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Chapter 0

Introduction

0.1 The Heat Equation

Novikov-Shubin invariants are homotopy invariants related to the Laplace operators on non-
compact manifolds. They can be viewed as describing the heat decay on these manifolds. In
this introduction, we briefly review the classical theory of heat diffusion on compact manifolds.
Then, we will consider the same question on non-compact manifolds and discuss the problems
that arise. This will lead us to the definition of Novikov-Shubin invariants.

0.1.1 Heat Diffusion on Compact Manifolds

Let us consider the following problem: Given a compact Riemannian manifold M and a function
g : M → R, where g can be interpreted as a function assigning to x ∈ M the amount of heat
energy g(x) at x at the current point of time. Can we find f : M × R≥0 → R, such that
f(x, 0) = g(x) is the current amount of heat energy at x and f(x, t) describes the amount of
heat energy at x after time t? This problem is well-studied in physics. The solution f can be
described in terms of g, let us say g ∈ C∞(M), by a partial differential equation. This equation
is called the heat equation1:

(Heat Equation)

{
f(x, 0) = g(x)

∂
∂tf(x, t) = −∆ft(x).

Here, ft(x) denotes the function x 7→ f(x, t) and ∆ is the Laplace operator of the Riemannian
manifold M .2 Starting here, many questions can be asked. The one most important to this
thesis is the following one: Given some initial heat distribution g and the corresponding solution
f to the heat equation, does the limit f∞(x) = limt→∞ f(x, t) exist and how quickly is the
convergence ft → f∞ (for example in the supremum norm ∥ · ∥∞)?
From the heat equation one sees directly that the limit f∞ has to satisfy

−∆f∞(x) =
∂

∂t
f∞(x) = 0.

1It should be noted that if ∂M ̸= ∅ one should demand extra conditions at the boundary. This will not be
important later on and is therefore omitted here. The experienced reader can think about Dirichlet or Neumann
boundary conditions. Otherwise, one can think about closed manifolds instead of compact manifolds.

2For example, if M = Rn, then ∆ = −
∑n

i=1
∂2

∂x2
i

.
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So ∆f∞ = 0, meaning that f∞ is an eigenfunction of ∆ to the eigenvalue 0. These eigenfunctions
are called harmonic functions. On closed connected manifolds, harmonic functions are constant.
This agrees with the expectation that heat will spread out evenly over time. For compact
manifolds with boundary, one needs to demand extra conditions on the boundary which might
lead to a different space of harmonic functions.
To find how quickly ft converges to such a harmonic function f∞, we study the spectrum σ(∆)
of the Laplace operator ∆. It is a self-adjoint non-negative operator, so its spectrum is contained
in R≥0 ⊂ C. On compact manifolds, the spectrum is discrete. If the manifold is additionally
connected, we always have 0 ∈ σ(∆) with multiplicity one coming from the one-dimensional
space of harmonic functions. Thus, the spectrum of ∆ is given by a discrete subset

σ(∆) = {0 = λ0 < λ1 ≤ λ2 ≤ . . . } ⊂ R≥0.

Corresponding eigenfunctions f0, f1, f2, . . . can be chosen such that they form an orthonormal
basis of L2(M). We can therefore write

g(x) =

∞∑
i=0

Ci(g)fi(x)

for some constant factors Ci(g) depending on g but not on x ∈ M . Functional calculus then
gives us the solution to the heat equation as

f(x, t) = e−t∆g(x) =

∞∑
i=0

Ci(g)e
−λitfi(x)

= C0(g)f0(x) +

∞∑
i=1

Ci(g)e
−λitfi(x)

= C0(g)f0(x) +O(e−λ1t) as t→∞.

From this, we see that the limit f∞(x) is given by the harmonic function

f∞(x) = C0(g)f0(x)

and ft(x) → f∞(x) as quickly as e−λ1t → 0 for t → ∞. Notice that the smallest non-zero
eigenvalue λ1 of ∆ plays a crucial role. The larger λ1 is, the quicker is the convergence.
There are many results connecting λ1 to other areas of mathematics. A classical result is an
inequality given by J. Cheeger [Che70]. This result relates λ1 for a closed Riemannian manifold
M to a geometric quantity known as the Cheeger isoperimetric constant,

h(M) = inf
N⊂M

{
area(N)

min{vol(M1), vol(M2)}

}
,

where the infimum runs over all submanifolds N ⊂M of codimension one that separate M into
two pieces, M = M1 ∪M2, with M1 ∩M2 = N . Informally speaking, this measures how easily
M can be cut into two pieces of roughly the same size. Indeed, h(M) becomes small, if there is a
small submanifold N ⊂M and M1 and M2 are roughly of the same size such that the minimum
is as large as possible. This quantity relates to λ1 by the following theorem.

Theorem 0.1 (Cheeger’s Inequality, 1970). Let M be a closed Riemannian manifold, then

λ1 ≥
1

4
h(M)2.
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An upper bound for λ1 in terms of h(M) cannot be found in general, as P. Buser showed
in [Bus78]. However, if there is a lower bound on the Ricci curvature of M one can give an upper
bound known as Buser’s inequality [Bus82]. In this sense, the geometry of M can give bounds
on the speed of heat diffusion and vice versa. Another result by S. Kakutani [Kak45] relates the
heat equation to Brownian motions. In this setting, λ1 is linked to the mixing time associated
to this Brownian motion.

0.1.2 Heat Decay on Non-Compact Manifolds

If we consider a non-compact complete Riemannian manifold M instead, we can still study the
heat equation as formulated above, for example for g ∈ L2(M).
However, while σ(∆) ⊂ R≥0 still holds true, the spectrum now contains contributions from
the continuous spectrum. For example, in the case of the flat space Rn with n ≥ 1 we obtain
σ(∆Rn) = R>0. This makes it harder to find the speed of convergence of ft → f∞. As before, we
ignore 0 ∈ σ(∆) if it appears, as it corresponds to the harmonic functions and does not impact
the rate of convergence. Now, two things can happen.

1. It is possible that there is a spectral gap λ1 > 0 such that (0, λ1) ∩ σ(∆) = ∅. Here, as in
the compact case, ft → f∞ at least as quickly as e−tλ1 → 0 for t→∞.

2. However, it can also happen that (0, ε) ∩ σ(∆) ̸= ∅ for all ε > 0, so there are arbitrarily
small non-zero values in σ(∆). Here, it is not clear what λ1 is supposed to be. Indeed, the
speed of convergence might no longer be exponential but potentially polynomial.

The Novikov-Shubin invariant α∆
0 (M) was introduced to deal with the second case. It requires

a nice symmetry of the space M , that is, a group G coming with a cocompact free proper group
action G ↷ M . It measures how dense the spectrum is in intervals (0, λ) for λ↘ 0, and thereby
whether the heat decays exponentially, in which case α∆

0 (M) =∞, or polynomially. In the latter
case, α0(M) = a if it decays as fast as t−a for t→∞. The definition can be extended naturally
to the higher Laplace operators ∆k ↷ L2Ωk(M), giving rise to higher Novikov-Shubin invariants
α∆
k (M). It can be further generalised and made in terms of boundary maps d associated to

M , for example the differential of the deRham cochain complex of M or the differential of the
cellular chain complex (if M has a nice enough CW complex structure). The resulting invariants
α•(M) agree for the various definitions and yield a more precise picture than the α∆

• (M). In
particular, the latter can be retrieved from the former.
In general, these invariants are hard to compute. However, for α∆

0 = α0, there is a complete
answer known. As pointed out by J. Lott in [Lot92], a result of N. Th. Varopoulos [Var84] implies
that the Novikov-Shubin invariant α0(M) is finite if and only if the group G acting on M is of
polynomial growth, in which case they agree with the growth rate of G. By M. Gromov [Gro81],
the groups of polynomial growth are precisely the virtually nilpotent groups.

Theorem 0.2. Let X be a free proper cocompact G-CW complex of finite type. Then the Novikov-
Shubin invariant α0(X) is finite if and only if G is virtually nilpotent. In this case,

α0(X) = N(G),

where N(G) denotes the growth rate G.

As the growth rate is easily computed, for example using the Bass-Guivarc’h formula, this
gives not only a nice connection to geometric group theory but also a simple formula for α0.
While higher Novikov-Shubin invariants have been computed in some cases, for example for 3-
dimensional manifolds by J. Lott and W. Lück [LL95], such results generally rely on explicit
computations rather than general observations.
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0.2 Summary of Results

Relations between Novikov-Shubin invariants and random walks. The relationship
between Novikov-Shubin invariants and random walks is well-understood in degree zero for free
G-CW complexes of finite type. For such a free G-CW complex X, the Novikov-Shubin invariant
α0(X) appears in the study of the random walk on the Cayley graph Cayley(G). Indeed, α0(X) =
2a if and only if the return probability p(n) of this random walk decays asymptotically like the
polynomial n−a for n → ∞. In Chapter 3 we generalise this relation to higher Novikov-Shubin
invariants αk(X). To achieve this, we construct a random walk for each 0 ≤ k ≤ dimX. For
fixed k, the state space of this random walk is given by two copies of each k-cell of X — one
for each possible orientation on that k-cell — as well as one auxiliary state. We explicitly give
the propagation operator P of this random walk in terms of moving probabilities of a random
walker. These probabilities depend on the local structure of X. In particular the glueing maps
attaching (k + 1)-cells to the k-skeleton and their incidence numbers play a central role. For
each parameter q ∈ [0, 1], there is an associated q-lazy random walk with propagation operator
Pq = q Id+(1 − q)P . These random walks naturally induce operators Bq acting on ℓ2Ccell

k (X),
the cellular L2-chain complex of X. We prove the following relation between Bq and the cellular
upper Laplacian ∆up

k = dk+1d
∗
k+1 ↷ ℓ2Ccell

k (X):

Theorem (3.14). There are multiplication operators M1,q,M2,q ≥ 0 on ℓ2Ccell
k (X) such that

Bq ◦M1,q = Id−∆up
k ◦M2,q.

The operators M1,q and M2,q are given explicitly in terms of the local structure of X and the
attaching maps of (k + 1)-cells. If the (k + 1)-skeleton X(k+1) of X is regular enough (implying
that M1,q and M2,q are given by multiplication with constants), we use this equation to relate the
spectrum of ∆up

k to the behaviour of the random walk. The important property of the random
walk here is not the return probability on its own but the difference between two probabilities:
The return probability and the probability of starting at some oriented k-cell α and returning to
the same cell α but with reversed orientation. If we denote the return probability for the q-lazy
random walk starting at the (arbitrarily oriented) k-cell α after n steps by pq,α,+(n) and the
probability of returning to the cell with reversed orientation after n steps by pq,−,α(n) then we
show that the quantity

pq(n) =
∑

α∈G\X

pq,α,+(n)− pq,α,−(n),

defined by summing these differences over all G-types of k-cells, relates directly to the L2-Betti
number b(2)(d∗k+1) and the Novikov-Shubin invariant αk(X) in the following way:

Theorem (3.26). Let X be an upper k-regular free G-CW complex of finite type and such that
M1,q ≡ C1,q and M2,q are constant. Let q ∈ [q0, 1), with q0 given by Lemma 3.22. Then
αk(X) = 2a if and only if there is a constant C > 0 such that for all n ∈ N,

C−n
1,q

(
b(2)(d∗k+1) + C−1n−a

)
≤ pq(n) ≤ C−n

1,q

(
b(2)(d∗k+1) + Cn−a

)
.

Estimates on Novikov-Shubin invariants of nilpotent Lie groups. In Chapter 4 we re-
view M. Rumin’s approach, and a slight simplification thereof, which allows to estimate Novikov-
Shubin invariants of nilpotent Lie groups in some cases. We provide a description of such an
algorithm as well as an implementation in Python in Appendix A. This yields a list of estimates
of some Novikov-Shubin invariants for the 34 nilpotent Lie groups of dimension less or equal to
six. These estimates are listed in Table 4.1.
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Refinement of Novikov-Shubin invariants for fibre bundles. In Chapter 5 we study
Novikov-Shubin invariants in the setting of fibre bundles. We introduce a generalisation of
Novikov-Shubin invariants. This generalisation depends on two parameters, allowing for a more
detailed analysis of how the fibre and the base contribute separately to the Novikov-Shubin
invariant of the total space. This uses the fact that Novikov-Shubin invariants can be defined in
terms of scaling the manifold by a factor λ and studying this situation as λ↘ 0 (see Section 2.4.4).
In the setting of fibre bundles, we use two parameters µ, ν in place of λ to scale the fibre and
the base independently. The definition of this two-parameter generalisation in Definition 5.6
depends a priori on a fixed Riemannian metric and a fixed connection for the fibre bundle. This
definition generalises the classical Novikov-Shubin invariants as these can be recovered by scaling
the fibre and base at the same speed. We explicitly compute the two-parameter Novikov-Shubin
numbers for the special case of the three dimensional Heisenberg group in all relevant degrees in
Section 5.2 with the following result:

Theorem (5.9). The two-parameter Novikov-Shubin invariants of the Heisenberg group H3 and
its associated Lie algebra h3 with their standard structure obtained when scaling the base at speed
λ and the fibre at speed λ1+ζ as λ↘ 0 are given by

α0(h3)(λ, λ
1+ζ) = 4 + 2ζ for − 1/2 ≤ ζ,

α1(h3)(λ, λ
1+ζ) = 2− 2ζ for − 1/2 < ζ < 1,

α2(h3)(λ, λ
1+ζ) = 4 + 2ζ for − 1/2 ≤ ζ.

Indeed, for ζ = 0, this recovers the Novikov-Shubin invariants α•(H3).
We then study the deRham complex of such fibre bundles more closely. We give an alternative
definition of this generalisation in the spirit of the near cohomological definition of Novikov-
Shubin invariants. This relies on a splitting of the deRham complex that we work out explicitly:

Theorem (5.17). Let F• →M → B be a fibre bundle, then there is an isomorphism

Ωk(M)
Φ−→∼=

⊕
p+q=k

Ωp(B, {Ωq(Fb)}b∈B),

identifying forms on M with forms on B with values in the system of forms on the fibres {Fb}b∈B.

We prove several invariance properties of the two-parameter Novikov-Shubin numbers. First, we
show that for a fixed connection the numbers are invariant under change of compatible metrics:

Theorem (5.20). Let G ↷ (M → B,∇, g) be a fibre bundle with fixed connection ∇ and com-
patible free proper cocompact group action by a group G. Then the dilatational equivalence class
of the spectral density function underlying the two-parameter Novikov-Shubin numbers

Gk(M → B,∇) = Gk(M → B,∇, g)

does not depend on the choice of G-invariant ∇-compatible Riemannian metric g.

Then, we prove that it is further invariant under certain compatible fibre homotopy equivalences:

Theorem (5.24). If there is a G-equivariant fibre homotopy equivalence between suitable bundles
M → B and M ′ → B such that ∇ = f∗∇′, then their spectral density functions are dilatationally
equivalent,

Gk(M ′ → B,∇′) ∼ Gk(M → B, f∗∇′).
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Lastly, we show that the two-parameter Novikov-Shubin numbers are invariant under change of
connection as long as the fibre is shrunk at least as fast as the base:

Theorem (5.25). Let G be a group and M → B be equipped with two pairs of connection and
compatible Riemannian metric such that G ↷ (M → B,∇, g) and G ↷ (M → B,∇′, g′) are
Riemannian fibre bundles with connection and compatible free proper cocompact G-action. Then
the two-parameter spectral density functions restricted to the subspace {ν ≤ µ} are dilatationally
equivalent,

Gk(M,∇, g)|{ν≤µ} ∼ Gk(M,∇′, g′)|{ν≤µ}.

0.3 Structure of the Thesis

This thesis is structured as follows.

1. In the first chapter we review basic concepts to fix the notation used in the later chapters.

2. In the second chapter we give a short introduction to L2-invariants. In particular, we
discuss Novikov-Shubin invariants and different approaches to defining and studying them.

3. In the third chapter we discuss the connection between Novikov-Shubin invariants on free
G-CW complexes of finite type and stochastic processes taking place on these complexes.
We extend the classic connection between the Novikov-Shubin invariant α0(X) of such a
complex X in degree zero and the return probability of a random walk on the 1-skeleton
to higher degrees. To this end, we prove in Theorem 3.26 that the L2-Betti numbers and
the Novikov-Shubin invariants describe the asymptotic behaviour of a difference of (return)
probabilities of a random walk. This random walk takes place on the oriented k-cells of X
and induces an operator acting on the cellular k-chains. We show in Theorem 3.14 that
this induced operator can be described in terms of the Laplace operator of X and two
multiplication operators capturing local glueing information of X.

4. In the forth chapter we review an approach of M. Rumin to estimating Novikov-Shubin
invariants on graded nilpotent Lie groups in some cases. With a slight modification this
approach can be reduced to methods of linear algebra and hence implemented as a computer
program. We present a list of estimates found for low-dimensional such Lie groups in
Figure 4.1, discuss some examples explicitly and give some remarks on this approach.

5. In the fifth chapter we introduce a refined version of Novikov-Shubin invariants on fibre
bundles. While classical Novikov-Shubin invariants are defined in terms of one parameter λ
going to zero, we use two parameters µ, ν in its place. The goal is to capture contributions
of the fibre and the base of the fibre bundle to the Novikov-Shubin invariants separately.
These two-parameter Novikov-Shubin numbers are defined in Definition 5.6 in terms of a
fibre bundle with fixed Riemannian metric and fixed connection. We compute these two-
parameter invariants in Example 5.2 for the three dimensional Heisenberg group H3. We
show that they can be interpreted in terms of near cohomology cones. In Theorem 5.20
we show that for a fixed connection these two-parameter Novikov-Shubin numbers are
independent of the (compatible) Riemannian metric. In Theorem 5.24 we show that they
are invariant under certain fibre homotopies over the identity if the connections are related
by pullback along the homotopy. Lastly, we show in Theorem 5.25 that the two-parameter
Novikov-Shubin invariants are metric and connection invariant if we scale the fibre at least
as fast as the base.



Chapter 1

Prerequisites and Notation

In this chapter we very briefly review some of the necessary prerequisites. We assume that
the reader is already familiar with the topic and the main focus is on fixing the notation for
later chapters. The unfamiliar reader can find introductions to these topic in many textbooks,
for example, the books of W. S. Massey [Mas91] or A. Hatcher [Hat02] for CW complexes,
C. Löh [Löh17] for geometric group theory and W. Woess [Woe00] for random walks.

1.1 CW complexes

1.1.1 Definition and Notation

CW complexes are a nice class of topological spaces. A CW complex X is constructed as a
sequence

∅ = X(−1) ⊂ X(0) ⊂ X(1) ⊂ · · ·

of topological spaces X(k), called the k-skeleton of X, where X(k+1) is obtained from X(k) by
glueing cells {ek+1

β }β∈Ik+1
with ek+1

β ≃ Dk+1 to X(k) according to continuous attaching maps

χβ : ∂e
k+1
β ≃ Sk → X(k).

This glueing process can be described by the following push-out diagram:

⊔
β∈Ik+1

Sk X(k)

⊔
β∈Ik+1

Dk+1 X(k+1)

(χβ)β∈Ik+1

Such a sequence defines the topological space X as follows:

Definition 1.1. A CW complex X is given in terms a sequence {X(i)}i≥−1 as above by the
space X =

⋃
i≥−1 X

(i) equipped with the corresponding weak topology.

In this thesis, we use Ik = Ik(X) to denote the set of indices of k-cells. If the situation is clear
from the context, we use the index α ∈ Ik to also refer to the corresponding k-cell ekα. Generally,
we use the letter α to refer to k-cells and the letter β to refer to (k + 1)-cells.

13
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Note that each cell is homeomorphic to Dk and can be equipped with one out of two possible
orientations. For each cell c ∈ I• we (arbitrarily1) fix one of the two orientations and denote
by c+ the cell c equipped with this preferred orientation. We denote by c− = −c+ the cell c
equipped with the opposite orientation.
The glueing information coming from the attaching maps can be understood by studying for
each pair of (k+ 1)-cell β ∈ Ik+1 and k-cell α ∈ Ik how β is attached to α. That is, by studying
the composition χβ,α,

∂β+ X(k) X(k)

X(k)\{α}
α+

∂α+

Sk Sk.

≃

χβ ≃

≃
χβ,α

Recall that maps χ : Sk → Sk are classified up to homotopy by their mapping degree deg(χ) ∈ Z.
We use this for the following definition.

Definition 1.2. For β ∈ Ik+1 and α ∈ Ik we define the incidence number [β : α] ∈ Z by

[β : α] = [β+ : α+] = deg(χβ,α) ∈ Z.

Notice that the sign of the incidence number depends on the chosen preferred orientations on β
and α. Changing one orientation flips the sign. The size |[β : α]| is independent of the chosen
orientations.

Definition 1.3. A CW complex X is called locally finite if every point x ∈ X is contained in
finitely many cells c ∈ I•.

In the following, all CW complexes will be locally finite. This condition implies that for all α ∈ Ik
there are only finitely many β ∈ Ik+1 such that [β : α] ̸= 0, and conversely, for all β ∈ Ik+1 there
are only finitely many α ∈ Ik such that [β : α] ̸= 0.

1.1.2 Cellular Chain Complex

Given a locally finite CW complex X, its cellular chain complex Ccell
• (X) is the chain complex

given by objects

Ccell
k (X) =

⊕
α∈Ik

C · α =

{∑
α∈Ik

λα · α

∣∣∣∣∣ λα ∈ C, λα = 0 for almost all α ∈ Ik

}

together with the boundary maps d• : C
cell
• (X)→ Ccell

•−1(X) given by

dk+1

 ∑
β∈Ik+1

λβ · β

 =
∑
α∈Ik

 ∑
β∈Ik+1

[β : α] · λβ

 · α.
The space Ccell

k (X) is endowed with the scalar product given by〈∑
α∈Ik

λα · α,
∑
α∈Ik

µα · α

〉
=
∑
α∈Ik

λαµα,

1This might involve the Axiom of Choice if there are infinitely many cells.
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defining also a norm ∥ · ∥ on Ccell
k (X). With respect to ⟨·, ·⟩, the adjoints d∗ of d are given by

the maps d∗• : C
cell
•−1(X)→ Ccell

• (X),

d∗k+1

(∑
α∈Ik

λα · α

)
=

∑
β∈Ik+1

[∑
α∈Ik

[β : α] · λα

]
· β.

For 0 ≤ k ≤ dim(X), we define the Laplace operators ∆k = dk+1d
∗
k+1+d∗kdk acting on Ccell

k (X).
We may omit the indeces if they are clear from the context. We also define the upper Laplacians
∆up

k = dk+1d
∗
k+1 acting on the cellular chain complex, compare the following diagram:

Ccell
k+1(X)

Ccell
k (X) Ccell

k (X)

Ccell
k−1(X)

dk+1d∗
k+1

dk

∆

∆up
k

d∗
k

Computing ∆up
k explicitly yields the following formula:

∆up
k

(∑
α∈Ik

λα · α

)
=
∑
α∈Ik

 ∑
β∈Ik+1

[β : α]2λα +
∑

α̸=α′∈Ik

∑
β∈Ik+1

[β : α][β : α′]λα′

 · α
=
∑
α∈Ik

 ∑
β∈Ik+1

[β : α]2λα −
∑

α̸=α′∈Ik

∑
β∈Ik+1

−[β : α][β : α′]λα′

 · α.
(1.1)

Example 1.4. Let us take a closer look at the Laplace operator ∆0 acting on Ccell
0 (X). Since

d0 = 0, we have ∆0 = ∆up
0 . Since β ∈ I1 is an interval attached to points α1, α2 ∈ I0, the

incidence numbers [β : α] vanish for all α /∈ {α1, α2}. Further, on the points α1 ̸= α2 in I0,
“orientations” can be chosen such that for every β as above, [β : α1] = −[β : α2] = ±1. In this
setup, β can be viewed as an oriented edge starting at the αi with negative incidence number
[β : αi] = −1 and ending at the αi with positive incidence number [β : αi] = 1. This leads to the
following formula for ∆0 = ∆up

0 :

∆up
0

(∑
v∈I0

λv · v

)
=
∑
v∈I0

∑
e∈I1

[e : v]2λv +
∑

v ̸=v′∈I0

∑
e∈I1

[e : v][e : v′]λv′

 · v
=
∑
v∈I0

|{e ∈ I1 | v ∈ ∂e}| · λv −
∑

v ̸=v′∈I0

|{e ∈ I1 | ∂e = {v, v′}}| · λv′

 · v.
(1.2)

Definition 1.5. We define the cellular L2-chain complex ℓ2Ccell
• (X) as the objects

ℓ2Ccell
k (X) =

{∑
α∈Ik

λα · α

∣∣∣∣∣ λα ∈ C,
∑
α∈Ik

|λα|2 <∞

}
.

The differential d, the inner product together with the adjoints d∗ and the Laplace operators ∆
as well as ∆up can all be viewed as operators acting on ℓ2Ccell

• (X), formally in the same way
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as before, assuming that for every 0 ≤ k ≤ dim(X), every cell α ∈ Ik only has finitely many
non-zero incidence numbers [α : γ] ̸= 0 for γ ∈ Ik−1 and [β : α] ̸= 0 for β ∈ Ik+1.

2

1.1.3 G-CW Complexes

In this thesis, we will only consider a restricted class of G-CW complexes and will therefore give
an adapted definition.

Definition 1.6. Let G be a group and X a CW complex with left action G ↷ X. Then X is
called a free G-CW complex of finite type if the projection X ↠ G\X is a regular covering and

G\X is a finite CW complex.

In particular, the finite CW complex G\X comes with a CW structure such that Ik(G\X ) is
finite and contains exactly one k-cell of each G-type of k-cells in G ↷ Ik(X). In this case, we
choose preferred orientations on the cells Ik(G\X ) and lift them to Ik(X) so that the action of
G preserves the chosen orientation. In particular, the incidence numbers are invariant under the
G-action, that is, [β : α] = [g.β : g.α] for all α ∈ Ik(X), β ∈ Ik+1(X) and g ∈ G.

1.2 Graphs

1.2.1 Definition and Notation

Definition 1.7. A graph G = (V,E, φ) consists of a set V = {vi | i ∈ IV } of vertices, a set
E = {ej | j ∈ IE} of edges and a glueing function φ : E → {U ⊂ V | |U | ∈ {1, 2}} assigning to
each edge e ∈ E its set of end points φ(e) = {v1, v2}.
If v1 = v2, so φ(e) = {v1} contains only one end point, we call e a loop. If there are two edges
e1, e2 ∈ E with φ(e1) = φ(e2), we call e1 and e2 multiedges of G. If the meaning is clear from
the context, we simplify notation by suppressing the φ in the notation and also write e for the
set φ(e).

Sometimes, it makes sense to view one of the end points v1 as the starting point of e = {v1, v2}
and view e as a directed edge from v1 to v2. In this case, we write e = (v1, v2). In particular, an
edge e = {v1, v2} may be interpreted as e = (v1, v2) or e = (v2, v1).

Definition 1.8. Let G = (V,E) be a graph. Two vertices v1, v2 ∈ V are called neighbours if

there is an edge e = {v1, v2} ∈ E. In this case we write v1
e∼ v2 or simply v1 ∼ v2.

A path w in G is a sequence

w =
(
v0

e1∼ v1
e2∼ · · · en∼ vn

)
of consecutive neighbours v0, . . . , vn ∈ V and edges e1, . . . , en ∈ E. We call w a path from v0 to
vn. Further we call v0 the starting point of w, vn the end point of w and n = |w| the length of
w. For 0 ≤ k ≤ n we denote w(k) = vk. A path is called a circle if w(0) = w(|w|). To emphasize
the starting point and end point of a path, for a path w from v ∈ V to v′ ∈ V we may write
w = (v → v′) or w = (v

n−→ v′) for such a path of length n.

Definition 1.9. A graph G = (V,E) is called connected if for all v, v′ ∈ V there exists a path
w = (v → v′) from v to v′.

2This will be assumed throughout this thesis and is always true in the case of free G-CW complexes of finite
type, which we will see the next subsection and work with throughout this thesis. We will show that these
operators are bounded later in Lemma 3.21.
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Definition 1.10. Let G = (V,E) be a graph and v ∈ V a vertex. We define the degree
deg(v) ∈ N0 of v to be the number of edges containing v (counting loops twice), that is

deg(v) = | {e ∈ E | ∃v ̸= v′ ∈ V : e = {v, v′}} |+ 2 · | {e ∈ E | e = {v}} |.

A graph G is called d-regular if deg(v) = d holds for all v ∈ V . For v, v′ ∈ V we write

deg(v, v′) =

{
| {e ∈ E | e = {v, v′}} | if v ̸= v′,

2 · | {e ∈ E | e = {v}} | if v = v′,

for the number of (multi-)edges between v and v′ (counting loops twice).

Definition 1.11. Let G = (V,E) be a graph and let

ℓ2V =

{∑
v∈V

λv · v

∣∣∣∣∣ λv ∈ C,
∑
v∈V

|λv|2 <∞

}
.

We define the graph Laplacian ∆ = ∆G ↷ ℓ2V by

∆

(∑
v∈V

λv · v

)
=
∑
v∈V

 ∑
e={v,v′}

(λv − λv′)

 · v
=
∑
v∈V

[
deg(v)λv −

∑
v∼v′

deg(v, v′)λv′

]
· v.

(1.3)

Example 1.12. Let X be a CW complex. Then its 1-skeleton X(1) is a graph with vertices
V = I0 given by the 0-cells and edges E = I1 given by the 1-cells.3 In this case, the graph
Laplacian agrees with the cellular Laplacian,

∆G = ∆0 ↷ ℓ2V = ℓ2Ccell
0 (X),

as can be seen directly by comparing Equation (1.2) and Equation (1.3).

1.2.2 Cayley Graphs and Growth Rates

A Cayley graph of a group G is a graph associated to the group G and one of its generating sets.
It gives a geometric interpretation of the group G. This subsection is a very brief introduction to
some concepts from geometric group theory that are needed later on in this thesis. More details
and proofs to the statements can be found in C. Löh’s book [Löh17].

Definition 1.13. Let G be a finitely generated group with generating set S. We call S symmetric
if S = S−1, that is, s ∈ S implies s−1 ∈ S. We call S simple if e /∈ S. We call a pair (G,S)
a symmetrically simply finitely generated (in this section abbreviated to ssfg) group if G is a
group with finite symmetric simple generating set S.

Definition 1.14. Let (G,S) be a ssfg group. We define the Cayley graph Cayley(G,S) to be
the graph G = (V,E) with vertices V = G and exactly one edge e = {g, g′} between g, g′ ∈ G if
and only if there exists s ∈ S such that gs = g′ holds.4 If the generating set is clear from the
context or if a result holds true for all ssfg generating sets we may omit it in the notation and
simply write Cayley(G), referring to (any) Cayley(G,S).

