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Part I

I N T R O D U C T I O N





1
O U T L I N E

Physical science is that department of knowledge which relates to the
order of nature, or, in other words, to the regular succession of events.

— James Clerk Maxwell [1]

Although this definition or other similar definitions of physics are often
understood as only being concerned about abstract phenomena and
non-living matter, Maxwell also had “more complex phenomena” of
“living” systems in mind [1]. Indeed, the field of complex systems draws
from this broader notion of physics that tries to find and understand
“regular[ity]” in a “succession of events”; it uses the analytical methods of
conventional physics to try to make sense of any kind of complex system:
be it the brain, an ecosystem, or even society [2]. In this thesis, we use
the mindset and tools of physics and complex systems to approach a
real-life problem that has affected and still affects the global population:
the COVID-19 pandemic.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, pre-
sented a global crisis affecting every facet of human life (e.g [3]). Miti-
gating the spread of COVID-19 has required a multi-faceted approach,
encompassing not only pharmaceutical and medical aspects but also non-
pharmaceutical interventions (NPIs) (e.g. [4]). Various NPIs have been
implemented worldwide, such as wearing masks, physical distancing,
and even stay-at-home orders (e.g. [5, 6]).

However, the interplay between the disease spread, mitigation mea-
sures, and changes in human behavior caused non-linear dynamics that
made it difficult to determine the sufficient scale of mitigation measures
beforehand. An example concerns the NPI of testing, contact tracing,
and isolating (TTI). TTI contributes to mitigation of the spread. How-
ever, at higher incidence, tracing capacities at public health offices may
be reached, making TTI less effective. If incidence is already rising,
the rise will become steeper, making TTI even less effective. Thereby,
regaining control of the spread then requires even more measures than it
does when TTI works at peak effectiveness. Hence, looking at TTI from
a complex systems point-of-view and understanding the TTI capacity
limit as a tipping point facilitates determining a sufficient set of NPIs
[7].
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4 outline

In this thesis, we elaborate on further such examples where (i) the
complex systems approach can be helpful in understanding the complex
dynamics of disease spread, measures, and behaviour in a pandemic as
well as (ii) the implications for mitigating the spread of the disease.

In chapter 2, we first explain some important complex systems con-
cepts and tools that we use in our examples, ranging from stability and
feedback loops in dynamical systems theory and compartmental models
based on ordinary differential equations.

In chapter 3, we get an understanding of which dynamics and variables
play crucial roles in the COVID-19 pandemic in Europe. As physicists,
contributing to such a trans-disciplinary endeavour requires getting input
from experts of other fields to identify the variables of the complex
system in question first and then prioritise which ones to include in
the analyses. Hence, we systematically consult with such experts to
identify important problems and mechanisms that motivate the following
chapters.

In chapter 4, we consider the situation in Europe in early 2021,
when NPIs were implemented and vaccines had just become available.
However, the roll-out of vaccination programs takes time, leaving a
time window where health systems would still be fully vulnerable to the
spread of the disease. To prevent a full overwhelming of hospitals, how
much longer would it be necessary to keep NPIs implemented? And
to what extent? What would be the direct damages to public health
depending on the choice? We attempt to answer these questions using a
set of delay differential equations and a proportional-derivative control
approach.

In chapter 5, we turn to the winter of 2021/2021. Especially due
to the emergence of the Omicron variant of concern, it was again
important to understand the extent of necessary NPIs. To approach this
problem, we now do not only consider changes in the population’s health
protective behaviour due to mandatory measures but also voluntary
behaviour changes. Depending on the current severity of the disease
spread and, e.g., the corresponding risk perception, the population
might go beyond what is required of them in terms of, e.g., physical
distancing, or decide to get vaccinated even if they were hesitant before.
This feedback would eventually cause the spread to decrease again and
in turn cause a decrease in risk perception. Thus, we receive a feedback
loop, whose impact we investigate in multiple NPI scenarios to find
that a moderate level of NPIs can protect health systems due to the
population’s self-regulation of behaviour.
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In chapter 6, we investigate the impact of a large-scale public event
on the COVID-19 pandemic in Europe: the football Euro 2020 champi-
onship. Using Bayesian inference, we quantify the number of additional
COVID-19 cases due to social gatherings around the matches in the
different countries and determine which starting conditions lead to fewer
additional cases.

In chapter 7, we use some of the resulting insights of the previous chap-
ters about the benefits of low incidence to formulate recommendations
for policy.

In chapter 8, we provide an overarching discussion of our and other
work to draw lessons for pandemic response and an outlook for further
research.

In chapter 9, we conclude by clarifying the role of research such as
this for understanding and taking action against pandemics.





2
B A C K G R O U N D

2.1 stability in dynamical systems

The dynamics of systems can be studied by formulating mathematical
models, often in the form of coupled differential equations. Analyzing
these models reveals important dynamic phenomena. For a dynamical
system described by, e.g., autonomous ordinary differential equations of
the form

dx
dt

= f(x), (2.1)

fix(ed) points or equilibria are values x∗ where the system’s state does
not change, i.e.

dx
dt

= f(x∗) = 0. (2.2)

To characterise such equilibria, the concept of stability is important
[8]. Here, we are especially concerned about local stability, which refers
to how a dynamical system responds to small perturbations of its
current state. A locally stable system, i.e. a system in a locally stable
equilibrium, will return to the equilibrium after a small perturbation,
while an unstable system will diverge away from it. More formally, a
fixed point or equilibrium is locally stable if for any ϵ > 0, there exists
a δ > 0 such that if

||x(0) − x∗|| < δ, (2.3)

then

||x(t) − x∗|| < ϵ ∀t ≥ 0. (2.4)

Basically, staying near x∗ initially means staying near it at all future
times. If the equilibrium is locally stable, and it also holds that

||x(t) − x∗|| → 0 (2.5)

as t → ∞, it is called locally asymptotically stable. This means that not
only will the system stay at the fixed point, but it will also converge to
it from any of point of a certain vicinity, called the basin of attraction.
The fixed point is then also called an attractor [8].

7
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From the perspective of linear stability analysis, the local stability of
fixed points is determined by the eigenvalues λi of the Jacobian matrix
J = ∂f

∂x |x=x∗ . A fixed point is

• locally stable if real(λi) ≤ 0 ∀i,

• locally asymptotically stable if real(λi) < 0 ∀i,

• and unstable if real(λi) > 0 for any i.

In the case of locally asymptotic stability, complex eigenvalues allow
oscillatory convergence towards the attractor [8].

2.2 compartmental models of disease spread

2.2.1 The SIR model

The basis for the mathematical models in chapter 4, chapter 5, and
chapter 6 that describe the spread of COVID-19 in the population
is the class of so-called compartmental models. It refers to a special
case of a more general mathematical theory of infectious disease spread
established in 1927 [9].

Compartmental models divide the population of size N into compart-
ments, with each compartment representing people being in a specific
stage of the disease. The most basic compartmental model is the SIR
model, which consists of three compartments: susceptible to being
infected with the pathogen causing the disease (S), infected (I), and re-
covered from the disease (R) (Figure 2.1). Between these compartments,
people can transition with specific rates and mechanisms, governed by
a set of ordinary differential equations with respect to time t [10]:

dS

dt
= −βSI/N , (2.6)

dI

dt
= βSI/N − γI, (2.7)

dR

dt
= γI, (2.8)

where β is the effective contact rate (i.e., the number of contacts per
person per time multiplied by the probability of disease transmission in
a contact between a susceptible and an infectious subject), and γ is the
recovery rate (i.e., the proportion of infected individuals who recover
from the disease per unit of time).

The first equation signifies the rate of change of susceptible individuals
in the population. It shows that the number of susceptible individuals
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Figure 2.1: SIR model. In a compartmental model such as this one, individuals of a
population transition between the compartments with certain transition
rates and mechanisms.

decreases over time at a rate proportional to the number of susceptible
individuals, the number of infected individuals, and the effective contact
rate. This decrease in susceptible people is reflected in an equivalent
increase in infected people in the second equation. However, the number
of infected also decreases at a constant recovery rate, increasing the
number of recovered in the third equation.

As N = S + I +R is constant, the first two differential equations are
sufficient to describe the system. It is easy to see that the system has
a trivial fixed point (S∗, I∗) = (N , 0). In epidemiological terms, this
represents a disease-free equilibrium. As explained in Section 2.1, the
corresponding Jacobian matrix

J =


0 −β

0 β − γ


 (2.9)

can tell us about the local stability of the equilibrium. For a two-
dimensional matrix, the eigenvalues are negative iff the trace is negative
and the determinant is positive, and non-positive iff the trace is non-
positive and the determinant non-negative. As the trace tr(J) = β − γ

and the determinant det(J) = 0, we can deduce that the disease-free
equilibrium is locally stable if β ≤ γ and unstable otherwise. This means
that if β ≤ γ, an introduction of a few infected individuals into the
population will not cause an outbreak and vice versa.

2.2.2 Reproduction numbers

To further determine the dynamics of a compartmental model, we want
to analyse an outbreak in a completely susceptible population from a
different perspective. At the beginning of an outbreak, it holds that
S ≈ N . This leads to the further simplified equation

dI

dt
= (β − γ)I (2.10)

with the solution

I(t) = I0 exp ((β − γ)t), (2.11)
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Figure 2.2: SIR-Dynamics. The recovery rate is set to γ = 0.1 for every simulation.
The effective contact rate β is varied to receive different basic reproduction
numbers R0 = β/γ. A: At the beginning of an outbreak, R0 is able
to describe the evolution of the infected compartment I. For R0 > 1
there is exponential growth. At the phase transition R0 = 1, the number
of infected stays constant. For R0 < 1 there is exponential decay. B:
For R0 > 1, the number of infected individuals peaks when the number
of susceptible individuals S reaches Scrit. C: In general, the dynamics
are governed by the effective reproduction number Reff that is close to
R0 when most of the population is susceptible, but decreases as the
susceptible compartment becomes smaller. D: When Reff is larger than
one, the number of infected increases. When it falls under one, the number
of infected decreases.

with the initial number of infected people I0.
The initial growth rate can be rewritten as

β − γ = γ(R0 − 1), (2.12)

introducing the basic reproduction number R0 = β
γ . This number essen-

tially describes the average number of individuals an infected individual
infects until immunity and determines where the phase transitions of the
system occur. Equivalent to the linear stability analysis above, if R0 > 1,
there is an exponential increase in infected individuals (Figure 2.2A, B,
dark red line). If R0 < 1, the number of infected will decrease exponen-
tially (Figure 2.2A, medium red line). Lastly, if R0 = 1, the number of
infected will be constant because every infected individual infect exactly
one other individual [10] (Figure 2.2A, light red line).
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However, once the approximation S ≈ N does not hold anymore,
it becomes necessary to consider that not every potential interaction
of an infected individual is with a susceptible person. Only S

N of all
contacts will be potentially contagious. Hence, one defines the effective
reproduction number

Reff = R0
S

N
, (2.13)

whose values govern the dynamics analogously to R0 (Figure 2.2C, D).
I.e. when the critical value of Reff = 1 is reached, the number of infected
will peak [10] (Figure 2.2B, D). It is easy to determine the number of
susceptible at this point:

Reff = R0
S

N
!
= 1 ⇒ Scrit =

N

R0
. (2.14)

Although this simple model can perform quite well in describing the
beginning of an outbreak (e.g. [11]), it is often not able to represent the
further course of an outbreak (e.g. [12]). To correctly interpret insights
from analysing and using this model it is therefore important to be
aware of the underlying (simplifying) assumptions, e.g., [9, 10]:

• The term βSI suggests that the population ’mixes perfectly’, i.e.
it is assumed that any member of the population has an equal
chance to meet any other member of the population.

• The population is homogeneous, i.e. every individual has the same
effective contact rate β and the same recovery rate γ.

• The transition rates β and γ are constant factors. This implies that,
e.g., the behaviour of the population stays the same throughout
the outbreak.

• Recovered individuals become immune to reinfections and there
is no waning of this immunity.

• Vital dynamics, i.e. births and deaths due to other reasons, happen
on a longer time-scale than the infectious disease dynamics and
are therefore negligible.

However, the SIR model can be further extended and modified to
represent scenarios where the model assumptions do not hold or more
complex mechanisms, such as recovery or vital dynamics, need to be
considered. This can be achieved by including more or different com-
partments and modelling more (non-linear) transitions, which we did
in chapter 4, chapter 5 and chapter 6. It is important to note here,



12 background

Figure 2.3: SIRS model. Compared to the SIR model, the immunity of recovered
individuals wanes over time.

however, that more details to a model do not necessarily make it better:
the more degrees of freedom the more difficult it becomes to understand
the dynamics of the system. More mechanisms will also need more data
to validate them. In the end, one should use a model that is only as
complex as necessary for the research question at hand.

2.3 feedback loops in dynamical systems

2.3.1 Positive and negative feedback loops

An example of the type of modifications to compartmental models is
the introduction of feedback loops. They are fundamental mechanisms
that govern the behavior of many dynamical systems, from biological
systems (e.g. [13]), climate systems (e.g. [14]), to social (e.g. [15]) and
economic systems (e.g. [16]). A feedback loop occurs when the output of
a system is used as its own input. There are two main types of feedback
loops: positive feedback loops and negative feedback loops [13].

In a positive feedback loop, the output of a system is amplified, leading
to further increase in the output. This can result in exponential growth
(e.g. [17]) or other forms of system instability (e.g. [18]). We have already
encountered positive feedback loops in the SIR model (Equation 2.6):
The exponential growth of infected I for R0 > 1 at the beginning of an
outbreak stems from infected people causing more infections through
dI
dt ∝ I, which cause even more infections (Figure 2.2A, dark red line).

Negative feedback loops, on the other hand, serve to stabilize the
system. In these loops, an increase in output leads to mechanisms that
reduce that output [19]. In the context of the SIR model, we get a
negative feedback loop if R0 < 1: The infected people recover more
quickly than they are able to infect others, resulting in fewer infected,
and so on (Figure 2.2A, light red line).
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2.3.2 Waning immunity and the SIRS model

The SIR model also entails another negative feedback: Rising infection
numbers reduce the susceptible compartment and thereby result in fewer
further infections. Ultimately, this negative feedback counteracts the
discussed positive feedback loop and stabilises the system in the form
of ending the spread of the disease (Figure 2.2B). However, if recovered
do not stay immune indefinitely but their immunity wanes with rate ω,
the negative feedback is cancelled out and the dynamics change. We
can derive this using an SIR model with waning immunity, also called
SIRS model [10] (Figure 2.3):

dS

dt
= −βSI/N + ωR, (2.15)

dI

dt
= βSI/N − γI, (2.16)

dR

dt
= γI − ωR. (2.17)

As the population size N = S + I + R is assumed constant, the system
of ordinary differential questions reduces to

dS

dt
= −βSI/N + ω(N − S − I), (2.18)

dI

dt
= βSI/N − γI. (2.19)

This system has a non-trivial fixed point if R0 > 1 (Figure 2.4):

dS

dt
= −βSI/N + ω(N − S − I)

!
= 0, (2.20)

dI

dt
= βSI/N − γI

!
= 0 (2.21)

⇒ (S̄, Ī) =

(
γ

β
,
ω(N − γ

β )

ω + γ
N

)
. (2.22)

This fixed point is locally asymptotically stable because the correspond-
ing Jacobi matrix


−βĪ/N − ω −βS̄/N − ω

βĪ/N 0


 (2.23)

has a negative trace and a positive determinant. In epidemiological
terms, we get an endemic state [10].

Waning immunity also plays a crucial role in chapter 5. However, due
to other feedbacks and phenomena in that model, there is no endemic
equilibrium but multiple waves of infections.
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Figure 2.4: Endemic state in the SIRS model. Including waning immunity in
the SIR model, introduces a positive feedback causes the initial outbreak
to stabilise into a state with non-zero fraction of infections. The fix point
(S̄, Ī) is locally asymptotically stable.

In general, feedbacks and feedback loops, particularly when they inter-
act, can give rise to complex dynamics: ranging from multi-stability (e.g.
[19]), to oscillations (e.g. [20]), to chaos (e.g. [21]). Hence, understanding
these feedback mechanisms is crucial in understanding the behavior of
the system as a whole. In chapter 5, the feedback loop between disease
spread and human behaviour is analysed in detail.

2.4 pid control

Feedback loops can also be actively introduced into systems to control
or stabilise the output and outcome. Proportional-integral-derivative
(PID) control is one of the most widely used feedback control algorithms
in the field of control systems. In essence, PID control adjusts the inputs
to a system based on the difference between the desired and actual
output u, known as the error signal e [22] (Figure 2.5A).

The proportional term up in PID control responds to the present
error. The controller output is proportional to the current error, with
the proportionality constant being the gain kp [22]:

up(t) = kp e(t). (2.24)

The higher the gain, the stronger the response to error. However, high
gains can cause the system to become unstable. If the gain is too low,
the system may stabilise with a residual steady-state error (Figure 2.5B,
light purple line).
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Figure 2.5: PID control. A: Schematic overview of the PID control feedback loop.
B: Effects of the PID components. Without PID control, the example
system produces constantly increasing output. The proportional feedback
P brings the system close to the set value, but stabilises with an off-set
(light purple line). Adding the integral feedback I removes this off-set,
but causes oscillations (medium purple line). Adding the derivative term
D dampens these oscillations (dark purple line).

The integral term ui can eliminate this error by responding to past
errors. It integrates the error over time, which means it is sensitive to
how long the error has persisted. Its gain is denoted by ki [22]:

ui(t) = ki

∫ t

e(t′) dt′. (2.25)

However, a strong integral gain causes the control to lag behind, leading
to oscillations (Figure 2.5B, medium purple line).

The derivative term ud can dampen these oscillations by predicting
future errors based on the current rate of change of the error and being
proactive in response (Figure 2.5B, dark purple line). It is characterized
by the derivative gain kd [22]:

ud(t) = kd
d

dt
e(t). (2.26)

Together they make up the total control input

u(t) = up(t) + ui(t) + ud(t). (2.27)

How does a PID control feedback loop affect the dynamics of an
SIR model? For illustration, we imagine a scenario where the fraction
of infected should stabilise around some set point Iset through the
implementation and lifting of non-pharmaceutical interventions. To
model these interventions with PID control, we understand the difference
of the current number of infections to the set point as the error e(t)

and add the control term u(t) to the differential equation for I(t)

(Equation 2.6). For certain parameter choices, we observe dampened
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Figure 2.6: PID control in an SIR model. A: Incorporating PID control in a
compartmental model can lead to dampened oscillations towards some
chosen set point Iset. B: However, if Iset is chosen low enough, the PID
control will end the outbreak. Here, Iset

N = 0.01 is chosen, which is also
the initial fraction of infected.

oscillations around the set point (Figure 2.6A). If Iset is chosen small
enough, there are no oscillations, but a forced end of the outbreak
(Figure 2.6B). Different parameter choices can also lead to reoccurring
outbreaks or reaching of the set value without oscillations [23]. In
chapter 4, we use PD control in a more complex setting to model the
implementation of non-pharmaceutical interventions to limit the number
of patients in intensive care units.
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A B S T R A C T

How will the coronavirus disease 2019 (COVID-19) pandemic develop in the coming months and years?
Based on an expert survey, we examine key aspects that are likely to influence the COVID-19 pandemic in
Europe. The challenges and developments will strongly depend on the progress of national and global vacci-
nation programs, the emergence and spread of variants of concern (VOCs), and public responses to non-phar-
maceutical interventions (NPIs). In the short term, many people remain unvaccinated, VOCs continue to
emerge and spread, and mobility and population mixing are expected to increase. Therefore, lifting restric-
tions too much and too early risk another damaging wave. This challenge remains despite the reduced oppor-
tunities for transmission given vaccination progress and reduced indoor mixing in summer 2021. In autumn
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2021, increased indoor activity might accelerate the spread again, whilst a necessary reintroduction of NPIs
might be too slow. The incidence may strongly rise again, possibly filling intensive care units, if vaccination
levels are not high enough. A moderate, adaptive level of NPIs will thus remain necessary. These epidemio-
logical aspects combined with economic, social, and health-related consequences provide a more holistic
perspective on the future of the COVID-19 pandemic.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Delphi study
group forecast
non-pharmaceutical interventions
variants of concern
Europe
policy advice

1. Introduction

More than a year after the World Health Organization declared
the coronavirus disease 2019 (COVID-19) a Public Health Emergency
of International Concern, Europe continues to struggle with it.
Although future developments are highly uncertain, we aim to pro-
vide (a) a systematic assessment of the factors that will affect the
course of the COVID-19 pandemic in Europe, and (b) a tentative fore-
cast of how the pandemic may evolve prior to coming to an end in
Europe. We chose a method inspired by the Delphi method of fore-
casting [1] as the most suitable way to elicit expert opinions about
key developments and themes regarding the COVID-19 pandemic.
The facilitators developed questionnaires with open-ended questions
and asked scientists from various European countries, disciplines,
and research fields, to provide their input and predictions. As the
guiding questionnaires were focussed on epidemiology, virology,
public health, and social science, some other important perspectives,
such as those of clinical medicine, economics, and the humanities,
are not covered in great detail (see SI). Here we set out the results of
the expert consultation—outlining salient commonalities and diver-
gent responses. Of necessity, this paper represents a partial synthesis
of the rich and diverse contributions, and not all authors necessarily
agree in detail with every single statement.

We first summarize insights on three critical factors that shape
the development of the epidemic: population immunity and vaccina-
tion, variants of concern (VOCs), and public responses to pandemic
policy. Second, we present scenarios based on the available knowl-
edge as of April 2021 for three distinct time periods: for (a) summer
2021, (b) autumn and winter 2021, and (c) for a period of 3�5 years
from spring 2021. For the latter period, we give a high-level overview
of the consequences of the COVID-19 pandemic for health, society,
and the economy. In the last section, we elaborate in more detail on
central topics mentioned in the main text: long-term strategy, vacci-
nation coverage, organization of mass vaccinations, waning immu-
nity, evolution of the virus, improving adherence, airborne
transmission, and One Health. We hope that the insights of our syn-
thesis will serve as a scientific basis for policy debates by generating
a comprehensive overview of key considerations in moving beyond
the pandemic, while informing other foresight studies.

2. Key factors determining the course of the pandemic

Our starting point is the situation as of spring 2021. During the
COVID-19 waves in winter 2020�2021, many European countries
experienced high numbers of infections that, in some places, over-
whelmed hospitals. This was partly due to insufficient ICU capacity in
some countries [2]. Delayed responses and lower effectiveness of
non-pharmaceutical interventions (NPIs) compared to the first wave
also played a part [3]. Even countries that have had relatively few
cases and a low death toll until then were hit severely in the winter.
As of early 2021, Europe is experiencing another surge in cases,
which appears to have peaked in April 2021. The emergence and
severity of these waves has varied greatly across Europe (see Figs. 1
and 2). The future development of the pandemic will also likely be
heterogeneous. In the following sections we focus on three key fac-
tors that contribute to this heterogeneity.

