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Mathematisches Institut, Georg-August-Universität Göttingen

Further members of the examination board

Prof. Dr. Preda Mihăilescu,
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Chapter 1

Introduction

The study of Diophantine problems concerns itself with finding integer solutions to

polynomial equations or systems of polynomial equations in integer variables. Such

problems have already been studied in ancient Greece, and while our understanding

steadily improves there are still many aspects about Diophantine equations that re-

main elusive. One feature that makes these problems so intriguing is the simplicity

with which they may be stated. For example, it is a very basic question to ask if it is

possible to find all the (infintely many) right angled triangles, whose sidelengths are

integer values. According to a famous theorem named after the Greek philosopher

and mathematician Pythagoras, one may repackage this problem as finding all the

integer triples (X, Y, Z) such that

X2 + Y 2 = Z2

is satisfied. Such a solution is called a Pythagorean triple. Encountering this question

for the first time it is not simple to tell how feasible it is to solve this. Taking a

geometric viewpoint there is a very elegant solution; one may yet again reformulate

this problem as finding all the rational points (x, y) on the unit circle. One such point

is given by (−1, 0), which we call O. If we take any other point with rational entries

P , say, on the unit circle then the line through O and P must have rational slope.

Conversely, if we take a line through O with rational slope r, then this line intersects

the unit circle in precisely one point Pr, say, other than O. It is a simple calculation

that we have

Pr =

!
1− r2

1 + r2
,

2r

1 + r2

"
.

Writing r = a/b, where a and b are integers, one can then deduce the solution to the

original question. Namely, up to rescaling, all Pythagorean triples (X, Y, Z) are of
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the form

(b2 − a2, 2ab, a2 + b2),

where a, b ∈ Z. It is not hard to show that a tuple of the form above satisfies

X2+Y 2 = Z2, but the argument above shows that indeed every solution needs to be

of this shape. While such elegant solutions are often not available in more complicated

situations, this should demonstrate that the geometric picture can be extremely useful

in understanding and solving Diophantine problems, which is a recurring theme that

appears throughout this thesis.

Now that we have understood how to characterise Pythagorean triples one might

enquire about equations of a more general shape. For example, given a quadratic

form Q(x1, . . . , xn) ∈ Z[x1, . . . , xn], that is, a homogeneous degree 2 polynomial, one

can ask whether there exists an integer tuple (a1, . . . , an) with not all entries 0 such

that Q(a1, . . . , an) = 0. We say that Q represents zero non-trivially if that is the case.

Also note that due to the homogeneity of Q it makes no difference whether we obtain

an integral or rational solution. If the Q is of the shape

Q(x1, . . . , xn) = x2
1 + · · ·+ x2

n,

then clearly the only real solution is a1 = · · · = an = 0, and hence there is no non-

trivial rational solution. Similarly, if n = 3 and the equation is for example given

by

2x2
1 − 3x2

2 − 4x2
3 = 0,

then there are no non-trivial solutions, which can be proved by considering this equa-

tion over Z/8Z; one can easily show that 2x2
1 − 3x2

2 − 4x2
3 ≡ 0 mod 8 implies that all

of the xi need to be even. A simple descent argument then shows that there cannot

be any non-trivial rational solutions to the above quadratic form. In both examples

the local conditions are not satisfied. In particular, for a quadratic form to represent

zero non-trivially over the rationals it is necessary that there are non-trivial solutions

over all R and Qp for every p. One may wonder if the converse holds: If there are

non-trivial solutions over R and Qp for all primes p can one recover a non-trivial

rational solution? If this is satisfied for a (system) of equations one says that the

Hasse Principle holds. Such a situation is desirable since it is usually much easier to

determine whether a Diophantine problem has local solutions or not.

Returning to quadratic forms, a famous theorem of Hasse and Minkowski states

that the Hasse Principle is satisfied for quadratic forms. Indeed, a theorem of Meyer

further shows that if n ≥ 5 then one always obtains non-trivial p-adic solutions to
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a quadratic form, and therefore, unless Q is definite, one also obtains non-trivial

rational solutions. A good treatment of this matter may be found in [102].

Moving to higher degree, analogous to Meyer, Demyanov [32] and Lewis [72]

independently showed that the local conditions are satisfied for cubic forms as soon

as n ≥ 10. Therefore if one were to be able to show the Hasse Principle one could

infer the existence of a non-trivial rational solution. Indeed using the Hasse Priniple

amongst other things, Heath-Brown showed that any cubic form in n ≥ 14 variables

represents zero non-trivially [49]. When the cubic form is non-singular he showed

that 10 variables suffice [43]. Later Hooley [52, 53, 54, 56] showed the Hasse Principle

in the case of non-singular cubic forms whenever n ≥ 9, and Vaughan [111] could

establish the Hasse Principle for diagonal cubic forms, provided n ≥ 8. In fact,

building on Vaughan’s techniques Baker establishes the existence of a non-trivial

solution to diagonal cubic forms in at least 7 variables and even finds an upper bound

for the size of the smallest solution when the number of variables is 7, 8 or 9. In all

of these results a crucial technique used is the circle method.

We will henceforth often use the notation x = (x1, . . . , xn). Given a polynomial

F (x) ∈ Z[x1, . . . , xn] and a real number P ≥ 1, one may consider the counting

function

N(P ) = #{x ∈ Zn : |xi| ≤ P, for all i, F (x) = 0}.

If the form has degree d, then a simple heuristic argument shows that in a generic

situation one would expect the counting function to look like

N(P ) = σP n−d(1 + o(1)),

provided n is sufficiently large. If one knows that σ is positive then such a result

clearly implies the existence of a non-trivial solution to F (x) = 0. The circle method

is highly effective in proving such asymptotic formulas. In particular, the constant

σ is usually given as the product of densities of local solutions. Therefore, one can

usually show that the existence of non-trivial smooth local solutions together with

Hensel’s Lemma implies σ > 0. Thus in many situations such an asymptotic formula

implies the smooth Hasse Principle, a slightly weaker version of the Hasse Principle.

We now briefly describe the basic ideas involved regarding the circle method.

First, given x ∈ R we introduce the notation e(x) = e2πix. For α ∈ R one then

considers the exponential sum

S(α;P ) = S(α) =
#

x∈Zn

|x|≤P

e(αF (x)).

3



A simple Fourier analytic calculation then reveals

N(P ) =

$ 1

0

S(α)dα.

One of the key observations is that if a and q are two coprime integers then S(a/q)

is often roughly of size ca,qP
n, where ca,q is a positive constant depending on a and

q such that ca,q → 0 as q → ∞. This might fail if certain local obstructions are

present, for example, but for the sake of this heuristic the reader is encouraged to

imagine that S(a/q) ≈ ca,qP
n. Thus, if α is close to a rational number with small

denominator one would expect these values make a large contribution towards the

counting function N(P ). On the other hand, if α is not close to a rational number

with small denominator then the sum S(α) is expected to exhibit cancellation. This

can be made precise and the unit interval [0, 1] is thus split into major arcs and minor

arcs accordingly, and integrating over these, one expects to obtain the main and error

term, respectively.

We believe, but can rarely prove, that if α lies in the minor arcs, the summands

of S(α) behave like a random variable and thus one expects to obtain square-root

cancellation for S(α). Usually one is not able to prove such strong cancellation,

except for in very special situations. In any case, even if one assumes square-root

cancellation, the circle method cannot handle arbitrarily few variables. Therefore

there are theoretical limitations to the range within which one may hope the circle

method to be effective.

Heath-Brown’s work on 14 variables [49] is a refinement of previous work by Dav-

enport [28] who showed that any cubic form in at least 16 variables represents zero

non-trivially. In both papers, when the cubic form is of a somewhat degenerate shape

then one can find a solution directly, via ’geometric reasons’. In the other cases the

circle method is used to successfully establish an asymptotic formula, and using the

above mentioned result by Lewis and Birch one can infer the existence of a non-trivial

zero. Heath-Brown’s main new innovation lies in the treatment of the minor arcs,

where he introduces an averaged van der Corput differencing argument in addition

to a classical Weyl differencing argument.

Of course all of these problems may be considered over number fields K, and a

version of the circle method may be developed analogously. As mentioned above the

local conditions for cubic forms were shown to be satisfied by Lewis, and his result

holds for general number fields [72]. Using this Ramanujam [89] showed that any

cubic form over a number field K in at least 54 variables represents zero non-trivially,
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which was subsequently improved to 17 variables by Ryavec [92] and 16 variables by

Pleasants [87]. In joint work with Christian Bernert we established the following.

Theorem 1.0.1 (Theorem 2.1.1). Let K/Q be an quadratic imaginary extension,

and let C(x) ∈ K[x1, . . . , xn] be a cubic form. If n ≥ 14 then C(x) represents zero

non-trivially over K.

The averaged van der Corput differencing argument prevents us from easily ex-

tending this result to arbitrary number fields. In particular, Heath-Brown’s approach

requires a good fractional version of Dirichlet’s approximation theorem, which seems

to be only valid in the case when K is a quadratic imaginary extension. Nevertheless,

this result has some very interesting and effective applications to cubic hypersurfaces

defined over Q.

Theorem 1.0.2 (Theorem 2.1.2). Let X ⊂ Pn−1
Q be a hypersurface defined by a cubic

form. If n ≥ 33 then X contains a rational line.

This improves upon previous work by Wooley [117], who showed that 37 variables

suffice in order to deduce the existence of rational lines on cubic hypersurfaces. In

fact we would like to compare this with recent work of Brandes and Dietmann [11]

who showed that if one additionally assumes X to be non-singular then n ≥ 31 suf-

fices to infer the result. Using an argument in forthcoming work due to Brandes and

Dietmann [12], which uses the full strength of Theorem 1.0.1, one could improve The-

orem 1.0.2 to 31 variables. Finally as in work by Brüdern–Dietmann–Liu–Wooley [18],

Theorem 1.0.1 can also be used in conjuction with the Green-Tao theorem in order

to establish the following.

Theorem 1.0.3 (Theorem 2.1.3). Let C(x) ∈ Q[x1, . . . , xn] be a cubic form. Then,

if n ≥ 33, there are almost-prime solutions to C(x) = 0 in the following sense: There

are coprime integers c1, . . . , cn such that the equation

C(c1p1, c2p2, . . . , cnpn) = 0

has infinitely many solutions in primes p1, . . . , pn, not all equal.

Returning to Q, as mentioned above if C is non-singular, the state of the art is

due to Hooley, who showed an asymptotic formula for non-singular cubic forms in

at least 9 variables. In fact under the same assumption Hooley [57, 58] could still

show an asymptotic formula if n ≥ 8 and thus establish the Hasse Principle, assum-

ing certain analytic, Riemann Hypothesis-like properties of Hasse–Weil L-functions.
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Heath-Brown [46] explored the limits of this approach by considering diagonal cu-

bic forms. Under similar assumptions regarding certain Hasse–Weil L-functions, he

showed that the counting function satisfies

N(P ) ≪ε P
3+ε, if n = 6

and

N(P ) = #{|x| ≤ P : x lies on a rational line contained in V(C)}+Oε(P
3/2+ε),

if n = 4. Using elementary methods Hooley [55] could show the mean value estimate

#{x ∈ Z6 : max
i

|xi| ≤ P, x3
1 + x3

2 + x3
3 = x3

4 + x3
5 + x3

6} ≪ε P
3+ε,

under the same assumptions regarding Hasse–Weil L-functions that Heath-Brown

required for his result. Assuming an unproved conjecture concerning the growth of

the rank of rational elliptic curves in terms of their conductor, Heath-Brown [47]

could improve the exponent to 4/3 in the case when n = 4. The result established

in [47] holds for all non-singular and therefore not necessarily diagonal cubic forms in

4 variables. Heath-Brown further showed in [48] that certain families of cubic forms

in n = 4, 5 variables satisfy the Hasse Principle, assuming Selmer’s conjecture on

elliptic curves.

If n = 4 then one expects the contribution from projective rational lines on the

cubic surface to dominate, whenever they exist. For example, if C(x1, . . . , x4) =

x3
1 + x3

2 + x3
3 + x3

4 then one obtains a contribution of ≫ P 2 to N(P ) from solutions of

the form (a,−a, b,−b). If one were to consider a new counting function N0(P ), which

ignores the contribution from lines, then according to Manin’s conjecture one would

expect

N0(P ) = cP (logP )ρ−1(1 + o(1)),

where ρ is the Picard rank of the surface defined by C = 0 inside P3 and c is a constant

as predicted by Peyre [84]. We will discuss Manin’s conjecture in more detail in due

course.

The above mentioned results by Hooley on octonary forms and Heath-Brown on

diagonal cubic forms in 4 and 6 variables rely on a variant of the circle method,

sometimes referred to as the δ-method. One of the key inputs is a smooth decomposi-

tion of the Kronecker δ-function, according to Duke–Friedlander–Iwaniec [35], which

was then further developed in the context of the circle method by Heath-Brown [45].
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Let w : Rn → R be a smooth, compactly supported weight function. One may then

consider a weighted counting function Nw(P ), which is defined via

Nw(P ) =
#

x∈Zn

δ(F (x))w(x/P ),

and normally an asymptotic formula or an upper bound for Nw(P ) is sufficient to

establish one for N(P ). If one now expresses δ with the decomposition mentioned

above, after dividing x ∈ Zn into residue classes, then one may apply Poisson sum-

mation in order to obtain an expression of the shape

Nw(P ) =
#

c∈Zn

∞#

q=1

Sq(c)Iq(c),

where Sq(c) and Iq(c) are certain exponential sums and integrals. The main term is

expected to arise from the contribution c = 0, and the remaining summands should

be absorbed by the error term. While it is possible to obtain very good estimates

for Iq(c) the situation for the exponential sums Sq(c) is a little more tricky. Via

Weil’s work [116] one can get very good pointwise bounds for Sq(c) since the sums

correspond to the coefficients of local L-functions. If one wishes to estimate averages

of the form #

q≤Q

Sq(c),

then it would be desirable to obtain cancellation in the summands instead of es-

timating each summand individually. One can understand these sums in terms of

the coefficients of certain Hasse–Weil L-functions, which arise from taking the Euler

product of the local L-functions that provided the pointwise bounds. Therefore it is

at this point where assuming a Riemann hypothesis for such Hasse–Weil L-functions

yields an improvement. Obtaining a saving over averaging these exponential sums is

in this context also sometimes referred to as a double Kloosterman refinement.

The results of Hooley and Heath-Brown are conditional but in the context of

function fields the corresponding L-functions are known to satisfy the Riemann hy-

pothesis by virtue of Deligne’s seminal work [30, 31]. Therefore it seems natural to

consider whether one can prove the analogous results in this context unconditionally.

Before we elaborate further we briefly introduce the basic notions and definitions that

are needed in order to properly state the analogous Diophantine problem. Consider

the field K = Fq(t) of rational functions in one variable whose coefficients lie in a

7



finite field with q = pk elements, where p ∈ N is a prime number. Given an element

f/g ∈ K, where f, g ∈ Fq[t], we may define an absolute value via

%%%%
f

g

%%%% := qdeg(f)−deg(g).

We may consider ϖ-adic valuations induced by irreducible polynomials ϖ ∈ Fq[t],

and thus construct completions Kϖ. Further K has a completion induced by 1/t (the

place at infinity), which can be explicitly described as the field of Laurent series in

t−1. We denote this by K∞ = Fq((t
−1)) and note that this corresponds to the real

numbers in the classical setting. Given a cubic form C(x) ∈ K[x1, . . . , xn] one may

now ask the question whether it represents zero non-trivially over K. It is a fairly

straightforward consequence of the Chevalley–Warning theorem that this is indeed

the case when n ≥ 10. For smaller values of n, the local conditions need no longer

be satisfied, but one may still enquire about the Hasse Principle. Again, the circle

method can be effectively applied. Especially considering the observations noted in

the paragraph above one might hope to achieve very strong results. To this end given

P ∈ Fq[t] define a counting function

N(P ) := # {x ∈ Fq[t]
n : C(x) = 0, |xi| ≤ |P |, for all i} ,

and we study its asymptotic behaviour as |P | → ∞. Corresponding to Hooley’s

theorem regarding octonary cubic forms, Browning and Vishe [17] established an

asymptotic formula of the shape

N(P ) = σ|P |n−3(1 + o(1)),

if n = 8 and thus deduced the Hasse Principle for n ≥ 8, provided char(Fq) > 3.

The approach followed the work of Hooley and previous authors who had developed

the circle method in this context, such as Lee [70] and Kubota [66]. The setup is as

follows. One may define an additive character ψ : K∞ → C× given by

ψ :
#

i≤N

ait
i -→ e

!
TrFq/Fp(a−1)

p

"
.

The unit interval in this setting, is given by T = K∞/Fq[t] and can be explicitly

described as

T = {α ∈ K∞ : |α| < 1} =

&
#

i≤−1

ait
i : ai ∈ Fq

'
.
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It is then not hard to verify that given x ∈ Fq[t], we have

$

T
ψ(αx)dα =

&
1, if x = 0

0, otherwise.

Therefore we may consider a weighted counting function

Nw(P ) =
#

x∈Fq [t]n

$

T
ψ(αF (x))w(x/P )dα,

where w : Fq[t]
n → R is some weight function. Similarly to the procedure described

above one may from here onwards apply Poisson summation and the problem reduces

to estimating certain exponential sums and integrals. This is the approach used

by Browning–Vishe. In joint work with Jakob Glas we refined their method and

established Heath-Brown’s result in this context.

Theorem 1.0.4 (Theorem 3.1.1). Let C(x) =
(n

i=1 aix
3
i ∈ Fq[t][x1, . . . , xn] be a

diagonal cubic form. We have

N(P ) ≪ε |P |3+ε, if n = 6 and char(Fq) ∕= 3,

and

N0(P ) ≪ε |P |3/2+ε, if n = 4 and char(Fq) ∕= 2, 3,

where N0(P ) counts the number of solutions x ∈ Fq[t]
n away from lines on the cubic

hypersurface defined by C(x) = 0 inside P3
Fq
.

We note that the restriction on the characteristic arises usually quite naturally

when one wishes to apply the circle method in a function field setting, see for example

the work of Kubota [66] and Lee [70]. This is an artefact from Weyl’s estimate, which

produces a factor of d! in the exponential sum when one is dealing with polynomials

of degree d. Of course, if the characteristic is then smaller than d the exponential

function may only be estimated trivially when such a factor is produced. We note

that in the case of Browning–Vishe the restriction on the characteristic arises in a

slightly different manner. They require a point x0 at which the Hessian does not

vanish. If char(Fq) = 2 or 3 such a point may not exist.

It is therefore a very nice feature that we could show the first part of the above

theorem if the characteristic is 2. We also note that in the case when char(Fq) = 3

solving a diagonal cubic form over Fq[t] reduces to a system of linear equations, and

so in a sense this is a less interesting case.
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Further we note that a key difficulty in the work of Browning–Vishe was the

unavailability of a suitable form of partial summation in order to take full advantage

of the double Kloostermann refinement. This led to a rather complicated workaround

that resulted in a slight loss in their estimates. The associated loss in the estimates

was too big for our purposes. However, we managed to remedy this with a rather

simple trick, which should be applicable in their setting too. We think that this idea

can be applied in similar problems over function fields in the future.

In 1964 Harold Davenport asked his PhD student at the time Keith Matthews:

”What can we say about the number of solutions of

x3
1 + x3

2 + x3
3 = y31 + y32 + y33

with xi, yi ∈ Fq[t], |xi| , |yi| ≤ P? Can we get O(P 3+ε)?”

By considering C(x) = x3
1+x3

2+x3
3−x3

4−x3
5−x3

6 and applying Theorem 1.0.4 we

may thus affirmatively answer Davenport’s question. Davenport was enquiring about

Figure 1.1: Excerpt of a letter by Davenport written to Keith Matthews in 1964

such an upper bound due to its relevance in connection with Waring’s problem for

cubes. Over the integers Waring’s problem for cubes asks the following: What is the

smallest positive integer s such that every sufficiently large integer may be written

as the sum of at most s non-negative cubes? If we call this integer G(3) then it

is conjectured that G(3) = 4. Using a circle method approach one can tackle this

problem by understanding the counting function

R3(N) = #{x ∈ Zs : xi ≥ 0, x3
1 + · · ·+ x3

s = N},

as N → ∞. The current state of the art is due to Vaughan [111, 112] who established

an asymptotic formula if s ≥ 8, and lower bounds of the correct order of magnitude

for R3(N) if s ≥ 7 from which one may then conclude G(3) ≤ 7. Using algebraic

methods Linnik [75] had already shown G(3) ≤ 7 some years before Vaughan, but he

proved no quantitative result regarding R3(N).
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One may analogously consider such problems over function fields. Similarly one

seeks to find the minimal integer s such that every polynomial P of sufficiently large

degree may be written as the sum of s polynomials. Since there may be ’trivial’

obstructions to this, one usually takes P to lie in the additive closure of the cubes

J(3)[t] ⊂ Fq[t], in order for this question to be well defined. For example, given any

positive integer n it is never possible to express t3n+1 as a sum of any number of

cubes in F3[t]. We note at this point that only in the case q = 2, 4 or q = 3k such

obstructions may occur, otherwise J(3)[t] = Fq[t], see for example [39, Lemma 5.2].

Therefore we denote by Gq(3) = s the smallest integer such that every polynomial

P ∈ J(3)[t] of sufficiently large degree may be written as the sum of s cubes. One may

also consider a counting function associated to this problem, namely

Rq(P ) = #{x ∈ Fq[t]
n : |x| ≤ q⌈

deg(P )
3 ⌉, x3

1 + · · ·+ x3
s = P},

where we restricted the size of the potential summands since there may be infinitely

many polynomials of large degree, which could cancel each other out – a phenomenon

that does not occur over the integers, but as a result of which the counting function

may otherwise not be finite for a given P . We denote by )Gq(3) the smallest integer

s such that we obtain an asymptotic formula for Rq(P ). Clearly Gq(3) ≤ )Gq(3).

Further it is also trivial to see that )G3h(3) = 1 holds. One of the first people to

study Waring’s problem in this context using the circle method was Kubota [66]

who showed that )Gq(3) ≤ 9 holds provided that 2 ∤ q. As before the restriction on

the characteristic arises from a Weyl differencing procedure. In characteristic 2 the

current best bounds available are due to Car–Cherly [20] who established )G2h(3) ≤ 11.

Finally, using elementary approaches Gallardo [38] and Car–Gallardo [21] showed

Gq(3) ≤

*
+,

+-

7, if q /∈ {7, 13, 16}
8, if q ∈ {13, 16}
9, if q = 7.

Returning to Davenport’s question, one should note that in a circle method approach

to Waring’s problem the count of the number of bounded solutions to

x3
1 + x3

2 + x3
3 = y31 + y32 + y33

arises very naturally and is usually handled using Hua’s Lemma. In the function field

setting we also note that Hua’s Lemma only works when the characteristic is at least

5. Using Theorem 1.0.4 we manage to improve upon all of these results in one big

sweep.
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Theorem 1.0.5 (Theorem 3.1.4). We have )Gq(3) ≤ 7.

We note that if q = 2k we used a Weyl estimate, which was established by Car [19].

We may moreover use Theorem 1.0.4 in order to deduce the Hasse Principle for

diagonal forms over Fq[t] in at least 7 variables, building on the work of Lee [70].

In fact, we can establish weak approximation. This is a stronger form of the Hasse

principle, which states that if X is a variety over a global field k then the diagonal

embedding

X(k) ↩→
.

v

X(kv),

is dense with respect to the product topology, where the product runs over all the

places of k. In more down-to-earth terms, in the case when one has a hypersurface

defined by f = 0 with kv-solutions for every place v, then it satisfies weak approxi-

mation precisely when given a finite set S of places of k, given xv ∈ kv for all v ∈ S

with f(xv) = 0 and given any ε > 0, then there exists a rational solution x to f = 0

satisfying

|x− xv|v < ε

for all v ∈ S. For completeness we should mention that some of the previously

mentioned results regarding the Hasse Principle actually also showed weak approxi-

mation, such as the result by Browning–Vishe [46] or the work of Lee [70]. In fact,

with enough care the circle method is usually capable of showing weak approximation

when one can show the Hasse principle, although the technical details become more

involved.

Theorem 1.0.6 (Theorem 3.1.3). Let C(x) ∈ Fq[t][x1, . . . , xn] be a diagonal cubic

form. If n ≥ 7 and if char(Fq) > 3 holds then weak approximation holds for the

hypersurface defined by C(x) = 0.

We note that one should be able to prove this result in the case when char(Fq) = 2

by proving a suitable version of Weyl’s inequality in this context using the ideas by

Car [19].

So far we have hopefully demonstrated how the circle method can be effectively

used in order to obtain detailed information about integer solutions to homogeneous

degree 3 equations, as well as their analogues in number fields and function fields.

However, the circle method is a very flexible tool that can be used in a variety of

situations. One longstanding and very general result is due to Birch [9]. Consider a

system of homogeneous equations F1, . . . , FR ∈ Z[x1, . . . , xn] which are all of degree

d and assume the equations F1 = · · · = FR = 0 define a complete intersection inside

12



An . Let B ⊂ Rn be a box whose edges are parallel to the coordinate axes and with

sidelengths at most 1. Given P ≥ 1 denote by N(P ) the number of integral solutions

x ∈ PB ∩ Zn to this system. Birch showed if n is sufficiently large then one obtains

an asymptotic of the form

N(P ) = σP n−dR(1 + o(1)), (1.0.1)

where σ > 0 provided the system has a non-singular zero over R inside B and non-

singular zeroes over all Qp. More precisely, if we define the Birch singular locus to be

the variety V ∗ ⊂ An defined by

rank

!
∂Fi

∂xj

"

i,j

< R,

then if

n− dimV ∗ > R(R + 1)(d− 1)2d−1,

he showed that the asymptotic above holds. It is interesting but hardly surprising

that the geometry of the equations plays a role in the number of variables needed

for this result. We note also that if V(F1, . . . , FR) ⊂ An is non-singular then one can

show dimV ∗ ≤ R−1. Birch’s result has subsequently been generalized to many other

settings. To list just a few, for example Skinner [105] generalized Birch’s result to

number fields, Browning–Heath-Brown [14] considered a system of forms of differing

degrees, Cook–Magyar [24] and Yamagishi [118] considered prime solutions to systems

of forms, and Schindler [98] considered systems of bihomogeneous forms.

A recent breakthrough by Rydin Myerson [94, 95, 93] improved Birch’s result

significantly if the number of forms considered is large. If we denote by

σR := 1 + max
β∈RR\{0}

dimSingV

/
R#

i=1

βiFi

0
,

where we regard V
1(R

i=1 βiFi

2
⊂ Pn−1, then Rydin Myerson showed the asymptotic

formula as in (1.0.1) provided

n− σR > d2dR

holds in the cases when d = 2 or d = 3. We note that the key novelty here is

that the number of equations R appears only linearly, as opposed to quadratically,

in the required number of variables. Rydin Myerson further shows that σR ≤ dimV ∗

always holds and therefore this also constitutes an improvement compared to Birch.

In his case the quantity σR arises naturally instead of dimV ∗ via the methods he
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employs. Similar improvements, where the pencil of the system was considered instead

of the Birch singular locus were proved by Schindler [99] and Dietmann [33], and very

recently Yamagishi [119] replaced the Birch singular locus with a condition regarding

the Hessian of the system.

Inspired by work of Müller [80, 79] on systems of quadratic inequalities Rydin

Myerson’s results are proved using a so-called auxiliary inequality. This auxiliary

inequality can be used in order to exhibit a sort of repulsion behaviour for the size

of the exponential sum involved for pairs of values of α ∈ [0, 1]R in the minor arcs.

In order to obtain this inequality it is necessary to find a good upper bound for the

number of integral solutions of bounded height to a multilinear Diophantine inequal-

ity. In the case when the degree is d = 2 or d = 3 he is able to achieve this whenever

n − σR > d2dR is satisfied, provided V(F1, . . . , FR) is a complete intersection. For

higher degree he manages to establish this too for generic systems [93], in the sense

that he identifies a Zariski open, nonempty subset in the coefficient space for the

system of forms.

The principal objective of Chapter 4 is to apply Myerson’s techniques to systems

of bihomogeneous forms, and therefore improve the previous result by Schindler [98]

in this direction. Consider forms F1(x,y), . . . , FR(x,y) ∈ Z[x1, . . . , xn1 , y1, . . . , yn2 ],

which are bihomogeneous of common bidegree (d1, d2). This means that for scalars

λ, µ ∈ C we have Fi(λx, µy) = λd1µd2Fi(x,y). Similar to the above one may intro-

duce a counting function

N(P1, P2) = #
3
(x,y) ∈ Zn1+n2 : Fi(x,y) = 0, for all i x ∈ P1B1, y ∈ P2B2

4
,

where P1, P2 ≥ 1 are two real numbers and Bi ⊂ Rni are two boxes whose edges are

parallel to the coordinate axes with length at most 1. Similar to the Birch singular

locus, Schindler defines varieties V ∗
1 , V

∗
2 ⊂ An1+n2 given by

rank

!
∂Fi

∂xj

"

i,j

< R, and rank

!
∂Fi

∂yj

"

i,j

< R,

respectively. Write b = max
5

log(P1)
log(P2)

, 1
6

and u = max
5

log(P2)
log(P1)

, 1
6
. The main result

in [98] is that, provided

n1 + n2 − dimV ∗
i > 2d1+d2−2 max{R(R + 1)(d1 + d2 − 1), R(bd1 + ud2)}

holds for i = 1, 2 then one obtains an asymptotic formula of the shape

N(P1, P2) = σP n1−d1R
1 P n2−d2R

2 (1 +O(min{P1, P2}−δ)),
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for some δ. As in all the previous results mentioned in this introduction, the leading

constant σ can be interepreted as the product of p-adic and real zeroes of the system

of bihomogeneous equations under investigation. In particular σ > 0 if the system of

equations has non-singular p-adic zeroes for every p and a non-singular real zero in

B1 × B2.

The main result of Chapter 4 concerns systems of bidegree (1, 1) and (2, 1), which

correspond to degree 2 and 3 in Myerson’s case. Similar to Myerson’s result, the

quantity defined by Schindler, which is analogous to the Birch singular locus will be

replaced with various pencils of certain varieties, which are slightly more complicated

to define. We begin by stating the theorem for systems of bilinear forms. To this end,

note that we may write each such form as

Fi(x,y) = yTAix,

where Ai is an n2 × n1 matrix with integer coefficients. Given β ∈ RR write Aβ =
(R

i=1 βiAi for the linear combination of these matrices defined by β. Define now the

quantities

σ
(1)
R := max

β∈RR\{0}
dimker(Aβ), and σ

(2)
R := max

β∈RR\{0}
dimker(AT

β).

We note also that since the bidegree is (1, 1) the situation is completely symmetric in x

and y and so we may without loss of generality state the result assuming P1 ≥ P2 > 1.

Theorem 1.0.7 (Theorem 4.1.1). Let F1, . . . , FR be bilinear forms defining a complete

intersection X ⊂ Pn1−1 × Pn2−1. Let P1 ≥ P2 > 1 be real numbers and write b =

log(P1)/ log(P2). If

ni − σ
(i)
R > (2b+ 2)R

is satisfied for i = 1, 2, then the asymptotic formula

N(P1, P2) = σP n1−R
1 P n2−R

2 (1 +O(P−δ
2 )),

holds for some δ > 0. In particular, if X is non-singular then the asymptotic formula

holds provided

min{n1, n2} > (2b+ 2)R and n1 + n2 > (4b+ 5)R

is satisfied. The constant σ is positive if the system has a non-singular real zero in

B1 × B2 and non-singular p-adic zeroes for all p.
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We now move on to systems of bidegree (2, 1). We may express a bihomogeneous

polynomial of such bidegree as

Fi(x,y) = xTHi(y)x,

where Hi(y) is a symmetric n1 × n1 matrix whose entries are linear homogeneous

forms in y with coefficients in Z. Given β ∈ RR we write

Hβ(y) =
R#

i=1

βiHi(y).

For ℓ = 1, . . . , n2 write eℓ for the unit standard basis vectors inside Rn2 , and consider

the intersection of pencils given by

V(xTHβ(eℓ)x)ℓ := V(xTHβ(e1)x, . . . ,x
THβ(en2)x) ⊂ Pn1−1.

Define now

s
(1)
R := 1 + max

β∈RR\{0}
dimV(xTHβ(eℓ)x)ℓ.

Considering the system of pencils V(Hβ(y)x) = {Hβ(y)x = 0} ⊂ Pn1−1 × Pn2−1 we

define

s
(2)
R := 1 +

7
maxβ∈RR\{0} dimV(Hβ(y)x)

2

8
.

Theorem 1.0.8 (Theorem 4.1.2). Consider forms F1(x,y), . . . , FR(x,y) of bidegree

(2, 1) defining a complete intersection X ⊂ Pn1−1 × Pn2−1. Let P1, P2 > 1 be real

numbers and write b = max
5

log(P1)
log(P2)

, 1
6

and u = max
5

log(P2)
log(P1)

, 1
6
. If the number of

variables satisfies

n1 − s
(1)
R > (8b+ 4u)R and

n1 + n2

2
− s

(2)
R > (8b+ 4u)R,

then we have

N(P1, P2) = σP n1−2R
1 P n2−R

2 (1 +O(min{P1, P2}−δ)),

for some δ > 0. In particular, if X is non-singular then the asymptotic formula holds

provided

n1 > (16b+ 8u+ 1)R, and n2 > (8b+ 4u+ 1)R

is satisfied. The constant σ is positive if the system has a non-singular real zero in

B1 × B2 and non-singular p-adic zeroes for all p.
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Note that N(P1, P2) ≫ P n1
1 + P n2

2 which becomes apparent upon considering

solutions of the form (x1, . . . , xn1 , 0, . . . , 0) and (0, . . . , 0, y1, . . . , yn2). Therefore, if an

asymptotic of the above form holds then this implies

P n1
1 + P n2

2 ≪ P n1−d1R
1 P n2−d2R

2 .

An easy calculation reveals that this forces

ni > R(bd1 + ud2).

Therefore one may not, in general, hope to achieve a better result than what was

stated in the previous two theorems, up to a linear factor.

One of the main motivations for considering such counting problems, aside from

the fact that they are interesting in their own right in order to understand the dis-

tribution of rational points on varieties, is the potential to prove Manin’s Conjecture

for biprojective complete intersections, in sufficiently many variables.

Let X be a Fano Variety over a global field k. That is, X is a smooth projective

variety such that the inverse of the canonical bundle ωX in the Picard group is ample.

Together with a choice of global sections of (ω−1
X )m for some m > 0, this yields

an anticanonical height function hX , say. Manin’s conjecture studies the counting

function

NU(P ) := {x ∈ U(k) : hX(x) ≤ P},

where U(k) ⊂ X(k) is some subset of X(k). The conjecture was first formulated by

Manin [37] and Batyrev–Manin [5]. It states that if X is a Fano variety over k such

that X(k) is Zariski dense in X then there exists a Zariski open subset U ⊂ X such

that

NU(P ) ∼ cP (logP )ρ−1,

where ρ is the Picard rank of X and c is a constant, which has received a detailed

interpretation by Peyre [84]. The restriction to such an open subset is certainly

necessary. For example, considering the cubic surface defined by x3
1 + · · · + x3

4 = 0

in P3 one obtains a contribution of ≫ P 2 to NX(P ) from rational points coming

from the rational lines contained in this surface. The general idea is that there might

be ’bad’ accumulating subsets, which contribute disproportionately much to NX(P ).

The conjecture states that all of these accumulating subsets should take the form of

Zariski closed subsets. The interpretation of the leading constant by Peyre along with

the appearance of the Picard rank in the power of the logarithm in the formula above

is a fascinating example of how the geometry of a variety (conjecturally) determines
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its arithmetic. Two large classes of varieties for which this conjecture is proven are

for example flag varieties, which was established by Franke–Manin–Tschinkel [37] and

toric varieties, which was proven by Batyrev–Tschinkel [5].

It turns out that the conjecture is false in this formulation. This was first demon-

strated by Batyrev and Tschinkel [6] in the case when the field is k = Q(
√
−3).

This was subsequently generalized to arbitrary number fields by Loughran [77]. An-

other counterexample was found by Browing–Heath-Brown [15]. The conjecture was

subsequently revised by Peyre [84], who proposes that one expects the asymptotic

NU(P ) ∼ cP (logP )ρ−1 to hold for some U ⊂ X such that (X \ U)(k) is a thin set.

We recall the definition of thin sets as defined in Serre [103]. We call A ⊂ X(k) to

be of type

(C1) if A ⊆ Y (k), where Y ⊊ X is Zariski closed,

(C2) if A ⊆ π(X ′(k)), whereX ′ is irreducible such that dimX = dimX ′ and π : X ′ →
X is a generically finite morphism of degree at least 2.

A subset of X(k) is said to be thin if it is a finite union of sets of type (C1) or

(C2). Since Zariski closed subsets are thin of type (C1) this notion strictly generalises

the permissible accumulating subset that one may remove in Manin’s conjecture.

It should be noted that Peyre has proposed two other reformulations on Manin’s

conjecture. One reformulation is sometimes referred to as an all heights approach [86],

taking into account the different height functions which one may consider arising from

other very ample line bundles on X. On the other hand, he also proposed a notion

of freeness, and that one should be able to recover the desired asymptotic if one

removes points of a certain freeness [85]. The latter approach was recently shown to

be insufficient on its own by Sawin [97].

Returning to bihomogeneous varieties, Schindler [100] successfully verified Manin’s

conjecture for certain complete intersections in biprojective space defined by forms

of bidegree (d1, d2) provided d1, d2 ≥ 2 and if the number of variables is sufficiently

large in terms of the bidegree and the number of forms involved. To achieve this

she combined her results regarding the box count on bihomogeneous varieties [98] as

described above along with a uniform count of the number of integral solutions of

bounded height on certain fibres of the canonical projections πi : X → Pni−1. These

counting problems were then merged with a variation of the hyperbola method as

developed by Blomer–Brüdern [10].
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It would be interesting to explore an application of Theorem 1.0.8 to show Manin’s

conjecture for certain complete intersections of bihomogeneous hypersurfaces of bide-

gree (2, 1). In particular using Theorem 1.0.8 one should be able to prove Manin’s

conjecture requiring fewer variables than what Schindler’s approach is expected to re-

quire. In particular it would be very interesting to see whether one could obtain the

desired asymptotic using the all heights approach proposed by Peyre. Biprojective

varieties are in some sense one of the ”simplest” class of varieties for which Peyre’s

all height approach is genuinely different from the other formulations of Manin’s con-

jecture.

The final chapter of this thesis considers a multiplicative rather than an additive

problem, namely Artin’s primitive root conjecture. Recall that given a rational prime

p the group (Z/pZ)× is cyclic. We say that a rational number g ∈ Q is a primitive

root modulo p if vp(g) = 0 and if the reduction of g modulo p generates (Z/pZ)×.
We also say p is an Artin prime for g if this happens. One may wonder, for a given

integer g, whether there are infinitely many Artin primes p for g. If g is a square

then this will not be the case since (Z/pZ)× = p− 1 and 2 | p− 1 for all odd primes

p. Similarly, for trivial reasons g = ±1 will not be primitive modulo infinitely many

primes.

Artin conjectured in 1930 that any g ∈ Q× \ {±1}, which is not a square, is a

primitive root modulo infinitely many primes. Based on a fairly simple heuristic, he

conjectured a density of Artin primes for a given such g. Write h for the largest

positive integer such that we can write g = bh for some rational number b. It is easy

to check that p is an Artin prime for g if and only if p does not split completely in

any of the splitting fields for xq − g, which we denote by

Kq = Q(ζq, g
1/q),

where q is a prime. According to Chebotarev’s density theorem the density of primes

p splitting completely in Kq is given by 1
[Kq : Q]

. Now we have

[Kq : Q] =

&
1

q(q−1)
, if q ∤ h

1
q−1

, if q | h.

If we assume those splitting conditions to be independent from each other, and we

ignore any kind of error terms in Chebotarev’s theorem then one might expect

#{p ≤ x : p is an Artin prime for g} ∼
.

q∤h

!
1− 1

q(q − 1)

".

q|h

!
1− 1

q − 1

"
x

log x
.
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Indeed this was the conjectured density according to Artin. Based on numerical

computations by the Lehmers [71] the conjecture was revised by Artin, and first seems

to have appeared in the ’correct’ form in the preface of his collected works [1] edited

by Lang and Tate. In particular, the assumption that the splitting conditions are

independent is, in general, wrong. This causes the need for an additional correction

factor in the density to account for such phenomena. A good overview of the history

of this is given by Stevenhagen [108]. Hooley [50] proved the asymptotic, including the

correction factor as stated by Lang and Tate, under the assumption of the generalised

Riemann hypothesis for certain Dedekind ζ-functions.

Not so much is known unconditionally. One remarkable result in this direction is

due to Heath-Brown [44], who showed that there are at most two primes, for which

the conjecture fails. In particular, on member of the set {2, 3, 5} must be a primitive

root modulo infinitely many primes.

One may consider this problem over function fields. Many multiplicative number

theoretic problems become significantly more approachable if one works in this set-

ting. Instead of Q we now consider the field Fq(t), which is the function field of the

projective line over Fq. Rational primes now correspond to irreducible polynomials.

Given an irreducible polynomial p(t) ∈ Fq[t] of degree n we have

Fq[t]/(p(t)) ∼= Fqn ,

and so the group (Fq[t]/(p(t)))
× is cyclic of order qn − 1. One may therefore ask

again, given g(t) ∈ Fq(t), are there infinitely many irreducible polynomials p(t) with

vp(t)(g(t)) = 1 such that g(t) generates (Fq[t]/(p(t)))
×? As in the integer case, there

are some obvious obstructions to this being true for certain candidate elements g(t).

For example, if g(t) ∈ Fq then clearly g(t) is not a primitive root modulo any poly-

nomial of degree at least 2. Further note that

qn − 1 = (q − 1)(qn−1 + · · ·+ 1),

and so q − 1 | qn − 1 for any n ≥ 1. Therefore as soon as g(t) can be written as a

ℓ-th power, for some prime ℓ | q − 1, then similarly g(t) fails to be primitive modulo

any irreducible polynomials of degree at least 2. Artin’s primitive root conjecture

states in this context that given any g(t) ∈ Fq(t)
× \ F×

q , which is not an ℓ-th power

for a prime ℓ | q − 1, there are infinitely many irreducible polynomials p(t) ∈ Fq[t]

such that g(t) is a primitive root modulo p(t). One may also generalise an analogous

version for the conjecture when we replace Fq(t) by a function field of any suitably

nice variety over Fq, and we will formulate this generalisation in due course.
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Bilharz [7] considered this problem as part of his PhD thesis which supervised by

Hasse at the University of Göttingen in the 1930s. Indeed he managed to prove Artin’s

primitive root conjecture for function fields of any non-singular curve over Fq, under

the assumption of a suitable Riemann hypothesis over function fields, which was later

famously proven by Weil [116]. Bilharz’ proof, however, contains a gap. In particular

the proof remains only valid when the candidate elements g(t) are geometric. In

the case when the function field is Fq(t) this means that g(t) is not of the form

g(t) = µh(t)ℓ for some rational prime ℓ different from the characteristic of Fq and

where µ ∈ Fq. In this case, Bilharz’ computations of the degrees of certain field

extensions were not correct. This was already observed by Rosen [91, page 157] and a

full proof of the conjecture seems not to be available in the literature. It is interesting

to note the similarity of this with the history regarding the correction factor in the

classical setting.

One of the principal goals of Chapter 5 is to establish a proof of Artin’s primitive

root conjecture in all cases. At the same time we generalise the problem to function

fields of varieties of arbitrary dimension. In particular, we recover any field of finite

transcendence degree over Fq. In order to state our results we need to introduce some

more language.

Let X be a geometrically integral projective variety over Fq of dimension r with

function field denoted by K. We note that these assumptions imply that the maximal

algebraic field extension of Fq inside K is given by Fq. Given g ∈ K we say that g

is regular at a closed point p ∈ X if it lies in the image of the natural embedding

OX,p ↩→ K. In this case we may consider the reduction of g to the residue field κp at

p. Note that κp is isomorphic to a finite field extension of Fq and therefore κ×
p is a

cyclic group. We say that g is a primitive root modulo a closed point p if g is regular

at p, if its reduction to κp is non-zero and generates κ×
p . We also call p an Artin

prime for g. Artin’s primitive root conjecture therefore generalises in this context to

say the following: Given g ∈ K \ Fq, which is not an ℓ-th power for a prime ℓ | q − 1

then there exist infinitely many closed points p ∈ X for which g is a primitive root.

For example, if X = P1
Fq

then this is equivalent to Artin’s primitive root conjecture

for Fq(t) as described above.

As noted above, Bilharz proved this conjecture whenever X is a curve in the cases

when g is not geometric. There are a few different notions in the literature of what it

means for g ∈ K to be geometric. In Chapter 5 we prove a lemma, which shows that

they are all equivalent. In particular, we can say that g ∈ K is not geometric at a
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rational prime ℓ ∕= char(Fq) if there exists some µ ∈ Fq and b ∈ K such that g = µbℓ.

Given g ∈ K define

Pg := {ℓ ∈ Zprime : g is not geometric at ℓ}.

We say that deg p = n if [κp : Fq] = n, and write X0 for the closed points of X. We

consider the following counting function

NX(g, n) = #{p ∈ X0 : deg p = n and g is a primitive root modulo p}.

In joint work with Ezra Waxman, the main theorem of Chapter 5 is the following.

Theorem 1.0.9 (Theorem 5.4.1). Let X/Fq be a geometrically integral projective

variety of dimension r. Let g ∈ K \ Fq. If g is an ℓ-th power in K for some prime

ℓ | q − 1 then NX(g, n) = 0 for all n > 1. Otherwise we have the asymptotic formula

NX(g, n) = ρg(n)

!
ϕ(qn − 1)qn(r−1)

n
+OX,ε

9
qn(r−1/2)+ε

:"
,

where

ρg(n) =
.

ℓ|qn−1
ℓ∈Pg

!
1− cℓ (q

n−1 + qn−2 + · · ·+ 1)

ϕ(ℓ)

"
.

The proof of this result was inspired by a previous quantitative version of Artin’s

primitive root conjecture established by Pappalardi–Shparlinski [81]. They proved

the above theorem in the case when X is a curve, or equivalently r = 1, and when g

is assumed to be geometric. In particular, if g is geometric then ρg(n) = 1 for all n

since the product runs over an empty set, and so we recover their result for curves.

Since ϕ(qn − 1) ≫η qn(1−η) for all η ∈ (0, 1) the main term indeed dominates the

error term in the above asymptotic. In order to deduce the infinitude of closed points

for which g is primitive it is therefore sufficient to show ρg(n) ∕= 0 for infinitely many

positive integers n. This is dealt with in Chapter 5. Noting that every function field

over Fq arises as the function field of a geometrically integral projective variety over

Fq we therefore deduce in full Artin’s conjecture in this setting.

Theorem 1.0.10 (Theorem 5.4.3). Artin’s primitive root conjecture holds for any

function field K of finite transcendence degree over Fq.

The main idea of the proof is to express the characteristic function of primitive

elements for a cyclic group in terms of character sums. In particular, if G is a finite
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cyclic group of order M then it is not hard to show that we have

fG(g) :=
ϕ(M)

M

.

p|M

;

<=1−

(
χ∈ !G

ordχ=p

χ(g)

ϕ(p)

>

?@ =

&
1, if g generates G

0, otherwise.

Using this one may therefore transform the count NX(g, n) into an exponential sum

over the Fqn-rational points of X. Certain characters will then contribute to the

main term and others will only contribute to the error term. To obtain cancellation

we will require the Riemann hypothesis in this context, which is a famous theorem of

Weil [116]. For curves the cancellation in the character sums has been deduced from

Weil’s result by Perelmuter [82]. In the case of higher dimensional varieties, to the

authors’ surprise, no result seems to be available in the literature. In particular we

required a general result of the shape

#

ρ∈X(Fq)

χ(g(ρ)) ≪ qr−1/2,

where χ : F×
q → C× is a multiplicative character of order ℓ /∈ Pg. Having the corre-

sponding result for curves available by Perelmuter, we therefore carefully proved such

an estimate using a fibration argument. This is dealt with in Proposition 5.5.1. We

hope that this can be useful for future applications in many different areas since it is

of such a general shape.

The study of this problem originated by attempting to count the number of Artin

primes in short intervals and arithmetic progressions. The goal was to employ random

matrix theory heuristics in the number field case, and an equidistribution result due

to Sawin [96] in the function field case in order to compute the variance of Artin

primes for a fixed candidate element g over short intervals and arithmetic progressions.

However, since there appeared to be this gap in the literature it was necessary to first

establish the conjecture in a quantitative form in full first.
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Chapter 2

Cubic forms over quadratic
imaginary number fields and
rational lines on cubic
hypersurfaces

2.1 Introduction

The study of integer solutions to polynomial equations is one of the most fundamental

mathematical problems. Quadratic forms are very well understood but the situation

already becomes much more difficult when studying cubic equations. A cubic form

C(x) ∈ Z[x1, . . . , xs] is a homogeneous polynomial of degree 3. We say that C repre-

sents zero non-trivially if there is a vector x ∈ Zs\{0} such that C(x) = 0. Lewis [73]

and Birch [8] both independently showed that every cubic form in sufficiently many

variables represents zero non-trivially.

Using the Hardy-Littlewood circle method, Davenport [26] showed that it suffices

to assume s ≥ 32 in order to show that C represents zero non-trivially, which he then

improved to s ≥ 16 in a series of papers [27, 28]. The current state of the art is due

to Heath-Brown [49] who showed that 14 variables suffice.

The best one can hope for is that every cubic forms in at least 10 variables rep-

resents zero non-trivially since there exist cubic forms in 9 variables, which do not

have non-trivial p-adic solutions and hence also do not represent zero non-trivially

over the integers.

