
C O M P L E X D Y N A M I C S I N T H E S P R E A D O F C O V I D - 1 9

Dissertation
for the award of the degree

"Doctor rerum naturalium" (Dr.rer.nat.)
of the Georg-August-Universität Göttingen

within the doctoral program IMPRS Physics of Biological and Complex Systems
of the Georg-August University School of Science (GAUSS)

submitted by
Sebastian Antonio Contreras Gonzalez

From Recoleta, Chile.
Göttingen, 2023



thesis committee:
Prof. Dr. Viola Priesemann, Max Planck Institute for Dynamics
and Self-Organization, Göttingen
Prof. Dr. Stefan Klumpp, Institut für Dynamik komplexer Systeme,
Georg-August-Universität Göttinen
Prof. Dr. Dr. h.c. Eberhard Bodenschatz, Max Planck Institute
for Dynamics and Self-Organization, Göttingen

members of the examination board:
Reviewer: Prof. Dr. Viola Priesemann, Max Planck Institute for
Dynamics and Self-Organization, Göttingen
Second Reviewer: Prof. Dr. Stefan Klumpp, Institut für Dynamik
komplexer Systeme, Georg-August-Universität Göttinen, Göttingen

further members of the examination board:
Prof. Dr. Dr. h.c. Eberhard Bodenschatz, Max Planck Institute
for Dynamics and Self-Organization, Göttingen
Prof. Dr. Michael Wilczek, Physikalisches Institut Universität
Bayreuth, Bayreuth
Jun-Prof. Dr. Anne Wald, Institute for Numerical and Applied
Mathematics, Georg-August-Universität Göttinen, Göttingen
Prof. Dr. Theo Geisel, Max Planck Institute for Dynamics and Self-
Organization, Göttingen

date of the oral examination: 28 April 2023.

Sebastian Antonio Contreras Gonzalez: Complex dynamics in the spread
of COVID-19, © April 2023



Hay que luchar, luchar y seguir luchando, aunque en ello se nos vaya
la vida.

— Gladys Marin

Dedicated to Sonia Brunel, Sandra Jara, Ninna Barría, Mónica Álvarez,
María Elena Salazar, my former teachers at the public high-school
Liceo Juan Bautista Contardi, Punta Arenas, Chile. Thank you for
sparking curiosity and dreams in so many young hearts like mine.





A C K N O W L E D G M E N T S

I want to thank my family for their love, which distance nor time has
managed to wear. Thanks to my mom, Pilar, and my dad, Ricardo,
for their unconditional support. To my siblings, Conita, Vicho, and
Mati, for the joy of having them in my life. To my husband, Alvo, for
supporting me through the good, the bad, and the ugly of my Ph.D.
journey and life in general. Thank you for never doubting my abilities
(even in the times I did), for your patience and love, for building a
home full of cats with me, and for always giving me something to look
forward to in our future.

Thanks to my supervisor, Viola Priesemann, for giving me this unique
opportunity of doing science with her and her wonderful group. Thank
you for teaching me so much about science, giving me space and tools
to build my scientific path, and always caring about us beyond science.
Thanks to Jonas, Paul, Simon, Philipp, Joel, Sebastian, Emil, Johannes,
and all the members of Viola’s Group, for the joy that’s doing science
and sharing time with you. Special thanks (again) to Philipp, Simon,
Álvaro, Martín, Johannes, and Emil for all their help and support in
discussing and proofreading this manuscript.

Thank you, Andrés, for your love and constant support. Thank you
for inspiring me to study compartmental models and apply them to
COVID-19; I’ve gotten this far only because of you. Thank you, Álvaro,
David, Karen, and Anita, for supporting me so much at the beginning of
my scientific career. It is a pleasure to have the excuse of doing science
together just to see you more often. Thank you, Cata and Joaquin, for
always cheering me up and being an endless source of fun. Thanks to
Claudia, my dearest friend, for motivating me to always go for more.
Thank you for teaching me to believe in myself and to fight for my
dreams. Thanks, Cordero, Andrés, and Omar, my Clan Cui, for your
support and love. Every time I think of my family, I think of you too.

Thanks to the friends I have known here in Germany, Jens, Britta,
Alvaro, Robert, Werner, Marc, Andreas, Volki, Heiko, Meile, Ine, Rudi,
and most especially to the Member’s Club: Jenny, Julius, Nelson, Maite.
Thank you for making me feel at home being so far from my roots.

Thank you to everyone who is part of my life, for giving me countless
reasons to be grateful.

v



funding

I gratefully acknowledge support from the Max Planck Society and
funding from the German Federal Ministry for Education and Research
through the RESPINOW project (031L0298).

vi



A B S T R A C T

The COVID-19 pandemic is the most recent example that infectious
diseases can disrupt and permanently alter how societies work and
interact. This manuscript builds around a series of papers studying
disease spread from the point of view of dynamical systems, using the
COVID-19 pandemic as a working example. We first study the effect of
including test-trace-and-isolate policies in compartmental models and
describe their dynamical regimes. We find two tipping points between
controlled and uncontrolled spread, defining a novel stable regime at low
case numbers where long-term pandemic control is feasible with fewer
restrictions. This regime, dependent on the contact behavior and the
maximum contact tracing capacity, also maximizes freedom when rolling
out a vaccine. Besides, in a minimal model with delayed contact tracing,
we found that the delay can induce sustained oscillations through a
Hopf bifurcation. We then explored the effects of including behavior as
an effective feedback loop between incidence, and both contact rates and
vaccination willingness. We found that if the leeway for voluntary action
is large enough, a major surge in case numbers is prevented through the
behavioral feedback loop. This suggests that societies implicitly agree on
an incidence level they tolerate, which in the end constitutes the endemic
equilibrium of the disease, and dynamically adapt their behavior to
keep case numbers around this level. However, the stability of this
equilibrium can be lost through Hopf bifurcations and period-doubling
cascades to chaos. This points to the next major research question:
How do agents, on average, make decisions with partial information
from widely unobserved complex systems? We finish this manuscript
proposing a hybrid methodology combining deterministic models for
disease spread and stochastic sampling to assess the efficacy of sample
selection protocols for, e.g., genomic surveillance, which is adaptable to
general dynamical systems that are not in equilibrium.
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Z U S A M M E N FA S S U N G

Die COVID-19-Pandemie ist das aktuellste Beispiel dafür, dass Infekti-
onskrankheiten die Funktionsweise von Gesellschaften dauerhaft verän-
dern können. Dieses Manuskript baut auf einer Reihe von Publikationen
auf, in denen die Ausbreitung von Infektionskrankheiten aus der Sicht
dynamischer Systeme untersucht wird, wobei die COVID-19-Pandemie
als Musterbeispiel dient. Wir untersuchen zunächst die Auswirkungen
von Test-Trace-and-Isolate-Maßnahmen (Testen, Kontaktverfolgung und
Isolation) in Kompartment-Modellen und beschreiben deren dynami-
sche Regime. Wir finden zwei Kipppunkte zwischen kontrollierter und
unkontrollierter Ausbreitung und definieren ein neues stabiles Regime
bei niedrigen Fallzahlen, in dem eine langfristige Pandemiekontrolle
mit weniger Einschränkungen möglich ist. Dieses Regime, das vom
Kontaktverhalten und der maximalen Kapazität der Kontaktverfolgung
abhängt, maximiert auch die Freiheit während einer Impfkampagne. In
einem minimalen Modell mit verzögerter Kontaktverfolgung fanden wir
außerdem, dass die Verzögerung durch eine Hopf-Bifurkation anhalten-
de Oszillationen hervorrufen kann. Anschließend untersuchten wir die
Auswirkungen des menschlichen Verhaltens als effektive Rückkopplungs-
schleife zwischen Inzidenz und Kontaktverhalten und Impfbereitschaft.
Wir fanden heraus, dass ein starker Anstieg der Fallzahlen durch die
Verhaltensrückkopplungsschleife verhindert wird, wenn der Spielraum
für freiwilliges Handeln groß genug ist. Dies deutet darauf hin, dass
sich Gesellschaften implizit auf ein von ihnen toleriertes Inzidenzniveau
einigen, das letztlich zum endemische Gleichgewicht der Krankheit wird,
und ihr Verhalten dynamisch anpassen, um die Fallzahlen um dieses Ni-
veau herum zu halten. Die Stabilität dieses Gleichgewichts kann jedoch
durch Hopf-Bifurkationen und Periodenverdoppelungskaskaden bis hin
zum Chaos verloren gehen. Dies wirft die nächste wichtige Forschungs-
frage auf: Wie treffen Agenten im Mittel Entscheidungen auf Basis von
Teilinformationen aus weitgehend unbeobachteten komplexen Syste-
men? Am Ende dieses Manuskripts schlagen wir eine hybride Methode
vor, die deterministische Modelle für die Ausbreitung von Krankheiten
und stochastische Stichproben kombiniert, um die Wirksamkeit von
Stichprobenauswahlprotokollen, z.B. für die genomische Überwachung,
zu bewerten. Diese Methode kann an allgemeine dynamische Systeme
angepasst werden, die sich nicht im Gleichgewicht befinden.
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B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 infectious diseases and the covid-19 pandemic

Infectious diseases have posed substantial challenges to societies. The
COVID-19 pandemic is only the most recent example, where, besides
the high toll of deaths and disease burden, the whole world saw modern
lifestyles disrupted and permanently changed. Understanding basic prin-
ciples on the spreading dynamics of infectious diseases is critical for the
well-being of societies. However, this is not an easy task: human behav-
ior, and thus contagion, is complex. Further adding to this complexity,
contact networks are plastic, the probability of contagion given contact
may not be constant, pathogens causing diseases can evolve and change
their properties, and not all variables and parameters can be observed
from data. Consequently, statistical physics and the theory of nonlinear
dynamical systems find broad applications in revealing, understanding,
and quantifying the drivers and mechanisms behind such complexity
[1–5].

Part of the complexity of contagion can be understood as a competi-
tion between the pathogen’s potential for spread and the awareness of
the disease in the population [6–10]. As contagion occurs, newly infected
individuals can infect others, thereby contributing to the replication
and spread of the pathogen. Conversely, with more infected individuals
that become ill or die, other individuals gain awareness and reduce
their exposure, thereby reducing their contribution to contagion [11–
15]. Mandatory governmental interventions, either pharmaceutical or
non-pharmaceutical, can also accompany this response and limit even
further disease spread. In that way, the pathogen is subject to a selective
pressure that favors their evolution towards more transmissible variants
[6, 16]. This co-dependence between adaptation of social patterns and
pathogen evolution suggests that diseases have shaped societies as much
as societies have filtered which diseases they tolerate [17].

Diseases that are common to a population or region are referred to as
endemic diseases, and their typical incidence (i.e., number of active cases
relative to the total population at the time), as the endemic equilibrium.
Examples of these diseases are influenza and other respiratory diseases
caused by, e.g., Respiratory Syncytial Virus (RSV) or Human Rhinovirus

3
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(HRV). Around their endemic equilibrium, these diseases pose a burden
that societies are implicitly willing to accept—a cost which paradoxically
often surpasses the costs of eradicating them back in their epidemic phase
[17]. Variations of the endemic equilibrium can follow seasonal patterns
due to temporal variations on pathogen persistence or population contact
patterns [18, 19]. The endemic equilibrium corresponds to a fixed point
in the equivalent dynamical system, and thus analyzing its stability and
bifurcations can inform epidemiological risk assessment [3, 20–22].

Diseases new to a population are said to "emerge" (or re-emerge
if previously eliminated from an area). These epidemic diseases are
typically more dangerous than endemic diseases and thus trigger an
immediate response to curb their spread [17]. Examples of such are Ebola,
Marburg virus disease, and COVID-19. In addition, new diseases can
emerge due to zoonosis, i.e., pathogens affecting other species mutating
to infect humans, or being endemic to isolated regions and imported
to others. Disregarding the source, and compared to endemic diseases,
societies invest a substantial effort in controlling outbreaks before they
affect a significant part of the population [17, 23]. Mechanistically,
mitigation efforts can be included in epidemiological models as feedback
loops (e.g., as in [11]), featuring rich long-term dynamics, such as high-
periodic wave patterns and period-doubling cascades to chaos [9, 21, 22,
24, 25].

Once a deviation from the endemic equilibrium or the emergence of
a new disease with epidemic potential has been reported, policymakers
and health authorities deploy a portfolio of interventions to mitigate
or contain the spread. These interventions can be pharmaceutical (e.g.,
distributing vaccines or a functional cure for the disease among the
population) or non-pharmaceutical. The latter is essential for a novel
disease, as developing vaccines or finding a cure requires time. Non-
pharmaceutical intervention (NPI)s can aim to limit the number of
contacts in the population (e.g., lockdowns and curfews [20]), reduce
the probability of transmission upon contact (e.g., mask mandates, and
enforcement of hygiene measures [26, 27]), or produce an ecological
interference to disease spread by "removing" individuals from the pool
of susceptible individuals (e.g., isolation of risk groups [12]) or infectious
individuals (e.g., by Test-trace-and-isolate (TTI) [28–31]). Altogether,
the objective is the same: to reduce the spreading rate of the disease.

However, what ultimately determines how effectively these NPI reduce
the spreading rate of a disease is the adherence of individuals to them [11,
17, 32]. Individuals adapt their adherence to mandatory NPIs depending
on their economic possibilities and needs and their perception of risk [17,



1.1 infectious diseases and the covid-19 pandemic 5

33, 34]. As information about an outbreak becomes available, individuals
update their attitude toward the disease and the risk they perceive,
which changes their behavior. These behavioral changes can be reflected
on different timescales: Individuals decide whether (and how properly)
they wear a mask daily and act accordingly [11], but would take longer
before accepting a vaccine if hesitant [1, 35]. On the one hand, increased
risk perception will motivate individuals to actively engage in protective
measures. On the other hand, if they do not feel at risk, complying
with seemingly absurd mandates would not appeal to them and thus
would increase their rate of contagious contact. This behavior-driven
modulation of the spreading rate results from the interplay between
information, opinion, behavior, and disease spread and opens a wide
variety of dynamical regimes [11, 21, 24, 25].

On a larger timescale, the evolutionary dynamics of the pathogen can
play a major role, e.g., new variants with increased transmissibility or
partial escape from current immunity could emerge [6, 36–38]. One of
the mechanisms used to monitor this evolution is genomic surveillance,
where the mutational dynamics of a particular pathogen (and variants
thereof) are tracked and quantified [39, 40]. Over time, this allows
keeping track of the evolutionary patterns and mutational signatures of
pathogens with large epidemic potential, such as influenza (as per the
GISAID: Global initiative on sharing all influenza data [41]). However,
the reliability of this information depends on i) the strategy to select
which samples would be analyzed (sequenced), and ii) the total number
of samples that can be analyzed given the installed capacity [40]. Limited
sampling challenges the inference of properties in dynamical systems [42,
43] and may introduce systematic bias to observations [44–47]. Despite
decreasing costs for sequencing, the high equipment and training costs
still pose economic barriers to low-to-middle income countries [39, 48].
This factor, for example, had overarching consequences in the context
of the COVID-19 pandemic [49–53].

The COVID-19 pandemic provides an example where all these sources
of complexity converge. Here, the world faced an emerging infectious
disease, highly transmissible, with marked seasonality, moderate fatal-
ity risk, asymptomatic transmission, and a quickly evolving pathogen
(SARS-CoV-2), so that containment was challenged due to logistic
limitations and misinformation across multiple epidemic waves. Phar-
maceutical interventions also took place, but the insufficient protection
against infection and the high rate at which new SARS-CoV-2 variants
with partial immune escape emerged made it impossible to eradicate
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COVID-19 by vaccination. In this manuscript, we seek to answer the
following questions:

• Which dynamical regimes can we observe when including TTI in
simple models for COVID-19 spread?

• Is there a sweet spot for long-term policy planning defined by
these dynamical regimes?

• How do vaccination and increased immunity expand these regimes?

• How does information about the disease affect contact rates and
the willingness to get vaccinated, and thereby the spread itself?

• How does one maximize the information gathered through genomic
surveillance of emerging SARS-CoV-2 variants in settings with
limited resources?

Answers to these questions find direct application in health policy,
especially in the context of the ongoing pandemic. However, we will show
that these questions are also exciting and challenging from a physicist’s
perspective.

1.2 organization of this manuscript

This manuscript is divided into three parts, containing nine Chapters in
total. The first part, Background, presents the context of this research
and the mathematical principles of infectious disease modeling. Specific
epidemiological concepts will be explained in detail where required.
Chapter 2 provides the mathematical foundations required for this
work. Chapter 3 goes deeper into the modeling and analysis (i.e., the
physics) of infection and contagion. The first sections provide a brief
overview of the mechanics of infection and considerations modelers
need to have when building epidemiological models. Then, it provides
a detailed analysis of the Susceptible-Infectious-Removed (SIR) model
and a study of its variations. Here, we analyze disease spread from the
point of view of dynamical systems theory, describing fixed points, their
stability, bifurcations, and their implications for epidemiology. This
chapter contains original results on the theoretical analysis of simplified
versions of the models in Contreras et al. [20, 28].

The second part of this manuscript, Complex Dynamics in the Spread
of COVID-19, summarizes the papers encompassed in this doctoral
dissertation. It contains five Chapters that are identical to the corre-
sponding five publications.



1.2 organization of this manuscript 7

In Chapter 4 (Contreras et al. [28]), we propose a modified version of
a linear SIR model to include TTI and use it to analyze the impact of
different challenges regarding testing and contact tracing. We first find
that including TTI expands the parameter range for which the system is
virtually stable, but conditionally; the new zones require the new cases
to be within the handling capacity of health authorities (what we call
TTI capacity limit), and the linear approximation of the model would
deviate as infections increase. We refer to this regime as a metastable
regime at low case numbers, where TTI helps slow down and eventually
stop the spread of the disease. We also identify two tipping points
between controlled and uncontrolled spread: (1) the behavior-driven
reproduction number of the hidden infections becomes too large to be
compensated by TTI, and (2) the number of new infections exceeds the
tracing capacity. Finally, our results suggest that TTI alone is insufficient
to fully contain outbreaks. This implies that complementary measures
like social distancing and improved hygiene remain necessary in the
considered period.

In Chapter 5 (Contreras et al. [20]), we demonstrate that the metastable
regime at low case numbers in [28] persists in more complex (non-linear)
models and provides a sweet-spot for policy planning. In this regime
where TTI promptly breaks infection chains and allows for more free-
doms, daily cases stabilize around ten or fewer new infections per million
people. We further explore the benefits and costs of two different strate-
gies of stabilization that include imposing a short lockdown aiming
to drive the current incidence below a given threshold: (i) stabilizing
around the TTI capacity (profiting from the slow-down effect that TTI

has when efficient), or (ii) stabilizing around the hospital capacity limit
(with the excuse of immediate freedom for some of the population). We
see that only the first alternative maximizes this freedom and minimizes
lockdown time and total cases.

In Chapter 6 (Bauer et al. [54]), we study how to profit from the
metastable regime at low case numbers to minimize total mandatory
measures when a working vaccine is rolled out. We show that in contrast
to strategies lifting all restrictions early, maintaining case numbers
at a level where TTI can promptly break chains of infections allows
for more freedom in a sustained way, quickly surpassing that of those
strategies—which unavoidably implying reintroducing strong measures,
such as lockdowns, to control cases. We demonstrate this using a control-
theoretical approach. At each time step, we assess whether the current
level of infectious contacts can be marginally increased (i.e., lifting
restrictions by just a bit) without endangering case numbers surpassing
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the TTI limit. Here we introduce the effects of interventions acting
differently on different age groups, e.g., closing schools or hardening
compulsory hygiene measures. Here a new question arises: What would
happen if different groups had differing opinions on engaging with
mandatory measures based on their perceived risk?

In Chapter 7 (Dönges et al. [11]), we further explore the latter
question, changing the focus of mitigation from mandatory measures to
voluntary actions. To that end, we model people’s voluntary actions as
an effective feedback loop between ICU occupancy and i) the current
spreading rate and ii) their willingness to accept a vaccine if offered.
Including any of these feedback loops plus seasonality has been reported
to produce rich long-term dynamics, from highly periodic wave patterns
to period-doubling cascades to chaos. See, e.g., [21, 22, 24, 25] and
references therein. Here we explore a more practical question: Given
current immunity levels and in the face of adverse seasonality, which
combination of mandatory interventions produces, in the end, the greater
public health outcome? In a scenario analysis, we found that cases where
mandatory NPIs were too strong to allow for individual action, or not
strong at all, had the worst outcomes. On the one hand, if individuals do
not feel at risk and do not accumulate naturally acquired immunity, the
excess susceptibility fuels rebound waves (see more on this in Dönges
[55]). On the other hand, if individuals were forced to continue with
their normal contact patterns (i.e., going to work, school, and other
non-essential contacts), they could not react sufficiently and protect
themselves. Only scenarios where individuals had enough leeway to
react voluntarily to moderate levels of risk had the best outcomes, both
in winter and spring. However, this occurs where no new SARS-CoV-2
variants would have emerged. If this were the case, how long would it
take to detect a novel variant and prepare to counteract it?

In Chapter 8 (Contreras et al. [47]), we propose a hybrid approach
to assess the effectiveness of different sampling protocols for genomic
surveillance of infectious diseases at a country scale. Using a determin-
istic ODE model for the simultaneous spread of an arbitrarily large
number of SARS-CoV-2 variants, we build a stochastic sampling frame-
work that retrieves a simulated "observed" vector of labels which we
use to estimate the share of cases corresponding to each variant. We
study two strategies for sample collection between communities and
points of entry to the country. We demonstrate that adaptive sampling,
i.e., dynamically adapting the limited sequencing capacity to analyze
samples collected in the community or at points of entry, outperforms
those strategies where a constant number of samples from each source
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is always analyzed. In fact, in situations with limited sequencing capac-
ity, adaptive sampling can reduce the expected detection delay of new
variants by up to five weeks. Altogether, we quantify the improvement
achieved by following the intuitive CARD (Coordinated, Adaptive, Rep-
resentative, and Differential) rules for sampling protocols for genomic
surveillance [40]. Finally, our methodology can be readily adapted to
study undersampling (see, e.g., [43]) in other dynamical systems.

Finally, the last part, Discussion and outlook, presents a comprehen-
sive analysis of our findings and their implications for the physics of
infectious diseases. We summarize these in a few principles for effective
mitigation and outline future research directions to continue the results
of this PhD thesis.





2
M AT H E M AT I C A L B A C K G R O U N D

In this chapter, we provide some basic notions of nonlinear systems and
bifurcations required for some demonstrations in Chapter 3. Chapters 4-
8 include a in-depth methods section and online appendixes. For a more
comprehensive introduction to nonlinear dynamical systems please refer
to Strogatz [56].

2.1 dynamical systems

We will define a dynamical system as a system with functional depen-
dence on time. Although the definition is less restrictive, for this work
we will focus on dynamical systems represented by Ordinary Differential
Equation (ODE) and Delay Differential Equation (DDE). The general
form for an ODE dynamical system is given by:

˙⃗x = F (x⃗, t) (2.1)

We will say that the system is autonomous when F (x⃗, t) = F (x⃗).
Note that we can convert a non-autonomous system into an autonomous
one by increasing the order of the system by one:

z⃗ =

x⃗

t

 , d

dt
z⃗ =

 ˙⃗x

1

 = F̃ (z⃗) (2.2)

We will understand as fixed points of an autonomous dynamical
system those vectors x⃗0 ∈ Rn where F (x⃗0) = 0, and thus ˙⃗x|x=x0 = 0.
In other words, the state of the system does not vary over time if starting
at the fix point. However, how do trajectories starting slightly away
from it behave?

2.1.1 Stability of fixed points

Assume that x0 is a fixed point of the autonomous system ẋ = F (x),
i.e., that F (x0) = 0. How do solutions starting close to x0 behave? For
a perturbed trajectory starting arbitrarily close to the fix point, i.e., at
x0 + ϵ, we can do Taylor expansion:

11
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d

dt
(x0 + ϵ) =����F (x0)︸ ︷︷ ︸

=0

+JF (x0)ϵ+ o
(
ϵ2
)

⇔ dϵ

dt
= JF (x0)ϵ+ o

(
ϵ2
)

.

(2.3)

(note that ϵ ∈ Rn, and thus the exponent in ϵ2 is not directly the
square but denotes higher order terms). Disregarding higher order terms
for ϵ, the linear stability of the system (i.e., whether perturbations will
grow or decay) is determined by the eigenvalues of the Jacobian matrix
of F evaluated at the fixed point JF (x0).

We will say that the fixed point is hyperbolic if the real part of all
eigenvalues is different than zero. In virtue of the Hartman-Grobman
theorem, the local phase portrait (i.e., dynamical regimes of a nonlinear
dynamical system) near a hyperbolic fixed point is topologically equiva-
lent to the phase portrait of the linearization [56]; the classification of
the linear system holds for the nonlinear system.

We will say that a fixed point is a stable attractor if the real part
of all eigenvalues of the linearized system evaluated on it is strictly
negative. If the real part of all eigenvalues is strictly positive, then the
fixed point is an unstable attractor (or a repeller). If there is a pair of
eigenvalues with different sign, then the fixed point is a saddle.

Some systems with a single fixed point can have different pathways
to instability. Consider, for example, a system of coupled reactors where
a certain quantity could be amplified or damped depending on a single
control parameter. If one of them is in an amplifying condition, then the
sightliest coupling with other compartments even in damping conditions
can drive the whole system unstable.

2.2 limit cycles in the plane

A limit cycle is an isolated closed trajectory [56]. Closed implies periodic-
ity, and isolated implies that neighboring trajectories are not closed and
approach or diverge from the limit cycle. They are easier to understand
in polar coordinates, where they are represented by fixed points on the
differential equation of the radius.

Linear systems allow for oscillatory behavior, but the only solution
that is closed is not isolated. We illustrate that in the following example.
Consider the 2D system:
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dx

dt
=

α −β

β α

x. (2.4)

The eigenvalues of the system’s matrix are α ± iβ, thus all solutions
will spiral inwards or outwards depending on whether α is smaller or
larger than zero. If α = 0, then trajectories are closed, but so are all
those in a neighborhood of the solution. Therefore, these are not isolated.
We can thus conclude that limit cycles are a non-linear phenomena.

2.2.1 Poincaré-Bendixson Theorem

This theorem proves the existence of limit cycles in certain conditions.
As enunciated in Strogatz [56], a trajectory C confined in a closed,
bounded subset of the plane R is a closed orbit (or spirals towards it as
t → ∞) if:

• ẋ = f(x) is a continuously differentiable vector field on an open
set containing R

• R does not contain any fixed points.

The intuition behind this is the following: First, we find an unstable
fixed point, i.e., trajectories starting close to it escape from it. Then we
construct a "trapping region", i.e., a bounded subset of the plane where
the vector field f(x) always points inwards that has "a hole" where
the fixed point is. Then, we call this trapping region R and we can
conclude that there is a limit cycle therein. References to the subtleties
and formalities of the proof are given in Strogatz [56].

Although the definition of limit cycles seems restrictive, there is a
particular kind of bifurcation that generates them; the Hopf bifurcation.

2.3 hopf bifurcations

Consider a 2D dynamical system, where the eigenvalues of its linearized
version around a fixed point depend on a control parameter. As we vary
it, the system can turn unstable in different ways. Unlike 1D systems,
2D systems can already feature oscillatory solutions. Hopf bifurcations
are a particular case of those, when a stable fixed point turns unstable
and features a limit cycle. For this, two complex conjugate eigenvalues
simultaneously cross the imaginary axis (from left to right) with nonzero
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speed, and turn unstable. As other bifurcations, these come in super
and subcritical variants, which are thoroughly described in Strogatz
[56]. Here, we analyze the necessary and sufficient conditions to have a
Hopf bifurcation (of any kind) in a single delay DDE.

2.3.1 Hopf bifurcation a 2D DDE system with a single delay τ

Consider a 2D DDE system and its linearization around a fixed point

x′(t) = Ax(t) + Bx(t − τ ). (2.5)

We can study the linear stability of this system as in ODE, using
the trial solutions x(t) = v⃗ exp(µt). Note that the notation is not the
classical one and we use µ instead of λ, which we reserve for model
parameters throughout the next chapters. Plugging this ansatz into
eq. 2.5, we obtain the condition

µv⃗ exp(µt) = Av⃗ exp(µt) + B exp(−µτ )v⃗ exp(µt),

⇔ 0 = (A − µI2×2 + B exp(−µτ )) v⃗,

implying that nontrivial solutions must be found by solving the
trascendental equation

p(µ, τ ) = det (A − µI2×2 + B exp(−µτ )) = 0. (2.6)

The system above undergoes a Hopf bifurcation at τ = τcrit if:

• The eigenvalues are purely imaginary, i.e.,

µcrit = iϕ. (2.7)

• The imaginary axis is crossed with a nonzero speed, i.e.,

Re
(

dµ

dτ

)∣∣∣∣
τ=τcrit

̸= 0. (2.8)

Note that these conditions are simplified from the general case as our
system is 2D, thus has only a pair of complex conjugates as eigenvalues.
For more general cases, the reader is referred to Orosz [57] and Strogatz
[56].

Imposing the first condition into the trascendental equation eq. 2.6
generates two nonlinear equations which we need to solve for τ and ϕ:
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Re (p(µ = iϕ, τ = τcrit)) = 0, (2.9)

Im (p(µ = iϕ, τ = τcrit)) = 0. (2.10)

The second condition can be obtained by implicit derivation of eq. 2.6
with respect to τ ;

dp

dτ
=

∂p

∂µ

dµ

dτ
+

∂p

∂τ
= 0, ⇒ dµ

dτ
= −

∂p
∂τ
∂p
∂µ

. (2.11)

We then have

Re
(

dµ

dτ

)∣∣∣∣
µ=iϕ, τ=τc

= Re

−
∂p
∂τ
∂p
∂µ

 ∣∣∣∣∣∣
µ=iϕ, τ=τc

. (2.12)

However, we can also calculate the total derivative of eq. 2.6 with
respect to µ;

dp

dµ
=

∂p

∂µ
+

∂p

∂τ

dτ

dµ
= 0, ⇒

(
dµ

dτ

)−1
= −

∂p
∂τ
∂p
∂µ

. (2.13)

Therefore, we can also write the second condition for a Hopf bifurca-
tion as

Re
(

dµ

dτ

)∣∣∣∣
µ=iϕ, τ=τc

= Re
((

dµ

dτ

)−1) ∣∣∣∣
µ=iϕ, τ=τc

. (2.14)





3
P H Y S I C S O F I N F E C T I O N A N D C O N TA G I O N

In this chapter, we provide a very brief overview of and links to some
relevant literature on the physics of the different phenomena involved
at the different scales relevant to infection and contagion. For a topic-
specific survey of the state-of-the-art, the reader is referred to the
Introduction section in Chapters 4–8. This chapter also contains original
results exploring the physics of the model in Chapter 4 (Section 3.4.1)
and of a simpler version of the model in Chapter 5 (Section 3.4).

3.1 pathogens and infection

The game of life occurs at all scales, and pathogens are certainly part
of it. The principle is the same; they hijack part of the machinery of
host organisms/ecosystems to complete their life cycle. Among the most
common pathogens, we find bacteria and viruses. Bacterial infections are
typically aggressive but have been largely controlled since the discovery
of penicillin and other antibiotics. On the other hand, viruses, in most
cases, coexist peacefully with their hosts. However, they can also parasite
them and cause diseases and even take over entire ecosystems [6]. At all
these scales, complex physical phenomena occur, from protein folding
and docking when viruses infect cells to the plasticity of social networks
when coupling opinion and disease dynamics. We will again use the
COVID-19 pandemic as an example, and in this context, the SARS-
CoV-2 coronavirus.

After infecting a host, the natural immune response of the organism is
triggered. Here, antibodies aiming to impede viral replication or actively
clear it from the bloodstream compete with the virus’s vital cycle in
a dynamical equilibrium—which the antibodies not always can win.
See Perelson [58] and references therein for an in-depth analysis of the
physics of the immune response before viral infection. Another route to
immunization, this time without requiring being infected, is through
vaccination or prophylaxis (see Wang et al. [1] for an in-depth analysis
of the physics of vaccination). Just to illustrate the complexity behind
immune responses, there are several layers of immune memory; it does
matter which kind of immunity an individual has and when was their
last inoculation or exposure to the infectious agent (as, e.g., for dengue

17
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[59] and COVID-19 [60]). Either way, immunity can wane over time [61,
62], and thus individuals become susceptible again.

On the other hand, viruses evolve, and viral variants may emerge.
Evolutionary processes in viruses are complex by nature; the apparent
simplicity of their genome masks higher-order interactions between and
within genes, such that the effect of mutations is conditioned to others
occurring in different loci [6, 63]. Every time the virus replicates, it
has a chance to mutate and generate variants; when larger fractions
of the population get infected (in the context of a pandemic), the
odds of generating variants are higher. This evolutionary process is
further accelerated by the host’s immune response, especially when it
is insufficient to counteract viral replication [64–66]. While variants
with enhanced transmissibility, partial immune escape, and producing
fewer symptoms are likelier to be more successful in replacing current
dominant variants, this does not warrant that more lethal variants will
not emerge or persist [67]. Genomic surveillance, i.e., the tracking of
the mutational signatures of the variants driving an epidemic, is thus
crucial for an opportune enacting of restrictions [16, 40, 47, 68].

3.2 contagion

Contagion is the process of transmitting the pathogen causing infection.
It is, by definition, a stochastic process resulting from the probability
of having contagious contact, its duration, and the infectiousness of the
pathogen. Contagion can be direct when individuals infect individuals
through contagious contact or indirect when individuals are infected
through environmental reservoirs or asynchronous contacts with in-
fectious hosts. For a modeling guide separating direct from indirect
transmission the reader is referred to Benson et al. [69]. Respiratory
infectious diseases are typically transmitted by direct contagion through
droplets generated while breathing or talking, which after drying, are
inhaled as aerosols by the susceptible individual. While typical models
assume that a single copy of the pathogen per aerosol particle, in some
cases (for the largest aerosols), there can be thousands of copies and
thus have a non-negligible effect on the results. For a general model for
the risk of infection indoors, tailored but not limited to SARS-CoV-2,
see Nordsiek, Bodenschatz, and Bagheri [70].

Understanding aerosol dynamics was critical to assess the effectiveness
of physical distancing and mask-wearing. Note that these cannot be
evaluated in real settings, i.e., through randomized trials; not providing
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protective elements to the population is unethical. In particular, masks
were proved to outperform physical distancing in reducing the risk of
infection [71], and together with natural and mechanical ventilation,
could make office activities and classes safe in the context of a pandemic
[72].

Modelling the spreading dynamics of infectious diseases requires
capturing both the spreading mechanisms of the pathogen and the
characteristics of the contact network where the disease spreads. In the
following sections, we explore and analyze different models for disease
spread where contagion occurs in a compartmentalized population.

3.3 compartmental models for disease spread

One of the most popular approaches to studying disease spread is using
ODE compartmental models, as the SIR model [73]. These models parti-
tion the total population into disjoint states representing different levels
of disease and health. For the SIR model, these states are susceptible,
infectious, and removed. Upon contact with an infectious individual,
susceptible individuals may also become infectious. They contribute
to spreading the disease until recovering or dying, being either way
removed from the dynamics. The transitions between these states are
governed by mass-action-like rules leading to first-order kinetics and
exponential residence times in the infectious state. This model assumes
that once recovered/removed, individuals cannot be infected again and
thus do not take place in the dynamics anymore.

While useful, the information gathered through these models must
always be analyzed in context; many implicit hypotheses might not
always hold. For example, some diseases might have markedly long
latent and incubation periods, so the assumption of individuals turning
infectious upon contagion does not hold anymore. In that case, modelers
find it useful to include an extra compartment E for exposed individuals
[74]. Another hypothesis is that the whole population remains constant
at the time. This, however, is not true for diseases whose timescales
are similar to birth/death processes (e.g., measles) or for diseases so
severe that susceptible individuals are protected from contagion by
being curfewed (e.g., SARS/MERS) [12]. In these cases, a relevant
quantity for policymakers would be the total burden to the health
systems, so modelers would find it helpful to include extra H or ICU

compartments for severely ill individuals (distinguishing those merely
diseases from those requiring intensive care), or economist would wonder
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about the fraction of the population needed to be quarantined and the
losses/disruptions that this would cause.

As the reader can already suspect, limitations in compartmental mod-
els are often solved by introducing more compartments. This strategy
is relatively standard. For example, when diseases spread preferentially
across given groups of society, it might be helpful to replicate the SIR-
like structure for each required class. The complexity of the models,
however, does not increase proportional to the number of compartments
but to the square of it; in principle, we require cross-group infection
probabilities and a proxy for the strength of interaction between groups.
Interpreting the coupling strength between groups correctly is critical
for not overestimating the epidemiological parameters lumped into it.
Examples of situations solvable by employing multigroup models:

• Vaccine prioritization in diseases with age-dependent susceptibility
and infection fatality risk. For example, diseases like COVID-19
require prioritizing the elderly, who are at higher risk of being
severely ill if infected. In this case, models for the spreading
dynamics of COVID-19 required knowing the contact structure
of a given population to calculate the probability of susceptible
individuals of group i meeting infectious individuals of group j.
Examples are [54, 75, 76], and references in Wang et al. [1].

• Spatial heterogeneities and isolated communities within a popula-
tion. Here, metapopulation models as, e.g., [77–79] can separate
units where the spread is essentially homogeneous and link them
through a connectivity matrix (e.g., proportional to mobility).
This also includes models where each country is simulated inde-
pendently and simultaneously.

• Implementing gradual loss of immunity through cascades of com-
partments [80].

• Conduct groups, where different behavioral traits might produce
markedly different spread in the population. For example, groups
agnostic to the disease would not adhere to interventions nor get
vaccinated. A static approach to incorporate this is presented in
[11], where a population group never accepts the vaccine. Includ-
ing behavioral effects in simple models opens a wide variety of
dynamical regimes [1, 21, 25, 55].

Mathematically, the SIR model is represented by the following ordinary
differential equations:
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S′ = −βSI

N
, (3.1)

I ′ =
βSI

N
− γI, (3.2)

R′ = γI, (3.3)

where β and γ are respectively the spreading and recovery rate of
the disease. Although simple, the SIR model captures critical features
of an infectious disease outbreak: i) the initial exponential growth and
ii) the exponential slow-down of disease spread when large fractions of
the population have been infected and recovered (also known as herd
immunity effect). Once settled (i.e., stochastic effects aside), the initial
stages of an outbreak are characterized by the following. First, there is
no working cure or vaccine, and unless already infected and recovered,
individuals are susceptible to being infected. Second, the outbreak has
not reached most of the population, and thus (using the SIR formalism)
we can approximate S

N ≈ 1. The consequences of this assumption are
overarching; in the SIR formalism, this means that the system can be
reduced to a single differential equation. Replacing S

N ≈ 1 in eq. (3.2)
yields:

I ′ = βI − γI, (3.4)

The ODE above can be solved for I:

I ′ = I0 exp (γ (R0 − 1)) , (3.5)

where R0 = β
γ is the basic reproduction number of the disease, i.e.,

the average number of secondary infections generated by each index
case in a fully susceptible population. From this formula we can clearly
see that R0 = 1 marks a drastic change in the behavior of the solutions,
i.e., a phase transition: for R0 > 1, outbreaks grow exponentially, while
for R0 < 1 they die out exponentially fast. For the case R0 = 1, the
fixed point at I = 0 changes its stability. The rest of the equations are
decoupled and only "count" infected and recovered cases, and thus all
the dynamics of the system are captured by those of infection. This
is a first-order dynamical system, and thus all possible solutions are a
constant, or trajectories exponentially converging/escaping from it.

When larger fractions of the population have been infected, the
approximation S

N ≈ 1 does not hold anymore. In such a condition, it
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becomes increasingly hard for the pathogen to find a contact to infect.
Thus, the disease spreads at a rate given by the effective reproduction
number Reff = R0

S
N , which quantifies the average number of secondary

cases that each infectious individual generates in a population with
partial immunity. Again, the spread will continue while Reff > 1. The
phase transition here marks the herd immunity threshold; when the
susceptible pool has decreased enough so that Reff = 1, outbreaks will
on average die out due to the shielding effect of recovered individuals.
We can estimate the herd immunity threshold as

R0
S

N
= 1 ⇒ HIT = N − N

R0
= N

(
1 − 1

R0

)
(3.6)

In the following sections, we explore the effect of including different
kinds of infectious individuals and NPIs find rich dynamics even in linear
variations of the SIR model.

3.4 test-trace-and-isolate in ode compartmental mod-
els

One of the first interventions enacted after an outbreak is TTI; indi-
viduals are tested (based on symptoms or following other screening
plans), and the close contacts of those who tested positive are traced
and tested too. Ultimately, all those who test positive are instructed to
isolate, preventing them from further spreading the disease. The main
idea behind this is to truncate infection chains, thereby slowing the
spread ideally to the point where it is subcritical. However, there are
certain limits to TTI. First, not all contacts can be followed due to the
handling limit of manual contact tracers, the memory (and honesty)
of individuals when reporting contacts, or the notification threshold
for digital trace [81]. Second, there are good economic reasons not to
quarantine the whole population simultaneously.

While TTI can efficiently break chains of contagion if appropriately
done, its success depends on several factors. First, if the testing rate is
low, the tracing inefficient, or the disease’s base spreading rate too large,
contact tracing delays can be critical, and containment through TTI

impossible [30]. Second, the incidence of the disease can be too large to
be handled by manual tracers and thus start missing fractions of the
chains of contagions and the chains thereof. Third, TTI is imperfect. For
example, tests have limited sensitivity, testing criteria can arbitrarily
change depending on test availability, isolation mandates are not always
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followed, and within-household transmission is harder to control. We aim
to quantify these imperfections’ impact on the overall effectiveness of TTI

and describe the associated dynamical regimes and phase transitions. To
that end, we proposed two models to study the dynamics of a COVID-19-
like disease, i) a linear SIR-TTI model for the initial stages of an outbreak,
and ii) a nonlinear Susceptible-Exposed-Infectious-Removed (SEIR)-TTI

to study the mid-and long-term control of it, and a minimal nonlinear
SIR-TTI model to study delay-induced bifurcations in diseases with
longer spreading timescales than COVID-19.

3.4.1 Linear SIR-TTI model

Here, we introduce the TTI formalism in a linear version of an SIR

model. However, for it to resemble a COVID-19-like disease, it must
also incorporate the following possibilities:

• infections can be either symptomatic or asymptomatic,

• testing can be targeted to individuals with symptoms or applied
randomly for population screening,

• the timescales of testing and contact tracing are that of disease
spread (days), and

• an important fraction of the infections were acquired externally
and imported into the country/system.

We also considered the behavioral implications of having a test result;
individuals would adapt their behavior once tested, either voluntarily
(social altruism) or compulsory (quarantine mandates by health author-
ities). Either way, it requires us to distinguish between two kinds of
infections; those that are known and traced, and those that are unknown
and hidden.

Our model considers two kinds of infectious individuals: hidden H and
traced T (and their symptomatic and asymptomatic versions, denoted
by a superscript). We schematize the situation following the metaphor
of an iceberg (Fig. 3.1a). Hidden infections are the lower part of an
iceberg, which can be surfaced through testing and contact tracing. The
overall spread is slowed down by TTI as infectious individuals are moved
from the hidden to the traced pools, where infections proliferate much
slower. On the one hand, hidden infections spread when individuals are
unaware of being infectious and thus behave normally and spread with
a reproduction number RH

t . This parameter captures both the base
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Figure 3.1: Linear SIR model including test-trace-and-isolate. a: Block dia-
gram of our model, where solid blocks represent different SIR compart-
ments. We distinguish between hidden H and traced T infections; the
former are those infections where individuals are unaware of their state
and thus spread the disease faster. Once testing positive, individuals
become aware and are instructed to isolate. We represent these dynamics
as an iceberg, where test-trace-and-isolate surface hidden infections (as
schematized in b). Adapted from [28].

spreading potential of the disease and the behavior of the population so
that we could also express it (like in Chapter 5) as the product between
the basic reproduction number and the level of contagious contacts kt

of the population (i.e., the fraction of total contacts that bear the risk
of contagion): RH

t = R0kt.
On the other hand, due to behavioral changes and isolation mandates,

traced infections spread with a much smaller reproduction number RT
t .

This number captures both the in-household transmission of traced
infection (at rate νRH

t ) and the "leak" of infections that are generated
by non-reported (and unaware) contacts of traced cases (at rate ϵRH

t ).
Besides, we assume a nonzero influx of externally acquired infections
(Φ) that enter the system through the hidden pool.

Due to TTI, individuals from the hidden pool are tested (randomly
or due to symptoms), and the contacts of positive cases, in principle,
are followed and tested too. Random testing occurs at a rate λr. It
acts over the whole population that is not currently isolated (i.e., only
over the hidden pools). Symptom-based testing occurs at a rate λs,
which captures both the active search for symptomatic patients and
self-reporting. Contact tracing can handle a maximum of nmax cases
per day and with an efficiency η. Note that this absolute number
differs from the number of observed cases at the day N̂obs, so that the
maximum observed number of cases for which contact tracing breaks
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down also depends on the spreading parameters. The whole dynamics
is also represented as a block diagram (Fig. 3.1b). In the end, as we
do not need to differentiate between symptomatic and asymptomatic
infections in the traced pool, we have three state variables for infectious
individuals, T , Hs, Ha. Altogether, the system of differential equations
describing the dynamics is:

dT

dt
= Γ

(
νRH

t − 1
)

T︸ ︷︷ ︸
spreading dynamics

+ λsHs + λrH︸ ︷︷ ︸
testing

+ f (Hs, H)︸ ︷︷ ︸
tracing

, (3.7)

dH

dt
= Γ

(
RH

t − 1
)

H︸ ︷︷ ︸
spreading dynamics

− (λsHs + λrH)︸ ︷︷ ︸
testing

− f (Hs, H)︸ ︷︷ ︸
tracing

+ . . .

. . . ΓϵRH
t T︸ ︷︷ ︸

missed contacts

+ Φ,︸︷︷︸
external influx

(3.8)

dHs

dt
= Γ

(
RH

t sapH − Hs
)

︸ ︷︷ ︸
spreading dynamics

− (λs + λr)Hs︸ ︷︷ ︸
testing

− sapf (Hs, H)︸ ︷︷ ︸
tracing

+ . . .

. . . sapΓϵRH
t T︸ ︷︷ ︸

missed contacts

+ sapΦ,︸ ︷︷ ︸
external influx

(3.9)

Ha = H − Hs, (3.10)

f(Hs, H) = min
{

nmax, ηRH
t (λsHs + λrH)

}
. (3.11)

Again, this model is an extension of the linear version of the SIR

model discussed in the previous section (eq. 3.4), adding an external
influx of infections (acting as constant bias in the set of differential
equations). The dynamics for that simple system were described using
R0 as the control parameter, which separates controlled spread leading
to the natural eradication of the disease when R0 < 1 and exponential
growth when R0 > 1. This opens three questions for the linear SIR-TTI

model: i) what are the possible dynamical regimes observable in the
full model? ii) what is the effect of the slight non-linearity induced
by the limited contact tracing (TTI) capacity? and iii) what is the
stability of the equilibrium for both the cases when TTI is available or
overwhelmed?

We hypothesize that the possible dynamics are a stable equilibrium
set by the influx of infections, and two modes of exponential spread,
depending on whether or not the TTI capacity has been reached. Fur-
thermore, as spread happens in the hidden and traced pools, the system
is as stable as the least stable of the infectious pools. Given the primar-
ily linear nature of our model, we do not expect to find limit cycles.
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However, to formally answer these questions, we use techniques of linear
stability analysis and analyze the system for the two extreme cases
mentioned above.

3.4.1.1 Linear stability analysis

We study the controllability of an outbreak in our model using lin-
ear stability analysis, i.e., studying the fixed points of the system of
differential equations and whether perturbations around them will per-
sist or decay. These techniques are particularly adequate for our case;
our model’s only source of non-linearity is the TTI capacity limit in
eq. (3.11). However, for both extreme cases, i.e., assuming limitless
TTI (i.e., f(Hs, H) = ηRH

t (λsHs + λrH)) or overwhelmed TTI (i.e.,
f(Hs, H) = nmax), the system is linear. Thus the system of equations
(3.7)–(3.9) can be rewritten using a matrix formalism:

d

dt


T

H

Hs

 = A


T

H

Hs

+ b⃗, (3.12)

where A and b⃗ are fully determined by the model parameters. As
we assume parameters such that the system is irreducible, the matrix
A has full rank, and we can study the properties of the equilibrium
defined as

(T∞, H∞, Hs
∞)T = −A−1⃗b (3.13)

by analyzing the largest eigenvalue of A. In particular, we define
RH

crit as the largest RH
t such that the real part of µmax, the largest

eigenvalue of matrix A, is strictly negative. We propose a formulation
for the general case, which needs to be solved numerically, and study
some particular cases that allow for analytical forms for the eigenvalues.

3.4.1.2 Equilibrium equations for case numbers below TTI capacity

Assuming no random testing (i.e., λr = 0), the pair A and b⃗ defined
above are given by:

A =


Γ
(
νRH

t − 1
)

0 λs

(
1 + ηRH

t

)
ΓϵRH

t Γ
(
RH

t − 1
)

−λs

(
1 + ηRH

t

)
sapΓϵRH

t sapRH
t −ηsapRH

t λs − (λs + Γ)

 (3.14)
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and b⃗ by

b⃗ =


0

Φ

sapΦ

 (3.15)

The equilibrium −A−1⃗b is defined as follows:

T∞ =
λs

(
1 + ηRH

t

)
Γ
(
1 − νRH

t

) Hs
∞ (3.16)

H∞ = Hs
∞

λs

Γ
α (3.17)

Hs
∞ =

Φ
λs
(
1 + ηRH

t

)
( ϵRH

t

νRH
t − 1

+ RH
t

)
−
(
RH

t − 1
) ηRH

t + 1+Γ/λs
1−ξap

ηRH
t + 1

−1

(3.18)

Nobs
∞ = ΓνRH

t T∞ + λsHs
∞

(
1 + ηRH

t

)
. (3.19)

where α is defined as

α =
ξap + Γ/λs

1 − ξap , (3.20)

and provides a link between the asymptomatic fraction of the population
and the recovery-to-test ratio. To calculate Nobs

∞ in terms of model
parameters, we insert equations (3.16)– (3.18) into equation (3.19):

Nobs
∞ = λsHs

∞

(
1 + ηRH

t

)( 1
1 − νRH

t
��−1��+1

)
, (3.21)

= λsHs
∞

1 + ηRH
t

1 − νRH
t

. (3.22)

As we define RH
crit as the value for the hidden reproduction number RH

t

such that the largest eigenvalue of the linear system becomes positive,
this equilibrium is stable as soon as RH

t < RH
crit. We evaluate the value

of Hs
∞ in equation 3.22 using equation 3.18, and obtain:

Nobs
∞ =

Φ(
1 − νRH

t

)
( ϵRH

t

νRH
t − 1

+ RH
t

)
−
(
RH

t − 1
) ηRH

t + 1+Γ/λs
1−ξap

ηRH
t + 1

−1

.