2.1. Population immunity and vaccination

Population immunity (also referred to as herd immunity)
describes a situation in which enough people in the population are
immune to a pathogen, such that it is not able to spread widely
(WHO, 2020a). The proportion of immune people in the population
needed to reach population immunity in a given country is mainly
driven by the infectivity of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) and the ability of either past natural infection
or vaccines to reduce transmission [4]. Models that assume basic
reproduction numbers of 2.5�3.5 have previously estimated that
transmission-blocking immunity of 60�72% of the population is
required in the case of SARS-CoV-2 [5,6]. This figure is higher for
more transmissible variants. Therefore a minimum immunization
level of 80% of the entire population is likely to be required [7,8]. This
figure would be difficult to achieve with vaccination alone if vaccines
are not fully protective against infection or prevent onward transmis-
sion. Furthermore, immunization needs to be homogeneous across all
population groups, otherwise pockets of transmission can prevail. To
achieve this goal, one might consider mandatory vaccinations - the
effectiveness of which remains contested, as vaccination uptake
depends on a complex interplay of different factors [9,10]. A 2016
systematic review found that mandatory childhood vaccination poli-
cies were associated with improved uptake [11], a finding supported
by later experience in Italy [12,13]. However, there are many legal,
ethical, cultural, and technical issues involved and it has been argued
that it should only be considered when all other reasons for low
uptake, such as accessibility, have been addressed and the decision
should take account of the particular context and the risk of unin-
tended consequences [9,14-17]. In any case, for the short term it is
more important to distribute available vaccines to locations where
they are most needed [18].

One contribution to population immunity comes from so-called
natural immunity, as a result of prior infection with SARS-CoV-2 and
potentially by cross-immunity due to prior exposure to other corona-
viruses [19,20]. The fraction of those who are naturally immune in
the population varies widely between European countries. However,
in all countries the majority of the population remained susceptible
to infection [21].

In individuals who have had a SARS-CoV-2 infection, antibodies
have been shown to persist for up to nine months after infection [22].
About 95% of people retain immune memory at six months after
infection [23-25]. This indicates that the likelihood of reinfection and
severe disease progression is low in this time frame, but reinfection
is still possible [26-28].

The second, major, contributor to population immunity is vaccina-
tion. The first vaccines are, as of April 2021, licensed for use in adults
and the vaccines appear to reduce infections by varying amounts,
typically in the 80�90% range for mRNA vaccines (after two doses)
[29-31] and potentially lower for others [32,33]. Vaccines are, how-
ever, still likely to reduce transmissibility even if breakthrough infec-
tion occurs [34]. Importantly, they seem especially likely to prevent
severe symptoms and hospitalization, reaching relative risk reduc-
tions of about 70�95% [30,32,35-37]. The progress of vaccination pro-
grams is continuing in Europe (see Fig. 3) [38].

The chances of achieving high vaccination coverage depend on a
multitude of factors including political leadership, trust in public
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health and other public authorities, access to and eligibility for vac-
cines, and vaccine acceptance. The last is especially crucial. As of April
2021, acceptance is lower for the non-mRNA-vaccines with lower
reported efficacies. Repeatedly changing policy recommendations
and constant media coverage further unsettled people, especially
after evidence of possible links to rare adverse, sometimes fatal, side-
effects emerged mid-rollout for the AZD1222 (AstraZeneca) and
Ad26.COV2.S (Johnson & Johnson) vaccines [39,40]. Among older
people and the most vulnerable, who have been receiving the vaccine
in the initial phase, vaccine uptake has been generally high [41,42]. In
younger age groups, willingness to get vaccinated appears lower
[43,44]—in France, only about 40% of the working age population cur-
rently plan to accept a vaccine [45]. Moreover, vaccine uptake in the
groups of healthcare workers is rather disconcerting in some coun-
tries—e.g., Belgium and France—has been low [46-48]. However, per-
ception of increasing vaccine uptake might motivate those who are
hesitant [49]. To conclude, the issue of vaccine uptake presents an
ever-changing situation [50].

2.2. Variants of concern

VOCs are so called because they harbour certain mutations that
have consequences for SARS-CoV-2 pathogenicity. Existing and
newly emerging SARS-CoV-2 VOCs are challenging because,

compared to the original variant, they may increase transmissibility
or severity, prolong the duration of the infectious period, shorten the
duration of post-infection immunity, or escape host immune
responses to natural infection or to vaccines. They could also affect
diagnostic testing accuracy, the spectrum of detectable symptoms,
and therapeutic management. The frequency and the spectrum of
variants of SARS-CoV-2 will depend on functional constraints and
evolutionary pressure.

The Alpha (B.1.1.7) variant, which was first detected in the
United Kingdom, demonstrated enhanced transmissibility [51,52], a
longer duration of acute infection [53], a higher hospitalization rate
[54], and probably a higher infection fatality rate than previously
circulating variants [51,55-57]. The Beta (B.1.351) variant, which
was first detected in South Africa, exhibits higher transmissibility
[58], while the impact on disease severity of this variant remains
uncertain as of April 2021 [59]. The Beta and Gamma (P.1) variants,
the latter originated in Brazil, seem to partially evade the immune
response of previously infected individuals [26,60]. In Europe, the
Alpha variant became the dominant variant in December/January
2020 in, e.g., the UK, Ireland and Portugal, and in February/March
2021 in, e.g., France and Germany [61]. In contrast, the Beta and
Gamma variants have not become widely distributed in Europe so
far. The Delta (B.1.617.2) variant appears to be more transmissible
than previous strains [62].

Fig. 1. Comparison of the COVID-19 pandemic in all countries of the WHO European Region (except for Turkey and Turkmenistan, as there was no appropriate data available in the
data set). Countries are ordered from top to bottom with a decreasing cumulative number of COVID-19 related deaths per million people. The y-axis scale of the ridgeline plots is
the same for all countries for reported deaths and incidence, respectively. Even though reported numbers are associated with wide uncertainty, the differences between countries
and waves are evident. Data source: https://corona-api.com (Accessed: June 28, 2021).
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There is uncertainty about the efficacy of available vaccines in
relation to VOCs. Current vaccines appear to be effective against
Alpha [29,31]. However, there is some evidence that the efficacy of
some vaccines might be reduced for Beta, Gamma, and Delta [32,62-
64]. It remains unclear to which degree this is the case, and how
much the protection against severe courses of disease might be
affected.

The more infections are present in the human population, the
higher the rate of mutation. This can lead to selection for VOCs with
transmission advantage or, in places with high rates of natural or vac-
cinal immunity, VOCs with escape mutations. In countries without
well established genetic surveillance, this may permit uncontrolled
spread. In this case, vaccines will need to be updated to protect
against these new VOCs, with the consequent requirements to gain
approval, be manufactured, and distributed anew. However, the
more widespread infections are, the more mutations will occur that
could end up with an evolutionary advantage. Consequently, the best
safeguard is to reduce transmission. Only after sufficient global vacci-
nation coverage will the mutation rate decrease due to lower viral
spread in the post-pandemic phase [8].

2.3. Public responses to pandemic policy

As long as population immunity has not been reached, maintain-
ing appropriate and widely accepted levels of NPIs to mitigate the
spread remains crucial [65,66]. When there is a rise in infections,
NPIs must be reimplemented or strengthened; the earlier this is
done, the more effective it is [67]. However, the resoluteness and
timeliness with which NPIs are being implemented and remain in
place depends on leadership and public opinion [68]. Moreover, the

higher the efficacy of NPIs the more the public accept and support
them [69].

As of spring 2021, pandemic policies are not being received well
in many parts of Europe [70]. A range of factors likely contribute to
this, including continued high economic [71-73] and psychological
burdens [74-79], inadequate risk communication [80-83], the lack of
transparent long-term strategies from governments [68], increasing
vaccination coverage (see Fig. 3) and a general erosion of trust [84-
88]. All this results in lower adherence to rules and recommendations
for mitigating the spread of SARS-CoV-2 compared to the first wave
[70,89].

The effectiveness of rules and recommendations depends on the
ability and willingness of the population to adhere to them [81].
Adherence in the past year has varied from country to country. In
some countries, adherence was initially quite high in general [89-93].
In others, there have been strong protests against measures, some-
times resulting in their relaxation [94-96]. In general, voluntary
adherence will be more likely if the necessity for and strategy behind
instituted measures is communicated clearly and systematically, and
if interpersonal trust and public trust in government is higher [70,97-
100]. However, if COVID-19-induced morbidity and mortality reaches
levels that societies deem intolerable, acceptance of NPIs rises again
[70]

Given these key factors underlying the future evolution of the
pandemic, we can consider what to expect in the future, beginning
with the summer of 2021.

3. The perspective for the summer of 2021

Summer 2021 is likely to bring some relief in Europe as people
spend more time outside [101], vaccination proceeds, and control

Fig. 2. Comparison of the COVID-19 pandemic in a selection of European countries grouped by geographical proximity. Many differences in reported incidence, reported deaths and
excess mortality can be observed. Even though reported numbers are associated with wide uncertainty, the differences between countries and waves are evident. Data sources:
https://ourworldindata.org/covid-cases and https://ourworldindata.org/excess-mortality-covid (Accessed: June 29, 2021).
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strategies improve, e.g., via improved availability and variety of test-
ing technology [102]. The expected relief might be compromised if
the combination of natural immunity and vaccination coverage is
low and relaxation of NPIs is not managed carefully. Furthermore,
increased international travel will increase the risk of importing any
VOCs that emerge from outside of Europe, and the risk of circulating
any VOCs that emerge from within the continent across European
nations. If VOCs with an ability to evade immune responses emerge,
NPIs may need to be reinstated or strengthened even in populations
where relatively high levels of immunity have been achieved. A com-
mon European goal to keep infection levels low and to internationally
coordinate close surveillance of incidence and viral genomes, espe-
cially of infected international travelers, would help to reduce the
risk of emergence of VOCs [103].

Once vaccination coverage is deemed sufficiently high by decision
makers, countries might come under further pressure to ease meas-
ures again. With (most) risk groups vaccinated first, there will be a
lower fraction of severe illnesses and deaths related to COVID-19 in
the population. Consequently, a lower burden on healthcare systems
is also expected. However, some individuals at risk might not (yet)
have been vaccinated, protection by vaccination is not perfect and
may wane over time, and unvaccinated and possibly some vaccinated
people will continue to transmit. This makes it unlikely that restric-
tions can be lifted completely without risking another larger wave.
Another wave would result in increased morbidity and mortality of
unvaccinated people, or in general those to whom the vaccines did
not confer protection [104]. With vaccine strategies first targeting
older people, a wave in summer would predominantly hit relatively
younger age groups. It would also further strain exhausted healthcare
personnel and healthcare systems now functioning beyond capacity
for protracted periods of time. Hence, certain mitigation strategies
will need to remain in place in an adaptive manner [105]. When con-
sidering retaining NPIs, countries might also take the opportunity to
achieve low case numbers as, with increasing immunization, the con-
tainment of COVID-19 is facilitated. In a situation of low case num-
bers, an effective test-trace-and-isolate (TTI) system, supported by
digital contact tracing apps, further facilitates epidemic control [106].
In such a regime, only a few NPIs, such as wearing (FFP2) masks or
basic hygiene measures, might have to stay in place.

To summarise, in the summer of 2021, countries could still be
faced with overwhelmed intensive care units and ongoing strict
imposition of NPIs. This is a consequence of the limits of the vaccines
available, inadequate vaccination coverage, increased mobility across
borders and regions, and the possibility of escape variants. However,
if a country succeeds in maintaining low case numbers and slows

down the influx and spread of any new VOC with sound epidemiolog-
ical surveillance and reactive measures, then moderately strict NPIs
similar to those in summer 2020, or potentially even fewer restric-
tions, may be possible. The exact extent of NPIs that are necessary to
prevent an overburdening of health systems regionally depends on
various factors, such as the characteristics of prevalent VOCs and vac-
cination coverage. A full lifting of all restrictions (e.g., for large indoor
gatherings), however, is unlikely to be possible in summer 2021
without risking further outbreaks.

4. The perspective for the autumn and winter of 2021

What can be expected in the autumn and winter of 2021 depends
substantially on what happens in the summer; specifically, the suc-
cess of vaccination programs both in Europe and worldwide, and the
emergence and spread of (new) VOCs. Compared to the summer,
autumn and winter bring the additional complication of unfavorable
seasonal effects.

The seasonality of coronaviruses is expected to increase infections
in the autumn and winter months [101,107,108], with increased
indoor contacts [109]. Additionally, other seasonal viruses, such as
influenza and respiratory syncytial virus, could cause more pressure
on health services than in 2020. Since there might be fewer restric-
tions, and possibly lower-than-usual levels of population immunity
because one season of transmission was “skipped”, these other sea-
sonal viruses are likely to circulate in greater numbers than in 2020
[110,111]. Overall, the transition to autumn and winter could be
problematic because restrictions might have to be tightened again to
prevent a rapid rise in case numbers. Based on experiences in several
European states in autumn and winter 2020-2021, there is a risk that
reintroduction of the necessary public health measures may come
too late to succeed in preventing another wave in autumn. It will be
the task of governments not to repeat these mistakes.

In the best-case scenario, vaccination efforts will have been suffi-
cient to drive down case and fatality numbers substantially, allowing
for an almost complete lifting of restrictions. Although vaccination of
children aged 12 years and over might have started by this point
[112], other groups which have yet to be vaccinated might still suffer
from relatively high incidence rates. As the oldest and most vulnera-
ble population groups at highest risk of death from COVID-19 have
been prioritised for vaccination, the overall fatality rate in the popu-
lation and the health burden imposed by SARS-CoV-2 will decline.
Hence, the perception of the remaining danger might be low: more
than 10% of infected individuals are expected to suffer long-term

Fig. 3. Vaccination progress in Europe. a. Fraction of the population having received at least one dose of COVID-19 vaccines in Europe as of June 26, 2021. There are large differences
in vaccination coverage. b. Reported incidence (lines) and reached vaccination milestones (triangles) since the start of vaccination programs. Data source: https://ourworldindata.
org/covid-vaccinations (Accessed: June 29, 2021).
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sequelae of COVID-19 (“long-COVID”) - symptoms of which can
include shortness of breath, fatigue, and muscle weakness [113-117].

Assuming increased international mobility due to, in particular,
high vaccination coverage, a potential outbreak of a new VOC in one
country may spread quickly to others. Without rapid intervention,
increased mobility may result in simultaneous outbreaks across
countries and regions - potentially putting healthcare systems under
high pressure. In light of this danger, a joint effort of all European
countries to prevent the emergence and circulation of VOCs seems
crucial [118,119].

In short, countries with good access to vaccines and high vaccine
uptake can, at worst, expect only modest waves of COVID-19 over
the winter when maintaining moderate NPIs (e.g. no large indoor
gatherings, face masks, physical distancing, good ventilation, and
hygiene). In contrast, countries that have a lower level of vaccination
coverage will experience more severe waves unless appropriate NPIs
are implemented. Any new VOCs might challenge a successful mitiga-
tion or containment strategy, and in case of increased mobility, they
are likely to spread quickly.

5. The perspective for the coming 3�5 years

For the coming three to five years, the central questions are: Will
we leave the pandemic behind? And if we do—when and how? To
what degree will COVID-19 continue to play a role? Regarding the
direct health impact of COVID-19, it is possible that it could become a
disease that a child will encounter at a young age [120], acquiring a
mild infection similar to contracting other coronaviruses. The time
scale for this shift is uncertain. Early childhood exposure and recov-
ery may help the immune system to protect the individual, should
they encounter the virus again later in life, and should prevent them
from experiencing severe symptoms. On the other hand, SARS-CoV-2
(and more so new VOCs) is more infectious and lethal than the
known endemic human coronaviruses, and there is the continued
risk of long-COVID. Similarities to Chikungunya suggest that long-
COVID may become a great burden [121]. However, relief might
come from new and improved post-exposure therapeutic options,
such as antiviral medication and monoclonal antibodies [122]. Hence,
there is mixed evidence whether SARS-CoV-2 will remain a serious
threat to health in the long-term.

It is unclear whether eradication of SARS-CoV-2, i.e., a global
reduction to zero incidence of infection [123], can be achieved. Global
mass vaccination programs might only provide imperfect immunity
to some individuals and will usually not reach certain subpopula-
tions, leaving pockets of susceptibility. Transmissions within these
subpopulations, the high proportion of asymptomatic COVID-19
infections, and waning of post-infection and vaccine-induced immu-
nity could maintain the circulation of the virus in the global popula-
tion. Even if eliminated in humans, the multitude of documented
non-human hosts [124-127] suggest the virus could remain circulat-
ing with ongoing risks of infection of and potential further spread
between susceptible human hosts. Furthermore, the virus could
mutate within human or non-human hosts to escape immune
response, potentially requiring repeated booster vaccinations. In any
case, eradicating SARS-CoV-2 would require global political commit-
ment and unified and uniform public assent that eradication is the
overarching target. With the smallpox virus, the only virus able to
infect humans to have been eradicated, a targeted and globally con-
certed approach over decades was necessary [128,129], with a partic-
ular focus also on reaching deprived populations [130].

Elimination, meaning here a temporary reduction to zero inci-
dence of infection in one region or country through deliberate and
continued measures, has been achieved in a small number of coun-
tries; e.g., Australia, China, New Zealand, Singapore, and Vietnam.
With widespread vaccination, others may try to follow as elimination
strategies can offer advantages over mitigation or suppression

strategies with continued virus circulation [131]. Assuming that chil-
dren will also be vaccinated, some of these countries might achieve
high enough vaccine uptake to sustainably prevent local transmis-
sion. In other countries where immunity in the population is insuffi-
cient or too heterogeneous for elimination, SARS-CoV-2 is expected
to remain prevalent at a comparatively low level, with recurring local
and seasonal outbreaks [120,132]. In the absence of eradication, epi-
demiological surveillance (and TTI) will need to remain in place and
be further improved [53]. The level of immunity in the population
will prevent widespread morbidity and mortality, but a significant
danger might remain for unvaccinated vulnerable people [4]. A key
societal question will be which level of such risk is deemed accept-
able when balancing other societal goals.

Finally, Europe faces numerous indirect long-term impacts of the
pandemic. Without intending to present a complete list, the conse-
quences include:

Health: During the past year there has been a direct impact on
healthcare services in regular care, particularly for patients with
chronic conditions [133-135]. This includes reduced access to pri-
mary care [136], cancellation of elective medical and surgical pro-
cedures [137], and disruptions to screening programs [138,139].
Potential suboptimal healthcare provision for non-communicable
diseases might cause a progression of chronic diseases and compli-
cations of acute diseases. At-risk populations not sufficiently cov-
ered by screening programs might now develop serious disease
within a 3- to 5-year period. Hence, further health- and economic
burdens (increased sick days, decreased workforce, lost productiv-
ity, and increased healthcare costs) might be experienced by some
countries due to the rise in the prevalence of non-communicable
diseases [140]. With potentially increasing investment into pan-
demic preparedness, there is a risk of cuts in other public health
sectors, aggravating the effects on prevention and chronic disease
control. Additionally, the enormous consequences for mental
health during this pandemic, especially in young people [75,79],
healthcare workers [141], and individuals already suffering from
social disadvantage and discrimination [142-145], will have a pro-
tracted effect. Whilst the consequences do not appear to extend to
higher suicide rates [146], there is the need to redirect services
and ensure sound mental health and social care support to the
population.

Economy: Although many facets of the economy in some wealthy
countries may soon recover [71], others will struggle to overcome
the economic crisis. The tourism industry has suffered gravely,
endangering livelihoods and economies in countries that depend on
it; and driving a widening divide between Northern and Southern
Europe [147]. The cultural sector has also been hit economically by
the pandemic [148-151]. Public debt has been growing, and this
poses a risk to financial stability - especially in countries more
strongly hit by the pandemic. Increasing digitalization, and remote
and flexible work plans, will potentially change employment [152].
Meanwhile, the legislative and regulatory frameworks for these new
forms of work, along with supporting mechanisms (e.g., for sound
occupational health), are lagging behind.

Society: Inequalities have been exacerbated because of this pan-
demic [144,153,154]. This extends well beyond health inequalities
[155] to gender [156,157] and educational [158] inequalities. Many
children have missed out on extended periods of face-to-face educa-
tion, as well as general social interaction. At the same time, there has
been further erosion of trust between citizens and states through a
widening of the socioeconomic gap [145,159-161]. These two factors
present a threat to social cohesion and might cause social unrest in
the years to come. Furthermore, the narrative of “outside threats”
and “secure borders” in discussions about the virus might contribute
to the intensification of pre-existing nationalistic and sometimes
overtly xenophobic, social and political discourses [162]. The weak-
ened cultural sector might further be challenged by long-lasting
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gathering restrictions, eliminating many platforms where communi-
ties could approach and engage with these issues. Moreover, a lot of
progress on the Sustainable Development Goals, in particular on pov-
erty reduction, will be reversed [163].

Even if the rate of new infections eventually significantly
decreases, the health-related, economic and social damages of the
pandemic will be felt for a long time.

6. The way forward

We can conclude that COVID-19 will continue to pose many chal-
lenges over the coming years. The economic, cultural, and health con-
sequences of the pandemic are already immense and societies may
need a long time to recover. The increasing availability of vaccines
will bring significant relief over the next months, but if not accompa-
nied with comprehensive strategies and public support they alone
will not protect from further damaging outbreaks in the coming
years. Limited uptake of vaccines and declining public adherence to
NPIs impede the way out of the pandemic and in the worst case new
VOCs can render current vaccines less effective.

The eradication, i.e. the complete global elimination, of SARS-CoV-
2 seems unlikely. However, even if eradication cannot be achieved,
strategies that aim to locally eliminate SARS-CoV-2 might be effective
in some settings. If achieved, local elimination offers clear advantages
over mitigation or suppression with continued virus circulation, at
least until sufficient protection against severe symptoms is granted
in the population. A successful strategy for elimination or suppres-
sion of SARS-CoV-2 would require a political commitment, unified
and uniform public assent that elimination or the goal of low case
numbers is the overarching target. To achieve said target, a clear, evi-
dence-informed, and context-relevant strategy, as well as concerted
efforts and actioning are crucial. Countries committing to that strat-
egy would need to have (a) rapid vaccination programs across age
groups, (b) sufficient NPIs that may only be lifted if the susceptible
population at risk is small, (c) close communication between policy-
makers and a wide range of experts to weigh the societal costs and
benefits of measures against each other, (d) mitigation of virus influx
from regions with higher incidence, and (e) sufficient public health
infrastructure. This infrastructure entails basic public health resour-
ces, well-trained personnel of sufficient number, well-functioning
TTI systems, widespread sequencing of the virus variants, and well-
established molecular surveillance mechanisms. International coordi-
nation and cooperation on all these points and on continued develop-
ment of new drugs and vaccines (also for potential new VOCs) is
essential.

In line with the Sustainable Development Goals, healthy lives
should be a global common good and initiatives like COVID-19 Vac-
cines Global Access (COVAX) should receive more support. Support of
low- and middle-income countries by high-income countries is not
only crucial to mitigate VOCs, but is mandated by the principle of sol-
idarity [103,164,165]. In the long-term, a global One Health approach
to pandemic preparedness and control is crucial - respecting the
interdependence of humans, animals, and the environment [166].

7. Discussion of parameters, strategies and their context

The following presents more detailed elaborations of some of the
aspects discussed in the preceeding sections and a summary of
important additional topics. For a more comprehensive narrative in
each of these sections there is, inevitably, some overlap with previous
text.

7.1. Long-term strategy

To minimize the damage caused by the COVID-19 pandemic, a
long-term strategy set on a common, global and overarching goal is

required. By communicating a common goal that societies are work-
ing towards and by clearly formulating the reasoning behind the
implementation of measures, they will be perceived as less arbitrary
[77]. Such a strategy must be comprehensible and based on scientific
evidence not only from epidemiology, but from a wide range of disci-
plines. Communication between politicians and experts for transpar-
ent, evidence-informed policymaking and comprehensive
systematically updated context-relevant risk communication strate-
gies is crucial. However, to be comprehensible a strategy also needs
consistent concepts that are perceived as both understandable and
fair. Hence, and vitally, any strategy needs to be underpinned by con-
siderations of justice and (global) inequalities. The more comprehen-
sible and fairer such models of pandemic management are, the more
people will be willing to support more extensive interventions in
their everyday life [83]. This also includes showing that not all popu-
lation groups are affected by the pandemic in the same way.

