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Abstract

Transcriptional regulation of gene expression in higher organisms is fundamental for
numerous biological processes. These processes are mainly controlled by a special class
of regulatory proteins, the transcription factors (TFs), and their combinatorial interplay.
Various genetic programs, such as environmental adaptation, tissue development, or disease
control, are governed by the binding of TFs to short DNA motifs, called transcription factor
binding sites (TFBS), in the regulatory regions of their target genes. Single nucleotide
polymorphisms (SNPs) located in promoter regions can alter TFBSs leading to a change in
the binding affinity of TFs and, thus, affect gene expression. Such SNPs are referred to as
regulatory SNPs (rSNPs).
In recent years, rSNPs have come into the focus of research, and the underlying mechanisms
resulting in a differential gene expression have been studied for many specific traits and dis-
eases mainly in humans or model organisms, but also in agricultural species. However,
these studies mostly concentrate on single regulatory variants and do not include systematic
analyses. Thus, there is still a lack of such comprehensive analyses and genome-wide col-
lections of rSNPs, and to date, only few tools and databases are available for livestock or
crop species.
In this work, I developed a pipeline for the detection of rSNPs and created the databases
agReg-SNPdb and agReg-SNPdb-Plants, storing genome-wide collections of rSNPs and
their predicted effects on TF binding for agricultural animal and plant species, respectively.
agReg-SNPdb includes seven livestock and domestic species, namely cattle, pig, chicken,
sheep, horse, goat, and dog and agReg-SNPdb-Plants includes 13 crop species and sub-
species, namely African rice, Asian rice (with its subspecies Indica and Japonica), barley,
bread wheat, durum wheat, grape, maize, rapeseed, sorghum, sunflower, tomato, and wild
rice.
Out of all species stored in agReg-SNPdb-Plants, rapeseed holds a special role. In contrast
to the remaining species, where I used the data from Ensembl Plants as basis, in rapeseed,
to date, there is no genome-wide collection of SNPs available. Therefore, I used a previ-
ously published data set based on different resequenced Brassica napus L. cultivars for the
identification of rSNPs in agReg-SNPdb-Plants.
Based on this data set, I investigated the regulatory mechanisms in two cultivars, namely
Zhongshuang11 (ZS11), a so-called double-low accession with low content of erucic acid
and glucosinolate, which is characterized by high oil content, and Zhongyou821 (ZY821),
a so-called double-high accession with high content of erucic acid and glucosinolate, which
is characterized by low oil content. In this way, I demonstrate the application of rSNPs
together with multi-omics data to perform a systematic analysis of the complex interplay
between rSNPs, TFs, and differentially expressed genes (DEGs) in four tissues (flower, leaf,
stem, and root) which are underlying the oil content and -quality in rapeseed.
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Finally, I present a project in which I investigated the transcriptional gene regulation in
chicken and duck following an infection with avian influenza. To date, the regulatory mech-
anisms underlying the susceptibility of chicken to avian influenza and the effective immune
response of duck have not been fully deciphered. To address the limited knowledge regard-
ing upstream regulators, I identified TFs, their cooperations and master regulators that may
be important in triggering an effective differential gene expression in chicken to control the
virus.
Overall, to the best of my knowledge, this work provides the first databases of rSNPs and
their predicted consequences on TF binding in animal and plant species of agricultural im-
portance. By making the databases accessible via a website, I enable scientists to interpret
and evaluate their results from genome-wide association studies, gene expression experi-
ments, or a combination of both to uncover mechanisms underlying a trait of interest. In the
two application projects, I obtained novel insights into regulatory mechanisms underlying
(i) the oil content and -quality of rapeseed and (ii) avian influenza virus control of chicken
and duck and, thus, I could provide novel research objectives for future studies.



Zusammenfassung

Die transkriptionelle Regulation der Genexpression in höheren Organismen ist für
zahlreiche biologische Prozesse von grundlegender Bedeutung. Diese Prozesse wer-
den hauptsächlich durch eine spezielle Klasse von regulatorischen Proteinen, den
Transkriptionsfaktoren (TFs), und deren kombinatorischem Zusammenspiel gesteuert.
Verschiedene genetische Programme, wie die Anpassung an Umweltbedingungen, die
Entwicklung von Geweben oder die Kontrolle von Krankheiten, werden durch die Bindung
von TFs an kurze DNA-Motive, so genannte Transkriptionsfaktorbindestellen (TFBS), in
den regulatorischen Regionen ihrer Zielgene gesteuert. Einzelnukleotid-Polymorphismen
(SNPs, engl. ’single nucleotide polymorphisms’) in Promotorregionen können TFBSs
verändern, was zu einer Änderung der Bindungsaffinität von TFs führt und somit die Gen-
expression beeinflusst. Solche SNPs werden als regulatorische SNPs (rSNPs) bezeichnet.
In den letzten Jahren rückten rSNPs in den Mittelpunkt der Forschung, und die zugrunde
liegenden Mechanismen, die zu einer differenziellen Genexpression führen, wurden für
viele spezifische Merkmale und Krankheiten hauptsächlich bei Menschen oder Modellorga-
nismen, aber auch bei landwirtschaftlichen Arten untersucht. Diese Studien konzentrierten
sich jedoch meist nur auf einzelne regulatorische Varianten und umfassen keine systema-
tischen Analysen. Daher fehlen bis heute solche umfassenden Analysen und genomweite
Kollektionen von rSNPs, und es sind nur wenige Tools und Datenbanken für Nutztiere oder
Nutzpflanzen verfügbar.
In dieser Arbeit habe ich eine Pipeline für die Erkennung von rSNPs entwickelt und
die Datenbanken agReg-SNPdb und agReg-SNPdb-Plants erstellt, welche genomweite
Sammlungen von rSNPs und deren vorhergesagte Auswirkungen auf die TF-Bindung
für landwirtschaftliche Tier- bzw. Pflanzenarten enthalten. agReg-SNPdb umfasst die
sieben Nutz- und Haustierarten Rind, Schwein, Huhn, Schaf, Pferd, Ziege und Hund, und
agReg-SNPdb-Plants umfasst die 13 Pflanzenarten und -unterarten Afrikanischen Reis,
Asiatischen Reis (mit den Unterarten Indica und Japonica), Brotweizen, Gerste, Hart-
weizen, Mais, Raps, Sorghum, Sonnenblumen, Tomaten, Weintrauben und Wildreis. Von
allen in agReg-SNPdb-Plants gespeicherten Spezies nimmt Raps eine Sonderrolle ein. Im
Gegensatz zu den übrigen Spezies, bei denen ich Daten aus Ensembl Plants als Grundlage
verwendet habe, gibt es für Raps bisher keine genomweite Sammlung von SNPs. Daher
verwendete ich einen bereits veröffentlichten Datensatz, der auf resequenzierten Brassica
napus L.-Sorten basiert, für die Identifizierung von rSNPs in agReg-SNPdb-Plants.
Auf der Grundlage dieses Datensatzes untersuchte ich die regulatorischen Mechanismen
in zwei Sorten, nämlich, Zhongshuang11 (ZS11), einer so genannten Doppelnull Sorte mit
geringem Gehalt an Erucasäure und Glucosinolat, welche durch einen hohen Ölgehalt cha-
rakterisiert ist, und Zhongyou821 (ZY821), einer so genannten Doppelplus Sorte mit hohem
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Gehalt an Erucasäure und Glucosinolat, welche durch einen niedrigen Ölgehalt charakteri-
siert ist. Dadurch demonstriere ich die Anwendung von rSNPs zusammen mit Multi-Omics-
Daten, um eine systematische Analyse des komplexen Zusammenspiels zwischen rSNPs,
TFs und differenziell exprimierten Genen (DEGs) in vier Geweben (Blüte, Blatt, Stamm
und Wurzel) durchzuführen, die dem Ölgehalt und der Ölqualität von Raps zugrunde lie-
gen.
Schließlich stelle ich ein Projekt vor, in dem ich die transkriptionelle Genregulation bei
Hühnern und Enten nach einer Infektion mit der Vogelgrippe untersucht habe. Bis heute
sind die Mechanismen, die die Anfälligkeit von Hühnern für die Vogelgrippe und die
wirksame Immunantwort von Enten regulieren, noch nicht vollständig entschlüsselt. Um
den Forschungsbedarf in Bezug auf upstream-Regulatoren auszugleichen, habe ich TFs
und ihre Kooperationen und Master-Regulatoren identifiziert, die für die Aktivierung einer
effektiven differentiellen Genexpression bei Hühnern zur Bekämpfung des Vogelgrippe-
virus von Bedeutung sein könnten.
Insgesamt bietet diese Arbeit meines Wissens die ersten Datenbanken über rSNPs und ihre
Auswirkungen auf die TF-Bindung bei Tier- und Pflanzenarten von landwirtschaftlicher
Bedeutung. Indem die Datenbanken über eine Webseite zugänglich sind, haben Wissen-
schaftler*innen die Möglichkeit, ihre Ergebnisse aus genomweiten Assoziationsstudien,
Genexpressionsexperimenten oder einer Kombination aus beiden zu interpretieren und
zu bewerten, um Mechanismen aufzudecken, die einem Merkmal von Interesse zugrunde
liegen. In den beiden Anwendungsprojekten habe ich neue Erkenntnisse über die Regu-
lationsmechanismen gewonnen, die (i) dem Ölgehalt und der Qualität von Raps und (ii)
der Kontrolle des Vogelgrippevirus bei Hühnern und Enten zugrunde liegen und die neue
Forschungsziele für künftige Studien bieten könnten.
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1.2. Structure of the thesis

This thesis is structured as follows. In Chapter 2, I give an overview of the molecular
processes of living organisms which are required as background and introduction for this
thesis. I start with systems biology and the concept of omics technologies and provide a
more detailed overview of the three main omics disciplines genomics, transcriptomics and
proteomics. Then, I focus on single nucleotide polymorphisms (SNPs) and a special kind of
them, the regulatory SNPs. Lastly, I introduce the two application projects of my thesis, the
oil content and -quality based on the oil crop Brassica napus L. and the immune response
of chicken and duck after an infection with avian influenza. In the following four chapters,
I provide my publications relevant for this thesis [1–4].
In Chapter 3 I present my study "agReg-SNPdb: A Database of Regulatory SNPs for Agri-
cultural Animal Species" [3], where I developed a pipeline to predict rSNPs, applied it to
seven agricultural and domestic animal species, namely cattle, pig, chicken, sheep, horse,
goat, and dog, and stored genome-wide collections of rSNPs and their effects on TF binding
in the database agReg-SNPdb. In this study, I performed a literature survey to show that the
obtained results are in agreement with previous experimental and in silico studies. In order
to ensure a convenient database search, I have developed a website to query agReg-SNPdb
by SNP IDs, chromosomal regions, or genes. The graphical abstract of this study is shown
in Figure 1.1.

Figure 1.1.: Graphical abstract for the study described in Chapter 3.

The study described in Chapter 4 can be considered as an extension of agReg-SNPdb. I have
developed agReg-SNPdb-Plants, a database of regulatory SNPs for agriculturally important
plant species and subspecies (African rice, Asian rice (Indica and Japonica), barley, bread
wheat, durum wheat, grape, maize, rapeseed, sorghum, sunflower, tomato, and wild rice)
[1]. The graphical abstract of this study is shown in Figure 1.2.
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Figure 1.2.: Graphical abstract of the study described in Chapter 4.

In Chapter 5, I present the first application study. In this study of different B. napus cul-
tivars, I demonstrate the application of rSNPs together with multi-omics data to perform
a systematic analysis of the complex interplay between rSNPs, TFs, and differentially ex-
pressed genes (DEGs) in vegetative and floral tissues underlying rapeseed oil content and
-quality [4] (see Figure 1.3).

Figure 1.3.: Graphical abstract of the study described in Chapter 5.

In Chapter 6, I present a study in which I investigated the transcriptional gene regulation
controlling the expression of genes induced by an infection with avian influenza in chicken
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and duck [2]. This uncovered master regulators that could stimulate an effective immune
response in ducks following viral infection, while being dysfunctional in chicken. The
graphical abstract of this study is shown in Figure 1.4.

Figure 1.4.: Graphical abstract of the study described in Chapter 6.

The discussion (Chapter 7) is divided into two parts, a methodological discussion and a
biological discussion. In the first part, the methods used in this thesis, such as the rSNP
prediction pipeline or TFBS prediction, are discussed and compared with other existing
methods. In the second part, I focus on the interpretation of the biological results and
potential future experiments to support them. Finally, in Chapter 8, I conclude the thesis
and provide an outlook for future work.



2. General Introduction

Within a living cell, the universal basis for the flow of genetic information is described
by the so-called central dogma of molecular biology. In its basic form, it describes the
process of protein synthesis from deoxyribonucleic acid (DNA), which is transcribed into
messenger ribonucleic acid (mRNA) followed by the translation of mRNA into proteins
(Figure 2.1). Introduced as early as 1958 by Francis Crick [5], the dogma still holds true to-
day and lays the foundation of modern biology. Since then, it has been modified and refined
by new discoveries such as the reverse transcriptase, splicing, epigenetic modifications or
chaperones for protein folding. Today, new technologies enable the generation of large sets
of experimental and sequencing data to study living organisms [6].

Figure 2.1.: Scheme of the central dogma of molecular biology. The flow of informa-
tion from DNA via RNA to proteins is indicated by arrows, with dashed lines indicating
rare events. On the right, the molecular components of DNA, mRNA, and proteins are
shown schematically, including base pairing in the case of DNA. The figure was created
with BioRender (https://biorender.com/).

https://biorender.com/
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2.1. Systems Biology and Omics

In biological studies, it has always been advantageous to consider a living system not only
as the sum of its components, but to have a holistic view and see it in its entirety [7]. This
complex view of biological systems, encompassing all components and their interactions
and regulations, describes the concept of systems biology and has given rise to the suffix
of "-omics". Omics can be described as different disciplines or biological entities, such as
genomics, transcriptomics, proteomics, or metabolomics, with each of it being composed of
a variety of different regulatory mechanisms that are in constant interplay with each other
[7, 8]. Consequently, to study a system’s biology, it is necessary to systematically deter-
mine the components (e.g., DNA, RNA, and proteins) and to assemble and interpret their
interactions and regulations in order to obtain knowledge about the system as a whole [8].
In the following, I will address three of the main omics technologies, i.e., genomics, tran-
scriptomics, and proteomics, as these are the technologies studied in this thesis. I will
provide a definition, an overview of the structural properties, and the corresponding tech-
nologies as well as the data used to study them.

2.1.1. Genomics – the DNA Carries the Genetic Information

The genome of an individual is defined as the totality of an organism’s genetic material,
i.e., DNA, including its genes. The key to genomics studies is therefore the determination
and decoding of the DNA sequence, the sequence of letters in a four-digit alphabet. On the
molecular level, this alphabet is determined by the four nucleic bases adenine (A), guanine
(G), thymine (T), and cytosine (C), which are attached to a sugar-phosphate backbone to
build a directed DNA chain. The polarity of the chains is determined based on the phospho-
diester linkage between the phosphate and the sugar, where each sugar molecule has one
phosphate linked to its 3’ and one to its 5’ carbon, resulting in one 3’ and one 5’ end of
the strand [9, 10]. The DNA double-helix is then built by two strands wound around each
other in antiparallel direction, stabilized by hydrogen bonds between the nucleic bases in
the middle of the helix, with A and T as well as C and G paired. This feature leads to the
fact that both strands are complementary to each other and carry the same information [10,
11].
Today, it is possible to sequence an individual’s entire genome within hours at an ever
decreasing cost using next-generation sequencing (NGS). In this way, both coding and non-
coding regions are taken into account, and all types of genomic variations between different
genomes, such as single nucleotide polymorphisms, copy number variants, insertions, or
deletions, can be detected.
One major field of study within genomics is the study of genes, those sections on the DNA
coding for the synthesis of the gene product, either RNA or protein. In complex organisms,
each gene has a specific start position, the transcription start site (TSS), followed by one
or several coding sequences (exons), possibly interspersed by non-coding sequences (in-
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trons), where the beginning and the end of the coding sequence are framed by a start and
end codon, respectively. Those are always located in 3’ direction (downstream) of the TSS.
In the other direction, upstream of the TSS (in the 5’ direction), resides the promoter region.
The promoter is a regulatory region that allows the binding of transcription factors to en-
able the binding of the RNA polymerase, which is crucial for the initiation of transcription
(Figure 2.2).

Figure 2.2.: Structure of the gene coding region and the promoter. TSS stands for
transcription start site and is defined as the start of transcription by the RNA-polymerase.
Based on the 5’ −→ 3’ strand, the transcribed region is always positioned in 3’ direction
(downstream) of the TSS and the promoter is mainly found in 5’ direction, upstream of
the TSS. The transcribed region involves the 5’ untranslated region (UTR) and the 3’ UTR
framing the gene on the 5’ and 3’ end, respectively. Surrounded by the UTRs, the protein-
coding sequence is located in the exons, which may be interspersed with non-coding introns.
The figure was created with BioRender (https://biorender.com/).

2.1.2. Transcriptomics – the RNA Transmits the Genetic Information

Transcriptomics is known as the study of RNA, that is, everything that is transcribed in a
cell. Since every somatic cell in an organism owns the exact same set of chromosomes
and hence genomic sequence, gene expression and its regulation is the key to an efficient
control of the time and quantity of gene product to be expressed [12]. This enables the
creation of specific cells and tissues, allows an organism to adapt to different environments
and stimuli and, thus, forms the basis for the control of structure, functionality, versatility,
and adaptability.
In more detail, gene transcription, the first step of protein synthesis, works as follows. Dur-
ing the initiation phase, the promoter region of a gene is of particular importance (see Fig-

https://biorender.com/
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ure 2.2), as it forms the foundation for the binding of regulatory proteins, and most im-
portantly, the enzyme RNA polymerase. Several regulatory proteins, called transcription
factors (TFs), bind to specific transcription factor binding sites (TFBSs) in the promoter
region to mediate RNA polymerase binding and, thus, to allow the formation of the tran-
scription initiation complex. One of the best known TFBSs is the TATA box, which is
found in most eukaryotic promoters, approximately 25-30 bp upstream of the TSS [9, 13].
After the RNA polymerase binds to the DNA, the DNA double strand is unwound and the
base pairs are disrupted, forming a ’transcription bubble’ with single stranded DNA to be
transcribed. The RNA polymerase begins the synthesis on the template strand, forming the
RNA strand in the 5’ −→ 3’ direction. During the second phase of transcription, the elonga-
tion, the RNA polymerase moves along the DNA, continuously unwinds the double helix,
adds one new nucleotide to the building RNA strand at a time, dissociates the growing RNA
chain from the template, and performs proofreading functions [9, 10]. Depending on the
amount of protein required, a gene can be transcribed simultaneously by several consecutive
RNA polymerases, creating an enzyme convoy [9]. In the last step, after the coding region
is transcribed, the termination step comprises the stop of the synthesis, the release of the
RNA product, and the dissociation of the enzyme from the DNA [10].
The study of the transcriptome provides many important insights into the expression of
an organism’s phenotype, and poses certain challenges regarding experimental design and
data analysis, as measurements are highly context-, tissue-, and time-dependent. Currently,
the two main methods to measure the transcriptome are microarrays and RNA-sequencing
(RNA-seq), the former measuring the presence of a set of predefined sequences and the
latter detecting all transcripts under a given condition using high-throughput sequencing
methods. In both types of experiments, it is important to collect multiple (ideally >2) repli-
cates per condition and tissue and to provide control measures for ideally the same number
of replicates to account for biological variation and to apply reliable significance tests to
identify differentially expressed genes (DEGs) between a condition and a control set.

2.1.3. Proteomics – Proteins Form the Diversity of the Cell

After transcription, the pre-messenger RNA (pre-mRNA) is processed and spliced into the
mature mRNA molecule ready for translation. RNA-processing involves the addition of the
5’-cap and the poly-A tail which enables the export of the molecule from the nucleus and
prevents premature degradation. The splicing process involves cutting the introns out of the
pre-mRNA and joining the ends of the exons together. In most cases, this can be done in
several ways, so that a different set of exons results in different mature mRNA molecules.
This so-called alternative splicing makes it possible, among other things, that one gene can
give rise to several different proteins [10]. While the human genome codes for approx-
imately 20,000 protein-coding genes, there are estimated to be at least 500,000 different
human proteins [14]. The proteome, the totality of all proteins present in an organism or
cell (type) at a given condition, includes all different types of proteins, such as e.g., en-
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zymes, structural proteins, transport proteins, antibodies, or TFs. Since this study focuses
on transcriptional gene regulation and, thus, on the regulatory proteins, TFs are the type of
proteins studied in this work.
TFs govern the regulation of transcription by binding to the DNA at characteristic sequence
motifs recognized by a highly specific binding domain of the protein. The sequence
motifs, also called TFBSs, are typically between 5 and 15 base pairs (bp) long and are
preferably found in promoters or enhancers, i.e., proximal or distal regulatory regions,
respectively (Figure 2.2) [15, 16]. Most TFs have well documented sequence preferences
in the form of position weight matrices (PWMs), which can be used for their prediction
in a given sequence [1, 17, 18]. A PWM describing a DNA sequence is a 4× l matrix,
for a binding site of length l with one row per nucleotide, most frequently containing the
log-likelihood ratio for each nucleotide and position [19, 20]. For visualization, they can
be represented as sequence logos (Figure 2.3), which reveal the information content for
each position via the bin height. Positions with higher information content are highly con-
served among species while others are rather variable [20]. PWMs are calculated based on
experimentally validated binding sites in different species using, e.g., SELEX, chromatin
immunoprecipitation-sequencing (ChIP-seq), or DNA pull-down experiments [19, 21].

It is well known, that the TFBSs occur in clusters within the regulatory regions, which
enable the formation of TF pairs and complexes during DNA binding [23, 24]. Thus, the
interplay between TFs and their specific partner choices orchestrate the dynamic and diverse
regulatory programs as a response to certain environmental conditions and determine the
highly context-specific gene expression [23].
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Figure 2.3.: Position weight matrix (PWM) and sequence logo of the transcription fac-
tor binding site (TFBS) for myocyte enhancer factor 2 (MEF2). (A) shows the PWM of
the MEF2 binding site in terms of log-likelihood ratios. (B) shows the respective sequence
logo visually representing the TFBS. The height of each bin describes the information con-
tent in bits of the corresponding position [19]. The example and figure are based on [22].

2.2. Single Nucleotide Polymorphisms

An individual’s genome is defined by a unique sequence characterized by a specific com-
bination of genomic variations. Every heritable genomic variation occurring today, was
introduced once as a random mutation in the germline. The most common type of genomic
variations are single nucleotide polymorphisms (SNPs), nucleotide changes at a single po-
sition with a minor allele frequency of at least 1% within a population [25]. While theo-
retically up to four different alleles are possible, in practice SNPs usually occur bi-allelic,
comprising one reference and one alternate allele [25, 26].
Especially due to their abundance in the genome, they are considered as the markers of
choice for genome-wide association studies (GWAS), revealing the association of genomic
markers to genetic traits or diseases [27]. However, this generally shows only a statistical
association with the trait under study, with the causative SNP or its mode of action often
going undetected [28]. Nevertheless, it is of great importance to identify the biologically
causative variant, not only to ensure its efficient and robust use for breeding purposes, but
also to decipher the mechanisms forming a particular phenotype [28]. The vast majority
of trait- and disease-associated variants identified in GWAS are located in intergenic and
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intronic regions and are enriched in the regulatory regions suggesting that they are likely to
influence transcriptional gene regulation [23, 28, 29].

2.2.1. Regulatory SNPs

SNPs in promoter regions can alter regulatory elements such as TFBSs and, thus, can have
an effect on the transcriptional activity of the gene [23]. Such SNPs are known as regulatory
SNPs (rSNPs) and they are promising candidates in the search for causality of disease- or
trait-associated SNPs [1]. Depending on the nucleotide affected within the TFBS, an rSNP
may cause only a small change in binding affinity of a TF or, if a highly conserved position
is substituted, a binding site may be disrupted or a new one created. In the past, several case
studies have shown that rSNPs can have a major impact on the phenotype and, in extreme
cases, can even be causal for a particular trait or disease.

2.2.1.1. Examples of rSNPs in Humans, Animals, and Plants

A well-known example in humans is the phenotype of lactase persistence, also referred to as
lactose tolerance, which can be caused by an rSNP commonly observed in European popu-
lations [30]. This rSNP (-13,910*C/T) is located in a distal regulatory region and causes an
Oct-1 binding site for the T allele, whereas the C allele does not allow the binding of Oct-1.
Studies in transgenic mice have shown that the insertion of human DNA fragments with
the -13,910*T variant alone could prevent the post-weaning decline of lactase expression,
whereas mice with the -13,910*C variant were lactase non-persistent, suggesting a causal
role of a single rSNP in the lactase persistence phenotype [31].
In addition, a number of rSNPs have been found to be associated with various diseases in
other human studies, summarized in a review by Degtyareva et al. [23]. For example, Allen
et al. [32] investigated an rSNP within an eQTL for the gene IFITM3, which is associated
with severe influenza in humans. The risk allele (A) showed decreased binding affinity for
the activator TF IRF3, while the inhibitor CTCF bound with higher affinity, resulting in
decreased gene expression.
Another study by Y. Wang et al. (2020) [33] identified an rSNP associated with lung cancer
in Chinese populations located 682 bp upstream of the DCBLD1 TSS. The T allele creates
a binding site for YY1, while the risk allele (C) does not allow YY1 binding leading to
decreased DCBLD1 expression.
Furthermore, Korneev et al. [34] showed in their study that an rSNP creating a PU.1 binding
site enhances TLF transcription and leads to a higher risk of several diseases involving
chronic inflammation.

