crises as defined by our estimates
of their business cycle troughs, displayed in figure 4.1. For each of the crises, we
will briefly elaborate on the policy measures in place at the time as well as on the
dating of the crises as defined by the NBER.6 Finally, note that we assume some
sluggishness in the implementation of fiscal measures, thus starting our scenario
analyses two quarters after the respective recession start date. The scenario start
dates are included in the following recession summaries.

• The First Oil Crisis: At the time of the First Oil Crisis, economic policy was
dominated by the Federal Reserve, which was particularly concerned with
countering the pronounced inflation dynamics: The monetary tightening cer-
tainly did not support the recovery. On the fiscal side, policymakers finally
used tax cuts to stabilize the economy (see Blinder, 2022). According to the
NBER, the First Oil Crisis lasted from November 1973 to March 1975. Fol-
lowing the logic described above, we start our scenario analysis in the second
quarter of 1974.

• The 1981-1982 recession: When the 1981-1982 recession hit, the Federal Re-
serve was once again dominating economic policy, and once again mainly con-
cerned with bringing down high inflation levels. However, President Reagan
brought fiscal policy back to the center of attention: To counter the deep re-
cession, the Reagan government implemented enormous tax cuts in 1981, 1982
and 1983, amounting, according to Blinder (2022), to a 23% personal income
tax rate reduction in total, thus strongly weighing on the government’s budget

6See here for the business cycle dating. For the description of the economic policies in place dur-
ing the recessions, we borrow from Blinder (2022), who provides an excellent overview on historical
monetary and fiscal policies in the US.

https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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balance. Government spending still played no prominent role in terms of sta-
bilization policies and was even reduced to partly finance the arising budget
deficit. However, due to increased military spending expenses that incurred at
the same time, this deficit reduction was negligible, implying soaring debt-to-
GDP levels (see Blinder, 2022). According to the NBER, the 1981-1982 recession
lasted from July 1981 to November 1982, implying a start date for our counter-
factuals in 1982Q1.

• The Great Recession: Roughly 25 years later, monetary policy still held
supremacy with respect to the conduct of stabilization policy: The primary
response to the Great Recession was a massive reduction in the policy rate of
more than 5 percentage points, combined with other measures such as quan-
titative easing and forward guidance. On the fiscal side, things changed once
President Obama took office, who quickly implemented the American Rein-
vestment and Recovery Act (ARRA) – a massive fiscal stimulus package of ap-
proximately 5% of GDP, which was a combination of expansionary spending
and tax measures. As laid out in Blinder (2022), the ARRA was far from un-
controversial: While some prominent voices, among them Paul Krugman and
Christina Romer, argued that the stimulus program was not sufficient given
the size of the recession, the Obama administration faced a lot of headwind
particularly from the Republican side, whose criticism focused on the spend-
ing components of the stimulus package. After the midterms, with the Re-
publicans having reclaimed the House of Representatives, fiscal policy even
became contractionary towards the beginning of the 2010s, much to the dis-
liking of the incumbent chairman of the Federal Reserve, Ben Bernanke, who
was suggesting the Fed and government to move in lock step to further soften
the recessionary blow (see Blinder, 2022). With NBER recession start and end
dates in December 2007 and June 2009, we start our Great Recession scenarios
in 2008Q2.

• The COVID-19 Recession: The policy response to the COVID-19 Recession
was different again, as with the major monetary expansion in response to the
Great Recession, the Fed’s policy rate was close to the zero lower bound. The
Fed used what maneuverability it still had and reduced rates further, simul-
taneously once again resorting to quantitative easing and forward guidance.
The monetary dominance of former crises was over, though: Most promi-
nently, the incumbent governments passed a variety of fiscal stimulus pack-
ages, among them the Coronavirus Aid, Relief, and Economic Security Act and
later on the American Relief Plan, with a total of approximately 6 trillion USD,
together more than 27% of 2021 GDP. Unlike in the Great Recession, the biggest
components of these stimulus packages were tax cuts and transfer payments
(for more details, see Blinder, 2022). According to the NBER, the COVID-19
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Recession lasted from February to April 2020, implying a scenario start date in
2020Q3.