Specifics of the strategy will necessarily vary locally and also
change over time in the face of more data about (a) the virus, particu-
larly current and newly-emerging VOCs, (b) the development of vac-
cines and treatments, and (c) the harms accrued to individuals,
communities, and societies through restrictions. Any strategy needs
to balance the damage of being harmed by the virus against the dam-
age by the measures to contain it. This will shift in response to the
vaccination progress. Thus, it would be problematic if governments
became fixed upon a specific strategy and remained committed to it
regardless of new evidence and circumstances.

Any strategy should not simply be developed by politicians and
imposed on the public: such impactful strategies should, as far as
possible, be based on societal consensus, although recognising that
some politicians may base their views purely on ideological premises.
Moreover, measures are much more likely to be successful if they are
developed through a process of co-production with those who must
implement them and who are most affected [167].

7.2. Vaccination coverage

7.2.1. When will sufficient vaccination coverage be reached?
Vaccination programs are progressing in Europe (see Fig. 3) [38].

The chances of achieving high vaccination coverage depend on politi-
cal leadership, access to vaccines and concerns and anxieties in rela-
tion to vaccination [168]. The latter especially differs from country to
country [169]. At present, with mostly the eldest and most vulnerable
receiving the vaccine, vaccine uptake has been generally high [41,42].
In the younger groups, willingness to be vaccinated is lower [43,44],
limiting the final average uptake. In some countries, only about 40%
of the adult population currently plan to accept the offer of vaccina-
tion [45]. Moreover, it is concerning that, in some countries, there is
significant vaccine hesitancy among healthcare workers [46,47].
However, perception of increasing vaccine uptake might motivate
those who are hesitant [49].

If the aim is to reach population immunity, children will have to
be vaccinated as well, because the required level of immunization for
population immunity likely cannot be reached otherwise. If not
immunized, infections in children might become central for an
annual autumn or winter epidemic. High incidence in children also
poses the risk that the virus may spread to vulnerable individuals in
the general population with waning immunity. Children are likely to
become eligible for vaccination in 2021 [112]. However, parental per-
spectives on and ethical considerations around childhood vaccination
may pose significant challenges [170].

As of April 2021, vaccination programs in many countries have
slowed down. Repeatedly changing policy recommendations and
constant media coverage seem to have unsettled many people, after
evidence of rare adverse, sometimes fatal, side-effects emerged mid-
rollout for the AZD1222 (AstraZeneca) and Ad26.COV2.S (Johnson &
Johnson) vaccines [39,40]. Likely because of this, some people rather
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prefer to wait for a vaccine of their choice. At a later stage, increasing
vaccination coverage and successful control of the pandemic may
decrease the willingness to get vaccinated at all because the per-
ceived risk of unwanted severe side-effects of vaccination might
exceed the risk of contracting the disease [171]. This can be seen
with other potentially-lethal infectious diseases. Once those who can
and want to be vaccinated have been done, significant efforts may be
required to encourage further people to become vaccinated. This
would ideally be achieved through a coherent risk-communication
strategy to effectively address the ‘infodemic’ and limit and address
the circulation of inaccurate or misleading information about vac-
cines.

Despite these challenges, it is to be expected that most high-
income countries will finish their first round of vaccination this year,
whereas sufficient vaccination coverage in many low- and middle-
income countries will take considerably longer. Widespread vaccine
nationalism [172], underfunding [173] and patent laws [172] make
the COVAX initiative function sub-optimally. With the current vac-
cines and manufacturing capacities, sufficient coverage for achieving
population immunity in the poorest countries is not expected to hap-
pen before 2023. Thus, the production and global distribution of the
vaccines must be increased massively and rapidly. Potential escape
variants, arising from poorly controlled viral spread in countries
without adequate vaccine access, or waning immunity might necessi-
tate repeated vaccinations, further slowing down the process of
global vaccination.

7.2.2. Measures during vaccination rollout
Without careful containment and test-trace-isolate measures, the

population remains vulnerable to COVID-19 during the rollout of vac-
cination programmes. A lack of appropriate caution in the relaxation
of restrictions will lead to high morbidity, with risk of long-COVID,
and mortality. High incidence also favors the emergence of new var-
iants, which can threaten the success of the vaccinations. However,
there is an increasing pressure to ease measures as a larger fraction
of the population has been vaccinated. As can be observed in the
example of Chile, this can have grave consequences [174]. All public
health policy responses to these demands should thus be well consid-
ered.

Immunity certificates or passports to enable the return to normal
life for vaccinated, tested, or recovered people have been considered
or introduced in some regions [175,176]. These have significant ethi-
cal and social issues associated with them. The rules for any use of
such immunity certificates (or similar) will have to be openly and
thoroughly discussed regarding their immunological and ethical con-
sequences, specifically in the light of escape variants and restricted
availability of vaccinations [177]. The distinction between vaccinated
and not (yet) being vaccinated could become another engine of
inequality.

Furthermore, there is a need to reconsider the core metric for
measuring the state of the epidemic: namely, incidence. Incidence
denotes the number of positively-tested COVID-19 cases during a
certain time interval normalized to the population. Many discussions
or rules for implementing or lifting NPIs are guided by incidence
thresholds. However, if more and more people become vaccinated,
the infections will concentrate only in those groups of the population
that are still susceptible, i.e., younger people. In this case, a low inci-
dence would still mean a large number of cases in younger age
groups.

For example, an incidence of 50 per million people per day could
initially mean that 0�005% of under 30-year-olds were infected each
day. If we then assume that a third of the population were under
30 years of age and the rest of the population was completely immu-
nized, the same incidence would mean that 0�015%, thus three times
more, of under 30-year-olds were infected each day. This incidence

in the total population would then correspond to a three-fold higher
incidence in those under 30 years old.

Keeping incidence thresholds for tightening and loosening meas-
ures as they are now will therefore put younger people more at risk,
further burdening a group that has been severely affected by the pan-
demic, psychologically [75,79,178], economically [178], and educa-
tionally [178,179]. On the other hand, younger people tend to be less
risk-averse [180] and may be willing to take the risk in exchange for
more individual freedom. Moreover, with increased vaccination
among the elderly, the same incidence means a lower burden on hos-
pitals and lower deaths. This means that current incidence thresholds
would at a later stage correspond to lower risks to healthcare systems
than they do now. A last aspect to consider on the matter of incidence
is that the total incidence remains a rough measure of how well con-
tact tracing can work, even after vaccination. As the feasibility of con-
tact tracing should be a main factor for deciding incidence thresholds
[106], this would be an argument against changing the thresholds.
Nevertheless, this issue will need to be openly discussed with
involvement of all stakeholders.

7.3. Digital health systems and operations research to organize mass
vaccinations

The delivery of vaccines and medical accessories involves complex
supply chains, and the fragility of mRNA vaccines, which require a
very good low-temperature cold chain, and may have to be stored at
-20° to -80°Celsius, further complicates planning and logistics [181].
Countries with successful early vaccination programs during the
COVID-19 pandemic, such as Israel and the United Kingdom, have
benefited from an early start of mass vaccination and a steady vaccine
supply:

Israel stands out for its national digital health network and elec-
tronic medical record system, which covers all citizens and can be
accessed by all health management organizations (HMOs) in the
country. The HMOs are independent and compete for members with
a mix of public and private health care services, but a tight regulation
and hierarchical structure in combination with the interconnected
digital network allows the HMOs to implement a national health
operation efficiently. Furthermore, organizational and logistic frame-
works to facilitate the cooperation between government, hospitals
and emergency care providers are well-established, and operations
and health policy research, as well as digital health concepts are used
to improve healthcare procedures [181,182]. A detailed review of
these and other factors which contributed to Israel’s successful vacci-
nation program has been provided by Balicer and Afek [183].

Digital health systems also played a key role in the British vaccina-
tion program. As part of the prior operations research planning, opti-
mal locations of vaccination centers were computationally estimated
in a manner that ensured that every citizen could reach the nearest
center within 10 miles from home [184]. For the supply chain man-
agement, a data analytics company was contracted to create a com-
prehensive supply database for vaccines, accessories and equipment
[185]. The system also integrates information on trained staff for the
vaccinations, non-identifiable patient data, and required materials in
order to help prevent delays. Additionally, it provides up-to-date
progress reports on vaccinations to the NHS to facilitate close moni-
toring. Further elements of the vaccination program that may have
contributed to the early success in the UK have been discussed more
comprehensively in a recent article by Baraniuk [186].

Overall, many of the tools and strategies used in Israel and the UK
in the areas of digital health management and analytics, as well as
operations research, are transferable to other countries. Their deploy-
ment could help to increase the efficiency of vaccine delivery in set-
tings with interdependent supply constraints.
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7.4. Engineering controls to reduce airborne transmission

There is unequivocal evidence that airborne spread is the domi-
nant route of spread for SARS-CoV-2. Studies on human behaviors,
practices and interactions in choir meetings, slaughterhouses, gyms
and care homes have presented evidence consistent with airborne
spread of SARS-CoV-2 [187]. Long-range transmission between peo-
ple in adjacent rooms but never in each other’s presence has been
documented in quarantine hotels [188]. Healthy building controls,
such as better ventilation and enhanced filtration, are a fundamen-
tal—but often overlooked—part of risk reduction strategies that could
have benefits beyond the current pandemic [189].

Steps should be taken to ensure good ventilation in populated
buildings to mitigate aerosol transmission. Priority should be given
to spaces where ventilation is absent or inadequate, where there are
several people in close proximity or for extended periods of time and
those where infectious persons are more likely to be present. Opti-
mizing natural ventilation by opening windows, increased air
exchange in small rooms with low ceiling heights, scaling up the ven-
tilation in high-occupant-density situations or in locations where
masks are not worn all of the time are suggested [109]. Improving on
this can become a global challenge since significant additional
resources, not directly linked to healthcare budgets, will be needed.
In addition, there has been limited guidance on specific ventilation
and filtration targets. Notwithstanding, improved air quality in con-
fined spaces may not only help to prevent infectious diseases well,
but also to improve well-being and performance, e.g. learning in
school children.

7.5. Waning immunity

The duration of post-infection and vaccine-induced immunity to
COVID-19 might show pronounced individual heterogeneity with
some people not forming efficient immunity at all and others devel-
oping an immune response that might protect from reinfection for
decades. Antibodies against SARS-CoV-2 have been shown at nine
months post-infection [22]. About 95% of subjects retain immune
memory at six months after infection [23-25]. However, reinfections
have also been observed [26-28]. In some individuals reinfections are
possible even just a few months apart [190]. Mechanisms for that as
well as the expected average frequency of reinfection are not well
known. In the case of SARS-CoV-1, humoral immunity was described
to last for up to two to three years whereas antigen-specific T-cells
were detected up to 17 years after infection [191]. It is important to
keep in mind that circulating antibody levels are not necessarily pre-
dictive of T-cell memory or the level of protection. To conclude, wan-
ing immunity is a realistic risk and may necessitate booster shots in
the years to come.

When they occur, reinfections are likely to be less severe because
leftover baseline immunity may shorten the course of infection and
dampen inflammatory responses. Antibody disease enhancement,
analogous to what has been observed in Dengue fever [192], could in
principle occur. However, no evidence so far exists that a reinfection
will lead to more severe symptoms.

7.6. Evolution of SARS-CoV-2

A key unknown in relation to the future of the pandemic is the
ability of the virus to evolve in ways that increase its transmissibility,
its disease severity, or its potential to escape from vaccine induced
immunity. It was thought that the SARS-CoV-2 virus would evolve
more slowly than other RNA viruses as it contains a proofreading
mechanism. However, there has been a clear step change in emer-
gence of constellations of mutations over time, termed “variants of
concern”. These often include specific mutations, for example,
D614G, in the spike protein which enhanced binding to the ACE2

receptors on human cells [193]. This mutation is present in the cur-
rently important VOCs, including Alpha, Beta, Gamma and Delta.
Another mutation, N501Y, involving a substitution of asparagine for
tyrosine as the amino acid at position 501, allows the spike protein to
bind more tightly to the ACE2 receptor, thereby further increasing
the transmissibility of disease [194]. This mutation is also present in
the VOCs Alpha, Beta and Gamma. A third mutation, E484K, reduces
the ability of antibodies generated following vaccination or previous
infection to bind to the spike protein [58,195]. This mutation is pres-
ent in Beta, Gamma and other variants under investigation.

The rollout of vaccination will inevitably change the environment
within which the virus is circulating, creating an evolutionary pres-
sure for further mutations against which existing vaccines may be
less effective. However, many mutations do not increase the fitness
of the virus and may even weaken it, for example by reducing the
ability of the spike protein to bind to the receptor. Thus, much will
depend on whether there is one or a small number of genotypes of
the virus that are optimally configured for transmission. Research
showing convergence of evolution of the spike protein in different
SARS-CoV-2 lineages supports this possibility [196].

This question has been addressed in an analysis of three variants
of concern that have emerged in the pandemic, Alpha, Beta, and
Gamma [197]. Martin and colleagues note that the same mutations
have arisen independently in geographically dispersed populations,
suggesting that, at least in some ways, the evolution of the virus may
be converging on an optimally fit genotype [197]. However, they
note that changes in the environment in which the viruses are being
transmitted may create new opportunities. Variants bearing the
N501Y mutation only began to emerge in the autumn of 2020. Having
reviewed the evolution of the virus so far and of coronaviruses in
other hosts, Martin and colleagues suggest that the most likely sce-
nario is that the virus will evolve in ways that converge on one or
more related “supervariants” with increased transmissibility and
potential for vaccine evasion and they list a set of codons that such
variants might be expected to possess [197]. However, it is not possi-
ble to exclude the situation in which other evolutionary pressures
arise, particularly given the very short time during which this virus
has been circulating in humans, and based on experience with other
viruses.

7.7. How to improve adherence to rules and recommendations

7.7.1. Clearer communication
As the assumed effectiveness of measures is a key predictor of

their protective effects [84], it will remain critically important to
improve scientific communication about them [77]. This is crucial
because specific policies, such as the goal of very low incidence,
require the understanding of complex underlying systems. Politicians
and scientists must speak clearly and truthfully to the public, neither
underplaying nor overplaying the risks associated with the pandemic
or the effectiveness of interventions. Scientists with a public profile
must be extremely mindful of demarcating personal opinion and
interpretation from widely accepted scientific fact. Failure to do so
risks undermining the very public health measures and campaigns
(e.g., vaccination) that scientists are propagating.

The media also has a role to play. It is apparent that coverage has
regularly been influenced by the ideological stance of the media out-
let. In the United States, for example, conservative media outlets
have been highly critical of those warning about the risks of COVID-
19, such as Anthony Fauci, and have promoted conspiracy theories.
Studies at an individual and area level have demonstrated associa-
tions between use of conservative media outlets, such as Fox News,
and belief in conspiracy theories, reduced mask wearing, and lower
reductions in mobility. Another study, using survey data from the
United States and United Kingdom, found that intention to be vacci-
nated was associated with use of broadcast and print media (as well
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as support for Hilary Clinton in 2016 or the Labour Party in the United
Kingdom) but not with social media, except in one study that asked
about reliance on it for information, which found an association with
reduced intention [198].

7.7.2. Empowering measures
Adherence to public health measures can only be achieved if peo-

ple have the capacity to do so [199]. This insight is supported by the
fact that especially low adherence has been observed for people in
precarious working conditions [200,201]. We thus need to focus on
making measures socially acceptable, and focus on mental health and
ways to prevent, or at least relieve, social, economic, and psychologi-
cal burdens associated with the pandemic. Helping people to cope
with the situation and strengthening society will ultimately benefit
adherence and ensure the effectiveness of measures [202]. Therefore,
governments need to provide more support of multiple kinds (eco-
nomic aid, more mental healthcare, social help etc.). It is of critical
importance to support people from lower socio-economic back-
grounds. Where possible, stress in parents and thereby in children
should be reduced. This is especially since children have been hit par-
ticularly hard from a mental health perspective [75,79]. It is also vital
to make help accessible to those unfamiliar with the local language,
those unable to apply for help (for instance, due to digital exclusion),
and those unaware of support offers. Support must be directed at
those residing in a country, not merely official citizens of it, to pre-
vent the aggravation of existing inequalities.

7.7.3. Physical, not social, distancing
It should be stressed that restricting the virus does not necessarily

mean restricting social interactions per se. Politicians and scientific
advisors should pursue policies that actively animate community at a
time of loneliness, depression, and anxiety; but in ways that remain
in agreement with the important mission of driving down cases and
fatalities of COVID-19. For instance, investment in urban public
health is very important, from green spaces to small and safe commu-
nity gatherings. For the latter, people should be encouraged to meet
outside in small groups to have social interactions in a physically-dis-
tanced way [203].

7.8. One Health

A One Health approach to disease control considers the interde-
pendence of humans, animals and the environment with interdisci-
plinary thinking and measures [204,205]. Such a holistic multi- and
transdisciplinary approach is required because it is insufficient to
only consider a human health perspective in our interconnected
world. Animal reservoirs most likely play an important role in SARS-
CoV-2 and other viral infections. This is certainly the case with
respect to the origin of viral human pathogens, e.g. in bats, pigs or
chicks [206]. One particularly relevant animal in this regard might be
the bat as a source animal from which viruses can emerge that are
resistant to high temperatures or fever in humans [207]. As SARS-
CoV-2 is now a mainly human-to-human transmitted virus, it is not
entirely clear how much other animals, such as household animals or
farmed animals, play an important role. Several animals that have
been in contact with infected humans have been tested positive for
SARS-CoV-2; minks, dogs, domestic cats, lions and tigers
[124,125,127]. We should monitor the appearance of SARS-CoV-2 in
these and other species closely.

Due to animal reservoirs and because COVID-19 is most likely a
zoonosis [208], human intrusion into the habitat of animals needs to
be considered in the context of pandemics. Overexploitation and hab-
itat destruction significantly increases the risk of newly emerging and
rapidly spreading vectors and diseases [209]. Environmental factors
that are relevant in this context include light pollution and deforesta-
tion, mainly driven by expansion of land for agriculture [210]. From a

One Health perspective, it seems essential to reduce global land use
for agriculture.

The connections between animal, human, and environmental
health are complex and require systems thinking. More focus on this
interconnectivity should be placed in education, to foster awareness
of the importance of human actions on such large scales. As we move
further into climate change, a range of serious health issues will
become more common [211-214]. A One Health framework as part of
a planetary and global health perspective to study and manage these
will be helpful [166,215].
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Abstract

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as

vaccination progresses, demands to lift restrictions increase, despite most of the population

remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and

curated epidemiological and vaccination data, we quantified the rate (relative to vaccination

progress) at which countries can lift non-pharmaceutical interventions without overwhelming

their healthcare systems. We analyzed scenarios ranging from immediately lifting restric-

tions (accepting high mortality and morbidity) to reducing case numbers to a level where

test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In

general, the age-dependent vaccination roll-out implies a transient decrease of more than

ten years in the average age of ICU patients and deceased. The pace of vaccination deter-

mines the speed of lifting restrictions; Taking the European Union (EU) as an example case,

all considered scenarios allow for steadily increasing contacts starting in May 2021 and

relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact

restrictions will remain necessary. However, only high vaccine uptake can prevent further

severe waves. Across EU countries, seroprevalence impacts the long-term success of vac-

cination campaigns more strongly than age demographics. In addition, we highlight the

need for preventive measures to reduce contagion in school settings throughout the year

2021, where children might be drivers of contagion because of them remaining susceptible.

Strategies that maintain low case numbers, instead of high ones, reduce infections and

deaths by factors of eleven and five, respectively. In general, policies with low case numbers

significantly benefit from vaccination, as the overall reduction in susceptibility will further

diminish viral spread. Keeping case numbers low is the safest long-term strategy because it

considerably reduces mortality and morbidity and offers better preparedness against emerg-

ing escape or more contagious virus variants while still allowing for higher contact numbers

(freedom) with progressing vaccinations.
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Author summary

In this work, we quantify the rate at which non-pharmaceutical interventions can be lifted

as COVID-19 vaccination campaigns progress. With the constraint of not exceeding ICU

capacity, there exists only a relatively narrow range of plausible scenarios. We selected dif-

ferent scenarios ranging from the immediate release of restrictions to more conservative

approaches aiming at low case numbers. In all considered scenarios, the increasing overall

immunity (due to vaccination or post-infection) will allow for a steady increase in con-

tacts. However, deaths and total cases (potentially leading to long covid) are only mini-

mized when aiming for low case numbers, and restrictions are lifted at the pace of

vaccination. These qualitative results are general. Taking EU countries as quantitative

examples, we observe larger differences only in the long-term perspectives, mainly due to

varying seroprevalence and vaccine uptake. Thus, the recommendation is to keep case

numbers as low as possible to facilitate test-trace-and-isolate programs, reduce mortality

and morbidity, and offer better preparedness against emerging variants, potentially

escaping immune responses. Keeping moderate preventive measures in place (such as

improved hygiene, use of face masks, and moderate contact reduction) is highly recom-

mended will further facilitate control.

Introduction

The rising availability of effective vaccines against SARS-CoV-2 promises the lifting of restric-

tions, thereby relieving the social and economic burden caused by the COVID-19 pandemic.

However, it is unclear how fast the restrictions can be lifted without risking another wave of

infections; we need a promising long-term vaccination strategy [1]. Nevertheless, a successful

approach has to take into account several challenges; vaccination logistics and vaccine alloca-

tion requires a couple of months [2–4], vaccine eligibility depends on age and eventually seros-

tatus [5], vaccine acceptance may vary across populations [6], and more contagious [7] and

escape variants of SARS-CoV-2 that can evade existing immunity [8, 9] may emerge, thus pos-

ing a persistent risk. Last but not least, disease mitigation is determined by how well vaccines

block infection, and thus prevent the propagation of SARS-CoV-2 [3, 4], the time to develop

effective antibody titers after vaccination, and their efficacy against severe symptoms. All these

parameters will greatly determine the design of an optimal strategy for the transition from epi-

demicity to endemicity [10].

To bridge the time until a significant fraction of the population is vaccinated, a sustainable

public health strategy has to combine vaccination with non-pharmaceutical interventions

(NPIs). Otherwise it risks further waves and, consequently, high morbidity and excess mortal-

ity. However, the overall compliance with NPIs worldwide has on average decreased due to a

“pandemic-policy fatigue” [11]. Therefore, the second wave has been more challenging to

tame [12] although NPIs, in principle, can be highly effective, as seen in the first wave [13, 14].

After vaccinating the most vulnerable age groups, the urge and social pressure to lift restric-

tions will increase. However, given the wide distribution of fatalities over age groups and the

putative incomplete protection of vaccines against severe symptoms and against transmission,

NPIs cannot be lifted entirely or immediately. With our study, we want to outline at which

pace restrictions can be lifted as the vaccine roll-out progresses.

Public-health policies in a pandemic have to find a delicate ethical balance between reduc-

ing the viral spread and restricting individual freedom and economic activities. However, the

interest of health on the one hand and society and economy on the other hand are not always
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contradictory. For the COVID-19 pandemic, all these aspects clearly profit from low case

numbers [15–17], i.e., an incidence where test-trace-and-isolate (TTI) programs can efficiently

compensate for local spreading events. The challenge is to reach low case numbers and main-

tain them [18, 19]. Especially with the progress of vaccination, restrictions should be lifted

when the threat to public health is reduced. However, the apparent trade-off between public

health interest and freedom is not always linear and straightforward. Taking into account that

low case numbers facilitate TTI strategies (i.e., health authorities can concentrate on remaining

infection chains and stop them quickly) [18–20], an optimal strategy with a low public health

burden and large freedom may exist and be complementary to vaccination.