Several studies have also examined different rSNPs in agriculturally important animal and
plant species with respect to a specific trait or phenotype [1, 3, 4]. For example, Konishi et
al. [35] discovered an rSNP in rice that causes a loss of TFBS for an ABI3 type TF in the
promoter region of the quantitative trait locus (QTL) for seed shattering on chromosome 1
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(qSH1). This rSNP is causative for the loss of seed shattering and, thus, paved the way for
rice domestication [35].
In maize, several rSNPs were detected in the promoter of the maize rough dwarf disease
candidate gene eukaryotic translation initiation factor 4E (eIF4E) and control its expression
level [36].
Furthermore, in wheat, an rSNP associated with wheat grain weight affects the binding of a
calmodulin-binding TF and hence the gene expression of the TaGW2-6A gene, a candidate
gene for grain weight [37].
A previous study on the grain legume faba bean discovered two rSNPs which are signifi-
cantly associated with the vicine and convicine content and affect the binding of the TFs
MYB4, MYB61, and SQUA [38].
In their study on dairy cattle, Lum et al. [39] investigated the molecular mechanism un-
derlying the ß-Lactoglobulin (LGB) gene expression, which plays an important role in the
milk casein, protein, and fat content. They found one rSNP in the LGB upstream promoter
within a binding site for AP-2 that affected the protein affinity to the sequence.
Other studies [40, 41] investigated the chicken the prolactin gene, coding for the important
reproductive hormone prolactin, and identified several rSNPs overlapping different TFBSs.
Ballester et al. [42] identified one rSNP associated with fatty acid composition traits in pigs,
which is located in the promoter region of apolipoprotein (apo-) A-II (APOA2) affecting
the binding of NF-1.

2.2.1.2. Detection of rSNPs

In practice, the detection of rSNPs can be done in several ways. Most commonly, the first
step is an in silico discovery of TFBSs and a prediction of the consequence caused by a
nucleotide change. This first step is of utmost importance to provide prior knowledge and
a starting point for experimental validation. TFBS prediction can be done using different
methods and tools like MATCH™ [18], MEME [43], or ConSite [44]. To predict the effect
of variants to TF binding, there exist various tools and databases, which are summarized
in Table 3.1 and Table S1 of Chapter 3. However, almost all of them focus on humans or
a few model organisms, and, thus, there is a great need for tools and databases addressing
rSNPs in different agricultural animal and plant species [1, 3]. To the best of my knowl-
edge, there exist currently three tools, which generally allow the detection of rSNPs in crop
or livestock species. As a web-based tool, the RSAT variation-tool [45] allows the analy-
sis of plant SNPs of user-provided inputs on the fly. However, this tool does not give any
information on related genes, such as the distance to the transcription start site (TSS) or con-
sequences such as gain- or loss of TFBS. Hence, the users need to interpret the output them-
selves. The RSAT variation-tool includes eight crop species and subspecies (Hordeum vul-
gare, Oryza sativa Indica, Oryza sativa Japonica, Solanum lycopersicum, Sorghum bicolor,
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Triticum turgidum, Vitis vinifera, and Zea mays). The R packages MotifbreakR [46] and
atSNP [47] principally comprise organisms stored in the Bioconductor BSGenome package
[48], which includes only the crop species Oryza sativa and Vitis vinifera and the livestock
species Gallus gallus, Bos taurus, and Sus scrofa. For both packages, the user has to pro-
vide the SNPs as well as the representation of TFBSs under study in the form of PWMs and
experience in R programming is imperative.
After in silico analysis, an experimental validation can be done via different in vitro
(e.g., EMSA, pull-down and reporter assays, or SNP-SELEX) and in vivo (e.g., ChIP-PCR,
CRISPR/Cas9-mediated single nucleotide editing) experiments [23]. In addition, with ge-
nomics and transcriptomics data available for the same individuals, the impact of a genomic
locus on transcription levels can be measured via expression QTL (eQTL) analysis. Similar
to regular QTL analysis, which measures the association between a genomic locus and a
phenotype (quantitative trait), eQTL analysis determines the association with the level of
gene expression, i.e., the amount of mRNA. Hence, the detection of eQTLs is a method to
determine genomic regions which have an impact on gene expression, and, thus, are likely
to harbour rSNPs [23].

2.3. Application Projects: The Study of Regulatory Mechanisms
in Agricultural Species

In this thesis, I investigate the gene regulatory mechanisms underlying a trait of interest
based on omics data in both plant and animal sciences. To this end, I analyzed two case
studies which I will introduce here. First, I will provide background information on the
oil content and -quality of the oilseed rape. The second application project involves the
investigation of immune responses of chicken and duck after infection with avian influenza.

2.3.1. Oil Content and Quality in Rapeseed

Brassica napus L. was formed around 7,500 years ago through natural hybridization be-
tween the diploid progenitors Brassica rapa and Brassica oleracea, followed by chromo-
some doubling. This process, known as polyploidization, gave rise to the allopolyploid
crop B. napus (2n = 4x = 38, AACC) which is characterized by a total of 38 chromosomes,
20 of which coming from B. rapa (2n = 2x = 20, AA) and 18 coming from B. oleracea
(2n = 2x = 18, CC) [49, 50]. A study by Lu et al. [49] suggested that the A subgenome
evolved from a European turnip ancestor and the C subgenome from the common ancestor
of kohlrabi, cauliflower, broccoli, and Chinese kale.
Today, rapeseed is one of the most important oilseed crops, cultivated worldwide not only
for its high seed oil content, but also for its high protein content, which makes the rapeseed
meal remaining after oil extraction a valuable animal feed [51, 52]. The oil, in addition to
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its use for human consumption, is also used as lubricant and, especially in Germany and
Europe, as biodiesel.
Until the early 1970s, the ability to grow rapeseed for human and animal consumption was
highly limited due to its erucic acid and glucosinolate-containing oil composition. From
a breeding perspective, B. napus is therefore a prime example of breeding improvements,
because in no other crop, important quality characteristics have been changed completely in
such a short time [53]. Originally, one characteristic of rapeseed oil was erucic acid, which
is not found in other oil crops. This made the oil of concern for human consumption, as
erucic acid is not only bitter in taste but can cause cardiac damage and other health issues
in mammals [54]. An important step in breeding rapeseed with low erucic acid content
was therefore a mutation that blocked a step in erucic acid synthesis so that predominantly
oleic acid, a precursor of erucic acid, was formed [53, 55]. Another undesirable component
found in the meal is glucosinolate, which can form toxic cleavage products during digestion,
leading to adverse health effects such as liver and kidney damage and lymphatic disorders
[54]. Today, it is possible to produce varieties with low erucic acid and low glucosinolate,
giving rise to the so called double-low varieties, the canola as it is known today [49].
Improving the oil content is an important breeding goal today, and in this context, the resis-
tance to several stress factors is a relevant objective [51, 53, 56]. The oil is stored within the
seeds in the form of triacylglycerols (TAGs) in oil bodies, while TAG synthesis takes place
in plastids through a variety of different interacting metabolic pathways and regulatory pro-
cesses [57]. However, the pathways as well as the underlying transcriptional machinery
controlling the oil content and -quality could vary across different B. napus cultivars [49,
58]. Hence, the investigation of such biological processes is an important task to assess the
genetic programs of two cultivars in this study: (i) Zhongshuang11 (ZS11) characterized by
a double-low accession (00, low erucic acid and low glucosinolate) and a high oil content
and; (ii) Zhongyou821 (ZY821) with double-high accession (++, high erucic acid and high
glucosinolate) and low oil content [49].

2.3.2. Avian Influenza in Chicken and Duck

The avian influenza virus (AIV) primarily infects birds such as wild waterfowl or galli-
naceous poultry, but also has zoonotic potential and poses a high risk for a future pan-
demic [59]. After the first reports of human infections with high pathogenic avian influenza
(HPAI) H5N1 in 1997, avian influenza became a globally recognized disease that was now
of interest not only to veterinary medicine but also to public health [60]. Between 2003 and
2022, the World Health Organization (WHO) reported 865 cases of human infections with
H5N1, 456 of which resulted in death [61].
As a type A influenza virus, AIV belongs to the family of Orthomyxoviridae, which are
segmented negative-sense RNA viruses [60]. Their naming is based on their surface pro-
teins neuraminidase (NA) and hemagglutinin (HA). Among 16 existing HA types, only two
(H5 and H7) can cause respiratory and systemic diseases in birds [62]. Further, AIVs can



17 2.3. Application Projects

be classified into high- and low pathogenic avian influenza viruses (HPAIVs and LPAIVs,
respectively) based on their pathogenicity in chicken [63]. While chicken can usually with-
stand an LPAI infection, they succumb to infection with HPAI within a few days with a
mortality rate of up to 100% [64]. Mallard ducks, on the other hand, are known to success-
fully fight all LPAI and most HPAI infections, with usually only mild symptoms, and are
hence considered a natural reservoir of the virus [59].
However, to date, the mechanisms underlying the susceptibility of chicken to avian in-
fluenza and the effective immune response of ducks, in particular wild mallards, have not
been fully deciphered. Partially, the susceptibility of chicken can be explained by the ab-
sence of virus pattern recognition receptor RIG-I gene and the gene for the RIG-I binding
protein, RNF135, both of which exist in ducks [59, 65]. The RIG-I receptor recognizes
double-stranded RNA and initiates self-promoting pathways leading to the early type I in-
terferon (IFN) response, which is important for innate immune response. In chicken, other
pattern recognition receptors, such as MDA5 and TLR7, are upregulated in response to viral
entry, which also leads to the induction of IFN and IFN-stimulated gene expression [62, 63,
65, 66]. However, the immediate induction of type I IFNs (IFN-α and IFN-β ) seems to be
much more robust and effective in ducks than in chicken or other avian species. This first
checkpoint for controlling the virus is crucial to the delay and prevention of viral replica-
tion, but it is by far not the only mechanism which is responsible for the successful immune
response of ducks. Evseev and Magor [62] provide a comprehensive overview of the dif-
ferences in innate immune responses in chicken and duck and highlight also factors like the
sialic acid receptor distribution in the trachea and intestinal tract, different mechanisms to
control inflammation, rapid apoptotic response or the adaptive immunity. However, host-
pathogen interactions and, in particular, their underlying transcriptional gene regulation in
duck and chicken are multifactorial and highly complex, and further elucidation is needed
to gain deeper insight into the effective immune response against AIV in ducks, while it
proves lethal to chicken [62].
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3.1. Simple Summary

Regulatory SNPs (rSNPs) are SNPs located within promoter regions that have a high po-
tential to alter gene expression by changing the binding affinity of transcription factors to
their binding sites. Such rSNPs are gaining importance in the life sciences due to their
causality for specific traits and diseases. In this study, we present agReg-SNPdb, the first
database comprising rSNP data of seven agricultural and domestic animal species: cattle,
pig, chicken, sheep, horse, goat, and dog, and made it usable via a web interface.

https://doi.org/10.3390/biology10080790
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3.2. Abstract

Transcription factors (TFs) govern transcriptional gene regulation by specifically binding
to short DNA motifs, known as transcription factor binding sites (TFBSs), in regulatory
regions, such as promoters. Today, it is well known that single nucleotide polymorphisms
(SNPs) in TFBSs can dramatically affect the level of gene expression, since they can
cause a change in the binding affinity of TFs. Such SNPs, referred to as regulatory SNPs
(rSNPs), have gained attention in the life sciences due to their causality for specific traits
or diseases. In this study, we present agReg-SNPdb, a database comprising rSNP data of
seven agricultural and domestic animal species: cattle, pig, chicken, sheep, horse, goat, and
dog. To identify the rSNPs, we constructed a bioinformatics pipeline and identified a total
of 10,623,512 rSNPs, which are located within TFBSs and affect the binding affinity of
putative TFs. Altogether, we implemented the first systematic analysis of SNPs in promoter
regions and their impact on the binding affinity of TFs for livestock and made it usable via
a web interface.

Keywords
single nucleotide polymorphism; regulatory SNP; transcription factor; transcription factor
binding site; gene regulation; database; agricultural animal species; livestock

3.3. Introduction

The transcriptional regulation of gene expression in higher organisms is essential for various
biological processes. In contrast to the process of translation, the transcriptional machinery
and its regulatory mechanisms are far from being deciphered [67]. These mechanisms are
mainly governed by a special class of regulatory proteins, the transcription factors (TFs),
and their combinatorial interplay [68, 69]. TFs regulate the transcription as a response to
specific environmental conditions by binding to short degenerate sequence motifs known as
transcription factor binding sites (TFBSs) in promoter regions of their target genes and,
thereby, enhance or repress gene transcription. Genomic variations, such as single nu-
cleotide polymorphisms (SNPs), define and characterize specific populations or phenotypes
and are, hence, used as markers in animal and plant breeding. Due to the decreasing costs
for whole genome sequencing, an increasing number of variants is detected followed by
association studies statistically linking SNPs to specific traits or diseases. However, the
identification of causal variants and the elucidation of their regulatory roles is proceeding
at a slow rate [70, 71]. Today, it is well known that most disease- and trait-associated SNPs
are not located within the coding regions of genes but in non-coding regions [23, 29, 72,
73]. SNPs that are located in regulatory regions can alter TFBSs leading to a change in the
binding affinity of TFs and, in extreme cases, even result in the disruption of a TFBS or
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the creation of a new TFBS (Figure 3.1) and, thus, affect gene expression. Such SNPs are
referred to as regulatory SNPs (rSNPs) [47, 74, 75].

Figure 3.1.: Scheme of the disruption of transcription factor (TF) binding due to a
regulatory SNP. The TF can bind to the reference (REF) sequence while it does not bind
to the alternate (ALT) sequence (C instead of A at position 7).

The importance of rSNPs has been studied extensively in humans and they are found to
have a causal role for numerous traits and diseases [31, 76–78]. A recent review on human
rSNPs summarizes different rSNP studies [23]. Due to the great interest in rSNPs, several
tools and databases for the analysis of the effects of SNPs on regulatory elements, e.g., TF-
BSs, have been developed for humans or certain model organisms. Five recent studies are
summarized in Table 3.1, and a comprehensive overview is given in Table S1.
Recently, rSNPs are gaining attention in life sciences and animal breeding since they can
be causal for specific traits and diseases and could, hence, serve as new targets for breed-
ing. For this reason, several studies investigated the critical role of rSNPs in agriculturally
important species, such as cattle [39, 79–84], pig [42, 85, 86], and chicken [40, 41, 87]. As
these studies were focused on the regulatory role of SNPs for a single trait of interest, they
were highly case-specific. Thus, there still exists a lack of systematic analyses of the effects
of rSNPs in agricultural species, and, until now, only a few existing tools and databases
(DBs) are available for livestock.
MotifbreakR [46] and atSNP [47] are both R packages that principally include all organ-
isms stored in the Bioconductor BSGenome package [48]; however, they require the user
to supply the SNP and TFBS data (represented by position weight matrices (PWMs)), and
experience in R programming is essential. The Ensembl Variant Effect Predictor (VEP)
[88] stores data from experimentally supported and published rSNPs. Due to the lack of
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experimentally supported data of regulatory elements in livestock, the VEP mainly contains
data of regulatory elements and variants for human and mouse. Therefore, the information
for livestock stored in the Ensembl VEP is limited to annotations based on the position of
the SNP with respect to a gene, e.g., in the upstream region or in the 5’ UTR, excluding
effects on TF binding.
In order to address the limited knowledge and information available regarding the crucial
functions of rSNPs and their associations with TFBSs in livestock, we systematically carried
out an analysis to detect rSNPs and predicted their effects on TF binding for seven agricul-
tural and domestic species (cattle, pig, chicken, sheep, horse, goat, and dog). In particular,
we first analyzed the promoter regions (ranging from −7.5 kb to +2.5 kb) of all annotated
genes and obtained the SNPs within these regions. Secondly, we extracted the flanking
sequences for these SNPs and performed a TFBS prediction on the reference as well as
alternate sequences. Finally, we assigned the identified SNPs to different categories based
on their consequences on TF binding (Figure 3.2) as suggested in [4, 38]. To demonstrate
our results in a proper way, we developed a database, namely agReg-SNPdb, which stores
all predicted regulatory SNPs and their consequences on TF binding for each gene, and we
made it accessible via a web interface (https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb).
Furthermore, we performed a literature survey to show that our results are in agreement
with previous experimental and in silico studies.

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb
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Figure 3.2.: Scheme of the workflow applied for the detection of rSNPs. (1) Definition of
the promoter region as 7.5 kb upstream (5’ direction) and 2.5 kb downstream (3’ direction)
of the TSS, and extraction of SNPs within this region; (2) extraction of the flanking 25
bp around the SNPs from the reference genome; (3) prediction of the TFBSs for both the
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3.4. Materials and Methods

3.4.1. Input Data

The construction of agReg-SNPdb requires: (i) a library of PWMs representing the TFBSs
and, for each animal, (ii) a reference genome, (iii) a SNP catalog, and (iv) gene annotations.
As a PWM library, we used the non-redundant vertebrate matrices provided by TRANSFAC
[93]. The reference genomes, SNP catalogs, and gene annotation files are downloaded from
Ensembl [94]. The respective assembly versions are listed in Table 3.2. The SNP catalog
was filtered by discarding all insertions and deletions, keeping only the SNPs. For most
genes, more than one transcript isoform was annotated [88], e.g., due to different splicing
variants. This ambiguity was kept during the analysis if the positions of the transcription
start sites (TSSs) and, hence, the derived promoter regions were different.

Table 3.2.: Assembly versions of the input data, including the reference genome, SNP
catalog, and gene annotations. All files were downloaded from Ensembl (release 103).

Animal Assembly Version Download Date

Cattle ARS-UCD1.2 03/01/2021
Pig Sscrofa11.1 03/09/2021
Chicken GRCg6a 02/25/2021
Sheep Oar_rambouillet_v1.0 03/01/2021
Horse EquCab3.0 03/01/2021
Goat ARS1 03/01/2021
Dog CanFam3.1 03/08/2021

3.4.2. Pipeline

A general workflow of the detection pipeline is shown in Figure 3.2. In our previous studies
on faba beans [38] and rapeseed [4], we established similar pipelines for the prediction of
rSNPs.

3.4.2.1. Detection of SNPs within the Promoter Region

The first step of this analysis was to extract SNPs, which are located within the pre-defined
promoter regions. Since there exists no experimentally verified information regarding the
exact location of the promoters and in order to overcome inaccuracies in TSS prediction,
we chose a large promoter region of 7.5 kb upstream and 2.5 kb downstream of the TSS.
Similarly large promoter regions were used in previous studies [15, 74, 91, 95–100]. This
promoter region can be narrowed by the user during a database search on our website. For
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all annotated genes, we extracted the SNPs within this region for further analysis by using
the function foverlaps of the package data.table in R [101].

3.4.2.2. Prediction of TFBSs

For each SNP lying within a promoter region, we extracted the respective flanking sequence
of 25 bp on each side of the SNP resulting in sequences with a total length of 51 bp and the
SNP at position 26 (similar flanking sequences were used in [4, 38, 96, 102]). Sequences
with a length of less than 51 bp or sequences with gaps were discarded. After extracting the
flanking sequences, we created two sequences per SNP, one with the reference and one with
the alternate allele at the SNP position. Both were used as input for the TFBS prediction tool
MATCH™ [18], which scanned the sequences to predict TFBSs using a PWM library from
TRANSFAC with specific cut-off values to minimize the false positive rates. If a PWM
matched a segment of genomic DNA, this sequence motif was referred to as a (potential)
TFBS. As a result, the algorithm provided two scores for each predicted TFBS [18, 93]:
the matrix similarity score (MSS), measuring the quality of the match regarding the whole
PWM sequence, and the core similarity score (CSS), measuring the quality of the match
regarding the first five most-conserved consecutive positions of the PWM. Both scores were
within the range [0,1], where a score of 1 denoted an exact match of the sequence with the
PWM [18] measuring the quality of the match and indicating the binding affinity of a TF to
the site.
In TRANSFAC, a PWM identifier follows a certain terminology with the structure
V$factorname_version. In our case, each PWM starts with “V$”, which indicates that
the PWM originated from a vertebrate TF. The factorname specifies the name of the TF that
is binding to the DNA motif. Since there can be several PWMs representing the sequence
motif of a specific TF, the version was specified for unique identification [69, 93].

3.4.2.3. Annotation of Consequences

For each SNP, we obtained two sets of predicted TFBSs — one for the reference and one for
the alternate allele. By comparing these two sets, we manually determined the consequence
of a SNP on a TFBS as in our previous studies [4, 38]. We differentiated four different
consequences: (i) no effect, (ii) change in binding affinity, (iii) loss of TFBS, and (iv) gain
of TFBS. We defined two TFBS predictions as the same if their PWMs, positions, and the
strand on which they were found were equal for both alleles.
A SNP was considered to have no effect on a TFBS if both scores computed by MATCH™
were equal for both alleles. A SNP was considered to cause a change in the binding affinity
of a TF if the matrix similarity score computed by MATCH™ differed for the two alleles.
A SNP caused a loss or gain of TFBS if the considered TFBS was only predicted for the
reference or alternate sequence, respectively. In this study, we defined an rSNP as a SNP
that caused a loss or gain of TFBS or a score-change for at least one TFBS.
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3.5. Results

3.5.1. Database

We created the mysql database [103] agReg-SNPdb, which stores (i) general information
about the SNPs, such as the ID, chromosomal position and the alleles (table snp_info);
(ii) general information about the genes, such as the gene name and chromosomal position
(table gene_info); (iii) the table snp_region connecting the tables snp_info and gene_info
by storing SNPs and their corresponding target genes together with their genomic position
within the promoter region based on the distance to the TSS; and, most importantly, (iv)
for each SNP within a promoter region (i.e., for each SNP in table snp_region), we store
its consequences based on the predicted TFBS binding potential (table TFBS_results). A
summary of the number of entries for each table and animal stored in our database is shown
in Table 3.3.

Table 3.3.: The number of records stored in the database tables snp_info, gene_info,
snp_region, and TFBS_results.

snp_info gene_info snp_region TFBS_results

Cattle 88,109,946 21,656 9,335,814 9,074,371
Pig 58,145,647 20,267 4,385,724 4,432,047

Chicken 20,917,836 16,659 3,810,524 3,901,905
Sheep 50,164,898 20,359 3,216,474 3,205,279
Horse 20,331,427 20,499 1,585,207 1,713,395
Goat 31,331,447 19,658 1,987,914 2,015,588
Dog 4,725,021 19,960 494,691 489,292

Total 273,726,222 139,058 24,816,348 24,831,877

3.5.2. Web Interface

The web interface (https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb, accessed on 16 Au-
gust 2021) allows users to query the agReg-SNPdb without SQL knowledge and to obtain
the requested results either on our website directly or by downloading them as CSV files.
The database can be searched by (i) SNP identifiers in the form of rs numbers, (ii) SNP
positions, (iii) SNP regions in a specified chromosome, or (iv) gene identifiers, i.e., the
Ensembl gene stable ID or gene name (Figure 3.3).
The search results will contain, at maximum, four tables: (1) a table showing general SNP
information (table snp_info); (2) a table showing general gene information (table gene_-
info); (3) a table linking the SNPs to the genes, more specifically to the promoter regions,
if they are positioned within a promoter region (table snp_region); and (4) for all rSNPs,

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb
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a table with the predicted TFBSs overlapping each rSNP, the MATCH™ scores, and the
respective consequence (table TFBS_results) for both alleles. An example output can be
seen in Figure 3.4. In all tables, we provide links to sites with additional information for the
SNPs and genes, and, for each PWM, we display the respective sequence logo if desired.
Apart from the search site, the complete database tables can be downloaded chromosome-
wise on the summary page of the respective animal.

Figure 3.3.: Search page of agReg-SNPdb. Search options are (1) by SNP ID, (2) by SNP
position, (3) by chromosomal region, and (4) by gene.
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Figure 3.4.: Example of a search result from agReg-SNPdb. The search was performed
by the SNP id rs41566363 of cattle. The result tables contain, first, general SNP infor-
mation; secondly, general gene information; thirdly, information about the SNP region, in
particular the promoter region and distance to the TSS; and lastly, the overlapping TFBSs
(represented by PWMs) for the SNP with predicted consequences.

3.5.3. Statistical Analysis of the Data

To give a brief overview of the data stored in agReg-SNPdb, we show the distribution of
SNPs, genes, and rSNPs in the promoter regions along the chromosomes in an exemplary
manner for the species chicken. The distributions for the remaining animals can be found
in Figures S2 and S3. The distributions of SNPs and genes along the chromosomes are
shown in Figure 3.5. As expected, the number of SNPs and genes decreased largely with
increasing chromosome number and, hence, with decreasing chromosome size.
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Figure 3.5.: The total number of SNPs and genes for each chromosome of chicken. (A)
The number of SNPs per chromosome. (B) The number of genes per chromosome. In total,
20,917,836 SNPs and 16,659 genes were reported. For plotting, the R package ggplot2

[104] was used.

Regarding the promoter regions, the number of SNPs in promoters is dependent on the
number of genes (Figure 3.5 B) for each chromosome. To overcome this dependency, we
calculate the average number of rSNPs per gene in the upstream as well as the downstream
promoter region. The average numbers of rSNPs for each chromosome in chicken revealed
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that most chromosomes had approximately 120 rSNPs per gene, while, on some chromo-
somes, only very few rSNPs per gene were found (Figure 3.6).
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Figure 3.6.: The average number of rSNPs in promoter regions per gene for each chro-
mosome of chicken, divided into upstream and downstream promoters. The orange
whiskers denote the mean plus one standard deviation.