More is known when the cubic form is assumed to be non-singular. In this case

Heath-Brown [43] showed that if s ≥ 10 then the cubic form represents zero non-

trivially, and Hooley [52] established the Hasse Principle if s ≥ 9. That is, he showed

that if a non-singular cubic form over Q in at least nine variables has a non-trivial
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p-adic solution for every p and a non-trivial real solution then it also represents zero

non-trivially over the rational numbers.

One may also consider these problems for cubic forms over a number field K/Q.

In fact the above mentioned result by Lewis was proved for any number field K/Q.

Using the circle method the number of variables required was reduced to 54 by Ra-

manujam [89], which was subsequently improved to 17 variables by Ryavec [92] and

16 variables by Pleasants [87]. If one assumes the cubic form to be non-singular then

recent work by Browning–Vishe [16] shows that ten variables suffice in order to infer

the existence of a non-trivial zero, which improves previous work by Skinner [104].

The main result of this chapter is the following.

Theorem 2.1.1. Let K/Q be an imaginary quadratic number field. If C(x) is a

homogeneous cubic form over K in at least 14 variables then C(x) represents zero

nontrivially.

It seems likely that our result should remain true for general number fields, how-

ever there are two serious obstructions in generalizing Heath-Brown’s ideas to the

number field setting, as we discuss in the course of our proof. We are able to remove

these difficulties only in the special case of imaginary quadratic number fields.

Our result has some interesting applications to problems that do not involve,

prima facie, any number fields. The first of these concerns rational lines on cubic

hypersurfaces.

Theorem 2.1.2. Let C be a cubic form in s ≥ 33 variables with rational coefficients.

Then the projective cubic hypersurface defined by C(x) = 0 contains a rational line.

This improves on work of Wooley [117] who had the same result under the as-

sumption s ≥ 37. We note that another two variables can be saved using ideas from

forthcoming work by Brandes and Dietmann [12], thus leading to a result for s ≥ 31

variables.

More specifically, while our argument (building on Wooley’s) for the proof of

Theorem 2.1.2 only requires Theorem 2.1.1 for one imaginary quadratic number field

(e.g. Q(i)), the full generality of Theorem 2.1.1 is required in the argument of Brandes

and Dietmann.

It is also worth mentioning that in a different paper of the same authors [11],

the result for s ≥ 31 variables is already established under the assumption that the

underlying hypersurface is nonsingular.
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Based on an observation of Brüdern–Dietmann–Liu–Wooley [18], the existence of

rational lines can be used in conjunction with the Green–Tao Theorem to produce

almost prime solutions to cubic forms as follows:

Theorem 2.1.3. Let C be a cubic form in s ≥ 33 variables with rational coefficients.

Then there are almost prime solutions to C(x) = 0 in the following sense: There are

coprime integers c1, . . . , cs such that the equation

C(c1p1, c2p2, . . . , csps) = 0

has infinitely many solutions in primes p1, . . . , ps, not all equal.

Notation

We use e(α) = e2πiα and the notation O(. . . ) and ≪ of Landau and Vinogradov,

respectively. All implied constants are allowed to depend on the number field K,

a choice of integral basis Ω for K, the cubic form C and a small parameter ε > 0

whenever it appears.

As is convenient in analytic number theory, this parameter ε may change its value

finitely many times. In particular, we may write something like M2ε ≪ M ε.

We often use the notation q ∼ R to denote the dyadic condition R < q ≤ 2R.

2.2 Deduction of Theorems 2.1.2 and 2.1.3

In this section, we give the proofs of Theorems 2.1.2 and 2.1.3 assuming Theorem

2.1.1.

We begin with the observation that the existence of a rational line on the cubic

hypersurface defined by C is equivalent to the existence of linearly independent vectors

v and w such that C(v+ tw) = 0 identically in t. Expanding this formally as a cubic

polynomial in t, we obtain

C(v) + tQw(v) + t2Lw(v) + t3C(w) = 0

for certain quadratic resp. linear forms Qw and Lw depending on w. We therefore

need to find linearly independent v and w such that

C(v) = Qw(v) = Lw(v) = C(w) = 0.

If we start by choosing a solution w ∕= 0 of C(w) = 0, the linear equation Lw(v) = 0

and requiring v to be orthogonal to w reduce the degrees of freedom for v by two.
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We are thus looking for a solution to the system C(v) = Qw(v) = 0 of one cubic

and one quadratic equation in s − 2 variables. If we knew that the signature of

the quadratic form Qw was sufficiently indefinite, we could infer the existence of a

sufficiently large linear space on which Qw vanishes, leaving us with a single cubic

form in many variables, that can be dealt with by the work of Heath-Brown [49].

The crux however is that it is in general hard to control the signature of Qw.

Instead we avoid the indefiniteness issue by passing to an imaginary quadratic number

field of Q, thus requiring our Theorem 2.1.1.

We now present the complete argument in order: We begin by choosing w ∈
Qs\{0} such that C(w) = 0, which exists by the work of Heath-Brown.

LettingK/Q be any imaginary quadratic number field, we next show the existence

of a vector v ∈ Ks, linearly independent to w and satisfying

C(v) = Qw(v) = Lw(v) = 0.

To this end, we use that a hypersurface Q(x) = 0 defined by a quadratic form Q in s

variables contains a
A
s−3
2

B
-dimensional K-linear subspace, a fact that is easily proved

by induction.

The linear space of vectors v orthogonal to w and satisfying Lw(v) = 0 is at least

(s − 2)-dimensional. Thus, Qw vanishes on a linear subspace of dimension at leastC
(s−2)−3

2

D
=

A
s−5
2

B
. Note that by our assumption on s we have

A
s−5
2

B
≥ 14. We are

then left to solve the equation C(v) = 0 on a 14-dimensional linear space which can

be done by Theorem 2.1.1.

We have thus proved that C(v + tw) = 0 identically in t for some linearly inde-

pendent vectors v ∈ Ks and w ∈ Qs.

By an observation of Lewis, this is enough to deduce the existence of a rational

line, as we explain now, following an argument of Dietmann–Wooley [34].

Consider the K-rational spaces V spanned by v and w as well as V ∗ spanned by

v∗ and w, where ∗ denotes conjugation in K. If v ∈ Qs we are already done. Else,

consider the three-dimensional space W spanned by v, v∗ and w. If C vanishes on

W , we are also done as W clearly contains a two-dimensional Q-rational subspace.

Else, by intersection theory the hypersurface defined by C must intersect W in a

third two-dimensional K-rational subspace L. More precisely, by Theorem I.7.7 in

Hartshorne [42] we have

i(W,C;V ) + i(W,C;V ∗) +
#

j

i(W,C;Zj) · degZj = (degW )(degC) = 3,
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where i(W,C;V ) denotes the intersection multiplicity and Zi are the other irre-

ducible components of C ∩ W . Since W is invariant under conjugation, we must

have i(W,C;V ) = i(W,C;V ∗) and thus both numbers are equal to 1, implying that

there is a unique third component L = Z1 which is then necessarily linear. Finally,

since W and C are conjugation invariant, the three spaces V , V ∗ and L are permuted

under conjugation and thus L itself is conjugation invariant, i.e. describes the desired

rational line.

We remark that the use of intersection theory in the previous argument can be

replaced by an explicit algebraic computation, as shown in Wooley [117].

To deduce Theorem 2.1.3, we follow the strategy in [18]. In particular, we show

that the existence of a rational line implies the existence of almost prime solutions,

regardless of the number of variables. We thus assume that for some linearly indepen-

dent vectors a, b ∈ Zs, we have C(at+ bu) = 0 identically in t and u. If ai = bi = 0

for some i, then we can set ci = 1 and continue to work with the other variables. By

taking a suitable linear combination, we can then assume that indeed all ai and bi are

different from 0. Rescaling u by a factor of a1a2 . . . as and then rescaling the variables

by a factor of ai (thereby changing ci by a factor of ai), we may even assume that all

the ai are equal to 1, i.e.

C(t+ b1u, t+ b2u, . . . , t+ bnu) = 0

identically in t and u. By the Green–Tao Theorem [40], the primes contain infinitely

many arithmetic progressions of length 2M + 1 where M = 2maxi |bi|+ 1, i.e. there

are infinitely many pairs (ℓ, d) such that ℓ + kd is prime for all |k| ≤ M . Choosing

t = ℓ and u = k then yields the desired result with ci = 1.

2.3 Algebraic preliminaries

While our main result is proved only for imaginary quadratic number fields we will

introduce the matter in a general fashion and not restrict ourselves to these fields

for now. We will aim to highlight whenever phenomena occur that set apart the

situation for imaginary quadratic number fields from a general setting. In particular,

even when K/Q is an imaginary quadratic number field we still sometimes prefer to

write n = [K : Q].

Let K be a number field of degree n over Q and denote by O its ring of integers.
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Define the R-vector spaceKR := K⊗QR and note that we have natural embeddings

O ⊂ K ⊂ KR. The space KR is sometimes referred to as the Minkowski space of K.

Note that there exist integers n1 and n2 with n1+2n2 = n such that K admits n1 real

embeddings σ1, . . . , σn1 and 2n2 complex embeddings σn1+1, σn1+1, . . . , σn1+n2 , σn1+n2

so that KR ∼= Rn1 × Cn2 .

Denote by πi the projection from KR ∼= Rn1 × Cn2 to the i-th coordinate, which

may take real or complex values. We define the trace map tr : KR → R and norm

map Norm: KR → R as

tr(α) =

n1#

i=1

πi(α) +

n2#

i=n1+1

Re(πi(α)),

and

Norm(α) =

n1.

i=1

|πi(α)|
n2.

i=n1+1

|πi(α)|2 ,

respectively. If α ∈ K then these are just the usual norm and trace function from

algebraic number theory.

Pick a basis Ω = {ω1, . . . ,ωn} of O. Any element α ∈ KR may be expressed in

the form α =
(n

j=1 αjωj for some αj ∈ R. For such α we define a height

|α| := max
j

|αj|.

Note that this depends on the choice of basis Ω forO. Given a vectorα = (α(1), . . . ,α(s)) ∈
Ks

R we further denote

|α| := max
k

|α(k)|.

We may alternatively define another height on KR given by

|α|K := max
p

|πp(α)| .

As noted by Pleasants [87, Section 2] we have

|α| ≍ |α|K ,

for all α ∈ KR. If α, β ∈ KR then it is easy to see that this height satisfies

|αβ|K ≤ |α|K |β|K ,

|α + β|K ≤ |α|K + |β|K

|α−1|K ≤ |α|n−1
K

Norm(α)
.
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The same inequalities therefore hold for | · | if we replace the symbols ≤ by ≪K . It

would be desirable to have the last inequality in the form |α−1| ≍ |α|−1 which would

result if Norm(α) ≍ |α|n. However, if α is a unit in O then Norm(α) = 1 while the

height |α| may be unbounded, at least whenever K is not an imaginary quadratic

number field. This is one of the points where our argument crucially depends on the

latter assumption.

If K = Q(
√
−d) is an imaginary quadratic number field then, depending on the

value of the residue class of d mod 4, we can choose {1,
√
−d} or {1, (1 +

√
−d)/2}

as an integral basis for O. We thus find that

Norm(α) ≍ |α|2.

In particular we find

|α−1| ≍ |α|−1.

Given an ideal J ⊂ O we recall that O/J is finite and we define as usual the norm of

the ideal to be

N(J) := # (O/J) .

For a fractional ideal of K this norm is, as usual, extended multiplicatively using the

unique factorization into prime ideals inside K. Given γ ∈ K we further define the

denominator ideal of γ as

aγ := {x ∈ O : xγ ∈ O} .

As the name suggests, and this is not very difficult to verify, aγ is an ideal inside O,

contained in the fractional ideal (γ)−1. We will need the following fact several times.

Lemma 2.3.1. Let J ⊂ O be an ideal. Then there are at most N(J) different

elements γ ∈ K/O such that aγ = J .

Proof. To see this, note first that for any two fractional ideals b, c ⊂ K with b ⊃ c

there exists some d ∈ O such that db, dc ⊂ O. Thus

[b : c] = [db : dc] =
[O : dc]

[O : db]
= N(dc)/N(db) = N(c)/N(b).

Now note that if aγ = J we must have γ ∈ J−1O, where

J−1 = {x ∈ K : xJ ⊂ O}.

But now [J−1O : O] = N(J) and so the result follows.
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We shall further require a version of Dirichlet’s approximation theorem.

Lemma 2.3.2. Let K/Q be a number field of degree n. Let α ∈ KR and let Q ≥ 1.

Then there exist some a, q ∈ O with 1 ≤ |q| ≤ Q such that

|qα− a| ≤ 1

Q
.

Proof. Consider the set Q of algebraic integers given by

Q =

&
#

j

qjωj ∈ O : 0 ≤ qj ≤ Q

'
.

For any q ∈ Q we may express qα as

qα = aq + xq,

where aq ∈ O and xq =
(

j xq,jωj such that 0 ≤ xq,j < 1 for j = 1, . . . , n. By

considering ⌈Q⌉n boxes centered around xq inside KR/O =
5(

j xjωj : 0 ≤ xj < 1
6

whose edges have side lengths 1/Q, we find that two such boxes must necessarily

intersect. Hence there must be q1, q2 ∈ Q with q1 ∕= q2 such that xq1 and xq2 lie in

the same box according to the partition above. Therefore we find

|(q1 − q2)α− (aq1 − aq2)| = |xq1 − xq2 | ≤ 1/Q.

Taking q = q1 − q2 and a = aq1 − aq2 delivers the result.

For the application to the mean-square averaging method introduced by Heath-

Brown, we need a fractional form of Dirichlet’s theorem. We are only able to obtain a

satisfactory version for imaginary quadratic number fields, this being the first of the

obstructions regarding possible generalizations mentioned in the introduction. Note

that this is special to Heath-Brown’s method and hence was not an issue in the work

of Ramanujam, Ryavec and Pleasants.

Lemma 2.3.3. Let K/Q be an imaginary quadratic number field (in particular n =

2). Let α ∈ KR and let Q ≥ 1. Then there exists some γ ∈ K with N(aγ) ≤ Qn such

that

|α− γ| ≪ 1

N(aγ)
1
nQ

.

Proof. From Lemma 2.3.3 we find that there exist a, q ∈ O with q ∕= 0 and |q| ≤ Q

such that

|qα− a| ≤ 1/Q.
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Set γ = a/q ∈ K and note that (q) ⊆ aγ. In particular from this it follows that

N(aγ) ≤ N((q)) = Norm(q) ≍ |q|n,

where the last estimate is true since K is an imaginary quadratic number field. Thus

|q|−1 ≪ N(aγ)
−1/n,

and so we obtain

|α− γ| ≪ |q|−1|qα− a| ≪ 1

N(aγ)
1
nQ

,

as desired.

We shall sometimes require the following easy lemma.

Lemma 2.3.4. Let J ⊂ O be an ideal. Then there exist constants c1, c2 only depend-

ing on K such that for any non-zero g ∈ J we have

c1N(J)1/n ≤ |g|,

and we may always find a non-zero element g ∈ J such that

|g| ≤ c2N(J)1/n.

Proof. First note that if g ∈ J then (g) ⊂ J and therefore

N(J) ≤ N((g)) = Norm(g) ≪ |g|n.

For the second inequality note that there are at least N(J) + 1 algebraic integers

whose height does not exceed N(J)1/n. By definition N(J) = #(O/J) and hence

at least two of these integers must lie in the same residue class modulo J . Their

difference is therefore an algebraic integer g ∈ J with |g| ≤ 2N(J)1/n.

Finally we will also need the following.

Lemma 2.3.5. Let K/Q be a number field and let ∆ be the discriminant of this

extension. Let α ∈ KR and assume that {ωi}i is an integral basis for O. If

∆−1tr(αωi) ∈ Z

holds for all i = 1, . . . , n then α ∈ O.
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Proof. Write α =
(n

j=1 αjωj, where αj ∈ R. Due to the additivity of the trace we

have

tr(αωi) =
n#

j=1

αjtr(ωiωj).

Denote by T the trace form, that is, the n× n matrix with entries tr(ωiωj). Then if

we identify α = (α1, . . . ,αn) ∈ Zn, the assumption of the lemma is equivalent to

∆−1T(α) ∈ Zn.

By definition detT = ∆. Hence T′ := ∆T−1 has integer entries. Combining this

with our previous observation yields

α = T−1T(α) = T′(∆−1T(α)) ∈ Zn.

Hence α ∈ O as required.

2.4 The dichotomy

Let C ∈ O[x1, . . . , xs] be a homogeneous cubic form. Our goal is to show that there

always exists a non-trivial solution to C = 0 over K provided s ≥ 14 and K is an

imaginary quadratic number field. We follow the strategy of Davenport that was later

refined by Heath-Brown [49]: Either C represents zero non-trivially for ’geometric

reasons’, or we can establish an asymptotic formula for the number of solutions of

bounded height, using the circle method.

2.4.1 Davenport’s geometric condition

We may express C(x) as

C(x) =
#

i,j,k

cijkxixjxk,

where the coefficients cijk are fully symmetric in the indices and lie in O, after re-

placing C(x) by 6C(x) if required. For i = 1, . . . , s further define the bilinear forms

Bi(x,y) by

Bi(x,y) =
#

j,k

cijkxjyk.

Finally, we also consider an s × s matrix M(x), the Hessian of C(x), whose entries

are defined by

M(x)jk =
#

i

cijkxi,
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so that

(M(x)y)i = Bi(x,y).

We note that the entries of M(x) are linear forms in the variables x. Denote the

rank of the matrix by

r(x) = rank(M(x)).

As in Davenport’s and Heath-Brown’s work we obtain a dichotomy.

Lemma 2.4.1. One of the following two alternatives holds.

(i) Davenport’s Geometric Condition: For every integer 0 ≤ r ≤ s we have

#{x ∈ Os : |x| < H, r(x) = r} ≪ Hnr. (2.4.1)

(ii) The cubic form C(x) has a non-trivial zero in O.

Proof. Consider the least integer h = h(C) such that the cubic form may be written

as

C(x) =
h#

i=1

Li(x)Qi(x),

where Li are linear and Qi are quadratic forms defined over K. This is the h-invariant

of C. It is easy to see that 1 ≤ h ≤ s holds, and that C(x) = 0 has a non-trivial

solution over K if and only if h < s.

We will show that if h = s then alternative (1) holds. In fact, Pleasants [87,

Lemma 3.5] showed that the number of points x ∈ Os such that |x| < H holds, for

which the equations Bi(x,y) = 0, i = 1, . . . , s have exactly s−r linearly independent

solutions y is bounded by O(Hn(s−h+r)). Hence taking h = s delivers the desired

bound (2.4.1).

We will henceforth assume that Davenport’s Geometric Condition (2.4.1) is satis-

fied and apply the circle method. In particular as in [49] this condition implies that

we have

#{x,y ∈ Os : |x|, |y| < H,Bi(x,y) = 0, ∀i} ≪ Hns, (2.4.2)

for any H ≥ 1.
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2.4.2 The circle method

Let B ⊂ Ks
R
∼= Rns be a box of the form

B =

*
,

-

/
#

j

αijωj

0

i

∈ Ks
R : b

−
ij ≤ αij ≤ b+ij

E
F

G ,

where b−ij < b+ij are some real numbers and we will throughout assume b+ij − b−ij ≤ 1.

For P ≥ 1 consider the counting function

N(P ;B) = N(P ) = {x ∈ PB ∩Os : C(x) = 0} .

For α ∈ KR and P ≥ 1 we define the exponential sum

S(α) = S(α;P ) =
#

x∈PB∩Os

e (tr(αC(x))) .

Denote by I ⊂ KR the set given by

I =

&
n#

j=1

αjωj : 0 ≤ αj ≤ 1

'
,

which may also be regarded as KR/O. Due to orthogonality of characters we obtain

N(P ) =

$

α∈I
S(α)dα.

We are now able to state the main technical theorem of this chapter.

Theorem 2.4.2. Let K/Q be an imaginary quadratic number field and let C(x) be

a cubic form in s ≥ 14 variables over K. Suppose that C(x) is irreducible over K

and that Davenport’s Geometric Condition (2.4.1) is satisfied. Then we have the

asymptotic formula

N(P ) = σP n(s−3) + o
9
P n(s−3)

:
, as P → ∞,

where σ > 0 is the product of the usual singular integral and singular series.

Therefore Theorem 2.1.1 follows directly from Lemma 2.4.1 and Theorem 2.4.2

where we also note that a reducible cubic form always contains a linear factor over

K and therefore has a non-trivial solution for obvious reasons.
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2.4.3 The major arcs

For this section we do not need to assume that K is an imaginary quadratic number

field of Q. As in Pleasants, we choose as center of our box B = B(z) a solution

z ∈ KR of C(z) = 0 satisfying ∂C
∂x1

(z) ∕= 0 and z1, . . . , zn ∕= 0. Such a vector z always

exists by [87, Lemma 7.2] provided C is irreducible.

Let γ ∈ K/O and define

Mγ :=
3
α ∈ I : |α− γ| < P−3+ν

4
,

where we regard I = KR/O. We define the major arcs as

M =
H

γ∈K/O
N(aγ)≤P ν

Mγ,

and the minor arcs as

m = I \M.

Further, define the sum Sγ via

Sγ =
#

x mod N(aγ)

e(tr(γC(x))).

Given a parameter R ≥ 1 we define the truncated singular series to be

S(R) :=
#

γ∈K/O
N(aγ)≤R

N(aγ)
−nsSγ,

and the truncated singular integral to be

I(R) :=

$

|ζ|<Rν

$

B
e(tr(ζR−3C(Rξ)))dξdζ.

Pleasants [87, Lemma 7.1] shows that if ν < 1
n+4

is satisfied then we have

$

M

S(α)dα = S(P ν)I(P )P n(s−3) + o(P n(s−3)).

Moreover, if B = B(z) is the box as in the beginning of the section, provided that the

sidelengths of the boxes are sufficiently small, and if C(x) is irreducible over K then

Pleasants [87, Lemma 7.2] further shows that I(R) converges absolutely to a positive

number I.

We remark that Lemma 7.2 in [87] was originally stated under the weaker as-

sumption that C(x) is not a rational multiple of a cube of a linear form. His proof
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relies on a result by Davenport [26, Lemma 6.2], which assumes the existence of a

non-singular, real solution ξ ∈ Rn of a rational cubic form G such that

∂G

∂xi

(ξ) ∕= 0, ξi ∕= 0,

holds for some i. In particular Pleasants writes that ”this hypothesis is not used in the

proof of the lemma, however, and in any case the argument that follows could easily be

adapted to provide it”. While one can always find ξ ∈ Rs with ∂G
∂xi

(ξ) ∕= 0 unless G is a

rational multiple of a cube of a linear form, one can not necessarily ensure that ξi ∕= 0

for the same index i. Consider for example G(x1, . . . , xn) = x1(x
2
2 + · · · + x2

n). It is

possible that Davenport’s result [26, Lemma 6.2] holds nevertheless in this generality

but at least the standard method of establishing bounded variation of the auxiliary

function involved in the proof by showing the existence of right and left derivatives,

see for example [29, Lemma 16.1], fails in general.

The singular series S(R) may or may not converge absolutely as R → ∞. If it

does converge, then provided non-singular p-adic solutions of C(x) = 0 exist for all

primes p, by standard arguments it follows that S > 0. See for example the proof of

Lemma 7.4 in [87], where this argumentation is carried out in our setting. Finally,

Lewis [72] showed that these non-singular p-adic solutions always exist whenever

s ≥ 10. Therefore we obtain the following.

Theorem 2.4.3. Let C ∈ O[x1, . . . , xs] be an irreducible cubic form. Assume that

s ≥ 10. If the singular series S(R) converges absolutely as R → ∞ then

$

M

S(α)dα = σP n(s−3) + o(P n(s−3)),

for some σ > 0 as P → ∞.

In particular, in Section 2.7 we will establish the following.

Theorem 2.4.4. Assume that s ≥ 13 and that Davenport’s Geometric Condition (2.4.1)

is satisfied then the singular series converges absolutely. Therefore if C(x) is irre-

ducible we have $

M

S(α)dα = σP n(s−3) + o
9
P n(s−3)

:
,

for some σ > 0 as P → ∞.

We remark that we show this result for any number field K.
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2.5 Auxiliary Diophantine inequalities

To bound the Weyl sum S(α) of a general cubic form, classical Weyl differencing

leaves us with the task of examining the number of solutions to certain auxiliary

Diophantine inequalities. Davenport’s crucial idea was to bootstrap these inequalities

using his Shrinking Lemma, combined with the observation that sufficiently strong

Diophantine inequalities already imply divisibility or even equality.

In this section, we prepare these arguments by providing a version of this obser-

vation adapted to our setting. We are only able to show a satisfactory version of this

lemma if K/Q is an imaginary quadratic number field, this being the second of the

obstructions mentioned in the introduction.

Lemma 2.5.1. Assume that K/Q is a number field and denote by ∆ the discriminant

of this extension. There exists a real positive constant A > 0 depending only on K

and the choice of integral basis Ω for K such that the following statement holds.

Let M ≥ 0 be a real number and let α ∈ KR. Suppose that α = γ + θ with γ ∈ K

and M |θ|N(aγ)
1/n ≤ A. If m ∈ O is such that |m| ≤ M and ‖∆−1tr(αmωj)‖ < P−1

0

holds for all j = 1, . . . , n where AP0 ≥ N(aγ)
1/n then m ∈ aγ. In particular if either

of the conditions

(i) M ≤ AN(aγ)
1/n, or

(ii) K is an imaginary quadratic number field and A|θ| ≥ N(aγ)
−1/nP−1

0

is satisfied, then we must have m = 0.

Proof. Note first that

II∆−1tr(γmωj)
II ≤

II∆−1tr(αmωj)
II+

II∆−1tr(θmωj)
II .

Now due to our assumption we have ‖∆−1tr(αmωj)‖ < P−1
0 . Further it is easy to see

that

∆−1|tr(θmωj)| ≪ |θ|M.

Therefore choosing A sufficiently small we find

II∆−1tr(γmωj)
II <

A1/2

N(aγ)1/n
, (2.5.1)

for all j = 1, . . . , n. As before write T = (tr(ωiωj))i,j for the trace form. Write

x ∈ Rn for the real vector obtained from γm under the isomorphism KR ∼= Rn with
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respect to the integral basis Ω. Then (2.5.1) is equivalent to saying that there exist

a ∈ Zn and r ∈ Rn with |r| < A1/2

N(aγ)1/n
such that

T(∆−1x) = a+ r.

Recall that ∆T−1 is an integral matrix whose entries are bounded in terms of K.

Therefore

x = ∆T−1(a) +∆T−1(r).

Now ∆T−1(a) ∈ Zn and

|∆T−1(r)| < A1/3

N(aγ)1/n
,

after decreasing A if necessary. We thus find that

γm = a+ ρ,

where a ∈ O and |ρ| < A1/3

N(aγ)1/n
. By Lemma 2.3.4 there exists g ∈ aγ with |g| ≍

N(aγ)
1/n. From the above equation we see that gρ ∈ O, and so, unless ρ = 0 we have

1 ≤ |gρ| < A1/4,

after decreasing A if necessary. Choosing A suitably small therefore leads to a con-

tradiction whence we must have ρ = 0, and so m ∈ aγ. This finishes the first part of

the proof.

If we now assume that M ≤ AN(aγ)
1/n is satisfied then by choosing A suitably

small this implies that m = 0 via Lemma 2.3.4.

Finally, assume that A|θ| > (N(aγ)
1/nP0)

−1 is satisfied and thatK is an imaginary

quadratic number field. Upon choosing A even smaller if necessary, we find that

∆−1|tr(θmωj)| ≤
1

2
,

for all j = 1, . . . , n and thus

∆−1|tr(θmωj)| =
II∆−1tr(θmωj)

II ≤
II∆−1tr(γmωj)

II+
II∆−1tr(αmωj)

II < P−1
0 ,

for all j = 1, . . . , n. Write y = (y1, . . . , yn) for the image of θm under the isomorphism

KR ∼= Rn and let T be the trace form as above. The above inequality is equivalent

to saying that there exists some t ∈ Rn with |t| < P−1
0 such that

T(∆−1y) = t.
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As before the inverse of T is a matrix with rational entries, whose absolute value is

bounded by O(1). Hence

|y| = ∆|T−1(t)| ≪ |t| < P−1
0 .

Further |y| = |θm|, and since K is an imaginary quadratic number field we have

|θ−1| ≍ |θ|−1 and so

|m| ≪ (P0|θ|)−1.

Hence for sufficiently small A we obtain

|m| < A1/2N(aγ)
1/n.

Choosing A to be suitably small implies m = 0 by Lemma 2.3.4.

We now recall Davenport’s shrinking lemma [29, Lemma 12.6].

Lemma 2.5.2. Let L : Rm → Rm be a linear map. Let a > 0 be a real number and

for a real number Z > 0 consider

N(Z) =
3
u ∈ Zm : |u| < aZ, ‖(L(u))i‖ < a−1Z, for all i

4
.

Then if 0 < Z ≤ 1 we have

N(1) ≪m Z−mN(Z).

As noted in [49] the lemma was originally only stated when a ≥ 1 but we may

extend the range of a to all positive real numbers since the result holds trivially if

0 < a < 1.

2.6 Weyl differencing

One of the main innovations in [49] is to introduce an averaged van der Corput

differencing approach in order to bound the contribution from the minor arcs. Since

this cannot handle the entire range of minor arcs we need to supplement it with an

estimate coming from conventional Weyl differencing.

Let α ∈ KR. Throughout this section we will write

α = γ + θ,

where γ ∈ K and θ ∈ KR. Note as in [87, Lemma 2.1] we find

|S(α)|4 ≪ P ns
#

|x|,|y|<P

s.

i=1

n.

j=1

min
9
P, ‖tr(6αωjBi(x,y))‖−1: . (2.6.1)
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This estimate is proved using a classical Weyl differencing procedure adjusted to this

context. Following standard arguments as in Davenport [29, Chapter 13] we now

transform this into a counting problem.

Given α ∈ R and P ≥ 1 define

N(α, P ) := #
3
(x,y) ∈ O2s : |x| < P, |y| < P, ‖tr(6αωjBi(x,y))‖ < P−1, ∀i, j

4
.

For a fixed x ∈ Os write further

N(x) := #
3
y ∈ Os : |y| < P, ‖tr(6αωjBi(x,y))‖ < P−1, ∀i, j

4
,

so that

N(α, P ) =
#

|x|<P

N(x).

Let rij be integers such that 0 ≤ rij < P for i = 1, . . . , s, j = 1, . . . , n. We claim that

there exist no more than N(x) integer tuples y ∈ Os, which lie in a box whose edges

have sidelengths at most P such that

rij
P

≤ {tr(6αωjBi(x,y))} <
rij + 1

P

is satisfied for all i = 1, . . . , s and j = 1, . . . , n, where {x} denotes the fractional part

of a real number x. Indeed, if y1 and y2 are two such integer tuples satisfying the

above system of inequalities then |y1 − y2| < P and

‖tr(6αωjBi(x,y1 − y2))‖ < P−1

holds for all i, j. Hence, since y = 0 is a possible solution, there are no more than

N(x) possible solutions to the system of inequalities above. Dividing the box PB
into 2ns boxes whose edges have sidelength at most P we find

#

|y|<P

s.

i=1

i.

j=1

min
9
P, ‖tr(6αωjBi(x,y))‖−1: ≪ N(x)

.

i,j

P#

rij=0

min

!
P,

P

rij
,

P

P − rij − 1

"

≪ N(x)(P logP )ns.

Upon summing this estimate over |x| < P and using (2.6.1) we obtain

|S(α)|4 ≪ P 2ns(logP )nsN(α, P ). (2.6.2)

We now proceed to estimate N(α, P ) using the results from the previous section.

For fixed x ∈ Os identifying Os ∼= Rns and given y ∈ Os one may view the map

y -→ (tr(6αωjBi(x,y)))i,j
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as a linear map Rns → Rns. Hence we can apply Lemma 2.5.2 where N(x) = N(1)

in the notation of the lemma where Z is to be determined in due course. Summing

over the |x| < P then yields

N(α, P ) ≪ Z−ns#
3
(x,y) ∈ O2s : |x| < P, |y| < ZP,

‖tr(6αωjBi(x,y))‖ < ZP−1, ∀i, j
4
. (2.6.3)

If we apply the same procedure to the quantity on the right hand side of (2.6.3), but

now with the roles of x and y reversed we obtain

N(α, P ) ≪ Z−2ns#
3
(x,y) ∈ O2s : |x| < ZP, |y| < ZP,

‖tr(6αωjBi(x,y))‖ < Z2P−1, ∀i, j
4
. (2.6.4)

At this point we will employ Lemma 2.5.1. We wish to choose Z such that the bilinear

forms appearing in the right hand side of (2.6.4) are forced to vanish. To this end, in

the notation of the lemma we take m = 6∆Bi(x,y), M ≍ 6Z2P 2 and P−1
0 = Z2P−1.

Choose the parameter Z so that it satisfies

0 < Z < 1, Z2 ≪ (P 2|θ|N(aγ)
1/n)−1, Z2 ≪ P

N(aγ)1/n
,

as well as

Z2 ≪ max

!
N(aγ)

1/n

P 2
, N(aγ)

1/n|θ|P
"
,

where the implicit constants involved are sufficiently small such that the assumptions

of Lemma 2.5.1 are satisfied. Provided K is an imaginary quadratic number field,

Lemma 2.5.1 and (2.6.4) give

N(α, P ) ≪ Z−2ns
3
(x,y) ∈ O2s : |x| < ZP, |y| < ZP, Bi(x,y) = 0, i = 1, . . . , s

4
,

where we note that clearly 6∆Bi(x,y) = 0 if and only if Bi(x,y) = 0.

Since we assume that Davenport’s Geometric Condition (2.4.1) is satisfied it fol-

lows from the simple observation (2.4.2) that

N(α, P ) ≪ Z−2ns(ZP )ns.

From (2.6.2) for permissible Z as described above we therefore have

|S(α)|4 ≪ P 3ns+εZ−ns.

The estimate is optimised when Z is as large as possible. Hence if we take

Z2 ≍ min

J
1, (P 2|θ|N(aγ)

1/n)−1,
P

N(aγ)1/n
,max

!
N(aγ)

1/n

P 2
, N(aγ)

1/n|θ|P
"K
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then Z is clearly in the permissible range, and we deduce

|S(α)|4 ≪ P 3ns+ε
9
1 + P 2|θ|N(aγ)

1/n + P−1N(aγ)
1/n

+min
1
P 2N(aγ)

−1/n,
9
N(aγ)

1/n|θ|P
:−1

22ns
2
.

In particular, if N(aγ)
1/n ≤ P 3/2 then P−1N(aγ)

1/n ≤ P 1/2 and so we find

|S(α)| ≪ P ns+ε
9
N(aγ)

1/n|θ|+ (N(aγ)
1/n|θ|P 3)−1 + P−3/2

:ns
8

in this case. Finally since X1/2 ≤ X/Y + Y for any two positive real numbers X and

Y we see that the last term of the right hand side above is dominated by the other

two summands. We summarise the main result of this section.

Lemma 2.6.1. Let K/Q be an imaginary quadratic number field. Let α ∈ KR and

write α = γ + θ where γ ∈ K and θ ∈ KR. If N(aγ)
1/n ≤ P 3/2 then we have

S(α) ≪ P ns+ε
9
N(aγ)

1/n|θ|+ (N(aγ)
1/n|θ|P 3)−1

:ns
8 .

This bound will be useful for the range in the minor arcs when the parameter θ

is small.

2.7 Pointwise van der Corput differencing and the

singular series

In this section we will perform a pointwise van der Corput differencing argument,

in order to show that the singular series converges absolutely. This argument works

over a general number field. We start by considering the exponential sum S(γ),

where γ ∈ K and we set P = N(aγ). Further in this section we take the box

B = BS = {(
(

j xijωj)i ∈ Ks
R : 0 ≤ xij < 1} so that the goal of this section is to

study the sum Sγ as it was defined in Section 2.4.3. To be completely explicit with

our choice of box we then have

Sγ = S(γ) =
#

0≤x<N(aγ)

e (tr(γC(x))) ,

where the condition 0 ≤ x < N(aγ) denotes the sum over elements x =
1(

j xijωj

2

i
∈

Os such that 0 ≤ xij < N(aγ) holds. The main goal of this section is to establish the

bound

Sγ ≪ N(aγ)
s(n−1/6)+ε. (2.7.1)
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Let H be a positive integer that satisfies H ≤ N(aγ). Clearly we have

HnsS(γ) =
#

0≤h<H

#

0≤x<N(aγ)
0≤x+h<N(aγ)

e (tr(γC(x+ h))) .

Interchanging the order of summation gives

HnsS(γ) =
#

0≤x<N(aγ)

#

0≤h<H
0≤x+h<N(aγ)

e (tr(γC(x+ h))) .

An application of Cauchy-Schwarz yields

H2ns|S(γ)|2 ≪ N(aγ)
ns

#

0≤x<N(aγ)

%%%%%%%%

#

0≤h<H
0≤x+h<N(aγ)

e (tr(γC(x+ h)))

%%%%%%%%

2

.

Expanding the square one obtains

H2ns|S(γ)|2 ≪ N(aγ)
ns

#

0≤x<N(aγ)

#

0≤h1,h2<H
0≤x+h1,x+h2<N(aγ)

e (tr(γC(x+ h1)− C(x+ h2))) .

Set y = x+h2 and h = h1−h2. Note that after this change of coordinates each value

of h in the sum above appears at most Hns times. Therefore the previous display

gives

Hns|S(γ)|2 ≪ N(aγ)
ns

#

|h|≤H

|T (h, γ)| , (2.7.2)

where

T (h, γ) =
#

y∈R(h)

e (tr(γ(C(y + h)− C(y)))) ,

and where R(h) is a box whose sidelengths are O(N(aγ)). We take the square of the

absolute value of this expression, and expand the resulting sum in order to obtain

|T (h, γ)|2 =
#

y,z∈R(h)

e (tr(γ(C(y + h)− C(y)− C(z + h) + C(z)))) .

Making the change of variables y = z +w we find

|T (h, γ)|2 =
#

|w|<N(aγ)

#

z

e (tr(γC(w,h, z))) ,

where the inner sum ranges over a (potentially empty) box S(h,w) whose sidelengths

are O(N(aγ)) and where we write C(w,h, z) for the multilinear form given by

C(w,h, z) = C(w + h+ z)− C(w + z)− C(h+ z) + C(z).
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In particular we have

C(w,h, z) = 6
s#

i=1

ziBi(w,h) +Ψ(w,h),

where Bi are the bilinear forms associated to C, and where Ψ is a certain polynomial

whose precise shape is of no importance to us. Therefore we find

|T (h, γ)|2 =
#

w

#

z

e

/
tr

/
6γ

s#

i=1

ziBi(w,h) + γΨ(w,h)

00
.

Writing zi =
(

j zijωj we may regard the inner sum as an exponential sum over integer

variables zij. This is a linear exponential sum and the coefficient of zij is given by

6tr(γωjBi(w,h)). A standard argument regarding geometric sums now yields

|T (h, γ)|2 ≪
#

w

s.

i=1

n.

j=1

min
9
N(aγ), ‖6tr(γωjBi(w,h))‖−1: .

In particular the same argument that led to (2.6.2) shows that

|T (h, γ)|2 ≪ N(aγ)
ns+εN(γ, N(aγ),h), (2.7.3)

where

N(γ, N(aγ),h) = #
3
w ∈ Os : |w| < N(aγ), ‖6tr(γωjBi(w,h))‖ < N(aγ)

−1, ∀i, j
4
.

Note that the condition in the sum already implies that 6∆Bi(x,y) ∈ aγ holds for

all i, but we prefer to write it in the above shape in order to highlight the similarities

with the argument in the previous section.

As in Section 2.6 we may regard w -→ tr(γωjBi(w,h)) as a linear map Rns → Rns.

Hence we can apply Lemma 2.5.2 so that for any Z ∈ (0, 1] we have

N(γ, N(aγ),h) ≪ Z−ns#
3
w ∈ Os : |w| < ZN(aγ), ‖6tr(γωjBi(w,h))‖ < ZN(aγ)

−1
4
.

We now wish to choose Z in such a way that we can apply Lemma 2.5.1. In the

notation of this lemma we have m = ∆ωjBi(w,h) and θ = 0. We take Z ∈ (0, 1]

such that Z ≍ H−1N(aγ)
1
n
−1 for a suitable implied constant. Then Lemma 2.5.1

implies

N(γ, P,h) ≪ HnsN(aγ)
ns−s#

3
w ∈ Os : |w| < H−1N(aγ)

1/n, Bi(w,h) = 0, ∀i, j
4
.

Recalling that r(h) is the rank of Bi(h, ·) : Ks
R → Ks

R, using (2.7.3) we find

T (h, γ) ≪ N(aγ)
ns− r(h)

2
+εH

nr(h)
2 .
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Hence (2.7.2) delivers

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

#

|h|≤H

9
HnN(aγ)

−1
: r(h)

2 .

By (2.4.1), for any r the number of h with r(h) = r is O(Hnr). Therefore we find

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

s#

r=0

9
H3nN(aγ)

−1
: r

2 .

The sum is maximal either when r = 0 or when r = s, and thus

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

9
1 +H3ns/2N(aγ)

−s/2
:
.

Choosing H = ⌊N(aγ)⌋1/3n this finally yields

S(γ) ≪ N(aγ)
s(n−1/6)+ε.

2.7.1 Proof of Theorem 2.4.4

By Theorem 2.4.3 it suffices to show that S(R) converges absolutely as R → ∞.

Given a positive integer k the number of ideals of O of norm k is O(kε) using

the divisor bound. Hence together with Lemma 2.3.1 we obtain that the number of

γ ∈ K/O such that N(aγ) = k is bounded by O(k1+ε). Thus, using (2.7.1) we find

S(R) ≪
R#

k=0

k−ns+1+εkns−s/6 =
R#

k=0

k1−s/6+ε.

Therefore S(R) converges absolutely to some real number S as R → ∞ provided

s ≥ 13.

We remark that using the ideas of Heath-Brown [49, Section 7] it would be possible

to establish the absolute convergence of S(R) already for s ≥ 11.

2.8 Van der Corput on average

In this section, we work towards a bound for the Weyl sum S(α) on the minor arcs.

As observed by Heath-Brown, the simple pointwise van der Corput differencing is not

sufficient to improve on Davenport’s result for s ≥ 16.

It is however possible to exploit the fact that we are averaging both over the

modulus aγ as well as the integration variable β in the minor arcs, thus leading to a

version of van der Corput differencing on average.
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From now on we continue to work with the box B = B(z) as defined in the

beginning of Section 2.4.3. Instead of a pointwise bound for S(α), we will seek to

bound the mean-square average

M(α,κ) =

$

|β−α|<κ

|S(β)|2dβ

for α ∈ KR and a small parameter κ ∈ (0, 1), where we remind the reader that the

integration is over a region of KR.

In conjunction with the Cauchy-Schwarz inequality and an appropriate dyadic

dissection of the minor arcs, a satisfactory bound for M(α,κ) will be sufficient to

control the total minor arc contribution.

The idea now is that the mean square integral automatically shortens all the n

coordinates of h1 in the van der Corput differencing, allowing us to effectively save

a factor Hn

Pn over the pointwise bound. Here and throughout we denote h = (hi)i =1(
j hijωj

2

i
∈ Os.

To this end, we initiate the van der Corput differencing with parameters 1 ≤
Hij ≤ P to be determined, obtaining

.

i,j

HijS(β) =
#

0≤hij<Hij

#

x+h∈PB

e (tr(βC(x+ h))) =
#

x∈Os

#

x+h∈PB

e (tr(βC(x+ h))) ,

where implicitly we still restrict to h such that 0 ≤ hij < Hij is satisfied. Note that

the condition Hij ≤ P ensures that the sum over x is restricted to O(P ns) many

summands. An application of Cauchy-Schwarz thus yields

.

i,j

H2
ij|S(β)|2 ≪ P ns

#

x∈Os

%%%%%
#

x+h∈PB

e (tr(βC(x+ h)))

%%%%%

2

.

Opening the square on the RHS, we obtain

.

i,j

H2
ij|S(β)|2 ≪ P ns

#

x∈Os

#

x+h1,x+h2∈PB

e (tr(β [C(x+ h1)− C(x+ h2)]))

On substituting y = x+ h2 and h = h1 − h2, this becomes

.

i,j

H2
ij|S(β)|2 ≪ P ns

#

|hij |≤Hij

w(h)
#

y∈R(h)

e (tr(β [C(y + h)− C(y)]))

where w(h) = #{h1,h2 : h = h1 − h2} ≤
L

i,j Hij and R(h) is a certain box

depending only on h.
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Instead of taking absolute values, we now first integrate over β =
(

j βjωj with a

smooth cutoff function to obtain

M(α,κ) ≤ en
$

KR

exp

/
−
(

j(βj − αj)
2

κ2

0
· |S(β)|2dβ

≪ P ns

L
i,j H

2
ij

#

|hij |≤Hij

w(h)
#

y∈R(h)

I(h,y)

≪ P ns

L
i,j Hij

#

|hij |≤Hij

%%%%%%

#

y∈R(h)

I(h,y)

%%%%%%
,

where

I(h,y) =

$

KR

exp

/
−
(

j(βj − αj)
2

κ2

0
· e (tr(β [C(y + h)− C(y)])) dβ

= πn/2κn

n.

j=1

exp
9
−π2κ2 tr(ωj [C(y + h)− C(y)])2

:
· e(tr(α [C(y + h)− C(y)])).

Heuristically, for large h1 ∈ O, we should have C(y + h) − C(y) ≈ h1 · ∂C(y)
∂x1

so

that by our choice of the box B(z), this difference is large. But then for some j, the

trace of this number multiplied with ωj must be large as well, leading to a negligible

contribution to M(α,κ) from those terms, thus effectively cutting down the range to

small h1.

We now fix the choice Hij = H for i ∕= 1 and H1j = cP for a sufficiently small

constant c and make the above heuristic discussion precise. For y ∈ R(h) we have

C(y + h)− C(y) = h1 ·
∂C(y)

∂x1

+O(HP 2 + |h1|2|y|).

If the width of the box B(z) and c are sufficiently small, the fact that ∂C(z)
∂x1

∕= 0 then

implies that

|C(y + h)− C(y)| ≫ |h1| · P 2

unless |h1| ≪ H. Additionally, unless |h1| ≪ (logP )2

κP 2 , we even have that

|C(y + h)− C(y)| ≫ (logP )2

κ

so that for some j we must have

|tr (ωj [C(y + h)− C(y)])| ≫ (logP )2

κ
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and we infer from our previous calculations that the contribution of such h toM(α,κ)

is O(1). Hence,

M(α,κ) ≪ 1 +
P ns−n

Hns−n

#

|hi|≪H

%%%%%
#

y

I(h,y)

%%%%%

if we choose κ ≍ (logP )2

HP 2 .

Moreover, the range |β − α| ≥ κ logP in the definition of I(h,y) clearly gives a

total contribution of O(1) to M(α,κ) so that we end up with the estimate

M(α,κ) ≪ 1 +
P ns−n

Hns−n

#

|hi|≪H

$

|β−α|<κ logP

|T (h, β)|dβ

with

T (h, β) =
#

y∈R(h)

e (tr(β [C(y + h)− C(y)])) .

As in Section 2.7, we obtain

|T (h, β)|2 ≪ P ns+εN(β, P,h)

where

N(β, P,h) = #{w ∈ Os : |w| < P, ‖6 tr(βωjBi(w,h))‖ < P−1, ∀i, j}

so that

M(α,κ) ≪ 1 +
κnP

3ns
2

−n+ε

Hns−n

#

|hi|≪H

max
β∈I

N(β, P,h)
1
2 (2.8.1)

for I = {β : |β − α| ≤ κ logP}.
We next claim that

max
β∈I

N(β, P,h) ≪ P εN(α, P,h).

Indeed, consider a vector w counted by N(β, P,h). It thus satisfies |w| < P as well

as ‖6 tr(βωjBi(w,h))‖ < P−1 so that

‖6 tr(αωjBi(w,h))‖ ≪ 1

P
+ |β − α| · |Bi(w,h)| ≪ 1

P
+ κ logP ·HP ≪ (logP )3

P
.

We thus obtain

N(β, P,h) ≪ #{w ∈ Os : |w| < P, ‖6 tr(αωjBi(w,h))‖ ≪ (logP )3

P
, ∀i, j}

≪ P εN(α, P,h)
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where the last estimate is a consequence of Lemma 2.5.2 upon choosing suitable

Z ≍ (logP )−3.

We conclude that

M(α,κ) ≪ 1 +
κnP

3ns
2

−n+ε

Hns−n

#

|hi|≪H

N(α, P,h)
1
2 .

Let α = γ + θ with γ ∈ K and θ ∈ KR (which we think of as being small). We are

now prepared for an application of Lemmas 2.5.2 and 2.5.1. Indeed, Lemma 2.5.2

implies that

N(α, P,h) ≪ Z−ns#{w ∈ Os : |w| < ZP, ‖6 tr(αωjBi(w,h))‖ < ZP−1, ∀i, j}.

Following Heath-Brown, we will make two different choices of Z: In the first one, we

will choose Z = Z1 sufficiently small so that Lemma 2.5.1 implies that Bi(w,h) = 0.

In the second choice Z = Z2, we will only force 6∆Bi(w,h) ∈ aγ, a consequence

followed by a study of how often such a divisibility property can occur, crucially

using an average over γ.

By Lemma 2.5.1, if we choose Z ≤ 1 satisfying

Z ≪ P

N(aγ)1/n

and

Z ≪ 1

PH|θ|N(aγ)1/n

we can conclude that 6∆Bi(w,h) ∈ aγ. If, moreover

Z ≪ N(aγ)
1/n

PH

or

Z ≪ |θ|PN(aγ)
1/n

we obtain that Bi(w,h) = 0. Here, all the implicit constants need to be sufficiently

small in order to satisfy the conditions in Lemma 2.5.1.

Writing

η = |θ|+ 1

P 2H
(2.8.2)

we should therefore choose

Z1 ≍ min

!
N(aγ)

1/nPη,
1

PHηN(aγ)1/n

"
,
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noting that this automatically implies that Z1 ≤ 1. Similarly we should choose

Z2 ≍ min

!
1,

1

PHηN(aγ)1/n

"
.