Here, we quantitatively study how the planned vaccine roll-out in the European Union

(EU), together with the cumulative post-infection immunity (seroprevalence), progressively

allows for lifting restrictions. In particular, we study how precisely the number of contacts can

be increased without rendering disease spread uncontrolled over the year 2021. Our study

builds on carefully curated epidemiological and contact network data from Germany, France,

the UK, and other European countries. Thereby, our work can serve as a blueprint for an

opening strategy.

Analytical framework

Our analytical framework builds on our deterministic, age-stratified, SEIRD-ICU compart-

mental model, modified to incorporate vaccination through delay differential equations. It

includes compartments for a 2-dose staged vaccine roll-out, immunization delays, intensive

care unit (ICU)-hospitalized, and deceased individuals. A central parameter for our model is

the gross reproduction number Rt. It is essentially the time-varying effective reproduction

number without considering the effects of immunity nor of TTI. That number depends

(among several factors) on i) the absolute number of contacts per individual, and ii) the proba-

bility of being infected given a contact. In other words, Rt is defined as the average number of

contacts an infected individual has that would lead to an offspring infection in a fully suscepti-

ble population. Therefore, an increase in Rt implies an increase in contact frequency or the

probability of transmission per contact, e.g., due to less mask-wearing. The core idea is that

increasing immunity levels among the population (post-infection or due to vaccination) allows

for a higher average number of potentially contagious contacts and, thus, freedom (quantified

by Rt), given the same level of new infections or ICU occupancy. Hence, with immunization

progress reducing the susceptible fraction of the population, Rt can be dynamically increased

while maintaining control over the pandemic, i.e., while keeping the effective reproduction

number below one (Fig 1A).

To adapt the gross reproduction number Rt such that a specific strategy is followed (e.g.

staying below TTI or ICU capacity), we include an automatic, proportional-derivative (PD)

control system [21]. This control system allows for steady growth in Rt as long as it does not

lead to overflowing ICUs (or surpassing the TTI capacity). However, when risking surpassing

the ICU capacity, restrictions might be tightened again. In that way, we approximate the feed-

back-loop between political decisions, people’s behavior, reported case numbers, and ICU

occupancy.

The basic reproduction number is set to R0 = 4.5, reflecting the dominance of the B.1.1.7

variant [3, 7]. We further assume that the reproduction number can be decreased to about 3.5

by hygiene measures, face masks, and mild social distancing. This number is informed by the

estimates of Sharma et al. [22], who estimate the combined effectiveness of mask wearing, lim-

iting gatherings to at most 10 people and closing night clubs to a reduction of about 20–40%,

thus leading to a reproduction number between 2.7 and 3.6. We use a conservative estimate, as
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this is only a exemplary set of restrictions. Therefore, we restrict Rt in general not to exceed 3.5

(Fig 1C).

Efficient TTI contributes to reducing the effective reproduction number. Hence, it increases

the average number of contacts (i.e., Rt) that people may have under the condition that case

numbers remain stable (Fig 1A) [18]. This effect is particularly strong at low case numbers,

where the health authorities can concentrate on tracing every case efficiently [19]. Here, we

approximate the effect of TTI on Rt semi-analytically to achieve an efficient implementation

(see Methods).

For vaccination, we use as default parameters an average vaccine efficacy of 90% protection

against severe illness [23] and of 75% protection against infection [24]. We further assume that

vaccinated individuals with a breakthrough infection carry a lower viral load and thus are 50%

less infectious [25] than unvaccinated infected individuals. We assume a total average vaccine

uptake of 80% [26] that increases with age from 73% in the 0–19 to 89% in the 80+ age group,

and an age-prioritized vaccine delivery as described in the Methods section. In detail, most of

Fig 1. With progressing vaccination in the European Union, a slow but steady increase in freedom will be possible. However, premature lifting of

NPIs considerably increases the total fatalities without a major reduction in restrictions in the middle term. A: A schematic outlook into the effect

of vaccination on societal freedom. Freedom is quantified by the maximum time-varying gross reproduction number (Rt) allowed to sustain stable case

numbers. As Rt does not consider the immunized population, gross reproduction numbers above one are possible without rendering the system

unstable. A complete return to pre-pandemic behavior would be achieved when Rt reaches the value of the basic reproduction number R0 (or possibly at

a lower value due to seasonality effects during summer, purple-blue shaded area). The thick full and dashed lines indicate the gross reproduction

number Rt allowed to sustain stable case numbers if test-trace-isolate (TTI) programs are inefficient and efficient, respectively, which depends on the

case numbers level. Increased population immunity (green) is expected to allow for lifting the most strict contact reduction measures while only

keeping mild NPIs (purple) during summer 2021 in the northern hemisphere. Note that seasonality is not explicitly modeled in this work. See S4 Fig for

an extended version including the year 2020. B: We explore five different scenarios for lifting restrictions in the EU, in light of the EU-wide vaccination

programs. We sort them according to the initial stringency that they require and the total fatalities that they may cause. One extreme (Scenario 1) offers

immediate (but still comparably little) freedom by approaching ICU-capacity limits quickly. The other extreme (Scenario 5) uses a strong initial

reduction in contacts to allow long-term control at low case numbers. Finally, the intermediate scenarios initially maintain moderate case numbers and

lift restrictions at different points in the vaccination program. C: All extreme strategies allow for a steady noticeable increase in contacts in the coming

months (cf. panel A), but vary greatly in the (D) ICU-occupancy profiles and (E) total fatalities. F: Independent on the strategy, we expect a transient

but pronounced decrease in the average age of ICU patients and deceased over the summer.

https://doi.org/10.1371/journal.pcbi.1009288.g001
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the vaccines are distributed first to the age group 80+, then 70+, 60+, and then to anyone of

age 16+. A small fraction of the weekly available vaccines is distributed randomly (e.g. because

of profession). After everyone got a vaccine offer roughly by the end of August, we assume no

further vaccination (see Fig 2L). The daily amount of vaccine doses per million is derived from

German government projections, but is expected to be similar across the EU. For the course

of the disease, the age-dependent fraction of non-vaccinated, infected individuals requiring

intensive care is estimated from German hospitalization data, using the infection-fatality-ratio

(IFR) reported in [27] (see Table 1 and Methods).

In our default scenario we use a contact structure between age groups as measured during

pre-pandemic times [28]. However, we halve the infection probability in the 0–19 year age

group to account for reduced in-person classes and better ventilation and systematic random

screening in school settings using rapid COVID-19 tests. Under these assumptions, the infec-

tion probability among the 0–19 age group is similar to the one among the 20–39 and 40–69

age groups. We start our simulations at the beginning of March 2021, with an incidence of 200

daily infections per million, two daily deaths per million, an ICU occupancy of 30 patients per

million, a seroprevalence of 10%, and about 4% of the population already vaccinated. This is

Fig 2. Maintaining low case numbers during vaccine roll-out reduces the number of ICU patients and deaths by about a factor five compared to

quickly approaching the ICU limit while hardly requiring stronger restrictions. Aiming to maximize ICU occupancy (A–D) allows for a slight

increase of the allowed gross reproduction number Rt early on, whereas lowering case numbers below the TTI capacity limit (E–H) requires

comparatively stronger initial restrictions. Afterwards, the vaccination progress allows for a similar increase in freedom (quantified by increments in Rt)
for both strategies, starting approximately in May 2021. B–D, F–H: These two strategies lead to a completely different evolution of case numbers, ICU

occupancy, and cumulative deaths, but differ only marginally in the evolution of the average age of deceased and ICU patients (I), as the latter is rather

an effect of the age-prioritized vaccination than of a particular strategy. J,K: The total number of cases until the end of the vaccination period (of the

80% uptake scenario, i.e., end of August, the rightmost dotted light blue line in sub-panels A–H) differ by a factor of eleven between the two strategies,

and the total deaths by a factor of five. Vaccine uptake (i.e., the fraction of the eligible, 16+, population that gets vaccinated) has a minor impact on these

numbers until the end of the vaccine roll-out but determines whether a wave would follow afterward (see below). L: Assumed vaccination rate as

projected for Germany, which is expected to be similar across the European Union. For a full display of the time-evolution of the compartments for

different uptakes see S6–S8 Figs.

https://doi.org/10.1371/journal.pcbi.1009288.g002
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comparable to German data (assuming a case under-reporting factor of 2, which had been

measured during the first wave in Germany [29]) and typical for EU countries at the beginning

of March 2021 (further details in the Methods section). We furthermore explore the impact of

important differences between EU countries, namely the seroprevalance by the start of the vac-

cination program, demographics, and vaccine uptake exemplary for Finland, Italy and the

Czech Republic in addition to the default German parameters.

Results

Aiming for low case numbers has the best long-term outcome

We first present the two extreme scenarios: case numbers quickly rise so that the ICU capacity

limit is approached (Scenario 1), or case numbers quickly decline below the TTI capacity limit

(Scenario 5; Fig 2). We set the ICU capacity limit at 65 patients/million, reflecting the maximal

occupancy and improved treatments during the second wave in Germany [30] and use Ger-

man demographics. The incidence (daily new cases) limit up to which TTI is fully efficient is

set to 20 daily infections per million [15], but depends strongly on the gross reproduction

number, as described in Methods.

The first scenario (‘approaching ICU limit’, Fig 2A–2D) maximizes the initial freedom indi-

viduals might have (quantified as the allowed gross reproduction number Rt). However, the

gained freedom is only transient as, once ICUs approach their capacity limit, restrictions need

to be tightened (Fig 2J and 2K). Additionally, stabilization at high case numbers leads to many

preventable fatalities, especially in light of likely temporary overflows of the ICU capacity due

to the hard-to-control nature of high case numbers.

The fifth scenario (‘below TTI limit’, Fig 2E and 2F) requires maintaining stronger restric-

tions for about two months to lower case numbers below the TTI capacity. Afterward, the

progress of the vaccination allows for a steady increase in Rt while keeping case numbers low,

enabling TTI to contribute to the containment effectively. From May 2021 on, this fifth sce-

nario would allow for slightly more freedom, i.e., a higher Rt, than the first scenario (Fig 1C).

Furthermore, this scenario reduces morbidity and mortality: Deaths until the of the vaccina-

tion period (end of August) are reduced by a factor of five, total infections even by a factor of

eleven. Due to the prioritization of the elderly in vaccination, the average age of ICU patients

and fatalities drops by roughly 12 and 15 years, respectively, independently of the choice of

scenarios (Fig 2I). Overall, the low-case-number scenario thus allows for a very similar

increase in freedom over the whole time frame (quantified as the increase in Rt) and implies

about fives times fewer deaths by the end of the vaccination program compared to the first sce-

nario with high case numbers (Fig 2K).

Table 1. Age-dependent infection-fatality-ratio (IFR), probability of requiring intensive care due to the infection (ICU probability) and ICU fatality ratio (ICU-FR).

The IFR is defined as the probability of an infected individual dying, whereas the ICU-FR is defined as the probability of an infected individual dying while receiving inten-

sive care.

Age IFR [27] ICU probability ICU-FR Avg. ICU time (days)

0–19 0.00002 0.00014 0.0278 5

20–39 0.00022 0.00203 0.0389 5

40–59 0.00194 0.01217 0.0678 11

60–69 0.00739 0.04031 0.1046 11

70–79 0.02388 0.05435 0.1778 9

>80 0.08292 0.07163 0.4946 6

Average 0.00957 0.02067 0.0969 9

https://doi.org/10.1371/journal.pcbi.1009288.t001
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The vaccine uptake has little influence on the number of deaths and total cases during the

vaccination period (Fig 2J and 2K), mainly because restrictions are quickly enacted when

reaching the ICU capacity. However, uptake becomes a crucial parameter; It controls the pan-

demic progression after completing the vaccine roll-out as it determines the residual suscepti-

bility of the population (cf. below). With insufficient vaccination uptake, a novel wave will

follow as soon as restrictions are lifted [3].

Maintaining low case numbers at least until vulnerable groups (60+) are

vaccinated is necessary to prevent a severe further wave

Between the two extreme scenarios 1 and 5, which respectively allow maximal or minimal ini-

tial freedom, we explore three alternative scenarios, where the vaccination progress and the

slow restriction lifting roughly balance out (Figs 3 and 1B). These scenarios assume approxi-

mately constant case numbers and then a swift lifting of most of the remaining restrictions

within a month after three different vaccination milestones: when the age group 80+ has been

vaccinated (Scenario 2, Fig 3A–3D), when the age groups 60+ has been vaccinated (Scenario 3,

Fig 3E–3H) and when the entire adult population (16+) has been vaccinated (Scenario 4, Fig

3I–3L).

The relative freedom gained by lifting restrictions early in the vaccination timeline (Sce-

nario 2) hardly differs from the freedom gained from the other two scenarios (Fig 3M), as

since new contact restrictions need to take place once reaching the ICU capacity limit, and the

initial freedom is partly lost. Significantly, lifting restrictions later reduces the number of infec-

tions and deaths by more than 50% and 35% respectively if case numbers have been kept at a

moderate level (250 daily infections per million) and by more than 85% and 65%, respectively

if case numbers have been kept at a low level (50 per million) beforehand (Fig 3N and 3O).

Lifting restrictions entirely after either offering vaccination to everyone aged 60+ or everyone

aged 16+ only changes the total fatalities by a small amount, mainly because the vaccination

pace is planned to be quite fast by then, and the 60+ age brackets make up the bulk of the high-

est-risk groups. Hence, a potential subsequent wave only unfolds after the end of the planned

vaccination campaign (Fig 3F and 3H). Thus, with the current vaccination plan, it is recom-

mended to keep case numbers at moderate or low levels, at least until the population at risk

and people of age 60+ have been vaccinated.

If maintaining low or intermediate case numbers in the initial phase, vaccination starts to

decrease the ICU occupancy considerably in May 2021 (Fig 3G and 3K). However, This

decrease in ICU occupancy must not be mistaken for a generally stable situation. As soon as

restrictions are relaxed too quickly, ICU occupancy surges again (Fig 3C, 3G and 3H), without

any relevant gain in freedom for the total population. Nonetheless, the progress in vaccination

will, in any case, allow lifting restrictions gradually.

The long-term success of the vaccination campaign strongly depends on

vaccine uptake and vaccine efficacy

The vaccination campaign’s long-term success will depend on both people’s vaccine uptake

and the efficacy of the vaccine against those variants of SARS-CoV-2 prevalent at the time of

writing of this paper. A vaccine’s efficacy has two contributions: first, vaccinated individuals

become less likely to develop severe symptoms and require intensive care [31–33] (vaccine effi-

cacy, κ). Second, a fraction η of vaccinated individuals gains sterilizing immunity, i.e., is

completely protected against infections and does not contribute to viral spread at all [24, 34].

We also assume that breakthrough infections among vaccinated individuals would bear lower

viral loads, thus exhibit reduced transmissibility [25] (reduced viral load, σ). However, the
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possibly reduced effectiveness of vaccines against current variants of concern (VOCs), e.g.,

B.1.351 and P.1 [32, 35, 36], and potential future VOCs render long-term scenarios about the

success of vaccination uncertain.

Therefore, we explore different parameters of vaccine uptake and effectiveness. We quantify

the success, or rather the lack of success of the vaccination campaign by the duration of the

period where ICUs function near capacity limit, until population immunity is reached. Two

different scenarios are considered upon finishing the vaccination campaign: in the first sce-

nario, most restrictions are lifted, like in the previous scenarios (Fig 4B). In the second, restric-

tions are only lifted partially, to a one third lower gross reproduction number (Rt = 2.5) (Fig

4C). This second scenario presents the long-term maintenance of moderate social distancing

Fig 3. Vaccination offers a steady return to normality until the end of summer 2021 in the northern hemisphere, no matter whether a transient

easing of restrictions is allowed earlier or later (second and fourth scenario, respectively). However, lifting restrictions later reduces fatalities by

more than 35%. We assume that the vaccine immunization progress is balanced out by a slow lifting of restrictions, keeping case numbers at a

moderate level (� 250 daily new cases per million people). We simulated lifting all restrictions within a month starting from different time points: when

(A–D) the 80+ age group, (E–H) the 60+ age group or (I–L) everyone 16+ has been offered vaccination. Restriction lifting leads to a new surge of cases

in all scenarios. New restrictions are put in place if ICUs would otherwise collapse. M: Lifting all restrictions too early increases the individual freedom

only temporarily before new restrictions have to be put in place to avoid overwhelming ICUs. Overall, trying to lift restrictions earlier has a small

influence on the additional increase in the allowed gross reproduction number Rt. N,O: Relaxing major restrictions only medium-late or late reduces

fatalities by more than 35% and infections by more than 50%. Fatalities and infections can be cut by an additional factor of more than two when aiming

for a low (50 per million) instead ofmoderate (250 per million) level of daily infections before major relaxations. P: Assumed daily vaccination rates,

same as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1009288.g003
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measures, including the restriction of large gatherings to smaller than 100 people, encouraging

home-office, enabling effective test-trace-and-isolate (TTI) programs at very low case num-

bers, and supporting hygiene measures and face mask usage. Fig 4B and 4C indicates how long

ICUs are expected to be full in both scenarios, and for different parameters of vaccine efficacy

(which may account for the emergence of vaccine escape variants).

The primary determinant for the success of vaccination programs after lifting most restric-

tions is the vaccine uptake among the population aged 20+; only with a high vaccine uptake

(> 90%) we can avoid a novel wave of full ICUs (default parameters as in scenario 3; Fig 4B,

κ = 90%, η = 75%). However, if vaccine uptake was lower or vaccines prove to be less effective

against prevalent or new variants, lifting most restrictions would imply that ICUs will work at

the capacity limit for months.

In contrast, maintaining moderate social distancing measures (Fig 4C) may prevent a wave

after completing the vaccine roll-out. This strategy can also compensate for a low vaccine

uptake, requiring only about 55% uptake to avoid surpassing ICU capacity for our default

parameters. Nonetheless, any increase in vaccine uptake lowers intensive care numbers,

increases freedom, and most importantly, provides better protection in case of the emergence

of escape variants, as this would involve an effective reduction of vaccine efficacy (dashed

lines). A full exploration of vaccine efficacy parameter combinations and different contact

structures is presented in S2 Fig.

Heterogeneity among countries on an EU-wide level will affect the probability and strength

of a new wave after completing vaccination campaigns. We chose some exemplary European

countries to investigate how our results depend on age demographics, contact structure,

and the degree of initial post-infection immunization (seroprevalence). We obtained the

Fig 4. A high vaccine uptake (> 90% or higher among the eligible population) is crucial to prevent a wave when lifting

restrictions after completing vaccination campaigns. A: We assume that infections are kept stable at 250 daily infections until all

age groups have been vaccinated. Then restrictions are lifted, leading to a wave if the vaccine uptake has not been high enough

(top three plots). B: The duration of the wave (measured by the total time that ICUs function close to their capacity limit) depends

on vaccine uptake and vaccine efficacy. We explore the dependency on the efficacy both for preventing severe cases (full versus

dashed lines) and preventing infection (shades of purple). The dashed lines might correspond to vaccine efficacy in the event of

the emergence of escape variants of SARS-CoV-2. C: If some NPIs remain in place (such that the gross reproduction number stays

at Rt = 2.5), ICUs will not overflow even if the protection against infection is only around 60%. See S2 Fig for all possible

combinations of vaccine efficacies, also in the event of different contact structures.

https://doi.org/10.1371/journal.pcbi.1009288.g004
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seroprevalence in the different countries by scaling the German 10% seroprevalence with the

relative differences in cumulative reported case numbers between Germany and the other

countries, i.e., we assume the under-reporting factor to be roughly the same across the chosen

countries. All other parameters are left unchanged. Specifically, we leave the capacities of the

health systems at the estimated values for Germany, as lacking TTI data and varying defini-

tions of ICU treatment make any comparison difficult. We repeated the analysis presented

above (Fig 4) for Finland, Italy and the Czech Republic (see Fig 5A–5D). Germany, Finland,

and Italy would need a similarly high vaccine uptake in the population to prevent another

severe wave. In the Czech Republic, a much smaller uptake is sufficient. The largest deviations

in the necessary vaccine uptake are due to the initial seroprevalence, which we estimate to

range from 5% in Finland to 30% in the Czech Republic. In contrast, the differences in age

demographics and contact structures only have a minor effect on the dynamics (see also

S1 Fig).

If no further measures remain in place to reduce the potential contagious contacts in school

settings, the young age group (0–19 years) will drive infections after completing the vaccina-

tion program as they remain mostly unvaccinated. The combination of intense contacts and

high susceptibility among school-aged children considerably increase the vaccine uptake

required in the adult population to restrain a further wave (Fig 5E–5H). High seroprevalence,

also in this age group, reduces the severity of this effect for the Czech Republic (Fig 5H).

Discussion

Our results demonstrate that the pace of vaccination first and foremost determines the

expected gain in freedom (i.e., lifting of restrictions) during and after completion of the

Fig 5. Seroprevalence and different demographics across EU countries determine the vaccine uptake required for population immunity. As in Fig

4B, we assume that case numbers are stable at 250 daily infections per million per day until the end of vaccination, when most restrictions are lifted

(such that the gross reproduction number goes up to 3.5). We vary the initial seroprevalence and age demographics and contact structures to represent

German, Italian, Finnish, and Czech data. A–D: Projected ICU occupancy in a subsequent wave depending on vaccine uptake, assuming reduced

transmission risk in schools but otherwise default pre-pandemic contact structures. E–H: Projected ICU occupancy depending on vaccine uptake,

assuming default pre-pandemic contact structures everywhere (including schools). See S3 Fig for a more comprehensive exploration of combinations of

vaccine efficacies.

https://doi.org/10.1371/journal.pcbi.1009288.g005
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COVID-19 vaccination programs. Any premature lifting of restrictions risks another wave

with high COVID-19 incidence and full ICUs. Moreover, the increase in freedom gained by

these premature strategies is only transient because once ICU capacity is reached again, restric-

tions would have to be reinstated. Simultaneously, these early relaxations significantly increase

morbidity and mortality rates, as a fraction of the population has not yet been vaccinated and

thus remains susceptible. In contrast, maintaining low case numbers avoids another wave, and

still allows to lift restrictions steadily and at a similar pace as with high case numbers. Despite

this qualitative behavior being general, the precise quantitative results depend on several

parameters and assumptions, which we discuss in the following.

The specific time evolution of the lifting of restrictions is dependent on the progress of the

vaccination program. Therefore, a steady lifting of restrictions may start in May 2021, when

the vaccination rate in the European Union gains speed. However, if the vaccination roll-out

stalls more than we assume, the lifting of restrictions has to be delayed proportionally. In such

a slowdown, the total number of cases and deaths until the end of the vaccination period

increases accordingly. Thus, cautious lifting of restrictions and a fast vaccination delivery is

essential to reduce death tolls and promptly increase freedom.

The spreading dynamics after concluding vaccination campaigns (Fig 4B and 4C) will be

mainly determined by i) final vaccine uptake, ii) the contact network structure, iii) vaccine

effectiveness, and iv) initial seroprevalence. Regarding vaccine uptake, we assumed that

after the vaccination of every willing person, no further people would get vaccinated. This

assumption enables us to study the effects of each parameter separately. However, vaccina-

tion willingness might change over time: it will probably be higher if reported case numbers

and deaths are high, and vice versa. This poses a fundamental challenge: If low case numbers

are maintained during the vaccine roll-out, the overall uptake might be comparably low,

thus leading to a more severe wave once everyone has received a vaccination offer and

restrictions are fully lifted. In contrast, a severe wave during vaccine roll-out might either

increase vaccine uptake, because of individuals looking to protect themselves, or reduce it,

because of damaged credibility on vaccine efficacy among vaccine hesitant groups. Thus, to

avoid any further wave, policymakers have to maintain low case numbers and foster high

vaccine uptake.