Overall, by dividing the total number of rSNPs by the total number of genes, we identified
on average 95.04 rSNPs within the promoter region (10 kb) of one gene in chicken.
To obtain further insight into the distribution of rSNPs in the promoter regions, we investi-
gated their genomic positions relative to the TSS for the whole promoter region (−7.5 kb to
+2.5 kb) and for a smaller section (−750 bp to +250 bp) for chicken (see Figure 3.7 A and
B, respectively; the figures for the remaining species are given in Figures S4). For chicken,
we observed a similar finding as in our previous study on rapeseed [4] and as previously
shown in rice [13]. While there are few rSNPs in close proximity to the TSS, the number
of rSNPs increases with increasing distance to the TSS. Interestingly, in cattle (as well as in
dogs), we observed the opposite tendency. Many rSNPs were found around, and especially
directly downstream, of the TSS, while the number decreased with the distance to the TSS
(the distribution of cattle rSNPs is shown in Figure 3.8).
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Figure 3.7.: Distribution of the distances between rSNPs and the TSS of chicken. (A)
The counts for the whole promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals. The
enlargement in (B) shows the proximal promoter region (−750 bp to +250 bp) in 50 bp
intervals.



33 3.5. Results

300,000

200,000

100,000

0

400,000

# 
o

f 
rS

N
P

s

Distance to TSS (bp)

0 +2500-2500-5000-7500

0 +250-250-500-750

0

10,000

20,000

30,000

40,000

# 
o

f 
rS

N
P

s

Distance to TSS (bp)

Cattle

A)

B)
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The counts for the whole promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals. The
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3.6. Biological Validation Based on Case-Studies

In order to validate the data stored in agReg-SNPdb, we performed literature research and
assessed the importance of our findings based on selected published studies, which identi-
fied putative rSNPs that are associated with a trait under study and affect TF binding, either
by prediction or as evaluated in a biological experiment.

3.6.1. Milk Protein and Fat Content in Dairy Cattle

Lum et al. [39] studied the molecular mechanism of different expression levels of the ß-
Lactoglobulin (LGB) gene (also known as MBLG or PAEP), which plays an important role
in the milk casein, protein, and fat content in dairy cattle. They described one rSNP in the
LGB promoter with a G to C conversion 450 bp upstream of the TSS that was found within
an activator protein-2 (AP-2) binding site. Measuring the different AP-2 binding affinities
with DNase-I footprinting, they measured increased protein binding in the A promoter (G
allele).
In our database, we identified the same rSNP (rs41255679, C/G), which was located in the
proximal upstream promoter region of PAEP and caused a gain of the AP-2 binding site
with the G allele (Table 3.4) [105]. This supports the findings of different studies reporting
that AP-2 binding as well as LGB gene expression is enhanced by the G allele and that
rs41255679 could be an important regulator of LGB expression [39, 105–107].

Table 3.4.: Consequences of SNP rs41255679 (C/G), located upstream of the TSS of
the bovine LGB gene. Allele 0 refers to a predicted TFBS in the reference sequence, while
allele 1 stands for the alternate allele. A SNP causes a loss of TFBS if the considered TFBS
(represented by a PWM) is only predicted for the reference allele. Consequently, a SNP
causes a gain of TFBS if the TFBS is only predicted for the alternate allele.

SNP ID Allele PWM Consequence

rs41255679 0 V$CTCF_01 Loss of TFBS
rs41255679 1 V$AP2ALPHA_03 Gain of TFBS

3.6.2. Fat-Related Beef Quality Traits in Cattle

Matsumoto et al. (2014) [81] investigated the role of different bovine fat-related genes,
including the gene encoding the fatty acid-binding protein 4 (FABP4). Within the FABP4
upstream promoter, they identified two SNPs in linkage disequilibrium (FABP4 g.-295A>G
and FABP4 g.-287A>G) that were associated with several fat-related traits, such as the car-
cass weight and beef marbling score. Using TFSEARCH [108], they predicted TFBSs over-
lapping the SNPs and altering their binding sites. In agReg-SNPdb, we identified two SNPs
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within the FABP4 promoter region at a distance of 8 bp to each other and A to G conversions
(respectively, T to C conversions, due to the gene’s location on the minus strand).
For the first SNP rs110055647, located 123 bp upstream of the TSS, we predicted a loss of
TFBS for the Sex-Determining Region Y Protein (SRY) binding site, which is in line with
the results of Matsumoto et al. (2014) [81]. For the neighboring rs109682576 (-115 bp from
the TSS), we did not observe the CCAAT/enhancer-binding protein beta (cEBP/β ) binding
site predicted in their study; however, the TFBSs for Zinc finger proteins 333 (ZNF333) and
105 (ZFP105) were lost with the alternate allele, which can be seen as an extension to the
results of Matsumoto et al. (2014) (Table 3.5) [81].

Table 3.5.: Consequences of the SNPs rs110055647 and rs109682576 in the bovine
FABP4 upstream promoter with a T to C conversion. Allele 0 refers to a predicted
TFBS in the reference sequence, while allele 1 stands for the alternate allele. A SNP causes
a loss or gain of TFBS if the considered TFBS is only predicted for the reference or alternate
allele, respectively. A SNP is considered to cause a score-change if the TFBS is predicted
on both alleles (0,1) with a difference in the matrix similarity score computed by MATCH™
.

SNP ID Allele PWM Consequence
rs110055647 0,1 V$RHOX11_01 Score-Change
rs110055647 0 V$SRY_Q6 Loss of TFBS
rs109682576 0 V$ZNF333_01 Loss of TFBS
rs109682576 0 V$ZFP105_04 Loss of TFBS

3.6.3. Chicken Egg Production

The prolactin (PRL) gene product is considered as an important reproductive hormone in-
volved in diverse biological functions in vertebrates. In laying hens, it is an important regu-
lator of egg production since an increased PRL secretion induces broodiness behaviour [41].
Liang et al. (2006) [40] examined the PRL 5’ promoter region and, using several popula-
tions of Chinese native Yuehuang, Taihe Silkie, and White Leghorn Layer chickens, they
identified different rSNPs overlapping the predicted binding sites, including GATA-binding
factor 1 (GATA-1), nuclear factor 1 (NF-1), and activator protein-1 (AP-1). Particularly for
SNP rs313497646 (A/G conversion, 2048 bp upstream of the TSS), we observed the same
pattern with respect to TF binding in agReg-SNPdb: only the A allele allows the binding of
the NF-1 factor.
Furthermore, it has been shown that the pituitary transcription factor 1 (PIT-1) is an impor-
tant activator of the PRL gene expression [40, 41, 109]. In agReg-SNPdb, we store a SNP
(rs731078272, G/T), located -3086 bp from the TSS and causing a loss of the PIT-1 binding
site in the T allele. This result suggests that this SNP might be an important regulator of
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PRL expression where the T variant could repress PRL expression, which is an important
indication for further studies.

3.6.4. Fatty-Acid Composition Related Traits in Pigs

Ballester et al. [42] studied the expression of apolipoprotein (apo-) A-II (APOA2), a pro-
tein involved in the triglyceride, fatty acid, and glucose metabolisms, and identified sev-
eral SNPs associated with APOA2 gene expression and fatty acid composition traits. Four
SNPs were located in the promoter region (rs322246820, rs335066625, rs339777757, and
rs333406887), among which they only found one (rs333406887, C/G) influencing a pre-
dicted TFBS — in this case, a NF-1 binding site.
Similar to their result, in agReg-SNPdb, we found the SNP rs333406887 overlapping TF-
BSs, such as the NF-1 binding site. Furthermore, in addition to the reported change in the
binding score for NF-1, we can predict several other TFBSs that are affected by this SNP. It
causes, for instance, a loss of TFBS for the kruppel-like factor 6 (also called CPBP) and a
gain of TFBS for zinc finger protein X-linked (ZFX) (Table 3.6).

Table 3.6.: Consequences of the SNP rs333406887 (C/G) located -238 bp from the
porcine APOA2 TSS. Allele 0 refers to a predicted TFBS in the reference sequence, while
allele 1 stands for the alternate allele. A SNP causes a loss or gain of TFBS if the considered
TFBS is only predicted for the reference or alternate allele, respectively. A SNP is consid-
ered to cause a score-change if the TFBS is predicted on both alleles (0,1) with a difference
in the matrix similarity score computed by MATCH™ .

SNP ID Allele PWM Consequence
rs333406887 0,1 V$NF1_Q6 Score-Change
rs333406887 0,1 V$AP2ALPHA_03 Score-Change
rs333406887 0 V$CPBP_Q6 Loss of TFBS
rs333406887 1 V$ZFX_01 Gain of TFBS

3.7. Discussion

Today, it is widely known that protein–DNA interactions govern the level of gene expression
in all higher organisms to a great extent. The binding of TFs to the DNA mainly occurs in
the regulatory regions, such as promoters, which are found close to the transcription start
of genes [110]. The effect of rSNPs on the binding of TFs has been studied extensively in
single case studies in different species, and, for humans, many tools and databases exist to
facilitate these analyses (see Tables 3.1 and S1).
However, there is limited information available for livestock, and, to the best of our knowl-
edge, there is no comparable data source for evaluating the effect of rSNPs. To address this
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lack of information, we systematically carried out a genome-wide analysis to detect rSNPs
and to evaluate their consequences for TF-binding in seven animal species, which can be
accessed via a web server. We showed that, by substituting a single base in a predicted
TFBS, a SNP can lead to a major change in the binding affinity of the TF and, in an extreme
case, even result in the disruption of the TFBS or the creation of a new TFBS.
These predictions can be of great use for scientists who have conducted: (i) an association
analysis and want to reveal the underlying mechanisms caused by a SNP being significantly
associated with a trait (e.g., in [4, 38, 39, 81]); (ii) a gene expression experiment and want to
identify candidate SNPs influencing the expression rate of a specific gene or a set of genes
(e.g., in [4, 40, 42]); or (iii) a combination of both, i.e., an expression quantitative trait locus
(eQTL) analysis (e.g., in [79]).
Even though our predictions are in line with many biologically tested results, as shown in the
biological validation in Section 3.6, we note that the binding affinity of the TFs to the DNA
sequence is one of the most important factors for TF binding but might not be sufficient for
in vivo binding in higher organisms. Other influencing factors might include the chromatin
accessibility, TF concentration, or other enhancing or repressing protein-DNA interactions,
such as competitive or cooperative TF binding [17, 69, 111], which could not be considered
in the prediction pipeline.
TF binding often occurs in a complex interplay and also includes cooperation between prox-
imal and distal regulatory elements (promoters and enhancers) [68]. Thus, in addition to the
binding of TFs in the proximal promoter regions, regulatory processes via TF-DNA in-
teractions are also controlled by distal enhancer regions. Due to the limited knowledge
of enhancer regions in livestock species, we could not incorporate these distal regulatory
regions.
For our analysis pipeline, we defined a relatively wide promoter region of 7.5 kb upstream
to 2.5 kb downstream of the TSS. Similarly large promoter regions were defined in previous
studies ranging from 10 kb upstream to 10 kb downstream of the TSS [15, 74, 91, 95–100]
in order to overcome inaccuracies in the TSS prediction [13] and to ensure the inclusion
of the biological promoter. The user has to be aware that the biological promoter region
is usually smaller [13], and our website gives the opportunity to filter for smaller, user-
defined promoter regions for each single gene. These considered promoter regions and the
definition of rSNPs in our study (see Section 3.4.2.3) led to a relatively large number of
rSNPs per gene — for instance, an average of 95.04 rSNPs per gene in chicken.
Interestingly, our results regarding the distribution of genome-wide rSNPs relative to the
TSS showed two different patterns. In chicken, pig, sheep, horse, and goat, we observed
that the region around the TSS was rather protected from sequence variations (Figure 3.7)
as it was found in previous studies [4, 13]. However, the data for cattle and dogs revealed a
different picture, and we found an accumulation of SNPs and rSNPs around the TSS (Fig-
ure 3.8). This observation shows that the data stored in public databases, such as Ensembl,
can show completely different patterns for different species, which could create biases for
specific analyses.
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3.8. Conclusions

To the best of our knowledge, agReg-SNPdb is the first database of regulatory SNPs for
animal species of agricultural importance. It allows the users to investigate the predicted
effect of an allele change on TF binding. The release of the database is an important step
toward the understanding of gene regulation in the life sciences. Knowing whether a SNP
causes a change in the binding affinity or even disrupts a TFBS or creates a new TFBS can be
of predominant importance in order to interpret the results, from, e.g., GWAS experiments,
gene expression experiments, or population studies.
The newly gained information can be used to help in genomic selection and marker es-
tablishment by identifying possibly causal rSNPs and revealing the underlying regulatory
mechanisms of specific traits or diseases. Due to the regular updates of genomes as well as
gene and SNP annotations, the database will be updated regularly, and, as future work, we
will include several plant species with agricultural importance in agReg-SNPdb.

3.9. Supplementary Materials

The following supplementary material is available via the original publication https://doi.
org/10.3390/biology10080790. Table S1: A comprehensive overview of recent studies that
investigated the effects of SNPs on regulatory elements (extension of Table 1), Figure S2:
Number of SNPs and genes per chromosomes for all species, Figure S3: The average num-
bers of rSNPs per gene for each chromosome for all species, Figure S4: Distribution of the
distances between rSNPs and the TSS for all species.

https://doi.org/10.3390/biology10080790
https://doi.org/10.3390/biology10080790
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4.1. Simple Summary

In breeding research, the investigation of regulatory SNPs (rSNPs) is becoming increasingly
important due to their potential causal role for specific functional traits. Especially for crop
species, there is still a lack of systematic analyses to detect rSNPs and their predicted effects
on the binding of transcription factors. In this study, we present agReg-SNPdb-Plants, a
database storing genome-wide collections of regulatory SNPs for agricultural plant species
which can be queried via a web interface.

https://doi.org/10.3390/biology11050684
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4.2. Abstract

Single nucleotide polymorphisms (SNPs) that are located in the promoter regions of
genes and affect the binding of transcription factors (TFs) are called regulatory SNPs
(rSNPs). Their identification can be highly valuable for the interpretation of genome-wide
association studies (GWAS), since rSNPs can reveal the biologically causative variant
and decipher the regulatory mechanisms behind a phenotype. In our previous work,
we presented agReg-SNPdb, a database of regulatory SNPs for agriculturally important
animal species. To complement this previous work, in this study we present the exten-
sion agReg-SNPdb-Plants storing rSNPs and their predicted effects on TF-binding for 13
agriculturally important plant species and subspecies (Brassica napus, Helianthus annuus,
Hordeum vulgare, Oryza glaberrima, Oryza glumipatula, Oryza sativa Indica, Oryza sativa
Japonica, Solanum lycopersicum, Sorghum bicolor, Triticum aestivum, Triticum turgidum,
Vitis vinifera, and Zea mays). agReg-SNPdb-Plants can be queried via a web interface that
allows users to search for SNP IDs, chromosomal regions, or genes. For a comprehensive
interpretation of GWAS results or larger SNP-sets, it is possible to download the whole list
of SNPs and their impact on transcription factor binding sites (TFBSs) from the website
chromosome-wise.

Keywords
regulatory SNP; transcription factor; transcription factor binding site; gene regulation;
GWAS; database; agricultural plant species; crops

4.3. Introduction

Climate change and its anticipated consequences pose severe challenges to mankind. For
agriculture, global warming means that pathogens previously restricted to warmer climates
will threaten local animal and plant species as well as expose plants to drought stress due
to the increasing water shortage. A rapid and effective adaptation to the new environmental
conditions is of paramount importance and can only be achieved through supportive plant
breeding programs [112, 113]. While breeding once used to be a relatively slow process
limited by the generation interval of the species under study, the advent of molecular biol-
ogy technologies, particularly large-scale genotyping at the whole-genome level, has turned
the tide [4, 114]. Today, genomic predictions aid the selection process in reproduction, and
genome-wide association studies (GWAS) make it possible to identify the genomic loci that
are beneficial or deleterious with respect to a trait under study. However, one remaining
challenge is to identify not only genomic variants that are statistically associated with a
trait, but also those that are actually biologically causative, because this would ensure their
efficient use for breeding purposes [28]. In the search for causality of disease- or trait-
associated SNPs, one often encounters regulatory SNPs (rSNPs) that influence the amount
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of genetic material, and hence play a crucial role in the expression of a phenotype. Com-
pared to SNPs in the exonic regions, predicting the consequences of SNPs in the promoter
regions is not as straightforward [3, 4, 29, 38]. Such consequences could be the disruption
or creation of one or more transcription factor binding sites (TFBSs), which can have a ma-
jor impact on the level of gene transcription. To date, there exist many tools and databases
for the prediction of rSNPs and their impact on regulatory elements such as TFBSs. How-
ever, most of them are restricted to the human genome or a few model organisms [17, 23,
46, 74, 89–91, 115, 116].
To the best of our knowledge, there exist currently three tools, which generally allow the
analysis of plant rSNPs. As a web-based tool, the RSAT variation-tool [45] allows the anal-
ysis of user-provided inputs on the fly. However, this tool does not give any information on
related genes, as the distance to the transcription start site (TSS) or consequences such as
gain- or loss of TFBS, hence the users need to interpret the output themselves. The RSAT
variation-tool includes eight crop species and subspecies (Hordeum vulgare, Oryza sativa
Indica, Oryza sativa Japonica, Solanum lycopersicum, Sorghum bicolor, Triticum turgidum,
Vitis vinifera, and Zea mays). The R packages MotifbreakR [46] and atSNP [47] principally
comprise organisms stored in the Bioconductor BSGenome package [48], which includes
only the crop species Oryza sativa and Vitis vinifera. In both, the user has to provide the
SNPs as well as TFBSs (motifs represented as position weight matrices; PWMs) and expe-
rience in R programming is imperative.
In our previous studies, we addressed this limited knowledge and created a pipeline for
the systematic detection of rSNPs, which we applied to different agriculturally impor-
tant species such as rapeseed [4], faba bean [38], and various animal species [3]. By
creating the database agReg-SNPdb [3], we have provided genome-wide collections of
rSNPs for seven different animal species (cattle, pig, chicken, sheep, horse, goat, and
dog). In order to extend the available information on rSNPs to additional plant species,
we present in this study the database agReg-SNPdb-Plants, which can be considered as
an extension of agReg-SNPdb. To the best of our knowledge, agReg-SNPdb-Plants is the
first comprehensive database of genome-wide collections of rSNPs and their impact on
TFBSs for agriculturally important plant species, which can be queried in various ways:
(i) search by SNP ID, (ii) search by chromosomal region, (iii) search by gene, or (iv)
a chromosome-wise download of all rSNPs. agReg-SNPdb-Plants includes various im-
portant crop species, i.e., Asian rice (Indica and Japonica), barley, bread wheat, durum
wheat, grape, maize, rapeseed, sorghum, sunflower, and tomato as well as species, which
can serve as genetic resources for the improvement of cultivated species, i.e., African rice
and wild rice [117, 118]. The availability of rSNPs in rapeseed is particularly notewor-
thy because to date there exists no genome-wide SNP catalog in Ensembl Plants [119] for
this crop. In contrast to the remaining species, where we used the data from Ensembl
Plants as basis, we employed a SNP catalog from [49] for rapeseed, which we also used
for our previous studies [4, 120]. The agReg-SNPdb-Plants web interface is available under
https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/ (accessed on 28 April 2022).

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/
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4.4. Materials and Methods

In our previous work, we have established a pipeline for the detection of rSNPs [3], which
requires as input for each species a SNP catalog (as GVF file [121, 122]), a reference
genome (as fasta file), and gene annotations (as GFF3 file [123]). For all species except
for rapeseed, the input data were downloaded from Ensembl Plants [119], with genome
assemblies listed in Table 4.1. The SNP catalog was filtered by removing insertions and
deletions as well as SNPs with more than one alternate allele. Since there is no avail-
able SNP catalog for rapeseed in Ensembl plants, we used the rapeseed input data from
our previous work [4]. This includes a SNP catalog of 670,028 high-quality SNPs (MAF
> 0.05) from the cultivars Zhongshuang11 and Zhongyou821 (280 and 133 samples, re-
spectively) collected and published by Lu et al. [49]. The Brassica napus reference
genome (version 4.1) and gene annotations were obtained from [50] and are available at
https://www.genoscope.cns.fr/brassicanapus/data/ (accessed on 3 March 2022).
In brief, the pipeline can be described in the following five steps. For a more detailed
description, we refer to [3].

1. Selection of SNPs in the promoter and surrounding region: For each gene, we
considered a promoter region of 7.5 kb upstream to 2.5 kb downstream from the
transcription start site (TSS) and selected all SNPs located within that region. On the
website, the user has the possibility to insert a user-defined promoter region with the
default being −1 kb to +100 bp.

2. Extraction of the SNP-flanking region: Using the reference genomes under study,
we extracted 25 bp on each side of a SNP to obtain 51 bp long sequences with the SNP
in the central position. During this step, we discarded sequences with a total length
of less than 51 bp, sequences containing N’s, and sequences in which the nucleotide
at position 26 differed from the reference allele of the SNP (as specified in the SNP
catalog in GVF format [121]). The latter only occurred in the species tomato, Asian
rice (Indica Group), and sorghum.

3. Creation of search sequences: For each SNP, we created an additional copy of its
51 bp long sequence by replacing the reference allele with its alternate allele.

4. TFBS prediction: Applying the tool MATCH™ [18] with a plant-specific PWM
library containing non-redundant matrices with specific cut-offs that minimize the
false positive rate, we predicted TFBSs in the sequences of each SNP. The PWM
library is provided by TRANSFAC [93].

5. Annotation of consequences: By comparing the two sets of predicted TFBSs, we
assessed the consequences of each SNP on a specific TFBS. In particular, the effect
of each SNP on a TFBS was assigned to one of the following consequences:

• Gain of TFBS: the TFBS exists only for the alternate allele of the SNP.

https://www.genoscope.cns.fr/brassicanapus/data/
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• Loss of TFBS: the TFBS exists only for the reference allele of the SNP.
• Score-Change: the TFBS exists for both alleles but with differing binding affin-

ity as determined by the MATCH™ scores.
• No Change: the TFBS exists for both alleles with the same binding affinity.

Table 4.1.: Assembly versions of the input data from Ensembl Plants including refer-
ence genome, SNP catalog and gene annotations.

Plant Assembly Version Download Date

Helianthus annuus (sunflower) HanXRQr1.0 11/08/2021
Hordeum vulgare (barley) MorexV3_pseudomolecules_assembly 12/22/2021
Oryza glaberrima (African rice) Oryza_glaberrima_V1 11/08/2021
Oryza glumipatula (wild rice) Oryza_glumaepatula_v1.5 11/08/2021
Oryza sativa Indica (Asian rice Indica) ASM465v1 12/22/2021
Oryza sativa Japonica (Asian rice Japonica) IRGSP-1.0 11/08/2021
Solanum lycopersicum (tomato) SL3.0 12/22/2021
Sorghum bicolor (sorghum) Sorghum_bicolor_NCBIv3 12/22/2021
Triticum aestivum (bread wheat) IWGSC 11/08/2021
Triticum turgidum (durum wheat) Svevo.v1 11/08/2021
Vitis vinifera (grape) 12X 11/08/2021
Zea mays (maize) Zm-B73-REFERENCE-NAM-5.0 11/08/2021

4.5. Results

4.5.1. Database

agReg-SNPdb-Plants is centered around four tables: (i) snp_info contains general in-
formation about the SNPs, (ii) gene_info stores general information about the genes,
(iii) snp_region connects the tables snp_info and gene_info for all SNPs located in the
promoter region of at least one gene, and (iv) TFBS_results stores the rSNPs and their
consequences with respect to TF-binding. Table 4.2 shows the numbers of database entries
per table and species.

4.5.2. Web Interface

Following the concept of Ensembl and Ensembl Plants, we created an extra web inter-
face for agReg-SNPdb-Plants (https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/,
accessed on 28 April 2022). The basic functionality was inherited from agReg-SNPdb,
e.g., the ability to query the database by searching for (i) SNP identifiers, (ii) SNP position,

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/
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Table 4.2.: The number of records stored in the database tables snp_info, gene_info,
snp_region, and TFBS_results separated by species.