In the application with Z = Z1 we thus obtain

N(α, P,h) ≪ Z−ns
1 #{w ∈ Os : |w| < Z1P,Bi(w,h) = 0, ∀i}

≪ Z−ns
1 · (Z1P )n(s−r)

≪ P ns ·
!

1

N(aγ)1/nP 2η
+HηN(aγ)

1/n

"nr

with r = r(h). Instead, in the application with Z = Z2, we end up with the bound

N(α, P,h) ≪ Z−ns
2 #{w ∈ Os : |w| < Z2P, 6∆Bi(w,h) ∈ aγ, ∀i}. (2.8.3)

We thus need to count vectors w with 6∆Bi(w,h) ∈ aγ. For any prime ideal p, let

rp(h) be the rank of M(h) modulo p. Clearly, rp(h) ≤ r(h) = r with strict inequality

if and only if p divides all r × r minors of M(h). This means that there are only

relatively few such ‘bad’ primes, which we will exploit later.

We now decompose aγ = q1 · q2 where q1 contains all the primes p dividing aγ

with rp(h) < r and q2 consists of those with rp(h) = r.

As we are looking for an upper bound, we can replace aγ by the larger q2 in (2.8.3).

For fixed h with r(h) = r, the condition 6∆Bi(h,w) ∈ q2, ∀i defines a lattice

Λ(h) for w ∈ Os which we view as a lattice in Rns.

To estimate the number of integer points in such a lattice we use [49, Lemma 5.1]

implying that

#{x ∈ Λ(h) : |x| ≤ B} ≪
.

i

!
1 +

B

λi

"
(2.8.4)

where λ1, . . . ,λns are the successive minima of Λ(h).

In order to make this estimate useful, we need a bound on the determinant d(Λ)

which is proportional to
L

i λi as well as a bound on the skewness of the measure, i.e.

upper and lower bounds for the λi.

For the determinant, we note that for pe | q2, the matrix M(h) has rank r modulo

p (hence also modulo pe) and therefore Bi(h,w) has N(pe)s−r solutions modulo pe so

that N(pe)r divides d(Λ). It thus follows that N(q2)
r | d(Λ) and hence d(Λ) ≥ N(q2)

r.

Regarding the skewness, we clearly have λi ≫ 1 for all i, while in the other

direction we have q2Os ⊂ Λ(h) so that Lemma 2.3.4 implies λi ≪ N(q2)
1/n.

Optimizing the RHS of (2.8.4) with these constraints shows that the maximum is

obtained when rn of the λi are of order N(q2)
1/n while the others are of order 1.
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This shows that

N(α, P,h) ≪ Z−ns
2

!
1 +

Z2P

N(q2)1/n

"rn

· (Z2P )(s−r)n = P ns

!
1

Z2P
+

1

N(q2)1/n

"rn

if Z2P ≫ 1 but we note that the bound is trivially true for Z2P ≪ 1.

Recalling our choice of Z2, this bound becomes

N(α, P,h) ≪ P ns

!
1

P
+

1

N(q2)1/n
+HηN(aγ)

1/n

"rn

.

Combining our two estimates, we obtain

N(α, P,h) ≪ P ns

!
1

P
+HηN(aγ)

1/n +min

!
1

N(aγ)1/nP 2η
,

1

N(q2)1/n

""rn

.

We now need to insert this into our expression for M(α,κ) which already involves

the average over h. Additionally, we want to average over aγ allowing us to use that

N(q2) is almost as large as N(aγ) most of the time.

Our object of study thus becomes

A(θ, R,H, P ) :=
#

γ:N(aγ)1/n∼R

#

|hi|≪H

N(α, P,h)1/2 (2.8.5)

where we continue to write α = γ+θ and we remind the reader of the notation q ∼ R

for the dyadic condition R < q ≤ 2R. We then obtain

A(θ, R,H, P ) ≪ RnP ns/2
#

|hi|≪H

#

N(a)1/n∼R

!
1

P
+HηR +min

!
1

RP 2η
,

1

N(q2)1/n

"" r(h)n
2

where we used that there are at most N(a) choices of γ with aγ = a by Lemma 2.3.1

and we remind the reader that q2 depends on a and h.

We thus proceed to estimate

V (h, R, η) :=
#

N(a)1/n∼R

min

!
1

RP 2η
,

1

N(q2)1/n

" rn
2

for r = r(h) via a dyadic decomposition as follows:

V (h, R, η) ≪ P ε max
S≤R

#

N(q1)1/n∼S

#

N(q2)1/n∼R
S

min

!
1

RP 2η
,
S

R

" rn
2

≪ P ε max
S≤R

Rn

Sn
min

!
1

RP 2η
,
S

R

" rn
2

#{q1 : N(q1)
1/n ≤ 2S}.
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Now recall that q1 only contains prime ideals dividing a certain non-zero r× r deter-

minant M0 of M(h). In particular, we have M0 ≪ Hr. Applying Rankin’s trick, we

then obtain

#{q1 : N(q1)
1/n ≤ 2S} ≪ Sε

#

q1

N(q1)
−ε = Sε

.

p|M0

1

1−N(p)−ε
≪ SεM ε

0 ≪ P ε

and thus

V (h, R, η) ≪ P ε max
S≤R

Rn

Sn
min

!
1

RP 2η
,
S

R

" rn
2

Maximizing for S we find that

V (h, R, η) ≪ P ε Rn

(RP 2η)rn/2
min(1, P 2η)ne(r)

with e(0) = 0, e(1) = 1
2
and e(r) = 1 for r ≥ 2.

Putting everything together, we obtain the estimate

A(θ, R,H, P ) ≪ R2nP
ns
2

#

|hi|≪H

M!
1

P
+HηR

"nr(h)
2

+
1

Rn
V (h, R, η)

N

≪ R2nP
ns
2
+ε

#

|hi|≪H

M!
1

P
+HηR

"nr(h)
2

+
1

(RP 2η)
r(h)n

2

min(1, P 2η)ne(r(h))

N

≪ R2nP
ns
2
+ε

s#

r=0

Hnr

M!
1

P
+HηR

"nr
2

+
1

(RP 2η)
rn
2

min(1, P 2η)ne(r)

N

≪
O
R2P s/2+ε

!
1 + (RH3η)s/2 +

Hs

P s/2
+

Hs

(RP 2η)s/2
min(1, P 2η)

"Pn
.

Finally, we argue that the third term Hs

P s/2 is negligible.

Indeed, if HRPη ≥ 1, then it is smaller than the second term. Otherwise, if

HRPη ≤ 1, we have (RPη)s/2 ≤ RPη ≤ 1
H

≤ min(1, ηP 2) on recalling that η ≥ 1
P 2H

and hence the term Hs

P s/2 is dominated by the fourth term in that case.

In any case, it now follows that

A(θ, R,H, P ) ≪
O
R2P s/2+ε

!
1 + (RH3η)s/2 +

Hs

(RP 2η)s/2
min(1, P 2η)

"Pn
. (2.8.6)

2.9 The minor arcs

Finally, we synthesize the bounds obtained by Weyl and van der Corput differencing

to estimate the total minor arc contribution
Q
m
S(α)dα.
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We dissect m with the help of the version of Dirichlet’s Approximation Theorem

provided by Lemma 2.3.3, applied for some parameter 1 ≤ Q ≤ P 3/2 to be determined.

Thus, every α ∈ KR has an approximation α = γ + θ with γ ∈ K and N(aγ) ≤ Qn

as well as |θ| ≪ 1
N(aγ)1/nQ

.

The assumption α ∈ m then implies that N(aγ) > P ν or |θ| > P−3+ν . Note

that as the contribution to the minor arcs coming from |θ| ≤ 1
P s is O(Qn+1), we may

assume that |θ| ≥ P−s.

By a double dyadic decomposition with respect to |θ| andN(aγ)
1/n, we then obtain

that $

m

S(α)dα ≪ Qn+1 + P ε max
R≤Q,φ≤ 1

RQ

Σ(R,φ)

where

Σ(R,φ) :=
#

γ:N(aγ)1/n∼R

$

|θ|∼φ

|S(γ + θ)| dθ

and we note that the region of integration is given by a rectangular annulus.

To establish Theorem 2.4.2, it thus suffices to prove that Σ(R,φ) ≪ P n(s−3)−ε. To

employ the mean-value estimates from the previous section, we use Cauchy-Schwarz

to obtain

Σ(R,φ) ≪ Rnφn/2

;

=
#

γ:N(aγ)1/n∼R

$

|θ|∼φ

|S(γ + θ)|2 dθ

>

@
1/2

.

We next cover the annulus |θ| ∼ φ with O
19

1 + φ
κ

:n2
boxes of size κ, all centered at

values of α = γ + θ with |θ| ∼ φ, so that we obtain

Σ(R,φ) ≪ Rnφn/2

!
1 +

φ

κ

"n/2

max
|θ|∼φ

;

=
#

γ:N(aγ)1/n∼R

M(γ + θ,κ)

>

@
1/2

and using (2.8.1) and (2.8.5) we obtain

Σ(R,φ) ≪ Rnφn/2

!
1 +

φ

κ

"n/2

max
|θ|∼φ

/
R2n+ε +

κnP
3ns
2

−n+ε

Hns−n
A(θ, R,H, P )

01/2

so that (2.8.6) implies that

Σ(R,φ) ≪
M
P εR2φ1/2

!
1 +

φ

κ

"1/2 !
1 +

κP 2s−1

Hs−1
E

"1/2
Nn

(2.9.1)

where E = 1+(RH3η)s/2+ Hs

(RP 2η)s/2
P 2η. Here we simply estimated min(1, P 2η) ≤ P 2η

which turns out to be sufficient.

55



Suppose we can show that E ≪ 1. Recall that κ ≍ (logP )2

HP 2 so that

1 +
φ

κ
≪ P εη

κ

from the definition (2.8.2) of η.

Since κ ≫ 1
P s , both summands in the last bracket of (2.9.1) are bounded by κP 2s−1

Hs−1 .

Still assuming E ≪ 1, we then obtain

Σ(R,φ) ≪
M
P εR2φ1/2η1/2

P s− 1
2

H
s−1
2

Nn

.

Recalling our desired bound Σ(R,φ) ≪ P n(s−3)−ε, it now suffices to prove that

Hs−1 ≫ R4φηP 5+ε,

still under the assumption E ≪ 1. Putting s = 14 for convenience (as we may without

loss of generality) and recalling the definition (2.8.2) of η, it suffices to have

H13 ≫ R4φ2P 5+ε

as well as

H14 ≫ R4φP 3+ε.

We thus choose

H ≍ P ε max
59

R4φ2P 5
:1/13

,
9
R4φP 3

:1/14
, 1
6
.

In order for this choice to satisfy H ≤ P , we require R4φ2 ≪ P 8−ε as well as R4φ ≪
P 11−ε.

Recalling φ ≤ 1
QR

≤ 1
R2 , both conditions are satisfied for any Q ≤ P 3/2.

We have thus found an admissible choice of H, leading to a satisfactory estimate

for Σ(R,φ) under the assumption of E ≪ 1.

We now enquire under which circumstances this assumption is justified.

For convenience, denote φ0 = (R4P 31)−
1
15 . The relevance of this parameter comes

from the observation that for φ ≤ φ0, one has

H ≍ P ε max
59

R4φP 3
:1/14

, 1
6

and η ≍ 1
HP 2 whereas for φ ≥ φ0, one has

H ≍ P ε max
59

R4φ2P 5
:1/13

, 1
6
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and η ≍ φ.

To prove E ≪ 1, we need to check that RH3η ≪ P−ε as well as
1

H2

RP 2η

27

P 2η ≪
P−ε.

We begin by checking that RH3η ≪ P−ε. First, if φ ≤ φ0, we have

RH3η ≪ P εQH2

P 2

≪ P ε Q

P 2

9
1 + (R4φP 3)1/14

:

≪ P ε ·
!

Q

P 2
+

Q9/7

P 11/7

"
.

This bound is satisfactory if Q ≪ P 11/9−ε.

Next, if φ ≥ φ0, we have

RH3η ≪ P εRH3φ

≪ P ε · 1
Q

·
1
1 +

9
R4φ2P 5

:3/132

≪ P ε · P
15/13

Q

which is satisfactory if Q ≫ P 15/13+ε.

We thus choose Q = P 13/11, ensuring that RH3η ≪ P−ε in both cases, and noting

that this also satisfies our earlier rough assumption Q ≤ P 3/2.

Finally, we need to enquire whether
1

H2

RP 2η

27

P 2η ≪ P−ε.

For φ ≤ φ0, we have η ≍ 1
HP 2 so that

!
H2

RP 2η

"7

P 2η ≪ P εH
20

R7

so that it suffices to have H ≪ R7/20−ε.

Recalling our choice of H in this case, it is thus sufficient to have R ≫ P ε as well

as additionally φ ≤ φ1 where

φ1 = R9/10P−3−ε.

Similarly, if φ ≥ φ0 we have η ≍ φ so that

!
H2

RP 2η

"7

P 2η ≪ H14

R7P 12φ6

and hence by our definition of H, it suffices to have R ≫ P ε as well as additionally

φ ≥ φ2 where

φ2 =
1

P
43
25

−εR7/10
.
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Summarizing, we have obtained a satisfactory bound for Σ(R,φ) if R ≫ P ε and

φ ≤ min(φ0,φ1) or φ ≥ max(φ0,φ2).

Letting R0 = P 4/5+ε, a quick computation shows that φ2 ≤ φ0 ≤ φ1 if R ≥ R0

whereas P−εφ1 ≤ φ0 ≤ φ2P
ε if R ≤ R0.

In the first case, our argument already covers all possible values of φ. We are thus

left with the case where R ≤ R0 and P−εφ1 ≤ φ ≤ φ2P
ε or R ≤ P ε.

It is here that we require the bound obtained by Weyl differencing. Indeed, apply-

ing Lemma (2.6.1) with s = 14 and noting that the assumption Q ≤ P 3/2 is satisfied,

we obtain

Σ(R,φ) ≪ P ε

M
R2φP 14

!
Rφ+

1

RφP 3

"7/4
Nn

.

Recalling our goal Σ(R,φ) ≪ P 11n−ε, it then suffices to have

R2φP 3

!
Rφ+

1

RφP 3

"7/4

≪ P−ε.

But this will be satisfied if

R1/3

P 3−ε
≪ φ ≪ 1

P 12/11+εR15/11
. (2.9.2)

Under the assumption R ≤ R0 and P−εφ1 ≤ φ ≤ φ2P
ε, this will thus be true as soon

as

φ1 ≫
R1/3+ε

P 3

as well as

φ2 ≪
1

P 12/11+εR15/11
.

The first condition is always satisfied for R ≫ P ε while the second one is satisfied for

R ≪ P
346
365

−ε which is indeed true under the assumption R ≤ R0.

Finally, we need to treat the cases where R ≤ P ε. Here of course, we need to use

that we are on the minor arcs so that φ ≥ P−3+ν . But it is easy to see that in that

case (2.9.2) is also satisfied, thus finishing our proof of Theorem 2.4.2.
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Chapter 3

Diagonal cubic forms over Fq[t]

3.1 Introduction

Given a non-singular cubic form F ∈ K[x1, . . . , xn] with coefficients in a global fieldK,

it is natural to study the distribution of rational points on the hypersurface X ⊂ Pn−1

defined by F . In a quantitative sense, this entails understanding the counting function

N(P ) = #{x ∈ On : max
i

|xi| < |P |, F (x) = 0}, (3.1.1)

where O ⊂ K is the ring of integers, P ∈ O and | · | is a suitable absolute value on

K. For n ≥ 5, one generally expects an asymptotic formula of the form

N(P ) ∼ c|P |n−3 (3.1.2)

as |P | → ∞ for some constant c ≥ 0. For large values of n, this has been successfully

achieved using the Hardy–Littlewood circle method. For K = Q, the current state

of the art is due to Hooley [52], who showed that n ≥ 9 suffices for (3.1.2) to hold.

In fact, conditional on unproved hypotheses about certain Hasse–Weil L-functions,

in [57] he pushed his approach further with the outcome that n ≥ 8 is enough.

For K = Fq(t), using the fact that the analogous hypotheses are in fact theorems

by virtue of Deligne’s work [31], Browning–Vishe [17] proved unconditionally the

asymptotic formula (3.1.2) for n ≥ 8 and char(K) > 3. However, for small values of

n, an asymptotic remains largely out of reach. Assuming F to be non-singular and

diagonal, which means

F (x) =
n#

i=1

Fix
3
i , Fi ∈ O \ {0}, (3.1.3)

Heath-Brown [46] provided an upper bound of the form N(P ) ≪ |P |3+ε for n = 6

and K = Q, matching the predicted asymptotic up to a factor of |P |ε. However, his
work relies on deep unproven conjectures about certain Hasse–Weil L-functions.
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Our first goal of this work is to prove the analogous result unconditionally for

K = Fq(t). One of the main novelties of our work is that we also obtain results

when char(K) = 2. Usually the circle method breaks down in small characteristic

due to a Weyl differencing process. We manage to bypass this issue by applying

Poisson summation instead, along with a recursion argument regarding the density

of solutions of the dual form F ∗ of F .

From now on we write O = Fq[t] and we work with the absolute value given by

|P | = qdegP for P ∈ O. By abuse of notation we also write |x| := maxi |xi| for
x = (x1, . . . , xn) ∈ On.

Theorem 3.1.1. Let K = Fq(t) with char(K) ∕= 3. Suppose F is given by (3.1.3).

Then for n = 6 we have

N(P ) ≪ |P |3+ε.

In applications of the circle method one frequently uses upper bounds for the

counting function

M(P ) = #
3
x ∈ O6 : x3

1 + x3
2 + x3

3 = x3
4 + x3

5 + x3
6 : |x| < |P |

4

to estimate the contribution from the minor arcs. Until now the strongest estimate

followed from Hua’s lemma, which gives M(P ) ≪ |P |7/2+ε. Heath-Brown’s results

mentioned above show M(P ) ≪ε P
3+ε, if we take O = Z. The same was established

by Hooley [55] using different methods but his results are also conditional on some

hypotheses regarding certain Hasse–Weil L-functions.

We now return to the case when O = Fq[t]. In a 1964 letter to Keith Matthews [25]

Davenport asked whether one could achieve the bound M(P ) ≪ |P |3+ε. Theo-

rem 3.1.1 provides an affirmative answer to his question.

For n = 4 the situation is more complicated and one does not expect (3.1.2) to

hold in general. The cubic surface X ⊂ P3 might contain rational lines and any such

will contribute ≫ |P |2 rational points to the counting function N(P ). According to

Manin’s conjecture [37], one expects

N◦(P ) ∼ c|P |(log|P |)ρ−1,

where N◦(P ) only counts rational points that do not lie on any rational line contained

in X and ρ is the rank of the Picard group of X.

Over K = Q, partial progress was made by Heath-Brown [46], who showed how

to isolate the contribution to N(P ) coming from points on rational lines when F is

diagonal. He also managed to give an upper bound of the form N◦(P ) ≪ |P |3/2+ε,
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again only conditionally on certain conjectures about Hasse–Weil L-functions. As for

n = 6, working over K = Fq(t) allows us to establish the estimates unconditionally

and we also succeed in isolating the contribution coming from points on rational lines

under certain restrictions on the characteristic of K.

Theorem 3.1.2. Suppose F is given by (3.1.3). If char(K) > 3, then for n = 4, we

have

N◦(P ) ≪ |P |3/2+ε,

where N◦(P ) is defined as N(P ) with the extra condition that x does not lie on any

rational line contained in the surface F = 0. These lines, if they exist, are of the

form

bixi + bjxj = bkxk + blxl = 0,

for some bi, bj, bk, bl ∈ K such that

!
bi
bj

"3

=
Fi

Fj

, and

!
bk
bl

"3

=
Fk

Fl

,

where {i, j, k, l} = {1, 2, 3, 4}.
While if char(K) = 2, then for n = 4 we have

N(P ) ≪ |P |2+ε.

In characteristic 2 the shape of the dual form of F prevents us from isolating the

contribution coming from rational points on rational lines to N(P ). However, we still

manage to give a non-trivial upper bound for the counting function N(P ), thereby

providing evidence that the main contribution to N(P ) comes from points on rational

lines.

In fact, assuming certain unproved conjectures regarding the growth of the rank

of rational elliptic curves, Heath-Brown [47] showed No(P ) ≪ε P 4/3+ε for any non-

singular cubic form in 4 variables defined over Q. He further showed in [48] that

certain families of cubic forms in 4 and 5 variables satisfy the Hasse principle, assum-

ing a conjecture of Selmer on elliptic curves.

Our work also shares some similarity with the recent findings of Wang. In [113]

he established an asymptotic formula for N(P ) for diagonal cubic forms over Q when

n = 6 conditional on conjectures about mean values of ratios of L-functions and the

large sieve. His approach required to isolate the contribution coming from rational

points on rational linear subspaces, which he achieved in [115], similar to Heath-

Brown’s [46] treatment when n = 4. It would be interesting to see to what extent his

work can be made unconditional over Fq(t).
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So far we have ignored the constant c appearing in the asymptotic formula (3.1.2),

despite its arithmetic significance. It encapsulates information about the existence

of rational points on X and has received a conjectural interpretation as an adelic

volume by Peyre [84]. For n ≥ 6 it is expected to be positive as soon as X(Kν) ∕= ∅
for all completions Kν of K, or in other words, it reflects that X is expected to satisfy

the Hasse principle. A key feature of the circle method is that when it provides an

asymptotic formula, it automatically confirms the Hasse principle. So in particular,

thanks to Hooley [52], we know that the Hasse principle holds for non-singular cubic

forms in n ≥ 9 variables over Q and the work of Browning–Vishe establishes the

Hasse principle for non-singular cubic forms over Fq(t) in at least 8 variables.

In fact, by imposing further congruence conditions on x in the definition of N(P )

in (3.1.1) Browning–Vishe show that X satisfies weak approximation, which means

that under the diagonal embedding

X(K) −→
.

ν

X(Kν)

the image ofX(K) is dense with respect to the product topology. Using Theorem 3.1.1

as a mean value estimate for the minor arc contribution, we can apply a classical

version of the circle method to draw the same conclusions for diagonal cubic forms in

n ≥ 7 variables.

Theorem 3.1.3. Let K = Fq(t) with char(K) > 3 and F be a diagonal cubic form

in n ≥ 7 variables. Then the hypersurface X ⊂ Pn−1 cut out by F satisfies the Hasse

principle and weak approximation.

One reason for being able to deal with fewer variables than Browning–Vishe is that

when F is diagonal we have better control over the exponential sums involved and

that we get stronger estimates for the density of solutions of bounded height of the

dual form F ∗ of F . However, this alone along with the estimates by Browning–Vishe

on averages of exponential sums would not be sufficient to prove Theorem 3.1.1–

3.1.3. We additionally make use of slightly better estimates through an argument

that enables us to bypass the lack of a convenient form of partial summation over K.

It should be noted that the Hasse principle over K = Fq(t) is an easy conse-

quence of the Lang–Tsen theory of Ci fields for n ≥ 10, which in fact establishes that

X(K) ∕= ∅ in this case. For smaller values of n, only little is known about the Hasse

principle or weak approximation over Fq(t). Colliot-Thélène [23] has established the

Hasse principle for diagonal cubic forms in n ≥ 5 variables when q ≡ 2 mod 3 and
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for n = 4 for the same range of q under some additional combinatorial constraints

on the coefficients of F . Furthermore, for arbitrary non-singular cubic hypersurfaces

X ⊂ Pn−1 Tian [109] has shown that the Hasse principle holds when char(K) > 5 and

n ≥ 6. Assuming the existence of a rational point, Tian–Zhang [110] have also verified

that X satisfies weak approximation at places of good reduction whose residue fields

have at least 11 elements as soon as n ≥ 4. In fact, the results by Colliot-Thélène,

Tian and Tian–Zhang were all shown to hold for any global function field K of a

smooth curve over a finite field.

As a further application of Theorem 3.1.1, we are able to improve Waring’s prob-

lem over Fq(t) for cubes. Waring’s problem in degree d in this context is concerned

with finding the smallest value of n such that

P = xd
1 + · · ·+ xd

n

has a solution in x ∈ On for every P ∈ O with sufficiently large degree. Over Fq(t),

in contrast to the integer setting, there might be global obstructions for P to be

representable as a sum of d-th powers, for example if its leading coefficient is not a

sum of n d-th powers in Fq. Therefore, one usually restricts to P ∈ Jdq [t], which is

defined as the additive closure of d-th powers in Fq[t]. In order to avoid cancellation

in the xi variables coming from the terms of degree larger than degP , it is more

natural to consider the strict Waring problem. There, one is concerned with finding

the minimal number Gq(d) = n such that every sufficiently large polynomial P ∈ Jdq [t]
can be written as

P = xd
1 + · · ·+ xd

n,

where deg xi ≤
R
degP

d

S
. In order to study a more refined version of Waring’s problem,

we introduce the quantity )Gq(d), which is the smallest number n such that we obtain

an asymptotic formula for

Rn(P ) = #{x ∈ On : |x| ≤ q⌈
deg(P )

d ⌉, xd
1 + · · ·+ xd

n = P},

for P ∈ Jdq [t] as deg(P ) → ∞. In his PhD thesis [66] Kubota tackled the asymptotic

strict Waring problem over Fq(t) and showed )Gq(d) ≤ 2d + 1 whenever char(Fq) > d.

The restriction in Kubota’s work on the characteristic comes from Weyl differencing,

producing a factor of d! and hence rendering trivial bounds when estimating exponen-

tial sums if char(Fq) ≤ d. For degrees d ≥ 4 this was improved by Liu–Wooley [76]

by replacing Weyl differencing with an application of the large sieve to also obtain

results for char(Fq) ≤ d.
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Returning to the case of cubes, in characteristic 2 the current state of the art

is due to Car–Cherly [20] who showed )G2h(3) ≤ 11. They managed to avoid Weyl

differencing with an application of Poisson summation along with a version of Weyl’s

inequality in characteristic 2 developed in [19].

Further, work by Gallardo [38] and Car–Gallardo [21] shows

Gq(3) ≤

*
+,

+-

7, if q /∈ {7, 13, 16}
8, if q ∈ {13, 16}
9, if q = 7.

Rather than using a circle method approach, the last set of bounds are achieved using

elementary arguments. As a result these methods do not produce an asymptotic

formula, hence do not yield new bounds for )Gq(3).

We can again use Theorem 3.1.1 as a minor arc mean value estimate in order to

improve the current best known bound for )Gq(3) for any q not divisible by 3 as well

as for G7(3), G13(3) and G16(3). Our work on Waring’s problem for cubes constitutes

a significant improvement on the current state of the art. In particular, our result

improves the previously best known upper bound of )Gq(3) by 4 variables if q is even

and by 2 variables if q is odd.

Theorem 3.1.4. If char(Fq) ∕= 3, then we have )Gq(3) ≤ 7 and thus also Gq(3) ≤ 7.

This theorem is the function field counterpart of a result by Hooley [51], who

proved the asymptotic Waring problem for cubes over integers in n ≥ 7 variables

conditional on hypotheses on certain Hasse–Weil L-functions. We also obtain a power

saving error term in the asymptotic formula for Rn(P ). The best unconditional

result in the integer setting is due to Vaughan [111], who resolved the asymptotic

Waring problem for cubes in 8 variables, although he obtained only log savings in the

error term. It should further be mentioned that in subsequent work, Vaughan [112]

established lower bounds of the expected order of magnitude in the case when n = 7.

Building on Vaughan’s techniques, Baker [2, 3, 4] established the existence of a non-

trivial zero to a diagonal cubic form in n = 7, 8, 9 variables, and even finds impressive

upper bounds for the smallest such non-trivial solution, depending on the size of the

coefficients of the form.

To deduce Theorem 3.1.4 from Theorem 3.1.1, we require a power saving when

estimating a certain Weyl sum. For Waring’s problem this has been carried out by

Car [19], which allows us to establish Theorem 3.1.4 in characteristic 2. Although

it would be possible to adapt the work of Car adequately to handle the Weyl sums
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appearing in the treatment of weak approximation and thus extend Theorem 3.1.3 to

the case char(K) = 2, we have decided against including such an adaption here given

the length of this chapter .

While the techniques used to prove Theorems 3.1.1 – 3.1.4 are not applicable

when char(K) = 3, one can almost trivially deal with the problems directly. In fact,

studying the solutions to the diagonal cubic equation (3.1.3) reduces to solving a

system of linear equations. In particular, the Hasse principle and weak approximation

hold trivially. Further it is easy to see that )Gq(3) = 1 holds when char(K) = 3.

Outline

To prove Theorem 3.1.1 and Theorem 3.1.2 we employ a technique known as the delta

method over Fq(t) developed by Browning–Vishe [17], but which is much simpler than

the version of Heath-Brown [46] invoked over the integers. The starting point of the

delta method is a smooth decomposition of the Kronecker delta function, a technique

that goes back to Duke–Friedlander–Iwaniec [35]. Over Fq(t), indicator functions of

intervals are smooth in an appropriate sense and so this decomposition is essentially

rendered trivial.

In Section 3.2, we begin by reviewing some essential facts that are required to

perform the analysis and arrive at an expression of the form

N(w, P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n
#

c∈On

Sr(c)Ir(c),

for a weighted version of the main counting function, involving certain exponential

sums Sr(c) and oscillatory integrals Ir(c).

In Sections 3.3 and 3.4, we estimate the integrals Ir(c) and the exponential sums

Sr(c), respectively. More precisely, we obtain cancellations when averaging Sr(c)

over r giving essentially optimal bounds. These estimates are possible due to work by

Deligne [31] and the required analysis of the relevant L-functions has been carried out

in [17, Section 3]. The quality of the estimates of the exponential sums is connected

to the dual form of the cubic form. This prompts us to study its rational solutions

in Section 3.5.

Classically, to combine these estimates one would use partial summation, a tool

that is not available in a useful form to us in the function field setting. In [17]

this causes significant difficulty, and in fact the approach by Browning–Vishe comes

with a slight loss in the estimates rendering them insufficient for our purposes. We

can resolve this issue with Lemma 3.3.6, where we show that Ir(c) only depends on
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the absolute value of r and so via q-adic summation we can separate the quantities

without any loss.

In Section 3.6, we combine the estimates using this new approach and finish our

treatment in the case n = 6, thereby proving Theorem 3.1.1. In the case char(K) = 2,

it turns out that the dual form F ∗ of F is again a non-singular cubic form. For this

reason, in Section 3.6.3, we can introduce a self-improving process in the proof of

Theorem 3.1.1 and the second part of Theorem 3.1.2 that turns any saving into the

desired upper bound. Finally, we use Theorem 3.1.1 as a mean value estimate in

an application of the classical circle method to deal with the asymptotic Waring’s

problem for cubes and weak approximation for diagonal cubic hypersurfaces in n ≥ 7

variables in Section 3.7.

If n = 4 and char(K) > 3 we need to deal separately with the terms coming from

special solutions of the dual form. This is the content of Section 3.8, where we show

that these terms correspond to points coming from rational lines on X.

Conventions

Given a1, a2 ∈ O we denote by (a1, a2) their highest common factor. The letter ε will

always denote an arbitrarily small positive real number, whose value might change

from one line to the next. All of the implied constants throughout the chapter are

allowed to depend on ε, the cardinality of the constant field q and on the form F .

3.2 Function field background

In this section we collect some basic facts concerning analysis over function fields. A

more detailed summary can be found in [13, Chapter 5]. Let K = Fq(t) with ring

of integers O = Fq[t] and K∞ = Fq((t
−1)) be the field of Laurent series in t−1. For

M ∈ R, we shall write TM := qM . Any α ∈ K∞ \ {0} can be written uniquely as

α =
#

i≤M

αit
i, αM ∕= 0, (3.2.1)

for some M ∈ Z. If we set |α| := TM , then | · | naturally extends the absolute value

induced by t−1 on K to K∞. We also note that K∞ is the completion of K with

respect to this absolute value. The analogue of the unit interval in K∞ is given by

T := {α ∈ K∞ : |α| < 1}.
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In fact, K∞ is a local field and thus can be endowed with a unique Haar measure dα

such that
Q
T dα = 1. We can extend the absolute value toKn

∞ by |α| = maxi=1,...,n |αi|
and the Haar measure by dα = dα1 · · · dαn for α = (α1, . . . ,αn) ∈ Kn

∞.

Just like over the rational numbers, Dirichlet’s approximation theorem holds.

That is, for any α ∈ T and Q ∈ N there exist polynomials a, r ∈ O with r monic such

that (a, r) = 1 and |a| < |r| ≤ UQ satisfying

%%%α− a

r

%%% <
1

|r| UQ
.

In fact, from the ultrametric property it follows that Dirichlet’s approximation The-

orem is already enough to obtain for any Q ≥ 1 an analogue of a Farey dissection of

the unit interval:

T =
V

|r|≤ !Q
r monic

V

|a|<|r|
(a,r)=1

{α ∈ T : |rα− a| < UQ−1}, (3.2.2)

where a, r ∈ O.

Characters. For α ∈ K∞ given by (3.2.1), we define

ψ : K∞ → C×, ψ(α) = e

!
TrFq/Fp(α−1)

p

"
,

and set ψ(0) = 1, where as usual we write e(x) = exp(2πix) for x ∈ R. It is easy

to see that ψ is a non-trivial additive character of K∞ that satisfies for x ∈ K∞ and

N ∈ Z≥0, $

|α|< !N−1

ψ(αx)dα =

&
UN−1 if |x| < UN,

0 otherwise.
(3.2.3)

In particular, if x ∈ O then this implies

$

T
ψ(αx)dα =

&
1 if x = 0,

0 otherwise.

Further, we will make frequent use of the following formulae for exponential sums.

If r, a ∈ O are such that r ∕= 0, then

1

|r|
#

|x|<|r|

ψ
1ax
r

2
=

&
1 if r | a,
0 otherwise.
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We also obtain the expected outcome for Ramanujan sums of prime powers. Let

a,ϖ ∈ O be such that ϖ is prime and let k ≥ 1 be a natural number. Then we have

#′

|x|<|ϖ|k
ψ
1 ax

ϖk

2
=

*
+,

+-

0 if ϖk−1 ∤ a,
−|ϖ|k−1 if ϖk−1 ‖ a,

|ϖ|k−1(|ϖ|− 1) if ϖk | a,

where the notation
#′

|x|<|ϖ|k
indicates that the sum runs over x which are coprime

to ϖ.

Poisson Summation. We call a function w : Kn
∞ → C smooth if it is locally con-

stant. Denote by S(Kn
∞) the space of all smooth functions w : Kn

∞ → C with compact

support. If w ∈ S(Kn
∞) then we call w a Schwarz-Bruhat function. For such functions

the Poisson summation formula [17, Lemma 2.1] holds.

Lemma 3.2.1. Let f ∈ K∞[x1, . . . , xn] and let w ∈ S(Kn
∞). Then we have

#

z∈On

w(z)ψ(f(z)) =
#

c∈On

$

Kn
∞

w(u)ψ(f(u) + c · u)du. (3.2.4)

Delta method. Given a polynomial F ∈ O[x1, . . . , xn] and w ∈ S(Kn
∞), we are

interested in the counting function

N(w, P ) =
#

x∈On

F (x)=0

w
1x

P

2
.

For estimating the integrals appearing in our work, it is necessary to work with such

a weighted counting function, since we require ∇F to be bounded away from 0 on

supp(w). To estimate our original counting function defined in (3.1.1), it suffices to

take w to be the characteristic function of the set {x ∈ T : |x| = q−1}. Indeed, it

follows that

N(w, P ) = #{x ∈ On : F (x) = 0, |x| = q−1|P |},

so that an upper bound of the shape N(w, P ) ≪ |P |k yields N(P ) ≪ |P |k+ε for any

ε > 0 by summing over q-adic ranges for |P |.

For a fixed parameter Q ≥ 1 to be specified later, we deduce from (3.2.2) and

(3.2.3) the identity

N(w, P ) =
#

r monic
|r|≤ !Q

#′

|a|<|r|

$

|θ|<|r|−1 !Q−1

S(a/r + θ)dθ,
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where
(′

|a|<|r| means that we sum over a ∈ O with (a, r) = 1 only and

S(α) =
#

x∈On

ψ(αF (x))w(x/P )

for α ∈ T. As explained in [17, Chapter 4], since w is a Schwartz-Bruhat function we

can evaluate S(θ + a/r) using Poisson summation (3.2.4) to obtain

N(w, P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n

$

|θ|<|r|−1 !Q−1

#

c∈On

Sr(c)Ir(θ, c)dθ, (3.2.5)

where

Sr(c) =
#′

|a|<|r|

#

|x|<|r|

ψ

!
aF (x) + c · x

r

"
(3.2.6)

and

Ir(θ, c) =

$

Kn
∞

w(x)ψ

!
θP 3F (x) +

Pc · x
r

"
dx. (3.2.7)

The expression (3.2.5) is the starting point for our work and from now on we will

mostly be concerned about estimating the integrals Ir(θ, c) and the sums Sr(c).

3.3 Integral estimates

As a preliminary lemma we note the following result on a linear change of variables,

the proof of which is completely analogous to the proof of Lemma 7.4.2 in [62].

Lemma 3.3.1. Let R1, . . . , Rn ∈ R and let Γ ⊂ Kn
∞ be the region given by

Γ = {x ∈ Kn
∞ : |xi| ≤ TRi}.

Let g : Γ → C be a continuous function and let M ∈ GLn(K∞). Then we have
$

Γ

g(x)dx = |detM |
$

Mβ∈Γ
g(Mβ)dβ.

For f ∈ K∞[x1, . . . , xn], we denote by Hf its height, that is, the maximum of the

absolute values of its coefficients. Given γ ∈ K∞, w ∈ Kn
∞ and f ∈ K∞[x1, . . . , xn],

integrals of the form

Jf (γ,w) :=

$

Kn
∞

w(x)ψ(γf(x) +w · x)dx

appear quite frequently in our work. We shall now collect the required estimates for

them. Upon noting that w(x) = χT(x) − χt−1T(x), the next lemma follows directly

from [17, Lemma 2.4].
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Lemma 3.3.2. Let γ ∈ K∞ and w ∈ Kn
∞ be such that |w| > q and |w| ≥ Hf |γ|.

Then Jf (γ,w) = 0.

The next result [17, Lemma 2.7] is the main ingredient for estimating the integrals

Jf (γ,w).

Lemma 3.3.3. We have
$

Tn\Ω
ψ(γf(x) +w · x)dx = 0,

where Ω ⊂ Tn is given by

Ω =
3
x ∈ Tn : |γ∇f(x) +w| ≤ Hf max

3
1, |γ|1/2

44
.

In our setting, this leads to the following estimate.

Lemma 3.3.4. Suppose F ∈ K∞[x1, . . . , xn] is a non-singular cubic form. Let γ ∈
K∞ and w ∈ Kn

∞ \ {0} be such that |w| ≫ 1. Then JF (γ,w) = 0, unless

|w| ≪ |γ| ≪ |w|,

in which case

JF (γ,w) ≪ meas({x ∈ supp(w) : |γ∇F (x) +w| ≪ |w|1/2}).

Proof. First note JF (γ,w) = 0 if |w| > max{q,HF |γ|} by Lemma 3.3.2. Since by

assumption 1 ≪ |w|, we may thus assume 1 ≪ |w| ≪ |γ|. For a ∈ Fn
q \ {0}, let

wa(x) =

&
1 if |x− at−1| < |t|−1,

0 else.

We can then write w(x) =
(

a∈Fn
q \{0} wa(x), so that

JF (γ,w) =
#

a∈Fn
q \{0}

$

Tn

wa(x)ψ(γF (x) +w · x)dx

=
#

a∈Fn
q \{0}

q−nψ(t−1w · a)
$

Tn

ψ(γGa(y) + t−1w · y)dy,
(3.3.1)

where we performed the change of variables y = tx− a and wrote Ga(y) = F ((y +

a)t−1). From Lemma 3.3.3 we deduce that each inner integral is bounded by

meas({y ∈ Tn : |γ∇Ga(y) + t−1w| ≪ HGa |γ|1/2}),
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which in turn may be bounded from above by

meas({x ∈ supp(wa) : |γ∇F (x) +w| ≪ HF |γ|1/2}), (3.3.2)

since HGa ≤ HF . Denote the set in (3.3.2) by Ωa. Note that since F is assumed to be

non-singular, we have ∇F (x) ∕= 0 for all x ∈ Ωa. Since supp(wa) is compact for every

a, this implies ∇F (x) ≫w 1 for all x ∈ Ωa. In particular, unless |w| ≫ |γ∇F (x)| ≫
|γ| the sets Ωa are all empty and the integral vanishes. Finally the Lemma follows

upon noting

meas(Ωa) ≪ meas({x ∈ supp(w) : |γ∇F (x) +w| ≪ |w|1/2}),

for any a ∈ Fn
q \ {0} and substituting this into (3.3.1).

Since we work with a diagonal cubic form F (x) =
(n

i=1 Fix
3
i with Fi ∈ O \ {0},

we have ∇F (x) = (3F1x
2
1, . . . , 3Fnx

2
n). Therefore in order to find an upper bound for

JF (γ,w) the following lemma will be useful.

Lemma 3.3.5. Let a, b ∈ K∞ and consider the set

Pa,b = {x ∈ T : |x2 − a| < |b|}.

Then we have

meas(Pa,b) ≪ min{|b|1/2, |b||a|−1/2}.

Proof. Note first that the result is trivial if a = 0 or b = 0. Hence we may write

a =
#

i≤K

ait
i, and b =

#

j≤M

bjt
j,

where aK , bM ∕= 0. We will proceed in two cases.

Case 1: |a| < |b|. Then via the ultrametric triangle inequality we note

|x2 − a| < |b| ⇐⇒ |x|2 < |b|,

for any x ∈ T. Thus meas(Pa,b) ≪ |b|1/2 = min{|b|1/2, |b||a|−1/2}.
Case 2: |a| ≥ |b|. Let x =

(
i≤−1 xit

i ∈ T. Then |x2−a| < |b| can only hold if |x|2 =
|a|. In particular K must be even, K ≤ −1 must hold and xK/2+1 = · · · = x−1 = 0.

Write

x2 =
#

ℓ≤K

Xℓt
ℓ,

71



where Xℓ =
(

i+j=ℓ xixj. Then, requiring

|x2 − a| < |b| = qM

implies Xℓ = aℓ for ℓ = M, . . . ,K. Now XK = x2
K/2, so the condition XK = aK yields

at most two possible solutions for xK/2. Further, since

XK−r = 2xK/2xK/2−r +
#

i+j=K−r
K/2−r<i,j<K/2

xixj,

we find inductively that a solution to x2
K/2 = aK uniquely determines xK/2−r for

r = 1, . . . ,M +K. To summarise, in this case, there are at most two possibilities for

the values of the coefficients x−1, . . . , xM−K/2. Therefore we obtain

meas(Pa,b) ≪ meas
9
tM−K/2T

:
= qM−K/2 = |b||a|−1/2.

Finally, noticing that |b||a|−1/2 ≤ |b|1/2 if |a| ≥ |b| finishes the proof of this lemma.

In light of Lemma 3.3.5 we thus find

meas({x ∈ supp(w) : |γ∇F (x) +w| ≪ |w|1/2}) ≪
n.

i=1

min{|w|−1/4, |wi|−1/2}

if F is a diagonal cubic form. Noting that the expression on the right hand side is

≫q 1 if |w| ≪ 1 we infer from Lemma 3.3.4

JF (γ,w) ≪
n.

i=1

min{|w|−1/4, |wi|−1/2}, (3.3.3)

for all γ ∈ K∞ and all w ∈ Kn
∞ \ {0}.

We will also have to deal with averages of Ir(θ, c) over θ, which are of the form

Ir(c) :=

$

|θ|<|r|−1 !Q−1

Ir(θ, c)dθ.

While we do not have a convenient form of partial summation available in the function

field setting, the next lemma will be crucial in replacing this tool.

Lemma 3.3.6. Assume that f is a cubic form. Let r1, r2 ∈ O be such that |r1| = |r2|.
Then Ir1(c) = Ir2(c).
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Proof. Write r = r1 for brevity. We shall show that Ir(c) only depends on the absolute

value of r. Indeed, recalling (3.2.7), for c fixed we have

Ir(c) =

$

|θ|<|r|−1 !Q−1

$

Kn
∞

w(x)ψ

!
θP 3f(x) +

Pc · x
r

"
dxdθ

= |r|n
$

Kn
∞

w(ry)ψ(Pc · y)
$

|θ|<|r|−1 !Q−1

ψ(θP 3r3f(y))dθdy, (3.3.4)

where we used Fubini’s theorem and applied the change of variables y = xr−1. It

follows from (3.2.3) that

$

|θ|<|r|−1 !Q−1

ψ(θP 3r3f(y))dθ =

&
(|r| UQ)−1 if |P 3f(y)| < |r|−2 UQ,

0 else.

We conclude that the value of the inner integral in (3.3.4) only depends on |r| for y
and c fixed. The claim now follows, since w only depends on the absolute value of its

argument.

To highlight this dependence, we shall write I!Y (c) = Ir(c) if |r| = UY from now

on. In the notation above, for r ∈ O \ {0}, c ∈ On, θ ∈ T and P ∈ O we have

Ir(θ, c) = JF

!
P 3θ,

P

r
c

"
.

Since Ir(θ, c) vanishes unless |P ||c|
|r| ≪ |θ||P |3 ≪ |P ||c|

|r| , we deduce from (3.3.3) the

following integral estimate.

Lemma 3.3.7. Let Y ≥ 0, c ∈ On \ {0}, and P ∈ O. Then

I!Y (c) ≪ min

&
|c|

UY |P |2
, UY −1 UQ−1

'
n.

i=1

min

&!
|P ||c|
UY

"−1/4

,

!
|P ||ci|

UY

"−1/2
'
.

So far we have not yet achieved any non-trivial estimates for I!Y (0) and in fact we

will have to do slightly better than the trivial bound for our treatment.

Lemma 3.3.8. Assume n ≥ 4. Let P ∈ O \ {0}. Then for any Y ≥ 1 we have

I!Y (0) ≪ |P |−3+ε.

Proof. For r ∈ O \ {0} such that |r| = UY , Lemma 3.3.3 gives

Ĩr(θ,0) :=

$

Tn

ψ
9
θP 3F (x)

:
dx ≪ meas({x ∈ Tn : |∇F (x)| ≤ max{1, |θ||P |3}−1/2}).
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Now it is not hard to see that Ir(θ,0) = Ĩr(θ,0)− q−nĨr(q
−3θ,0). From Lemma 3.3.4

we deduce

Ir(θ,0) ≪ meas({x ∈ Tn : |∇F (x)| ≪ max{1, |θ||P |3}−1/2}).

Since F is diagonal we have |∇F (x)| ≥ |x|2 whence

Ir(θ,0) ≪ max{1, |θ||P |3}−n/4.

By definition of I!Y (0) we may divide the area of integration up as follows

I!Y (0) =

$

|θ|≪|P |−3

Ir(θ,0)dθ +

$

|P |−3≪|θ|< !Q−1 !Y −1

Ir(θ,0)dθ.

The first term is trivially O(|P |−3). For the second term note

$

|P |−3≪|θ|< !Q−1 !Y −1

Ir(θ,0)dθ ≪
$

|P |−3≪|θ|< !Q−1 !Y −1

|P |−3n/4|θ|−n/4dθ ≪ |P |−3+ε.

The result now follows.

3.4 Exponential sum estimates

We want to estimate the sum

Sr(c) =
#′

|a|<|r|

#

|x|<|r|

ψ

!
aF (x) + c · x

r

"

=
#′

|a|<|r|

n.

i=1

#

|x|<|r|

ψ

!
aFix

3 + cix

r

"
,

(3.4.1)

where F (x) =
(n

i=1 Fix
3
i . The corresponding sum over the integers has already been

subject to thorough investigation by Heath-Brown [46] and Hooley [51]. Browning–

Vishe [17] have translated many of the properties to the function field setting, some

of which we shall record here.

The quality of our estimates is intimately connected to the dual form F ∗ of F ,

which is an absolutely irreducible polynomial of degree 2n−2 × 3 whose zero locus

parameterises hyperplanes that have a singular intersection with the projective hy-

persurface cut out by F . As explained by Wang [114, Appendix D], if F is diagonal

and char(K) > 3, we can take

F ∗(c) =

/
n.

i=1

Fi

02n−2

.9
(F−1

1 c31)
1/2 ± · · · ± (F−1

n c3n)
1/2

:
, (3.4.2)
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where the inner product runs through all possible combinations of ±. In fact, in [114]

this is only shown for K = Q, but one can check that the requirement char(K) > 3

is sufficient for (3.4.2) to hold. In characteristic 2, we have the following result.

Lemma 3.4.1. Let K be a field of characteristic 2 and let F (x) =
(n

i=1 Fix
3
i ∈

K[x1, . . . , xn] be a non-singular cubic form. Then the dual form of F is given by

F ∗(c) =

/
n.

i=1

Fi

0
n#

i=1

F−1
i c3i .

Proof. By definition the zero locus V (F ∗) ⊂ Pn−1 parameterises points c ∈ Pn−1 such

that the hyperplane c · x = 0 has a singular intersection with V (F ∗). This means,

that there exists x ∈ Pn−1(K) such that

rank

!
∇F (x)

c

"
= 1, c · x = 0 and F (x) = 0. (3.4.3)

Since we assume F to be non-singular, the rank condition implies that c is propor-

tional to ∇F (x), that is, x2
i = λF−1

i ci for some λ ∈ K
×
and i = 1, . . . , n. Any pair

(x, c) having this property then satisfies F (x) = 0 if and only if c ·x = 0. Moreover,

the third condition in (3.4.3) is equivalent to

n#

i=1

F
−1/2
i c

3/2
i = 0,

where we used that every element of K has a unique square-root as char(K) = 2.

However, again since we are in characteristic 2, this is is equivalent to

n#

i=1

F−1
i c3i = 0.

The result now follows after clearing denominators.