(3.23)

From the expression above, we can gain some analytical insights on
the critical hidden reproduction number RH

crit, as this might be related
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to the values where Nobs
∞ diverges. We then evaluate the denominator

in equation 3.23 (assuming that RH
t ̸= 1

ν – which signals the value for
which the traced pool becomes unstable) and obtain

(RH
t −1)(νRH

t −1)(ηRH
t + 1+α)− (ϵRH

t +RH
t (νRH

t −1))(ηRH
t + 1) ̸= 0,

(3.24)

As this is a cubic equation for RH
t in principle, there is not much

analytical insight that we can acquire. However, two interesting cases
leading to a quadratic equation emerge: i) when the isolation within
household is perfect (i.e., ν = 0), and ii) when there is no leakage of
infections (i.e., ϵ = 0).

The first case leads to the following condition for RH
crit:

(RH
crit − 1)(ηRH

crit + 1 + α) − RH
crit(1 − ϵ)(ηRH

crit + 1) = 0, (3.25)

equivalently

ηϵ
(
RH

crit

)2
+ (α − η + ϵ)RH

crit − (1 + α) = 0. (3.26)

Given that the constant term in the quadratic equation above is
negative, we know that the solutions will have different signs and be
real numbers. RH

crit is then given by

RH
crit =

1
2ϵη

[√
(α − η + ϵ)2 + 4ϵη(1 + α) − (α − η + ϵ)

]
(3.27)

The second case (ϵ = 0) is slightly more interesting, as we can also
obtain a closed expression for the largest eigenvalue of A. Starting from
equation (3.14) and replacing ϵ = λr = 0, we evaluate the characteristic
polynomial p(µ) of A:

p(µ) =

∣∣∣∣∣∣∣∣∣∣
−Γ − µ 0 λs

(
1 + ηRH

t

)
0 Γ

(
RH

t − 1
)

− µ −λs

(
1 + ηRH

t

)
0 sapΓRH

t −ηsapRH
t λs − (λs + Γ) − µ

∣∣∣∣∣∣∣∣∣∣
.

(3.28)

Factoring the trivial root µ = −Γ, and writing the rest of the de-
terminant as an arbitrary polynomial in µ, p̃(µ) = µ2 − tr Ã µ + det Ã,
where
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tr Ã = RH
t (Γ − ηsapλs) − λs − 2Γ, (3.29)

det Ã = RH
t (λssapΓ (η + 1) − Γ (λs + Γ)) + Γ (λs + Γ) (3.30)

We require both eigenvalues to be negative and one to become zero
for the transition to an uncontrolled spread. This we can extract from
the conditions above:

RH
crit =

Γ (λs + Γ)
Γ (λs + Γ) − Γsapλs (1 + η)

=
1

1 − sap 1+η
1+Γ/λs

(3.31)

The second condition required to guarantee that this is the value we
search for comes from the trace (which is the second root and must be
negative). Replacing in 3.29, we obtain

1
1 − sap 1+η

1+Γ/λs

(Γ − ηsapλs) ≤ λs + 2Γ, (3.32)

further binding the two free parameters for TTI (i.e., λs and η).

λsηsapΓ(RH
t )2 +(sapλsΓ − ηsapλs − Γ(λs + Γ))RH

t + Γ(λs + Γ). (3.33)

Alternatively, we search for RH
crit as the value for RH

t for which the
observed cases in equilibrium N̂obs

∞ diverge. Replacing ϵ = 0 in the
equation for the denominator of N̂obs

∞ (eq. (3.24)), we obtain

(
νRH

t − 1
) [

RH
t

(
ηRH

t + 1
)

−
(
RH

t − 1
) (

ηRH
t + 1 + α

)]
= 0 (3.34)

Assuming that the trace pool is in an absorbing state (i.e., RH
t ≤ 1

ν ),
the above condition can be rewritten as:

RH
crit =

1 + α

α − η
=

1
1 − sap 1+η

1+Γ/λs

(3.35)

which coincides with the condition found above for the largest eigen-
value. This condition provides important analytical insights into the
determinants of the controllability of an outbreak. We can conclude the
following

• No testing (i.e., λs = 0) retrieves the classical phase transition for
epidemiological models RH

crit = 1.
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• The apparent symptomatic fraction of cases (sap) modulates the
effect of (symptom-based) TTI; if it is zero (i.e., all cases would
be asymptomatic), there is no way to increase the allowed RH

crit.

• There can be combinations of sap and symptom-based TTI for
which, theoretically, no other interventions would be ever required
(RH

crit → ∞). Note that this requires the conditions for control in
the traced pool to be also fulfilled, as we assumed RH

t ≤ 1
ν .

3.4.1.3 Equilibrium equations for case numbers above tracing capacity

Analyzing the case when the tracing capacity is exceeded (ηλsRH
t Hs

∞ >

nmax) requires rewriting the equations for the equilibrium (i.e., it is not
merely replacing η = 0). When TTI is overwhelmed, the number of cases
that can be detected via contact tracing is constant f(Hs, H) = nmax.
Then, the new versions of A and b⃗ in eq. (3.12) (using again λr = 0)
are:

A =


Γ
(
νRH

t − 1
)

0 λs

ΓϵRH
t Γ

(
RH

t − 1
)

−λs

sapΓϵRH
t sapΓRH

t − (λs + Γ)

 (3.36)

and b⃗ by

b⃗ =


nmax

Φ − nmax

sap(Φ − nmax)

 (3.37)

Again, as we assume parameters such that the system is irreducible,
the matrix A has full rank and the equilibrium (T∞, H∞, Hs

∞)T =

−A−1⃗b exists and is unique. The equilibrium pool sizes are:

T∞ =
λsHs

∞ + nmax
Γ
(
1 − νRH

t

) (3.38)

H∞ = Hs
∞

λs

Γ
α (3.39)

λsHs
∞ =

nmax

(
ϵRH

t

νRH
t − 1

+ 1
)

− Φ

(
RH

t − 1
)

α −
(

1 − ϵRH
t

1 − νRH
t

) (3.40)

Similarly, we can derive an equation for N̂obs
∞ :
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Nobs
∞ =

(
RH

t − 1
)

αnmax − Φ(
RH

t − 1
)

α −
(

1 − ϵRH
t

1 − νRH
t

) 1
1 − νRH

t

. (3.41)

Following the same reasoning provided in the previous section, we
search to identify the critical values RH

crit for which the system changes
its stability by analyzing the denominator of the equilibrium quantities.
The condition for candidates for RH

crit is:

(
1 − νRH

t

) [(
RH

t − 1
) (

1 − νRH
t

)
α −

(
1 − (ν + ϵ)RH

t

)]
= 0. (3.42)

The equation above differs from the equation characterizing RH
crit in

the order of the polynomial in RH
t ; we can find analytical solutions in

all cases. Assuming that RH
t ≤ 1

ν , we obtain

αν(RH
crit)

2 − (α(1 + ν) + (ν + ϵ))RH
crit + α + 1 = 0. (3.43)

From here, we note two things: First, two roots have the same sign,
and both have a positive real part. The condition for these to exist is
given by imposing that

(α(1 + ν) + (ν + ϵ))2 ≥ 4(α + 1)να.

Again, we evaluate the case ϵ = 0, as we get a closed form for the
eigenvalues of the Jacobian matrix of the system. Eq. (3.43) yields:

αν(RH
crit)

2 − (α + ν (1 + α))RH
crit + α + 1 = 0. (3.44)

The roots of this equation are given by

RH
crit =

1
2αν

(
α + ν (1 + α) ±

√
(α + ν (1 + α))2 − 4να (α + 1)

)
,

=
1

2αν

(
α + ν (1 + α) ±

√
α2 − 2να (1 + α) + (ν (1 + α))2

)
,

=
1

2αν
(α + ν (1 + α) ± |α − ν (1 + α)|) , (3.45)

and thus

RH
crit =

1
ν

∨ RH
crit =

1 + α

α
(3.46)
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To compare with the analytical result for the eigenvalues, we compute
the characteristic polynomial.

p(µ) =
(

Γ
(
νRH

t − 1
)

− µ
) ∣∣∣∣∣∣∣

Γ
(
RH

t − 1
)

− µ −λs

(
1 + ηRH

t

)
sapΓRH

t − (λs + Γ) − µ

∣∣∣∣∣∣∣ . (3.47)

We again write the second part using the equivalent submatrix Ã, in
a way that the associated polynomial p̃(µ) = µ2 − tr Ã µ + det Ã, with:

tr Ã = Γ
(
RH

t − 1
)

− (λs + Γ) , (3.48)

det Ã = Γ (λs + Γ)
(
1 − RH

t

)
+ λssapΓRH

t (3.49)

We now impose a root to be equal to zero so that det Ã = 0. The
resulting candidate for RH

crit is given by:

RH
crit =

1 + Γ/λs

−sap + 1 + Γ/λs
=

1 + Γ/λs

ξap + Γ/λs
=

α + 1
α

. (3.50)

By imposing the second root in this situation (µ = tr Ã) to be
negative, we obtain a condition for the required testing rate λs.

3.4.1.4 Linear stability of the full model

Generally, our system will operate between the two extremes described in
the previous sections. The fixed point of the system assuming limitless
TTI will tell us the expected N̂obs

∞ in situations where the current
incidence is below the nominal TTI limit and RH

t < RH
crit, and the fixed

point of the system assuming overwhelmed TTI will tell us what is the
maximum number of cases attainable for the approximation of limitless
TTI (and its stability) to be valid.

To analyze the full system, we first calculate RH
crit when there is

no contact tracing (i.e., η = nmax = 0). This value, hereafter RH,1
crit ,

tells us the maximum hidden reproduction number RH
t for which all

outbreaks die out naturally (in a situation with testing at rates λs and
λr). This case coincides with the situation where contact tracing has
reached its maximum nmax ̸= 0, and differs only on the fixed point, as
discussed previously. Then, we calculate RH

crit for situations with no
contact tracing limit (i.e., η ̸= 0 and nmax → ∞). This value, hereafter
RH,2

crit , tells us the maximum hidden reproduction number RH
t for which

contact tracing can break contagion chains efficiently. Beyond this
point, given current testing and spreading conditions, contact tracing
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cannot break contagion chains on time; thus, the spread is supercritical.
Altogether, these values define three regimes: stable (RH

t ≤ RH,1
crit ),

metastable (RH,1
crit ≤ RH

t ≤ RH,2
crit ), and unstable (RH

t ≥ RH,2
crit ).

Table 3.1: Model parameters and values for simulations (linear SIR-TTI model).

Parameter Meaning Value Units

Γ Recovery rate 0.1 day−1

ξap Apparent asymptomatic ratio 0.32 −

sap Apparent symptomatic ratio 0.68 −

λs Symptom-driven testing and
self-reporting rate

0.25 day−1

λr Random testing rate 0 day−1

ϵ Leak of infections 0.1 −

ν Traced infection (secondary at-
tack rate)

0.1 −

RH
t Hidden reproduction number 0.5–3.5 −

η Contact tracing efficiency 0.66 −

For the parameter values described in Table 3.1, we plot the fixed
points for both overwhelmed and limitless TTI and their critical RH

t

values RH
crit (see Fig. 3.2). In the unconditionally stable zone (RH

t ≤
RH,1

crit ), only a stable fixed point exists; as this is the unconditionally
stable regime, contact tracing always will asymptotically be within
capacity.

In the second, metastable regime (RH,1
crit ≤ RH

t ≤ RH,2
crit ), things are

more interesting. First, the solid blue curve represents the value for
N̂obs

∞ when TTI is available. The dashed red line represents the value
for N̂obs

∞ when TTI is overwhelmed. When these two curves meet, the
interpretation of both is lost; no more equilibrium (see Fig. 3.2). Between
the value at which they meet and RH,2

crit , there is no fixed point, as this
equilibrium also signals what the maximum incidence N test

max is, i.e., when
the incidence reaches the TTI capacity, and we would have to change
the system we analyze, we had already crossed the red line and are thus
on the upper part of the graph, i.e., case numbers will grow from then
on.
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Figure 3.2: Fixed points and linear stability of the SIR-TTI model. a: Based
on the critical values RH

crit for a system without and with TTI (respectively,
RH,1

crit and RH,2
crit ), we can define three zones of stability: an uncondition-

ally stable regime for RH
t ≤ RH,1

crit , an unconditionally unstable regime
for RH

t ≥ RH,2
crit , and a metastable regime when RH

t ranges between
these two values. In such a regime, two attractors exist: one (stable
attractor) where case numbers stabilize (light orange, solid), and another
(unstable attractor) that delimits the maximum incidence that health
authorities can handle (dark orange, dashed). In this metastable regime,
control can be lost through two pathways/tipping points, illustrated
in a situation where we start from the point marked with a star: (1),
the hidden reproduction number crossing the threshold RH,2

crit due to a
permanent behavioral change, or (2) a sudden influx of cases driving
current incidences to cross the unstable attractor. b: In terms of the
system’s eigenvalues, we change between two exponential modes, joined
by a phase of self-acceleration featuring faster-than-exponential growth
in case numbers.

3.4.1.5 A metastable regime at low case numbers

In the previous section, we determined the critical values of RH
t = RH

crit
such that the spread of the disease would be uncontrolled for different
conditions of TTI. These values, which denote phase transitions from a
physicist’s point of view, can be understood as epidemiological "tipping
points"; although reversible, the non-linear nature of disease spread
makes it harder to return to controlled spread, and the system exhibits
some sort of hysteresis. We can define two tipping points. The first
tipping point is crossed when the hidden reproduction number becomes
too large to be controlled by current TTI capabilities, no matter what
the precise value of nmax is (cf. to the arrow marked with (1) in Fig. 3.2).
The first tipping point is crossed when the current incidence surpasses
the TTI capacity for contact tracing (cf. to the arrow marked with (2) in
Fig. 3.2). In any case, as parts of the infection chains cannot be stopped
on time, these start their own hidden chains, and the spread "self-
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accelerates" until settling on a larger mode of exponential growth. This
results from the slight non-linearity of our model, switching between
two modes of exponential growth.

We will refer to the zone where RH,1
crit ≤ RH

t ≤ RH,2
crit as a metastable

regime at low case numbers; here, spread is virtually stable (in the linear
approximation of disease spread), if and only if the incidence at any
time is below the TTI capacity limit. Moreover, while staying in this
regime, the hidden reproduction number allowed for a controlled spread
is larger than when the TTI capacity is overwhelmed (for having a
controlled spread in that case, we would require RH

t ≤ RH,1
crit ). Therefore,

the metastable regime at low case numbers offers a sweet spot for
policy planning, which can be exploited to plan effective intermittent
interventions.

3.4.2 A nonlinear SEIR-TTI model for intermittent interventions

After the initial stages of an outbreak, i.e., settlement and exponential
spread, the approximation S/N = 1 no longer holds, and nonlinear
effects kick in. Besides, incidence levels can also be high enough to merit
action, such as curfews and lockdowns, to reduce the spreading rate
of the disease and current incidence levels. Therefore, we need a more
complex model. We modify the linear SIR-TTI model into a nonlinear
SEIR-TTI model, including the population immunity effects on reducing
the spreading rate (i.e., S

N ) and a single delay for contact tracing. We
use this model to study the effect of lockdowns and circuit breakers,
i.e., recurrent lockdowns of short duration, aiming to profit from the
metastable regime at low case numbers.

Including a compartment for those individuals exposed to the virus
and are infected but not yet infectious (E), allows us to better represent
the dynamics of COVID-19. Effectively, it slows down the nominal
spread, as individuals do not become infectious immediately but after a
period of latency (which ends at rate ρ). In this model, we also assume
that once the contact tracing capacity is reached, the testing criteria
are also impaired and become more specific, thus lowering the overall
detection rate through testing. Furthermore, a fraction η of the contacts
of positively tested individuals are traced with a delay of τ . Finally, we
assume that testing and contact tracing have a limited capacity.

While this model helps study the effectiveness of intermittent in-
terventions and calculate their magnitude so that the system can be
brought to the metastable regime at low case numbers, it is too complex
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Figure 3.3: Block diagram of the SEIR-TTI model in Chapter 5. Solid blocks
represent different SEIR compartments. We distinguish between hidden
H and quarantined Q infections; the former are these infections where
individuals are unaware of their state and thus spread the disease faster.
Once testing positive, individuals become aware and are instructed to
isolate.

to analyze the singular effects of delays and testing. We explore the
dynamics and stability of the SEIR-TTI model in depth in Chapter 5.
However, in the next section, we analyze the dynamics, stability, and
bifurcations of a simpler version of it.

3.4.3 A nonlinear minimal SIR-TTI model with waning immunity and
delayed contact tracing.

Here we describe a simplified version of the TTI model, with contact
tracing delay and effective isolation of individuals. Susceptible individ-
uals (S) become infectious upon contact with a hidden infectious one
(I) at a rate proportional to RH

t . Hidden infectious individuals can be
tested or self-report at a rate λ and recover at a rate γ. A fraction η of
the contacts of those individuals detected in t − τ that have not been
tested nor recovered are detected by contact tracing. We assume that
both tested and traced individuals are perfectly isolated and thus can
be moved to the Recovered pool R.

Although intuitive, including delayed contact tracing complicates the
algebra in the model. In particular, mechanistically, if the tracing of
contacts and their testing is delayed, individuals might have already
transitioned between compartments. In other words, a fraction of these
new cases could have been tested or self-reported due to symptoms or
even recovered by the time of tracing. In the following subsections, we
explore the implications of these possibilities on the model equations.
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Figure 3.4: Minimal non-linear SIR-TTI model with waning immunity and
delayed contact tracing. Solid blocks represent different SIR com-
partments. Compared to the model in Fig. 3.3, this model assumes i)
perfect isolation of tested and traced individuals (i.e., ν = ϵ = 0), ii) no
different classes for infectious individuals (i.e., no distinction between
symptomatic and asymptomatic), iii) slow spreading dynamics and com-
paratively shorter latent period (i.e., E compartment is excluded), and
iv) waning of natural immunity.

3.4.3.1 Individuals changing compartments by the time of tracing

As discussed above, TTI traces and tests the contacts of positively
tested individuals. However, when contact tracing occurs with a delay,
individuals might have already been detected by testing or stopped
being infectious when contacted by health authorities. So, if we include
a delay in our system of differential equations, we must correct for this
possibility; contact tracing will detect (and remove from the infectious
pool) only those contacts that remain there.

As our model moves individuals from one compartment to another
at fixed transition rates (which produce exponential residence times),
we can conceptualize the situation as the emptying of a compartment
through first-order kinetics. Following the formalism in Contreras et al.
[20], let s ∈ Iτ = [0, τ ] be the time elapsed from the moment of testing.
The emptying of the normalized infectious compartment due to recovery
and testing follows, as in the classical SIR model, a mass-action-inspired
first-order kinetics:

dX

ds
= −(λ + γ)X, X(0) = 1 (3.51)

The solution of (3.51) is given by X(s) = exp (−(λ + γ)s). Therefore,
we define χτ as the fraction of the traced individuals remaining in the
X compartment at s = τ :

χτ = exp (−(λ + γ)τ ) . (3.52)
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3.4.3.2 Modeling the number of traced individuals

In the TTI framework, the contacts of those individuals who tested
positive are followed after τ days and subsequently tested. However, the
infectious period of the index case (and thus the number of offspring
infections they generate) is truncated by testing; as they are removed
before recovering, they produce, on average, fewer new cases than
not-tested individuals. In the presence of symptom-based testing, the
average residence time in the hidden infectious pool is 1

γ+λ , while in
natural conditions, it is 1

γ .
Why does this matter? Let N test (t − τ ) be the total individuals tested

τ days ago. If they spent their whole infectious period in the hidden
pool, these would generate RH

t N test (t − τ ) new cases. However, as these
were detected by testing, they spent only a fraction of their time in the
hidden pool. Thus, the amount of new cases they generate is reduced
proportionally to the fraction of time they remain infections, i.e., γ

γ+λ .
Altogether, assuming that contact tracing at time t only detects a
fraction η of the new cases generated, the number of cases detected via
contact tracing is given by:

N tracing = η · λχτ I(t − τ ) · γ

γ + λ
RH

t . (3.53)

The three contributions to N tracing denote (from left to right), contact
tracing efficiency, the number of individuals detected by testing τ days
ago that remain infectious by the time of tracing, and their expected
number of secondary infections.

3.4.3.3 Model equations

The model above is thus described by the following system of DDE:

dS

dt
= − γRH

t SI︸ ︷︷ ︸
contagion

+ ωR,︸︷︷︸
waning imm.

(3.54)

dI

dt
= γRH

t SI︸ ︷︷ ︸
contagion

− λI︸︷︷︸
testing

− N tracing︸ ︷︷ ︸
tracing

− γI,︸︷︷︸
recovery

(3.55)

dR

dt
= γI︸︷︷︸

recovery

+ λI︸︷︷︸
testing

+N tracing︸ ︷︷ ︸
tracing

− ωR.︸︷︷︸
waning imm.

, (3.56)

(3.57)
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Important: Here, S, I, and R denote fractions of the population.
This induces a reinterpretation of the parameters and the "mass balance"
condition, which now is S + I + R = 1. Note that the definition for
N tracing in eq. 3.53 facilitates the algebra at the cost of the assumption
S = 1. Therefore, it overestimates the number of infections generated
by each case detected by testing.

3.4.3.4 Fixed points and expected dynamics

Here we provide a linear stability analysis of the minimal non-linear
SIR-TTI model with waning immunity and delayed contact tracing. First,
the system can be reduced to two equations, as R = 1 − S − I. Then,
we study the system’s fixed points given by equations 3.54 and 3.55.
We trivially find the disease-free equilibrium

E0 = (1, 0) , (3.58)

which is, in general, unstable (seen as a 2D system), or a saddle in the
(S, I, R) plane; if starting with zero infections and a nonzero immune
population, their immunity will wane until asymptotically approaching
(1,0,0). The nontrivial, endemic equilibrium E∗ = (S∗, I∗) is given by:

S∗ =
1

γRH
t

(
λ + γ + ηλχτ

γRH
t

γ + λ

)
, (3.59)

I∗ =
ω (1 − S∗)

γRH
t S∗ + ω

. (3.60)

Note that RH
t needs to be large enough for the equilibrium to be

feasible (i.e., that S∗ ≤ 1). In this system, we expect two asymptotic
behaviors. First, when τ = 0, the model behaves as a SIRS model.
Thus, the endemic equilibrium is globally asymptotically stable when
the reproduction number is large enough [82]. Second, when τ → ∞,
the term χτ becomes close to zero. Thus, the system’s stability does
not depend on the delay term and behaves as a SIRS model again,
leading to a globally asymptotically stable endemic equilibrium (i.e.,
no periodic orbits [82]). However, could some values of τ lead to delay-
induced sustained oscillations in this system? In the next section, we
will look for the conditions for purely imaginary eigenvalues to emerge,
i.e., whether τ can trigger a Hopf bifurcation.
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3.4.3.5 Linear stability and conditions for Hopf bifurcations

In this section, we explore the conditions for Hopf bifurcations to occur
using the time delay τ as a control parameter. To that end, we assume
that RH

t is large enough so that the endemic equilibrium E∗ exits. Then,
as described in Section 2.3.1, we linearize the system of equations and
rewrite it as:

x′ = Ax(t) + Bx(t − τ ), (3.61)

where x = (S, I), and matrices A and B, evaluated in E∗, are given by

A =

a c

b d

 =

−γRH
t I∗ − ω −γRH

t S∗ − ω

γRH
t I∗ γRH

t S∗ − λ − γ

 , (3.62)

and

B =

0 0

0 ε

 =

0 0

0 −ηγλχτ
RH

t
γ+λ

 , (3.63)

The linear stability of the system is governed by the transcendental
characteristic equation:

p(µ) = det
(
A − µI2×2 + e−µτ B

)
, (3.64)

= µ2 − (a + d)µ + ζ + εe−µτ (a − µ) = 0, (3.65)

where ζ = det A. We know that for the case τ = 0, E∗ is globally
asymptotically stable [82]. For the case τ ̸= 0, we then look for purely
imaginary solutions, i.e., µ = iϕ. We replace the ansatz µ = iϕ in
eq. 3.65 and separate real and imaginary parts to obtain the system
below:

Re (p(iϕ)) = 0 ⇔ ε (a cos (ϕτ ) − ϕ sin (ϕτ )) = −ζ + ϕ2, (3.66)

Im (p(iϕ)) = 0 ⇔ −ε (a sin (ϕτ ) + ϕ cos (ϕτ )) = (a + d)ϕ.
(3.67)

To gain further analytical insights, we can add the square of equa-
tions 3.66 and 3.67, and use the substitution z = ϕ2 to obtain:

z2 +
(
(a + d)2 − 2ζ − ε2

)
z + ζ2 − ε2a2 = 0. (3.68)
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Although we can find an analytical solution for z in equation 3.68,
this is of not much use, as parameters in eqs. 3.62 and 3.63 also depends
on τ (which we aim to determine). Nonetheless, we can determine and
narrow feasible intervals for other parameters from the conditions for
the existence of roots. By numerically solving 3.66–3.67 for ϕ and τ , we
calculate the stability diagram of the system in the (RH

t , τ ) plane. All
other parameters are listed in Table 3.2. We use the MATLAB functions
fsolve to find the roots and recursively build Fig. 3.5. However, finding
these boundaries is not enough to determine whether a Hopf bifurcation
is triggered, as we also need to know at what speed the real part of
the eigenvalues crosses the imaginary axis. We can formally do this by
analyzing the derivative of the real part of the eigenvalues on the line
where µ = iϕ.
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Figure 3.5: Stability boundary and onset of Hopf bifurcation in the minimal
SIR-TTI model. a: Curves denote the stability boundary for the system,
i.e., pairs

(
RH

t , τ
)

for which the eigenvalues are purely imaginary and

the sign of Re
(

dµ
dτ

)−1
when crossing the imaginary axis. We see the

onset of two Hopf bifurcations for RH
t ≥ 8.89, joined in a cusp point of

coordinates (Rcusp, τcusp) ≈ (8.89, 135.48). The vertical line denotes the
cut analyzed in panel b, analyzing the endemic equilibrium (S∗, I∗) of
the system and its stability for RH

t = 10.

Following the results in Section 2.3.1, to demonstrate that the eigen-
values cross the imaginary axis with a nonzero speed, we can calculate
Re

(
dµ
dτ

)−1
instead. To do so, we differentiate p(µ) in equation 3.65 and

obtain:

dµ

dτ

(
2µ − (a + d) − εe−µτ (aτ + 1 − µτ )

)
−µ

(
d(a + d)

dτ
+ e−µτ

(
aε +

dε

dτ
− µε

))
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+
dζ

dτ
+

d(aε)

dτ
e−µτ = 0. (3.69)

We can rewrite equation 3.69 as:

(
dµ

dτ

)−1
=

2µ − (a + d) − εe−µτ (aτ + 1 − µτ )

µ
(

d(a+d)
dτ + e−µτ

(
aε + dε

dτ − µε
))

−
(

dζ
dτ + d(aε)

dτ e−µτ
) .

(3.70)

We evaluate it numerically along the critical lines, using the values
in Table 3.2 again. We then confirm that what we have is a Hopf
bifurcation and can delimit the stability boundaries in the RH

t − τ plane,
where the cusp point coordinates are (Rcusp, τcusp) ≈ (8.89, 135.48)
(Fig. 3.6a). We illustrate the dynamics in each regime by plotting some
of the time series in Fig.3.6b. Time series were generated in MATLAB
using the dde23 solver with RelTol = AbsTol = 10−12, starting from
(S, I)

∣∣∣∣
t=0

= 0.9999(S∗, I∗). As the formulation for N tracing in eq. 3.53
may overestimate the number of individuals to be removed from the
I compartment, we stop the integration when the amplitude of the
oscillations deviated more than a 20% from I∗. What would happen if
we did not detect these events?

The overestimation of the fraction to be removed from the I com-
partment via contact tracing can lead to negative values for I, thereby
violating the non-negativity constraint of our system of equations and
rendering the model unphysical. To illustrate this, we proceed as follows.
For a fixed value of RH

t larger than Rcusp, we do a vertical cut on the
parameter space and study the nature of the solutions for different
values of τ in the different stability zones. For the experiment, we create
an array of values for τ . We use as the initial condition (and constant his-

Table 3.2: Model parameters and values for simulations (minimal nonlinear SIR-TTI
model).

Parameter Meaning Value Units

γ Recovery rate 1/360 day−1

τ Contact tracing delay 0–350 day

λ Testing and self-reporting rate 1/360 day−1

ω waning immunity rate 2/360 day−1

RH
t Hidden reproduction number 5–30 −

η Contact tracing efficiency 1 −
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Figure 3.6: Stability of the endemic equilibrium E∗ in the minimal SIR-TTI

model. a: Local stability boundary as a function of the contact tracing
delay τ and the hidden reproduction number RH

t . b: Time series for
different values of τ when RH

t = 10. We see that in the blue region in a,
E∗ is Locally Asymptotically Stable (LAS), while it turns unstable inside
of the yellow region. At RH

t = 10, the boundary of the yellow region is
given by τlower ≈ 84.45 and τupper ≈ 191.38.

tory function) for the i’th simulation, the endemic equilibrium for τi−1.
We let the system run for 500 years and detect when solutions become
unphysical (e.g., negative or larger than one). Within the time frame
analyzed, all solutions eventually yield unphysical solutions (Fig. 3.7).
However, the results are the same if we start the swipe starting from
the minimum or the maximum values of τ . While this suggests that
hysteresis can be ruled out, it is not formal proof that the bifurcation
is supercritical. To sum up, mathematical and physical conditions for a
Hopf bifurcation are met, but the nature of this bifurcation cannot be
ascertained as the model becomes unphysical before approaching the
limit cycle.

If simple models as the minimal SIR-TTI model can feature such rich
dynamics, what can we expect when adding the next layer of complexity,
i.e., modeling human behavior?

3.5 self-regulation of contagious contacts and vac-
cination willingness

One of the major challenges of theoretical epidemiology is incorporating
human behavior into disease spread models [4, 8, 9]. Why is this so
important? As individuals become aware of the spread of the disease,
e.g., by receiving information or being sick, they update their opinion,
perception of risk, and behavior, readjusting contact patterns and
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Figure 3.7: Validity of the SIR-TTI model in the unstable regime. After the
Hopf bifurcation is triggered, oscillatory behavior renders our model
unphysical in a finite time. We performed a vertical cut on the stability
boundary described in Fig. 3.6a and determined the fraction of time (with
respect to the total simulation time, 500 years) that a solution starting
from a slightly perturbed endemic equilibrium would be physically feasible.
We performed this swipe by recursively adapting the endemic equilibrium
to E∗ (τi−1) for the i’th simulation. Results are robust and independent
of the direction of the swipe, potentially hinting at a supercritical Hopf
bifurcation.

compliance to interventions. Ultimately, this affects disease spread.
The need to incorporate human behavior explicitly in disease models
became apparent in the avian influenza and COVID-19 pandemics,
where individuals drastically (and permanently) changed their behavior
to cope with new threats.

However, incorporating human behavior in compartmental ODE
models is not straightforward. We need to define who would react, to
what they will react, and how they will react. First, we must capture
potential heterogeneities in the population that can lead to different
behavior. For example, in an age-stratified population leading to different
beliefs or susceptibility to developing a severe course, or in a society
with high inequality, do all social groups have the same resources
to comply with official mandates or access trustworthy information?
Second, we need to define a measure of risk or information index to
which the population as a whole would react. For example, risk measures
can be related to the current incidence or hospital occupancy from a
"broadcast media" perspective or to the number of neighbors that are
infected/hospitalized from a network/spatial perspective. Lastly, we
need to define the effect of the behavior changes on the disease spread,
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e.g., via a feedback loop between the perceived risk and their exposure
to it.

Models dealing with any of the points above have been reported to
feature rich dynamics. For example, populations with different suscep-
tible classes feature synchronization in disease spread [83]. Resonance
phenomena emerge from temporal contact patterns [84] or between
interventions and the seasonal cycle of diseases [55]. People’s opinion
also forms clusters and even reshapes the contact network, thereby
affecting disease spread [85]. Self-protective behavior, such as avoidance
of the sick, can lead to changes in the social network and thereby de-
creases disease spread [86]. Seasonally forced models for disease spread
in single and metapopulations show complex dynamics as phase locking
and chaos (with realistically fewer infections) [87]. Chaos has also been
reported in models incorporating behavior, and seasonality [21, 25].

Here, we illustrate the dynamics observable when including behavioral
feedback loops for the self-regulation of contacts and vaccine willingness.

3.5.1 Behavioral feedback loops

One way to implement human behavior in mean-field compartmental
models is through feedback loops. Particularly, using the probability of
being infected and progressing to a severe course of the disease as risk
measure, this feedback loop connects the current incidence (or hospital
occupancy) with the force of infection or the perceived reward for being
vaccinated. However, how this feedback loop should look like remains
an open question.

Classical formulations (as, e.g., [25] and references therein) require
three ingredients: i) how do people react to their perceived risk, ii)
what people mind to build up their perceived risk or opinion, and iii)
how do people learn this risk over time (or build their opinion). Model
including these feature behavior-driven sustained oscillations (through
a Hopf bifurcation induced by the delay kernel), and when coupled to
seasonal forcing, even chaos and period doubling cascades to it [21, 22,
24]. In Chapter 7 we implement a data-inspired functional form for the
behavioral feedback loop and use our model to assess different scenarios
in the face of Winter 2022/2023.
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3.5.2 Long-term wave patterns and predictability

A simple Susceptible-Infectious-Recovered-Susceptible (SIRS) model
with mitigation feedback loop, as that in [21, 25], can have behavior-
driven waves even in the absence of seasonality. These are triggered by
a Hopf bifurcation which emerges when the reaction delay is sufficiently
large. This induces a new way to understand disease spread as a "epi-
demiological oscillator", where the median mitigation delay τ of the
memory kernel sets the natural frequency for oscillations.

However, when including seasonality, the epidemiological oscillator
is subject to an external forcing, implying that we can study it as a
driven oscillator (as, e.g., the van der Pol oscillator). This is thoroughly
analyzed in Wagner [21].

3.5.3 Short-term rebound waves

In the context of disease spread, successful mitigation measures lead to
a decrease in current incidence levels—not only in the targeted disease,
but all diseases effected by the mitigation measures. However, when
these measures are sustained for enough time, the levels of immunity
among the population also decline (e.g., through waning immunity or
demographic renewal). Therefore, when these measures are lifted, the
population faces the disease with an excess susceptibility. As a result,
the effective reproduction number of the disease is larger than expected
and an atypical "rebound" wave emerges. How high these waves are
depends on properties of the disease, the process and rates at which
immunity is lost, and the particular mitigation measures.

Interventions that are active for a period comparable to the spreading
rates of the disease can lead to resonance (or harvest it to be more
effective). For example, if intermittent restrictions are acted and lifted
such that the freedom days coincide with the onset of symptoms, then
disease spread is accelerated (e.g., as discussed in Dehning et al. [88]
regarding football matches in a championship). On the other end, lifting
long-standing restrictions needs to take into account seasonality and
other effects potentially leading to major surges in case numbers. The
dependency with seasonality is not straightforward, and dominates over
any other spreading parameters. This is thoroughly analyzed in Dönges
[55].
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After SARS-CoV-2 started spreading rapidly around the
globe in early 2020, many countries have successfully
curbed the initial exponential rise in case of numbers

(“first wave”). Most of the successful countries employed a mix of
measures combining hygiene regulations and mandatory physical
distancing to reduce the reproduction number and the number of
new infections1,2 together with testing, contact tracing, and iso-
lation (TTI) of known cases3,4. Among these measures, those
aimed at distancing—like school closures and a ban of all
unnecessary social contacts (“strict lockdown")—were highly
controversial, but have proven effective1,2. Notwithstanding,
distancing measures put an enormous burden on society and the
economy. In countries that have controlled the initial outbreak,
there is a strong motivation to relax distancing measures, albeit
under the constraint to keep the spread of COVID-19 under
control5,6.

In principle, it seems possible that both goals can be reached
when relying on the increased testing capacity for SARS-CoV-2
infections if complemented by contact tracing and quarantine
measures (e.g., like TTI strategies4); South Korea and Singapore
illustrate the success of such a strategy7–9. In practice, resources
for testing are still limited and costly, and health systems have
capacity limits for the number of contacts that can be traced and
isolated; these resources have to be allocated wisely to control
disease spread10.

TTI strategies have to overcome several challenges to be
effective. Infected individuals can become infectious before
developing symptoms11,12, and because the virus is quite infec-
tious, it is crucial to minimize testing-and-tracing delays13. Fur-
thermore, SARS-CoV-2 infections generally appear throughout
the whole population (not only in regional clusters), which hin-
ders an efficient and quick implementation of TTI strategies.

Hence, these challenges that impact and potentially limit the
effectiveness of TTI need to be incorporated together into one
model of COVID-19 control, namely (1) the existence of
asymptomatic, yet infectious carriers14,15—which are a challenge
for symptom-driven but not for random-testing strategies; (2) the
existence of a certain fraction of the population that is opposed to
taking a test, even if symptomatic16; (3) the capacity limits of
contact tracing and additional imperfections due to imperfect
memory or non-cooperation of the infected. Last, enormous
efforts are required to completely prevent the influx of COVID-
19 cases into a given community, especially during the current
global pandemic situation combined with relaxed travel
restrictions5,17. This influx makes virus eradication impossible; it
only leaves a stable level of new infections or their uncontrolled
growth as the two possible regimes of disease dynamics. Thus,
policymakers at all levels, from nations to federal states, all the
way down to small units like enterprises, universities, or schools,
are faced with the question of how to relax physical distancing
measures while confining COVID-19 progression with the
available testing and contact-tracing capacity18.

Here, we employ a compartmental model of SARS-CoV-2
spreading dynamics that incorporates the challenges (1)–3). We
base the model parameters on literature or reports using the
example of Germany. The aim is to determine the critical value
for the reproduction number in the general (not quarantined)
population (RH

crit ), for which disease spread can still be contained.
We find that—even under optimal use of the available testing and
contract tracing capacity—the “hidden” reproduction number RH

t
has to be maintained at sufficiently low levels, namely RH

t <R
H
crit �

2 (95% CI: 1.42–2.70). Hence, hygiene and physical distancing
measures are required in addition to TTI to keep the virus spread
under control. To further assist the efficient use of resources, we
investigate the relative merits of contact tracing, symptom-driven
testing, and random testing. We demonstrate the danger of a

tipping point associated with the limited capacity of tracing
contacts of infected people. Finally, we show how either testing
scheme has to be increased to re-stabilize disease spread after an
increase in the reproduction number.

Results
Model overview. We developed a SIR-type model19,20 with
multiple compartments that incorporates the effects of test-trace-
and-isolate (TTI) strategies (for a graphical representation of the
model see Fig. 1 and Supplementary Fig. 1). We explore how TTI
can contain the spread of SARS-CoV-2 for realistic scenarios
based on the TTI system in Germany. A major difficulty in
controlling the spread of SARS-CoV-2 are the cases that remain
hidden and behave as the general population does, potentially
having many contacts. We explicitly incorporate such a ”hidden"
pool H into our model and characterize the spread within by the
reproduction number RH

t , which reflects the population’s contact
behavior. Cases remain hidden until they enter a ”traced" pool
through testing or by contact tracing of an individual that has
already been tested positive (see Fig. 1). All individuals in the
traced pool T isolate themselves (quarantine), reducing the
reproduction number to RT

t . Apart from a small leak, novel
infections therein are then assumed to remain within the traced
pool. We investigate both symptom-driven and random testing,
which differ in the clinical characteristics of the cases they can
reveal: random testing can, in principle, uncover even asympto-
matic cases, while symptom-driven testing is limited to sympto-
matic cases willing to be tested. Parameters describing the
spreading dynamics (Table 1) are based on the available literature
on COVID-1915,16,21–23, while parameters describing the TTI
system are inspired by our example case of Germany wherever
possible.

We provide the code of the different analyses at https://
github.com/Priesemann-Group/covid19_tti (https://doi.org/10.
5281/zenodo.4290679). An interactive platform to simulate
scenarios different from those presented here is available on
the same GitHub repository.

TTI strategies can in principle control SARS-CoV-2 spread. To
demonstrate that TTI strategies can, in principle, control the
disease spread, we simulated a new outbreak starting in the
hidden pool (Fig. 2). We assume that the outbreak is unnoticed
initially, and then evaluate the effects of two alternative testing
and contact tracing strategies starting at day 0: Contact tracing is
either efficient, i.e., 66% (η= 0.66) of the contacts of a positively
tested person are traced and isolated without delay (“efficient
tracing”), or contact tracing is assumed to be less efficient,
identifying only 33% of the contacts (“inefficient tracing”). In
both regimes, the default parameters are used (Table 1), which
include symptom-driven testing with rate λs= 0.1, and isolation
of all tested positively, which reduces their reproduction number
by a factor of ν= 0.1.

An efficient contact tracing rapidly depletes the hidden pool H
and populates the traced pool T, and thus stabilizes the total
number of infections T+H (Fig. 2a). The system relaxes to its
equilibrium, which is a function of TTI and epidemiological
parameters (Supplementary Eqs. (3)–(5)). Consequently, the

observed number of daily infections (N̂
obs

) approaches a constant

value (Fig. 2b), while the observed reproduction number R̂
obs
t

approaches unity (Fig. 2c), further showing that effective TTI can
be sufficient to stabilize the disease spread with RH

t ¼ 1:8.
In contrast, inefficient contact tracing cannot deplete the

hidden pool sufficiently quickly to stabilize the total number of
infections (Fig. 2d). Thus, the absolute and the observed daily
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number of infections N continue to grow approximately
exponentially (Fig. 2e). In this case, the TTI strategy with
ineffective contact tracing slows the spread but cannot control the
outbreak.

TTI extends the stabilized regimes of spreading dynamics.
Comparing the two TTI strategies from above demonstrates that
two distinct regimes of spreading dynamics are attainable under
the condition of a nonzero influx of externally acquired infections
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Fig. 1 Illustration of interactions between the hidden H and traced T pools in our model. a In our model, we distinguish two different infected population
groups: the one that contains the infected individuals that remain undetected until tested (hidden pool H), and the one with infected individuals that we
already follow and isolate (traced pool T). Super indexes s and a in both variables account for symptomatic and asymptomatic individuals. Until noticed, an
outbreak will fully occur in the hidden pool, where case numbers increase according to this pool’s reproduction number RHt . Testing and tracing of hidden
infections transfers them to the traced pool and helps to empty the hidden pool; this prevents offspring infections and reduces the overall growth of the
outbreak. Due to the self-isolation imposed in the traced pool, its reproduction number RTt is expected to be considerably smaller than RHt , and typically
smaller than 1. Once an individual is tested positive, all the contacts since the infection are traced with some efficiency (η). Two external events further
increase the number of infections in the hidden pool, namely, the new contagions occurring in the traced pool that leak to the hidden pool and an influx of
externally acquired infections (Φ). In the absence of new infections, pool sizes are naturally reduced due to recovery (or removal), proportional to the
recovery rate Γ. b Simplified depiction of the model showing the interactions of the two pools. New infections generated in the traced pool can remain there
(ν) or leak to the hidden pool (ϵ). Note that the central epidemiological observables are highlighted in color: The N̂

obs
(brown) and R̂

obs
t (dark red) can be

inferred from the traced pool, but the effective reproduction number R̂
eff
t (light red) that governs the stability of the whole system remains hidden.

Table 1 Model parameters.

Parameter Meaning Value (default) Range Units Source

M Population size 80,000,000 People Assumed
RHt Reproduction number (hidden) 1.80 – 2,67,68

Γ Recovery rate 0.10 0.08–0.12 Day−1 58,69,70

ξ Asymptomatic ratio 0.15 0.12–0.33 – 22,23

φ Fraction skipping testing 0.20 0.10–0.40 – 16

ν Isolation factor (traced) 0.10 – Assumed
λr random-testing rate 0 0–0.02 Day−1 Assumed
λs symptom-driven testing rate 0.10 0–1 Day−1 Assumed
η Tracing efficiency 0.66 – Assumed
Nmax Maximal tracing capacity ≈ 718 200–6000 Cases day−1 Assumeda

ϵ Missed contacts (traced) 0.10 – Assumed
Φ Influx rate (hidden) 15 Cases day−1 Assumeda

λr;max Maximal test capacity per capita 0.002 Cases day−1 56,57

RTt Reproduction number (traced) 0.36 – RTt ¼ ν þ ϵð ÞRHt
ξap Apparent asymptomatic ratio 0.32 – ξap= ξ+ (1− ξ)φ
RHcrit Critical reproduction number (hidden) 1.89 – Numerically calculated from model parameters

aChosen for a country with a population of M= 80 ⋅ 106. See “Methods” for considerations.
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Φ: The system either evolves towards some intermediate but
stable number of new cases N (Fig. 2a–c), or it is unstable,
showing a steep growth (Fig. 2d–f). These two dynamical regimes
are characterized—after an initial transient—by different

“observed” reproduction numbers R̂
obs
t , inferred from the new

cases of the traced pool N̂
obs

. If R̂
obs
t <1, the outbreak is under

control (solid line in Fig. 2c), while for R̂
obs
t >1 the outbreak

continues to spread (Fig. 2f). The former regime extends the
“stable” regime of the simple SIR model beyond RH

t ¼ 1 and thus
constitutes a novel “TTI-stabilized” regime of spreading dynamics
(see below, and Supplementary Fig. 5 for the full phase diagram).

Limited TTI requires a safety margin to maintain stability.
Having demonstrated that an effective TTI strategy can, in prin-
ciple, control the disease spread, we now turn towards the problem
of limited TTI capacity. So far, we assumed that the efficiency of
the TTI strategy does not depend on the absolute number of cases.
Yet, the amount of contacts that can reliably be traced by health
authorities is limited due to the work to be performed by trained
personnel: Contact persons have to be identified, informed, and
ideally also counseled during the preventive quarantine. Exceeding
this limit causes delays in the process, which will eventually
become longer than the generation time of 4 days—rendering
contact tracing ineffective. We model this tracing capacity as a
hard cap Nmax on the number of contacts that can be traced each
day and explore its effects on stability.

As an example of how this limited tracing capacity can cause a
new tipping point to instability, we simulate here a short but large
influx of externally acquired infections (a total of 4000 hidden
cases with 92% occurring in the 7 days around t= 0, normally
distributed with σ= 2 days, see Fig. 3). This exemplary influx
aims to resemble the large number of German holidaymakers
returning from summer vacation. It is a rather conservative
estimate given that there were 900 such cases observed in the first

two weeks of July at Bavarian highway test-centers alone24. We set
two different tracing-capacity limits, reached when the observed

number of daily new cases N̂
obs

reaches Nmax ¼ 718 (or
Nmax ¼ 470) observed cases per day (see “Methods”). In both
scenarios, the sudden influx leads to a jump of infections in the
hidden pool (Fig. 3a, d), followed by a rapid increase in new traced
cases (Fig. 3b, e). With sufficiently high tracing capacity, the
outbreak can then be contained, because during the initial shock

N̂
obs

does not exceed the capacity limit Nmax (Fig. 3b, brown vs
gray lines). In contrast, with lower capacity, the outbreak

accelerates as soon as the observed new cases N̂
obs

exceeds the
capacity limit Nmax. Not only the capacity limit but also the
amplitude of the influx (Supplementary Fig. 3), its duration
(Supplementary Fig. 4), or whether it occurs periodically (Fig. 4)

can decide whether the observed new cases N̂
obs

exceed the
capacity limit Nmax and cause a tipping-over into instability. In
particular, periodic influxes (e.g., holidays) may cause the tipping-
over not necessarily because of a single event but due to their
cumulative impact. These scenarios demonstrate that the limited
tracing capacity renders the system metastable. If the capacity limit
is exceeded due to some external perturbation, the tracing cannot
compensate the perturbation, and the spread gets out of control.

Even without a large influx event, the tipping-over into
instability can occur when a relaxation of contact restrictions
causes slow growth in case numbers. This slow growth will
accelerate dramatically once the tracing capacity limit is reached
—constituting a transition from a slightly unstable to a strongly
unstable regime (Fig. 5 and Supplementary Fig. 5d). To illustrate
this, we simulated an increase of the hidden reproduction number
RH
t (of a system in stable equilibrium) at t= 0, from the

subcritical default value of RH
t ¼ 1:8 to a supercritical value

RH
t ¼ 2, which renders the system slightly unstable (Fig. 6). At

t= 0, the case numbers start to grow slowly until the observed
number of new cases exceeds the tracing capacity limit Nmax.
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Fig. 2 Sufficient testing and contact tracing can control the disease spread, while insufficient TTI only slows it. We consider a test-trace-and-isolate
(TTI) strategy with symptom-driven testing (λs= 0.1) and two tracing scenarios: For high tracing efficiency (η= 0.66, a–c), the outbreak can be controlled
by TTI; for low tracing efficiency (η= 0.33, d, e) the outbreak cannot be controlled because tracing is not efficient enough. a, d The number of infections in
the hidden pool grows until the outbreak is noticed on day 0, at which point symptom-driven testing (λs= 0.1) and contact tracing (η) starts. b, e The
absolute number of daily infections (N) grows until the outbreak is noticed on day 0; the observed number of daily infections (N̂

obs
) shown here is

simulated as being inferred from the traced pool and subject to a gamma-distributed reporting delay with a median of 4 days. c, f The observed
reproduction number (R̂

obs
t ) is estimated from the observed new infections (N̂

obs
), while the effective reproductive number (R̂

eff
t ) is estimated from the

total daily new infections (N). After an initial growth period, it settles to R̂
obs
t ¼ 1 if the outbreak is controlled (efficient tracing), or to R̂

obs
t >1 if the outbreak

continues to spread (inefficient tracing). All the curves plotted are obtained from numerical integration of Eqs. (1)–(5).
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From thereon, the tracing system breaks down, and the growth
self-accelerates. This is reflected in the steep rise of new cases after
day 100—thus with a considerable delay after the change of RH

t ,
i.e., the population’s behavior.

Both the initial change in the hidden reproduction number and
the breakdown of the tracing system are reflected in the observed

reproduction number R̂
obs
t (Fig. 6c). It transits from stability

(R̂
obs
t ¼ 1) to instability (R̂

obs
t >1). However, the absolute values
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Fig. 3 Finite tracing capacity makes the system vulnerable to large influx events. A single large influx event (a total of 4000 hidden cases with 92%
occurring in the 7 days around t= 0, normally distributed with standard deviation σ= 2 days) drives a metastable system with reduced tracing capacity
(reached at Nmax ¼ 470) to a new outbreak (d–f), whereas a metastable system with our default tracing capacity (reached at Nmax ¼ 718) can compensate
a sudden influx of this size (a–c). a, d The number of infections in the hidden pool (dotted) jump due to the influx event at t= 0, and return to stability for
default capacity (a) or continue to grow in the system with reduced capacity (d). Correspondingly, the number of cases in the traced pool (solid line) either
slowly increases after the event and absorbs most infections before returning to stability (inset in a, time axis prolonged to 1000 days), or proceeds to
grow steeply (d). b, e The absolute number of new infections (dashed, yellow) jumps due to the large influx event (solid green line). The number of daily
observed cases (solid brown line) slowly increases after the event, and relaxes back to baseline (a), or increases fast upon exceeding the maximum number
of new observed cases Nmax (solid gray line) for which tracing is effective. c, f The effective (dashed red line) and observed (solid dark red line)
reproduction numbers change transiently due to the influx event before returning to 1 for the default tracing capacity. In the case of a reduced tracing
capacity and a new outbreak, they slowly begin to grow afterward (f). All the curves plotted are obtained from numerical integration of Eqs. (1)–(5).
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Fig. 4 Manageable influx events that recur periodically can overwhelm the tracing capacity. For the default capacity scenario, we explore whether
periodic influx events can overwhelm the tracing capacity: A ‘manageable" influx that would not overwhelm the tracing capacity on its own (3331 externally
acquired infections, 92% of which occur in 7 days) repeats every 1.5 months (a–c) or every 3 months (d–f). In the first case, the system is already unstable
after the second event because case numbers remained high after the first influx (b). In the second case, the system remains stable after both the first and
second event (e), but it becomes unstable after the third (f).
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of R̂
obs
t are not very indicative of the public’s behavior (RH

t ),
because already small changes in RH

t can induce large transient

changes in R̂
obs
t . In our example, R̂

obs
t shows a strong deflection

after t= 0, although RH
t changes only slightly; later, at t ≈ 100 it

starts to ramp to a new value, although RH
t did not change. This

ramping is due to the tracing capacity Nmax being exceeded,

which accelerates the spread. R̂
obs
t finally approaches a new

steady-state value, as sketched in Supplementary Fig. 5d. To

summarize, deducing the stability of the spread from R̂
obs
t is

challenging because R̂
obs
t reacts very sensitively to many types of

transients. RH
t , in contrast, would be a reliable indicator of true

spreading behavior but is not accessible easily.