Plant snp_info gene_info snp_region TFBS_results
African rice 7,567,669 33,164 7,341,550 8,336,778
Asian rice Indica 4,340,785 37,878 4,589,915 4,441,820
Asian rice Japonica 25,135,669 37,960 20,155,983 20,940,720
Barley 12,771,762 35,106 2,545,069 2,736,205
Bread wheat 18,093,867 107,889 13,334,911 19,733,723
Durum wheat 1,815,904 66,559 1,121,107 1,734,495
Grape 400,940 29,971 334,500 290,793
Maize 48,830,598 44,289 15,439,220 13,101,269
Rapeseed 670,028 406,325 5,110,349 506,859
Sorghum 8,081,051 34,023 6,414,543 3,118,613
Sunflower 11,834 52,191 2335 1498
Tomato 60,973,560 33,869 28,709,218 10,347,415
Wild rice 4,865,161 35,735 4,752,796 5,154,313
Total 193,558,828 954,959 109,851,496 90,444,501

(iii) chromosomal region, or (iv) gene. Additionally, we enabled the search for several SNP
IDs at a time, by pasting white-space separated SNP IDs in the search field.
Furthermore, we simplified the visualization of the TFBS_results, which is shown exem-
plarily in Figure 4.1. The first column of table TFBS_results (Figure 4.1) shows the SNP
ID. This SNP ID should be the ID as specified in Ensembl Plants. An exception is the
naming of the rapeseed SNP IDs, as they are not available in Ensembl Plants we used an
annotation as chr-pos-ref-alt, e.g., A01-1093-A-G. The second column ’Gene strand’ refers
to the strand of the gene in whose promoter region the SNP is located (the gene strand hence
also defines the strand of the sequence). If a SNP occurs in the promoter of two different
genes, one on the plus and one on the minus strand, there will be two different tables show-
ing the TFBSs for the plus and minus strands separately. The column ’PWM’ (position
weight matrix) represents the TFBS. The names of the PWMs are defined by TRANSFAC
[93] as P$factorname_version, where the P$ indicates that the PWM originated from a plant
TF and factorname specifies the name of the represented TF. The core and matrix similar-
ity scores are the MATCH™ [18] output scores. The ’Core similarity score’ measures the
quality of the match in the first five consecutive most-conserved positions of the PWM and
the ’Matrix similarity score’ measures the quality of the match for the whole PWM. The
’Sequence’ shows the input sequence matching the PWM with the capital letters represent-
ing the core of the PWM and the nucleotides in red representing the SNP position. In case
of a loss or gain only the allele for which a TFBS is observed is displayed while in case
of a score-change or no change both alleles are displayed. The column ’Binding site’ is a
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schematic representation of the column ’Consequence’, and depicts the presence or absence
of a binding site for each allele.

Figure 4.1.: Example of a search result from agReg-SNPdb-Plants showing table
TFBS_results. The search was performed with the SNP ID 10105262583 from Asian rice
(Japonica Group).

4.5.3. Statistical Overview of the Data

Similar to our previous studies [3, 4], we first provide a brief overview of the data stored in
agReg-SNPdb-Plants.
The distributions of SNPs and genes along the chromosomes are exemplary shown for maize
(Figure 4.2; the remaining plots are given in Supplementary Figure S1). As expected, for
maize and most other species the absolute numbers of SNPs and genes per chromosomes
depend mainly on chromosome size and hence decrease in general with increasing chromo-
some numbers.
The average number of rSNPs (SNPs that cause a loss or gain of TFBS or a score-change for
at least one TFBS) per gene differs strongly across the species. For example, in sunflower
we only detected an average of 0.0015 rSNPs per promoter region (−1 kb to +100 bp) while
we observed 28.48 rSNPs per promoter in tomato (absolute counts of SNPs and genes for
each species can be seen in Table 4.2). Considering the −1 kb to +100 bp promoter region,
on average ~4% of all SNPs are predicted as rSNPs, with a minimum amount of 0.6% in
sunflower and a maximum of 13.6% in rapeseed. When examining the number of TFBSs
affected by an rSNP, we identified an overall average of ~2 affected TFBSs per rSNP.
To obtain further insights into the data, we investigated the distribution of rSNPs relative
to the TSS (Supplementary Figures S2). Similar to the animal species in agReg-SNPdb,
we observed two different patterns for the distributions. The first pattern shows that the
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Figure 4.2.: The total number of SNPs and genes per chromosome of maize (Zea mays).
(A) The number of SNPs per chromosome. (B) The number of genes per chromosome.

sequence is protected from variations in close proximity to the TSS, while the number of
rSNPs increases with increasing distance in the upstream direction [3, 4, 13]. A similar
pattern was observed in rapeseed, barley, Asian rice Japonica, maize, tomato, wild rice,
and sorghum (Figures 4.3A and S2). The second pattern shows the opposite: The number
of rSNPs increases with increasing downstream distance. This was observed in sunflower,
African rice, Asian rice Indica, bread wheat, durum wheat, and grape (Figures 4.3B and S2).
Figure 4.3 exemplary shows the comparison of the rSNP distance to the TSS for the two
types of Oryza sativa, Japonica in (A) and Indica in (B).
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Figure 4.3.: Distribution of the distances between rSNPs and the TSS of (A) Asian rice
Japonica and (B) Asian rice Indica. The histograms show the number of rSNPs in the
proximal promoter region (−750 bp to +250 bp) in 50 bp intervals.

4.6. Discussion

Transcription factors bind to the promoter region to fine-tune the level of gene expression
in all higher organisms. A regulatory SNP within a TFBS can influence this transcriptional
gene regulation to a great extent and hence could have a causative effect on the phenotype.
In plants, several studies investigated (single) rSNPs with respect to a specific trait or phe-
notype [4, 35–38]. For example, Konishi et al. revealed an rSNP in rice that causes a loss
of TFBS for an ABI3 type TF in the promoter region of the quantitative trait locus (QTL)
for seed shattering on chromosome 1 (qSH1). This rSNP is causative for the loss of seed
shattering and thus paved the way for rice domestication [35]. In maize, several rSNPs
were detected in the promoter of the maize rough dwarf disease candidate gene eukaryotic
translation initiation factor 4E (eIF4E) and control its expression level [36]. Furthermore,
in wheat, an rSNP associated with wheat grain weight affects the binding of a calmodulin-
binding TF and hence the gene expression of the TaGW2-6A gene, a candidate gene for
grain weight [37]. Similar to these studies, in our previous study on the grain legume faba
bean we discovered two rSNPs which are significantly associated with the vicine and con-
vicine content and affect the binding of the TFs MYB4, MYB61, and SQUA [38]. To this
end, we have investigated the seed oil content in rapeseed of the cultivars Zhongshuang11
and Zhongyou821 and obtained a genome-wide collection of rSNPs which are significantly
associated with the oil content and positioned in promoter regions of genes differentially
expressed between high and low oil content cultivars [4].
Due to the increasing interest in finding causative rSNPs yet limited availability of resources
to detect rSNPs in crop species, we used our rSNP detection pipeline to systematically ana-
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lyze 13 crop plants and provide a database of genome-wide rSNPs which can be queried via
a web interface (https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/, accessed on 28
April 2022). This pipeline could be highly valuable for scientists to interpret their results
from e.g., a GWAS or next-generation sequencing (NGS) experiments.
In our pipeline, one important step was the selection of the range of the promoter regions,
since this determines if a SNP is considered for further analyses. Even though the core pro-
moter is considered to be positioned within ~200 bp around the TSS [13], a wider promoter
region can be targeted by TFs to regulate gene transcription. Previous studies defined dif-
ferent promoter regions for TFBS prediction, ranging from −10 kb to +10 kb [3, 15, 74, 91,
95–100] (the different promoter definitions and respective textual evidences are provided
in Table S1). Therefore, we used a relatively wide promoter region ranging from −7.5 kb
to +2.5 kb relative to the TSS, in order to ensure the inclusion of the regulatory regions.
However, it is important to note that the biological promoter is usually smaller and, hence,
our web interface provides the possibility to select a smaller user-defined promoter region.
In total, we analyzed 13 species and subspecies for the construction of the agReg-SNPdb-
Plants database, for twelve of which reference genome, gene annotations, and a SNP catalog
were available in Ensembl Plants.
However, for some species the available information, e.g., the reference genome, might
not be of the same quality compared to other, well-investigated species. Furthermore,
due to the amount of repetitive sequences in some plant species such as bread wheat
or maize, both the reference genome annotation as well as locating genomic variants
can be challenging [124, 125]. The quality of the promoter region highly influences
the quality of TFBS predictions and we want to emphasize that our predictions can
only rely on the available information. For the species tomato, Asian rice (Indica),
and sorghum, we observed that the alleles of several SNPs do not fit to the reference
genome, in particular, their reference alleles were not present at the SNP position in
the reference genome. An example for this issue, can be shown based on the tomato
SNP vcZYOCUX (T/A), where the base at the respective position in the reference
genome is G (https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:
39003479-39004479;v=vcZYOCUX;vdb=variation;vf=3506065, accessed on 28 April
2022). Such issues indicate that there is still a need for further investigation or updates to
improve the genome sequences as well as SNP annotations. In our pipeline, we excluded
such SNPs from further analysis to ensure the highest possible reliability of our results.

4.7. Conclusions

In breeding research, the knowledge about rSNPs can help to unravel the regulatory mech-
anisms underlying specific phenotypes and could hence lead to the identification of causal
SNPs, which are of great importance for the establishment of robust markers. To the best
of our knowledge, until now there exists no database storing genome-wide rSNPs and their

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb-plants/
https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:39003479-39004479;v=vcZYOCUX;vdb=variation;vf=3506065
https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:39003479-39004479;v=vcZYOCUX;vdb=variation;vf=3506065
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consequences on TF binding in plant sciences which can be queried in various ways. In
order to address this lack of information, and thus complementing our previous work, we
created agReg-SNPdb-Plants, a database of rSNPs for 13 agricultural plant species and sub-
species with currently available SNP annotations. Its web interface is a helpful resource
for scientists who are conducting association analyses such as GWAS, gene expression ex-
periments, expression QTL (eQTL) studies, or population studies. Consequently, they can
automatically investigate the candidate SNPs or specific genes to rate them by their impor-
tance or causality. In this regard, our user interface provides different search functions and
delivers information on the consequences of rSNPs on TF binding such as (i) gain of TFBS,
(ii) loss of TFBS, (iii) change of binding affinity, or (iv) no change. Due to regular updates
of genomes, gene- and SNP-annotations, our database will be regularly updated to add new
plant species when available and to update existing ones.

4.8. Supplementary Materials

The following supplementary material is available via the original publication https://doi.
org/10.3390/biology11050684. Figure S1: Number of SNPs and genes per chromosome
for all species, Figure S2: Distribution of the distances between rSNPs and the TSS for
all species, Table S1: Different promoter definitions and textual evidences from previous
studies.

https://doi.org/10.3390/biology11050684
https://doi.org/10.3390/biology11050684
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5.1. Abstract

Regulatory SNPs (rSNPs) are a special class of SNPs which have a high potential to affect
the phenotype due to their impact on DNA-binding of transcription factors (TFs). Thus,
the knowledge about such rSNPs and TFs could provide essential information regarding
different genetic programs, such as tissue development or environmental stress responses.
In this study, we use a multi-omics approach by combining genomics, transcriptomics,
and proteomics data of two different Brassica napus L. cultivars, namely Zhongshuang11
(ZS11) and Zhongyou821 (ZY821), with high and low oil content, respectively, to monitor
the regulatory interplay between rSNPs, TFs and their corresponding genes in the tissues
flower, leaf, stem, and root. By predicting the effect of rSNPs on TF-binding and by
measuring their association with the cultivars, we identified a total of 41,117 rSNPs, of
which 1141 are significantly associated with oil content. We revealed several enriched
members of the TF families DOF, MYB, NAC, or TCP, which are important for directing
transcriptional programs regulating differential expression of genes within the tissues. In
this work, we provide the first genome-wide collection of rSNPs for B. napus and their
impact on the regulation of gene expression in vegetative and floral tissues, which will be
highly valuable for future studies on rSNPs and gene regulation.

Keywords
rSNPs; transcription factor; multi-omics; gene expression; random forest; DOF

5.2. Introduction

With rapidly evolving genomic sequencing technologies, the number of identified single
nucleotide polymorphisms (SNPs) is increasing at a remarkable pace. Due to their straight-
forward functional interpretation, SNPs located in the protein coding regions of the genes
are mostly in the focus of research. However, results from genome-wide association studies
(GWAS) reveal that the vast majority of phenotype-associated SNPs are located in inter-
genic and intronic regions [28, 29]. Many of these non-coding SNPs are located within
the regulatory regions, such as the promoter regions, and could hence influence the gene
expression by changing the binding affinity of regulatory proteins. In recent years, these
so-called regulatory SNPs (rSNPs) have come into the focus of research and the underlying
mechanisms resulting in a differential gene expression are closely studied for many spe-
cific traits and diseases [29, 75]. It is well known that the differential gene expression in
different tissues and under certain environmental conditions is governed by the binding of
transcription factors (TFs) to specific DNA-sequence motifs, the transcription factor bind-
ing sites (TFBSs). By altering the sequence within such a TFBS, an rSNP can have a severe
effect on TF binding and, hence, could change a gene’s expression rate [29, 36, 75]. In
plant sciences, previous studies identified different putative rSNPs affecting different traits,
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as e.g., seed shattering in rice [35], maize rough dwarf disease [36], grain weight in wheat
[37], or vicine and convicine content of Vicia faba [38]. Until now, there are several tools
predicting a SNP’s impact on TF binding (e.g., [46, 47, 75, 89, 91, 126]), but the Regu-
latory Sequence Analysis Tool (RSAT) [126] is one of the few tools supporting plants. In
RSAT, users have the possibility to retrieve specific genetic variants with the corresponding
flanking sequences and predict their impact on TF binding in a variety of organisms [126].
However, all these studies and tools concentrate on single regulatory variants and do not
cover a systematic analysis to obtain a genome-wide prediction of rSNPs. Notwithstanding
that the importance of rSNPs and their regulatory power is well known, no such systematic
analysis including a genome-wide prediction of rSNPs for Brassica napus L. exists.
As an important oilseed crop, B. napus is grown and used worldwide for its oil and fodder
production where the oil is widely used for human consumption and biofuel production,
while the rapeseed meal remaining after oil extraction can be used as high-protein animal
fodder [51, 52]. B. napus has gained global importance due to an intensive breeding pro-
gram focusing on the reduction of nutritionally undesirable components in the oil and fodder
and thus, enabled the production of varieties with both low erucic acid and glucosinolate
content [127]. Today, improving the oil content is an important breeding goal and in this
context the resistance to several stresses is a relevant objective [51, 53, 56]. The oil is stored
within the seeds as triacylglycerols (TAGs) in oil bodies, but the TAG synthesis takes place
in the plastids through a variety of different interacting metabolic pathways and regulatory
processes [57]. However, such pathways as well as the underlying transcriptional machin-
ery controlling the oil content and -quality could vary across different B. napus cultivars
[49, 58]. Hence, the investigation of such biological processes is an important task to as-
sess the genetic programs of two cultivars: (i) Zhongshuang11 (ZS11) characterized by a
double-low accession (00, low erucic acid and low glucosinolate) and a high oil content
and; (ii) Zhongyou821 (ZY821) with double-high accession (++, high erucic acid and high
glucosinolate) and low oil content [49].
To unravel such genetic programs in both B. napus cultivars, we computationally identi-
fied the regulatory processes controlling specific biological functions associated with oil
content, plant growth, or responses to environmental stresses. For this purpose, we used
multi-omics data including genomics and transcriptomics data of two cultivars and plant
proteomics data to identify rSNPs, important genes and transcriptional regulators orches-
trating specific genetic programs in different tissues and thus, leading to phenotypic differ-
ences of both cultivars. To this end, mainly focusing on the vegetative and floral tissues such
as flower, leaf, stem, and root, we first identified differentially expressed genes (DEGs) be-
tween both cultivars in these four tissues. Second, by analyzing 670,028 high-quality SNPs,
we obtained a genome-wide collection of rSNPs and their predicted consequences on the
binding affinity of the TFs. Similar to our previous studies [128, 129], we applied a random
forest (RF) feature selection approach to assess the importance of rSNPs with respect to the
phenotype. Subsequently, we determined tissue-specific DEGs harboring those important
rSNPs within their promoter region, whose transcription is likely to be affected by the con-
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sequences of rSNPs on TF binding. By causing a disruption of a TFBS or the creation of a
new TFBS, rSNPs can strongly influence the binding affinity of TFs and, thus, can lead to
the differentiation of a wide range of genetic processes in both cultivars like their oil con-
tent, tissue development, or stress-resistance mechanisms [51, 130]. Our results show that
the consideration and systematic analysis of multi-omics data (genomics, transcriptomics,
and proteomics) of two different B. napus cultivars provides: (i) essential information about
functions of transcription factors involved in the regulation of transcriptional activity of
vegetative and floral tissues; and (ii) novel insights into the regulatory programs controlling
oil content and -quality underlying both cultivars.

5.3. Results and Discussion

5.3.1. Differentially Expressed Genes

The comparison of the ZS11 (high oil content, double-low cultivar) against the ZY821 (low
oil content, double-high cultivar) in the four tissues revealed several differentially expressed
genes, of which the up-regulated DEGs refer to genes with a significantly higher expression
in ZS11 than in ZY821, whereas down-regulated genes are significantly higher expressed
in ZY821 than in ZS11 (Table 5.1, the full lists of DEGs is given in Table S1). The overlap
of the four tissues showed that 171 and 252 DEGs were found up- and down-regulated in
all four tissues, respectively. To assess the underlying biological processes, we provide the
Gene Ontology (GO) terms and treemaps for the respective up- and down-regulated DEG
sets in Table S2 and Figure S1.

Table 5.1.: Numbers of differentially expressed genes (DEGs) in four tissues based on
the comparison of the cultivars Zhongshuang11 (ZS11) against Zhongyou821 (ZY821).
Up-regulated and down-regulated DEGs are defined as log2 fold change >2 and log2 fold
change <−2 and an adjusted p-value threshold of 0.05, respectively.

Tissue No. of DEGs No. of
Up-Regulated DEGs

No. of
Down-Regulated DEGs

Flower 11,442 5221 6221

Leaf 3234 1486 1748

Stem 4198 2510 1688

Root 2318 1448 870
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5.3.2. Transcription Factor Binding Site Enrichment Analysis

For understanding the expression behavior of DEGs regarding their up- or down-regulation,
the knowledge on the TFs, which are involved in controlling the regulatory programs of
these genes, is important to explain gene expression changes between both B. napus cul-
tivars. Applying TFBS enrichment analyses, we assessed the potential roles of TFs in the
regulation of the DEGs based on the over-representation of their TFBSs in the promoter
regions. In the following, we refer to a TF as enriched in a tissue, if its respective TFBS is
significantly over-represented in the set of promoter sequences of the DEGs in that tissue.
The results of these analyses show that the number of enriched TFs is remarkably different
between tissues: While the largest number of enriched TFs was identified in the flower tis-
sue (74), there was only one enriched TF in the root tissue. We further found 27 and 10 TFs
enriched in the leaf and stem tissues, respectively (Figure 5.1; the complete list of enriched
TFs is given in Table S3).

Figure 5.1.: Venn diagram for the enriched transcription factors (TFs) found for the
tissues flower, leaf, stem, and root of B. napus (visualized with http://bioinformatics.psb.
ugent.be/webtools/Venn/).

Interestingly, Figure 5.1 shows that the number of unique enriched TFs found for flower is
clearly higher than those of the remaining tissues. In this regard, the transcription factor
GATA19 found only for the root tissue is a member of GATA-type zinc finger proteins,
which are known to be involved in light-mediated gene expression and nitrogen-dependent
stress response [131, 132].
Furthermore, the TCP family members TCP16 and ARALYDRAFT_897773 (also known
as TCP4) were identified as enriched only in the leaf tissue. As shown in previous studies,
TCP genes participate in the developmental control of plant form as, e.g., flower and leaf

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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shape or shoot branching by regulating cell proliferation and they have been shown to be
highly expressed in leaf [133, 134].
Moreover, a minority of the TFs (PIF1, PIF7, bHLH74, UNE10, OJ1058_F05.8, and BEH2)
are simultaneously enriched for flower, leaf, and stem tissues. Besides the two phytochrome
interacting factors (PIF1 and PIF7), the factors PIF3, PIF4, and PIF5 are enriched only in
flower and leaf. The PIFs belong to one of the largest classes of plant TFs, the basic/helix-
loop-helix (bHLH) proteins [58], and they are known to repress photomorphogenesis in
darkness by promoting the transcription of genes which positively regulate cell elongation
in A. thaliana [135]. In particular, while PIF1 has been reported to negatively regulate
seed germination in response to light and hormone signaling [136, 137], PIF4 and PIF5 are
regulators of de-etiolation [138], and PIF7 is a main regulator of stem elongation in light
[139].
The factor unfertilized embryo sac10 (UNE10) is another member of the bHLH class. It
is supposed to inhibit far-red light signaling by interacting with phytochromes [140] and to
play an important role during the fertilization of ovules by pollen in A. thaliana [141].
Several BES1 (BRI1-EMS-SUPPRESSOR1) family members, in particular BEH2, BEH3,
BEH4, and BZR1, are enriched in flower and leaf and/or stem tissues, and are known to
regulate brassinosteroid-mediated genes. Different BES1-family members are suggested to
regulate different auxin and jasmonic acid-related genes, resulting in enhanced growth and
vigor in B. napus and A. thaliana [142, 143] and to be involved in stress resistance such as
salt and drought stress in B. napus and B. rapa [144, 145].
Interestingly, we found members of the TF families MYB (or MYB-related; MYB46,
MYB98, MYB119, MYB59, and MYB111), DOF type C2H2 zinc finger factors (DOF4.2,
OBP3, AT2G28810 (DOF2.2), AT5G02460 (DOF5.1), and AT5G66940 (DOF5.8)),
and NAC (NAC080, NAC028, NAC025, NAC058, NAC055, NAC043, NAC083, and
T11I18.17) enriched exclusively in flower. The MYB TFs are involved in several processes
as, e.g., response to biotic and abiotic stress, development, and differentiation; in particular,
MYB46 is involved in secondary wall and fiber biosynthesis; MYB98 and MYB119 are
important regulators of female gametophyte development; MYB59 is involved in cell
cycle progression, and MYB111 plays a crucial role in flavonol biosynthesis in A. thaliana
[146–149].
On the other hand, the DOF proteins are characterized by a highly conserved DNA binding
domain (DOF domain) and are present in many different plant species [150]. DOF proteins
play a role in several biological processes as, e.g., flowering time, seed development, and
responses to hormones and abiotic stress [150–152]. Interestingly, He et al. (2015) [151]
found the Arabidopsis DOF5.8 to be an upstream regulator of a gene encoding an NAC
family member in response to drought and salt stress.
The NAC transcription factors make up one of the largest plant-specific TF families with
specific functions regarding plant development, biotic stress response, and response to en-
vironmental stress [153]. Research performed in B. napus revealed upregulation of NAC
genes after mechanical wounding and infection with Sclerotinia sclerotiorum. In the same
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way, NAC genes were upregulated after the induction of a cold shock [154]. Interestingly,
we have shown that members of TF families such as GATA, DOF, NAC, or MYB are im-
portant regulators of genes with a monotonic expression pattern in both cultivars in the seed
tissue by forming TF co-operations [120].

5.3.3. Analysis of Regulatory SNPs

Today it is well known that the binding affinity of TFs can be affected by rSNPs to a great
extent and, hence, either enable or repress the protein–DNA interaction. In order to be able
to explain the observed differences in the expression of the DEGs, we investigated the role
of rSNPs causing such severe effects on TF binding. Taking the initial 670,028 high-quality
SNPs into account, we determined 41,117 of them as rSNPs due to their genomic positions
in the promoter regions of B. napus genes and their consequences of either “Gain of TFBS”
or “Loss of TFBS”. A closer look at these rSNPs reveals that 5847 (flower), 1604 (leaf),
2174 (stem) and 1240 (root) rSNPs are related to the DEGs (the full list of rSNP predictions
can be found in Table S4). Interestingly, a direct comparison of the rSNP and DEG numbers
shows that approximately 50% of DEGs contain on average one rSNP within the promoter
region (Figure 5.2).

A) B)

Figure 5.2.: Overlap of the DEGs in (A) and rSNPs in (B) for the four investigated
tissues (visualized with http://bioinformatics.psb.ugent.be/webtools/Venn/).

To gain a better insight into the distribution of the rSNPs in the promoter regions, we inves-
tigated their genomic positions relative to the transcription start sites (TSS). The results of
this analysis indicate that while there are fewer rSNPs around the TSS, we observed a ten-
dency of increasing rSNP numbers in the remaining upstream promoter regions (Figure 5.3).

http://bioinformatics.psb.ugent.be/webtools/Venn/
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This finding goes in line with the observation of Triska et al. [13], who performed a similar
analysis based on the SNP distributions in the promoters of rice.

Distance to TSS (bp)

-400 -200 0 +100-500 -100-300

0

500

1000

1500

Fr
eq

u
en

cy
 o

f 
rS

N
Ps

− − − − − +

Figure 5.3.: Distribution of rSNPs relative to the transcription start sites (TSS) of the
corresponding genes. Position 0 denotes the position of the TSS.

5.3.4. Analysis of Important Regulatory SNPs

Moreover, we assessed the importance of rSNPs regarding their significant association with
oil content of both cultivars and identified 1141 important rSNPs (the complete list of im-
portant rSNPs is given in Table S5). The consideration of the important rSNPs in the DEGs
of the tissues consequently results in 245 important rSNPs in the flower, 68 in the leaf, 142
in the stem and 82 in the root tissue. Surprisingly, the distribution of important rSNPs rela-
tive to the TSS (see Figure 5.4) shows a behavior in the promoter regions, that is remarkably
different from that of rSNPs (Figure 5.3). This finding suggests that the important rSNPs do
not follow a certain pattern but rather spread throughout the considered promoter regions.

5.3.5. DEGs Harboring Important rSNPs in the Promoter Region

In order to assess the regulatory impact of important rSNPs on the regulation of the DEGs
and, hence, to explain their differential expression status, we identified the regulatory inter-
play between rSNPs, TFs and their corresponding DEGs of interest.
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Figure 5.4.: Distribution of important rSNPs relative to the transcription start sites
(TSS) of the corresponding genes. Position 0 denotes the position of the TSS.