3This graph possibly contains loops and multiedges.
4By symmetry of S this is equivalent to requiring g′s = g for some s ∈ S.
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Remark 1.15. Note that Cayley(G,S) is a |S|-regular graph: Each vertex g ∈ V has |S|
neighbours {gs | s ∈ S}. With d = |S|, the graph Laplacian ∆Cayley(G,S) is given by

∆Cayley(G,S)

∑
g∈G

λg · g

 =
∑
g∈G

[
dλg −

∑
s∈S

λgs

]
· g. (1.4)

Definition 1.16. Let (G,S) be a ssfg group. We define the length |g| of an element g ∈ G to
be the minimal number of generators s ∈ S needed to write g as a product of these generators,

|g| = min {n ∈ N0 | ∃s1, . . . , sn ∈ S : g = s1 · · · sn} .

Using this, we define the word metric d(G,S) on G by

d(G,S)(g, g
′) = |g−1g′|.

We define the ball B(G,S)(n) = {g ∈ G | |g| ≤ n} of radius n ∈ N0, and the growth function

β(G,S) : N0 → N, β(G,S)(n) = |B(G,S)(n)|.

Definition 1.17. We call G a finitely generated group of polynomial growth if there is a finite
symmetric simple generating set S such that

β(G,S)(n) ∼ nN(G,S) for n→∞,

with some constant N(G,S) ∈ R≥0 called the growth rate of (G,S).

It turns out that the growth rate of (G,S) is independent of the finite symmetric simple generating
set S, that is, for any other finite symmetric simple generating set S′ we have N(G,S) =
N(G,S′), compare [Löh17, Prop. 6.2.4]. Hence we call N(G) = N(G,S) the growth rate of G if
(G,S) is of polynomial growth for any finite symmetric simple generating set S.
By a result of M. Gromov [Gro81], the groups of polynomial growth are shown to be precisely
the virtually nilpotent groups.

Definition 1.18. A group G is called nilpotent of step s if its lower central series {Gi}i∈N0
,

defined iteratively by
G0 = G and Gi+1 = [Gi, G],

terminates in the sth step, that is, Gs = {e} but Gs−1 ̸= {e}.
A group G is called virtually nilpotent if there is a nilpotent group G′ such that G′ is a subgroup
of G and the index [G : G′] of G′ in G is finite.

For nilpotent groups, H. Bass [Bas72] and Y. Guivarc’h [Gui73] have both shown independently
that their growth rate can be computed by the following formula.

Theorem 1.19 (Bass-Guivarc’h formula). Let G be a nilpotent group. Then it is of polynomial
growth with growth rate

N(G) =
∑
k≥1

k · rk (Gk−1/Gk ) ∈ N.

Notice that this is always an integer.

Theorem 1.20 (Gromov, 1981). Let G be a finitely generated group. Then G is of polynomial
growth if and only if G is virtually nilpotent.
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1.3 Random Walks

This section provides a very brief introduction to random walks in order to fix the notation used
in this thesis. A detailed introduction to the topic can be found in W. Woess’ book [Woe00].

1.3.1 Definition and Notation

Definition 1.21. A random walk R = (Ω, P ) is a Markov chain {Xn | n ∈ N0} of random vari-
ables taking values in the state space Ω and with transition probabilities given by the propagation
operator P = (Px′,x)x,x′∈Ω. That is, for every pair x, x′ ∈ Ω there is a transition probability
Px′,x = P(x→ x′) such that

P(X•+1 = x′ |X• = x) = P(x→ x′).

As a propagation operator, in particular
∑

x′∈Ω P(x→ x′) = 1 for all x ∈ Ω. If X0 = x0, we call
x0 the starting point. We write R(x0) for the random walk starting at x0.

Definition 1.22. Given a graph G = (V,E), a (nearest neighbour) random walk RG = (V, P )
on G is given by the state space Ω = V and a propagation operator P such that

P(v → v′) ̸= 0 only if v ∼ v′,

that is only if there is an edge e = (v, v′) ∈ E.

Definition 1.23. If G is a d-regular graph, then the uniform nearest neighbour random walk
RG is the nearest neighbour random walk on G satisfying P(v → v′) = d(v,v′)/d for all v ∼ v′ and
P(v → v′) = 0 for v ̸∼ v′.5

In the following, if we talk about the random walk on a graph, we mean the uniform nearest
neighbour random walk.
Suppose at the current step of the random walk the probability of our random walker being at
v ∈ V is given by λv ∈ [0, 1]. Then we can use the formal sum

∑
v∈V λv ·v to describe the current

state of the random walk. Using this, we extend the definition of the propagation operator to an
operator acting on ℓ2V in the following way.

Definition 1.24. We view the propagation operator P as acting on ℓ2V by

P

(∑
v∈V

λv · v

)
=
∑
v∈V

[∑
v′∈V

Pv,v′λv′

]
· v =

∑
v∈V

[∑
v′∈V

P(v′ → v) · λv′

]
· v.

Note that we can model more than one step of the random walk at the same time by considering
the powers of the operator P . The probability of moving from v ∈ V to v′ ∈ V in exactly n steps
is given by

P(v n−→ v′) = (Pn)v′,v.

We use this to define the following notion.

Definition 1.25. Let RG(v0) be a random walk on G = (V,E) with starting point v0 ∈ V . We
define the return probability (function) p : N0 → [0, 1] by

p(n) = ⟨Pn(v0), v0⟩ℓ2V = P(v0
n−→ v0).

5If G has no loops or multiedges, the moving probabilities are given by P(v → v′) = 1/d for all v ∼ v′.
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We extend this to a function p : ℓ2V × N0 → R by

p(ω, n) = pω(n) = ⟨Pn(ω), ω⟩ℓ2V

using the extension of P to an operator P ↷ ℓ2V .

If G is a Cayley graph of a group G, the precise formula of p(n) depends on the finite symmetric
simple generating set S used in the construction of G. However, the asymptotic behaviour of
p(n) as n→∞ is independent of the choice of such a generating set.

Example 1.26. Consider G = (Z,+) with the symmetric simple generating set S = {±1}. The
Cayley graph G = Cayley(G,S) is given by the integers as vertices with edges between any two
consecutive integers, forming the real line R. The uniform nearest neighbour random walk R(0)
on G starting at 0 ∈ Z is the random walk that moves at each step with probability 1/2 to the left
(from Xn to Xn+1 = Xn− 1) and with probability 1/2 to the right (from Xn to Xn+1 = Xn+1),
compare Figure 1.1.

-3 -2 -1 0 1 2 3

P = 1/2

P = 1/2

Figure 1.1: The Cayley graph of Z

Here, the return probability pZ(n) = P(0 n−→ 0) can be easily computed. A random walker
returning to the origin must have taken the same number of steps to the left as to the right.
Hence, pZ(2m+1) = 0 for all odd natural numbers n = 2m+1 while for even n = 2m we obtain

pZ(2m) =

(
2m

m

)(
1

2

)m(
1

2

)m

=

(
2m

m

)
1

22m
.

Using Stirling’s formula, this behaves asymptotically like

pZ(2m) ∼ n−1/2 as m→∞.

Indeed, this asymptotic behaviour holds true for all symmetric generating sets of Z as we will
see from the upcoming Theorem 1.27.
A simple trick can be used to see that for G = Z2 the asymptotic behaviour is given by

pZ2(2m) ∼ n−1 as m→∞.

For this, we consider the generating set S = {(0,±1), (±1, 0)} of Z2. The Cayley graph
Cayley(G,S) is then given by the integer points in R2 as vertices with edges between any vertex
and the four direct neighbours. A random walker can therefore walk from each vertex to any
of the four direct neighbours with probability 1/4. If we rotate this picture by π/4 the possible
moves of the random walker become diagonal moves with an up/down component and a left/right
component, compare figure Figure 1.2 where the new components are drawn in red.
Computing the probabilities for the individual components, we note that they are independent
random variables taking each of their two possible values with probability 1/2 and therefore
forming two random walks equivalent to the random walk on Cayley(Z, {±1}). Since they are
independent, it follows that

pZ2(2m) = (pZ(2m))2 ∼ n−1 as m→∞.
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P = 1/4

P = 1/4

P = 1/4

P = 1/4

Figure 1.2: The Cayley graph of Z2

While this trick does not generalise to higher dimensions6, for N ≥ 1 one can find the generalised
asymptotic behaviour of the return probability of the random walk on ZN as

pZN (2m) ∼ n−N/2 as m→∞.

The return probability for a group G is independent of the choice of generating set and can be
given in terms of the growth rate of G, as the following theorem by N. Th. Varopoulos [Var84]
shows.

Theorem 1.27 (Varopoulos, 1984). Let G be a finitely generated group. Then there is a constant
C > 0 such that the return probability p(n) of the random walk on G satisfies

C−1n−a ≤ p(n) ≤ Cn−a

for all even n ∈ N if and only if the group G has polynomial growth precisely of degree 2a.

While the constant C depends on the choice of generating set S, the exponent a does not.
Notice that the restriction to even n ∈ N comes from the fact that it might be impossible to have
circles of odd length in our Cayley graph, see Example 1.26. There is another way to avoid this
problem, which we will consider in the following subsection.

1.3.2 Lazy Random Walks

Definition 1.28. Let R = (Ω, P ) be a random walk and q ∈ [0, 1]. We define the q-lazy random
walk Rq associated to R as the random walk Rq = (Ω, Pq) on Ω that stays put (Xn+1 = Xn) with

6Z3 with the corresponding generating set has a 6-regular Cayley graph while the graph obtained by adding
one dimension to the Cayley graph of Z2 in the spirit of the trick would produce an 8-regular graph.
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probability q and moves according to P with probability 1−q. In other words, Pq = q Id+(1−q)P
or explicitly for v, v′ ∈ Ω,

(Pq)v′,v = Pq(v → v′) = qδv=v′ + (1− q)P(v → v′) =

{
q + (1− q)P(v → v) if v = v′

(1− q)P(v → v′) if v ̸= v′.

For a random walk R = R(G) on a graph G = (V,E), we denote the return probability of Rq

(with respect to a fixed starting vertex) in the same manner by pq(n). Indeed, for a random
walk R(v0) with some starting vertex v0 and q ∈ [0, 1), the return probabilities p(n) and pq(n)
have the same asymptotic behaviour for n → ∞. This can be seen since for large n ∈ N the
q-lazy random walk is expected to stay put in qn moves and move (1 − q)n steps according to
the non-lazy random walk. It follows that p(n) ∼ pq((1−q)n) as n→∞. Since 1−q is constant,
this implies the result about the asymptotic behaviour.
One can show that the return probability pq(n) of the q-lazy random walkRq = (Cayley(G,S), Pq)
on any Cayley graph for q ≥ 1/2 is monotonously decreasing as n increases. This will become
clearer in the following subsection. Using this, we can reformulate N. Th. Varopoulos’ result by
replacing p(n) with p1/2(n) and dropping the condition that n ∈ N needs to be even.

1.3.3 Connection to the Laplacian

On Cayley graphs, the propagation operator of the random walk relates nicely to the graph
Laplacian as can be easily computed. One finds the following relation:

Lemma 1.29. Let G be finitely generated with finite symmetric simple generating set S. Then
the propagation operator P of the random walk on Cayley(G,S) relates to the graph Laplacian
∆ on Cayley(G,S) by the formula

Id−P =
1

|S|
∆ or equivalently P = Id− 1

|S|
∆ (1.5)

and more generally for q ∈ [0, 1], the propagation operator Pq of the q-lazy random walk satisfies

Id−Pq =
1− q

|S|
∆ or equivalently Pq = Id−1− q

|S|
∆. (1.6)

From this relation, we can translate properties of the graph Laplacian to properties of the random
walk and vice versa. For example, we can relate the spectra of ∆ and Pq for q ∈ [0, 1).

Lemma 1.30. Let (G,S) be finitely generated with finite symmetric simple generating set, let ∆
be the graph Laplacian of G = Cayley(G,S), let q ∈ [0, 1] and let Pq be the propagation operator
of the q-lazy random walk on G. Then the spectrum σ(∆) is contained in the interval [0, 2|S|]
and σ(Pq) ⊂ [−1 + 2q, 1]. In particular, Pq is non-negative for q ≥ 1/2 and positive for q > 1/2.

Proof. It is shown, for example, by H. Kesten in [Kes59b, Lem. 2.2] that σ(∆) ⊂ [0, 2|S|],
see also [Kes59a, Lem. 1].7 The claimed bounds of the spectra of the Pq follow directly from
Equation (1.6).

7In the notation of the latter, ∆ = |S| −A, where A is the adjacency matrix, and it is shown in Lemma 1 that
σ(A/|S|) ⊂ [−1, 1]. Alternatively, this also follows as a special case from Lemma 3.21 in this thesis.



Chapter 2

L2-Invariants

In this chapter we review definitions and results underlying L2-invariants. In particular, we
briefly review the notions of group von Neumann algebras and modules, L2-Betti numbers and
spectral density functions. Finally, we discuss several (equivalent) definitions and approaches to
Novikov-Shubin invariants. The definitions and results are mainly taken from W. Lück ([Lüc02]
and [Lüc09]) and H. Kammeyer ([Kam14] and [Kam19]).
From now on, all groups are assumed to be finitely generated and all manifolds are assumed to
be connected manifolds without boundary unless stated otherwise.

2.1 Group von Neumann Algebras and Modules

In this section we review the notions of group von Neumann algebras, modules over these algebras
and their dimensions.
Let G be a group with neutral element e ∈ G. The set of square-summable formal complex linear
combinations of G,

ℓ2G =

∑
g∈G

λg · g

∣∣∣∣∣∣ λg ∈ C,
∑
g∈G

|λg|2 <∞

 ,

equipped with the scalar product〈∑
g∈G

λg · g,
∑
g∈G

µg · g

〉
=
∑
g∈G

λgµg

is a Hilbert space. This Hilbert space contains G and in particular e ∈ G ⊂ ℓ2G.

Definition 2.1. We define the group von Neumann algebra NG of G by

NG = B(ℓ2G)G,

the G-equivariant bounded operators on ℓ2G. This forms a weakly closed ∗-subalgebra of B(ℓ2G).
The complex group ring CG can be embedded into this algebra by sending g0 ∈ G to right
multiplication rg−1

0
: ℓ2G → ℓ2G given on g ∈ G by rg−1

0
(g) = gg−1

0 and extending linearly. On

NG, we can define the von Neumann trace trNG by

trNG f = ⟨f(e), e⟩ℓ2G.

23
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Definition 2.2. A Hilbert space V with isometric left G-action is called a Hilbert NG-module
if there exists a Hilbert space H and an isometric G-embedding V ↪→ H ⊗ ℓ2G.

Definition 2.3. Let {bi | i ∈ I} be an orthonormal basis of H. For a positive endomorphism
f ↷ H ⊗ ℓ2G we define the von Neumann trace

trNG(f) =
∑
i∈I

⟨f(bi ⊗ e), bi ⊗ e⟩ ∈ [0,∞].

We extend this definition to the Hilbert NG-module V using the embedding into H ⊗ ℓ2G. Let

π : H ⊗ ℓ2G → H ⊗ ℓ2G such that there is a G-isometric ismorphism u : imπ
∼=−→ V . Then for

any positive endomorphism f ↷ V we define the composition

f : H ⊗ ℓ2G
π−→ imπ

u−→ V
f−→ V

u−1

−−→ imπ ↪→ H ⊗ ℓ2G

and define the von Neumann trace trNG(f) of f by trNG(f) = trNG(f).

This definition is independent on the choices made, compare [Lüc02, Def. 1.8], and defines a
trace function satisfying several important properties listed in [Lüc02, Thm. 1.9].

Using this trace, we can define a notion of dimension of Hilbert NG-modules as follows.

Definition 2.4. Let V be a Hilbert NG-module. We define its von Neumann dimension by

dimNG(V ) = trNG(idV : V → V ) ∈ [0,∞].

This defines a dimension function on Hilbert NG-modules satisfying multiple important prop-
erties, see [Lüc02, Thm. 1.12]. Note that this dimension need not be an integer.

2.2 L2-Betti Numbers

The L2-Betti numbers can be defined combinatorially in terms of a CW structure or analytically
in terms of a Riemannian metric. We briefly review both definitions, closely following W. Lück’s
book [Lüc02] but with adapted notation.

Combinatorial Definition.

Definition 2.5. Let X be a free G-CW complex of finite type and let Ccell
• (X) be the cellular

ZG-chain complex of X. Then the cellular L2-chain complex of X is given by

ℓ2Ccell
• (X) = ℓ2G⊗ZG Ccell

• (X)

and the cellular L2-cochain complex of X by

ℓ2C•
cell(X) = homZG(C

cell
• (X), ℓ2(G)).

Here, fixing a cellular basis for Ccell
k (X) yields an explicit isomorphism

ℓ2Ccell
k (X) ∼= ℓ2Ck

cell(X) ∼=
⊕

i∈Ik(G\X)

ℓ2G.
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Definition 2.6. In the setting above we define the reduced (cellular) L2-homology of X and its
L2-Betti numbers by

H
(2)
k (X;NG) = ker(dk)

/
im(dk+1) ,

b
(2)
k (X;NG) = dimNG(H

(2)
k (X;NG)),

where d• denotes the differential in the L2-chain complex. Similarly we define the reduced
(cellular) L2-cohomology of X and its L2-Betti number by

Hk
(2)(X;NG) = ker(δk)

/
im(δk−1) ,

bk(2)(X;NG) = dimNG(H
k
(2)(X;NG)),

where δ• denotes the differential of the L2-cochain complex.

Since H
(2)
k (X;NG) and Hk

(2)(X;NG) are isometrically G-isomorphic, the L2-Betti numbers
agree, that is,

b
(2)
k (X;NG) = bk(2)(X;NG),

compare [Lüc02, Rem. 1.31].

Remark 2.7. Notice that the definition of H
(2)
k (X;NG) differs from the classical definition of

homology theories by considering ker(d) modulo the closure of the image im(d) as opposed to

just the image by itself. This is important, because this ensures that H
(2)
k (X;NG) inherits the

structure of a Hilbert space. However, this difference(
ker(dk)

/
im(dk+1)

)
⊕
(
im(dk+1)

/
im(dk+1)

)
∼= ker(dk)/im(dk+1)

is very interesting and relates directly to the Novikov-Shubin invariants that we will study later.

Analytic Definition. The L2-Betti numbers can also be viewed from an analytic point of
view, giving rise to a second definition. Let M be a complete Riemannian manifold without
boundary of dimension n and let (Ω•(M), d•) be its deRham cochain complex of smooth forms.
Let Ω•

c(M) be the subcomplex of smooth forms with compact support. On each degree of Ω•
c(M)

there is an inner product. For ω, η ∈ Ωk
c (M) this is given by

⟨ω, η⟩ =
∫
M

ω ∧ ∗η,

where ∗ denotes the Hodge-∗-operator ∗k : Ωk(M) → Ωn−k(M). As usual, this also defines a
norm by ∥ω∥2 = ⟨ω, ω⟩. On Ω•(M) we define the adjoint dk,∗ : Ωk+1(M)→ Ωk(M) by

dk,∗ = (−1)kn+n+1 ·
(
Ωk+1(M)

∗k+1

−−−→ Ωn−k−1(M)
dn−k−1

−−−−−→ Ωn−k(M)
∗n−k

−−−→ Ωk

)
.

Indeed, d and d∗ are formally adjoint on Ω•
c(M) with respect to the inner product above. This

defines Laplace operators ∆k acting on Ωk(M) by

∆k = dk−1 ◦ dk−1,∗ + dk,∗ ◦ dk.
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We denote by L2Ω•(M) the Hilbert space completion of Ω•
c(M). We call this the L2-cochain

complex of M and define the space of L2-integrable harmonic smooth k-forms by

Hk
(2)(M) =

{
ω ∈ Ωk(M)

∣∣∆kω = 0, ∥ω∥L2 <∞
}
.

Using completeness of M , if ω ∈ Ωk(M) and η ∈ Ωk+1(M) and ω, dω, η and d∗η are all square-
integrable then

⟨dω, η⟩ = ⟨ω, d∗η⟩.

Furthermore, we obtain a Hodge-deRham Theorem, compare [Lüc02, Thm. 1.57]:

Theorem 2.8 (L2-Hodge-deRham Theorem). Let M be a complete Riemannian manifold with-
out boundary. Then we obtain an orthogonal decomposition

L2Ωk(M) = Hk
(2)(M)⊕ d(Ωk−1

c (M)))⊕ d∗(Ωk+1
c (M))).

Moreover, if M is a cocompact free proper G-manifold with G-invariant Riemannian metric, it
follows by a theorem of J. Dodziuk [Dod77] that Hk

(2)(M) is a finitely generated NG-module.

Hence we can define the L2-Betti numbers

bk(2)(M) = dimNG(Hk
(2)(M)).

Remark 2.9. As W. Lück explains in more detail in [Lüc09, Sec. 2.3], originally the L2-Betti
numbers were defined by M. F. Atiyah [Ati76] in terms of heat kernels e−t∆ and their asymptotic
behaviour for large times t → ∞. For a smooth Riemannian manifold M with cocompact free
proper G-action by isometries its analytic kth L2-Betti number is given by

bk(2)(M) = lim
t→∞

∫
F
trC(e

−t∆k

(x, x)) d volx,

where F is a fundamental domain of the G-action on M and trC denotes the trace of an endo-
morphism of a finite-dimensional vector space.

Relation and Properties. As shown in W. Lück’s book [Lüc02, Sec. 1.4], the combinatorial
and analytic L2-Betti numbers agree whenever both are defined. The L2-Betti numbers sat-
isfy many important properties, such as homotopy invariance, Poincaré duality and a Künneth
formula, see [Lüc02, Thm. 1.35].

2.3 Spectral Density Functions

While L2-Betti numbers measure the size of ker(d)/im(d), we now want to take a closer look
at the difference im(d)/ im(d) to the ordinary homology. For this purpose, we define spectral
density functions. We consider the following setting:
Let U and V be Hilbert NG-modules and let f : dom(f) ⊂ U → V be a closed densely defined
G-equivariant operator. Then f∗f : dom(f∗f) ⊂ U → U is a self-adjoint operator and, by the

spectral theorem, it defines a family {Ef∗f
λ }λ≥0 of G-equivariant spectral projections.

Definition 2.10. In this setting, we define the spectral density function F (f) of f by

F (f) : R≥0 → [0,∞], F (f)(λ) = dimNG

(
imEf∗f

λ2

)
= trNG(E

f∗f
λ2 ).

We call f Fredholm if there is λ > 0 such that F (f)(λ) <∞.
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Note that by definition, the function F (f) is monotonously increasing and right-continuous.

Remark 2.11. This generalises the idea of counting eigenvalues. If f was a linear operator
between finite-dimensional vector spaces, the eigenvalues of f∗f would correspond to the squares

of eigenvalues of f . In this setting, the operator Ef∗f
λ corresponds to the projection onto the

direct sum of eigenspaces to eigenvalues less or equal to λ2 of f∗f . In particular, taking its trace
corresponds to counting (with algebraic multiplicity) eigenvalues ≤ λ2 of f∗f or equivalently
eigenvalues of absolute value ≤ λ of f .

From now on, we will focus on Fredholm spectral density functions.

Definition 2.12. Let f be Fredholm. Then we define the L2-Betti number of f by

b(2)(f) = F (f)(0) = dimNG(ker f) ∈ [0,∞),

measuring the dimension of the kernel of f .

This generalises the definition of L2-Betti numbers in the sense that b
(2)
k (X) = b(2)(∆k).

On spectral density functions, an important equivalence relation is given their behaviour near
zero in terms of the following definition.

Definition 2.13. Let F,G : R≥0 → [0,∞] be monotonously increasing and right-continuous
functions. They are called dilatationally equivalent if there are constants C > 0 and λ0 > 0 such
that

G(C−1λ) ≤ F (λ) ≤ G(Cλ) for all λ ∈ [0, λ0].

One readily checks that this defines indeed an equivalence relation.

Lastly, we recall a part of Lemma 2.4 from W. Lück’s book [Lüc02, Lem. 2.4]:

Lemma 2.14. Let U and V be Hilbert NG-modules. Let f : dom(f) ⊂ U → V be a G-
equivariant closed densely defined operator. Suppose that f is Fredholm and b(2)(f∗) is finite.
Then f∗ is Fredholm and

F (f)(λ)− b(2)(f) = F (f∗)(λ)− b(2)(f∗).

We will use this throughout the thesis, and in particular in Chapter 3, to compute the Novikov-
Shubin invariants (defined in the next chapter in terms of this difference) of the cellular differential
d by studying the upper Laplacian ∆up = dd∗ appearing in the definition of F (d∗) instead of the
lower Laplacian d∗d in the definition of F (d).

2.4 Novikov-Shubin Invariants

We study these spectral density functions more closely. While the value at zero measures the
size of the kernel, we can view F (f)(λ) as measuring, in some sense, the number of G-types of
eigenvalues or the density of the spectrum of f up to absolute value λ. Letting λ ↘ 0 should
therefore give us a good idea of how much spectrum there is close to zero and thus of the
size of the difference im(d)/ im(d). This will give rise to our first definition of Novikov-Shubin
invariants. Afterwards, we will discuss several other possible approaches to, and definitions for,
these invariants.
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2.4.1 via Spectral Density Functions

Given a spectral density function F (f) as above, we define the Novikov-Shubin invariant α(f)
to measure the asymptotic behaviour of F (f)(λ) → F (f)(0) as λ ↘ 0. The underlying idea is
to attempt F (f)(λ)− F (λ)(0) ∼ λα and solve for the exponent α.

Definition 2.15. Let F : R≥0 → [0,∞] be a monotonously increasing right-continuous function.
We define the Novikov-Shubin invariant α(F ) ∈ [0,∞] ∪ {∞+} by

α(F ) = lim inf
λ↘0

log(F (λ)− F (0))

log(λ)

if F (λ) > F (0) for all λ > 0 and formally by α(F ) =∞+ otherwise.

These Novikov-Shubin invariants satisfy many interesting properties [Lüc02, Lem. 2.11], for
example, they are invariant under dilatational equivalence, that is, if F and G are dilatationally
equivalent then α(F ) = α(G).
We are interested, in particular, in the Novikov-Shubin invariants associated to the operators d
and ∆ we encountered in the cellular and analytic definitions of the L2-Betti numbers.

Cellular Version. For a free G-CW complex X, recall the differential of the cellular L2-chain
complex dk : ℓ

2Ccell
k (X;NG)→ ℓ2Ccell

k−1(X;NG) and the Laplace operator ∆k ↷ ℓ2Ccell
k (X;NG).

Definition 2.16. We define the cellular spectral density functions

Fk(X) = F (dk), F∆
k (X) = F (∆k)

and the corresponding Novikov-Shubin invariants

αk(X) = α(Fk+1(X)) = lim inf
λ↘0

log(F (dk+1)(λ)− b(2)(dk+1))

log(λ)
,

α∆
k (X) = α(F∆

k (X)) = lim inf
λ↘0

log(F (∆k)(λ)− b
(2)
k (X;NG))

log(λ)
,

where we use that b(2)(∆k) = b
(2)
k (X;NG)).

Note that we differ here from the notation used in W. Lück’s book [Lüc02]: The index of the
Novikov-Shubin invariant αk(M) here has shifted down by one compared to W. Lück’s convention
and agrees with his αk+1(M). For α∆ the indices agree again. Both choices of indices appear in
the literature, depending on the preference of homological or cohomological notation: The choice
made here means that no index shift appears in the analytic definition below.

Analytic Version. Alternatively, given a complete Riemannian manifold M , we can use the
analytic counterparts dk : Ωk(M) → Ωk+1(M) and ∆k ↷ Ωk(M). For this, denote by dkmin and
∆k

min the minimal closures of the densely defined operators

dk : Ωk
c (M)→ L2Ωk+1(M) and ∆k : Ωk

c (M)→ L2Ωk(M),

respectively. The operator dkmin induces an operator

dk,⊥min : dom(dkmin) ∩ im(dk−1
min )

⊥ → im(dk+1,∗
min )⊥.
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Definition 2.17. With the notation above, we define the analytic spectral functions of M by

F a
k (M) = F (dk,⊥min), F a,∆

k (M) = F (∆k
min)

and the analytic Novikov-Shubin invariants of M by

αa
k(M) = α(F a

k (M)),

αa,∆
k (M) = α(F a,∆

k (M)).

Relation and Properties. Firstly, the invariants α∆
• can be recovered from the invariants α•

by the following lemma [Lüc02, Lem. 2.66]:

Lemma 2.18. Let M be a cocompact free proper G-manifold without boundary and with G-
invariant Rimannian metric. Then for 0 ≤ k ≤ dim(M),

α∆
k (M) =

1

2
min{αk−1(M), αk(M)}.

Secondly, the two different notions of Novikov-Shubin invariants agree whenever both are defined,
compare [Lüc02, Thm. 2.68]:

Theorem 2.19. Let M be a cocompact free proper G-manifold without boundary and with G-
invariant Riemannian metric. Then the cellular and the analytic spectral density functions are
dilatationally equivalent and in particular for all 0 ≤ k ≤ dimM ,

αk(M) = αa
k(M), α∆

k (M) = αa,∆
k (M).

Therefore, we omit the superscript a in the analytic version. Furthermore, we prefer to compute
α•(M) since this yields α∆

• (M) for free.

Remark 2.20. Notice that F (λ) → F (0) converges more quickly if α is large, so that large
Novikov-Shubin invariants indicate a very sparse spectrum close to zero or small difference
im(d)/ im(d). This is one of the reasons some authors prefer the notion of capacity c, defined by
c = 1/α, which describes the size of the spectrum near zero more intuitively.

2.4.2 Via Heat Kernel Asymptotics

We saw in Remark 2.9 that the L2-Betti numbers are classically defined in terms of the heat
kernel and its long-term asymptotic behaviour. This is also true for Novikov-Shubin invariants.
A good account of this is given by M. Gromov and M. A. Shubin in [GS91]. Considering the
same integral as in Remark 2.9,

θ(t) =

∫
F
trC(e

−t∆k

(x, x)) d volx,

where F is a fundamental domain for the G-action, the L2-Betti numbers are obtained as

b
(2)
k (M) = F (∆k)(0) = lim

t→∞
θ(t).

We can also use this definition in terms of the heat operator to define Novikov-Shubin invariants.
Writing limt→∞ θ(t) = θ(∞), the difference θ(t)− θ(∞) decreases as t0 →∞ and by [GS91],

F (∆k)(λ)− F (∆k)(0) ∼ λα as λ↘ 0 ⇐⇒ θ(t)− θ(∞) ∼ t−α as t→∞,
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and even more precisely

α∆
k (M) = lim inf

λ↘0

log(F (∆k)(λ)− F (∆k)(0))

log(λ)
= − lim inf

t→∞

log(θ(t)− θ(∞))

log(t)
,

giving us an equivalent description of the Novikov-Shubin invariants in terms of the long-term
asymptotic behaviour of the heat operator.

Remark 2.21. In particular, the heat decays more quickly if α is large.