Imperfect TTI would require further containment measures.
Above, we illustrated that a combination of symptom-driven
testing and contact tracing could control the outbreak for a
default reproduction number of RH

t ¼ 1:8. We now ask how
efficient the TTI scheme and implementation must be to control
the disease for a range of reproduction numbers—i.e., what TTI

parameters are necessary to avoid the tipping over to R̂
eff
t >1. To

this end, we perform linear stability analysis to calculate the
critical reproduction number at which the tipping-over occurs
(see Supplementary Eq. (1) in Supplementary Note 1). When
assessing stability not only for a single scenario along the RH

t -axis
but for multiple parameter combinations, the tipping points turn
into critical lines (or surfaces). Here, we examine how these cri-
tical lines depend on different combinations of symptom-driven
testing, random testing, and contact tracing.

Random testing with tracing, but without symptom-driven
testing (λs= 0), is not sufficient to contain an outbreak (under our
default parameters and RH

t ≤ 1:5; Fig. 7a). This is because the rate of
random testing λr would have to be unrealistically large. It exceeds
the current capacity of testing (λr;max � 0:002, see “Methods” for
details), even if ten tests are pooled (λr � 10λr;max

25). Thus, the
contribution of symptom-driven testing is necessary to control any
realistic new outbreak through TTI.

Contact tracing markedly contributes to outbreak mitigation
(Fig. 7b). In its absence, i.e., when isolating only individuals that
were positive in a symptom-driven or random test, the outbreak
can be controlled for intermediate reproduction numbers
(RH

t < 2:5 in Fig. 7b) but not for higher ones if the limit of
λr;max < 0:02 is respected.

The most effective combination appears to be symptom-driven
testing together with contact tracing (Fig. 7c). This combination
shows stability even for spreads close to the basic reproduction
number RH

t ¼ R0 � 3:321,26,27, when implemented extremely
efficiently (e.g., with λs= 0.66 and η= 0.66). However, this
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Fig. 5 Testing and tracing give rise to two TTI-stabilized regimes of
spreading dynamics. In addition to the intrinsically stable regime of the
simple SIR model (blue region), our model exhibits two TTI-stabilized
regimes that arise from the isolation of formerly “hidden” infected
individuals uncovered through symptom-based testing alone (green region)
or additional contact tracing (amber region). Due to the external influx, the
number of observed new cases reaches a nonzero equilibrium N̂

obs
1 that

depends on the hidden reproductive number (colored lines). These
equilibrium numbers of new cases diverge when approaching the respective
critical hidden reproductive numbers (RHcrit ) calculated from linear stability
analysis (dotted horizontal lines). Taking into account a finite tracing
capacity Nmax shrinks the testing-and-tracing stabilized regime and makes it
metastable (dotted amber line). Note that, for our standard parameter set,
the natural base reproduction number R0 lies in the unstable regime. Please
see Supplementary Fig. 5 for a full phase diagram and Supplementary
Note 1 for the linear stability analysis.
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Fig. 6 A relaxation of restrictions can slowly overwhelm the finite tracing capacity and trigger a new outbreak. a At t= 0, the hidden reproduction
number increases from RHt ¼ 1:8 to RHt ¼ 2:0 (i.e., slightly above its critical value). This leads to a slow increase in traced active cases (solid blue line).
bWhen the number of observed new cases (solid brown line) exceeds the tracing capacity limit Nmax (solid gray line), the tracing system breaks down, and
the outbreak starts to accelerate. c After an initial transient at the onset of the change in RHt , the observed reproduction number (solid red line) faithfully
reflects both the slight increase of the hidden reproduction number due to relaxation of contact constraints, and the strong increase after the tracing
capacity (solid gray line) is exceeded at t≈ 100. In both cases, the observed reproduction number R̂

obs
t approaches two different limit values R∞, which

are derived from a linear stability analysis (further details in Supplementary Fig. 5). All the curves plotted are obtained from numerical integration of
Eqs. (1)–(5).
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implementation would require that all symptomatic persons get
tested within 1–2 days after getting infectious, thus potentially
already in their pre-symptomatic phase, which may be difficult to
realize. (Note that the asymptomatic cases are already accounted
for in the model and do not pose an additional problem).
Considering these difficulties, the combination of symptom-
driven testing and contact tracing appears to be sufficient to
contain outbreaks with intermediate reproduction numbers
(RH

t � 2 can be controlled with e.g., λs ≤ 0.5 and η= 0.66, Fig. 7c).
Overall, our model suggests that the combination of timely

symptom-driven testing within very few days, together with
isolation of positive cases and efficient contact tracing, can be
sufficient to control the spread of SARS-CoV-2 given the
reproduction number in the hidden pool is RH

t � 2 or lower.
For random testing at the population level to be effective, one
would require much higher test rates than currently available in
Germany. Nevertheless, random testing can be useful to control
highly localized outbreaks and is paramount for screening
frontline workers in healthcare, eldercare, and education.

How can TTI allow the relaxation of contact constraints? There
are currently strong incentives to loosen restrictive measures and
return to a more pre-COVID-19 lifestyle28,29. However, any such
loosening can lead to a higher reproduction number RH

t , which
could potentially exceed the critical value RH

crit , for which current
TTI strategies ensure stability. To retain stability despite
increasing RH

t , this increase has to be compensated by stronger
mitigation efforts, such as further improvement of TTI. Thereby
the critical value RH

crit is effectively increased. In the following, we
compare the capacity of the different TTI and model parameter
changes to compensate for increases in the reproduction number
RH
t . In detail, we start from the highest reproduction number that

can be controlled by the default parameters, RH
crit ¼ 1:89, and

calculate how each model parameter would have to be changed to
achieve the desired increase in RH

crit . For all default parameters,
see Table 1.

First, we explore how well an increase of random and
symptom-driven test rates can compensate for an increase in
RH
t (Fig. 8a). We find that population-wide random testing would

need to increase extensively to compensate for increases in RH
t ,

i.e., λr quickly exceeds realistic values (gray lines in Fig. 8a). Thus,
random testing at a whole population level is not the most
efficient tool to compensate for increases of the hidden
reproduction rate, but that does not diminish its usefulness in
controlling localized outbreaks or protecting frontline workers
and highly vulnerable populations.

In contrast, scaling up symptom-driven testing can in principle
compensate an increase of RH

t up to about 3 (Fig. 8a). Beyond
RH
t ¼ 3 and λs ≈ 0.4, λs increases more steeply, making this

compensation increasingly costly (Fig. 8a). Furthermore, levels of
λs > 0.5 seem hard to realize as they would require testing within
< 2 days of becoming infectious, i.e., while many infected are still
pre-symptomatic. Realistically, only moderate increases in RH

t can
be compensated by decreasing the average delay of symptom-
driven testing alone.

Tracing the contacts of an infected person and asking them to
quarantine preventively is a vital contribution to contain the
spread of SARS-CoV-2 if done without delay3,13. As a default
value, we assumed that a fraction η= 0.66 of contacts are traced
and isolated within a day. This fraction can, in principle, be
increased further to compensate for an increase in RH

t and still
guarantee stability (Fig. 8a). However, because η is already high in
the first place, its range is quite limited, and even perfect contact
tracing cannot compensate for an RH

t of 2.5. More elaborate
contact tracing strategies, like backward-forward tracing, might
further improve its practical efficacy.

As an alternative to improved TTI rates and efficiencies,
improved compliance may compensate for an increase in RH

t :
One might aim to reduce the number of contacts missed in the
traced pool ϵ, improve the isolation factor ν, or reduce the
fraction of people avoiding tests despite showing symptoms φ
(Fig. 8c). These improvements might be more challenging to
achieve from a policymaker perspective but could be targeted by
educational and awareness-raising campaigns. However, since we
assumed already in the default scenario that the behavioral factors
(ϵ, ν, φ) are not too large, the potential improvement is limited.

The amount of reduction achievable by each method is limited,
which calls to leverage all these strategies together. Furthermore,
as can be seen from the curvature of the lines in Fig. 7, the
beneficial effects are synergistic, i.e., they are larger when
combining several strategies instead of spending twice the efforts
on a unique one. This synergy of improved TTI measures and
awareness campaigning could relax contact constraints while
keeping outbreaks under control. Nonetheless, our model still
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Fig. 7 Symptom-driven testing and contact tracing need to be combined
to control the disease. Stability diagrams showing the boundaries
(continuous curves) between the stable (controlled) and uncontrolled
regimes for different testing strategies combining random testing (rate λr),
symptom-driven testing (rate λs), and tracing (efficiency η). Gray lines in
plots with λr-axes indicate capacity limits (for our example Germany) on
random testing (λr;max) and when using pooling of ten samples, i.e., 10λr;max.
Colored lines depict the transitions between the stable and the unstable
regime for a given reproduction number RHt (color-coded). The transition
from ‘stable" to ‘unstable" case numbers is explicitly annotated for RHt ¼ 1:5
in panel a. a Combining tracing and random testing without symptom-
driven testing is in all cases not sufficient to control outbreaks, as the
necessary random tests exceed even the pooled testing capacity (10λr;max).
b Combining random and symptom-driven testing strategies without any
contract tracing requires unrealistically high levels of random testing to
control outbreaks with large reproduction numbers in the hidden pool
(RHt >2:0). The required random tests to significantly change the stability
boundaries exceed the available capacity in Germany λr;max. Even
considering the possibility of pooling tests (10λr;max) often does not suffice
to control outbreaks. c Combining symptom-driven testing and tracing
suffices to control outbreaks with realistic testing rates λs and tracing
efficiencies η for moderate values of reproduction numbers in the hidden
pool, RHt , but fails to control the outbreak for large RHt . The curves showing
the critical reproduction number are obtained from the linear stability
analysis (Supplementary Eq. (1)).
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indicates that compensating the basic reproduction number
RH
t ¼ R0 � 3:321,26,27 might be very costly, and hence some

degree of physical distancing might be required.

Robustness against parameter changes and model limitations.
Above, we showed that changing the implementation of the TTI
strategy can accommodate higher reproduction numbers RH

crit—
but how robust are these implementations against parameter
uncertainties? To explore the robustness of the resulting hidden
reproduction number RH

crit against simultaneous variation of
multiple TTI parameters, we draw these parameters from beta
distributions (because all parameters are bounded by 0 and 1)
centered on the default values, and perform an error propagation
analysis (Supplementary Table 1). We found that a hidden
reproduction number of RH

t ≤ 1:4 (95% CI, 1.23–1.69) can be
compensated by testing alone, whereas additional contact tracing
allows a hidden reproduction number of RH

t ≤ 1:9 (95% CI,
1.42–2.70, Supplementary Fig. 2 and Supplementary Table 1).
This shows that the exact implementation of the TTI strategy
strongly impacts the public behavior that can be controlled.
However, none of them allows for a complete lifting of the
contact restrictions (R0= 3.3).

However, not only the robustness against variation of
parameters is an important aspect but also underlying

assumptions in the model structure. Our model also comes with
some inevitable simplifications, but these do not compromise the
conclusions drawn here. Specifically, our model is simple enough
to allow for a mechanistic understanding of its dynamics and
analytical treatment of the control and stability problems. This
remains true even when extending the model to incorporate more
biological realism, e.g., the different transmissibility of asympto-
matic and symptomatic cases (Supplementary Fig. 6). Owing to
its simplicity it has certain limitations: In contrast to agent-based
simulations30,31, we do not include realistic contact
structures4,5,32—the infection probability is uniform across the
whole population. This limitation will become relevant mostly
when trying to devise even more efficient testing-and-tracing
strategies or stabilizing a system very close to its tipping point.
Compared to other mean-field based studies, which included a
more realistic temporal evolution of infectiousness33,34, we
implicitly assume that infectiousness decays exponentially. This
assumption has the disadvantage of making the interpretation of
rate parameters more difficult, but should not affect the stability
analyses presented here.

Discussion
Using a compartmental SIR-type model with realistic parameters
based on our example case in Germany, we find that test-trace-
and-isolate can, in principle, contain the spread of SARS-CoV-2 if
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Fig. 8 Adapting testing strategies allows the relaxation of contact constraints to some degree. The relaxation of contact constraints increases the
reproduction number of the hidden pool RHt , and thus needs to be compensated by adjusting model parameters to keep the system stable. a–c Value of a
single parameter required to keep the system stable despite a change in the hidden reproduction number, while keeping all other parameters at default
values. a Increasing the rate of symptom-driven testing (λs, blue) can in principle compensate for hidden reproduction numbers close to R0. However, this is
optimistic as it requires that anyone with symptoms compatible with COVID-19 gets tested and isolated on average within 2.5 days—requiring extensive
resources and efficient organization. Increasing the random-testing rate (λr, red) to the capacity limit (for the example Germany, gray line λr;max) would
have almost no effect, pooling tests to achieve 10λr;max can compensate partly for larger increases in RHt . b Increasing the tracing efficiency (η) can
compensate only small increases in RHt . c Decreasing the fraction of symptomatic individuals who avoid testing (φ), the leak from the traced pool (ϵ) or the
escape rate from isolation (ν) can in principle compensate for small increases in RHt . d–i To compensate a 10% or 20% increase of RHt , while still keeping the
system stable, symptom-driven testing (λs) could be increased (d), or ϵ or φ could be decreased (h,i). In contrast, only changing λr, η, or ν would not be
sufficient to compensate a 10 % or 20 % increase in RHt , because the respective limits are reached (e, f, g). All parameter changes are computed through
stability analysis (Supplementary Eq. (1)).
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some physical distancing measures are continued. We analytically
derived the existence of a novel metastable regime of spreading
dynamics governed by the limited capacity of contact tracing and
show how transient perturbations can tip a seemingly stable
system into the unstable regime. Furthermore, we explored the
boundaries of this regime for different TTI strategies and effi-
ciencies of the TTI implementation.

Our results agree with other simulation and modeling studies
investigating how efficient TTI strategies are in curbing the
spread of the SARS-CoV-2. Both agent-based studies with rea-
listic contact structures4 and studies using mean-field spreading
dynamics with tractable equations33–37 agree that TTI measures
are an important contribution to control the pandemic. Fast
isolation is arguably the most crucial factor, which is included in
our model in the testing rate λs. Yet, TTI is generally not perfect
and the app-based solutions that have been proposed at present
still lack the necessary large adoption that was initially foreseen,
and that is necessary for these solutions to work34. Our work, as
well as others4,34,38,39, shows that realistic TTI can compensate
reproduction numbers of around 1.5–2.5, which is however lower
than the basic reproduction number of around 3.321,26,27. This
calls for continued contact reduction on the order of 25–55%, and
it does highlight not only the importance of TTI but also the need
for other mitigation measures.

Our work extends previous studies by combining the explicit
modeling of a hidden pool (including test avoiders) to explore
various ways of allocating testing-and-tracing resources. This
allows us to investigate the effectiveness of multiple approaches to
stabilize disease dynamics in the face of relaxation of physical
distancing. This yields important insights for policymakers into
how to allocate resources. We also include a capacity limit of
tracing, which is typically not included in other studies. However,
it is crucial to understand the metastable regime of a TTI-
stabilized system and understand the importance of keeping a
safety-distance to the critical reproduction number of a given TTI
strategy. Last, we highlight the essential differences between the
observed reproduction numbers—as they are reported in the
media—and the more important, but hard to access, reproduction
number in the hidden pool. Specifically, we show how the tran-
sient behavior of the observed reproduction number may be
easily misinterpreted.

Limited TTI capacity implies a metastable regime with the risk
of sudden explosive growth. Both testing and tracing contribute
to containing the spread of SARS-CoV-2. However, if the number
of new infections exceeds their capacity limit, an otherwise con-
trolled spread becomes uncontrolled. This is particularly trou-
bling because the spread is self-accelerating: the more the capacity
limit is exceeded, the less testing and tracing can contribute to
containment. The reproduction number has to stay below its
critical value to avoid this situation and the number of new
infections below TTI capacity. Therefore, it is advisable to
maintain a safety margin to these limits. Otherwise, a small
increase of the reproduction number, a super-spreading event40,
or a sudden influx of externally acquired infections e.g., after
holidays, leads to uncontrolled spread. Re-establishing stability is
then quite difficult.

As the number of available tests is limited, the relative efficiencies
of random, symptom-driven and tracing-based testing should
determine the allocation of resources10. The efficiency of test stra-
tegies in terms of the positivity rate is a primary metric to determine
the allocation of tests41. Contact-tracing-based testing will generally
be the most efficient use of tests (positivity rate on the order of
RH
t =f numberofcontacts g), especially in the regime of low contact

numbers37,42. The efficiency of symptoms-driven testing depends
on the set of symptoms used for admission: Highly specific
symptom sets will allow for a high yield, but miss a number of cases

(for instance, 33% of cases do not show a loss of smell/taste43). In
contrast, unspecific symptom sets will require a high number of
tests, especially in seasons where other respiratory conditions are
prominent (currently, the fraction of SARS-CoV-2 cases among all
influenza-like cases is less than 4%44). Random testing on a
population level has the lowest positive rate in the regime of low
prevalence that we focus on41,45, but could be used in a targeted
manner, e.g., screening of healthcare workers, highly vulnerable
populations10,46 or those living in the vicinity of localized outbreaks.
We conclude that contact-tracing-based testing and highly specific
symptoms-based testing should receive the highest priority, with the
remaining test capacity used on less specific symptoms-based test-
ing and random screening in particular settings.

The cooperation of the general population in maintaining a
low reproduction number is essential even with efficient TTI
strategies in place. Our results illustrate that the reproduction
number in the hidden pool RH

t —which reflects the public’s
behavior—is still central to disease control. Specifically, we found
that RH

t ≤ 1:4 (95 % CI, 1.23–1.69) can very likely be compensated
by testing and isolating alone, whereas additional contract tracing
shifts this boundary to RH

t ≤ 1:9 (95% CI, 1.42–2.70, Supple-
mentary Fig. 2 and Supplementary Table 1). Both of these values
are substantially lower than the basic reproduction number of
SARS-CoV-2, R0 ≈ 3.321,26,27. Thus, if the goal is to contain the
spread of SARS-CoV-2 with the available TTI-related resources,
the reproduction number in the hidden pool will have to be
reduced effectively by roughly 25–55% compared to the begin-
ning of the pandemic. This effective reduction may be achieved
by a suitable combination of hygiene measures, such as mask-
wearing, filtering or exchanging contaminated air, and physical
distancing. Useful accompanying measures voluntarily include:
immediately and strictly self-isolating upon any symptoms
compatible with COVID-19, avoiding travel to any region with a
higher infection rate, keeping a personal contact diary, using the
digital tracing app, selecting only those contacts that are essential
for one’s well being, and avoiding contacts inside closed rooms if
possible. Most of these measures and also an efficient tracing
cannot be achieved without the widespread cooperation of the
population. This cooperation might be increased by a ramping up
of coordinated educational efforts around explaining mechanisms
and dynamics of disease spreading to a broad audience—instead
of just providing behavioral advice.

The parameters of the model have been chosen to suit the
situation in Germany. We expect our general conclusions to hold
for other countries, but of course, parameters would have to be
adapted to local circumstances. For instance, some Asia-Pacific
countries can keep the spread under control, employing mainly
test-trace-and-isolate measures47. Factors that contribute to this
are (1) significantly larger investment in tracing capacity, (2) a
smaller influx of externally acquired infections (especially in the
case of new Zealand), and (3) the broader acceptance of mask-
wearing and compliance with physical distancing measures.
These countries illustrate that even once "control is lost” in the
sense of our model, it can in principle be regained through
political measures. A currently discussed mechanism to regain
control is the "circuit breaker”, a relatively strict lockdown to
interrupt infection chains and bring case number down48. Such a
circuit breaker or reset is particularly effective if it brings the
system below the tipping point and thereby enables controlling
the spread by TTI again. Therefore, it should be designed to keep
a delicate balance between duration, stringency, and timeliness49.

To conclude, based on a simulation of disease dynamics
influenced by realistic TTI strategies with parameters taken from
the example of Germany, we show that the spreading dynamics of
SARS-CoV-2 can only be stabilized if effective TTI strategies are
combined with hygiene and physical distancing measures that
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keep the reproduction number in the general population below a
value of approximately RH

t ≤ 1:9 (95% CI, 1.42–2.70). As a system
stabilized by TTI with a finite capacity is only in a metastable
state and can be tipped into instability by one-time effects, it
would be desirable to keep a safety-distance even to these values,
if possible. The above bounds on the reproduction number in the
hidden pool can be easily recomputed for other countries with
different TTI capacities and reproduction numbers.

Methods
Model overview. We model the spreading dynamics of SARS-CoV-2 as the sum of
contributions from two pools, i.e., traced T and hidden H infections (see the sketch
in Fig. 1, and a complete list of parameters and variables, respectively in Tables 1
and 2). The first pool (T) contains traced cases revealed through testing or by
contact tracing of an individual that has already been tested positive; all individuals
in the traced pool are assumed to isolate themselves (quarantine), avoiding further
contacts as well as possible. In contrast, in the second pool, infections spread
silently and only become detected when individuals develop symptoms and get
tested, or via random testing in the population. This second pool (H) is therefore
called the hidden pool H; individuals in this pool are assumed to exhibit the
behavior of the general population, thus of everyone who is not aware of being
infected. We model the mean-field interactions between the hidden and the traced
pool by transition rates, determining the timescales of the model dynamics. These
transition rates can implicitly incorporate both the time course of the disease and
the delays inherent to the TTI process, but we do not explicitly model delays
between compartments. We distinguish between symptomatic and asymptomatic
carriers—this is central when exploring different testing strategies (as detailed
below). We also include effects of non-compliance and imperfect contact tracing, as
well as a nonzero influx Φ of new cases that acquired the virus from outside. As
this influx makes the eradication of SARS-CoV-2 impossible, only an exponential
growth of cases or a stable rate of new infections is possible modeling outcomes.
Given the two possible behaviors of the system, indefinite growth, or stable cases,
we frame our investigation as a stability problem. The aim is to implement test-
trace-and-isolate strategies to allow the system to remain stable.

Spreading dynamics. Concretely, we use a modified SIR-type model, where
infections I are either symptomatic (Is) or asymptomatic (Ia), and they belong to
the hidden (H) or a traced (T) pool of infections (Fig. 1), thus creating in total four
compartments of infections (Hs, Ha, Ts, Ta). New infections are asymptomatic with
a ratio ξap; the others are symptomatic. In all compartments, individuals are
removed with a rate Γ because of recovery or death (see Table 1 for all parameters).

In the hidden pool, the disease spreads according to the reproduction number
RH
t . This reproduction number reflects the disease spread in the general population,

without testing induced isolation of individuals. In addition, the hidden pool
receives a mobility-induced influx Φ of new infections. Cases are removed from the
hidden pool (i) when detected by TTI, and put into the traced pool, or (ii) due to
recovery or death.

The traced pool T contains those infected individuals who have been tested
positive as well as their positively tested contacts. As these individuals are
(imperfectly) isolated, they cause infections with a rate νΓRH

t , which are
subsequently isolated and therefore stay in the traced pools and additional
infections with a rate ϵΓRH

t , which are missed and act as an influx to the hidden
pools. ν is the isolation factor, and ϵ is the leak factor. The overall reproduction
number of the traced pool is therefore RT

t ¼ ν þ ϵð ÞRH
t .

In the scope of our model, it is important to differentiate exchanges from pool
to pool that are based either on the "reassignment” of individuals or on infections.
To the former category belongs the testing and tracing, which transfer cases from
the hidden pool to the traced pool. These transfers involve a subtraction and
addition of case numbers in the respective pools. To the latter category belongs the
recurrent infections ΓRH

t or νΓRH
t and the ‘leak’ infections ϵΓRH

t . Exchanges of this
category involve only the addition of case numbers in the respective pool.

Within our model, we concentrate on the case of low incidence and a low
fraction of immune people, as in the early phase of any new outbreak. Our model
can also reflect innate or acquired immunity; one must rescale the population or
the reproduction number. The qualitative behavior of the dynamics is not expected
to change.

Parameter choices and scenarios. For any testing strategy, the fraction of
infections that do not develop any symptoms across the whole infection timeline is
an important parameter, and this also holds for testing strategies applied to the case
of SARS-CoV-2. In our model, this parameter is called ξap and includes, besides the
real asymptomatic infections ξ, the fraction of individuals that avoid testing φ.

The exact value of the fraction of asymptomatic infections ξ, however, is still
fraught with uncertainty, and it also depends on age15,50,51. While early estimates
were as high as 50 % (for example ranging from 26 to 63%52), these early estimates
suffered from reporting bias, small sample sizes and sometimes included pre-
symptomatic cases as well22,53. Recent bias-corrected estimates from large sample
sizes range between 12%22 and 33%23. We decided to use 15% for the pure
asymptomatic ratio ξ.

In addition, we include a fraction φ of individuals avoiding testing. This can
occur because individuals do not want to be in contact with governmental
authorities or because they deem risking a spread of SARS-CoV-2 less important
than having to quarantine16. As this part of the population may act in the same
manner as asymptomatic persons, we include it in the asymptomatic compartment
of the hidden pool, assuming a value of 0.2. We thus arrive at an effective ratio of
asymptomatic infections ξap= ξ+ (1− ξ)φ= 0.32. We assume that both
symptomatic and asymptomatic persons have the same reproduction number.

In general, infected individuals move from the hidden to the traced pool after
being tested; yet, a small number of infections will leak from the traced to the
hidden pool with rate ϵΓRH

t , with ϵ= 0.1. A source of the leak would be a contact
that has been infected, traced, and tested positive but still ignores quarantine
instructions. For the model, this individual has the same effect on disease dynamics
as someone from the hidden pool.

Another crucial parameter for any TTI strategy is the reproduction number in
the hidden pool RH

t . This parameter that typically represents the main driver of the
spreading dynamics is, by definition, impossible to measure. It depends mainly on
the contact behavior of the population and ranges from R0 in the absence of contact
restrictions to values below 1 during strict lockdown2. For the default parameters of
our model, we used a value of RH

t ¼ 1:8. This parameter was chosen after all others,
aiming to mirror the epidemic situation in Germany during the early summer
months, when infections remained approximately constant. It is just below the

critical value RH
crit ¼ 1:98 for the default scenario, hence R̂

eff
t ¼ 1. This value of

RH
t ¼ 1:8 is ~54% lower than the basic reproduction number R0 ≈ 3.3. Hence, we

assume that some non-pharmacological interventions (physical distancing or
hygiene measures) are in place, as was the case in Germany during the early
summer months1,2. For additional scenarios, we explored the impact of both higher
and lower values of RH

t on our TTI strategy (see Figs. 7, 8 and Supplementary
Fig. 2).

Testing-and-tracing strategies. We consider three different testing-and-tracing
strategies: random testing, symptom-driven testing, and specific testing of traced

Table 2 Model variables.

Variable Meaning Units Explanation

Ha Hidden asymptomatic pool People Non-traced, non-isolated people who are asymptomatic or avoid being tested
Hs Hidden symptomatic pool People Non-traced, non-isolated people who are symptomatic
Ta Traced asymptomatic pool People Known infected and isolated people who are asymptomatic
Ts Traced symptomatic pool People Known infected and isolated people who are symptomatic
H Hidden pool People Total non-traced people: H= Ha+ Hs

T Traced pool People Total traced people: T= Ta+ Ts

N New infections (traced and hidden) Cases day−1 Given by: N ¼ Γ ν þ ϵð ÞRHt T þ ΓRHt HþΦ

N̂
obs Observed new infections (influx to

traced pool)
Cases day−1 Only cases of the traced pool; delayed on average by 4 days because of

reporting
R̂
eff
t

Estimated effective reproduction number – Estimated from the cases of all pools: R̂
eff
t ¼ NðtÞ=Nðt� 4Þ

R̂
obs
t

Observed reproduction number – The reproduction number that can be estimated only from the observed cases:
R̂
obs
t ¼ N̂

obsðtÞ=N̂obsðt� 4Þ
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contacts. Despite the naming—chosen to be consistent with existing
literature4,36,42,54,55— isolation of the cases tested positive is part of all of these
strategies. The main differences lie in whom the tests are applied to and whether
past contacts of an infected person are traced and told to isolate. Our model
simulates the parallel application of all three strategies—as it is typical for real-
world settings, and yields the effects of the “pure' application of these strategies as
corner cases realized via specific parameter settings.

Random testing is defined here as applying tests to individuals irrespective of
their symptom status or whether they belonged to the contact-chain of other
infected individuals. In our model, random testing transfers infected individuals
from the hidden to the traced pool with a fixed rate λr, irrespective of them
showing symptoms or not. In reality, random testing is often implemented as
situation-based testing for a sub-group of the population, e.g., at a hot-spot, for
groups at risk, or for people returning from travel. Such situation-based strategies
would be more efficient than the random testing assumed in this model.
Nonetheless, because random testing can detect symptomatic and asymptomatic
persons alike, we decided to evaluate its potential contribution to containing the
spread.

The number of random tests that can be performed is limited by the available
laboratory and sample collection capacity. For orientation, we included therefore a
maximal testing capacity of λr;max ¼ 0:002 test per person and day, which reflects
the laboratory capacity in Germany (1.2 Mio. per week)56,57. Potentially, the testing
capacity can be increased by pooling PCR tests, without strongly reducing the
sensitivity25. We acknowledge this possibility by taking into account a ten times
larger testing capacity, 10 � λr;max ¼ 0:02. This would correspond to every person
being tested on average every 50 days (7 weeks)—summing to about 12 Mio. tests
per week in Germany.

Symptom-driven testing is defined as applying tests to individuals presenting
symptoms of COVID-19. In this context, it is important to note that non-infected
individuals can have symptoms similar to those of COVID-19, as many symptoms
are rather unspecific. Although symptom-driven testing suffers less from imperfect
specificity, it can only uncover symptomatic cases that are willing to be tested (see
below). Here, “symptomatic infected individuals' are transferred from the hidden to
the traced pool at rate λs.

We define λs as the daily rate at which symptomatic individuals get tested,
among the subset who are willing to get tested. As the default value, we use λs= 0.1,
which means that one in ten people that show symptoms gets tested each day and
are subsequently isolated. Testing and isolation happen immediately in this model,

but their report into the observed new daily cases N̂
obs

is delayed. Further real-
world delays can effectively be modeled by a lower effective λs. In theory, this rate
could be increased to one per day. However, this parameter range is on purpose,
not simulated here. For SARS-CoV-2, such a fast detection is unrealistic because
typically infected people show a delay of 1–2 days between the beginning of
infectiousness and showing symptoms58. Hence, λs ≈ 0.5 is an upper limit to the
symptom-driven testing rate.

Tracing contacts of positively tested individuals presents a very specific test
strategy and is expected to be effective in breaking the infection chains if contacts
self-isolate sufficiently quickly4,42,59. However, as every implementation of a TTI
strategy is bound to be imperfect, we assume that only a fraction η < 1 of all
contacts can be traced. These contacts, if tested positive, are then transferred from
the hidden to the traced pool. No delay is assumed here. The parameter η
effectively represents the fraction of secondary and tertiary infections found
through contact tracing. As this fraction decreases when the delay between testing
and contact tracing increases, we assumed a default value of η= 0.66, i.e., on
average, only two-thirds of subsequent infections are prevented.

Contact tracing is mainly done by the health authorities in Germany, and this

clearly limits the maximum number Nmax of observed new cases N̂
obs

, for which
contact tracing is still functional. In the first part of the manuscript, we assume for

simplicity that N̂
obs

is sufficiently small to not exceed the tracing capacity; in the
second part, we explicitly explore the role of this limit.

In principle, the tracing capacity limit can be expressed in two ways, either as

the number of observed cases N̂
obs

, at which tracing starts to break down (denoted
by Nmax), or as number of positive contacts that can maximally be detected and
handled on average by the health departments (nmax). Both values depend strongly
on the personnel capacity of the health departments and the population’s contact
behavior. From the system’s equilibrium equations, we derive a linear relation
between the two, with the proportionality being a function of the epidemiological
and TTI parameters (Supplementary Eq. (14)). For simplicity, we only use Nmax in
the main text and refer the interested reader to the derivation in Supplementary
Note 2.

As a default value, we assume nmax ¼ 300 positive contacts that can be handled
per day. This corresponds to Nmax ¼ 718 observed cases per day, from which the
above-mentioned 300 cases were found through contact tracing. Thus, the
remaining 418 either originate within the traced pool (e.g., infected family
members) or were found through symptom-based testing and are therefore
considered to be detected with much less effort. This limit of nmax ¼ 300 is
currently well within reach of the 400 health departments in Germany. At first
sight, this limit may appear low (about one case per working day per health
department). However, identifying, contacting, and counseling all contact persons

(thus many more persons than 300), and finally testing them and controlling their
quarantine requires considerable effort.

Any testing can, in principle, produce both false-positive (quarantined
individuals who were not infected) and false-negative (non-quarantined infected
individuals) cases. In theory, false-positive rates should be meager (0.2% or less for
RT-PCR tests). However, testing and handling of the probes can induce false-
positive results60,61. Under the low prevalence of SARS-CoV-2, false-positive could
therefore outweigh true-positive, especially for the random-testing strategy, where
the number of tests required to detect new infections would be very high62,63. This
should be carefully considered when choosing an appropriate testing strategy but
has not been explicitly modeled here, as it does not contribute strongly to whether
or not the outbreak could be controlled.

Model equations. The contributions of the spreading dynamics and the TTI
strategies are summarized in the equations below. They govern the spreading
dynamics of case numbers in and between the hidden and the traced pool, H and T.
We assume a regime of low prevalence and low immunity, i.e., the majority of the
population is susceptible. Thus, the dynamics are completely determined by spread
(represented by the reproduction numbers Rt), recovery (characterized by the
recovery rate Γ), external influx Φ and the impact of the TTI strategies:

dT
dt

¼ Γ νRH
t � 1

� �
T

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
spreading dynamics

þ λsH
s þ λrH|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
testing

þ f Hs;Hð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

tracing

; ð1Þ

dH
dt

¼ Γ RH
t � 1

� �
H

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
spreading dynamics

� λsH
s þ λrHð Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
testing

� f Hs;Hð Þ
|fflfflfflfflffl{zfflfflfflfflffl}
tracing

þ ΓϵRH
t T|fflfflffl{zfflfflffl}

missed contacts

þ Φ|{z}
external influx

;

ð2Þ

1
1 � ξap

dHs

dt
¼ Γ RH

t H � Hs

1� ξap

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spreading dynamics

� λs þ λrð ÞHs

1� ξap|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
testing

� f Hs;Hð Þ
|fflfflfflfflffl{zfflfflfflfflffl}
tracing

þ ΓϵRH
t T|fflfflffl{zfflfflffl}

missed contacts

þ Φ|{z}
external influx

;

ð3Þ

Ha ¼ H � Hs; ð4Þ
with

f ðHs;HÞ ¼ min nmax; ηR
H
t λsH

s þ λrHð Þ� �
: ð5Þ

Equations (1) and (2) describe the dynamical evolution of both the traced and
hidden pools. However, they are not sufficient to completely describe the
underlying dynamics of the system in the hidden pool, as the symptomatic and
asymptomatic sub-pools behave slightly differently: only from the symptomatic
hidden pool (Hs) cases can be removed because of symptom-driven testing. Thus
the specific dynamics of Hs is defined by equation (3). The dynamics of the
asymptomatic hidden pool (Ha) can be inferred from Eq. (4). In the traced
compartment, the asymptomatic and symptomatic pools do not need to be
distinguished, as their behavior is assumed to be identical. Equation (5) reflects a
potential limit nmax of the tracing capacity of the health authorities. It is expressed
as the total number of positive cases that can be detected from tracing the contacts
of people detected via symptom-driven testing (from Hs) or via random testing
(from H).

Central epidemiological parameters that can be observed. In the real world, the
disease spread can only be observed by the traced pool. While the ”true" number of
daily infections N is a sum of all new infections in the hidden and traced pools, the

“observed” number of daily infections N̂
obs

is the number of new infections in the
traced pool delayed by a variable reporting delay α. This includes internal con-
tributions and contributions from testing and tracing:

NðtÞ ¼ Γ ν þ ϵð ÞRH
t TðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

traced pool

þ ΓRH
t HðtÞ

|fflfflfflfflffl{zfflfflfflfflffl}
hidden pool

þ Φ|{z}
external influx

ð6Þ

N̂
obsðtÞ ¼ ΓνRH

t TðtÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
traced pool

þ λsH
sðtÞ þ λrHðtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
testing

þ f ðHsðtÞ;HðtÞÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

tracing

2

664

3

775G½α ¼ 4; β ¼ 1�ðtÞ; ð7Þ

where f(Hs,H) is defined in (5),⊛ denotes a convolution and G a Gamma dis-
tribution that models a variable reporting delay. The spreading dynamics are

usually characterized by the observed reproduction number R̂
obs
t , which is calcu-

lated from the observed number of new cases N̂
obsðtÞ. We here use the definition

underlying the estimates that are published by Robert-Koch-Institute, the official
body responsible for epidemiological control in Germany64: the reproduction
number is the relative change of daily new cases N separated by 4 days (the
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assumed serial interval of COVID-1965):

R̂
obs
t ¼ N̂

obsðtÞ
N̂

obsðt � 4Þ
ð8Þ

R̂
eff
t ¼ NðtÞ

Nðt � 4Þ ð9Þ

While only R̂
obs
t is accessible from the observed new cases, in the model, one

can also define an effective reproduction number R̂
eff
t from the total number of

daily new infections.

In contrast to the original definition of R̂
obs
t

64, we do not need to remove real-
world noise effects by smoothing this ratio.

Numerical calculation of solutions and critical values. The numerical solution of
the differential equations governing our model was obtained using a versatile solver
based on an explicit Runge–Kutta (4,5) formula, @ode45, implemented in
MATLAB (version 2020a), with default settings. This algorithm allows the solution
of non-stiff systems of differential equations in the shape y0 ¼ f ðt; yÞ, given a user-
defined time-step (for us, 0.1 days). Suitability and details on the algorithm are
further discussed in ref. 66.

To derive the tipping point between controlled and uncontrolled outbreaks
(e.g., critical values of RH

t ), and to plot the stability diagrams, we used the @fzero
MATLAB function. This function uses a combination of bisection, secant, and
inverse quadratic interpolation methods to find the roots of a function. For
instance, following the discussion of Supplementary Note 1, RH

crit was determined
by finding the roots of the function returning the real part of the linear system’s
largest eigenvalue.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this study was obtained through numerical simulation. It is available
together with the code for solving our model’s equations for default and user-customized
parameters at https://github.com/Priesemann-Group/covid19_tti (https://doi.org/
10.5281/zenodo.4290679). Alternatively, an interactive platform for simulating scenarios
different from the herein presented is available on http://covid19-tti.ds.mpg.de, and users
may download the data generated.

Code availability
We provide the code for generating graphics and all the different analyses included in
both this manuscript and its Supplementary Information at https://github.com/
Priesemann-Group/covid19_tti (https://doi.org/10.5281/zenodo.4290679). An interactive
platform for simulating scenarios different from the herein presented is available on
http://covid19-tti.ds.mpg.de.
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The traditional long-term solutions for epidemic control involve eradication
or population immunity. Here, we analytically derive the existence of a third
viable solution: a stable equilibrium at low case numbers, where test-trace-
and-isolate policies partially compensate for local spreading events and only
moderate restrictions remain necessary. In this equilibrium, daily cases stabilize
around ten or fewer new infections per million people. However, stability is
endangered if restrictions are relaxed or case numbers grow too high. The latter
destabilization marks a tipping point beyond which the spread self-accelerates.
We show that a lockdown can reestablish control and that recurring lockdowns
are not necessary given sustained, moderate contact reduction. We illustrate
how this strategy profits from vaccination and helps mitigate variants of
concern. This strategy reduces cumulative cases (and fatalities) four times
more than strategies that only avoid hospital collapse. In the long term,
immunization, large-scale testing, and international coordination will further
facilitate control.
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E P I D E M I O L O G Y

Low case numbers enable long-term stable pandemic 
control without lockdowns
Sebastian Contreras1,2†, Jonas Dehning1†, Sebastian B. Mohr1†, Simon Bauer1†,  
F. Paul Spitzner1†, Viola Priesemann1,3*†

The traditional long-term solutions for epidemic control involve eradication or population immunity. Here, we 
analytically derive the existence of a third viable solution: a stable equilibrium at low case numbers, where 
test-trace-and-isolate policies partially compensate for local spreading events and only moderate restrictions 
remain necessary. In this equilibrium, daily cases stabilize around ten or fewer new infections per million people. 
However, stability is endangered if restrictions are relaxed or case numbers grow too high. The latter destabilization 
marks a tipping point beyond which the spread self-accelerates. We show that a lockdown can reestablish control 
and that recurring lockdowns are not necessary given sustained, moderate contact reduction. We illustrate how 
this strategy profits from vaccination and helps mitigate variants of concern. This strategy reduces cumulative 
cases (and fatalities) four times more than strategies that only avoid hospital collapse. In the long term, immuni-
zation, large-scale testing, and international coordination will further facilitate control.

INTRODUCTION
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is becoming endemic and knowledge about its spreading is 
accumulated, it becomes clear that neither global eradication nor 
population immunity will be achieved soon. Eradication is hindered 
by the worldwide prevalence and by asymptomatic spreading. 
Reaching population immunity without an effective vaccine or 
medication would take several years and cost countless deaths, 
especially among the elderly (1,  2). Moreover, evidence for long-
term effects (“long COVID”) is surfacing (3–6), advising against 
strategies aiming to progressively exposing people to the disease so 
that they acquire natural immunity. Hence, we need long-term, sus-
tainable strategies to contain the spread of SARS-CoV-2. The common 
goal, especially in countries with an aging population, should be to 
minimize the number of infections and, thereby, allow reliable 
planning for individuals and the economy, while not constraining 
individuals’ number of contacts too much (7). Intuitively, a regime 
with low case numbers not only would benefit public health and 
psychological well-being but also would profit the economy (8, 9).

However, control of SARS-CoV-2 is challenging. Many infec-
tions originate from asymptomatic or presymptomatic cases (10) or 
indirectly through aerosols (11), rendering mitigation measures 
difficult. Within test-trace-and-isolate (TTI) strategies, the contri-
bution of purely symptom-driven testing is limited, but together 
with contact tracing, it can uncover asymptomatic chains of infec-
tions. The rising availability of effective vaccines against SARS-CoV-2 
promises to relieve the social burden caused by nonpharmaceutical 
interventions (NPIs). However, it is unclear how fast the restric-
tions can be lifted without risking another wave (12–14) and how 
well vaccines will protect against more contagious or immune re-
sponse–escaping variants. Additional challenges are the potential 
influx of SARS-CoV-2 infections (brought in by travelers or 

commuting workers from abroad), imperfect quarantine, limited 
compliance, and TTI and case-reporting delays. Last, any country’s 
capacity to perform TTI is limited, so spreading dynamics change 
depending on the level of case numbers. Understanding these 
dynamics is crucial for informed policy decisions.

RESULTS
Analytical framework: Overview
We analytically show the existence of a stable regime at low case 
numbers, where control of SARS-CoV-2 is much easier to achieve 
and sustain. In addition, we investigate mitigation strategies and 
long-term control for corona virus disease 2019 (COVID-19), 
where we build on our past work to understand the effectiveness of 
NPIs, particularly TTI strategies (15–17). The strategy that we pro-
pose does not rely on the availability of a cure or vaccine, and it is 
applicable not only to further waves of COVID-19 but also to other 
emerging diseases with pandemic potential. Nonetheless, we also show 
how vaccination campaigns will further facilitate the success of the 
proposed strategy, assuming a vaccination rate as planned for coun-
tries in the European Union (13).

For quantitative assessments, we adapt a susceptible-exposed-
infectious-recovered (SEIR)–type compartmental model (18) to 
explicitly include a realistic TTI system that considers the challenges 
above. In our framework, individuals can be tested (and subse-
quently quarantined if tested positive) by three different mechanisms. 
First, symptomatic infections with COVID-19–specific symptoms 
would self-report or be diligently identified by surveillance and get 
a preferential test. Second, random asymptomatic screening would 
be homogeneously deployed in the general population disregarding 
symptoms so that every individual could be tested alike. Third, all 
the close contacts of those individuals recently tested positive by the 
two mechanisms mentioned above would also be tested. Under-
standably, limited resources pose a complex challenge for resource 
allocation, where efficient TTI would only be possible at low case 
numbers. We also built an interactive platform where enthusiastic 
readers can simulate scenarios different from those presented here-
in http://covid19-metastability.ds.mpg.de/.
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A central parameter for our analysis is the level of contagious 
contacts kt (relative to pre–COVID-19). More precisely, kt refers to 
the fraction of infection risk–bearing encounters compared to 
pre–COVID-19 contact levels. We can then interpret kt in terms of 
the hidden reproduction number ​​R​t​ 

H​​, which accounts for the number 
of offspring infections generated by individuals unaware of being 
infectious, i.e., hidden infections in a naive and fully susceptible 
population (15). Thus, in terms of ​​R​t​ 

H​​, kt can be understood as the 
ratio between the offspring infections a hidden individual would 
generate in the presence and in the absence of NPIs, in other words, 
​​R​t​ 

H​  = ​ k​ t​​ ​R​ 0​​​. Apart from direct contact reduction, contributions that 
allow increasing kt without compromising the stability of the sys-
tem also come from improved hygiene, mandatory face mask 
policies, frequent ventilation of closed spaces, and avoiding indoor 
gatherings, among other precautionary measures. As the latter 
measures are relatively fixed, direct contact reduction remains the 
central free variable, which is also the one tuned during lockdowns. 
All other parameters (and their references) are listed in Table 1.

Equilibrium at low case numbers
We find a regime where the spread reaches an equilibrium at low 
daily case numbers between the scenarios of eradication of the 
disease or uncontrolled spreading. The main control parameter that 

determines whether the system can reach an equilibrium is the level 
of contagious contacts kt.

If the reduction in the contact level kt is mild, then case numbers 
grow exponentially, as measures could not counterbalance the basic 
reproduction number [R0 ≈ 3.3 for SARS-CoV-2 (19, 20)] (Fig. 1B). 
In contrast, if the reduction in kt is strong and (together with hygiene 
and TTI) outweighs the drive by the basic reproduction number, 
then case numbers decrease to a low equilibrium value (Fig. 1D).

If the reduction in kt is moderate (and just about balances the 
drive by the basic reproduction number), we find a metastable regime: 
The spread is stabilized if and only if the overall case numbers are 
sufficiently low to enable fast and efficient TTI (Fig. 1C). However, 
this control is lost if the limited TTI capacity is overwhelmed. 
Beyond that tipping point, the number of cases starts to grow 
exponentially as increasingly more infectious individuals remain 
undetected (15).

The capacity of TTI determines the minimal required contact 
reduction for controlling case numbers around an equilibrium. If 
case numbers are sufficiently below the TTI capacity limit, then the 
maximum allowed level of contacts to enable the (meta-)stable 
regime in our default scenario (cf. Table 1, with R0 = 3.3) is ​​
k​t​ 

crit​  =  61%​ [95% confidence interval (CI): [47, 76]]. When the level 
of contacts kt is below the threshold, case numbers asymptotically 

Table 1. Model parameters. 

Parameter Meaning Value (default) Range Units Source

M Population size 1,000,000 People –

R0 Basic reproduction number 3.3 2.2–4.4 – (19, 20)

𝜈 Registered contacts (quarantined) 0.075 – Assumed

𝜖 Lost contacts (quarantined) 0.05 – Assumed

𝛾 Recovery/removal rate 0.10 0.08–0.12 Day−1 (64, 65)

𝜉 Asymptomatic ratio 0.32 0.15–0.43 – (51, 52, 54)

𝜆s Symptom-driven testing rate 0.25 0–1 Day−1 Assumed

​​​ s​ ′ ​​
Symptom-driven testing rate 

(reduced capacity) 0.1 Day−1 Assumed

𝜆r Random testing rate 0.0 0.0–0.1 Day−1 Assumed

𝜂 Tracing efficiency 0.66 – Assumed

𝜏 Contact tracing delay 2 Days Assumed

​​N​max​ test ​​ Maximal tracing capacity 50 10–75 Cases day−1 Assumed

t External influx 1 Cases day−1 Assumed

𝜌 Exposed-to-infectious rate 0.25 Day−1 (10, 66)

DL Lockdown duration 4 0–8 Weeks (27)

Dramp
Phase-transition duration 

(lockdown) 1 Weeks (27)

𝜒
Fraction of contacts traced before 

becoming infectious 0.61 – Eq. 17

𝜒s,r

Fraction of contacts traced after 
becoming infectious, before being 
tested (symptomatic and random)

0.30 – Eq. 20

𝜒r

Fraction of contacts traced after 
becoming infectious, before being 

tested (random)
0.39 – Eq. 18
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approach to an equilibrium that shows the following features: (i) 
When the level of contacts kt is close to its critical value ​​k​t​ 

crit​​, small 
changes in kt generate large modifications of the equilibrium level 
(Fig.  1E). (ii) Larger influxes lead to larger equilibrium values, 
however not modifying the maximum allowed level of contacts 
(Fig. 1F). (iii) Behavioral changes and policies leading to a reduc-
tion in the transmission probability will also lower the equilibrium 
value because the maximum allowed level of contacts ​​k​t​ 

crit​​ would be 
larger (Fig. 1G). However, if case numbers exceed the TTI capacity 
limit, then a considerably stronger reduction in contacts is required 
to reach the stable regime, so that ​​k​t​ 

crit​  =  42%​ (95% CI: [38, 47]) 
(Fig. 2B, fig. S2B, and table S1).

Equilibrium depends on influx and contact reduction
If an equilibrium is reached, the precise value of daily new cases  
​​​   N ​​∞​ obs​​ at which the system stabilizes depends on both the contact level 
(kt) and the external influx of new cases (t) (Fig. 2A). In general, 
for realistic low values of influx t, the equilibrium level ​​​   N ​​∞​ obs​​ is low. 
However, ​​​   N ​​∞​ obs​​ increases steeply (diverges) when the contact level kt 
approaches the tipping point to unstable dynamics (Fig. 2, A and B). 
Such a divergence near a critical point ​​k​t​ 

crit​​ is a general feature of 
continuous transitions between stable and unstable dynamics 
(21, 22). As a rule of thumb, in an analytical mean-field approxima-
tion (22), ​​​   N ​​∞​ 

obs
​​ would be proportional to t and diverge when kt ap-

proaches its critical value ​​k​t​ 
crit​​ from below

	​​​    N ​​∞​ 
obs

​ ∝ ​   ​​ t​​ ─ 
​k​t​ 

crit​ − ​k​ t​​
 ​​	 (1)

Robust control of the pandemic requires maintaining a suffi-
cient safety margin from the tipping point (and the subsequent 
transition to instability) for two reasons. First, small fluctuations in 
kt and t (or other model variables) could easily destabilize the system. 
Second, near the critical value ​​k​t​ 

crit​​, reductions in kt are especially 

effective: Already, small further reductions below ​​k​t​ 
crit​​ lead to 

substantially lower stable case numbers (Fig. 2A). Already, with 
moderate reductions in kt (50 % < kt < 60%), the spread can be 
stabilized to a regime of case numbers clearly below 10 per million 
(fig. S1B, lower right region).