As a result, we found 145, 44, 81, and 50 DEGs harboring important rSNPs in the promoter
region for flower, leaf, stem, and root, respectively.
To gain a deeper insight into the functions of these genes, we identified their related enriched
GO terms as well as the pathways (Table S6). Regarding enriched GO terms of biological
processes, we could observe DEGs related to protein folding, alcohol, lipid or phytosteroid
biosynthesis in leaf and a variety of genes related to oxidation–reduction processes in the
leaf and flower tissue.
Interestingly, the gene BnaA06g33360D occurs in the flower and stem set of DEGs har-
boring important rSNPs, which leads to the significant enrichment of the monoterpenoid
biosynthesis pathway [155]. Monoterpenoids are volatile secondary plant products that
could play a role in olfactory cues for pollinating insects in A. thaliana [156]. Surpris-
ingly, the gene BnaA06g33360D, which presumably codes for a monoterpene synthase, is
down-regulated in flower tissue, while it is up-regulated in stem tissue.
In the gene set of the leaf tissue, several KEGG pathways [155] related to fatty acid
metabolism were enriched. Especially the gene BnaA04g26960D, which is significantly up-
regulated in the leaf tissue, is represented in the enriched pathways fatty acid metabolism,
fatty acid biosynthesis, fatty acid degradation or peroxisome. BnaA04g26960D, also called
BnaLACS1-4, is a member of the long-chain Acyl-CoA synthetase (LACS) family of genes,
which have been shown to be involved in fatty acid biosynthesis in chloroplasts and seed
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oil accumulation in B. napus [157]. Furthermore, several LACS genes showed differential
gene expression in multiple tissues in the comparison between high and low oil content
B. napus cultivars [157]. Within the promoter region of BnaA04g26960D, we identified one
important rSNP (chromosome A04, position 19042835, C → T) which causes a “Gain of
TFBS” for the binding site of MNB1A (the maize DOF1 TF) 90 bp downstream of the TSS.
More specifically, this means the DOF1 binding site is not present in the reference allele
(C), while DOF1 binding is likely to be enabled by the alternate allele (T). The importance
of DOF-mediated gene regulation has already been shown in the results of TF enrichment
(see Section 5.3.2). Interestingly, the soybean DOF proteins GmDOF4 and GmDOF11
have been shown to directly induce LACS genes, and also increased the fatty acid content
in transgenic Arabidopsis seeds [150, 158]. In cotton, an overexpression of the GhDOF1
gene led to an increase of lipid levels in the seeds [150, 159]. These results suggest that this
important rSNP might play an important role in the DOF1-mediated expression rate of the
LACS gene BnaA04g26960D and, hence, might regulate the fatty acid content in B. napus.
The gene BnaC08g26140D, present in the significantly enriched pathways fatty acid
metabolism, biosynthesis of unsaturated fatty acids and fatty acid elongation of the leaf
gene set, encodes a Trans-2,3-enoyl-CoA reductase (ECR). This enzyme is involved in the
synthesis of very-long-chain fatty acids (VLCFAs) which are essential for the synthesis
of cuticular waxes, sphingolipids and Triacylglycerols (TAGs) in B. napus [160]. As an
enzyme of VLCFA synthesis, it is also known to catalyze the fourth reaction of the elongase
complex during erucic acid synthesis [160, 161]. Surprisingly, we found the ECR gene
up-regulated in the double-low cultivar with high oil content. One possible explanation for
its up-regulation in the low erucic acid cultivar might be that the synthesized VLCFAs are
precursors for a variety of different lipids in higher plants, such as cuticular waxes [160].
In the promoter region of the B. napus ECR gene, we found three important rSNPs (here-
inafter referred to as ECR-rSNP1, ECR-rSNP2 and ECR-rSNP3), affecting five different
binding sites. ECR-rSNP1 (chromosome C08, position 27619847, G → T) is positioned
−152 bp from the TSS and causes a “Loss of TFBS” for the Arabidopsis response regulator
(ARR10) or response regulator 10 (RR10) binding site. As a cytokin response regulator,
RR10 is involved in cytokinin-mediated signaling pathways and acts, e.g., as negative reg-
ulator of drought response in A. thaliana [162]. In B. napus, it has been shown to be
up-regulated in leaves under salt stress [163]. The ECR-rSNP2 (chromosome C08, posi-
tion 27619942, 247 bp upstream of the TSS, A → G) causes a “Loss of TFBS” for TF
DOF4.5 and a “Gain of TFBS” for TF MYB56. The DOF4.5 is another member of the
DOF family of TFs, which is assumed to share regulatory functions in, e.g., shoot branch-
ing and seed coat formation together with other DOF family members in A. thaliana [152].
MYB56 is a member of the previously described MYB family and is known to be a posi-
tive regulator of seed size and to control seed coat development in Arabidopsis [57, 164].
The ECR-rSNP3 (258 bp upstream of the TSS) causes a “Loss of TFBS” for TF DOF4.5
and a “Gain of TFBS” for ethylene-responsive transcription factor ERF069. Within the
AP2/EREBP superfamily of TFs, ERF069 belongs to the ethylene-responsive element bind-
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ing proteins (EREBP) subfamily, which are known to respond to abiotic stress [165]. Liu et
al. (2020) [165] observed an up-regulation of ERF069 in response to chromium treatment
in A. thaliana. In the foxtail millet, SiAP2/ERF-069 was up-regulated under drought and
salinity stress [166] and in B. napus and ERF069 was up-regulated under Pi-starvation in 3-
and 5-leaf stage seedings [167].
With this analysis, we identified several interesting tissue-specific DEGs whose regulation
is likely to be influenced by the “Loss-” or “Gain of a TFBS” caused by an important
rSNP within their regulatory region. The TFs overlapping these important rSNPs provide a
promising basis for further investigation of their regulatory roles and underlying pathways
that lead to the distinction between the two cultivars.

5.4. Materials and Methods

Our analysis framework follows the structure shown in Figure 5.5, i.e., we start with the
analysis of genomics and transcriptomics data to systemically monitor the important (tissue-
specific) regulatory SNPs and TFs regulating the DEGs.

Genotype Phenotype 

Differentially expressed genes

Root

Important rSNPs associated 
with oil content/ -quality 

670,028 SNPs
80,927 genes

Genome wide association analysis 
using random forest 

DEGs harboring 
important rSNPs

High vs. low oil 
content and 
-quality

- SNPs in promoter regions 
- TFBS prediction
- SNPs causing a gain or loss 

of TFBS

41,117 rSNPs

High/low oil 
content and 
-quality 

1141 important rSNPs

2318 DEGs11,442 DEGs

Transcriptome Data  

Flower Leaf Stem

3234 DEGs 4198 DEGs

Tissue-specific 
enriched TFs

Genome data  

Identification of 
rSNPs

Figure 5.5.: Flowchart of the analysis applied in this study.
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5.4.1. B. napus Data Set and Data Preparation

In this study, we use publicly available genomics and transcriptomics data sets of two B. na-
pus cultivars, which are briefly explained below. Readers who are interested in learning
more about these data sets are kindly referred to the original study [49].

5.4.1.1. Genotype Data

To identify the rSNPs that are likely to be associated with different genetic programs in
two B. napus cultivars, namely Zhongshuang11 (ZS11) with double-low accession (low
erucic acid and glucosinolate, 00) and high oil content and Zhongyou821 (ZY821) with
double-high accession (high erucic acid and glucosinolate, ++) and low oil content, we
analyzed a genotype data set that has previously been used in [49]. Prof. Kun Lu from
the Southwest University, China provided the genotype data set for this study. The raw
sequencing data are available at the BIG Data Center under BioProject accession code PR-
JCA000376. The genotype data set comprises 670,028 high-quality SNPs (MAF > 0.05) for
280 Zhongshuang11 (ZS11) and 133 Zhongyou821 (ZY821) samples. The data set contains
SNPs which are located on the chromosomes A01-A10 and C01-C09 (originated during hy-
bridization of B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18) [49]) including 80,927
genes.

5.4.1.2. Transcriptome Data

The RNA-sequencing data of four tissues (flower, leaf, stem, and root) from both cultivars
(ZS11 and ZY821) with two biological replicates each were generated by Lu et al. [49].
The raw sequencing data were downloaded from the BIG Data Center under BioPro-
ject accession code PRJCA001246. In line with [49], we mapped the filtered reads to
the B. napus reference genome version 4.1 (obtained from [50] and available at https:
//wwwdev.genoscope.cns.fr/brassicanapus/data/) using STAR 2.4.2a [168]. Finally, apply-
ing the htseq-count program [169] to the aligned sequencing reads, we identified the number
of reads (gene count table).
For the identification of differentially expressed genes (DEGs), we applied the DESeq2

tool (R package version 1.24.0) with default settings in the median-of-ratios normalization
method, fold change shrinkage and a significance cut-off of an absolute log2 fold change
of 2 and an adjusted p-value of 0.05 [170]. The experimental design of the differential
expression analysis is shown in Table 5.2.

https://wwwdev.genoscope.cns.fr/brassicanapus/data/
https://wwwdev.genoscope.cns.fr/brassicanapus/data/
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Table 5.2.: Meta data of the RNA-seq experiment samples which were used for differ-
ential expression analysis. ZS11 and ZY821 stand for Zhongshuang11 and Zhongyou821,
respectively. 00 and ++ stand for low erucic acid, low glucosinolate and high erucic acid,
high glucosinolate, respectively.

Cultivar Oil Quality Oil Content Biological Replicates

ZS11 00 high 2

ZY821 ++ low 2

5.4.2. Transcription Factor Binding Site Enrichment Analysis in Promoter
Sequences

In order to identify transcription factors (TFs) with significantly over-represented transcrip-
tion factor binding sites (TFBSs) in the promoter sequences of the DEGs, we employed the
CiiiDER algorithm [171].
However, the selection of the promoter regions is crucial: (i) to avoid the redundancy be-
tween sequences which could lead to the overestimation of some TFBSs [110] (ii) to address
the inaccuracy of transcription start site (TSS) positions resulting from their imprecise pre-
diction. To overcome these issues, we followed a similar strategy to those suggested in
previous studies [13, 38, 68, 110, 172–176] and accordingly extracted two sets of promoter
sequences for each tissue ranging from −500 bp to +100 bp relative to the TSS using the
reference genome version 4.1 and gene annotation given in [50]. While the first sequence
set refers to the promoter sequences of the DEGs (foreground set), the second set contains
the promoter sequences of genes having the same GC-content as the foreground set (back-
ground set) [177]. For the generation of background sets, we used the oPOSSUM3.0 [98]
web application (http://opossum.cisreg.ca/GC_compo/) and selected only sequences that
are not included in the foreground set. Second, following the workflow of the CiiiDER pro-
gram [171], we scanned each sequence by applying the MATCH™ program [18] with a non-
redundant plant position weight matrix (PWM) library from the JASPAR database [178] to
detect the potential TFBSs. Finally, comparing the distribution of TFBSs predicted in the
foreground as well as the background promoter sequence set, the enrichment of TFBSs was
assessed (Bonferroni adjusted p-value threshold of 0.01).

5.4.3. Identification of Regulatory SNPs and Their Importance

Following the regulatory SNP (rSNP) detection method of Heinrich et al. [38], we selected
the SNPs from the genome data which are located in the promoter regions of B. napus
genes and analyzed them to detect their impact on the TFBSs. For this purpose, we first
extracted the flanking sequence of ± 25 bp for each selected SNP resulting in a 51 bp
long sequence with the SNP in the central position. Second, we created two copies of the

http://opossum.cisreg.ca/GC_compo/
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flanking sequence: One with the reference allele in the SNP position, the second with its
alternate variant. After that, employing the MATCH™ algorithm [18], both sequences were
scanned to predict the TFBSs with their affinity scores. The potential binding affinity of a
TF was quantified by MATCH™ in terms of a matrix similarity score (MSS) ∈ [0,1], where
a MSS value of 1 denotes a complete match in each position of the TFBS. As suggested
in [171], we removed all TFBS predictions with MSS values < 0.85 and which did not
overlap the SNP position in the flanking sequences. Finally, to evaluate the impact of a SNP
on the binding affinity of a TF, we inferred four different types of consequences for each
SNP-TFBS pair: (i) “No Change”: the SNP has no effect on the TF binding; (ii) “Score-
Change”: the binding affinity (i.e., MSS) is changed; (iii) “Loss of TFBS”: a TFBS is only
found on the reference allele, while the TFBS does not occur in the alternate allele; and (iv)
“Gain of TFBS”: the TFBS appears only for the alternate allele. In the following, we define
a SNP as rSNP if it causes a “Gain of TFBS” or a “Loss of TFBS” (consequence iii or iv)
for at least one TFBS.

5.4.4. Association Analysis Using Random Forests

For the assessment of the importance of single rSNPs, regarding their association to the
B. napus cultivars, we applied a random forest (RF)-based feature selection algorithm to
measure the relative importance of each rSNP for the trait oil content (congruent with oil
quality, see Table 5.2), following our previous studies [128, 129]. In particular, the relative
importance of each rSNP is calculated by applying the Boruta algorithm [179], which is
an RF-based feature selection wrapper for finding all relevant variables in a data set. The
Boruta algorithm assesses important features (in this case rSNPs) with respect to a variable
outcome (in this case oil content) by constructing multiple decision trees based on random
subsets of attributes or features. The pseudo-code for Boruta is given in Algorithm 1 (see
Figure 5.6).
Using Algorithm 1, in this study, we analyze genotypes of rSNPs to identify their signifi-
cant genotype × phenotype association regarding the oil content of the cultivars. In order to
deal with remaining obstacles resulting from the correlations between the SNPs or random
fluctuations involved in the data set, we iteratively applied the Boruta algorithm (e.g., 1000
times), and considered an rSNP in our further analysis as important if and only if its impor-
tance was confirmed in all analyses. In the following, we refer to those rSNPs as important
rSNPs.

5.5. Conclusions

Transcription factors orchestrate the entirety of cellular processes leading to tissue develop-
ment, tissue differentiation or responses to the environment and, hence, act as natural master
regulators within plants [146]. This makes them promising candidates as breeding targets
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Algorithm 1 : Boruta Algorithm
Input: M: Genotype (rSNPs) data
Input: L: Labels (cultivars)
Output: C: A ranked list of rSNPs based on their importance score
Method:

1: t = 0
2: repeat
3: Mt = M
4: M̂t = shuffle(Mt): Creation of shadow attributes
5: Mext

t = [Mt;M̂t;L]: Matrix (data) concatenation to extend the input data
6: VIS t(Mext

t ) = RF(Mext
t ): Gathering variable importance scores (VIS) using RF classifier

7: V̂IS t = max(VIS(M̂t)): Max. VIS value (in terms of z-Score) for shadow attributes
8: Mc

t = Mext
t [VIS(Mext

t ) > V̂IS t] \ M̂t: rSNPs with significantly higher VIS values > V̂IS
9: Mr

t = Mext
t [VIS(Mext

t ) < V̂IS t] \ M̂t: rSNPs with significantly lower VIS values < V̂IS
10: M = Mt \ [Mc

t ;Mr
t ]: Remove all rSNPs with determined importance from the input Mt

11: Ct = VIS(Mc
t ): Gathering the rSNPs with confirmed VIS

12: t = t + 1
13: until importance of all rSNPs is assigned
14: C =

⋃t
i=1 Ci

© 2021 by the authors. Submitted to Journal Not Specified for possible open access publication1

under the terms and conditions of the Creative Commons Attribution (CC BY) license2

(http://creativecommons.org/licenses/by/4.0/).3
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Figure 5.6.: Pseudo-code for the Boruta algorithm.

to control complex traits in crop breeding [146]. In this study, we performed a systematic
analysis using multi-omics data (genomics, transcriptomics, and proteomics) to investigate
the complex interplay between rSNPs, TFs and DEGs. As a result of this analysis, we
obtained: (i) a genome-wide collection of rSNPs; (ii) their significant association with the
B. napus cultivars differing in oil content; (iii) their consequences for TF binding; and (iv)
the DEGs of four tissues whose expression could be strongly affected by the occurrence of
these important rSNPs within their promoter regions.

Our findings show that while members of the TF-families DOF, MYB, NAC, GATA, or
TCP have been identified as enriched exclusively for a certain tissue, the TFs in the bHLH
or bZIP class, and members of the BES1 family seem to play important regulatory roles in
several tissues. Moreover, the knowledge on the causal interaction between a rSNP, a TF
and a DEG could be promising to explain the expression behavior of the gene, which in turn
is essential for understanding the underlying genetic programs such as tissue development
or responses to abiotic and biotic stresses.

By mainly considering the promoter regions, our integrated approach provides important
insights into the regulatory processes on the transcriptional level. For future work, the in-
vestigation of further regulatory mechanisms underlying differential gene expression, as,
e.g., post-transcriptional regulation such as microRNA binding or Riboswitch activity can
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help to gain a comprehensive understanding of the entirety of gene regulatory processes.
Nevertheless, our study can be seen as one further step leading towards the deciphering of
differential gene expression underlying the different B. napus cultivars and our genome-
wide collection of rSNPs provides a basis for upcoming studies on different traits in B. na-
pus.

5.6. Supplementary Materials

The following supplementary material is available via the original publication https://doi.
org/10.3390/ijms22020789. Table S1: Differentially expressed genes, Table S2: enriched
GO terms (biological processes) of the DEGs, Table S3: lists of tissue specific enriched TFs,
Table S4: rSNPs with TFBS predictions, Table S5: important rSNPs, Table S6: enriched GO
terms (biological processes) and KEGG pathways of the DEGs harboring important rSNPs,
Figures S1: Treemaps of the enriched GO terms (biological processes) of the DEGs.
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6.1. Simple Summary

Avian influenza poses a great risk to gallinaceous poultry, while mallard ducks can with-
stand most virus strains. To date, the mechanisms underlying the susceptibility of chicken
and the effective immune response of duck have not been completely understood. In this
study, our aim is to investigate the transcriptional gene regulation governing the expression

https://doi.org/10.3390/biology11020219
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of important avian-influenza-induced genes and to reveal the master regulators stimulating
an effective immune response after virus infection in ducks while dysfunctioning in chicken.

6.2. Abstract

The avian influenza virus (AIV) mainly affects birds and not only causes animals’ deaths,
but also poses a great risk of zoonotically infecting humans. While ducks and wild water-
fowl are seen as a natural reservoir for AIVs and can withstand most virus strains, chicken
mostly succumb to infection with high pathogenic avian influenza (HPAI). To date, the
mechanisms underlying the susceptibility of chicken and the effective immune response of
duck have not been completely unraveled. In this study, we investigate the transcriptional
gene regulation underlying disease progression in chicken and duck after AIV infection.
For this purpose, we use a publicly available RNA-sequencing data set from chicken and
ducks infected with low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N1 (lung
and ileum tissues, 1 and 3 days post-infection). Unlike previous studies, we performed
a promoter analysis based on orthologous genes to detect important transcription factors
(TFs) and their cooperation, based on which we apply a systems biology approach to
identify common and species-specific master regulators. We found master regulators such
as EGR1, FOS, and SP1, specifically for chicken and ETS1 and SMAD3/4, specifically
for duck, which could be responsible for the duck’s effective and the chicken’s ineffective
immune response.

Keywords
avian influenza; chicken; duck; mallard; gene regulation; differentially expressed genes;
RNA sequencing; transcription factor cooperation; master regulators; upstream regulators

6.3. Introduction

Avian influenza is a viral infection mainly affecting birds such as wild waterfowl or gal-
linaceous poultry but not stopping at humans or other mammals, and thus posing a high
risk for a future pandemic [59]. Its causative pathogen is a type A influenza virus from the
Orthomyxoviridae family of segmented negative-sense RNA viruses [60]. Based on their
pathogenicity in chicken, avian influenza viruses (AIVs) can be classified into high- and low
pathogenic avian influenza viruses (HPAIVs and LPAIVs, respectively) [63]. While chicken
can usually withstand an LPAI infection, they succumb to infection with HPAI within a few
days. Mallard ducks, on the other hand, are known to successfully fight all LPAI and most
HPAI infections, with usually only mild symptoms, and are hence considered a natural
reservoir of the virus [59]. After the first report of human infections with HPAI H5N1 in
1997, attention was drawn to the predominantly poultry-affecting avian influenza spreading
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across the globe [60]. Since 2003, 862 cases of humans infected with H5N1, along with
455 cases of death, were reported to the World Health Organization (WHO) [61].
With the ongoing intensive breeding for different production traits in chicken, such as
growth and feed efficiency, other, unanticipated traits such as skeletal defects, metabolic
disorders, or immune responses could have been compromised [180]. Therefore, the breed-
ing goals have shifted towards maintaining animal health, leading to both animal welfare
and the prevention of economic losses [180].
However, to date, the mechanisms underlying chicken’s susceptibility to avian influenza
and the effective immune response of duck have not been completely deciphered. The
susceptibility of chicken can be partially explained by their lack of virus pattern recognition
receptor RIG-I gene and the gene for the RIG-I binding protein, RNF135, both of which
exist in ducks [59, 65]. The RIG-I receptor recognizes double-stranded RNA and initiates
self-promoting pathways leading to the early type I interferon (IFN) response, which is
important for innate immune response. In chicken, other pattern recognition receptors,
such as MDA5 and TLR7, are upregulated in response to viral entry, which also leads to
the induction of IFN expression [62, 63, 65, 66]. However, the immediate induction of
type I IFNs seems to be much more robust and effective in ducks than in chicken or other
avian species. In addition to the difference in pattern recognition receptors, there appears
to be a variety of factors and differences that lead to the successful or unsuccessful immune
response of ducks or chickens, respectively. Different studies evaluated the transcriptomics
response to different AIVs in chicken [63, 65, 181–194], duck [195–198], or both [59, 199–
202]. For example, Smith et al. [59] investigated the role of the expression levels of different
interferon-induced transmembrane proteins (IFITMs) in the duck’s ability to alleviate the
virus while it prevailed in chicken. Evseev and Magor [62] provide a comprehensive review
of the differences in innate immune response in chickens and ducks. However, the host–
pathogen interactions and their underlying mechanisms in ducks and chicken are multi-
factorial and highly complex, and must be elucidated to obtain a deeper insight into the
duck’s effective immune response against AIV while it proves lethal to chicken [62].
Despite the rich literature on the differences in chicken and duck immune response after
AIV infection, the role of transcription factors (TFs) and their cooperations, which under-
lies transcriptional gene regulation, has not yet been extensively studied. The knowledge
about the complex interplay of TF pairs could provide promising information to unravel the
differences in disease progression in these species, since the TFs specifically bind to the
promoter regions of genes and thereby orchestrate differential gene expression in a highly
context-specific manner [68, 203]. In response to different environmental conditions such
as viral infection, they can activate processes or react to specific pathways, and thus fine-
tune the gene expression pattern in an organism. By interacting with other TFs in either a
cooperative or competitive manner, they form the basis for complex pathway and network
structures in biological systems [110, 204, 205].
To address the limited knowledge about upstream regulators, including TFs, their complex
interplay, and master regulators, which are responsible for an effective immune response
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after avian influenza infection, we performed a systematic analysis using an RNA-seq data
set. More specifically, mainly considering the effective immune response of duck, we iden-
tified the corresponding differentially expressed genes (DEGs) in response to the virus and
analyzed their promoter regions to determine the upstream regulators. Then, to investigate
the regulatory mechanisms of these DEGs in chicken, we analyzed their chicken orthologs
to assess the species-specific regulators. Focusing on the master regulators arising from en-
riched TFs and TF-TF cooperations, our results can help to resolve the question of why the
relevant genes could be differentially expressed in duck, while transcriptional gene regula-
tion in chicken remains unsuccessful. Consequently, in our results, we present two groups
of master regulators for ileum and lung: while the first group of master regulators contains
common regulators found for both species, the species-specific master regulators were as-
signed to the second group. In particular, we strive to decipher the duck-specific master
regulators related to the immune responses that are absent in chicken. Our findings could be
essential in the search for possible mechanisms that stimulate an effective immune response
in ducks while dysfunctioning in chicken.

6.4. Materials and Methods

In this section, we describe the methods, starting at the transcriptome level where differ-
entially expressed genes are identified. Since the avian-influenza-induced differential ex-
pression of genes in duck have been abundantly compared to chicken, and duck is generally
known to effectively prevent severe disease progression, we have a particular interest in in-
vestigating the promoter regions of DEGs in duck that potentially allow duck to adapt to the
H5N1 virus and enable a proper immune response, which is apparently not the case for the
orthologous genes in chicken. Thus, we want to identify the diversity in gene expression by
applying promoter analyses to duck and chicken and identify the transcription factors that
may provide an explanation for their varying immune responses. An overview of the steps
encompassed in our analysis is given in Figure 6.1.