2.4.3 Via Near Cohomology

An approach that turned out very useful when it comes to computing Novikov-Shubin invariants
is the notion of near cohomology cones introduced by M. Gromov and M. A. Shubin [GS92].

Definition 2.22. Let M be a complete Riemannian manifold without boundary and with a
cocompact free proper action G ↷ M . For 0 ≤ k ≤ dim(M) we define the near cohomology cone
of dk of radius λ by

Cλ(d
k) =

{
ω ∈ L2Ωk(M) ∩ (ker dk)⊥

∣∣ ∥dkω∥ ≤ λ∥ω∥mod ker dk

}
,

where ∥ · ∥mod ker dk denotes the quotient norm on L2Ωk(M) ∩ (ker dk)⊥ ∼= L2Ωk(M)
/
ker dk.

Let Lλ(d
k) denote the set of closed linear subspaces L ⊂ Cλ(d

k). Then we can recover the
asymptotic behaviour of the spectral density function via

Fk(M)(λ)− Fk(M)(0) = sup
L∈Lλ(dk)

dimNG L,

so we can use these cones to compute the Novikov-Shubin invariants working concretely on the
level of differential forms. For example, this was used by M. Rumin [Rum01] to find estimates
on the Novikov-Shubin invariants of nilpotent Lie groups. We will review this in Chapter 4.

2.4.4 Via Scaling of the Manifolds

Let (M, g) be a Riemannian manifold with Riemannian metric g and a cocompact free proper
group action G ↷ M acting by isometries. For λ ∈ (0,∞), we define a new metric gλ = λ2g by
scaling the metric g with a constant factor λ2, that is, for x ∈M and v, w ∈ TxM ,

(gλ)x(v, w) = λ2gx(v, w) = gx(λv, λw).

In particular, unit vectors with respect to g are now vectors of length λ with respect to gλ.
This can be interpreted as scaling our manifold by a factor of λ: If λ is small, distances shrink.
The boundary operators d are metric independent, however, the scalar product on Ω•(M) and
therefore the adjoint of d depends on the metric. We denote by d∗ = d∗1 the adjoint with respect
to g. Then, the adjoint d∗λ of d with respect to gλ is given by d∗λ = λ−2d∗ :

Lemma 2.23. Let (M, g) be a Riemannian manifold of dimension n and λ > 0. Let ∗ : Ω•M →
Ωn−•M be the Hodge-star operator with respect to the metric g and ∗λ the Hodge-star operator
with respect to the metric gλ. Further let d∗ respectively d∗λ be the adjoint of the deRham
differential d with respect to g respectively gλ. Then in degree 0 ≤ k ≤ dim(M),

∗λ = λn−2k∗ : ΩkM → Ωn−kM and d∗λ = λ−2 · d∗.
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Proof. Let {ϑ1, . . . , ϑn} be a basis of Ω1M that is orthonormal with respect to g. Because
gλ(ϑi, ϑj) = λ2g(ϑi, ϑj), the basis {ϑ1/λ, . . . , ϑn/λ} is orthonormal with respect to gλ. Then for
any permutation σ ∈ Sn of the first n integers,

∗(ϑσ(1) ∧ · · · ∧ ϑσ(k)) = ±ϑσ(k+1) ∧ · · · ∧ ϑσ(n),

∗λ(ϑσ(1) ∧ · · · ∧ ϑσ(k)) = λk ∗λ
(
ϑσ(1)

λ
∧ · · · ∧

ϑσ(k)

λ

)
= ±λk ·

ϑσ(k+1)

λ
∧ · · · ∧

ϑσ(n)

λ

= ±λ2k−n · ϑσ(k+1) ∧ · · · ∧ ϑσ(n),

where the ±-sign depends only on σ and is the same everywhere. By linearity, it follows that
∗λ = λn−2k∗ : ΩkM → Ωn−kM . Since on k-forms dk−1,∗ = d∗ : Ωk(M)→ Ωk−1(M) is given by

(−1)kn+1d∗ : ΩkM
∗−→ Ωn−kM

d−→ Ωn−k+1M
∗−→ Ωk−1M

and because d∗λ = (−1)kn+1 ∗λ d∗λ, the second claim follows from the first since

d∗λ = (−1)kn+1 ∗λ d∗λ = (−1)k(λn−2k∗)d(λn−2n+2k−2∗) = λ−2(−1)nk+1 ∗ d∗ = λ−2d∗.

By definition, the Laplace operator depends on g. Denote by ∆ = ∆1 = dd∗ + d∗d the Laplace
operator with respect to g and ∆λ = dd∗λ + d∗λd the Laplace operator with respect to gλ. Then
it follows directly that

∆λ = λ−2∆.

Thus, also the spectrum of ∆λ is the spectrum of ∆ scaled by the factor 1/λ2, such that the
spectral projectors satisfy

Ed∗λd
1 = Ed∗d

λ2 and E∆λ
1 = E∆

λ2 .

By definition of the spectral density functions, this implies directly that

F•(M, gλ)(1) = dimNG imEd∗λd
1 = dimNG imEd∗d

λ2 = F•(M, g)(λ),

F∆
• (M, g√λ)(1) = dimNG imE

∆∗√
λ
∆√

λ

1 = dimNG imE∆∗∆
λ2 = F∆

• (M, g)(λ).

Using that b
(2)
• (M) is metric-independent, we can write the Novikov-Shubin invariants as

αk(M, g) = lim inf
λ↘0

log(Fk(M, gλ)(1)− b(2)(dk))

log(λ)
,

α∆
k (M, g) = lim inf

λ↘0

log(F∆
k (M, g√λ)(1)− b

(2)
k (M))

log(λ)
,

where we consider now a fixed window of the spectrum, σ(∆)∩[0, 1], however the Laplace operator
varies as we scale down the manifold. This also gives a geometric interpretation of the factor 1/2
in the relation between α∆ and α in Lemma 2.18. While for F (d) the scaling is according to the
parameter λ, for F (∆) the scaling happens with speed given by the square root

√
λ, leading to

an extra factor 1/2 in the exponent α∆ compared to α.
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2.4.5 Via Extended Cohomology

Another important view on Novikov-Shubin invariants is the extended cohomology introduced
by M. Farber [Far98]. This considers the cohomology in the classical sense,

H(2)
• (M) = ker(d)/ im(d),

without taking the closure of im(d). M. Farber constructs a category in which this H(2)
• (M) is

described nicely. In this category, objects decompose into the direct sum of a projective part

and a torsion part. The projective part of H(2)
• (M) corresponds precisely to H

(2)
• (M) and the

torsion part corresponds to im(d)/ im(d) and can be used to formulate an alternative definition
of the spectral density functions and Novikov-Shubin invariants.

2.4.6 Via Stochastic Methods

Lastly, given a free G-CW complex X of finite type, we show in this thesis that Novikov-Shubin
invariants can also be viewed as quantities arising in certain stochastic processes related to X.
Classically, this is known for α0(X). Indeed, proving N. Th. Varopoulos’ Theorem 0.2 one shows
first that α0 = 2a is equivalent to the statement that the return probability p(n) of the random
walk on a Cayley graph of G behaves asymptotically like p(n) ∼ n−a as n → ∞. This will
be reviewed in the next chapter, Chapter 3. Then, we generalise this result to higher degrees,
connecting αk(X) for 0 ≤ k ≤ dim(X) also to a random walk.



Chapter 3

Random Walks and
Novikov-Shubin Invariants

In this chapter we establish the relation between the Novikov-Shubin invariants of a free G-CW
complex of finite type and stochastic processes on the skeleta of this G-CW complex. While
Novikov-Shubin invariants are hard to compute in general, α0(X) is easy to determine using
Theorem 0.2. We recall this theorem in the version given in Lück’s book [Lüc02, Thm 2.46].

Theorem 3.1. Let X be a free G-CW complex of finite type. Denote by N(G) the growth rate
of G. Then

1. α0(X) = N(G) <∞ if and only if G is infinite virtually nilpotent,

2. α0(X) =∞ if and only if G is amenable and not virtually nilpotent, and

3. α0(X) =∞+ if and only if G is finite or non-amenable.

Recall that the growth rate of a (virtually1) nilpotent group can be easily computed using the
lower central series. By the Bass-Guivarc’h formula it is given by

N(G) =
∑
k≥1

k · rk (Gk−1/Gk ) ,

where Gk is the kth term in the lower central series. This directly implies that in this case the
Novikov-Shubin invariant α0 is integer-valued. It also gives a very concrete, geometric interpre-
tation of α0.

It is important to note however, that this result uses a common connection between the Laplacian
in degree zero and the growth rate to the return probability of a random walk taking place on
the 1-skeleton X(1) of X. We review this connection briefly in this chapter before we construct a
similar random walk taking place on the k-cells of X. We will relate a quantity related to return
probabilities of this random walk to the kth Novikov-Shubin invariant αk(X).

1The growth rate is invariant under taking finite index subgroups, so we may work with the finite index
nilpotent subgroup.
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3.1 Random Walks and α0

In this section, we briefly review the connection between the growth rate of the group G, the
random walks on Cayley(G) and X(1) and the Novikov-Shubin invariant α0(X). We closely
follow the outline given by W. Lück in his book [Lüc02, §2.1.4] and refer to the proof there.
However, we slightly adapt the proof by using lazy random walks. This allows us to reformulate
some results slightly and it will be needed when generalising this approach to higher degrees.

The first observation is that the Novikov-Shubin invariants α0(X) = α(d1) of the the differential
in the cellular L2-chain complex of X and α(cS) of the differential on the Cayley graph Cayley(G)
agree, compare [Lüc02, Lem. 2.45].

Secondly, we have seen in Lemma 1.29 that the propagation operator P of the random walk on
Cayley(G) satisfies Id−P = |S|−1∆ (note that the extra factor 1/2 in Lück’s book is incorrect).
We also saw that we can use the q-lazy random walk to write the Laplacian as

Id−Pq =
1− q

|S|
∆.

We know that σ(Pq) ⊂ [−1 + 2q, 1] and therefore the operator Pq is non-negative for q ≥ 1/2.

Then, in place of Equation [Lüc02, Eq. (2.47)], in Lück’s notation we obtain that

trNG(χ[1−λ,1](Pq)) = F (cS)(
√
|S|(1− q)−1λ)− b(2)(cS). (3.1)

Since we are interested in the exponent of the decay in λ, the constant factor |S|(1− q)−1 does
not impact the computation of the Novikov-Shubin invariant later on.

In Theorem [Lüc02, Thm. 2.48] we can replace p(n) by pq(n) for q ≥ 1/2, so for example p1/2(n),
and require the inequality

C−1n−a ≤ p1/2(n) ≤ Cn−a

for all n ≥ 1 instead of considering only even n. This works out since the requirement of even
integers n comes into play precisely to make sure that Pn is a non-negative operator, which holds
for P1/2 and hence all its powers. The remaining inequalities hold true regardless of the extra
factor (1− q)−1 appearing.2

We can therefore reformulate Theorem [Lüc02, Thm. 2.48] in the following way.

Theorem 3.2. The finitely generated group G has polynomial growth precisely of degree 2a if
and only if there is a constant C > 0 such that

C−1n−a ≤ p1/2(n) ≤ Cn−a

holds for all n ≥ 1. If the finitely generated group G does not have polynomial growth, then for
each a > 0 there is a constant C(a) > 0 such that p1/2(n) ≤ C(a)n−a holds for all n ≥ 1.

From here, the computations work precisely the same as in Lück’s book [Lüc02, p. 95f], where
the extra factor (1 − q)−1 on the right hand side of Equation (3.1) disappears precisely by the
same reasoning as the factor |S| disappears. Thus, Theorem 3.1 follows in the same manner.

2Indeed, since Lück’s computation includes an extra factor 1/2, the computation he gives is precisely the one
to be carried out for q = 1/2.
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3.2 Random Walks and αk

We now construct a random walk taking place on k-cells of a CW complexX. Then, we relate this
random walk to the upper Laplacian dk+1d

∗
k+1 = ∆up

k acting on the cellular L2-chain complex
and thereby also to the Novikov-Shubin invariant αk(X) for suitable CW complexes.
The construction of the random walk generalises a construction of a random walk on the k-
skeleton of finite simplicial complexes by O. Parzanchevski and R. Rosenthal in [PR17]. While
the setting of CW complexes introduces some further difficulties (related to the incidence numbers
of the CW complex), some of the ideas are based on the paper above as well as S. Mukherjee
and J. Steenbergen’s paper [MS16] and R. Rosenthal’s paper [Ros14].

3.2.1 Degree k Upper Random Walks

Before we define the random walk, we introduce some quantities that will be useful later on.
These quantities capture the local structure of the CW complex.

Definition 3.3. Let X be a free G-CW complex of finite type. For α ∈ Ik and β ∈ Ik+1 we
define the quantities

d+,2(α) =
∑

β′∈Ik+1

[β′ : α]2,

d+(α) =
∑

β′∈Ik+1

|[β′ : α]|,

d−(β;α) =


∑

α̸=α′∈Ik

|[β : α′]| if [β : α] ̸= 0,

0 if [β : α] = 0,

d−(α) = max
β′∈Ik+1

d−(β;α),

(3.2)

where the maximum in the definition of d−(α) exists since d−(β;α) is invariant under the G-
action,3 so that it can only assume finitely many different values. Note also that these quantities
are independent of the orientations chosen on α and β.4

These quantities generalise the idea of the degree of a k-cell, with d+ being the incoming degree
and d− the (maximal) outgoing degree. They capture the local structure of the CW complex
around the k-cell α ∈ Ik.
We also introduce the notation

d(α, α′, β) = −[β : α][β : α′], (3.3)

measuring how well connected α is to α′ along β.5 Note that d(α, α′, β) = d(α′, α, β).
From Equation (1.1), we know that ∆up

k sees the incidence numbers between k- and (k + 1)-
cells in X. Hence, the incidence numbers have to appear in the definition of our random walk.
Furthermore, both the sign and the size of the incidence numbers have to play a role.

3d−(β;α) = d−(g.β; g.α) for all g ∈ G
4Since in the following, orientations on (k+1)-cells will never play a role, we will only take care of orientations

on the k-cells and work with the preferred orientation on (k + 1)-cells throughout.
5Here, we introduce an extra minus sign to mirror what happens in the case of graphs. There, random walkers

can walk from a vertex v1 along an (oriented) edge e = (v1, v2) to the vertex v2, where e is an (outgoing) edge for
v1 with [e : v1] = −1 and an (incoming) edge for v2 with [e : v2] = 1, so that [e : v1][e : v2] = −1 if e = {v1, v2}.
With this extra minus sign, the quantity d(v1, v2, e) = 1 is positive in this case.
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Definition 3.4. As before, Ik = I+k = {α = α+} is the set of k-cells of X, where each k-cell
comes equipped with an (arbitrarily chosen) preferred orientation. For α = α+ we denote by
−α = α− the same k-cell but equipped with the reversed orientation and define

I±k = I+k ∪ {α− | α ∈ Ik} .

We call two oriented k-cells αν , α
′
ν′ ∈ I±k (upper) neighbours along β ∈ Ik+1, and write αν

β∼ α′
ν′ ,

where ν, ν′ ∈ {+,−} denote orientations, if

αν ̸= −α′
ν′ and d(αν , α

′
ν′ , β) = νν′d(α, α′, β) > 0.

Note that this condition is independent of the orientation chosen on β ∈ Ik+1.

Definition 3.5. The random walk Rk = Rk(X) is given by the state space I∗k = I±k ∪ {Θ},
where Θ is an auxiliary, absorbing state together with the following moving probabilities:

� The moving probabilities starting from the absorbing state Θ are given by

P(Θ→ Θ) = 1 and P(Θ→ α±) = 0 for all α± ∈ I±k .

� To define the moving probabilities starting from αν ∈ I±k , we define first for α′
ν′ ∈ I±k and

β ∈ Ik+1 the quantities

P(αν ↗ β) =
|[β : αν ]|
d+(α)

and Pα(β ↘ α′
ν′) =

|[β : α′
ν′ ]|

d−(α)

These probabilities can be seen as an intermediate step of moving first from α to β and
then from β to α′ (keeping in mind that we started at α). In this sense, we define

P(αν
β−→ α′

ν′) =

{
P(αν ↗ β)Pα(β ↘ α′

ν′) =
−[β:αν ][β:α

′
ν′ ]

d+(α)d−(α) =
d(αν ,α

′
ν′ ,β)

d+(α)d−(α) > 0 if αν
β∼ α′

ν′ ,

0 else,

the probability of moving from α along β to α′. Recall here that α ̸∼ ±α by definition, so

that P(α β−→ ±α) = 0. Finally, we set

P(αν → α′
ν′) =

∑
β∈Ik+1

P(αν
β−→ α′

ν′) =
∑

β∈Ik+1

α
β∼α′

d(αν , α
′
ν′ , β)

d+(α)d−(α)

=
1

d+(α)d−(α)

∑
β∈Ik+1

αν
β∼α′

ν′

d(αν , α
′
ν′ , β)

The moving probabilities would add to one if we use d−(β;α) in place of d−(α), however it
will be important later on that we can pull the factor d−(α)

−1 out of the sum as it depends
only on the starting cell α. Consequently, they need not add up to one.

� The complementary probability will be the probability of moving to Θ, that is

P(αν → Θ) = 1−
∑

α′
ν′∈I±

k

P(αν → α′
ν′).
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As before,the propagation operator P with entries Ps,s′ = P(s′ → s) for s, s′ ∈ I∗k acts on

ℓ2(I∗k) =
{∑

s∈I∗
k
λs · s

∣∣∣ ∑s∈I∗
k
|λs|2 <∞

}
by

P

∑
s∈I∗

k

λs · s

 =
∑
s∈I∗

k

∑
s′∈I∗

k

Ps,s′λs′

 · s = ∑
s∈I∗

k

∑
s′∈I∗

k

P(s′ → s)λs′

 · s.
This defines a random walk taking place on I∗k .

Example 3.6. Let us consider a small example to see how we can find the moving probabilities.
For this, let X be a CW complex and α ∈ Ik some k-cell. In order to find the k-cells we can
move to from α = +α, we proceed as follows:

1. First we consider all (k + 1)-cells β ∈ Ik+1 and find those, that have non-zero incidence
number [β : α] ̸= 0. For this example, let us say there are two such (k + 1)-cells β1 and β2

with [β1 : α] = 1 and [β2 : α] = −2.

2. Then we consider all other k-cells α ̸= α′ ∈ Ik that have non-zero incidence numbers with
at least one of the (k+1)-cells above, that is [β1 : α] ̸= 0 or [β2 : α] ̸= 0. For this example,
let us say there are three such k-cells, α1 with [β1 : α1] = 1, α2 with [β1 : α2] = 2 and
[β2 : α2] = 4 and α3 with [β2 : α3] = −2.

We visualise this with the following diagram:

β1 β2 ∈ Ik+1

α1 α2 α α2 α3 ∈ Ik

1 2 4 −21 −2

Next, we first change the orientations on the (k + 1)-cells such that the incidence numbers with
α are negative, so here we change the orientation on β1.

6 Then we change the orientations on
the αi, i ∈ {1, 2, 3} for each of the βj independently such that the incidence numbers with the
(k + 1)-cells become positive. This changes our diagram as follows:

−β1 β2 ∈ I±k+1

−α1 −α2 α α2 −α3 ∈ I±k

1 2 4 2−1 −2

We now introduce the auxiliary state Θ. For each of the (k + 1)-cells, we sum the outgoing
incidence numbers. Here, we get d−(β1;α) = 1 + 2 = 3 for β1 and d−(β2;α) = 2 + 4 = 6 for β2.
The maximum is therefore 6, and we add connections from each of the (k + 1)-cells to the new

state Θ until the sum of outgoing edges is equal to this maximum, i.e., −β1
3−→ Θ in this case:

−β1 β2 ∈ I±k+1

Θ −α1 −α2 α α2 −α3 ∈ I∗k

3 1 2 4 2−1 −2

6This orientation of β1 has no impact on the formulas in the end and is thus suppressed in the formal definition.
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The moving probabilities can now be read to be proportional to the annotations of the arrows.
For the first intermediate step, P(α↗ −β1) = 1/3 and P(α↗ β2) = 2/3. For the second step,

P(−β1 ↘ Θ) = 3/6, P(−β1 ↘ −α1) = 1/6 and P(−β1 ↘ −α2) = 2/6

and for β2 we have
P(β2 ↘ α2) = 4/6 and P(β2 ↘ −α3) = 2/6.

The introduction of Θ guaranties that the denominator of these (unreduced) fractions is the
same everywhere and the moving probabilities are proportional to the incidence numbers even if
the first intermediate step leads to different βis. Multiplying these accordingly, we find

P(α −β1−−→ −α1) = 1/3 · 1/6, P(α −β1−−→ −α2) = 1/3 · 2/6, P(α −β1−−→ Θ) = 1/3 · 3/6,

P(α β2−→ α2) = 2/3 · 4/6, P(α −β1−−→ −α3) = 2/3 · 2/6.

Here, every oriented k-cell can be reached only via one (k + 1)-cell, otherwise we would have to

sum over all (k + 1)-cells, that is P(α → s) =
∑

±β∈I±
k+1

P(α ±β−−→ s) for s ∈ I∗k . Therefore, in

this example, a random walker starting at α has the following possible moves, with annotations
denoting the probabilities:

α

−α1 −α2 α2 −α3 Θ

1/18 1/9 4/9 2/9 1/6

Note that the cell α2 can be reached with both possible orientations. If we start at the cell −α
with reversed orientation, we obtain the same moving probabilities as for α, but now leading to
the same cells but with flipped orientations instead.

We now define an operator B acting directly on the unoriented k-skeleton Ik, which is closely
related to this random walk.

Definition 3.7. We define the projection operator T : ℓ2(I∗k)→ ℓ2(Ik) by

T

∑
s∈I∗

k

λs · s

 =
∑
α∈Ik

(λα+ − λα−) · α

and the inclusion operator I : ℓ2(Ik)→ ℓ2(I∗k), using that Ik = I+k ⊂ I∗k , by

I

(∑
α∈Ik

λα · α

)
=

∑
α+∈I+

k

λα+
· α+.

Lastly, we define the operator B : ℓ2(Ik)→ ℓ2(Ik) by

B

(∑
α∈Ik

λα · α

)
=
∑
α∈Ik

 ∑
α̸=α′∈Ik

1

d+(α′)d−(α′)

∑
β∈Ik+1

d(α, α′, β)λα′

 · α.
and denote Bα,α′ = 1

d+(α′)d−(α′)

∑
β∈Ik+1

d(αν , α
′
ν′ , β) for α ̸= α′ and Bα,α = 0 so that

B

(∑
α∈Ik

λα · α

)
=
∑
α∈Ik

[ ∑
α′∈Ik

Bα,α′λα′

]
· α.
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This is captured by the diagram

ℓ2(I∗k) ℓ2(I∗k)

ℓ2(Ik) ℓ2(Ik).

P

T T

B

I I

This operator B does not describe a random walk since Bα,α′ , the “probability of moving from
α′ to α”, may even be negative. However, this operator is closely related to the random walk
described by P . Indeed, using the operators T and I we can see that B describes the process that
arises from the random walk if we consider a random walker arriving at a cell α− (equipped with
the reversed orientation) as the inverse of a random walker at α+ — that is we allow random
walkers at α+ and α− to cancel each other out.7

Lemma 3.8. The operators T , I and B defined above satisfy the equations

BT = TP, B = TPI and Bn = TPnI.

Proof. We check these equalities by direct computation. For BT we obtain

BT

∑
s∈I∗

k

λs · s

 = B

(∑
α∈Ik

(λα+ − λα−) · α

)

=
∑
α∈Ik

 ∑
α′∈Ik

1

d+(α′)d−(α′)

∑
β∈Ik+1

d(α, α′, β) · (λα′
+
− λα′

−
)

 · α
and for TP we compute (omitting the coefficient of Θ as it disappears in the next step) that

TP

∑
s∈I∗

k

λss

 = T

 ∑
αν∈I±

k

 ∑
α′

ν′∈I±
k

1

d+(α′)d−(α′)

∑
αν

β∼α′
ν′

−[β : αν ][β : α′
ν′ ]λα′

ν′

αν + · · ·Θ



=
∑
α∈Ik

 ∑
α′

ν′∈I±
k

1

d+(α′)d−(α′)

∑
α+

β∼α′
ν′

−[β : α+][β : α′
ν′ ]λα′

ν′

 · α

−
∑
α∈Ik

 ∑
α′

ν′∈I±
k

1

d+(α′)d−(α′)

∑
α−

β∼α′
ν′

−[β : α−][β : α′
ν′ ]λα′

ν′

 · α.
Now we use that [β : α] = [β : α+] = −[β : α−] and that [β : α][β : α′] ̸= 0 only if either α±

β∼ α′
±

7While it is not clear which, if any, physical process this operator B describes, cancellation between different
objects does happen in physics. For example, studying fermions via the Dirac equation suggests that for every
particle there is a corresponding anti-particle, such as electrons and positrons. If they meet, they will annihilate
each other. Describing this by the Dirac sea model allows also for the creation of such pairs.
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or α±
β∼ α′

∓ together with −[β : αν ][β : α′
ν′ ] = νν′d(α, α′, β) to find that

TP

∑
s∈I∗

k

λs · s

 =
∑
α∈Ik

 ∑
α′

ν′∈I±
k

1

d+(α′)d−(α′)

∑
α+

β∼α′
ν′

d(α, α′, β) · ν′λα′
ν′

 · α

+
∑
α∈Ik

 ∑
α′

ν′∈I±
k

1

d+(α′)d−(α′)

∑
α−

β∼α′
ν′

d(α, α′, β) · ν′λα′
ν′

 · α
=
∑
α∈Ik

 ∑
α ̸=α′∈Ik

1

d+(α′)d−(α′)

∑
β∈Ik+1

d(α, α′, β) · (λα′
+
− λα′

−
)

 · α
showing the first equality. For the second equality, we have TI = Id, hence TPI = BTI = B
and lastly Bn = BnTI = TPnI.

Corollary 3.9. For the operators B and P defined above, n ∈ N and all α, α′ ∈ Ik,

⟨Bn(α), α′⟩ = ⟨Pn(α+), α
′
+⟩ − ⟨Pn(α+), α

′
−⟩.

Proof. Using that Bn = TPnI, we compute the coefficient ⟨Bn(α), α′⟩ of α′ in B(α) by

⟨Bn(α), α′⟩ = ⟨TPnI(α), α′⟩ = ⟨TPn(α+), α
′⟩ = ⟨Pn(α+), α

′
+⟩ − ⟨Pn(α+), α

′
−⟩.

In particular, we can define the following quantities generalising the idea of return probabilities.

Definition 3.10. For the random walk described by P and α ∈ Ik, we define the return proba-
bilities pα,+ and the probabilities of returning with reversed orientation pα,− respectively by

pα,+(n) = ⟨Pn(α+), α+⟩ and pα,−(n) = ⟨Pn(α+), α−⟩.

For the process described by B we define

pα(n) = ⟨Bn(α), α⟩.

Notice that pα(n) = pα,+(n) − pα,−(n). Note also that all three quantities are independent of
the choice of preferred orientations.

Corollary 3.11. For n ∈ N, the von Neumann trace of Bn is given by

trNG(B
n) =

∑
α∈Ik(G\X)

pα,+(n)− pα,−(n).

3.2.2 Lazy Degree k Upper Random Walks

Let X be a free G-CW complex of finite type and 0 ≤ k ≤ dim(X) fixed. Starting with the
random walk Rk = Rk(X) = (I∗k , P ) above, we now introduce a lazyness parameter q ∈ [0, 1]
and consider the q-lazy random walk Rk

q = Rk
q (X) in the sense of Subsection 1.3.2. Recall that

Rk
q = (I∗k , Pq) is the random walk on I∗k with propagation operator

Pq = q Id+(1− q)P ↷ ℓ2I∗k .

In particular, the moving probabilities are given as follows:
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� For the absorbing state Θ,

Pq(Θ→ Θ) = 1, Pq(Θ→ αν) = 0.

� For αν ∈ I±k (that is α ∈ Ik and ν ∈ {+,−}),

Pq(αν → αν) = q, Pq(αν → −αν) = 0.

� For αν , α
′
ν′ ∈ I±k with αν ̸= ±α′

ν′ ,

Pq(αν → α′
ν′) =

1− q

d+(α)d−(α)

∑
β∈Ik+1

αν
β∼α′

ν′

d(αν , αν′ , β) = (1− q)P(αν → α′
ν′).

� Lastly,

Pq(αν → Θ) = 1−
∑

α′
ν′∈I±

k

Pq(αν → α′
ν′) = (1− q)P(αν → Θ).

In the same spirit, we define Bq ↷ ℓ2Ik by Bq = q Id+(1− q)B. This operator is given by

Bq

(∑
α∈Ik

λα · α

)
=
∑
α∈Ik

qλα +
∑

α̸=α′∈Ik

1− q

d+(α′)d−(α′)

∑
β∈Ik+1

d(α, α′, β)λα′

 · α.
Corollary 3.12. These operators satisfy BqT = TPq, Bq = TPqI and Bn

q = TPn
q I.

Proof. This follows directly from the previous equalities together with TI = Id, since BqT =
qT +(1−q)BT = qT +(1−q)TP = TPq and TPqI = qTI+(1−q)TPI = q+(1−q)B = Bq.

As before, we consider the probabilities of returning to the same k-cell with the same orientation
or the reversed orientation respectively.

Definition 3.13. For α ∈ Ik, we define the quantities

pq,α,+(n) = ⟨Pn
q (α+), α+⟩,

pq,α,−(n) = ⟨Pn
q (α+), α−⟩,

pq,α(n) = ⟨Bn
q (α), α⟩

Again, pq,α(n) = pq,α,+(n) − pq,α,−(n), hence we can compute the von Neumann trace of Bn
q

using the probabilities of the random walk. We define

pq(n) = trNG(B
n
q ) =

∑
α∈Ik(G\X)

pq,α,+(n)− pq,α,−(n)

We now compare the operator Bq to the upper Laplacian ∆up
k . Recall from Equation (1.1) that

∆up
k acts on ℓ2Ik by

∆up
k

(∑
α∈Ik

λα · α

)
=
∑
α∈Ik

 ∑
β∈Ik+1

[β : α]2λα −
∑

α′ ̸=α∈Ik

∑
β∈Ik+1

−[β : α][β : α′]λα′

 · α
=
∑
α∈Ik

d+,2(α)λα −
∑

α′ ̸=α∈Ik

∑
β∈Ik+1

d(α, α′, β)λα′

 · α
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Theorem 3.14. Let Bq ↷ ℓ2Ik = ℓ2Ccell
k (X) be the operator Bq = TPqI defined as above. Then

Bq ◦M1,q = Id−∆up
k ◦M2,q,

where M1,q,M2,q ↷ ℓ2Ik are the non-negative multiplication operators given by

M1,q =
d+d−

qd+d− + (1− q)d+,2
,

∑
α∈Ik

λαα 7→
∑
α∈Ik

d+(α)d−(α)

qd+(α)d−(α) + (1− q)d+,2(α)
· λαα,

M2,q =
1− q

qd+d− + (1− q)d+,2
,

∑
α∈Ik

λαα 7→
∑
α∈Ik

1− q

qd+(α)d−(α) + (1− q)d+,2(α)
· λαα.