Limited TTI and self-acceleration
If mitigation measures are insufficient, then case numbers rise and 
eventually surpass the TTI capacity limit. Beyond it, health authori-
ties cannot efficiently trace contacts and uncover infection chains. 
Thus, the control of the spread becomes more difficult. We start our 
scenario with a slight increase in the case numbers over a few 
months, as seen in many European countries throughout summer 
2020 (figs. S4 and S5). A tipping point is then visible in the following 
observables (Fig. 2, C to F)

First, when case numbers surpass the TTI capacity, the increase in 
daily new observed cases ​​​   N ​​​ 

obs
​​ becomes steeper, growing even faster 

than the previous exponential growth (Fig. 2C, full versus faint 
line). The spread self-accelerates because increasingly more contacts 
are missed, which, in turn, infect more people. In this scenario, the 
accelerated spread arises solely because of exceeding the TTI limit, 
without any underlying behavior change among the population.

Second, after case numbers surpass the TTI limit, the observed 
reproduction number ​​​   R ​​t​ 

obs​​, which had been only slightly above the 
critical value of unity, increases substantially by about 20% (Fig. 2D). 
This reflects a gradual loss of control over the spread and explains 
the faster-than-exponential growth of case numbers. The initial dip 
in ​​​   R ​​t​ 

obs
​​ is a side effect of the limited testing: As increasingly many cases 

are missed, the observed reproduction number reduces transiently.
Third, compared to the infectious individuals who are quaran-

tined IQ, the number of infectious individuals who are hidden IH 
(i.e., those who are not isolated or in quarantine) increases dispro-
portionately (Fig. 2E), which is measured by the “underreporting 

Table 2. Model variables. 

Variable Meaning Units Explanation

S Susceptible pool People Noninfected people that may acquire the virus

EQ Exposed pool (quarantined) People Total quarantined exposed people

EH Exposed pool (hidden) People Total nontraced, nonquarantined exposed people

IH, s Infectious pool (hidden, symptomatic) People Nontraced, nonquarantined people who are symptomatic

IH Infectious pool (hidden) People Total nontraced, nonquarantined infectious people

IQ Infectious pool (quarantined) People Total quarantined infectious people

N New infections (total) Cases day−1 Given by: ​N  =   ​k​ t​​ ​R​ 0​​ ​I​​ H​ + ( + ϵ ) ​R​ 0​​ ​I​​ Q​ + ​ S _ M​ ​​ t​​​.
kt Contact reduction % Reduction of infectious contacts, related to pre–COVID-19 times

​
​​ ̂  N ​​​ 

obs
​
​

Observed new infections (influx to traced pool) Cases day−1 Daily new cases, observed from the quarantined pool; delayed 
because of imperfect reporting and realistic contact tracing

​​​ ̂  R ​​t​ 
obs

​​ Observed reproduction number The reproduction number that can be estimated only from the 
observed cases: ​​​ ̂  R ​​t​ 

obs
​  = ​ ​ ̂  N ​​​ 

obs
​(t ) / ​​ ̂  N ​​​ 

obs
​(t − 4)​

Ntest Number of cases found through testing People Cases can be found either through symptomatic or random 
testing ​​N​​ test​  = ​ N​r​ 

test​ + ​N​s​ test​​.

Ntraced Number of uncovered infections through tracing People This number is limited (depending on the reproduction 
number) by the maximal tracing capacity ​​N​max​ test ​​
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factor” (IH/IQ) (Fig. 2F). The hidden infectious individuals are the 
silent drivers of the spread, as they, unaware of being infectious, 
inadvertently transmit the virus. This implies a considerable risk, espe-
cially for vulnerable people. The TTI system can compensate for the 
hidden spread at low case numbers because it uncovers hidden cases 
through contact tracing. However, at high case numbers, the TTI be-
comes inefficient: If the TTI measures are “slower than the viral spread,” 
many contacts cannot be quarantined before they become spreaders.

Reestablishing control with lockdowns
Once the number of new infections has overwhelmed the TTI 
system, reestablishing control can be challenging. A recent sugges-
tion is the application of a circuit breaker (23–25), a short lockdown 
to substantially lower the number of daily new infections. Already, 
during the so-called first wave of COVID-19  in Europe (i.e., the 
time frame between March and June 2020), lockdowns have proven 
capable of lowering case numbers by a factor of 2 or more every 
week (corresponding to an observed reproduction number of  
​​​   R ​​t​ 

obs​  ≈  0.7​) (17, 26). With the knowledge that we now have ac-
quired about the spreading of SARS-CoV-2, more targeted restric-
tions may yield a similarly strong effect.

Inspired by the lockdowns installed in many countries (27), we 
assume a default lockdown of 4 weeks, starting 4 weeks after case 
numbers exceed the TTI capacity limit, and a strong reduction of 

contagious contacts during a lockdown, leading to kt = 25% (which 
corresponds to an ​​​   R ​​t​ 

obs​  ≈  0.85​; see table S2). We further assume 
that during lockdown, the external influx of infections t is reduced 
by a factor of 10 and that after the lockdown, a moderate contact 
reduction (allowing knLD = 60%) is maintained. By varying the 
parameters of this default lockdown, we show in the following that 
the lockdown strength, duration, and starting time determine whether 
the lockdown succeeds or fails to reach equilibrium.

In our scenario, a lockdown duration of 4 weeks is sufficient to 
reach the stable regime (Fig. 3A). However, if lifted too early (before 
completing 4 weeks), case numbers will rise again shortly afterward. 
The shorter an insufficient lockdown, the faster case numbers will 
rise again. In addition, it is advantageous to remain in lockdown for 
a short time even after case numbers have fallen below the TTI limit, 
to establish a safety margin, as shown above. Overall, the major 
challenge is not to ease the lockdown too early; otherwise, the earlier 
success is soon squandered.

During a lockdown, it is necessary to severely reduce contagious 
contacts to decrease case numbers below the TTI capacity limit 
(Fig. 3B). In our scenario, the contact level has to be reduced to at 
least kLD = 25% to bring the system back to equilibrium. Otherwise, 
a lockdown that is slightly weaker would fail to reverse the increasing 
trend in cases. Furthermore, increasing the lockdown strength 
decreases both the required lockdown duration (Fig. 3, G and H) 
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and the total number of cases accumulated over 3 months (Fig. 3E). 
This shows that stricter lockdowns imply shorter-lasting social and 
economic restrictions.

The earlier a lockdown begins after exceeding the TTI capacity 
limit, the faster control can be reestablished, and constraints can be 
loosened again (Fig. 3C). If started right after crossing the thresh-
old, in principle, then only a few days of lockdown are necessary to 
bring back case numbers below the TTI capacity limit. On the other 
hand, if the lockdown is started weeks later, then its duration needs 
to increase (Fig. 3, C and D) and the total number of cases will be 
substantially larger (Fig. 3F). The parameter regime between these 
two options is relatively narrow; it is not likely that equilibrium 
can eventually be reached as a lockdown exceeds many weeks 
(cf. Fig. 3H). For practical policies, this means that if a lockdown does 
not start to show apparent effects after 2 or 3 weeks, then the strategy 
should be revised (this assessment time is necessary because of the 
delay of 1 to 2 weeks between contagion and case report).

Maintaining control without lockdowns
We show that repeated lockdowns are not required to maintain 
control over the COVID-19 spread if moderate contact reduction is 
maintained once case numbers are below the TTI capacity limit (an 
initial lockdown might still be necessary to establish control). A 
natural goal would be to keep case numbers below the hospital 
capacity. However, our model suggests that lowering them below 
TTI capacity requires fewer contact restrictions (in the long term), 
involves a shorter total lockdown duration, and costs fewer lives. In 
the following, we compare the long-term perspective of these two 
goals and their dependence on the necessary contact reduction.

In our scenario (Fig. 4), we start from the unstable regime, where 
the initial contact level (kt = 80% of the pre-COVID-19 level) is not 
sufficient to control the spread. We start a 2-week lockdown when 
crossing either the TTI or the hospital capacity. During the lockdown, 
contacts are reduced to kt = 25%. After the first and all subsequent 
lockdowns, contacts kt are reduced to 80, 60, or 40% relative to 
pre–COVID-19 levels, thus representing a mild, moderate, or strong 
reduction. When assuming mild contact reduction after lockdowns, 
case numbers rise after lifting the lockdown, independent of the 
chosen threshold (TTI or hospital capacity; Fig. 4A). Thus, repeated 
lockdowns are necessary.

However, maintaining a moderate contact reduction while not 
in  lockdown (i.e., a contact level of kt = 60%) is sufficient to stay 
within the metastable regime, if lockdowns are enacted such that 
case numbers remain below the TTI capacity (Fig. 4B, yellow line). 
This is a promising perspective for a long-term control strategy that 
avoids recurrent lockdowns. Otherwise, if case numbers are above 
TTI capacity limit but below hospital capacity, then control of the 
pandemic requires repeated lockdowns (Fig. 4B, red line). Alterna-
tively, lasting strong contact reductions even after the lockdown can 
be sufficient to drive down case numbers (Fig. 4C).

The advantage of the strategy to stay below the TTI capacity limit 
becomes very clear when considering the total cost of the required 
lockdowns: Independent of the degree of contact reduction, (i) the 
total number of cases (and consequently deaths and long COVID 
risk) is lower (Fig. 4D), (ii) the total duration spent in lockdown is 
shorter (Fig. 4E), and (iii) the frequency at which lockdowns have to 
reoccur—should the after-lockdown contact reduction not be 
enough to grant metastability—is lower (Fig. 4A). As case numbers 
and lockdown duration indicate economic costs, a strategy that 
respects the TTI limit offers a low economic toll, enables mid-term 
planning, and provides trust to people and society.

The scalability of random testing (screening) (28–30) and im-
munization programs play a critical role in long-term strategies; 
both will increase the maximum level of contacts allowed (​​k​t​ 

crit​​) to 
maintain control (Fig. 4, F and G). Early effects of immunity can be 
seen in our scenario of the system stabilized at hospital capacity: 
The need for lockdowns becomes less frequent over time (Fig.  4, 
A and B, red lines). However, acquiring natural immunity comes at 
the cost of a prolonged high level of case numbers, subsequent long 
COVID cases (4–6), and deceased people. Whereas the duration of 
the immunity is yet unknown (31), this phenomenon still shows 
that immunity effects play an increasing role as model predictions 
extend further into the future.

Vaccination greatly facilitates containment in  
the effective TTI regime
In the following, we show how growing immunity granted by vacci-
nation programs further facilitates both reaching low case numbers 
below TTI capacity and the stable control thereof. For quantitative 
assessments, we studied the effect of COVID-19 vaccination 
programs and how they affect the two control strategies discussed 
in the previous section.

Investigating explicit vaccination scenarios, we assume that 80% 
of people getting offered vaccination accept this offer. Since, as of 
now, none of the available vaccines has been approved for people 
younger than 16 years, this corresponds to a vaccine uptake of 
roughly 70% of the overall population (for European demographics). 
We model the delivery and administration of all doses to be 
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completed within 32 weeks (13), which is comparable to the 
increasing vaccination rate in the European Union. We investigate 
two scenarios: that the average vaccine efficacy against transmission 
is 80%, in line with reported values for current vaccines against the 
wild type and the widely dominant B.1.1.7 variant (32–34), or 40%, 
a possible scenario for partially immune-escaping variants.

Comparing the two different control strategies introduced in the 
preceding section, i.e., either aiming to keep case numbers below the 
TTI or below the hospital capacity limit, the progressing vaccina-
tion Fig. 5, A and B) will eventually lead to declining case numbers 
Fig. 5, C and D). However, this point will be reached several weeks 
earlier if case numbers are kept below TTI capacity. Until then, 
repeated lockdowns will remain necessary if contact reductions 
outside of lockdown are insufficient (see discussion in the preceding 
section). A decreasing number of infections will even be reached 
months earlier if TTI capacity is available than if it is overwhelmed.

Low case numbers are greatly beneficial even in light of pro-
gressing vaccination programs. In the high–case number regime, 
only in the most optimistic scenario can the spread of SARS-CoV-2 
be controlled without contact reductions after the vaccination 
program is finished (Fig. 5E, the full gray line reaches 100%). In all 
other scenarios, because of the dominance of more contagious (dotted 
lines) or immune escape variants lowering vaccine efficacy (lower 

row), an efficiently functioning TTI program is necessary to allow 
for a high level of contacts (Fig. 5, E and F, blue lines). Therefore, 
reaching low case numbers is complementary to the vaccination 
efforts and necessary to maximize the population’s freedom.

DISCUSSION
We demonstrated that between the two extremes of eradication and 
uncontrolled spread, a metastable regime of SARS-CoV-2 spreading 
exists. In such a regime, every person only has to reduce their 
contacts moderately. Simultaneously, case numbers can still be 
maintained robustly at low levels because the TTI system can 
operate efficiently. If this regime is within reach, then keeping case 
numbers below TTI capacity is a suitable strategy for the long-term 
control of COVID-19 (or other infectious diseases) that features 
low fatalities and a small societal burden. In addition, it maximizes 
the effect of large-scale pharmaceutical interventions (as vaccina-
tion programs).

Among countries worldwide, variability in governmental policies 
and the chosen strategy to face COVID-19 substantially affect the 
levels of observed COVID-19 case numbers (see also Fig. 6 and note 
S1.1). Sustained high levels of more than 100 daily new cases per 
million have been observed in several (but not exclusively) 
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American countries (Fig. 6A). This shows that high levels of daily 
new infections can be maintained. However, the stringency of in-
terventions is similar to other countries (35), without signs of 
reaching population immunity. On the other hand, very low case 
numbers and even local eradication have been achieved by several 
South and East Asian countries, Australia, and New Zealand. At the 
time of writing, these countries profit from the absorbing state at 
zero SARS-CoV-2 infections, but maintaining this state requires 
substantial international travel restrictions (Fig. 6C). An intermedi-
ate level of case numbers could predominantly be observed over 
summer 2020  in Europe. Case numbers for many countries were 
typically around 10 daily new cases per million (Fig. 6B), although 
contacts were only mildly restricted. These stable numbers demon-
strate that also, in practice, a regime below TTI capacity limits is 
maintainable. Nonetheless, in September, the spread substantially 
accelerated in several European countries, when case numbers 
began to exceed 20 to 50 daily new cases per million (fig. S5). 
Beyond these levels of case numbers, the TTI systems began to be 
overwhelmed, making control difficult, in line with our model’s 
results.

To focus our model on the general spreading dynamics, we 
made simplifying assumptions: We assumed that spreading hap-
pens homogeneously in the population, with neither regional nor 

age-related differences. In reality, heterogeneous spreading can lead 
to regionally differing case numbers, which illustrates the need for 
regional monitoring of the remaining TTI capacity to allow for early 
and targeted control measures. In our scenarios, we further 
assumed that the population’s behavior and subsequent contact 
reduction are constant over time (except during lockdown). Real 
situations are more dynamic, necessitating frequent reevaluations 
of the current restrictions and mitigation measures. We also assumed 
constant TTI effectiveness if below the capacity limit. However, if 
case numbers are very low, then all the available test and trace 
efforts could be concentrated on the remaining infection chains. 
This would further facilitate control at low case numbers. Overall, 
our analytical results describe the general behavior across countries 
well and identify the relevant factors for controlling the pandemic.

Quantitatively, our assumptions regarding the efficiency of TTI 
are in agreement with those of other modeling studies. Agent-based 
models with detailed contact structures (36, 37) and mean-field 
models (38–41) both agree that TTI measures are an essential 
contribution for the control of the pandemic but typically do not 
suffice alone. Their success strongly depends on their implementation: 
Fast testing, rigorous isolation, and a large proportion of traced 
contacts are essential. Given our informed assumptions about these 
parameters, our model shows that TTI can only compensate a basic 
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reproduction number R0 of 3.3, if contagious contacts are also 
reduced to at most 61% (95% CI: [47, 76]) compared to pre-
COVID-19. This is in agreement with the results of other studies 
(36, 37, 39, 42, 43).

The capacity limit of TTI plays a central role in the control of the 
spread but depends strongly on the local environment. The precise 
limit of TTI depends on several factors, including the number of 
available tests, personnel at the tracing units, potentially a tracing 
app (39), and the number of relevant contacts a person has on 
average. Already, the latter can easily differ by a factor of 10, 
depending on contact restrictions and cultural factors (44). We 
assumed that the capacity is reached at about 85 daily new cases per 
million for our scenarios, which is comparably high. Independent 
of the exact value, when this limit is approached, the risk of tipping 
over to uncontrolled spread strongly increases, and countermeasures 
should be taken without delay.

Given the large deviations of the capacity limit of TTI across 
regions, policy-makers should monitor local health authorities’ and 
tracing agencies’ capacity instead of relying on fixed limits. Health 
authorities can also assess whether a local outbreak is controlled or 
whether infection chains cannot be traced anymore, allowing an 
early and adaptive warning system. However, one can safely state 
that daily case numbers larger than 85 per million (corresponding 
to our modeled limit) are above the capacity limit of TTI programs 
in Europe, therefore requiring, in any case, further restrictions to 
reach controllable levels.

Even given the ongoing vaccination campaigns, a low level of 
case numbers below TTI capacity limits remains essential. We find 
that during and after the campaigns, TTI still greatly facilitates the 
containment of COVID-19. The vaccinations’ exact effect depends 
on several hard-to-model factors. It can change with newly emerging 
variants of the virus, which can be more contagious, more severe, or 
escape the immune response. In our analysis of the effect of vacci-
nation, we also neglected age and high-risk-group distributions and 
contact networks in the population, the exact design of national 

vaccination plans, or the differential efficacy of vaccines against 
infection and severe disease. Some of these factors were taken into 
account in other publications (12–14). However, the long-term 
success of vaccinations alone remains hard to predict. Thus, it is 
sensible to accompany mass vaccinations to achieve low case 
numbers in the vaccine rollout and the time beyond.

Our results show that a stable equilibrium at low case numbers 
can be maintained with a moderate contact reduction of about 40% 
less contagious contacts compared to pre–COVID-19. In terms of 
our parameters, this translates to a maximum, critical, level of 
contacts ​​k​t​ 

crit​​ of 61% (95% CI: [47, 76]). This level of contacts can be 
achieved with preventive mitigation measures, as shown by 
studies analyzing the effectiveness of NPIs during the first wave 
(17, 26, 27, 45, 46). Restrictions on the maximum size of gatherings 
already lead to an effective reduction in the range of 10 to 40% 
(17, 26, 27, 46). Improved hygiene, frequent ventilation of rooms, 
and the compulsory use of masks can further reduce the number 
of infectious contacts [by a factor that is more difficult to estimate 
(47, 48)]. Overall, until mass vaccination plans have been deployed 
worldwide and available vaccines have been shown to be successful 
against emerging variants, the regime of low case numbers is very 
promising for a mid- and long-term management of the pandemic, 
as it poses the least burden on economy and society.

On the other hand, stabilizing the spread at higher levels of case 
numbers (e.g., at the hospital capacity limit) requires more stringent 
and more frequent NPIs because the TTI system cannot operate 
efficiently. Examples of more stringent measures are the closure of 
schools and public businesses, stay-at-home orders, and contact 
ban policies (17, 26, 45).

In conclusion, this paper recommends reaching and maintaining 
low case numbers that allow efficient TTI measures complementary 
to pharmaceutical interventions. To this end, it is mandatory to 
counteract local super-spreading events (or an acute influx of 
infections) as early as possible and to sustain a sufficient level of 
mitigation measures. If low case numbers are reached and maintained 
throughout Europe, it will be possible to lift restrictions moderately 
in the medium term, and we will be better prepared for the 
emergence of future variants of concerns.

METHODS
Model overview
We model the spreading dynamics of SARS-CoV-2 as the sum of 
contributions from two pools of infectious individuals, i.e., quarantined-
isolated IQ and hidden nonisolated IH individuals, while also 
modeling the infectivity timeline through the incorporation of 
compartments for individuals exposed to the virus (EQ, EH), follow-
ing an SEIR-like formalism. The quarantined infectious pool (IQ) 
contains cases revealed through testing or by contact tracing and 
subsequently sent to quarantine/isolation to avoid further contacts 
as much as possible. In contrast, in the hidden infectious pool (IH), 
infections spread silently and only become detectable when individuals 
develop symptoms and get tested, via random testing in the population 
or as part ofthe chain of contacts of recently identified individuals. 
This second pool (IH) is called the hidden pool; individuals in this 
pool are assumed to exhibit the general population’s behavior, thus 
of everyone who is not aware of being infected. Healthy individuals 
that can be infected belong to the susceptible pool S. At the same 
time, we assume that, after they recover and for the relatively short 
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Fig. 7. Flowchart of the complete model. The solid blocks in the diagram represent 
different SEIR compartments for both hidden and quarantined individuals. Hidden 
compartments account for both symptomatic and asymptomatic carriers (as de-
scribed in Methods). Solid lines represent the natural progression of the infection 
(contagion, latent period, and recovery). On the other hand, dashed lines account 
for imperfect quarantine and limited compliance, external factors, and TTI policies.
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time frame here studied, they remain immunized in the R compart-
ment (for a graphical representation of the model, see Fig. 7). We 
model the mean-field interactions between compartments by 
transition rates, determining the time scales involved. These transi-
tion rates can implicitly incorporate both the disease’s time course 
and the delays inherent to the TTI process. Individuals exposed to 
the virus become infectious after the latent period, modeled by the 
transition rate . We distinguish between symptomatic and asymp-
tomatic carriers; this is central when exploring different testing 
strategies (as detailed below). We also include the effects of non-
compliance to TTI measures, modeled as a higher asymptomatic 
ratio, and imperfect contact tracing, including an explicit delay 
between testing and contact tracing of contacts. In the different 
scenarios analyzed, we include a nonzero influx t of new cases that 
acquired the virus from outside. Although this influx makes a 
complete eradication of SARS-CoV-2 impossible, different outcomes 
in the spreading dynamics might arise depending on both contact 
intensity (contact level kt) and TTI. We then investigate the system’s 
stability and dynamics, aiming to control the spread with a low total 
number of cases without necessitating a too large reduction of 
infectious contacts.

Spreading dynamics
Concretely, we use a modified SEIR-type model, where infected 
individuals can be either symptomatic or asymptomatic. They 
belong to hidden (EH, IH) or a quarantined (EQ, IQ) pools of infections, 
thus creating, in total, one compartment of susceptible (S), two 
compartments of exposed individuals (EH and EQ), four compart-
ments of infectious individuals (IH, s, IH, a, IQ, s, and IQ, a), and one 
compartment for recovered/removed individuals (R).

New infections are asymptomatic with a ratio ; the others are 
symptomatic. In all compartments, individuals are removed with a 
rate  because of recovery or death (see Table 1 for all parameters 
and Table 2 for all variables of the model).

In the hidden pools, the disease spreads according to the 
population’s contact patterns, which can be expressed as a level kt of 
the intensity they had before COVID-19–related contact restrictions. 
Defining R0 as the base reproduction number without contact 
restrictions, the reproduction number of the hidden pool IH is given 
by ktR0. This reproduction number reflects the disease spread in the 
general population without testing-induced isolation of individuals. 
In addition, the hidden pool receives a mobility-induced influx t 
of new infections. Cases are removed from the hidden pool (i) when 
detected by TTI and put into the quarantined pool IQ or (ii) due to 
recovery or death.

The quarantined exposed and infectious pools (EQ, IQ) contain 
those infected individuals who have been tested positive and their 
positively tested contacts. Infectious individuals in IQ are (imperfectly) 
isolated; we assume that their contacts have been reduced to a 
fraction ( + ϵ) of the ones they had in pre–COVID-19 times, of 
which only  are captured by the tracing efforts of the health authori-
ties. The subsequent infections remain quarantined, thus entering 
the EQ pool and, afterward, the IQ pool. The remaining fraction of 
produced infections, ϵ, are missed and act as an influx to the hidden 
pools (EH). Therefore, the overall reproduction number in the 
IQ pool is ( + ϵ)R0.

As our model is an expanded SEIR model, it assumes postinfec-
tion immunity, which is a realistic assumption given the limited time 
frame considered in our analysis. Our model can also reflect innate 

immunity; one has to rescale the population or the reproduction number. 
The qualitative behavior of the dynamics is not expected to change.

Parameter choices and scenarios
For any testing strategy, the fraction of infections that do not develop 
any symptoms across the whole infection timeline is an important 
parameter, and this also holds for testing strategies applied to the 
case of SARS-CoV-2. In our model, this parameter is called ap and 
includes, beside true asymptomatic infections , also the effect of 
individuals that avoid testing (49). The exact value of the fraction of 
asymptomatic infections , however, is still fraught with uncertainty, 
and it also depends on age (50). While early estimates were as high 
as 50% [for example, ranging from 26 to 63% (51)], these early 
estimates suffered from reporting bias and small sample sizes and 
sometimes included presymptomatic cases as well (52). Recent 
studies estimate the asymptomatic transmission to be more minor 
(53), estimates of the fraction of asymptomatic carriers range 
between 12% (52) and 33% (54).

Another crucial parameter for any TTI strategy is the reproduc-
tion number of the hidden infections. This parameter is, by defini-
tion, impossible to measure, but it is typically the main driver of the 
spreading dynamics. It depends mainly on the contact behavior of 
the population and ranges from R0 in the absence of contact restric-
tions to values below 1 during strict lockdown (17). Here, we decided 
to include instead contact level compared to the pre–COVID-19 
baseline cts to represent the reproduction number of hidden infections 
​​R​t​ 

H​  = ​ k​ t​​ ​R​ 0​​​. For the default parameters of our model, we evaluated 
different contact levels kt.

Testing and tracing strategies
We consider a testing and tracing strategy: symptom-driven testing 
and specific testing of traced contacts, with subsequent isolation 
(quarantine) of those who tested positive. Our model can also 
include random testing, but this case is only explored in Fig. 4 of 
this paper.

Symptom-driven testing is defined as applying tests to individuals 
presenting symptoms of COVID-19. In this context, note that 
noninfected individuals can have symptoms similar to those of 
COVID-19, as many symptoms are rather unspecific. Although 
symptom-driven testing suffers less from imperfect specificity, it 
can only uncover symptomatic cases that are willing to be tested 
(see below). Here, symptomatic, infectious individuals are transferred 
from the hidden to the traced pool at rate s.

We define s as the daily rate at which symptomatic individuals 
get tested among the subset who are willing to get tested because of 
surveillance programs or self-report. As default value, we use 
s = 0.25, which means that, on average, an individual willing to get 
tested that develops COVID-19–specific symptoms would get a test 
within 4 days from the end of the latency period. Testing and isola-
tion happen immediately in this model, but their report into the 
observed new daily cases ​​​   N ​​​ 

obs
​​ is delayed and so is the tracing of 

their contacts.
Tracing contacts of positively tested infectious individuals 

presents a very specific test strategy and is expected to be effective 
in breaking the infection chains if contacts self-isolate sufficiently 
quickly (36, 55, 56). However, as every implementation of a TTI 
strategy is bound to be imperfect, we assume that only a fraction 
 < 1 of all contacts can be traced. These contacts, if tested positive, 
are then transferred from the hidden to the quarantined infectious 
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pools (IH → IQ) with an average delay of  = 2 days. The parameter 
 effectively represents the fraction of secondary and tertiary 
infections that are found through contact tracing. As this fraction 
decreases when the delay between testing and contact tracing in-
creases, we assumed a default value of  = 0.66, i.e., on average, only 
two-thirds of subsequent offspring infections are prevented. 
Contact tracing is mainly done manually by the health authorities 
in Germany. This limits the maximum number ​​N​max​ test ​​ of new cases 
observed through testing Ntest, for which contact tracing is still 
functional.

Random testing is defined here as applying tests to individuals 
irrespective of their symptom status or whether they belonged to 
the contact chain of other infected individuals. In our model, 
random testing transfers infected individuals from the hidden to 
the quarantined infectious pools with a fixed rate r, irrespective of 
whether they are showing symptoms or not. In reality, random 
testing is often implemented as situation-based testing for a subgroup 
of the population, e.g., at a hotspot, for groups at risk, or for people 
returning from travel. These situation-based strategies would be 
more efficient than the random testing assumed in this model, 
which may be unfeasible at a country level because of testing 
limitations (15).

Lockdown modeling
To assess the effectiveness of lockdowns in the broad spectrum of 
contact-ban governmental interventions, we model how the reduc-
tion of contacts and the duration of such restrictive regimes help 
lower case numbers. We model contact reductions as reductions in 
the reproduction number of the hidden population, which, for 
these matters, is presented as percentages of the basic reproduction 
number R0, which sets the pre–COVID-19 baseline for the number 
of close contacts.

For the sake of simplicity, we assume that the lockdown scenarios 
have three stages: (i) an uncontrolled regime, where the TTI capacity 
is overwhelmed because of high case numbers and unsustainable 
contact levels, reflected by a high value of kt and a high influx of 
infections t. (ii) Lockdown is enacted, imposing a strong reduction 
of contacts, leading to lower values of kt, and borders closing, leading 
to a lower influx of t. (iii) Measures are relaxed, allowing higher 
levels of contacts kt and restoring international transit. All the 
changes between the different regimes i→ii→iii are modeled as 
linear ramps for both parameters, which take Dramp = 7 days to 
reach their set point. The duration of the lockdown, namely, the time 
frame between the start of the restrictive measures and the begin-
ning of their relaxation, is measured in weeks. Its default length, 
for analysis purposes, is DL = 4 weeks. These values have been 
chosen following the results of (27), where the first effects of an 
NPI were seen after 7 days and the maximum effect was seen 
after 4 weeks.

Model equations
The contributions of the spreading dynamics and the TTI strategies 
are summarized in the equations below. They govern the dynamics 
of case numbers between the different SEIR pools, both hidden 
(nonisolated) and quarantined. We assume a regime where most of 
the population is susceptible, and the time frame analyzed is short 
enough to assume postinfection immunity. Thus, the dynamics are 
completely determined by the spread [characterized by the reproduc-
tion numbers ktR0 and ( + ϵ)R0], the transition from exposed to 

infectious (at rate ), recovery (characterized by the recovery rate ), 
external influx t, and the impact of the TTI strategies

	​​  dS ─ dt ​ = − ​ ​ ​k​ t​​ ​R​ 0​​ ​ S ─ M ​ ​I​​ H​ 


​​ 
hidden contagion

​​ −  ​​( + ϵ ) ​R​ 0​​ ​ S ─ M ​ ​I​​ Q​  


​​  
traced contagion

​  ​ − ​ ​​  S ─ M ​ ​​ t​​ 
⏟

​​ 
ext. influx

​​​	 (2)

	​​  ​dE​​ Q​ ─ dt  ​ = ​ ​  ​R​ 0​​ ​ S ─ M ​ ​I​​ Q​ 


​​ 
traced contagion

​​ + ​ ​​ ​ ​​ ​N​​ traced​ 
⏟

​​ 
contact tracing

​​ − ​ ​  ​E​​ Q​ 
⏟

​​ 
end of latency

​​​	 (3)

	​​  ​dE​​ H​ ─ dt  ​ = ​​ ​ S ─ M ​​(​​ ​k​ t​​ ​R​ 0​​ ​I​​ H​ + ϵ ​R​ 0​​ ​I​​ Q​​)​​  


​​  

hidden contagion

​  ​ − ​ ​​ ​ ​​ ​N​​ traced​ 
⏟

​​ 
contact tracing

​​ − ​ ​  ​E​​ H​ 
⏟

​​ 
end of latency

​​​	 (4)

	​​  ​dI​​ Q​ ─ dt  ​ = ​ ​  ​E​​ Q​ −  ​I​​ Q​ ​​ 
spreading dynamics

​​ + ​ ​​N​​ test​ 
⏟

​​ 
testing

​​ + ​​(​​ s,r​​(1 −  ) + ​​ r​​  ) ​N​​ traced​  ​​  
contact tracing

​  ​​	 (5)

​​ ​dI​​ H​ ─ dt  ​ = ​ ​  ​E​​ H​ −  ​I​​ H​ ​​ 
spreading dynami

 −​​ ​ ​​N​​ test​ 
⏟

​​ 
testing

​​ −  ​​(​​ s,r​​(1 −  ) + ​​ r​​  ) ​N​​ traced​  ​​  
contact tracing

​  ​ + ​ ​​  S ─ M ​ ​​ t​​ 
⏟

​​ 
ext.influx

​​​	 (6)

  ​​​ ​dI​​ H,s​ ─ dt  ​  = ​​(1 −  )  ​E​​ H​ −  ​I​​ H,s ​  ​​  
spreading dynamics

​ ​           −  ​ ​​​N​ s​​​​ test ​ 
⏟

​​ 
testing

​​ −  (1 −  ) ​
(

​​ ​ ​​ ​ s,r​​ ​N​​ traced ​ ​​ 
contact tracing

​​  + ​ ​​  S ─ M ​ ​​ t ​​ 
⏟

​​ 
ext.influx

​​​
)

​​​​	 (7)

	​​ I​​ H,a​ = ​I​​ H​ − ​I​​ H,s​​	 (8)

	​​  dR ─ dt ​ = ​ ​ (​I​​ Q​ + ​I​​ H​) ​​  
recovered/removed individuals

​​​	 (9)

Initial conditions
Let x be the vector collecting the variables of all different pools

	​ x  =  [S, ​E​​ Q​, ​E​​ H​, ​I​​ Q​, ​I​​ H​, ​I​​ H,s​, R]​	 (10)

We assume a population size of M = 106 individuals, so that 
∑i ≠ 6xi = M, and a prevalence of I0 = 200 infections per million, so 
that IQ(0) = I0. Assuming that the hidden amount of infections is in 
the same order of magnitude I0, we would have IH(0) = I0, IH, s(0) = 
(1 − )I0. We would expect the exposed individuals to scale with 
ktR0I0, but we rather assume them to have the same size of the 
corresponding infectious pool. To calculate the initially susceptible 
individuals, we use S(0) = 1 − ∑i ≠ {1,6}xi.

Effect of delays and capacity limit on the effectiveness  
of TTI strategies
In this section, we discuss further details on the derivation of the 
different parameters and variables involved in Eqs. 2 to 9. First, as 
we assume contact tracing to be effective after a delay of  days, 
some of the individuals who acquired the infection from those 
recently tested might have also become infectious by the time of 
tracing. Moreover, a fraction of those who became infectious might also 
have been tested by the tracing time, should they have developed  
symptoms.

Furthermore, we give explicit forms for Ntest and Ntraced the 
number of cases identified by testing and contact tracing, respec-
tively. When surpassing TTI capacity, we assume that both testing 
and contact tracing change their dynamics simultaneously. This 
happens when the daily amount of cases identified by testing Ntest 
overpasses the TTI threshold ​​N​max​ test ​​. After being overwhelmed, the 
overhead testing would change its rate s → s′, as only patients with 
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a more specific set of symptoms would be tested. Nonetheless, 
the contact tracing efforts can only follow the contacts of those ​​
N​max​ test ​​ observed cases, identifying a fraction  of the offspring infec-
tions that they produced in their infectious period spent in un-
awareness of their state. The possibility of random testing is analyzed 
in note S1.6.

Limited testing capacity leading to lower testing rates
In the first stages of an outbreak, individuals with any symptoms 
from the broad spectrum of COVID-19–related symptoms would 
be tested, disregarding how specific those symptoms are. At this 
stage, we assume that the rate at which symptomatic individuals are 
tested is s, such that the number of individuals identified through 
testing (which, for simplicity, is assumed to be solely symptom-driven, 
i.e., r = 0) is given by

	​​ N​​ test​  = ​ N​s​ 
test​  = ​ ​ s​​ ​I​​ H,s​​	 (11)

If, in addition, some random testing, independent of symptom-
atic status, is performed (r ≠ 0), then ​​N​​ test​  ≠ ​ N​s​ 

test​​. For this case see 
note S1.6.

When reaching the daily number ​​N​max​ test ​​ of positive tests, the test-
ing capacity is reached. We then assume that further tests are only 
carried out for a more specific set of symptoms, leading to a smaller 
fraction of the tested population. We, therefore, implement the test-
ing capacity as a soft threshold. Assuming that after reaching ​​N​max​ test ​​, 
the testing rate for further cases would decrease to s′, the testing 
term Ntest would be given by

	​​ N​​ test​  = ​ ​ s​​ min (​I​​ H,s​, ​I​max​ H,s  ​ ) + ​​ s​ ′​ max (0, ​I​​ H,s​ − ​I​max​ H,s  ​)​	 (12)

where ​​I​max​ H,s  ​​ represent the size of the infectious-symptomatic, 
hidden pool, i.e., ​​I​max​ H,s  ​  = ​ ​N​max​ test ​ _ ​​ s​​

 ​​ .

Modeling the number of traced individuals
To calculate the number of traced individuals, we assume that a 
fraction  of the newly tested individuals’ contacts, and therefore 
their offspring infections, will be traced and subsequently quaran-
tined. However, in the presence of TTI, individuals stay, on average, 
a shorter amount of time in the infectious pool because they are 
quarantined before recovering. Therefore, the number of offspring 
infections has to be corrected by a factor, the average residence time 
in the infectious pool. For the case r = 0, the average residence time 
is ​​  1 _  + ​​ s​​

​​, as IH, s is emptied by ​−  ​I​​ H,s​ − ​N​s​ 
test​  =  − ( + ​​ s​​ ) ​I​​ H,s​​, i.e., with 

a rate  + s. The average residence time in the absence of TTI 
(natural progression of the disease) is ​​1 _  ​​. Dividing these two times 
gives us the wanted correction factor. Thus, the number of traced 
persons Ntraced at time t is a fraction  from the offspring infections 
generated during the residence time, per each individual

	​​ N​​ traced​(t ) =  ​R​ t−​​ ​ 
 ─ 

 + ​​ s​​
 ​ ​N​​ test​(t − )​	 (13)

where Rt −  represents the effective reproduction number

	​​ R​ t−​​  = ​ k​ t−​​ ​R​ 0​​ ​ S ─ M ​​	 (14)

In other words, the number of infectious individuals found by 
contact tracing at time t are a fraction  of the number of offspring 
infections generated by individual while they were untested ​​R​ t−​​ ​ 

 _  + ​​ s​​
​​, 

times the number of individuals tested  days ago Ntest(t − ). 
However, when the TTI capacity is overwhelmed, we assume that 
the number of traced individuals is limited, that only the contacts of 
​​N​max​ test ​​ individuals (already introduced in the previous section) can 
be traced

	​​ N​​ traced​(t ) =  ​R​ t−​​ ​ 
 ─ 

 + ​​ s​​
 ​ ​N​max​ test ​​	 (15)

Individuals becoming infectious or being tested  
by the time of tracing
The traced individuals are removed from either the exposed hidden 
pool EH or from the infectious hidden pool IH after a delay of  days 
after testing. As we assume a tracing delay  of only 2 days, a fraction 
of the traced individuals would still be in exposed compartments by 
the time of contact tracing. However, some might already become 
infectious by that time. To calculate the exact fraction of indi-
viduals remaining in the hidden exposed pool by the time of trac-
ing, we proceed as follows. Let s ∈ I = [0, ] be the time elapsed 
from the moment of testing. The emptying of the normalized ex-
posed compartment (denoted ​​  ​E​​ H​​​) due to progression to the infec-
tious stage follows first-order kinetics

	​​  d​   ​E​​ H​​ ─ ds  ​  =  − ​ ̃  ​E​​ H​​, ​ ̃  ​E​​ H​​(0 ) = 1​	 (16)

The solution of Eq. 16 is given by ​​  ​E​​ H​(s)​  =  exp (− s)​. Therefore, 
we define  as the fraction of the traced individuals remaining in 
the EH compartment at s = 

	​​ ​ ​​  =  exp (− )​	 (17)

The remaining individuals are removed from the infectious 
compartment, which are then simply described by the fraction

	​​ ​ r​​  =  1 − ​​ ​​​	 (18)

This, however, only holds for the asymptomatic hidden infec-
tious pool. For the symptomatic hidden pool IH, s, we do not want to 
remove the individuals who have already been tested, as they would 
be removed twice. For modeling the fraction of nontested indi-
viduals remaining in the normalized symptomatic infectious com-
partment (denoted ​​  ​I​​ H,s​​​), we couple two first-order kinetics

	​​  d​   ​I​​ H,s​​ ─ ds  ​  =  − ​​ s​​ ​ ̃  ​I​​ H,s​​ + ​ ̃  ​E​​ H​​, ​ ̃  ​I​​ H,s​​(0 ) = 0​	 (19)

The solution of Eq. 19 depends on whether s =  or not. The 
solution at s = , which is the fraction of traced individuals removed 
from IH, s, is given by

	​​ ​​ s,r​​  = ​
{

​​​
 exp (− )

​ 
if ​​ s​​  ≈  ,

​    ​   ─ ​​ s​​ −  ​ (exp (−  ) − exp (− ​​ s​​  ) )​  else ​ ​​	 (20)

For the case r ≠ 0, the reader is referred to note S1.6.

Including the effects of ongoing vaccination campaigns
To incorporate the effects of COVID-19 vaccination programs in 
our model, we made some simplifying assumptions. First, we assume 
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that vaccinated individuals have a probability  of not being infected 
even if they have a contact with somebody infectious and then not 
contributing to the spreading dynamics. We define this parameter 
as the “vaccine efficacy against infection,” which has been reported 
to be around 50 to 90% for available vaccines (32–34). Thus, they 
can be assumed to have developed perfect immunity and therefore 
can be removed from the susceptible (S) and put into the removed 
compartment (R). The assumption above also implies that these 
individuals would not take part in the TTI scheme, which would 
resemble the growing trend of “vaccination passports.” Second, we 
assume a logistically increasing daily vaccination rate v(t) consistent 
with the projections in the European Union and assume that 70% of 
the total population gets vaccinated (see Fig. 5, B and E). This 
would, e.g., in Germany, amount to roughly 80% of the adult popu-
lation (16+ years old) accepting the offer of vaccination, since as of 
now, none of the available vaccines is approved for children. We 
find that efficient TTI can substantially enhance the effect of the 
growing immunity.

To include gradually growing immunity due to an ongoing 
vaccination campaign, we modify Eq. 2 with an additional term − · 
v(t), as well as Eq. 9 with a + · v(t), with a daily vaccination rate

    ​v(t ) = ​  9.3 × ​10​​ 3​  ───────────────  1 + exp (− 0.025(t − 150 ) ) ​ doses per million per day​	 (21)

centered at t = 0, which denotes the start of the vaccinations. This 
logistic increase in vaccination rates and parameters involved was 
adapted from (13) and roughly mirrors the projected vaccinations 
in the European Union (projections dated to the beginning of 
February 2021). The factor 9.3 × 103 is determined assuming that 
after tref = 220 days, 70% of the population would be vaccinated. 
Using as reference the age distribution of Germany, the above would 
amount to roughly 80% of the adult population (16+ years old) 
accepting the offer of vaccination. After that time, for simplicity, we 
assume that the vaccination stops [and therefore v(t) = 0, for t > 220].

This treatment of the vaccination is simplistic. In reality, most 
currently available vaccines imply receiving two doses in the span of 
a few weeks, where the first only gives partial protection. Further-
more, vaccinated individuals need some time to develop a proper 
immune response after receiving the vaccine (57), in which they can 
still get infected. We also do not incorporate the efficacy of vaccines 
against a severe course of the disease or death. Since vaccinated but 
yet infected individuals would have a lower chance of being admitted 
to the hospital, this would falsify our assumption that hospital 
capacity can be adequately measured by case numbers alone. As 
more and more of the daily new infections correspond to individuals 
already vaccinated, hospitals would only fill up at higher case 
numbers. To include this effect, the distribution of high-risk groups 
in the population and the prioritized vaccination programs would 
have to be taken into account. Including all this is beyond the scope 
of this work. We addressed those in a separate work, building on the 
results presented herein (13). However, this simplified implementation 
is sufficient for our qualitative assessments.

Central epidemiological parameters that can be observed
In the real world, the disease spread can only be observed through 
testing and contact tracing. While the true number of daily infec-
tions N is a sum of all new infections in the hidden and traced pools, 
the observed number of daily infections ​​​   N ​​​ obs​​ is the number of new 

infections discovered by testing, tracing, and surveillance of the 
contacts of those individuals in the quarantined infectious pool IQ, 
delayed by a variable reporting time. This includes internal contri-
butions and contributions from testing and tracing

	​ N  = ​  ​ ​k​ t​​ ​R​ 0​​ ​ S ─ M ​ ​I​​ H​ 


​​ 
hidden contagion

​​ + ​​( + ϵ ) ​R​ 0​​ ​ S ─ M ​ ​I​​ Q​  


​​  
traced contagion

​  ​ + ​ ​​  S ─ M ​ ​​ t​​ 
⏟

​​ 
ext. influx

​​​	 (22)

	 ​​​​   N ​​​ 
obs

​  = ​
[

​​ ​ ​  ​E​​ Q​ 
⏟

​​ 
traced contagion

​​ + ​​​N​​ test​ + (​​ s,r​​(1 −  ) + ​​ r​​  ) ​N​​ traced​   


​​  
TTI

​ ​  ​
]

​​ ⊛ K​​	 (23)

where ⊛ denotes a convolution and ​K​ is an empirical probability 
mass function that models a variable reporting delay, inferred from 
German data (as the Robert Koch Institute reports the date the test 
is performed, the delay until the appearance in the database can be 
inferred): The total delay between testing and reporting a test cor-
responds to 1 day more than the expected time the laboratory takes 
for obtaining results, which is defined as follows: from testing, 50% 
of the samples would be reported the next day, 30% would be re-
ported the second day, 10% would be reported the third day, and 
further delays complete the remaining 10%, which, for simplicity, 
we will truncate at day 4. Considering the extra day needed for 
reporting, the probability mass function for days 0 to 5 would 
be given by ​K  =  [0, 0, 0.5, 0.3, 0.1, 0.1]​. The spreading dynam-
ics are usually characterized by the observed reproduction num-
ber ​​​   R ​​t​ 

obs
​​, which is calculated from the observed number of new 

cases ​​​   N ​​​ obs​(t)​. We here use the definition underlying the estimates that 
Robert Koch Institute publishes, the official body responsible for ep-
idemiological control in Germany (58): The reproduction number 
is the relative change of daily new cases N separated by 4 days (the 
assumed serial interval of COVID-19)

	​​ ​   R ​​t​ 
obs

​  = ​   ​​   N ​​​ 
obs

​(t) ─ 
​​   N ​​​ 

obs
​(t − 4)

 ​​	 (24)

In contrast to the original definition of ​​​   R ​​t​ 
obs

​​ (58), we do not need 
to remove real-world noise effects by smoothing this ratio.

Numerical calculation of solutions and critical values
The numerical solution of the delay differential equations (DDEs) 
governing our model were obtained using a versatile solver that 
tracks discontinuities and integrates with the explicit Runge-Kutta 
(2,3) pair, @dde23 implemented in MATLAB (version 2020a), with 
default settings. This algorithm allows the solution of nonstiff 
systems of differential equations in the shape y′(t) = f(t, y(t), 
y(t − 1), …, y(t − k), for a set of discrete lags ​​{​​ i​​}​i=1​ k  ​​. Suitability and 
details on the algorithm are further discussed in (59).

To derive the tipping point between controlled and uncontrolled 
outbreaks (e.g., critical, minimal required contact reduction ​​k​t​ 

crit​​ for 
both stability and metastability) and to plot the stability diagrams, 
we used the @fzero MATLAB function, and the linear approximation 
of the system of DDE (3)–(7) for the ​​ S _ M​  ≈  1​ limit. This function uses 
a combination of bisection, secant, and inverse quadratic interpola-
tion methods to find the roots of a function. For instance, fol-
lowing the discussion of note S1.2, the different critical values for 
the contact reduction ​​k​t​ 

crit​​ were determined by systematically 
solving the nonlinear eigenvalues problem for stability (60), where 
the solution operation was approximated with a Chebyshev differen-
tiation matrix (61).

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 11, 2021



Contreras et al., Sci. Adv. 2021; 7 : eabg2243     8 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 15

We also study the effect of dividing the exposed compartment into 
three subcompartments, thereby reducing the variability of the latent 
period distribution (understood as the distribution of waiting times 
from being infected until becoming infectious). We explored this 
extended system’s linear stability in note S1.8 and confirmed that using a 
single compartment efficiently characterizes the tipping points.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg2243
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Mass vaccination offers a promising exit strategy for the COVID-19 pandemic.
However, as vaccination progresses, demands to lift restrictions increase, despite
most of the population remaining susceptible. Using our age-stratified SEIRD-
ICU compartmental model and curated epidemiological and vaccination data,
we quantified the rate (relative to vaccination progress) at which countries can
lift non-pharmaceutical interventions without overwhelming their healthcare
systems. We analyzed scenarios ranging from immediately lifting restrictions
(accepting high mortality and morbidity) to reducing case numbers to a
level where test-trace-and-isolate (TTI) programs efficiently compensate for
local spreading events. In general, the age-dependent vaccination roll-out
implies a transient decrease of more than ten years in the average age of
ICU patients and deceased. The pace of vaccination determines the speed of
lifting restrictions; Taking the European Union (EU) as an example case, all
considered scenarios allow for steadily increasing contacts starting in May 2021
and relaxing most restrictions by autumn 2021. Throughout summer 2021, only
mild contact restrictions will remain necessary. However, only high vaccine
uptake can prevent further severe waves. Across EU countries, seroprevalence
impacts the long-term success of vaccination campaigns more strongly than
age demographics. In addition, we highlight the need for preventive measures
to reduce contagion in school settings throughout the year 2021, where children
might be drivers of contagion because of them remaining susceptible. Strategies
that maintain low case numbers, instead of high ones, reduce infections and
deaths by factors of eleven and five, respectively. In general, policies with low
case numbers significantly benefit from vaccination, as the overall reduction
in susceptibility will further diminish viral spread. Keeping case numbers
low is the safest long-term strategy because it considerably reduces mortality
and morbidity and offers better preparedness against emerging escape or
more contagious virus variants while still allowing for higher contact numbers
(freedom) with progressing vaccinations.

81

https://doi.org/10.1371/journal.pcbi.1009288
https://doi.org/10.1371/journal.pcbi.1009288
https://doi.org/10.1371/journal.pcbi.1009288
https://doi.org/10.1371/journal.pcbi.1009288


82 relaxing covid-19 restrictions at the pace of vaccination

† This chapter is identical to the publication [28]: Bauer, S.∗, Contr-
eras, S.∗, Dehning, J., Linden, M., Iftekhar, E., Mohr, S.B., Olivera-
Nappa, A. and Priesemann, V., 2021. Relaxing restrictions at the pace
of vaccination increases freedom and guards against further COVID-
19 waves. PLoS computational biology, 17(9), p.e1009288. The ar-
ticle is published under the terms of a Creative Common License
(http://creativecommons.org/licenses/by/4.0/). To this publication, I
contributed equally with S. Bauer. Roles: Conceptualization, Formal
analysis, Investigation, Methodology, Validation, Visualization, Writing
– original draft, Writing – review & editing.