Note that if r1, r2 ∈ O are coprime, then

Sr1r2(c) = Sr1(c)Sr2(c), (3.4.4)

which follows readily from the Chinese remainder theorem. This essentially reduces

the task of estimating Sr(c) to prime power moduli. Indeed, suppose Sϖk(c) ≤ C|ϖ|kα

for some α > 0 and some absolute constant C. Let Ω(r) be the number of prime

divisors of r. Then by multiplicativity of Sr(c) we have

Sr(c) =
.

ϖk‖r

Sϖk(c) ≤
.

ϖk‖r

C|ϖ|kα = CΩ(r)|r|α ≪ τ(r)|r|α ≪ |r|α+ε
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by the usual estimate for the divisor function τ(r), see [13, Lemma 5.9].

Further, if ϖ is irreducible such that ϖ ∤ F ∗(c), then Browning–Vishe [17, Section

5] show

Sϖk(c) = 0 for k ≥ 2. (3.4.5)

3.4.1 Square-free moduli contribution

Deligne’s resolution of the Weil conjectures [30] shows that we get square-root can-

cellation for the sums Sϖ(c) whenever ϖ is suitably generic:

Sϖ(c) ≪ |ϖ|(n+1)/2|(ϖ,∇F ∗(c))|1/2. (3.4.6)

However, this is not sufficient for our purposes. In the integer setting Hooley [51] was

the first to achieve an extra saving when averaging the sums Sr(c) over r by appealing

to certain hypotheses about Hasse–Weil L-functions associated to cubic threefolds.

By virtue of Deligne’s proof of the Weil conjectures [31] these hypotheses are in fact

theorems in the function field setting. This enabled Browning–Vishe [17, Lemma 8.5]

to establish the following result unconditionally.

Lemma 3.4.2. Suppose n is even and F ∗(c) ∕= 0. Then for any Z ≥ 0 and ε > 0,

we have #

|r|≤ !Z
(r,∆FF ∗(c))=1

Sr(c)

|r|(n+1)/2
≪ |c|ε UZ1/2+ε,

where ∆F is the discriminant of F and by virtue of (3.4.5) r ranges over square-free

values only.

Remark 3.4.3. In fact Browning–Vishe have to consider averages of Sr(c) twisted

by a Dirichlet character of K∞ since they were unable to separate the integral Ir(θ, c)

from summation. However, we can resolve this issue with Lemma 3.3.6 allowing us

to combine Lemma 3.4.2 with the integral bounds from Lemma 3.3.7 more efficiently.

3.4.2 Pointwise estimates

For B ∈ O fixed and a, r ∈ O \ {0} with (a, r) = 1, let

Sr(a, c) =
#

|x|<|r|

ψ

!
aBx3 + cx

r

"
.

In view of (3.4.1) upper bounds for Sr(a, c) directly transform into estimates for Sr(c).

Moreover, by (3.4.4) it suffices to consider the case r = ϖk, where ϖ is irreducible.
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Hooley [51] has provided upper bounds for the integer-analogue of the sum Sϖk(a, c)

wheneverϖ ∤ B. As explained by Heath-Brown [46], these estimates also hold ifϖ | B
when we allow the implied constant to depend on B. Hooley’s and Heath-Brown’s

proofs of these results go through almost verbatim in the function field setting and

so we spare the reader from the tedious exercise of reproducing them here. To state

the final outcome, we need some notation. First, we set {ϖk, c} = (ϖk, c) for k = 2

and for k ≥ 3, we define {ϖk, c} = |ϖ|−1 if ϖ ‖ c and {ϖk, c} = (ϖk, c) else. For

later use, we generalise this to square-full r by setting

{r, c} :=
.

ϖk‖r

{ϖk, c}.

We then have

Sϖk(a, c) ≪ |ϖ|k/2|{ϖk, c}|1/4 for k ≥ 2. (3.4.7)

We shall also use an estimate of Hua [61, Lemma 1.1], whose proof, again, readily

translates to the function field setting. If g(x) =
(d

i=0 gix
i ∈ O[x], then for any

ϖ ∈ O irreducible we have

#

|x|<|ϖ|k
ψ

!
g(x)

ϖk

"
≪ |ϖ|k(1−1/d)|(ϖk, g0, . . . , gd)|1/d, (3.4.8)

where the constant depends only on ε and d. Originally this was stated in the case

when ϖ ∤ (g0, . . . , gd), but the factor |(ϖk, g0, . . . , gd)|1/d in the estimate accounts for

the possibility of ϖ | (g0, . . . , gd). Therefore we obtain

Sϖk(a, c) ≪ |ϖ|2k/3,

where the implied constant depends on ε but crucially not on a since we assumed

ϖ ∤ a. Using (3.4.1), we can immediately deduce the following lemma from (3.4.7)

and (3.4.8), which is the analogue of [46, Lemma 5.1.].

Lemma 3.4.4. It holds that

Sϖ2(c) ≪ |ϖ|2+n.

In addition, if (ϖk, c) = Hϖ and there are at least m indices i such that (ϖk, ci) = Hϖ,

then

Sϖk(c) ≪ |ϖ|k+2(n−m)k/3+mk/2|Hϖ|m/4.
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3.4.3 Averages over square-full moduli

Suppose we are given a set of t indices T ⊂ {1, . . . , n} and positive integers Ci for

i ∈ T . For C := (Ci)i∈T we define R(C) ⊂ On to be the set of tuples c = (c1, . . . , cn)

such that |ci| = UCi if i ∈ T and cj = 0 whenever j ∕∈ T . Given Y ∈ Z>0, we are

interested in averages of the form

A(R(C), UY ) :=
#

c∈R(C)
F ∗(c) ∕=0

#

r∈O
|r|=!Y

|Sr(c)|,

where r is restricted to square-full polynomials.

Lemma 3.4.5. With the notation from above, we have

A(R(C), UY ) ≪ε
UY 1+n/2+(n−t)/6(UY UC)ε#R(C),

where UC = maxi∈T UCi.

The proof of Lemma 3.4.5 is along the same lines as that of [46, Lemma 5.2], and

so we shall be brief.

Proof. First of all, we introduce some notation. Fix c ∈ R(C). For r ∈ O monic

square-full, we write

r = r∗
.

i∈T

ri, (3.4.9)

where the various coprime factors r∗, ri are defined as follows. We let r∗ be the

product of those monic prime powers ϖk such that ϖk ‖ r and k = 2 or ϖ ∤ ci for
i ∈ T . Moreover, for i ∈ T , we define ri to be the product of monic prime powers

ϖk ‖ r such that ϖ | ci, but ϖ ∤ cj for any j ∈ T with j < i. In particular, any ri is

cube-full. Since all the factors in (3.4.9) are coprime, it follows from (3.4.4) that

Sr(c) = Sr∗(c)
.

i∈T

Sri(c).

Using the fact that Sϖk(c) = 0 if ϖ ∤ F ∗(c) for k ≥ 2 and the estimates (3.4.7)

and (3.4.8), we deduce that

Sr(c) ≪ η(r, c)|r|1+n/2+(n−t)/6+ε
.

i,j∈T

|{ri, cj}|1/4,

where η(r, c) = 1 if ϖ | F ∗(c) for all primes ϖ | r∗ and η(r, c) = 0 else. Let us now

fix the absolute values of r∗ and of the various ri’s, say |r∗| = UY∗ and |ri| = UYi, and
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denote their contribution to A(R(C), UY ) by A(Y∗,Y ), where Y = (Yi)i∈T . We then

have

A(Y∗,Y ) ≪ UY 1+n/2+(n−t)/6+ε
#

c∈R(C)
F ∗(c) ∕=0

#

|ri|=!Yi
i∈T

.

i,j∈T

|{ri, cj}|1/4Sc,

where we have suppressed the dependence of r∗ and of the ri’s on c in the notation

and where

Sc =
#

|r∗|=!Y∗

η(r, c).

Heath-Brown’s argument for estimating Sc goes through almost verbatim in our set-

ting and gives Sc ≪ (UY UC)ε. Therefore, we have

A(Y∗,Y ) ≪ UY 1+n/2+(n−t)/6+ε(UY UC)ε
#

c∈R(C)
F ∗(c) ∕=0

#

|ri|=!Yi
i∈T

.

i,j∈T

|{ri, cj}|1/4.

To achieve the desired upper bound, we shall now only require that each ri is cube-full

and that ϖ | ci whenever ϖ | ri, so that in particular the ri’s do not depend on c

anymore. Thus, after setting

S(j) =
#

|cj |= !Cj

.

i∈T

|{ri, cj}|1/4,

we obtain

A(Y∗,Y ) ≪ UY 1+n/2+(n−t)/6+ε(UY UC)ε
#

|ri|= !Ci
i∈T

.

j∈T

S(j).

It is again straightforward to verify that Heath-Brown’s argument continues to hold

in our setting, yielding

#

|ri|= !Ci
i∈T

.

j∈T

S(j) ≪ UY (n+1)ε#R(C).

With a new choice of ε, we conclude

A(Y∗,Y ) ≪ UY 1+n/2+(n−t)/6(UY UC)ε#R(C),

so that the statement of the lemma follows from the fact that there are only UY ε

possibilities for admissible tuples (Y∗,Y ).
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3.5 Rational points on the dual hypersurface

In this section we study roots of the dual form F ∗ of F that was defined in (3.4.2).

Our first goal is to find an upper bound for the number of solutions F ∗(c) = 0 with

|c| ≤ UC when char(K) > 3. In order to achieve this we closely follow the strategy of

Heath-Brown [46, Section 7]. The result of Lemma 3.5.2 is standard over the rational

numbers, however we could not find a proof in the literature for our setting and so

we included a proof here.

If n = 4 and char(K) > 3 we call a solution c to F ∗(c) = 0 special if c1, . . . , c4 ∕= 0

and there are indices i, j, k, l such that {i, j, k, l} = {1, 2, 3, 4} and

(F−1
i c3i )

1/2 + (F−1
j c3j)

1/2 = (F−1
k c3k)

1/2 + (F−1
l c3l )

1/2 = 0

holds for a suitable choice of square roots. We call a solution c to F ∗(c) = 0 ordinary

if it is not special. In particular, if char(K) = 2 every solution is ordinary.

Lemma 3.5.1. Assume char(K) > 3. If n = 6, then the number of solutions to

F ∗(c) = 0 with |c| ≤ UC is bounded by O( UC3+ε). Moreover, if n = 4, then the number

of ordinary solutions to F ∗(c) = 0 with |c| ≤ UC is bounded by O( UC1+ε).

Before we can begin with the proof of this lemma, we need an auxiliary result. In

the following we fix ζ ∈ F×
q to be a representative of a non-trivial element in F×

q /F×,2
q .

If char(Fq) > 2 this certainly exists — we may for example pick ζ to be a primitive

root of F×
q .

Lemma 3.5.2. Suppose char(K) > 3. Let m1, . . . ,mn ∈ O be a collection of distinct

square-free polynomials such that each mi is either monic or has leading coefficient

ζ. Then {√m1, . . . ,
√
mn} is a linearly independent set over K.

Proof. We will prove the result by induction on n. The cases 1 ≤ n ≤ 3 can easily be

verified directly, so suppose n ≥ 4. Assume for a contradiction that λ1, . . . ,λn ∈ K

not all zero are such that
n#

k=1

λk

√
mk = 0.

Note that we may assume λi ∕= 0 for all i = 1, . . . , n since otherwise the result would

follow immediately from the induction hypothesis. In particular it is sufficient to

show that there exists some index k with λk = 0. Since n ≥ 3 there exist two

distinct indices i, j such that mi/mj /∈ F×
q . From the n = 3 case it follows that

Ki,j := K(
√
mi,

√
mj) is a Galois extension of degree 2 or 4 over K. In either case
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there exists σ ∈ Gal(Ki,j/K) such that σ(
√
mi) = −√

mi and σ(
√
mj) =

√
mj. We

may lift this to an element σ̃ ∈ Gal(Ks/K) where Ks is the separable closure of K.

Then we find

0 = σ̃

/
n#

k=1

λk

√
mk

0
+

n#

k=1

λk

√
mk = 2λj

√
mj +

#

k ∕=i,j

)λk

√
mk,

where )λk ∈ {0, 2λk}. From the induction hypothesis we get λj = 0, which yields the

desired result as remarked above.

Proof of Lemma 3.5.1. First note that F ∗(c) = 0 if and only if

(F−1
1 c31)

1/2 + · · ·+ (F−1
n c3n)

1/2 = 0, (3.5.1)

for a suitable choice of square roots. Let mk ∈ O be a square-free polynomial, which

is either monic or has leading coefficient ζ. Say i ∈ I(k) if there exists some di ∈ O
such that Fic

3
i = mkd

2
i . From Lemma 3.5.2 we find that (3.5.1) implies

#

i∈I(k)

F−1
i di = 0.

We have c2i | mkd
2
i and consequently ci | di since mk is square-free. Thus there exists

ei ∈ O such that di = ciei. Substituting this into the relation Fic
3
i = mkd

2
i we find

ci = mkF
−1
i e2i and hence di = ciei = mkF

−1
i e3i . Therefore F−1

i di = mkFi

1
ei
Fi

23

and

the preceding display gives
#

i∈I(k)

Fi

!
ei
Fi

"3

= 0. (3.5.2)

We will now estimate the number of solutions e to (3.5.2) such that |e| ≤ UE =W
UC/|mk|. This will then enable us to estimate the number of solutions of (3.5.1).

Note that if #I(k) = 1 then the only solution is given by ei = 0. Using this, Hölder’s

inequality and Hua’s Lemma in this context (cf. [13, Lemma 5.12]) we find

#

*
,

-|e| ≤ UE :
#

i∈I(k)

Fi

!
ei
Fi

"3

= 0

E
F

G ≪

*
+,

+-

1 if #I(k) = 1,
UE2+ε if 2 ≤ #I(k) ≤ 4,
UE#I(k)−2+ε if 5 ≤ #I(k) ≤ 6.

Note that at this point it is crucial to assume char(K) > 3, because the Weyl differ-

encing argument in the proof of Hua’s lemma breaks down otherwise. Therefore for a
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fixed partition
X

j I(kj) = {1, . . . , n} corresponding to {mkj} the number of |c| ≤ UC
satisfying (3.5.1) is bounded above by

.

j

/
UC

|mkj |

0ekj /2+ε

,

where

ekj =

*
+++,

+++-

0, if #I(kj) = 1

2, if 2 ≤ #I(kj) ≤ 4

3, if #I(kj) = 5

4, if #I(kj) = 6.

By considering all possible square-free elements |mkj | ≪ UC, we see that the total

number of solutions of (3.5.1) corresponding to a fixed partition is bounded above by

#

|mkj
|≤ !C

.

j

/
UC

|mkj |

0ekj /2+ε

≪
.

j

UCekj /2+ε,

where we note that mkj = 0 is the only permissible value in the sum above if ekj = 0.

It is easily checked that for any possible partition this is bounded above by O( UC3+ε)

if n = 6. Therefore the total number of solutions to F ∗(c) = 0 with |c| ≤ UC has

the same upper bound. In the case n = 4 one can similarly obtain O( UC1+ε) for

the number of solutions corresponding to any partition, except in the case where

#I(k1) = #I(k2) = 2. But solutions arising from such partitions are precisely the

special solutions. This finishes the proof of the lemma.

3.6 Circle method

As explained in the introduction, we are considering a diagonal cubic form F ∈
O[x1, . . . , xn] of the shape

F (x) =
n#

i=1

Fix
3
i , Fi ∈ O \ {0}.

Recall from (3.2.5) that the associated counting function can be written as

N(w, P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n

$

|θ|<|r|−1 !Q−1

#

c∈On

Sr(c)Ir(θ, c)dθ.

Throughout the parameter Q is chosen in such a way that

|P |3/2 ≤ UQ ≤ q|P |3/2 (3.6.1)
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ensuring that the measure of the set {|θ| < |r|−1 UQ−1} is O(|P |−3) when |r| = UQ. It fol-

lows from Lemma 3.3.2 that Ir(θ, c) vanishes unless |c| < |r||P |−1 max{q,HF |P |3θ}.
Since HF |P |3|θ| ≤ HF |P |3 UQ−1|r|−1 and |P |3 UQ−1|r|−1 ≫ 1, we can truncate the sum

over c in (3.2.5) at |c| ≪ UC, where UC := |P |2 UQ−1.

We now split up N(w, P ) according to the quality of our available estimates into

N(w, P ) = N0(P ) + E1(P ) + E2(P ),

where

N0(P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n

$

|θ|<|r|−1 !Q−1

Sr(0)Ir(θ,0)dθ, (3.6.2)

E1(P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n

$

|θ|<|r|−1 !Q−1

#

c∈On

F ∗(c) ∕=0

Sr(c)Ir(θ, c)dθ, (3.6.3)

E2(P ) = |P |n
#

r monic
|r|≤ !Q

|r|−n

$

|θ|<|r|−1 !Q−1

#

c∈On\{0}
F ∗(c)=0

Sr(c)Ir(θ, c)dθ. (3.6.4)

For n = 4 we will later divide the term E2(P ) into special and ordinary solutions

of F ∗(c) = 0 as defined in Section 3.5. Usually one expects that the main term

in an asymptotic formula for N(w, P ) should come from N0(P ). As we are only

interested in an upper bound for N(w, P ), the contribution from N0(P ) will be rather

straightforward to deal with. Handling the terms E1(P ), E2(P ) turns out to be a

more challenging task and will occupy most of the remainder of our work. For E1(P )

we can make use of the full power of our exponential sum estimates, in particular we

gain an extra saving when averaging Sr(c) over r. This is not possible for E2(P ), but

we shall benefit from the sparsity of c’s such that F ∗(c) = 0, at least for ordinary

solutions when n = 4.

3.6.1 Contribution from N0(P )

For this we write again r = r1r2, where r1 is cube-free and r2 is cube-full. It thus

follows from (3.4.6) and Lemma 3.4.4 with m = 0 that

Sr(c) ≪ |r1|1+n/2+ε|r2|1+2n/3+ε.
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From Lemma 3.3.8 we obtain the estimate Ir(0) ≪ |P |−3+ε. We thus get

N0(P ) ≪ |P |n−3+ε
#

|r1|≤ !Q

|r1|−nSr1(c)
#

|r2|≤ !Q/|r1|

|r2|−nSr2(c)

≪ |P |n−3+ε
#

|r1|≤ !Q

|r1|1−n/2
#

|r2|≤ !Q/|r1|

|r2|1−n/3

≪ |P |n−3+ε,

since there are O(UY 1/3) cube-full r2 with |r2| = UY .

3.6.2 Contribution from E1(P )

We begin with some preparations for the term E1(P ). Let 0 ≤ Y ≤ Q and fix

the absolute value of r to be UY . As in Section 3.4.3, we will also fix a set of indices

T ⊂ {1, . . . , n} of cardinality t, as well as a tuple C = (Ci)i∈T , where 1 ≤ Ci ≤ C and

denote by R(C) the set of vectors c = (c1, . . . , cn) ∈ On such that |ci| = UCi if i ∈ T
and cj = 0 if j ∕∈ T . Let us put C = maxi∈T Ci, so that |c| = UC whenever c ∈ R(C).

We then define E1(R(C), UY ) to be the contribution coming from c ∈ R(C) and

|r| = UY in the definition of E1(P ) given in (3.6.3). Explicitly, this means

E1(R(C), UY ) =
|P |n
UY n

#

c∈R(C)
F ∗(c) ∕=0

#

r monic
|r|=!Y

Sr(c)I!Y (c),

where

I!Y (c) =

$

|θ|<!Y −1 !Q−1

Ir(θ, c)dθ.

The definition of I!Y (c) makes sense by Lemma 3.3.6, which shows that the value of

the double integral in the definition of I!Y (c) only depends on the absolute value of r

for c fixed.

Note that there are Q+1 ≪ |P |ε possibilities for Y and O(Cn) = O(|P |ε) choices
forC. In particular, if we can show that E1(R(C), UY ) ≪ |P |3n/4−3/2+ε holds, then the

same estimate will be true for E1(P ) with a new value of ε > 0. Next we tansform

E1(P ) in such a way that Lemma 3.4.2 and Lemma 3.4.5 are applicable. For this

we write r = b′1b1r2, where r2 is the square-full part of r and b′1b1 is the square-free

part of r. Moreover, if we let S be the set of prime divisors of ∆FF
∗(c), then we

further require that (b1, S) = 1 and each prime ϖ | b′1 satisfies ϖ ∈ S. It then follows
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from (3.4.4) that

E1(R(C), UY ) =

|P |n
UY (n−1)/2

#

c∈R(C)
F ∗(c) ∕=0

I!Y (c)
#

|r2|≤!Y

Sr2(c)

|r2|(n+1)/2

#

|b′1|≤
!Y

|r2|

Sb′1
(c)

|b′1|(n+1)/2

#

|b1|=
!Y

|r2b′1|
(b1,S)=1

Sb1(c)

|b1|(n+1)/2
. (3.6.5)

We can now apply Lemma 3.4.2 to the innermost sum to obtain

#

|b1|=
!Y

|r2b′1|
(b1,S)=1

Sb1(c)

|b1|(n+1)/2
≪ UCε(UY |r2b′1|−1)1/2+ε. (3.6.6)

Moreover, by (3.4.6) and (3.4.4) we also have

#

|b′1|≤
!Y

|r2|

|Sb′1
(c)|

|b′1|n/2+1
≪ |P |ε

#

|b′1|≤!Y /|r2|

|(b′1,∇F ∗(c))|1/2
|b′1|1/2

≪ |P |ε, (3.6.7)

where we used that there at most O((UY |r2|−1|F ∗(c)|)ε) = O(|P |ε) possibilities for

square-free b′1 whose prime divisors are restricted to S with |b′1| ≤ UY |r2|−1. After

inserting (3.6.6) and (3.6.7) into (3.6.5), we see that

E1(R(C), UY ) ≪ |P |n+ε

UY n/2−1

#

c∈R(C)
F ∗(c) ∕=0

|I!Y (c)|
#

|r2|≤!Y

|Sr2(c)|
|r2|n/2+1

.

We can now estimate I!Y (c) with Lemma 3.3.7:

I!Y (c) ≪ UY −1 UQ−1

n.

i=1

min

&!
|P ||c|
UY

"−1/4

,

!
|P ||ci|

UY

"−1/2
'

= UY −1 UQ−1

/
UY

|P |UC

0(n−t)/4 .

i∈T

min

*
,

-

/
|P |UC
UY

0−1/4

,

/
|P | UCi

UY

0−1/2
E
F

G ,

where we used that min

J1
|P |!C
!Y

2−1/4

,
1

|P ||ci|
!Y

2−1/2
K

= (|P |UC UY −1)−1/4 if i ∕∈ T . Denote

the last product above by Π. Then after dividing r2 into q-adic ranges, Lemma 3.4.5

implies

E1(R(C), UY ) ≪ |P |n+ε

UY n/2 UQ

/
UY

|P |UC

0(n−t)/4

Π
#

c∈R(C)
F ∗(c) ∕=0

#

|r2|≤!Y

|Sr2(c)|
|r2|n/2+1

≪ |P |n+ε

UY n/2 UQ

/
UY

|P |UC

0(n−t)/4

UY (n−t)/6Π#R(C).
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From the fact that #R(C) ≪
L

i∈T
UCi we deduce that

#R(C)Π ≪
.

i∈T

min

*
,

-
UCi

/
UY

|P |UC

01/4

,

/
UCi
UY

|P |

01/2
E
F

G

≪ UC t

/
UY

|P |UC

0t/4

min

&
1,

UY
|P |UC

't/4

,

where we used that UCi ≤ UC. Recalling (3.6.1), we therefore have

E1(R(C), UY ) ≪ |P |n−3/2+ε

UY n/2

/
UY

|P |UC

0n/4

UY (n−t)/6 UC t min

&
1,

UY
|P |UC

't/4

.

One easily sees that the expression above is maximal either at t = 0 or t = n. For

t = 0, we get

|P |n−3/2+ε

UY n/2

/
UY

|P |UC

0n/4

UY n/6 = |P |3n/4−3/2+εUY −n/12 UC−n/4

≪ |P |3n/4−3/2+ε

as desired. For t = n, we have

|P |n−3/2+ε

UY n/2

/
UY

|P |UC

0n/4

UCn min

&
1,

UY
UC|P |

'n/4

≪ |P |n/2−3/2+ε UCn/2

≪ |P |3n/4−3/2+ε

since UC ≤ UC ≪ |P |1/2. This finishes our treatment of E1(P ).

3.6.3 Contribution from E2(P ) for ordinary solutions

Now we turn our attention to the term E2(P ). For n = 4 we further divide it into

E2(P ) = Eord
2 (P ) + Espec

2 (P ), where Espec
2 (P ) is restricted to special solutions of

F ∗(c) = 0 in the sense of Section 3.5 and Eord
2 (P ) to ordinary solutions of F ∗(c) = 0.

In this section we deal with E2(P ) for n = 6 and Eord
2 (P ) for n = 4.

We shall again fix the absolute value of r to be UY for some 0 ≤ Y ≤ Q and the

absolute value of c to be UC for some 0 < C ≤ C. We will then consider the sum

E2(Y, C) :=
|P |n
UY n

#

|c|=!C
F ∗(c)=0

#

r monic
|r|=!Y

Sr(c)I!Y (c),
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where the sum over c is restricted to ordinary solutions of F ∗(c) = 0 for n = 4. Once

we have shown E2(Y, C) ≪ |P |3n/4−3/2+ε the same estimate will follow for E2(P ) for

n = 6 and for Eord
2 (P ) for n = 4, because there are only O(|P |ε) possible pairs of Y ’s

and C’s.

Lemma 3.6.1. Let F be a non-singular cubic form in 4 or 6 variables, and let F ∗ be

its dual form. Suppose there exists some η > 0 such that for any UC ≥ 1 the following

bound holds

#{x ∈ On : x is an ordinary solution to F ∗(x) = 0, |x| ≤ UC} ≪ UCn−3+η.

Then we have

E2(P ) ≪ |P |3n/4−3/2+η/2+ε.

Proof. If D = degF ∗, then we see from (3.4.2) and Lemma 3.4.1 that F ∗ has non-

zero monomials of the form Gix
D
i for every i = 1, . . . , n. In particular, if |c| = UC and

F ∗(c) = 0, then there must be at least two indices i ∕= j such that UC ≪ |ci| ≪ |cj| ≪ UC.
Therefore, from Lemma 3.3.7 we deduce

I!Y (c) ≪

UC
|P |2UY

n.

i=1

min

*
,

-

/
UY

|P ||ci|

01/2

,

/
UY

|P |UC

01/4
E
F

G ≪
/

UY
|P |UC

0(n−2)/4

|P |−3. (3.6.8)

Next we deal with the sum Sr(c). Write r = r1r2r3 into coprime monic factors ri,

where r1 is cube-free, r2 is cube-full and each prime divisor of r3 divides
L

Fi.

Let us begin with Sr2(c). Suppose ϖk ‖ r2 and write Hϖ = (ϖk, c). It follows

that c = Hϖc
′ for some c′ ∈ On with (ϖ, c′) = 1. It is again easy to see that any

prime divisor of the coefficients Gi of the top-degree monomials xD
i of F ∗ divides

L
Fi. In particular, if Hϖ ∕= ϖk, then F ∗(c′) = 0 implies that at least two entries of

c′ are coprime to ϖ. On the other hand, if Hϖ = ϖk, then (ϖk, ci) = ϖk for every

i = 1, . . . , n, so that in any case there are always least two distinct indices i ∕= j such

that (ϖk, ci) = (ϖk, cj) = Hϖ. Consequently it follows from Lemma 3.4.4 with m = 2

that

Sr2(c) ≪ |r2|2/3+2n/3+ε|H|1/2,

where H =
L

ϖ|r2 Hϖ divides each entry of c.
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In addition, (3.4.6) and Lemma 3.4.4 give us Sr1(c) ≪ |r1|1+n/2+ε and (3.4.8) tells

us that Sr3(c) ≪ |r3|1+2n/3+ε. To sum up, we have

Sr(c) ≪ |r|ε|r1|1+n/2|r2|2/3+2n/3|r3|1+2n/3|H|1/2.

Let us fix |ri| = UYi, where 0 ≤ Yi ≤ Y and Y1 + Y2 + Y3 = Y . We want to give an

upper bound for

S :=
#

|ri|=!Yi,i=1,2,3

#

|c|= !C
F ∗(c)=0

|Sr(c)|.

Taking into account that the number of available r1 and r3 is O(UY1) and O(|P |ε)
respectively, we see that

S ≪ |P |εUY 2+n/2
1

UY 2/3+2n/3
2

UY 1+2n/3
3

#

|r2|=!Y2

#

H|r2

|H|1/2
#

|c|= !C/|H|
F ∗(c)=0

1

≪ |P |ε UCn−3+η UY 2+n/2
1

UY 2/3+2n/3
2

UY 1+2n/3
3

#

|r2|=!Y2

#

H|r2

|H|7/2−n−η,

where we used the main assumption of the lemma in order to bound the number of

ordinary solutions of F ∗(c) = 0 with |c| = UC/|H| for the second inequality. Since

n ≥ 4 clearly 7/2− n− η ≤ 0 holds and since the number of available r2 is O(UY 1/3
2 ),

it follows that

S ≪ |P |ε UCn−3+η UY 2+n/2
1

UY 1+2n/3
2

UY 1+2n/3
3 ≪ |P |ε UCn−3+η UY 2+n/2, (3.6.9)

because 2 + n/2 ≥ 1 + 2n/3 for n ≤ 6. As there are only O(|P |ε) possibilities for

permissible triples (Y1, Y2, Y3), we deduce from (3.6.8) and (3.6.9) that

E2(Y, UC) ≪ |P |3n/4−5/2+εUY 3/2−n/4 UC3n/4−5/2+η.

In particular, since UC ≪ |P |1/2 and UY ≪ |P |3/2, we thus obtain

E2(Y, C) ≪ |P |3n/4−5/2+ε|P |9/4−3n/8|P |3n/8−5/4+η/2

≪ |P |3n/4−3/2+η/2+ε,

which completes the proof.

At this point our treatment of E2(P ) differs depending on the characteristic of K.

If char(K) > 3, then by virtue of Lemma 3.5.1 we know that the number of

ordinary solutions of the dual form F ∗(c) = 0 such that |c| ≤ UC is bounded by

O(UCn−3+ε). Therefore Lemma 3.6.1 implies

Eord
2 (P ) ≪ |P |3n/4−3/2+ε and E2(P ) ≪ |P |3n/4−3/2+ε,
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for n = 4 and n = 6, respectively. This finishes our treatment of E2(P ) in this case.

If char(K) = 2, then we need to argue differently. We begin by considering the

case when n = 6. According to Lemma 3.4.1 the dual form takes the shape of a

non-singular diagonal cubic form. In particular, we can trivially bound the number

of solutions to F ∗(c) = 0 such that |c| ≤ UC by O(UC6) = O(UCn−3+η), where η = 3.

Therefore, Lemma 3.6.1 gives

E2(P ) ≪ |P |3n/4−3/2+η/2+ε = |P |n−3+η/2+ε.

This, together with our bounds forN0(P ) and E1(P ) established earlier in this section,

shows that

N(P ) ≪ |P |n−3+η/2+ε.

This holds for any non-singular, diagonal cubic form over K when char(K) = 2. In

particular, as a result we can bound the number of solutions to F ∗(c) = 0 with |c| ≤ UC
by O(UCn−3+η/2+ε). Another application of Lemma 3.6.1 yields

E2(P ) ≪ |P |3n/4−3/2+η/4+ε

and we may argue as above to deduce

N(P ) ≪ |P |n−3+η/4+ε.

If we repeat this process k-times, where 2−k+1 ≤ ε we find

E2(P ) ≪ |P |3n/4−3/2+2ε,

which concludes our treatment for E2(P ) in this case.

On the other hand, if n = 4 we can trivially estimate the number of solutions to

F ∗(c) = 0 of bounded height UC by O(UC4) = O(UCn−3+η), where η = 3. Lemma 3.6.1

then yields

E2(P ) ≪ |P |3n/4−3/2+η/2+ε = |P |n−3+1/2+η/2+ε,

which in turn implies

N(P ) ≪ |P |n−3+1/2+η/2+ε.

Repeating this process k-times, where k > 1/ε we thus find

E2(P ) ≪ |P |3n/4−3/2+1/2+2ε = |P |2+2ε.
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3.7 Waring’s problem and weak approximation

Having completed our task for n = 6, we will now apply it to Waring’s problem and

weak approximation for diagonal cubic hypersurfaces of dimension at least 5.

3.7.1 Waring’s problem for n ≥ 7

Recall that J3q[t] is the additive closure of all cubes in O. Given P ∈ J3q[t], we define

B :=
Y
deg(P )

3

Z
+ 1 and the counting function

Rn(P ) := #{x ∈ On : |x| < UB, x3
1 + · · ·+ x3

n = P}.

Our next goal is to deduce Theorem 3.1.4 from our findings. We shall accomplish

this goal with a classical version of the circle method. For α ∈ T, we define

T (α) :=
#

x∈O
|x|< !B

ψ(αx3).

It then follows from (3.2.3) that we can write our counting function as

Rn(P ) =

$

T
T (α)nψ(−αP )dα.

We then define our set of major arcs to be

M :=
H

|r|≤ !B
r monic

H

|a|<|r|
(a,r)=1

{α ∈ T : |rα− a| < UB−2}

and m := T \M constitutes our set of minor arcs. The following lemma is a conse-

quence of [66, Theorem 30].

Lemma 3.7.1. Suppose char(K) ∤ 3 and n ≥ 7. Then there exists δ > 0 such that

for all P ∈ J3q[t] we have

$

M

T (α)nψ(−αP )dα = S(P )σ∞(P ) UBn−3 +O
1
UBn−3−δ

2
,

where S(P ) and σ∞(P ) are the singular series and singular integral associated to P .

Furthermore, they satisfy

1 ≪ S(P )σ∞(P ) ≪ 1.

Remark 3.7.2. In fact, Kubota states Lemma 3.7.1 only for n ≥ 10. However, as

explained by Liu–Wooley in [76, Lemma 5.2], this is a result of an oversight and

Kubota’s argument already works for n ≥ 7.
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We now have
%%%%
$

m

T (α)nψ(−αP )dα

%%%% ≤ sup
α∈m

|T (α)|n−6

$

T
|T (α)|6dα. (3.7.1)

If α ∈ m, then (3.2.2) with UQ = UB implies the existence of a, r ∈ O with r monic

such that |a| < |r| ≤ UB, (a, r) = 1 and |rα − a| < UB−1. As α ∈ m, we must have

|α − a/r| ≥ UB−2|r|−1. Under these circumstances Weyl’s inequality, see [13, Lemma

5.10] for char(K) > 3 and [19, Proposition IV.4] for char(K) = 2, guarantees the

existence of δ > 0 such that

sup
α∈m

|T (α)|n−6 ≪ UB(n−6)(1−δ). (3.7.2)

Since
$

T
|T (α)|6dα = #{x ∈ O6 : |x| < UB, x3

1 + x3
2 + x3

3 = x3
4 + x3

5 + x3
6},

Theorem 3.1.1 implies $

T
|T (α)|6dα ≪ UB3+ε. (3.7.3)

Plugging (3.7.2) and (3.7.3) into (3.7.1) yields

$

m

T (α)nψ(−αP )dα ≪ UB(n−6)(1−δ)+3+ε

= UBn−3−δ(n−6)+ε.

After choosing ε = δ(n− 6)/2, we see that the contribution of the minor arcs is

$

m

T (α)nψ(−αP )dα ≪ UBn−3−δ(n−6)/2.

Since n ≥ 7, combining this with Lemma 3.7.1 therefore completes the proof of

Theorem 3.1.4.

3.7.2 Weak approximation for cubic diagonal hypersurfaces

We will show that weak approximation holds for the diagonal cubic hypersurface

defined by F (x) =
(n

i=1 Fix
3
i if n ≥ 7. Fix x0 ∈ Tn, M ∈ O, b ∈ On and N ∈ Z≥0

such that |b| < |M | and such that N is bounded in terms of M . Define the weight

function )w : Kn
∞ → R via

)w(x) =
&
1 if |x− x0| < UN−1,

0 otherwise.
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Further for P ∈ O we introduce the counting function

N( )w, P ) :=
#

x∈On

F (Mx+b)=0

)w
!
Mx+ b

P

"
.

As usual, we can write this as an integral over an exponential sum

N( )w, P ) =

$

T

)S(α)dα,

where
)S(α) =

#

x∈On

ψ (αF (Mx+ b)) )w
!
Mx+ b

P

"
.

Since F is diagonal we may factorise )S(α) as

)S(α) =
n.

i=1

)Ti(α),

where
)Ti(α) =

#

x∈O
|Mx+bi−x0,i|<|P | !N−1

ψ(αFi(Mx+ bi)
3).

Note that our counting function N( )w, P ) agrees with the function ρM,b(n) and )S(α)
agrees with T (α) in [70, Chapter 4]. In order to show weak approximation for the

variety X = V(F ) ⊂ Pn−1, by the same argument as the one provided in Section 4.9

of [70], it is enough to show the following result.

Theorem 3.7.3. Suppose char(K) > 3. Then there exists some δ > 0 such that

N( )w, P ) = |M |−3SI|P |n−3 +O(|P |n−3−δ),

where S and I are the singular series and the singular integral respectively as defined

in (3.7.5) and (3.7.6).

We tackle this using a traditional circle method argument.

We define the major arcs to be the set M ⊂ T given by

M =
H

r∈O
|r|<|P |1/2
r monic

H

a∈O
|a|<|r|
(a,q)=1

3
α ∈ T : |rα− a| < H−1

F |M |−3|r||P |−5/2
4
,

and we take the minor arcs to be the complement m = T \M.

92



In this context, provided char(K) > 3, Weyl’s inequality [70, Lemma 4.3.6] tells

us that

|)Ti(α)| ≪ |P |1+ε

!
|P |+ |r|+ |P |3|rα− a|

|P |3 +
1

|r|+ |P |3|rα− a|

"1/4

for i = 1, . . . , n if a, r ∈ O are such that |a| < |r|, r monic and (a, r) = 1. Using (3.2.2)

and the definition of the minor arcs, a similar argument that handed us (3.7.2) gives

sup
α∈m

%%% )Ti(α)
%%% ≪ |P |7/8+ε, (3.7.4)

for any ε > 0. We are now ready to finish our treatment of the minor arcs. If n ≥ 7

we obtain

$

m

|)S(α)|dα =

$

m

%%%%%

n.

i=1

)Ti(α)

%%%%% dα ≪ sup
α∈m

%%% )T7(α) · · · )Tn(α)
%%%
$

T

%%%%%

6.

i=1

)Ti(α)

%%%%% dα.

The integral can be dealt with as follows. By Hölder’s inequality we find

$

m

%%%%%

6.

i=1

)Ti(α)

%%%%% dα ≤
6.

i=1

!$

T
|)Ti(α)|6dα

"1/6

.

Now the last quantity is equal to

6.

i=1

#

&
x ∈ O6 : xj ≡ bi modM, |xj/P − x0,i| < UN−1, for all j,

3#

j=1

x3
j =

6#

j=4

x3
j

'1/6

,

which in turn is bounded by

6.

i=1

#{x ∈ O6 : |x| < |x0||P |, x3
1 + x3

2 + x3
3 = x3

4 + x3
5 + x3

6}1/6,

if |P | is sufficiently large. An application of Theorem 3.1.1 therefore yields

$

T

%%%%%

6.

i=1

)Ti(α)

%%%%% dα ≪ |P |3+ε.

Once combined with (3.7.4) we thus obtain
$

m

|)S(α)|dα ≪ |P |n−3−(n−6)/8+ε

for any ε > 0, which is satisfactory if n ≥ 7. We now turn to the major arcs. Given

a, r ∈ O write

)Sr(a) :=
#

|x|<|r|

ψ

!
aF (Mx+ b)

r

"
.
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For any Y ∈ R we define the truncated singular series

S(UY ) :=
#

|r|<!Y
r monic

#

|a|<|r|
(a,r)=1

|r|−n )Sr(a),

and the truncated singular integral to be

I(UY ) =

$

|γ|<H−1
F

!Y
I(γ)dγ,

where

I(γ) =

$

Tn

ψ(γF (x)) )w(x)dx.

Then from (4.6.30) in [70] it follows that we have
$

M

)S(α)dα = |M |−3S(|P |1/2)I(|P |1/2)|P |n−3.

It remains to study the convergence of the singular integral and singular series. In

order to handle the singular series we will need upper bounds for )Sr(a). First, we

record the following multiplicative property, which is shown in [70, Lemma 4.7.2]. If

r1, r2 ∈ O are coprime then

)Sr1r2(a) = )Sr1(a1))Sr2(a2),

where ai ∈ O are such that a1 ≡ ar̃2 mod r1 and a2 ≡ ar̃1 mod r2, where r̃1, r̃2

denote the multiplicative inverses modulo r2, r1, respectively. Thus, from (3.4.8) in

combination with the divisor estimate, it follows that we have

)Sr(a) ≪ |r|2n/3+ε,

where the constant may depend on M, b and ε.

Using this we see that

#

|r|=!Y
r monic

#

|a|<|r|
(a,r)=1

|r|−n
%%% )Sr(a)

%%% ≪ UY (2−n/3+ε).

Since n ≥ 7 we deduce absolute convergence of the series

S =
#

r monic

#

|a|<|r|
(a,r)=1

|r|−n )Sr(a), (3.7.5)

which is the singular series. Moreover choosing positive ε < (n− 6)/6 we find

S−S(|P |1/2) ≪ |P |1−n/6+ε,
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if n ≥ 7 upon redefining ε. We turn to the singular integral. Let x0 ∈ K∞ be a

non-singular point of X ⊂ Pn−1. In [17] it is shown in Lemma 7.5 and the paragraphs

preceding it that

I(UY ) = I( UN/|∇F (x0)|) =
1

|∇F (x0)| UNn−1

whenever UY ≥ UN/|∇F (x0)|. Thus clearly lim!Y→∞ I(UY ) exists and is equal to

I := lim
!Y→∞

I(UY ) =
1

|∇F (x0)| UNn−1
. (3.7.6)

We conclude that

N( )w, P ) = |M |−3SI|P |n−3 +O(|P |n−3−1/8+ε),

as desired.

3.8 Special solutions and the case n = 4

In this section we will concern ourselves with understanding how the special solutions

of F ∗(c) = 0 in the case n = 4 relate to the solutions of F (x) = 0 on rational lines.

The goal of this section is to prove the following lemma, from which Theorem 3.1.2

immediately follows.

Lemma 3.8.1. For any ε > 0 the following holds

|P |4
#

r monic
|r|≤ !Q

|r|−4

$

|θ|<|r|−1 !Q−1

#

c

spec
Sr(c)Ir(θ, c)dθ =

#

x

line
w(P−1x) +O(|P |3/2+ε), (3.8.1)

where
(spec

c denotes the sum over the special solutions c ∈ O4 \ {0} of F ∗(c) = 0

such that

(F−1
1 c31)

1/2 ± (F−1
2 c32)

1/2 = (F−1
3 c33)

1/2 ± (F−1
4 c34)

1/2 = 0 (3.8.2)

and
(line

x denotes the sum over points x ∈ O4 satisfying

F1x
3
1 + F2x

3
2 = F3x

3
3 + F4x

3
4 = 0. (3.8.3)

For notational convenience, this lemma only considers the case of lines such that

(i, j, k, l) = (1, 2, 3, 4) in the language of Theorem 3.1.2. By the symmetry of the

situation at hand it is clear that the result follows for any permutation of indices.
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3.8.1 Analysis of special solutions

We begin by noting that with an error of O(|P |3/2+ε) we may include tuples c ∈
O4 \ {0} satisfying (3.8.2) such that ci = 0 for at least one i in the sum appearing

in the left hand side of (3.8.1). Write
("spec

c for the sum over such tuples c. Note for

such c Lemma 3.3.7 gives

Ir(c) ≪ |P |−5/2|c|−1,

for any r ∈ O. Also note that Ir(θ, c) = 0 if |c| ≫ |P |1/2. From (3.4.6) and

Lemma 3.4.5, where we apply the second part with m = 0, we obtain

Sr(c) ≪ |r|ε|r1|3|r2|4−1/3,

where r1 denotes the cube-free and r2 the cube-full part of r. Hence

#

r monic
|r|≤ !Q

|r|−4Sr(c) ≪ |P |ε
;

=
#

|r1|≤ !Q

|r1|−1

>

@

;

=
#

|r2|≤ !Q

|r2|−1/3

>

@ ≪ |P |ε,

since the number of cube-full r2 of a fixed absolute value of UY , say, is at most P (UY 1/3).

To summarise, we found that the contribution to the left hand side of (3.8.1) is at

most

|P |4
#

r monic
|r|≤ !Q

|r|−4
#

c

"spec
Sr(c)Ir(c) ≪ |P |3/2+ε

#

0<|c|≤|P |1/2

"spec
|c|−1 ≪ |P |3/2+ε,

where the last estimate follows since there are only O( UC) vectors c of absolute value
UC, say, appearing in

("spec
c .

We may assume that both F1/F2 and F3/F4 are cubes in K. Otherwise the

conclusion of the lemma is easily seen to be true, since there are no special solutions

and O(|P |) points x satisfying (3.8.3). Therefore there exist at most O(1) many

different possible ρi ∈ O with (ρ1, ρ2) = (ρ3, ρ4) = 1 and λ, µ ∈ O such that

F1 = λρ31, F2 = λρ32, F3 = µρ33, F4 = µρ34.

The different possibilites for ρi come from the potential existence of non-trivial third

roots of unity in K. For a choice of ρi ∈ O if we write

c1 = ρ1d1, c2 = ρ2d1, c3 = ρ3d2, c4 = ρ4d2,
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then as we run through the possible choices of ρi and as d runs through O2, then c

runs through solutions of F ∗(c) = 0 satisfying (3.8.2) . Given a choice of ρi there

exist ρ′i ∈ O such that

ρ1ρ
′
2 − ρ2ρ

′
1 = ρ3ρ

′
4 − ρ4ρ

′
3 = 1.

Then the change of variables (x1, x2, x3, x4) -→ (y1, y2, z1, z2) given by

;

<<=

y1
z1
y2
z2

>

??@ =

;

<<=

ρ1 ρ2 0 0
ρ′1 ρ′2 0 0
0 0 ρ3 ρ4
0 0 ρ′3 ρ′4

>

??@

;

<<=

x1

x2

x3

x4

>

??@

is unimodular. Moreover the inverse of this is easily seen to be

;

<<=

x1

x2

x3

x4

>

??@ =

;

<<=

ρ′2 −ρ2 0 0
−ρ′1 ρ1 0 0
0 0 ρ′4 −ρ4
0 0 −ρ′3 ρ3

>

??@

;

<<=

y1
z1
y2
z2

>

??@ .

We will write x(y, z) for x arising from this linear transformation. An easy calculation

reveals

F (x(y, z)) = y1Q1(y1, z1) + y2Q2(y2, z2) =: )F (y, z),

where Qi are the quadratic forms given by

Q1(y, z) =
λ

4

9
y2 + 3{2ρ1ρ2z − (ρ1ρ

′
2 + ρ′1ρ2)y}2

:
,

and

Q2(y, z) =
µ

4

9
y2 + 3{2ρ3ρ4z − (ρ3ρ

′
4 + ρ′3ρ4)y}2

:
.

With this notation we then find

Sr(c) =
#′

|a|<|r|

#

|g|,|h|<|r|

ψ

/
a )F (g,h) + g · d

r

0
,

and

Ir(θ, c) =

$

K2
∞

$

K2
∞

w(x(y, z))ψ

!
θP 3 )F (y, z) + P

y · d
r

"
dydz.

We make the change of variables y = P−1(g + rv) in the integral to obtain

Ir(θ, c) = |r|2|P |−2

$

K2
∞

$

K2
∞

w(x(P−1(g + rv), z))

× ψ

!
θP 3 )F (P−1(g + rv), z) +

g · d
r

"
ψ(v · d)dvdz.
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Hence we find

#

c

spec
Sr(c)Ir(θ, c) = |r|2|P |−2

#

ρi

#

|g|<|r|

$

K2
∞

#

d∈O2

$

K2
∞

fg,z(θ,v)ψ(v · d)dvdz,

where
(

ρi
sums over the finitely many possible choices for ρi ∈ O as above and where

fg,z(θ,v) =
#′

|a|<|r|

#

|h|<|r|

w(x(P−1(g+rv), z))ψ

/
θP 3 )F (P−1(g + rv), z) +

a )F (g,h)

r

0
.

Poisson summation (3.2.4) yields

#

d∈O2

$

K2
∞

fg,z(θ,v)ψ(v · d)dv =
#

s∈O2

fg,z(θ, s).

We make the change of variables j = g + rs and the substitution z = P−1t in order

to obtain #

c

spec
Sr(c)Ir(c) = |r|2|P |−4

#

ρi

#

j∈O2

Tr(j)Jr(j, θ),

where

Tr(j) =
#′

|a|<|r|

#

|h|<|r|

ψ

/
a )F (j,h)

r

0
,

and

Jr(j, θ) =

$

K2
∞

w(P−1x(j, t))ψ(θ )F (j, t))dt.

Further we will write

Jr(j) :=

$

|θ|<|r|−1 !Q−1

Jr(j, θ)dθ.

We can summarise our findings until now as follows.

Lemma 3.8.2. We have

|P |4
#

r monic
|r|≤ !Q

|r|−4
#

c

spec
Sr(c)Ir(c) =

#

ρi

#

r monic
|r|≤ !Q

|r|−2
#

j∈O2

Tr(j)Jr(j) + O(|P |3/2+ε).

(3.8.4)

We now follow a strategy that is very similar to the usual delta method. The

main term will come from j = 0 and it then remains to estimate Tr(j) and Jr(j, θ)

for j ∕= 0.
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3.8.2 The main term

Lemma 3.8.3. For all P ∈ O \ {0} we have

#

ρi

#

r monic
|r|≤ !Q

|r|−2Tr(0)Jr(0) =
#

x

line
w(P−1x) +O(1).