Besides vaccine uptake, the population’s contact network also determines whether popula-

tion immunity will be reached. We studied different real-world and theoretical possibilities

for the contact matrices in Germany and other EU countries and evaluated how our results

depend on the connectivity among age groups. For the long-term success of the vaccination

programs, there must be exceptionally sensible planning of measures to prevent contagion

among school-aged children. Otherwise, they could become the drivers of a novel wave

because they might remain mostly unvaccinated. Provided adequate vaccine uptake among

the adult population, our results suggest that reducing either the intensity of contacts or the

infectiousness in that age group by half would be sufficient for preventing a rebound wave.

This reduction is attainable by implementing soft-distancing measures, plus systematic, pre-

ventive random screening with regular COVID-19 rapid tests in school settings or via vaccina-

tion [22]. Although at the time of writing some vaccines have been provisionally approved for

use in children aged 12–15 years old, vaccine uptake among children remains highly uncertain

because of their very low risk for severe illness from COVID-19. We therefore did not include

their vaccination in our model.

One of the largest uncertainties regarding the dynamics after vaccine roll-out arises from

the efficacies of the vaccines. First, the sterilizing immunity effect (i.e., blocking the transmis-

sion of the virus), is still not well quantified and understood [24]. Second, the emergence of

new viral variants that at least partially escape immune response is continuously under
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investigation [35, 37, 38]. Furthermore, there is no certainty about whether escape variants

might produce a more severe course of COVID-19 or whether reinfections with novel variants

of SARS-CoV-2 would be milder. Therefore, we cannot conclusively quantify the level of con-

tact reductions necessary in the long term to avoid a further wave of infections or whether

such wave would overwhelm ICUs. However, for our default parameters, moderate contact

reductions and hygiene measures would be sufficient to prevent further waves.

Although most examples are presented for countries from the European Union, our results

can also be generalized to other countries. Differences across countries come from i) demo-

graphics, ii) varying seroprevalence —which originated from large differences in the severity

of past waves—, iii) vaccines (types, availability, delivery scheme, and uptake), as well as iv)

capacities of the health systems, including hospitals and TTI capabilities. For the EU, we find

that during the mass vaccination phase, all these differences have only a minor effect on the

pace at which restrictions can be lifted (cf. S1 Fig). However, differences become evident in the

long term when most restrictions are lifted by the end of the vaccination campaigns. Demo-

graphics and contact patterns are qualitatively very similar across EU countries and thus do

not strongly change the expected outcome. On the contrary, we found the initial seropreva-

lence to significantly determine the minimum vaccine uptake required to guard against further

waves after the vaccine roll-out (cf. Fig 5). Naturally acquired immunity, like vaccinations,

contributes to reducing the overall susceptibility of the population and thus impedes viral

spread. Notably, naturally acquired immunity can compensate for drops in vaccine uptake in

specific age groups unwilling to vaccinate or that cannot access the vaccine, e.g. in children.

Furthermore, expected vaccine uptake considerably varies across EU countries (e.g., Serbia

38%, Croatia 41%, France 44%, Italy 70%, Finland 81% [6], Czech Republic 40% [39], Ger-

many 80% [26]). The risk of rebound waves after the mass vaccinations might thus be highly

heterogeneous across the EU.

Since we neither know what kind of escape variants might still surface nor their potential

impact on vaccine efficacies or viral spread, maintaining low case numbers is the safest strategy

for long-term planning. This strategy i) prevents avoidable deaths during vaccine roll-out, ii)

offers better preparedness should escape variants emerge, and iii) lowers the risk of further

waves because local outbreaks are easier to contain with efficient TTI. Hence, low case num-

bers only have advantages for health, society, and the economy. Furthermore, a low case

number strategy would greatly profit from an EU-wide commitment, and coordination [15].

Otherwise, strict border controls with testing and quarantine policies need to be installed as

drastically different case numbers between neighboring countries or regions promote destabi-

lization; infections could (and will) propagate between countries triggering a “ping-pong”

effect, especially if restrictions are not jointly planned. Therefore, promoting a high vaccine

uptake and low case numbers strategy should not only be a priority for each country but also

for the whole European community.

In practice, there are several ways to lower case numbers to the capacity limit of TTI pro-

grams without the need to enact stringent NPIs immediately. For example, if restrictions are

lifted gradually but marginally slower than the rate vaccination pace would allow, case num-

bers will still decline. Alternatively, restrictions could be relaxed initially to an intermediate

level where case numbers do not grow exponentially while giving people some freedom. In

such circumstances one can take advantage of the reduced susceptibility to drive case numbers

down without the need of stringent NPIs (S5(E)–S5(H) Fig).

To conclude, the opportunity granted by the progressing vaccination should not only be

used to lift restrictions carefully but also to bring case numbers down. This will significantly

reduce fatalities, allow to lift all major restrictions gradually moving into summer 2021, and

guard against newly-emerging variants or potential further waves in the EU.
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Methods

Model overview

We model the spreading dynamics of SARS-CoV-2 following a SEIRD-ICU deterministic for-

malism through a system of delay differential equations. Our model incorporates age-stratified

dynamics, ICU stays, and the roll-out of a 2-dose vaccine. For a graphical representation of the

infection and core dynamics, see Fig 6. The contagion dynamics include the effect of externally

Fig 6. Scheme of our age-stratified SEIRD-ICU+vaccination model. The solid blocks in the diagram represent different SEIRD compartments. Solid

black lines represent transition rates of the natural progression of the infection (contagion, latent period, and recovery). On the other hand, dashed lines

account for external factors and vaccination. Solid gray lines represent non-linear transfers of individuals between compartments, e. g. through

scheduled vaccination. From top to bottom, we describe the progression from unvaccinated to vaccinated, with stronger color and thicker edges

indicating more protection from the virus. Subscripts i indicate the age groups, while superscripts represent the number of vaccine doses that have

successfully strengthened immune response in individuals receiving them. Contagion can occur internally, where an individual from age group i can

get infected from an infected person from any age group, or externally, e. g., abroad on vacation. If the contagion happens externally, we assume that the

latent period is already over when the infected returns and, hence, they are immediately put into the infectious compartments Ini .

https://doi.org/10.1371/journal.pcbi.1009288.g006

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 13 / 37



acquired infections as a non-zero influx Fi based on the formalism previously developed by

our group [18, 19]: susceptible individuals of a given age group i (Si) can acquire the virus

from infected individuals from any other age group j and subsequently progress to the exposed

(Si! Ei) and infectious (Ei! Ii) compartments. They can also acquire the virus externally.

However, in this case, they progress directly to the infectious compartment (Si! Ii), i.e., they

get infected abroad, and by the time they return, the latent period is already over. Individuals

exposed to the virus (Ei) become infectious after the latent period and thus progress from the

exposed to the infectious compartments (Ii) at a rate ρ (Ei! Ii). The infectious compartment

has three different possible transitions: i) direct recovery (Ii! Ri), ii) progression to ICU (Ii!
ICUi) or iii) direct death (Ii! Di). Individuals receiving ICU treatment can either recover

(ICUi! Ri) or decease (ICUi! Di).
A contact matrix weights the infection probability between age groups. We investigated

three different settings for the contact structure to assess its impact on the spreading dynamics

of COVID-19: i) Interactions between age groups are proportional to the group size, i.e., the

whole population is mixed perfectly homogeneously, ii) interactions are proportional to pre-

COVID contact patterns in the EU population [28], and iii) interactions are proportional to

“almost” pre-COVID contact patterns [28], i.e., the contact intensity in the youngest age group

(0–19 years) is halved. This accounts for some preventive measures kept in place in schools,

e.g., regular rapid testing or smaller class sizes. Scenario iii) is the default scenario unless

explicitly stated. However, figures for Scenarios i) and ii) are provided in S9–S14 Figs. We

scale all the contact structures by a linear factor, which increases or decreases the stringency of

NPIs so that the settings are comparable. However, the scaling above does not account for het-

erogeneous NPIs acting only on contacts between specific age groups, such as workplace or

school restrictions.

Our model includes the effect of vaccination, where vaccines are administered with an age-

stratified two-dosage delivery scheme. The scheme does not discriminate on serological status,

i.e., recovered individuals with natural antibodies may also access the vaccine when offered to

them. Immunization, understood as the development of proper antibodies against SARS-

CoV-2, does not occur immediately after receiving the vaccination dose. Thus, newly vacci-

nated individuals get temporarily put into extra compartments (V0
i and V1

i for the first and sec-

ond dose respectively) where, if infected, they would progress through the disease stages as if

they would not have received that dose. For modeling purposes, we assume that a sufficient

immune response is build up τ days after being vaccinated (V0
i ! S1

i and V1
i ! S2

i ), and that a

fraction pi(t) of those individuals that received the dose acquire the infection before being

immunized. Furthermore, there is some evidence that the vaccines partially prevent the infec-

tion with and transmission of the disease [40, 41]. Our model incorporates the effectiveness

against infection following an ‘all-or-nothing’ scheme, removing a fraction of those vaccinated

individuals to the recovered compartments (V0
i ! R1

i and V1
i ! R2

i ), thus assuming that they

would not participate in the spreading dynamics. However, we consider those vaccinated indi-

viduals with a breakthrough infection have a lower probability of going to ICU or to die than

unvaccinated individuals, i.e., effectiveness against severe disease follows a ‘leaky’ scheme. Fur-

thermore, we assume those individuals carry a lower viral load and thus are less infectious by a

factor of two [25]. All parameters and values are listed in Table 2.

We model the mean-field interactions between compartments by transition rates, deter-

mining the timescales involved. These transition rates can implicitly incorporate both the time

course of the disease and the delays inherent to the case-reporting process. In the different sce-

narios analyzed, we include a non-zero influx Fi, i.e., new cases that acquired the virus from

outside. Even though this influx makes a complete eradication of SARS-CoV-2 impossible,
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different outcomes in the spreading dynamics might arise depending on both contact intensity

and TTI [18]. Additionally, we include the effects of non-compliance and unwillingness to be

vaccinated as well as the effects of the TTI capacities from health authorities, building on [19].

Throughout the manuscript, we do not make explicit differences between symptomatic and

asymptomatic infections. However, we implicitly consider asymptomatic infections by

accounting for their effect on modifying the reproduction number Rt and all other epidemio-

logical parameters. To assess the lifting of restrictions in light of progressing vaccinations, we

use a Proportional-Derivative (PD) control approach to adapt the internal reproduction num-

ber Rt targeting controlled case numbers or ICU occupancy.

Model equations

The contributions of the spreading dynamics and the age-stratified vaccination strategies are

summarized in the equations below. They govern the infection dynamics between the different

age groups, each of which is represented by their susceptible-exposed-infectious-recovered-

dead-ICU (SEIRD+ICU) compartments for all three vaccination statuses. We assume a regime

that best resembles the situation in Germany at the beginning of March 2021, and we estimate

the initial conditions for the different compartments of each age group accordingly. Further-

more, we assume that neither post-infection immunity [42] nor the immunization obtained

through the different dosages of the vaccine vanish significantly in the considered time frames.

The spreading parameters completely determine the resulting dynamics (characterized by the

different age- and dose-dependent parameters, together with the gross reproduction number

Rt) and the vaccination logistics.

All of the following parameters and compartments are shortly described in Tables 2 and 3.

Some of these are elaborated in more detail in the following sections. Subscripts i in the equa-

tions denote the different age groups, while superscripts denote the vaccination status:

Table 2. Model parameters. The range column either describes the range of values used in the various scenarios, or if values depend on the age group (indexed by i), the

lowest and highest value across age-groups.

Parameter Meaning Value (default) Range Units Source

Rt Reproduction number (gross) 1.00 0–3.5 — Assumed

η Vaccine protection against transmission 0.75 0.5–0.85 — [24, 40, 41]

κ Vaccine efficacy (against severe disease) 0.9 0.7–0.95 — [23, 57]

σν Relative virulence of unvaccinated and vaccinated individuals [1.0, 0.5, 0.5] 0.5–1 — [25]

τ Immunization delay 7 — days [24, 31]

vr Random vaccination fraction 0.35 — — [64, 65]

Mi Population group size Table 4 — people [43]

ui Vaccine uptake Table 4 — — [6]

ρ Transition rate E! I 0.25 — day−1 [66, 67]

gni Recovery rate from Ini Table 5 0.088–0.1 day−1 [54–56]

gICUi Recovery rate from ICUn

i Table 5 0.08–0.2 day−1 [50, 52, 68]

d
n

i Death rate from Ini Table 5 10−6–0.005 day−1 [50, 52, 68]

d
ICU
i

Death rate from ICUn

i Table 5 0.0055–0.083 day−1 [50, 52, 68]

ani Transition rate I! ICU Table 5 10−5–0.007 day−1 [50, 52, 68]

Fi Infections from external sources 1 — cases day−1 per million Assumed

pi(t) Fraction of individuals getting infected before acquiring antibodies — — — Eq (34)

�g Effective removal rate from infectious compartment — — day−1 ðgni þ a
n
i þ d

n

i Þ

f 1
i ðtÞ; f

2
i ðtÞ Administered 1

st and 2nd vaccine doses — — doses/day Eqs (19) and (20)

https://doi.org/10.1371/journal.pcbi.1009288.t002
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unvaccinated (0 or none), immunized by one dose (1), or by two doses (2).

dSi
dt
¼ � �gRtSi

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� f 1

i tð Þ
Si

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering first dose

�
Si
Mi
Fi

|fflffl{zfflffl}
external contagion

ð1Þ

dV0
i

dt
¼ � �gRtV

0

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

þ f 1

i tð Þ
Si

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering first dose

� � �

� � � � f 1

i t � tð Þ
Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose showing effect

�
V0
i

Mi
Fi

|ffl{zffl}
external contagion

ð2Þ

dS1
i

dt
¼ � �gRtS

1

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� f 2

i tð Þ
S1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering second dose

� � �

� � � þ 1 � Z0ð Þf 1
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Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose ðnot immuneÞ

�
S1
i

Mi
Fi

|ffl{zffl}
external contagion

ð3Þ

dV1
i

dt
¼ � �gRtV

1

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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i tð Þ
S1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
administering second dose

� � �
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S1
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�
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�
t� t
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second dose showing effect

�
V1
i

Mi
Fi

|ffl{zffl}
external contagion

ð4Þ

Table 3. Model variables. Subscripts i denote the ith age group, superscripts the vaccination status (unvaccinated, immunized by one dose, by two doses).

Variable Meaning Units Explanation

Si; S1
i ; S

2
i Susceptible pools people Non-infected people that may acquire the virus.

V0
i ; V1

i Vaccinated pools people Non-infected people that have been vaccinated but have not developed antibodies yet, thus may

acquire the virus.

Ei; E1
i ; E2

i Exposed pools people Infected people in latent period. Cannot spread the virus.

Ii; I1
i ; I2i Infectious pools people Currently infectious people.

ICUi; ICU
1

i ; ICU
2

i ICU pools people Infected people receiving ICU treatment, isolated.

Di; D1
i ; D2

i Dead pools people Dead people.

Ri; R1
i ; R2

i Recovered pools people Recovered/immune people that have acquired post-infection or sterilizing vaccination immunity.

N̂ obs Observed new infections people

day−1
Daily new infections, including reporting delays. Eq (42)

R̂obs
t

Observed reproduction

number

– The reproduction number that can be estimated only from the observed cases:

R̂obs
t ¼ N̂ obsðtÞ=N̂ obsðt � 4Þ.

https://doi.org/10.1371/journal.pcbi.1009288.t003
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rEi|{z}
end of latency

ð6Þ

dE1
i

dt
¼ �gRt S

1

i þ V
1

i

� �X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rE1

i|{z}
end of latency

ð7Þ

dE2
i

dt
¼ �gRtS

2

i

X

j;n

Cji
snInj
Mj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
internal contagion

� rE2

i|{z}
end of latency

ð8Þ

dIi
dt
¼ rEi|{z}

end of latency

� �gIi|{z}
recovery; ICU admission; or death

þ
Si þ V0

i

Mi
Fi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
external contagion

ð9Þ

dI1i
dt
¼ rE1

i|{z}
end of latency

� �gI1i|{z}
recovery; ICU admission; or death

þ
S1
i þ V

1
i

Mi
Fi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
external contagion

ð10Þ

dI2i
dt
¼ rE2

i|{z}
end of latency

� �gI2

i|{z}
recovery; ICU admission; or death

þ
S2
i

Mi
Fi

|fflffl{zfflffl}
external contagion

ð11Þ

dICUn

i

dt
¼ � ðd

ICU
i þ g

ICU
i ÞICU

n

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
recovery or death

þ ani I
n

i|{z}
ICU admission

ð12Þ

dDi

dt
¼
X

n

ðd
ICU
i ICUn

i þ d
n

i I
n

i Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total deaths

ð13Þ

dRi
dt
¼ gICUi ICUi þ giIi
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

recovery

� f 1

i tð Þ
Ri

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
first dose

ð14Þ
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dR1
i

dt
¼ gICUi ICU1

i þ g
1

i I
1

i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
recovery

þ f 1

i tð Þ
Ri

Si þ Ri|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
first dose after recovery

� f 2

i tð Þ
R1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second dose

� � �

� � � þ Z0f
1

i t � tð Þ
Si

Si þ Ri

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first dose ðsterilizing immunityÞÞ

ð15Þ

dR2
i

dt
¼ gICUi ICU2

i þ g
2

i I
2

i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
recovery

þ f 2

i tð Þ
R1
i

S1
i þ R1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
second dose after recovery

� � �

� � � þ Z0f
2

i t � tð Þ
S1
i

S1
i þ R1

i

�
�
�
�
t� t

1 � piðtÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second dose ðsterilizing immunityÞ

ð16Þ

Contact structure and the effect of NPIs on the contact levels

We model the probability of a susceptible individual from age group i to get infected from

an individual from age group j to be proportional to the –effective– incidence in that group

(
P

n
Inj s

n) and the contact intensity between the two groups, given by the entries (C)ij of a con-

tact matrix C scaled with the gross reproduction number Rt. The contact matrices are normal-

ized to force their largest eigenvalue (i.e., their spectral radius) to be 1, so that, when multiplied

with Rt, their spectral radius equals Rt. The total contact levels for different levels of NPIs are

then just linearly scaled with Rt. We thus neglect any inhomogeneities in the NPIs that might

affect contact between specific age groups more than others.

As described previously, we study three different configurations for the contact matrix C: i)

a perfectly homogeneously mixed population, ii) pre-COVID structure in the EU population

[28], and iii) “almost” pre-COVID contact structure [28], but with reduced potentially-conta-

gious contacts in the youngest age group (0–19 years) accounting for some preventive mea-

sures kept in place in schools. If not explicitly stated otherwise, the default contact matrix we

use in the main text is always the intermediate “almost” pre-COVID contact structure matrix.

For the three scenarios, we analyze the demographics and contact structures in Germany, Fin-

land, the Czech Republic, and Italy as a sample for varying demographics across the EU.

First scenario: Homogeneous contact structure. In this scenario, we consider that every-

one has the same probability of meeting anyone from any other age group. The probability of

meeting somebody from a given age group is thus proportional to the fraction of this age

group within the whole population. Let f be the column vector collecting these fractions,

fi ¼
Mi
M , the contact matrix for the n age-groups herein considered C 2 Rn�n is thus given by

ðCÞij ¼ fj; 8j ð17Þ

and can be seen in Fig 7A, 7D, 7G and 7J, for the chosen demographics. Note that by this con-

struction the largest eigenvalue of this C (i.e., its spectral radius) is automatically 1 for any

demographics, i.e., for any f that fulfills ∑j fj = 1 (proof in S1 Supplementary Note).

Second scenario: Pre-COVID contact intensity, real-world contact structure. Here, we

use the whole contact matrices from before the pandemic reported with one-year age resolu-

tion in [28], converted into the age brackets that we chose. We normalize them by their
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Fig 7. Contact structures for different EU countries in the three scenarios. The chosen contact matrices for i) homogeneous contact structure, ii) pre-

COVID contact structure, and iii) “almost” pre-COVID structure with reduced potentially-contagious contacts in schools for Germany (A-C), Finland

(D-F), Italy (G-I) and the Czech Republic (J-L). Entries of the matrices show the contact intensity between age groups normalized to give each matrix a

spectral radius of 1.

https://doi.org/10.1371/journal.pcbi.1009288.g007

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 19 / 37



spectral radius, leaving their internal contact structure intact. This scenario thus resembles

completely homogeneous NPIs that affect every possible contact equally. The matrices are

given in Fig Fig 7B, 7E, 7H and 7K for the chosen countries.

Third scenario: “Almost” pre-COVID contact intensity, real-world contact structure.

Finally, we again use the contact matrices from before the pandemic reported in [28] but adapt

them to reduce the intensity of contacts of the youngest age group by half, accounting for

those measures that remain in place to prevent contagion and mitigate outbreaks in school set-

tings. Specifically, we halve the matrix element connecting the 0–19 age group with itself and

normalize the obtained contact matrix C by its spectral radius. As can be seen in the resulting

matrices, given in Fig 7C, 7F, 7I and 7L, this affects that the main contributions in the contacts

are more evenly spread in the 0–59 year age groups. This serves as a first approximation to the

contact structure with inhomogeneous NPIs targeting different age groups differently both in

a complete lockdown, as well as some continued measures in schools.

Vaccination dynamics and logistics

In real-world settings, not every person accepts the vaccine when offered. Additionally, vaccine

uptake is bounded because some vulnerable groups cannot be vaccinated because of health-

related reasons. A systematic survey [26] estimates the vaccine uptake to be approximately

80% across the adult population in Germany, which we choose as our baseline. Due to a higher

perception of the risk caused by an infection, we expect that the uptake is higher for elderly

population. Thus, we set the uptake ui to be age-group dependent. Besides the default 80%, we

choose two more sets of uptakes averaging to a total of 70% and 90%, respectively. We suppose

that an increase in the uptake is possible by education and information measures. They are

listed in Table 4. We linearly interpolate between the three values to model arbitrary total vac-

cine uptakes.

Using official data of the German vaccine stock and stock projections [44, 45] we build up

an estimated delivery function wT that models the weekly number of doses delivered as a func-

tion of time. We assume it takes a logistic form, as we assume the number of daily doses

increases strongly at the beginning until it reaches a stable level. Adapting the logistic function

to the German stock projection (see Fig 8) yields:

wTðweekÞ ¼
11� 106 doses

1þ exp ð� 0:17ðweek � 21ÞÞ
; ð18Þ

where the parameters were chosen to roughly match past and projected deliveries, taking into

account that some delays in the projections might appear because of logistic or manufacturing

issues. Since the vaccine deliveries and distributions are done collectively and uniformly in the

Table 4. Parameters for the three main different vaccine uptake scenarios for Germany. The averages are to be understood across the vaccinable (16+) population.

Slightly rescaled uptakes for Finnish, Italian and Czech age-demographics can be found in S1, S2 and S3 Tables.

Group ID age group eligible fraction minimal uptake ui mid uptake ui (default) maximal uptake ui population fraction [43] Mi/M
1 0–19 0.2 (16+) 0.58 0.73 0.88 0.18

2 20–39 1.0 0.64 0.76 0.89 0.25

3 40–59 1.0 0.69 0.79 0.90 0.28

4 60–69 1.0 0.74 0.82 0.91 0.13

5 70–79 1.0 0.79 0.86 0.92 0.09

6 >80 1.0 0.85 0.89 0.93 0.07

average — — 0.70 0.80 0.90 —

https://doi.org/10.1371/journal.pcbi.1009288.t004
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EU, we scale this German projection by the respective population sizes for the other countries

studied herein (Finland, Italy, Czech Republic). We further assume that because of logistic

delays, the vaccination of the delivered doses occurs with some delay, which we model as a

convolution with an empirical delay kernel given by K = [0.6, 0.3, 0.1] (fraction of vaccines

administered in the same, second and third week following delivery). With that, we get the

total vaccination rates per week.