RESEARCH ARTICLE

Relaxing restrictions at the pace of vaccination

increases freedom and guards against further

COVID-19 waves

Simon BauerID
1☯, Sebastian ContrerasID

1,2☯, Jonas DehningID
1, Matthias LindenID

1,3,

Emil IftekharID
1, Sebastian B. MohrID

1, Alvaro Olivera-NappaID
2, Viola Priesemann1,4*

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2 Centre for Biotechnology

and Bioengineering, Universidad de Chile, Santiago, Chile, 3 Institute for Theoretical Physics, Leibniz

University, Hannover, Germany, 4 Institute for the Dynamics of Complex Systems, University of Göttingen,

Göttingen, Germany

☯ These authors contributed equally to this work.

* viola.priesemann@ds.mpg.de

Abstract

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as

vaccination progresses, demands to lift restrictions increase, despite most of the population

remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and

curated epidemiological and vaccination data, we quantified the rate (relative to vaccination

progress) at which countries can lift non-pharmaceutical interventions without overwhelming

their healthcare systems. We analyzed scenarios ranging from immediately lifting restric-

tions (accepting high mortality and morbidity) to reducing case numbers to a level where

test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In

general, the age-dependent vaccination roll-out implies a transient decrease of more than

ten years in the average age of ICU patients and deceased. The pace of vaccination deter-

mines the speed of lifting restrictions; Taking the European Union (EU) as an example case,

all considered scenarios allow for steadily increasing contacts starting in May 2021 and

relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact

restrictions will remain necessary. However, only high vaccine uptake can prevent further

severe waves. Across EU countries, seroprevalence impacts the long-term success of vac-

cination campaigns more strongly than age demographics. In addition, we highlight the

need for preventive measures to reduce contagion in school settings throughout the year

2021, where children might be drivers of contagion because of them remaining susceptible.

Strategies that maintain low case numbers, instead of high ones, reduce infections and

deaths by factors of eleven and five, respectively. In general, policies with low case numbers

significantly benefit from vaccination, as the overall reduction in susceptibility will further

diminish viral spread. Keeping case numbers low is the safest long-term strategy because it

considerably reduces mortality and morbidity and offers better preparedness against emerg-

ing escape or more contagious virus variants while still allowing for higher contact numbers

(freedom) with progressing vaccinations.
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Author summary

In this work, we quantify the rate at which non-pharmaceutical interventions can be lifted

as COVID-19 vaccination campaigns progress. With the constraint of not exceeding ICU

capacity, there exists only a relatively narrow range of plausible scenarios. We selected dif-

ferent scenarios ranging from the immediate release of restrictions to more conservative

approaches aiming at low case numbers. In all considered scenarios, the increasing overall

immunity (due to vaccination or post-infection) will allow for a steady increase in con-

tacts. However, deaths and total cases (potentially leading to long covid) are only mini-

mized when aiming for low case numbers, and restrictions are lifted at the pace of

vaccination. These qualitative results are general. Taking EU countries as quantitative

examples, we observe larger differences only in the long-term perspectives, mainly due to

varying seroprevalence and vaccine uptake. Thus, the recommendation is to keep case

numbers as low as possible to facilitate test-trace-and-isolate programs, reduce mortality

and morbidity, and offer better preparedness against emerging variants, potentially

escaping immune responses. Keeping moderate preventive measures in place (such as

improved hygiene, use of face masks, and moderate contact reduction) is highly recom-

mended will further facilitate control.

Introduction

The rising availability of effective vaccines against SARS-CoV-2 promises the lifting of restric-

tions, thereby relieving the social and economic burden caused by the COVID-19 pandemic.

However, it is unclear how fast the restrictions can be lifted without risking another wave of

infections; we need a promising long-term vaccination strategy [1]. Nevertheless, a successful

approach has to take into account several challenges; vaccination logistics and vaccine alloca-

tion requires a couple of months [2–4], vaccine eligibility depends on age and eventually seros-

tatus [5], vaccine acceptance may vary across populations [6], and more contagious [7] and

escape variants of SARS-CoV-2 that can evade existing immunity [8, 9] may emerge, thus pos-

ing a persistent risk. Last but not least, disease mitigation is determined by how well vaccines

block infection, and thus prevent the propagation of SARS-CoV-2 [3, 4], the time to develop

effective antibody titers after vaccination, and their efficacy against severe symptoms. All these

parameters will greatly determine the design of an optimal strategy for the transition from epi-

demicity to endemicity [10].

To bridge the time until a significant fraction of the population is vaccinated, a sustainable

public health strategy has to combine vaccination with non-pharmaceutical interventions

(NPIs). Otherwise it risks further waves and, consequently, high morbidity and excess mortal-

ity. However, the overall compliance with NPIs worldwide has on average decreased due to a

“pandemic-policy fatigue” [11]. Therefore, the second wave has been more challenging to

tame [12] although NPIs, in principle, can be highly effective, as seen in the first wave [13, 14].

After vaccinating the most vulnerable age groups, the urge and social pressure to lift restric-

tions will increase. However, given the wide distribution of fatalities over age groups and the

putative incomplete protection of vaccines against severe symptoms and against transmission,

NPIs cannot be lifted entirely or immediately. With our study, we want to outline at which

pace restrictions can be lifted as the vaccine roll-out progresses.

Public-health policies in a pandemic have to find a delicate ethical balance between reduc-

ing the viral spread and restricting individual freedom and economic activities. However, the

interest of health on the one hand and society and economy on the other hand are not always
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contradictory. For the COVID-19 pandemic, all these aspects clearly profit from low case

numbers [15–17], i.e., an incidence where test-trace-and-isolate (TTI) programs can efficiently

compensate for local spreading events. The challenge is to reach low case numbers and main-

tain them [18, 19]. Especially with the progress of vaccination, restrictions should be lifted

when the threat to public health is reduced. However, the apparent trade-off between public

health interest and freedom is not always linear and straightforward. Taking into account that

low case numbers facilitate TTI strategies (i.e., health authorities can concentrate on remaining

infection chains and stop them quickly) [18–20], an optimal strategy with a low public health

burden and large freedom may exist and be complementary to vaccination.

Here, we quantitatively study how the planned vaccine roll-out in the European Union

(EU), together with the cumulative post-infection immunity (seroprevalence), progressively

allows for lifting restrictions. In particular, we study how precisely the number of contacts can

be increased without rendering disease spread uncontrolled over the year 2021. Our study

builds on carefully curated epidemiological and contact network data from Germany, France,

the UK, and other European countries. Thereby, our work can serve as a blueprint for an

opening strategy.

Analytical framework

Our analytical framework builds on our deterministic, age-stratified, SEIRD-ICU compart-

mental model, modified to incorporate vaccination through delay differential equations. It

includes compartments for a 2-dose staged vaccine roll-out, immunization delays, intensive

care unit (ICU)-hospitalized, and deceased individuals. A central parameter for our model is

the gross reproduction number Rt. It is essentially the time-varying effective reproduction

number without considering the effects of immunity nor of TTI. That number depends

(among several factors) on i) the absolute number of contacts per individual, and ii) the proba-

bility of being infected given a contact. In other words, Rt is defined as the average number of

contacts an infected individual has that would lead to an offspring infection in a fully suscepti-

ble population. Therefore, an increase in Rt implies an increase in contact frequency or the

probability of transmission per contact, e.g., due to less mask-wearing. The core idea is that

increasing immunity levels among the population (post-infection or due to vaccination) allows

for a higher average number of potentially contagious contacts and, thus, freedom (quantified

by Rt), given the same level of new infections or ICU occupancy. Hence, with immunization

progress reducing the susceptible fraction of the population, Rt can be dynamically increased

while maintaining control over the pandemic, i.e., while keeping the effective reproduction

number below one (Fig 1A).

To adapt the gross reproduction number Rt such that a specific strategy is followed (e.g.

staying below TTI or ICU capacity), we include an automatic, proportional-derivative (PD)

control system [21]. This control system allows for steady growth in Rt as long as it does not

lead to overflowing ICUs (or surpassing the TTI capacity). However, when risking surpassing

the ICU capacity, restrictions might be tightened again. In that way, we approximate the feed-

back-loop between political decisions, people’s behavior, reported case numbers, and ICU

occupancy.

The basic reproduction number is set to R0 = 4.5, reflecting the dominance of the B.1.1.7

variant [3, 7]. We further assume that the reproduction number can be decreased to about 3.5

by hygiene measures, face masks, and mild social distancing. This number is informed by the

estimates of Sharma et al. [22], who estimate the combined effectiveness of mask wearing, lim-

iting gatherings to at most 10 people and closing night clubs to a reduction of about 20–40%,

thus leading to a reproduction number between 2.7 and 3.6. We use a conservative estimate, as
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this is only a exemplary set of restrictions. Therefore, we restrict Rt in general not to exceed 3.5

(Fig 1C).

Efficient TTI contributes to reducing the effective reproduction number. Hence, it increases

the average number of contacts (i.e., Rt) that people may have under the condition that case

numbers remain stable (Fig 1A) [18]. This effect is particularly strong at low case numbers,

where the health authorities can concentrate on tracing every case efficiently [19]. Here, we

approximate the effect of TTI on Rt semi-analytically to achieve an efficient implementation

(see Methods).

For vaccination, we use as default parameters an average vaccine efficacy of 90% protection

against severe illness [23] and of 75% protection against infection [24]. We further assume that

vaccinated individuals with a breakthrough infection carry a lower viral load and thus are 50%

less infectious [25] than unvaccinated infected individuals. We assume a total average vaccine

uptake of 80% [26] that increases with age from 73% in the 0–19 to 89% in the 80+ age group,

and an age-prioritized vaccine delivery as described in the Methods section. In detail, most of

Fig 1. With progressing vaccination in the European Union, a slow but steady increase in freedom will be possible. However, premature lifting of

NPIs considerably increases the total fatalities without a major reduction in restrictions in the middle term. A: A schematic outlook into the effect

of vaccination on societal freedom. Freedom is quantified by the maximum time-varying gross reproduction number (Rt) allowed to sustain stable case

numbers. As Rt does not consider the immunized population, gross reproduction numbers above one are possible without rendering the system

unstable. A complete return to pre-pandemic behavior would be achieved when Rt reaches the value of the basic reproduction number R0 (or possibly at

a lower value due to seasonality effects during summer, purple-blue shaded area). The thick full and dashed lines indicate the gross reproduction

number Rt allowed to sustain stable case numbers if test-trace-isolate (TTI) programs are inefficient and efficient, respectively, which depends on the

case numbers level. Increased population immunity (green) is expected to allow for lifting the most strict contact reduction measures while only

keeping mild NPIs (purple) during summer 2021 in the northern hemisphere. Note that seasonality is not explicitly modeled in this work. See S4 Fig for

an extended version including the year 2020. B: We explore five different scenarios for lifting restrictions in the EU, in light of the EU-wide vaccination

programs. We sort them according to the initial stringency that they require and the total fatalities that they may cause. One extreme (Scenario 1) offers

immediate (but still comparably little) freedom by approaching ICU-capacity limits quickly. The other extreme (Scenario 5) uses a strong initial

reduction in contacts to allow long-term control at low case numbers. Finally, the intermediate scenarios initially maintain moderate case numbers and

lift restrictions at different points in the vaccination program. C: All extreme strategies allow for a steady noticeable increase in contacts in the coming

months (cf. panel A), but vary greatly in the (D) ICU-occupancy profiles and (E) total fatalities. F: Independent on the strategy, we expect a transient

but pronounced decrease in the average age of ICU patients and deceased over the summer.

https://doi.org/10.1371/journal.pcbi.1009288.g001
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the vaccines are distributed first to the age group 80+, then 70+, 60+, and then to anyone of

age 16+. A small fraction of the weekly available vaccines is distributed randomly (e.g. because

of profession). After everyone got a vaccine offer roughly by the end of August, we assume no

further vaccination (see Fig 2L). The daily amount of vaccine doses per million is derived from

German government projections, but is expected to be similar across the EU. For the course

of the disease, the age-dependent fraction of non-vaccinated, infected individuals requiring

intensive care is estimated from German hospitalization data, using the infection-fatality-ratio

(IFR) reported in [27] (see Table 1 and Methods).

In our default scenario we use a contact structure between age groups as measured during

pre-pandemic times [28]. However, we halve the infection probability in the 0–19 year age

group to account for reduced in-person classes and better ventilation and systematic random

screening in school settings using rapid COVID-19 tests. Under these assumptions, the infec-

tion probability among the 0–19 age group is similar to the one among the 20–39 and 40–69

age groups. We start our simulations at the beginning of March 2021, with an incidence of 200

daily infections per million, two daily deaths per million, an ICU occupancy of 30 patients per

million, a seroprevalence of 10%, and about 4% of the population already vaccinated. This is

Fig 2. Maintaining low case numbers during vaccine roll-out reduces the number of ICU patients and deaths by about a factor five compared to

quickly approaching the ICU limit while hardly requiring stronger restrictions. Aiming to maximize ICU occupancy (A–D) allows for a slight

increase of the allowed gross reproduction number Rt early on, whereas lowering case numbers below the TTI capacity limit (E–H) requires

comparatively stronger initial restrictions. Afterwards, the vaccination progress allows for a similar increase in freedom (quantified by increments in Rt)
for both strategies, starting approximately in May 2021. B–D, F–H: These two strategies lead to a completely different evolution of case numbers, ICU

occupancy, and cumulative deaths, but differ only marginally in the evolution of the average age of deceased and ICU patients (I), as the latter is rather

an effect of the age-prioritized vaccination than of a particular strategy. J,K: The total number of cases until the end of the vaccination period (of the

80% uptake scenario, i.e., end of August, the rightmost dotted light blue line in sub-panels A–H) differ by a factor of eleven between the two strategies,

and the total deaths by a factor of five. Vaccine uptake (i.e., the fraction of the eligible, 16+, population that gets vaccinated) has a minor impact on these

numbers until the end of the vaccine roll-out but determines whether a wave would follow afterward (see below). L: Assumed vaccination rate as

projected for Germany, which is expected to be similar across the European Union. For a full display of the time-evolution of the compartments for

different uptakes see S6–S8 Figs.

https://doi.org/10.1371/journal.pcbi.1009288.g002
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comparable to German data (assuming a case under-reporting factor of 2, which had been

measured during the first wave in Germany [29]) and typical for EU countries at the beginning

of March 2021 (further details in the Methods section). We furthermore explore the impact of

important differences between EU countries, namely the seroprevalance by the start of the vac-

cination program, demographics, and vaccine uptake exemplary for Finland, Italy and the

Czech Republic in addition to the default German parameters.

Results

Aiming for low case numbers has the best long-term outcome

We first present the two extreme scenarios: case numbers quickly rise so that the ICU capacity

limit is approached (Scenario 1), or case numbers quickly decline below the TTI capacity limit

(Scenario 5; Fig 2). We set the ICU capacity limit at 65 patients/million, reflecting the maximal

occupancy and improved treatments during the second wave in Germany [30] and use Ger-

man demographics. The incidence (daily new cases) limit up to which TTI is fully efficient is

set to 20 daily infections per million [15], but depends strongly on the gross reproduction

number, as described in Methods.

The first scenario (‘approaching ICU limit’, Fig 2A–2D) maximizes the initial freedom indi-

viduals might have (quantified as the allowed gross reproduction number Rt). However, the

gained freedom is only transient as, once ICUs approach their capacity limit, restrictions need

to be tightened (Fig 2J and 2K). Additionally, stabilization at high case numbers leads to many

preventable fatalities, especially in light of likely temporary overflows of the ICU capacity due

to the hard-to-control nature of high case numbers.

The fifth scenario (‘below TTI limit’, Fig 2E and 2F) requires maintaining stronger restric-

tions for about two months to lower case numbers below the TTI capacity. Afterward, the

progress of the vaccination allows for a steady increase in Rt while keeping case numbers low,

enabling TTI to contribute to the containment effectively. From May 2021 on, this fifth sce-

nario would allow for slightly more freedom, i.e., a higher Rt, than the first scenario (Fig 1C).

Furthermore, this scenario reduces morbidity and mortality: Deaths until the of the vaccina-

tion period (end of August) are reduced by a factor of five, total infections even by a factor of

eleven. Due to the prioritization of the elderly in vaccination, the average age of ICU patients

and fatalities drops by roughly 12 and 15 years, respectively, independently of the choice of

scenarios (Fig 2I). Overall, the low-case-number scenario thus allows for a very similar

increase in freedom over the whole time frame (quantified as the increase in Rt) and implies

about fives times fewer deaths by the end of the vaccination program compared to the first sce-

nario with high case numbers (Fig 2K).

Table 1. Age-dependent infection-fatality-ratio (IFR), probability of requiring intensive care due to the infection (ICU probability) and ICU fatality ratio (ICU-FR).

The IFR is defined as the probability of an infected individual dying, whereas the ICU-FR is defined as the probability of an infected individual dying while receiving inten-

sive care.

Age IFR [27] ICU probability ICU-FR Avg. ICU time (days)

0–19 0.00002 0.00014 0.0278 5

20–39 0.00022 0.00203 0.0389 5

40–59 0.00194 0.01217 0.0678 11

60–69 0.00739 0.04031 0.1046 11

70–79 0.02388 0.05435 0.1778 9

>80 0.08292 0.07163 0.4946 6

Average 0.00957 0.02067 0.0969 9

https://doi.org/10.1371/journal.pcbi.1009288.t001
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The vaccine uptake has little influence on the number of deaths and total cases during the

vaccination period (Fig 2J and 2K), mainly because restrictions are quickly enacted when

reaching the ICU capacity. However, uptake becomes a crucial parameter; It controls the pan-

demic progression after completing the vaccine roll-out as it determines the residual suscepti-

bility of the population (cf. below). With insufficient vaccination uptake, a novel wave will

follow as soon as restrictions are lifted [3].

Maintaining low case numbers at least until vulnerable groups (60+) are

vaccinated is necessary to prevent a severe further wave

Between the two extreme scenarios 1 and 5, which respectively allow maximal or minimal ini-

tial freedom, we explore three alternative scenarios, where the vaccination progress and the

slow restriction lifting roughly balance out (Figs 3 and 1B). These scenarios assume approxi-

mately constant case numbers and then a swift lifting of most of the remaining restrictions

within a month after three different vaccination milestones: when the age group 80+ has been

vaccinated (Scenario 2, Fig 3A–3D), when the age groups 60+ has been vaccinated (Scenario 3,

Fig 3E–3H) and when the entire adult population (16+) has been vaccinated (Scenario 4, Fig

3I–3L).

The relative freedom gained by lifting restrictions early in the vaccination timeline (Sce-

nario 2) hardly differs from the freedom gained from the other two scenarios (Fig 3M), as

since new contact restrictions need to take place once reaching the ICU capacity limit, and the

initial freedom is partly lost. Significantly, lifting restrictions later reduces the number of infec-

tions and deaths by more than 50% and 35% respectively if case numbers have been kept at a

moderate level (250 daily infections per million) and by more than 85% and 65%, respectively

if case numbers have been kept at a low level (50 per million) beforehand (Fig 3N and 3O).

Lifting restrictions entirely after either offering vaccination to everyone aged 60+ or everyone

aged 16+ only changes the total fatalities by a small amount, mainly because the vaccination

pace is planned to be quite fast by then, and the 60+ age brackets make up the bulk of the high-

est-risk groups. Hence, a potential subsequent wave only unfolds after the end of the planned

vaccination campaign (Fig 3F and 3H). Thus, with the current vaccination plan, it is recom-

mended to keep case numbers at moderate or low levels, at least until the population at risk

and people of age 60+ have been vaccinated.

If maintaining low or intermediate case numbers in the initial phase, vaccination starts to

decrease the ICU occupancy considerably in May 2021 (Fig 3G and 3K). However, This

decrease in ICU occupancy must not be mistaken for a generally stable situation. As soon as

restrictions are relaxed too quickly, ICU occupancy surges again (Fig 3C, 3G and 3H), without

any relevant gain in freedom for the total population. Nonetheless, the progress in vaccination

will, in any case, allow lifting restrictions gradually.

The long-term success of the vaccination campaign strongly depends on

vaccine uptake and vaccine efficacy

The vaccination campaign’s long-term success will depend on both people’s vaccine uptake

and the efficacy of the vaccine against those variants of SARS-CoV-2 prevalent at the time of

writing of this paper. A vaccine’s efficacy has two contributions: first, vaccinated individuals

become less likely to develop severe symptoms and require intensive care [31–33] (vaccine effi-

cacy, κ). Second, a fraction η of vaccinated individuals gains sterilizing immunity, i.e., is

completely protected against infections and does not contribute to viral spread at all [24, 34].

We also assume that breakthrough infections among vaccinated individuals would bear lower

viral loads, thus exhibit reduced transmissibility [25] (reduced viral load, σ). However, the
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possibly reduced effectiveness of vaccines against current variants of concern (VOCs), e.g.,

B.1.351 and P.1 [32, 35, 36], and potential future VOCs render long-term scenarios about the

success of vaccination uncertain.

Therefore, we explore different parameters of vaccine uptake and effectiveness. We quantify

the success, or rather the lack of success of the vaccination campaign by the duration of the

period where ICUs function near capacity limit, until population immunity is reached. Two

different scenarios are considered upon finishing the vaccination campaign: in the first sce-

nario, most restrictions are lifted, like in the previous scenarios (Fig 4B). In the second, restric-

tions are only lifted partially, to a one third lower gross reproduction number (Rt = 2.5) (Fig

4C). This second scenario presents the long-term maintenance of moderate social distancing

Fig 3. Vaccination offers a steady return to normality until the end of summer 2021 in the northern hemisphere, no matter whether a transient

easing of restrictions is allowed earlier or later (second and fourth scenario, respectively). However, lifting restrictions later reduces fatalities by

more than 35%. We assume that the vaccine immunization progress is balanced out by a slow lifting of restrictions, keeping case numbers at a

moderate level (� 250 daily new cases per million people). We simulated lifting all restrictions within a month starting from different time points: when

(A–D) the 80+ age group, (E–H) the 60+ age group or (I–L) everyone 16+ has been offered vaccination. Restriction lifting leads to a new surge of cases

in all scenarios. New restrictions are put in place if ICUs would otherwise collapse. M: Lifting all restrictions too early increases the individual freedom

only temporarily before new restrictions have to be put in place to avoid overwhelming ICUs. Overall, trying to lift restrictions earlier has a small

influence on the additional increase in the allowed gross reproduction number Rt. N,O: Relaxing major restrictions only medium-late or late reduces

fatalities by more than 35% and infections by more than 50%. Fatalities and infections can be cut by an additional factor of more than two when aiming

for a low (50 per million) instead ofmoderate (250 per million) level of daily infections before major relaxations. P: Assumed daily vaccination rates,

same as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1009288.g003
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measures, including the restriction of large gatherings to smaller than 100 people, encouraging

home-office, enabling effective test-trace-and-isolate (TTI) programs at very low case num-

bers, and supporting hygiene measures and face mask usage. Fig 4B and 4C indicates how long

ICUs are expected to be full in both scenarios, and for different parameters of vaccine efficacy

(which may account for the emergence of vaccine escape variants).

The primary determinant for the success of vaccination programs after lifting most restric-

tions is the vaccine uptake among the population aged 20+; only with a high vaccine uptake

(> 90%) we can avoid a novel wave of full ICUs (default parameters as in scenario 3; Fig 4B,

κ = 90%, η = 75%). However, if vaccine uptake was lower or vaccines prove to be less effective

against prevalent or new variants, lifting most restrictions would imply that ICUs will work at

the capacity limit for months.

In contrast, maintaining moderate social distancing measures (Fig 4C) may prevent a wave

after completing the vaccine roll-out. This strategy can also compensate for a low vaccine

uptake, requiring only about 55% uptake to avoid surpassing ICU capacity for our default

parameters. Nonetheless, any increase in vaccine uptake lowers intensive care numbers,

increases freedom, and most importantly, provides better protection in case of the emergence

of escape variants, as this would involve an effective reduction of vaccine efficacy (dashed

lines). A full exploration of vaccine efficacy parameter combinations and different contact

structures is presented in S2 Fig.

Heterogeneity among countries on an EU-wide level will affect the probability and strength

of a new wave after completing vaccination campaigns. We chose some exemplary European

countries to investigate how our results depend on age demographics, contact structure,

and the degree of initial post-infection immunization (seroprevalence). We obtained the

Fig 4. A high vaccine uptake (> 90% or higher among the eligible population) is crucial to prevent a wave when lifting

restrictions after completing vaccination campaigns. A: We assume that infections are kept stable at 250 daily infections until all

age groups have been vaccinated. Then restrictions are lifted, leading to a wave if the vaccine uptake has not been high enough

(top three plots). B: The duration of the wave (measured by the total time that ICUs function close to their capacity limit) depends

on vaccine uptake and vaccine efficacy. We explore the dependency on the efficacy both for preventing severe cases (full versus

dashed lines) and preventing infection (shades of purple). The dashed lines might correspond to vaccine efficacy in the event of

the emergence of escape variants of SARS-CoV-2. C: If some NPIs remain in place (such that the gross reproduction number stays

at Rt = 2.5), ICUs will not overflow even if the protection against infection is only around 60%. See S2 Fig for all possible

combinations of vaccine efficacies, also in the event of different contact structures.

https://doi.org/10.1371/journal.pcbi.1009288.g004
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seroprevalence in the different countries by scaling the German 10% seroprevalence with the

relative differences in cumulative reported case numbers between Germany and the other

countries, i.e., we assume the under-reporting factor to be roughly the same across the chosen

countries. All other parameters are left unchanged. Specifically, we leave the capacities of the

health systems at the estimated values for Germany, as lacking TTI data and varying defini-

tions of ICU treatment make any comparison difficult. We repeated the analysis presented

above (Fig 4) for Finland, Italy and the Czech Republic (see Fig 5A–5D). Germany, Finland,

and Italy would need a similarly high vaccine uptake in the population to prevent another

severe wave. In the Czech Republic, a much smaller uptake is sufficient. The largest deviations

in the necessary vaccine uptake are due to the initial seroprevalence, which we estimate to

range from 5% in Finland to 30% in the Czech Republic. In contrast, the differences in age

demographics and contact structures only have a minor effect on the dynamics (see also

S1 Fig).

If no further measures remain in place to reduce the potential contagious contacts in school

settings, the young age group (0–19 years) will drive infections after completing the vaccina-

tion program as they remain mostly unvaccinated. The combination of intense contacts and

high susceptibility among school-aged children considerably increase the vaccine uptake

required in the adult population to restrain a further wave (Fig 5E–5H). High seroprevalence,

also in this age group, reduces the severity of this effect for the Czech Republic (Fig 5H).

Discussion

Our results demonstrate that the pace of vaccination first and foremost determines the

expected gain in freedom (i.e., lifting of restrictions) during and after completion of the

Fig 5. Seroprevalence and different demographics across EU countries determine the vaccine uptake required for population immunity. As in Fig

4B, we assume that case numbers are stable at 250 daily infections per million per day until the end of vaccination, when most restrictions are lifted

(such that the gross reproduction number goes up to 3.5). We vary the initial seroprevalence and age demographics and contact structures to represent

German, Italian, Finnish, and Czech data. A–D: Projected ICU occupancy in a subsequent wave depending on vaccine uptake, assuming reduced

transmission risk in schools but otherwise default pre-pandemic contact structures. E–H: Projected ICU occupancy depending on vaccine uptake,

assuming default pre-pandemic contact structures everywhere (including schools). See S3 Fig for a more comprehensive exploration of combinations of

vaccine efficacies.

https://doi.org/10.1371/journal.pcbi.1009288.g005
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COVID-19 vaccination programs. Any premature lifting of restrictions risks another wave

with high COVID-19 incidence and full ICUs. Moreover, the increase in freedom gained by

these premature strategies is only transient because once ICU capacity is reached again, restric-

tions would have to be reinstated. Simultaneously, these early relaxations significantly increase

morbidity and mortality rates, as a fraction of the population has not yet been vaccinated and

thus remains susceptible. In contrast, maintaining low case numbers avoids another wave, and

still allows to lift restrictions steadily and at a similar pace as with high case numbers. Despite

this qualitative behavior being general, the precise quantitative results depend on several

parameters and assumptions, which we discuss in the following.

The specific time evolution of the lifting of restrictions is dependent on the progress of the

vaccination program. Therefore, a steady lifting of restrictions may start in May 2021, when

the vaccination rate in the European Union gains speed. However, if the vaccination roll-out

stalls more than we assume, the lifting of restrictions has to be delayed proportionally. In such

a slowdown, the total number of cases and deaths until the end of the vaccination period

increases accordingly. Thus, cautious lifting of restrictions and a fast vaccination delivery is

essential to reduce death tolls and promptly increase freedom.

The spreading dynamics after concluding vaccination campaigns (Fig 4B and 4C) will be

mainly determined by i) final vaccine uptake, ii) the contact network structure, iii) vaccine

effectiveness, and iv) initial seroprevalence. Regarding vaccine uptake, we assumed that

after the vaccination of every willing person, no further people would get vaccinated. This

assumption enables us to study the effects of each parameter separately. However, vaccina-

tion willingness might change over time: it will probably be higher if reported case numbers

and deaths are high, and vice versa. This poses a fundamental challenge: If low case numbers

are maintained during the vaccine roll-out, the overall uptake might be comparably low,

thus leading to a more severe wave once everyone has received a vaccination offer and

restrictions are fully lifted. In contrast, a severe wave during vaccine roll-out might either

increase vaccine uptake, because of individuals looking to protect themselves, or reduce it,

because of damaged credibility on vaccine efficacy among vaccine hesitant groups. Thus, to

avoid any further wave, policymakers have to maintain low case numbers and foster high

vaccine uptake.

Besides vaccine uptake, the population’s contact network also determines whether popula-

tion immunity will be reached. We studied different real-world and theoretical possibilities

for the contact matrices in Germany and other EU countries and evaluated how our results

depend on the connectivity among age groups. For the long-term success of the vaccination

programs, there must be exceptionally sensible planning of measures to prevent contagion

among school-aged children. Otherwise, they could become the drivers of a novel wave

because they might remain mostly unvaccinated. Provided adequate vaccine uptake among

the adult population, our results suggest that reducing either the intensity of contacts or the

infectiousness in that age group by half would be sufficient for preventing a rebound wave.

This reduction is attainable by implementing soft-distancing measures, plus systematic, pre-

ventive random screening with regular COVID-19 rapid tests in school settings or via vaccina-

tion [22]. Although at the time of writing some vaccines have been provisionally approved for

use in children aged 12–15 years old, vaccine uptake among children remains highly uncertain

because of their very low risk for severe illness from COVID-19. We therefore did not include

their vaccination in our model.

One of the largest uncertainties regarding the dynamics after vaccine roll-out arises from

the efficacies of the vaccines. First, the sterilizing immunity effect (i.e., blocking the transmis-

sion of the virus), is still not well quantified and understood [24]. Second, the emergence of

new viral variants that at least partially escape immune response is continuously under
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investigation [35, 37, 38]. Furthermore, there is no certainty about whether escape variants

might produce a more severe course of COVID-19 or whether reinfections with novel variants

of SARS-CoV-2 would be milder. Therefore, we cannot conclusively quantify the level of con-

tact reductions necessary in the long term to avoid a further wave of infections or whether

such wave would overwhelm ICUs. However, for our default parameters, moderate contact

reductions and hygiene measures would be sufficient to prevent further waves.

Although most examples are presented for countries from the European Union, our results

can also be generalized to other countries. Differences across countries come from i) demo-

graphics, ii) varying seroprevalence —which originated from large differences in the severity

of past waves—, iii) vaccines (types, availability, delivery scheme, and uptake), as well as iv)

capacities of the health systems, including hospitals and TTI capabilities. For the EU, we find

that during the mass vaccination phase, all these differences have only a minor effect on the

pace at which restrictions can be lifted (cf. S1 Fig). However, differences become evident in the

long term when most restrictions are lifted by the end of the vaccination campaigns. Demo-

graphics and contact patterns are qualitatively very similar across EU countries and thus do

not strongly change the expected outcome. On the contrary, we found the initial seropreva-

lence to significantly determine the minimum vaccine uptake required to guard against further

waves after the vaccine roll-out (cf. Fig 5). Naturally acquired immunity, like vaccinations,

contributes to reducing the overall susceptibility of the population and thus impedes viral

spread. Notably, naturally acquired immunity can compensate for drops in vaccine uptake in

specific age groups unwilling to vaccinate or that cannot access the vaccine, e.g. in children.

Furthermore, expected vaccine uptake considerably varies across EU countries (e.g., Serbia

38%, Croatia 41%, France 44%, Italy 70%, Finland 81% [6], Czech Republic 40% [39], Ger-

many 80% [26]). The risk of rebound waves after the mass vaccinations might thus be highly

heterogeneous across the EU.

Since we neither know what kind of escape variants might still surface nor their potential

impact on vaccine efficacies or viral spread, maintaining low case numbers is the safest strategy

for long-term planning. This strategy i) prevents avoidable deaths during vaccine roll-out, ii)

offers better preparedness should escape variants emerge, and iii) lowers the risk of further

waves because local outbreaks are easier to contain with efficient TTI. Hence, low case num-

bers only have advantages for health, society, and the economy. Furthermore, a low case

number strategy would greatly profit from an EU-wide commitment, and coordination [15].

Otherwise, strict border controls with testing and quarantine policies need to be installed as

drastically different case numbers between neighboring countries or regions promote destabi-

lization; infections could (and will) propagate between countries triggering a “ping-pong”

effect, especially if restrictions are not jointly planned. Therefore, promoting a high vaccine

uptake and low case numbers strategy should not only be a priority for each country but also

for the whole European community.

In practice, there are several ways to lower case numbers to the capacity limit of TTI pro-

grams without the need to enact stringent NPIs immediately. For example, if restrictions are

lifted gradually but marginally slower than the rate vaccination pace would allow, case num-

bers will still decline. Alternatively, restrictions could be relaxed initially to an intermediate

level where case numbers do not grow exponentially while giving people some freedom. In

such circumstances one can take advantage of the reduced susceptibility to drive case numbers

down without the need of stringent NPIs (S5(E)–S5(H) Fig).

To conclude, the opportunity granted by the progressing vaccination should not only be

used to lift restrictions carefully but also to bring case numbers down. This will significantly

reduce fatalities, allow to lift all major restrictions gradually moving into summer 2021, and

guard against newly-emerging variants or potential further waves in the EU.

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 12 / 37



Methods

Model overview

We model the spreading dynamics of SARS-CoV-2 following a SEIRD-ICU deterministic for-

malism through a system of delay differential equations. Our model incorporates age-stratified

dynamics, ICU stays, and the roll-out of a 2-dose vaccine. For a graphical representation of the

infection and core dynamics, see Fig 6. The contagion dynamics include the effect of externally

Fig 6. Scheme of our age-stratified SEIRD-ICU+vaccination model. The solid blocks in the diagram represent different SEIRD compartments. Solid

black lines represent transition rates of the natural progression of the infection (contagion, latent period, and recovery). On the other hand, dashed lines

account for external factors and vaccination. Solid gray lines represent non-linear transfers of individuals between compartments, e. g. through

scheduled vaccination. From top to bottom, we describe the progression from unvaccinated to vaccinated, with stronger color and thicker edges

indicating more protection from the virus. Subscripts i indicate the age groups, while superscripts represent the number of vaccine doses that have

successfully strengthened immune response in individuals receiving them. Contagion can occur internally, where an individual from age group i can

get infected from an infected person from any age group, or externally, e. g., abroad on vacation. If the contagion happens externally, we assume that the

latent period is already over when the infected returns and, hence, they are immediately put into the infectious compartments Ini .

https://doi.org/10.1371/journal.pcbi.1009288.g006
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acquired infections as a non-zero influx Fi based on the formalism previously developed by

our group [18, 19]: susceptible individuals of a given age group i (Si) can acquire the virus

from infected individuals from any other age group j and subsequently progress to the exposed

(Si! Ei) and infectious (Ei! Ii) compartments. They can also acquire the virus externally.

However, in this case, they progress directly to the infectious compartment (Si! Ii), i.e., they

get infected abroad, and by the time they return, the latent period is already over. Individuals

exposed to the virus (Ei) become infectious after the latent period and thus progress from the

exposed to the infectious compartments (Ii) at a rate ρ (Ei! Ii). The infectious compartment

has three different possible transitions: i) direct recovery (Ii! Ri), ii) progression to ICU (Ii!
ICUi) or iii) direct death (Ii! Di). Individuals receiving ICU treatment can either recover

(ICUi! Ri) or decease (ICUi! Di).
A contact matrix weights the infection probability between age groups. We investigated

three different settings for the contact structure to assess its impact on the spreading dynamics

of COVID-19: i) Interactions between age groups are proportional to the group size, i.e., the

whole population is mixed perfectly homogeneously, ii) interactions are proportional to pre-

COVID contact patterns in the EU population [28], and iii) interactions are proportional to

“almost” pre-COVID contact patterns [28], i.e., the contact intensity in the youngest age group

(0–19 years) is halved. This accounts for some preventive measures kept in place in schools,

e.g., regular rapid testing or smaller class sizes. Scenario iii) is the default scenario unless

explicitly stated. However, figures for Scenarios i) and ii) are provided in S9–S14 Figs. We

scale all the contact structures by a linear factor, which increases or decreases the stringency of

NPIs so that the settings are comparable. However, the scaling above does not account for het-

erogeneous NPIs acting only on contacts between specific age groups, such as workplace or

school restrictions.

Our model includes the effect of vaccination, where vaccines are administered with an age-

stratified two-dosage delivery scheme. The scheme does not discriminate on serological status,

i.e., recovered individuals with natural antibodies may also access the vaccine when offered to

them. Immunization, understood as the development of proper antibodies against SARS-

CoV-2, does not occur immediately after receiving the vaccination dose. Thus, newly vacci-

nated individuals get temporarily put into extra compartments (V0
i and V1

i for the first and sec-

ond dose respectively) where, if infected, they would progress through the disease stages as if

they would not have received that dose. For modeling purposes, we assume that a sufficient

immune response is build up τ days after being vaccinated (V0
i ! S1

i and V1
i ! S2

i ), and that a

fraction pi(t) of those individuals that received the dose acquire the infection before being

immunized. Furthermore, there is some evidence that the vaccines partially prevent the infec-

tion with and transmission of the disease [40, 41]. Our model incorporates the effectiveness

against infection following an ‘all-or-nothing’ scheme, removing a fraction of those vaccinated

individuals to the recovered compartments (V0
i ! R1

i and V1
i ! R2

i ), thus assuming that they

would not participate in the spreading dynamics. However, we consider those vaccinated indi-

viduals with a breakthrough infection have a lower probability of going to ICU or to die than

unvaccinated individuals, i.e., effectiveness against severe disease follows a ‘leaky’ scheme. Fur-

thermore, we assume those individuals carry a lower viral load and thus are less infectious by a

factor of two [25]. All parameters and values are listed in Table 2.

We model the mean-field interactions between compartments by transition rates, deter-

mining the timescales involved. These transition rates can implicitly incorporate both the time

course of the disease and the delays inherent to the case-reporting process. In the different sce-

narios analyzed, we include a non-zero influx Fi, i.e., new cases that acquired the virus from

outside. Even though this influx makes a complete eradication of SARS-CoV-2 impossible,

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 14 / 37



different outcomes in the spreading dynamics might arise depending on both contact intensity

and TTI [18]. Additionally, we include the effects of non-compliance and unwillingness to be

vaccinated as well as the effects of the TTI capacities from health authorities, building on [19].

Throughout the manuscript, we do not make explicit differences between symptomatic and

asymptomatic infections. However, we implicitly consider asymptomatic infections by

accounting for their effect on modifying the reproduction number Rt and all other epidemio-

logical parameters. To assess the lifting of restrictions in light of progressing vaccinations, we

use a Proportional-Derivative (PD) control approach to adapt the internal reproduction num-

ber Rt targeting controlled case numbers or ICU occupancy.

Model equations

The contributions of the spreading dynamics and the age-stratified vaccination strategies are

summarized in the equations below. They govern the infection dynamics between the different

age groups, each of which is represented by their susceptible-exposed-infectious-recovered-

dead-ICU (SEIRD+ICU) compartments for all three vaccination statuses. We assume a regime

that best resembles the situation in Germany at the beginning of March 2021, and we estimate

the initial conditions for the different compartments of each age group accordingly. Further-

more, we assume that neither post-infection immunity [42] nor the immunization obtained

through the different dosages of the vaccine vanish significantly in the considered time frames.

The spreading parameters completely determine the resulting dynamics (characterized by the

different age- and dose-dependent parameters, together with the gross reproduction number

Rt) and the vaccination logistics.

All of the following parameters and compartments are shortly described in Tables 2 and 3.

Some of these are elaborated in more detail in the following sections. Subscripts i in the equa-

tions denote the different age groups, while superscripts denote the vaccination status:

Table 2. Model parameters. The range column either describes the range of values used in the various scenarios, or if values depend on the age group (indexed by i), the

lowest and highest value across age-groups.

Parameter Meaning Value (default) Range Units Source

Rt Reproduction number (gross) 1.00 0–3.5 — Assumed

η Vaccine protection against transmission 0.75 0.5–0.85 — [24, 40, 41]

κ Vaccine efficacy (against severe disease) 0.9 0.7–0.95 — [23, 57]

σν Relative virulence of unvaccinated and vaccinated individuals [1.0, 0.5, 0.5] 0.5–1 — [25]

τ Immunization delay 7 — days [24, 31]

vr Random vaccination fraction 0.35 — — [64, 65]

Mi Population group size Table 4 — people [43]

ui Vaccine uptake Table 4 — — [6]

ρ Transition rate E! I 0.25 — day−1 [66, 67]

gni Recovery rate from Ini Table 5 0.088–0.1 day−1 [54–56]

gICUi Recovery rate from ICUn

i Table 5 0.08–0.2 day−1 [50, 52, 68]

d
n

i Death rate from Ini Table 5 10−6–0.005 day−1 [50, 52, 68]

d
ICU
i

Death rate from ICUn

i Table 5 0.0055–0.083 day−1 [50, 52, 68]

ani Transition rate I! ICU Table 5 10−5–0.007 day−1 [50, 52, 68]

Fi Infections from external sources 1 — cases day−1 per million Assumed

pi(t) Fraction of individuals getting infected before acquiring antibodies — — — Eq (34)

�g Effective removal rate from infectious compartment — — day−1 ðgni þ a
n
i þ d

n

i Þ

f 1
i ðtÞ; f

2
i ðtÞ Administered 1

st and 2nd vaccine doses — — doses/day Eqs (19) and (20)

https://doi.org/10.1371/journal.pcbi.1009288.t002
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unvaccinated (0 or none), immunized by one dose (1), or by two doses (2).

dSi
dt
¼ � �gRtSi

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� f 1

i tð Þ
Si

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering first dose

�
Si
Mi
Fi

|fflffl{zfflffl}
external contagion

ð1Þ

dV0
i

dt
¼ � �gRtV

0

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

þ f 1

i tð Þ
Si

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering first dose

� � �

� � � � f 1

i t � tð Þ
Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose showing effect

�
V0
i

Mi
Fi

|ffl{zffl}
external contagion

ð2Þ

dS1
i

dt
¼ � �gRtS

1

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� f 2

i tð Þ
S1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering second dose

� � �

� � � þ 1 � Z0ð Þf 1

i t � tð Þ
Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose ðnot immuneÞ

�
S1
i

Mi
Fi

|ffl{zffl}
external contagion

ð3Þ

dV1
i

dt
¼ � �gRtV

1

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

þ f 2

i tð Þ
S1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering second dose

� � �

� � � � f 2

i t � tð Þ
S1
i

S1
i þ R1

i

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second dose showing effect

�
V1
i

Mi
Fi

|ffl{zffl}
external contagion

ð4Þ

Table 3. Model variables. Subscripts i denote the ith age group, superscripts the vaccination status (unvaccinated, immunized by one dose, by two doses).

Variable Meaning Units Explanation

Si; S1
i ; S

2
i Susceptible pools people Non-infected people that may acquire the virus.

V0
i ; V1

i Vaccinated pools people Non-infected people that have been vaccinated but have not developed antibodies yet, thus may

acquire the virus.

Ei; E1
i ; E2

i Exposed pools people Infected people in latent period. Cannot spread the virus.

Ii; I1
i ; I2i Infectious pools people Currently infectious people.

ICUi; ICU
1

i ; ICU
2

i ICU pools people Infected people receiving ICU treatment, isolated.

Di; D1
i ; D2

i Dead pools people Dead people.

Ri; R1
i ; R2

i Recovered pools people Recovered/immune people that have acquired post-infection or sterilizing vaccination immunity.

N̂ obs Observed new infections people

day−1
Daily new infections, including reporting delays. Eq (42)

R̂obs
t

Observed reproduction

number

– The reproduction number that can be estimated only from the observed cases:

R̂obs
t ¼ N̂ obsðtÞ=N̂ obsðt � 4Þ.

https://doi.org/10.1371/journal.pcbi.1009288.t003
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dS2
i

dt
¼ � �gRtS

2

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

þ 1 � Z0ð Þf 2

i t � tð Þ
S1
i

S1
i þ R1

i

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second dose ðnot immuneÞ

� � �

� � � �
S2
i

Mi
Fi

|ffl{zffl}
external contagion

ð5Þ

dEi
dt
¼ �gRt Si þ V

0

i

� �X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rEi|{z}
end of latency

ð6Þ

dE1
i

dt
¼ �gRt S

1

i þ V
1

i

� �X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rE1

i|{z}
end of latency

ð7Þ

dE2
i

dt
¼ �gRtS

2

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rE2

i|{z}
end of latency

ð8Þ

dIi
dt
¼ rEi|{z}

end of latency

� �gIi|{z}
recovery; ICU admission; or death

þ
Si þ V0

i

Mi
Fi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
external contagion

ð9Þ

dI1i
dt
¼ rE1

i|{z}
end of latency

� �gI1i|{z}
recovery; ICU admission; or death

þ
S1
i þ V

1
i

Mi
Fi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
external contagion

ð10Þ

dI2i
dt
¼ rE2

i|{z}
end of latency

� �gI2

i|{z}
recovery; ICU admission; or death

þ
S2
i

Mi
Fi

|fflffl{zfflffl}
external contagion

ð11Þ

dICUn

i

dt
¼ � ðd

ICU
i þ g

ICU
i ÞICU

n

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
recovery or death

þ ani I
n

i|{z}
ICU admission

ð12Þ

dDi

dt
¼
X

n

ðd
ICU
i ICUn

i þ d
n

i I
n

i Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total deaths

ð13Þ

dRi
dt
¼ gICUi ICUi þ giIi
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

recovery

� f 1

i tð Þ
Ri

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
first dose

ð14Þ
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dR1
i

dt
¼ gICUi ICU1

i þ g
1

i I
1

i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
recovery

þ f 1

i tð Þ
Ri

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
first dose after recovery

� f 2

i tð Þ
R1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second dose

� � �

� � � þ Z0f
1

i t � tð Þ
Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose ðsterilizing immunityÞÞ

ð15Þ

dR2
i

dt
¼ gICUi ICU2

i þ g
2

i I
2

i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
recovery

þ f 2

i tð Þ
R1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second dose after recovery

� � �

� � � þ Z0f
2

i t � tð Þ
S1
i

S1
i þ R1

i

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second dose ðsterilizing immunityÞ

ð16Þ

Contact structure and the effect of NPIs on the contact levels

We model the probability of a susceptible individual from age group i to get infected from

an individual from age group j to be proportional to the –effective– incidence in that group

(
P

n
Inj s

n) and the contact intensity between the two groups, given by the entries (C)ij of a con-

tact matrix C scaled with the gross reproduction number Rt. The contact matrices are normal-

ized to force their largest eigenvalue (i.e., their spectral radius) to be 1, so that, when multiplied

with Rt, their spectral radius equals Rt. The total contact levels for different levels of NPIs are

then just linearly scaled with Rt. We thus neglect any inhomogeneities in the NPIs that might

affect contact between specific age groups more than others.

As described previously, we study three different configurations for the contact matrix C: i)

a perfectly homogeneously mixed population, ii) pre-COVID structure in the EU population

[28], and iii) “almost” pre-COVID contact structure [28], but with reduced potentially-conta-

gious contacts in the youngest age group (0–19 years) accounting for some preventive mea-

sures kept in place in schools. If not explicitly stated otherwise, the default contact matrix we

use in the main text is always the intermediate “almost” pre-COVID contact structure matrix.

For the three scenarios, we analyze the demographics and contact structures in Germany, Fin-

land, the Czech Republic, and Italy as a sample for varying demographics across the EU.

First scenario: Homogeneous contact structure. In this scenario, we consider that every-

one has the same probability of meeting anyone from any other age group. The probability of

meeting somebody from a given age group is thus proportional to the fraction of this age

group within the whole population. Let f be the column vector collecting these fractions,

fi ¼
Mi
M , the contact matrix for the n age-groups herein considered C 2 Rn�n is thus given by

ðCÞij ¼ fj; 8j ð17Þ

and can be seen in Fig 7A, 7D, 7G and 7J, for the chosen demographics. Note that by this con-

struction the largest eigenvalue of this C (i.e., its spectral radius) is automatically 1 for any

demographics, i.e., for any f that fulfills ∑j fj = 1 (proof in S1 Supplementary Note).

Second scenario: Pre-COVID contact intensity, real-world contact structure. Here, we

use the whole contact matrices from before the pandemic reported with one-year age resolu-

tion in [28], converted into the age brackets that we chose. We normalize them by their
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Fig 7. Contact structures for different EU countries in the three scenarios. The chosen contact matrices for i) homogeneous contact structure, ii) pre-

COVID contact structure, and iii) “almost” pre-COVID structure with reduced potentially-contagious contacts in schools for Germany (A-C), Finland

(D-F), Italy (G-I) and the Czech Republic (J-L). Entries of the matrices show the contact intensity between age groups normalized to give each matrix a

spectral radius of 1.

https://doi.org/10.1371/journal.pcbi.1009288.g007
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spectral radius, leaving their internal contact structure intact. This scenario thus resembles

completely homogeneous NPIs that affect every possible contact equally. The matrices are

given in Fig Fig 7B, 7E, 7H and 7K for the chosen countries.

Third scenario: “Almost” pre-COVID contact intensity, real-world contact structure.

Finally, we again use the contact matrices from before the pandemic reported in [28] but adapt

them to reduce the intensity of contacts of the youngest age group by half, accounting for

those measures that remain in place to prevent contagion and mitigate outbreaks in school set-

tings. Specifically, we halve the matrix element connecting the 0–19 age group with itself and

normalize the obtained contact matrix C by its spectral radius. As can be seen in the resulting

matrices, given in Fig 7C, 7F, 7I and 7L, this affects that the main contributions in the contacts

are more evenly spread in the 0–59 year age groups. This serves as a first approximation to the

contact structure with inhomogeneous NPIs targeting different age groups differently both in

a complete lockdown, as well as some continued measures in schools.

Vaccination dynamics and logistics

In real-world settings, not every person accepts the vaccine when offered. Additionally, vaccine

uptake is bounded because some vulnerable groups cannot be vaccinated because of health-

related reasons. A systematic survey [26] estimates the vaccine uptake to be approximately

80% across the adult population in Germany, which we choose as our baseline. Due to a higher

perception of the risk caused by an infection, we expect that the uptake is higher for elderly

population. Thus, we set the uptake ui to be age-group dependent. Besides the default 80%, we

choose two more sets of uptakes averaging to a total of 70% and 90%, respectively. We suppose

that an increase in the uptake is possible by education and information measures. They are

listed in Table 4. We linearly interpolate between the three values to model arbitrary total vac-

cine uptakes.