In conclusion, government spending was not the main contributor to the stabi-
lization policies for the crises at hand, even though things have shifted more towards
fiscal policy measures (both on the revenue and expenditure front) since the Great
Recession. With the following scenario analyses, we address the question whether
different government spending policies would have led to different economic out-
comes, especially in terms of the speed of recovery.

Scenario results

This section presents the scenario results for all of the above-mentioned crises. For
all but the COVID-19 crisis, the scenario (conditional forecast) horizon is 5 years
(20 quarters). Since the conditions for the fiscal and monetary variables are based on
their actual ex-post values, the COVID-19 scenario horizon is restricted to 8 quarters,
that is, the scenario ends in 2022Q2, which is the last observation in the sample.

Figure 4.2 displays the scenario results for the First Oil Crisis. The thick blue
line represents the mean path of the ex-post output gap (as presented in figure 4.1).
The scenarios start in 1974Q2, that is, early in the First Oil Crisis, as defined by
the NBER. The dashed blue line indicates the scenario where government spending
follows its true (ex-post) path ("actual spending path" scenario, see section 4.4.2).
The red, green and cyan dashed lines represent the restrictive, expansive and super-
expansive scenarios, respectively. As can be seen, had the US government done
more to counter the crisis (by means of increased government spending) early on, the
recession would have been less pronounced. For example, in the case of the super-
expansive scenario, the business cycle trough would have been at approximately -
1.9% instead of -3.4% in the case of the full information estimate (displayed in figure
4.1), while the expansion phase would have been reached as early as 1975Q3 instead
of 1978Q1.

However, this highly expansionary spending path is not costless: Had the US
government in fact raised public spending growth by an amount of 5 percentage
points above its actual path, the public debt-to-GDP ratio (debt ratio) would have
roughly risen by 21 percentage points over the analyzed five year period.7 Moreover,
with the output gap closed so quickly in the super-expansive scenario, there clearly
is a danger of overheating in this case, with the output gap rising above 5% towards
the end of the scenario horizon. This development is also confirmed by the implied
rising inflation levels, see figure 4.B.1 in the appendix.

7Instead of 32% at the end of the scenario horizon (in 1978Q4), the debt ratio would have risen to
53%. However, this is just a very rough guess, assuming the spending-induced increase in aggregate
demand has no feedback effects on the debt ratio. It serves – in a simplistic way – the purpose of
illustrating the looming danger of overspending in terms of fiscal sustainability.
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FIGURE 4.2: Output gap paths for First Oil Crisis scenario

Notes: Displayed are the implied paths of the output gap resulting from four different fiscal scenarios:
Actual (blue), restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indi-
cates sample observations, dashed lines indicate scenarios paths. NBER recession dates are depicted
as gray shaded areas. The scenario (forecast) horizon is 20 quarters.

A less severe increase in the output gap and therefore inflationary pressure
would have occurred for a less pronounced fiscal expansion: In the expansive sce-
nario, where each period’s public spending growth is just 1 percentage point higher
than its ex-post value (instead of 5 percentage points in the super-expansive sce-
nario) the output gap towards the scenario end approaches 3% instead of 5% in the
super-expansive case. This is again confirmed by lower inflation tendencies as in-
dicated in figure 4.B.1, with quarter-on-quarter inflation roughly at 1.5% towards
scenario end, instead of almost 2% in the super-expansive case. On the other hand,
the lower amount of public spending means that the recession is much more severe,
as indicated by the trough of the green dashed line. In fact, the recession is hardly
cushioned at all, and the output gap is closed only in 1977Q3 (only two quarters
before the same occurs in the actual spending scenario and according to the full in-
formation estimate of figure 4.1). At the same time, the debt ratio lies 4 percentage
points above its ex-post value at scenario end.

Clearly, resorting to stabilization policies leads to the well-known trade-off be-
tween the speed of recovery and the possibility of overheating with inflationary ten-
dencies, combined with a potential strain on fiscal solvency as a consequence of
increasing debt levels. Scenario analyses of the kind presented here provide policy-
makers with a tool to quantitatively investigate this trade-off.