6.4.1. Transcriptome Data

The RNA-sequencing analysis of lung and ileum tissue samples from chickens and ducks
infected with high- (H5N1) and low- (H5N2) pathogenic avian influenza viruses measured
1 and 3 days post-infection (dpi) was conducted by Smith et al. [59]. In their study, a total of
20 white leghorn chickens and 20 Domestic Gray Mallards were challenged with either the
HPAI or the LPAI virus. Processed RNA-sequencing data, e.g., count tables for the mapped
reads and experimental design, were retrieved from Array Express under the publicly avail-
able accessions E-MTAB-2908 and E-MTAB-2909 for chicken and duck, respectively. For
each experimental condition (e.g., chicken, lung, H5N1 infection, 1 dpi), gene expression
was measured for three biological replicates, resulting in a total of 24 samples from infected
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Differentially expressed genes

Infected vs. 
control animals

Transcriptome Data  

Animal Tissue Virus Time 

Chicken Lung H5N1 1, 3 dpi

H5N2 1, 3 dpi

Ileum H5N1 1, 3 dpi

H5N2 1, 3 dpi

Duck Lung H5N1 1, 3 dpi

H5N2 1, 3 dpi

Ileum H5N1 1, 3 dpi

H5N2 1, 3 dpi

Ineffective immune 
response

Effective immune 
response

Chicken orthologues 
of duck DEGs

Promoter extraction

Avian specific 
enriched TFs

TFBS prediction 
with MATCH™

CiiiDER PC-TraFF

TF-TF interactions

Identification of 
master regulators

Upstream   
analysis 

Identification of 
master regulators

Upstream   
analysis 

Figure 6.1.: Flow chart of the employed analyses. Differentially expressed genes (DEGs)
were derived by comparing the gene expression rate of a specific condition against a mock
infection for that condition (e.g., chicken lung at 1 dpi with H5N1 infection against chicken
lung at 1 dpi with mock infection). TF and TFBS stand for transcription factor and tran-
scription factor binding site, respectively. H5N1 is a high pathogenic avian influenza virus
(HPAIV), while H5N2 is a low pathogenic avian influenza virus (LPAIV).

animals and 12 mock-infected control samples for each species. In chicken and duck, the
expression of 24,356 and 25,952 genes was measured, respectively. For further details on
the experimental design, as well as the processing steps of the RNA-sequencing data, we
refer to the study by Smith et al. [59].
The identification of DEGs was performed in R by using the state-of-the-art package DESeq2
(version 1.30.0) [170] with default parameters for the median-of-ratios normalization and
the ashr R package (version 2.2-47) for log2 fold change (LFC) shrinkage [206]. DEGs
were determined for each condition (e.g., lung infected with H5N1 at 1 dpi) against a control
group (e.g., lung with mock infection at 1 dpi). Similar to the study of Smith et al. [59],
genes were considered to be significantly differentially expressed if the criteria |LFC| > 0.58
and the FDR-adjusted p value < 0.05 were met.
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6.4.2. Identification of Enriched TFs and TF-TF Cooperations

To unravel the differences in transcriptional gene regulation underlying the identified DEGs,
we focused on their regulatory regions (promoter regions) and identified enriched TFs as
well as TF-TF cooperations using the two bioinformatics tools CiiiDER [171] and PC-

TraFF [69, 110], respectively. A detailed description of the theory behind both methods can
be found in the original studies [69, 110, 171]. Besides some algorithm-specific parameters,
both algorithms require as input the promoter sequences and a library of position weight
matrices (PWMs) representing the TFBSs.

• Promoter sequences: Using the current versions of reference genomes GRCg6a and
CAU_duck1.0, we extracted the promoter sequences ranging from −1000 base pairs
(bp) to +100 bp relative to the transcription start site (TSS), similar to previous stud-
ies [91, 99, 110, 207]. Sequences were rejected if the full promoter sequence could
not be obtained, which was mostly the case for genes on scaffolds.

• Creation of the PWM profile and TFBS detection: Following our previous stud-
ies [68, 203], we created a custom avian-specific PWM profile. For this, we first
downloaded the TFs of avian species (chicken, duck, turkey, zebra finch, and fly-
catcher) from animalTFDB 3.0 [208] and selected those that were expressed in at
least one RNA-seq experimental condition. Second, we mapped the TFs to the PWMs
stored in the TRANSFAC database (release 2018.1) [93]. Finally, we clustered the
PWMs hierarchically based on their pairwise Pearson’s correlation coefficients and
selected the representative with the highest information content for each cluster in
order to create a non-redundant PWM profile with thresholds minimizing the sum of
the false-positive and false-negative rates (“minSUM profile”). In total, the profile
contains 553 PWMs, which are provided in File S1. We predicted the transcription
factor binding sites by applying the MATCH™ tool [18], which obtains the custom
avian-specific PWM profile and a matrix library provided by TRANSFAC [93] as
input.

• TF enrichment: We performed a TFBS enrichment analysis by employing the Ci-

iiDER tool [171] in order to identify over- and underrepresented TFBSs. In the fol-
lowing, we refer to a TF as over-/underrepresented in a condition if its corresponding
TFBS is significantly over-/underrepresented in the set of promoter sequences of the
respective DEGs compared to a custom background. The background set is com-
posed of the promoter sequences of those genes that were not differentially expressed
in any of the conditions. From this, the custom background was created as a subset
of sequences of the same global GC distribution as the foreground sequences using
BiasAway [209]. In a last step, a random sample of equal size was taken as the
foreground gene set from the custom background for each gene set, which eventu-
ally led to individual background sets from the same distribution, thus making them
comparable. Assessment of the distributions of TFBS predictions in foreground and
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background promoter sets is carried out by an FDR-adjusted p value threshold of
0.05.

• TF-TF Cooperation: The PC-TraFF algorithm [110] and its extension PC-

TraFF+ [69] are well-established, information-theory-based approaches to identify
TF-TF cooperation pairs using the concept of pointwise mutual information. While
PC-TraFF detects the co-occurring TFBSs of TF-pairs in the promoter sequences,
PC-TraFF+ separates the highly sequence-set-specific TF-cooperations from the
common ones by removing the background co-occurrences of TFBSs. The algorithm
needs the predefined distance thresholds as input for the TFBSs. As in our previous
studies [68, 203], we used the recommended distances of ≥5 and ≤20 and defined a
TF-pair as significant if its z-score ≥ 2.

6.4.3. Identification of Master Regulators

Similar to previous studies [129, 207, 210–213], we detected upstream regulators that reg-
ulate a set of DEGs through concerted coordination of TFs and intermediary modulators.
More precisely, these so-called master regulators (key nodes) are found on top of the regula-
tory hierarchy of complex regulatory networks, leading to the finely tuned gene expression
of a gene set. In order to identify master regulators targeting the TFs and their partners,
we applied the so-called “upstream analysis” provided by the geneXplain platform, which
is based on a modified shortest-path algorithm [207, 213, 214]. Consequently, focusing
mainly on H5N1, we established the top five master regulators for the lung and ileum tis-
sues of chicken and duck using the GeneWays database [215].

6.4.4. Annotations and Ortholog Mapping

The orthologs were retrieved from the BioMart web services [216] via the R package
biomaRt [217]. It is important to note that the mapping of, e.g., duck DEGs to chicken or-
thologs is not necessarily bijective, since a duck gene could be missing in chicken (e.g., RIG-
I), and thus have no chicken ortholog, or a duck gene could have two orthologs in chicken.

6.5. Results and Discussion

In this study, by analyzing a transcriptome data set, we firstly identified differentially ex-
pressed genes (DEGs) for lung and ileum tissues in chicken and duck after infection with
H5N1 and H5N2 at 1 and 3 dpi. In line with the results of Smith et al. [59], our analy-
sis of RNA-seq data with DESeq2 revealed three different observations: (i) we detected a
considerably higher number of DEGs in the duck than in chicken under most conditions
(see Tables 6.1 and S1); (ii) the vast majority of DEGs were highly context-specific with
regards to the virus strain and timepoint. Only 20 and 1 were found to be common in all
conditions in the duck ileum and lung, respectively, while no DEG was observed for all
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conditions in chicken (see Figure 6.2); (iii) the response in terms of differential expression
was higher after infection with the HPAI H5N1 compared to infection with the LPAI H5N2,
epspecially in duck (see Table 6.1). The gene set enrichment analysis of the DEG sets based
on Gene Ontology (GO) classification demonstrates that differential gene regulation after
virus infection deviates between chicken and duck (Figure 6.2). The full lists and treemaps
for GO enrichment are given in Table S2 and Figures S1 and S2.

Table 6.1.: Numbers of differentially expressed genes (DEGs) in duck and chicken for
the treatments with H5N1 (HPAI) and H5N2 (LPAI) virus after 1 and 3 days post-
infection (dpi). The table is split into upregulated (LFC > 0.58) and downregulated genes
(LFC <−0.58).

Virus Time Tissue Duck DEGs Chicken DEGs
Upregulated Downregulated Upregulated Downregulated

H5N1
1 dpi

lung 804 350 1 7
ileum 193 63 5 6

3 dpi
lung 605 486 1 0
ileum 332 346 3 1

H5N2
1 dpi

lung 47 0 0 0
ileum 42 1 20 2

3 dpi
lung 1 0 0 0
ileum 25 0 286 20

To summarize, in agreement with previous studies [59, 199–202], the DEG analysis indi-
cates that the general pattern of differential gene expression differs greatly between duck
and chicken after AIV infection. In particular, the infection with H5N1 elicits a rapid and
effective immune response in ducks, whereas the chicken immune system did not appear to
respond to the same extent.
Despite the great interest in and rich research on avian influenza, there is still a lack of
knowledge about the underlying transcription factors and their combinatorial interplay or-
chestrating gene expression and leading to an effective immune response in ducks while
failing in chicken. In order to reveal transcriptional gene regulation factors that play impor-
tant roles in disease progression, we compared the upstream regulatory regions (i.e., pro-
moters) of the duck DEGs with those of the respective chicken orthologs. Since the re-
sponse regarding differential expression appears to be most pronounced after infection with
the H5N1 virus—and, as an HPAIV, poses the greatest risk for avian as well as mammal
species—we concentrate on this virus in the following.
Typically, in bioinformatics, the choice of the threshold value for, e.g., FDR-adjusted p-
values, is of great importance for the number of significant results. In this study, we mainly
followed the values used in the study of Smith et al. [59] to ensure some comparability.
Nevertheless, it is important to note that a p-value may be interpreted differently in different
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species, e.g., due to a lower variability of transcriptomics data in genetically stable inbred
lines, such as the chickens used in this study, compared to ducks. A more stringent p-value
threshold of 0.01 for the DEG identification or TFBS enrichment analysis leads to a strong
reduction in their results, which, in turn, results in an insufficient number of genes or TFs
for further analysis (for a p-value comparison, see Tables S1 and S3). For this reason, we
used a threshold of 0.05 in the following analysis.
Several studies have investigated the importance of glycosylation with respect to viral entry
and replication [218–220]. Glycosylation is a post-translational process of host cells that
can be used by AIVs to attach glycan moieties to their own proteins [218]. In our DEG sets,
we observed one enriched GO term related to glycosylation (GO:MF glycosaminoglycan
binding). Remarkably, this GO term was enriched among both up- (duck, lung, H5N1, 1
dpi) and downregulated (duck, lung, H5N1, 3 dpi and duck, ileum, H5N1, 3 dpi) DEG sets,
but its interpretation is beyond the scope of this study.

6.5.1. Transcription Factor Binding Site Enrichment

In a first step, we identified significantly over- or underrepresented TFBSs in the promoter
regions in the gene sets. The Venn diagrams of over- and underrepresented TFBSs in duck
and chicken show a similar pattern for both tissues and timepoints: a high number of en-
riched TFBSs are unique to either chicken or duck, resulting in only a slight overlap between
chicken and duck in terms of over- or underrepresented TFBSs (Figure 6.3). Interestingly,
when comparing overrepresented TFBSs in duck and underrepresented TFBSs in chicken
or vice versa, there appears to be more overlap. Generally, the number of predicted TFBSs
that are significantly over- or underrepresented in the ileum is smaller in both chicken and
duck than in lung, which reflects the corresponding numbers of DEGs. To offer a closer
insight into the related TFs of the enriched TFBSs found for the H5N1 infection, we ex-
plain their functions in more detail. As the HPAIV is known to predominantly replicate
in the respiratory tract [59], we will further concentrate on the lung tissue with functional
interpretation. The lists of significantly over- or underrepresented TFBSs are provided in
Table S3.
Based on the enriched TFBSs in chicken at 1 dpi, we observed 21 TFs that were uniquely
overrepresented in chicken and 33 TFs that were overrepresented in the chicken promoters
while underrepresented in the duck promoters (Figure 6.3). We observed many TFs of the
basic helix–loop–helix (bHLH) class and the C2H2 zinc finger class, including different
TF families, such as zinc finger proteins (ZNFs), Zinc finger and BTB domain-containing
proteins (ZBTB), or specificity proteins (SPs). Furthermore, TF families such as SMAD,
AP2, TFII-I, GCM, and paired box factors (PAX) can be found [221]. Similar TF families
are salient after 3 dpi in chicken, with a greater focus on zinc finger factors, as they make
up 13 out of 22 chicken TFs. For both timepoints, we observed several tryptophan cluster
factors, including a TF from the interferon regulatory factor family (IRF4) and ETS/ETS-
related TFs.
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Interferon regulatory factors (IRFs) play a major role in the immune response by inducing
several processes and pathways upon avian influenza infection. For example, the over-
expression of IRF7 in chicken DF-1 cells resulted in a higher viral replication and cell death
rate than in control cells upon infection with LPAI H6N2 [181]. Transcriptome analysis
revealed that chicken IRF7 could be involved in the modulation of programmed cell death
via pathways such as the TGF-β , FOXO, and the JAK-STAT pathway [181].
Interestingly, binding sites of the SMAD family members SMAD4 and -5 were enriched
in chicken at both timepoints, but not in duck promoters. The SMAD factor family is
tightly linked to the TGF-β pathway, which is involved in various immune-related processes
such as apoptosis, the innate immune response by type I interferon production, or early
pulmonary fibrosis via epithelial–mesenchymal transition in response to influenza A virus
(IAV) infection [181, 222–225]. As a response to IAV invasion, the RIG-I-like receptor
(RLR) signaling, followed by IRF3 activation, represses TGF-β -induced SMAD signaling
in mammal cells [224]. Hence, the availability of SMAD binding sites could be an important
regulator of TGF-β and RLR signaling in chicken.
The ETS/ETS-related TF family is uniquely enriched in the chicken promoters. Apart from
various cellular processes ranging from embryonic development to apoptosis and carcino-
genesis, ETS factors play a role in both the innate and adaptive immune response [226].
Interestingly, it has recently been shown that the ETS-family member ETV7 targets sev-
eral interferon-stimulated genes (ISGs) to negatively regulate the effective IFN-mediated
control of influenza viruses, and can thus be considered as a suppressor of the type I IFN
response in mammalian cells [227]. Hence, an over-representation of different ETS binding
sites in chicken promoters could possibly influence the intensity of the antiviral type I IFN
response, which should be investigated in future studies.
In the duck lung at 1 dpi, 9 TFs are uniquely overrepresented (Figure 6.3). Among them, we
found representatives of the TF families forkhead box (FOX) (FOXC1, FOXL2, FOXO3,
and HNF3B), POU (POU3F2 and TST1), STAT, homeobox (HOX), and one IRF TF (IRF4).
Another 11 TFs, which were also overrepresented in the duck promoter sets, were simulta-
neously underrepresented in chicken. Here, we predominantly found homeo domain factors
such as HOXD13, NKX22, NKX61-62, DLX3, LHX3, PRX2, and SIX3. The pattern of
significantly enriched TFs in duck 3 dpi is similar to that of 1 dpi. One TF family that is
more prominent 3 dpi is the HOX family and we further observed the C2H2 zinc finger
factor SALL3 while the IRF4 disappeared at 3 dpi.
The FOX family of TFs is suggested to be involved in the regulation of a variety of pro-
cesses, such as cell growth, proliferation, differentiation, longevity, immunology, and cell-
cycle control [228]. FOX TFs play an important role in the FOXO signaling pathway, which
regulates important processes such as stress resistance, cellular proliferation, and apopto-
sis [181, 229]. The subclass FOXO is known to be involved in the regulation of lifespan
and diseases by orchestrating processes such as cell-cycle progression and apoptosis under
severe stress conditions in mammals, and FOXO was shown to be a negative regulator of
IRF7, a member of the interferon regulatory factor family [181, 229].
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Interestingly, the binding sites for two members of the signal transducer and activator of
transcription (STAT) family, a main factor of the JAK-STAT signaling pathway, are enriched
at both timepoints in the duck lung, but not in chicken. This highlights the importance of the
JAK-STAT pathway, which is one of the key pathways in type I IFN response and induces
interferon-stimulated genes (ISGs) [181, 230, 231]. In particular, virus entry followed by
IFN expression leads to an IFN receptor-associated Janus-kinase (JAK) phosphorylation,
which activates STAT TFs to enhance target IGS gene expression [232, 233]. Hence, a lack
of enriched binding sites for STAT factors in the chicken promoter sequences could possibly
result in a weaker upregulation of ISGs and less efficacy in the JAK-STAT pathway.
Another TF family whose binding sites are overrepresented only in the duck promoters is
the POU family. Interestingly, there is evidence that members of the POU family, expressed
in B and T cells, may interact with STAT3 and can activate different interleukin promoters,
which are related to immune and inflammatory responses in human cells [234].
Additionally, the genes of some promising enriched TFs, e.g., IRF7 (ENSAPLG00000012752),
STAT1 (ENSAPLG00000013226), and STAT4 (ENSAPLG00000023296) are significantly
upregulated upon AIV infection in the duck lung 3 dpi, which may underline their impor-
tance in response to the virus.

6.5.2. TF-TF Cooperations

To obtain a closer insight into the disease regulation progress in chicken and duck,
knowledge of the complex interplay between TFs could provide further essential infor-
mation, since they are important for the regulation of the transcriptional machinery and
form the backbone for the fine-tuned adaptation of a species to specific environmental
conditions [69, 110]. By further focusing on the HPAIV, we applied the PC-TraFF algo-
rithm [69] and identified the cooperation of TFs based on their binding site co-occurrence
patterns in the promoter regions of the investigated genes in the two species. Based on the
PC-TraFF results, we constructed a TF cooperation network, in which the nodes represent
the TFs and the edges indicate their cooperation. The complete networks for lung and ileum
are provided in Table S4 and Supplementary File S2. However, in order to establish the
preferential partner choice of TFs for the regulation of disease progression in both animals,
we mainly consider the differences between the networks that were constructed for the
chicken and duck tissues. Figure 6.4 shows the TFs and their partners in the regulatory
events of these tissues, which are either found only in chicken or only in duck. In the
following, we refer to a chicken\duck network as the network of chicken TF cooperations
without the duck TF cooperations and vice versa.
The greatest difference between chicken and duck can be observed in the chicken\duck
network for ileum 3 dpi, which contains 25 nodes and 14 edges (Figure 6.4B). Among
the single nodes in this network, we found the ETS-related TF NERF and the bHLH het-
erodimeric TF AHR:ARNT. Interestingly, the lack of a partner indicates that the respective
partner is present in the duck network, interacting with another TF. Such preferential part-
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ner choices are an indication of species-specific dimerization events, which form the basis
for the regulation of different processes, such as immunity and inflammation [235]. Fur-
ther ETS-related factors are found in the lung 1 and 3 dpi in the chicken\duck networks
(Figure 6.4C,D), and the monomer AHR is additionally found in the chicken\duck net-
work for ileum 1 dpi (Figure 6.4A). The importance of ETS-related and bHLH factors for
chicken promoters was shown in the TF-enrichment (Section 6.5.1). Prominently, among
all duck\chicken networks, we observed different FOX and DLX homeo domain factors,
which are not present in any chicken network. Both TF families were found to be enriched
in the duck, but not the chicken promoters (see Section 6.5.1).
Remarkably, the differences in the cooperation networks are rather moderate in contrast
to the divergent results of TF-enrichment between chicken and duck (Figures 6.3 and 6.4).
This indicates that, while single, enriched TFs in the promoter regions are rather species-
specific, the TF-TF cooperation networks of both species share many common features and
TF clusters seem to be preserved or classified by specific partner alterations.



79 6.5. Results and Discussion

(A) (B)

(C) (D)

H5N2, 3 dpi

H5N2, 1 dpi
H5N1, 1 dpi

H5N1, 3 dpi

0

1

1

0

7

2

0

3

1

0
0

302

15

0

2H5N2, 3 dpi

H5N2, 1 dpi
H5N1, 1 dpi

17

1

0

20

147

571

64

3

0

0
5

0

1

0

0

H5N2, 3 dpi

H5N2, 1 dpi

H5N1, 1 dpi

H5N1, 3 dpi

0

0

0

0

8

1

0

0

0

0
0

0

0

0

0H5N2, 3 dpi

H5N2, 1 dpi

H5N1, 1 dpi

45

0

0

1

819

756

289

0

0

0
0

0

1

0

0

• Immune response
• Cytokine activity (MF)
• Chemokine activity (MF)
• Chaperone binding (MF)

• Ion ion homeostasis  
• Immune response 
• Response to stimulus
• Cytokine production
• MHC protein binding (MF)
• Cell activation (apoptotic process)
• Leukocyte activity 
• Circadian sleep/wake cycle

• Response to virus 
• Immune effector process
• Negative regulation of viral 

genome replication 
• RNA helicase activity (MF)

• Defense response to virus 
• Interspecies interaction between 

organisms  
• Double stranded RNA-binding (MF)
• RNA helicase activity (MF)

• Macromolecule metabolism 
• Response to biotic stimulus 
• Apoptotic process 
• Protein and TF binding (MF)
• Lipid metabolism 

• Immune response 
• Regulation of innate immune 

response 
• Regulation of viral life cycle 
• Double-stranded RNA-binding 

(MF)

• Defense response to virus 
• Immune system response 
• STAT family protein binding (MF)
• RNA helicase activity (MF)  

• Phagocytosis, Cell death
• Protein phosphorylation
• Enzyme binding (TFs, chemokine, 

chaperone) (MF)
• Double-stranded DNA binding 

(MF)
• Extracellular matrix organization 

• Response to other organism
• Macromolecule & organic substance 

metabolism 
• signaling
• Cell death 
• Zin ion & receptor binding (MF)
• Cytoplasmic translation 

Figure 6.2.: Venn diagrams of the DEGs (A) duck in ileum, (B) chicken in ileum, (C)
duck in lung, and (D) chicken in lung with selected enriched Gene Ontology (GO)
terms. The DEGs are obtained by comparing animals infected with AIV (H5N1 (HPAI) or
H5N2 (LPAI)) with mock-infected animals. The colors within the venn diagram, as well as
the colors of the GO-term boxes, stand for the respective condition: blue represents H5N1
infection 1 dpi, red represents H5N1 infection 3 dpi, green represents H5N2 infection 1 dpi,
and yellow represents H5N2 infection 3 dpi for each species and tissue. Within the boxes,
an arrow down indicates that the GO-term is enriched among the downregulated DEGs;
otherwise, the terms are enriched among the upregulated DEGs. The GO-terms represent
biological processes except, if stated differently, in the form of MF (molecular function).
Venn diagrams are based on the data provided in Table S1.
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Figure 6.3.: Venn diagrams of TFBS enrichment to compare over- (OR) and underrep-
resented (UR) binding sites in chicken and duck. The promoter regions of DEGs (after
infection with HPAIV H5N1) in duck and the corresponding orthologous genes in chicken
were extracted to obtain the over- and underrepresented TFBSs. (A) shows the correspond-
ing number of TFBSs for the ileum 1 dpi, (B) shows the ileum 3 dpi, (C) shows the lung
1 dpi and (D) shows the lung 3 dpi. Venn diagrams are based on the data provided in Table
S3.
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Figure 6.4.: Differences in transcription factor (TF) cooperation networks found by the PC-TraFF algorithm for (A)
ileum 1 dpi, (B) ileum 3 dpi, (C) lung 1 dpi and (D) lung 3 dpi with HPAIV H5N1. The difference in nodes in the networks
of duck and chicken is denoted by the set difference sign (\). The nodes are labeled by the PWM names representing TFs, as
given by TRANSFAC [93]. They follow the structure V$factorname_version, where “V$” indicates that the PWM originates
from a vertebrate TF, factorname specifies the name of the corresponding TF, and version is specified to uniquely identify the
PWM. The networks were visualized with Cytoscape [236]. Full size image is provided in Figure S3.
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6.5.3. Master Regulators

Functionally related genes involved in the same physiological or molecular processes, such
as virus defense, are often coordinately regulated by the precise organization of TF bind-
ing [237]. This precise organization of TFs and their cooperation includes various upstream
pathways forming complex regulatory network structures, in which different pathways can
be connected in series, in parallel, or reverse, thus forming different feedforward or feed-
back loops [207]. One way to identify important regulators within such a complex regu-
latory network is the so-called “upstream analysis” [213], which aims to identify master
regulators that are positioned at the top of the regulatory hierarchy and can be seen as com-
mon upstream regulators of a gene set, regulating the genes’ expression rates.
During disease progression, the specific partner choices of TFs are of the utmost importance
for an effective and rapid immune response [68, 203, 207]. Therefore, we mainly focus on
the master regulators orchestrating the TF-TF cooperations in the following. The complete
upstream regulatory networks based on the TF-TF cooperations can be obtained from Figure
S4. Further, Figure 6.5 shows common and species-specific master regulators directing gene
regulation in the lung and ileum tissues after infection with H5N1 (for both timepoints).
A closer look at the identified master regulators reveals that EGR1, SRF, FOS, and SP1
are unique to chicken in both tissues. EGR1 is considered a master transcription factor,
regulating the expression of a range of genes involved in multiple cardiovascular diseases,
such as atherosclerosis or ischemia in humans [238–240]. Furthermore, it is known to
play various regulatory roles in processes such as cell death and survival or inflammatory
processes [241]. In response to avian influenza in human, epithelial lung cells EGR1, as well
as the chicken-specific master regulator gene FOS, were strongly downregulated [242].
The serum response factor (SRF) and the proto-oncogene factor FOS both play an impor-
tant role in the inflammatory response after influenza infection in mammals [243]. The
transcriptional regulator SRF first activates FOS expression [244, 245], which encodes, to-
gether with JUN, the components of the transcription factor complex AP-1 [246, 247]. AP-1
regulates a variety of processes such as cell proliferation and differentiation [246, 247] but
also activates the transcription of pro-inflammatory genes after an influenza infection [243].
In chicken trachea, FOS was shown to be upregulated after hydrogen-sulfide-induced ox-
idative stress, revealing the importance of FOS/IL8 signaling during tracheal inflamma-
tion [248]. Kim et al. (2020) [249] showed that a knockout of IRF7 in chicken DF-1 cells,
and subsequent AIV infection, resulted in the altered gene expression pattern of several
genes, including key immune response genes such as IL12, FOS, and AP1. The authors
further suggest that this shift in expression pattern could be a compensation for the absence
of IRF7 [249].
SP1 is involved in influenza A virus-induced mucin (i.e., MUC5AC) expression in mouse
epithelial cells. Mucins, the gel-forming glycoproteins of mucus, are important to mois-
turize and protect surfaces from pathogens, and a mis- or overexpression of mucin may be
related to various diseases, including different lung diseases caused by inflammation [250].
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Figure 6.5.: Common and species-specific master regulators for the (A) ileum and (B)
lung tissue regulating the TF-TF cooperations.