Using official data of the German vaccine stock and stock projections [44, 45] we build up

an estimated delivery function wT that models the weekly number of doses delivered as a func-

tion of time. We assume it takes a logistic form, as we assume the number of daily doses

increases strongly at the beginning until it reaches a stable level. Adapting the logistic function

to the German stock projection (see Fig 8) yields:

wTðweekÞ ¼
11� 106 doses

1þ exp ð� 0:17ðweek � 21ÞÞ
; ð18Þ

where the parameters were chosen to roughly match past and projected deliveries, taking into

account that some delays in the projections might appear because of logistic or manufacturing

issues. Since the vaccine deliveries and distributions are done collectively and uniformly in the

Table 4. Parameters for the three main different vaccine uptake scenarios for Germany. The averages are to be understood across the vaccinable (16+) population.

Slightly rescaled uptakes for Finnish, Italian and Czech age-demographics can be found in S1, S2 and S3 Tables.

Group ID age group eligible fraction minimal uptake ui mid uptake ui (default) maximal uptake ui population fraction [43] Mi/M
1 0–19 0.2 (16+) 0.58 0.73 0.88 0.18

2 20–39 1.0 0.64 0.76 0.89 0.25

3 40–59 1.0 0.69 0.79 0.90 0.28

4 60–69 1.0 0.74 0.82 0.91 0.13

5 70–79 1.0 0.79 0.86 0.92 0.09

6 >80 1.0 0.85 0.89 0.93 0.07

average — — 0.70 0.80 0.90 —

https://doi.org/10.1371/journal.pcbi.1009288.t004
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EU, we scale this German projection by the respective population sizes for the other countries

studied herein (Finland, Italy, Czech Republic). We further assume that because of logistic

delays, the vaccination of the delivered doses occurs with some delay, which we model as a

convolution with an empirical delay kernel given by K = [0.6, 0.3, 0.1] (fraction of vaccines

administered in the same, second and third week following delivery). With that, we get the

total vaccination rates per week.

These doses are distributed among the age groups, taking into account that each individual

requires two doses, spaced by at least four weeks, aware of the potential benefits of further

delaying the two doses [46].

The vaccine prioritization order is the following:

1. First, to meet the demand of second doses, τvac weeks after the first dose.

2. Second, to distribute a fraction vr of the remaining doses uniformly among age groups,

to model the earlier vaccination of exposed occupations (health sector, first responders,

among others).

3. Last, to plan the rest of the doses for the oldest age group that has not been fully vaccinated

yet.

Exceptions to rule 3 are the low-risk groups 16–19, 20–39, and 40–59 that get vaccinated

simultaneously. For each age group, only a fraction ui is vaccinated because of limited willing-

ness to get vaccinated (Table 4). In addition, the total number of vaccinations in the youngest

age group 0–19 is further reduced since we consider only a fraction of around 20% (fraction of

16–19 year-old individuals in the group) to be eligible for vaccination (see Table 4). The uptake

ui in this age group is thus understood only among the eligible individuals.

This procedure results in the number of first w1
i ðweekÞ and second doses w2

i ðweekÞ vacci-

nated to the age group i as a function of the week. Dividing by 7 we obtain the daily adminis-

tered first and second doses for age group i

f 1

i ðtÞ ¼ w
1

i ðbt=7cÞ=7 and ð19Þ

f 2

i ðtÞ ¼ w
2

i ðbt=7cÞ=7: ð20Þ

Fig 8. Estimated vaccination rates for Germany. From the announced vaccination stock, we estimate the vaccination delivery function. A: Total

aggregated doses of different vaccine producers in Germany. B: Equivalent amount of 2-dose vaccines available per week in Germany, parameterized

using a logistic function. C: Comparison between expected and observed vaccination progress in Germany.

https://doi.org/10.1371/journal.pcbi.1009288.g008
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Age-stratified transition rates

Here, we will introduce the transition rates used in the model equations; details about their

estimation are presented in the later sections.

The recovery rate γi of a given age group describes the recovery without the need for critical

care. It is estimated from the literature. We expect this parameter to vary across age groups,

mainly because of the strong correlation between the severity of symptoms and age. Age-

resolved recovery rates estimated from data of the non-vaccinated population in Germany are

listed in Table 5.

The ICU recovery rate gICUi is the rate of a given age group for leaving ICU care. This param-

eter varies across age groups, mainly because of the strong correlation between the severity of

symptoms, age, and duration of ICU stay. Age-resolved ICU recovery rates estimated from

data of the non-vaccinated population in Germany are listed in Table 5.

The ICU admission rate αi of a given age group describes the transition from the infected

compartment to the ICU compartment. It accounts for those cases developing symptoms

where intensive care is required and is estimated from the literature. We expect this parameter

to vary across age groups, mainly because of the strong correlation between the severity of

symptoms and age. Age-resolved ICU-transition rates estimated from data of the non-vacci-

nated population in Germany are listed in Table 5. Further, we assume that anyone requiring

intensive care would have access to ICU beds and care.

The death rate δi also varies across age groups, mainly because of the strong correlation

between the severity of symptoms and age. This parameter accounts for those individuals

dying because of COVID-19, but without being treated in the ICU. In that way, it is expected

to be even smaller than the infection fatality ratio (IFR). Age-resolved death rates (outside

ICU) estimated from data of the non-vaccinated population in Germany are listed in Table 5.

The death rate in ICU d
ICU
i also varies across age groups, mainly because of the strong corre-

lation between the severity of symptoms and age. In addition, this parameter accounts for

those individuals dying because of COVID-19 when being treated in the ICU. In that way, it is

expected to be even larger than the case fatality ratio CFR. Age-resolved ICU death rates esti-

mated from data of the non-vaccinated population in Germany are listed in Table 5.

We estimate these age-dependent rates by combining hospitalization data with published

IFR data. A comparison of ICU transition rates ani across the EU is difficult as the definition of

stationary treatment differs with regard to hospitalization, ICU low and high-care. In order to

obtain sensible estimates for these rates, we need to consider the size of the unobserved pool in

each age group. Our analysis of ICU transition rates is based on 14043 hospitalization reports

collected in Germany between early 2020 and Oct. 26, 2020, as part of the official reporting

data [47]. Those reports contain 20-year wide age strata but only represent a small sub-sample

of all ICU-admissions (n = 723). A complete count of ICU-admissions is maintained by the

Table 5. Age-dependent parameters.

Age

group

ICU admission rate αi
(days−1)

Death rate in I δi
(days−1)

Natural recovery rate γi
(days−1)

Death rate in ICU d
ICU
i

(days−1)

ICU recovery rate gICUi
(days−1)

Avg. duration in ICU

TICU
res (days)

0–19 0.000014 0.000002 0.09998 0.005560 0.194440 5

20–39 0.000204 0.000014 0.09978 0.007780 0.192220 5

40–59 0.001217 0.000111 0.09867 0.006164 0.084745 11

60–69 0.004031 0.000317 0.09565 0.009508 0.081401 11

70–79 0.005435 0.001422 0.09314 0.019756 0.091355 9

>80 0.007163 0.004749 0.08809 0.082433 0.084233 6

https://doi.org/10.1371/journal.pcbi.1009288.t005
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Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin [48], without addi-

tional patient-data, like age. 19250 ICU admissions were reported throughout the same time

frame. We estimated the number of ICU admissions in each 20-year wide age group by com-

bining both sources, matching well with German studies on the first wave [49].

Throughout the first and second wave, the per age-group case-fatality rates (CFRs) in Ger-

many are more than two times larger than the age-specific infection fatality rates (IFRs) esti-

mated by [27, 50]. This difference indicates unobserved infections. Seroprevalence studies

from Q3 2020 [51] confirm the existence of unobserved pools. The total number of infections

in each age group is inferred from observed deaths assuming the age-specific IFR from [27]. ani
(low- and high-care) is calculated by dividing estimated ICU-admissions in each age group by

the estimated total infections in each of those groups. A similar method is applied for the ICU-

death-rate d
ICU
i by taking hospitalization-deaths from [47] as a proxy for the age distribution.

The ICU-rates from the 10-year wide age-groups [52] based on French data (high-care
only) were used to subdivide the 20-year wide age-group 60–79, replicating the French rate-

ratio between 60–69 and 70–79 for the German ICU-ratios, while maintaining the German

age-agnostic ICU-rate. Noteworthy, there is great variability between the reported ICU rates

among different countries, and it seems to be more a problem of reporting criteria rather than

differences in virus and host response [53]. Furthermore, as treatments become more effective

compared to the first wave, the residence times have decreased in the second wave [30], thus

modifying the transition rates.

We also considered the influence of our decision to use the IFR of O’Driscoll et al. [27]

instead of Levin et al. [50]. The IFR from Levin et al. is about 50% larger and would lead to a

lower level of infections overall in our scenarios, therefore reducing the fraction of natural

immunity acquired at the end of the scenarios.

Estimation of general transition rates

After listing all transition rates that we consider in our work, we will now explain how we esti-

mate them. Since we have to start somewhere, let us look at the ICUi compartment first (see

Fig 6 top right). The differential equation, without influx and including the initial condition

ICU0, is given by

ICU0i ¼ � d
ICU
i ICUi
|fflfflfflfflffl{zfflfflfflfflffl}

to Di

� gICUi ICUi
|fflfflfflfflffl{zfflfflfflfflffl}

to Ri

; ICUið0Þ ¼ ICU0:
ð21Þ

The solution of this ODE is known to be

ICUi ¼ ICU0 exp ð� ðd
ICU
i þ g

ICU
i ÞtÞ: ð22Þ

If we know the average ICUi residence time TICU
res , we can obtain an expression for

ðd
ICU
i þ g

ICU
i Þ:

d
ICU
i þ g

ICU
i ¼

1

TICU
res

: ð23Þ
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Further, assuming that a fraction fδ of those individuals being admitted to ICUs would die,

we obtain an expression linking all rates:

fd ¼
# people dead by t ¼ 1

people entering ICUi at t ¼ 0
¼

d
ICU
i ICU0

R1
0
exp �

t
TICU

res

� �

dt

ICU0

¼ d
ICU
i TICU

res :
ð24Þ

Therefore, the transition rates are given by:

d
ICU
i ¼

fd
TICU

res

and gICUi ¼
ð1 � fdÞ
TICU

res

: ð25Þ

Using this modeling approach, we implicitly assume the time scales at which people leave

the ICU through recovery or death to be the same, i. e., the average ICU stay duration is inde-

pendent of the outcome of the course of the disease.

Similarly, we can estimate the infected-to-death rate (δi), the infected-to-ICU transition

rate (ICU admission rate αi) and the infected-to-recovered rate (γi) based on these fractions

and average times. If we assume that all the relevant median times are the same, we obtain the

following expressions for the rates:

di ¼
fIi!Di
TI

res

; ai ¼
fICU
TI

res

; gi ¼
ð1 � ðfIi!Di þ fICUÞÞ

TI
res

: ð26Þ

As the average residence time in the I compartment is dominated by recoveries we assume

TI
res ¼ 10 days [54–56].

Modeling vaccine efficacies

We assume the main effect of vaccinations on the individual to be twofold. A fraction η that

has received both vaccine doses will develop total immunity and not contribute to the spread-

ing dynamics. The rest may, in principle, be infected with the virus but still have some protec-

tion against a severe course of the illness, resulting in a lower probability of dying or going to

ICU. Both effects combined give the total protection against severe infections seen in vaccine

studies, which we will denote with κ. For current COVID-19 vaccines, efficacies against severe

disease κ ranging from 70–99% [23, 31–33, 57–59] and infection blocking potentials η of 60–

90% [24, 41, 60, 61] are reported. The roughly uniform distribution of vaccine types in the

European Union (see also Fig 8), consists to a larger part of mRNA-type vaccines for which

comparatively high values κ of 97–99% [33, 59] and η of 80–90% are reported. We thus chose

the rather conservative 90% for κ and 75% for η as our default values. The explicit κ and η do

not explicitly appear in our equations, but as parameters η0 and κ0, which we derive from the

reported numbers as follows.

Due to the lack of solid evidence on the effects of the first dose, we assume that the fraction

of individuals developing total immunity already after the first dose is given by η0. We further

assume that of the (1 − η0) people that do not develop the immunity after the first dose, the

same fraction η0 acquires it after the second dose, i. e. the total vaccination path of the people

that do not develop total immunity after both doses is given by Si!
1� Z0 S1

i !
1� Z0 S2

i . η0 can thus be
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related to η by the formula

Z ¼ 1 �
not fully protected
total vaccinated

¼ 1 � ð1 � Z0Þ
2
¼ Z0ð2 � Z0Þ:

ð27Þ

For individuals vaccinated with both doses without total immunity, i. e., from S2
i , we reduce

the probabilities to die or go to ICU after infection to account for the reduced risk of severe

symptoms due to the vaccine. Of the total number of people who get vaccinated the risk of

going to ICU or dying is thus reduced by a factor

1 � k ¼ ð1 � ZÞ � ð1 � k0Þ; ð28Þ

from which we can deduce the value of κ0.

Again, due to lack of solid data on the first doses we assume the risk of severe COVID-19 is

reduced to a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � kÞ

p
when only a single dose has been received. From these assump-

tions we arrive at

d
n

i ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k0

p
Þ
n
di; ð29Þ

ani ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k0

p
Þ
n
ai; ð30Þ

gni þ d
n

i þ a
n

i ¼ �g; ð31Þ

where ν = {1, 2} represents the dose of the vaccine for which an individual has successfully

developed antibodies. Note that ν is used as a super-index on the left-hand side of the equation

but as an exponent on the right-hand side. Eq 31 enforces vaccination not to alter the total

average timescale of the disease course.

The transition rates from ICU to death, d
ICU
i , and from ICU to recovered, gICUi , are assumed

to remain equal across doses. The reasons for this assumption are i) a lack of solid evidence for

significant differences, and ii) once in ICU, it is reasonable to assume that the vaccine failed to

work for this individual.

In addition to the effects of complete sterilizing immunity (η) and protection against severe

disease (κ), we include a third effect of vaccines: Individuals that happen to have a break-

through infection despite being vaccinated carry a lower viral load and are consequently less

infectious than unvaccinated infected individuals. This has been shown already after the first

dose [25, 60]. We include this effect by a factor σ in the contagion term (cf. (1)).

Individuals becoming infectious while developing antibodies

One special case that one has to consider is when individuals acquire the virus in the time

frame between being vaccinated and developing an adequate antibody level. We assume that

individuals share behavioral characteristics with the members of the corresponding susceptible

compartment, so contagion follows the same dynamics. Let Xi(s) be the fraction of susceptible

individuals of a given age group vaccinated at time s0 < s and are not infected until time s.
Assuming they can only leave the compartment by getting infected, the differential equation
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governing their dynamics is:

dXi
ds
¼ � RtXi

X

j;n
Cji
snInj
Mj
�
Xi
Mi
Fi; withXiðs0Þ ¼ 1: ð32Þ

The solution of (32) is given by

XiðsÞ ¼ exp �
Z s

s0

X

j;n

Rs0Cji
snInj ðs

0Þ

Mj
ds0

 !

exp �
Fiðs � s0Þ

Mi

� �

. Following the same formalism

for every batch of vaccinated individuals produced at time t − τ, the ones that remain suscepti-

ble by time t are given by:

XiðtÞ ¼ exp �

Z t

t� t

X

j;n

Rt0Cji
snInj ðt

0Þ

Mj
dt0

 !

exp �
Fit

Mi

� �

: ð33Þ

Therefore, we define the fraction of susceptible individuals acquiring the virus in the time-

frame of antibodies development as

piðtÞ ¼ 1 � exp �

Z t

t� t

X

j;n

Rt0Cji
snInj ðt

0Þ

Mj
dt0

 !

exp �
Fit

Mi

� �

: ð34Þ

This fraction is then subtracted in the transitions Vn
i ! Snþ1

i from the vaccinated to the

immunized pools in the differential equations.

Effect of test-trace-and-isolate

At low case numbers and moderate contact reduction, the spreading dynamics can be miti-

gated through test-trace-and-isolate (TTI) policies [18, 19]. In such a regime, individuals can

have slightly more contacts because the overall low amount of cases enables a diligent system

to trace offspring infections and stop the contagion chains. In other words, efficient TTI would

allow for having a larger gross reproduction number Rt without rendering the system unstable.

The precise allowed increase in Rt is determined by i) the rate at which symptomatic individu-

als are tested, ii) the probability of being randomly screened, and iii) the maximum capacity

and fraction of contacts that health authorities can manually trace. When the different compo-

nents of this meta-stable regime break down, we observe a self-accelerating growth in case

numbers.

In our age-stratified model, we do not explicitly include TTI, given all the uncertainties that

arise from the age-related modifying factors. However, we use our previous results to estimate

the gross reproduction number Rt that would produce the same observed reproduction num-

ber in the different regimes of i) no test or contact tracing, ii) strict testing criteria, iii) self-

reporting, and iv) full TTI. Doing so, we build an empirical relation to evaluating the contex-

tual stringency of the different strategies herein compared (namely, long-term stabilization at

high or low case numbers).

In the phase diagram of Fig 9 we illustrate the conversion methodology. Two different Rt
might produce the same observed reproduction number R̂obs

t , depending on the regime in

which they operate. Fitting all curves to an exponential function, and assuming that the largest

eigenvalue of the system (for all possibilities of testing and tracing) can be represented as a

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 26 / 37



function of the gross reproduction number Rt, we obtain

R̂obs
t ¼ a exp ðbRtÞ: ð35Þ

We then want to evaluate how to translate the values we get from our control problem

(which has no testing nor tracing) to the equivalent in other regimes. Assuming that all strate-

gies have the same R̂obs
t (as schematized in Fig 9), we can relate their gross reproduction num-

bers in each regime through a simple equation:

Rit ¼
1

bi
ln

a0

ai

� �

þ b0Rt

� �

; ð36Þ

which corresponds to a line, and where the subscript 0 represents the base scenario (with no

testing or contact tracing) and the subscript i represents the other strategies. The exponential

fit to the curves shown in Fig 9 gives to the following line equations:

RtestðineffÞ
t ¼ 1:0211Rt þ 0:2229; ð37Þ

RtestðeffÞ
t ¼ 1:0756Rt þ 0:3272; ð38Þ

RTTI
t ¼ 1:6842Rt þ 0:1805: ð39Þ

Assuming smooth transitions for these conversions in Rt, which are related to certain values

of the new daily cases N (NTTI < Ntest(eff) < Ntest(ineff) < Nno test respectively), we can define a

Fig 9. Test-trace-and-isolate (TTI) policies allow for greater freedom (quantified by the gross reproduction

number Rt) while observing the same reproduction number R̂obs
t . Systematic efforts to slow down the spread of the

disease, such as mass testing (random screening) and contact tracing, allow decreasing the observed reproduction

number of the disease. For observing the same outcome in R̂obs
t , the gross reproduction number Rt would increase, or,

in other words, individuals would be allowed to increase their potentially contagious contacts. Therefore, we

extrapolate the Rt allowed in a full TTI setting at low case numbers and determine the equivalent Rt trends required to

reach the same R̂obs
t in different regimes, starting from the raw value considering no TTI (red curve). Assuming that the

relationship between Rt and R̂obs
t is exponential (Eq (35)), we can obtain the expected Rt trends in the low-case

numbers TTI regime. Starting from the raw Rt curve (red, 1), we can obtain Rt in all the other possible regimes: under

strict testing criteria (yellow, 2), self-reporting (green, 3), or full TTI (blue, 4). Adapted from [18].

https://doi.org/10.1371/journal.pcbi.1009288.g009
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general conversion Rt(N):

RtðNÞ ¼

RTTI
t ; if N < NTTI

RtestðeffÞ
t �1 þ RTTI

t ð1 � �1Þ; if NTTI � N < NtestðeffÞ

RtestðineffÞ
t �2 þ R

testðeffÞ
t ð1 � �2Þ; if NtestðeffÞ � N < NtestðineffÞ

Rt�3 þ R
testðineffÞ
t ð1 � �3Þ; if NtestðineffÞ � N < Nno test

Rt; else;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð40Þ

where the ϕ parameters of each convex combination depend on N:

�1 ¼
N � NTTI

NtestðeffÞ � NTTI
;

�2 ¼
N � NtestðeffÞ

NtestðineffÞ � NtestðeffÞ
; and

�3 ¼
N � NtestðineffÞ

Nno test � NtestðineffÞ
:

ð41Þ

Default reference values for the N-related set-points are NTTI = 20, Ntest(eff) = 100, and

Ntest(ineff) = 500 and Nno test = 10000 new daily cases per million. When we plot and refer to the

gross reproduction number Rt, it is always the value obtained from Eq (40).

Observed reproduction number

In real-world settings, the full extent of the disease spread can only be observed through testing

and contact tracing. While the true number of daily infections N is a sum of all new infections,

the observed number of daily infections N̂ obs is the number of new infections discovered by

testing, tracing, and surveillance of the quarantined individuals’ contacts. Thus, the observed

number of daily infections is given by

N̂ obsðtÞ ¼
hX

i;n

rEni ðtÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
end of latency

þ
X

i;n

Sni ðtÞ þ V
n
i ðtÞ

Mi
FiðtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ext: influx

i
⊛ KðtÞ
|ffl{zffl}

delay kernel
ð42Þ

where ⊛ denotes a convolution and K an empirical probability mass function that models a

variable reporting delay, inferred from German data. As the Robert-Koch-Institute (RKI), the

official body responsible for epidemiological control in Germany [62], reports the date the test

is performed, the delay until the appearance in the database can be inferred. The laboratories

obtain 50% of the sample results on the next day, 30% the second day, 10% the third day, and

further delays complete the remaining 10%, which for simplicity we will truncate at day four.

Considering that an extra day is needed for reporting the laboratory results, the probability

mass function for days 0 to 5 is given by K ¼ ½0; 0; 0:5; 0:3; 0:1; 0:1�.

The spreading dynamics are usually characterized by the observed reproduction number

R̂obs
t , an estimator of the effective reproduction number, calculated from the observed number

of new cases N̂ obsðtÞ. We use the definition underlying the estimates that are published by the

RKI, which defines the reproduction number as the relative change of daily new cases
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separated by 4 days (the assumed serial interval of COVID-19 [63])

R̂obs
t ¼

N̂ obsðtÞ
N̂ obsðt � 4Þ

: ð43Þ

In contrast to the original definition of R̂obs
t [62], we do not need to remove real-world

noise effects by smoothing this ratio. It should be noted that calling N̂ obs the observed case

numbers is somewhat misleading since we do not model the hidden figure explicitly. However,

as this is expected only to change slowly, it is still sufficiently accurate to obtain the observed

reproduction number from Eq (43).

Keeping a steady number of daily infections with a PD control approach

With increasing immunity from the progressing vaccination program, keeping the spread of

COVID-19 under control will require less and less effort by society. We can use this positive

effect to lower the infections by upholding the same NPIs or gradually lifting restrictions to

keep daily case numbers or ICU occupancy constant.

We model the optimal lifting of restrictions in the latter strategy using a Proportional

Derivative (PD) control approach. The gross reproduction number Rt is changed at every day

of the simulation depending on either the daily case numbers N̂ obs or the total ICU occupancy
P

i;nICU
n

i such that the system is always driven towards a given set point. The change in Rt is

negatively proportional to both the difference between the state and the setpoint as well as the

change of that difference in time. The former dependence increases the number of infections if

the case numbers drift down while the latter punishes rapid increases of the case numbers,

keeping the system from overshooting the target value. We omit a dependence on the cumula-

tive error, as is usually done in a PD controller, as that would enforce oscillations around the

setpoint and because the PD has proven to be sufficient for our purposes.

Since both the case numbers and the ICU occupancy inherently only react to changes in Rt
after a few days of delay, we can further improve the stability of the control by “looking into

the future”. The full procedure for every day t of the simulation then follows:

1. Run the system for a time span T using the current Rt.

2. Quantify the relative error Δ(t + T) of the system state at the end by the difference between

the observed case numbers or the total ICU occupancy and the chosen set point divided by

said set point.

3. Calculate Rt for the next day according to

Rtþ1 day ¼ Rt � kp � Dðt þ TÞ þ kd �
dD
dt
ðt þ TÞ

� �

;

where kp and kd denote constant control parameters listed in Table 6.

Table 6. The PD control parameters depending on the objective.

control problem preview time span T proportional kp derivative kd
N̂ obs (close to set point) 14 days 0.06 3.0

N̂ obs (away from set point) 14 days 0.06 1.2
P

i;nICU
n

i (close to set point) 14 days 0.2 15.0
P

i;nICU
n

i (away from set point) 14 days 0.2 7.0

https://doi.org/10.1371/journal.pcbi.1009288.t006
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4. Revert the system from the state at t + T to t + 1 day and start again at 1.

We use the same control system to uphold the setpoint as we use to drive the system

towards that state from the initial conditions. In a staged-control-like manner, we make the

system more reactive to high slopes near the setpoint, i. e. increase kd when within 10% of the

target. In this way, the system can drive up quickly to the target while preventing overreactions

to the gradual immunization changes while hovering at the fixed value.

Scenarios 2–4 in the main text consist of a chain of these control problems, changing from

controlled case numbers to controlled ICU occupancy at one of the vaccination milestones

(Fig 3).

Parameter choices

For the age stratification of the population and the ICU rates, we used numbers published for

Germany (Table 4). We suppose that the quantitative differences to other countries are not so

large that the result would differ qualitatively. When comparing ICU rates across countries,

one has to bear in mind that the definition of what constitutes an intensive care unit can differ

between countries. We chose our ICU limit of 65 per million as a conservative limit so that in

Germany, around three-quarters of the capacity would still be available for non-COVID

patients. This limit was reached during the second wave in Germany. Other countries in the

EU might have fewer remaining beds for non-COVID patients at this limit, as Germany has a

comparatively high per capita number of ICU beds available.

ICU-related parameters are calculated from 14043 hospitalizations reported by German

institutions until October 26, 2020 Table 5, converted to transition rates from Table 1. All

other epidemiological parameters, their sources, values, ranges, and units are listed in detail in

Table 2.

The vaccine efficacy, as discussed previously, is modeled as a multiplicative factor of the

non-vaccinated reference parameter. The dose-dependent multiplicative factor is chosen to be

90% in the default scenario, which is in the range of the 70 to 95% efficacy measured in phase 3

studies [57] of approved vaccines and in accordance with the 92% efficacy of the Pfizer vaccine

found in a population study in Israel [23]. In addition, we analyzed different scenarios of vac-

cine uptake (namely, the overall compliance of people to get vaccinated according to the vacci-

nation plan) because of its relevance to policymakers and different scenarios of the protection

the vaccine grants against infections η. The latter has great relevance for assessing risks when

evaluating restriction lifting.

Initial conditions

The initial conditions are chosen corresponding to the situation in Germany at the beginning

of March 2021. We assume a seroprevalence of 10% because of post-infection immunity across

all age groups, i.e., Ri(0) = 0.1 �Mi 8i. The vaccination at the beginning is according to the vac-

cination schedule introduced before, which leaves 5.1 million doses administered initially and

an initial vaccination rate of 168 thousand doses per day. This compares to the 6.2 million total

and the around 150 thousand daily administered doses at the time [26]. The initial number of

daily new infections is at 200 per million, and the number of individuals treated in ICU is at 30

per million with an age distribution as observed during the first wave in Germany (taken from

[47]). From these conditions and the total population sizes of the age groups (Table 4) we infer

the initial size of each compartment.
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Numerical calculation of solutions

The system of delay differential equations governing our model were numerically solved using

a Runge-Kutta 4th order algorithm, implemented in Rust (version 1.48.0). The source code is

available on GitHub https://github.com/Priesemann-Group/covid19_vaccination.

Supporting information

S1 Fig. Sensitivity analysis centered at default parameters (solid black lines), for the fourth

scenario from the main text. We vary central parameters of the model individually, while

keeping all others at their respective default value. For assessing the sensitivity to the TTI effi-

cacy we scale all the capacity limits NTTI, Ntest(eff), Ntest(ineff) and Nno test (see Methods) by a

common ratio.

(TIF)

S2 Fig. Contact structure can have a significant impact on the population immunity

threshold. We assume that infections are kept stable at 250 daily infections until all age groups

have been vaccinated. Then most restrictions are lifted, leading to a wave if vaccine uptake has

not been high enough (see Fig 4A). We measure the severity of the wave (quantified by the

duration of full ICUs) for varying uptake and vaccine efficacies for different contact structures

(see Fig 7A–7C). A-C: The duration of the wave (measured by the duration of full ICUs)

depends on the vaccine uptake and on the effectiveness of the vaccine measured by its efficacy

at preventing infection (shades of purple) and severe illness (vaccine efficacy, full vs dashed vs

dotted). D-F: If some NPIs are kept in place (such that the gross reproduction number goes up

to Rt = 2.5), ICUs would be prevented from overflowing even in some cases of lower vaccine

effectiveness. If precautionary measures are dropped in all age groups, including schools (A,D)

the required uptake to prevent a further severe wave is increased by about 10% when com-

pared to our default scenario of some continued measures to reduce the potential contagious

contacts in school settings (B,E) or to completely homogeneous contacts (C,F). Not all combi-

nations of vaccine effectiveness are possible as the vaccine efficacy against severe illness is by

definition larger as the protection against any infection at all.

(TIF)

S3 Fig. EU countries with different demographics have very similar dynamics—But the

required vaccine uptake to guard against further severe waves is most sensitive to the ini-

tial seroprevalence. Extended version of Fig 5, including more combinations of vaccine effica-

cies. A–D: If releasing all measures to pre-COVID contacts, keeping only some measures

aiming to cup the reproduction number at 3.5. E–H: If releasing all measures to pre-COVID

contacts, keeping only some measures aiming to cup the reproduction number at 3.5 and halv-

ing the contagiousness of contacts at school ages.

(TIF)

S4 Fig. Even with the emergence of the highly contagious B.1.1.7 variant vaccinations are a

promising mid-term strategy against COVID-19. Staying at low case numbers can greatly

increase the individual freedom, especially in the long-term. Schematic outlook into the

effects of vaccination and the B.1.1.7 variant of SARS-CoV-2 on the societal freedom in the EU

in 2021 compared to 2020 (see also the caption for Fig 1A). In 2020, seasonality effects and effi-

cient test-trace-and-isolate (TTI) programs at low case numbers allowed for stable case num-

bers with only mild restrictions during summer, until about September. In 2021, vaccinations

are expected to allow for greater freedom, but also a more contagious variant (B.1.1.7) is preva-

lent across the EU. Efficient TTI at low case numbers would thus help lifting major restrictions
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earlier. The exact transition period between the wild type and B.1.1.7 (light purple shaded

area) varies regionally.

(TIF)

S5 Fig. Lowering the case numbers without the most stringent restrictions opens a middle

ground between freedom and fatalities and prevents a new wave in the long term. A–D:

Variation of the fourth scenario from the main text (see Fig 3), where moderate restrictions

are kept in place in the long term (letting the gross reproduction number go up to 2.5, com-

pared to 3.5 in the default scenarios). E–H: Variation of the fifth scenario from the main text

(see Fig 2) avoiding the strict initial restrictions. Keeping the gross reproduction number at

a moderate level (1.5) until the everyone above 60 has been offered vaccination allows to

decrease case numbers steadily. Over the summer a slight gradual increase in the contacts is

allowed and all NPIs expect for test-trace-and-isolate (TTI) and enhanced hygiene are lifted

when everyone received the vaccination offer (increasing the gross reproduction number to

3.5). I: The variation of the fourth scenario initially allows for the same increase in freedom as

all the main scenarios, but needs more restrictions in the long term. The variation of the fifth

scenario calls for stricter NPIs in the mid-term, but grants high freedom after summer. J,K:

Both proposals lead to low number of infections and fatalities. L: Projected vaccination rates

(see Fig 2).

(TIF)

S6 Fig. Long-term control strategies (low vaccine uptake, 70% among the vaccinable popu-

lation) from main text Figs 2 and 3. Scenarios using default protection against infection η =

0.75 and low vaccine uptake of 70% among the adult population.

(TIF)

S7 Fig. Long-term control strategies (default vaccine uptake, 80% among the vaccinable

population) from main text Figs 2 and 3. Scenarios using default protection against infection

η = 0.75 and default vaccine uptake of 80% among the adult population.

(TIF)

S8 Fig. Long-term control strategies (high vaccine uptake, 90% among the vaccinable pop-

ulation) from main text Figs 2 and 3. Scenarios using default protection against infection η =

0.75 and high vaccine uptake of 90% among the adult population.

(TIF)

S9 Fig. Mirror of Fig 2, using a homogeneous contact structure.

(TIF)

S10 Fig. Mirror of Fig 3, using a homogeneous contact structure.

(TIF)

S11 Fig. Mirror of S5 Fig, using a homogeneous contact structure.

(TIF)

S12 Fig. Mirror of Fig 2, using an empirical pre-COVID contact structure.

(TIF)

S13 Fig. Mirror of Fig 3, using an empirical pre-COVID contact structure.

(TIF)

S14 Fig. Mirror of S5 Fig, an empirical pre-COVID contact structure.

(TIF)
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S1 Table. Parameters for the three main different vaccine uptake scenarios for Finland.

Uptakes and averages are to be understood across the eligible (16+) population. For German

data see Table 2 in the main text. Italian and Czech data are to be found in S2 and S3 Tables

respectively.

(XLSX)

S2 Table. Parameters for the three main different vaccine uptake scenarios for Italy. The

averages are to be understood across the eligible (16+) population. For German data see Table 2

in the main text. Finnish and Czech data are to be found in S1 and S3 Tables respectively.

(XLSX)

S3 Table. Parameters for the three main different vaccine uptake scenarios for the Czech

Republic. The averages are to be understood across the eligible (16+) population. For Ger-

man data see Table 2 in the main text. Finnish and Italian data are to be found in S3 and S2

Tables respectively.

(XLSX)

S1 Supplementary Note. Eigenvalues of the homogeneous contact matrix. Here we demon-

strate a general case for the eigenvalues of a homogeneous contact matrix, for which every col-

umn accounts for the fraction age-groups represent respect to the total population.

(PDF)
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Interplay Between Risk Perception,
Behavior, and COVID-19 Spread
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Michael Mäs5, Kai Nagel6 and Viola Priesemann1,7*

1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2Centre for Biotechnology and Bioengineering,
Universidad de Chile, Santiago, Chile, 3Chair of Communication Science, RWTH Aachen University, Aachen, Germany,
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Berlin, Germany, 7Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany

Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for
controlling COVID-19. They are complemented by voluntary health-protective behavior,
building a complex interplay between risk perception, behavior, and disease spread. We
studied how voluntary health-protective behavior and vaccination willingness impact the
long-term dynamics. We analyzed how different levels of mandatory NPIs determine how
individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-
19 incidence will surge, implying high morbidity and mortality before individuals react; if
they are too strong, one expects a rebound wave once restrictions are lifted, challenging
the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time
and room to adapt their level of caution, mitigating disease spread effectively. When
complemented with high vaccination rates, this also offers a robust way to limit the impacts
of the Omicron variant of concern. Altogether, our work highlights the importance of
appropriate mandatory NPIs to maximise the impact of individual voluntary actions in
pandemic control.

Keywords: COVID-19, disease modeling, infodemic, human behavior, self-regulation, vaccine hesitancy, health
policy and practice, Omicron variant (SARS-CoV-2)

1 INTRODUCTION

During the COVID-19 pandemic, the virus has played a central role in people’s day-to-day
conversations and the information they search for and consume [1]. The growing amount of
news and specialized literature on COVID-19 can inform individual decisions in a wide range of
situations and on various timescales [2]. For example, people decide multiple times every day how
closely they follow mask-wearing regulations or meeting restrictions. However, if hesitant, they
might take weeks or months to decide whether to accept a vaccine. These decisions impact the
spreading dynamics of COVID-19 and ultimately determine the effectiveness of interventions and
how smoothly we transit to SARS-CoV-2 endemicity.

While typical models of disease spread consider that individual behavior affects the spreading
dynamics of an infectious disease, they often neglect that there is also a relation in the opposite causal
direction. This feedback loop comprises that, e.g., mass media regularly updates individuals on the
latest local developments of the pandemic, such as the current occupancy of intensive care units
(ICUs). This information affects individuals’ opinions and risk perceptions and, thus ultimately their
actions [3]. For example, given high perceived risk, individuals reduce their non-essential contacts
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beyond existing regulations and increase their willingness to
accept vaccine offers accordingly, an effect observed in
empirical research conducted with routine surveys in Germany
[4] and other parts of the world [5–8]. However, to quantify the
effect of individual voluntary actions on the dynamics of COVID-
19, two questions remain open: 1) What is the relationship
between risk perception and voluntary action, on the one
hand, and the spread of the disease, on the other hand; and 2)
what is the relative contribution of voluntary action when
mandatory restrictions are in place?

In this work, we aim to quantify the impact of voluntary
actions on disease spread while studying the questions mentioned
above for the COVID-19 pandemic. 1) We analyze survey and
COVID-19 vaccination data in European countries to uncover
the relationship between the occupancy of ICUs—which
determines the perceived risk—and voluntary immediate
health-protective behavior as well as the willingness to get
vaccinated. We then incorporate these effective feedback loops
into a deterministic compartmental model (Figure 1A). 2) We

decompose the overall contact structure into contextual contacts
(Figure 1B) and for each context define a range in which
voluntary action can be adapted according to individual risk-
perception, given the level of mandatory non-pharmaceutical
interventions (NPIs). To that end, we use the functional form
identified in 1) (Figure 2). We explore different intervention
scenarios in the face of adverse seasonality [9–11], using as
reference the winter 2021/2022 in central Europe. Our analysis
confirms that both extremes (“freedom day” or stringent
measures throughout) bear large harms in the long run.
However, when measures leave space for voluntary actions,
people’s adaptive behavior can efficiently contribute to
breaking the wave and change the course of the pandemic.

2 RESULTS

2.1 Data-Derived Behavioral Feedback
Loops
Throughout this manuscript, we investigate how the interplay
between information about the COVID-19 pandemic and its
spreading dynamics is mediated by the perception of risk. Risk
perception modulates both, 1) people’s immediate voluntary
health-protective behavior, e.g., their level of contacts and
their adherence to mask-wearing and hygiene
recommendations, and 2) their willingness (or hesitancy) to
receive vaccination (Figure 1). Individuals constantly receive
information on the current COVID-19 incidence, ICU
occupancy, and deaths (which are all closely related [13–15])
either via news outlets or because of reports about COVID-19
cases in their social circles. Hence, the risk they perceive depends
on this evolving trend over time.

We tailor our approach to the situation of the COVID-19
pandemic, i.e., to a disease having the following characteristics: 1)
high transmissibility, 2) relatively low infection fatality rate, 3)
widespread vaccine hesitancy, 4) waning immunity, and 5) public
attention and coverage. We differentiate from the approaches of
[16–18] as we neither model the contagion of fear explicitly nor a
direct coupling between incidence and fear. Instead, we assume
that individuals build their perception of risk based on the ICU
occupancy over time using a memory function, similar to the
theoretical approach in [19, 20]. This is a sensible choice, as ICU
occupancy signals 1) how likely governmental bodies are to re-
implement emergency NPIs to prevent overwhelming healthcare
facilities (and thereby limit individual freedoms), and 2) how
likely it is that an individual’s close contacts (or their contacts)
would have been severely ill. Besides, our modeling framework
constitutes a methodological advancement from that presented in
[17], as we provide a detailed description of all epidemiologically
relevant disease states and several external effects influencing its
spread, such as seasonality, contextual contact networks
and NPIs.

We assume that individuals base their decisions about heath-
protective behavior on the recent developments of the pandemic.
Following the ideas of Zauberman et al. about perception of time
in decision-making [21], we consider that when individuals
decide about behavior that only has immediate protective

FIGURE 1 | Interplay between risk perception and voluntary health-
protective behavior. (A): Sketch of the proposed age-stratified compartmental
model of disease spread, which incorporates different stages for disease
progression and immunological conditions of the susceptible population
with their respective chances of being infected and developing a severe
course (Supplementary Figure S1, Supplementary Information, for full
model). The behavioral feedback (blue lines) changes individuals’ contagious
contact behavior, as well as their willingness to get vaccinated, and hence the
effective spreading rate. (B): We use the contact matrix of [12], which yields
the contact rates at home, school, work and in the community for each age-
group. For the subsequent scenarios, we adapt these contexts of contacts
separately. Some of the contacts are by definition hard to reduce voluntarily
(e.g., household contacts), while others (at school and work) strongly depend
on current mandatory non-pharmaceutical interventions (Supplementary
Figure S3 for details).
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effects, they consider only the current risk-level. For instance,
when deciding whether or not to wear a mask in the
supermarket on a given day, they only consider the most
recently reported ICU occupancy. Decisions with longer-term
protection, in contrast, are also based on a longer-term risk-
assessment. When deciding whether or not to get a booster
vaccine, for example, individuals do not only take into account
the ICU-occupancy on the day of the decision but they are
looking back at a longer period. We detail the assumptions
about the perceived risk-level and the resulting health-
protective behavior in the Methods section. In the following,
we sketch the derivation of the feedback loops from this
perceived risk to people’s immediate voluntary health-
protective behavior and willingness to get vaccinated.

2.1.1 Feedback on Health-Protective Behavior
To determine the explicit relationship between the perceived level
of risk and immediate voluntary health-protective
behavior—which presents one of the feedback loops in our
model—we exploit results from the German COSMO study, a
periodic survey where participants are asked about their opinions
and behavior regarding the COVID-19 pandemic and NPIs [4].

Their answers on adhering to health-protective behavior
recommendations (avoiding private parties in this case)
correlate with the ICU occupancy in Germany at the time
(Figure 2A). However, at very high ICU occupancy, adoption
of health-protective behavior seems to reach a plateau
(Figure 2B); no further adoption seems to be feasible,
arguably because those individuals willing to engage in health-
protective behavior have done so already as far as they can, and
those unwilling are insensitive to higher burden on ICUs. Hence,
we fit a piece-wise linear function (with a rounded edge at the
transition—called a softplus) to the COSMO data [Pearson
correlation coefficient r = 0.64 for 2020–2021 (black), r = 0.81
for 2020 (red) and r = 0.53 for 2021 (yellow)] and use it for the
feedback between information in terms of ICU occupancy and
voluntary health-protective behavior (Figure 2C andMethods for
details).

2.1.2 Feedback on Vaccination Behavior
The second feedback loop in our model describes the relationship
between the level of perceived risk and vaccine hesitancy. To
quantify it, we study the vaccination trends in different European
countries and compare them with the trends in ICU occupancy

FIGURE 2 |Data-derived formulation of behavioral feedback loops. (A): Reported contact reductions follow intensive care unit (ICU) occupancy in Germany. Survey
participants were asked how likely they were to avoid private parties over the course of the pandemic on a discrete scale from 1 (never) to 5 (always) [4]. To decouple the
effect of vaccination availability, we present 2020 (red) and 2021 (yellow) data separately. Ticks indicate the middle of the month. (B): The survey data on contact
reduction and the ICU occupancy are related. The piece-wise linear relationship shows the reduction of contacts with increasing ICU occupancy, and for even
higher ICU occupancy a saturation. Red, yellow, and black represent fits to the data from 2020, 2021, and overall, respectively. (C): In the model, the contact reduction
and its dependency on ICU occupancy is implemented as amultiplicative reduction factor k that weighs the age-dependent contextual contact matrices (Figure 1B). (D):
Vaccine uptake increases with ICU occupancy in Romania (shown here) and other European countries (Supplementary Figure S4). (E): Willingness to accept a vaccine
offer is modeled using an exponentially-saturating function, ranging between a lower and upper bound of acceptance depending on ICU occupancy. The bounds
represent that a fraction of people is willing to be vaccinated even at no immediate threat (no ICU occupancy), and another fraction is not willing or able to get vaccinated
nomatter the threat. (F): Vaccines are delivered at a rate proportional to the number of people seeking a vaccine, i.e., the difference between the number of people willing
to be vaccinated and those already vaccinated. Thus, when the number of already vaccinated equals the number of people willing to get vaccinated, no more
vaccinations are carried out. The same functional shape describes the booster uptake.
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(Supplementary Figure S4, Supplementary Information). The case
of Romania (Figure 2D) illustrates the relation very clearly:
Vaccination rates follow the ICU occupancy with a delay of a
few weeks. By analyzing the correlation between vaccination rate
and ICU occupancy with a variable delay, we reach the highest
Pearson correlation coefficient (0.96) with a delay of 25 days.
However, the specific reaction delay and magnitude of the effect
differs between countries (Supplementary Figure S4). In ourmodel,
we propose that as ICU occupancy increases so does the willingness
to get vaccinated (i.e., higher probability of accepting a vaccine offer
when ICU occupancy is high). As not everybody in the population is
willing to accept a vaccine offer, the willing fraction of the population
is a function that saturates below 1 (Figure 2E). With this
formulation, vaccinations are only carried out if the fraction of
the population willing to get vaccinated is larger than the fraction of
currently vaccinated (Figure 2F and Methods for details).

Our model can capture two features observed in real-world
vaccination programs. First, when case numbers are low and
vaccine uptake high, rational agents might have insufficient
incentives for getting vaccinated. Assuming a high perceived
risk of vaccine side effects, the agents would thus decline
vaccination when offered. The above is known as the free-rider
problem in game theory and economics [22]. Second, the two
feedback loops in our model and the incorporation of waning
immunity allows us to observe different incidence curve shapes and
replicate recurrent waves of infections. The above is a necessary
validity check, as real-world outbreaks exhibit a large variety of
incidence curve shapes [23]. These may ultimately unveil universal
patterns of disease spread that are consistent across countries [24].

2.2 Behavioral Feedback Loops Yield More
Realistic Results than Classical Models
Classical SEIR-like compartmental models have found wide
application in the first stages of the COVID-19 pandemic. In

these models, the different stages of disease progression are
represented by separate compartments and individuals transit
from one to another at a given (and typically constant) transition
rate. In that way, an infectious disease outbreak will proliferate if
the spreading rate of the disease is larger than the recovery rate
and if a large-enough fraction of the population is susceptible to
being infected. However, these simple models often tend to
overestimate the size of an infectious disease outbreak or all
possible trajectories for the incidence trends [23], as they do not
incorporate mechanisms of dynamical adaptation of restrictions
[25] or, as studied in this paper, behavior.

We observe that including the feedback loops described
above reduces the peak in incidences and hospitalizations
while keeping the timing of the wave almost unchanged (see
Figure 3). More generally, these feedback loops break
increasing and declining trends, resulting in long but flat
infection plateaus or multiple waves. Compared to classical
SEIR-like models, where two dynamical regimes are
possible—exponential growth or decay of case numbers,
when neglecting waning immunity—, our model captures a
broader spectrum of dynamics by linking ICU occupancy with
individuals’ health-protective voluntary behavior and vaccine
uptake.

2.3 Policies With Either too Weak or too
Strong Interventions Throughout Winter
Bear Higher Levels of Mortality and
Morbidity
Using parameters obtained from surveys and other data
sources (Supplementary Table S3, Supplementary
Information), we analyze five scenarios of mandatory NPIs
throughout winter (for all age-stratified results see
Supplementary Material): 1) no NPIs at all, 2)-4)
moderate NPIs and 5) strong NPIs (Methods for details).
The stringency of the scenarios and the seasonal effects are
depicted in Figures 4A,B and Figures 5A,B. As an example
case, we assume a country with a total vaccination rate of 60%
and a recovered fraction of 20%. Note that we include the
possibility of overlaps between vaccinated and recovered.
Thus, the total fraction of immune individuals does not
add up to 80% but 68%. For more detail on the initial
conditions, see Supplementary Material, Supplementary
Section S3.1.

Without any mandatory NPIs throughout winter (Scenario 1,
Figure 4, black lines), case numbers and hospitalizations will
show a steep rise (Figures 4C,D). As a consequence, individuals
voluntarily adapt their health-protective behavior and are more
inclined to accept a vaccine offer (Figures 4E–G). Although this
scenario features unrealistically high mortality and morbidity,
modeling results in the absence of any behavior feedback
mechanisms yield even higher levels (cf. Figures 4C,D, dotted
red line).

In contrast, suppressing the seasonal wave through strong
mandatory NPIs (Scenario 5, Figure 4, mint lines) and
thereby maintaining low case numbers through winter only
delays the wave to a later but inevitable date once restrictions

FIGURE 3 | Incorporating behavioral feedback loops in compartmental
models broadens the dynamic range of the solutions and yields more realistic
results. Different variations of a compartmental model are displayed to show
the effect of the two feedback loops used in our model: When ICU
occupancy increases, individuals increase their health-protective behavior and
are more willing to be vaccinated. This dynamical adaptation can break a wave
at lower case numbers and lead to extended infection plateaus (blue curves),
which a classic compartment model is unable to reproduce as it does not
incorporate the population’s reaction to the disease (red curve).
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are lifted (Figures 4C,D). Low COVID-19 incidence
throughout winter implies 1) low post-infection immunity,
2) little incentives for first or booster vaccination, 3) waning
immunity, and 4) lower rates of “naturally” boosting immune
memory upon re-exposure to the virus [26]. The resulting low
immunity levels (Figure 4G) then fuel a higher rebound wave
when restrictions are lifted in March 2022, despite favorable
seasonality. Similar rebound waves have been observed for
other seasonal respiratory viruses [27, 28].

Interestingly, the middle strategy, namely moderate NPIs
during winter, prevents the high wave in winter as well as the
rebound wave in spring that characterize the scenarios with no
or with strong NPIs, respectively (Scenario 3, Figure 4, dark
blue). Unlike in the extreme scenarios, the ICU capacity in
Scenario 3 is not exceeded in any season, hence avoiding
reduced health care quality and strong burden to health
care workers. Figure 4H shows that the death toll in
Scenario 3 is lower than in the other scenarios. In reality
however, this difference would be much larger because
Scenarios 1 and 5 surpass the assumed ICU capacity by far;
that would imply disproportionally higher mortality, an effect
we did not quantify in our model. Alternatively, emergency

mandatory NPIs would be introduced, which we do not
model here.