These doses are distributed among the age groups, taking into account that each individual

requires two doses, spaced by at least four weeks, aware of the potential benefits of further

delaying the two doses [46].

The vaccine prioritization order is the following:

1. First, to meet the demand of second doses, τvac weeks after the first dose.

2. Second, to distribute a fraction vr of the remaining doses uniformly among age groups,

to model the earlier vaccination of exposed occupations (health sector, first responders,

among others).

3. Last, to plan the rest of the doses for the oldest age group that has not been fully vaccinated

yet.

Exceptions to rule 3 are the low-risk groups 16–19, 20–39, and 40–59 that get vaccinated

simultaneously. For each age group, only a fraction ui is vaccinated because of limited willing-

ness to get vaccinated (Table 4). In addition, the total number of vaccinations in the youngest

age group 0–19 is further reduced since we consider only a fraction of around 20% (fraction of

16–19 year-old individuals in the group) to be eligible for vaccination (see Table 4). The uptake

ui in this age group is thus understood only among the eligible individuals.

This procedure results in the number of first w1
i ðweekÞ and second doses w2

i ðweekÞ vacci-

nated to the age group i as a function of the week. Dividing by 7 we obtain the daily adminis-

tered first and second doses for age group i

f 1

i ðtÞ ¼ w
1

i ðbt=7cÞ=7 and ð19Þ

f 2

i ðtÞ ¼ w
2

i ðbt=7cÞ=7: ð20Þ

Fig 8. Estimated vaccination rates for Germany. From the announced vaccination stock, we estimate the vaccination delivery function. A: Total

aggregated doses of different vaccine producers in Germany. B: Equivalent amount of 2-dose vaccines available per week in Germany, parameterized

using a logistic function. C: Comparison between expected and observed vaccination progress in Germany.

https://doi.org/10.1371/journal.pcbi.1009288.g008
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Age-stratified transition rates

Here, we will introduce the transition rates used in the model equations; details about their

estimation are presented in the later sections.

The recovery rate γi of a given age group describes the recovery without the need for critical

care. It is estimated from the literature. We expect this parameter to vary across age groups,

mainly because of the strong correlation between the severity of symptoms and age. Age-

resolved recovery rates estimated from data of the non-vaccinated population in Germany are

listed in Table 5.

The ICU recovery rate gICUi is the rate of a given age group for leaving ICU care. This param-

eter varies across age groups, mainly because of the strong correlation between the severity of

symptoms, age, and duration of ICU stay. Age-resolved ICU recovery rates estimated from

data of the non-vaccinated population in Germany are listed in Table 5.

The ICU admission rate αi of a given age group describes the transition from the infected

compartment to the ICU compartment. It accounts for those cases developing symptoms

where intensive care is required and is estimated from the literature. We expect this parameter

to vary across age groups, mainly because of the strong correlation between the severity of

symptoms and age. Age-resolved ICU-transition rates estimated from data of the non-vacci-

nated population in Germany are listed in Table 5. Further, we assume that anyone requiring

intensive care would have access to ICU beds and care.

The death rate δi also varies across age groups, mainly because of the strong correlation

between the severity of symptoms and age. This parameter accounts for those individuals

dying because of COVID-19, but without being treated in the ICU. In that way, it is expected

to be even smaller than the infection fatality ratio (IFR). Age-resolved death rates (outside

ICU) estimated from data of the non-vaccinated population in Germany are listed in Table 5.

The death rate in ICU d
ICU
i also varies across age groups, mainly because of the strong corre-

lation between the severity of symptoms and age. In addition, this parameter accounts for

those individuals dying because of COVID-19 when being treated in the ICU. In that way, it is

expected to be even larger than the case fatality ratio CFR. Age-resolved ICU death rates esti-

mated from data of the non-vaccinated population in Germany are listed in Table 5.

We estimate these age-dependent rates by combining hospitalization data with published

IFR data. A comparison of ICU transition rates ani across the EU is difficult as the definition of

stationary treatment differs with regard to hospitalization, ICU low and high-care. In order to

obtain sensible estimates for these rates, we need to consider the size of the unobserved pool in

each age group. Our analysis of ICU transition rates is based on 14043 hospitalization reports

collected in Germany between early 2020 and Oct. 26, 2020, as part of the official reporting

data [47]. Those reports contain 20-year wide age strata but only represent a small sub-sample

of all ICU-admissions (n = 723). A complete count of ICU-admissions is maintained by the

Table 5. Age-dependent parameters.

Age

group

ICU admission rate αi
(days−1)

Death rate in I δi
(days−1)

Natural recovery rate γi
(days−1)

Death rate in ICU d
ICU
i

(days−1)

ICU recovery rate gICUi
(days−1)

Avg. duration in ICU

TICU
res (days)

0–19 0.000014 0.000002 0.09998 0.005560 0.194440 5

20–39 0.000204 0.000014 0.09978 0.007780 0.192220 5

40–59 0.001217 0.000111 0.09867 0.006164 0.084745 11

60–69 0.004031 0.000317 0.09565 0.009508 0.081401 11

70–79 0.005435 0.001422 0.09314 0.019756 0.091355 9

>80 0.007163 0.004749 0.08809 0.082433 0.084233 6

https://doi.org/10.1371/journal.pcbi.1009288.t005

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 22 / 37



Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin [48], without addi-

tional patient-data, like age. 19250 ICU admissions were reported throughout the same time

frame. We estimated the number of ICU admissions in each 20-year wide age group by com-

bining both sources, matching well with German studies on the first wave [49].

Throughout the first and second wave, the per age-group case-fatality rates (CFRs) in Ger-

many are more than two times larger than the age-specific infection fatality rates (IFRs) esti-

mated by [27, 50]. This difference indicates unobserved infections. Seroprevalence studies

from Q3 2020 [51] confirm the existence of unobserved pools. The total number of infections

in each age group is inferred from observed deaths assuming the age-specific IFR from [27]. ani
(low- and high-care) is calculated by dividing estimated ICU-admissions in each age group by

the estimated total infections in each of those groups. A similar method is applied for the ICU-

death-rate d
ICU
i by taking hospitalization-deaths from [47] as a proxy for the age distribution.

The ICU-rates from the 10-year wide age-groups [52] based on French data (high-care
only) were used to subdivide the 20-year wide age-group 60–79, replicating the French rate-

ratio between 60–69 and 70–79 for the German ICU-ratios, while maintaining the German

age-agnostic ICU-rate. Noteworthy, there is great variability between the reported ICU rates

among different countries, and it seems to be more a problem of reporting criteria rather than

differences in virus and host response [53]. Furthermore, as treatments become more effective

compared to the first wave, the residence times have decreased in the second wave [30], thus

modifying the transition rates.

We also considered the influence of our decision to use the IFR of O’Driscoll et al. [27]

instead of Levin et al. [50]. The IFR from Levin et al. is about 50% larger and would lead to a

lower level of infections overall in our scenarios, therefore reducing the fraction of natural

immunity acquired at the end of the scenarios.

Estimation of general transition rates

After listing all transition rates that we consider in our work, we will now explain how we esti-

mate them. Since we have to start somewhere, let us look at the ICUi compartment first (see

Fig 6 top right). The differential equation, without influx and including the initial condition

ICU0, is given by

ICU0i ¼ � d
ICU
i ICUi
|fflfflfflfflffl{zfflfflfflfflffl}

to Di

� gICUi ICUi
|fflfflfflfflffl{zfflfflfflfflffl}

to Ri

; ICUið0Þ ¼ ICU0:
ð21Þ

The solution of this ODE is known to be

ICUi ¼ ICU0 exp ð� ðd
ICU
i þ g

ICU
i ÞtÞ: ð22Þ

If we know the average ICUi residence time TICU
res , we can obtain an expression for

ðd
ICU
i þ g

ICU
i Þ:

d
ICU
i þ g

ICU
i ¼

1

TICU
res

: ð23Þ
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Further, assuming that a fraction fδ of those individuals being admitted to ICUs would die,

we obtain an expression linking all rates:

fd ¼
# people dead by t ¼ 1

people entering ICUi at t ¼ 0
¼

d
ICU
i ICU0

R1
0
exp �

t
TICU

res

� �

dt

ICU0

¼ d
ICU
i TICU

res :
ð24Þ

Therefore, the transition rates are given by:

d
ICU
i ¼

fd
TICU

res

and gICUi ¼
ð1 � fdÞ
TICU

res

: ð25Þ

Using this modeling approach, we implicitly assume the time scales at which people leave

the ICU through recovery or death to be the same, i. e., the average ICU stay duration is inde-

pendent of the outcome of the course of the disease.

Similarly, we can estimate the infected-to-death rate (δi), the infected-to-ICU transition

rate (ICU admission rate αi) and the infected-to-recovered rate (γi) based on these fractions

and average times. If we assume that all the relevant median times are the same, we obtain the

following expressions for the rates:

di ¼
fIi!Di
TI

res

; ai ¼
fICU
TI

res

; gi ¼
ð1 � ðfIi!Di þ fICUÞÞ

TI
res

: ð26Þ

As the average residence time in the I compartment is dominated by recoveries we assume

TI
res ¼ 10 days [54–56].

Modeling vaccine efficacies

We assume the main effect of vaccinations on the individual to be twofold. A fraction η that

has received both vaccine doses will develop total immunity and not contribute to the spread-

ing dynamics. The rest may, in principle, be infected with the virus but still have some protec-

tion against a severe course of the illness, resulting in a lower probability of dying or going to

ICU. Both effects combined give the total protection against severe infections seen in vaccine

studies, which we will denote with κ. For current COVID-19 vaccines, efficacies against severe

disease κ ranging from 70–99% [23, 31–33, 57–59] and infection blocking potentials η of 60–

90% [24, 41, 60, 61] are reported. The roughly uniform distribution of vaccine types in the

European Union (see also Fig 8), consists to a larger part of mRNA-type vaccines for which

comparatively high values κ of 97–99% [33, 59] and η of 80–90% are reported. We thus chose

the rather conservative 90% for κ and 75% for η as our default values. The explicit κ and η do

not explicitly appear in our equations, but as parameters η0 and κ0, which we derive from the

reported numbers as follows.

Due to the lack of solid evidence on the effects of the first dose, we assume that the fraction

of individuals developing total immunity already after the first dose is given by η0. We further

assume that of the (1 − η0) people that do not develop the immunity after the first dose, the

same fraction η0 acquires it after the second dose, i. e. the total vaccination path of the people

that do not develop total immunity after both doses is given by Si!
1� Z0 S1

i !
1� Z0 S2

i . η0 can thus be
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related to η by the formula

Z ¼ 1 �
not fully protected
total vaccinated

¼ 1 � ð1 � Z0Þ
2
¼ Z0ð2 � Z0Þ:

ð27Þ

For individuals vaccinated with both doses without total immunity, i. e., from S2
i , we reduce

the probabilities to die or go to ICU after infection to account for the reduced risk of severe

symptoms due to the vaccine. Of the total number of people who get vaccinated the risk of

going to ICU or dying is thus reduced by a factor

1 � k ¼ ð1 � ZÞ � ð1 � k0Þ; ð28Þ

from which we can deduce the value of κ0.

Again, due to lack of solid data on the first doses we assume the risk of severe COVID-19 is

reduced to a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � kÞ

p
when only a single dose has been received. From these assump-

tions we arrive at

d
n

i ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k0

p
Þ
n
di; ð29Þ

ani ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k0

p
Þ
n
ai; ð30Þ

gni þ d
n

i þ a
n

i ¼ �g; ð31Þ

where ν = {1, 2} represents the dose of the vaccine for which an individual has successfully

developed antibodies. Note that ν is used as a super-index on the left-hand side of the equation

but as an exponent on the right-hand side. Eq 31 enforces vaccination not to alter the total

average timescale of the disease course.

The transition rates from ICU to death, d
ICU
i , and from ICU to recovered, gICUi , are assumed

to remain equal across doses. The reasons for this assumption are i) a lack of solid evidence for

significant differences, and ii) once in ICU, it is reasonable to assume that the vaccine failed to

work for this individual.

In addition to the effects of complete sterilizing immunity (η) and protection against severe

disease (κ), we include a third effect of vaccines: Individuals that happen to have a break-

through infection despite being vaccinated carry a lower viral load and are consequently less

infectious than unvaccinated infected individuals. This has been shown already after the first

dose [25, 60]. We include this effect by a factor σ in the contagion term (cf. (1)).

Individuals becoming infectious while developing antibodies

One special case that one has to consider is when individuals acquire the virus in the time

frame between being vaccinated and developing an adequate antibody level. We assume that

individuals share behavioral characteristics with the members of the corresponding susceptible

compartment, so contagion follows the same dynamics. Let Xi(s) be the fraction of susceptible

individuals of a given age group vaccinated at time s0 < s and are not infected until time s.
Assuming they can only leave the compartment by getting infected, the differential equation
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governing their dynamics is:

dXi
ds
¼ � RtXi

X

j;n
Cji
snInj
Mj
�
Xi
Mi
Fi; withXiðs0Þ ¼ 1: ð32Þ

The solution of (32) is given by

XiðsÞ ¼ exp �
Z s

s0

X

j;n

Rs0Cji
snInj ðs

0Þ

Mj
ds0

 !

exp �
Fiðs � s0Þ

Mi

� �

. Following the same formalism

for every batch of vaccinated individuals produced at time t − τ, the ones that remain suscepti-

ble by time t are given by:

XiðtÞ ¼ exp �

Z t

t� t

X

j;n

Rt0Cji
snInj ðt

0Þ

Mj
dt0

 !

exp �
Fit

Mi

� �

: ð33Þ

Therefore, we define the fraction of susceptible individuals acquiring the virus in the time-

frame of antibodies development as

piðtÞ ¼ 1 � exp �

Z t

t� t

X

j;n

Rt0Cji
snInj ðt

0Þ

Mj
dt0

 !

exp �
Fit

Mi

� �

: ð34Þ

This fraction is then subtracted in the transitions Vn
i ! Snþ1

i from the vaccinated to the

immunized pools in the differential equations.

Effect of test-trace-and-isolate

At low case numbers and moderate contact reduction, the spreading dynamics can be miti-

gated through test-trace-and-isolate (TTI) policies [18, 19]. In such a regime, individuals can

have slightly more contacts because the overall low amount of cases enables a diligent system

to trace offspring infections and stop the contagion chains. In other words, efficient TTI would

allow for having a larger gross reproduction number Rt without rendering the system unstable.

The precise allowed increase in Rt is determined by i) the rate at which symptomatic individu-

als are tested, ii) the probability of being randomly screened, and iii) the maximum capacity

and fraction of contacts that health authorities can manually trace. When the different compo-

nents of this meta-stable regime break down, we observe a self-accelerating growth in case

numbers.

In our age-stratified model, we do not explicitly include TTI, given all the uncertainties that

arise from the age-related modifying factors. However, we use our previous results to estimate

the gross reproduction number Rt that would produce the same observed reproduction num-

ber in the different regimes of i) no test or contact tracing, ii) strict testing criteria, iii) self-

reporting, and iv) full TTI. Doing so, we build an empirical relation to evaluating the contex-

tual stringency of the different strategies herein compared (namely, long-term stabilization at

high or low case numbers).

In the phase diagram of Fig 9 we illustrate the conversion methodology. Two different Rt
might produce the same observed reproduction number R̂obs

t , depending on the regime in

which they operate. Fitting all curves to an exponential function, and assuming that the largest

eigenvalue of the system (for all possibilities of testing and tracing) can be represented as a
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function of the gross reproduction number Rt, we obtain

R̂obs
t ¼ a exp ðbRtÞ: ð35Þ

We then want to evaluate how to translate the values we get from our control problem

(which has no testing nor tracing) to the equivalent in other regimes. Assuming that all strate-

gies have the same R̂obs
t (as schematized in Fig 9), we can relate their gross reproduction num-

bers in each regime through a simple equation:

Rit ¼
1

bi
ln

a0

ai

� �

þ b0Rt

� �

; ð36Þ

which corresponds to a line, and where the subscript 0 represents the base scenario (with no

testing or contact tracing) and the subscript i represents the other strategies. The exponential

fit to the curves shown in Fig 9 gives to the following line equations:

RtestðineffÞ
t ¼ 1:0211Rt þ 0:2229; ð37Þ

RtestðeffÞ
t ¼ 1:0756Rt þ 0:3272; ð38Þ

RTTI
t ¼ 1:6842Rt þ 0:1805: ð39Þ

Assuming smooth transitions for these conversions in Rt, which are related to certain values

of the new daily cases N (NTTI < Ntest(eff) < Ntest(ineff) < Nno test respectively), we can define a

Fig 9. Test-trace-and-isolate (TTI) policies allow for greater freedom (quantified by the gross reproduction

number Rt) while observing the same reproduction number R̂obs
t . Systematic efforts to slow down the spread of the

disease, such as mass testing (random screening) and contact tracing, allow decreasing the observed reproduction

number of the disease. For observing the same outcome in R̂obs
t , the gross reproduction number Rt would increase, or,

in other words, individuals would be allowed to increase their potentially contagious contacts. Therefore, we

extrapolate the Rt allowed in a full TTI setting at low case numbers and determine the equivalent Rt trends required to

reach the same R̂obs
t in different regimes, starting from the raw value considering no TTI (red curve). Assuming that the

relationship between Rt and R̂obs
t is exponential (Eq (35)), we can obtain the expected Rt trends in the low-case

numbers TTI regime. Starting from the raw Rt curve (red, 1), we can obtain Rt in all the other possible regimes: under

strict testing criteria (yellow, 2), self-reporting (green, 3), or full TTI (blue, 4). Adapted from [18].

https://doi.org/10.1371/journal.pcbi.1009288.g009
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general conversion Rt(N):

RtðNÞ ¼

RTTI
t ; if N < NTTI

RtestðeffÞ
t �1 þ RTTI

t ð1 � �1Þ; if NTTI � N < NtestðeffÞ

RtestðineffÞ
t �2 þ R

testðeffÞ
t ð1 � �2Þ; if NtestðeffÞ � N < NtestðineffÞ

Rt�3 þ R
testðineffÞ
t ð1 � �3Þ; if NtestðineffÞ � N < Nno test

Rt; else;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð40Þ

where the ϕ parameters of each convex combination depend on N:

�1 ¼
N � NTTI

NtestðeffÞ � NTTI
;

�2 ¼
N � NtestðeffÞ

NtestðineffÞ � NtestðeffÞ
; and

�3 ¼
N � NtestðineffÞ

Nno test � NtestðineffÞ
:

ð41Þ

Default reference values for the N-related set-points are NTTI = 20, Ntest(eff) = 100, and

Ntest(ineff) = 500 and Nno test = 10000 new daily cases per million. When we plot and refer to the

gross reproduction number Rt, it is always the value obtained from Eq (40).

Observed reproduction number

In real-world settings, the full extent of the disease spread can only be observed through testing

and contact tracing. While the true number of daily infections N is a sum of all new infections,

the observed number of daily infections N̂ obs is the number of new infections discovered by

testing, tracing, and surveillance of the quarantined individuals’ contacts. Thus, the observed

number of daily infections is given by

N̂ obsðtÞ ¼
hX

i;n

rEni ðtÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
end of latency

þ
X

i;n

Sni ðtÞ þ V
n
i ðtÞ

Mi
FiðtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ext: influx

i
⊛ KðtÞ
|ffl{zffl}

delay kernel
ð42Þ

where ⊛ denotes a convolution and K an empirical probability mass function that models a

variable reporting delay, inferred from German data. As the Robert-Koch-Institute (RKI), the

official body responsible for epidemiological control in Germany [62], reports the date the test

is performed, the delay until the appearance in the database can be inferred. The laboratories

obtain 50% of the sample results on the next day, 30% the second day, 10% the third day, and

further delays complete the remaining 10%, which for simplicity we will truncate at day four.

Considering that an extra day is needed for reporting the laboratory results, the probability

mass function for days 0 to 5 is given by K ¼ ½0; 0; 0:5; 0:3; 0:1; 0:1�.

The spreading dynamics are usually characterized by the observed reproduction number

R̂obs
t , an estimator of the effective reproduction number, calculated from the observed number

of new cases N̂ obsðtÞ. We use the definition underlying the estimates that are published by the

RKI, which defines the reproduction number as the relative change of daily new cases
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separated by 4 days (the assumed serial interval of COVID-19 [63])

R̂obs
t ¼

N̂ obsðtÞ
N̂ obsðt � 4Þ

: ð43Þ

In contrast to the original definition of R̂obs
t [62], we do not need to remove real-world

noise effects by smoothing this ratio. It should be noted that calling N̂ obs the observed case

numbers is somewhat misleading since we do not model the hidden figure explicitly. However,

as this is expected only to change slowly, it is still sufficiently accurate to obtain the observed

reproduction number from Eq (43).

Keeping a steady number of daily infections with a PD control approach

With increasing immunity from the progressing vaccination program, keeping the spread of

COVID-19 under control will require less and less effort by society. We can use this positive

effect to lower the infections by upholding the same NPIs or gradually lifting restrictions to

keep daily case numbers or ICU occupancy constant.

We model the optimal lifting of restrictions in the latter strategy using a Proportional

Derivative (PD) control approach. The gross reproduction number Rt is changed at every day

of the simulation depending on either the daily case numbers N̂ obs or the total ICU occupancy
P

i;nICU
n

i such that the system is always driven towards a given set point. The change in Rt is

negatively proportional to both the difference between the state and the setpoint as well as the

change of that difference in time. The former dependence increases the number of infections if

the case numbers drift down while the latter punishes rapid increases of the case numbers,

keeping the system from overshooting the target value. We omit a dependence on the cumula-

tive error, as is usually done in a PD controller, as that would enforce oscillations around the

setpoint and because the PD has proven to be sufficient for our purposes.

Since both the case numbers and the ICU occupancy inherently only react to changes in Rt
after a few days of delay, we can further improve the stability of the control by “looking into

the future”. The full procedure for every day t of the simulation then follows:

1. Run the system for a time span T using the current Rt.

2. Quantify the relative error Δ(t + T) of the system state at the end by the difference between

the observed case numbers or the total ICU occupancy and the chosen set point divided by

said set point.

3. Calculate Rt for the next day according to

Rtþ1 day ¼ Rt � kp � Dðt þ TÞ þ kd �
dD
dt
ðt þ TÞ

� �

;

where kp and kd denote constant control parameters listed in Table 6.

Table 6. The PD control parameters depending on the objective.

control problem preview time span T proportional kp derivative kd
N̂ obs (close to set point) 14 days 0.06 3.0

N̂ obs (away from set point) 14 days 0.06 1.2
P

i;nICU
n

i (close to set point) 14 days 0.2 15.0
P

i;nICU
n

i (away from set point) 14 days 0.2 7.0

https://doi.org/10.1371/journal.pcbi.1009288.t006
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4. Revert the system from the state at t + T to t + 1 day and start again at 1.

We use the same control system to uphold the setpoint as we use to drive the system

towards that state from the initial conditions. In a staged-control-like manner, we make the

system more reactive to high slopes near the setpoint, i. e. increase kd when within 10% of the

target. In this way, the system can drive up quickly to the target while preventing overreactions

to the gradual immunization changes while hovering at the fixed value.

Scenarios 2–4 in the main text consist of a chain of these control problems, changing from

controlled case numbers to controlled ICU occupancy at one of the vaccination milestones

(Fig 3).