The importance of the "dosage" of fiscal stimulus, injected into the system, is
apparent for the 1981-1982 recession as well. Figure 4.3 presents the output gap sce-
narios for this crisis. Again, the super-expansive scenario shows a much less severe
downturn, with a trough around -3% (as opposed to -4% to -6% for the alternative
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FIGURE 4.3: Output gap paths for 1981-1982 recession scenario

Notes: Displayed are the implied paths of the output gap resulting from four different fiscal scenarios:
Actual (blue), restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indi-
cates sample observations, dashed lines indicate scenarios paths. NBER recession dates are depicted
as gray shaded areas. The scenario (forecast) horizon is 20 quarters.

cases). This time, though, in all but the super-expansive scenario, the output gap
is never closed for the duration of the scenario. This makes a stronger case for ex-
cessive fiscal spending and might be more of a justification of the (hypothetically)
resulting pronounced increase in public debt.8

Similar findings are given for the Great Recession case in figure 4.4: A massive
and persistent increase in fiscal stimulus as in the super-expansive scenario would
have led to a distinctly faster recovery, both compared to the alternative scenarios
as well as the full information output gap: In the super-expansive case, the recovery
phase would have set in at the end of 2009 already, while – according to our model –
in the actual spending scenario and for the full information case a recovery was not
even in place towards the end of the scenario horizon. Again, despite a hypothet-
ical increase in the debt ratio from 99% to 117% at the end of the scenario horizon
(ignoring potential mitigating effects from higher GDP growth), there is a case for
pronounced fiscal stimulus, and even more so than already occurred in response
to the Great Recession. Thus, our findings are somewhat in line with the position
of proponents of more fiscal stimulus, mentioned above. The case for more pub-
lic spending is also confirmed by an only moderate increase in inflation (see figure
4.B.3).

In the COVID-19 case, presented in figure 4.5, our model predicts that additional
positive effects on the output gap are expensively bought: Although massive public

8However, it should be noted that the increase in the debt-to-GDP ratio in the Reagan years was
quite pronounced even without the high public spending growth rates of the super-expansive scenario.
One could argue, nevertheless, that a faster recovery might at least partially offset the increase in the
debt ratio due to automatic stabilizers and a higher denominator.
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FIGURE 4.4: Output gap paths for Great Recession scenario

Notes: Displayed are the implied paths of the output gap resulting from four different fiscal scenarios:
Actual (blue), restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indi-
cates sample observations, dashed lines indicate scenarios paths. NBER recession dates are depicted
as gray shaded areas. The scenario (forecast) horizon is 20 quarters.

spending does help to close the output gap more quickly, the difference appears
almost negligible, with a difference in means against the actual spending scenario
over the scenario horizon of 0.54 percentage points. Given the implied increase in
the debt ratio of roughly 8 percentage points, this seems costly. However, note that
the COVID-19 scenario is restricted to 8 quarters only, as mentioned above. Thus,
judging the full effect of a fiscal stimulus as shown for the other crises needs to be
assessed in the future. It should still be noted that this finding appears somewhat
counterintuitive, given the literature on more effective fiscal multipliers at the zero
lower bound (see e. g. Ramey, 2019).9

Finally, note that according to our model, massive fiscal stimulus has a pro-
nounced effect on the unemployment rate, too: For example, in the case of the
1981-1982 recession, the super-expansive scenario predicts an unemployment rate
of roughly 3.9% as opposed to 6.7% for the actual spending scenario and a true (ex-
post) value of 6.8%. The reduction in the unemployment rate is similar for the First
Oil Crisis and the Great Recession cases, again making more of a case for (even
more) pronounced fiscal stimulus. As for the output gap, the unemployment effect
in the COVID-19 case appears to be smaller, at least upon observation of the shorter
scenario of only 2 years.

9However, note that while for the first three crises considered, the conditional forecasts (scenarios)
are quite close to the estimated ex-post gaps, this is not the case for the COVID-19 case. Here, the
recovery according to the full information gap estimate set in much faster than predicted by our model.
Still, the finding that a massive increase in fiscal stimulus on the spending side does not seem to have
much effect here is insightful.
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FIGURE 4.5: Output gap paths for COVID-19 scenario

Notes: Displayed are the implied paths of the output gap resulting from four different fiscal scenarios:
Actual (blue), restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indi-
cates sample observations, dashed lines indicate scenarios paths. NBER recession dates are depicted
as gray shaded areas. The scenario (forecast) horizon is restricted to 8 quarters since the conditions on
fiscal and monetary variables are proportional to the variables’ ex-post paths, which in this case are
available only for 8 "future" (pseudo-out-of-sample) observations.