2.4 Voluntary Actions can Dampen theWave
if Restrictions are Moderate
As presented in the previous section, extreme scenarios
(Scenarios 1 and 5) bear high levels of morbidity and
mortality. However, in scenarios with intermediate restriction
levels (Scenarios 2–4, Figure 5A), voluntary preventive actions
(Figure 5E) can compensate for slightly too low levels of
mandatory NPIs, provided that these NPIs are strong enough
to prevent a surge in COVID-19 incidence that might be too
sudden or strong for individuals to voluntarily adopt health-
protective behavior (Figures 5C,D). For example, while having
different levels of mandatory NPIs, Scenarios 2 and 3 reach
similar peaks in ICU occupancy (Figure 5D). Conversely,
despite considering a proportional increase in the strength of
NPIs (comparable to that from Scenario 2 to 3, Figure 5A),
Scenario 4 is too protective: there are too few incentives to get
vaccinated (Figure 5F) due to the low risk perception as well as
too few infections (Figure 5C) and, hence, appropriate immunity

FIGURE 4 | Maintaining moderate contact restrictions throughout winter outperforms extreme scenarios in balancing the burden on ICUs by allowing
people the freedom to act according to their risk perception. The level of mandatory NPIs sustained throughout winter 2021/2022, together with people’s
voluntary preventive actions, determines case numbers and ICU occupancy over winter and beyond. Ticks are set on the first day of the month. (A): The three
displayed scenarios of mandatory NPI stringency in winter reflect “freedom-day” with only basic hygiene measures (black), considerable contact
reduction and protective measures (e.g., mandatory masks) in school, at the workplace and in the community (blue), and strong contact reduction and partial
school closure (mint). All measures are gradually lifted centred around 1 March 2022, over the course of 4 weeks. (B): The seasonality of the basic
reproduction number R0. (C,D): Scenario 1 (black): Without mandatory restrictions, incidence and ICU occupancy increase steeply; this increases voluntary
health-protective behavior and vaccine uptake in the population (E,F), and leads to higher rates of naturally acquired immunity (G), but also high mortality and
morbidity in winter (H). Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is
vaccinated. A “full wave” is added in (C,D) (red dotted line), depicting the development of case numbers and ICU occupancy in the absence of behavioral
feedback mechanisms. Scenario 3 (blue): Maintaining moderate restrictions would prevent overwhelming ICUs while allowing for higher vaccine uptakes and
rates of post-infection immunity. Scenario 5 (mint): Maintaining strong restrictions would minimize COVID-19 cases and hospitalizations in winter, generating
a perception of safety across the population. However, this perceived safety is expected to lower the incentives to get vaccinated. Furthermore, immunity of
all kinds will wane over winter. Altogether, this can cause a severe rebound wave if restrictions are completely lifted in March. Furthermore, in all scenarios
where ICU capacity is exceeded, we would in reality expect either disproportionally higher mortality due to the burden on the health system or a change in
mandatory NPIs.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8421805

Dönges et al. Interplay Between Infodemic and Pandemic



levels are not reached (Figure 5G). As a consequence, a
disproportionally larger off-seasonal wave in spring
overwhelms ICUs (Figure 5D). Noteworthy, even though the
nominal mortality is the lowest for Scenario 4 (Figure 5H), this
value does not account for triage-induced over-mortality or novel
necessary NPIs that would be likely be imposed and is thus
invalid.

2.5 Case Study: Emergence of the Omicron
Variant of Concern and its Effect on Case
Numbers
A risk that cannot be neglected is the emergence of SARS-CoV-2
variants of concern (VOC), such as the Omicron VOC. This
variant is rapidly replacing the Delta VOC, thus posing an
imminent risk. Although there is substantial uncertainty about
its epidemiological features, preliminary evidence shows:
Compared to the Delta VOC, Omicron exhibits 1) an
increased risk of reinfection or break-through infection
[29–31], 2) a substantial reduction in antibody neutralization
[32–38], 3) a reduction in vaccine effectiveness against infection
[31, 37, 39–44], and 4) faster spread [30, 31, 45, 46] mainly due to
immune escape [47].

Given this evidence, we analyze the impacts of a potential full
replacement of the dominant Delta VOC by the Omicron VOC
by 15th of January 2022. We incorporate the protection against
infection by booster doses. As example scenario, we start with
Scenario 3 (moderate mandatory NPIs), as it resembles a typical
development in Europe. We then analyze four different possible

reactions to the Omicron VOC, i.e., starting to switch from
Scenario 3 to Scenarios 1, 3, 4, or 5 before it takes over
(Figure 6A). We evaluate three possibilities regarding the
booster vaccine-protection against infection, 50, 65, and 80%
(relative to the protection granted for Delta). This is consistent
with available evidence suggesting Omicron’s immune escape to
reduce vaccine effectiveness against symptomatic disease to about
73% for freshly mRNA-boosted individuals [32]. Furthermore,
we explore two possibilities of severity of infections after previous
immunization: Either efficacy against severe course remains the
same as with Delta, both for the immunized and immune-naive
persons (Figures 6B,E,H), or protection is five times better for
the immunized (Figures 6C,F,I).

As expected, the enhanced transmissibility resulting from the
partial escape of the Omicron VOC breaks the decreasing trend in
case numbers observed for Scenarios 3, 4, and 5 from the moment
where the replacement takes place (Figures 6A,D,G). This results
in a substantial surge in daily new cases in all scenarios except for
Scenario 5 (most restrictive). Regarding ICU occupancy, our
results depend strongly on the assumed protection against
infection by recent vaccination or boosters. When the
protection against infection granted by recently administered
vaccines is above 50%, both Scenarios 4 (which has a more
strict testing policy and further reduced contacts compared to
Scenario 3) and 5 (in addition, group sizes in school are reduced)
yield optimistic results for ICU occupancy. If Omicron infections
lead to much less severe course of the disease for immunized or
convalescent individuals, then even Scenario 3 can avoid severely
overfilling intensive care units. We have represented Scenario 1

FIGURE 5 | Moderate restrictions leave enough room for effective adaptation of behavior to perceived risk. (A): We explore three scenarios with similar levels of
moderate mandatory NPIs sustained throughout winter, the period of adverse seasonality (B). Considering Scenario 3 as reference, moderate restrictions seem to be
robust against relaxations of NPIs, as both morbidity and mortality are similar to that of Scenario 2 (C,D,H). However, a perturbation with less strength in the opposite
direction (Scenario 4, increasing mandatory NPIs) has a disproportional effect on ICU occupancy. These differences are based on the modulation of voluntary
contacts (E) and vaccine uptake (F). Thus, when leaving room for adaption of health-protective measures to perceived risk, people’s behavior will stabilize moderate
scenarios where mandatory NPIs are strong enough to prevent a major surge, but not over-protective, so individuals find it rewarding to be vaccinated and to adapt their
level of contacts. Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is vaccinated (G).

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8421806

Dönges et al. Interplay Between Infodemic and Pandemic



(lifting all mandatory NPIs) with dashed lines, as it yields
unrealistic results: Stricter NPIs would probably be
reinstated if ICU occupancy becomes too high. The
scenarios end in April, where we expect that an updated
booster vaccine is developed and distributed. In that phase,
lifting restrictions at the pace of vaccination and aiming for low
case numbers would maximize freedom while minimizing
mortality and morbidity [25, 48–50].

3 DISCUSSION

Modeling the interplay of human behavior and disease spread is
one of the grand challenges of infectious disease modeling. While
not being the first to model behavioral adaptation [17, 51–55], we
incorporate data-driven insights into our modeling framework,
inspiring the explicit functional dependency between risk and
health-protective behavior as well as vaccine hesitancy in the
context of the COVID-19 pandemic. Thereby, we can incorporate

self-regulation mechanisms into our scenario analysis, which best
qualitatively describe what is to be expected in the future or in the
event of the emergence of novel SARS-CoV-2 VOCs, such as the
Omicron variant. We hence take a further step towards more
empirically-grounded mathematical models.

Within our framework, a smooth transition to SARS-CoV-2
endemicity requires, besides a working and accepted vaccine, two
ingredients. First, mandatory NPI levels should be high enough to
prevent a surge in case numbers so fast that individuals could not
react on time to prevent overwhelming ICUs. Second, mandatory
NPIs should leave enough room so that individuals can effectively
adopt voluntary preventive actions as a response to an increased
perception of risk. Hence, governments must guarantee that the
decision to, e.g., attend non-essential face-to-face activities that
could be carried out remotely remains in the individual’s hands.
Under such circumstances, voluntary actions can dampen the
wave and prevent overwhelming ICUs (Scenarios 2 and 3,
Figure 5). Otherwise, irresponsible or overprotective measures
would result in a wave that could surpass the healthcare capacity

FIGURE 6 |Development of the pandemic under the emergence of the Omicron VOC. Assuming a full replacement of Delta by the Omicron VOC on 15th of January
2022, we model three different possibilities for vaccine-protection against infection, and two levels of long-lasting vaccine- or post-infection protection against severe
course (A–I). In color, we display four scenarios that are derived from the previously studied ones (J,K). All scenarios share moderate mandatory NPIs until mid
December 2021, where we evaluate different possibilities for policy adaptation to mitigate the spread of the Omicron VOC. (A,B,D,E,G,H): Case numbers and ICU
occupancy while assuming that a protection against hospitalization (once infected despite previous immunization) is similar to the protection against Delta. (C, D, I): ICU
occupancy while assuming a protection against hospitalization (once infected and after previous immunization) five times better than the protection regarding Delta.
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in the short term or when lifting all measures (Scenarios 1, 4, and
5, Figures 4, 5). In any case, people’s awareness about the danger
of a disease should ideally be driven by trust in scientific and
governmental bodies instead of by the current burden to the
healthcare system. Hence, it is crucial during a disease outbreak to
engage in extensive, expert-guided, and audience-tailored risk
communication [56] and to prevent the spread of mis- and dis-
information that could damage general trust [57, 58].

Despite the empirical basis of our approach, the functional
shape of the feedback mechanisms remains one of the main
uncertainties in our model. The voluntary adoption of health-
protective measures was inspired by survey data [4], and is thus
bound to its limitations. Additionally, as ICU capacity was never
extremely overwhelmed in Germany in the time frame of the
COSMO survey, the study does not provide information on how
people would act at very high levels of ICU occupancy; in
principle, such emergency situations would trigger even
stronger reactions in the population, and certainly also a
change in NPI stringency (which we assumed to be constant
throughout). Furthermore, when extrapolating our results to
other countries, one should consider cultural differences or
varying levels of trust in governmental bodies. Therefore, more
empirical research to inform model assumptions and parameters
remains crucial.

Vaccine uptake and coverage are critical parameters that
determine mortality and morbidity levels. In line with what
has been observed in high-income countries, we assume that
vaccination rates are mostly limited by vaccine hesitancy instead
of vaccine stocks or logistics. In that way, we can deal with
emergent VOCs (as Omicron) with a healthy combination of
mandatory NPIs aiming for low-case numbers while a working
vaccine is developed and coverage is insufficient [25, 48] and by
letting individuals decide on their own when the roll-out is
complete. However, the core problem remains latent; wealthy
countries concentrate resources while some countries cannot
afford enough vaccines to protect even their population at risk
[59]. As the latter countries are forced into accepting high-case
numbers in order to keep their economies running, there are
increased risks of breeding variants that could escape natural or
vaccine-elicited protection [60]. Therefore, vaccine policy
planning from an international perspective is critical for a
smooth transition to SARS-CoV-2 endemicity.

Modeling the introduction and spread of different SARS-CoV-
2 variants in a population is challenging. At the very least,
modeling these dynamics would require having separate
compartments for all the disease states of all circulating
variants, disproportionally increasing the complexity of our
model. In our approach, we take advantage of the extensive
immune escape of the Omicron VOC to natural and vaccine-
elicited neutralization [29, 31, 32, 45, 47], and assume that the
replacement of Delta VOC occures very quickly (i.e., basically
instantaneously) in mid-January. This simplification is not too
distant from reality; replacement of Delta and other predominant
sublineages for Omicron took only a few weeks in several
countries [61]. For the spread of Omicron, we use the same
basic reproduction number as for Delta but instead consider most
individuals previously immunized to have lost protection against

infection, i.e., they are moved to the susceptible pool (Methods for
details). Thereby, we can capture the explosive spread of Omicron
VOC without increasing the base transmissibility. We
furthermore include that those people having received a
booster vaccine maintain some protection against infection
with Omicron, which, however, also wanes. These assumptions
are consistent with a large Danish cohort of households, where
the secondary attack rate among unvaccinated was slightly higher
for Delta infections than for Omicron [47], and with extensive
experimental and observational studies [32, 38, 62, 63]. Despite
the approximation we did for the transition to the Omicron
variant, the mid- and long-term dynamics of the Omicron VOC
should be reflected well.

In our work, the level of mandatory NPIs dictates the
minimum and maximum level of voluntary health-protective
behavior that individuals may adapt. For each scenario, we
assume one specific, static level of mandatory NPIs, which
best resembles real-world observations on compulsory
measures aiming to reduce the probability of contagion
(i.e., mask-wearing mandates, immunity passports, meeting
restrictions, among others) and testing policy (as described in
Methods). However, this static level can lead to unrealistically
high waves of incidence and ICU occupancy, which 1) have not
been seen so far and 2) would undoubtedly trigger the
implementation of additional restrictions to prevent a major
collapse in the health system. Nonetheless, we decided to
incorporate this static mandatory NPI level because it
illustrates a worst-case trajectory of each scenario. Besides, due
to pandemic fatigue [64], we would expect the effectiveness of
interventions and thus the imposed change in health-protective
behavior in the different mandatory NPI scenarios to decay
over time.

In summary, the way governments approach a pandemic
situation when vaccines are available will shape long-term
transmission dynamics by influencing the magnitude of
information-behavior feedback loops. We show that the latter
play a major role during the transition from epidemicity to
endemicity. Thus most importantly, the challenge for
authorities is to find ways to engage individuals with
vaccination programs and health-protective behavior without
requiring high case numbers for that. Here, clear
communication and trust continues to be essential [65].

4 METHODS

4.1 Model Overview
We use an age-stratified compartmental model with
compartments for susceptible-exposed-infected-recovered
(SEIR) as well as for fatalities (D), receiving treatment in an
ICU (ICU), and vaccination (first time and booster vaccines) (V)
(Supplementary Figure S1). We also include waning immunity
and seasonality effects (Figures 4, 5B). To account for behavioral
change induced by perceived risk of infection, we include a
feedback loop between ICU occupancy, voluntary health-
protective behavior and willingness to receive vaccination
(Figure 2 and Supplementary Material). Explicitly, we assume
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that increases in ICU occupancy 1) decrease the contact rates
among the population and thus the spreading rate of COVID-19
[4–7], and 2) increase vaccine acceptance among hesitant
individuals [4, 8]. For the first feedback loop (voluntary health
protective behavior), we assume that individuals adapt their
contacts in different contexts depending on the risk they have
perceived recently. The level of potentially contagious contacts is
multiplied by a factor k that decreases with ICU occupancy
between the minimum and maximum allowed by current
mandatory NPIs (Figure 2C). Regarding the second feedback
loop (related to vaccine uptake), we assume that a fraction of the
population will always accept a vaccination offer, despite current
ICU occupancy. From this minimum onward, vaccination
willingness monotonically increases with ICU occupancy and
saturates towards a maximum, accounting for a fraction of the
population that will never accept the vaccine (Figure 2E). This
means that we assume that there is a fraction in the population
that is certainly not able or willing to be vaccinated. Given a
fraction of people willing to be vaccinated, we determine the
speed of the vaccination program using a linearly increasing
function (Figure 2F). We model these two feedback loops to act
on different timescales, as individuals can, e.g., decrease the
number of contacts and contact intensity on a daily basis,
while getting vaccinated takes longer. To capture this, we
explicitly include memory kernels accounting for how
individuals subjectively weigh events happening on different
timescales when forming their perception of risk [21].

4.2 Memory on Perceived Risk
We assume that perceived risk regarding the disease depends on
information about ICU occupancy that reaches individuals via
media or affected social contacts. This perception of risk builds
over time; people are not only aware of the occupancy numbers at
the present moment but also of those in the recent past. To
incorporate this into our model, we calculate the convolution of
the ICU occupancy with a Gamma distribution (Supplementary
Figure S2, Supplementary Information), effectively “weighting”
the ICU occupancy numbers with their recency into a variable of
risk perception which we call HR. As a result, ICU occupancy
numbers from a few days ago weigh more in people’s memory
and thus influence voluntary health-protective behavior at the
present moment more than ICU occupancy that lies further in the
past. We use this concept of ICU occupancy “with memory” to
design the functions of the feedback loops (Figures 2B,C,E,F).
The effect of the parameters chosen for the Gamma distribution
on the model results as well as of all other model parameters is
quantified in the sensitivity analysis, Supplementary Section S4,
Supplementary Information.

4.3 NPI- and Risk-Induced Change in
Health-Protective Behavior
When analyzing the joint effect of mandatory NPIs and voluntary
measures to mitigate the spread of COVID-19, we find a strong
overlap between them; mandatory NPIs limit the range of the
measures that individuals could voluntarily take to protect
themselves and their loved ones. For example, when large

private gatherings are officially forbidden, individuals cannot
voluntarily choose not to meet. Additionally, when the
engagement of the population in voluntary protective
measures is very large, certain mandatory NPIs would not be
required. We model the combined effect of mandatory NPIs and
voluntary adoption of health-protective behavior as a function
kNPI, self (HR). Using the baseline of mandatory NPIs as an input,
this function calculates the level of voluntary preventive action in
dependence of the perceived risk HR. To be precise, the value of
kNPI, self (HR) ∈ [0, 1] represents the level to which (potentially
contagious) contacts of an average individual are reduced
(Figure 2C), a factor that is multiplied onto the entries of a
contact matrix separated by contexts (Supplementary Figure S3,
Supplementary Information). For example, adaption of voluntary
mask-wearing or a direct reduction of gatherings decreases the
level of potentially contagious contacts and, thereby, kNPI, self

(HR). Furthermore, we distinguish between contacts made at
home, in schools, in workplaces or during communal
activities. We weight all the interactions with different
k]NPI,self(HR) with
] ∈ Households, Schools,Workplaces,Communities{ } that act
on contextual contact matrices Cij

], see Supplementary
Section S1.2 and Figure 1.

Inspired by the COSMO survey data [4] (Figure 2B), we
suggest the following shape for k]NPI,self(HR): The level of
(potentially) contagious contacts decreases linearly upon
increases in the ICU-mediated perception of risk HR below a
thresholdHR =Hmax, from which point on no further reduction is
possible (Figure 2C). This might represent 1) a fraction of the
population agnostic to measures or unwilling to comply, or 2)
limitations of voluntary preventive action imposed by practical
constraints related to the current level of imposed restrictions, for
example, having to make contacts in one’s own household or
having to go to work or school. We implement k]NPI,self(HR) as a
softplus function, having a differentiable transition at Hmax. Each
function (for each scenario) is defined by 3 parameters Hmax,
k]NPI,self(HR � 0), and k]NPI,self(HR � Hmax). Hmax = 37 is
obtained by the fit to the COSMO data shown in Figure 2
(black line) and used for the two other fits shown in Figure 2
(red and yellow lines) as well as for the behavior parametrizations
for the different scenarios (Supplementary Figure S3,
Supplementary Information).

4.4 Different Mandatory NPI Scenarios
We choose to simulate five different scenarios, each having a
different level of overall stringency. In the following we briefly
describe the scenarios:

Scenario 1 (“Freedom day”): All mandatory restrictions are
lifted, resulting in a factor of k]NPI,self(HR � 0) � 1 ∀]. However, if
ICU occupancy increases, we leave room for individuals’
voluntary action based on perceived risk to reduce viral
transmission: k]NPI,self(HR > 0)< 1. We assume that communal
activities and workplaces leave more room for voluntary
preventive action than households and schools because of the
possibility of working from home, avoiding non-essential
gatherings etc. This difference is depicted in Supplementary
Figure S3.
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Scenario 2 (Moderate NPIs A): Easy-to-follow measures are
kept in place and potentially contagious contacts at school are
reduced to kSchoolNPI,self(HR � 0) � 0.5.

Scenario 3 (Moderate NPIs B): Further measures at work (e.g.,
home office or testing) reduce kWorkplaces

NPI,self (HR � 0) � 0.5.
Scenario 4 (Moderate NPIs C): Further reduction in

potentially contagious school contacts and restrictions affecting
communal contacts reduce kSchoolNPI,self(HR � 0) � 0.25 and
kCommunities
NPI,self (HR � 0) � 0.5.
Scenario 5 (Strong NPIs): Communal activities are further

reduced to kCommunities
NPI,self (HR � 0) � 0.2.

Table 1 lists all values for the different scenarios and
contexts of interaction between individuals. The reduction
of household contacts is assumed to remain the same for all
scenarios. Note that, as the stringency of measures increases,
room for voluntary adoption of health-protective behavior
usually decreases: To give an example, without mandatory
measures the level of contact reduction in communal activities
lies in the range 1−0.6, whereas in a scenario with strong
mandatory NPIs it lies in the range 0.2−0.1. The difference
between the two bounds effectively measures the room for
voluntary actions (0.4 for freedom day vs. 0.1 for strong NPIs).
An exception are school contacts in which moderate
restriction scenarios (2 and 3) display a wider range of
possible voluntary action than the freedom day scenario. As
health-protective behavior among children could be
encouraged but not imposed, their adherence to rules
constitutes a voluntary act.

4.5 Modeling the Introduction and Spread of
the Omicron VOC
Modeling the introduction and spread of the Omicron VOC
requires modifications to the model compartments, transition
rates, and parameters. In particular, these modifications allow
us to explore the effects of Omicron’s 1) extensive immune
escape and 2) potential reduced risk for severe course of the
disease. We implemented the introduction of Omicron VOC
as a total replacement of the previously dominating Delta
VOC on 15 Jan 2022. At that moment, we rearrange the
distribution of individuals between the “waned” and
“immune” compartments, increase the rate of waning
immunity to account for Omicron’s immune escape, and

reduce the probability of having a severe course. Explicitly,
before the introduction of the Omicron VOC, the immune
population is tracked in additional pseudo-compartments Vo,
Ro, Rv,o with a faster waning rate. In that way, there are
always less individuals in Vo, Ro, Rv,o than in V, R, Rv. At
the time of variant replacement, V − Vo, R − Ro, Rv − Rv,o

individuals are moved from the vaccinated and recovered
compartments to the respective waned compartments;
individuals previously protected against Delta would now
be susceptible to Omicron. We model booster-vaccination
protection against infection following a leaky scheme, thus
boostered individuals have a probability of η of being entirely
protected. With probability 1 − η, individuals remain in their
current compartment but are tracked as if the vaccine had
worked successfully.
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Genomic surveillance of infectious diseases allows monitoring circulating and
emerging variants and quantifying their epidemic potential. However, due to
the high costs associated with genomic sequencing, only a limited number
of samples can be analysed. Thus, it is critical to understand how sampling
impacts the information generated. Here, we combine a compartmental model
for the spread of COVID-19 (distinguishing several SARS-CoV-2 variants) with
different sampling strategies to assess their impact on genomic surveillance.
In particular, we compare adaptive sampling, i.e., dynamically reallocating
resources between screening at points of entry and inside communities, and
constant sampling, i.e., assigning fixed resources to the two locations. We show
that adaptive sampling uncovers new variants up to five weeks earlier than
constant sampling, significantly reducing detection delays and estimation errors.
This advantage is most prominent at low sequencing rates. Although increasing
the sequencing rate has a similar effect, the marginal benefits of doing so
may not always justify the associated costs. Consequently, it is convenient for
countries with comparatively few resources to operate at lower sequencing rates,
thereby profiting the most from adaptive sampling. Finally, our methodology
can be readily adapted to study undersampling in other dynamical systems.

† This chapter is identical to the publication [28]. This article was
published in Chaos, Solitons & Fractals 167, Contreras, S., Oróstica,
K.Y., Daza-Sanchez, A., Wagner, J., Dönges, P., Medina-Ortiz, D.,
Jara, M., Verdugo, R., Conca, C., Priesemann, V. and Olivera-Nappa,
Á.. Model-based assessment of sampling protocols for infectious dis-
ease genomic surveillance, p.113093. Copyright Elsevier (2023). Roles:
Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Writing – original draft, Writing – review & editing,
Visualization.

135

https://doi.org/10.1016/j.chaos.2022.113093
https://doi.org/10.1016/j.chaos.2022.113093
https://doi.org/10.1016/j.chaos.2022.113093
https://doi.org/10.1016/j.chaos.2022.113093


Chaos, Solitons and Fractals 167 (2023) 113093

Available online 3 January 2023
0960-0779/© 2022 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Model-based assessment of sampling protocols for infectious disease genomic
surveillance
Sebastian Contreras a,∗, Karen Y. Oróstica b, Anamaria Daza-Sanchez c, Joel Wagner a,
Philipp Dönges a, David Medina-Ortiz d, Matias Jara e, Ricardo Verdugo b, Carlos Conca c,e,
Viola Priesemann a,f,∗∗, Álvaro Olivera-Nappa d,g,∗∗∗

a Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
b Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca, Chile
c Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
d Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas, Chile
e Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile
f Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
g Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Santiago, Chile

A R T I C L E I N F O

Dataset link: https://github.com/Priesemann-G
roup/sampling_for_genomic_surveillance

Keywords:
Genomic surveillance
COVID-19
SARS-CoV-2
Dynamical systems
Sampling
Undersampling

A B S T R A C T

Genomic surveillance of infectious diseases allows monitoring circulating and emerging variants and quantify-
ing their epidemic potential. However, due to the high costs associated with genomic sequencing, only a limited
number of samples can be analysed. Thus, it is critical to understand how sampling impacts the information
generated. Here, we combine a compartmental model for the spread of COVID-19 (distinguishing several SARS-
CoV-2 variants) with different sampling strategies to assess their impact on genomic surveillance. In particular,
we compare adaptive sampling, i.e., dynamically reallocating resources between screening at points of entry and
inside communities, and constant sampling, i.e., assigning fixed resources to the two locations. We show that
adaptive sampling uncovers new variants up to five weeks earlier than constant sampling, significantly reducing
detection delays and estimation errors. This advantage is most prominent at low sequencing rates. Although
increasing the sequencing rate has a similar effect, the marginal benefits of doing so may not always justify
the associated costs. Consequently, it is convenient for countries with comparatively few resources to operate
at lower sequencing rates, thereby profiting the most from adaptive sampling. Finally, our methodology can
be readily adapted to study undersampling in other dynamical systems.

1. Introduction

Genomic sequencing tools help to characterise and keep track of the
genetic properties of pathogens causing infectious diseases and strongly
contribute to evidence-based decision-making in public health [1,2].
High-throughput, next-generation sequencing technologies (NGS) have
substantially reduced sequencing costs over the past 15 years [3],
thereby bringing them closer to routine clinical and public health
practices [4]. An important example is the genomic surveillance of
infectious diseases, where the mutational dynamics of a particular
pathogen (and variants thereof) are tracked and quantified [5]. In the
context of the COVID-19 pandemic, genomic surveillance has unveiled
the rapid evolution of SARS-CoV-2 and signalled the emergence of
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variants with increased transmissibility and partial immune escape
(e.g., those labelled as Variants of Concern VoC) [6–11].

The snapshots provided by genomic surveillance serve three pri-
mary purposes [12,13]; (i) to signal the introduction of novel variants
to a country through surveillance at points of entry (POEs) or detect
emerging variants within the communities, (ii) to quantify the frac-
tion of the total cases detected in community transmission that these
variants caused (thereby enabling the quantification of their spreading
rate [7,8]), and (iii) to design and tailor diagnosis and therapeutic
alternatives (e.g., drugs and vaccines). However, how reliable this
information is depends on (i) the quality of the sampling protocol,
i.e., the strategy to select which PCR-positive samples would be sent for
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genomic sequencing [13], and (ii) the total number of samples analysed
per week (i.e., the sequencing rate).

Although official recommendations state that sampling protocols
should be coordinated, adaptive, representative, and serve differential
purposes [13,14], the guidelines to achieve these goals lack a quanti-
tative analysis of the benefits that these concepts bring. Moreover, the
optimal strategy is not universal but is expected to depend on a coun-
try’s resource availability. Despite decreasing costs for NGS, the eco-
nomic barriers raised by the high equipment and training costs remain
prohibitory for low-to-middle income countries [5,6,15–19]. Therefore,
exploring how different sampling protocols for genomic surveillance
determine the information we gather can help these nations to optimise
resource allocation.

In our work, we propose a hybrid (deterministic/stochastic) model-
based approach to assess the effectiveness of sampling protocols for
genomic surveillance on a country-level scale. We focus on answering
how to allocate limited sequencing resources best to ensure the early
detection of variants, in a setting where: (i) sequencing capacity is
limited, (ii) new variants are imported and enter the system through
the POEs, as an external input, and (iii) sampling is representative
and corrects for potential heterogeneities in the population. First, we
simulate the ground truth dynamics for the simultaneous spread of sev-
eral SARS-CoV-2 variants using a deterministic differential equations
model. Then, we build a stochastic framework to emulate sampling over
temporal trends, enabling us to assess the performance of arbitrarily
complex sampling protocols. In particular, we compare adaptive sam-
pling (dynamically reallocating resources between screening at points
of entry and communities according to new variants’ detection) and
constant sampling (sequencing a fixed number of samples from each
source). We assess the performance of each strategy through their
(i) variant detection delay (time between the introduction and first
detection of a variant in community transmission), and (ii) how well
these can approximate the ground truth dynamics by estimating the
share of the total cases that each of these represent (and thereby inform
inference models). Besides, our approach constitutes a methodological
advance that can be readily adapted to model sampling in other systems
far from equilibrium. Altogether, we provide new quantitative insights
to optimise sampling protocols for genomic surveillance and evidence
for the benefits of using adaptive sampling, especially in countries with
limited sequencing capacity.

2. Methods overview

2.1. Hybrid approach to simulate genomic surveillance in realistic settings

To assess and compare the performance of adaptive and constant
sampling protocols, we need to test them under the same conditions.
Besides, to determine which one approximates the true underlying
dynamics better, we need to (approximately) know the system’s state at
each time (i.e., its ground truth). As that is not possible in real settings,
we propose a model-based hybrid approach: First, we formulate a
deterministic mathematical model to represent the simultaneous spread
of several SARS-CoV-2 variants in a closed population and thereby
produce the ground truth of our system, i.e., the variant-resolved
COVID-19 incidence over time. Second, we compare different protocols
to determine the origin of samples that will be sent for sequencing
(i.e., sampling protocols). Finally, we evaluate the performance of each
protocol by quantifying (i) how well the share of new COVID-19 cases
caused by each variant at a given time is represented and (ii) the delay
between the true introduction of a new variant and its first detection
in community transmission (hereafter detection delay).

In the following, we introduce general aspects of the model for
disease spread, the numerical experiments and scenarios that we pro-
pose, and the implementation of sampling for genomic surveillance.
Full details can be found in Methods, Section 5.

Fig. 1. Flowchart of the complete model. The solid blocks in the diagram represent
different SEIR compartments for both hidden and quarantined individuals. Hidden cases
are further divided into symptomatic and asymptomatic carriers. Solid lines represent
the natural progression of the infection (contagion, latent period, and recovery). Dashed
lines account for the external influx of infections, while testing is represented by
arrows moving individuals from the hidden to the quarantined infectious compartment.
Quarantined compartments, which contribute less to the spreading of the disease, are
coloured with paler shades. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

2.2. Model overview

We study the spread of COVID-19 using a deterministic ordinary
differential equations (ODE) susceptible–exposed–infectious–recovered
(SEIR) compartmental model, where several SARS-CoV-2 variants can
spread simultaneously. In our model (adapted from [20,21] and
schematised in Fig. 1), we distinguish between two contributions of
infections: hidden and quarantined. Hidden infections are those where
the infector is unaware of being infectious. Therefore, hidden chains
propagate unnoticed in the communities until detected via testing. On
the other hand, quarantined infectious individuals can also infect others
due to imperfect isolation and limited compliance. However, quaran-
tined infections spread at a much lower rate than hidden infections.
We assume that individuals are equally susceptible to all SARS-CoV-
2 variants before they had any infection, and after recovery, they
obtain cross-immunity against infection. Hence, there is not explicit
immune-escape in the timeframe considered.

From the point of view of most (in particular small) countries,
new SARS-CoV-2 variants were often introduced from abroad over the
course of the COVID-19 pandemic. To reflect that in the model, we
include a non-zero influx 𝛷𝑖(𝑡) of new cases that acquired the virus
variant 𝑖 abroad, reentering our system through points of entry (POEs).
These imported variants, labelled as variants of concern (VoCs) abroad,
subsequently spread in the communities. In addition, to increase our
model’s flexibility, we distinguish between symptomatic and asymp-
tomatic infections and allow for potentially different asymptomatic
ratios and test sensitivity across variants. Finally, since testing is ex-
plicitly considered in our model, we can estimate the ‘‘observed’’ new
COVID-19 cases detected via PCR testing (and the collection of samples
that can be selected for sequencing). Although we know, by construc-
tion, which SARS-CoV-2 variant caused each case, this information is
only revealed in each sampling strategy if the sample is selected for
sequencing.

2.3. Scenarios for the baseline spreading dynamics

We formulate different scenarios for the baseline spreading dy-
namics of COVID-19 at a country-scale, thereby evaluating different
patterns for the theoretical waves of incidence. We assume that variants
can only be imported from abroad, and that they are introduced to
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Fig. 2. Scenarios considered for waves of incidence. To evaluate sampling strategies, we define a set of scenarios that differ in the transmissibility and time of introduction of a new
variant, represented by different colours (variants’ spreading parameters are reported in Table 1). Without genomic surveillance, policymakers would only observe the bulk trend of
PCR-positive COVID-19 new cases (dashed line) without noticing new variants’ emergence and replacement dynamics. In the figure legend, ‘‘+’’ represents increased transmissibility
compared to that of the wild type. Scenario 1: double peak (second higher), two dominant variants. Scenario 2: double peak (first higher), two dominant variants. Scenario 3:
double peak (second higher), three dominant variants. Scenario 4: single peak, three dominant variants. A systematic analysis of wave patterns is provided in Supplementary
Materials, Section S2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Influx parameters and differential transmissibility of (theoretical) SARS-CoV-2 variants
across scenarios.

Variant Scenario 𝛷max
𝑖 𝑎𝑖 𝑏𝑖 𝑇 in [days] 𝑅𝑖

0

1

1

1000 3 4 −5

1.5
2 1.6
3 1.5
4 1.5

2

1

1500 4 5

50 1.5
2 30 1.8
3 75 1.75
4 75 1.75

3

1

1000 3 6

75 1.8
2 100 2
3 100 2
4 100 2

4

1

1500 3 5

125 2
2 150 2.5
3 125 2.25
4 125 2.25

5

1

500 2 5

200 3
2 150 3
3 250 4.5
4 250 3.5

the system through the POEs (and represent this as an external input
to the system of ODEs). As a general rule, in each scenario, we set
(1) initial conditions, (2) time of introduction of each variant, and
(3) transmissibility of each variant (through their adjusted reproduc-
tion number 𝑅𝑖

0). Note that the 𝑅𝑖
0 values capture both the variant

base transmissibility and the reductions induced by non-pharmaceutical
interventions (NPIs) and hygiene measures. Thus, 𝑅𝑖

0 are lower than
typically reported base reproduction numbers for SARS-CoV-2 variants
(Tables 1 and 2). We initialise our system with a single variant in the
population and introduce the following ones as an influx to the system
acting at different times, defined per scenario. After solving the system
of ODEs that define our model, we estimate the ‘‘observed’’ cases at
POEs and communities, and accumulate them to obtain weekly trends
(typical temporal resolution for sequencing rates).

We use our model to answer the following question: Given a specific
sampling protocol for genomic surveillance (adaptive or constant sam-
pling), how long will it take until we detect a newly introduced variant
in community transmission? To that end, we study a system where one
variant is dominant, and a second one (with higher transmissibility)
enters the system at a given time. We systematically explore different
combinations of transmissibility and time of introduction, generating
continuous wave patterns. The results are summarised in Supplemen-
tary Section S2. Additionally, we decided to illustrate our methodology
by studying four markedly different scenarios, summarised in Fig. 2

and Table 1. We choose the scenarios in Fig. 2 motivated by typical
wave patterns observed during the COVID-19 pandemic (e.g., [20]).
In particular, scenarios 1 and 2 represent a situation where only two
variants drive the wave, and other VoCs do not reach a significant share
of the observed cases at any point (e.g., the wild type and Alpha waves
in 2020/2021). Scenario 3 shows a situation where the ‘‘taking over’’
of a second variant is replaced by a third, much more transmissible
variant (as the emergence of the Omicron VoC in 2021 [8,13]), leading
to a markedly higher second peak. The last scenario (4) illustrates the
situation where a single peak wave in observed cases hides multiple
peaks of different variants. Note that different variants in this context
do not refer to a particular VoC, but to a determined configuration
of transmissibility and time of introduction, which can vary across
scenarios (as described in Table 1).

2.4. Constant and adaptive sampling protocols

After estimating and discretising the weekly ‘‘observed’’ trends of
new COVID-19 cases at POEs and communities, we sort them according
to the variant they represent (see Fig. 3). Of the resulting vector 
of length [𝑁𝑋, obs

(𝑖) (𝑡)] (with 𝑋 ∈ {POE,COM}) representing the eligible
positive samples collected in week 𝑡, we select 𝐾𝑋 (𝑡) entries to be se-
quenced, thereby revealing their label (i.e., the variant 𝑖 to which they
belong). This is done by drawing 𝐾𝑋 (𝑡) random numbers between 1 and
[𝑁𝑋, obs

(𝑖) (𝑡)], and identifying to what variant the corresponding entries
in  belong. We repeat the sampling stage several times to obtain
meaningful statistics. As the overall sequencing rate 𝐾 is constant, we
must ensure that 𝐾POE(𝑡) +𝐾COM(𝑡) = 𝐾.

As described above, we test two alternative sampling protocols
for genomic surveillance: (i) constant sampling, i.e., destining a fixed
amount of sequencing capacities to samples collected at POEs and
communities, and (ii) adaptive sampling, i.e., dynamically reallocating
sequencing capacity between POEs and communities. Reallocation of
sequencing capacity in the adaptive protocol is determined by the
following criterion: First, as we assume that after detecting a variant
at POEs other cases would probably have bypassed the entry screen-
ing and thus be already spreading in the population, parts of the
sequencing capacity at POEs should be reallocated to surveillance in
communities. Second, if the variant the fraction of the total cases
represented by a given variant (hereafter, variant share 𝑓𝑖) estimated
from the community contagion (𝑓COM

𝑖 ) does not change much over
time (i.e., that |𝑓𝑖(𝑡) − 𝑓𝑖(𝑡 − 1)| ≤ 𝜀 arbitrarily small), the variant
replacement dynamics have reached an equilibrium. In that case, the
baseline sequencing capacity at POEs should be reinstated. We provide
a detailed description of the mathematical formulation of the proto-
cols (e.g., the equilibrium criteria for equilibrium in variant shares
in the adaptive case) and parameter values in the Methods section,
Sections 5.7 and 5.8.
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Fig. 3. Description of the genomic surveillance framework implemented in this work. a: We discretise the ‘‘observed’’ weekly new COVID-19 cases, understood as a collection of
PCR-positive samples eligible for genomic surveillance (GS), and sort them according to the variant that caused them to create a vector  of labels. We then select 𝐾𝑋 (𝑡) (𝑋 ∶
point of entry or community) random samples from this pool of tests (i.e., entries of ) and reveal their label. We count the number of times that a variant 𝑖 was detected this
week, 𝑉𝑖(𝑡), and estimate the share that they represent of total cases 𝑓𝑋

𝑖 (𝑡), defined as the quotient 𝑉𝑖(𝑡)∕𝐾𝑋 (𝑡). Finally, we repeat the random selection of samples an arbitrary
number of times using different random seeds and study the resulting distributions (example in b).

Table 2
Model parameters.

Parameter Meaning Value (default) Range Units Source

𝑀 Population size 1 000 000 people –
𝑅𝑖

0 NPI-corrected reproduction number variant 𝑖 4 See Table 1 – [22–24]
𝜈 Registered contacts (quarantined) 0.075 – [20]
𝜖 Lost contacts (quarantined) 0.05 – [20]
𝛾 Recovery/removal rate 0.10 0.08–0.12 day−1 [25,26]
𝜉𝑖 Asymptomatic ratio for variant 𝑖 0.32 0.15–0.43 – [27,28]
𝜆𝑠 Symptom-driven testing rate 0.25 0–1 day−1 Assumed
𝜆𝑟 Random testing rate 0.0 0.0–0.1 day−1 Assumed
𝜂𝑖 Test sensitivity to variant 𝑖 0.9 – Assumed
𝛷𝑖 External influx of variant 𝑖 – 0–10 cases day−1 Assumed
𝜌 Exposed-to-infectious rate 0.25 day−1 [29,30]

𝑠𝛼 Stiffness adaptive response (𝛼) 5 – Assumed
𝑠𝜁 Stiffness adaptive response (𝜁) 1 – Assumed
𝛬1∕2 Middle point sigmoidal response (𝛼) 0.25 – Assumed
𝛩1∕2 Middle point sigmoidal response (𝜁) 10 – Assumed
𝛼0 Scaling factor (𝛼) 5 – Assumed
𝛥𝐾max Max adaptation of community surveillance 10 – Assumed
𝐾max∕min

COM Max/min value for community surveillance – 60%–95% 𝐾base
com – Assumed

3. Results

3.1. Adaptive sampling protocols significantly reduce variant detection de-
lays and estimation errors

We assess the efficacy of the sampling protocols described above
across scenarios, repeating the random selection of samples 𝑚 = 100
times. We find that an adaptive protocol significantly reduces the (ex-
pected) detection delay compared to a protocol with constant sampling.
Besides, the overall delay distribution in the former is narrower than in
the latter. While this result is consistent across scenarios (see Fig. 4),
the reduction in dispersion achieved through an adaptive protocol is
secondary to increasing the sequencing rate 𝐾.

Depending on the value of 𝐾, an adaptive protocol can detect
a variant in community transmission a couple of weeks earlier than
a constant sampling protocol. Although we focus on and emphasise
improvements regarding the time of variant detection, an adaptive
sampling protocol also improves the accuracy of the estimated trends
for variant shares (see Supplementary Material, Section S4).

3.2. The marginal benefits of increasing the sequencing rate decline quickly

We now analyse the expected detection delay 𝐷 for both adaptive
and constant sampling protocols in all scenarios, as a function of the
sequencing rate 𝐾. We observe that settings with low base sequencing
rates would substantially profit from increasing it, by means of reducing
the detection delay more steeply when adding an extra unit of 𝐾. How-
ever, such improvement quickly reaches a plateau; further reductions
of the expected detection delay would require major increases in 𝐾 (cf.

Fig. 5). In other words, these improvements would cost a much higher
price.

The sharp decrease in the detection delay 𝐷 when increasing 𝐾
resembles an exponential decay. For analytical purposes only, we fit an
exponential function to the empirical trends for the median detection
delay in Fig. 5. The equation for the exponential fit is given by

𝐷(𝐾) = 𝐷0 exp
(
−
𝐾 −𝐾0
𝐾ref

)
+𝐷∞, (1)

where 𝐷0 represents the expected delay for the minimum sampling 𝐾0,
𝐾ref is a reference sequencing rate, and 𝐷∞ represents the minimum de-
lay we can reach. Fitted trends agree well with our simulations for both
adaptive and constant sampling protocols (cf. the overlap between solid
and dashed lines in Figs. 5 and S2). We also performed this experiment
for the constant sampling protocol (see Supplementary Fig. S2). While
both graphics look very alike, there are marked differences between the
two. For example, differences in the average detection delay for both
protocols can be as large as five weeks when the sequencing rate 𝐾 is
low and quickly decline as we increase the sequencing rate 𝐾 (Fig. 6).
However, the benefits of using an adaptive protocol also depend on the
number of co-circulating variants; if there are several variants in the
pool of infections, improvements by using an adaptive sampling persist
to higher sequencing rates (Fig. 6).

In the following section, we use the analytical approximation we
propose for the expected variant detection delay to generalise our
results to an economic perspective.

3.3. Economic assessment of strategies for genomic surveillance

As the early detection of variants in community transmission allows
policymakers to timely implement measures to mitigate their impact,
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Fig. 4. Variant detection time across scenarios for different sampling protocols and sequencing rates. An adaptive sampling protocol for genomic surveillance (i.e., dynamically
reallocating sampling resources between POEs and community) reduces the time between variant introduction (dashed line) and the first detection in community transmission
significantly when compared to a protocol with constant sampling in POEs and community (solid vs. faded, see statistical significance levels in Tabs. S1 and S2, and description
of both strategies in Section ‘‘Constant and adaptive sampling protocols’’ and Methods). Variants are colour-coded as in Fig. 2, and ‘‘+’’ represents their increased transmissibility
compared to the wild type. Here, boxplots represent results using different random seeds for the sampling stage (𝑚 = 100 realisations). Besides reducing the expected time of first
detection, an adaptive protocol also reduces the variance of the distribution. However, this effect is secondary to increasing the sequencing rate 𝐾, which can reduce both median
times and variability more drastically. Black dots represent medians, boxes the interquartile range of the distribution (upper quartile: 0.75 quantile, lower quartile: 0.25 quantile),
and whiskers its range excluding outliers. Outliers (represented as circles) are defined as elements more than 1.5 interquartile ranges above the upper quartile or below the lower
quartile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

reducing the detection delay would benefit all actors in society. In
economic terms, this defines an utility function 𝑈 (𝐷) that increases as
we reduce 𝐷. As per the observations in the previous section, we know
that 𝐷 decreases when we increase the number of samples analysed
𝐾. The question is then how much extra benefit an extra unit of
𝐾 would produce, i.e., what is the marginal utility of increasing 𝐾.
Speaking against increasing 𝐾, the marginal costs of increasing it should
grow linearly while well below the sequencing capacity limit given by
country-specific infrastructure (𝐾 lim

country) and should strongly increase
when approaching it. Assuming that the variant detection delay profiles
remain unchanged across countries, we can study the optimal number
of sequences that should be analysed per week. In other words, the

sequencing rate from which the marginal benefits reached by increasing
𝐾 would not justify the required costs.

Using the mathematical formulation for the marginal utility and
costs presented in Supplementary Section S1 (Supplementary Eqs. (2)
and (3)), we schematise the criteria for economically-optimal sequenc-
ing in two types of countries (Fig. 7a). On the one hand, countries
with high installed sequencing capacities 𝐾 lim

country can increment the
number of samples they analyse per week without incurring in higher
additional costs. On the other hand, countries with less sequencing
infrastructure or specialised workforce will see their costs increase
disproportionally larger for lower 𝐾, finding their sequencing optimum
𝐾 lim

1 at fewer samples per week. In that case, instead of searching to
increase 𝐾 beyond 𝐾 lim

1 , these countries would find it more rewarding
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Fig. 5. Across scenarios, increasing the sequencing rate 𝐾 strongly decreases the detection delay for all variants. Solid lines represent the median delay between true introduction
and first detection of different SARS-CoV-2 variants across scenarios, and dashed lines represent proposed exponential function (cf. Eq. (1)). Shaded areas denote sample variability
(dark: 68%, light: 95%). Results for a constant sampling protocols are provided in Supplementary Fig. S2.

Fig. 6. Across scenarios, the gains of using an adaptive sampling protocol instead of constant sampling are higher for lower values of 𝐾. Although the overall dependency on 𝐾
is similar for both sampling protocols, i.e., both decay exponentially, differences in the detection delay obtained by each (averaged across realisations) are markedly stronger for
lower 𝐾 in all scenarios. Furthermore, how quickly this difference vanishes when increasing 𝐾 also seems to depend on the number of variants spreading simultaneously. Note
that scenarios 3 and 4 only differ in the parametrisation of the last variant (5) (see Table 1), and thus coincide for variants 2–4.
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Fig. 7. Cost–benefit analysis of increasing the sequencing rate in countries with different sequencing capacity. a: Based on economic terms, countries with less installed sequencing
capacity 𝐾 lim will see their operational cost escalate considerably at a lower number of sequences analysed per week (𝐾), finding their operational optima at lower values. b:
Observed weekly sequencing rate 𝐾obs for different countries worldwide, normalised per million inhabitants. The logarithmic scale used to represent the 𝑦 axis facilitates comparing
observed sequencing rates across countries, where differences can be of orders of magnitude. Boxplots describe the 𝐾obs values observed between Feb. 2nd, and Jun. 4th, 2022.

to reallocate those resources into other active interventions, such as
subsidies for lockdowns and the distribution of hygiene materials to
the general population. While these economic principles are clear, how
much improvements in reducing 𝐷 are valued in a given country needs
to be quantified in economic terms by local policymakers.

Analysing real-world data of the observed sequencing rates 𝐾 in
countries worldwide, we see a sizeable week-to-week variability (see
Fig. 7b). For example, countries in the global north have higher ob-
served sequencing rates and dispersion overall (week-to-week varia-
tions in 𝐾). This can be due to the protocols they follow for sequenc-
ing; rather than being the installed capacity 𝐾 lim

country which limits the
rate, they aim to send a fixed fraction of the observed new cases for
sequencing [31].

4. Discussion

In our manuscript, we used a hybrid model-based approach com-
bining deterministic ODE models with a stochastic sampling framework
to assess the effectiveness of different sampling protocols for genomic
surveillance. Our quantitative insights support the benefits of using
adaptive sampling, where sequencing efforts are reallocated between
surveillance at points of entry (POEs) and communities according to
the progression of the disease. We showed that adaptive sampling
protocols outperform protocols where a constant amount of sequencing
capacity is allocated to POE and community samples. These results
hold across incidence wave patterns (scenarios and systematic analysis,
cf. Supplementary Section S2) and values for the sequencing rate 𝐾.

Compared with a constant sampling protocol, adaptive sampling can
reduce the expected detection delay of introduced variants by a couple
of weeks at the same sequencing rate 𝐾, especially when operating
at low sequencing rates. Timely detecting a new variant is critical to
mitigating its potential impacts, especially for diseases that spread fast.
For example, considering the doubling time of Omicron VoC infections
(between 1.5 and 3 days in its initial stages [24]), detecting its intro-
duction two weeks later (i.e., ∼ 5 doubling times later) implies dealing
with an incidence ∼30x larger. Therefore, using an adaptive protocol
allows policymakers to react earlier to emerging public health threats,
thereby facilitating containment through test-trace-and-isolate [20,21]
and minimising disruptions to everyday life and economies [32,33].
We also showed that 𝐾 is the strongest determinant for reducing the
detection delay 𝐷. In fact, 𝐷 declines exponentially when increasing 𝐾.
However, this also implies that the benefits earned by expanding 𝐾 by
an extra unit decline similarly and would soon not justify the high costs
incurred. Thus, there is a cost-effective optimal 𝐾, which depends on

the installed sequencing capacity of a given country 𝐾 lim
country and how

local policymakers weigh reductions in 𝐷 in economic terms.
Despite decreasing sequencing costs induced by technological ad-

vancements, genomic surveillance is still costly as it requires specialised
equipment, high-performance computing capability, and specialist per-
sonnel. Thus, it raises economic barriers that not all countries can
circumvent [5,6,15–19]. This translates to little elasticity to chang-
ing the sequencing rate 𝐾, and inspired our assumption of setting it
constant. For example, in Chile, despite the governmental and private
investments in genomic surveillance, the sequencing rate is around 400
samples per week (i.e., 20 samples per million inhabs.), at least two
orders of magnitude lower than the UK’s surveillance program, with a
sequencing rate larger than 10% of their positive weekly tests ([6,31,
34], and Fig. 7b). Therefore, most decisions have been based on trends
of the current reproduction number, which, however, does not capture
the spreading dynamics of VoCs [35–39]. The situation is similar in
other countries in LATAM and the global south, where countries have
not reached a sequencing rate of 1% of their positive tests [31]. Overall,
sequencing rates and genomic surveillance programmes are markedly
different between high and low-income countries, where the sequences
reported by the former are 12 times higher than the latter. Furthermore,
the ratio of confirmed cases sequenced by high-income countries is
16 times higher than that of low-income countries (4.36% and 0.27%,
respectively) [6]. This again highlights the economic determinants of
success in pandemic control [40–44].