Furthermore, SP1 cooperates with different SMAD TFs in response to TGF-β , leading to
the growth arrest of epithelial cells [251]. Interestingly, three SP family members (SP1-3)
were found to be enriched in the chicken but not the duck promoters of the genes under
study (Section 6.5.1).
In addition, the master regulators MYC and EP300 were identified as common to chicken
and duck in both tissues. As an oncogenic TF, MYC is involved in several cellular processes
related to cell growth, cell proliferation, or apoptosis [252]. Moreover, it is an important
player in the JAK/STAT pathway, an important pathway in type I IFN response, as it is
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directly regulated by STAT TFs [181, 233]. EP300 encodes a histone acetyltransferase
that regulates the transcription of genes involved in cell proliferation and differentiation
processes via chromatin remodeling. It is known to interact with a significant number of
TFs, such as STAT, ETS1, and Ep53 in humans [253, 254]. The importance of STAT in
duck promoters has been shown in Section 6.5.1 and ETS1 acts as a master regulator in the
lung tissue in duck. Furthermore, Leymarie et al. (2017) [255] observed that H5N1-infected
mice developed a clear signature, leading to lung edema, which represents a pathogenic fluid
accumulation in the lungs leading to respiratory dysfunction. Interestingly, they discovered
an edema signature regulatory network consisting of different master TFs including EP300
and Runx1, a runt-related transcription factor [255]. Another Runx family member, Runx2,
was identified as a common master regulator in the lung and as a duck-specific master
regulator in the ileum. This finding enhances the importance of pathological edema-related
processes during virus defense.
Master regulators that are unique to duck are of particular interest in our analysis, since
they seem to activate pathways, leading to an effective differential expression of important
genes, which is not the case for chicken. We identified three different duck-specific master
regulators: ETS1 in the lung, SMAD3 in the ileum, and SMAD4 in both tissues.
As ETS factors play a role in both the innate and the adaptive immune response [226], they
could be important master regulators controlling gene expression in duck HPAI defense.
Among the ETS TFs, ETS1 and PU.1 seem to play the most important role in immunity
in humans due to their control of immune cell development [226]. Surprisingly, different
binding sites for ETS family members (except ETS1) have been identified as enriched in
chicken but not duck promoters (see Section 6.5.1).
The importance of SMAD TFs in immune response and their tight link to the TGF-β and
RLR-signaling pathways were revealed in Section 6.5.1. In particular, the SMAD3 family
member is activated by TGF-β receptors and forms a transcriptional complex with SMAD4.
The SMAD3/4 complex can then physically and functionally interact with c-Jun–c-Fos by
binding to AP-1 binding sites to activate TGF-β responsible genes [224, 256, 257]. Hence,
working in cooperation, the SMAD family members SMAD3 and 4, play a major role in
TGF-β -mediated immune response and can be considered as promising targets for future
studies.
In the second part of this section, we were additionally interested in the investigation of
the master regulators targeting the enriched TFs of the DEG sets. As expected, the vast
majority of the identified master regulators are unique to either chicken or duck in both
tissues. The reason for this can be explained based on the distinct sets of enriched TFs
presented in Section 6.5.1. Notably, the master regulators ARNT2 and EPAS1 were found
only for chicken, while CRSP2, IRF9, and IRF7 were found only for duck. The complete
upstream regulatory networks are provided in Figure S5. However, this finding does not
reflect the assumption that the regulatory mechanisms of two orthologous gene sets share
common features. Therefore, we presume that TF enrichment does not sufficiently represent
the regulatory interplay underlying disease progression.
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6.6. Conclusions

Until now, the mechanisms underlying the susceptibility of chicken and the effective im-
mune response of duck are not completely understood. In this study, we performed a sys-
tematic analysis to investigate the transcriptional gene regulation underlying disease pro-
gression in ducks and chicken after infection with avian influenza. For this purpose, we
identified upstream regulators, including TFs, their complex interplay, and master regula-
tors, which are responsible for different immune responses in both species.
Our results suggest that there are major differences between the promoter regions of or-
thologous genes regarding the enrichment of TFs in both species. In particular, we iden-
tified promising TF families, which are important regulators of chicken (TF families such
as SMAD, IRF, and ETS) or duck (TF families such as FOX, STAT, and POU). Although
TF enrichment provides important insights, we could unravel the specific partner choice of
TFs, which could be responsible for directing the different immune responses during disease
progression. Subsequently, we applied a systems biology approach to identify common and
species-specific master regulators. We found promising master regulators of duck genes
in lung and ileum (RUNX2, SMAD3, SMAD4, and ETS1), which could be responsible
for the duck’s effective differential gene expression in response to HPAI infection. Mas-
ter regulators that were identified for the chicken orthologous gene set represent regulators
that could be important for the effective regulation of gene expression after AIV infection,
yet remain unsuccessful in living organisms. These master regulators include EGR1, FOS,
SRF, and SP1, and could be interesting targets for future studies, since they could switch
on several pathways targeting the genes that are important to the successful alleviation of
HPAI infection. Based on our results, we highlight the importance of the RLR signaling,
TGF-β , and the JAK/STAT pathways for virus defense in chickens and ducks. We are
aware that the amount of mRNA does not necessarily reflect the amount of proteins that are
available in living cells. For that reason, we emphasize the need for experimental data to
assess protein availability, as well as the roles of master regulators and pathways in living
organisms. To the best of our knowledge, there are no studies on altered immunity in duck
after knockouts, overexpression or mutations in the identified upstream pathways. There-
fore, knock-out, knock-in, or overexpression experiments in both chicken and duck would
be of great interest. While this is beyond our current capabilities, it would be an important
objective for future studies to investigate.

6.7. Supplementary Materials

The following supplementary material is available via the original publication https:
//doi.org/10.3390/biology11020219. Figure S1: Treemaps of the DEG sets regarding
GO:Biological Processes of chicken and duck, Figure S2: Treemaps of the DEG sets
regarding GO:Molecular Functions of chicken and duck, Figure S3: Full-size image of

https://doi.org/10.3390/biology11020219
https://doi.org/10.3390/biology11020219


6. Avian Influenza in Chicken and Duck 86

Figure 6.4, Figure S4: Schemes of the upstream regulatory networks revealing the top five
master regulators of chicken and duck based on the TF-TF cooperation results, Figure S5:
Schemes of the upstream regulatory networks revealing the top five master regulators of
chicken and duck based on the TF enrichment results, Table S1: DEG sets for all exper-
imental conditions, Table S2: GO-term enrichment of all DEG sets of chicken and duck,
Table S3: enriched TFBSs in different promoter sets of chicken and duck, Table S4: TF
cooperation networks of chicken and duck, File S1: PWMs included in the custom avian
PWM profile, File S2: Cytoskape session of TF cooperation networks as .cys file.



7. Discussion

In this chapter, I discuss the methods applied in this thesis and the biological relevance of
the results of my four publications, as described in the previous chapters. This chapter is
partly based on the original publications [1–4].

7.1. Methodical Discussion

7.1.1. Identification of rSNPs

In Chapters 3, 4, and 5, I developed a pipeline in order to identify a genome-wide collection
of rSNPs which I applied to different animal and plant species. This pipeline requires as
input (i) a library of PWMs representing the TFBSs, (ii) a reference genome, (iii) a SNP
catalog, and (iv) gene annotations. Firstly, I selected the SNPs which are located in the
promoter regions of all genes and analyzed them to detect their impact on the TFBSs. For
this purpose, the flanking sequence of ± 25 bp for each selected SNP was extracted from
the reference genome. For each SNP, I created two copies of the flanking sequence: One
with the reference allele in the SNP position and the second with its alternate variant. After
that, by employing the MATCH™ algorithm [18], both sequences were scanned to predict
the TFBSs with their affinity scores. Finally, to evaluate the impact of a SNP on the binding
affinity of a TF, I inferred four different types of consequences for each SNP-TFBS pair: (i)
“No Change”: the SNP has no effect on the TF binding; (ii) “Score-Change”: the binding
affinity (i.e., MSS) is changed; (iii) “Loss of TFBS”: a TFBS is only found with presence
of the reference allele, while the TFBS does not occur in the alternate allele; and (iv) “Gain
of TFBS”: the TFBS appears only for the alternate allele.
In the rSNP prediction pipeline, one important step was the definition of the promoter re-
gions, since this determines if a SNP is considered for further analyses. Even though the
core promoter is considered to be positioned within ~200 bp around the TSS, a wider pro-
moter region can be targeted by TFs to regulate gene transcription [13]. Previous studies
defined different promoter regions for TFBS prediction, ranging from −10 kb to +10 kb
[15, 74, 91, 95–100]. Therefore, I defined a relatively wide promoter region of 7.5 kb
upstream to 2.5 kb downstream of the TSS in order to overcome inaccuracies in the TSS
prediction and to ensure the inclusion of the biological promoter [13]. However, it is im-
portant to note that the biological promoter is usually smaller and, hence, the web interface
provides the possibility to filter for smaller user-defined promoter regions. In particular, in
the application study on B. napus (Chapter 5), I applied the pipeline with a smaller promoter
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region of −500 bp to +100 bp relative to the TSS, as similarly suggested in previous stud-
ies [13, 38, 68, 110, 172–176]. Thereby, I emphasize that the choice of the 10 kb promoter
region should not be interpreted as a biologically correct promoter region, it merely gives
the user the possibility to search in a broader regulatory region. However, as shown in the
rapeseed application project in Chapter 5, the use of a smaller region is quite reasonable.
In the next step of the pipeline, I identified SNPs located in the promoter region and added
further filtering steps. More specifically, I discarded all insertions and deletions (indels)
and SNPs having more than one alternate allele. With these filtering steps, the pipeline
is focusing on the most basic form of sequence variation and hence I concentrate on a
straight forward interpretation of results on the website. Especially the interpretation of
consequences of SNPs having more than two alleles, would increase the complexity of the
results, and hence also the visualization on the website. Therefore, I decided to keep the
presentation of the results and their interpretability simple and clear. Nevertheless, it is
possible to extend the database to other types of variants in the future.
In order to infer consequences for each SNP-TFBS pair, such as “Loss of TFBS” or “Gain
of TFBS”, a clear definition of the reference and the alternate allele for each SNP is crucial.
In the pipeline, I obtained the alleles from the input SNP catalog (as GVF file [121, 122]).
In very few cases, especially in the plant species tomato, Asian rice (Indica), and sorghum
(Chapter 4), I observed that the alleles of several SNPs deviate from the reference genome,
in particular, their reference alleles were not present at the SNP position in the reference
genome. An example for this issue can be shown with the tomato SNP vcZYOCUX (T/A),
where the base at the respective position in the reference genome is G.1 Such issues indicate
that there is still a need for further investigation to improve the genome sequences as well as
SNP annotations. In our pipeline, we excluded such SNPs from further analysis to ensure a
high reliability of our results.

In the literature, there exist a variety of tools and databases investigating the prediction of
rSNPs, either by using experimental and published data [74, 88, 92], or, similar to my stud-
ies, by predicting the effect of a SNP on TF binding [17, 47, 89–91]. However, most of
the tools and databases focus on humans or a few model organisms. In the following, I ad-
dress the rSNP detection methods applied in other studies and compare them to the pipeline
used in this thesis. These include only a selection of similar databases, a comprehensive
summary of further tools and databases is provided in Table S1 of Chapter 3.
SNP2TFBS [17] is a database of human rSNPs in which SNPs are stored together with
annotations, such as whether they are predicted to eliminate, create or change one or more
TFBSs. In contrast to agReg-SNPdb and agReg-SNPdb-Plants, where the TFBS prediction
is based on the TRANSFAC database of TFBSs, in SNP2TFBS the prediction of TFBSs is
performed based on the JASPAR database [178]. Furthermore, instead of analyzing each
SNP separately by extracting the flanking sequence from the reference genome, Kumar

1https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:39003479-39004479;v=
vcZYOCUX;vdb=variation;vf=3506065, accessed on 1 November 2022

https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:39003479-39004479;v=vcZYOCUX;vdb=variation;vf=3506065
https://plants.ensembl.org/Solanum_lycopersicum/Variation/Explore?r=1:39003479-39004479;v=vcZYOCUX;vdb=variation;vf=3506065
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et al. (2016) [17] generated an alternate human genome, with all variant positions being
replaced by the alternate allele. However, this approach does not allow an interpretation of
the effects of single SNPs found in a certain individual, independent of neighbouring alleles.
Nevertheless, in the case of two SNPs located close together such that both SNPs are located
in the same TFBS, this should be considered and investigated in each case individually.
The database atSNPsearch [90] stores all human SNP-TFBS pairs which were identified
with the tool atSNP (affinity testing for regulatory SNPs) [47]. atSNP takes as input a cat-
alog of SNPs as well as motif files and outputs a list of SNP-TFBS pairs together with
p-values indicating the significance of TF binding compared to a random background se-
quence. In atSNPsearch, each human SNP from dbSNP [258] is analyzed with respect to
JASPAR [178] and ENCODE [259] TFBS motifs, independent of the SNPs location within
a promoter region, and hence, they avoid making any assumption on a putative promoter re-
gion. However, this approach is relatively resource-intensive and inconvenient for analyzing
and storing data sets from multiple species.
INFERNO (INFERring the molecular mechanisms of NOncoding genetic variants) [91] is a
method which integrates different data such as GWAS summary statistics and LD structure
from the 1000 Genomes Project [260] to identify putative regulatory variants underlying
an association signal. For motif discovery, Amlie-Wolf et al. [91] apply the HOMER
(Hypergeometric Optimization of Motif EnRichment) tool suite [261]. The inclusion of
GWAS summary statistics and LD structure gives an interesting objective for agReg-SNPdb
and agReg-SNPdb-Plants and should be considered in the future.
SNP@Promoter [262] is a database that contains human SNPs, TFBSs, and their overlaps
located within promoter regions ranging from −5 kb to +500 bp. Similar to agReg-SNPdb,
they use the TFBS prediction tool MATCH™ [18], but instead of inferring certain conse-
quences of SNPs on TF binding, they concentrate on positional information only.

7.1.2. TFBS Prediction

The prediction of TFBSs commonly relies on position weight matrices (PWMs), which are
obtained and updated frequently based on past and new experimentally verified TFBSs.
These PWMs are stored in public or commercial databases and can be used as input for
different TFBS prediction tools. In the databases agReg-SNPdb and agReg-SNPdb-Plants
as well as in the application project on avian influenza, I applied the original MATCH™
tool [18] using the commercial database TRANSFAC [93]. In contrast to this, in the ap-
plication study based on rapeseed, I applied the MATCH™ algorithm based on the JAS-
PAR database [178], a publicly available database for PWMs. One major advantage of the
MATCH™ algorithm with TRANSFAC lies in the availability of so-called PWM profiles
provided by TRANSFAC. This enables the usage of a customized subset of PWMs with
PWM-specific cut-offs, as e.g., the vertebrate specific profile used in Chapter 3, the plant
specific profile used in Chapter 4, or the avian specific profile used in Chapter 6. By using
such PWM profiles, it is possible to concentrate on the binding sites specific to a certain
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taxon (e.g., the vertebrate specific profile) or disease (e.g., the avian specific profile con-
centrating on the binding sites of TFs, which are important during an infection with avian
influenza). With the JASPAR database, this information is not available directly and such
profiles must be created by the user (as e.g., the plant specific profile used in Chapter 5).
Furthermore, the PWM-specific cut-offs minimizing e.g., the false positive rate, which are
provided by TRANSFAC are not available in the JASPAR database and, hence, a cut-off
free usage of JASPAR profiles can lead to a high number of false positive predictions. For
this reason, I filtered the TFBS predictions using the JASPAR database in Chapter 5 based
on a matrix similarity score threshold of 0.85, as recommended in [171].
Although conventional PWM-based TFBS prediction tools are widely used and show good
results, they are highly dependent on the quality of the PWM annotations and hence deliver
different results depending on the used databases. Hence, one challenge of PWM-based
methods is the interpretation of binding affinity scores and the calculation of appropriate
cut-offs, determining whether a binding event is predicted or not [18, 20]. Another limita-
tion of PWM-based predictions is the fact that they assume the independence of each posi-
tion within the PWM, with each position contributing independently to the overall binding
affinity score. This might not correctly reflect the complexity of binding processes between
the DNA and TFs [19, 20]. In addition, PWMs are not very well suited to represent the bind-
ing sites of some TF classes such as TF dimers, which consist of two conserved sequences
interrupted by a variable sequence [263].
To tackle these limitations, different supervised machine learning methods, e.g., Bayesian
networks, Markov models, support vector machines or neural networks, are developed [19,
23]. However, due to the extensive work done in the past to generate high quality PWMs
and due to the lack of available data for model training (large numbers of positive and neg-
ative sequences, i.e., sequences in which a binding site is present and sequences in which
no binding site is present, respectively) in machine learning based approaches, PWM-based
models are still widely used and are usually the method of choice when it comes to predic-
tion and visualization of TFBSs [19, 264].

7.1.3. Random Forest-Based Feature Selection to Identify SNP-Phenotype
Associations

In genome-wide association studies (GWAS), each SNP is tested for its association with a
specific phenotype, which is either qualitative or quantitative. Although classical GWAS
analysis is a well-established and straightforward method, in practice it entails several
challenges. For example, the presence of confounding effects in the data causing bias,
such as population stratification or relatedness among individuals, can inflate prior as-
sumptions about the distribution of SNP effects, leading in particular to false positive
predictions [265–267]. Furthermore, in classical GWAS each SNP is tested individually,
and SNP interactions such as epistasis cannot be captured [265].
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In order to overcome these challenges, in Chapter 5 a random forest (RF) feature selection
algorithm was applied to perform a machine learning-based GWAS. The idea of RF is to
grow multiple decision trees based on random subsets of observations that can help partition
the data into subsets of highest possible purity with respect to a variable outcome, that
is, the response variable [268]. In contrast to RF-based classification, where the RF model
is trained in order to predict a response variable for new observations, a random forest-based
feature selection is used to rank the importance of the input features and to identify the most
important ones with respect to the variable outcome. In the classical sense, this is used to
reduce the number of input features or attributes before training the RF classification model
in order to reduce complexity. In the case of GWAS, a RF-based feature selection can be
used to detect those features, i.e., SNPs, which are most important with respect to a variable
outcome, i.e., the phenotype [129].
The Boruta algorithm [179], an RF-based feature selection wrapper, adds so-called shadow
attributes, i.e., attributes derived from random permutations of features, to assess a SNP as
important only if its importance score is significantly higher than the maximum importance
of the shadow attributes. The pseudo-code for the Boruta algorithm is given in Algorithm 1
in Section 5.4.4. A major advantage of the Boruta algorithm compared to other RF algo-
rithms is that it is specifically suited for high-dimensional GWAS data where the number of
features (SNPs) is much higher than the number of observations (samples), which is a com-
mon feature of genotype data sets [269]. By applying the Boruta algorithm on 41,117 rape-
seed rSNPs, 2.7% of them (1141) were found to be significantly associated with oil-content
and -quality. These results, together with the transcriptomics results, provided important
insights in the causal interaction between rSNPs, TFs, and DEGs (Chapter 5).

7.1.4. Upstream Analysis to Identify Master Regulators

The level of gene expression, ideally measured during an RNA-seq experiment, provides in-
sights into gene expression patterns and differentially expressed genes, which are important
during a specific experimental condition such as a disease. The classical approaches consist
of identifying Gene Ontology (GO) categories or metabolic or signaling pathways enriched
among a set of DEGs in order to identify mechanisms or pathways in which the proteins
encoded by the DEGs are involved. These approaches can be referred to as "downstream
analyses" as they can help to unravel the mechanisms which are caused or triggered by the
differential gene expression [213]. In contrast, another strategy is the so-called "upstream
analysis" introduced by Koschmann et al. [213] that aims to identify the mechanisms caus-
ing the observed gene expression changes. This includes analyzing the promoter sequences
of a set of DEGs, identifying the TFs involved in transcriptional regulation, and revealing
the signaling pathways leading to the activation of these TFs [213]. In a final step, so-called
master regulators are identified, which can be described as key nodes or convergence points
within the complex regulatory networks of upstream pathways, which are mostly found at
the top of the regulatory hierarchy [207, 213].
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The algorithm used for detecting master regulators is part of the GeneXplain platform [214].
It requires as input a set of TFs or molecules and reconstructs upstream signaling pathways
that together form a complex network based on the GeneWays database [215]. Based on
this upstream network, using a shortest path algorithm, convergence points are identified as
master regulators affecting a high number of both input molecules and total molecules in
the network [213]. Those master regulators are usually found at the top of the regulatory
hierarchy and can simultaneously influence the expression of a complete set of genes. Orig-
inally, this method is used to identify novel drug targets based on a set of DEGs or multi
omics data [270].
In the avian influenza project (Chapter 6), the upstream analysis was applied to the chicken
data in a novel sense. That is, rather than using DEGs observed in chicken as the basis
for the upstream analysis, chicken orthologs of the DEGs observed in duck following AIV
infection were used. Assuming that the genes differentially expressed in the duck are impor-
tant for the duck’s effective immune response, I hypothesized that differential expression of
the corresponding chicken orthologs could elicit a successful immune response in chicken.
Therefore, I sought to identify the master regulators that activate differential expression of
chicken genes that were not differentially expressed in the living organism. Thus, this study
offers a novel application approach to upstream analysis and therefore provides interest-
ing and unexplored results. Nevertheless, it is crucial that the results of this analysis are
validated and supported with experimental data.

7.1.4.1. Applying the Upstream Analysis to Non-Human Species

One important aspect of the upstream analysis is its applicability to non-human species, in
this case to chicken and duck. In general, the GeneWays database is a pathway database
based on automatic text mining and is therefore principally not exclusively based on human
studies. In practice, however, most studies describing novel pathways or alternative paths
to existing ones are based on human, mouse, or corresponding cell lines. This creates
an imbalance in such databases towards human studies. Nevertheless, due to the lack of
species specific pathway databases and especially due to the lack of experimental data to
establish such databases, previous studies also used similar pathway databases to perform
an upstream analysis in different animal species [129, 210, 211, 271–273]. However, the
reduced applicability of such pathway databases to animal species increases the need to
experimentally validate the findings proposed in my studies.
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7.2. Biological Discussion

7.2.1. Regulatory Impact of Transcription Factors and rSNPs

TFs orchestrate the entirety of cellular processes leading to tissue development, tissue dif-
ferentiation or responses to the environment and, thus, act as natural master regulators in
higher organisms. By binding to the regulatory sequences, acting cooperatively as pairs
and complexes, they can orchestrate the gene transcription, which makes them promising
candidates as breeding targets to control complex traits in crop and animal breeding [146].
Mainly, but not exclusively, their binding is determined by sequence properties in the pro-
moter region. Hence, the identification and analysis of rSNPs which are located within
TFBSs and influence TF binding affinity is of major importance to identify candidate vari-
ants responsible for differential expression or even a specific phenotype.
However, the sequence alone and the binding sites it contains are not the only key to deci-
phering the regulatory mechanisms underlying an observed gene expression rate. In living
organisms, other factors can also influence the level of gene expression. One such very
important factor is the accessibility of chromatin, with DNA methylation, histone modi-
fication, and DNA structure in general being of great importance [274]. While the DNA
sequence forms the basis of TF binding in general, an actual binding event also depends on
the presence or absence of a particular TF, i.e., protein concentration or the presence or ab-
sence of other TFs that bind in a competitive or cooperative manner to the same or adjacent
binding sites [16, 17, 69]. In addition, TF binding is highly context specific and hence dif-
fers among cell-types or tissues, which cannot be explained by the genomic sequence alone
[13]. Apart from regulatory elements binding to the promoter region, other regulatory ele-
ments can be found in the transcribed region which can also regulate gene expression. For
example, microRNAs (miRNAs), which mostly bind to the 3’UTR, often target the mRNA
of TFs and inhibit their translation. In this regard, feedback regulation of miRNAs by their
own targets plays an important role, especially with respect to TF availability [19]. Further-
more, in plants there are so-called riboswitches, which are RNA elements in the untranslated
region that attract the binding of small molecules and, thus, regulate the transcription and
translation of the gene itself [275].
In higher organisms, TF binding often occurs in a complex interplay and includes coopera-
tion between proximal and distal regulatory elements (promoters and enhancers), by which
so-called chromatin loops are formed [68, 276]. These chromatin loops can also affect
the level of gene expression. However, their prediction is highly complex and still much
research is needed [276].
In the studies presented, I have mainly focused on the genomic sequences, more specifically
on the promoter regions and the rSNPs and TFBSs contained therein. For future work, the
investigation of further regulatory mechanisms underlying differential gene expression can
help to gain a more comprehensive understanding of the entirety of gene regulatory pro-
cesses. Nevertheless, this thesis and the herein contained studies can be seen as one further
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step leading towards the deciphering of differential gene expression underlying different
traits in animal and plant species.