Proof. Since )F (0, z) = 0 for all z ∈ K2
∞ we have

Tr(0) =
#′

|a|<|r|

|r|2,

and

Jr(0, θ) =

$

K2
∞

w(P−1x(0, t))dt.

Therefore, the term arising from j = 0 on the right hand side of (3.8.4) is equal to

#

ρi

$

K2
∞

w(P−1x(0, t))dt
#

r monic
|r|≤ !Q

#′

|a|<|r|

$

|θ|<|r|−1 !Q−1

dθ.

But from Dirichlet’s approximation theorem (3.2.2) we see

#

r monic
|r|≤ !Q

#′

|a|<|r|

$

|θ|<|r|−1 !Q−1

dθ = µ (T) = 1.

Further, it is easily seen that

#

x

line
w(P−1x) =

#

ρi

#

z∈O2

w(P−1x(0, z)).

But since K2
∞ =

X
z∈O2(z + T) we have

$

K2
∞

w(P−1x(0, t))dt =
#

z∈O2

$

T2

w(P−1x(0, z +α))dα.

If z ∈ O \ {0} then |x(0, z +α)| = |x(0, z)| for all α ∈ T2 and so
$

T2

w(P−1x(0, z +α))dα = w(P−1x(0, z))

for such z. We also clearly have
Q
T2 w(P

−1x(0,α))dα ≪ 1 and so

$

K2
∞

w(P−1x(0, t))dt =
#

z∈O2

w(P−1x(0, z)) +O(1),

whence the Lemma follows.
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3.8.3 Estimating the error term

In this section we make a choice of ρ1, . . . , ρ4 and bound the contribution made from

terms such that j ∕= 0. Once we showed the desired bound for a particular choice,

Lemma 3.8.1 will follow since there are only O(1) different possibilities for ρi.

We begin by bounding Jr(j) where j ∕= 0. Note first that w(P−1(x(j, t))) = 0 if

j ≫ |P | and so Jr(j) = 0 if j ≫ |P |. Further this allows us to exchange the integral

over θ with the sum over j in (3.8.4). Note further from (3.2.3) that we have

$

|θ|<|r|−1 !Q−1

ψ(θ )F (j, t))dθ =

&
|r|−1 UQ−1, if | )F (j, t)| < |r| UQ
0, otherwise.

Thus we find

Jr(j) ≪ µ(j, r)|r|−1 UQ−1,

where

µ(j, r) = meas
15

t ∈ K2
∞ : |t| ≪ |P |, | )F (j, t)| < |r| UQ

62
.

To estimate this measure we simplify the expressions involved by making the substi-

tution

u1 = 2ρ1ρ2t1 − (ρ1ρ
′
2 + ρ′1ρ2)j1, u2 = 2ρ3ρ4t2 − (ρ3ρ

′
4 + ρ′3ρ4)j2.

After this linear change of variables )F takes the form

)G(j,u) = λj1(3u
2
1 + j21) + µj2(3u

2
2 + j22).

Since the change of variables is linear of constant, non-vanishing Jacobian it is suffi-

cient to consider

µ #G(j, r) := meas
15

u ∈ K2
∞ : |u| ≪ |P |, | )G(j,u)| < |r| UQ

62
.

If j2 = 0 then using Lemma 3.3.5 it is easily seen that

µ #G(j, r) ≪ |P |
/
|r| UQ
|j1|

01/2

,

and similarly if j1 = 0. So assume j1j2 ∕= 0. In this case, note that we have

µ #G(u, r) ≪
logq |P |#

k,m=−∞

#

U1=qk

U2=qm

µ #G(j, r, U1, U2),
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where

µ #G(j, r, U1, U2) = meas
15

u ∈ K2
∞ : |u1| = U1, |u2| = U2,

%%% )G(j,u)
%%% < |r| UQ

62
.

In the case where U1 or U2 < |P |−1 we can use the trivial bound O(U1U2) for

µ #G(j, r, U1, U2) to deduce that the total contribution arising from such U1, U2 is

bounded by O(1). For the remaining contribution note if u satisfies )G(j,u) = 0

then u2
1 = A+O(|r| UQ/|j1|) for some function A(j1, j2, u2) and thus u1 lies in a subset

of measure O(|r| UQ/(U1|j1|)). Therefore µ #G(j, r, U1, U2) ≪ U2|r| UQ/(U1|j1|). Similarly,

µ #G(j, r, U1, U2) ≪ U1|r| UQ/(U2|j2|). Putting this together yields

µ #G(j, r, U1, U2) ≪ |r| UQ|j1j2|−1/2.

Since there are |P |ε pairs U1, U2 such that |P |−1 ≤ U1, U2 ≤ |P | we deduce

µ(j, r) ≪ 1 + |P |ε|r| UQ|j1j2|−1/2.

We summarise our observations in the following lemma.

Lemma 3.8.4. Let j ∈ O2 \ {0} be such that |j| ≪ |P |. If j1j2 ∕= 0, then we have

Jr(j) ≪ |P |ε|j1j2|−1/2.

If j2 = 0, then we have

Jr(j) ≪
|P |1/4

(|j1||r|)1/2
.

Next, we turn to estimating the exponential sums Tr(j). Via the Chinese remain-

der theorem we have for all r1, r2 ∈ O such that (r1, r2) = 1 that

Tr1r2(j) = Tr1(j)Tr2(j). (3.8.5)

Thus we may put our focus on Tr(j) where r = ϖk for irreducible ϖ ∈ O. Note that
%%%%%%

#

|h|<|r|

ψ

/
a )F (j,h)

r

0%%%%%%
≤

%%%%%%

#

|h1|<|r|

ψ

!
aj1Q1(j1, h1)

r

"%%%%%%

%%%%%%

#

|h2|<|r|

ψ

!
aj2Q2(j2, h2)

r

"%%%%%%
.

A simple Weyl differencing type of argument further yields
%%%%%%

#

|h1|<|r|

ψ

!
aj1Q1(j1, h1)

r

"%%%%%%

2

=
#

|h|,|h1|<|r|

ψ

!
aj1(Q1(j1, h+ h1)−Q1(j1, h1))

r

"

≪
#

|h|<|r|

%%%%%%

#

|h1|<|r|

ψ

!
6aλj1ρ

2
1ρ

2
2j1h1h

r

"%%%%%%

= |r|#{h ∈ O : |h| < |r|, r | 6aλj1ρ21ρ22h}

≪ |r| |(r, 6aλj1ρ21ρ22h)|

≪ |r| |(r, j1)|.

101



We can find a similar estimate for the sum over h2, which gives

Tr(j) ≪ |r|2|(r, j1)|1/2|(r, j2)|1/2.

This will be sufficient for our purposes if r is cube-full. However, for r = ϖ or r = ϖ2

we can do better. We begin by considering the case when r = ϖ and we will further

assume ϖ ∤ (j1, j2). Note first that

#′

|a|<|ϖ|

ψ

/
a )F (j,h)

ϖ

0
=

#

|a|<|ϖ|
a ∕=0

ψ

/
a )F (j,h)

ϖ

0
=

&
|ϖ|− 1, if ϖ | )F (j,h),

−1, otherwise.

Therefore we get

Tϖ(j) = (|ϖ|− 1)#
5
|h| < |ϖ| : ϖ | )F (j,h)

6
−#

5
|h| < |ϖ| : ϖ ∤ )F (j,h)

6

= |ϖ|#
5
|h| < |ϖ| : ϖ | )F (j,h)

6
− |ϖ|2.

The equation )F (j,h) ≡ 0 mod ϖ may be regarded as Q(h1, h2, 1) for a ternary

quadratic form Q(x, y, z). The quadratic form Q is non-singular in O/ϖ if ϖ ∤
j1j2F0(j), where F0(j) = λj31 + µj32 . Since ϖ is irreducible we have O/ϖ ∼= F|ϖ| and

so if ϖ ∤ j1j2F0(j) then Theorem 6.26 in [74] gives

#
5
|h| < |ϖ| : ϖ | )F (j,h)

6
= |ϖ|+O(1).

We deduce Tϖ(j) ≪ |ϖ| in this case. Since ϖ ∤ (j1, j2) the form Q does not vanish

identically in O/ϖ and so we have

#
5
|h| < |ϖ| : ϖ | )F (j,h)

6
≪ |ϖ|,

whence Tϖ(j) ≪ |ϖ|2 if ϖ | j1j2F0(j).

We now turn to analysing Tϖ2(j). We assume ϖ ∤ λµ
L5

i=1 ρi. This condition

affects only finitely many primes ϖ and so the estimates that we obtain under this

condition hold in general by adjusting the resulting constant. Put

k1 = 2ρ1ρ2h1 − (ρ1ρ
′
2 + ρ′1ρ2)j1, and k2 = 2ρ3ρ4h2 − (ρ3ρ

′
4 + ρ′3ρ4)j2,

so that after this change of variables we have

)F (j,k(h)) =
1

4
F0(j) +

3

4
(λj1k

2
1 + µj2k

2
2).
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By our assumption on ϖ, as h ranges through values |h| < |ϖ2| we also have that k

ranges through |k| < |ϖ2| under this change of variables. Hence we obtain

Tϖ2(j) =
#′

|a|<|ϖ|2
ψ

!
aF0(j)

4ϖ2

" #

|k|<|ϖ|2
ψ

!
3a(λj1k

2
1 + µj2k

2
2)

4ϖ2

"
.

We can write k = u+ϖv where |u|, |v| < |ϖ|. Then

#

|ki|<|ϖ|2
ψ

!
3aλjik

2
i

4ϖ2

"
=

#

|ui|<|ϖ|

ψ

!
3aλjiu

2
i

4ϖ2

" #

|vi|<|ϖ|

ψ

!
3aλjiuivi

4ϖ2

"

= |ϖ|
#

|ui|<|ϖ|
ϖ|jiui

ψ

!
3aλjiu

2
i

2ϖ

"
,

for i = 1, 2 since ϖ ∤ aλ. If ϖ ∤ j1j2 the above expression is just |ϖ| and so we get in

this case

Tϖ2(j) = |ϖ|2
#′

|a|<|ϖ|2
ψ

!
aF0(j)

4ϖ2

"
=

*
+,

+-

0, if ϖ ∤ F0(j),

−|ϖ|3 if ϖ ‖ F0(j),

|ϖ|4 − |ϖ|3 if ϖ2 | F0(j),

and so in particular

Tϖ2(j) ≪ |ϖ|2|(ϖ2, F0(j))|.

If, on the other hand, ϖ | j1 we claim that Tϖ2(j) = 0. Due to the standing

assumption ϖ ∤ (j1, j2) it follows that ϖ ∤ j2 and thus the above gives

Tϖ2(j) = |ϖ|2
#

|u1|<|ϖ|

#′

|a|<|ϖ|2
ψ

!
a(F0(j) + 3λj1u

2
1)

4ϖ2

"
.

This vanishes unless ϖ | F0(j) + 3λj1u
2
1. But since ϖ | j1 this would imply ϖ | µj32

and hence ϖ | j2. As we excluded this case by assumption the claim follows. We

summarise our analysis of Tr(j) in a lemma.

Lemma 3.8.5. Let j ∈ O2 \ {0}. Then we have

Tr(j) ≪ |r|2|(r, j1)|1/2|(r, j2)|1/2

for any r ∈ O \ {0}. Further, if r = ϖ or r = ϖ2 for some irreducible ϖ ∈ O and if

ϖ ∤ (j1, j2) then we get

Tr(j) ≪ |r||(r, j1j2F0(j))|.
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We are now finally in a position to give a sufficiently good upper bound for the

right hand side of (3.8.4) and thus complete the proof of Theorem 3.1.2. For this we

fix a choice of ρi and estimate the sum

S :=
#

r monic
|r|≤ !Q

|r|−2
#

j∈O2

|j|≪|P |

Tr(j)Jr(j).

Since there are O(1) possibilities for the ρi’s, this will be enough to show S ≪ |P |3/2+ε.

We begin with the case when j1j2F0(j) ∕= 0. In this situation Lemma 3.8.4 yields

S ≪ |P |ε
#

j

|j1j2|−1/2
#

r monic
|r|≤ !Q

|r|−2|Tr(j)|.

Next we write r = r1r2 where r1, r2 monic are coprime, and where r1 is cube-free and

ϖ | r1 implies ϖ ∤ (j1, j2). We can then factor Tr(j) by (3.8.5) to obtain

S ≪ |P |ε
#

j

|j1j2|−1/2
#

r2

|r2|−2|Tr2(j)|
#

r1

|r1|−2|Tr1(j)|

≪ |P |ε
#

j

|j1j2|−1/2
#

r2

|r2|−2|Tr2(j)|
#

r1

|(r1, j1j2F0(j))|
|r1|

,

where we used Lemma 3.8.5 to estimate Tr1(j). For the inner sum we have

#

r1

|(r1, j1j2F0(j))|
|r1|

≪ |P |ε|j1j2F0(j)|ε ≪ |P |2ε,

since we assume j1j2F0(j) ∕= 0 and in general it holds UY −1
(

|r|=!Y |(G, r)| ≪ (|G|UY )ε

for any Y ∈ Z≥0 and G ∈ O.

Note that if ϖ ‖ r2 or ϖ
2 ‖ r2, then ϖ | (j1, j2). In particular, if we put η(r2) =

L
ϖ,

where the product is over all ϖ | r2 such that ϖ ‖ r2 or ϖ2 ‖ r2, then we have

j = η(r2)k for some |k| ≪ |P |/|η(r2)|. It follows that

S ≪ |P |ε
#

r monic
|r|≤ !Q

|η(r)|−1
#

|k|≪|P |/|η(r)|
k1k2 ∕=0

|(r, η(r)k1)|1/2|(r, η(r)k2)|1/2
|k1k2|1/2

≪ |P |ε
#

r monic
|r|≤ !Q

#

|k|≪|P |/|η(r)|
k1k2 ∕=0

|(r, k1)|1/2|(r, k2)|1/2
|k1k2|1/2

.
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The sum over k above factors into (
(

k |(r, k)|1/2|k|−1/2)2, which we can estimate as

#

|k|≪|P |/|η(r)|
k ∕=0

|(r, k)|1/2
|k|1/2 ≪

#

d|r

|d|1/2
#

|k′|≪|P |/|η(r)d|
(r,k′)=1

|k′d|−1/2

≪
#

d|r

|P |1/2|η(r)|−1/2.

Since
(

d|r 1 ≪ |r|ε ≪ |P |ε, we thus arrive at

S ≪ |P |1+ε
#

|r|≤ !Q

|η(r)|−1.

Next we write r = st21t3, where s, t1, t3 are pairwise coprime and monic, t3 is cube-full

and s is square-free. With this notation we clearly have η(r) = st1 and there are at

most O( UQ1/3) = O(|P |1/2) available t3, so that

S ≪ |P |3/2+ε
#

|s|≤ !Q

|s|−1
#

|t1|≤( !Q/|s|)1/2

|t1|−1

≪ |P |3/2+ε
#

|s|≤ !Q

|s|−1( UQ/|s|)ε/2

≪ |P |3/2+ε UQ3ε/2.

With a new choice of ε this estimate suffices for our purpose.

Next we consider the case when j1j2F0(j) = 0. If j1j2 ∕= 0 but F0(j) = 0, then

there exist some j, νi ∈ O such that ji = νij. The number of possible νi can be

estimated by O(1). In this case Lemma 3.8.4 and Lemma 3.8.5 yield

Jr(j) ≪ |P |ε|j|−1, and Tr(j) ≪ |r|2|(r, j)|.

The total contribution to S of such j is therefore bounded by

|P |ε
#

r monic
|r|≤ !Q

#

j≪P
j ∕=0

|j|−1|(r, j)| ≪ |P |3/2+ε,

which is sufficient.

Finally we need to consider the case when one of ji = 0. We may assume j2 = 0

since the other case is analogous. Write j1 = j, then the second part of Lemma 3.8.4

gives

Jr(j) ≪
|P |1/4

(|j||r|)1/2
.
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Combining the estimates in Lemma 3.8.5 also gives

Tr(j) ≪ |r|5/2+ε|(j, r)|m(r)−1/2,

where m(r) =
L

ϖ‖r ϖ. The contribution to S of j under consideration is therefore

bounded by

|P |1/4
#

r monic
|r|≤ !Q

#

j≪P
j ∕=0

|(j, r)||j|−1/2m(r)−1/2.

Since
(

0<j≪P |(j, r)||j|−1/2 ≪ qε|P |1/2+ε we get an overall bound

|P |3/4+ε
#

r monic
|r|≤ !Q

m(r)−1/2.

Write r = r1r2 where r1 is square-free and r2 is square-full. Note that then m(r) = r1

and there are at most O

!1
UQ/|r1|

21/2
"

available r2. Hence

#

r monic
|r|≤ !Q

m(r)−1/2 ≪ UQ1/2
#

r1 monic
|r1|≤ !Q

|r1|−1 ≪ |P |3/4+ε,

and so the desired bound of O(|P |3/2+ε) contributed from j’s such that either j1 = 0

or j2 = 0 follows. Altogether, we have shown

S ≪ |P |3/2+ε,

which completes the proof of Lemma 3.8.1.
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Chapter 4

Systems of forms of small bidegree

4.1 Introduction

Studying the number of rational solutions of bounded height on a system of equations

is a fundamental tool in order to understand the distribution of rational points on

varieties. A longstanding result by Birch [9] establishes an asymptotic formula for

the number of integer points of bounded height that are solutions to a system of

homogeneous forms of the same degree in a general setting, provided the number

of variables is sufficiently big relative to the singular locus of the variety defined by

the system of equations. This was recently improved upon by Rydin Myerson [94,

95] whenever the degree is 2 or 3. These results may be used in order to prove

Manin’s conjecture for certain Fano varieties, which arise as complete intersections in

projective space.

Analogous to Birch’s result, Schindler studied systems of bihomogeneous forms [98].

Using the hyperbola method, Schindler established Manin’s conjecture for certain

bihomogeneous varieties as a result [100]. The aim of this chapter is to improve

Schindler’s result by applying the ideas of Rydin Myerson to the bihomogeneous

setting.

Consider a system of bihomogeneous forms F (x,y) = (F1(x,y), . . . , FR(x,y))

with integer coefficients in variables x = (x1, . . . , xn1) and y = (y1, . . . , yn2). We

assume that all of the forms have the same bidegree, which we denote by (d1, d2) for

nonnegative integers d1, d2. By this we mean that for any scalars λ, µ ∈ C we have

Fi(λx, µy) = λd1µd2Fi(x,y),

for all i = 1, . . . , R. This system defines a biprojective variety V ⊂ Pn1−1
Q × Pn2−1

Q .

One can also interpret the system in the affine variables (x1, . . . , xn1 , y1, . . . , yn2) and

thus F (x,y) also defines an affine variety which we will denote by V0 ⊂ An1+n2
Q .
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We are interested in studying the set of integer solutions to this system of biho-

mogeneous equations. Consider two boxes Bi ⊂ [−1, 1]ni where each edge is of side

length at most one and they are all parallel to the coordinate axes. In order to study

the questions from an analytic point of view, for P1, P2 > 1 we define the following

counting function

N(P1, P2) = #{(x,y) ∈ Zn1 × Zn2 | x/P1 ∈ B1, y/P2 ∈ B2, F (x,y) = 0}.

Generalising the work of Birch [9], Schindler [98] used the circle method to achieve

an asymptotic formula for N(P1, P2) as P1, P2 → ∞ provided certain conditions on

the number of variables are satisfied, as we shall describe below. Before we can state

Schindler’s result, consider the varieties V ∗
1 and V ∗

2 in An1+n2
Q to be defined by the

equations

rank

!
∂Fi

∂xj

"

i,j

< R, and rank

!
∂Fi

∂yj

"

i,j

< R

respectively. Assume that V0 is a complete intersection, which means that dimV0 =

n1 + n2 −R. Write b = max
5

log(P1)
log(P2)

, 1
6
and u = max

5
log(P2)
log(P1)

, 1
6
. If ni > R and

n1 + n2 − dimV ∗
i > 2d1+d2−2 max{R(R + 1)(d1 + d2 − 1), R(bd1 + ud2)}, (4.1.1)

is satisfied, for i = 1, 2 then Schindler showed the asymptotic formula

N(P1, P2) = σP n1−Rd1
1 P n2−Rd2

2 +O
9
P n1−Rd1
1 P n2−Rd2

2 min{P1, P2}−δ
:
, (4.1.2)

for some δ > 0 and where σ is positive if the system F (x,y) = 0 has a smooth p-adic

zero for all primes p, and the variety V0 has a smooth real zero in B1 × B2.

In the case when the equations F1(x,y), . . . , FR(x,y) define a smooth complete

intersection V , and where the bidegree is (1, 1) or (2, 1) the goal of this chapter is to

improve the restriction on the number of variables (4.1.1) and still show (4.1.2).

The result by Schindler generalises a well-known result by Birch [9], which deals

with systems of homogeneous equations; Let B ⊂ [−1, 1]n be a box containing the

origin with side lengths at most 1 and edges parallel to the coordinate axes. Given

homogeneous equations G1(x), . . . , GR(x) with rational coefficients of common degree

d define the counting function

N(P ) = #{x ∈ Zn : x/P ∈ B, G1(x) = · · · = GR(x) = 0}.

Write V ∗ ⊂ An
Q for the variety defined by

rank

!
∂Gi

∂xj

"

i,j

< R,
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commonly referred to as the Birch singular locus. Assuming that G1, . . . , GR define

a complete intersection X ⊂ Pn−1
Q and that the number of variables satisfies

n− dimV ∗ > R(R + 1)(d− 1)2d−1, (4.1.3)

then Birch showed

N(P ) = σ̃P n−dR +O(P n−dR−ε), (4.1.4)

where σ̃ > 0 if the system G(x) has a smooth p-adic zero for all primes p and the

variety X has a smooth real zero in B.
Building on ideas of Müller [79, 80] on quadratic Diophantine inequalities, Rydin

Myerson improved Birch’s theorem. He weakened the assumption on the number of

variables in the cases d = 2, 3 [94, 95] whenever R is reasonably large. Assuming that

X ⊂ Pn−1
Q defines a complete intersection, he was able to replace the condition in

(4.1.3) by

n− σR > d2dR, (4.1.5)

where

σR = 1 + max
β∈RR\{0}

dimSingV(β ·G),

and where V(β · G) is the pencil defined by
(R

i=1 βiG(x) in Pn−1
Q . We note at this

point that several other authors have replaced the Birch singular locus condition with

weaker assumptions, such as Schindler [99] and Dietmann [33] who also considered

dimensions of pencils, and very recently Yamagishi [119] who replaced the Birch

singular locus with a condition regarding the Hessian of the system. Returning to

Rydin Myerson’s result if X is non-singular then one can show

σR ≤ R− 1

and in this case if n ≥ (d2d + 1)R then one obtains the desired asymptotic. Notably,

the work of Rydin Myerson showed the number of variables n thus only has to grow

linearly in the number of equations R, whereas R appeared quadratically in Birch’s

work. If d ≥ 4 he showed that for generic systems of forms it suffices to assume (4.1.5)

for the asymptotic (4.1.4) to hold. Generic here means that the set of coefficients is

required to lie in some non-empty Zariski open subset of the parameter space of

coefficients of the equations.

Our goal in this chapter is to generalise the results obtained by Rydin Myerson

to the case of bihomogeneous varieties whenever the bidegree of the forms is (1, 1)

or (2, 1). Those two cases correspond to degrees 2 and 3 in the homogeneous case,
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respectively. We call a bihomogeneous form bilinear if the bidegree is (1, 1). Given a

bilinear form Fi(x,y) we may write it as

Fi(x,y) = yTAix,

for some n2 × n1-dimensional matrices Ai with rational entries. Given β ∈ RR write

Aβ =
R#

i=1

βiAi.

Regarding Aβ as a map Rn1 → Rn2 and and AT
β as a map Rn2 → Rn1 we define the

quantities

σ
(1)
R := max

β∈RR\{0}
dimker(Aβ), and σ

(2)
R := max

β∈RR\{0}
dimker(AT

β).

We state our first theorem for systems of bilinear forms. Since the situation is com-

pletely symmetric with respect to the x and y variables if the forms are bilinear, we

may without loss of generality assume P1 ≥ P2 in the counting function, and still

obtain the full result.

Theorem 4.1.1. Let F1(x,y), . . . , FR(x,y) be bilinear forms with integer coefficients

such that the biprojective variety V(F1, . . . , FR) ⊂ Pn1−1
Q × Pn2−1

Q is a complete inter-

section. Let P1 ≥ P2 > 1, write b = log(P1)
log(P2)

and assume further that

ni − σ
(i)
R > (2b+ 2)R (4.1.6)

holds for i = 1, 2. Then there exists some δ > 0 depending at most on b, F , R and

ni such that

N(P1, P2) = σP n1−R
1 P n2−R

2 +O(P n1−R
1 P n2−R−δ

2 )

holds, where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all primes

p and if the variety V0 has a smooth real zero in B1 × B2.

Moreover, if we assume V(F1, . . . , FR) ⊂ Pn1−1
Q × Pn2−1

Q to be smooth the same

conclusions hold if we assume

min{n1, n2} > (2b+ 2)R and n1 + n2 > (4b+ 5)R

instead of (4.1.6).

We now move on to systems of forms F1(x,y), . . . , FR(x,y) of bidegree (2, 1). We

may write such a form Fi(x,y) as

Fi(x,y) = xTHi(y)x,
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where Hi(y) is a symmetric n1 × n1 matrix whose entries are linear forms in the

variables y = (y1, . . . , yn2). Similarly to above, given β ∈ RR we write

Hβ(y) =
R#

i=1

βiHi(y).

Given ℓ ∈ {1, . . . , n2} write eℓ ∈ Rn2 for the standard unit basis vectors. Write

V(xTHβ(eℓ)x)ℓ=1,...,n2 = V(xTHβ(e1)x, . . . ,x
THβ(en2)x) ⊂ Pn1−1

Q

for this intersection of pencils, and define

s
(1)
R := 1 + max

β∈RR\{0}
dimV(xTHβ(eℓ)x)ℓ=1,...,n2 . (4.1.7)

Further write V(Hβ(y)x) for the biprojective variety defined by the system of equa-

tions

V(Hβ(y)x) = V((Hβ(y)x)1, . . . , (Hβ(y)x)n1) ⊂ Pn1−1
Q × Pn2−1

Q

and define

s
(2)
R :=

7
maxβ∈RR\{0} dimV(Hβ(y)x)

2

8
+ 1, (4.1.8)

where ⌊x⌋ denotes the largest integer m such that m ≤ x.

Theorem 4.1.2. Let F1(x,y), . . . , FR(x,y) be bihomogeneous forms with integer co-

efficients of bidegree (2, 1) such that the biprojective variety V(F1, . . . , FR) ⊂ Pn1−1
Q ×

Pn2−1
Q is a complete intersection. Let P1, P2 > 1 be real numbers. Write b =

max
5

log(P1)
log(P2)

, 1
6

and u = max
5

log(P2)
log(P1)

, 1
6
. Assume further that

n1 − s
(1)
R > (8b+ 4u)R and

n1 + n2

2
− s

(2)
R > (8b+ 4u)R (4.1.9)

is satisfied. Then there exists some δ > 0 depending at most on b, u, R, ni and F

such that

N(P1, P2) = σP n1−2R
1 P n2−R

2 +O(P n1−2R
1 P n2−R

2 min{P1, P2}−δ) (4.1.10)

holds, where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all primes

p, and if the variety V0 has a smooth real zero in B1 × B2.

If we assume that V(F1, . . . , FR) ⊂ Pn1−1
Q × Pn2−1

Q is smooth, then the same con-

clusions hold if we assume

n1 > (16b+ 8u+ 1)R, and n2 > (8b+ 4u+ 1)R (4.1.11)

instead of (4.1.9).
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We remark that we preferred to give conditions in terms of the geometry of the

variety regarded as a biprojective variety, as opposed to an affine variety. The reason

for this is the potential application of this result to proving Manin’s conjecture for

this variety, which will be addressed in due course.

Compared to the result by Schindler we thus basically remove the assumption

that the number of variables needs to grow at least quadratically in R. In particular,

if the complete intersection defined by the system is assumed to be smooth, then our

results requires fewer variables than Schindler’s provided

d1b+ d2u <
R + 1

2

is satisfied, in the cases (d1, d2) = (1, 1) or (2, 1). In particular, if R is large this

means our result provides significantly more flexibility in the choice of u and b.

One cannot hope to achieve the asymptotic formula (4.1.2) in general where a

condition of the shape ni > R(bd1 + ud2) is not present. To see this note that the

counting function satisfies

N(P1, P2) ≫ P n1
1 + P n2

2 ,

coming from the solutions when x1 = · · · = xn1 = 0 and y1 = · · · = yn2 = 0. The

asymptotic formula (4.1.2) thus implies

P ni
i ≪ P n1−d1R

1 P n2−d2R
2 ,

for i = 1, 2. Noting that P u
1 = P2 if u > 1 and P b

2 = P1 if b > 1 and comparing the

exponents one necessarily finds ni > R(bd1 + ud2).

If the forms are diagonal then one can take boxes Bi, which avoid the coordinate

axes in order to remedy this obstruction. In fact this is the approach taken by

Blomer and Brüdern [10] and they proved an asymptotic formula of a system of

multihomogeneous equations without a restriction on the number of variables similar

to the type described above.

If the forms are not diagonal the problem still persists, even if one were to take

boxes avoiding the coordinate axes. In general there may be ’bad’ vectors y away

from the coordinate axes such that

# {x ∈ Zn1 : F (x,y) = 0, |x| ≤ P1} ≫ P n1−a
1 ,

where a < d1R for example. This is in contrast to the diagonal case, where the

only vectors y where this occurs lie on at least one coordinate axis. It would be
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interesting to consider a modified counting function where one excludes such vectors

y, and analogously ’bad’ vectors x. In a general setting it seems difficult to control

the set of such vectors. In particular, it is not clear how one would deal with the

Weyl differencing step if one were to consider such a counting function.

4.1.1 Manin’s conjecture

Let V ⊂ Pn1−1
Q ×Pn2−1

Q be a non-singular complete intersection defined by a system of

forms Fi(x,y), i = 1, . . . , R of common bidegree (d1, d2). Assume ni > diR so that V

is a Fano variety, which means that the inverse of the canonical bundle in the Picard

group, the anticanonical bundle, is very ample. For a field K, write V (K) for the set

of K-rational points of V . In the context of Manin’s conjecture we define this to be

the set of K-morphisms

Spec(K) → VK ,

where VK denotes the base change of V to the field K. For a subset U(Q) ⊂ V (Q)

and P ≥ 1 consider the counting function

NU(P ) = # {(x,y) ∈ U(Q) : H(x,y) ≤ P} ,

where H(·, ·) is the anticanonical height induced by the anticanonical bundle and

a choice of global sections. In our case one such height may be explicitly given as

follows. If (x,y) ∈ U(Q) we may pick representatives x ∈ Zn1 , and y ∈ Zn2 such

that (x1, . . . , xn1) = (y1, . . . , yn2) = 1 and we define

H(x,y) =
1
max

i
|xi|

2n1−Rd1 1
max

i
|yi|

2n2−Rd2
.

Manin’s Conjecture in this context states that, provided V is a Fano variety such that

V (Q) ⊂ V is Zariski dense, there exists a subset U(Q) ⊂ V (Q) where (V \ U)(Q) is

a thin set such that

NU(P ) ∼ cP (logP )ρ−1,

where ρ is the Picard rank of the variety V and c is a constant as predicted and

interpreted by Peyre [84]. We briefly recall the definition of a thin set, according to

Serre [103]. First recall a set A ⊂ V (K) is of type

(C1) if A ⊆ W (K), where W ⊊ V is Zariski closed,

(C2) if A ⊆ π(V ′(K)), where V ′ is irreducible such that dimV = dimV ′, where

π : V ′ → V is a generically finite morphism of degree at least 2.
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Now a subset of the K-rational points of V is thin if it is a finite union of sets of type

(C1) or (C2). Originally Batyrev–Manin [5] conjectured that it suffices to assume that

(V \U) is Zariski closed, but there have been found various counterexamples to this,

the first one being due to Batyrev–Tschinkel [6].

In [100] Schindler showed an asymptotic formula of the shape above, if V is smooth

and d1, d2 ≥ 2 and

ni > 3 · 2d1+d2d1d2R
3 +R

is satisfied for i = 1, 2. If R = 1 she moreover verified that the constant obtained

agrees with the one predicted by Peyre, and thus proved Manin’s conjecture for

bihomogeneous hypersurfaces when the conditions above are met. The proof uses the

asymptotic (4.1.2) established in [98] along with uniform counting results on fibres.

That is, for a vector y ∈ Zn2 one may consider the counting function

Ny(P ) = # {x ∈ Zn1 : F (x,y) = 0, |x| ≤ P} ,

and to understand its asymptotic behaviour uniformly means to understand the de-

pendence of y on the constant in the error term. Similarly she considered Nx(P ) for

’good’ x and combined the three resulting estimates to obtain an asymptotic formula

for the number of solutions )N(P1, P2) to the system F (x,y) = 0, where |x| ≤ P1,

|y| ≤ P2 and x,y are ’good’. Considering only ’good’ tuples essentially removes a

closed subset from V , and thus, after an application of a slight modification of the

hyperbola method developed as in [10] she obtained an asymptotic formula for NU(P )

of the desired shape.

One can be hopeful that the result established in Theorem 4.1.2 is useful in veri-

fying Manin’s Conjecture for V , when (d1, d2) = (2, 1) in fewer variables than would

be expected using Schindler’s method as described above. Further, since the Picard

rank of V is strictly greater than 1, it would be interesting to consider the all heights

approach as suggested by Peyre [86, Question V.4.8]. As noted by Peyre himself, in

the case when a variety has Picard rank 1, the answer to his Question 4.8 follows pro-

vided one can prove Manin’s conjecture with respect to the height function induced

by the anticanonical bundle.

Schindler’s results have been improved upon in a few special cases. Browning and

Hu showed Manin’s conjecture in the case of smooth biquadratic hypersurfaces in

Pn−1
Q ×Pn−1

Q if the number of variables satisfies n > 35. If the bidegree is (2, 1) then Hu

showed that n > 25 suffices in order to obtain Manin’s conjecture. Systems of bilinear

varieties are flag varieties and thus Manin’s conjecture follows from the result for flag

varieties, which was proven by Franke, Manin and Tschinkel [37] using the theory of
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Eisenstein series. In the special case when the variety is defined by
(s

i=0 xiyi = 0

then Robbiani [90] showed how one may use the circle method to establish Manin’s

conjecture if s ≥ 3, which was later improved to s ≥ 2 by Spencer [106].

Conventions

The symbol ε > 0 is an arbitrarily small value, which we may redefine whenever

convenient, as is usual in analytic number theory. Given forms gℓ, ℓ = 1, . . . , k we

write V(gℓ)ℓ=1,...,k or sometimes just V(gℓ)ℓ for the intersection V(g1, . . . , gk). Further,
we may sometimes consider a vector of forms h = (h1, . . . , hk) and we similarly write

V(h) for the intersection V(h1, . . . , hk).

For a real number x ∈ R we will write e(x) = e2πix. We will use Vinogradov’s

notation O(·) and ≪.

We shall repeatedly use the convention that the dimension of the empty set −1.

4.2 Multilinear forms

Both Theorem 4.1.1 and Theorem 4.1.2 follow from a more general result. If we have

control over the number of ’small’ solutions to the associated linearised forms then we

can show that the asymptotic (4.1.2) holds. More explicitly, given a bihomogeneous

form F (x,y) with integer coefficients of bidegree (d1, d2) for positive integers d1, d2,

we may write it as

F (x,y) =
#

j

#

k

Fj,kxj1 · · · xjd1
yk1 · · · ykd2 ,

where the coefficients Fj,k ∈ Q are symmetric in j and k. We define the associated

multilinear form

ΓF ()x, )y) := d1!d2!
#

j

#

k

Fj,kx
(1)
j1

· · · x(d1)
jd1

y
(1)
k1

· · · y(d2)kd2
,

where )x = (x(1), . . . ,x(d1)) and )y = (y(1), . . . ,y(d2)) for vectors x(i) of n1 vari-

ables and vectors y(i) of n2 variables. Write further Ux = (x(1), . . . ,x(d1−1)) and

Uy = (y(1), . . . ,y(d2−1)). Given β ∈ RR we define the auxiliary counting function

Naux
1 (β;B) to be the number of integer vectors satisfying Ux ∈ (−B,B)(d1−1)n1 and

)y ∈ (−B,B)d2n2 such that

|Γβ·F (Ux, eℓ, )y)| < ‖β · F ‖∞ Bd1+d2−2,
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for ℓ = 1, . . . , n1 where ‖β · F ‖∞ := 1
d1!d2!

maxj,k

%%%%
∂d1+d2 (β·F )

∂xj1
···∂xjd1

∂yk1 ···∂ykd2

%%%%. We define

Naux
2 (β;B) analogously.

The technical core of this chapter is the following theorem.

Theorem 4.2.1. Assume n1, n2 > (d1+d2)R and let F (x,y) = (F1(x,y), . . . , FR(x,y))

be a system of bihomogeneous forms with integer coefficients of common bidegree

(d1, d2) such that the variety V(F ) ⊂ Pn1−1
Q ×Pn2−1

Q is a complete intersection. Write

b = max {log(P1)/ log(P2), 1} and u = max {log(P2)/ log(P1), 1}.
Assume there exist C0 ≥ 1 and C > (bd1 + ud2)R such that for all β ∈ RR \ {0}

and all B > 0 we have

Naux
i (β;B) ≤ C0B

d1n1+d2n2−ni−2d1+d2−1C (4.2.1)

for i = 1, 2. There exists some δ > 0 depending on b, u, C0, R, di and ni such that

N(P1, P2) = σP n1−d1R
1 P n2−d2R

2 +O
9
P n1−d1R
1 P n2−d2R

2 min{P1, P2}−δ
:
.

The factor σ = IS is the product of the singular integral I and the singular series S,

as defined in (4.5.26) and (4.5.23), respectively. Moreover, if the system F (x,y) = 0

has a non-singular real zero in B1×B2 and a non-singular p-adic zero for every prime

p, then σ > 0.

While showing that (4.2.1) holds is rather straightforward when the bidegree is

(1, 1) it becomes significantly more difficult when the bidegree increases. In fact, in

Rydin Myerson’s work a similar upper bound on a similar auxiliary counting function

needs to be shown. He is successful in doing so when the degree is 2 or 3 and the

system defines a complete intersection, but for higher degrees he was only able to

show this upper bound for generic systems.

Our strategy is as follows. We will establish Theorem 4.2.1 in Section 4.4 and

Section 4.5 and then use this to show Theorem 4.1.1 and Theorem 4.1.2 in Section 4.6

and in Section 4.7.

4.3 Geometric preliminaries

The following Lemma is taken from [100].

Lemma 4.3.1 (Lemma 2.2 in [100]). Let W be a smooth variety that is complete over

some algebraically closed field and consider a closed irreducible subvariety Z ⊆ W

such that dimZ ≥ 1. Given an effective divisor D on W then the dimension of every
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irreducible component of D∩Z is at least dimZ−1. If D is moreover ample we have

in addition that D ∩ Z is nonempty.

In particular the following corollary will be very useful.

Corollary 4.3.2. Let V ⊆ Pn1−1
C × Pn2−1

C be a closed variety such that dimV ≥ 1.

Consider H = V(f) where f(x,y) is a polynomial of bidegree at least (1, 1) in the

variables (x,y) = (x1, . . . , xn1 , y1, . . . , yn2). Then

dim(V ∩H) ≥ dimV − 1,

in particular V ∩H is non-empty.

Proof. Since the bidegree of f is at least (1, 1) we have that H defines an effective

and ample divisor on Pn1−1
C ×Pn2−1

C . We apply Lemma 4.3.1 with W = Pn1−1
C ×Pn2−1

C ,

D = H and Z any irreducible component of V .

Lemma 4.3.3. Let F (x,y) be a system of R bihomogeneous equations of the same

bidegree (d1, d2) with d1, d2 ≥ 1. Assume that V(F ) ⊂ Pn1−1
C × Pn2−1

C is a smooth

complete intersection. Given β ∈ RR \ {0} we have

dimSingV(β · F ) ≤ R− 2,

where we write β · F =
(

i βiFi.

Proof. The singular locus of V(β · F ) is given by

SingV(β · F ) = V
!
∂(β · F )

∂xj

"

j=1,...,n1

∩ V
!
∂(β · F )

∂yj

"

j=1,...,n2

.

Assume without loss of generality βR ∕= 0 so that V(F ) = V(F1, . . . , FR−1,β ·F ). We

claim that we have the following inclusion

V(F1, . . . , FR−1) ∩ SingV(β · F ) ⊆ SingV(F ). (4.3.1)

To see this note first that V(F1, . . . , FR−1) ∩ SingV(β · F ) ⊆ V(F ). Further, the

Jacobian matrix J(F ) of F is given by

J(F ) =

!
∂Fi

∂zj

"

ij

,

where i = 1, . . . , R and zj ranges through x1, . . . , xn1 , y1, . . . , yn2 . Now if the equations

∂(β · F )

∂xj

=
∂(β · F )

∂yj
= 0,
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are satisfied then this implies that the rows of J(F ) are linearly dependent. Since

V(F ) is a complete intersection we deduce the claim.

Assume now for a contradiction that dimSingV(β · F ) ≥ R − 1 holds. Applying

Corollary 4.3.2 (R− 1)-times with V = SingV(β · F ), noting that the bidegree of Fi

is at least (1, 1), we find

V(F1, . . . , FR−1) ∩ SingV(β · F ) ∕= ∅.

This contradicts (4.3.1) since SingV(F ) = ∅ by assumption.

Lemma 4.3.4. Let n1 ≤ n2 be two positive integers. For i = 1, . . . , n2 let Ai ∈
Mn1×n1(C) be symmetric matrices. Consider the varieties V1 ⊂ Pn1−1

C and V2 ⊂
Pn1−1
C × Pn2−1

C defined by

V1 = V(tTAit)i=1,...,n2

V2 = V

/
n2#

i=1

yiAix

0
.

Then we have

dimV2 ≤ dimV1 + n2 − 1.

In particular, if V1 = ∅ then dimV2 ≤ n2 − 2.

Proof. Consider the variety V3 ⊂ Pn1−1
C × Pn1−1

C defined by

V3 = V(zTAix)i=1,...,n2 .

Further for x = (x1, . . . , xn1)
T consider

A(x) = (A1x · · ·An2x) ∈ Mn1×n2(C)[x1, . . . , xn1 ].

We may write V2 = V(A(x)y) and V3 = V(zTA(x)). Our first goal is to relate the

dimensions of the varieties above as follows

dimV2 ≤ dimV3 + n2 − n1. (4.3.2)

For r = 0, . . . , n1 define the quasi-projective varieties Dr ⊂ Pn1−1
C given by

Dr = {x ∈ Pn1−1
C : rank(A(x)) = r}.

These are quasiprojective since they may be written as the intersection of the van-

ishing of all (r + 1) × (r + 1) minors of A(x) with the complement of the vanishing

of all r × r minors. For each r let

Dr =
H

i∈Ir

D(i)
r
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be a decomposition into finitely many irreducible components. Since
[

r Dr = Pn1−1
C

we have

dimV2 = max
0≤r<n2
i∈Ir

dim((D(i)
r × Pn2−1

C ) ∩ V2).

Note that r = n2 doesn’t play a role here, since the intersection (D
(i)
n2 ×Pn2−1

C )∩ V2 is

empty. Similarly we get

dimV3 = max
0≤r<n2
i∈Ir

dim((D(i)
r × Pn1−1

C ) ∩ V3).

For 0 ≤ r < n2 and i ∈ Ir consider now the surjective projection maps

π2,r,i : (D
(i)
r × Pn2−1

C ) ∩ V2 → D(i)
r , (x,y) -→ x,

and

π3,r,i : (D
(i)
r × Pn1−1

C ) ∩ V3 → D(i)
r , (x, z) -→ x,

We note that by the way D
(i)
r was constructed here, the fibres of both of these pro-

jection morphisms have constant dimension for fixed r. By the rank-nullity theorem

we find that the dimensions of the fibres are related as follows

dim π−1
2,r,i(x) = dim π−1

3,r,i(x) + n2 − n1. (4.3.3)

We claim that the morphism π2,r,i is proper. For this note that the structure mor-

phism Pn1−1
C → SpecC is proper whence D

(i)
r × Pn1−1

C → D
(i)
r must be proper too,

as properness is preserved under base change. As (D
(i)
r × Pn2−1

C ) ∩ V2 is closed inside

D
(i)
r × Pn1−1

C the restriction π2,r,i must also be proper. By an analogous argument it

follows π3,r,i is also proper.

Further note that the fibres of π2,r,i are irreducible since they define linear sub-

spaces of (D
(i)
r ×Pn2−1

C )∩V2, and similarly the fibres of π3,r,i are irreducible. Since D
(i)
r

is irreducible by construction and all the fibres have constant dimension, it follows

that (D
(i)
r × Pn2−1

C ) ∩ V2 is irreducible. Similarly (D
(i)
r × Pn1−1

C ) ∩ V3 is irreducible.

Hence all the conditions of Chevalley’s upper semicontinuity theorem are satis-

fied [41, Théorème 13.1.3], so that for any x ∈ D
(i)
r we obtain

dim π−1
2,r,i(x) = dim((D(i)

r × Pn2−1
C ) ∩ V2)− dimD(i)

r , (4.3.4)

and

dim π−1
3,r,i(x) = dim((D(i)

r × Pn1−1
C ) ∩ V3)− dimD(i)

r . (4.3.5)
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Hence (4.3.4) and (4.3.5) together with (4.3.3) yield

dim((D(i)
r × Pn2−1

C ) ∩ V2) = dim((D(i)
r × Pn1−1

C ) ∩ V3) + n2 − n1.

Choosing r and i such that dimV2 = dim((D
(i)
r × Pn2−1

C ) ∩ V2) the claim (4.3.2) now

follows.

Thus it is enough to find an upper bound for dimV3. To this end, consider the

affine cones )V1 = V(uTAiu)i=1,...,n2 ⊂ An1
C and )V3 = V(xTA(z)) ⊂ An1

C × An1
C . Note

in particular, that )V1 ∕= ∅ even if V1 = ∅.
Write )∆ ⊂ An1

C ×An1
C for the diagonal given by V(xi = zi)i. Then )V3∩ )∆ ∼= )V1 ∕= ∅.

Thus, the affine dimension theorem [42, Proposition 7.1] yields

dim )V1 ≥ dim )V3 − n1.

Noting dimV1+1 ≥ dim )V1 and dim )V3 ≥ dimV3+2 now gives the desired result. We

remind the reader at this point that this is compatible with the convention dim ∅ =

−1.

4.4 The auxiliary inequality

We remind the reader of the notation e(x) = e2πix. For α ∈ [0, 1]R define

S(α, P1, P2) = S(α) :=
#

x∈P1B1

#

y∈P2B2

e (α · F (x,y)) ,

where the sum ranges over x ∈ Zn1 such that x/P1 ∈ B1 and similarly for y. Through-

out this section we will assume P1 ≥ P2. Note crucially that we have

N(P1, P2) =

$

[0,1]R
S(α)dα.

As noted in the introduction we can rewrite the forms as

Fi(x,y) =
#

j

#

k

F
(i)
j,kxj1 · · · xjd1

yk1 · · · ykd2 ,

and given α ∈ RR, as in [98], we consider the multilinear forms

Γα·F ()x, )y) := d1!d2!
#

i

αi

#

j

#

k

F
(i)
j,kx

(1)
j1

· · · x(d1)
jd1

y
(1)
k1

· · · y(d2)kd2
.

Further we write Ux = (x(1), . . . ,x(d1−1)) and similarly for Uy. For any real number λ we

write ‖λ‖ = mink∈Z |λ− k|. We now define M1(α · F ;P1, P2, P
−1) to be the number
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of integral Ux ∈ (−P1, P1)
(d1−1)n1 and )y ∈ (−P2, P2)

d2n2 such that for all ℓ = 1, . . . , n1

we have

‖Γα·F (Ux, eℓ, )y)‖ < P−1.

Similarly, we defineM2(α·F ;P1, P2, P
−1) to be the number of integral )x ∈ (−P1, P1)

d1n1

and Uy ∈ (−P2, P2)
(d2−1)n2 such that for all ℓ = 1, . . . , n2 we have

‖Γα·F ()x, Uy, eℓ, )‖ < P−1.

For our purposes we will need a slight generalization of Lemma 2.1 in [98] that deals

with a polynomial G(x,y), which is not necessarily bihomogeneous. If G(x,y) has

bidegree (d1, d2) write

G(x,y) =
#

0≤r≤d1
0≤l≤d2

G(r,l)(x,y),

where G(r,l)(x,y) is homogeneous of bidegree (r, l). Using notation as above we first

show the following preliminary Lemma, which is a version of Weyl’s inequality for

our context.

From now on we will often use the notation d̃ = d1 + d2 − 2.

Lemma 4.4.1. Let ε > 0. Let G(x,y) ∈ R[x1, . . . , xn1 , y1, . . . , yn2 ] be a polynomial

of bidegree (d1, d2) with d1, d2 ≥ 1. For the exponential sum

SG(P1, P2) =
#

x∈P1B1

#

x∈P2B2

e (G(x,y))

we have the following bound

|SG(P1, P2)|2
d̃

≪ P
n1(2d̃−d1+1)+ε
1 P

n2(2d̃−d2)
2 M1

9
G(d1,d2), P1, P2, P

−1
1

:
.

Proof. The proof is quite involved but follows closely the proof of Lemma 2.1 in [98],

which in turn is based on idas of Schmidt [101, Section 11] and Davenport [26, Section

3].

Our first goal is to apply a Weyl differencing process d2 − 1-times to the y part

of G and then d1 − 1-times to the x part of the resulting polynomial. Clearly this is

trivial if d2 = 1 or d1 = 1, respectively. Therefore assume for now that d2 ≥ 2. We

start by applying the Cauchy-Schwarz inequality and the triangle inequality to find

|SG(P1, P2)|2
d2−1

≪ P
n1(2d2−1−1)
1

#

x∈P1B1

|Sx(P1, P2)|2
d2−1

, (4.4.1)
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where we define

Sx(P1, P2) =
#

y∈P2B2

e(G(x,y)).