Following the same line of thought, we formulate our model assum-
ing that the sequencing capacity is the limiting factor for surveillance
and apply it to study how different sampling protocols (i.e., distribu-
tions of this capacity between points of entry and communities) can
help to reduce the variant detection delay. This restricts our analysis
to settings where variants enter the system through defined points,
and sampling protocols guarantee representativeness and correct for
potential heterogeneities among the population. Examples of that are
small countries with singular points of entry or isolated communities
within a country [8,45]. An equally important question in settings
with more sequencing capacity is how much sequencing is required to
correctly estimate the share of the total cases corresponding to a given
variant. This question is thoroughly studied in [46], where the authors
determine, for different scales, the required number of sequences to be
analysed to estimate the share of cases belonging to each variant. This
question is critical to determine whether a newly detected variant is
taking over and should be considered a VoC. However, as we study a
setting resembling a small country where variants are introduced from
abroad, it falls outside the scope of this paper.
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Our deterministic model for disease spread has certain limitations.
For example, we do not include age structure in our model, as we do
not intend to quantify the impacts in morbidity/mortality that different
variants may cause. We also do not include vaccination or waning
immunity, as these are unessential within the time frame we analyse. In
fact, in the timeframe we study here, more than 90% of the population
had only one infection, and only a tiny fraction had two or more.
Furthermore, although vaccination effectively reduces morbidity and
mortality rates from COVID-19, the effect that this process generates on
the transmissibility of a given variant, especially Omicron, is relatively
small (e.g., [47–49]). Therefore, vaccination was not considered an
essential variable in this modelling. There is also no spatial resolu-
tion in the model (as in, e.g., [38,50]) as we assume sampling to
be representative, and these would only affect wave patterns (which
do not compromise our results). Besides, we excluded contact tracing
from our model; samples collected within the same infection chain are
likely caused by the same SARS-CoV-2 variant (thus, including them
would induce selection biases in our analyses). Finally, for simplicity,
we assume that genomic surveillance does not affect variant trans-
missibility while, in real settings, information about a new variant is
likely to trigger new interventions. However, this is straightforward
to incorporate by including a feedback loop between the estimated
variant share 𝑓𝑖 and the overall spreading rate (as, e.g., in [51–53]),
and does not play a role in the metrics we analyse (i.e., detection delay
and mismatch between estimations and ground truth). Nonetheless,
the model is simple enough to serve our objective fully: To produce
quantitative insights on the performance of different sampling protocols
for genomic surveillance in detecting introduced variants and reducing
the uncertainty of their inference with the available resources.

Similar sampling approaches to ours can, in principle, be applied
to many other physical problems. Limited sampling poses a chal-
lenge when trying to access properties of various complex dynamical
systems [54,55]. Furthermore, undersampling may introduce system-
atic bias to observations that need to be corrected [56–58]. This can
happen, for example, when assessing collective properties, like graph
structures in a network or activity clusters spanning large fractions
of the system. In the case of detecting SARS-CoV-2 variants, such
undersampling bias is not expected because the random selection of a
PCR-positive sample is representative. Here, the core challenge is eco-
nomical; how much we can sample depends on the resources destined
for genomic surveillance. Thus, it is crucial to implement methods to
maximise the information gathered with the available resources. Our
work demonstrates the benefits of using adaptive sampling in genomic
surveillance and quantifies the improvements reached by increasing the
installed sequencing capacity to reduce the detection delay of newly
introduced variants. Besides, the proposed methodology can readily
be adapted to study other dynamical systems far from equilibrium or
arbitrarily complex sampling protocols. This is crucial to assess current
protocols and design contingency plans for current and future global
health emergencies, especially in settings where resources are limited.

5. Methods

5.1. Spreading dynamics

We propose a modified SEIR-type model to adequately capture
COVID-19 spread, where infected individuals can be either symp-
tomatic or asymptomatic, and their infection can be caused by several
co-circulating SARS-CoV-2 variants. They belong to hidden (𝐸𝐻

𝑖 , 𝐼𝐻𝑖 )
or quarantined (𝐸𝑄

𝑖 , 𝐼
𝑄
𝑖 ) pools of infections, thus creating in total

one compartment of susceptible individuals (𝑆), two compartments of
exposed individuals (𝐸𝐻

𝑖 , 𝐸𝑄
𝑖 ), three compartments of infectious indi-

viduals (𝐼𝐻,𝑠
𝑖 , 𝐼𝐻,𝑎

𝑖 , 𝐼𝑄𝑖 ), and one compartment for recovered/removed
individuals (𝑅). Model compartments, transitions between them, and
testing mechanisms are illustrated in Fig. 1.

New infections are asymptomatic with a variant-specific ratio 𝜉𝑖, the
remaining infections are symptomatic. In all compartments, individuals
are removed at a rate 𝛾 because of recovery or death (see Table 2
for all parameters). In the hidden pools, the disease spreads according
to the population’s contact patterns and the base transmissibility of
the variants. Here, we parameterise the spreading rate of SARS-CoV-2
variants through their NPI-corrected reproduction number 𝑅𝑖

0. In this
parameter, we combine the base spreading properties of the variant
(as per their base reproduction number) with typical levels of contact
reductions induced by moderate restrictions. This reproduction number
𝑅𝑖
0 reflects the disease spread in the general population without the

testing-induced isolation of individuals, nor current immunity levels.
Additionally, the hidden pool receives a mobility-induced influx 𝛷𝑖(𝑡)
of new infections. Cases are removed from the hidden pool (i) when
detected by testing and put into the quarantined pool 𝐼𝑄𝑖 , or (ii) due to
recovery or death.

The quarantined exposed and infectious pools (𝐸𝑄
𝑖 , 𝐼

𝑄
𝑖 ) contain

those infected individuals who have been tested positive as well as their
positively tested contacts. Infectious individuals in 𝐼𝑄𝑖 are (imperfectly)
isolated; we assume their contacts have been reduced to a fraction
(𝜈+ 𝜖) of the ones they had in pre-COVID-19 times, of which only 𝜈 are
captured by the tracing efforts of the health authorities. As traced cases
generated by isolated individuals would be of the same SARS-CoV-2
variant, we do not include them into the pool of tests potentially sent
for sequencing. The remaining fraction of produced infections, 𝜖, are
missed and act as an influx to the hidden pools (𝐸𝐻

𝑖 ). Therefore, the
overall reproduction number in the 𝐼𝑄𝑖 pool is (𝜈 + 𝜖)𝑅0. See Table 3
for all model variables.

5.2. Testing strategies

We consider symptom-driven testing and random testing:

Symptom-driven testing is here defined as applying tests to individ-
uals presenting symptoms of COVID-19. In this context, it is important
to note that non-infected individuals can have symptoms similar to
those of COVID-19, as many symptoms are rather unspecific. Although
symptom-driven testing suffers less from imperfect specificity, it can
only uncover symptomatic cases that are willing to be tested (see
below). Here, symptomatic, infectious individuals are transferred from the
hidden to the traced pool at rate 𝜆𝑠.

Random testing is here defined as applying tests to individuals irre-
spective of their symptom status or whether they belong to the contact
chain of other infected individuals. In our model, random testing trans-
fers infected individuals from the hidden to the quarantined infectious
pools with a fixed rate 𝜆𝑟, irrespective of whether or not they are
showing symptoms.

5.3. Model equations

𝑑𝑆
𝑑𝑡

= − 𝛾 𝑆
𝑀

𝑘∑
𝑖=1

𝑅𝑖
0𝐼

𝐻
𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
hidden contagion

− 𝛾 𝑆
𝑀

𝑘∑
𝑖=1

(𝜖 + 𝜈)𝑅𝑖
0𝐼

𝑄
𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
quarantined contagion

− 𝑆
𝑀

𝑘∑
𝑖=1

𝛷𝑖(𝑡)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
ext. influx

, (2)

𝑑𝐸𝑄
𝑖

𝑑𝑡
= 𝛾 𝑆

𝑀
𝜈𝑅𝑖

0𝐼
𝑄
𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
observed contagion

− 𝜌𝐸𝑄
𝑖

⏟⏟⏟
end of latency

, (3)

𝑑𝐸𝐻
𝑖

𝑑𝑡
= 𝛾 𝑆

𝑀
𝑅𝑖
0𝐼

𝐻
𝑖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
hidden contagion

+ 𝛾 𝑆
𝑀

𝜖𝑅𝑖
0𝐼

𝑄
𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
leak contagion

− 𝜌𝐸𝐻
𝑖

⏟⏟⏟
end of latency

, (4)

𝑑𝐼𝑄𝑖
𝑑𝑡

= 𝜌𝐸𝑄
𝑖 − 𝛾𝐼𝑄𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
spreading dynamics

+ (𝜆𝑠 + 𝜆𝑟)𝜂𝑖𝐼
𝐻,𝑠
𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
testing, symptomatic

+ 𝜆𝑟𝜂𝑖𝐼
𝐻,𝑎
𝑖

⏟⏞⏟⏞⏟
testing



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 167 (2023) 113093

9

S. Contreras et al.

+ 𝜂𝑖
𝑆
𝑀

𝛷𝑖(𝑡)
⏟⏞⏞⏟⏞⏞⏟

ext. influx (POE detected)

, (5)

𝑑𝐼𝐻,𝑠
𝑖
𝑑𝑡

= 𝜉𝑖𝜌𝐸
𝐻
𝑖 − 𝛾𝐼𝐻,𝑠

𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
spreading dynamics

− (𝜆𝑠 + 𝜆𝑟)𝜂𝑖𝐼
𝐻,𝑠
𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
testing

+ 𝜉𝑖(1 − 𝜂𝑖)
𝑆
𝑀

𝛷𝑖(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ext. influx (false negative at POE)

,

(6)
𝑑𝐼𝐻,𝑎

𝑖
𝑑𝑡

= (1 − 𝜉𝑖)𝜌𝐸𝐻
𝑖 − 𝛾𝐼𝐻,𝑎

𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

spreading dynamics

− 𝜆𝑟𝜂𝑖𝐼
𝐻,𝑎
𝑖

⏟⏞⏟⏞⏟
testing

+ (1 − 𝜉𝑖)(1 − 𝜂𝑖)
𝑆
𝑀

𝛷𝑖(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ext. influx (false negative at POE)

,

(7)

𝑑𝑅
𝑑𝑡

= 𝛾
𝑘∑
𝑖=1

(
𝐼𝑄𝑖 + 𝐼𝐻,𝑎

𝑖 + 𝐼𝐻,𝑠
𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
recovered/removed individuals

. (8)

5.4. Initial conditions

Let 𝑥 be the vector collecting the variables of all different pools:

𝑥 = [𝑆, 𝐸𝑄
𝑖 , 𝐸

𝐻
𝑖 , 𝐼𝑄𝑖 , 𝐼𝐻,𝑠

𝑖 , 𝐼𝐻,𝑎
𝑖 , 𝑅]. (9)

We assume a population size of 𝑀 = 106 individuals, such that∑
𝑖 𝑥𝑖 = 𝑀 . We initialise all scenarios with only one variant (the wild

type), and the following settings: 𝐸𝑄
𝑖 (0) = 50, 𝐸𝐻

𝑖 (0) = 1050, 𝐼𝑄𝑖 (0) =
100, 𝐼𝐻,𝑠

𝑖 (0) = 250, 𝐼𝐻,𝑎
𝑖 (0) = 750, (for 𝑖 = 1), and 𝑆(0) = 997800.

5.5. Modelling the influx of infections and the introduction of new variants

In our model, we incorporate a mechanism for externally acquired
infections, i.e., individuals belonging to the population, but acquiring
the virus (and variants thereof) overseas. Explicitly, they appear as
an influx 𝛷𝑖(𝑡), which we model as the overlap of different gamma-
distributed pulses and constant contributions of ‘‘old’’ variants. Mathe-
matically, the influx (as a vector of size 𝑘) is given by

𝛷(𝑡) =
𝑘∑
𝑖=1

𝑒𝑖𝛷
max
𝑖 𝛤 (𝑎𝑖, 𝑏𝑖)(𝑡)

+𝛷base

∑𝑘
𝑖=1 𝑒𝑖1

(
𝑇 in
𝑖 + 𝛥time ≤ 𝑡 ≤ 𝑇 in

𝑖+1 + 2𝛥time

)

1 +
∑𝑘

𝑖>1 1
(
𝑇 in
𝑖 + 𝛥time ≤ 𝑡 ≤ 𝑇 in

𝑖+1 + 2𝛥time

) , (10)

where 𝑒𝑖 are canonical unit vectors, 𝑎𝑖 and 𝑏𝑖 shape and scale parame-
ters for the Gamma distribution, 𝛷base the baseline influx of infections,
𝑇 in
𝑖 the time of introduction of the 𝑖’th variant to the system, and 𝛥time

represents the time window where an old variant continues appearing
in the influx. Values for variant-specific parameters across scenarios are
given in Table 1.

5.6. Central epidemiological parameters that can be observed

In the real world, disease spread can only be observed through
testing and contact tracing. While the true number of daily infections
𝑁 is a sum of all new infections in the hidden and traced pools,
the observed number of daily infections 𝑁̂obs is the number of new
infections discovered by testing, tracing, and monitoring of the contacts
of those individuals in the quarantined infectious pool 𝐼𝑄𝑖 , delayed by
a variable reporting time. This includes internal contributions as well
as contributions from testing and tracing:

𝑁𝑖 = 𝛾𝑘𝑡𝑅
𝑖
0
𝑆
𝑀

𝐼𝐻𝑖
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

hidden contagion

+ 𝛾 (𝜈 + 𝜖)𝑅𝑖
0
𝑆
𝑀

𝐼𝑄𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
observed contagion

+ 𝑆
𝑀

𝛷𝑖(𝑡)
⏟⏞⏟⏞⏟
ext. influx

(11)

𝑁̂obs
com,𝑖 =

[
𝜆𝑠𝐼

𝐻,𝑠
𝑖

⏟⏟⏟
sympt. test

+ 𝜆𝑟𝐼
𝐻
𝑖

⏟⏟⏟
rand. test

]
⊛, (12)

𝑁̂obs
POE,𝑖 =

[
𝜂𝑖𝛷𝑖(𝑡)
⏟⏟⏟

test at POE

]
⊛, (13)

where ⊛ denotes a convolution and  an empirical probability mass
function that models a variable reporting delay, inferred from German
data (as the RKI reports the date the test is performed, the delay
until the appearance in the database can be inferred): The total delay
between testing and reporting a test corresponds to one day more than
the expected time the laboratory takes for obtaining results, which is
defined as follows: from testing, 50% of the samples would be reported
the next day, 30% the second day, 10% the third day, and further
delays complete the remaining 10%, which for simplicity we will
truncate at day four. Considering the extra day needed for reporting,
the probability mass function for days 0 to 5 would be given by  =
[0, 0, 0.5, 0.3, 0.1, 0.1].

5.7. Modelling sampling protocols

As described earlier, we compare two sampling protocols for ge-
nomic surveillance throughout the manuscript, constant sampling and
adaptive sampling. For the first case, we assume that the number of
samples collected at POEs and communities remains constant so that
𝐾POE and 𝐾COM are constant. In contrast, an adaptive sampling protocol
prioritises samples collected at POEs or communities depending on the
genomic surveillance findings of the previous weeks. While markedly
different, both start from the same baseline 𝐾POE(𝑡 = 0) = ⌊0.6𝐾⌋,
and have the same thresholds 𝐾min

COM = 0.6𝐾 and 𝐾max
COM = ⌊0.95𝐾⌋

(although these are meaningful only for the adaptive case). In the
following section, we describe the adaptive sampling protocol in detail
(see Table 3).

5.8. Adaptive sampling strategy for genomic surveillance

As described previously and in [13], genomic surveillance serves
two objectives depending on where samples were collected. On the one
hand, if samples are collected at POEs, these signal the introduction of
novel variants to the country, and provide an alert of what we should
look for in community transmission. On the other hand, samples col-
lected from community transmission provide information on the local
features of the spread of such variants, their mutational signatures, and
their reproduction numbers. Let 𝐾 be the total amount of samples that
can be sequenced per week (i.e., the sequencing rate), and 𝐾COM(𝑡)
and 𝐾POE(𝑡) be the amount of these that were taken from community
contagion and at POEs, respectively, at time 𝑡. Then, 𝐾 = 𝐾COM(𝑡) +
𝐾POE(𝑡). In the adaptive sampling, we allow 𝐾COM(𝑡) and 𝐾POE(𝑡) to
change over time depending on our estimations for the variant share
at POEs and within the community, 𝑓POE

𝑖 and 𝑓COM
𝑖 . Thus, we define

two quantities that will help us decide when to reallocate resources:

𝛬(𝑡) = max
𝑖

{
𝑓POE
𝑖 (𝑡 − 1) − 𝑓COM

𝑖 (𝑡 − 1)
}
, (14)

𝛩(𝑡) = max
𝑖

{
𝜕𝑓COM

𝑖
𝜕𝑡

(𝑡 − 1)

}
, (15)

where 𝜕 denotes a discrete derivative. When 𝛬(𝑡) is large, variants
being introduced to the country are not yet markedly spreading in
the community. When 𝛩(𝑡) is large, the replacement dynamics are far
from equilibrium — in either way, we require more sequencing in the
community. We use a logistic function to smooth the response, and two
auxiliary variables:

𝛼(𝛬) = 𝛼0
exp

(
𝑠𝛼(𝛬 − 𝛬1∕2)

)

1 + exp
(
𝑠𝛼(𝛬 − 𝛬1∕2)

) , (16)

𝜁 (𝛩) = 1
1 + exp

(
𝑠𝜁 (𝛩 − 𝛩1∕2)

) . (17)

so that
𝜕𝐾COM

𝜕𝑡
=
[
(𝛼 (𝛬) − 𝜁 (𝛩))𝛥𝑘max

]
. (18)
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Table 3
Model variables.

Variable Meaning Units Explanation

𝑆 Susceptible pool people Non-infected people that may acquire the virus.

𝐸𝑄
𝑖 Exposed pool (quarantined) people Total quarantined exposed people.

𝐸𝐻
𝑖 Exposed pool (hidden) people Total non-traced, non-quarantined exposed people.

𝐼𝐻,𝑠
𝑖 Infectious pool (hidden, symptomatic) people Non-traced, non-quarantined people who are symptomatic.

𝐼𝐻,𝑎
𝑖 Infectious pool (hidden, asymptomatic) people Non-traced, non-quarantined people who are asymptomatic.

𝐼𝐻
𝑖 Infectious pool (hidden) people Total non-traced, non-quarantined infectious people.

𝐼𝐻
𝑖 = 𝐼𝐻,𝑠

𝑖 + 𝐼𝐻,𝑎
𝑖 .

𝐼𝑄
𝑖 Infectious pool (quarantined) people Total quarantined infectious people.

𝑁𝑖 New infections (Total, variant 𝑖) cases day−1 Given by: 𝑁 = 𝛾𝑘𝑡𝑅0𝐼𝐻
𝑖 + 𝛾 (𝜈 + 𝜖)𝑅𝑖

0𝐼
𝑄
𝑖 + 𝑆

𝑀
𝛷𝑖(𝑡).

𝑁̂obs
(𝑖) Observed new infections (influx to traced pool, variant 𝑖) cases day−1 Daily new cases, observed from the quarantined pool; delayed

because of imperfect reporting.

𝐾POE Sequencing rate for samples collected at POEs samplesweek−1 Number of POE samples sequenced per million inhabitants and
per week.

𝐾COM Sequencing rate for samples collected from community contagion samplesweek−1 Number of community samples sequenced per million
inhabitants and per week.

𝐷 Variant detection delay weeks Time between variant introduction and first detection.

However, as 𝐾COM is bounded between a minimum and maximum
value, the effective correction could be lowered to ensure that the
following inequality holds

𝐾min
COM ≤ 𝐾COM(𝑡) ≤ 𝐾max

COM. (19)
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The deeper understanding Faust sought
Could not from the Devil be bought.
But now we are told
By theorists bold
All we need know is R0 [89, 90]

Robert May, 1936–2020

9.1 a tale of tipping points

When an infectious disease emerges, a reasonable question to ask is whether
it can be eradicated or if it comes to stay. Traditionally, one would say: If
the basic reproduction number R0 of the disease is larger than one, there will
be exponential growth until reaching 1 − 1/R0 of the population (i.e., the
point where the effective reproduction number equals one, Reff = R0

S
N = 1).

From that point on, collective immunity will protect as a shield susceptible
individuals from being infected through what we call "herd" or "population"
immunity. However, can it be that R0 is all we need to know? Inspired by
Robert May’s limerick, can a single parameter fully capture the complexity of
disease spread? In general, the answer is "no" [89, 90]. So, beyond R0, what
more is there to know?

In this manuscript, we study the effect of different sources of complexity
on disease spread, searching to provide a better characterization of the deter-
minants of stability. To that end, we modified SIR-like models and explored
the dynamics resulting from adding non-pharmaceutical interventions, vacci-
nation, and behavioral feedback loops. Although Chapters 4–8 already include
dedicated Discussion sections, here we discuss further the physical dimension
of our findings and the implications that these have across fields.

9.1.1 TTI-induced tipping points

Beyond the tipping point at R0 = 1, we identified two new tipping points in
TTI-stabilized systems of disease spread [20, 28], defined by the critical hidden
reproduction number RH

crit (equivalently, the critical fraction of contagious
contacts kcrit

t ) and the TTI capacity limit. These tipping points separate regions
of conditional stability; if the behavior-driven hidden reproduction number
RH

t surpasses RH
crit (e.g., due to a sudden behavioral change), or the number

of observed cases surpasses the TTI capacity (e.g., due to a sudden influx),
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stability is lost. From that point on, we observe two modes of exponential
growth joined by a faster-than-exponential phase. Regaining control once
crossing the first tipping point is challenging; we not only need to adjust the
interventions or induce behavioral changes that result in a reduction of RH

t

to values below RH
crit, but also need to lower the incidence to values that are

within the handling capacity of health authorities (i.e., below the TTI capacity
limit). Here, regaining control denotes a hysteresis loop and can be costly,
and there are many analogies to climate-change-induced tipping points (e.g.,
in [91]). However, as the model in Chapter 4 is linear almost everywhere,
only changes in stability could occur; linear systems cannot have limit cycles
(as discussed in Chapter 2). Nonetheless, as demonstrated in Section 3.4.3,
non-linear variations of this simple model that include TTI as a feedback loop
can feature sustained oscillations.

Although the importance of RH
crit is evident, calculating it can be challenging.

In Section 3.4, we analytically explored the determinants of RH
crit, and provided

formulas to estimate it in special cases (e.g., when isolation is perfect –ϵ = 0–).
In the general case, RH

crit can be numerically calculated if all other spreading
parameters are known. As discussed in Chapter 4, an informed guess on
spreading parameters yield reasonable results for RH

crit in the context of stability
analysis.

9.1.2 New mechanistic insights to empirical evidence

There is empirical evidence for transitions between modes of exponential
growth in COVID-19 data for different waves and countries [20, 92, 93]. Our
theoretical framework provides a mechanistic pathway to observing this tran-
sition between modes of exponential growth or decay in SIR-like models. We
illustrate that in the example in Fig. 9.1 (adapted from Contreras et al. [28]).
Assuming a behavioral change that drives RH

t to a value over RH
crit, we observe

three markedly different stages in the evolution of case numbers (Fig. 9.1a).
First, before the change, case numbers were stable, and thus, the reproduction
number R = 1. Immediately after the behavioral change, R increases to a first
(slow) mode of exponential growth (Fig. 9.1b), which for the parameter values
analyzed looks almost exponential. However, after surpassing the TTI capacity,
the spread self-accelerates, showing a phase of faster-than-exponential spread.
Here, R changes from its first mode to another, faster mode of exponential
growth, at which it settles (Fig. 9.1b). We can numerically obtain both asymp-
totic modes of disease spread using the largest eigenvalue of the linearized
system. Regarding eigenvalues, the experiment here corresponds to the path
marked with numbers in Fig. 9.1c. Analyzing time series for COVID-19 inci-
dence across countries, we hypothesize that the TTI-induced tipping point was
crossed by autumn 2020 (cf. to Fig. 6, Chapter 5 and Fig. S5 in Contreras
et al. [20]). However, while we observe the faster-than-exponential transition
from stable case numbers to exponential growth, we cannot assure a causal
relationship.
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Figure 9.1: Our model offers a mechanism for different exponential asymp-
totic modes of exponential growth. We illustrate the latter by
starting from a system at equilibrium and increasing RH

t to a value
slightly above RH

crit. a: Three markedly different regimes can be observed:
a first mode of exponential growth (almost linear), self-acceleration, and
a second mode of exponential growth. These are reflected as plateaus in
the observed reproduction number (b). c: The trajectory in the example
is explained by changes in the largest eigenvalue of the system; below
TTI capacity, the largest eigenvalue is on the blue curve, and above, on
the red. Figure adapted from [28].

Following the above, could there be more paths to an uncontrolled spread?
In the end, the primary requisite for disease spread (from a mean-statistics
perspective) is an effective reproduction number larger than one, i.e., that
each case effectively infects, on average, more than one other individual.
Furthermore, the effective reproduction number can cross the threshold in
the event of adverse seasonality or through permanent behavioral changes
among the population [13, 14, 22, 24]. The dynamics of combining these two
elements in compartmental models are rich and diverse, featuring period-
doubling cascades to chaos and parameter sensitivity in epidemiologically
feasible parameter ranges [21, 25].

9.2 endemicity as a social agreement

Models including waning immunity and human behavior provide a fresh
interpretation of the endemic level of a disease, which is not only determined
by the spreading parameters but instead emerges as a social agreement [17].
Here, the endemic fixed point (stable or not) captures both properties of the
disease (e.g., the basic reproduction number, lasting of immunity, seasonal
forcing, severity, and infection fatality risk) and of the population where it
spreads (e.g., the mandatory mitigation measures, the contributions to the
perceived risk, the memory time, the baseline vaccine hesitancy). Some diseases
will be perceived as typical and do not trigger much of a reaction by the general
population (e.g., seasonal influenza before the COVID-19 pandemic), and this
leads to the paradox of endemic diseases costing orders of magnitude more
than rapidly eradicated epidemics [17].
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In Chapter 7, we implemented a data-inspired effective bridge between
opinion and contact behavior. Using answers from a recurrent survey on
COVID-19 behavior [94], we studied how the answers to "how likely are you to
avoid private parties" changed over time and compared them to the COVID-
19-related hospital burden at the time. This relationship was piece-wise linear
(Chapter 7, Fig.2A–C). We then incorporated it into the force of infection so
that protective behavior (or mitigation) would not only be characterized by
a parameter (e.g., the behavior-driven hidden reproduction number RH

t ) but
would also have a mechanism.

Having a mechanism instead of a single parameter for human behavior
(e.g., feedback loop vs RH

t ) widens the dynamics that even simple models
can represent, as, for example, period doubling cascades to chaos [24, 25].
Simple models that include behavioral feedback and seasonality also show
complex dynamics, as demonstrated by Wagner [21], who reported phase-
locking, parameter sensitivity, and chaos in an epidemiologically feasible regime.
This result challenges the common perception of endemic diseases as steady
and predictable.

Both pharmaceutical and non-pharmaceutical interventions can impact a
disease’s endemic state. In Chapter 7, we saw that after a winter of overpro-
tective restrictions, there was an off-seasonal "rebound" wave (cf. to Scenario 5
in Fig. 4, Chapter 7). Here, the lack of natural infections and incentives to get
vaccinated caused the overall immunity to drop, i.e., an excess susceptibility
among the population. Intuitively, the more susceptibility accumulates in the
population, the higher the rebound wave. However, what are the determinants
of the rebound waves after a lockdown? First, immunity drops are highly
non-linear; we saw that scenarios having slightly fewer restrictions had an
over-proportional improvement (cf. to Scenarios 3 and 4 in Fig. 5, Chapter 7).
Second, as seasonality modulates the base spread of diseases [19, 95, 96], the
moment at which we lift restrictions (and its phase towards adverse seasonality)
should have a larger impact. Third, the contributions to the behavioral/miti-
gation feedback, e.g., when multiple pathogens spread simultaneously and are
coupled through the perception of risk.

Indeed, lockdown duration and the time of lifting restrictions (phase towards
seasonality) had the strongest effect on rebound waves [55]. Furthermore, these
two concepts dominated over other spreading parameters. As long as the
reproduction number is high enough to cause a population-scale epidemic and
the duration of lockdown is larger than the average duration of immunity, the
effect of other parameters such as the recovery rate, spreading rate, waning
immunity rate, or latent period is secondary. However, some resonance effects
could emerge when considering very short lockdowns (as the "circuit breakers"
in Chapter 5). Resonance has also been reported in contact patterns [84]
and due to the spacing of mass events such as the UEFA Euro 2020 football
championship [88].

Perturbations to the endemic state of a disease can also be caused indirectly
by other diseases. Again using COVID-19 as a working example, interventions
aiming to curb its spread affected the endemic levels of other diseases. Non-
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specific NPIs that affected the contact rates (e.g., lockdowns and curfews [20, 97,
98]) reduced the effective R of COVID-19 but also that of influenza and RSV.
Unlike COVID-19 (in most cases), these diseases had a reproduction number
below one even in the most adverse seasonality. Hence, the waves were canceled
[99–101]. The suppression of these waves caused not only a drop in the rates
of naturally acquired immunity but also an excess susceptibility among the
population due to waning immunity and vital dynamics (e.g., babies not being
exposed to RSV). Complex dynamics can also arise in a multi-pathogen system
when, for example, analyzing the simultaneous spread of various diseases
coupled through interventions or fear [55].

Altogether, the transition from epidemicity to endemicity in infectious
diseases results from the complex interplay between the properties of the
disease and the society where it spreads. With this work, we have provided
new modeling insights that challenge the perception of endemic diseases as
stable or regular cycles.

9.3 on the use of compartmental models in disease spread

Why if, as discussed in Chapter 3, contagion is stochastic by nature, are
deterministic models one of the most common choices when modeling disease
spread? In most cases, when outbreaks reach a population scale, stochastic
effects average out, and the mean statistics can be well described by differential
equation models as those derived from the pioneering work of Kermack and
McKendrick [73]. In this manuscript and related research, we have developed
several extensions of the SIR model, including i) additional compartments,
to represent TTI [20, 28], to capture heterogeneities and structure in the
population [11, 54, 77], and to model the simultaneous spread of different
variants [47]), and ii) additional mechanisms, as the behavioral feedback loops
and seasonality [11, 102], and the delayed contact tracing in the DDE model
in Section 3.4.3.3. Differential equation models are very helpful to obtain
analytical insights on the determinants of control and to estimate the mean
statistics of an outbreak, e.g., the tipping points described in Chapters 4 and 5,
and to describe the evolution of case numbers when incidences are high (e.g.,
in [78, 103]). However, by construction, these models cannot capture certain
expected phenomena such as extinction or super-spreading events in outbreaks.

Population averages obscure the effects of heterogeneity, e.g., highly con-
nected nodes in a contact network which can generate super-spreading events
[104]. In particular, individual variation in infectiousness can drastically impact
the emergence of infectious diseases, i.e., the probability of an outbreak to
succeed [105]. If R0 instead of being understood as a parameter of a determin-
istic model but as the mean value of the statistical distribution of individual
infectiousness (quantified as the number of offspring infections generated in a
fully susceptible population), the initial stages of an outbreak can be described
by stochastic processes. Suppose the mean of the distribution is the same and
larger than one. On the one hand, outbreaks of diseases whose distributions of
infectiousness have heavier tails (i.e., where most of the spread is generated
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in super-spreading events) are likelier to die out [105]. On the other hand,
besides being likelier to die out naturally, outbreaks of diseases with a broad
distribution of individual infectiousness are more sensitive to contact bans
and other interventions, as these truncate the individual reproduction number
distribution. COVID-19 is a highly overdispersed disease [106], therefore it is
no surprise that interventions limiting the number of non-repetitive contacts
were more effective than expected [107]. At this point, it results evident to see
that there is no magic number from which an outbreak is considered to settle
into the population so that stochastic effects average out we can thus change
to mean-field description of disease spread. Bridging the scales that both these
models can represent depends from disease to disease and remains an open
problem in the community.

Agent-Based simulations allow for a more detailed description of the mechan-
ics of contagion through, e.g., incorporating rules of interaction between agents
and different contexts plus day/night dynamics [108, 109]. While these models
need many parameters to be fitted, the parameters are intuitive and easier to
determine in studies. However, Agent Based Model (ABM)s are computation-
intensive, as simulation complexity and times scale heavily with the number
of agents. Furthermore, the level of detail to be incorporated starts getting
arbitrary, and the models are far too complex to allow for a deep understanding
of the emergent dynamics. Nonetheless, they are fantastic for understanding
emerging phenomena in the microstructure, which can be translated as effective
mechanisms in mean-field models (as our feedback loop in [11]). Bobashev
et al. [110] proposed a hybrid approach that combines ABMs to start the
simulation, and when case numbers cross a threshold incidence, the simulation
drifts to an equation-based ODE model. Through this method, they managed
to substantially reduce computation costs and capture network properties into
the observed dynamics of the ODE model.

As described in Chapter 3, a major drawback of ODE compartmental
models is the coupling through first-order kinetics, which translate to an
exponential distribution of the residence time in the compartment. Adding
more compartments, the exponential distribution can be shifted to an Erlang
one at no cost—however, without any noticeable effect in the qualitative
dynamics observed (cf. to Section S1.8 in [20] Supplementary Material). Other
modifications can be achieved by incorporating mechanistic dependency on the
parameters, which can be a function of time or state variables (e.g., feedback
loops).

Back to TTI models, Sturniolo et al. [111] demonstrated that an SEIR-TTI
model can also capture the relevant features of an outbreak at much less
computational cost than ABMs. Consistently, our description of the stability
landscape in TTI-stabilized disease spread is in good agreement with other
simulation and modeling studies (e.g., ABM with realistic contact structure [29,
112]), stochastic transmission models [113, 114], and other mean-field models
with tractable equations [30, 31, 115, 116].
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9.4 our results in context: ten principles for disease
mitigation and control

Aiming to better bridge the translation of our results to public health practice,
here we summarize their implications into ten principles. These principles
build on the physics of contagion explored in Chapter 3, and particularly on
the findings presented in this manuscript.

Point 1: Mind the tipping points

As discussed previously, the controllability of an outbreak depends not only
on the properties of the disease but also on the properties of the population
it spreads. Different contact behaviors and cultural patterns can favor or
challenge the spread of infectious diseases at the base level. From that point
on, interventions move this threshold between controlled and uncontrolled
spread and expand the stable regime, allowing for larger hidden reproduction
numbers RH

t so that the new transition is at RH
t = RH

crit > 1. One way to
expand the stable regime is through the incorporation of TTI (cf. to Chapters 4
and 5).
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Figure 9.2: Point 1: Mind the tipping points. TTI-stabilized systems of disease
spread allow for constant case numbers at values of the hidden repro-
duction number larger than one. This stability can be lost through two
tipping points; RH

t surpassing the critical value RH
crit, or case numbers

surpassing the tracing capacity. Figure adapted from [28].

Point 2: Exploit the tipping points

Including NPI largely broadens the possible dynamical regimes observable in
simple SIR models. For example, in a linear SIR-TTI model with an external in-
flux, we can observe sub-linear, linear, exponential, and faster-than-exponential
variations in case numbers [20, 28, 92]. In particular, between the tipping points
described in Point 1 and Chapters 4 and 5, we observe a stable equilibrium
at low case numbers, where TTI contains local spread and thereby allows for
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more freedom (i.e., larger RH
t ). Exploiting the tipping points is thus planning

interventions that will enable us to operate in this regime.
The implications for public health are immense; we provide mathematical

representations to plan not only the target incidence levels but also its stability
before perturbations. The dynamic system response can also be used to raise
early signals; we demonstrated that loss of stability in TTI-stabilized systems
looks deceptively linear before self-accelerating. In the end, this dynamic
equilibrium is a matter of balance.

Different dynamical regimes:
a matter of balance
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Figure 9.3: Point 2: Exploit the tipping points. Between the tipping points
described in Point 1, case numbers will approach the stable equilibrium at
low case numbers, where TTI promptly breaks chains of hidden contagion
and allows for more freedom without costs in stability. Figure adapted
from [20].

Point 3: Anticipate your distance to the tipping points

The number of observed cases in equilibrium N̂obs
∞ is proportional to the influx

of infections, but also simultaneously to the inverse of the distance to the
tipping point (determined by RH

crit, or equivalently by kcrit
t , see equation 1

in Chapter 5): the application of the equations shows that the further away
we are, the safer. As schematized in Fig. 9.4, the following applies: i) small
increases in the contact level near the tipping point will lead to a considerable
increase in N̂obs

∞ (a). ii) Reducing the influx of infections reduces the number
of infections but does not affect the tipping point (b). iii) Only changes in
testing and self-reporting, contact tracing, hygiene, and contact patterns, can
lead to changes in the tipping point (c and Chapter 3). Altogether, operating
at a controlled distance to the tipping point can thus help to create robust
mitigation plans.
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Figure 9.4: Point 3: Mind the gap between current and critical values for
kcrit

t (or equivalently RH
crit). The metastable equilibrium has the same

qualitative behavior as systems operating close to criticality (e.g., [43,
45]). a: Close to the critical level of contagious contacts kcrit

t (equivalently,
RH

crit), small changes in kt generate big changes in N̂obs
∞ . b: At a fix

value for kt, reducing the influx reduces N̂obs
∞ , but does not modify kcrit

t ,
which is only affected by structural changes in TTI or other interventions.
Figure adapted from [20].

Point 4: Hit early

In the event of an outbreak, early action is crucial [17]. The reasons for this
are twofold. First, disease spread (at this stage) is likely to be exponential [20,
28, 92]. Second, as discussed in Sec. 9.1, remaining TTI capacity can mask a
much larger mode of exponential growth, which only becomes evident after
the spread self-accelerates. Both reasons point to the convenience of stopping
an outbreak earlier.
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Figure 9.5: Point 4: Hit early. a: The time at which the same intervention is enacted
determines whether it will be sufficient for containment. b: Acting late
can be as bad as not acting. Figure adapted from [20].

Point 5: Hit hard

In the event of an outbreak, interventions need to be sufficiently strong to
counteract the spread of the disease and reduce case numbers. In physical
terms, the control parameter (here the hidden reproduction number RH

t or the
level of contagious contacts kt) needs to be reduced to a point where the largest
eigenvalue of the system is negative for a period such that incidence is lowered
to a target level. Interventions need to be successful in that regard, given the
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costs they imply and the impression they produce among the population; the
most vital determinant of their success is people’s compliance with them. In
the framework of TTI, interventions need to lower the incidence to the levels
where we can profit from the conditionally stable regime at low case numbers.
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Figure 9.6: Point 5: hit hard. a: The strength of an intervention determines whether
case numbers can be lowered to a point where TTI can be efficient. b:
Stronger lockdowns manage to reduce the total count of cases more
drastically, but all slow down the spread. Figure adapted from [20]

Point 6: Plan your interventions

Once you hit, you have to release – interventions will progressively lose ad-
herence, individuals get mentally and economically fatigued by the burden
imposed by interventions [34], and ultimately will adapt to the new levels of
risk in a dynamical way [11]. Interventions need to be planned to be effective,
as short as possible and discussed openly with the population [117–120].
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Figure 9.7: Point 6: Plan your interventions. The minimal duration and strength
required for a lockdown to be effective can be calculated numerically.
However, these estimates are rather optimistic, as they do not include
the potential loss of adherence or pandemic fatigue that both populations
and economies would feel [34]. Figure adapted from [20]



9.4 ten principles for disease mitigation and control 161

Point 7: Characterize the levels of mixing in the population

As discussed previously, one of the determinants of stability in a system with
different pools of infection (e.g., hidden and traced pools in Chapters 4 and 5)
was the interaction between them. In a way, it was sufficient to lose stability
in one of the pools to lose it in the whole system; the system is as stable as its
most unstable component. Putting this statement in epidemiological terms, a
population is as well prepared for a pandemic as are its least favored social
groups. In our TTI models, cultural factors, such as the possibility to isolate and
the compliance to isolation (characterized by parameters ν and ϵ, respectively
representing the secondary attack rate and the "leak" of infections), directly
challenged containment by reducing RH

crit. In other words, the larger these
parameters, the narrower the zone of conditional stability in the parameter
space. This effect has been reported in other models considering different
levels of mixing in the population, e.g., [121–123]. Preliminary, we have found
similar effects relating to household distributions in a country with structural
disadvantages for containment (cf. to Fig. 9.8).
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Figure 9.8: Point 7: Characterize the levels of mixing in the population. a:
Once infections are imported into the household, the spreading dynamics
are different; isolation measures are harder to impose, and the spread
is bound to the household size. The secondary attack rate aH captures
both properties of the virus (as base transmissibility) and socioeconomic
properties of the household. b: Individuals can infect households, de-
pending on how connected they are. Figure belongs to a manuscript in
preparation, thus rights are reserved.

Point 8: There is not a single "herd immunity"

There is not a single herd immunity; thus, reaching the desired shielding
effect in the population may take longer than expected. The idea behind herd
immunity is that, at a given point, immune individuals (either by recovering or
being vaccinated) would impede disease spread as a shield just by blocking the
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chain of contagion. This assumes that the disease had spread homogeneously
over the population and that all our contacts somehow respect this proportion
of susceptible and recovered individuals. We know that, in real networks, this
is not the case. People tend to form clusters of matching behaviors and ideas
and, if required, rearrange their contact networks to meet only those with
matching patterns. Some examples of that are political opinions, beliefs, and
sexual orientation. In the context of the COVID-19 pandemic (and of general
epidemics), this also meant clusterization of individuals with, e.g., matching
protective behaviors or the same opinion about the vaccine. This heterogeneity
is critical; even in the case of, from an average perspective, achieving herd
immunity, susceptible bubbles will prevail and could fuel further waves or drive
a collapse of the hospital capacity. Models need to account for this (e.g., [54]
including an explicit "never vaccinated" compartment). In the event of vaccines
not granting full protection against infection, diseases with marked seasonality,
rapidly mutating pathogens, or quickly decaying immunity, herd immunity
might not be possible at all.

Nonetheless, under the hypotheses of homogeneity, the herd immunity
threshold is represented by 1 − 1

R0
. However, the time we would require to

achieve it can differ. Assuming a vaccine with perfect protection against
infection rolled out at a constant rate of ϕ [% of the population/week], the
time required to reach the herd immunity threshold through vaccination would
simply be tv = 1

ϕ

(
1 − 1

R0

)
. Even in a scenario with an all-or-nothing vaccine

with partial immunity, tv is just fractions of a year (cf. to Chapter 6).
We can also estimate the time required to reach herd immunity by natural

means if stabilizing at a given incidence, e.g., hospital capacity (cf. to Chap-
ter 5). First, the level at which incidence needs to be stabilized is determined
by the infection hospitalization risk, typical residence time in the hospital, and
the hospital capacity as:

Nobs
Hosp × Hosp. Risk × Res. Time ≈ Hosp. Capacity.

Then, we can estimate the time tHosp required to reach the target immunity
level (i.e.,

(
1 − 1

R0

)
) as

Nobs
Hosp × tHosp

Total Population ≈
(

1 − 1
R0

)
.
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Figure 9.9: Point 8: There is no single herd immunity. Here we schematize
the time required to reach theoretical herd immunity through natural
infection, stabilizing around hospital capacity.
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Given that the residence time can be up to months for the severely diseased,
this alternative is less appealing. Furthermore and again, the above considers
i) homogeneous mixing in the population, ii) a fully protective vaccine, and
iii) no variants of the pathogen with immune escape will emerge. The latter is
not always the case...

Point 9: Look out for variants

The game of life occurs at all scales. As pathogens are subject to selective pres-
sures (e.g., partial immunity in the host), variants will emerge—the question
is just when. With every new person infected (in fact, every time that—for
the case of virus—replication occurs), pathogens have a chance to mutate and
evolve[124]. New viral variants can take over the previous dominating lineages
if equipped with a faster replication, partial immune escape, producing less
symptomatic disease, or having longer incubation periods. However, in the
absence of genomic surveillance, the emergence, replacement, and simultane-
ous spread of variants can be masked under the same spreading parameters
(cf. to discussions in Chapter 8 and Oróstica et al. [40]). Genomic surveillance
programs are thus fundamental for long-lasting disease control.
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Figure 9.10: Point 9: Look out for variants. Genomic surveillance of infectious
disease allows for detecting the variant replacement dynamic and reduc-
ing the delay between the true emergence/introduction of a variant and
the time when their epidemiological consequences are noticeable. Figure
adapted from [40].

Point 10: It is not over for us until it is over for all

Although evident in normal times, in the event of an emergency, it is common
to make decisions only aiming to maximize the likelihood of survival (or
minimizing the discomfort) of ourselves and the ones we care about. This
had happened at all scales, from people buying more than they needed [125]
to countries hoarding vaccines and medical supplies due to their stronger
economies [126, 127]. In our globalized, interconnected world, leaving the
least favored behind will only squander progress; variants escaping the current
vaccine-elicited immunity can be generated and imported, thereby also losing
the gains. Fighting a pandemic requires a global perspective, not only local
action, as it can only be over when it is over for us all.
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9.5 future research directions

Although many questions were answered with our work, it opened new and
interesting ones. Below, we present some questions in the context of the topics
explored in this work, classified according to the preliminary time required to
find answers to them.

9.5.1 Short-term research projects

Regarding test-trace-and-isolate TTI policies, given the rich data that has
become available during the pandemic, can we find evidence of crossing a
TTI-induced tipping point in COVID-19 data? This question can be better
answered using Bayesian inference models, as that of [88, 103], eventually
incorporating behavior through feedback loops as in Chapter 7.

From the theoretical point of view, what are the dynamical regimes observ-
able in a simple TTI model with seasonality, where all timescales are similar?
(i.e., infectious period ∼ contact tracing delay ∼ seasonal frequency)? As pre-
sented in Section 3.5.1, these models feature delay-induced oscillations through
a Hopf bifurcation. There is evidence that systems including mitigation feed-
back (which can also lead to sustained oscillations through a Hopf bifurcation)
present phase-locking and period-doubling cascades to chaos when including
seasonality [21, 24, 25]. Therefore, exploring a variation of the minimal SIR-TTI

model in Section 3.4.3.3 to include seasonality can be show new unexpected
phenomena.

Another theoretical question that follows the above relates to incorporating
behavior through a mitigation feedback in a minimal SIR-TTI model. Why is
this interesting and promising? As demonstrated in Section 3.4.3.5 for the
SIR-TTI model and in [21, 25] for a mitigation-feedback model, each mechanism
can trigger a Hopf bifurcation. Can it be that, for given hidden reproduction
numbers RH

t , two pairs of characteristic exponents (with different frequencies)
coexist? In that case, a co-dimension-two double Hopf bifurcation would emerge
as reported in [57] and references therein.

Another, more interesting, way to incorporate human behavior in the TTI

framework is through "selective" compliance: what if an individual’s response
to TTI (i.e., self-reporting intention and following isolation rules) depended
on the perceived risk? Here, we expect another level of complexity, as RH

crit
would not be a constant. A model like this could provide more insights into
the emergence of endemicity (or just steady levels in case numbers) as a social
agreement between risks and freedoms.

Selective compliance can also be translated to dynamic levels of vaccine
hesitancy, which can challenge mid-term planning, especially if aiming to lift
restrictions at the pace of vaccination. In Chapter 6, we incorporated the
possibility of individuals declining a vaccine when offered but assumed that
those who would accept the vaccine would do it as scheduled. However, what if,
e.g., given an optimistic forecast pointing to declining infections made people
less willing to accept a vaccine offer so that there is more susceptibility in the
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population than planned? How can we design plans that are robust to these
deviations? Once again, simple models incorporating information-dependent
vaccination feature rich dynamics, including endemic equilibrium (in diseases
that without this dependency would be eradicated) and sustained oscillations
through Hopf bifurcations [128].

A major research direction relates to the dynamics of co-circulating diseases
when NPIs targeting one of them are in place. How do these NPIs acting over one
disease affect the endemic cycle of others? How do these react when lifting the
restrictions? Models with several variants or pathogens feature rich dynamics,
as synchronization/de-synchronization of wave patterns following the lifting of
restrictions [55] and even chaos when externally forced with seasonality [129].
Coupling diseases through fear and mitigation feedback can provide further
insights into the emergence of the endemic equilibrium as a social agreement.
We will explore this research question in the context of the RESPINOW
BMBF-funded consortia (www.respinow.de/en/) in the upcoming years.

Last but not least, one of the major open challenges in disease modeling
is capturing properties of the microstructure (e.g., contact networks, spatial
heterogeneity, household structures) in simple ODE compartmental models. Is
it possible to summarize all these agent-level properties into effective transfer
functions that can be incorporated into ODE models for disease spread? Can
we expand the theoretical foundations to achieve more realistic dynamics in
disease spread model? Advances in this direction will not only advance the
state-of-the-art in modeling but also help to increase the reliability of our
models.

9.5.2 Long-term research projects

The main uncertainty and most fascinating mechanism we studied throughout
this manuscript is human behavior, particularly, how we adapt our behavioral
patterns (e.g., decisions in routine actions) based on the information we
receive and our opinion about it. When individuals are faced with (partial)
information about a widely unobserved dynamical system and have to make
decisions (which ultimately may affect the system itself), what are the rules?
From a long-term perspective, my research aim is to understand how decision-
making works in situations where information is partial and the readout of
a dynamical system with potentially complex dynamics, e.g., pandemics or
climate crises. This requires bridging the fields of psychology [130], epidemiology
[9], and physics (neuroscience and network sciences) to capture the drivers
and consequences of such decisions. In the context of an emergency, e.g., a
pandemic, the complexity in the decisions of "whom to protect", or, in other
words, "whom do we care about", separate acts of social altruism from those of
mere survival. Understanding the triggers and boundaries of each can provide
new metrics of social stability and signal its tipping to social collapse (e.g., riots,
plundering, panic buying, hate crime) and social fragmentation. Individual
decisions in this context are not only a result of the spread of information (as,
e.g., in [131]), but also responding to the levels of risks coupled with disease

www.respinow.de/en/
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dynamics through non-trivial feedback loops. I want to explore the drivers
and consequences of decision-making under uncertainty coupled with complex
dynamical systems and create a novel modeling framework to study the mean
statistical descriptors and phase transitions in such a system.

From a practical point of view, given the current developments in climate
crises, war, and political instability, discovering the physical principles that
govern decision-making under uncertainty when information is an observed
variable resulting from a complex dynamical system is critical. Furthermore, to
offer better preparedness for future global health threats, we need to imagine the
unimaginable. For example, what if diseases spread over a virtual network (e.g.,
infectious ideas leading to fanaticism or harming mental health)? How would
containment be possible in a world with climate change-induced intermittent
logistic disruptions, migrations, and hate? What kind of new pathogens (and
spreading mechanisms) can we imagine (e.g., fungi)? Preliminary and complete
answers to these questions could be needed sooner than later.

9.6 closing remarks

We can find complex dynamics in the spread of infectious diseases. This
work expands the state-of-the-art by describing two new tipping points in
TTI-stabilized models and exploring the stability and bifurcations of their
equilibria, besides applying them to offer viable alternatives for pandemic
control. This contributes to and complements the growing body of literature
on the physics of infectious diseases; finding new physics here can inspire
new physics elsewhere. In fact, there are marked parallelisms between disease
spread and spreading in other well-studied systems, e.g., in neural systems
[45, 132–134]. We discussed the advantages of operating close to criticality
(instability, in our context), as it maximizes freedom, and provided different
arguments why social systems would tend to operate close to this regime as
an implicit and self-organized social pact [17, 135].

Incorporating the complexity of human behavior into disease spread models
continues to be an open problem [8, 9]; the capricious way we make up our
minds has overarching impacts on the outcomes and predictability of real-world
spreading phenomena. Instead of this being a defeating and irrevocable truth,
it is a message of hope; the solution is in our hands. Interventions in the future
should aim to harvest this potential for collective action and give us all the
chance to do good.
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