7.2.2. The Distribution of rSNPs and SNPs around the TSS

In agReg-SNPdb and agReg-SNPdb-Plants, I provided a statistical overview of the data
stored in the databases (Sections 3.5.3 and 4.5.3). To gain a better insight into the distri-
bution of the rSNPs in the promoter regions, I investigated their genomic positions relative
to the transcription start sites (TSS). Interestingly, I observed different patterns which were
abundant in both animal as well as plant species. In several species such as barley, Asian
rice Japonica, maize, chicken, or sheep, I observed a pattern where the sequence is pro-
tected from variation in close proximity to the TSS, while the number of rSNPs increases
with increasing distance in the upstream direction [1, 3, 4, 13]. In contrast, I have observed
a different pattern in species such as Asian rice Indica, bread wheat, durum wheat, or cattle.
The number of rSNPs increases with downstream distance and tends to accumulate around
the TSS or in the direct downstream region (see Figure S4 of Chapter 3 and Figure S2 of
Chapter 4). Notably, this tendency is probably not based on the different characteristics of
promoter regions and rSNPs in different species, but rather just represents the differences
of the SNP data stored in Ensembl [94] or Ensembl Plants [119]. In Figures 7.1 and 7.2, I
show a comparison of distributions of (i) rSNPs and (ii) all SNPs around the TSS. It is evi-
dent that the distributions of rSNPs mainly reflect the distributions of SNPs in the promoter
regions. This observation shows that the data stored in public databases, such as Ensembl or
Ensembl Plants, can show completely different patterns for different species, which could
cause bias for specific analyses and should be used with caution in studies based on more
than one species.

7.2.3. Oil Content and Quality in Rapeseed

In Chapter 5, I performed a systematic analysis using multi-omics data (genomics, tran-
scriptomics, and proteomics) to investigate the complex interplay between rSNPs, TFs and
DEGs in B. napus. To date, the regulatory mechanisms and pathways controlling oil con-
tent and -quality in different rapeseed cultivars have not been deciphered [49, 58]. To this
end, I investigated a genomics and transcriptomics data set by Lu et al. [49] to assess the
genetic programs of two cultivars, namely (i) Zhongshuang11 (ZS11) characterized by a
double-low accession (00, low erucic acid and low glucosinolate) and a high oil content
and; (ii) Zhongyou821 (ZY821) with double-high accession (++, high erucic acid and high
glucosinolate) and low oil content.
In this study, I first applied the rSNP prediction pipeline developed in agReg-SNPdb and
agReg-SNPdb-Plants to the genomics data and identified a total of 41,117 rSNPs, predicted
to cause either a gain or loss of TFBS. This represents the first genome-wide collection of
rSNPs in B. napus and can be useful for scientists in order to interpret results from associa-
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(A) Distribution of rSNPs around the TSS in barley (B) Distribution of all SNPs around the TSS in barley
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Figure 7.1.: Distribution of rSNPs and all SNPs around the TSS of barley. (A) shows
the distribution of the distances between rSNPs and the TSS and (B) shows the distribution
of the distances between all SNPs and the TSS. The upper histograms show the number of
rSNPs/SNPs in the large promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals and the
enlargements show the number of rSNPs/SNPs in the proximal promoter region (−750 bp
to +250 bp) in 50 bp intervals.

tion analyses such as GWAS, gene expression experiments, expression QTL (eQTL) studies,
or population studies. By incorporating the phenotype, i.e., the cultivars with high or low
oil quality or -content, I identified a total of 1141 rSNPs, which are significantly associated
with the phenotype, herein referred to as important rSNPs. Using the transcriptomics data,
I identified 11,442, 3234, 4198, and 2318 DEGs in the tissues flower, leaf, stem, and root,
respectively, which were differentially expressed between the cultivars. By investigating
their promoter regions in terms of enriched TFBSs, I showed that members of the DOF,
MYB, NAC, GATA, or TCP TF-families were identified as being enriched exclusively for
a particular tissue, whereas the TFs of the bHLH or bZIP class and members of the BES1
family seem to play important regulatory roles in several tissues. A closer look at these
DEGs and the rSNPs located in their promoter regions, revealed that 5847 (flower), 1604
(leaf), 2174 (stem), and 1240 (root) rSNPs are harboring in the promoter regions of DEGs
and are potential regulators of expressed levels. Interestingly, I observed that approximately
50% of DEGs contain on average one rSNP within the promoter region and that 27% of im-
portant rSNPs are located within the promoter of a DEG. This supports the hypothesis that
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(A) Distribution of rSNPs around the TSS in cattle (B) Distribution of all SNPs around the TSS in cattle
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Figure 7.2.: Distribution of rSNPs and SNPs around the TSS of cattle. (A) shows the
distribution of the distances between rSNPs and the TSS and (B) shows the distribution of
the distances between all SNPs and the TSS. The upper histograms show the number of
rSNPs/SNPs in the large promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals and the
enlargements show the number of rSNPs/SNPs in the proximal promoter region (−750 bp
to +250 bp) in 50 bp intervals.

rSNPs might be important regulators of the gene expression observed in the two cultivars.
Finally, I studied the regulatory interplay between rSNPs, TFs and their corresponding
DEGs of interest by identifying DEGs harboring important rSNPs in their promoter re-
gion. I found several promising tissue-specific DEGs, such as the BnaLACS1-4 or the ECR
genes, whose regulation is likely to be influenced by the “Loss” or “Gain” of a TFBS caused
by important rSNPs. The TFs overlapping these important rSNPs provide a promising basis
for further investigation of their regulatory roles and underlying pathways that lead to the
differences between the two cultivars.
By investigating the tissues flower, leaf, stem and root, I assessed different vegetative and
floral tissues underlying the two cultivars. In addition, the seed tissue may be of great
importance in terms of its roles in fatty acid synthesis, transport, and accumulation. In a
follow-up study by Rajavel et al. (2021a) [120], we studied a time-series transcriptomics
data set to investigate the gene expression in the seed tissue of the same cultivars, ZS11 and
ZY821. By identifying monotonically expressed genes, which are monotonically expressed
either in ascending or descending patterns with time, we captured the multi-stage progres-



97 7.2. Biological Discussion

sion during seed development. In line with the results or TFBS enrichment in the tissues
flower, leaf, stem, and root, we have shown that members of TF families such as GATA,
DOF, NAC, or MYB are important regulators of genes with a monotonic expression pattern
in both cultivars in the seed tissue by forming TF cooperations [120].

7.2.4. Avian Influenza in Chicken and Duck

In Chapter 6, I investigated the mechanisms underlying the different immune responses in
chicken and duck after an infection with avian influenza. To date, the mechanisms respon-
sible for the susceptibility of chickens and the effective immune response of ducks are not
fully understood. To this end, I performed a systematic analysis to investigate the transcrip-
tional gene regulation underlying the disease progression in the two species and identified
upstream regulators, including TFs, their complex interplay, and master regulators.
For this purpose, I firstly compared the promoter regions of the two species in terms of TFBS
enrichment. The results suggest that there are large differences between the promoter re-
gions of orthologous genes of the two species in terms of TFBS enrichment (Section 6.5.1).
In particular, I identified promising TF families, which are important regulators in chicken
(TF families such as SMAD, IRF, and ETS) or in duck (TF families such as FOX, STAT,
and POU).
Although TF enrichment provides important insights, I investigated the specific partner
choices of TFs to unravel their complex interplay, which could be responsible for directing
the different immune responses after virus infection. Interestingly, the results indicate that,
while single, enriched TFs in the promoter regions are rather species-specific and differ
greatly between the species, the TF-TF cooperation networks of both species share many
common features and TF clusters seem to be preserved or classified by specific partner
alterations (see Section 6.5.2).
Subsequently, I applied a systems biology approach to identify common and species-
specific master regulators. I found promising master regulators of the duck DEGs for lung
and ileum tissues (RUNX2, SMAD3, SMAD4, and ETS1), which could be responsible for
the duck’s effective differential gene expression after viral infection. The duck master reg-
ulators represent important regulators to effectively controlling the virus replication in the
host, and hence, they can be seen as important targets in the chicken. Master regulators
that were identified for the chicken orthologous gene set are of particular importance in this
study (e.g., EGR1, FOS, SRF, and SP1). They represent regulators that could be important
for the effective regulation of gene expression after AIV infection, yet remain unsuccessful
in living organisms and they may be of particular interest for future studies as they could
switch on several pathways targeting the genes that are important to the successful allevia-
tion of HPAI infection.
As it is common in sequence-based in silico analyses, the identified master regulators do not
provide sufficient insight into the amount of proteins available in the living cells. For that
reason, I emphasize the need for experimental data to assess protein availability, as well as
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the roles of master regulators and pathways in living organisms. To the best of my knowl-
edge, there are no studies on altered immunity in chicken or duck after gene knockouts,
overexpression or mutations in the identified upstream pathways. Therefore, knock-out,
knock-in, or overexpression experiments in both chicken and duck would be of great inter-
est. While this is beyond our current capabilities, it would be an important objective for
future studies to investigate. Nevertheless, the identified upstream mechanisms, and in par-
ticular the master regulators, offer interesting starting points and could be considered in the
future as potential drug targets or biomarkers in chicken to reduce their susceptibility.

Similar to the study on rapeseed (Chapter 5), the investigation of rSNPs could provide
important insights into the regulatory mechanisms of the two species. However, while the
detection of rSNPs was rather straight-forward for the two rapeseed cultivars that share
one reference genome, it is not as straight-forward in two different species with different
reference genomes. In order to address this, I was involved in another study2, in which
we investigated the role of SNPs that are shared between chicken and duck at orthologous
positions, which can be referred to as coincident SNPs (coSNPs) [277]. In particular, we
investigated coSNPs in promoters of the duck DEGs, differentially expressed after avian
influenza infection, which were also investigated in this study (Chapter 6). Consequently,
we identified coSNPs which also have a regulatory role by affecting the binding affinity
of TFs. By comparing the effects on TF binding caused by coSNPs in both species, we
obtained novel insights into the different mechanisms underlying the gene expression after
AIV infection in chicken and duck. The results highlight the potential importance of the
TFs ASCL2, RAD21, SP1 and the TF families SMAD, PAX, FOX, E2F, IRF and STAT in
the regulation of immune response-related genes.

2Master’s thesis by Hendrik Bertram (see Impact in Section 1.1)
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In this chapter, I conclude my work and provide an outlook for future studies. This chapter
is partly based on the original publications [1–4].

The transcriptional regulation of gene expression in higher organisms is essential for various
biological processes, which are mainly governed by transcription factors and their combi-
natorial interplay. In contrast to the process of translation, the transcriptional machinery
and its regulatory mechanisms are far from being deciphered. TFs regulate the transcription
in a highly context-specific manner as a response to specific environmental conditions by
binding to the TFBSs in promoter regions of their target genes. Regulatory SNPs that are
located in TFBSs can lead to a change in the binding affinity of TFs and, in extreme cases,
even result in the disruption of a TFBS or the creation of a new TFBS.
In my first study (Chapter 3), I created agReg-SNPdb, a database storing genome-wide col-
lections of rSNPs for agricultural animal species. In this study, I developed the pipeline
to detect rSNPs and performed a literature survey to show that the obtained results are in
agreement with previous experimental and in silico studies. In order to ensure convenient
database search, I developed a website to query agReg-SNPdb by SNP IDs, chromosomal
regions, or genes. As an extension of agReg-SNPdb, I developed agReg-SNPdb-Plants
a database of regulatory SNPs for agriculturally important plant species (Chapter 4). To
the best of my knowledge, agReg-SNPdb and agReg-SNPdb-Plants are the first databases
of regulatory SNPs for animal and plant species of importance for agriculture and breed-
ing. The releases of the databases agReg-SNPdb and agReg-SNPdb-Plants are important
steps toward the understanding of gene regulation in the animal and plant sciences. Know-
ing whether a SNP causes a change in the binding affinity or even disrupts a TFBS or
creates a new TFBS can be of predominant importance for the interpretation of results
from, e.g., GWAS, gene expression experiments, eQTL analyses, or population studies.
The newly gained information can be used in genomic selection and marker establishment
by identifying possibly causal rSNPs and revealing the underlying regulatory mechanisms
of specific traits or diseases. With ongoing sequencing progress and genome annotations
for different species in Ensembl and Ensembl Plants, the databases should be updated and
extended regularly in the future.
In Chapter 5, I present a study on B. napus where I demonstrated the application of rSNPs
together with multi-omics data to perform a systematic analysis of the complex interplay
between rSNPs, TFs, and DEGs underlying oil content and -quality. As a result of this
analysis, I obtained: (i) a genome-wide collection of rSNPs; (ii) their significant association
with the B. napus cultivars differing in oil content; (iii) their consequences on TF binding;
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and (iv) the DEGs of four tissues (flower, leaf, stem, and root) whose expression could
be strongly affected by the occurrence of important rSNPs within their promoter regions.
In this systematic approach, I focused mainly on promoter regions, and, thus, my results
provide important insights into regulatory processes at the transcriptional level. For future
work, the investigation of further regulatory mechanisms underlying differential gene ex-
pression, as, e.g., post-transcriptional regulation such as microRNA binding or riboswitch
activity can help to gain a comprehensive understanding of the entirety of gene regulatory
processes. Nevertheless, my study can be seen as one further step leading towards the de-
ciphering of differential gene expression underlying the different B. napus cultivars and the
genome-wide collection of rSNPs provides a basis for upcoming studies on different traits
in B. napus.
In the final study (Chapter 6), I investigated the transcriptional gene regulation controlling
the expression of genes induced by an infection with avian influenza in chicken and duck.
For this purpose, I identified upstream regulators, including TFs, their complex interplay,
and master regulators, which could stimulate an effective immune response in ducks fol-
lowing viral infection, while being dysfunctional in chicken. I found promising master
regulators of duck genes in lung and ileum, which could be responsible for the duck’s effec-
tive differential gene expression in response to HPAI infection. Master regulators that were
identified for the chicken orthologous gene set represent regulators that could be important
for the effective regulation of gene expression after AIV infection, but do not act or are not
present in living organisms. In particular, these master regulators could be interesting tar-
gets for future studies, since they could switch on several pathways targeting the genes that
are important to the successful alleviation of HPAI infection. Based on these results, I em-
phasize the need for experimental data to assess the protein availability, as well as the roles
of master regulators and pathways in living organisms. In this regard, knock-out, knock-in,
or overexpression experiments in both chicken and duck would be of great interest. While
this is beyond our current capabilities, it would be an important objective for future studies.





9. List of Abbreviations 102

9. List of Abbreviations

AIV avian influenza virus

AP activator protein

APOA2 apolipoprotein (apo-) A-II

bHLH basic/helix-loop-helix

bp base pairs

coSNP coincident SNP

CSS core similarity score

DB database

DEG differentially expressed gene

DNA deoxyribonucleic acid

dpi days post infection

ECR trans-2,3-enoyl-CoA reductase

eQTL expression quantitative trait locus

FABP4 fatty acid-binding protein 4

FDR false discovery rate

FOX forkhead box

GO Gene Ontology

GWAS genome-wide association study

HOX homeobox

IAV influenza A virus

IFITM interferon-induced transmembrane protein

IFN interferon

IRF interferon regulatory factor

ISG interferon-stimulated gene

JAK Janus–kinase

kb kilobase

LACS long-chain Acyl-CoA synthetase

LD linkage disequilibrium

LFC log2 fold change

LGB β -Lactoglobulin
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LPAI high pathogenic avian influenza

LPAI low pathogenic avian influenza

MAF minor allele frequency

MEF2 myocyte enhancer factor 2

miRNA microRNA

mRNA messenger RNA

MSS matrix similarity score

NF-1 nuclear factor 1

NGS next-generation sequencing

PAX paired box factor

PIT-1 pituitary transcription factor 1

PRL prolactin

PWM position weight matrix

QTL quantitative trait locus

RF random forest

RLR RIG-I-like receptor

RNA ribonucleic acid

RNA-seq RNA-sequencing

rSNP regulatory SNP

SNP single nucleotide polymorphism

SP specificity protein

SQL Structured Query Language

SRF serum response factor

STAT signal transducer and activator of transcription

TAG triacylglycerol

TF transcription factor

TFBS transcription factor binding site

TSS transcription start site

UTR untranslated region

VEP Variant Effect Predictor

VLCFA very-long-chain fatty acids

ZNF zinc finger protein

ZS11 Zhongshuang11

ZS11 Zhongyou821
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[47] C. Zuo, S. Shin, and S. Keleş, “atSNP: transcription factor binding affinity test-
ing for regulatory SNP detection”, Bioinformatics, vol. 31, no. 20, pp. 3353–3355,
2015.

[48] H. Pagès, “BSgenome: Infrastructure for Biostrings-based genome data packages
and support for efficient SNP representation”, R package, 2016.

[49] K. Lu et al., “Whole-genome resequencing reveals Brassica napus origin and ge-
netic loci involved in its improvement”, Nature communications, vol. 10, no. 1,
p. 1154, 2019.

[50] B. Chalhoub et al., “Early allopolyploid evolution in the post-Neolithic Brassica
napus oilseed genome”, science, vol. 345, no. 6199, pp. 950–953, 2014.

[51] N. Lohani, D. Jain, M. B. Singh, and P. L. Bhalla, “Engineering Multiple Abiotic
Stress Tolerance in Canola, Brassica napus”, Frontiers in Plant Science, vol. 11,
p. 3, 2020.

[52] W. Friedt and R. Snowdon, “Oilseed Rape”, in Oil Crops, Springer New York, 2009,
pp. 91–126.

[53] H. Becker, Pflanzenzüchtung. UTB GmbH, 2019.



109 Bibliography

[54] R. Snowdon, W. Lühs, and W. Friedt, “Oilseed rape”, in Oilseeds, Springer, 2007,
pp. 55–114.

[55] G. Wu, Y. Wu, L. Xiao, X. Li, and C. Lu, “Zero erucic acid trait of rapeseed (Bras-
sica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1
gene”, Theoretical and Applied Genetics, vol. 116, no. 4, pp. 491–499, 2008.

[56] S. V. Hatzig, J.-N. Nuppenau, R. J. Snowdon, and S. V. Schießl, “Drought stress has
transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica
napus L.)”, BMC plant biology, vol. 18, no. 1, p. 297, 2018.

[57] M. Gupta, P. B. Bhaskar, S. Sriram, and P.-H. Wang, “Integration of omics ap-
proaches to understand oil/protein content during seed development in oilseed
crops”, Plant cell reports, vol. 36, no. 5, pp. 637–652, 2017.

[58] G. K. Agrawal and R. Rakwal, Seed development: OMICS technologies toward im-
provement of seed quality and crop yield. Springer, Netherlands, 2012.

[59] J. Smith et al., “A comparative analysis of host responses to avian influenza infec-
tion in ducks and chickens highlights a role for the interferon-induced transmem-
brane proteins in viral resistance”, BMC genomics, vol. 16, no. 1, pp. 1–19, 2015.

[60] D. E. Swayne, Avian influenza. John Wiley & Sons, 2009.

[61] World Health Organization (WHO), Cumulative number of confirmed human cases
for avian influenza A(H5N1) reported to WHO, 2003-2020, https://www.who.int/
publications/m/item/cumulative-number-of-confirmed-human-cases- for-avian-
influenza-a(h5n1)- reported- to-who-2003-2022-27- june-2022, Accessed: 2022-
August-19, 2022.

[62] D. Evseev and K. E. Magor, “Innate immune responses to avian influenza viruses
in ducks and chickens”, Veterinary sciences, vol. 6, no. 1, p. 5, 2019.

[63] P. B. Ranaware et al., “Genome wide host gene expression analysis in chicken lungs
infected with avian influenza viruses”, PLOS ONE, vol. 11, no. 4, 2016.

[64] M. R. Barber, J. R. Aldridge Jr, R. G. Webster, and K. E. Magor, “Association of
RIG-I with innate immunity of ducks to influenza”, Proceedings of the National
Academy of Sciences, vol. 107, no. 13, pp. 5913–5918, 2010.

[65] M. R. Barber, J. R. Aldridge Jr, X. Fleming-Canepa, Y.-D. Wang, R. G. Webster,
and K. E. Magor, “Identification of avian RIG-I responsive genes during influenza
infection”, Molecular immunology, vol. 54, no. 1, pp. 89–97, 2013.

[66] F. Y. Looi et al., “Creating disease resistant chickens: A viable solution to avian
influenza?”, Viruses, vol. 10, no. 10, p. 561, 2018.

https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2022-27-june-2022
https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2022-27-june-2022
https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2022-27-june-2022


Bibliography 110

[67] J. M. Franco-Zorrilla, I. López-Vidriero, J. L. Carrasco, M. Godoy, P. Vera, and R.
Solano, “DNA-binding specificities of plant transcription factors and their potential
to define target genes”, Proceedings of the National Academy of Sciences, vol. 111,
no. 6, pp. 2367–2372, 2014.

[68] L. Steuernagel, C. Meckbach, F. Heinrich, S. Zeidler, A. O. Schmitt, and M. Gültas,
“Computational identification of tissue-specific transcription factor cooperation in
ten cattle tissues”, PLOS ONE, vol. 14, no. 5, e0216475, 2019.

[69] C. Meckbach, E. Wingender, and M. Gültas, “Removing background co-
occurrences of transcription factor binding sites greatly improves the prediction of
specific transcription factor cooperations”, Frontiers in genetics, vol. 9, 2018.

[70] B. J. Hayes and H. D. Daetwyler, “1000 Bull Genomes project to map simple and
complex genetic traits in cattle: applications and outcomes”, Annual review of ani-
mal biosciences, vol. 7, pp. 89–102, 2019.

[71] A. O. Schmitt, J. Aßmus, R. H. Bortfeldt, and G. A. Brockmann, “CandiSNPer: a
web tool for the identification of candidate SNPs for causal variants”, Bioinformat-
ics, vol. 26, no. 7, pp. 969–970, 2010.

[72] S. J. Goodswen, C. Gondro, N. S. Watson-Haigh, and H. N. Kadarmideen, “Funct-
SNP: an R package to link SNPs to functional knowledge and dbAutoMaker: a suite
of Perl scripts to build SNP databases”, BMC bioinformatics, vol. 11, no. 1, p. 311,
2010.

[73] T. Günther, A. O. Schmitt, R. H. Bortfeldt, A. Hinney, J. Hebebrand, and G. A.
Brockmann, “Where in the genome are significant single nucleotide polymorphisms
from genome-wide association studies located?”, Omics: a journal of integrative
biology, vol. 15, no. 7-8, pp. 507–512, 2011.

[74] L. Guo and J. Wang, “rSNPBase 3.0: an updated database of SNP-related regulatory
elements, element-gene pairs and SNP-based gene regulatory networks”, Nucleic
acids research, vol. 46, no. D1, pp. D1111–D1116, 2017.

[75] G. Macintyre, J. Bailey, I. Haviv, and A. Kowalczyk, “is-rSNP: a novel technique
for in silico regulatory SNP detection”, Bioinformatics, vol. 26, no. 18, pp. i524–
i530, 2010.

[76] N. E. Buroker, “VEGFA rSNPs, transcriptional factor binding sites and human dis-
ease”, The Journal of Physiological Sciences, vol. 64, no. 1, pp. 73–76, 2014.

[77] M. De Gobbi et al., “A regulatory SNP causes a human genetic disease by creating
a new transcriptional promoter”, Science, vol. 312, no. 5777, pp. 1215–1217, 2006.

[78] S. F. Grant, D. M. Reid, G. Blake, R. Herd, I. Fogelman, and S. H. Ralston, “Re-
duced bone density and osteoporosis associated with a polymorphic Sp1 binding
site in the collagen type I α 1 gene”, Nature genetics, vol. 14, no. 2, p. 203, 1996.



111 Bibliography

[79] M. D. Littlejohn et al., “Sequence-based association analysis reveals an MGST1
eQTL with pleiotropic effects on bovine milk composition”, Scientific Reports,
vol. 6, no. 1, pp. 1–14, 2016.

[80] M. Muhaghegh-Dolatabady, “Single Nucleotide Polymorphism in the Promoter Re-
gion of Bovine Interleukin 8 Gene and its Association with Milk Production Traits
and Somatic Cell Score of Holstein Cattle in Iran”, Iranian Journal of Biotechnol-
ogy, vol. 12, no. 3, pp. 36–41, 2014.

[81] H. Matsumoto, T. Nogi, I. Tabuchi, K. Oyama, H. Mannen, and S. Sasazaki, “The
SNPs in the promoter regions of the bovine FADS2 and FABP4 genes are associated
with beef quality traits”, Livestock Science, vol. 163, pp. 34–40, 2014.

[82] P. A. Alexandre et al., “Bovine NR1I3 gene polymorphisms and its association with
feed efficiency traits in Nellore cattle”, Meta gene, vol. 2, pp. 206–217, 2014.

[83] C. Kühn et al., “Evidence for multiple alleles at the DGAT1 locus better explains
a quantitative trait locus with major effect on milk fat content in cattle”, Genetics,
vol. 167, no. 4, pp. 1873–1881, 2004.

[84] L. Ordovas et al., “The g.763G>C SNP of the bovine FASN gene affects its pro-
moter activity via Sp-mediated regulation: implications for the bovine lactating
mammary gland”, Physiological genomics, vol. 34, no. 2, pp. 144–148, 2008.

[85] M. T. Ryan et al., “SNP variation in the promoter of the PRKAG3 gene and associ-
ation with meat quality traits in pig”, BMC genetics, vol. 13, no. 1, p. 66, 2012.
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