4.5 Conclusion

Challenges justifying a role for fiscal policy and public spending are omnipresent:
Be it distortions resulting from recent crises such as the COVID-19 pandemic or the
Ukrainian-Russian war, or long-term challenges such as increased financing needs
in aging societies or investment requirements to tackle and adapt to climate change.

At the same time, these very challenges strongly weigh on fiscal sustainability,
especially given the already pronounced debt levels in advanced economies. Lately,
rising interest rates and the consequently increasing refinancing costs amplify the
severity of these dynamics. Therefore, placing the trade-off between stimulating
effects from public spending on the one hand and overheating as well as potentially
rising debt levels on the other at the center of attention is essential for adequate
policymaking.

In accordance with the literature on fiscal multipliers, we show that an increase
in public spending positively affects output and reduces unemployment in times of
crisis. In addition, we provide empirical evidence for a positive impact of public
spending on the output gap, thereby extending the debate on fiscal efficacy from
the mere discussion of output levels and growth rates to the more policy-relevant
question of business cycle effects. Thus, next to the upside of fiscal expansions, our
model gauges potential downsides from "overspending" in terms of an overheating
economy and resulting inflationary effects, which should be evaluated on a case-by-
case basis. In this light, our model hands the prudent fiscal policymaker a tool to
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assess the dosage of public spending measures.
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Appendix

4.A Data appendix

Table 4.A.1 displays the data series employed in the BVAR. All series are taken from
the Federal Reserve Bank of St. Louis database (FRED) and are transformed to sta-
tionarity. The respective transformation of the series is displayed in the table.10

TABLE 4.A.1: Data description for the vector autoregression

Series name Sources Transformation
Real government
spending

"Government Consumption Expendi-
tures and Gross Investment" (FRED
code: GCE), deflated by "Gross Do-
mestic Product: Implicit Price Defla-
tor" (FRED code: GDPDEF)

∆ln

Real gross domestic
product

"Gross domestic product" (FRED
code: GDP), deflated by "Gross
Domestic Product: Implicit Price
Deflator" (FRED code: GDPDEF)

∆ln

Consumer price index "Consumer Price Index for All Urban
Consumers: All Items in U.S. City Av-
erage" (FRED code: CPIAUCSL)

∆ln

Real government cur-
rent receipts

"Federal Government Current Re-
ceipts" (FRED code: FGRECPT), de-
flated by "Gross Domestic Product:
Implicit Price Deflator" (FRED code:
GDPDEF)

∆ln

Unemployment rate "Unemployment Rate" (FRED code:
UNRATE)

−

Nominal interest rate "3-Month Treasury Bill Secondary
Market Rate, Discount Basis" (FRED
code: TB3MS)

∆

10Note that growth rates are expressed as quarter-on-quarter percentage changes.
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4.B Scenario plots of endogenous variables

FIGURE 4.B.1: Endogenous variable paths for First Oil Crisis scenario

Notes: Displayed are the implied paths resulting from four different fiscal scenarios: Actual (blue),
restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indicates sample
observations, dashed lines indicate scenario paths.
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FIGURE 4.B.2: Endogenous variable paths for 1981-1982 recession
scenario

Notes: Displayed are the implied paths resulting from four different fiscal scenarios: Actual (blue),
restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indicates sample
observations, dashed lines indicate scenario paths.

FIGURE 4.B.3: Endogenous variable paths for Great Recession sce-
nario

Notes: Displayed are the implied paths resulting from four different fiscal scenarios: Actual (blue),
restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indicates sample
observations, dashed lines indicate scenario paths.
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FIGURE 4.B.4: Endogenous variable paths for COVID-19 scenario

Notes: Displayed are the implied paths resulting from four different fiscal scenarios: Actual (blue),
restrictive (red), expansive (green) and super-expansive (cyan). The thick blue line indicates sample
observations, dashed lines indicate scenario paths.
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