Proof. For α, α′ ∈ Ik we compare the contributions (Bq ◦M1,q)α′,α and (Id−∆up
k ◦M2,q)α′,α

coming from the coefficient of α in the argument to the coefficient of α′ in the image.8 For
α ̸= α′ these contributions are given by

(Bq ◦M1,q)α′,α =
d+(α)d−(α)

qd+(α)d−(α) + (1− q)d+,2(α)
· (Bq)α′,α

=
d+(α)d−(α)

qd+(α)d−(α) + (1− q)d+,2(α)
· 1− q

d+(α)d−(α)

∑
β∈Ik+1

d(α, α′, β)

=
1− q

qd+(α)d−(α) + (1− q)d+,2(α)

∑
β∈Ik+1

d(α, α′, β)

= 0− 1− q

qd+(α)d−(α) + (1− q)d+,2(α)
·

− ∑
β∈Ik+1

d(α, α′, β)


= (Id−∆up

k ◦M2,q)α′,α

and for α = α′ by

(Bq ◦M1,q)α,α = q · d+(α)d−(α)

qd+(α)d−(α) + (1− q)d+,2(α)

= 1− (1− q)d+,2(α)

qd+(α)d−(α) + (1− q)d+,2(α)
= (Id−∆up

k ◦M2,q)α,α.

Since all these coefficients agree, the claim follows.

Remark 3.15. The construction here generalises the construction given by O. Parzanchevski
and R. Rosenthal on simplicial complexes in [PR17] and the previous theorem generalises Propo-
sition 2.8 of their paper. Considering the random walk of O. Parzanchevski and R. Rosenthal
in degree k = (d− 1), the incidence numbers of a simplicial complex (viewed as a CW complex)
are given as [β : α] ∈ {0,±1}, where ±1 occurs if the (d− 1)-simplex α is in the boundary of the
d-simplex β, with sign depending on orientations. Therefore,

d+(α) = d+,2(α) = deg(α), d−(α) = d,

8In the sense that both are operators Ξ ↷ ℓ2Ccell
k (X) that can be written as

Ξ:
∑
α∈Ik

λαα 7→
∑

α′∈Ik

 ∑
α∈Ik

Ξα′,αλα

 · α′.
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where deg(α) denoted the number of d-simplices β ∈ Id containing α. Therefore,

d

q(d− 1) + 1
Bq = Id− 1− q

q(d− 1) + 1
·
∆up

d−1

deg(α)
,

where ∆up
w =

∆up
d−1

deg(α) is the weighted upper Laplacian used by O. Parzanchevski and R. Rosenthal,

defined by using a weighted scalar product on ℓ2Ik. Note that in this case, the diagonal operator
M1,q is given by multiplication by a constant (depending on q and d but not on α ∈ Id−1).

3.2.3 Connection to αk

We now study the connection between the random walk Rk
q = Rk

q (X) and the Novikov-Shubin
invariant αk(X) for a free G-CW complex X of finite type. In degree zero it is reasonable to
consider only connected spaces (since the ℓ2-spaces and the Laplace operator split as a direct
sum with one summand for each connected component). For us, by the same reasoning, we can
assume without loss of generality the following analogue in degree k.

Definition 3.16. Let X be a CW complex. We call X upper k-connected if |Ik| ≥ 2 and for all
α, α′ ∈ Ik there are

α = α0, α1, . . . , αn−1, αn = α′ ∈ Ik and β1, . . . , βn ∈ Ik+1

such that [βi, αi−1] ̸= 0 and [βi : αi] ̸= 0 for all 1 ≤ i ≤ n, that is βi is attached non-trivially to
αi−1 and αi.

This condition implies for Rk
q that a random walker can move from any k-cell α± ∈ I±k to any

other (unoriented) k-cell α′ (that is, to one of the oriented k-cells α′
+ or α′

−). Furthermore, we
get bounds on the quantities from Definition 3.2.

Lemma 3.17. Let X be an upper k-connected free G-CW complex of finite type. Then there
exists D ≥ 1 such that

D ≥ d+,2, d+, d− ≥ 1.

In particular, if q ∈ [0, 1) then the operators M1,q and M2,q are positive multiplication operators
bounded from below by

M1,q ≥ D−2 > 0 and M2,q = (1− q)D−2 > 0.

Proof. Let α ∈ Ik be arbitrary and let α ̸= α′ ∈ Ik be any other k-cell. Since X is upper
k-connected, by definition there is a sequence of k-cells αi ∈ Ik and (k + 1)-cells βi ∈ Ik+1

connecting α to α′. In particular, there exists a (k+ 1)-cell β1 ∈ Ik+1 such that [β1 : α] ̸= 0 and
a k-cell α ̸= α1 ∈ Ik such that [β1 : α1] ̸= 0. Hence

d+,2(α) ≥ [β1 : α]2 ≥ 1,

d+(α) ≥ |[β1 : α]| ≥ 1,

d−(α) ≥ d−(β1;α) ≥ |[β1 : α1]| ≥ 1.

Since X is of finite type and these quantities depend only on the G-type of α, there exists

D = sup
α∈Ik

{d+,2(α), d+(α), d−(α)} = max
α∈Ik(G\X)

{d+,2(α), d+(α), d−(α)} ≥ 1.
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It follows, therefore, that

M1,q =
d+d−

qd+d− + (1− q)d+,2
≥ 1

qD2 + (1− q)D
≥ 1

D2
> 0,

M2,q =
1− q

qd+d− + (1− q)d+,2
≥ 1− q

qD2 + (1− q)D
≥ 1− q

D2
> 0,

and the claim follows.

Generalising the notion of regular graphs, we introduce the following notion of upper k-regular
free G-CW complexes.

Definition 3.18. Let X be a free G-CW complex of finite type. We call X upper k-regular if
X is upper k-connected and d+d− = d+(α)d−(α) and d+,2 = d+,2(α) are independent of α ∈ Ik.

In this case, also the multiplication operators M1,q and M2,q are just multiplication with a
constant. Hence, the formula connecting Bq and ∆up

k simplifies further.

Corollary 3.19. Let X be an upper k-regular G-CW complex of finite type and q ∈ [0, 1]. Then

C1,qBq = Id−C2,q∆
up
k

for the positive constants

C1,q =
d+d−

qd+d− + (1− q)d+,2
> 0 and C2,q =

1− q

qd+d− + (1− q)d+,2
> 0.

Definition 3.20. Let X be an upper k-regular free G-CW complex of finite type. We define

B̃q = C1,qBq and ∆̃up
q,k = C2,q∆

up
k

so that we have the equality

B̃q = Id−∆̃up
q,k.

We now want to find bounds on the spectrum σ
(
∆̃up

q,k

)
of the operator ∆̃up

q,k.

Lemma 3.21. Let X be a free G-CW complex of finite type, then ∆up
k ↷ ℓ2Ccell

k (X) is bounded.
In particular σ(∆up

k ) ⊂ [0, Sk], where

Sk = max
α∈Ik(G\X)

 ∑
β∈Ik+1

∑
α′∈Ik

|d(α, α′, β)|

 <∞.

Proof. The differential dk+1 : ℓ
2Ccell

k+1(X)→ ℓ2Ccell
k (X) for a freeG-CW complex of finite type has

bounded L2-norm. This follows easily by direct computation, for example in E. Suchla’s master
thesis [Suc16]. Since this is not readily available online, we quickly recall it here. However, as
this is more suitable for our situation, we show boundedness of the adjoint d∗k+1 instead.9

Let ω =
∑

α∈Ik
λα · α ∈ ℓ2Ccell

k (X), then

d∗k+1ω =
∑

β∈Ik+1

[∑
α∈Ik

[β : α]λα

]
· β

9The computation for dk+1 is completely analogous.
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and, using that 2ab ≤ a2 + b2 for all a, b ≥ 0, we estimate

∥d∗k+1ω∥2L2 =
〈
d∗k+1ω, d

∗
k+1ω

〉
=

∑
β∈Ik+1

[∑
α∈Ik

[β : α]λα

]
·

[ ∑
α′∈Ik

[β : α′]λα′

]
≤

∑
β∈Ik+1

∑
α∈Ik

∑
α′∈Ik

|λα||λα′ ||[β : α]||[β : α′]|

≤
∑

β∈Ik+1

∑
α∈Ik

∑
α′∈Ik

|λα|2 + |λα′ |2

2
· |d(α, α′, β)|

=
1

2

∑
β∈Ik+1

∑
α∈Ik

∑
α′∈Ik

|λα|2 · |d(α, α′, β)|

+
1

2

∑
β∈Ik+1

∑
α′∈Ik

∑
α∈Ik

|λα′ |2 · |d(α, α′, β)|

=
∑
α∈Ik

|λα|2 ·
∑

β∈Ik+1

∑
α′∈Ik

|d(α, α′, β)|

≤ sup
α∈Ik

 ∑
β∈Ik+1

∑
α′∈Ik

|d(α, α′, β)|

 · ∥ω∥2L2 .

Here, sinceX is a free G-CW complex of finite type, for every α ∈ Ik only finitely many d(α, α′, β)
are non-zero. In particular, each sum

Sk(α) =
∑

β∈Ik+1

∑
α′∈Ik

|d(α, α′, β)|

is a finite sum. Further, the value of S(α) depends only on the G-type of α. Hence,

Sk = sup
α∈Ik

{S(α)} = max
α∈Ik(G\X)

{Sk(α)} <∞

and ∥d∗k+1ω∥2L2 ≤ Sk∥ω∥2L2 for all ω ∈ ℓ2Ccell
k (X). This implies that d∗k+1 is bounded,

∥d∗k+1∥ℓ2Ccell
k (X)→ℓ2Ccell

k+1(X) ≤
√

Sk.

Since ∆up
k = dk+1d

∗
k+1, we obtain

∥∆up
k ∥ℓ2Ccell

k (X)→ℓ2Ccell
k (X) = ∥d∗k+1∥2ℓ2Ccell

k (X)→ℓ2Ccell
k+1(X) ≤ Sk.

Since ∆up
k is non-negative and self-adjoint, this implies σ(∆up

k ) ⊂ [0, Sk].

Note that the same argument binds the spectrum of the full Laplacian ∆ = d∗d + dd∗ with
σ(∆k) ⊂ [0, 2max{Sk−1, Sk}], though this is not needed here.
Using this, we can prove the following lemma.

Lemma 3.22. Let X be an upper k-regular free G-CW complex of finite type. Then there exists

q0 ∈ (0, 1) such that for all q0 ≤ q ≤ 1 the spectrum of ∆̃up
q,k satisfies σ(∆̃up

q,k) ⊂ [0, 1].



46 CHAPTER 3. RANDOM WALKS AND NOVIKOV-SHUBIN INVARIANTS

Proof. By Lemma 3.21, σ(∆up
k ) ⊂ [0, S] for some S > 0, hence σ(∆̃up

q,k) ⊂ [0, C2,qS]. Note that

d+d− ≥ 1 and d+,2 ≥ 1 so C2,q = 1−q
qd+d−+(1−q)d+,2

is continuous in q ∈ (0, 1) and converges to 0

as q ↗ 1. In particular, there is q0 ∈ (0, 1) such that C2,q ≤ S−1 for all q0 ≤ q ≤ 1.

Corollary 3.23. Let X be an upper k-regular free G-CW complex of finite type and q ∈ [q0, 1).

Let d̃k+1 =
√
C2,qdk+1. Then d̃∗k+1 =

√
C2,qd

∗
k+1 and

∆̃up
q,k = d̃k+1d̃

∗
k+1

is a self-adjoint positive operator with σ(∆̃up
q,k) ⊂ [0, 1].

Remark 3.24. Recall that for q ∈ [q0, 1), since d and d̃ differ only by a constant factor
√
C2,q,

their spectral density functions are dilatationally equivalent and hence their Novikov-Shubin
invariants agree, that is, αk(X) = α(dk+1) = α(d̃k+1) = α(d̃∗k+1).

Lemma 3.25. Let χI denote the indicator function of the interval I, then

trNG(χ[1−λ,1](B̃q)) = F (d̃∗k+1)(
√
λ).

Proof. Recall that B̃q = Id−d̃k+1d̃
∗
k+1, hence

trNG

(
χ[1−λ,1]

(
B̃q

))
= trNG

(
χ[0,λ]

(
d̃k+1d̃

∗
k+1

))
= trNG

(
E

d̃k+1d̃
∗
k+1

λ

)
= F

(
d̃∗k+1

)(√
λ
)
.

We can now proceed in the same way as in degree zero, compare Lück’s book [Lüc02, §2.1.4].

Theorem 3.26. Let X be an upper k-regular free G-CW complex of finite type and q ∈ [q0, 1),
with q0 given by Lemma 3.22. Then αk(X) = 2a if and only if there is a constant C > 0 such
that for all n ∈ N,

C−n
1,q

(
b(2)(d∗k+1) + C−1n−a

)
≤ pq(n) ≤ C−n

1,q

(
b(2)(d∗k+1) + Cn−a

)
.

Proof. Since by Lemma 3.22, σ(∆̃up
q,k) ⊂ [0, 1] and by construction ∆̃up

q,k = Id−B̃q, it follows that

also σ(B̃q) ⊂ [0, 1]. Therefore,

(1− λ)nχ[1−λ,1](B̃q) ≤ B̃q

n
≤ (1− λ)nχ[0,1−λ](B̃q) + χ[1−λ,1](B̃q).

Taking traces with Lemma 3.25 and denoting p̃q(n) = trNG(B̃q

n
) yields

(1− λ)nF (d̃∗k+1)(
√
λ) ≤ p̃q(n) ≤ (1− λ)n + F (d̃∗k+1)(

√
λ).

By rearranging these terms and taking logarithms we obtain the inequalities

log
(
F (d̃∗k+1)(

√
λ)− b(2)(d∗k+1)

)
log λ

≤
log(p̃q(n)− (1− λ)nb(2)(d∗k+1))

log λ
− n · log(1− λ)

log λ
, (3.4)

log
(
F (d̃∗k+1)(

√
λ)− b(2)(d∗k+1)

)
log λ

≥
log(p̃q(n)− b(2)(d∗k+1)− (1− λ)n)

log λ
. (3.5)
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Using b(2)(d∗k+1) = b(2)(d̃∗k+1) and taking the limit inferior for λ↘ 0 on the left-hand-sides gives

lim inf
λ↘0

log
(
F (d̃)(

√
λ)− b(2)(d∗k+1)

)
log λ

=
α(d̃∗k+1)

2
=

α(d̃k+1)

2
=

αk(X)

2
.

After substituting p(n) = p̃q(n) − b(2)(d∗k+1), the term on the right-hand-side of Equation (3.5)
agrees with the term in Lück’s book [Lüc02, Thm. 2.48], so it follows by the same argument that

αk(X) ≤ 2a if p̃q(n) ≥ b(2)(d∗k+1) +Dn−a for n ≥ 1,

for some constant D > 0.
For the right-hand-side of Equation (3.4), let ε > 0 be arbitrarily small and n = n(λ) the largest
integer such that n ≤ λ−ε, that is n = ⌊λ−ε⌋. If p̃(n) ≥ Cn−a + b(2)(d) for some constant C > 0
and n ≥ 1, we obtain

log(p̃q(n)− (1− λ)nb(2)(d∗k+1))

log λ
− n · log(1− λ)

log λ

≥
log(Cn−a + [1− (1− λ)n] b(2)(d∗k+1))

log λ
− log(1− λ)

λε log λ

≥ log(Cn−a)

log λ
− log(1− λ)

λε log λ
,

where we use [1− (1− λ)n] b(2)(d∗k+1) ≥ 0 (indeed, even [1− (1− λ)n] b(2)(d∗k+1)
λ↘0−−−→ 1− e−ε).

From here, we proceed precisely as in W. Lück’s book [Lüc02, Thm. 2.48] and find

αk(X) ≥ 2a if p̃q(n) ≤ b2(d∗k+1) + Cn−a for n ≥ 1,

concluding the proof of the theorem.

Remark 3.27. This generalises the theorem in degree zero, since in degree zero we have d+ =
d+,2 = |S|, where |S| is the size of a finite generating set of G chosen in the construction of
Cayley(G), and d− = 1. Thus C1,q = 1 and the exponential decay factor C−n

1,q = 1 disappears.

Example 3.28. Let k ≥ 2 and let G be a finitely generated group with Cayley graph Cayley(G).
Construct a G-CW complex X in the following way.

� Start with X(1) = Cayley(G).10

� For every g ∈ G glue one k-cell αg to X(1) by collapsing the boundary of αg to the vertex
vg corresponding to g ∈ G in the Cayley graph. This defines the k-skeleton X(k).

� For every edge (g, gs) in the Cayley graph, glue one (k + 1)-cell βg,gs to X(k) by sending
the boundary of βg,gs to αg ∪ (g, gs) ∪ αgs such that [βg,gs : αg] = −[βg,gs : αgs] ∈ {±1}.
This defines X(k+1) = X.

On X, the degree k upper random walk Rk agrees with the random walk R on Cayley(G) when
identifying the state corresponding to αg = (αg)+ in Rk with the state corresponding to g in R.
In particular, for Rk we have p−(n) ≡ 0 so that p(n) = p+(n) is the usual return probability.
Further, the values d+ = d2,+ = |S| and d− = 1 agree with the values on Cayley(G), so that
C1,q = 1. Therefore, the previous theorem tells us that for X we obtain αk(X) = α0(X).
Indeed, we can also see this directly because dk+1d

∗
k+1 and d1d

∗
1 are identical up to identifying

αg with g and βg,gs with (g, gs).
10If k ≥ 3 and G is finitely presented, we can further glue in 2-cells according to the relations in G, so that X(2)

is the Cayley complex of G. In that case the constructed CW complex X satisfies π1(X) = G, see for example A.
Hatcher’s book [Hat02, p. 77].
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3.3 Example: Degree 1 Upper Random Walk on R2

Consider R2 as a Z2-CW complex of finite type as shown on the
right, with arrows indicating the chosen preferred orientation.
For notation’s sake, we will write Z2 as a multiplicative group
with unit element 1 ∈ Z2. Let x and y be two generators of
Z2 = ⟨x, y | [x, y] = 1⟩ and the Z2-action on this CW complex
be generated by x shifting to the right by one and y shifting
up by one. The red cells indicate Z2-bases. We will denote the
0-basis B0 = {γ•}, the 1-basis B1 = {α↑, α→} and the 2-basis
B2 = {β⟳} in the way suggested by the indices. Given a cell
c and g = xayb ∈ Z2, we denote by gc the cell obtained by
translating c by g, that is a units to the right and b units up.

⟳

⟳

⟳

⟳

⟳

⟳

⟳

⟳

⟳

The incidence numbers between a 2-cell β and a 1-cell α are given by [β : α] = 0 if β and α do
not touch and [β : α] = ±1 if the cells touch; with sign +1 if the orientation β induces on α
agrees with the orientation on α and −1 otherwise. This is an upper 2-regular CW complex with

d+ = 2, d+,2 = 2, d− = 3, C1,q =
3

2q + 1
, C2,q =

1

2

1− q

2q + 1
, C−1

1,qC2,q =
1− q

6
.

The upper Laplacian ∆ = ∆up
1 ↷ ℓ2

(
(R2)(1)

)
in degree one can be written, with respect to the

basis B1, as the C[Z2]-valued matrix

∆ = 2−
(

x+ x−1 1− x− y−1 + xy−1

1− x−1 − y + x−1y y + y−1

)
.

For the non-lazy random walk on 1-cells, on B1 the propagation operator is given as described
in Figure 3.1.

6P

6P

Figure 3.1: Visual representation of propagation operator P

Accounting for changing orientations with signs, this means we can write the corresponding
operator B = TPI with respect to B1 as the C[Z2]-valued matrix

B =
1

6

(
x+ x−1 1− x− y−1 + xy−1

1− x−1 − y + x−1y y + y−1

)
.

We can readily verify that for q ∈ [0, 1] indeed

Bq = q Id+(1− q)B = q Id+
1− q

6
(2 Id−∆) = C−1

1,q Id−C
−1
1,qC2,q∆,



3.3. EXAMPLE: DEGREE 1 UPPER RANDOM WALK ON R2 49

and thus C1,qBq = Id−C2,q∆. Looking at the boundary of β⟳ given by

S = (1− x)α↑ + (y − 1)α→,

it is an eigenstate of B with eigenvalue 1
6

(
x+ x−1 + y + y−1 − 2

)
, compare Figure 3.2.

6P
3×

3×

3×
3×

Figure 3.2: A visual representation of S and BS.

Here, x+ x−1 + y+ y−1 = 4PZ2

, where PZ2

can formally also be interpreted as the propagation
operator of the uniform nearest neighbour random walk on the grid Cayley(Z2) (or, in this

case, rather the 2-cells of R2 with this chosen CW structure). We denote λ = 1
6 (4P

Z2 − 2). A
straight-forward computation shows that S is an eigenstate to Bq with eigenvalue

λq = C−1
1,qC2,q

(
4PZ2

+ [C−1
2,q − 4]

)
.

Since C2,q(4 + [C−1
2,q − 4]) = 1, we can set q′ = 1− 4C2,q = 4q−1

2q+1 and can formally interpret

4C2,qP
Z2

+ [1− 4C2,q] = PZ2

q′

as the propagation operator of the corresponding q′-lazy random walk on Cayley(Z2). Note that
for q ∈ [1/4, 1] we have 4C2,q ∈ [0, 1] and q′ ∈ [0, 1] so this makes sense. In particular,

λq = C−1
1,qP

Z2

q′ and BqS = C−1
1,qP

Z2

q′ S.

The return quantity pq(n) that we are interested in is given by pq(n) = pq,α↑(n)+pq,α→(n), where
pq,α↑(n) = ⟨Bn

q α↑, α↑⟩ is the coefficient of 1α↑ in Bn
q α↑ and similarly for α→. By symmetry,

pq,α↑(n) = pq,α→(n) so that

pq(n) = 2pq,α↑(n) = 2⟨Bn
q α↑, α↑⟩.

We note from Figure 3.1 that

Bq(α↑) = qα↑ +
1− q

6

(
x−1S − S + 2α↑

)
= C−1

1,qα↑ + C−1
1,qC2,q(x

−1 − 1)S. (3.6)

Since the random walk is Z2-invariant, this yields

Bn
q (α↑) = C−1

1,qB
n−1
q (α↑) + C−1

1,qC2,q(x
−1 − 1)Bn−1

q S

Resolving this recursive formula we obtain

Bn
q (α↑) = C−n

1,q α↑ +

n−1∑
k=0

C−n+k
1,q C2,q(x

−1 − 1)Bk
qS

= C−n
1,q

(
α↑ +

n−1∑
k=0

C2,q(x
−1 − 1)(PZ2

q′ )
kS

)
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In order to find the coefficient of 1α↑, we notice that

⟨S, 1α↑⟩ = 1, ⟨x−1S, 1α↑⟩ = −1 and ⟨gS, 1α↑⟩ = 0 for g /∈ {1, x−1}

and therefore it follows that

⟨(PZ2

q′ )
kS, 1α↑⟩ = ⟨(PZ2

q′ )
k, 1− x−1⟩,

⟨x−1(PZ2

q′ )
kS, 1α↑⟩ = ⟨(PZ2

q′ )
k, x− 1⟩.

Using this we obtain

1

2
pq(n) = ⟨Bn

q α↑, α↑⟩ = C−n
1,q

(
1 +

n−1∑
k=0

C2,q

〈
(PZ2

q′ )
k, (x− 1)− (1− x−1)

〉)

= C−n
1,q

(
1 +

n−1∑
k=0

C2,q

〈
(PZ2

q′ )
k, x+ x−1 − 2

〉)
.

By symmetry, the coefficients of (PZ2

q′ )
k for x and x−1 agree, hence

1

2
Cn

1,qpq(n) = 1− 2C2,q

n−1∑
k=0

〈
(PZ2

q′ )
k, 1− x

〉
= 1− 2C2,q

n−1∑
k=0

(
pZ

2

q′ (k)− pZ
2

q′ (e
k−→ x)

)
where pZ

2

q′ (k) is the return probability of the q′-lazy nearest neighbour random walk on Z2 after

k steps and pZ
2

q′ (e
k−→ x) the probability of the random walk to be at the vertex x after k steps.

If we write Eg
q(n) for the expected number of visits of the vertex g in the first n steps for the

q-lazy nearest neighbour random walk on Z2 (counting the starting position for Ee
q(n), if q = 0

we suppress it in notation), we can write this as

1

2
Cn

1,qpq(n) = 1− 2C2,q(Ee
q′(n− 1)− Ex

q′(n− 1)).

Notice that q′ = 1− 4C2,q implies that 2C2,q = 1−q′

2 . Hence,

1

2
Cn

1,qpq(n) = 1− 1− q′

2
(Ee

q′(n− 1)− Ex
q′(n− 1)).

For q < 1 large enough, we expect11 that

Ee
q′(n− 1)− Ex

q′(n− 1) ∼ 1−Θ(n−1) for n→∞.

Plugging this back into the equation above, this would imply that

pq(n) ∼ C−n
1,q

(
1 + Θ(n−1)

)
for n→∞.

Here, we can read off b(2)(d∗2) = 1, corresponding to the kernel of d∗2 of NG-dimension one, and
the Novikov-Shubin invariant α1(R2) = α(d∗2) = 2.

11To see that this asymptotic behaviour holds for the classical random walk on Z2, we give the following heuristic
argument. We can interpret a q-lazy random walk as a non-lazy random walk by ignoring the times when the
random walk stays put. When doing so, a path of length n in the q-lazy random walk is expected to give a path
of length (1− q)n in the non-lazy random walk. Further, the q-lazy random walk is expected to stay in one place
for (1− q)−1 steps. Therefore, it is expected that

Eg
q(n) ∼ (1− q)−1 max{Eg(⌊(1− q)n⌋), Eg(⌊(1− q)n⌋+ 1)} for n → ∞.

For the non-lazy random walk and e ∼ x, Ee(2n)− Ex(2n) = 1 and Ee(2n+ 1)− Ex(2n+ 1) = 1−Θ(n−1).
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3.4 Remarks and Future Directions

There are some questions coming from a stochastic point of view that can be studied further.
Firstly, is it necessary to consider the asymptotic behaviour of pq(n) or is the behaviour the same
for every G-type of k-cell α ∈ Ik(G\X ), so that we only have to consider pq,α(n) ∼ pq(n) for
some α ∈ Ik(G\X )? Secondly, is a lower bound on the lazy probability q necessary or does the
result hold for any q ∈ [0, 1]? Certainly, as in the degree zero case, such a more general result
could only hold if we consider the asymptotic behaviour of n 7→ p(2n) for even arguments only,
as otherwise there are examples where p(2n + 1) ≤ 0 holds. In this setup, however, it seems
possible that p(2n) > 0 for all n ∈ N and pq(2n) ∼ pq′(n) for all q ∈ [0, 1) (certainly if q large
enough such that σ(Bq) ⊂ [−1, 1]) and q′ ∈ [q0, 1) large enough (implying σ(Bq′) ⊂ [0, 1]).

Going in another direction, in Theorem 3.26, we only consider complexes that are upper k-
regular. This is a strong assumption on the local structure of the CW complex, so that we can
assume the multiplication operators M1,q and M2,q are just multiplication by a constant.

For M2,q it seems like this should not be strictly necessary, as the spectral density function
F (∆up

k ◦M2,q) should be dilatationally equivalent to F (∆up
k ). However, note that the operator

∆up
k ◦M2,q need not be self-adjoint in general. This means that the seemingly straight-forward

way to generalise Lemma 3.25 and therefore also Theorem 3.26 is not possible that easily.

Concerning M1,q, we know that for any free G-CW complex of finite type, there are constants
0 < Cmin

1,q ≤ M1,q ≤ Cmax
1,q (as M1,q contains only finitely many different, positive entries).

However, bounds similar in nature to the theorem, like

(Cmax
1,q )−n

(
b(2)(d∗k+1) + C−1n−a

)
≤ pq(n) ≤ (Cmin

1,q )−n
(
b(2)(d∗k+1) + Cn−a

)
,

are not useful if we want to find the exponent of a secondary, polynomial decay of pq(n). If one
wants to generalise the theorem, one needs a better understanding of the rate of exponential decay
first. It is possible that the statement is true for some constant C1,q with Cmin

1,q ≤ C1,q ≤ Cmax
1,q .

This constant should only depend on the local structure, that is, on G\X .
The example discussed in Section 3.3 suggests another way of defining this random walk, which
may be more natural if we want to interpret it as heat spreading out through space in some higher
dimensional sense. This also might lead to a better interpretation of C1,q. In our description, a
random walker moving up α↗ β is not allowed to move back to the cell −α. This is a somewhat
arbitrary choice made in our definition of Rk

q . The equation

Bq = C−1
1,q Id+C−1

1,qC2,q∆,

leading to Equation (3.6) in the example, suggests an alternative definition of the random walk.
The new lazy “probability”12 is now given by C−1

1,q and the random walker moves with “prob-

ability” C−1
1,qC2,q according to any of the eight moves described by (x−1 − 1)S, including the

move α↑ → −α↑ twice. The increase of the lazy probability and the probability P(α↑ → −α↑)
are equal, so that they cancel out when passing from the random walk to Bq. This gives some
intuition for the constants C−1

1,q and C2,q in this example. In this new interpretation, C−1
1,q is the

“lazy probability” and C2,q the factor such that C−1
1,qC2,q ·d(α, α′, β) is the “probability” of doing

any particular move α
β−→ α′, allowing now α

β−→ −α as well. Indeed, the move α → −α will be
possible with “probability” C−1

1,qC2,q · d+,2(α).

12Here, the “probabilities” will not add up to one but to 1 + 2 · (2C−1
1,qC2,q). We may rescale all probabilities

accordingly to obtain true probabilities if needed.
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Chapter 4

Novikov-Shubin Invariants of
Nilpotent Lie Groups

While higher Novikov-Shubin invariants αk for k ≥ 1 are hard to compute in general, a result of
M. Rumin ([Rum90], [Rum99]) introduced a rather simple technique to get bounds on Novikov-
Shubin invariants in some cases. By defining a suitable subcomplex of the deRham complex, now
known as the Rumin complex, he proved that for any contact manifold M of dimension 2n + 1
the Novikov-Shubin invariants are given by

αk(M) =

{
2n+ 2 for 1 ≤ k ≤ 2n+ 1, k /∈ {n, n+ 1},
n+ 1 for k ∈ {n, n+ 1}.