Now write U = P2B2, write UD = U − U for the difference set and define

U(y(1), . . . ,y(t)) =
\

ε1=0,1

· · ·
\

εt=0,1

9
U − ε1y

(1) − . . .− εty
(t)
:
.

Write F(y) = G(x,y) and set

Fd(y
(1), . . . ,y(d)) =

#

ε1=0,1

· · ·
#

εd=0,1

(−1)ε1+...+εdF(ε1y
(1) + . . .+ εdy

(d)).

Equation (11.2) in [101] applied to our situation gives

|Sx(P1, P2)|2
d2−1

≪
%%UD

%%2d2−1−d2
#

y(1)∈UD

· · ·

#

y(d2−2)∈UD

%%%%%%

#

y(d2−1)∈U(y(1),...,y(d2−2))

e
9
Fd2−1

9
y(1), . . . ,y(d2−1)

::
%%%%%%

2

,

and we note that this did not require F(y) to be homogeneous in Schmidt’s work. It

is not hard to see that for z, z′ ∈ U(y(1), . . . ,y(d2−2)) we have

Fd2−1(y
(1), · · · , z)− Fd2−1(y

(1), · · · , z′) =

Fd2(y
(1), · · · ,y(d2−1),y(d2))− Fd2−1(y

(1), · · · ,y(d2−1)),

for some y(d2−1) ∈ U(y(1), . . . ,y(d2−2))D and y(d2) ∈ U(y(1), . . . ,y(d2−1)). Thus we find

|Sx(P1, P2)|2
d2−1

≪
%%UD

%%2d2−1−d2
#

y(1)∈UD

· · ·
#

y(d2−2)∈UD

#

y(d2−1)∈U(y(1),...,y(d2−2))D

#

y(d2)∈U(y(1),...,y(d2−1))

e
9
Fd2

9
y(1), . . . ,y(d2)

:
− Fd2−1

9
y(1), . . . ,y(d2−1)

::
. (4.4.2)

We may write the polynomial G(x,y) as follows

G(x,y) =
#

0≤r≤d1
0≤l≤d2

#

jr,kl

G
(r,l)
jr,kl

xjrykl
,

for some real G
(r,l)
jr,kl

. Further write F(y) = F (0)(y) + . . . + F (d2)(y), where F (d)(y)

denotes the degree d homogeneous part of F(y). Lemma 11.4 (A) in [101] states that

Fd2 transpires to be the multilinear form associated to F (d2)(y). From this we see

Fd2 − Fd2−1 =
#

0≤r≤d1
0≤l≤d2

#

jr,kl

G
(r,l)
jr,kl

xjr(1) · · · xjr(r)hkl

9
y(1), . . . ,y(d2)

:
, (4.4.3)
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where

hkd2

9
y(1), . . . ,y(d2)

:
= d2!y

(1)
kd2 (1)

· · · y(d2)kd2 (d2)
+ h̃kd2

9
y(1), . . . ,y(d2−1)

:
,

for some polynomials h̃kd2
of degree d2 that are independent of y(d2) and further hkl

are polynomials of degree l that are always independent of y(d2) whenever l ≤ d2 − 1.

Write )y = (y(1), . . . ,y(d2)). Now set

S#y =
#

x∈P1B1

e

;

<=
#

0≤r≤d1
0≤l≤d2

#

jr,kl

G
(r,l)
jr,kl

xjr(1) · · · xjr(r)hkl
()y)

>

?@ .

Now we swap the order of summation of
(

x in (4.4.1) with the sums over y(i) in

(4.4.2). Using the Cauchy-Schwarz inequality and (4.4.3) we thus obtain

|SG(P1, P2)|2
d̃

≪ P
n1(2d̃−2d1−1)
1 P

n2(2d̃−d2)
2

#

y(1)

· · ·
#

y(d2)

|S#y|2
d1−1

.

The above still holds if d2 = 1, which can be seen directly. Applying the same

differencing process to S#y gives

|SG(P1, P2)|2
d̃

≪ P
n1(2d̃−d1)
1 P

n2(2d̃−d2)
2

#

y(1)

· · ·
#

y(d2)

#

x(1)

· · ·

%%%%%
#

x(d1)

e (γ()x, )y))

%%%%% , (4.4.4)

where

γ()x, )y) =
#

0≤r≤d1
0≤l≤d2

#

jr,kl

G
(r,l)
jr,kl

gjr()x)hkl
()y),

and where similar to before we have

gjd1 ()x) = d1!x
(1)
jd1 (1)

· · · x(d1)
jd1 (d1)

+ g̃jd1 (x
(1), . . . ,x(d1−1)),

with g̃jd1 and gjr for r < d1 not depending on x(d1). We note that (4.4.4) holds

for all d1, d2 ≥ 1 and all the summations
(

x(i) and
(

y(j) in (4.4.4) are over boxes

contained in [−P1, P1]
n1 and [−P2, P2]

n2 , respectively. Write Ux = (x(1), . . . ,x(d1−1))

and Uy = (y(1), . . . ,y(d2−1)). We now wish to estimate the quantity

#
(Ux, Uy) :=

#

y(d2)

%%%%%
#

x(d1)

e (γ()x, )y))

%%%%% . (4.4.5)

Viewing
(

a<x≤b e(βx) for b − a ≥ 1 as a geometric series we recall the following

elementary estimate %%%%%
#

a<x≤b

e(βx)

%%%%% ≪ min{b− a, ‖β‖−1}.
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This yields %%%%%
#

x(d1)

e (γ()x, )y))

%%%%% ≪
n1.

ℓ=1

min
3
P1, ‖)γ(Ux, eℓ, )y)‖−14 ,

where eℓ denotes the ℓ-th unit vector and where

)γ()x, )y) = d1!
#

0≤l≤d2

#

jd1 ,kl

G
(d1,l)
jd1 ,kl

x
(1)
jd1 (1)

· · · x(d1)
jd1 (d1)

hkl
()y).

We now apply a standard argument in order to estimate this product, as in Dav-

enport [29, Chapter 13]. For a real number z write {z} for its fractional part. Let

r = (r1, . . . , rn1) ∈ Zn1 be such that 0 ≤ rℓ < P1 holds for ℓ = 1, . . . , n1. Define

A(Ux, Uy, r) to be the set of y(d2) in the sum in (4.4.5) such that

rℓP
−1
1 ≤

3
)γ
9
Ux, eℓ, Uy,y(d2)

:4
< (rℓ + 1)P−1

1 ,

holds for all ℓ = 1, . . . , n1 and write A(Ux, Uy, r) for its cardinality. We obtain the

estimate

#
(Ux, Uy) ≪

#

r

A(Ux, Uy, r)
n1.

ℓ=1

min

J
P1,max

J
P1

rℓ
,

P1

P1 − rℓ − 1

KK
,

where the sum
(

r is over integral r with 0 ≤ rℓ < P1 for all ℓ = 1, . . . , n1. Our next

aim is to find a bound for A(Ux, Uy, r) that is independent of r. Given u,v ∈ A(Ux, Uy, r)
then

‖)γ (Ux, eℓ, Uy,u)− )γ (Ux, eℓ, Uy,v)‖ < P−1
1 ,

for ℓ = 1, . . . , n1. Similar as before we now define the multilinear forms

ΓG()x, )y) := d1!d2!
#

jd1 ,kd2

G
(d1,d2)
jd1 ,kd2

x
(1)
jd1 (1)

· · · x(d1)
jd1 (d1)

y
(1)
kd2 (1)

· · · y(d2)kd2 (d2)
,

which only depend on the (d1, d2)-degree part of G. For fixed Ux, Uy let N(Ux, Uy) be the
number of y ∈ (−P2, P2)

n2 such that

‖ΓG(Ux, eℓ, Uy,y)‖ < P−1
1 ,

for al ℓ = 1, . . . , n1. Observe now crucially

)γ (Ux, eℓ, Uy,u)− )γ (Ux, eℓ, Uy,v) = ΓG(Ux, eℓ, Uy,u− v).

Thus we find A(Ux, Uy, r) ≤ N(Ux, Uy) for all r as specified above. Using this we get

#

y(d2)

%%%%%
#

x(d1)

e (γ()x, )y))

%%%%% ≪ N(Ux, Uy)(P1 logP1)
n1 .

Finally, summing over Ux and Uy we obtain

|SG(P1, P2)|2
d̃

≪ P
n1(2d̃−d1+1)+ε
1 P

n2(2d̃−d2)
2 M1

9
G(d1,d2), P1, P2, P

−1
1

:
.
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Inspecting the proof of Lemma 4.1 in [98] we find that for a polynomial G(x,y)

as above given θ ∈ (0, 1] the following holds

M1(G
(d1,d2), P1, P2, P

−1
1 ) ≪ P

n1(d1−1)
1 P n2d2

2 P
−θ(n1d1+n2d2)
2

×max
i=1,2

5
P niθ
2 Mi

1
G(d1,d2);P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2

26

Using this and Lemma 4.4.1 we deduce the next Lemma.

Lemma 4.4.2. Let P1, P2 > 1, θ ∈ (0, 1] and α ∈ RR. Write SG = SG(P1, P2).

Using the same notation as above for i = 1 or i = 2 we have

|SG|2
d̃

≪di,ni,ε P
n12d̃+ε
1 P n22d̃

2 P
θni−θ(n1d1+n2d2)
2

×Mi

1
G(d1,d2);P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2

2
.

Using the preceding Lemma and adapting the proof of [94, Lemma 3.1] to our

setting we can now show the following.

Lemma 4.4.3. Let ε > 0, θ ∈ (0, 1] and α,β ∈ RR. Then for i = 1 or i = 2 we have

min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K2d̃+1

≪di,ni,ε

Mi

1
β · F ;P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2

2

P
θ(n1d1+n2d2)−θni

2

(4.4.6)

Proof. Note first that for two real numbers λ, µ > 0 we have

min{λ, µ} ≤
]

λµ.

Therefore it suffices to show

%%%%
S(α)S(α+ β)

P 2n1+2ε
1 P 2n2

2

%%%%
2d̃

≪di,ni,ε

Mi

1
β;P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2

2

P
θ(n1d1+n2d2)−θni

2

.

holds for i = 1 or i = 2. Note first that

%%S(α+ β)S(α)
%% =

%%%%%%%

#

x∈P1B1
y∈P2B2

#

x+z∈P1B1
y+w∈P2B2

e ((α+ β) · F (x,y)−α · F (x+ z,y +w))

%%%%%%%
,

so by the triangle inequality we get

%%S(α+ β)S(α)
%% ≤

#

‖z‖∞≤P1

‖w‖∞≤P2

%%%%%%%

#

x∈P1Bz
y∈P2Bw

e (β · F (x,y)− gα,β,z,w(x,y))

%%%%%%%
,
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where gα,β,z,w(x,y) is of degree at most d1+d2−1 in (x,y) and we have some boxes

Bz ⊂ B1 and Bw ⊂ B2. Applying Cauchy’s inequality d̃-times we deduce

%%S(α+ β)S(α)
%%2d̃ ≤ P

n1(2d̃−1)
1 P

n2(2d̃−1)
2

#

‖z‖∞≤P1

‖w‖∞≤P2

%%%%%%%

#

x∈P1Bz
y∈P2Bw

e (β · F (x,y)− gα,β,z,w(x,y))

%%%%%%%

2d̃

.

If we write G(x,y) = β · F (x,y) − gα,β,z,w(x,y) then note that G(d1,d2) = β · F .

Using Lemma 4.4.2 we therefore obtain

%%S(α+ β)S(α)
%%2d̃ ≪ P 2d̃+1n1+ε

1 P 2d̃+1n2
2 P

−θ(n1d1+n2d2)+θni

2

×Mi(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ),

for i = 1 or i = 2, which readily delivers the result.

As in the introduction, for β ∈ RR we define the auxiliary counting function

Naux
1 (β;B) to be the number of integer vectors Ux ∈ (−B,B)(d1−1)n1 and )y ∈ (−B,B)d2n2

such that

|Γβ·F (Ux, eℓ, )y)| < ‖β · F ‖∞ Bd̃,

for ℓ = 1, . . . , n1 where ‖f‖∞ := 1
d1!d2!

maxj,k

%%%%
∂d1+d2f

∂xj1
···∂xjd1

∂yk1 ···∂ykd2

%%%%. We also analo-

gously define Naux
2 (β;B). We now formulate an analogue for [94, Proposition 3.1].

Proposition 4.4.4. Let C0 ≥ 1 and C > 0 such that for all β ∈ RR and B > 0 we

have for i = 1, 2 that

Naux
i (β;B) ≤ C0B

d1n1+d2n2−ni−2d̃+1C . (4.4.7)

Assume further that the forms Fi are linearly independent, so that there exist M >

µ > 0 such that

µ ‖β‖∞ ≤ ‖β · F ‖∞ ≤ M ‖β‖∞ . (4.4.8)

Then there exists a constant C > 0 depending on C0, di, ni, µ and M such that the

following auxiliary inequality

min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K
≤ Cmax

J
P−1
2 , P−d1

1 P−d2
2 ‖β‖−1

∞ , ‖β‖
1

d̃+1
∞

KC

holds for all real numbers P1, P2 > 1.
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Proof. The strategy of this proof will closely follow the proof of [94, Proposition 3.1].

By Lemma 4.4.3 we know that (4.4.6) holds for i = 1 or i = 2. Assume that there is

some θ ∈ (0, 1] such that for the same i we have

Naux
i (β;P θ

2 ) < Mi(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ), (4.4.9)

Going forward with the case i = 1, noting that the case i = 2 can be proven completely

analogously, this means that there exists a (d1 − 1)-tuple Ux and a d2-tuple )y which

is counted by M1(β ·F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ) but not by Naux

1 (β;P θ
2 ). Therefore

this pair of tuples satisfies

IIUx(i)
II
∞ ,

II)y(j)
II
∞ ≤ P θ

2 , for i = 1, . . . , d1 − 1 and j = 1, . . . , d2, (4.4.10)

and

‖Γβ·F (Ux, eℓ, )y)‖ < P−d1
1 P−d2

2 P
θ(d̃+1)
2 , for ℓ = 1, . . . , n1, (4.4.11)

since it is counted by M1(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ). On the other hand, since

it is not counted by Naux
1 (β;P θ

2 ) there exists ℓ0 ∈ {1, . . . , n1} such that

|Γβ·F (Ux, eℓ0 , )y)| ≥ ‖β · F ‖∞ P d̃θ
2 . (4.4.12)

From (4.4.11) we get that for ℓ0 we must have either

|Γβ·F (Ux, eℓ0 , )y)| < P−d1
1 P−d2

2 P
θ(d̃+1)
2 (4.4.13)

or

|Γβ·F (Ux, eℓ0 , )y)| ≥
1

2
. (4.4.14)

If (4.4.13) holds then (4.4.12) implies

‖β · F ‖∞ <
P−d1
1 P−d2

2 P
(d̃+1)θ
2

P d̃θ
2

= P θ
2P

−d1
1 P−d2

2 (4.4.15)

If on the other hand (4.4.14) holds then (4.4.10) gives

1

2
≤ |Γβ·F (Ux, eℓ0 , )y)| ≪ ‖β · F ‖∞ P

(d̃+1)θ
2 . (4.4.16)

Since either (4.4.15) or (4.4.16) holds then via (4.4.8) we deduce

P−θ
2 ≪µ,M max

J
P−d1
1 P−d2

2 ‖β‖−1
∞ , ‖β‖

1
d̃+1
∞

K
. (4.4.17)
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Since (4.4.6) holds for i = 1 and due to the assumption (4.4.7) we see that (4.4.9)

holds if there exists some C1 > 0 such that

P−θ2d̃+1C
2 ≤ C1 min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K2d̃+1

. (4.4.18)

Now define θ such that we have equality in the equation above, i.e. such that we have

P θ
2 = C

1

2d̃+1C
1 min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K− 1
C

. (4.4.19)

If θ ∈ (0, 1] then (4.4.18) holds and so together with the assumption (4.4.7) as argued

above this implies (4.4.17) holds, which gives the result in this case. But θ will always

be positive; for if θ ≤ 0 then (4.4.19) implies

min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K
≥ C

− 1

2d̃+1

1 .

However, note that clearly |S(α)| ≤ (P1+1)n1(P2+1)n2 . Without loss of generality we

may take Pi large enough, depending on ε, so that this clearly leads to a contradiction.

Finally, if θ ≥ 1 then we find P−C θ
2 ≤ P−C

2 , and so from (4.4.19) we obtain.

min

J%%%%
S(α)

P n1+ε
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1+ε
1 P n2

2

%%%%

K
≪ P−C

2 .

This gives the result.

4.5 The circle method

The aim of this section is to use the auxiliary inequality

P−ε
1 min

J%%%%
S(α)

P n1
1 P n2

2

%%%% ,
%%%%
S(α+ β)

P n1
1 P n2

2

%%%%

K
≤

Cmax

J
P−1
2 , P−d1

1 P−d2
2 ‖β‖−1

∞ , ‖β‖
1

d̃+1
∞

KC

, (4.5.1)

where C ≥ 1 and apply the circle method in order to deduce an estimate forN(P1, P2).

In this section we will use the notation P = P d1
1 P d2

2 . Write b = max {1, logP1/ logP2}
and u = max {1, logP2/ logP1}. If P1 ≥ P2 then b = logP1/ logP2 and thus P bd1+d2

2 =

P holds. The main result will be the following.

Proposition 4.5.1. Let C > (bd1 + ud2)R, C ≥ 1 and ε > 0 such that the auxiliary

inequality (4.5.1) holds for all α,β ∈ RR, all P1, P2 > 1 and all boxes Bi ⊂ [−1, 1]ni

128



with side lengths at most 1 and edges parallel to the coordinate axes. There exists

some δ > 0 depending on b, u, R, di and ni such that

N(P1, P2) = σP n1−d1R
1 P n2−d2R

2 +O
9
P n1−d1R
1 P n2−d2R

2 P−δ
:
.

The factor σ = IS is the product of the singular integral I and the singular series

S, as defined in (4.5.26) and (4.5.23), respectively.

Note that this result holds for general bidegree, and therefore in the proof one may

assume P1 ≥ P2 throughout. For instance if one wishes to show the above proposition

for bidegree (2, 1), the result follows from the asymmetric results of bidegree (2, 1)

and bidegree (1, 2).

4.5.1 The minor arcs

First we will show that the contributions from the minor arcs do not affect the main

term. For this we will prove a Lemma similar to Lemma 2.1 in [94].

Lemma 4.5.2. Let r1, r2 : (0,∞) → (0,∞) be strictly decreasing and increasing bi-

jections, respectively, and let A > 0 be a real number. For any ν > 0 let E0 ⊂ RR

be a hypercube of side lengths ν whose edges are parallel to the coordinate axes. Let

E ⊆ E0 be a measurable set and let ϕ : E → [0,∞) be a measurable function.

Assume that for all α,β ∈ RR such that α,α+ β ∈ E we have

min {ϕ(α),ϕ(α+ β)} ≤ max
3
A, r−1

1 (‖β‖∞) , r−1
2 (‖β‖∞)

4
. (4.5.2)

Then for all integers k ≤ ℓ such that A < 2k we get

$

E

ϕ(α)dα ≪R

νR2k +
ℓ−1#

i=k

2i
!

νr1(2
i)

min{r2(2i), ν}

"R

+

!
νr1(2

ℓ)

min{r2(2ℓ), ν}

"R

sup
α∈E

ϕ(α). (4.5.3)

Note that if we take

ϕ(α) = C−1P−n1−ε
1 P−n2

2 |S(α)| , r1(t) = P−d1
1 P−d2

2 t−
1
C , r2(t) = t

d̃+1
C , A = P−C

2

where C is the constant in (4.5.1), then the assumption (4.5.2) is just the auxiliary

inequality (4.5.1).
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Proof. Given t ≥ 0 define the set

D(t) = {α ∈ E : ϕ(α) ≥ t} .

If α and α+ β are both contained in D(t) then by (4.5.2) one of the following must

hold

A ≥ t, ‖β‖∞ ≤ r1(t), or ‖β‖∞ ≥ r2(t).

In particular, if t > A then either ‖β‖∞ ≤ r1(t) or ‖β‖∞ ≥ r2(t). Assuming that

t > A is satisfied consider a box b ⊂ RR with sidelengths r2(t)/2 whose edges are

parallel to the coordinate axes. Given α ∈ b ∩D(t) set

B(α) =
3
α+ β : β ∈ RR, ‖β‖∞ ≤ r1(t)

4
.

Ifα+β ∈ b∩D(t) then by construction ‖β‖∞ ≤ r2(t)/2 < r2(t) whence ‖β‖∞ ≤ r1(t).

Therefore we have b∩D(t) ⊂ B(α), which in turn implies that the measure of b∩D(t)

is bounded by (2r1(t))
R. Since D(t) is contained in E0 one can cover D(t) with at

most

≪R
νR

min{r2(t), ν}R

boxes b whose sidelenghts are r2(t)/2. Therefore we find

µ(D(t)) ≪R

!
νr1(t)

min{r2(t), ν}

"R

,

where we write µ(D(t)) for the Lebesgue measure of D(t). If k < ℓ are two integers

then

$

E

ϕ(α)dα =

$

E\D(2k)

ϕ(α)dα+
ℓ#

i=k

$

D(2i)\D(2i+1)

ϕ(α)dα+

$

D(2ℓ)

ϕ(α)dα.

We can trivially bound
Q
E\D(2k)

ϕ(α)dα ≤ νR2k, and further we can bound

$

D(2i)\D(2i+1)

ϕ(α)dα ≤ 2i+1µ(D(2i)), and

$

D(2ℓ)

ϕ(α)dα ≤ µ(D(2ℓ)) sup
α∈E

ϕ(α).

If 2k > A then for any i ≥ k by our discussion above we find

µ(D(2i)) ≪R

!
νr1(2

i)

min{r2(2i), ν}

"R

.

Therefore the result follows.
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Recall the notation P = P d1
1 P d2

2 . From now on we will assume P1 ≥ P2. Note

that the assumption in Proposition 4.4.4 that C > R(bd1 + ud2) holds, is equivalent

to C > R(bd1 + d2) if P1 ≥ P2.

Lemma 4.5.3. Let T : RR → C be a measurable function. With notation as in

Lemma 4.5.2 assume that for all α,β ∈ RR and for all P1 ≥ P2 > 1, and C > 0 we

have

min

J%%%%
T (α)

P n1
1 P n2

2

%%%% ,
%%%%
T (α+ β)

P n1
1 P n2

2

%%%%

K
≤ max

J
P−1
2 , P−d1

1 P−d2
2 ‖β‖−1

∞ , ‖β‖
1

d̃+1
∞

KC

. (4.5.4)

Write P = P d1
1 P d2

2 and assume that that we have

sup
α∈E

|T (α)| ≤ P n1
1 P n2

2 P−δ, (4.5.5)

for some δ > 0. Then we have

$

E

T (α)

P n1
1 P n2

2

dα ≪C ,di,R

*
++++++,

++++++-

νRP−RP
(d̃+2)R−C
2 + P−C

2 if C < R

νRP−RP
(d̃+2)R−C
2 + P−R logP2 + P−C

2 if C = R

νRP−RP
(d̃+2)R−C
2 + P−R−δ(1−R/C ) + P−C

2 if R < C < (d1 + d2)R

νRP−R logP2 + P−R−δ(1−R/C ) + P−C
2 if C = (d1 + d2)R

νRP−R−δ(1−(d1+d2)R/C ) + P−R−δ(1−R/C ) + P−C
2 if C > (d1 + d2)R.

(4.5.6)

We expect the main term ofN(P1, P2) to be of order P
n1−Rd1
1 P n2−Rd2

2 = P n1
1 P n2

2 P−R.

Thus the Lemma indicates why it is necessary for us to assume C > R(bd1 + d2),

using this method of proof at least.

Proof. We apply Lemma 4.4.3 by taking

ϕ(α) =
|T (α)|
P n1
1 P n2

2

, r1(t) = P−d1
1 P−d2

2 t−
1
C , r2(t) = t

d̃+1
C , and A = P−C

2 . (4.5.7)

Then our assumption (4.5.4) is just (4.5.2). We will choose our parameters k and ℓ

such that the
(ℓ−1

i=k term dominates the right hand side of (4.5.3). Let

k =
R
log2 P

−C
2

S
, and ℓ =

R
log2 P

−δ
S
, (4.5.8)

so that we have

P−C
2 < 2k ≤ 2P−C

2 , and P−δ ≤ 2ℓ < 2P−δ.
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Without loss of generality we assume k < ℓ since otherwise the bound in the assump-

tion (4.5.5) would be sharper than any of those listed in (4.5.6). Substituting our

choices (4.5.7) into (4.5.3) we get

$

E

|T (α)|
P n1
1 P n2

2

≪R νR2k +
ℓ−1#

i=k

2i

/
νP−d1

1 P−d2
2 2−i/C

min
3
ν, 2i(d̃+1)/C

4
0R

+

/
νP−d1

1 P−d2
2 2−ℓ/C

min
3
ν, 2ℓ(d̃+1)/C

4
0R

sup
α∈E

|T (α)|
P n1
1 P n2

2

. (4.5.9)

From (4.5.5) and (4.5.8) we see that

sup
α∈E

|T (α)|
P n1
1 P n2

2

≤ P−δ ≤ 2ℓ. (4.5.10)

Further, we clearly have

P−d1
1 P−d2

2 2−i/C

min
3
ν, 2i(d̃+1)/C

4 ≤ ν−1P−d1
1 P−d2

2 2−i/C + 2−i(d̃+2)/CP−d1
1 P−d2

2 . (4.5.11)

Substituting the estimates (4.5.10) and (4.5.11) into (4.5.9) we obtain

$

E

|T (α)|
P n1
1 P n2

2

≪R νR2k +
ℓ#

i=k

νRP−d1R
1 P−d2R

2 2i(1−(d̃+2)R/C ) +
ℓ#

i=k

P−d1R
1 P−d2R

2 2i(1−R/C ).

(4.5.12)

Note now that

ℓ#

i=k

2i(1−R(d̃+2)/C ) ≪C ,di,R

*
+,

+-

2k(1−R(d̃+2)/C ) if C < (d̃+ 2)R

ℓ− k if C = (d̃+ 2)R

2ℓ(1−R(d̃+2)/C ) if C > (d̃+ 2)R,

(4.5.13)

where we used k < ℓ for the second alternative. Recall from (4.5.8) that we have

2k ≥ P−C
2 and 2ℓ ≤ 2P−δ,

so using this in (4.5.13) we get

ℓ#

i=k

2i(1−(d̃+2)/C ) ≪C ,di,R

*
+,

+-

P
(d̃+2)R−C
2 if C < (d̃+ 2)R

logP2 if C = (d̃+ 2)R

P−δ(1−(d̃+2)R/C ) if C > (d̃+ 2)R.

(4.5.14)

Arguing similarly for
(ℓ

i=k 2
i(1−R/C ) we find

ℓ#

i=k

2i(1−R/C ) ≪C ,di,R

*
+,

+-

PR−C
2 if C < R

logP2 if C = R

P−δ(1−R/C ) if C > R.

. (4.5.15)
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Finally we note that by our choice of k we have 2k ≤ 2P−C
2 and we recall that

d̃+ 2 = d1 + d2. Using this, as well as (4.5.14) and (4.5.15) in (4.5.12) we deduce the

result.

We will finish this section by defining the major and minor arcs and showing that

the minor arcs do not contribute to the main term. For ∆ > 0 we define the major

arcs to be the set given by

M(∆) :=
H

q∈N
q≤P∆

H

0≤ai≤q
(a1,...,aR,q)=1

3
α ∈ [0, 1]R : 2 ‖qα− a‖∞ < P−d1

1 P−d2
2 P∆

4
,

and the minor arcs to be the given by

m(∆) := [0, 1]R \M(∆).

Write further

δ0 =
mini=1,2 {n1 + n2 − dimV ∗

i }
(d̃+ 1)2d̃R

. (4.5.16)

Note that if the forms Fi are linearly independent, then V ∗
i are proper subvarieties of

An1+n2
C so that dimV ∗

i ≤ n1 + n2 − 1 whence δ0 ≥ 1

(d̃+1)2d̃R
. To see this for V ∗

1 note

that requiring

rank

!
∂Fi

∂xj

"

i,j

< R

is equivalent to requiring all the R × R minors of
1

∂Fi

∂xj

2

i,j
vanish. This defines a

system of polynomials of degree R(d1+d2−1) in (x,y), which are not all zero unless

there exists β ∈ RR \ {0} such that

R#

i=1

βi

!
∂Fi

∂xj

"
= 0 for j = 1, . . . , n1

holds identically in (x,y). This is the same as saying that

∇x

/
R#

i=1

βiFi

0
= 0

holds identically. From this we find that
(R

i=1 βiFi must be a form entirely in the

y variables. But this is a linear combination of homogeneous bidegree (d1, d2) forms

with d1 ≥ 1 and thus we must in fact have
(R

i=1 βiFi = 0 identically, contradicting

linear independence. The argument works analogously for V ∗
2 .

The next Lemma shows that the assumption (4.5.5) holds with E = m(∆) and

T (α) = C−1P−ε
1 S(α).
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Lemma 4.5.4. Let 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)
−1 and let ε > 0. Then we have the

upper bound

sup
α∈m(∆)

|S(α)| ≪ P n1
1 P n2

2 P−∆δ0+ε. (4.5.17)

Proof. The result follows straightforward from [98, Lemma 4.3] by setting the param-

eter θ to be

θ =
∆

(d̃+ 1)R
.

If we have 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)
−1 this ensures that the assumption 0 < θ ≤

(bd1 + d2)
−1 in [98, Lemma 4.3] is satisfied.

Before we state the next proposition, recall that we assume P1 ≥ P2 throughout,

as was mentioned at the beginning of this section.

Proposition 4.5.5. Let ε > 0 and let 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)
−1. Under the

assumptions of Proposition 4.5.1 we have

$

m(∆)

S(α)dα ≪ P n1−d1R
1 P n2−d2R

2 P−∆δ0(1−(d1+d2)R/C )+ε.

Proof. We apply Lemma 4.5.2 with

T (α) = C−1P−εS(α), E0 = [0, 1]R, E = m(∆), and δ = ∆δ0,

where C > 0 is some real number. With these choices (4.5.4) follows from the auxiliary

inequality (4.5.1) since for any ε > 0 we have P−ε ≤ P−ε
1 . From Lemma 4.5.4 we

have the bound

sup
α∈E

CT (α) ≪ P n1
1 P n2

2 P−δ.

We may increase C if necessary so that we recover (4.5.5). Therefore the hypotheses

of Lemma 4.5.3. Since we assume C > (bd1 + d2)R, we also note

P−C
2 = P−RPR−C (bd1+d2)−1 ≪C P−R−δ̃,

for some δ̃ > 0. Therefore if we assume C > (bd1 + d2)R then Lemma 4.5.3 gives

$

m(∆)

S(α)dα ≪ P n1−d1R
1 P n2−d2R

2 P−∆δ0(1−(d1+d2)R/C )+ε,

as desired.
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4.5.2 The major arcs

The aim of this section is to identify the main term via integrating the exponential

sum S(α) over the major arcs, and analyse the singular integral and singular series

appropriately. For a ∈ ZR and q ∈ N consider the complete exponential sum

Sa,q := q−n1−n2

#

x,y

e

!
a

q
· F (x,y)

"
,

where the sum
(

x,y runs through a complete set of residues modulo q. Further, for

P ≥ 1 and ∆ > 0 we define the truncated singular series

S(P ) :=
#

q≤P∆

#

a

Sa,q,

where the sum
(

a runs over a ∈ ZR such that 0 ≤ ai < q for i = 1, . . . , R and

(a1, . . . , aR, q) = 1. For γ ∈ RR we further define

S∞(γ) :=

$

B1×B2

e (γ · F (u,v)) dudv,

and we define the truncated singular integral for P ≥ 1, ∆ > 0 as follows

I(P ) :=

$

‖γ‖∞≤P∆

S∞(γ)dγ.

From now on we assume that our parameter ∆ > 0 satisfies

(bd1 + d2)
−1 > ∆(2R + 3) + δ (4.5.18)

for some δ > 0. Since C > R(bd1 + d2) we are always able to choose such ∆ in terms

of C . Further as in [98] we now define some slightly modified major arcs M′(∆) as

follows

M′(∆) :=
H

1≤q≤P∆

H

0≤ai<q
(a1,...,aR,q)=1

M′
a,q(∆),

where M′
a,q(∆) =

5
α ∈ [0, 1]R :

IIIα− a
q

III
∞

< P−d1
1 P−d2

2 P∆
6
. The sets M′

a,q are dis-

joint for our choice of ∆; for if there is some

α ∈ M′
a,q(∆) ∩M′

ã,q̃(∆),

where M′
ã,q̃(∆) ∕= M′

a,q(∆) then there is some i ∈ {1, . . . , R} such that

P−2∆ ≤ 1

qq̃
≤

%%%%
ai
q
− ãi

q̃

%%%% ≤ 2P∆−1,
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which is impossible for large P , since by our assumption (4.5.18) we have 3∆−1 < 0.

Further we note that clearly M′(∆) ⊇ M(∆) whence m′(∆) ⊆ m(∆) and so the

conclusions of Proposition 4.5.5 hold with m(∆) replaced by m′(∆).

The next result expands the exponential sum S(α) whenα can be well-approximated

by a rational number. In particular for our applications it is important to obtain an

error term in which the constant does not depend on β, whence we cannot just use

Lemma 5.3 in [98] as it is stated there.

Lemma 4.5.6. Let ∆ > 0 satisfy (4.5.18), let α ∈ M′
a,q(∆) where q ≤ P∆, and

write α = a/q + β such that 1 ≤ ai < q and (a1, . . . , aR, q) = 1. If P1 ≥ P2 > 1 then

S(α) = P n1
1 P n2

2 Sa,qS∞(Pβ) +O
9
qP n1

1 P n2−1
2 (1 + P ‖β‖∞)

:
, (4.5.19)

where the implied constant in the error term does not depend on q or on β.

Proof. In the sum for S(α) we begin by writing x = z(1) + qx′ and y = z(2) + qy′

where 0 ≤ z
(1)
i < q and 0 ≤ z

(2)
j < q for all 1 ≤ i ≤ n1 and for all 1 ≤ j ≤ n2. A

simple calculation now shows

S(α) =
#

x∈P1B1

#

y∈P2B2

e (α · F (x,y))

=
#

z(1),z(2) mod q

e

!
a

q
· F (z(1), z(2))

"
S̃(z(1), z(2)) (4.5.20)

where

S̃(z(1), z(2)) =
#

x′,y′

e
9
β · F (qx′ + z(1), qy′ + z(2))

:
,

where x′,y′ in the sum runs through integer tuples such that qx′ + z(1) ∈ P1B1 and

qy′ + z(2) ∈ P2B2 is satisfied. Now consider x′,x′′ and y′,y′′ such that

‖x′ − x′′‖∞ , ‖y′ − y′′‖∞ ≤ 2.

Then for all i = 1, . . . , R we have

%%Fi(qx
′ + z(1), qy′ + z(2))− Fi(qx

′′ + z(1), qy′′ + z(2))
%%

≪ qP d1−1
1 P d2

2 + qP d1
1 P d2−1

2 ≪ qP d1
1 P d2−1

2 ,

where we used P1 ≥ P2 > 1 for the last estimate. We note that the implied constant

here does not depend on q. We now use this to replace the sum in S̃ by an integral
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to obtain

S̃(z(1), z(2)) =

$

qṽ∈P1B1

$

qw̃∈P2B2

e

/
R#

i=1

βiFi(qṽ, qw̃)

0
dṽdw̃

+O

/
‖β‖∞ qP d1

1 P d2−1
2

!
P1

q

"n1
!
P2

q

"n2

+

!
P1

q

"n1
!
P2

q

"n2−1
0
,

where we used that q ≤ P2, which is implied by our assumptions, but we mention here

for the convenience of the reader. In the integral above we perform a substitution

v = qP−1
1 ṽ and w = qP−1

2 w̃ to get

S̃(z(1), z(2)) = P n1
1 P n2

2 q−n1−n2I(Pβ) + q−n1−n2O
9
qP n1

1 P n2−1
2 (1 + P ‖β‖∞)

:
,

where the implied constant does not depend on β or q. Substituting this into (4.5.20)

gives the result.

From the Lemma und using that the sets M′
a,q are disjoint we deduce

$

M′(∆)

S(α)dα = P n1
1 P n2

2

#

1≤q≤P∆

#

a

Sa,q

$

|β|
S∞(Pβ)dβ

+O
9
P n1
1 P n2

2 P 2∆P−1
2 meas (M′(∆))

:
, (4.5.21)

where we used q ≤ P∆ and P ‖β‖∞ ≤ P∆ for the error term. Now we can bound the

measure of the major arcs by

meas(M′(∆)) ≪
#

q≤P∆

qRP−R+∆R ≪ P−R+∆(2R+1).

Using this and making the substitution γ = Pβ in the integral in (4.5.21) we find

$

M′(∆)

S(α)dα = P n1
1 P n2

2 P−RS(P )I(P )

+O
9
P n1
1 P n2

2 P−R+∆(2R+3)−1/(bd1+d2)
:
. (4.5.22)

It becomes transparent why the assumption (4.5.18) is in place, because then the

error term in (4.5.22) is bounded by O(P n1
1 P n2

2 P−R−δ) and thus is of smaller order

than the main term.

We now focus on the singular series S(P ) and the singular integral I(P ) in the

next two Lemmas.

Lemma 4.5.7. Let ε > 0 and assume that the bound (4.5.1) holds for some C ≥ 1,

C > 1 + bε, for all α,β ∈ RR and all real P1 ≥ P2 > 1. Then we have the following:
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(i) For all ε′ > 0 such that ε′ = OC (ε) we have

min {|Sa,q| , |Sa′,q′ |} ≪C (q′ + q)ε
IIII
a

q
− a′

q′

IIII

C−ε′
d̃+1

∞

for all q, q′ ∈ N and all a ∈ {1, . . . , q}R and a′ ∈ {1, . . . , q′}R with a
q
∕= a′

q′ .

(ii) If C > ε′ then for all t ∈ R>0 and q0 ∈ N we have

#

J
a

q
∈ [0, 1]R ∩QR : q ≤ q0, |Sa,q| ≥ t

K
≪C (q−ε

0 t)−
(d̃+1)R

C−ε′ ,

where the fractions in the set above are in lowest terms.

(iii) Assume that the forms Fi(x,y) are linearly independent. Then for all q ∈ N
and a ∈ ZR with (a1, . . . , aR, q) = 1 there exists some ν > 0 depending at most

on di and R such that

|Sa,q| ≪ q−ν .

(iv) Assume C > (d̃+ 1)R and assume the forms Fi(x,y) are linearly independent.

Then the singular series

S =
∞#

q=1

#

amod q

Sa,q (4.5.23)

exists and converges absolutely, with

|S(P )−S| ≪C,C P−∆δ1 ,

for some δ1 > 0 depending only on C , di and R.

Proof of (i). Take Bi = [0, 1]ni so that S∞(0) = 1. Therefore (4.5.19) implies that

S
1

a
q

2

P n1
1 P n2

2

= Sa,q +O
9
qP−1

2

:
and

S
1

a′

q′

2

P n1
1 P n2

2

= Sa′,q′ +O
9
q′P−1

2

:
.

Using this and the bound (4.5.1) we obtain

min {|Sa,q| , |Sa′,q′ |} ≤ CP ε
1P

−C

IIII
a

q
− a′

q′

IIII
−C

∞
+

CP ε
1

IIII
a

q
− a′

q′

IIII

C
d̃+1

∞
+O

9
(q′ + q)P−1

2

:
, (4.5.24)

where we note that P ε
1P

−C
2 = O(P−1

2 ) due to our assumptions on C . Now set

P1 = P2 = (q + q′)

IIII
a

q
− a′

q′

IIII
− 1+C

d̃+1

∞
.
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Note (q + q′) ≥ 1 and
IIIa

q
− a′

q′

III
∞

≤ 1 so that this gives Pi ≥ 1. Substituting these

choices into (4.5.24) we get

min {|Sa,q| , |Sa′,q′ |} ≤ P ε
1 (q + q′)−C (d1+d2)

IIII
a

q
− a′

q′

IIII

C2+C
d̃+1

(d1+d2)−C

∞
+

CP ε
1

IIII
a

q
− a′

q′

IIII

C
d̃+1

∞
+O

/IIII
a

q
− a′

q′

IIII

1+C
(d̃+1)

∞

0
.

Noting again that (q+q′) ≥ 1,
IIIa

q
− a′

q′

III
∞

≤ 1 and also that C 2+C
d̃+1

(d1+d2)−C ≥ C
d̃+1

we see that the second term on the right hand side above dominates the expression.

Hence we finally obtain

min {|Sa,q| , |Sa′,q′ |} ≪C P ε
1

IIII
a

q
− a′

q′

IIII

C
d̃+1

∞
= (q′ + q)ε

IIII
a

q
− a′

q′

IIII

C−ε′
d̃+1

∞
,

for some ε′ = OC (ε).

Proof of (ii). This now follows almost directly from (i). The points in the set

J
a

q
∈ [0, 1]R ∩QR : q ≤ q0, |Sa,q| ≥ t

K

are separated by gaps of size ≫C (q−ε
0 t)

d̃+1
C−ε′ . Hence at most OC((q

−ε
0 t)−

d̃+1
C−ε′ ) fit in

the box [0, 1]R so the result follows.

Proof of (iii). Setting P1 = P2 = q and α = a/q we find Sa,q = q−n1−n2S(α). Let δ0

be defined as in (4.5.16). We can define ∆ by (d1+d2)∆ = 1−ε′′ for some ε′′ ∈ (0, 1).

We claim that a/q does not lie in the major arcs M(∆) if (a1, . . . , ar, q) = 1. For if,

then there exist q′,a′ such that

1 ≤ q′ ≤ q(d1+d2)∆,

and

2 |q′ai − qa′i| ≤ q1−d1−d2q(d1+d2)∆ < 1,

which is clearly impossible. The bound (4.5.17) applied to our situation gives

|Sa,q| ≪ q−Rδ0(1−ε′′)+ε.

As the forms Fi are linearly independent we know that δ0 ≥ 1

(d̃+1)2d̃R
. Thus, choosing

some small enough ε delivers the result.
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Proof of (iv). For Q > 0 let

s(Q) =
#

a/q∈[0,1)R
Q<q≤2Q

|Sa,q| ,

where
(

a/q∈[0,1)R is shorthand for the sum running over
(∞

q=1

(
‖a‖∞≤q such that

(a1, . . . , aR, q) = 1. We claim that s(Q) ≪C,C Q−δ1 for some δ1 > 0. To see this, let

ℓ ∈ Z. Then

s(Q) =
#

a/q∈[0,1)R
Q<q≤2Q
|Sa,q |≥2−ℓ

|Sa,q|+
∞#

i=ℓ

#

a/q∈[0,1)R
Q<q≤2Q

2−i>|Sa,q |≥2−i−1

|Sa,q|

≤ #

J
a

q
∈ [0, 1)R ∩QR : q ≤ 2Q, |Sa,q| ≥ 2−ℓ

K
· sup
q>Q

|Sa,q|

+
∞#

i=ℓ

#

J
a

q
∈ [0, 1)R ∩QR : q ≤ 2Q, |Sa,q| ≥ 2−i−1

K
· 2−i. (4.5.25)

Now from (ii) we know

#

J
a

q
∈ [0, 1)R ∩QR : q ≤ 2Q, |Sa,q| ≥ t

K
≪C (Q−εt)−

(d̃+1)R

C−ε′ ,

and from (iii) we know, since Fi are linearly independent there is some ν > 0 such

that

sup
q>Q

|Sa,q| ≪ Q−ν .

Using these estimates in (4.5.25) we get

s(Q) ≪C QOC (ε)−ν2ℓ
(d̃+1)R

C−ε′ +QOC (ε)

∞#

i=ℓ

2
(i+1)

$
(d̃+1)R

C−ε′′

%
−i
.

Since we assumed C > (d̃ + 1)R and since ε′ is small in terms of C we may also

assume C > (d̃+ 1)R + ε′. Therefore, summing the geometric expression gives

s(Q) ≪C,C QOC (ε)2ℓ
(d̃+1)R

C−ε′
9
Q−ν + 2−ℓ

:
.

Now choose ℓ = ⌊log2 Qν⌋ to get

s(Q) ≪ Qν
(d̃+1)R−C

C
+OC (ε).

Letting ε be small enough in terms of C , di, R we get some δ1 > 0 depending on C , di

and R such that

s(Q) ≪ Q−δ1 ,
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which proves the claim. Finally using this and splitting the sum into dyadic intervals

we find

|S(P )−S| ≤
#

a/q∈[0,1)R
q>P∆

|Sa,q| =
∞#

k=0

#

Q=2kP∆

s(Q) ≪
∞#

k=0

9
2kP∆

:−δ1
,

which proves (iv).

The next Lemma handles the singular integral.

Lemma 4.5.8. Let ε > 0 and assume that the bound (4.5.1) holds for some C ≥ 1,

C > 1 + bε and for all α,β ∈ RR and all real P1 ≥ P2 > 1. Then:

(i) For all γ ∈ RR we have

S∞(γ) ≪C ‖γ‖−C+ε′

∞ ,

for some ε > 0 such that ε′ = OC (ε).

(ii) Assume that C − ε′ > R. Then for all P1, P2 > 1 we have

|I(P )− I| ≪C ,C,ε′ P
−∆(C−ε′−R),

where I is the singular integral

I =

$

γ∈RR

S∞(γ)dγ. (4.5.26)

In particular we see that I exists and converges absolutely.

Proof of (i). It is easy to see that for all β ∈ RR we have |S(β)| ≤ |S(0)|. Thus

applying (4.5.1) with α = 0 and β = P−1γ we get

%%S(P−1γ)
%% ≤ CP n1

1 P n2
2 P ε

1 max
5
P−1
2 ‖γ‖−1

∞ , P
− 1

d̃+1 ‖γ‖
1

d̃+1

6C

. (4.5.27)

Now from (4.5.19) with a = 0 and β = P−1γ we have

S(P−1γ) = P n1
1 P n2

2 S∞(γ) +O
9
P n1
1 P n2−1

2 (1 + ‖γ‖∞)
:
, (4.5.28)

where we used as in the proof of part (i) Lemma 4.5.7 that P ε
1P

−C
2 ≤ P−1

2 due to our

assumptions on C . Combining (4.5.27) and (4.5.28) we obtain

S∞(γ) ≪C P ε
1 max

J
‖γ‖−1

∞ , P
− 1

d̃+1 ‖γ‖
1

d̃+1
∞

KC

+ P−1
2 + ‖γ‖∞ P−1

2 .

Taking P1 = P2 = max{1, ‖γ‖1+C
∞ } gives the result.
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Proof of (ii). For this simply note that by part (i) we get

|I(P )− I| =
$

‖γ‖∞≥P∆

S∞(γ)dγ ≪C ,C,ε′

$

‖γ‖∞≥P∆

‖γ‖−C−ε′

∞ dγ ≪ P−∆(C−ε′−R),

where the last estimate follows since we assumed C − ε′ > R.

Before we finish the proof of the main result we state two different expressions

for the singular series and the singular integral that will be useful later on. If C >

R(d1 + d2) then I and S converge absolutely, as was shown in the previous two

Lemmas. Therefore, as in §7 of [9], by regarding the bihomogeneous forms under

investigation simply as homogeneous forms we may express the singular series as an

absolutely convergent product

S =
.

p

Sp, (4.5.29)

where

Sp = lim
k→∞

1

pk(n1+n2−R)
#
3
(u,v) ∈ {1, . . . , pk}n1+n2 : Fi(u,v) ≡ 0 (mod p), i = 1, . . . , R

4
.

Lemma 2.6 in [94] further shows that we can write the singular integral as

I = lim
P→∞

1

P n1+n2−(d1+d2)R
µ
3
(t1, t2)/P ∈ B1 × B2 :

|Fi(t1, t2)| ≤ 1/2, i = 1, . . . , R
4
, (4.5.30)

where µ(·) denotes the Lebesgue measure. We may therefore interpret the quantities

I and Sp as the real and p-adic densities, respectively, of the system of equations

F1(x,y) = · · · = FR(x,y) = 0.

4.5.3 Proofs of Proposition 4.5.1 and Theorem 4.2.1

Proof of Proposition 4.5.1. From Proposition 4.5.5, the estimate (4.5.22), Lemma

4.5.7 and Lemma 4.5.8, for any ε > 0 we find

N(P1, P2)

P n1
1 P n2

2 P−R
−SI ≪

O
1
P−∆δ1 + P−∆δ0(1−(d1+d2)R/C )+ε + P (2R+3)∆−1/(bd1+d2) + P−∆(C−ε′−R)

2
.

for some δ1 > 0 and some 1 > ε′ > 0. Recall we assumed C > (bd1 + d2)R and

assuming the forms Fi are linearly independent we also have δ0 ≥ 1

(d̃+1)2d̃R
. Therefore

choosing suitably small ∆ > 0 there exists some δ > 0 such that

N(P1, P2)

P n1
1 P n2

2 P−R
−SI ≪ P−δ
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as desired. Finally, since we assume that the equations Fi define a complete inter-

section, it is a standard fact to see that S is positive if there exists a non-singular

p-adic zero for all primes P , and similarly I is positive if there exists a non-singular

real zero within B1 ×B2. A detailed argument of this fact using a version of Hensel’s

Lemma for S and the implicit function theorem for I can be found for example in §4
of [94].

We finish this section by deducing the technical main theorem, namely Theo-

rem 4.2.1.

Proof of Theorem 4.2.1. Assume the estimate in (4.2.1) holds for some constant C0 >

0. From Proposition 4.4.4 it thus follows that the auxiliary inequality (4.5.1) holds

with a constant C > 0 depending on C0, di, ni, µ and M , where all of these quantities

follow the same notation as in Section 4.4. Therefore the assumptions of Proposi-

tion 4.5.1 so we can apply it to obtain the desired conclusions.