Parameter choices

For the age stratification of the population and the ICU rates, we used numbers published for

Germany (Table 4). We suppose that the quantitative differences to other countries are not so

large that the result would differ qualitatively. When comparing ICU rates across countries,

one has to bear in mind that the definition of what constitutes an intensive care unit can differ

between countries. We chose our ICU limit of 65 per million as a conservative limit so that in

Germany, around three-quarters of the capacity would still be available for non-COVID

patients. This limit was reached during the second wave in Germany. Other countries in the

EU might have fewer remaining beds for non-COVID patients at this limit, as Germany has a

comparatively high per capita number of ICU beds available.

ICU-related parameters are calculated from 14043 hospitalizations reported by German

institutions until October 26, 2020 Table 5, converted to transition rates from Table 1. All

other epidemiological parameters, their sources, values, ranges, and units are listed in detail in

Table 2.

The vaccine efficacy, as discussed previously, is modeled as a multiplicative factor of the

non-vaccinated reference parameter. The dose-dependent multiplicative factor is chosen to be

90% in the default scenario, which is in the range of the 70 to 95% efficacy measured in phase 3

studies [57] of approved vaccines and in accordance with the 92% efficacy of the Pfizer vaccine

found in a population study in Israel [23]. In addition, we analyzed different scenarios of vac-

cine uptake (namely, the overall compliance of people to get vaccinated according to the vacci-

nation plan) because of its relevance to policymakers and different scenarios of the protection

the vaccine grants against infections η. The latter has great relevance for assessing risks when

evaluating restriction lifting.

Initial conditions

The initial conditions are chosen corresponding to the situation in Germany at the beginning

of March 2021. We assume a seroprevalence of 10% because of post-infection immunity across

all age groups, i.e., Ri(0) = 0.1 �Mi 8i. The vaccination at the beginning is according to the vac-

cination schedule introduced before, which leaves 5.1 million doses administered initially and

an initial vaccination rate of 168 thousand doses per day. This compares to the 6.2 million total

and the around 150 thousand daily administered doses at the time [26]. The initial number of

daily new infections is at 200 per million, and the number of individuals treated in ICU is at 30

per million with an age distribution as observed during the first wave in Germany (taken from

[47]). From these conditions and the total population sizes of the age groups (Table 4) we infer

the initial size of each compartment.
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Numerical calculation of solutions

The system of delay differential equations governing our model were numerically solved using

a Runge-Kutta 4th order algorithm, implemented in Rust (version 1.48.0). The source code is

available on GitHub https://github.com/Priesemann-Group/covid19_vaccination.

Supporting information

S1 Fig. Sensitivity analysis centered at default parameters (solid black lines), for the fourth

scenario from the main text. We vary central parameters of the model individually, while

keeping all others at their respective default value. For assessing the sensitivity to the TTI effi-

cacy we scale all the capacity limits NTTI, Ntest(eff), Ntest(ineff) and Nno test (see Methods) by a

common ratio.

(TIF)

S2 Fig. Contact structure can have a significant impact on the population immunity

threshold. We assume that infections are kept stable at 250 daily infections until all age groups

have been vaccinated. Then most restrictions are lifted, leading to a wave if vaccine uptake has

not been high enough (see Fig 4A). We measure the severity of the wave (quantified by the

duration of full ICUs) for varying uptake and vaccine efficacies for different contact structures

(see Fig 7A–7C). A-C: The duration of the wave (measured by the duration of full ICUs)

depends on the vaccine uptake and on the effectiveness of the vaccine measured by its efficacy

at preventing infection (shades of purple) and severe illness (vaccine efficacy, full vs dashed vs

dotted). D-F: If some NPIs are kept in place (such that the gross reproduction number goes up

to Rt = 2.5), ICUs would be prevented from overflowing even in some cases of lower vaccine

effectiveness. If precautionary measures are dropped in all age groups, including schools (A,D)

the required uptake to prevent a further severe wave is increased by about 10% when com-

pared to our default scenario of some continued measures to reduce the potential contagious

contacts in school settings (B,E) or to completely homogeneous contacts (C,F). Not all combi-

nations of vaccine effectiveness are possible as the vaccine efficacy against severe illness is by

definition larger as the protection against any infection at all.

(TIF)

S3 Fig. EU countries with different demographics have very similar dynamics—But the

required vaccine uptake to guard against further severe waves is most sensitive to the ini-

tial seroprevalence. Extended version of Fig 5, including more combinations of vaccine effica-

cies. A–D: If releasing all measures to pre-COVID contacts, keeping only some measures

aiming to cup the reproduction number at 3.5. E–H: If releasing all measures to pre-COVID

contacts, keeping only some measures aiming to cup the reproduction number at 3.5 and halv-

ing the contagiousness of contacts at school ages.

(TIF)

S4 Fig. Even with the emergence of the highly contagious B.1.1.7 variant vaccinations are a

promising mid-term strategy against COVID-19. Staying at low case numbers can greatly

increase the individual freedom, especially in the long-term. Schematic outlook into the

effects of vaccination and the B.1.1.7 variant of SARS-CoV-2 on the societal freedom in the EU

in 2021 compared to 2020 (see also the caption for Fig 1A). In 2020, seasonality effects and effi-

cient test-trace-and-isolate (TTI) programs at low case numbers allowed for stable case num-

bers with only mild restrictions during summer, until about September. In 2021, vaccinations

are expected to allow for greater freedom, but also a more contagious variant (B.1.1.7) is preva-

lent across the EU. Efficient TTI at low case numbers would thus help lifting major restrictions
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earlier. The exact transition period between the wild type and B.1.1.7 (light purple shaded

area) varies regionally.

(TIF)

S5 Fig. Lowering the case numbers without the most stringent restrictions opens a middle

ground between freedom and fatalities and prevents a new wave in the long term. A–D:

Variation of the fourth scenario from the main text (see Fig 3), where moderate restrictions

are kept in place in the long term (letting the gross reproduction number go up to 2.5, com-

pared to 3.5 in the default scenarios). E–H: Variation of the fifth scenario from the main text

(see Fig 2) avoiding the strict initial restrictions. Keeping the gross reproduction number at

a moderate level (1.5) until the everyone above 60 has been offered vaccination allows to

decrease case numbers steadily. Over the summer a slight gradual increase in the contacts is

allowed and all NPIs expect for test-trace-and-isolate (TTI) and enhanced hygiene are lifted

when everyone received the vaccination offer (increasing the gross reproduction number to

3.5). I: The variation of the fourth scenario initially allows for the same increase in freedom as

all the main scenarios, but needs more restrictions in the long term. The variation of the fifth

scenario calls for stricter NPIs in the mid-term, but grants high freedom after summer. J,K:

Both proposals lead to low number of infections and fatalities. L: Projected vaccination rates

(see Fig 2).

(TIF)

S6 Fig. Long-term control strategies (low vaccine uptake, 70% among the vaccinable popu-

lation) from main text Figs 2 and 3. Scenarios using default protection against infection η =

0.75 and low vaccine uptake of 70% among the adult population.

(TIF)

S7 Fig. Long-term control strategies (default vaccine uptake, 80% among the vaccinable

population) from main text Figs 2 and 3. Scenarios using default protection against infection

η = 0.75 and default vaccine uptake of 80% among the adult population.

(TIF)

S8 Fig. Long-term control strategies (high vaccine uptake, 90% among the vaccinable pop-

ulation) from main text Figs 2 and 3. Scenarios using default protection against infection η =

0.75 and high vaccine uptake of 90% among the adult population.

(TIF)

S9 Fig. Mirror of Fig 2, using a homogeneous contact structure.

(TIF)

S10 Fig. Mirror of Fig 3, using a homogeneous contact structure.

(TIF)

S11 Fig. Mirror of S5 Fig, using a homogeneous contact structure.

(TIF)

S12 Fig. Mirror of Fig 2, using an empirical pre-COVID contact structure.

(TIF)

S13 Fig. Mirror of Fig 3, using an empirical pre-COVID contact structure.

(TIF)

S14 Fig. Mirror of S5 Fig, an empirical pre-COVID contact structure.

(TIF)
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S1 Table. Parameters for the three main different vaccine uptake scenarios for Finland.

Uptakes and averages are to be understood across the eligible (16+) population. For German

data see Table 2 in the main text. Italian and Czech data are to be found in S2 and S3 Tables

respectively.

(XLSX)

S2 Table. Parameters for the three main different vaccine uptake scenarios for Italy. The

averages are to be understood across the eligible (16+) population. For German data see Table 2

in the main text. Finnish and Czech data are to be found in S1 and S3 Tables respectively.

(XLSX)

S3 Table. Parameters for the three main different vaccine uptake scenarios for the Czech

Republic. The averages are to be understood across the eligible (16+) population. For Ger-

man data see Table 2 in the main text. Finnish and Italian data are to be found in S3 and S2

Tables respectively.

(XLSX)

S1 Supplementary Note. Eigenvalues of the homogeneous contact matrix. Here we demon-

strate a general case for the eigenvalues of a homogeneous contact matrix, for which every col-

umn accounts for the fraction age-groups represent respect to the total population.

(PDF)
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65. Robert-Koch-Institut. Mitteilung der Ständigen Impfkommission am Robert-Koch-Institut. Beschluss der

STIKO zur 2. Aktualisierung der COVID-19-Impfempfehlung und die dazugehörige wissenschaftliche

Begründung; 2021. https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2021/Ausgaben/05_21.pdf.

Available from: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2021/Ausgaben/05_21.pdf?

__blob=publicationFile.

66. Bar-On YM, Flamholz A, Phillips R, Milo R. Science Forum: SARS-CoV-2 (COVID-19) by the numbers.

Elife. 2020; 9:e57309. https://doi.org/10.7554/eLife.57309 PMID: 32228860

67. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the

rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020; 368(6490):489–493. https://

doi.org/10.1126/science.abb3221 PMID: 32179701

68. Linden M, Mohr SB, Dehning J, Mohring J, Meyer-Hermann M, Pigeot I, et al. Case numbers beyond

contact tracing capacity are endangering the containment of COVID-19. Dtsch Arztebl International.

2020; 117(46):790–791. https://doi.org/10.3238/arztebl.2020.0790 PMID: 33533714

PLOS COMPUTATIONAL BIOLOGY Relaxing COVID-19 restrictions at the pace of vaccination: a long-term strategy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009288 September 2, 2021 37 / 37



5
I N T E R P L AY B E T W E E N R I S K P E R C E P T I O N ,
B E H AV I O R , A N D C O V I D - 1 9 S P R E A D

Cite as: Dönges,
P., Wagner, J.,
Contreras, S.,
Iftekhar, E.N.,
Bauer, S., Mohr,
S.B., Dehning, J.,
Calero Valdez, A.,
Kretzschmar, M.,
Mäs, M. et al.
2022. Interplay
between risk
perception,
behavior, and
COVID-19 spread.
Frontiers in
Physics, 10.
https:
// doi. org/ 10.
3389/ fphy. 2022.
842180

This chapter is identical to the article [25]. The Supplementary
Information can be found in Appendix C. The article is published
in
Dönges, P., Wagner, J., Contreras, S., Iftekhar, E.N., Bauer,
S., Mohr, S.B., Dehning, J., Calero Valdez, A., Kretzschmar,
M., Mäs, M. et al., Interplay between risk perception, behavior,
and COVID-19 spread, Frontiers in Physics, 10 (2022), under the
terms of a Creative Common License (http://creativecommons.
org/licenses/by/4.0/).
To this publication, I contributed equally with P. Dönges, J.
Wagner, and S. Contreras. Roles: Methodology, Writing – original
draft, Writing – review & editing.

73

https://doi.org/10.3389/fphy.2022.842180
https://doi.org/10.3389/fphy.2022.842180
https://doi.org/10.3389/fphy.2022.842180
https://doi.org/10.3389/fphy.2022.842180
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Interplay Between Risk Perception,
Behavior, and COVID-19 Spread
Philipp Dönges1†, Joel Wagner1†, Sebastian Contreras1,2†, Emil N. Iftekhar1†, Simon Bauer1,
Sebastian B. Mohr1, Jonas Dehning1, André Calero Valdez3, Mirjam Kretzschmar4,
Michael Mäs5, Kai Nagel6 and Viola Priesemann1,7*

1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2Centre for Biotechnology and Bioengineering,
Universidad de Chile, Santiago, Chile, 3Chair of Communication Science, RWTH Aachen University, Aachen, Germany,
4University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, 5Department of Sociology, Karlsruhe Institute of
Technology, Karlsruhe, Germany, 6Chair of Transport Systems Planning and Transport Telematics, Technische Universität Berlin,
Berlin, Germany, 7Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany

Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for
controlling COVID-19. They are complemented by voluntary health-protective behavior,
building a complex interplay between risk perception, behavior, and disease spread. We
studied how voluntary health-protective behavior and vaccination willingness impact the
long-term dynamics. We analyzed how different levels of mandatory NPIs determine how
individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-
19 incidence will surge, implying high morbidity and mortality before individuals react; if
they are too strong, one expects a rebound wave once restrictions are lifted, challenging
the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time
and room to adapt their level of caution, mitigating disease spread effectively. When
complemented with high vaccination rates, this also offers a robust way to limit the impacts
of the Omicron variant of concern. Altogether, our work highlights the importance of
appropriate mandatory NPIs to maximise the impact of individual voluntary actions in
pandemic control.

Keywords: COVID-19, disease modeling, infodemic, human behavior, self-regulation, vaccine hesitancy, health
policy and practice, Omicron variant (SARS-CoV-2)

1 INTRODUCTION

During the COVID-19 pandemic, the virus has played a central role in people’s day-to-day
conversations and the information they search for and consume [1]. The growing amount of
news and specialized literature on COVID-19 can inform individual decisions in a wide range of
situations and on various timescales [2]. For example, people decide multiple times every day how
closely they follow mask-wearing regulations or meeting restrictions. However, if hesitant, they
might take weeks or months to decide whether to accept a vaccine. These decisions impact the
spreading dynamics of COVID-19 and ultimately determine the effectiveness of interventions and
how smoothly we transit to SARS-CoV-2 endemicity.

While typical models of disease spread consider that individual behavior affects the spreading
dynamics of an infectious disease, they often neglect that there is also a relation in the opposite causal
direction. This feedback loop comprises that, e.g., mass media regularly updates individuals on the
latest local developments of the pandemic, such as the current occupancy of intensive care units
(ICUs). This information affects individuals’ opinions and risk perceptions and, thus ultimately their
actions [3]. For example, given high perceived risk, individuals reduce their non-essential contacts
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beyond existing regulations and increase their willingness to
accept vaccine offers accordingly, an effect observed in
empirical research conducted with routine surveys in Germany
[4] and other parts of the world [5–8]. However, to quantify the
effect of individual voluntary actions on the dynamics of COVID-
19, two questions remain open: 1) What is the relationship
between risk perception and voluntary action, on the one
hand, and the spread of the disease, on the other hand; and 2)
what is the relative contribution of voluntary action when
mandatory restrictions are in place?

In this work, we aim to quantify the impact of voluntary
actions on disease spread while studying the questions mentioned
above for the COVID-19 pandemic. 1) We analyze survey and
COVID-19 vaccination data in European countries to uncover
the relationship between the occupancy of ICUs—which
determines the perceived risk—and voluntary immediate
health-protective behavior as well as the willingness to get
vaccinated. We then incorporate these effective feedback loops
into a deterministic compartmental model (Figure 1A). 2) We

decompose the overall contact structure into contextual contacts
(Figure 1B) and for each context define a range in which
voluntary action can be adapted according to individual risk-
perception, given the level of mandatory non-pharmaceutical
interventions (NPIs). To that end, we use the functional form
identified in 1) (Figure 2). We explore different intervention
scenarios in the face of adverse seasonality [9–11], using as
reference the winter 2021/2022 in central Europe. Our analysis
confirms that both extremes (“freedom day” or stringent
measures throughout) bear large harms in the long run.
However, when measures leave space for voluntary actions,
people’s adaptive behavior can efficiently contribute to
breaking the wave and change the course of the pandemic.

2 RESULTS

2.1 Data-Derived Behavioral Feedback
Loops
Throughout this manuscript, we investigate how the interplay
between information about the COVID-19 pandemic and its
spreading dynamics is mediated by the perception of risk. Risk
perception modulates both, 1) people’s immediate voluntary
health-protective behavior, e.g., their level of contacts and
their adherence to mask-wearing and hygiene
recommendations, and 2) their willingness (or hesitancy) to
receive vaccination (Figure 1). Individuals constantly receive
information on the current COVID-19 incidence, ICU
occupancy, and deaths (which are all closely related [13–15])
either via news outlets or because of reports about COVID-19
cases in their social circles. Hence, the risk they perceive depends
on this evolving trend over time.

We tailor our approach to the situation of the COVID-19
pandemic, i.e., to a disease having the following characteristics: 1)
high transmissibility, 2) relatively low infection fatality rate, 3)
widespread vaccine hesitancy, 4) waning immunity, and 5) public
attention and coverage. We differentiate from the approaches of
[16–18] as we neither model the contagion of fear explicitly nor a
direct coupling between incidence and fear. Instead, we assume
that individuals build their perception of risk based on the ICU
occupancy over time using a memory function, similar to the
theoretical approach in [19, 20]. This is a sensible choice, as ICU
occupancy signals 1) how likely governmental bodies are to re-
implement emergency NPIs to prevent overwhelming healthcare
facilities (and thereby limit individual freedoms), and 2) how
likely it is that an individual’s close contacts (or their contacts)
would have been severely ill. Besides, our modeling framework
constitutes a methodological advancement from that presented in
[17], as we provide a detailed description of all epidemiologically
relevant disease states and several external effects influencing its
spread, such as seasonality, contextual contact networks
and NPIs.

We assume that individuals base their decisions about heath-
protective behavior on the recent developments of the pandemic.
Following the ideas of Zauberman et al. about perception of time
in decision-making [21], we consider that when individuals
decide about behavior that only has immediate protective

FIGURE 1 | Interplay between risk perception and voluntary health-
protective behavior. (A): Sketch of the proposed age-stratified compartmental
model of disease spread, which incorporates different stages for disease
progression and immunological conditions of the susceptible population
with their respective chances of being infected and developing a severe
course (Supplementary Figure S1, Supplementary Information, for full
model). The behavioral feedback (blue lines) changes individuals’ contagious
contact behavior, as well as their willingness to get vaccinated, and hence the
effective spreading rate. (B): We use the contact matrix of [12], which yields
the contact rates at home, school, work and in the community for each age-
group. For the subsequent scenarios, we adapt these contexts of contacts
separately. Some of the contacts are by definition hard to reduce voluntarily
(e.g., household contacts), while others (at school and work) strongly depend
on current mandatory non-pharmaceutical interventions (Supplementary
Figure S3 for details).
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effects, they consider only the current risk-level. For instance,
when deciding whether or not to wear a mask in the
supermarket on a given day, they only consider the most
recently reported ICU occupancy. Decisions with longer-term
protection, in contrast, are also based on a longer-term risk-
assessment. When deciding whether or not to get a booster
vaccine, for example, individuals do not only take into account
the ICU-occupancy on the day of the decision but they are
looking back at a longer period. We detail the assumptions
about the perceived risk-level and the resulting health-
protective behavior in the Methods section. In the following,
we sketch the derivation of the feedback loops from this
perceived risk to people’s immediate voluntary health-
protective behavior and willingness to get vaccinated.

2.1.1 Feedback on Health-Protective Behavior
To determine the explicit relationship between the perceived level
of risk and immediate voluntary health-protective
behavior—which presents one of the feedback loops in our
model—we exploit results from the German COSMO study, a
periodic survey where participants are asked about their opinions
and behavior regarding the COVID-19 pandemic and NPIs [4].

Their answers on adhering to health-protective behavior
recommendations (avoiding private parties in this case)
correlate with the ICU occupancy in Germany at the time
(Figure 2A). However, at very high ICU occupancy, adoption
of health-protective behavior seems to reach a plateau
(Figure 2B); no further adoption seems to be feasible,
arguably because those individuals willing to engage in health-
protective behavior have done so already as far as they can, and
those unwilling are insensitive to higher burden on ICUs. Hence,
we fit a piece-wise linear function (with a rounded edge at the
transition—called a softplus) to the COSMO data [Pearson
correlation coefficient r = 0.64 for 2020–2021 (black), r = 0.81
for 2020 (red) and r = 0.53 for 2021 (yellow)] and use it for the
feedback between information in terms of ICU occupancy and
voluntary health-protective behavior (Figure 2C andMethods for
details).

2.1.2 Feedback on Vaccination Behavior
The second feedback loop in our model describes the relationship
between the level of perceived risk and vaccine hesitancy. To
quantify it, we study the vaccination trends in different European
countries and compare them with the trends in ICU occupancy

FIGURE 2 |Data-derived formulation of behavioral feedback loops. (A): Reported contact reductions follow intensive care unit (ICU) occupancy in Germany. Survey
participants were asked how likely they were to avoid private parties over the course of the pandemic on a discrete scale from 1 (never) to 5 (always) [4]. To decouple the
effect of vaccination availability, we present 2020 (red) and 2021 (yellow) data separately. Ticks indicate the middle of the month. (B): The survey data on contact
reduction and the ICU occupancy are related. The piece-wise linear relationship shows the reduction of contacts with increasing ICU occupancy, and for even
higher ICU occupancy a saturation. Red, yellow, and black represent fits to the data from 2020, 2021, and overall, respectively. (C): In the model, the contact reduction
and its dependency on ICU occupancy is implemented as amultiplicative reduction factor k that weighs the age-dependent contextual contact matrices (Figure 1B). (D):
Vaccine uptake increases with ICU occupancy in Romania (shown here) and other European countries (Supplementary Figure S4). (E): Willingness to accept a vaccine
offer is modeled using an exponentially-saturating function, ranging between a lower and upper bound of acceptance depending on ICU occupancy. The bounds
represent that a fraction of people is willing to be vaccinated even at no immediate threat (no ICU occupancy), and another fraction is not willing or able to get vaccinated
nomatter the threat. (F): Vaccines are delivered at a rate proportional to the number of people seeking a vaccine, i.e., the difference between the number of people willing
to be vaccinated and those already vaccinated. Thus, when the number of already vaccinated equals the number of people willing to get vaccinated, no more
vaccinations are carried out. The same functional shape describes the booster uptake.
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(Supplementary Figure S4, Supplementary Information). The case
of Romania (Figure 2D) illustrates the relation very clearly:
Vaccination rates follow the ICU occupancy with a delay of a
few weeks. By analyzing the correlation between vaccination rate
and ICU occupancy with a variable delay, we reach the highest
Pearson correlation coefficient (0.96) with a delay of 25 days.
However, the specific reaction delay and magnitude of the effect
differs between countries (Supplementary Figure S4). In ourmodel,
we propose that as ICU occupancy increases so does the willingness
to get vaccinated (i.e., higher probability of accepting a vaccine offer
when ICU occupancy is high). As not everybody in the population is
willing to accept a vaccine offer, the willing fraction of the population
is a function that saturates below 1 (Figure 2E). With this
formulation, vaccinations are only carried out if the fraction of
the population willing to get vaccinated is larger than the fraction of
currently vaccinated (Figure 2F and Methods for details).

Our model can capture two features observed in real-world
vaccination programs. First, when case numbers are low and
vaccine uptake high, rational agents might have insufficient
incentives for getting vaccinated. Assuming a high perceived
risk of vaccine side effects, the agents would thus decline
vaccination when offered. The above is known as the free-rider
problem in game theory and economics [22]. Second, the two
feedback loops in our model and the incorporation of waning
immunity allows us to observe different incidence curve shapes and
replicate recurrent waves of infections. The above is a necessary
validity check, as real-world outbreaks exhibit a large variety of
incidence curve shapes [23]. These may ultimately unveil universal
patterns of disease spread that are consistent across countries [24].