This includes the Heisenberg group H3 and its higher-dimensional analogues. This subcomplex
can be studied in more generality and can help in the computation of Novikov-Shubin invariants
for graded nilpotent Lie groups. This is explained in M. Rumin’s paper [Rum01]. A slight
modification allows to work with the simpler Lie algebra cohomology of the corresponding Lie
algebra and a subcomplex of the underlying Chevalley-Eilenberg complex instead.

While I was working on this, this method was independently described by F. Tripaldi in [Tri20],
and then in more detail by V. Fischer and F. Tripaldi in [FT22]. We will therefore only briefly
recall the constructions and results and refer to these papers for more details.

4.1 The Left-Invariant Rumin Complex

Let G be a nilpotent Lie group of dimension n and with associated Lie algebra g. Let B =
{X1, . . . , Xn} be a basis for g with structure constants {cli,j}1≤i,j,l≤n defined by the equations

[Xi, Xj ] =

n∑
l=1

cli,jXl

for 1 ≤ i, j ≤ n. A weight function is a map w : B → N which satisfies that

w(Xi) + w(Xj) = w(Xl) if cli,j ̸= 0. (4.1)

We write wi = w(Xi). Given a weight function, we define the subspace of elements of pure
weight w0 by

g(w0) = span {Xi | 1 ≤ i ≤ n, wi = w0} .

53
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The condition given by Equation (4.1) on the weights implies that [g(w), g(w′)] ⊂ g(w + w′).1

We extend such a weight function to the dual g∗ = Λ1g∗ spanned by the canonical dual basis

B1 = {θi = X∗
i | 1 ≤ i ≤ n}

by declaring w(θi) = wi and to higher forms Λkg∗ spanned by

Bk = {θi1 ∧ · · · ∧ θik | 1 ≤ i1 < · · · < ik ≤ n}

by declaring the weights of a product as the sum of weights of the factors,

w(θi1 ∧ · · · ∧ θik) = wi1 + · · ·+ wik .

As before, we define the subspace of pure weight w0 by Λkg∗(w0) = span
{
α ∈ Bk

∣∣ w(α) = w0

}
.

For k = 0, we define w ≡ 0 on Λ0g∗. For 1 ≤ k ≤ n, the space Λkg∗ decomposes as

Λkg∗ =
⊕

w∈Wk

Λkg∗(w),

where Wk =
{
w(α)

∣∣ α ∈ Bk} ⊂ N0 is the set of weights of k-forms in Bk. We denote by

Nmin
k = minWk respectively Nmax

k = maxWk

the minimal respectively maximal weight of k-forms. If a form α ∈ Λkg∗ is not of pure weight,
we denote by w(α) the minimal subset W ⊂ Wk such that α ∈

⊕
w∈W Λkg∗(w).2

Recall that the Chevalley-Eilenberg complex (Λkg∗, dg) is given by the objects Λkg∗ together
with the differential dg defined for α ∈ Λkg∗ and X0, . . . , Xk ∈ g by the Cartan formula

dg(α)(X0, . . . , Xk) =
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0,
X̂i,X̂j. . . , Xk),

where a hat indicates leaving out the corresponding argument. The Chevalley-Eilenberg complex
(Λkg∗, dg) can be viewed as the subcomplex of left-invariant differential forms of the deRham
complex (ΩkG, d), leading to an isomorphism

Λkg∗ ⊗ C∞G ∼= ΩkG.

Under this isomorphism the deRham differential is given on pure tensors by

d : α⊗ f 7→ dgα⊗ f + df ∧ α⊗ 1.

We extend the weight function w to ΩkG by declaring subspaces of the form

ΩkG(w0) = Λkg∗(w0)⊗ C∞G

to be of pure weight w0 and proceeding as before. Notice that dg preserves the weight of a form
since by assumption w([Xi, Xj ]) = wi + wj , as can easily be seen from the Cartan formula. For
the second term, the map α⊗ f 7→ df ∧ α⊗ 1 preserves weight if and only if it vanishes since f
is of weight zero but df ̸= 0 at least of weight one.

1We may refer to 0 to be of any weight or ignore 0 depending on the situation, this will not be a big issue.
2To simplify notation, we may also write w(α) = {w0} if α is of pure weight w0.
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The Rumin complex (E0, dc) is a subcomplex of, and homotopy equivalent to, the deRham
complex (ΩkG, d). The objects E0 are given in terms of a chosen metric and the weight-preserving
part of d (which we denote again by dg, that is, dg : α⊗ f 7→ dgα⊗ f), as

Ek
0 = ker dg ∩ (im dg)

⊥ ⊂ ΩkG.

For more details of the construction and a description of the differential dc of the Rumin complex
we refer to V. Fischer and F. Tripaldi’s detailed description in [FT22]. Note that we can define
a representing system of the Lie algebra cohomology after choosing a metric as

Hk(g) = Hk(Λ•g∗, dg) ∼= ker dg ∩ (im dg)
⊥ ⊂ Λkg∗.

Therefore, by construction, Ek
0
∼= Hk(g)⊗ C∞G and, in particular, w(Ek

0 ) = w(Hk(g)), that is,
the two spaces contain forms of the same weights. We can now formulate M. Rumin’s result on
estimating Novikov-Shubin invariants, compare [Rum01, Thm. 3.13]:

Theorem 4.1. Let G be a graded nilpotent Lie group with associated Lie algebra g and weight
function w on g. If Hk(g) is of pure weight Nk then

αk(G) ∈
[
N(G)

δNmax
k

,
N(G)

δNmin
k

]
,

where N(G) = w(d vol) is the weight of the volume form3 and δNmin
k+1 = max{Nmin

k −Nk, 1} and
δNmax

k+1 = Nmax
k −Nk are defined in terms of the weights gaps between Hk(g) and Hk+1(g).

This theorem gives an easy way of estimating Novikov-Shubin invariants if the pure weight
condition can be satisfied by some weight function on g. We give a brief description of an
algorithm to find these estimates. A Python-implementation can be found in Appendix A.

Input: The input is a simply connected nilpotent Lie group G, given in terms of its dimension
n and structure constants cli,j for 1 ≤ i < j ≤ n and 1 ≤ l ≤ n of its associated Lie algebra g.

Output: The output is a list of estimates Lk ≤ αk ≤ Uk for some 0 ≤ k ≤ n.

Algorithm:

1. Computing the Lie algebra cohomology of g. The groups of the Chevalley-Eilenberg

complex are given by Λkg∗ ∼= R(
n
k), where we can identify basis k-forms θi1 ∧ · · · ∧ θik

with subsets {i1 < · · · < ik} ⊂ {1, . . . , n} which are a natural enumeration of
(
n
k

)
. The

differential dg is then given by the linear operator dg : R(
n
k) → R(

n
k+1) described by the

matrix whose entries are non-zero if and only if they correspond to basis elements of the
form (up to ordering) {l} ∪ I → {i, j} ∪ I where I ⊂ {1, . . . n} is an ordered subset with
|I| = k − 1 and i, j, l /∈ I. In this case, the entry is given by the structure constants,

(dg){l}∪I→{i,j}∪I = ±cli,j ,

with sign depending of the sign of permutations needed to sort the two (ordered) sets {l}∪I
and {i, j} ∪ I. Hence, computing kernel and image of dg under these isomorphisms is a
problem of linear algebra and finding a system of representatives for ker dg ∩ (im dg)

⊥ ∼=
Hk(g) can be done, for example, using the Gram-Schmidt algorithm.

3Here, the symbol N(G) is used in reference to the growth rate: If G is graded, then one possible weight
function is given by assigning to Xi the step in the lower central series in which Xi disappears, that is Xi ∈ gwi−1

but Xi /∈ gwi . In this case, N(G) is equal to the growth rate. However, there may be other weight functions.
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2. Finding suitable weights. Fix a degree k. In order to find a weight w that satisfies
the pure weight condition in degree k, it needs to satisfy the linear equations coming from
the weight conditions wi + wj = wl if c

l
i,j ̸= 0 and the linear equations needed to ensure

that all weights appearing in w(Hk(g)) are equal.4 This produces a list of possible weight
functions that lead to pure weight in degree k. The list may be empty, in which case the
pure weight condition cannot be satisfied and the theorem cannot be applied.

3. Finding the bounds. For each weight function found in the previous step, we can
now compute the weights appearing in w(Hk+1(g)).5 The growth rate can also easily be
computed from the structure constants, so that this already allows us to compute the lower
bound Lk and the upper bound Uk on αk.

4. Apply Hodge duality. We can improve the bounds found by this method using the
known results that α0(G) = N(G) and by Hodge duality αk(G) = αn−k−1(G).

4.2 Estimates on Nilpotent Lie Groups up to Dimension 6

For nilpotent Lie groups up to dimension six (all of which are graded), we obtain the bounds
given in Table 4.1 on page 57 by implementing the algorithm above as a computer program. The
Python implementation can be found in Appendix A.

4.3 Examples and Remarks

In this section we go over some examples and compute the estimates on some Lie algebras.

Heisenberg groups and contact manifolds. In the table, L3,2 = h3 = ⟨X,Y, Z |[X,Y ] = Z⟩
is the (3-dimensional) Heisenberg Lie algebra associated to the Heisenberg group H3. For h3, the
Lie algebra cohomology is given by

H1(h3) = ⟨θX , θY ⟩, H2(h3) = ⟨θX ∧ θZ , θY ∧ θZ⟩, H3(h3) = ⟨θX ∧ θY ∧ θZ⟩.

Putting weights w(X) = 1, w(Y ) = 1 and w(Z) = 2 yields a weight function for which all
homology groups are of pure weight,

N0 = 0, N1 = 1, N2 = 3 and N3 = 4.

In particular N(G) = w(θX ∧ θY ∧ θZ) = 4, hence by Theorem 4.1 we obtain

α0(H3) =
N(G)

N1 −N0
= 4, α1(H3) =

N(G)

N2 −N1
= 2 and α2(H3) =

N(G)

N3 −N2
= 4.

The Lie algebra L5,4 = h5 = ⟨X1, X2, Y1, Y2, Z |[X1, Y1] = Z, [X2, Y2] = Z⟩ is the 5-dimensional
Heisenberg Lie algebra. For h5 we obtain a similar picture, where the lower half of the homology
groups, H0(h5), H1(h5) and H2(h5), are spanned by all basis forms not containing θZ as a factor
while the upper half of the homotopy groups, H3(h5), H4(h5) and H5(h5) are spanned by all
basis forms containing θZ as a factor. This is true more generally for Lie algebras associated to
Lie groups that are contact manifolds. The contact form is the distinguished 1-form of weight 2,
so θZ in case of the Heisenberg groups, while its orthogonal complement is of pure weight 1.

4Note that, if a non-trivial solution to this linear equation exists, it will have at least one degree of freedom.
We may fix one free variable to equal 1 without changing the possible estimates.

5If this list still contains degrees of freedom, a bit more work may be needed to find the optimal results.
Note that it is possible to restrict to integer weights and generally speaking, choosing smaller values for such free
variables tends to produce the best estimates.
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g α0 α1 α2 α3 α4 α5 α6

L1,1 1 ∞+

L3,2 4 2 4 ∞+

L4,3 7 [5/2, 10/3] [5/2, 10/3] 7 ∞+

L5,4 6 6 3 6 6 ∞+

L5,5 8 − − − 8 ∞+

L5,6 11 − − − 11 ∞+

L5,7 11 [11/4, 11/2] − [11/4, 11/2] 11 ∞+

L5,8 7 [7/2, 7] − [7/2, 7] 7 ∞+

L5,9 10 10/3 5 10/3 10 ∞+

L6,10 9 − − − − 9 ∞+

L6,11 12 − − − − 12 ∞+

L6,12 12 − − − − 12 ∞+

L6,13 12 − − − − 12 ∞+

L6,14 16 − − − − 16 ∞+

L6,15 16 − − − − 16 ∞+

L6,16 16 [14/3, 7] [16/5, 16/3] [16/5, 16/3] [14/3, 7] 16 ∞+

L6,17 16 − − − − 16 ∞+

L6,18 16 [16/5, 8] − − [16/5, 8] 16 ∞+

L6,19,1 10 [5, 10] − − [5, 10] 10 ∞+

L6,19,0 10 [10/3, 10] − − [10/3, 10] 10 ∞+

L6,19,−1 10 [5, 10] − − [5, 10] 10 ∞+

L6,20 10 [5, 10] − − [5, 10] 10 ∞+

L6,21,1 14 [7/2, 14/3] − − [7/2, 14/3] 14 ∞+

L6,21,0 14 [7/2, 14/3] − − [7/2, 14/3] 14 ∞+

L6,21,−1 14 [7/2, 14/3] − − [7/2, 14/3] 14 ∞+

L6,22,1 8 [4, 8] [4, 8] [4, 8] [4, 8] 8 ∞+

L6,22,0 8 [4, 8] [4, 8] [4, 8] [4, 8] 8 ∞+

L6,22,−1 8 [4, 8] [4, 8] [4, 8] [4, 8] 8 ∞+

L6,23 10 − − − − 10 ∞+

L6,24,1 11 − [4, 6] [4, 6] − 11 ∞+

L6,24,0 11 − [4, 6] [4, 6] − 11 ∞+

L6,24,−1 11 − [4, 6] [4, 6] − 11 ∞+

L6,25 10 [10/3, 10] − − [10/3, 10] 10 ∞+

L6,26 9 9/2 [9/2, 9] [9/2, 9] 9/2 9 ∞+

Figure 4.1: List of estimates on Novikov-Shubin invariants for nilpotent Lie algebras of dimension
up to six using M. Rumin’s theorem and an implementation in Python. The list of such Lie
algebras and the naming convention is taken from W. A. de Graaf’s classification [Gra07]. A
dash indicates that no estimate can be found, an interval indicates the interval that the αk lies
within and an explicit value gives the precise value of αk.
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Engel’s group. The algebra L4,3 = ⟨X,Y, Z, T | [X,Y ] = Z, [X,Z] = T ⟩ is the Lie algebra
associated to Engel’s group. For this case, the computations can be found in M. Rumin’s pa-
per [Rum01]. It is an interesting case because two different weight functions can be used here to
obtain better bounds than any individual weight function would yield.

The Lie algebra L5,9. The algebra g = L5,9 is 5-dimensional with generators X1, . . . , X5 and
three non-vanishing commutator relations,

[X1, X2] = X3, [X1, X3] = X4 and [X2, X3] = X5

or equivalently, given by non-zero structure constants c31,2 = 1, c41,3 = 1 and c52,3 = 1. Denoting
the weight of Xi by wi = w(Xi), this gives us the following initial restraints on the weights:

w3 = w1 + w2, w4 = w1 + w3 = 2w1 + w2, w5 = w2 + w3 = w1 + 2w2.

Further, if we denote θi = X∗
i the dual basis of Λ1g∗ and θi1...ik = θi1 ∧ · · · ∧ θik , we can read

off the Lie algebra differential d = dg : Λ
1g∗ → Λ2g∗ by using Cartan’s formula. On the basis

elements of Λ1g∗ it is given by

d(θ1) = 0, d(θ2) = 0, d(θ3) = −θ12, dθ4 = −θ13, d(θ5) = −θ23

and extended linearly to Λ•g∗. From this, we directly see that d : Λ2g∗ → Λ3g∗ vanishes on all
standard basis elements θi1i2 except for

d(θ15) = θ123, d(θ24) = −θ123, d(θ34) = −θ124, d(θ35) = −θ125, d(θ45) = θ234 − θ135.

In degree three it vanishes on standard basis elements except for

d(θ145) = −θ1234, d(θ245) = −θ1235, d(θ345) = −θ1245,

and in degree four, the differential vanishes. We compute the Lie algebra cohomology and the
weights appearing as w(H0(g)) = {0} and

H1(g) ∼= ⟨θ1, θ2⟩
w−→ {w1, w2},

H2(g) ∼= ⟨θ14, θ25, θ15 − θ24⟩
w−→ {3w1 + w2, w1 + 3w2, 2w1 + 2w2},

H3(g) ∼= ⟨θ134, θ135 + θ234, θ234⟩
w−→ {4w1 + 2w2, 3w1 + 3w2, 2w1 + 4w2},

H4(g) ∼= ⟨θ1345, θ2345⟩
w−→ {5w1 + 4w2, 4w1 + 5w2},

H5(g) ∼= ⟨θ12345⟩
w−→ {5w1 + 5w2}.

Hence, we obtain pure weight in any/all degrees for w1 = w2, in which case

w(H0(g)) = 0, w(H1(g)) = 2w1, w(H2(g)) = 4w1,

w(H3(g)) = 6w1, w(H4(g)) = 9w1, w(H5(g)) = 10w1.

Since we have pure weight in all degrees, δNmax
k = δNmin

k = w(Hk+1(g))−w(Hk(g)) in all cases,
so that we get precise answers for all Novikov-Shubin invariants. For 0 ≤ k ≤ 4,

αk(L5,9) =
w(θ12345)

w(Hk+1(g))− w(Hk(g))
,

which indeed yields:
G α0 α1 α2 α3 α4

L5,9 10 10/3 5 10/3 10
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Remark 4.2. Notice that M. Rumin’s Theorem 4.1 has multiple assumptions that need to be
satisfied in order to obtain estimates on Novikov-Shubin invariants. In particular, to estimate
αk(G) for some 0 ≤ k ≤ dim(G), this includes the following two assumptions:

� The assumption of having a weight function on G.

� The assumption that the Lie algebra cohomology of g is of pure weight in degree k.

Both of these assumptions are necessary and it seems that they cannot easily be lifted. A key
part of M. Rumin’s approach comes from studying dilatations hr : G → G. Given a weight
function w on g, these dilatations can be defined using the exponential map as

hr(expXi) = rwi expXi.

These dilatations induce maps on the level of differential forms, where a differential form of pure
weight w0 is scaled by a constant factor rw0−w(d vol)/2, where d vol denotes a volume form. Since
we can define the dilatations as functions G→ G and view their pullbacks on differential forms, it
is immediately clear that the pullback commutes with the deRham differential d. The requirement
on w to be a weight function implies that h∗

r commutes with the commutator brackets, h∗
r([ · , · ]) =

[h∗
r( · ), h∗

r( · )] which is needed in the proof.
Lastly, the requirement that Hk(g) has to be of pure weight is crucial as we study near cohomol-
ogy cones, defined as subspaces of the orthogonal complements (ker d)⊥. In order for the h∗

r to
define maps between near cohomology cones they have to map (ker d)⊥ → (ker d)⊥, which is only
guaranteed if Hk(g) is of pure weight (so h∗

r is just scaling by a factor) but not true otherwise.

In the following chapter, Chapter 5, we will approach the problem from another angle. However,
the idea of scaling different directions of our manifold with different speeds — as is done here
using the dilatation hr — will be the core feature of the main definition of the upcoming chapter.

Remark 4.3. Let us also remark that based on this data, the Novikov-Shubin invariants of an
n-dimensional nilpotent Lie algebra tend to decay with the index from α0 to α⌊n/2⌋ (and, by
Hodge duality, increase afterwards). This is not always true in the strict sense, as can be seen
from the example L5,9. However, it can be explained heuristically:
For every nilpotent Lie algebra g, there is a compact connected Lie group G that has g as its
associated Lie algebra. For such Lie groups, their deRham cohomology is isomorphic to the Lie
algebra cohomology of g, compare the original paper of C. Chevalley and S. Eilenberg [CE48,
Thm. 15.2]. Nilmanifolds, by definition quotients of nilpotent Lie groups, are precisely those
manifolds, that can be described as iterated principal circle bundle, see [Bel20]. In the trivial case,
the n-torus Tn = (S1)n is a nilmanifold with Lie algebra tn ∼= Rn. Its Lie algebra cohomology

is the full Hk(tn) ∼= Λktn ∼= R(
n
k), growing in k until k = ⌊n/2⌋. While generally the cohomology

groups of such iterated sphere bundles will not be the full Λktn, they tend to be rather large. As
Novikov-Shubin invariants measure the size of spaces related to this homology (small Novikov-
Shubin invariants meaning these spaces are large), it is not surprising that they behave similarly.
This also suggests a pessimistic answer to the question how often M. Rumin’s approach should
be expected to give estimates on Novikov-Shubin invariants. Since the Lie algebra cohomologies
tend to be large (in particular, in the middle degrees 2 ≤ k ≤ n−2), the pure weight assumption
requires many basis forms to be of the same weight. Together with the weight restriction coming
from the weight function, generally, we expect to have a overdetermined system of linear equations
that will have solutions only in special cases.
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Chapter 5

Two-Parameter Novikov-Shubin
Invariants on Fibre Bundles

In this chapter we consider the setting of fibre bundles and define a two-parameter version of
the Novikov-Shubin invariants in hopes of detecting the individual contributions from the base
and from the fibre. We compute these generalised numbers explicitly for the example of the
three-dimensional Heisenberg group. We then prove several invariance properties of these new,
two-parameter Novikov-Shubin numbers.

This fits into the recent interest of studying fibre bundles by means of invariants, such as work
based on J.-M. Bismut and J. Cheeger’s study [BC89] of higher torsion invariants on fibre bundles
using adiabatic limits, J.-M. Bismut’s study [Bis86] of an Atiyah-Singer theorem for families of
Dirac operators and characteristic classes of fibre bundles such as the Morita-Miller-Mumford
classes named after D. Mumford [Mum83], E. Y. Miller [Mil86] and S. Morita [Mor87].

This new definition is different, but similar in spirit, to the study of adiabatic limits of fibre
bundles. Some publications relevant to this topic include articles from L. Sanguiao [San08] and
from S. Haag and J. Lampart [HL19].

5.1 Two-Parameter Novikov-Shubin Numbers

Let (M, g) be a noncompact Riemannian manifold with a cocompact free proper group action
G ↷ M acting by isometries. As discussed in Subsection 2.4.4, the spectral density function1 of
d, defined by2

Fk(M, g)(λ) = dimNG imχ[0,λ2](∆
k
up(M, g)) = trNG χ[0,λ2](∆

k
up(M, g)),

can instead be defined by rescaling the manifold and looking at a fixed interval of the spectrum.
Since for gλ = λ2g the Laplace operators satisfy ∆k

up(M, gλ) = λ−2∆k
up(M, g), we obtain

Fk(M, g)(λ) = trNG χ[0,λ2](∆
k
up(M, g)) = trNG χ[0,1](∆

k
up(M, gλ)) = Fk(M, gλ)(1).

1In this chapter, we denote spectral density functions with the calligraphic letters F or G to avoid conflicts in
notation with the fibre F of the fibre bundle and the group G.

2As this makes the notation more suggestive in this chapter, we write χ[0,λ0](∆
k
up(M, g)) = Edk,∗dk

λ0
with the

upper Laplacian ∆k
up(M, g) = dk,∗dk depending on the Riemannian metric g.

61
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If M is the total space of a fibre bundle and the fibre bundle structure is compatible with the
G-action, then we can scale M with different speed in fibre and base directions. This way we
can define a refined version of the Novikov-Shubin invariants.
More precisely, let M

π−→ B be a fibre bundle with fibres {Fb = π−1(b)}b∈B , where (M, g) is a
Riemannian manifold with Riemannian metric g (as always, we assume the base, the fibres and
thus also the total space to be connected). At every point x ∈ M with π(x) = b, we can define
the subspace

TxFb = kerDxπ ⊂ TxM,

giving rise to the vertical subbundle VM ⊂ TM of the tangent bundle by

VM = T•F• = ker(π∗) ⊂ TM.

Choosing a connection ∇ compatible with g on the fibre bundle is equivalent to specifying an
orthogonal complement HM of VM in TM , so that the tangent space TM decomposes as

TM ∼=∇ VM ⊥g HM.

The bundle HM is called the horizontal subbundle of TM . The Riemannian metric decomposes
fibrewise into a vertical and a horizontal contribution,

gx = gx,V + gx,H ,

where gx,V is supported in VxM ⊗ VxM and gx,H is supported in HxM ⊗HxM .
In the following, we denote the situation described here by the triple (M → B,∇, g) and call
such a triple a Riemannian fibre bundle with connection.

Definition 5.1. We call a cocompact free proper group action G ↷ M compatible with this
structure, and write G ↷ (M → B,∇, g), if the Riemannian metric g is G-invariant and there is
a group action G′ ↷ B together with a surjective group homomorphism φ : G ↠ G′ such that
the projection M

π−→ B is φ-equivariant3.

Example 5.2. The typical example for such a Riemannian fibre bundle with connection and
compatible group action is obtained by starting with a compact fibre bundle F →M → B where
F , M and B are connected. The universal covering M̃ of M can be considered as a fibre bundle
M̃ → B̃ over the universal covering of the base B with some fibres F ′

• (in general, these are
not the universal coverings of the fibres F•). On the universal coverings, we have the action of

π1(M) on M̃ and the action of π1(B) on B̃, compare the following diagram:

π1(M) π1(B)

F ′ M̃ B̃

F M B

φ

↷ ↷

The long exact sequence of homotopy groups for the fibre bundle F →M → B, given by

· · · → π2(B)→ π1(F )→ π1(M)
φ
↠ π1(B)→ 0,

3That is, for all γ ∈ G and x ∈ M we have π(γx) = φ(γ)π(x). In particular, ker(φ) acts on each fibre F ′
b.
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yields a group homomorphism φ : π1(M) → π1(B) that is surjective since π0(F ) is trivial. The
elements in the kernel of φ are in the image of π1(F ) → π1(M) and act fibrewise on each fibre

F ′
b for b ∈ B̃ and the projection M̃ → B̃ is φ-equivariant.

Definition 5.3. Let (M → B,∇, g) be a Riemannian fibre bundle with connection. For smooth
positive functions sH , sV ∈ C∞(M,R+) we define the Riemannian metric gsH ,sV on M by

x 7→ gsH ,sV
x = sH(x)2gx,H + sV (x)

2gx,V .

In particular, if sH ≡ µ > 0 and sV ≡ ν > 0 are constant functions, this defines

gµ,ν = gsH ,sV = µ2gV + ν2gH .

This is indeed a Riemannian metric: Since g is positive definite and sH , sV > 0, also gsH ,sV
x is

positive definite on each fibre TxM , and the map x 7→ gsH ,sV
x is smooth because g, sH and sV

are smooth. We use this structure to define a refined version of the spectral density function
depending on two parameters in place of the classical parameter λ.

Definition 5.4. Let G ↷ (M → B,∇, g) be a Riemannian fibre bundle with connection and
compatible G-action. Then, using the previous definition, we define the two-parameter spectral
density function Gk(M → B,∇, g) : R+ × R+ → [0,∞] by

Gk(M → B,∇, g)(µ, ν) = trNG χ[0,1](∆
k
up(M, gµ,ν)) = Fk(M, gµ,ν)(1).

We call two such functions G,G′ : R+ × R+ → [0,∞] dilatationally equivalent if there exists a
constant C > 0 such that for all µ, ν ∈ R+,

G(C−1µ,C−1ν) ≤ G′(µ, ν) ≤ G(Cµ,Cν).

In this case we write G ∼ G′.

The fact that we chose the value one for the upper end of the interval is not of importance here,
in the sense that the dilatational equivalence class of G does not depend on the upper end.

Lemma 5.5. The dilatational equivalence class is independent of the right end chosen for the
interval, that is for all λ0 > 0,

Gk(M → B,∇, g)(µ, ν) ∼
(
(µ, ν) 7→ trNG χ[0,λ0](∆

k
up(M, gµ,ν))

)
.

Proof. This follows directly with constant C =
√
λ0 since

trNG χ[0,λ0](∆
k
up(M, gµ,ν)) = trNG χ[0,1](λ

−1
0 ∆k

up(M, gµ,ν))

= trNG χ[0,1](∆
k
up(M,λ0g

µ,ν))

= trNG χ[0,1](∆
k
up(M, g

√
λ0·µ,

√
λ0·ν))

= Gk(M → B, g,∇)(
√
λ0 · µ,

√
λ0 · ν).

Instead of having two truely independent parameters µ and ν, we would like to consider the
two parameters as different speeds of scaling the manifold. Therefore, we replace these two
parameters with two functions, depending on the same variable λ, governing how fast the fibre
respectively the base get scaled as λ↘ 0.
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Definition 5.6. Let G ↷ (M → B,∇, g) be a Riemannian fibre bundle with connection and
compatible G-action. Let µ, ν : R≥0 → R≥0 be monotonously increasing continuous functions
with µ(0) = 0 = ν(0). Denoting Gk = Gk(M → B,∇, g) we define the two-parameter Novikov-
Shubin numbers by

αk(M → B,∇, g)(µ, ν) = α
(
λ 7→ Gk(µ(λ), ν(λ))

)
= lim inf

λ↘0

log(Gk(µ(λ), ν(λ))− b(2)(dk+1))

log(λ)
.

Recall here that b(2)(dk+1) is metric invariant and measuring the size of the kernel of dk+1, which
we use to extend the definition of Gk formally by Gk(µ(0), ν(0)) = Gk(0, 0) = b(2)(dk+1).

Remark 5.7. This two-parameter function generalises the usual spectral density function. In-
deed, if4 µ = ν = λ, then gλ,λ = λ2g = gλ independently of the connection ∇ chosen. Hence,

Gk(M → B,∇, g)(λ, λ) = trNG χ[0,1](∆
k
up(M, gλ)) = Fk(M, g)(λ)

is the classical spectral density function of (M, g) and therefore

αk(M → B, g,∇)(λ, λ) = αk(M)

recovers the Novikov-Shubin invariants.

Example 5.8. In the simplest case of a product manifold (M, g) = (F, gF ) × (B, gB) with the
canonical connection TM ∼=∇ TF ⊥ TB, for µ, ν > 0 we have

Gk(F ×B,∇, g)(µ, ν) = Fk((F, ν
2gF )× (B,µ2gB))(1).

By [Lüc02, Cor. 2.44], it is therefore dilatationally equivalent to

Gk(F ×B,∇, g)(µ, ν) ∼
∑

p+q=k

Fp((F, ν
2gF ))(1) · Fq((B,µ2gB))(1)

=
∑

p+q=k

Fp(F )(ν) · Fq(B)(µ).

If µ = λr and ν = λs, we can consider a limit as λ↘ 0 in the spirit of the Novikov-Shubin invari-
ants. We assume that all L2-Betti numbers in this example vanish5. Following the computation
in W. Lück’s book [Lüc02, Thm. 2.55 (3)],

αk(F ×B,∇, g)(µ, ν) = lim inf
λ↘0

log(Gk(F ×B,∇, g)(λr, λs))

log(λ)

= lim inf
λ↘0

log(Fk((F, λ
2sgF )× (B, λ2rgB),∇, g)(1))

log(λ)

= min
0≤p≤k

{
α (Fp(F )(λs) · Fk−p(B)(λr)) ,
α (Fp+1(F )(λs) · Fk−p(B)(λr))

}
= min

0≤p≤k

{
α (Fp(F )(λs)) + α (Fk−p(B)(λr)) ,
α (Fp+1(F )(λs)) + α (Fk−p(B)(λr))

}
= min

0≤p≤k

{
s · αp(F ) + r · αk−p(B),
s · αp+1(F ) + r · αk−p(B)

}
.