4.6 Systems of bilinear forms – the proof of The-

orem 4.1.1

In this section we assume d1 = d2 = 1. Then we can write our system as

Fi(x,y) = yTAix,

where Ai are n2 × n1-dimensional matrices with integer entries. For β ∈ RR we now

have

β · F = yTAβx,

where Aβ =
(

i βiAi. Recall that we put

σ
(1)
R = max

β∈RR\{0}
dimker(Aβ) and σ

(2)
R = max

β∈RR\{0}
dimker(AT

β).

Since the row rank of a matrix is equal to its column rank we can also define

ρR := min
β∈RR\{0}

rank(Aβ) = min
β∈RR\{0}

rank(AT
β).

Due to the rank-nullity theorem the conditions

ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2 are equivalent to

ρR > (2b+ 2)R.
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Lemma 4.6.1. Assume that V(F1, . . . , FR) ⊂ Pn1−1
C × Pn2−1

C is a smooth complete

intersection. Let b ≥ 1 be a real number. Assume further

min{n1, n2} > (2b+ 2)R, and n1 + n2 > (4b+ 5)R. (4.6.1)

Then we have

ni − σ
(i)
R > (2b+ 2)R (4.6.2)

for i = 1, 2.

Proof. Without loss of generality assume n1 ≥ n2. Pick β ∈ RR \ {0} such that

rank(Aβ) = ρR. In particular then

dimker(Aβ) = σ
(1)
R , and dimker(AT

β) = σ
(2)
R .

We proceed in distinguishing two cases. Firstly, if σ
(2)
R = 0 then (4.6.2) follows for

i = 2 by the assumption (4.6.1). Further by comparing row rank and column rank of

Aβ in this case we must then have σ
(1)
R ≤ n1 − n2, and therefore

n1 − σ
(1)
R ≥ n2 > (2b+ 2)R,

so (4.6.2) follows for i = 1.

Now we turn to the case σ
(2)
R > 0. Then also σ

(1)
R > 0. The singular locus of the

variety V(β · F ) ⊂ Pn1−1
C × Pn2−1

C is given by

SingV(β · F ) = V(yTAβ) ∩ V(Aβx).

Therefore we have

dimSingV(β · F ) = σ
(1)
R + σ

(2)
R − 2.

Since we assumed V(F ) to be a smooth complete intersection we can apply Lemma 4.3.3

to get dimSingV(β · F ) ≤ R− 2. Therefore we find

σ
(1)
R + σ

(2)
R ≤ R.

From our previous remarks we know that showing (4.6.2) is equivalent to showing

ρR > (2b+ 2)R. But now

ρR =
1

2

1
n1 + n2 − σ

(1)
R − σ

(2)
R

2
≥ 1

2
(n1 + n2 −R) > (2b+ 2)R,

where the last inequality followed from the assumption (4.6.1). Therefore (4.6.2)

follows as desired.
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Proof of Theorem 4.1.1. Recall the notation b = logP1

logP2
. By virtue of Theorem 4.2.1 it

suffices to show that assuming

ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2 implies (4.2.1). We will show (4.2.1) for i = 1, the other case follows

analogously. Let C =
n2−σ

(2)
R

2
and we note that we have C > (bd1 + d2)R = (b+ 1)R

precisely when n2 − σ
(2)
R > (2b+ 2)R holds. Therefore it suffices to show that

Naux
1 (β, B) ≪ Bσ

(2)
R . (4.6.3)

for all β ∈ RR \ {0} with the implied constant not depending on β. In our case we

have

Γ(u) = uTA(β),

where u ∈ Zn2 . Therefore Naux
1 (β, B) counts vectors u ∈ Zn2 such that

‖u‖∞ ≤ B and
IIuTA(β)

II
∞ ≤ ‖A(β)‖∞ = ‖β · F ‖∞ .

In particular, all of the vectors u ∈ Zn2 , which are counted by Naux
1 (β, B) are con-

tained in the ellipsoid

Eβ :=
3
t ∈ Rn2 : tTAβA

T
βt < n2 ‖β · F ‖2∞

4
.

The principal radii of Eβ are given by |λi|−1 n
1/2
2 ‖β · F ‖∞ for i = 1, . . . , n2, where λi

run through the n2 singular values of Aβ and are listed in increasing order of absolute

value. Thus we find

Naux
1 (β, B) ≪

n2.

i=1

min
3
|λi|−1 ‖β · F ‖∞ + 1, B

4
.

If
%%%λ

σ
(2)
R +1

%%% ≫ ‖β · F ‖∞ holds then (4.6.3) would follow. So suppose for a contra-

diction that there exists a sequence (β(i)) such that
%%%λ

σ
(2)
R +1

%%% = o
9IIβ(i) · F

II
∞

:
. Let

β be the limit of a subsequence of β(i)/
IIβ(i)

II, which must exist by the Bolzano–

Weierstrass theorem. For this β we must then have λ
σ
(2)
R +1

= 0. Since the singular

values were listed in order of increasing absolute value it follows that

λ1 = · · · = λ
σ
(2)
R +1

= 0,

and so dimkerAT
β = σ

(2)
R + 1. This contradicts the maximality of σ

(2)
R + 1.

The second part of the theorem is now a direct consequence of Lemma 4.6.1.
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4.7 Systems of forms of bidegree (2, 1)

We consider a system F (x,y) of homogeneous equations of bidegree (2, 1), where

x = (x1, . . . , xn1) and y = (y1, . . . , yn2). We will first assume n1 = n2 = n, say, and

then deduce Theorem 4.1.2 afterwards. Therefore the initial main goal is to establish

the following.

Proposition 4.7.1. Let F1(x,y), . . . , FR(x,y) be bihomogeneous forms of bidegree

(2, 1) such that the biprojective variety V(F1, . . . , FR) ⊂ Pn−1
Q ×Pn−1

Q is a complete in-

tersection. Write b = max{logP1/ logP2, 1} and u = max{logP2/ logP1, 1} Assume

that

n− s
(i)
R > (8b+ 4u)R (4.7.1)

holds for i = 1, 2, where s
(i)
R are as defined in (4.1.7) and (4.1.8). Then there exists

some δ > 0 depending at most on F , R, n, b and u such that we have

N(P1, P2) = σP n−2R
1 P n−R

2 +O(P n−2R
1 P n−R

2 min{P1, P2}−δ)

where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all primes p and

a smooth real zero in B1 × B2.

If we assume that V(F1, . . . , FR) ⊂ Pn−1
Q × Pn−1

Q is smooth, then the same conclu-

sions hold if we assume

n > (16b+ 8u+ 1)R

instead of (4.7.1).

For r = 1, . . . , R we can write each form Fr(x,y) as

Fr(x,y) =
#

i,j,k

F
(r)
ijkxixjyk,

where the coefficients F
(r)
ijk are symmetric in i and j. In particular, for any r = 1, . . . , R

we have an n × n matrix given by Hr(y) = (
(

k F
(r)
ijkyk)ij whose entries are linear

homogeneous polynomials in y. We may thus also write each equation in the form

Fr(x,y) = xTHr(y)x.

The strategy of the proof of Proposition 4.7.1 is the same as in the bilinear case, how-

ever this time more techincal arguments are required. We need to obtain a good upper

bound for the counting functions Naux
i (β;B) so that we can apply Theorem 4.2.1.

For β ∈ RR we consider β · F , which we can rewrite in our case as

β · F (x,y) = xTHβ(y)x
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where Hβ(y) =
(R

i=1 βiHi(y) is a symmetric n × n matrix whose entries are linear

and homogeneous in y. The associated multilinear form Γβ·F (x
(1),x(2),y) is thus

given by

Γβ·F (x
(1),x(2),y) = 2

9
x(1)

:T
Hβ(y)x

(2).

Recall Naux
1 (β, B) counts integral tuples x,y ∈ Zn satisfying ‖x‖∞ , ‖y‖∞ ≤ B and

III(Γβ·F (x, e1,y), . . . ,Γβ·F (x, en,y))
T
III
∞

= 2 ‖Hβ(y)x‖∞ ≤ ‖β · F ‖∞ B.

Now Naux
2 (β, B) counts integral tuples x(1), x(2) with

IIx(1)
II
∞ ,

IIx(2)
II
∞ ≤ B and

III
9
Γβ·F (x

(1),x(2), e1), . . . ,Γβ·F (x
(1),x(2), en)

:TIII
∞

≤ ‖β · F ‖∞ B.

We may rewrite this as saying that

IIx(1)Hβ(eℓ)x
(2)
II ≤ ‖β · F ‖∞ B

is satisfied for ℓ = 1, . . . , n.

As in the proof of Theorem 4.1.1 using Proposition 4.4.4 and Proposition 4.5.1

we find that for the proof of Theorem 4.7.1 it is enough to show that there exists a

positive constant C0 such that for all B ≥ 1 and all β ∈ Rr \ {0} we have

Naux
i (β;B) ≤ C0B

2n−4C

for i = 1, 2, where C > (2b + u)R. The remainder of this section establishes these

upper bounds.

4.7.1 The first auxiliary counting function

This is the easier case and the problem of finding a suitable upper bound forNaux
1 (β;B)

is essentially handled in [95].

Lemma 4.7.2 (Corollary 5.2 of [95]). Let Hβ(y) and Naux
1 (β;B) be as above. Let

B,C ≥ 1, let β ∈ RR \ {0} and let σ ∈ {0, . . . , n − 1}. Then we either obtain the

bound

Naux
1 (β;B) ≪C,n Bn+σ(logB)n

or there exist non-trivial linear subspaces U, V ⊆ Rn with dimU +dimV = n+ σ+1

such that for all v ∈ V and u1,u2 ∈ U we have

%%uT
1Hβ(v)u2

%%
‖β · F ‖∞

≪n C−1 ‖u1‖∞ ‖v‖∞ ‖u2‖∞ .
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Recall the quantity

s
(1)
R := 1 + max

β∈RR\{0}
dimV(xTHβ(eℓ)x)ℓ=1,...,n2 ,

where we regard V(xTHβ(eℓ)x)ℓ=1,...,n2 ⊂ Pn1−1
C as a projective variety. Note that for

this definition we do not necessarily require n1 = n2.

Proposition 4.7.3. Let ε > 0. For all B ≥ 1, β ∈ RR \ {0} we have

Naux
1 (β;B) ≪ε B

n+s
(1)
R +ε. (4.7.2)

Proof. Assume for a contradiction that the estimate in (4.7.2) does not hold. In this

case Lemma 4.7.2 gives that for each N ∈ N there exist βN ∈ RR and there are

non-trivial linear subspaces UN , VN ⊆ Rn with dimUN + dimVN = n + s
(1)
R + 1 such

that for all v ∈ VN and u1,u2 ∈ UN we have
%%uT

1HβN
(v)u2

%%
‖βN · F ‖∞

≪n N−1 ‖u1‖∞ ‖v‖∞ ‖u2‖∞ .

If we change βN by a scalar then 2
|HβN

(y)|
‖βN ·F ‖∞

remains unchanged for any y ∈ Rn.

Therefore we may without loss of generality assume ‖βN‖∞ = 1. Thus there exists

a convergent subsequence of (βN) whose limit we will denote by β. Hence we find

subspaces U, V ⊆ Rn with dimU + dimV = n+ s
(1)
R + 1 such that for all v ∈ V and

u1,u2 ∈ U we have

uT
1Hβ(v)u2 = 0.

Let k denote the nonnegative integer such that

dimV = n− k, and dimU = s
(1)
R + k + 1

holds. Consider now a basis vk+1, . . . ,vn of V that we extend to a basis v1, . . . ,vn of

Rn. Write also [U ] ⊆ Pn−1
C for the projectivisation of U . Define W ⊆ [U ] to be the

projective variety defined by the equations

uTHβ(vi)u = 0, for i = 1, . . . , k

We find dimW ≥ dim[U ] − k = s
(1)
R . Since W ⊆ [U ] and by the definition of W ,

noting that the entries of Hβ(y) are linear in y we get that if u ∈ W then

uTHβ(y)u = 0 for all y ∈ Rn.

In particular it follows that W ⊆ V(xTHβ(eℓ)x)ℓ=1,...,n ⊂ Pn−1
C and thus

s
(1)
R − 1 ≥ dimW ≥ s

(1)
R ,

which is clearly a contradiction.
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Now that we found an upper bound in terms of the geometry of V(F ) the next

Lemma shows that if F defines a non-singular variety then s
(1)
R is not too large. For

the next Lemma we will not assume n1 = n2 as we will require it later in the slightly

more general context when this assumption is not necessarily satisfied.

Lemma 4.7.4. Let s
(1)
R be defined as above and assume that F is a system of bi-

homogenous equations of bidegree (2, 1) that defines a smooth complete intersection

V(F ) ⊂ Pn1−1
C × Pn2−1

C . Then

s
(1)
R ≤ max{0, R + n1 − n2}.

Proof. Let β ∈ RR \ {0} be such that dimV(xTHβ(eℓ)x)ℓ=1,...,n2 = s
(1)
R − 1. If

V(xTHβ(eℓ)x)ℓ=1,...,n2 = ∅ then the statement in the lemma is trivially true. Hence

we may assume that this is not the case. The singular locus of V(β·F ) ⊆ Pn1−1
C ×Pn2−1

C

is given by

SingV(β · F ) =
9
V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1

C
:
∩ V(Hβ(y)x).

From Lemma 4.3.3 we obtain

dimSingV(β · F ) ≤ R− 2.

Further, since V(Hβ(y)x) is a system of n1 bilinear equations, Lemma 4.3.1 gives

dimSingV(β · F ) ≥ s
(1)
R − 1 + n2 − 1− n1.

Combining the previous two inequalities yields

s
(1)
R ≤ R + n1 − n2,

as desired.

We remark here that the proof of Lemma 4.7.4 shows that if V(F ) defines a

smooth complete intersection and if s
(1)
R > 0 then n2 < n1 +R.

4.7.2 The second auxiliary counting function

Define )Hβ(x
(1)) to be the n×nmatrix with the rows given by (x(1))THβ(eℓ)/ ‖β · F ‖∞

for ℓ = 1, . . . , n. Using this notation Naux
2 (β, B) counts the number of integer tuples

x(1), x(2) such that
IIx(1)

II
∞ ,

IIx(2)
II
∞ ≤ B and

III )Hβ(x
(1))x(2)

III
∞

≤ B,
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is satisfied. The entries of )Hβ(x
(1)) are homogeneous linear polynomials in x(1) whose

coefficients do not exceed absolute value 1.

Let A be a real m × n matrix. Then ATA is a symmetric and positive definite

n × n matrix, with eigenvalues λ2
1, . . . ,λ

2
n. The nonnegative real numbers {λi} are

the singular values of A.

Notation. Given a matrix M = (mij) we define ‖M‖∞ := maxi,j |mij|. For simplic-

ity we will from now on write x instead of x(1) and y instead of x(2). For x ∈ Rn let

λβ,1(x), . . . ,λβ,n(x) denote the singular values of the real n× n matrix )Hβ(x) in de-

scending order, counted with multiplicity. Note that λβ,i(x) are real and nonnegative.

Also note

λ2
β,1(x) ≤ n

III )Hβ(x)
T )Hβ(x)

III
∞

≤ n2
III )Hβ(x)

III
2

∞
≤ n4 ‖x‖2∞ .

Taking square roots we find the following useful estimates

λβ,1(x) ≤ n
III )Hβ(x)

III
∞

≤ n2 ‖x‖∞ (4.7.3)

Let i ∈ {1, . . . , n} and write D(β,i)(x) for the vector with
9
n
i

:2
entries being the i× i

minors of )Hβ(x). Note that the entries are homogeneous polynomials in x of degree

i.

Finally write JD(β,i)(x) for the Jacobian matrix of D(β,i)(x). That is, JD(β,i)(x)

is the
9
n
i

:2 × n matrix given by

(JD(β,i)(x))jk =
∂D

(β,i)
j

∂xk

.

Definition 4.7.5. Let k ∈ {0, . . . , n} and let E1, . . . , Ek+1 ∈ R be such that E1 ≥
. . . ≥ Ek+1 ≥ 1 holds. We define Kk(E1, . . . , Ek+1) ⊆ Rn to be the set containing

x ∈ Rn such that the following three conditions are satisfied:

(i) ‖x‖∞ ≤ B,

(ii) 1
2
Ei < λβ,i(x) ≤ Ei if 1 ≤ i ≤ k, and

(iii) λβ,i(x) ≤ Ek+1 if k + 1 ≤ i ≤ n.

Lemma 4.7.6. Let )H be an n × n matrix with real entries, and denote its singular

values in descending order by λ1, . . . ,λn. Let C,B ≥ 1 and assume λ1 ≤ CB. Write

N #H(B) for the number of integral vectors y ∈ Zn such that

‖y‖∞ ≤ B, and
III )Hy

III
∞

≤ B

holds. Then

N #H(B) ≪C,n min
1≤i≤n

Bn

1 + λ1 · · ·λi

.
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Proof. Consider the ellipsoid

E := {t ∈ Rn : tT )HT )Ht ≤ nB2}.

Note that any y ∈ Zn counted by N #H(B) is contained in E ∩ [−B,B]n. Now recall

that )HT )H is a symmetric matrix with eigenvalues λ2
1, . . . ,λ

2
n. Therefore the principal

radii of the ellipsoid E are given by λ−1
i

√
nB. Hence we find

N #H(B) ≪n

n.

i=1

min{1 + λ−1
i

√
nB,B} (4.7.4)

By assumption we have λi ≤ CB and so the quantity on the right hand side of (4.7.4)

is bounded above by
n.

i=1

min{2Cλ−1
i

√
nB,B},

and thus

N #H(B) ≪C,n Bn

n.

i=1

min{λ−1
i , 1}.

Since λ1 ≥ · · · ≥ λn the result now follows.

Lemma 4.7.7. Given B ≥ 1 one of the following three possibilities must be true.

Either we have
Naux

2 (β, B)

Bn(logB)n
≪n #(Zn ∩K0(1)), (4.7.5)

or there exist nonnegative integers e1, . . . , ek for some k ∈ {1, . . . , n − 1} such that

logB ≫n e1 ≥ . . . ≥ ek and

2e1+···+ekNaux
2 (β, B)

Bn(logB)n
≪n #(Zn ∩Kk(2

e1 , . . . , 2ek , 1)), (4.7.6)

or there exist nonnegative integers e1, . . . , en such that logB ≫n e1 ≥ . . . ≥ en and

2e1+···+enNaux
2 (β, B)

Bn(logB)n
≪n #(Zn ∩Kn−1(2

e1 , . . . , 2en)). (4.7.7)

Proof. If k = n then condition (iii) in Definition 4.7.5 is always trivially satisfied and

thus

Kn(2
e1 , . . . , 2en , 1) ⊆ Kn−1(2

e1 , . . . , 2en).

In particular, (4.7.7) follows from (4.7.6) with k = n. We are left showing that either

(4.7.5) holds or there exist nonnegative integers e1, . . . , ek for some k ∈ {1, . . . , n}
such that logB ≫n e1 ≥ . . . ≥ ek and (4.7.6) holds.
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Note that the box [−B,B]n is the disjoint union of K0(1) and Kk(2
e1 , . . . , 2ek , 1)

where k runs over 1, . . . , n and ei run over integers logB ≫n e1 ≥ . . . ≥ ek. Given

x ∈ Zn write

Nx(B) = #
5
y ∈ Zn : ‖y‖∞ ≤ B,

III )Hβ(x)y
III
∞

≤ B
6
.

We thus obtain

Naux
2 (β, B) =

#

x∈Zn

x∈K0(1)

Nx(B) +
#

1≤k≤n
1≤ek≤...≤e1
e1≪nlogB

#

x∈Zn

x∈Kk(2
e1 ,...,2ek ,1)

Nx(B). (4.7.8)

Note that the number of terms of the outer sum of the second term of the right hand

side of (4.7.8) is bounded by ≪n (logB)n. From this it follows that we either have

#

x∈Zn

x∈K0(1)

Nx(B) ≫n
Naux

2 (β, B)

(logB)n
(4.7.9)

or there exists an integer k ∈ {1, . . . , n} and integers e1 ≥ . . . ≥ ek ≥ 1 such that

#

x∈Zn

x∈Kk(2
e1 ,...,2ek ,1)

Nx(B) ≫n
Naux

2 (β, B)

(logB)n
. (4.7.10)

If (4.7.9) holds then (4.7.5) follows from the trivial bound Nx(B) ≪n Bn. Assume

now (4.7.10) holds. From (4.7.3), for each x appearing in the sum of (4.7.10) we have

the bound

λβ,1(x) ≤ n2B.

Applying Lemma 4.7.6 with C = n2 and )H = )Hβ(x) we find

Nx(B) ≪n
Bn

2e1+...+ek
. (4.7.11)

Substituting (4.7.11) into (4.7.10) delivers (4.7.6).

We now recall two Lemmas from [95] that are conveniently stated in a form so

that they apply to our setting.

Lemma 4.7.8 (Lemma 3.2 in [95]). Let M be a real m×n matrix with singular values

λ1, . . . ,λn listed with multiplicity in descending order. For k ≤ min{m,n} denote by

D(k) the vector of k × k minors of M . Given such k, the following statements are

true:
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(i) We have IID(k)
II
∞ ≍ λ1 · · ·λk

(ii) There is a k-dimensional subspace V ⊂ Rn, which can be taken to be a span of

standard basis vectors ei, such that for all v ∈ V the following holds

‖Mv‖∞ ≫m,n ‖v‖∞ λk

(iii) Given C ≥ 1 one of the following alternatives holds. Either there exists a

(n− k + 1)-dimensional subspace X ⊂ Rn such that

‖MX‖∞ ≤ C−1 ‖X‖∞ for all X ∈ X,

or there is a k-dimensional subspace V ⊂ Rn spanned by standard basis vectors

such that

‖Mv‖∞ ≫m,n C−1 ‖v‖∞ for all v ∈ V .

Next, we are interested in counting the number of integer tuples contained in the

sets Kk(E1, . . . , Ek+1). The next Lemma is taken from [95].

Lemma 4.7.9 (Lemma 4.1 in [95]). Let B,C ≥ 1, σ ∈ {0, . . . , n − 1} and k ∈
{0, . . . , n − σ − 1}. Assume further CB ≥ E1 ≥ . . . ≥ Ek+1 ≥ 1. Then one of the

following alternatives must hold.

(I)k We have the estimate

#(Zn ∩Kk(E1, . . . , Ek+1)) ≪C,n Bσ(E1 · · ·Ek+1)E
n−σ−k−1
k+1 .

(II)k For some integer b ∈ {1, . . . , k} there exists a (σ + b+ 1)-dimensional subspace

X ⊂ Rn and there exists x(0) ∈ Kb(E1, . . . , Eb+1) such that Eb+1 < C−1Eb and

IIJD(β,b+1)(x(0))X
II
∞ ≤ C−1

IID(β,b)(x(0))
II
∞ ‖X‖∞ for all X ∈ X.

(III) There exists a (σ + 1)-dimensional subspace X ⊂ Rn such that
III )Hβ(X)

III
∞

≤ C−1 ‖X‖∞ for all X ∈ X. (4.7.12)

Remark 4.7.10. In [95], Lemma 4.7.9 was stated for )Hβ(x) being a symmetric

matrix, and λβ,i(x) were taken to be the eigenvalues of )Hβ(x) whose absolute values

coincide with its singular values. However, an inspection of the proof shows that only

the estimates in Lemma 4.7.8 as well as (4.7.3) were used, which are valid for singular

values as well as the (absolute values) of the eigenvalues. Therefore the proof remains

valid in our setting.
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The next Lemma is similar to Lemma 5.1 in [95], however we need to account for

the fact that )Hβ(x) is not necessarily a symmetric matrix.

Lemma 4.7.11. Let b ∈ {1, . . . , n− 1} and x(0) ∈ Rn be such that D(β,b)(x(0)) ∕= 0.

Then there exist subspaces Y1, Y2 ⊆ Rn with dimY1 = dimY2 = n− b such that for all

Y1 ∈ Y1, Y2 ∈ Y2 and t ∈ Rn we have

Y T
1

)Hβ(t)Y2 ≪n

/IIJD(β,b+1)(x(0))t
II
∞

‖D(β,b)(x(0))‖∞
+

λβ,b+1(x
(0)) · ‖t‖∞

λβ,b(x(0))

0
‖Y1‖∞ ‖Y2‖∞

(4.7.13)

where the implied constant only depends on n but is otherwise independent from )Hβ(t)

Proof. Given x ∈ Rn define y
(1)
1 (x), . . . ,y

(n−b)
1 (x) in the following way. The j-th

entries are given by

(y
(i)
1 (x))j =

*
++++,

++++-

(−1)n−b det

!
( )Hβ(x)kℓ)k=n−b+1,...,n

ℓ=n−b+1,...,n

"
if j = i,

(−1)j det

!
( )Hβ(x)kℓ)k=i,n−b+1,...,n; k ∕=j

ℓ=n−b+1,...,n

"
if j > n− b,

0 otherwise,

(4.7.14)

where k = i, n−b+1, . . . , n; k ∕= j denotes that we let the index k run over the values

i, n− b+ 1, . . . , n with k = j omitted. Similarly we define y
(1)
2 (x), . . . ,y

(n−b)
2 (x) by

(y
(i)
2 (x))j =

*
++++,

++++-

(−1)n−b det

!
( )Hβ(x)kℓ)k=n−b+1,...,n

ℓ=n−b+1,...,n

"
if j = i,

(−1)j det

!
( )Hβ(x)kℓ) k=n−b+1,...,n

ℓ=i,n−b+1,...,n; ℓ ∕=j

"
if j > n− b,

0 otherwise.

Using the Laplace expansion of a determinant along columns and rows we thus obtain

(y
(i)
1 (x)T )Hβ(x))j =

*
,

-
(−1)n−b det

!
( )Hβ(x)kℓ)k=i,n−b+1,...,n

ℓ=j,n−b+1,...,n

"
if j ≤ n− b,

0 otherwise,
(4.7.15)

and

( )Hβ(x)y
(i)
2 (x))j =

*
,

-
(−1)n−b det

!
( )Hβ(x)kℓ)k=j,n−b+1,...,n

ℓ=i,n−b+1,...,n

"
if j ≤ n− b,

0 otherwise,
(4.7.16)

154



respectively. It follows from (4.7.14) — (4.7.16) that there exist matrices L
(i)
1 , L

(i)
2 ,

M
(i)
1 and M

(i)
2 for i = 1, . . . , n− b with entries only in {0,±1} such that we obtain

y
(i)
1 (x) = L

(i)
1 D(β,b)(x), (4.7.17)

y
(i)
2 (x) = L

(i)
2 D(β,b)(x), (4.7.18)

(y
(i)
1 (x))T )Hβ(x) = [M

(i)
1 D(β,b+1)(x)]T , and (4.7.19)

)Hβ(x)y
(i)
2 (x) = M

(i)
2 D(β,b+1)(x). (4.7.20)

Given t ∈ Rn we write ∂t for the directional derivative given by
(

ti
∂
∂xi

. Applying ∂t

to both sides of (4.7.20) we obtain

[∂t )Hβ(x)]y
(i)
2 (x) + )Hβ(x)[∂ty

(i)
2 (x)] = M

(i)
2 [∂tD

(β,b+1)(x)]. (4.7.21)

Now note

∂tD
(β,b+1)(x) = JD(β,b+1)(x)t, and ∂t )Hβ(x) = )Hβ(t). (4.7.22)

Substituting (4.7.22) and (4.7.18) into (4.7.21) yields

)Hβ(t)y
(i)
2 (x) = M

(i)
2 JD(β,b+1)(x)t− )Hβ(x)L

(i)
2 ∂tD

(β,b)(x).

If we premultiply this by y
(j)
1 (x)T and use (4.7.19) then we obtain

y
(j)
1 (x)T )Hβ(t)y

(i)
2 (x) = y

(j)
1 (x)TM

(i)
2 JD(β,b+1)(x)t

− [M
(j)
1 D(β,b+1)(x)]T [L

(i)
2 ∂tD

(β,b)(x)]. (4.7.23)

Lemma 4.7.8 (i) yields the bounds
IID(β,b+1)(x)

II
∞

‖D(β,b)(x)‖∞
≪n λβ,b+1(x), (4.7.24)

and II∂tD(β,b)(x)
II
∞

‖D(β,b)(x)‖∞
≪n

‖t‖∞
λβ,b(x)

. (4.7.25)

Now we specify x = x(0) so by assumption we have
IID(β,b)(x(0))

II
∞ > 0. Thus define

Y
(i)
k =

y
(i)
k (x(0))

‖D(β,b)(x(0))‖∞
, for i = 1, . . . , n− b and k = 1, 2. (4.7.26)

Dividing (4.7.23) by 1/
IID(β,b)(x(0))

II2

∞ and using (4.7.26) as well as the bounds (4.7.24)

and (4.7.25) gives

%%%Y (j)
1

)Hβ(t)Y
(i)
2

%%% ≪n

IIJD(β,b+1)(x(0))t
II
∞

‖D(β,b)(x(0))‖∞
+

λβ,b+1(x
(0)) ‖t‖∞

λβ,b(x(0))
.
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We claim now that we can take the subspaces Yk ⊆ Rn to be defined as the span of

Y
(1)
k , . . . ,Y

(n−b)
k for k = 1, 2 respectively, so that the Lemma holds. For this we need

to show that (4.7.13) holds, and also that dimY1 = dimY2 = n − b. Therefore it

suffices to show the following claim: Given γ ∈ Rn−b if we take Yk =
(

γiY
(i)
k then

‖γ‖∞ ≪n ‖Yk‖∞, for k = 1, 2 respectively.

Assume that the b×b minor of )Hβ(x
(0)) of largest absolute value lies in the bottom

right corner of )Hβ(x
(0)). In other words, we assume

IID(β,b)(x(0))
II
∞ =

%%%%det
!
( )Hβ(x

(0))kℓ)k=n−b+1,...,n
ℓ=n−b+1,...,n

"%%%% . (4.7.27)

After permuting the rows and columns of )Hβ(x
(0)) the identity (4.7.27) will always

be true. The vectors Y
(i)
k depend on minors of )Hβ(x

(0)). Thus we can apply the

same permutations to )Hβ(x
(0)) that ensure that (4.7.27) holds to the definition of

these vectors. From this we see that we can always reduce the general case to the

case where (4.7.27) holds.

Now for k = 1, 2 we define matrices

Qk =
1
Y

(1)
k

%%% · · ·
%%%Y (n−b)

k

%%%en−b+1

%%% · · ·
%%%en

2
.

By the definition of Y
(i)
k we see that Qk must be of the following form

Qk =

!
In−b 0
)Qk Ib

"
,

for some matrix )Qk. In particular we find detQk = 1 and so
IIQ−1

k

II
∞ ≪n 1. Given

Yk =
(

γiY
(i)
k we thus find

‖γ‖∞ =
IIQ−1

k Yk

II
∞ ≪n ‖Yk‖∞ ,

and so the Lemma follows.

The next Corollary is the main technical result from this section, which will allow

us to deduce that either Naux
2 (β, B) is small or a suitable singular locus is large.

Corollary 4.7.12. Let B,C ≥ 1 and let σ ∈ {0, . . . , n−1}. Then one of the following

alternatives is true. Either we have the bound

Naux
2 (β, B) ≪C,n Bn+σ(logB)n, (4.7.28)

or there exist subspaces X, Y1, Y2 ⊆ Rn with dimX + dimY1 = dimX + dimY2 =

n+ σ + 1, such that
%%%Y T

1
)Hβ(X)Y2

%%% ≪n C−1 ‖Y1‖∞ ‖X‖∞ ‖Y2‖∞ (4.7.29)

holds for all X ∈ X,Y1 ∈ Y1,Y2 ∈ Y2.
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Proof. Let k ∈ {0, . . . , n− σ − 1} and E1, . . . , Ek+1 ∈ R be such that

CB ≥ E1 ≥ . . . ≥ Ek+1 ≥ 1.

We know that one of the alternatives (I)k, (II)k or (III) in Lemma 4.7.9 holds. Assume

first that (I)k always holds so that the estimate

#(Zn ∩Kk(E1, . . . , Ek+1)) ≪C,n Bσ(E1 · · ·Ek+1)E
n−σ−k−1
k+1 . (4.7.30)

holds for every k ∈ {0, . . . , n − σ − 1} and E1, . . . , Ek+1 ∈ R such that CB ≥ E1 ≥
. . . ≥ Ek+1 ≥ 1. From Lemma 4.7.7 we find that either we have

Naux
2 (β, B)

Bn(logB)n
≪n #(Zn ∩K0(1)), (4.7.31)

or there exist nonnegative integers e1, . . . , ek for some k ∈ {1, . . . , n − 1} such that

logB ≫n e1 ≥ . . . ≥ ek and

2e1+···+ekNaux
2 (β, B)

Bn(logB)n
≪n #(Zn ∩Kk(2

e1 , . . . , 2ek , 1)), (4.7.32)

or there exist nonnegative integers e1, . . . , en such that logB ≫n e1 ≥ . . . ≥ en and

2e1+···+enNaux
2 (β, B)

Bn(logB)n
≪n #(Zn ∩Kn−1(2

e1 , . . . , 2en)). (4.7.33)

We may take C to be large enough depending on n such that CB ≥ 2e1 is satisfied.

Then upon sbustituting the bound (4.7.30) into either of (4.7.31), (4.7.32) or (4.7.33)

gives (4.7.28).

If (III) holds in Lemma 4.7.9 we can take Y1 = Y2 = Rn so that (4.7.29) follows

from (4.7.12).

Finally, assume there exist k ∈ {0, . . . , n − σ − 1} and E1, . . . , Ek+1 ∈ R with

CB ≥ E1 ≥ . . . ≥ Ek+1 ≥ 1 such that (II)k in Lemma 4.7.9 holds. Recall this means

there exists some integer b ∈ {1, . . . , k}, a (σ + b+ 1)-dimensional subspace X ⊂ Rn

and x(0) ∈ Kb(E1, . . . , Eb+1) such that Eb+1 < C−1Eb and

IIJD(β,b+1)(x(0))X
II
∞ ≤ C−1

IID(β,b)(x(0))
II
∞ ‖X‖∞ for all X ∈ X. (4.7.34)

As x(0) ∈ Kb(E1, . . . , Eb+1) we have Ei/2 < λβ,i(x
(0)) ≤ Ei for i = 1, . . . , k and

λβ,b+1(x
(0)) ≤ Eb+1. This, together with the fact that Eb+1 < C−1Eb implies

λβ,b+1(x
(0)) < 2C−1λβ,b(x

(0)). (4.7.35)
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Also we find λβ,b(x
(0)) ∕= 0, from which in turn it follows from Lemma 4.7.8 (i) that

D(β,b)(x(0)) ∕= 0. Thus we may apply Lemma 4.7.11 to obtain spaces Y1, Y2 ⊆ Rn with

dimY1 = dimY2 = n − b such that the estimate (4.7.13) holds. Now taking t = X

in (4.7.13) and using (4.7.34) and (4.7.35) then (4.7.29) follows. Since dimX =

σ + b+ 1 we also have dimX + dimY1 = dimX + dimY2 = n+ σ + 1 as desired.

Recall the definition of the quantity

s
(2)
R :=

7
maxβ∈RR\{0} dimV(Hβ(y)x)

2

8
+ 1,

where ⌊x⌋ denotes the largest integer m such that m ≤ x. Although we have been

assuming n1 = n2 throughout the definition of this quantity remains valid if n1 ∕= n2.

Note that we have V(Hβ(y)x) ⊊ Pn1−1
C × Pn2−1

C for all β ∈ RR \ {0}. For if not, then
the matrix Hβ(y) is identically zero for some β ∈ RR \ {0} contradicting the fact

that V(F ) is a complete intersection. In particular this yields s
(2)
R ≤ n1+n2

2
− 1.

Before we prove the main result of this section we require another small Lemma.

Lemma 4.7.13. Let β ∈ R \ {0}. The system of equations

yT )Hβ(eℓ)x = 0, for ℓ = 1, . . . , n and Hβ(y)x = 0

define the same variety in Pn−1
C × Pn−1

C .

Proof. Recall that by definition we have

)Hβ(z) =

;

<=
zTHβ(e1)

...
zTHβ(en).

>

?@

For ℓ ∈ {1, . . . , n} we get

yT )Hβ(eℓ)x = yT

;

<=
eT
ℓ Hβ(e1)x

...
eT
ℓ Hβ(en)x

>

?@ =
n#

i=1

yie
T
ℓ Hβ(ei)x = eT

ℓ Hβ(y)x,

where the last line follows since the entries of Hβ(y) are linear homogeneous in y.

The result is now immediate.

Proposition 4.7.14. Let s
(2)
R be defined as above and let B ≥ 1. Then for all β ∈

RR \ {0} the following holds

Naux
2 (β, B) ≪n Bn+s

(2)
R (logB)n.
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Proof. Suppose for a contradiction the result were false. Then for each positive integer

N there exists some βN such that

Naux
2 (βN , B) ≥ NBn+s

(2)
R (logB)n.

From Corollary 4.7.12 it follows that there are linear subspaces X(N), Y
(N)
1 , Y

(N)
2 ⊂ Rn

with

dimX(N) + dimY
(N)
i = n+ s

(2)
R + 1, i = 1, 2,

such that for all X ∈ X(N), Yi ∈ Y
(N)
i we get

%%%Y T
1

)HβN
(X)Y2

%%% ≤ N−1 ‖Y1‖∞ ‖X‖∞ ‖Y2‖∞ .

Note that )HβN
(β) is unchanged when βN is multiplied by a constant. Thus we may

assume ‖βN‖∞ = 1 and consider a converging subsequence of βNr converging to β,

say, as N → ∞. This delivers subspaces X, Y1, Y2 ⊂ Rn with dimX + dimYi =

n+ s
(2)
R + 1 for i = 1, 2 such that

Y T
1

)Hβ(X)Y2 = 0 for all X ∈ X,Y1 ∈ Y1,Y2 ∈ Y2.

There exists some b ∈ {0, . . . , n − s
(2)
R − 1} such that dimX = n − b and dimYi =

s
(2)
R +b+1. Now let x(1), . . . ,x(n) be a basis for Rn such that x(b+1), . . . ,x(n) is a basis

for X. Write [Yi] ⊂ Pn−1
C for the linear subspace of Pn−1

C associated to Yi for i = 1, 2.

Define the biprojective variety W ⊂ [Y1]× [Y2] in the variables (y1,y2) by

W = V(y1
)Hβ(x

(i))y2)i=1,...,b.

Since the non-trivial equations defining W have bidegree (1, 1) we can apply Corol-

lary 4.3.2 to find

dimW ≥ dim[Y1]× [Y2]− b = 2s
(2)
R + b. (4.7.36)

Given (y1,y2) ∈ W we have in particular (y1,y2) ∈ [Y1]× [Y2] and so

y1
)Hβ(x

(i))y2 = 0, for i = b+ 1, . . . , n,

and hence y1
)Hβ(z)y2 = 0 for all z ∈ Rn. From Lemma 4.7.13 we thus seeHβ(y1)y2 =

0 for all (y1,y2) ∈ W . Hence in particular

dimW ≤ dimV(Hβ(y)x) ≤ 2s
(2)
R − 1,

where we regard V(Hβ(y)x) as a variety in Pn−1
C × Pn−1

C in the variables (x,y). This

together with (4.7.36) implies b ≤ −1, which is clearly a contradiction.
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In the next Lemma we show that s
(2)
R is small if V(F ) defines a smooth complete

intersection. For this we no longer assume n1 = n2.

Lemma 4.7.15. Let s
(2)
R be defined as above. If V(F ) is a smooth complete intersec-

tion in Pn1−1
C × Pn2−1

C then we have the bound

n2 − 1

2
≤ s

(2)
R ≤ n2 +R

2
. (4.7.37)

Proof. Let β ∈ RR \ {0} be such that

s
(2)
R =

7
dimV(Hβ(y)x)

2

8
+ 1.

Note that then

2s
(2)
R − 2 ≤ dimV(Hβ(y)x) ≤ 2s

(2)
R − 1. (4.7.38)

The variety V(Hβ(y)x) ⊂ Pn1−1
C ×Pn2−1

C is defined by n1 bilinear polynomials. Using

Corollary 4.3.2 we thus find

dimV(Hβ(y)x) ≥ n2 − 2

so the lower bound in (4.7.37) follows. We proceed by considering two cases.

Case 1: V(xTHβ(eℓ)x)ℓ=1,...,n2 = ∅. Note that this can only happen if n2 ≥ n1. We

can therefore apply Lemma 4.3.4 with V1 = V(xTHβ(eℓ)x)ℓ=1,...,n2 , V2 = V(Hβ(y)x)

and Ai = Hβ(ei) to find

dimV(Hβ(y)x) ≤ n2 − 1 + dimV(xTHβ(eℓ)x)ℓ=1,...,n2 = n2 − 2.

From this and (4.7.38) the upper bound in (4.7.37) follows for this case.

Case 2: V(xTHβ(eℓ)x)ℓ=1,...,n2 ∕= ∅: By assumption there exists x ∈ Cn1 \ {0} such

that

xTHβ(eℓ)x = 0, for all ℓ = 1, . . . , n2.

We claim that there exists y ∈ Cn2 \ {0} such that Hβ(y)x = 0. For this define the

vectors

uℓ = Hβ(eℓ)x, ℓ = 1, . . . , n2.

Note that x ∈ 〈u1, . . . ,un2〉⊥ so these vectors must be linearly dependent. Thus there

exist y1, . . . , yn2 ∈ C not all zero, such that

Hβ(y)x =

n2#

ℓ=1

yℓHβ(eℓ)x = 0,
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where the first equality followed since the entries of Hβ(y) are linear homogeneous in

y. The claim follows. In particular it follows from this that

9
V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1

:
∩ V(Hβ(y)x) ∕= ∅.

Using Lemma 4.3.1 and (4.7.38) we therefore find

dim
^9
V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1

:
∩ V(Hβ(y)x)

_
≥

dimV(Hβ(y)x)− n2 ≥ 2s
(2)
R − n2 − 2. (4.7.39)

Recall β · F = xTHβ(y)x so that

SingV(β · F ) =
9
V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1

:
∩ V(Hβ(y)x).

Under our assumptions we can apply Lemma 4.3.3 to find dimSingV(β ·F ) ≤ R− 2.

The result follows from this and (4.7.39).

Proof of Theorem 4.7.1. Applying Theorem 4.2.1 it suffices to show

Naux
i (β;B) ≤ C0B

2n−4C , (4.7.40)

holds for all β ∈ RR \ {0} and i = 1, 2, where C > (2b+ u)R. Let

s = max{s(1)R , s
(2)
R },

where s
(1)
R and s

(2)
R are as defined in (4.1.7) and (4.1.8), respectively. From Proposi-

tion 4.7.3 and Proposition 4.7.14 for any ε > 0 we get

Naux
i (β;B) ≪ε B

n+s+ε,

with the implied constant not depending on β. Choose ε = n−s−(8b+4u)R
2

, which is a

positive real number by our assumption (4.7.1). Taking

C =
n− s− ε

4
,

we see that from the assumption n − s
(i)
R > (8b + 4u)R for i = 1, 2 we must have

C > (2b + u)R for this choice. Therefore (4.7.40) holds and the first part of the

theorem follows upon applying Theorem 4.2.1.

For the second part recall we assume n > (16b + 8u + 1)R and that the forms

Fi(x,y) define a smooth complete intersection in Pn−1
C × Pn−1

C . By Lemma 4.7.4 in

this case we obtain

s
(1)
R ≤ R,
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and from Lemma 4.7.15 we find

s
(2)
R ≤ n+R

2
.

Therefore it is easily seen that assuming n > (16b+ 8u+ 1)R implies that

n− s
(i)
R > (8b+ 4u)R

holds for i = 1, 2, which is what we wanted to show.

4.7.3 Proof of Theorem 4.1.2

Proof of Theorem 4.1.2. If n1 = n2 then the result follows immediately from Propo-

sition 4.7.1. We have two cases to consider and although their strategies are very

similar they are not entirely symmetric. Therefore it is necessary to consider them

individually.

Case 1: n1 > n2. We consider a new system of equations )Fi(x, ỹ) in the variables

x = (x1, . . . , xn) and ỹ = (y1, . . . , yn2 , yn2+1, . . . , yn1) where the forms )Fi(x, ỹ) satisfy

)Fi(x, ỹ) = F (x,y),

where y = (y1, . . . , yn2). Write )N(P1, P2) for the counting function associated to the

system )F = 0 and the boxes B1 × (B2 × [0, 1]n1−n2). Note in particular, that if we

replace F by )F in (4.5.30) and (4.5.29) then the expressions for the singular series

and the singular integral remain unchanged. Further denote by s̃
(i)
R the quantities

defined in (4.1.7) and (4.1.8) but with F replaced by )F . Note that we have s̃
(1)
R = s

(1)
R

and s̃
(2)
R ≤ s

(2)
R + n1−n2

2
. Therefore the assumptions (4.1.9) imply

n1 − s̃
(i)
R > (8b+ 4u)R

for i = 1, 2. Hence we may apply Proposition 4.7.1 in order to obtain

)N(P1, P2) = ISP n1−2R
1 P n1−R

2 +O(P n1−2R
1 P n1−R

2 min{P1, P2}−δ),

for some δ > 0. Finally it is easy to see that

)N(P1, P2) = N(P1, P2)#
3
t ∈ Zn1−n2 ∩ [0, P2]

n1−n2
4

= N(P1, P2)(P
n1−n2
2 +O(P n1−n2−1

2 )),

and so (4.1.10) follows.
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Case 2: n2 > n1 We deal with this very similarly as in the first case; we define a

new system of forms )Fi(x̃,y) in the variables x̃ = (x1, . . . , xn2) and y = (y1, . . . , yn2)

such that
)Fi(x, ỹ) = Fi(x,y)

holds. As before we define a new counting function )N(P1, P2) with respect to the new

product of boxes (B1 × [0, 1]n2−n1) × B2, and we define s̃
(i)
R similarly to the previous

case. Note that s̃
(1)
R = s

(1)
R + n2 − n1 and s̃

(2)
R ≤ s

(2)
R + n2−n1

2
so that (4.1.9) gives

n2 − s̃
(i)
R > (8b+ 4u)R,

for i = 1, 2. Therefore Proposition 4.7.1 applies and we deduce again that (4.1.10)

holds as desired.

Finally we turn to the case when V(F ) defines a smooth complete intersection.

Note first that by Lemma 4.7.15 we have

s
(2)
R ≤ n2 +R

2
,

and therefore the condition

n1 + n2

2
− s

(2)
R > (8b+ 4u)R

is satisfied if we assume n1 > (16b+ 8u+ 1)R. Further, by Lemma 4.7.4 we have

s
(1)
R ≤ max{0, n1 +R− n2},

and so we may replace the condition n1 − s
(1)
R > (8b+ 4u)R by

n1 −max{0, n1 +R− n2} > (8b+ 4u)R.

If n2 ≥ n1 + R then this reduces to assuming n1 > (8b + 4u + 1)R, which follows

immediately since we assumed n1 > (16b + 8u + 1)R. If n2 ≤ n1 + R on the other

hand, then this is equivalent to assuming

n2 > (8b+ 4u+ 1)R.

In any case, the assumptions (4.1.11) imply the assumptions (4.1.9) as desired.
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Chapter 5

Artin’s primitive root conjecture
over function fields

5.1 Introduction

5.1.1 Primitive roots over Z

For an odd prime p ∈ N recall that the multiplicative group (Z/pZ)× is a finite

cyclic group of order p − 1. We say that g ∈ Z is a primitive root mod p (denoted

ordp(g) = p − 1) if p ∤ g and if the reduction g mod p generates the group (Z/pZ)×.
We call a prime number p an Artin prime for g, if g is a primitive root mod p. Note

that if g is ±1 or a perfect square, then it is easy to see that there are at most

finitely many Artin primes for g. Artin’s primitive root conjecture states that if g is

neither a perfect square nor ±1, then there are infinitely many Artin primes for g.

This conjecture was proven by Hooley [50] conditionally on the generalised Riemann

Hypothesis for Dedekind ζ-functions.

5.1.2 Primitive roots over Fq[t]

Artin’s primitive root conjecture may analogousely be formulated in the function

field setting. This problem was first proposed by Hasse to his PhD student, Herbert

Bilharz [7]. The simplest instance of the problem in this setting is as follows. Let Fq

denote a finite field of q elements and Fq[t] the ring of polynomials with coefficients

in Fq. We moreover let Pn ⊂ Fq[t] denote the subset of prime monic polynomials of

degree n ∈ N. For a polynomial g(t) ∈ Fq[t], we let ordP (g(t)) denote the order of

g(t) in the multiplicative group (Fq[t]/(P ))×, where (P ) ⊆ Fq[t] denotes the prime

ideal generated by some P ∈ Pn. In particular, g(t) generates (Fq[t]/(P ))× if and

only if ordP (g) = qn − 1, in which case we say that g is a primitive root mod P .
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Two immediate obstructions prevent g(t) from being a primitive root modulo

infinitely many P . First, note that if g(t) ∈ F×
q is a unit in Fq[t], then ordP (g(t)) ≤

q− 1, and therefore g(t) cannot be a primitive root modulo P ∈ Pn, whenever n > 1.

Second, suppose g(t) = h(t)ℓ where ℓ > 1, and ℓ | q − 1. Since

qn − 1 = (q − 1)(qn−1 + · · ·+ q + 1),

we then find that ℓ | qn−1 for any n ∈ N. Thus ordP (g) ≤ qn−1
ℓ

< qn−1, from which

it follows that g(t) cannot be a primitive root modulo any prime P ∈ Fq[t].

We therefore assume that g(t) ∕∈ F×
q , and moreover that g(t) ∈ Fq[t] is not an

ℓth power, for any ℓ > 1 such that ℓ | q − 1. In this setting, Artin’s primitive root

conjecture is the claim that there exist infinitely many prime polynomials P ∈ Fq[t]

such that g(t) is a primitive root mod P .