In this case, we see the contributions from the base and fibre scaled according to the chosen
functions µ(λ) = λr and ν(λ) = λs as λ↘ 0.

4By abuse of notation we denote by λ the function id: λ 7→ λ or more generally by λc the function λ 7→ λc.
5This is not necessary but reduces the length of notation for this example considerably. One can proceed just

as in cited source by W. Lück even if the L2-Betti numbers do not vanish.
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5.2 Example: The Heisenberg Group

We consider the Heisenberg group H3 and its associated Lie algebra h3 = ⟨X,Y, Z | [X,Y ] = Z⟩
as a fibre bundle R→ h3 → R2, where the fibre direction corresponds to the central Z-direction
and the basis directions are the X- and Y -directions. A basis of left-invariant vector fields is
given by the vector fields

ϑX = ∂X −
1

2
y∂Z , ϑY = ∂Y +

1

2
x∂Z , ϑZ = ∂Z ,

where x and y denote coordinates in the base R2 = ⟨X,Y ⟩.
Requiring that ϑX , ϑY and ϑZ are orthonormal yields the standard metric g and with VM = ⟨ϑZ⟩
and HM = ⟨ϑX , ϑY ⟩. We also fix a connection ∇. The scaled metric gµ,ν is the metric for which

µ−1 · ϑX , µ−1 · ϑY and ν−1 · ϑZ

form an orthonormal basis of h3. Using results of a computation of J. Lott [Lot92, Prop. 52], we
obtain the following values for the two-parameter Novikov-Shubin numbers.

Theorem 5.9. On h3, by direct computation we obtain

α0(h
3)(λ, λ1+ζ) = 4 + 2ζ for − 1/2 ≤ ζ,

α1(h
3)(λ, λ1+ζ) = 2− 2ζ for − 1/2 < ζ < 1,

and, by Hodge duality, also α2(h
3)(λ, λ1+ζ) = 4 + 2ζ for −1/2 ≤ ζ. Compare also Figure 5.1.
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Figure 5.1: The two-parameter Novikov-Shubin numbers of h3. On the left, we see a plot for
α0(h

3)(λ, λ1+ζ) and on the right for α1(h
3)(λ, λ1+ζ). The marked points at ζ = 0 indicate the

classical Novikov-Shubin invariants α0(H3) and α1(H3). For α0, the contributions of base and
fibre seem to agree. In particular, as ζ increases, so does α0. For α1, the opposite is the case:
As ζ increases, α1 decreases. This gives an interesting insight to (classical) Novikov-Shubin
invariants. Comparing the Novikov-Shubin invariants for H3 and R3, α0(H3) = 4 > 3 = α0(R3)
but α1(H3) = 2 < 3 = α1(R3). Interestingly, for ζ = −1/2, we obtain the Novikov-Shubin
invariants for R3. This fits to the observation that in H3, the Z-direction scales like the product
of the base directions ([aX, bY ] = abZ), so scaling the fibre with λ1/2 seems to counteract this.
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Proof. It was shown by J. Lott [Lot92, Prop. 52] that in this setting of h3 with metric g1,c, the
heat kernel on functions is given by

e−t∆0(0, 0) =
1

4π2

1

ct2

∫ ∞

0

e−
u2

c2t sinh(u)−1udu.

Classically, if c is constant and we let t → ∞, the normal distribution density function e−
u2

c2t

converges to the constant-1 function and therefore

lim
t→∞

∫ ∞

0

e−
u2

c2t sinh(u)−1udu =

∫ ∞

0

sinh(u)−1udu =
π

4
.

Hence, e−t∆0(0, 0) is in Θ(t−2) as t→∞ and, by the observations in Subsection 2.4.2, α0(h
3) = 4.

If we let c depend on t, the same argument remains true as long as c(t)2t → ∞ as t → ∞,
showing that then

e−∆0(0, 0) ∈ Θ(c(t)−1t−2).

Therefore, with c = tζ and ζ > −1/2,

α
(
λ 7→ G0(λ, λ1+ζ)

)
= 4 + 2ζ.

Indeed, since for ζ = −1/2 the integral is a positive constant,

0 <

∫ ∞

0

e−u2

sinh(u)−1udu <∞,

the argument holds also for ζ = −1/2, however, the integral converges to zero for ζ < −1/2, so
that its asymptotic behaviour need to be taken into account. The summand 2ζ tells us that
the scaling of the Z-direction contributes quadratically to the spectral density. This fits with
the computation of α0(H3) = N(H3) via the growth rate N(H3) since by the Bass-Guivarc’h
formula,

N(H3) = rk(⟨X,Y ⟩) + 2 · rk(⟨Z⟩)
= 2 + 2 = 4,

so we also see a quadratic contribution from the central Z-direction in this picture.

On 1-forms, J. Lott computes the heat operator as

e−t∆1(0, 0) =
1

2π2

1

c

[
I+1 + I−1 + I2 + I3

]
,

where the summands I• are the following integral expressions:

I±1 =

∫ ∞

0

∞∑
m=1

e
−t

[
(2m+1)k+ k2

c2
+ c2

2 ±c
√

(2m+1)k+ k2

c2
+ c2

4

]
kdk,

I2 =

∫ ∞

0

e−
k2

c2
tkdk,

I3 =

∫ ∞

0

e
−
(
2k+ k2

c2
+c2

)
t
kdk.

J. Lott estimates these integrals in the case where c is constant in order to compute the Novikov-
Shubin invariant α1(H3) = 2.

We compute the integrals in the case where c = c(t) is a function of t.
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Lemma 5.10. The integrals I2 and I3 evaluate to

I2 =
1

2

c2

t
,

I3 =
1

2

c2

t
e−c2t +

√
π
c3√
t
· erfc

(
c
√
t
)
,

where erfc denotes the complementary Gauss error function.

Proof. The integral I2 can be directly evaluated by substituting u = k2 as

I2 =

∫ ∞

0

e−
t
c2

·k2

k dk =
1

2

∫ ∞

0

e
−t

c2
u du =

1

2

c2

t
.

Substituting u = (k/c + c)2t and v = (k/c + c)
√
t, we can compute

I3 =

∫ ∞

0

e
−
(
2k+ k2

c2
+c2

)
t
k dk

=

∫ ∞

0

e−( k
c +c)2tk dk

=
c2

2t

∫ ∞

0

e−( k
c +c)2t

(
2t

c2
k + 2t

)
dk − c2

∫ ∞

0

e−( k
c +c)2t dk

=
c2

2t

∫ ∞

c2t

e−u du− c3√
t

∫ ∞

c
√
t

e−v2

dv

=
c2

2t
e−c2t +

√
πc3√
t
· erfc

(
c
√
t
)
.

Lemma 5.11. By substitution,

I±1 = c4
∫ ∞

0

(
v ∓ 1

2

)
e−tc2v2

∞∑
m=1

1−(√1 +
(v ∓ 1

2 )
2 − 1

4

(m+ 1
2 )

2

)−1
 dv.

Proof. Following J. Lott’s computations, we substitute in the same way

u± =

√
(2m+ 1)k +

k2

c2
+

c2

4
± c

2

u2
± = (2m+ 1)k +

k2

c2
+

c2

2
± c

√
(2m+ 1)k +

k2

c2
+

c2

4

k± = c
√
u2
± ∓ u±c+ c2(m+ 1/2)2 −

(
m+

1

2

)
c2

dk±
du±

=
c(u± ∓ c/2)√

u2
± ∓ u±c+ c2(m+ 1/2)2

.
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Omitting the index ± in notation6, we use this with v = u/c to obtain

I±1 =

∫ ∞

0

∞∑
m=1

e
−t

[
(2m+1)k+ k2

c2
+ c2

2 ±c
√

(2m+1)k+ k2

c2
+ c2

4

]
k dk

= c2
∫ ∞

0

(
u∓ c

2

)
e−tu2

∞∑
m=1

√
u2 ∓ cu+ c2(m+ 1

2 )
2 − c(m+ 1

2 )√
u2 ∓ cu+ c2(m+ 1

2 )
2

du

= c3
∫ ∞

0

(
u

c
∓ 1

2

)
e−tu2

c2
c2

∞∑
m=1

√
u2

c2 ∓
u
c + (m+ 1

2 )
2 − (m+ 1

2 )√
u2

c2 ∓
u
c + (m+ 1

2 )
2

du

= c4
∫ ∞

0

(
v ∓ 1

2

)
e−tc2v2

∞∑
m=1

√
v2 ∓ v + (m+ 1

2 )
2 − (m+ 1

2 )√
v2 ∓ v + (m+ 1

2 )
2

dv

= c4
∫ ∞

0

(
v ∓ 1

2

)
e−tc2v2

∞∑
m=1

1−(√1 +
(v ∓ 1

2 )
2 − 1

4

(m+ 1
2 )

2

)−1
 dv.

Lemma 5.12. We can estimate I−1 by

1

5

(√
π

4

c√
t3

+
1

4

c2

t

)
≤ I−1 ≤

√
π

4

c√
t3

+
1

4

c2

t
.

Proof. Consider the function f : R≥0 → R describing the summands,

f(x) = 1−

(√
1 +

(v ∓ 1
2 )

2 − 1
4

(x+ 1
2 )

2

)−1

.

This function is positive, monotonously decreasing, f(0) = 1− (2v+1)−1 and limx→∞ f(x) = 0.
We can therefore estimate the sum over the f(n) by integrals,∫ ∞

2

f(x) dx ≤
∞∑

n=1

f(n) ≤
∫ ∞

1

f(x) dx

To compute these integrals, let w = (v + 1
2 )

2 − 1
4 , then

F (x) =

∫
f(x)dx =

∫
1−

(√
1 +

w

(x+ 1
2 )

2

)−1

dx

= x−
(
x+

1

2

)√
1 +

w

(x+ 1
2 )

2
+ const

and we can compute the values

F (1) = 1−
√

(v + 1/2)2 + 2 + const, F (2) = 2−
√
(v + 1/2)2 + 6 + const

6For I+1 , the index + is to be used and for I−1 the index − is to be used.
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as well as limx→∞ F (x) = −1/2 + const. Hence, we get bounds on the sum by√(
v +

1

2

)2

+ 6− 5

2
≤

∞∑
m=1

f(m) ≤

√(
v +

1

2

)2

+ 2− 3

2
.

For the lower bound, observe that g : R≥0 → R, v 7→
√
(v + 1/2)

2
+ 6− 5/2 satisfies g(0) = 0,

g′(v) =
v + 1

2√(
v + 1

2

)2
+ 6

, g′′(v) =
6

((v + 1
2 )

2 + 3)3/2
,

so g′′ > 0 meaning that g′ is strictly monotonously increasing and has its minimum at g′(0) = 1/5.
This implies g(v) ≥ v/5. For the upper bound, we do the same analysis and find that for

h(v) =

√
(v + 1/2)

2
+ 2 − 3/2 we have h(0) = 0 and h′(v) ≤ limv→∞ h′(v) = 1 implying that

h(v) ≤ v. Hence we get new bounds

v

5
≤

∞∑
m=1

f(m) ≤ v.

Using these bounds, we get bounds on I−1 by evaluating

c4
∫ ∞

0

(
v +

1

2

)
e−tc2v2

v dv = c4
∫ ∞

0

v2e−tc2v2

dv +
c4

2

∫ ∞

0

ve−tc2v2

dv

By partial integration and with κ = cv
√
t, the first summand is given by

c4
∫ ∞

0

v2e−tc2v2

dv = c2

[
−ve−tc2v2

2t

]∞
v=0

+
c2

2t

∫ ∞

0

e−tc2v2

dv

= 0 +
c

2
√
t3

∫ ∞

0

e−κ2

dκ

=

√
πc

4
√
t3

and with ξ = tc2v2 the second summand is

c4

2

∫ ∞

0

ve−tc2v2

dv =
c2

4t

∫ ∞

0

e−ξ dξ =
c2

4t
.

Therefore,

1

5

( √
πc

4
√
t3

+
c2

4t

)
≤ I−1 ≤

√
πc

4
√
t3

+
c2

4t
.

Lemma 5.13. Let I4 be the part of I+1 starting at 1, that is

I4 = c4
∫ ∞

1

(
v − 1

2

)
e−tc2v2

∞∑
m=1

1−(√1 +
(v − 1

2 )
2 − 1

4

(m+ 1
2 )

2

)−1
 dv.

Then

1

5

[
−c2

4t
e−tc2 +

√
π

4

(
c√
t3

+
c3√
t

)
erfc(c

√
t)

]
≤ I4 ≤

[
−c2

4t
e−tc2 +

√
π

4

(
c√
t3

+
c3√
t

)
erfc(c

√
t)

]
.
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Proof. Similar as for I1−, in the case of I+1 we consider

f(x) = 1−

(√
1 +

(v − 1
2 )

2 − 1
4

(x+ 1
2 )

2

)−1

.

If v > 1, the function f is again monotonously decreasing and we can estimate as before that

v − 1

5
≤

√(
v − 1

2

)2

+ 6− 5

2
≤

∞∑
m=1

f(m) ≤

√(
v − 1

2

)2

+ 2− 3

2
≤ v − 1.

Therefore, we can bound the (v > 1)-part I4 of I+1 by evaluating

Ĩ4 = c4
∫ ∞

1

(
v − 1

2

)
e−tc2v2

(v − 1) dv

= c4
∫ ∞

1

(
v2 − 3

2
v +

1

2

)
e−tc2v2

dv

= c4
∫ ∞

1

v2e−tc2v2

dv −
(
3

2
c4
)∫ ∞

1

ve−tc2v2

dv +
c4

2

∫ ∞

1

e−tc2v2

dv

= c2

[
−ve−tc2v2

2t

]∞
v=1

+
c

2
√
t

∫ ∞

c
√
t

e−κ2

dκ−
(
3c2

4t

)∫ ∞

tc2
e−ξ dξ +

c3

2
√
t

∫ ∞

c
√
t

e−κ2

dκ

=
c2e−tc2

2t
+

√
πc

4
√
t3
erfc(c

√
t)−

(
3c2

4t

)
e−tc2 +

√
πc3

4
√
t
erfc(c

√
t)

= −c2

4t
e−tc2 +

√
π

4

(
c√
t3

+
c3√
t

)
erfc(c

√
t)

with 1/5 · Ĩ4 ≤ I4 ≤ Ĩ4.

It remains to estimate

I5 = c4
∫ 1

0

(
v − 1

2

)
e−tc2v2

∞∑
m=1

1−(√1 +
(v − 1

2 )
2 − 1

4

(m+ 1
2 )

2

)−1
 dv.

Lemma 5.14. There is some constant −∞ < −K < 0 such that

−K
(
1

2

c2

t
e−tc2 −

√
π

4

c3√
t
erfc(c

√
t)

)
≤ I5 ≤ 0.

Proof. Note that the summands are non-positive and1−(√1− 1

4(m+ 1
2 )

2

)−1
 ≤

1−(√1 +
(v − 1

2 )
2 − 1

4

(m+ 1
2 )

2

)−1
 ≤ 0

so that

∞∑
m=1

1−(√1− 1

4(m+ 1
2 )

2

)−1
 · c4 ∫ 1

0

(
v − 1

2

)
e−tc2v2

dv ≤ I5 ≤ 0.
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The sum converges to some constant −∞ < −K < 0 while

c4
∫ 1

0

(
v − 1

2

)
e−tc2v2

dv =
c2

2t

∫ tc2

0

e−ξ dξ − c3

2
√
t

∫ c
√
t

0

e−κ2

dκ

=
c2

2t
− c2

2t
e−tc2 −

√
πc

4
√
t
erfc(c

√
t).

Corollary 5.15. If c = tζ for ζ > −1/2, then

e−t∆1(0, 0) ∼ c

t
=

1

t1−ζ

as t→∞. In particular, for −1/2 < ζ < 1,

α
(
λ 7→ G1(λ, λ1+ζ)

)
= 2− 2ζ.

Proof. The assumption ζ > −1/2 implies c2t
t→∞−−−→ ∞ and both e−tc2 and erfc(c

√
t) decay

exponentially. By the previous computations,

e−t∆1(0, 0) ∼ 1

c

[
I+1 + I−1 + I2 + I3

]
∼ c

t
+

1

t3/2

as t → ∞. The assumption ζ > −1/2 implies t−3/2 ∈ O(c/t). In particular, since c/t = tζ−1, this
decays to zero as t→∞ for ζ < 1.

This concludes the computation of the asymptotics for α•(h
3)(λ, λ1+ζ).

5.3 Via Near Cohomology

Decomposing the tangent bundle TM
π−→M as TM ∼= VM⊕HM into a vertical and a horizontal

subbundle gives us a diagram

TF• T•F•

VM ⊕HM
∼=

TM
π∗TB TB

F• M B.

∼= ∼=

dπ

dπ

π

Given any vector field X ∈ Γ(TM), we can decompose

X = Y + Z, with Y ∈ Γ(π∗TB), Z ∈ Γ(T•F•)

into a horizontal component Y and a vertical component Z.
We call a vector field Y ∈ Γ(π∗TB) basic, if there exists a vector field Y ∈ Γ(TB) such that Y is
π-related to Y , that is, the following diagram commutes (compare, for example, Besse [Bes08]):

TM TB

M B

dπ

Y

π

Y
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We call Y the lift of Y . For every U ∈ Γ(TB) there exists a unique such lift Ũ ∈ Γ(π∗TB). We
denote by Γb(HM) ⊂ Γ(π∗TB) the set of basic vector fields. Then Γb(HM) spans Γ(π∗TB) as
a C∞(M)-module, so every horizontal vector field Y ∈ Γ(HM) ∼= Γ(π∗(TB)) can be written as

Y =
∑
i∈I

fi · Ũi

for smooth functions fi ∈ C∞M and Ui ∈ Γ(TB).

Lemma 5.16. Let Z,Z ′ ∈ Γ(VM) be vertical vector fields and Y ∈ Γb(HM) a basic horizontal
vector field. Then

1. [Z,Z ′] ∈ Γ(VM),

2. [Y, Z] ∈ Γ(VM).

Proof. Recall that VM = ker(dπ), hence Z ∼π 0 and Z ∼π 0 where 0 ∈ Γ(TB) denotes the zero
section. By definition, Y ∼π Y for some Y ∈ TB. Therefore,

dπ[Z,Z ′] = [̃0, 0]B = 0, dπ[Y,Z] = ˜[Y , 0]B = 0,

and the claim follows.

Looking at the deRham complex Ω•(M), it can be decomposed using the fibre bundle structure.

Theorem 5.17. Let F• →M → B be a fibre bundle, then there is an isomorphism

Ωk(M)
Φ−−→∼=

⊕
p+q=k

Ωp(B, {Ωq(Fb)}b∈B),

identifying forms on M and forms on B with values in the system of forms on the fibres {Fb}b∈B.
7

Proof. Using that TM ∼= VM ⊕HM , we decompose any X ∈ Γ(TM) as a sum X = Y +Z with

Y ∈ Γ(HM) and Z ∈ Γ(VM). Given U1, . . . , Up ∈ Γ(TB) with basic lifts Ũ1, . . . , Ũp ∈ Γb(HM)
and Zp+1, . . . , Zk ∈ T•F• ∼= VM , for a k-form ω ∈ Ωk(M) we define

Φ(ω) =
∑

p+q=k

(Φ(ω))p,q

where the (p, q)-summand (Φ(ω))p,q ∈ Ωp(B, {Ωq(F•)}) is given by

(Φ(ω))p,q(U1, . . . , Up)(Zp+1, . . . , Zk) = ω
(
Ũ1, . . . , Ũp, Zp+1, . . . , Zk

)
.

Decomposing X• ∈ Γ(TM) as X• = Y• + Z• with Y• ∈ Γ(HM) and Z• ∈ Γ(VM) as before, we
construct the inverse

Ψ:
⊕

p+q=n

Ωp(B, {Ωq(F•)})→ Ωn(M)

to this map, starting with α ∈ Ωp(B, {Ωq(F•)}) by

Ψ(α)(X1, . . . , Xk) =
1

p!q!

∑
σ∈Sk

sgn(σ) (π∗α) (Yσ(1), . . . , Yσ(p))(Zσ(p+1), . . . , Zσ(k)),

7The term on the right-hand-side is understood in the sense of A. Fomenko and D. Fuchs [FF16, Lec. 22.2].
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where Sk is the set of permutations of the first k integers, {1, . . . , k}, and sgn the sign of the
permutation. This is then extended linearly to the direct sum.

We check that Ψ and Φ are indeed inverses to each other. With the notation above, for a
summand α ∈ Ωp(B, {Ωq(F•)}),

ΦΨ(α)(U1, . . . , Up)(Zp+1, . . . , Zk)

= Ψ(α)
(
Ũ1, . . . , Ũp, Zp+1, . . . , Zk

)
=

1

p!q!

∑
σ∈Sk

sgn(σ) (π∗α)
(
Ũσ(1), . . . , Ũσ(p)

)
(Zσ(p+1), . . . , Zσ(k))

= (π∗α)
(
Ũ1, . . . , Ũp

)
(Zp+1, . . . , Zn)

= α(U1, . . . , Up)(Zp+1, . . . , Zk),

where in the third equality Ul = 0 for l > p and Zl = 0 for l ≤ p, so that after reordering the
arguments, each summand appears p!q! times with + sign.

In the other direction, writing X• = Y• + Z• ∈ Γ(HM)⊕ Γ(VM) ∼= Γ(TM) as before,

ΨΦ(ω)(X1, . . . , Xk)

=
∑

p+q=k

1

p!q!

∑
σ∈Sk

sgn(σ)(π∗Φ(ω))(Yσ(1), . . . , Yσ(p))(Zσ(p+1), . . . , Zσ(k)),

where pointwise for x ∈M with b = π(x),

(π∗Φ(ω))x(Yσ(1)(x), . . . , Yσ(p)(x))(Zσ(p+1)(x), . . . , Zσ(k)(x))

= Φ(ω)b(Yσ(1)(x), . . . , Yσ(p)(x))(Zσ(p+1)(x), . . . , Zσ(k)(x))

= ωx(Aσ(1)(x), . . . , Aσ(p)(x), Zσ(p+1)(x), . . . , Zσ(k)(x))

= ωx(Yσ(1)(x), . . . , Yσ(p)(x), Zσ(p+1)(x), . . . , Zσ(k)(x))

where Ai is some basic horizontal vector field with Ai(x) = Yi(x). Therefore,

ΨΦ(ω)(X1, . . . , Xk) =
∑

p+q=k

1

p!q!

∑
σ∈Sn

sgn(σ)ω(Yσ(1), . . . , Yσ(p), Zσ(p+1), . . . , Zσ(k))

=
∑

(Ξ1,...,Ξk)∈{Y1,Z1}×···×{Yk,Zk}

ω(Ξ1, . . . ,Ξk)

= ω(X1, . . . , Xk),

where we use in the second equality that ω is antisymmetric and that after ordering each sum-
mand appears p!q! times, where p is the number of Y•s and q the number of Z•s chosen. The
last equality then follows by linearity of ω.

We can now look at the deRham differential d : Ωk(M)→ Ωk+1(M) under this decomposition.

Lemma 5.18. Under the decomposition Φ of Ω•(M), the deRham differential splits into three
summands, d ∼= d0,1 + d1,0 + d2,−1, where

di,1−i : Ωp(B, {Ωq(F•)})→ Ωp+i(B, {Ωq+1−i(F•)}).
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Proof. By Cartan’s formula, for ω ∈ Ωk(M) and X0, . . . , Xk ∈ Γ(TM), the deRham differential
of ω evaluated on the X•s is given by

d(ω)(X1, . . . , Xk+1) =

k∑
i=0

(−1)iXi(ω(X0, X̂i. . ., Xk))

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0,
X̂i,X̂j. . . , Xk).

We denote by [Xi, Xj ]H respectively [Xi, Xj ]V the projection of [Xi, Xj ] to Γ(HM) respectively
Γ(VM). Given α ∈ Ωp(B, {ΩqF•}), we compute ΦdΨα by looking at the (r, s)-component
(ΦdΨα)r,s ∈ Ωr(B, {ΩsF•}) (with r + s = k + 1).

For this, let U1, . . . , Ur ∈ Γ(TB) and Zr+1, . . . , Zk+1 ∈ Γ(T•F•), then

(ΦdΨα)r,s(U1, . . . , Ur)(Zr+1, . . . , Zk+1)

= (dΨα)
(
Ũ1, . . . , Ũr, Zr+1, . . . , Zk+1

)
=
∑

1≤i≤r

(−1)i+1Ũi

(
Ψα(Ũ1, Ûi. . ., Ũr, Zr+1, . . . , Zk+1)

)
+

∑
r+1≤i≤k+1

(−1)i+1Zi

(
Ψα(Ỹ1, . . . , Ũr, Zr+1, Ẑi. . ., Zk+1)

)
+

∑
1≤i<j≤r

(−1)i+j+1Ψα
(
[Ũi, Ũj ], Ũ1,

Ûi,Ûj. . . , Ũr, Zr+1, . . . , Zk+1

)
+

∑
1≤i≤r<j≤k+1

(−1)i+j+1Ψα
(
[Ũi, Zj ], Ũ1, Ûi. . ., Ũr, Zr+1,

Ẑj. . ., Zk+1

)
+

∑
r+1≤i<j≤k+1

(−1)i+j+1Ψα
(
[Zi, Zj ], Ũ1, . . . , Ũr, Zr+1,

Ẑi,Ẑj. . . , Zk+1

)
.

By definition, Ψ(α) ̸= 0 only if p of the arguments have non-zero components in Γ(HM) and q of

the arguments have non-zero components in Γ(VM). Recall that [Z,Z ′], [Ũ , Z] ∈ Γ(VM) for all
Z,Z ′ ∈ Γ(VM) and U ∈ Γ(TB). Therefore, the operator ΦdΨα decomposes into the following
three summands.

1. The first summand keeps the base-degree fixed and increases the fibre-degree by one. It is
given for α ∈ Ωp(B, {ΩqF•}) by

(ΦdΨα)p,q+1(U1, . . . , Up)(Zp+1, . . . , Zk+1)

=
∑

p+1≤i≤k+1

(−1)i+1Zi(Ψα(Ũ1, . . . , Ũp, Zp+1, Ẑi. . ., Zk+1))

+
∑

p+1≤i<j≤k+1

(−1)i+j+1−pΨα(Ũ1, . . . , Ũp, [Zi, Zj ], Zp+1,
Ẑi,Ẑj. . . , Zk+1)

=
∑

p+1≤i≤k+1

(−1)i+1Zi(α(U1, . . . , Up))(Zp+1, Ẑi. . ., Zk+1)

+
∑

p+1≤i<j≤k+1

(−1)i+j+1−pα(U1, . . . , Up)([Zi, Zj ], Zp+1,
Ẑi,Ẑj. . . , Zk+1).
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2. The second summand increases the base-degree by one and keeps the fibre-degree fixed. It
is given by

(ΦdΨα)p+1,q(U1, . . . , Up+1)(Zp+2, . . . , Zk+1)

=
∑

1≤i≤p+1

(−1)i+1Ũi(Ψα(Ũ1, Ûi. . ., Ũp+1, Zp+2, . . . , Zk+1))

+
∑

1≤i<j≤p+1

(−1)i+j+1Ψα([Ũi, Ũj ]H , Ũ1,
Ûi,Ûj. . . , Ũp+1, Zp+2, . . . , Zk+1)

+
∑

1≤i≤p+1<j≤k+1

(−1)i+j+1−pΨα(Ũ1, Ûi. . ., Ũp+1, [Ũi, Zj ], Zp+2,
Ẑj. . ., Zk+1)

=
∑

1≤i≤p+1

(−1)i+1Ũi(α(U1, Ûi. . ., Up+1)(Zp+2, . . . , Zk+1))

+
∑

1≤i<j≤p+1

(−1)i+j+1α([Ui, Uj ], U1,
Ûi,Ûj. . . , Up+1)(Zp+2, . . . , Zk+1)

+
∑

1≤i≤p+1<j≤k+1

(−1)i+j+1−pα(U1, Ûi. . ., Up+1)([Ũi, Zj ], Zp+2,
Ẑj. . ., Zk+1).

3. The third summand increases the base-degree by two and decreases the fibre-degree by one.
It is given by

(ΦdΨα)p+2,q−1(U1, . . . , Up+2)(Zp+3, . . . , Zk+1)

=
∑

1≤i<j≤p+2

(−1)i+j+1−pΨα(Ũ1,
Ûi,Ûj. . . , Ũp+2, [Ũi, Ũj ]V , Zp+3, . . . , Zk+1)

=
∑

1≤i<j≤p+2

(−1)i+j+1−pα(U1,
Ûi,Ûj. . . , Up+2)([Ũi, Ũj ]V , Zp+3, . . . , Zk+1).

The claim follows with the differentials defined for α ∈ Ωp(B, {Ωq(F•)}) by

d0,1(α) = (ΦdΨα)p,q+1,

d1,0(α) = (ΦdΨα)p+1,q,

d2,−1(α) = (ΦdΨα)p+2,q−1.

and d = d0,1 + d1,0 + d2,−1 extended linearly to
⊕

p+q=k Ω
p(B, {Ωq(F•)}).

Denote Ep,q
0 = Ωp(B, {Ωq(F•)}), then we can visualise this decomposition as a Z2-graded com-

plex.8 An excerpt of this is pictured below, with the maps di,1−i only drawn at Ep,q
0 and as dashed

arrows at their images. As usual, the parts appearing in Ωk(M) align along the antidiagonal

8This is not a double complex in general as there is the diagonal d2,−1-map. If we can choose a flat connection
on M , then d2,−1 vanishes and this is a true double complex. In terms of objects, this may be viewed as the
zeroth page of the Serre spectral sequence of F• → M → B.
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p+ q = k in the diagram.

Ep,q+2
0 Ep+1,q+2

0 Ep+2,q+2
0 Ep+3,q+2

0 Ep+4,q+2
0

Ep,q+1
0 Ep+1,q+1

0 Ep+2,q+1
0 Ep+3,q+1

0 Ep+4,q+1
0

Ep,q
0 Ep+1,q

0 Ep+2,q
0 Ep+3,q

0 Ep+4,q
0

Ep,q−1
0 Ep+1,q−1

0 Ep+2,q−1
0 Ep+3,q−1

0 Ep+4,q−1
0

Ep,q−2
0 Ep+1,q−2

0 Ep+2,q−2
0 Ep+3,q−2

0 Ep+4,q−2
0

d0,1

d1,0

d2,−1

Since d = d0,1 + d1,0 + d2,−1 is a differential, that is, d2 = 0, we obtain immediately that

0 = (d0,1)2, 0 = d0,1d1,0 + d1,0d0,1,

0 = d0,1d2,−1 + (d1,0)2 + d2,−1d0,1, 0 = d1,0d2,−1 + d2,−1d1,0,

0 = (d2,−1)2.

Note that d1,0 is not a differential in general. Leaving out the terms that cancel due to the
usual alternating sign9, a direct computation shows that for α ∈ Ep,q

0 , U1, . . . , Up+2 ∈ Γ(TB)
and Zp+3, . . . , Zk+2 ∈ Γ(T•F•):

(d1,0)2(α)(U1, . . . , Up+3)(Zp+3, . . . , Zk+2)

=
∑

1≤i<j≤p+2

(−1)i+j(ŨjŨi − ŨiŨj)(α(U1,
Ûi,Ûj. . . , Up+2)(Zp+3, . . . , Zk+2))

+
∑

1≤i<j≤p+2

(−1)i+j ˜[Ui, Uj ]B(α(U1,
Ûi,Ûj. . . , Up+2)(Zp+3, . . . , Zk+2))

+
∑

1≤i<j≤p+2<l≤k+2

(−1)i+j+l+pα(U1,
Ûi,Ûj. . . , Up+2)([Ũi, [Ũj , Zl]], Zp+3, . . . , Zk+2).

For the first two terms we have

[Ũi, Ũj ]− ˜[Ui, Uj ]B = [Ũi, Ũj ]V

and since by the Jacobi identity [Ũi, [Ũj , Zl]]− [Ũj , [Ũi, Zl]] = −[[Ũi, Ũj ], Zl] this precisely cancels
out the terms that survive in d0,1d2,−1 + d2,−1d0,1,

(d0,1d2,−1 + d2,−1d0,1)(α)(U1, . . . , Up+3)(Zp+3, . . . , Zk+2)

=
∑

1≤i<j≤p+2

(−1)i+j [Ũi, Ũj ]V (α(U1,
Ûi,Ûj. . . , Up+2)(Zp+3, . . . , Zk+2))

+
∑

1≤i<j≤p+2<l≤k+2

(−1)i+j+l+p+1α(U1,
Ûi,Ûj. . . , Up+2)([[Ũi, Ũj ], Zl], Zp+3, . . . , Zk+2).

9Coming from leaving out two arguments in two different orders.
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The inner product on Ωk(M) (coming from the Riemannian metric) induces inner products on
the decomposition. For α, α′ ∈ Ωp(B, {Ωq(F•)}),

⟨α, α′⟩g,(p,q) = ⟨Ψα,Ψα′⟩(M,g) =

∫
(M,g)

Ψα ∧ ∗Ψα′,

whereas the different direct summands are mutually orthogonal to each other since the de-
composition of TM into VM and HM is orthogonal. This implies for ω ∈ Ωk(M) with
Φ(ω) = α =

∑
p+q=k αp,q ∈

⊕
p+q=k E

p,q
0 ,

∥ω∥2g = ∥α∥2g =
∑

p+q=k

∥αp,q∥2g =
∑

p+q=k

⟨αp,q, αp,q⟩g,(p,q).

When changing the metric from g to gµ,ν on M , the length of a vertical tangent vector v ∈ VxM
changes by a factor ν as

∥v∥2gµ,ν = ν2gVx (v, v) = (ν∥v∥g)2

and on horizontal tangent vectors h ∈ HxM by ∥h∥2gµ,ν = (µ∥h∥g)2. Denote by ωg the volume
form on (M, g) and by ωgµ,ν the volume form on (M, gµ,ν). By the observation above,

ωg = µ− dim(B)ν− dim(F ) · ωgµ,ν .

The Hodge ∗-operators ∗g, ∗gµ,ν map Ωk(M)→ Ωn−k(M) and preserve the decomposition as

∗ : Ωp(B, {Ωq(F•)})→ Ωdim(B)−p(B, {Ωdim(F )−q(F•)}).

Since on Ωp(B, {Ωq(F•)}),

⟨α, β⟩gµ,ν =

∫
(M,gµ,ν)

α ∧ ∗gµ,νβ = µ− dim(B)ν− dim(F )

∫
(M,g)

α ∧ ∗gµ,νβ

= µ− dim(B)ν− dim(F )µdim(B)−2pνdim(F )−2q ·
∫
(M,g)

α ∧ ∗gβ

= µ−2pν−2q⟨α, β⟩g

the scalar product changes by a factor µ−2pν−2q.
This allows us to define the two-parameter Novikov-Shubin numbers via the near cohomology
cones of the decomposed complex. Since the near cohomology cone satisfies

Ck
λ0
(M, gµ,ν) =

{
ω ∈ Ωk(M) ∩ ker(d)⊥

∣∣ ∥dω∥gµ,ν ≤ λ0∥ω∥gµ,ν

}
∼=

α ∈

 ⊕
p+q=k

Ep,q
0

 ∩ Φ
(
ker(d)⊥

) ∣∣∣∣∣∣
∑

r+s=k+1

µ−rν−s∥(dα)r,s∥g ≤ λ0

∑
p+q=k

µ−pν−q∥αp,q∥g

 ,

we can define Gk(M → B,∇, g) in terms of this near cohomology cone with λ0 = 1 as follows.

Corollary 5.19. In the notation as above,

Gk(M → B,∇, g)(µ, ν) = sup
L

dimNG L,

where the supremum runs over all closed linear subspaces L of Ck
1 (M, gµ,ν).

Proof. This follows immediately since Gk(M → B,∇, g)(µ, ν) = Fk(M, gµ,ν)(1).
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5.4 Invariance Properties

In this section we show multiple invariance properties of the two-parameter Novikov-Shubin
numbers. We show that for a fibre bundle M → B and a fixed connection ∇, the dilatational
equivalence class of the underlying spectral density functions is independent of the ∇-compatible
Riemannian metric g on M . Then we show that the spectral density functions are dilatationally
equivalent for two bundles M → B and M ′ → B if there exists a certain type of ∇-compatible
fibre homotopy equivalence. We also show that the dilatational equivalence class of the spectral
density functions is independent of the connection∇ if we restrict them to the parameter subspace
{ν ≤ µ}, where the fibre is scaled at least as fast as the base. In particular, the two-parameter
Novikov-Shubin numbers are invariant under these operations.

5.4.1 Metric Invariance for Fixed Connection

From the definition in terms of near cohomology cones, we can derive that the dilatational
equivalence class of Gk(M → B,∇, g) for a fixed connection ∇ does not depend on the metric g.

Theorem 5.20. Let G ↷ (M → B,∇, g) be a fibre bundle with fixed connection ∇ and compat-
ible cocompact free proper group action by a group G. Then for 0 ≤ k ≤ dim(M) the dilatational
equivalence class of

Gk(M → B,∇) = Gk(M → B,∇, g)

does not depend on the choice of G-invariant ∇-compatible Riemannian metric g.

Proof. On a compact manifold M , any two Riemannian metrics g, g′ are quasi-equivalent, that is
there exists K ≥ 1 such that K−1g ≤ g′ ≤ Kg. By G-invariance of the Riemannian metrics and
cocompactness of the action G ↷ M , this is true for any two choices of G-invariant Riemannian
metrics g, g′ on M . Restricting to the subbundles V ∗M and H∗M of T ∗M , this inequality holds
also for the vertical and horizontal parts individually. After rescaling, it follows that there is
K > 0 such that for all µ, ν > 0,

K−1gµ,ν ≤ (g′)µ,ν ≤ Kgµ,ν .

If ω ∈ Ck
λ(M, (g′)ν,µ), then

K−2(k+1)∥dω∥2gµ,ν = ∥dω∥2K−1gµ,ν ≤ ∥dω∥2g′µ,ν ≤ λ2∥ω∥2g′µ,ν ≤ λ2∥ω∥2Kgµ,ν = K2kλ2∥ω∥2gµ,ν .

This implies that ω ∈ Ck
K2k+1λ(M, gµ,ν) = Ck

λ(M,Kgµ,ν). We can repeat this argument starting
with Ck

λ(M, gµ,ν) to obtain an inclusion in the other direction, so that in total

Ck
λ(M,K−1gµ,ν) ⊂ Ck

λ(M, g′µ,ν) ⊂ Ck
λ(M,Kgµ,ν).

Taking suprema over the NG-dimensions of closed linear subspaces with Kgµ,ν = gK
1/2µ,K

1/2ν ,

Gk(M → B,∇, g)(K−1/2µ,K−1/2ν) ≤ Gk(M → B, g′,∇)(µ, ν)
≤ Gk(M → B,∇, g)(K1/2µ,K

1/2ν)

and hence the spectral density functions are dilatationally equivalent,

Gk(M → B,∇, g) ∼ Gk(M → B, g′,∇).
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5.4.2 Fibre Homotopy Invariance

Next, we want to study the behaviour of the two-parameter Novikov-Shubin numbers under fibre
homotopy equivalences. Such a homotopy equivalence f , say between M → B and M ′ → B,
should respect the decomposition of TM ∼=∇ HM ⊕ VM and TM ′ ∼=∇′ HM ′ ⊕ VM ′ coming
from the connections in the sense that f∗∇′ = ∇. This leads us to the following definition of
geometric fibre homotopy equivalences.

Definition 5.21. Let F• →M
π−→ B and F ′

• →M ′ π′

−→ B be two fibre bundles over B equipped
with connections

TM ∼=∇ VM ⊕HM, TM ′ ∼=∇′ VM ′ ⊕HM ′.

A fibre homotopy equivalence f : M → M ′ is a homotopy equivalence f : M → M ′ such that f
is a fibre map over the identity idB of B, that is the diagram

M B

M ′ B,

π

f

π′

commutes, and so is a homotopy equivalence inverse g of f as well as the homotopy Φ: M ×
[0, 1]→M between gf and idM at every time t ∈ [0, 1]. We call such a fibre homotopy equivalence
f : M →M ′ geometric if it satisfies f∗∇′ = ∇.

The property of being geometric implies that the pullback f∗ commutes not only with the
deRham differential d itself but also with each of the individual summands we identified earlier.

Lemma 5.22. If f : M →M ′ is a geometric fibre homotopy equivalence then f∗ commutes with
the differential d and each of its three summands d = d0,1 + d1,0 + d2,−1.

Proof. Since f is geometric, the fibre homotopy equivalence f restricts fibrewise to homotopy
equivalences

f |Fb
: Fb

≃−−→ F ′
b.

and the push-forward f∗ : TM → TM ′ restricts to maps

f∗ : HM → HM ′ and f∗ : VM → VM ′.

Therefore, the induced chain homotopy f∗ : Ω•M ′ → Ω•M restricts under the direct sum de-
compositions to maps on each (p, q)-summand, that is,

f∗
p,q : Ω

p(B, {Ωq(F ′
•)})→ Ωp(B, {Ωq(F•)})

given on αp,q ∈ Ωp(B, {Ωq(F ′
•)}) with p+ q = k by

(f∗
p,qα)p,q(U1, . . . , Up)(Zp+1, . . . , Zk)

= (f |F•)
∗ (αp,q(U1, . . . , Up)) (Zp+1, . . . , Zk)

= αp,q(U1, . . . , Up)(df(Zp+1), . . . , df(Zk)).
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Recall that the differential d on Ωp(B, {Ωq(F•)}) splits into the following three summands:

(d0,1α)p,q+1(U1, . . . , Up)(Zp+1, . . . , Zk+1)

=
∑

p+1≤i≤k+1

(−1)i+1Zi(α(U1, . . . , Up))(Zp+1, Ẑi. . ., Zk+1)

+
∑

p+1≤i<j≤k+1

(−1)i+j+1−pα(U1, . . . , Up)([Zi, Zj ], Zp+1,
Ẑi,Ẑj. . . , Zk+1),

(d1,0α)p+1,q(U1, . . . , Up+1)(Zp+2, . . . , Zk+1)

=
∑

1≤i≤p+1

(−1)i+1Ũi(α(U1, Ûi. . ., Up+1)(Zp+2, . . . , Zk+1))

+
∑

1≤i<j≤p+1

(−1)i+j+1α([Ui, Uj ], U1,
Ûi,Ûj. . . , Up+1)(Zp+2, . . . , Zk+1)

+
∑

1≤i≤p+1<j≤k+1

(−1)i+j+1−pα(U1, Ûi. . ., Up+1)([Ũi, Zj ], Zp+2,
Ẑj. . ., Zk+1)

(d2,−1α)p+2,q−1(U1, . . . , Up+2)(Zp+3, . . . , Zk+1)

=
∑

1≤i<j≤p+2

(−1)i+j+1−pα(U1,
Ûi,Ûj. . . , Up+2)([Ũi, Ũj ]V , Zp+3, . . . , Zk+1).

Here, f∗ commutes with d0,1 as we can see directly from the formulae or from the fact that

(d0,1α)(U1, . . . , Up) = dF•(α(U1, . . . , Up))

acts as the fibre differential and therefore commutes with the pullback of f . From the formulae
we see further that d1,0 commutes with f∗ since df(Ũ) = Ũ ′ ◦ f = Ũ as f preserves base points,

df([Ũ , Z]) = [df(Ũ), df(Z)] = [Ũ ′, df(Z)],

where Ũ is the horizontal lift of U to TM and Ũ ′ the horizontal lift to TM ′. Lastly, d2,−1

commutes with f∗ since

df
(
[Ũ1, Ũ2]V

)
= df

(
[Ũ1, Ũ2]− [Ũ1, Ũ2]H

)
= [df(Ũ1), df(Ũ2)]− df( ˜[U1, U2])

= [Ũ1

′
, Ũ2

′
]− ˜[U1, U2]

′
= [Ũ1

′
, Ũ2

′
]− [Ũ1

′
, Ũ2

′
]H = [Ũ ′

1, Ũ
′
2]V .

Lemma 5.23. Let G ↷ (M → B,∇, g) and G ↷ (M ′ → B,∇′, g′) be two Riemannian fibre
bundles with connection over the same base B and with compatible G-action. Let f : M → M ′

be a G-equivariant geometric fibre homotopy equivalence. If f∗ and a geometric fibre homotopy
inverse g∗ of f∗ are bounded as operators between L2Ω•M ′ and L2Ω•M , then the two-parameter
spectral density functions are dilatationally equivalent, that is, for 0 ≤ k ≤ dim(M),

Gk(M ′ → B,∇′) ∼ Gk(M → B, f∗∇′).

Proof. By assumption, the induced map f∗ is a bounded chain homotopy equivalence L2Ω•M ′ →
L2Ω•M of Hilbert chain complexes, with bounded inverse g∗. Since

Gk(M ′ → B,∇′, g′)(µ, ν) = Fk(M
′, g′µ,ν)(1)

and in the same way
Gk(M → B, f∗∇′, g)(µ, ν) = Fk(M, gµ,ν)(1)
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for some10 G-invariant Riemannian metrics compatible with the connections, the statement fol-
lows from a Proposition of M. Gromov and M. A. Shubin [GS91, Prop. 4.1]:
There exists C(µ, ν) depending only on ∥f∗∥(M ′,g′µ,ν)→(M,gµ,ν) and ∥g∗∥(M ′,g′µ,ν)→(M,gµ,ν) with

Gk(M → B, f∗∇′, g)(C(µ, ν)−1µ,C(µ, ν)−1ν) = Fk(M,C(µ, ν)−1gµ,ν)(1)

= Fk(M, gµ,ν)(C(µ, ν)−1)

≤ Fk(M
′, g′µ,ν)(1)

= G(M ′ → B,∇′, g′)(µ, ν)

≤ Fk(M, gµ,ν)(C(µ, ν))

= Gk(M → B, f∗∇′, g)(C(µ, ν)µ,C(µ, ν)ν).

Since for f∗ : Ωp(B, {ΩqF ′
•})→ Ωp(B, {ΩqF•}) (and in the same way for g∗),

∥f∗∥(M ′,g′µ,ν)→(M,gµ,ν) = sup
0̸=ω∈Ωp(B,{ΩqF ′

•})

∥f∗ω∥gµ,ν

∥ω∥g′µ,ν

= sup
0̸=ω∈Ωp(B,{ΩqF ′

•})

µ−pν−q · ∥f∗ω∥g
µ−pν−q · ∥ω∥g′

= sup
0̸=ω∈Ωp(B,{ΩqF ′

•})

∥f∗ω∥g
∥ω∥g′

= ∥f∗∥(M ′,g′)→(M,g),

the norms of f∗ and g∗ are independent of µ, ν and hence so is C = C(µ, ν). Therefore, the
claim follows from the inequalities above.

Following the idea behind M. Gromov and M. A. Shubin’s approach in [GS92] further, we can
drop the requirement that f∗ and g∗ are bounded and obtain a more general invariance theorem.

Theorem 5.24. In the notation above, if there is a G-equivariant geometric fibre homotopy
equivalence between M → B and M ′ → B, then for 0 ≤ k ≤ dim(M),

Gk(M ′ → B,∇′) ∼ Gk(M → B, f∗∇′).

Proof. In the spirit of [GS91, Thm 5.2], we show that for any geometric fibre homotopy equiva-
lence f : M →M ′, we can construct a homotopy equivalence between the corresponding Hilbert
chain complexes (which in particular is bounded). The main step here is to construct a sub-

mersive fibre homotopy equivalence f̃ : M × DN → M ′ from the a thickened fibre bundle
F• ×DN →M ×DN → B to F ′

• →M ′ → B, where DN is a disk in RN .
We consider the vertical bundle VM ′ → M ′ and its pullback f∗VM ′ → M along f . By the
smooth Serre-Swan theorem11 there exists N ∈ N and an epimorphism p1 of bundles over M ,

M × RN f∗VM ′

M M.

p1

10By Theorem 5.20, the dilatational equivalence classes of these spectral density functions are independent of
this choice.

11The original Serre-Swan theorem [Swa62, Lem. 5] holds for compact topological manifolds. It since has been
shown that in the smooth case it holds also for non-compact manifolds, see for example J. Nestruev’s book [Nes20,
Sec. 12.33] or Section 11.33 in the first edition. Here, we want the fibre bundle to be compatible with the action
of G′ on B, so that we may use the Serre-Swan theorem over the compact quotient f∗V (G

∖
M ′ ) → G\M and lift

the bundle G\M × RN → G\M to a bundle M × RN → M compatible with the group action. This is possible
since f is G-equivariant.
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This gives us the following commutative diagram, where p1 and p2 are projections:

M × RN f∗VM ′ VM ′

M M ′

B B

p1 p2

π

f

After fixing any ∇′-compatible Riemannian metric g′ and the corresponding geodesic flows on
M ′, on each fibre F ′

b = π−1(b) of the bundle VM ′ →M ′ the exponential maps expb : VbM
′ → F ′

b

are defined and they glue to a map

expV : VM ′ → F ′
•.

For each b ∈ B, there is ε(b) > 0 such that the exponential map restricts to a diffeomorphism

from DVbM
′

ε(b) =
{
v ∈ VbM

′
∣∣∣ g′V,b(v, v) < ε(b)2

}
onto its image. This radius ε(b) can be chosen to

depend continuously on b and be invariant under the cocompact action G′ ↷ B and such that

ε = inf
b∈B
{ε(b)} = min

[b]∈G′\B
{ε([b])}

exists and ε > 0. Since gF,b depends smoothly on b ∈ B, the set

U =
⋃
b∈B

DVbM
′

ε

defines a neighbourhood of the zero section 0 ∈ Γ(VM ′). In particular, the map expV restricts
to a diffeomorphism from U onto its image in M ′,

expV : U
∼=−−→ expV (U).

Further, for each b ∈ B we can find δ(b) > 0 depending continuously on b such that the subset
{b}×DN

δ of the fibre over b of M×RN →M maps into DVbM
′

ε via the composition p2 ◦p1. Since
f preserves the base point, this can be chosen invariantly under the cocompact action G′ ↷ B
and we can define δ = min[b]∈G′\B {δ([b])} > 0 and the image of M × DN

δ ⊂ M × RN under
p2 ◦ p1 is contained in U . Hence, the composition map

f̃ = exp• ◦ p2 ◦ p1
defines a submersion from M ×DN

δ into M ′ (as a map over idB):

M × RN VM ′

M ×DN
δ f∗VM ′ U expV (U) M ′

∪ ∪

f̃

p1 p2 expV

∼= ⊂

Denote by ι : M ∼= M × {0} ↪→ M × DN
δ the inclusion as the zero section. Then the following

diagram commutes:

M M ×DN
δ M ′

B B B

ι

f

f̃
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Note that all maps are fibre maps over the identity idB . The homotopy equivalences L2Ωk(M) ≃
L2Ωk(M ×DN

δ ) respect the direct sum decompositions.12 Following [GS91, Thm. 5.2] further,

the homotopy equivalence f̃∗ between L2Ω•M ′ and L2Ω•(M ×DN
δ ) induced by the submersion

f̃ is bounded. Since f is a bundle map over idB , we even obtain bounded homotopy equivalences
on each summand of the direct sum decomposition, Ωp(B, {ΩqF ′

•})→ Ωp(B, {ΩqF•}). The claim
now follows from the previous lemma.

5.4.3 (Partial) Metric Invariance

We have seen so far that the two-parameter Novikov-Shubin numbers behave well if the connec-
tion is fixed. If we allow the connection to vary, we can still find an invariance property if we
scale the fibre at least as fast as the base, that is ν ≤ µ.

Theorem 5.25. Let G be a group and M → B be equipped with two pairs of connection and
Riemannian metric such that G ↷ (M → B,∇, g) and G ↷ (M → B,∇′, g′) are Riemannian
fibre bundles with connection and compatible G-action. Then for all 0 ≤ k ≤ dim(M) the
two-parameter spectral density functions restricted to the subspace {ν ≤ µ} are dilatationally
equivalent,

Gk(M,∇, g)|{ν≤µ} ∼ Gk(M,∇′, g′)|{ν≤µ}.

Proof. Consider the decompositions

VM ⊕HM ∼=∇ TM ∼=∇′ VM ⊕H ′M,

where the vertical bundle VM = ker(π∗) is independent of the connection. The identity map

id: (M, g)→ (M, g′)

induces a map d id : TM → TM decomposing into maps d id : VM → VM and d id : HM →
VM ⊕ H ′M , so vertical tangent vectors remain vertical, but horizontal tangent vectors can
obtain a vertical component. This is captured in the following diagram.

HM H ′M

VM VM

TM TM

(M, g) (M, g′)

⊕
d id

⊕

∼=∇

d id

∼=∇′

d id

id

12These homotopy equivalences are explicitly constructed in [GS91, Lem. 5.1]: Let I = [0, 1] and p : M×I → M
be the natural projection and let it : M → M × I for t ∈ I be that map x 7→ (x, t). Then p∗ : L2ΩkM →
L2Ωk(M × I) is a homotopy equivalence with inverse J : L2Ω(M × I) → L2ΩkM , Jω =

∫ 1
0 i∗tωdt. Using this and

the fact that IN ≃ DN
δ by Lipschitz maps gives the needed homotopy equivalences. Here, we consider M × I as

a bundle M × I → B with fibres Fb × I over b ∈ B.
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For a form of pure degree (p, q) with respect to the direct sum decomposition coming from ∇′,

ωp,q ∈ Ωp(B, {Ωq(F•)}) ⊂∇′ Ωk(M, g′),

its pullback id∗ ωp,q ∈ Ωk(M, g) decomposes under the direct sum decomposition coming from
the connection ∇ as a sum,

id∗ ωp,q =
∑

r+s=k

αr,s,

with αr,s ∈ Ωr(B, {Ωs(F•)}) ⊂∇ Ωk(M, g). Since id∗ ω(X1, . . . , Xk) = ω(d id(X1), . . . , d id(Xk)),
in the ∇-decomposition the (r, s)-summand αr,s vanishes if r < p or equivalently s > q. Hence

id∗ ωp,q =
∑

r+s=k
r≥p ∧ s≤q

αr,s.

Therefore, ∥ωp,q∥g′µ,ν = µ−pν−q∥ωp,q∥g′ and

∥ id∗ ωp,q∥gµ,ν =
∑

r+s=k
r≥p ∧ s≤q

∥αr,s∥gµ,ν =
∑

r+s=k
r≥p ∧ s≤q

µ−rν−s∥αr,s∥g

ν≤µ

≤
∑

r+s=k
r≥p ∧ s≤q

µ−pν−q∥αr,s∥g = µ−pν−q∥ id∗ ωp,q∥g.

Consequently,

∥ id∗ |Ωp(B,{Ωq(F•)})∥(M,g′µ,ν)→(M,gµ,ν) = sup
ωp,q∈Ωp(B,{Ωq(F•)})

∥ id∗ ωp,q∥gµ,ν

∥ωp,q∥g′µ,ν

≤ sup
ωp,q∈Ωp(B,{Ωq(F•)})

µ−pν−q · ∥ id∗ ωp,q∥g
µ−pν−q · ∥ωp,q∥g′

= ∥ id∗ |Ωp(B,{Ωq(F•)})∥(M,g′)→(M,g)

Since the decomposition into the Ωp(B, {Ωq(F•)}) is orthogonal, it follows that

∥ id∗ ∥(M,g′µ,ν)→(M,gµ,ν) ≤ ∥ id∗ ∥(M,g′)→(M,g).

The same argument holds if we consider the identity map as a map in the other direction, that
is id : (M, g′)→ (M, g). Let

K = max
{
∥ id∗ ∥(M,g′)→(M,g), ∥ id∗ ∥(M,g)→(M,g′)

}
.

For any ω ∈ Ck(M, g′µ,ν)(1) with ν ≤ µ it follows, therefore, that

∥d id∗ ω∥gµ,ν = ∥ id∗ dω∥gµ,ν ≤ K∥dω∥g′µ,ν ≤ K∥ω∥g′µ,ν = K∥ id∗ ω∥g′µ,ν ≤ K2∥ω∥gµ,ν

and similarly in the other direction. These inequalities imply that

Ck(M, gµ,ν)(K−2) ⊂ Ck(M, g′µ,ν)(1) ⊂ Ck(M, gµ,ν)(K2).

Hence the spectral density functions are dilatationally equivalent and the claim follows.
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5.5 Remarks and Future Directions

In this chapter we defined the two-parameter Novikov-Shubin numbers and proved some invari-
ance properties. The example of the Heisenberg group suggests some interesting behaviour that
may prove valuable to pursue further — also in order to understand the classical Novikov-Shubin
invariants on fibre bundles better.

Remark 5.26. In the way defined here, two-parameter Novikov-Shubin numbers generalise
the analytic version of Novikov-Shubin invariants, as they are defined via the deRham cochain
complex. This suggests the question whether there is an equivalent definition that generalises
the combinatorial approach. Some progress in that direction can be made.
For example, assume that

� B is a simplicial complex,

� for every b ∈ B the fibre Fb is a CW complex

� and the k-cells of M are precisely of the form σ × ρ ⊂ σ × Fσ
∼= π−1(σ), where σ is a

p-simplex in B and σ × Fσ
∼= π−1(σ) a suitable local trivialisation over the contractible

simplex σ with fibre Fσ = Fb for some b ∈ σ (e.g., the barycenter) and ρ some q-cell in Fb.

Then, the cellular chain complex of M decomposes similarly to the deRham complex as

Ccell
k (M) =

⊕
p+q=k

Csimp
p (B, {Ccell

q (Fσ)}σ∈Sp(B)).

Indeed, a chain in the (p, q)-summand on the right-hand-side is a formal sum∑
σ∈Sp(B)

λσ ·
∑

ρ∈Iq(Fσ)

λρ · ρ,

where σ ∈ Sp(B) runs over the set of p-simplices of B and ρ ∈ Iq(Fσ) over the set of q-cells of
the corresponding fibre Fσ. Meanwhile, a chain on the left-hand-side is of the form∑

γ∈Ik(M)

λγ · γ.

By the assumed compatibility of the combinatorial structures, each γ is of the form γ ∼= σ × ρ
for some σ ∈ Sp(B) and some ρ ∈ Iq(Fσ), so we can write∑

γ∈Ik(M)

λγ · γ =
∑

p+q=k

∑
σ∈Sp(B)

∑
ρ∈Iq(Fσ)

λσ×ρ · σ × ρ.

Therefore, λσ×ρ · σ × ρ←→ λσλρ · ρ yields such an isomorphism.

However, in contrast to what we saw on the deRham complex, the cellular differential does not
simplify much in this picture. It will split into (p+ 1) differentials

di : C
simp
p (B, {Ccell

q (Fb}b∈B)→ Csimp
p−i (B, {Ccell

q+i−1(Fb)}b∈B) for 0 ≤ i ≤ p,

and, in general, more than three of the summands are non-zero — unlike in the deRham complex.
This makes giving a combinatorial definition for the two-parameter Novikov-Shubin numbers, and
in particular proving that it agrees with the analytic version, more difficult.
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Remark 5.27. Another possible approach in the spirit of Chapter 3 of this thesis might be
by stochastic methods and, in particular, random walks. Such an approach would be closely
connected to a combinatorial definition from the previous remark. Nonetheless, we can make
some remarks about how the scaling might interact with such a random walk.

Recall that the classical Novikov-Shubin invariants are defined in terms of the asymptotic be-
haviour of the spectral density function,

Fk(M, g)(λ)− b
(2)
k (M) for λ↘ 0.

We saw that we can replace the argument λ by a constant and scale M by a factor λ instead,

Fk(M, gλ)(1)− b
(2)
k (M) for λ↘ 0.

We can mimic this shrinking of the manifold also on the level of random walks. Recall that the
Novikov-Shubin invariants relate to the asymptotic behaviour of sums of differences of the form

P(α+
n−→ α+)− P(α+

n−→ α−) for n→∞.

We can model shrinking the manifold by a factor 1/n if we let the random walkers take n steps
at once. Starting with a random walk R = (Ω, P ), we can define R1/n = (Ω, Pn) with moving

probabilities P1/n(s→ s′) = P(s n−→ s′). By definition, the difference we are interested in becomes
the difference of probabilities from two single steps,

P1/n(α+ → α+)− P1/n(α+ → α−) for n→∞,

and their asymptotic behaviour as we scale the manifold down.

It is less clear how scaling two directions with different speeds would translate in this picture.
Scaling the base by a factor µ and the fibre by a factor ν, a random walker could possibly take
roughly µ−1 steps at once in base directions or ν−1 steps in fibre directions. More generally, a
random walker should be able to take a steps in base directions and b steps in fibre directions,
where aµ−1 + bν−1 ≈ 1. Potentially, this could be simulated by adapting the probabilities of the
underlying random walk R by scaling probabilities of moves in base directions by a factor µ−1

and for fibre directions by ν−1 and then renormalising to get a random walk Rµ,ν . Taking

n ≈ µ−1P(moving in a base direction) + ν−1P(moving in a fibre direction)

many steps at once might capture some behaviour of the two-parameter Novikov-Shubin numbers.



Appendix A

Python Code

The code used to compute the estimates on Novikov-Shubin invariants on low dimensional Lie
algebras is given below and split in the following files:

� Rumin_Estimates_Diss.py — Main file, to be executed.

� Nilpotent_Lie_Algebra.py — Given its dimension and structure constants, we save and
compute relevant informations of a nilpotent Lie algebra.

� Differential_Forms.py — Helper classes and methods to deal with the calculus of dif-
ferential forms.