5.1.3 Primitive roots over function fields

To formulate Artin’s primitive root conjecture over more general function fields, it

seems appropriate to take a geometric viewpoint. (A rather self-contained overview of

this geometric set-up is provided in Section 5.2.) Let X be a geometrically irreducible

projective variety over Fq of dimension r > 0, and write K = Fq(X) for its function

field. Given a closed point p of X, denote by Op = OX,p the stalk of the structure

sheaf OX at p. Abusing notation, write p ⊂ Op for the unique maximal ideal and let

κp = Op/p denote the corresponding residue field. It is an elementary result that in

this situation κp is a finite field extension of the base field of X, i.e. of Fq. We write

deg p = [κp : Fq] for the degree of p, which is a finite number.

Let g ∈ K and let p be a closed point of X. We say g is regular at p if g lies in the

image of the embedding Op ↩→ K. By pulling g back under this embedding we may

then consider g ∈ κp. We say that g ∈ K is a primitive root modulo p if g is regular

at p and if g generates the multiplicative group κ×
p . In such a case, we moreover refer

to p as an Artin prime for g.

Suppose g ∈ K \ Fq is not an ℓth power for any rational prime ℓ | q − 1. Artin’s

primitive root conjecture over K then states that there exist infinitely many Artin

primes for g.

Note that every function field over Fq, i.e. every field extension K/Fq of positive

finite transcendence degree, may be recovered as K = Fq(X), where X is a geo-

metrically integral projective variety over Fq. Our main result is then the following

theorem:

166



Theorem 5.1.1 (Artin’s primitive root conjecture over function fields).

Artin’s primitive root conjecture holds for any function field K over Fq.

As an example, consider the case X = P1
Fq
. Then K = Fq(t) and the closed

points correspond to irreducible monic polynomials in Fq[t] in addition to the point

at infinity. Theorem 5.1.1 then reduces to the setting described in Section 5.1.2.

Bilharz [7] addressed the particular case of Theorem 5.1.1 in which X is a geo-

metrically irreducible projective curve over Fq (i.e. the case in which K is a global

function field). In particular, he provided a proof conditional on the Riemann hy-

pothesis for finite fields − a result which was later established by André Weil [116].

Bilharz’s proof fails, however, in particular instances; namely cases in which g ∈ K is

not a geometric element (see Definition 5.3.2). Though this mistake has previously

been noted, no corrected proof of Conjecture 5.1.1 for the case in which g ∈ K has

thus far appeared anywhere in the literature (see [91, pp. 155] for a more detailed

discussion). In this work, we therefore remove the assumption that g ∈ K be a geo-

metric element. We moreover generalize to projective varieties of arbitrary dimension;

thereby completing a proof of Conjecture 5.1.1 (see Theorem 5.4.1).

For the special case g(t) = tm + c, an elementary proof of Artin’s primitive root

conjecture over Fq[t], which uses only the theory of Gauss sums is given in [63].

For irreducible g(t), a proof which relies only on establishing a zero-free region of

relevant L-functions, instead of the results of Weil, is given in [65, 64]. Several further

variations of Artin’s primitive root conjecture over function fields have also been

studied, for example, over Carlitz modules [36, 59], rank one Drinfeld modules [60,

120, 67], and one dimensional tori over function fields [22].

5.1.4 Main results

Bilharz demonstrated that the Dirichlet density of Artin primes for geometric g is

positive, from which he then deduced the infinitude of Artin primes for g. For a more

quantitative description, let NX(g, n), denote the number of Artin primes for g of

fixed degree n. In the particular case that X = C is a non-singular algebraic curve,

and g ∈ K is geometric, Pappalardi and Shparlinski demonstrated that for any ε > 0,

NC (g, n) =
ϕ(qn − 1)

n
+Oε,g,C

9
qn/2(1+ε)

:
. (5.1.1)

In this work, we generalize the above result by providing an asymptotic count

for NX(g, n) where X is any geometrically irreducible projective variety of dimension

r ≥ 1. As a further highlight the assumption that g ∈ Fq(X) is geometric has been
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removed. Recall that if g ∈ F×
q , or if g is an ℓth power for some rational prime ℓ | q−1,

then NX(g, n) = 0 for all n > 1. Otherwise, we find that

NX(g, n) = ρg(n)

!
ϕ(qn − 1)qn(r−1)

n
+Oε,g,X

9
qn(r−1/2+ε)

:"
, (5.1.2)

where ρg(n) is as in (5.4.3). In particular, when g ∈ K is geometric, we find that

ρg(n) = 1, thereby recovering (5.1.1) in the case that X = C is a curve (i.e. r = 1).

For non-geometric g, it is possible that ρg(n) = 0 for certain values of n. Nonetheless,

in an argument provided in the proof of Corollary 5.4.3, we show that ρg(n) ≥ 1 for

infinitely many n ∈ N, thereby confirming Conjecture 5.1.1.

5.1.5 Comparison to classical setting

When g ∈ N is not an exact power, Artin conjectured that the natural density of

Artin primes for g, denoted Pg ⊆ P , is equal to

A :=
.

p prime

!
1− 1

p(p− 1)

"
≈ .3739558,

known as Artin’s constant. Due to careful numerical observations pioneered by Derrick

and Emma Lehmer, it later emerged that, for certain g, an additional correction factor

is needed. Slightly more generally, the natural density of Pg ⊆ P is conjectured to

equal cgAh, where Ah is an explicit Euler product, and cg ∈ Q. More specifically, Ah

is a linear factor, which depends on the value of the largest integer h such that g is an

hth power in Z, while cg is an additional quadratic correction factor, which takes into

account entanglements between number fields of the form Q(ζℓ, g
1/ℓ). This modified

conjecture was eventually proven correct by Hooley [50] under the assumption of the

generalised Riemann Hypothesis.

Going back to the function field setting let Pn denote the closed points of X of

fixed degree n, and let Pn(g) ⊆ Pn denote the subset of Artin primes for g, so that

#Pn(g) = NX(g, n). When X is a non-singular curve and g is geometric, it follows

from (5.1.1) that the density of Pn(g) ⊆ Pn is asymptotic to A(n) := ϕ(qn − 1)q−n,

in the limit as qn → ∞. Note that A(n) does not converge. In fact, even the natural

density of Artin primes, namely the limit

lim
N→∞

(N
n=1 NX(g, n)(N

n=1 #Pn

,

does not, in general, exist. This was demonstrated by Bilharz [7] and expanded upon

by Perng [83].
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More generally, from (5.1.2) we find that the density of Pn(g) ⊆ Pn is asymptotic

to Ag(n) := ρg(n)ϕ(q
n − 1)q−n, where ρg(n) depends on the factorization behaviour

of g in K ⊗Fq Fq.

Outline

The remainder of this chapter is structured as follows. In Section 5.2 we provide

an overview of the relevant geometric set-up for Artin’s primitive root conjecture for

varieties of arbitrary dimension over Fq. In Section 5.3 we then discuss geometric

extensions and geometric elements, and in Section 5.4 we state our quantitative re-

sults (Theorem 5.4.1), from which a proof of Theorem 5.1.1 follows (Corollary 5.4.3).

Section 5.5 uses Weil’s theorem to establish a very general estimate for exponential

sums over a variety. This step is crucial for extending our results from curves to

varieties. Section 5.6 then establishes a proof of Theorem 5.4.1, and finally Section

5.7 provides a heuristic interpretation of the counting function, NX(g, n), in order to

draw a conceptual comparison between our correction factor, ρg(n), and the classical

correction factor, cg.

5.2 Background on projective schemes

Projective Schemes

A graded ring is a ring S endowed with a direct sum decomposition S = ⊕d≥0Sd of the

underlying additive group, such that SdSe ⊂ Sd+e. We say that a non-zero element

a ∈ S is homogeneous of degree d, denoted deg a = d, if a ∈ Sd. A homogenous

ideal is an ideal I ⊂ S that is generated by a set of homogenous elements. The ideal

consisting of elements of positive degree, namely S+ := ⊕d>0Sd, is referred to as the

irrelevant ideal. If S = ⊕d≥0Sd is a graded ring, and I ⊳ S a homogenous ideal, then

the quotient ring R = S/I is itself a graded ring, with Rd = Sd/(I ∩ Sd).

Consider the set

Proj(S) := {p ⊆ S : p homogenous prime ideal, S+ ∕⊂ p}.

We define a topology on X = Proj(S) (called the Zariski topology) by designating

the closed sets of Proj(S) to be of the form

Z(I) := {p ∈ Proj(S) : I ⊆ p},

where I ⊂ S denotes a homogenous ideal. A point p ∈ X is said to be a closed point

if {p} = {p}, equivalently, if there is no q ∈ X such that p ⊊ q.
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The distinguished open set associated to any homogenous element f ∈ S+ is then

given by

Xf := Proj(S) \ Z(〈f〉) = {p ∈ Proj(S) : f ∕∈ p},

and the collection of such sets, namely {Xf : f ∈ S+}, forms a basis for the topology

on Proj(S). The space Proj(S), together with its Zariski topology, is referred to as a

projective scheme.

The structure sheaf, denoted OX , is a sheaf on Proj(S), defined on the distin-

guished open sets Xf , f ∈ S+ homogeneous, as

OX(Xf ) := S(f) =

J
a

fn
: a ∈ S is homogenous, n ∈ Z≥0, deg a = n · deg f

K
,

i.e. as the zero-degree component of the localization {1, f, f 2, . . . }−1S. The pro-

jective scheme X = Proj(S) is called integral if S(f) is an integral domain for any

homogeneous f ∈ S+. An integral projective scheme is, in particular, irreducible as a

topological space. It is an elementary fact that any integral scheme X has a generic

point η. That is, an element η ∈ X such that {η} = X.

Function Fields, Stalks, and Residue Fields

Let X denote an integral projective scheme. We then find that for any homogeneous

f, g ∈ S+, Frac(S(f)) ∼= Frac(S(g)), where Frac(R) denotes the fraction field of an

integral domain R. We define K(X) := Frac(S(f)) for any homogeneous f ∈ S+ to be

the function field of X, which can be expressed explicitly as

K(X) :=
5a

b
: a, b ∈ Sd for some d ∈ Z≥0, b ∕= 0

6
.

The stalk at a point p ∈ X refers to the local ring

OX,p :=
5a

b
∈ K(X) : a, b ∈ Sd for some d ∈ Z≥0, b ∕∈ p

6
,

whose unique maximal ideal is given explicitly by

pOX,p :=
5a

b
∈ K(X) : a, b ∈ Sd for some d ∈ Z≥0, a ∈ p, b ∕∈ p

6
.

The intersection of all such stalks, namely

OX(X) :=
\

p∈X

OX,p,

is referred to as the global sections of X. We say that X is normal if OX,p is an

integrally closed domain inside K(X) for every p ∈ X. Finally, we refer to κp :=

OX,p/pOX,p as the residue field of p.
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Two noteworthy properties of the function field K(X) are as follows: if η ∈ X

is the generic point of X, then K(X) is isomorphic to the stalk OX,η. Moreover, if

Spec(R) ⊂ X is an open affine then R must be an integral domain and K(X) is again

given by the fraction field of R.

Projective Varieties

A projective variety X over the field k is a projective integral scheme of the form

X = Proj(S), where S = k[x0, . . . , xn]/I is a finitely generated k-algebra, and where

I ⊆ k[x0, . . . , xn] is a homogenous ideal. Under these assumptions, we note that X

is both Noetherian and separated. We denote its function field by k(X) and we note

that the dimension of X, denoted dim(X), is equal to the transcendence degree of

k(X) over k. A projective variety of dimension one is referred to as a projective curve.

Let S = k[x0, . . . , xn]/I be as above. Proj(S) is said to be geometrically integral if

Proj(S) is integral, where S = (k[x0, . . . , xn]/I)⊗k k. For example, if f ∈ k[x0, x1, x2]

is homogeneous of positive degree and absolutely irreducible (i.e. irreducible over k),

then Proj(k[x0, x1, x2]/〈f〉) is a geometrically integral projective curve. We moreover

let k(X) refer to the function field of Proj(S).

Let X = Proj(S) be a geometrically integral projective variety over Fq, and let

K = Fq(X) denote the function field of X. Note that when p ∈ X is closed, κp is

then a finite algebraic extension of Fq. We moreover define deg p := [κp : Fq] to be

the degree of p ∈ X.

Fix g ∈ K and let p ∈ X be closed. We say that g is regular at p if g ∈ OX,p ⊂ K.

We say g ∈ K is a primitive root modulo p if g is regular at p and if g mod pOX,p

generates the multiplicative group κ×
p .

Divisors and Valuations

Let X = Proj(S) be a normal, geometrically integral, projective variety over Fq. In

particular, X is a normal Noetherian integral separated scheme. A prime divisor

Y of X is a closed integral subscheme Y ⊂ X of codimension one, i.e. such that

dim(Y ) = dim(X) − 1. It then follows that if ηY ∈ Y is the generic point of Y , the

stalk OX,ηY is in fact a discrete valuation ring inducing a valuation vY : OX,ηY → Z.
Furthermore, since the fraction field of OX,ηY is the function field K, we find that for

any prime divisor Y , the valuation vY may be extended to a function vY : K → Z.
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Given g ∈ K×, it follows from [42, Lemma II.6.1] that vY (g) = 0 for all but finitely

many prime divisors Y ⊂ X. We may thus define the degree of g to be

deg(g) :=
#

Y⊂X

|vY (g)|,

where the sum runs over all prime divisors Y of X. Note that deg(g) may be viewed

as the number of poles and zeros on X, counted with multiplicity.

In the particular case in which X is a curve, we note that the set of prime divisors

of X is precisely given by the set of closed points in X.

Rational Points

Let R be a finitely generated Fq-algebra, and we denote by Spec(R) the affine Fq-

scheme, which is the affine scheme whose underlying set is the collection of prime

ideals in R coming with a morphism Spec(R) → Spec(Fq) induced by the Fq-algebra

structure. Note that the closed points of Spec(R) are given by the maximal ideals of

R. For finitely generated Fq-algebras R and S, we further recall that morphisms ρ:

Spec(S) → Spec(R) between Fq-schemes are in one-to-one correspondence with the

Fq-algebra homomorphisms ρ# : R → S.

An Fqn-rational point of Spec(R) is an Fq-scheme morphism

ρ : Spec(Fqn) → Spec(R),

which then corresponds to a homomorphism of Fq-algebras

ρ# : R = Fq[x1, . . . , xm]/I → Fqn .

The image Im(ρ#) is a subring of Fqn containing Fq, and hence must be a field between

Fq and Fqn . To any Fqn-rational point ρ, one may associate an ideal m = ker(ρ#) ⊂ R,

which, by the first isomorphism theorem, is maximal.

Conversely, suppose m ⊂ R is a maximal ideal. Then R/m ∼= Fqm for some positive

integer m, where m is the degree of m. If m ≤ n one may then associate precisely m

different Fqn-rational points to the closed point m ∈ Spec(R) as follows. Note that

there are precisely m different Fq-invariant inclusions ϕ : Fqm ↩→ Fqn coming from the

elements in Gal(Fqm/Fq) ∼= Z/mZ.
Let π : R → R/m denote the projection map. Then for any ϕ as above the Fq-

algebra homomorphism ρ#ϕ : R → Fqm given by ρ#ϕ = ϕ ◦ π corresponds to a unique

Fqn-rational point. Thus each closed point m ∈ Spec(R) of degree m gives rise to

precisely m distinct Fqn-rational points, ρ
#
ϕ .
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Let X be a geometrically integral projective variety over Fq with function field

K = Fq(X). We let X(Fqn) denote the set of Fqn-rational points of X, i.e. the set of

Fq-scheme morphisms

ρ : Spec(Fqn) → X.

We now describe how to evaluate an element g ∈ Fq(X) at a rational point ρ ∈ X(Fqn).

Note that ρ must factor through some open affine subscheme Spec(R) ⊂ X. Thus

considering the restriction of this morphism whose image is contained in Spec(R) this

induces an Fq-algebra homomorphism

ρ# : R → Fqn .

Since X is integral, R is an integral domain with field of fractions K. We therefore

may write g = a/b for some a, b ∈ R with b ∕= 0. If ρ#(b) = 0 we say that g has a

pole at ρ. Otherwise we may evaluate g at ρ as follows

g(ρ) :=
ρ#(a)

ρ#(b)
∈ Fqn . (5.2.1)

Recall that the closed point p corresponding to ρ is given by p = Ker(ρ#) ⊂ R.

Clearly ρ#(b) = 0 precisely when b ∈ Ker(ρ#) = p. Hence g = a/b is regular at p if

and only if g does not have a pole at ρ.

Number field analogue

We conclude this section by noting that the classical version of Artin’s primitive root

conjecture (i.e. the case over number fields) may also be phrased in a geometric

language. Let K/Q be a number field with ring of integers OK , and recall that the

closed points of Spec(OK) is the set of non-zero prime ideals of OK . The residue

field of a closed point P ∈ Spec(OK), i.e. of a non-zero prime ideal of OK , is given

by κP = OK/P . Given g ∈ K we say that g is a primitive root modulo a non-zero

prime ideal P ∈ Spec(OK) if vP (g) ≥ 0 and if g generates the multiplicative group

κ×
P = (OK/P )×. Artin’s primitive root conjecture over K states that the number of

prime ideals P for which g is a primitive root is infinite.

5.3 Geometric extensions

Let X = Proj(S) denote a geometrically integral projective variety over Fq, where

char(Fq) = p. Let K = Fq(X) denote its function field. Recall that we write Fq(X)
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to refer to the function field of the base change of X to Fq, namely to the compositum

of fields KFq. We moreover note that this is isomorphic to Fq(X)⊗ Fq.

Let K denote a fixed algebraic closure of K, and consider the algebraic field

extensions L/K and M/Fq. Note that L,M , as well as the compositum LM , may

then all be embedded inside K. Given an algebraic field extension L/K we thus

write Fq ∩ L ⊂ K to be the maximal algebraic subextension of Fq inside L. Using

this notation we note by [88, Proposition 2.2.22] that K ∩ Fq = Fq.

Definition 5.3.1. Let L2/L1/K be a tower of algebraic field extensions. We say that

L2/L1 is a geometric field extension if L2 ∩Fq = L1 ∩Fq. In particular, if L/K is

an algebraic field extension, we say that L/K is geometric if L ∩ Fq = Fq.

Definition 5.3.2. Let a ∈ K. We say that a is geometric at a rational prime

ℓ ∕= p if, for all roots α ∈ K of the polynomial Xℓ − a, the extension K(α)/K is a

proper geometric extension of fields. If a ∈ K is geometric at all primes ℓ ∕= p, we

refer to a ∈ K as a geometric element.

Previous work has only considered geometric elements and the aim of this chapter

is to prove Artin’s primitive root conjecture for elements, which are not necessarily

geometric. To this end we will prove a lemma providing equivalent characterisations

of elements, which are not geometric.

Lemma 5.3.3. Let K = Fq(X), let a ∈ K and let ℓ ∕= p be a rational prime. The

following are equivalent:

(i) a is not geometric at ℓ.

(ii) There exists µ ∈ Fq and b ∈ K such that a = µbℓ.

(iii) There exists ã ∈ KFq such that a = ãℓ.

Proof. (i) =⇒ (ii): Since a is not geometric at ℓ, by definition there exists a root

α ∈ K of Xℓ−a such that K(α)/K is either not a proper field extension or such that

K(α) ∩ Fq ∕= Fq. In the former case, we may write a = µbℓ where b = α and µ = 1,

and we’re done.

We therefore assume that K(α)/K is a proper field extension which is not geomet-

ric, i.e. M := K(α) ∩ Fq ∕= Fq. Note that since a is not an ℓth power the polynomial

Xℓ − a is irreducible over K (cf. [68, VI §9]) and therefore [K(α) : K] = ℓ. Since

M ⊋ Fq we further note that K(α) ⊇ MK ⊋ K. Since [K(α) : K] = ℓ is prime, it

follows that MK = K(α). Next, note that M/Fq is a finite extension of finite fields
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and hence Galois. It then further follows that the extension of composita MK/FqK

is also Galois. In other words, K(α)/K is Galois, and we conclude that K(α) is the

splitting field of the polynomial Xℓ−a. In particular, it follows that ζℓ ∈ K(α), where

ζℓ denotes a fixed primitive ℓth root of unity. Note further that K(α) ⊇ K(ζℓ) ⊇ K,

and moreover that K(α) ∕= K(ζℓ) since [K(ζℓ) : K] ≤ ℓ − 1 < ℓ. Since ℓ is prime, it

follows that K(ζℓ) = K. Since elements in K of finite order lie in K ∩ Fq = Fq, it

follows that ζℓ ∈ F×
q . Noting that ζℓ ∈ F×

q if and only if ℓ | q− 1, we further conclude

that ℓ | q − 1.

By [91, Proposition 8.1], we find that [M : Fq] = [K(α) : K] = ℓ. Since ℓ | q − 1,

we moreover find that #F×,ℓ
q = q−1

ℓ
, and in particular, that there exists an element

µ ∈ F×
q , which is not an ℓth power. By [68, VI §9], we find that the polynomial Xℓ−µ

is irreducible over Fq, and thus by the uniqueness of finite field extensions, it follows

that M = Fq(β), where βℓ = µ ∈ F×
q . From [91, Proposition 8.1] it then also follows

that {1, β, . . . , βℓ−1} form a basis for K(α)/K, and therefore K(α) = K(β). Hence

there exist bi ∈ K, i = 0, 1, . . . , ℓ− 1 such that

α =
ℓ−1#

i=0

biβ
i.

Let σ be a non-trivial element of Gal(K(α)/K), then σ(α) = ζnℓ α and σ(β) = ζmℓ β

for two integers n,m ∈ {1, . . . , ℓ− 1}. Thus we find

ℓ−1#

i=0

biζ
n
ℓ β

i = ζnℓ α = σ(α) = σ

/
ℓ−1#

i=0

biβ
i

0
=

ℓ−1#

i=0

biζ
mi
ℓ βi.

Since {1, β, . . . , βℓ−1} are linearly independent over K, it follows that

biζ
n
ℓ = biζ

mi
ℓ for all 0 ≤ i ≤ ℓ− 1,

and therefore whenever n ∕≡ mi (mod ℓ) this implies bi = 0. Since there exists a

unique 0 ≤ i0 ≤ ℓ − 1 such that n ≡ mi0 (mod ℓ), it follows that α = bi0β
i0 , and

therefore

a = αℓ = µ̃bℓi0

where µ̃ = µi0 ∈ Fq. This shows the desired claim.

(ii) =⇒ (iii): Set ã = ℓ
√
µb, where ℓ

√
µ denotes any root of Xℓ − µ in Fq.

(iii) =⇒ (i): If ã ∈ K then a is clearly not geometric at ℓ. So, assume ã /∈ K.

Then K ⊊ K(ã) ⊂ KFq. Since K(ã)/K is a proper finite extension, in fact K(ã) ⊆
KFqn , for some n > 1. Moreover, since Gal(KFqn/K) ∼= Gal(Fqn/Fq), it follows that
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KFqn/K is a cyclic extension. Thus, there exists a unique subgroup of Gal(Fqn/Fq),

of any given order dividing n = |Gal(Fqn/Fq)|. By the fundamental theorem of Galois

theory, we then find that there exists a unique subextension of KFqn/K of degree

ℓ = [K(ã) : K], and thus may conclude that K(ã) = KFqℓ . By [91, Proposition 8.3],

it follows that

K(ã) ∩ Fq = KFqℓ ∩ Fq = Fqℓ ⊋ Fq,

i.e. a is not geometric, as desired.

Remark 5.3.4. Note that the first part of the proof of Lemma 5.3.3 shows that when

a is not geometric at a prime ℓ such that ℓ ∤ q− 1 then a is already a full ℓth power in

K. In particular, if ℓ | qn − 1 then by the same argument provided in Section 5.1.2,

a is not be a primitive root modulo any closed point of degree n.

5.4 Quantitative results and Artin’s primitive root

conjecture

For positive integers m, k, consider the Ramanujan sum

cm(k) :=
#

1≤a≤m
(a,m)=1

e

!
ak

m

"
,

and recall the following elementary property

cℓ(n) =

&
−1 if ℓ ∤ n,
ϕ(ℓ) if ℓ | n,

(5.4.1)

for a rational prime ℓ. Our main result is the following:

Theorem 5.4.1. Let X/Fq be a geometrically integral projective variety of dimension

r ≥ 1 with function field K = Fq(X). Let g ∈ K \ Fq be a rational function. Let Pg

denote the set of primes ℓ ∕= p at which g is not geometric. If g is a full ℓth power in

K for some rational prime ℓ | q − 1 then NX(g, n) = 0 for all n ≥ 1. Otherwise we

have

NX(g, n) = ρg(n)

!
ϕ(qn − 1)qn(r−1)

n
+Oε,X,g

9
qn(r−1/2+ε)

:"
, (5.4.2)

where

ρg(n) :=
.

ℓ|qn−1
ℓ∈Pg

!
1− cℓ (q

n−1 + qn−2 + · · ·+ 1)

ϕ(ℓ)

"
. (5.4.3)

Moreover, ρg(n) > 0 if and only if for all primes ℓ ∈ Pg such that ℓ | qn − 1 we have

ℓ | q − 1 and ℓ ∤ n.
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Note that if g is geometric at every prime ℓ | qn − 1, then ρg(n) = 1. As noted

in the introduction, we then recover equation (5.1.1) in the case when r = 1. By [78,

Theorem 2.9], we moreover note that ϕ(qn − 1) ≫ν qn(1−ν) for any ν ∈ (0, 1). Thus

(5.4.2) indeed yields a main term, in the limit as n → ∞.

To finish this section we deduce Artin’s primitive root conjecture over function

fields in full generality from Theorem 5.4.1 by demonstrating that NX(g, n) > 0 for

infinitely many n ∈ N.

Lemma 5.4.2. Let g ∈ K \ Fq. Then the set Pg of primes ℓ ∕= p at which g is not

geometric, is finite.

Proof. By [107, Lemma 035Q] and [107, Lemma 0GK4], there exists a geometrically

integral normal projective variety Xν over Fq, such that Fq(Xν) ∼= Fq(X). In particu-

lar, since Xν is a geometrically integral projective variety, by [88, Proposition 2.2.22]

we find that the global sections are given by OXν (Xν) = Fq.

Suppose Pg is infinite. Since OXν (Xν) ⊂ Fq it suffices to show that g lies in the

global sections OXν (Xν), since then g ∈ Fq(X) ∩ Fq = Fq.

If Pg is infinite, then by Lemma 5.3.3 there exists an arbitrarily large ℓ ∈ N such

that g = µbℓ, where µ ∈ Fq and b ∈ K. Note that as Y ranges over prime divisors of

Xν , the maximum value of |vY (g)| is bounded by deg(g). Let ℓ > deg(g) such that

g = µbℓ. Then for any prime divisor Y ⊂ Xν , we find that

vY (g) = vY (µ) + ℓ · vY (b) = ℓ · vY (b),

Thus vY (g) = 0 for any prime divisor Y ⊂ Xν , and in particular vY (g) ≥ 0 for

all prime divisors Y . It follows from [42, Proposition 6.3A] that g ∈ OXν (Xν), as

desired.

Corollary 5.4.3. Artin’s primitive root conjecture holds for any function field K over

Fq.

Proof. Firstly note that any such field K is the function field of a geometrically

integral, projective variety X/Fq, i.e. K = Fq(X).

Let g ∈ K \Fq and assume g is not a full ℓth power for any prime ℓ | q− 1, so that

(5.4.2) holds. We wish to show that there exist infinitely many closed points p of X

such that g is a primitive root modulo p, i.e. that there exist infinitely many n ∈ N
such that NX(g, n) ∕= 0.

Note that ρg(n) ≥ 1 whenever ρg(n) ∕= 0. To show that NX(g, n) ∕= 0 infinitely

often, it therefore suffices to show that there exist infinitely many n ∈ N such that
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ρg(n) > 0. Let Pg = {ℓs : s ∈ S} denote the set of primes ℓ ∕= p at which g is not

geometric. Since g ∕∈ Fq we note that Pg is a finite set, by Lemma 5.4.2. Let I ⊂ S

be such that i ∈ I whenever ℓi | q− 1, and let J = S \ I be such that j ∈ J whenever

ℓj ∤ q − 1. Given m ∈ N we then consider

n = 1 +m
.

i∈I

ℓi
.

j∈J

(ℓj − 1). (5.4.4)

We claim that the set of primes in Pg, which divide qn − 1, is precisely given by

{ℓi : i ∈ I}. Note first that ℓi | qn − 1 for all i ∈ I since, in fact for any n ∈ N, we
have that (q − 1) | qn − 1. On the other hand, let j0 ∈ J . Then q ∕≡ 1 mod ℓj0 and

thus

qn ≡ q1+m
&

i∈I ℓi
&

j∈J (ℓj−1) ≡ q ∕≡ 1 mod ℓj0

since qℓj0−1 ≡ 1 mod ℓj0 by Fermat’s little theorem. Hence ℓj0 ∤ qn − 1.

Finally note that n ∕≡ 0 mod ℓi for all i ∈ I. From the last part of Theorem 5.4.1

it then follows that ρg(n) > 0. The result now follows upon noting that there are

infinitely many n ∈ N of the form in (5.4.4).

5.5 A bound on exponential sums

One of the key ingredients of the proof of Theorem 5.4.1 is the following estimate

for exponential sums, which is of independent interest. As we were unable to find a

suitable result of our desired form in the existing literature, we present a proof here.

Proposition 5.5.1. Let X be a geometrically integral projective variety of dimension

r. Let χ ∈ TF×
q be a non-trivial character of order δ > 1. Let g ∈ K and assume that

there exists a prime ℓ | δ such that g is not of the form g = bℓ for some b ∈ Fq(X).

Write Rg ⊂ X(Fq) for the set of the Fq-rational points on X that are neither zeroes

nor poles of g. Then #

ρ∈Rg

χ(g(ρ)) ≪X qr−1/2.

Proof. Let U ⊂ X be an affine open subset of X on which g is invertible, i.e. it

has neither poles nor zeroes on U . It suffices to show the estimate for the sum over

U(Fq) since X \ U is a proper closed subset of X and thus by irreducibility of X

has codimension at least 1. Therefore by the Lang–Weil bounds [69] the number of

rational points we do not consider is bounded by O(qr−1).

By Noether’s normalization theorem there exists a finite surjective morphism U →
Ar. Obviously there also exists a surjective map Ar → Ar−1 by projecting on the first
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r − 1 coordinates, say. The composition of these maps yields a surjective morphism

of locally finite type ϕ : U → Ar−1.

From Chevalley’s upper semicontinuity theorem (cf. [41, Théorème 13.1.3]) it

follows that the elements x ∈ U such that dimϕ−1(ϕ(x)) > 1 holds lie in a proper

closed subset, which has dimension at most r− 1 since U is irreducible. The number

of rational points in this subset is bounded by O(qr−1) via Lang–Weil and hence we

may bound the contribution arising from these rational points trivially.

It therefore remains to estimate

#

y∈ϕ(U)(Fq)
dimϕ−1(y)=1

#

ρ∈ϕ−1(y)(Fq)

χ(g(ρ)),

where with an abuse of notation we write ϕ−1(y) for the fibre of the closed point in

ϕ(U) corresponding to y. On the fibres where dimϕ−1(y) = 1 we apply a theorem of

Perelmuter [82, Theorem 2] according to which we have

#

ρ∈ϕ−1(y)(Fq)

χ(g(ρ)) ≪X q1/2

uniformly in y, as long as g restricted to an irreducible component of ϕ−1(y) after

changing the base field to Fq is not a δth power of some element in Fq(X). The

remainder of the proof is concerned with showing that for generic y ∈ ϕ(U), the

element g is not an ℓth power restricted to an irreducible component of ϕ−1(y)Fq
,

where ℓ is as in the statement of the proposition, and hence Perelmuter’s theorem is

applicable.

Call y ∈ Ar−1 bad if this occurs and good otherwise. For the sake of easing

notation, but without loss of generality, in the following we will assume that ϕ is

surjective onto Ar−1 and that dimϕ−1(y) = 1 for all y ∈ Ar−1, since we took care

of the other potential cases already. We claim that there exists a constructible set

C ⊂ Ar−1 that is contained in the set of good points with η ∈ C where η is the

generic point. Deferring the proof of this claim for now, by [107, Lemma 005K] we

deduce that C contains an open dense subset in Ar−1 and so Ar−1 \ C is contained

in a proper closed subset of Ar−1. Since Ar−1 \ C contains the set of bad points, by

Lang–Weil the number of bad Fq-rational points is bounded by O(qr−2). Therefore

trivially bounding the character sums for the fibres coming from Ar−1 \C the overall

contribution is O(qr−1).

To show the claim made above we will employ [107, Lemma 055B]. This states

that if h : Z → Y is a morphism of finite presentation, and if nh : Y → {0, 1, . . .} is
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the number of irreducible components of the fibre h−1(y) after base change to Fq then

for any positive integer n the set

En = {y ∈ Y : nh(y) = n}

is constructible. Recall that U is an affine open subset of X and hence is of the

form U = Spec(R), where R = Fq[x1, . . . , xn]/I for some ideal I. We may consider

g restricted to U as an element in R since g is invertible on U . Consider Ug =

Spec(R[z]/(zℓ− g)), and note that we have a natural map ψ : Ug → U induced by the

inclusion map R ↩→ R[z]/(zℓ−g). Write f for the composition f = ϕ◦ψ : Ug → Ar−1.

Note f is locally of finite type since all the schemes involved are Noetherian and so

it follows from [107, Lemma 01TX] that f and ϕ are of finite presentation.

Note that the generic fibre ϕ−1(η) is integral with function field isomorphic to K

and in particular it is also integral after changing base to Fq. Further η is good since

g was assumed not to be an ℓth power in Fq(X). Now the set

C = {y ∈ Ar−1 : nf (y) = 1}

is constructible as mentioned above and clearly η ∈ C. Further note that if nf (y) =

nϕ(n) then y is good. Otherwise, if y is bad then essentially by construction we have

nϕ(y) < nf (y). Thus C is a constructible set contained in the set of good points y

and also η ∈ C, as desired.

5.6 The proof of Theorem 5.4.1

Consider a finite cyclic group G of order M , and let UG = Hom(G,C×) denote its

group of characters. Let

fG(g) :=
ϕ(M)

M

.

p|M

;

<=1−

(
χ∈ !G

ordχ=p

χ(g)

ϕ(p)

>

?@ .

We begin by noting the following general formula:

Lemma 5.6.1. For g ∈ G, we have that

fG(g) =
ϕ(M)

M

#

d|M

µ(d)

ϕ(d)

#

χ∈ !G
ordχ=d

χ(g) =

&
1 if g generates G

0 otherwise.
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Proof. Suppose g ∈ G does not generate G. Then we may write g = hp for some

h ∈ G, where p | M is prime. In such a case, we moreover find that

#

χ∈ !G
ordχ=p

χ(g) = ϕ(p),

and therefore fG(g) = 0. Alternatively, suppose g ∈ G generates G. Then

#

χ∈ !G
ordχ=p

χ(g) = −1,

Now it is easy to check that

M

ϕ(M)
=

.

p|M

!
1 +

1

p− 1

"
,

and so we conclude that

fG(g) =

&
1 if g generates G

0 otherwise,

as desired. Finally, we note that for (d1, d2) = 1 and g ∈ G,

#

χ∈ !G
ordχ=d1d2

χ(g) =

/
#

ψ∈ !G
ordψ=d1

ψ(g)

0/
#

φ∈ !G
ordφ=d2

φ(g)

0
.

By multiplicativity, we thus conclude that

fG(g) =
ϕ(M)

M

.

p|M

;

<=1−

(
χ∈ !G

ordχ=p

χ(g)

ϕ(p)

>

?@

=
ϕ(M)

M

#

d|M

µ(d)

ϕ(d)

#

χ∈ !G
ordχ=d

χ(g).

Proof of Theorem 5.4.1. Let X/Fq be a geometrically integral projective variety. We

write K for the function field of X and we fix algebraic closures Fq and K. Let p ∈ X

be a closed point of degree n, i.e. [κp : Fq] = n. There then exists an isomorphism

κ×
p
∼= F×

qn ⊂ Fq,

which may be explicitly described as follows. Let [f ] ∈ κ×
p denote a residue class

represented by some f ∈ K that is regular at p. We then map [f ] to f(ρ), where ρ
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is an Fqn-rational point of X corresponding to p. Note that since f ∈ K is neither

regular at p nor vanishes at p and f does not have a pole at ρ, and thus evaluating f

at ρ, as in (5.2.1), is well-defined. For a fixed g ∈ K, we thus find that g is a primitive

root mod p if and only if g is regular at p and its image g(ρ) under this isomorphism

generates F×
qn . Note that for any closed point of degree n there exist n different

Fqn-rational points on X corresponding to it obtained by the action of the Frobenius

element, see [42, Lemma II.4.4]. For an affine open U ⊂ X this was explained in

Section 5.2. It would also be sufficient to only consider these rational points on U ,

since the number of Fqn-rational points on X \ U is O(qr(n−1)) by Lang–Weil.

Let R(n)
g ⊂ X(Fqn) denote the set of Fqn-rational points on X that are neither

zeroes nor poles of g, so that for any ρ ∈ R(n)
g , we have that g(ρ) ∈ F×

qn . If we then

consider any ρ ∈ R(n)
g corresponding to a closed point q with deg(q) < n then g(ρ)

is contained in a proper subfield of Fqn and therefore will not generate F×
qn . Here

we may consider this subfield as a subset of Fqn since we fixed an algebraic closure

Fq. Further note that if ρ /∈ R(n)
g then it corresponds to a closed point for which g

is either not regular or vanishes. Clearly g is not a primitive root for such a closed

point since all powers of g(ρ) will be contained in a proper subfield of Fqn .

Thus we find

NX(g, n) =
1

n
#{ρ ∈ R(n)

g : 〈g(ρ)〉 = F×
qn}.

Combining this observation with Lemma 5.6.1 leads to

NX(g, n) =
ϕ(qn − 1)

n(qn − 1)

#

ρ∈R(n)
g

.

ℓ|qn−1

;

<=1−

(
χ∈ !G

ordχ=ℓ

χ(g(ρ))

ϕ(ℓ)

>

?@ .

Note that if g is an ℓth power, where ℓ | q − 1, then NX(g, n) = 0 for all n ≥ 1. This

follows directly from the above formula but can also be seen from elementary group

theoretic considerations, as noted in Section 5.1.2. Henceforth, we may thus assume

that g ∈ K is not an ℓth power for any prime ℓ | q − 1.

Let ℓ | qn − 1 be a prime such that g is not geometric, that is, ℓ ∈ Pg. Then by

virtue of Lemma 5.3.3 we may write g = µℓb
ℓ
ℓ for some µℓ ∈ F×

q and some bℓ ∈ K.

Therefore, if ord(χ) = ℓ we have χ(g(ρ)) = χ(µℓ) for any ρ ∈ R(n)
g . Let r denote

the order of µℓ ∈ F×
q . Since we assumed that g is not a full ℓth power for any prime

ℓ | q − 1 we find that ℓ ∤ q−1
r

or, equivalently, that (ℓ, q−1
r
) = 1.

For x ∈ R, write e(x) := e2πix. Consider an embedding

ψ : F×
qn ↩→ C×
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such that for µℓ ∈ F×
q ⊂ F×

qn as above, we have

ψ(µℓ) = e

!
1

r

"
.

A character χ : F×
qn → C× of order ℓ then acts on an element α ∈ F×

qn via

χ(α) = ψ(α)
(qn−1)a

ℓ ,

for some a ∈ {1, . . . , ℓ− 1}. It follows that for any given ρ ∈ R(n)
g ,

1

ϕ(ℓ)

#

ordχ=ℓ

χ(g(ρ)) =
1

ϕ(ℓ)

#

1≤a≤ℓ−1

e

!
1

r

" (qn−1)a
ℓ

=
1

ϕ(ℓ)

#

1≤a≤ℓ−1

e

!
a(qn − 1)

ℓr

"

=
1

ϕ(ℓ)
cℓ

!
qn − 1

r

"
,

where cℓ
9
qn−1
r

:
denotes a Ramanujan sum. Since (ℓ, q−1

r
) = 1 we have ℓ | qn−1

r
if and

only if ℓ | qn−1 + · · ·+ 1, and so

cℓ

!
qn − 1

r

"
= cℓ

9
qn−1 + · · ·+ 1

:
=

&
−1 if ℓ ∤ qn−1 + · · ·+ 1

ϕ(ℓ) otherwise.

Upon setting

ρg(n) :=
.

ℓ|qn−1
ℓ∈Pg

!
1− cℓ(q

n−1 + · · ·+ 1)

ϕ(ℓ)

"
,

we therefore find that

NX(g, n) = ρg(n)
ϕ(qn − 1)

n(qn − 1)

#

ρ∈R(n)
g

.

ℓ|qn−1
ℓ/∈Pg

;

<=1−

(
χ∈ !G

ordχ=ℓ

χ(g(ρ))

ϕ(ℓ)

>

?@ . (5.6.1)

For an integer δ ∈ N write (δ,Pg) = 1 if (δ, ℓ) = 1 for every prime ℓ ∈ Pg. As in the

proof of Lemma 5.6.1 we may then expand (5.6.1) to obtain

NX(g, n) = ρg(n)
ϕ(qn − 1)

n(qn − 1)

#

δ|qn−1
(δ,Pg)=1

µ(δ)

ϕ(δ)

#

ordχ=δ

#

ρ∈R(n)
g

χ(g(ρ)).

By the Lang–Weil bounds [69], the number of Fqn−rational points on X, denoted

#X(Fqn), is given by

|#X(Fqn)− qnr| ≪X qn(r−1/2).
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Noting, moreover, that g has at most m poles and zeroes, it follows that for fixed g,

|#R(n)
g − qnr| ≤ m+OX

9
qn(r−1/2)

:
= Og,X

9
qn(r−1/2)

:
,

and thus the contribution from the trivial character χ0 is given by

#

ρ∈R(n)
g

χ0(g(ρ)) = #R(n)
g = qnr +O

9
qn(r−1/2)

:
.

If δ | qn−1 is such that (δ,Pg) = 1 and δ > 1, then by Proposition 5.5.1 we moreover

find that #

ρ∈R(n)
g

χ(g(ρ)) = O
9
qn(r−1/2)

:
.

Combining the above observations, and applying the divisor bound
(

δ|qn−1|µ(δ)| =
Oε(q

nε), we obtain

NX(g, n) = ρg(n)

!
ϕ(qn − 1)qn(r−1)

n
+Oε

9
qn(r−1/2+ε)

:"
,

thereby yielding the first part of the theorem.

Finally, we turn to studying the product

ρg(n) =
.

ℓ|qn−1
ℓ∈Pg

!
1− cℓ (q

n−1 + · · ·+ 1)

ϕ(ℓ)

"
.

Let ℓ be a prime dividing qn− 1 such that g is not geometric at ℓ. We proceed in two

cases. First, suppose ℓ | q − 1. Then q ≡ 1 mod ℓ, and therefore

qn−1 + · · ·+ 1 ≡ 0 mod ℓ ⇐⇒ n ≡ 0 mod ℓ.

By (5.4.1), we then find that cℓ(q
n−1 + · · ·+ 1) = −1 if and only if ℓ ∤ n. Otherwise,

cℓ(q
n−1 + · · ·+ 1) = ϕ(ℓ), in which case ρn(g) = 0.

Next, suppose ℓ ∤ q − 1. Since ℓ | qn − 1 by assumption, we then find that

ℓ | qn−1 + · · · + 1. By (5.4.1) it then follows that cℓ(q
n−1 + · · · + 1) = ϕ(ℓ), and

therefore ρn(g) = 0. In conclusion, we find that ρg(n) > 0 if and only if for all primes

ℓ ∈ Pg such that ℓ | qn − 1 we have ℓ | q − 1 and ℓ ∤ n, as desired.

5.7 A heuristic interpretation

Artin arrived at the quantitative version of his primitive root conjecture using a

well-known heuristic concerning the splitting properties of primes across the fields
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Q(ζℓ, g
1/ℓ), for varying primes ℓ ∈ N. In this section we suggest an analogous heuris-

tic, which interprets the constant ρg(n) in terms of splitting properties of primes in

K. In contrast to the classical setting, we may obtain the correct density while main-

taining the assumption that the various splitting conditions are independent, across

the primes ℓ ∈ N.
In what follows, we restrict ourselves to the case in which K is a global function

field, or equivalently, we assume that X is a normal geometrically irreducible projec-

tive curve over Fq. A prime P of K is, by definition, a discrete valuation ring OP

with maximal ideal P whose field of fractions is K. Since K is a global function field,

then the stalk OX,p at each closed point p ∈ X is a discrete valuation ring, and such

stalks are in fact in 1 : 1 correspondence with the primes in K. If L/K is a field

extension then a prime P of L is said to lie above P if OP ∩K = OP . We moreover

say that P splits completely in L if the number of primes P in L lying above P is

equal to [L : K].

Let g ∈ K \ Fq. Let p ∈ X be a closed point such that g is regular at p. Such

g ∈ K then fails to be primitive modulo p if and only if the prime P corresponding

to p splits completely in Kℓ := K( ℓ
√
g, ζℓ), the splitting field of Xℓ − g, for some

prime ℓ ∈ N, where ℓ ∤ q [91, Lemma 10.1 and Proposition 10.6]. We may therefore

formulate a heuristic for the density of primes P of degree n for which g is a primitive

root by understanding the density of primes P in K which split completely in Kℓ, for

each prime ℓ ∈ N.
Suppose g is not a full ℓth power, for any prime ℓ | q−1. Otherwise, NX(g, n) = 0,

trivially for all n ≥ 1. Given a prime ℓ ∈ N, let

Pℓ := P(P splits completely in Kℓ | deg(P ) = n).

Then under the heuristic assumption that the splitting conditions of P in Kℓ are

independent for the various fields Kℓ, we can expect the desired density to be given

by

A =
.

ℓ

(1− Pℓ) .

Note that ℓ | qn − 1 if and only if P splits in K(ζℓ) (cf. [91, Proposition 10.2]). Thus

ℓ ∤ qn − 1 implies that P does not split in Kℓ, i.e. Pℓ = 0 for all ℓ ∤ qn − 1, and thus

A =
.

ℓ|qn−1

(1− Pℓ) .

Note that when ℓ | qn − 1 then again by [91, Proposition 10.2] we find that

Pℓ = P(P splits completely in Kℓ | deg(P ) = n, P splits completely in K(ζℓ)).
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Note that since Kℓ is the splitting field of Xℓ− g, the field extension Kℓ/K is Galois,

and thus Kℓ/K(ζℓ) is also Galois, by the fundamental theorem of Galois theory.

Moreover, since K(ζℓ) is the splitting field of Xℓ − 1, it follows that K(ζℓ)/K is also

Galois. Now suppose P splits completely in K(ζℓ). Since Kℓ/K(ζℓ) and K(ζℓ)/K are

both Galois extensions, we find that a given prime q in K(ζℓ) lying above P splits

in Kℓ if and only if all such primes q in K(ζℓ) lying above P split in Kℓ (cf. [91,

Proposition 9.3]).

Recall that since ℓ | qn − 1, every prime q in K(ζℓ) lies above some prime P ∈ K

that splits completely in K(ζℓ). By the above remarks, we thus find that Pℓ is equal

to the density of primes q in K(ζℓ) which split completely in Kℓ. Note that if g

is geometric at ℓ then Kℓ/K(ζℓ) is a geometric extension. In such a case, we may

apply Chebotarev’s density theorem [91, Theorem 9.13B] to establish that the desired

density is given by

Pℓ =
1

[Kℓ : K(ζℓ)]
=

1

ℓ
.

If g is not geometric at ℓ, then we may no longer apply Chebatarev’s density theorem.

In such a case, however, we have sufficient information to compute Pℓ precisely. By

Lemma 5.3.3, we write g = µbℓ where µ ∈ F×
q . Let r denote the order of µ in F×

q , and

let ζ denote a generator of F×
q such that µ = ζ

q−1
r . By [91, Proposition 10.6] we find

that a prime P which splits completely in K(ζℓ) also splits completely in Kℓ, if and

only if

g
qn−1

ℓ ≡ ζ
q−1
r

· q
n−1
ℓ b

qn−1
ℓ

·ℓ ≡ ζ
q−1
r

· q
n−1
ℓ ≡ 1 mod P.

Note that this in turn occurs if and only if q − 1 | q−1
r

· qn−1
ℓ

, enabling us to conclude

that

Pℓ =

J
1 if ℓ | q−1

r
(qn−1 + · · ·+ 1)

0 otherwise.

In particular, since ℓ | qn − 1 = (q − 1)(qn−1 + · · ·+ 1), we find that Pℓ = 1 whenever

ℓ ∤ q − 1.

So suppose ℓ | q − 1. If ℓ | (q−1)
r

, then µ = ζ
q−1
r is an ℓth power, in which case g

is also an ℓth power, contradicting our initial assumption. We may therefore assume

that ℓ ∤ (q−1)
r

. In this case, Pℓ = 1 if and only if ℓ | (qn−1 + · · · + 1). Since q ≡ 1

mod ℓ, we find that

qn−1 + · · ·+ 1 ≡ n mod ℓ,

so that
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Pℓ =

J
1 if n ≡ 0 mod ℓ
0 if n ∕≡ 0 mod ℓ.

We thus conclude as follows. Suppose g is not a full ℓth power for any prime ℓ | q− 1.

If, for all primes ℓ ∈ Pg such that ℓ | qn − 1, we have ℓ | q − 1 and n ∕≡ 0 mod ℓ,

then the density is given by

A =
.

ℓ|qn−1
ℓ/∈Pg

!
1− 1

ℓ

" .

ℓ|qn−1
ℓ∈Pg

1.

Otherwise A = 0. In all cases, A is then given by

A =
.

ℓ|qn−1

!
1− 1

ℓ

" .

ℓ|qn−1
ℓ∈Pg

!
1− cℓ (q

n−1 + qn−2 + · · ·+ 1)

ϕ(ℓ)

"
=

ϕ(qn − 1)

qn − 1
ρg(n),

as expected.
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