� Lie_Complex.py — Given a nilpotent Lie algebra, compute and store relevant information
about its Chevalley-Eilenberg complex and Lie algebra cohomology.

� Weight_Handler.py — Methods implementing the linear algebra behind finding weight
functions that yield pure weight in some degree.

� NLG_List.py—A list of all nilpotent Lie algebras in terms of their dimension and structure
constants (according to the list of W. A. de Graaf [Gra07].)

� Compute_Rumin_Estimates.py — Method to find estimates on Novikov-Shubin invariants
based on the weights.

� Print_Methods.py — Wrapper method to print the result as Ascii or Latex code.

The code can be found online on GitHub in the following repository:
https://github.com/HoepfnerT/Rumin Estimates PhD Thesis

Remarks on higher-dimensional Lie algebras, rounding errors and runtime estimates.
The main reason that we only compute the estimates for nilpotent Lie algebras up to dimension
six is that these algebras are classified nicely by W. A. de Graaf [Gra07] to be a finite list of
34 algebras. In theory, the algorithm can applied in the same manner to higher-dimensional
nilpotent Lie algebras, however, it should be noted that the current implementation does not
do precise computations but uses floating point approximations (for example, while applying
the Gram-Schmidt algorithm via calling the sympy-package). This is unproblematic in lower
dimensions but could lead to rounding errors impacting the computations if dimensions get
large.
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Further, the runtime of this algorithm does not scale well as the dimension increases. Indeed, if
we consider a Lie algebra g of dimension 2n and want to find estimates in the middle degree n,

we need to study the middle degrees of the Chevalley-Eilenberg complex, where Λng ∼= R(
2n
n ),

and find the Lie algebra cohomology as a subspace thereof. By Stirling’s formula, the dimension(
2n
n

)
grows exponentially in n, leading to similar estimates on the runtime of the estimates of the

middle-degree Novikov-Shubin invariants.
Running the program for three nilpotent Lie algebras of dimension 7 (the 7-dimensional Heisen-
berg Lie algebra h7 denoted in code as H7 and two arbitrarily chosen algebras from M-P. Gong’s
classification [Gon98]) takes roughly half as long as the computation of the full list of 34 nilpotent
Lie algebras of dimension up to six. Here, running the command

print(Print_Methods.make_NS_invars_table([H7, L7_37A, L7_257C], MAX_DIM=7))

from within the Rumin_Estimates_Diss.py-main file yields the output after approx. 16.3 sec-
onds (averaged over 10 runs on my local hardware) compared to 32.6 seconds for the list of 34
Lie algebras of dimension up to six.

α0 α1 α2 α3 α4 α5 α6 α7

H7 8 8 8 4 8 8 8 ∞+

L7(37A) 10 [5, 10] − − − [5, 10] 10 ∞+

L7(257C) 11 − − − − − 11 ∞+

For the 9-dimensional Heisenberg Lie algebra the program returns the correct result after approx.
307 seconds (averaged over 3 runs on my local hardware).

The time requirement grows less quickly when computing estimates on αk(g) for fixed k ≥ 0 as
dim g increases. An adapted algorithm could potentially run with runtime O(

(
n
k

)
) = O(nk).
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##### Start Nilpotent_Lie_Algebra.py #####

class Nilpotent_Lie_Algebra():

"""Save the dimension and the structure constants of a nilpotent Lie Algebra."""

def __init__(self, name, dim, structure_constants):

self.name, self.dim, self.structure_constants = name, dim, structure_constants

# Return c_ij^k

def get_structure_constant_ijk(self, i,j,k):

if not k in self.structure_constants: return 0

for i2,j2,c in self.structure_constants[k]:

if [i,j] == [i2, j2]: return c

return 0

# Compute the lower central series

def get_lower_central_series(self):

lcs = []

g = list(range(self.dim)) # g0

while len(g) > 0:

lcs.append(g)

g = [ k for k in g

if (k in self.structure_constants)

and any([(i in g or j in g) and (not c == 0)

for i,j,c in self.structure_constants[k]]) ] # g_n+1 <-- g_n

return lcs

# Read off the growth rate from the lower central series

def get_growth_rate(self): return sum([len(g) for g in self.get_lower_central_series()])

def __str__(self): return self.name

def __repr__(self): return f"Nilpotent Lie Algebra {self.name} of dimension {self.dim} with structure constants {self.structure_constants}."

##### End Nilpotent_Lie_Algebra.py #####
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##### Start Differential_Forms.py #####

import sympy as sp

# Sort list, return sign of permutation needed to sort

def sort_sign(w: tuple):

swap_counter = 0

for i in range(len(w)-1):

for j in range(i,len(w)):

if w[i] > w[j]: swap_counter += 1

if swap_counter % 2 == 0: return 1

return -1

class Basis_Differential_Form():

"""Describe a differential form of type coefficient * dx_I by its coefficient and the ordered tuple I."""

def __init__(self, coefficient, direction: tuple):

self.coefficient = sort_sign(direction)*sp.sympify(coefficient)

self.direction = tuple(sorted(direction))

def simplify(self):

try: self.coefficient = sp.simplify(self.coefficient)

except: pass

return self

# Compute weight based on a weight directionary for 1-forms

def get_weight(self, weights_dict: dict):

if self == 0: raise ValueError("The 0-form has no well-defined weight.")

try: return sum([weights_dict[sp.symbols("w" + str(i))] for i in self.direction])

except KeyError:

raise KeyError(f"{self.direction} not contained in the weights dictionary {weights}")

## Arithmetics

def __add__(self, other):

if self.direction == other.direction:

return Basis_Differential_Form(self.coefficient + other.coefficient, self.direction)

return NotImplemented

def __neg__(self): return Basis_Differential_Form(-self.coefficient, self.direction)

def __sub__(self, other): return self + (-other)

def __bool__(self): return not(self.coefficient == 0)

def __mul__(self, other):

if isinstance(other, (int, float)):

return Basis_Differential_Form(other*self.coefficient, self.direction)

if isinstance(other, Basis_Differential_Form):

if not len(set(self.direction + other.direction)) == len(self.direction) + len(other.direction):

return 0
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return Basis_Differential_Form( self.coefficient * other.coefficient * sort_sign(self.direction + other.direction),

tuple(sorted(self.direction + other.direction)) )

def __str__(self): return f"({self.coefficient}) {self.direction}"

def __repr__(self):

if len(self.direction) == 0: return f"{self.coefficient}"

if self.coefficient == 1: return "\\vartheta_{" + "".join([str(i) for i in self.direction]) + "}"

return f"({self.coefficient})" + "\\vartheta_{" + "".join([str(i) for i in self.direction]) + "}"

class Differential_Form():

"""Describe a differential form given as a sum of basis differential forms by the list of these basis forms"""

def __init__(self, summands: list):

self.summands = summands

# Simplify a differential form by adding basis forms of same directon

# Set flag rescale to true if rescaling is allowed

def simplify(self, rescale = False):

self_dict = {}

for summand in self.summands:

if summand.direction in self_dict:

self_dict[summand.direction].append(summand.coefficient)

else:

self_dict[summand.direction] = [summand.coefficient]

self_dict = {direction: sum( self_dict[direction] ) for direction in self_dict }

self.summands = [ Basis_Differential_Form(self_dict[direction], direction).simplify()

for direction in self_dict ]

self.summands = [ summand for summand in self if summand ] # remove 0 entries

if rescale:

min_coeff = min([ abs(summand.coefficient) for summand in self ])

for summand in self.summands: summand.coefficient /= min_coeff

self.summands.sort(key = lambda x: x.direction)

return self

def to_dict(self): return {summand.direction: summand.coefficient for summand in self}

def get_weights(self, weights_dict: dict):

return list(set([summand.get_weight(weights_dict) for summand in self]))

## Arithmetics

def __add__(self, other): return Differential_Form(self.summands + other.summands).simplify()

def __neg__(self): return Differential_Form([-summand for summand in self])

def __sub__(self, other): return self + (-other)

def __bool__(self): return not(len(self.summands) == 0)

def __mul__(self, other):
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if isinstance(other, (int, float)):

if other == 0: return Differential_Form([Basis_Differential_Form(0, ())])

return Differential_Form([bf1*other for bf1 in self.summands])

elif isinstance(other, Differential_Form):

return Differential_Form([bf1*bf2 for bf1 in self.summands for bf2 in other.summands if bf1*bf2]).simplify()

def __iter__(self): yield from self.summands

def __str__(self):

if len(self.summands) == 0: return "0"

return " + ".join([str(summand) for summand in self])

def __repr__(self):

if len(self.summands) == 0: return "0"

return " + ".join([repr(summand) for summand in self])

class Span_Differential_Forms():

""" Describe a linear subspace of differential forms given by its basis vectors by a list of these basis vectors """

def __init__(self, basis: list):

self.basis = basis

def simplify(self):

for form in self.basis: form.simplify(rescale = True)

self.basis = [ form for form in self.basis if form ]

def get_weights(self, weights_dict: dict):

return list(set().union(*[form.get_weights(weights_dict) for form in self]))

def __iter__(self): yield from self.basis

def __str__(self): return "< " + ",\n\t".join([str(form) for form in self.basis]) + " >"

def __repr__(self): return "\\langle " + ",\n\t\t".join([repr(form) for form in self.basis]) + " \\rangle"

##### End Differential_Forms.py #####
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##### Start Lie_Complex.py #####

from Differential_Forms import Basis_Differential_Form, Differential_Form, Span_Differential_Forms, sort_sign

import itertools

import sympy as sp

class Lie_Complex():

"""

Handle the Lie Complex and its homology for a given nilpotent Lie algebra G

"""

def __init__(self, G):

self.G = G

self.chain_basis_list = [ list(itertools.combinations(list(range(self.G.dim)), k)) for k in range(self.G.dim+1) ]

self.differential_list = self.setup_differential_list()

self.homology_basis_list = self.setup_homology_basis_list()

self.envelope = [ direction for k in range(self.G.dim) for form in self.get_homology_group_basis(k) for direction in form.to_dict() ]

# compute entries of matrix representing the differential

def get_differential_entry(self, v: tuple, w: tuple):

for k in v:

for i, j in itertools.combinations(w, 2):

if set(list(w) + [k] ) == set(list(v) + [i,j]):

sgn = sort_sign(list(w) + [k]) * sort_sign(list(w) + [i,j])

return -sgn*self.G.get_structure_constant_ijk(i,j,k)

return 0

def setup_differential_list(self):

differential_list = [ sp.Matrix([[0] for i in range(self.G.dim)]) ] # d^0: C^0(G) -> C^1(G)

differential_list += [ sp.Matrix([[ self.get_differential_entry(v,w)

for v in self.chain_basis_list[m] ]

for w in self.chain_basis_list[m+1] ])

for m in range(1, self.G.dim-1) ] # d^m: C^m(G) -> C^(m+1)(G), n>m>0

differential_list += [ sp.Matrix([[0 for i in range(self.G.dim)]]) ] # d^{n-1}: C^n(G) -> 0

differential_list += [ sp.Matrix([[0]]) ] # d^n: C^n(G) -> 0

return differential_list

def setup_homology_basis_list(self):

homology_groups = [ sp.Matrix([[1]]) ] # H^0(G)

for k in range(1,self.G.dim):

rg = sp.Matrix(self.differential_list[k-1]).columnspace() # orthogonal basis of image

ker = sp.Matrix(self.differential_list[k]).nullspace() # orthogonal basis of kernel

joined = rg + ker
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H = joined[0]

for m in joined[1:]: H = H.row_join(m)

Q, _ = H.QRdecomposition()

H = Q[:, len(rg):].T

homology_groups.append(H) # H^k(G)

homology_groups.append(sp.Matrix([[1]])) # H^n(G)

return homology_groups

def get_differential(self, k: int):

if not k in range(self.G.dim+1): return 0

return self.differential_list[k]

# Return a list of span vectors of H^k(G) as a subspace in C^k(G).

def get_homology_group_basis(self, k: int):

if not k in range(self.G.dim+1): return 0

H = self.homology_basis_list[k]

basis = Span_Differential_Forms([

Differential_Form([

Basis_Differential_Form(c, bv)

for c,bv in zip(H.row(j), self.chain_basis_list[k]) ])

for j in range(H.shape[0]) ])

basis.simplify()

return basis

def __str__(self): return f"Lie Complex of {self.G}."

def __repr__(self):

repr = f"For Lie Algebra {self.G}:\n"

for k in range(self.G.dim+1):

repr += f"\nDimension {k}:\nH^{k}(G) = {self.get_homology_group_basis(k)} \nd_{k} = {self.get_differential(k)}"

return repr

##### End Lie_Complex.py #####



95
##### Start Weight_Handler.py #####

import sympy as sp

from sympy.solvers.solveset import linsolve

from Differential_Forms import Span_Differential_Forms

from Lie_Complex import Lie_Complex

class Weight_Handler():

"""For a given nilpotent Lie algebra G,

handle the computations and estimates concerning weights as used by Rumin."""

def __init__(self, G):

self.G = G

self.initial_restraints = self.setup_weight_restraints()

self.initial_homology_weights = self.setup_homology_weights()

# Return a dict {i: w(X_i) for i = 1,..,G.dim} of possible weights on G satisfying w(X_i) + w(X_j) = w(X_k) if c_ij^k != 0.

def setup_weight_restraints(self):

weights = [ sp.symbols("w" + str(i)) for i in range(self.G.dim) ]

restraints = [ weights[i] + weights[j] - weights[k]

for k in self.G.structure_constants

for i,j,c in self.G.structure_constants[k]

if not c == 0 ] # setup linear system of equations based on structure constants

if len(restraints) == 0: return {sp.symbols("w" + str(i)): weights[i] for i in range(self.G.dim)}

S = linsolve(restraints, weights[::-1])

restrained_weights = list(list(S)[0])[::-1] # solution of linear system with minimal independent variables

return {sp.symbols("w" + str(i)): wi for i, wi in enumerate(restrained_weights)}

# Get the subspace of a linear space of a given pure weight.

def get_pure_weight_part( self, span: Span_Differential_Forms, pure_weight ):

out = []

for form in span:

weight = form.get_weights(self.initial_restraints)

if len(weight) > 1: raise ValueError("Basisvector of mixed weights passed to Weight_Handler.get_pure_weight_part().")

if list(weight)[0] == pure_weight: out.append(form)

return Span_Differential_Forms(out)

# Compute the weights appearing in the homology algebras of G under the initial weight restrictions

def setup_homology_weights(self):

HG = Lie_Complex(self.G)

return {k: HG.get_homology_group_basis(k).get_weights(self.initial_restraints) for k in range(self.G.dim+1)}

# Find restraints on weights to make a set of weights equal

def find_pure_weight_restraits(self, weights_list: list):
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free_vars = set().union(*[sp.sympify(w).free_symbols for w in weights_list ])

LGS = [weights_list[i] - weights_list[i+1] for i in range(len(weights_list)-1)]

S = linsolve(LGS, list(free_vars)[::-1])

if len(S) == 0: return self.initial_restraints

else: weight_restraints = {list(free_vars)[i]: list(S)[0][::-1][i] for i in range(len(free_vars))}

if 0 in weight_restraints.values():

return {k: 0 for k,v in self.initial_restraints.items()}

free_vars = set().union(*[expr.free_symbols for expr in weight_restraints.values() ])

if len(free_vars) > 0:

w = list(free_vars)[0]

weight_restraints = {k: v.subs({w:1}) for k,v in weight_restraints.items()}

return {k: v.subs(weight_restraints) for k,v in self.initial_restraints.items()}

##### End Weight_Handler.py #####
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##### Start NLG_List.py #####

# Input format: (name, dimension, structure constants), where non-zero structure constants are given as a dict in the form

# {k: [(i,j, c_ij^k) for 1 <= i < j < n ] for 1 <= k <= n}

L1_1 = ("L_{1,1}", 1, {})

L3_2 = ("L_{3,2}", 3, {2: [(0, 1, 1)]})

L4_3 = ("L_{4,3}", 4, {2: [(0, 1, 1)], 3: [(0, 2, 1)]})

L5_4 = ("L_{5,4}", 5, {4: [(0, 1, 1), (2, 3, 1)]})

L5_5 = ("L_{5,5}", 5, {2: [(0, 1, 1)], 4: [(0, 2, 1), (1, 3, 1)]})

L5_6 = ("L_{5,6}", 5, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1), (1, 2, 1)]})

L5_7 = ("L_{5,7}", 5, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1)]})

L5_8 = ("L_{5,8}", 5, {3: [(0, 1, 1)], 4: [(0, 2, 1)]})

L5_9 = ("L_{5,9}", 5, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(1, 2, 1)]})

L6_10 = ("L_{6,10}", 6, {2: [(0, 1, 1)], 5: [(0, 2, 1), (3, 4, 1)]})

L6_11 = ("L_{6,11}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 5: [(0, 3, 1), (1, 2, 1), (1, 4, 1)], })

L6_12 = ("L_{6,12}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 5: [(0, 3, 1), (1, 4, 1)]})

L6_13 = ("L_{6,13}", 6, {2: [(0, 1, 1)], 4: [(0, 2, 1), (1, 3, 1)], 5: [(0, 4, 1), (2, 3, 1)]})

L6_14 = ("L_{6,14}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1), (1, 2, 1)], 5: [(1, 4, 1), (2, 3, -1)]})

L6_15 = ("L_{6,15}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1), (1, 2, 1)], 5: [(0, 4, 1), (1, 3, 1)]})

L6_16 = ("L_{6,16}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1)], 5: [(1, 4, 1), (2, 3, -1)]})

L6_17 = ("L_{6,17}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1)], 5: [(1, 4, 1), (1, 2, 1)]})

L6_18 = ("L_{6,18}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(0, 3, 1)], 5: [(0, 4, 1)]})

L6_19_1 = ("L_{6,19,1}", 6, {3: [(0, 1, 1)], 4: [(0, 2, 1)], 5: [(1, 3, 1), (2, 4, 1)]})

L6_19_0 = ("L_{6,19,0}", 6, {3: [(0, 1, 1)], 4: [(0, 2, 1)], 5: [(1, 3, 1), (2, 4, 0)]})

L6_19_n1 = ("L_{6,19,-1}", 6, {3: [(0, 1, 1)],4: [(0, 2, 1)], 5: [(1, 3, 1), (2, 4, -1)]})

L6_20 = ("L_{6,20}", 6, {3: [(0, 1, 1)], 4: [(0, 2, 1)], 5: [(0, 4, 1), (1, 3, 1)]})

L6_21_1 = ("L_{6,21,1}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(1, 2, 1)], 5: [(0, 3, 1), (1, 4, 1)]})

L6_21_0 = ("L_{6,21,0}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(1, 2, 1)], 5: [(0, 3, 1), (1, 4, 0)]})

L6_21_n1 = ("L_{6,21,-1}", 6, {2: [(0, 1, 1)], 3: [(0, 2, 1)], 4: [(1, 2, 1)], 5: [(0, 3, 1), (1, 4, -1)]})

L6_22_1 = ("L_{6,22,1}", 6, {4: [(0, 1, 1), (2, 3, 1)], 5: [(0, 2, 1), (2, 3, 1)]})

L6_22_0 = ("L_{6,22,0}", 6, {4: [(0, 1, 1), (2, 3, 1)], 5: [(0, 2, 1), (2, 3, 0)]})

L6_22_n1 = ("L_{6,22,-1}", 6, {4: [(0, 1, 1), (2, 3, 1)], 5: [(0, 2, 1), (2, 3, -1)]})

L6_23 = ("L_{6,23}", 6, {2: [(0, 1, 1)], 4: [(0, 2, 1), (1, 3, 1)], 5: [(0, 3, 1)]})

L6_24_1 = ("L_{6,24,1}", 6, {2: [(0, 1, 1)], 4: [(0, 2, 1), (1, 3, 1)], 5: [(0, 3, 1), (1, 2, 1)]})

L6_24_0 = ("L_{6,24,0}", 6, {2: [(0, 1, 1)], 4: [(0, 2, 1), (1, 3, 1)], 5: [(0, 3, 0), (1, 2, 1)]})

L6_24_n1 = ("L_{6,24,-1}", 6, {2: [(0, 1, 1)],4: [(0, 2, 1), (1, 3, 1)], 5: [(0, 3, -1), (1, 2, 1)]})

L6_25 = ("L_{6,25}", 6, {2: [(0, 1, 1)], 4: [(0, 2, 1)], 5: [(0, 3, 1)]})

L6_26 = ("L_{6,26}", 6, {3: [(0, 1, 1)], 4: [(0, 2, 1)], 5: [(1, 2, 1)]})

ALL_GNLG_LEQ6 = [L1_1, L3_2, L4_3, L5_4, L5_5, L5_6, L5_7, L5_8, L5_9, L6_10, L6_11, L6_12, L6_13, L6_14, L6_15,L6_16, L6_17, L6_18, L6_19_1,

L6_19_0, L6_19_n1, L6_20, L6_21_1, L6_21_0, L6_21_n1, L6_22_1, L6_22_0, L6_22_n1, L6_23, L6_24_1, L6_24_0, L6_24_n1, L6_25, L6_26]

H7 = ("H7", 7, {6: [(0, 1, 1), (2,3,1), (4,5,1)]}) #Some 7-dimensional Lie algebras

L7_37A = ("L7(37A)", 7, {4:[(0,1,1)], 5:[(1,2,1)], 6:[(1,3,1)]})

L7_257C = ("L7(257C)", 7, {2:[(0,1,1)], 5:[(0,2,1), (1,3,1)], 6:[(1,4,1)]})

##### End NLG_List.py #####
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##### Start Compute_Rumin_Estimates.py #####

import sympy as sp

from Lie_Complex import Lie_Complex

from Weight_Handler import Weight_Handler

# Compute the estimates on the Novikov-Shubin invariants accordingly to Rumin's method; Applying Hodge duality if flag is set True

# Returns a dict {k: (low_k, high_k)} for such k where estimate low_k <= alpha_k <= high_k follows from Rumin's approach

def Compute_Rumin_Estimates(G, hodge_duality = True):

WEIGHT_HANDLER = Weight_Handler(G)

NSinvars_estimates = {0: (G.get_growth_rate(), G.get_growth_rate()) }

HG = Lie_Complex(G)

for k in range(1, G.dim):

k_weights = HG.get_homology_group_basis(k).get_weights(WEIGHT_HANDLER.initial_restraints)

pure_weight_restraints = WEIGHT_HANDLER.find_pure_weight_restraits(k_weights)

if 0 in pure_weight_restraints.values(): continue

k_weights = set([ w.subs(pure_weight_restraints) for w in WEIGHT_HANDLER.initial_homology_weights[k] ])

k1_weights = set([ w.subs(pure_weight_restraints) for w in WEIGHT_HANDLER.initial_homology_weights[k+1] ])

N = sp.sympify(WEIGHT_HANDLER.initial_homology_weights[G.dim][0].subs(pure_weight_restraints))

diffs = [ sp.sympify(w-v) for w in k1_weights for v in k_weights ]

# check if still variables remain, replace by 1

free_vars = set().union(*[list(v.free_symbols) for v in diffs])

if len(free_vars) > 0:

replace_dict = {fv: 1 for fv in free_vars}

diffs = [v.subs(replace_dict) for v in diffs]

N = N.subs(replace_dict)

pure_weight_restraints = {k: v.subs(replace_dict) for k,v in pure_weight_restraints.items()}

Nmax, Nmin = max(diffs), min(diffs)

if not Nmin > 0: Nmin = min([1/sp.sympify(w) for w in pure_weight_restraints.values()])

NSinvars_estimates[k] = (N / Nmax, N / Nmin)

if hodge_duality:

for k in range(G.dim//2):

if (k in NSinvars_estimates) and not (G.dim-k-1 in NSinvars_estimates):

NSinvars_estimates[G.dim-k-1] = NSinvars_estimates[k]

elif not (k in NSinvars_estimates) and (G.dim-k-1 in NSinvars_estimates):

NSinvars_estimates[k] = NSinvars_estimates[G.dim-k-1]

elif (k in NSinvars_estimates) and (G.dim-k-1 in NSinvars_estimates):

n_min = max(NSinvars_estimates[k][0], NSinvars_estimates[G.dim-k-1][0])

n_max = min(NSinvars_estimates[k][1], NSinvars_estimates[G.dim-k-1][1])

NSinvars_estimates[k] = (n_min, n_max)

NSinvars_estimates[G.dim-k-1] = (n_min, n_max)

return NSinvars_estimates

##### End Compute_Rumin_Estimates.py #####
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##### Start Print_Methods.py #####

from NLG_List import *

from Nilpotent_Lie_Algebra import Nilpotent_Lie_Algebra as NLG

from Compute_Rumin_Estimates import Compute_Rumin_Estimates

# Given a list of graded nilpotent Lie algebras and the maximal dimension

# returns a table containing the NS-estimates from Rumin's method.

def make_NS_invars_table( NLG_list: list, MAX_DIM: int, COL_SEP = 14, hodge_duality = True, Latex = False ):

outstr = ""

if Latex:

out_str = "Estimates on the Novikov-Shubin invariants of the deRham differentials.\n"

out_str += "\\begin{tabular}{|c|" + "|c"*(MAX_DIM+1) + "|} \\hline \n"

out_str += "".join([f" & $\\alpha_{k}$" for k in range(MAX_DIM+1)]) + " \\\\ \\hline \n"

else:

out_str = " " + "_"*((MAX_DIM+1)*(COL_SEP+3)-1) + "\n" + "|"

out_str += "_"*COL_SEP + "__|_{}_|".format("_|_".join("_"*((COL_SEP-len(str(k))-2)//2) +"a_"

+ str(k) + "_"*((COL_SEP-len(str(k))-1)//2) for k in range(MAX_DIM)))

out_str += "\n"

for LG in NLG_list:

G = NLG(*LG)

print(f"Starting to estimate NS invars of {G}...")

NSinvars_estimates = Compute_Rumin_Estimates(G, hodge_duality=hodge_duality)

NS_str = []

if Latex: out_str += f"${G}$"

for k in range(G.dim):

if k not in NSinvars_estimates:

NS_str.append("-")

elif NSinvars_estimates[k][0] == NSinvars_estimates[k][1]:

if Latex: NS_str.append(f"{NSinvars_estimates[k][0]}")

else: NS_str.append("{}".format(NSinvars_estimates[k][0]))

else:

NS_str.append("[{}, {}]".format(*NSinvars_estimates[k]))

if Latex: out_str += "".join([f" & ${a}$" for a in NS_str]) + " & $\infty^+$" + " & "*(6-G.dim) + "\\\\ \\hline \n"

else: out_str += "| {} | {} | {}\n".format( " "*(COL_SEP-len(str(G))) + str(G),

" | ".join( " "*((COL_SEP-len(s)+1)//2) +s + " "*((COL_SEP-len(s))//2) for s in NS_str),

" | ".join(" "*(COL_SEP) for i in range(MAX_DIM-len(NS_str)+1)))

print(f"{G} completed.")

if Latex: out_str += "\end{tabular}"

else: out_str += " " + " "*((MAX_DIM+1)*(COL_SEP+3)-1)

return out_str

##### End Print_Methods.py #####
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##### Start Rumin_Estimates_Diss.py #####

import Print_Methods

from NLG_List import * # Here the Lie algebras are defined

if __name__=="__main__":

RE = Print_Methods.make_NS_invars_table(ALL_GNLG_LEQ6, MAX_DIM=6, Latex = False)

print(RE)

#

# For some arbitrarely chosen nilpotent Lie algebras of dimension 7:

#print(Print_Methods.make_NS_invars_table([H7, L7_37A, L7_257C], MAX_DIM=7))

##### End Rumin_Estimates_Diss.py #####
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Sample output for calling Rumin_Estimates_Diss.py (debug prints omitted, approx. runtime of 32.6 seconds averaged over 10 runs on my local hardware):

______________________________________________________________________________________________________________________

|________________|______a_0_______|______a_1_______|______a_2_______|______a_3_______|______a_4_______|______a_5_______|

| L_{1,1} | 1 | | | | | |

| L_{3,2} | 4 | 2 | 4 | | | |

| L_{4,3} | 7 | [5/2, 10/3] | [5/2, 10/3] | 7 | | |

| L_{5,4} | 6 | 6 | 3 | 6 | 6 | |

| L_{5,5} | 8 | - | - | - | 8 | |

| L_{5,6} | 11 | - | - | - | 11 | |

| L_{5,7} | 11 | [11/4, 11/2] | - | [11/4, 11/2] | 11 | |

| L_{5,8} | 7 | [7/2, 7] | - | [7/2, 7] | 7 | |

| L_{5,9} | 10 | 10/3 | 5 | 10/3 | 10 | |

| L_{6,10} | 9 | - | - | - | - | 9 |

| L_{6,11} | 12 | - | - | - | - | 12 |

| L_{6,12} | 12 | - | - | - | - | 12 |

| L_{6,13} | 12 | - | - | - | - | 12 |

| L_{6,14} | 16 | - | - | - | - | 16 |

| L_{6,15} | 16 | - | - | - | - | 16 |

| L_{6,16} | 16 | [14/3, 7] | [16/5, 16/3] | [16/5, 16/3] | [14/3, 7] | 16 |

| L_{6,17} | 16 | - | - | - | - | 16 |

| L_{6,18} | 16 | [16/5, 8] | - | - | [16/5, 8] | 16 |

| L_{6,19,1} | 10 | [5, 10] | - | - | [5, 10] | 10 |

| L_{6,19,0} | 10 | [10/3, 10] | - | - | [10/3, 10] | 10 |

| L_{6,19,-1} | 10 | [5, 10] | - | - | [5, 10] | 10 |

| L_{6,20} | 10 | [5, 10] | - | - | [5, 10] | 10 |

| L_{6,21,1} | 14 | [7/2, 14/3] | - | - | [7/2, 14/3] | 14 |

| L_{6,21,0} | 14 | [7/2, 14/3] | - | - | [7/2, 14/3] | 14 |

| L_{6,21,-1} | 14 | [7/2, 14/3] | - | - | [7/2, 14/3] | 14 |

| L_{6,22,1} | 8 | [4, 8] | [4, 8] | [4, 8] | [4, 8] | 8 |

| L_{6,22,0} | 8 | [4, 8] | [4, 8] | [4, 8] | [4, 8] | 8 |

| L_{6,22,-1} | 8 | [4, 8] | [4, 8] | [4, 8] | [4, 8] | 8 |

| L_{6,23} | 10 | - | - | - | - | 10 |

| L_{6,24,1} | 11 | - | [4, 6] | [4, 6] | - | 11 |

| L_{6,24,0} | 11 | - | [4, 6] | [4, 6] | - | 11 |

| L_{6,24,-1} | 11 | - | [4, 6] | [4, 6] | - | 11 |

| L_{6,25} | 10 | [10/3, 10] | - | - | [10/3, 10] | 10 |

| L_{6,26} | 9 | 9/2 | [9/2, 9] | [9/2, 9] | 9/2 | 9 |
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