2.2 Behavioral Feedback Loops Yield More
Realistic Results than Classical Models
Classical SEIR-like compartmental models have found wide
application in the first stages of the COVID-19 pandemic. In

these models, the different stages of disease progression are
represented by separate compartments and individuals transit
from one to another at a given (and typically constant) transition
rate. In that way, an infectious disease outbreak will proliferate if
the spreading rate of the disease is larger than the recovery rate
and if a large-enough fraction of the population is susceptible to
being infected. However, these simple models often tend to
overestimate the size of an infectious disease outbreak or all
possible trajectories for the incidence trends [23], as they do not
incorporate mechanisms of dynamical adaptation of restrictions
[25] or, as studied in this paper, behavior.

We observe that including the feedback loops described
above reduces the peak in incidences and hospitalizations
while keeping the timing of the wave almost unchanged (see
Figure 3). More generally, these feedback loops break
increasing and declining trends, resulting in long but flat
infection plateaus or multiple waves. Compared to classical
SEIR-like models, where two dynamical regimes are
possible—exponential growth or decay of case numbers,
when neglecting waning immunity—, our model captures a
broader spectrum of dynamics by linking ICU occupancy with
individuals’ health-protective voluntary behavior and vaccine
uptake.

2.3 Policies With Either too Weak or too
Strong Interventions Throughout Winter
Bear Higher Levels of Mortality and
Morbidity
Using parameters obtained from surveys and other data
sources (Supplementary Table S3, Supplementary
Information), we analyze five scenarios of mandatory NPIs
throughout winter (for all age-stratified results see
Supplementary Material): 1) no NPIs at all, 2)-4)
moderate NPIs and 5) strong NPIs (Methods for details).
The stringency of the scenarios and the seasonal effects are
depicted in Figures 4A,B and Figures 5A,B. As an example
case, we assume a country with a total vaccination rate of 60%
and a recovered fraction of 20%. Note that we include the
possibility of overlaps between vaccinated and recovered.
Thus, the total fraction of immune individuals does not
add up to 80% but 68%. For more detail on the initial
conditions, see Supplementary Material, Supplementary
Section S3.1.

Without any mandatory NPIs throughout winter (Scenario 1,
Figure 4, black lines), case numbers and hospitalizations will
show a steep rise (Figures 4C,D). As a consequence, individuals
voluntarily adapt their health-protective behavior and are more
inclined to accept a vaccine offer (Figures 4E–G). Although this
scenario features unrealistically high mortality and morbidity,
modeling results in the absence of any behavior feedback
mechanisms yield even higher levels (cf. Figures 4C,D, dotted
red line).

In contrast, suppressing the seasonal wave through strong
mandatory NPIs (Scenario 5, Figure 4, mint lines) and
thereby maintaining low case numbers through winter only
delays the wave to a later but inevitable date once restrictions

FIGURE 3 | Incorporating behavioral feedback loops in compartmental
models broadens the dynamic range of the solutions and yields more realistic
results. Different variations of a compartmental model are displayed to show
the effect of the two feedback loops used in our model: When ICU
occupancy increases, individuals increase their health-protective behavior and
are more willing to be vaccinated. This dynamical adaptation can break a wave
at lower case numbers and lead to extended infection plateaus (blue curves),
which a classic compartment model is unable to reproduce as it does not
incorporate the population’s reaction to the disease (red curve).
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are lifted (Figures 4C,D). Low COVID-19 incidence
throughout winter implies 1) low post-infection immunity,
2) little incentives for first or booster vaccination, 3) waning
immunity, and 4) lower rates of “naturally” boosting immune
memory upon re-exposure to the virus [26]. The resulting low
immunity levels (Figure 4G) then fuel a higher rebound wave
when restrictions are lifted in March 2022, despite favorable
seasonality. Similar rebound waves have been observed for
other seasonal respiratory viruses [27, 28].

Interestingly, the middle strategy, namely moderate NPIs
during winter, prevents the high wave in winter as well as the
rebound wave in spring that characterize the scenarios with no
or with strong NPIs, respectively (Scenario 3, Figure 4, dark
blue). Unlike in the extreme scenarios, the ICU capacity in
Scenario 3 is not exceeded in any season, hence avoiding
reduced health care quality and strong burden to health
care workers. Figure 4H shows that the death toll in
Scenario 3 is lower than in the other scenarios. In reality
however, this difference would be much larger because
Scenarios 1 and 5 surpass the assumed ICU capacity by far;
that would imply disproportionally higher mortality, an effect
we did not quantify in our model. Alternatively, emergency

mandatory NPIs would be introduced, which we do not
model here.

2.4 Voluntary Actions can Dampen theWave
if Restrictions are Moderate
As presented in the previous section, extreme scenarios
(Scenarios 1 and 5) bear high levels of morbidity and
mortality. However, in scenarios with intermediate restriction
levels (Scenarios 2–4, Figure 5A), voluntary preventive actions
(Figure 5E) can compensate for slightly too low levels of
mandatory NPIs, provided that these NPIs are strong enough
to prevent a surge in COVID-19 incidence that might be too
sudden or strong for individuals to voluntarily adopt health-
protective behavior (Figures 5C,D). For example, while having
different levels of mandatory NPIs, Scenarios 2 and 3 reach
similar peaks in ICU occupancy (Figure 5D). Conversely,
despite considering a proportional increase in the strength of
NPIs (comparable to that from Scenario 2 to 3, Figure 5A),
Scenario 4 is too protective: there are too few incentives to get
vaccinated (Figure 5F) due to the low risk perception as well as
too few infections (Figure 5C) and, hence, appropriate immunity

FIGURE 4 | Maintaining moderate contact restrictions throughout winter outperforms extreme scenarios in balancing the burden on ICUs by allowing
people the freedom to act according to their risk perception. The level of mandatory NPIs sustained throughout winter 2021/2022, together with people’s
voluntary preventive actions, determines case numbers and ICU occupancy over winter and beyond. Ticks are set on the first day of the month. (A): The three
displayed scenarios of mandatory NPI stringency in winter reflect “freedom-day” with only basic hygiene measures (black), considerable contact
reduction and protective measures (e.g., mandatory masks) in school, at the workplace and in the community (blue), and strong contact reduction and partial
school closure (mint). All measures are gradually lifted centred around 1 March 2022, over the course of 4 weeks. (B): The seasonality of the basic
reproduction number R0. (C,D): Scenario 1 (black): Without mandatory restrictions, incidence and ICU occupancy increase steeply; this increases voluntary
health-protective behavior and vaccine uptake in the population (E,F), and leads to higher rates of naturally acquired immunity (G), but also high mortality and
morbidity in winter (H). Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is
vaccinated. A “full wave” is added in (C,D) (red dotted line), depicting the development of case numbers and ICU occupancy in the absence of behavioral
feedback mechanisms. Scenario 3 (blue): Maintaining moderate restrictions would prevent overwhelming ICUs while allowing for higher vaccine uptakes and
rates of post-infection immunity. Scenario 5 (mint): Maintaining strong restrictions would minimize COVID-19 cases and hospitalizations in winter, generating
a perception of safety across the population. However, this perceived safety is expected to lower the incentives to get vaccinated. Furthermore, immunity of
all kinds will wane over winter. Altogether, this can cause a severe rebound wave if restrictions are completely lifted in March. Furthermore, in all scenarios
where ICU capacity is exceeded, we would in reality expect either disproportionally higher mortality due to the burden on the health system or a change in
mandatory NPIs.
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levels are not reached (Figure 5G). As a consequence, a
disproportionally larger off-seasonal wave in spring
overwhelms ICUs (Figure 5D). Noteworthy, even though the
nominal mortality is the lowest for Scenario 4 (Figure 5H), this
value does not account for triage-induced over-mortality or novel
necessary NPIs that would be likely be imposed and is thus
invalid.

2.5 Case Study: Emergence of the Omicron
Variant of Concern and its Effect on Case
Numbers
A risk that cannot be neglected is the emergence of SARS-CoV-2
variants of concern (VOC), such as the Omicron VOC. This
variant is rapidly replacing the Delta VOC, thus posing an
imminent risk. Although there is substantial uncertainty about
its epidemiological features, preliminary evidence shows:
Compared to the Delta VOC, Omicron exhibits 1) an
increased risk of reinfection or break-through infection
[29–31], 2) a substantial reduction in antibody neutralization
[32–38], 3) a reduction in vaccine effectiveness against infection
[31, 37, 39–44], and 4) faster spread [30, 31, 45, 46] mainly due to
immune escape [47].

Given this evidence, we analyze the impacts of a potential full
replacement of the dominant Delta VOC by the Omicron VOC
by 15th of January 2022. We incorporate the protection against
infection by booster doses. As example scenario, we start with
Scenario 3 (moderate mandatory NPIs), as it resembles a typical
development in Europe. We then analyze four different possible

reactions to the Omicron VOC, i.e., starting to switch from
Scenario 3 to Scenarios 1, 3, 4, or 5 before it takes over
(Figure 6A). We evaluate three possibilities regarding the
booster vaccine-protection against infection, 50, 65, and 80%
(relative to the protection granted for Delta). This is consistent
with available evidence suggesting Omicron’s immune escape to
reduce vaccine effectiveness against symptomatic disease to about
73% for freshly mRNA-boosted individuals [32]. Furthermore,
we explore two possibilities of severity of infections after previous
immunization: Either efficacy against severe course remains the
same as with Delta, both for the immunized and immune-naive
persons (Figures 6B,E,H), or protection is five times better for
the immunized (Figures 6C,F,I).

As expected, the enhanced transmissibility resulting from the
partial escape of the Omicron VOC breaks the decreasing trend in
case numbers observed for Scenarios 3, 4, and 5 from the moment
where the replacement takes place (Figures 6A,D,G). This results
in a substantial surge in daily new cases in all scenarios except for
Scenario 5 (most restrictive). Regarding ICU occupancy, our
results depend strongly on the assumed protection against
infection by recent vaccination or boosters. When the
protection against infection granted by recently administered
vaccines is above 50%, both Scenarios 4 (which has a more
strict testing policy and further reduced contacts compared to
Scenario 3) and 5 (in addition, group sizes in school are reduced)
yield optimistic results for ICU occupancy. If Omicron infections
lead to much less severe course of the disease for immunized or
convalescent individuals, then even Scenario 3 can avoid severely
overfilling intensive care units. We have represented Scenario 1

FIGURE 5 | Moderate restrictions leave enough room for effective adaptation of behavior to perceived risk. (A): We explore three scenarios with similar levels of
moderate mandatory NPIs sustained throughout winter, the period of adverse seasonality (B). Considering Scenario 3 as reference, moderate restrictions seem to be
robust against relaxations of NPIs, as both morbidity and mortality are similar to that of Scenario 2 (C,D,H). However, a perturbation with less strength in the opposite
direction (Scenario 4, increasing mandatory NPIs) has a disproportional effect on ICU occupancy. These differences are based on the modulation of voluntary
contacts (E) and vaccine uptake (F). Thus, when leaving room for adaption of health-protective measures to perceived risk, people’s behavior will stabilize moderate
scenarios where mandatory NPIs are strong enough to prevent a major surge, but not over-protective, so individuals find it rewarding to be vaccinated and to adapt their
level of contacts. Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is vaccinated (G).
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(lifting all mandatory NPIs) with dashed lines, as it yields
unrealistic results: Stricter NPIs would probably be
reinstated if ICU occupancy becomes too high. The
scenarios end in April, where we expect that an updated
booster vaccine is developed and distributed. In that phase,
lifting restrictions at the pace of vaccination and aiming for low
case numbers would maximize freedom while minimizing
mortality and morbidity [25, 48–50].

3 DISCUSSION

Modeling the interplay of human behavior and disease spread is
one of the grand challenges of infectious disease modeling. While
not being the first to model behavioral adaptation [17, 51–55], we
incorporate data-driven insights into our modeling framework,
inspiring the explicit functional dependency between risk and
health-protective behavior as well as vaccine hesitancy in the
context of the COVID-19 pandemic. Thereby, we can incorporate

self-regulation mechanisms into our scenario analysis, which best
qualitatively describe what is to be expected in the future or in the
event of the emergence of novel SARS-CoV-2 VOCs, such as the
Omicron variant. We hence take a further step towards more
empirically-grounded mathematical models.

Within our framework, a smooth transition to SARS-CoV-2
endemicity requires, besides a working and accepted vaccine, two
ingredients. First, mandatory NPI levels should be high enough to
prevent a surge in case numbers so fast that individuals could not
react on time to prevent overwhelming ICUs. Second, mandatory
NPIs should leave enough room so that individuals can effectively
adopt voluntary preventive actions as a response to an increased
perception of risk. Hence, governments must guarantee that the
decision to, e.g., attend non-essential face-to-face activities that
could be carried out remotely remains in the individual’s hands.
Under such circumstances, voluntary actions can dampen the
wave and prevent overwhelming ICUs (Scenarios 2 and 3,
Figure 5). Otherwise, irresponsible or overprotective measures
would result in a wave that could surpass the healthcare capacity

FIGURE 6 |Development of the pandemic under the emergence of the Omicron VOC. Assuming a full replacement of Delta by the Omicron VOC on 15th of January
2022, we model three different possibilities for vaccine-protection against infection, and two levels of long-lasting vaccine- or post-infection protection against severe
course (A–I). In color, we display four scenarios that are derived from the previously studied ones (J,K). All scenarios share moderate mandatory NPIs until mid
December 2021, where we evaluate different possibilities for policy adaptation to mitigate the spread of the Omicron VOC. (A,B,D,E,G,H): Case numbers and ICU
occupancy while assuming that a protection against hospitalization (once infected despite previous immunization) is similar to the protection against Delta. (C, D, I): ICU
occupancy while assuming a protection against hospitalization (once infected and after previous immunization) five times better than the protection regarding Delta.
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in the short term or when lifting all measures (Scenarios 1, 4, and
5, Figures 4, 5). In any case, people’s awareness about the danger
of a disease should ideally be driven by trust in scientific and
governmental bodies instead of by the current burden to the
healthcare system. Hence, it is crucial during a disease outbreak to
engage in extensive, expert-guided, and audience-tailored risk
communication [56] and to prevent the spread of mis- and dis-
information that could damage general trust [57, 58].

Despite the empirical basis of our approach, the functional
shape of the feedback mechanisms remains one of the main
uncertainties in our model. The voluntary adoption of health-
protective measures was inspired by survey data [4], and is thus
bound to its limitations. Additionally, as ICU capacity was never
extremely overwhelmed in Germany in the time frame of the
COSMO survey, the study does not provide information on how
people would act at very high levels of ICU occupancy; in
principle, such emergency situations would trigger even
stronger reactions in the population, and certainly also a
change in NPI stringency (which we assumed to be constant
throughout). Furthermore, when extrapolating our results to
other countries, one should consider cultural differences or
varying levels of trust in governmental bodies. Therefore, more
empirical research to inform model assumptions and parameters
remains crucial.

Vaccine uptake and coverage are critical parameters that
determine mortality and morbidity levels. In line with what
has been observed in high-income countries, we assume that
vaccination rates are mostly limited by vaccine hesitancy instead
of vaccine stocks or logistics. In that way, we can deal with
emergent VOCs (as Omicron) with a healthy combination of
mandatory NPIs aiming for low-case numbers while a working
vaccine is developed and coverage is insufficient [25, 48] and by
letting individuals decide on their own when the roll-out is
complete. However, the core problem remains latent; wealthy
countries concentrate resources while some countries cannot
afford enough vaccines to protect even their population at risk
[59]. As the latter countries are forced into accepting high-case
numbers in order to keep their economies running, there are
increased risks of breeding variants that could escape natural or
vaccine-elicited protection [60]. Therefore, vaccine policy
planning from an international perspective is critical for a
smooth transition to SARS-CoV-2 endemicity.

Modeling the introduction and spread of different SARS-CoV-
2 variants in a population is challenging. At the very least,
modeling these dynamics would require having separate
compartments for all the disease states of all circulating
variants, disproportionally increasing the complexity of our
model. In our approach, we take advantage of the extensive
immune escape of the Omicron VOC to natural and vaccine-
elicited neutralization [29, 31, 32, 45, 47], and assume that the
replacement of Delta VOC occures very quickly (i.e., basically
instantaneously) in mid-January. This simplification is not too
distant from reality; replacement of Delta and other predominant
sublineages for Omicron took only a few weeks in several
countries [61]. For the spread of Omicron, we use the same
basic reproduction number as for Delta but instead consider most
individuals previously immunized to have lost protection against

infection, i.e., they are moved to the susceptible pool (Methods for
details). Thereby, we can capture the explosive spread of Omicron
VOC without increasing the base transmissibility. We
furthermore include that those people having received a
booster vaccine maintain some protection against infection
with Omicron, which, however, also wanes. These assumptions
are consistent with a large Danish cohort of households, where
the secondary attack rate among unvaccinated was slightly higher
for Delta infections than for Omicron [47], and with extensive
experimental and observational studies [32, 38, 62, 63]. Despite
the approximation we did for the transition to the Omicron
variant, the mid- and long-term dynamics of the Omicron VOC
should be reflected well.

In our work, the level of mandatory NPIs dictates the
minimum and maximum level of voluntary health-protective
behavior that individuals may adapt. For each scenario, we
assume one specific, static level of mandatory NPIs, which
best resembles real-world observations on compulsory
measures aiming to reduce the probability of contagion
(i.e., mask-wearing mandates, immunity passports, meeting
restrictions, among others) and testing policy (as described in
Methods). However, this static level can lead to unrealistically
high waves of incidence and ICU occupancy, which 1) have not
been seen so far and 2) would undoubtedly trigger the
implementation of additional restrictions to prevent a major
collapse in the health system. Nonetheless, we decided to
incorporate this static mandatory NPI level because it
illustrates a worst-case trajectory of each scenario. Besides, due
to pandemic fatigue [64], we would expect the effectiveness of
interventions and thus the imposed change in health-protective
behavior in the different mandatory NPI scenarios to decay
over time.

In summary, the way governments approach a pandemic
situation when vaccines are available will shape long-term
transmission dynamics by influencing the magnitude of
information-behavior feedback loops. We show that the latter
play a major role during the transition from epidemicity to
endemicity. Thus most importantly, the challenge for
authorities is to find ways to engage individuals with
vaccination programs and health-protective behavior without
requiring high case numbers for that. Here, clear
communication and trust continues to be essential [65].

4 METHODS

4.1 Model Overview
We use an age-stratified compartmental model with
compartments for susceptible-exposed-infected-recovered
(SEIR) as well as for fatalities (D), receiving treatment in an
ICU (ICU), and vaccination (first time and booster vaccines) (V)
(Supplementary Figure S1). We also include waning immunity
and seasonality effects (Figures 4, 5B). To account for behavioral
change induced by perceived risk of infection, we include a
feedback loop between ICU occupancy, voluntary health-
protective behavior and willingness to receive vaccination
(Figure 2 and Supplementary Material). Explicitly, we assume
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that increases in ICU occupancy 1) decrease the contact rates
among the population and thus the spreading rate of COVID-19
[4–7], and 2) increase vaccine acceptance among hesitant
individuals [4, 8]. For the first feedback loop (voluntary health
protective behavior), we assume that individuals adapt their
contacts in different contexts depending on the risk they have
perceived recently. The level of potentially contagious contacts is
multiplied by a factor k that decreases with ICU occupancy
between the minimum and maximum allowed by current
mandatory NPIs (Figure 2C). Regarding the second feedback
loop (related to vaccine uptake), we assume that a fraction of the
population will always accept a vaccination offer, despite current
ICU occupancy. From this minimum onward, vaccination
willingness monotonically increases with ICU occupancy and
saturates towards a maximum, accounting for a fraction of the
population that will never accept the vaccine (Figure 2E). This
means that we assume that there is a fraction in the population
that is certainly not able or willing to be vaccinated. Given a
fraction of people willing to be vaccinated, we determine the
speed of the vaccination program using a linearly increasing
function (Figure 2F). We model these two feedback loops to act
on different timescales, as individuals can, e.g., decrease the
number of contacts and contact intensity on a daily basis,
while getting vaccinated takes longer. To capture this, we
explicitly include memory kernels accounting for how
individuals subjectively weigh events happening on different
timescales when forming their perception of risk [21].

4.2 Memory on Perceived Risk
We assume that perceived risk regarding the disease depends on
information about ICU occupancy that reaches individuals via
media or affected social contacts. This perception of risk builds
over time; people are not only aware of the occupancy numbers at
the present moment but also of those in the recent past. To
incorporate this into our model, we calculate the convolution of
the ICU occupancy with a Gamma distribution (Supplementary
Figure S2, Supplementary Information), effectively “weighting”
the ICU occupancy numbers with their recency into a variable of
risk perception which we call HR. As a result, ICU occupancy
numbers from a few days ago weigh more in people’s memory
and thus influence voluntary health-protective behavior at the
present moment more than ICU occupancy that lies further in the
past. We use this concept of ICU occupancy “with memory” to
design the functions of the feedback loops (Figures 2B,C,E,F).
The effect of the parameters chosen for the Gamma distribution
on the model results as well as of all other model parameters is
quantified in the sensitivity analysis, Supplementary Section S4,
Supplementary Information.

4.3 NPI- and Risk-Induced Change in
Health-Protective Behavior
When analyzing the joint effect of mandatory NPIs and voluntary
measures to mitigate the spread of COVID-19, we find a strong
overlap between them; mandatory NPIs limit the range of the
measures that individuals could voluntarily take to protect
themselves and their loved ones. For example, when large

private gatherings are officially forbidden, individuals cannot
voluntarily choose not to meet. Additionally, when the
engagement of the population in voluntary protective
measures is very large, certain mandatory NPIs would not be
required. We model the combined effect of mandatory NPIs and
voluntary adoption of health-protective behavior as a function
kNPI, self (HR). Using the baseline of mandatory NPIs as an input,
this function calculates the level of voluntary preventive action in
dependence of the perceived risk HR. To be precise, the value of
kNPI, self (HR) ∈ [0, 1] represents the level to which (potentially
contagious) contacts of an average individual are reduced
(Figure 2C), a factor that is multiplied onto the entries of a
contact matrix separated by contexts (Supplementary Figure S3,
Supplementary Information). For example, adaption of voluntary
mask-wearing or a direct reduction of gatherings decreases the
level of potentially contagious contacts and, thereby, kNPI, self

(HR). Furthermore, we distinguish between contacts made at
home, in schools, in workplaces or during communal
activities. We weight all the interactions with different
k]NPI,self(HR) with
] ∈ Households, Schools,Workplaces,Communities{ } that act
on contextual contact matrices Cij

], see Supplementary
Section S1.2 and Figure 1.

Inspired by the COSMO survey data [4] (Figure 2B), we
suggest the following shape for k]NPI,self(HR): The level of
(potentially) contagious contacts decreases linearly upon
increases in the ICU-mediated perception of risk HR below a
thresholdHR =Hmax, from which point on no further reduction is
possible (Figure 2C). This might represent 1) a fraction of the
population agnostic to measures or unwilling to comply, or 2)
limitations of voluntary preventive action imposed by practical
constraints related to the current level of imposed restrictions, for
example, having to make contacts in one’s own household or
having to go to work or school. We implement k]NPI,self(HR) as a
softplus function, having a differentiable transition at Hmax. Each
function (for each scenario) is defined by 3 parameters Hmax,
k]NPI,self(HR � 0), and k]NPI,self(HR � Hmax). Hmax = 37 is
obtained by the fit to the COSMO data shown in Figure 2
(black line) and used for the two other fits shown in Figure 2
(red and yellow lines) as well as for the behavior parametrizations
for the different scenarios (Supplementary Figure S3,
Supplementary Information).

4.4 Different Mandatory NPI Scenarios
We choose to simulate five different scenarios, each having a
different level of overall stringency. In the following we briefly
describe the scenarios:

Scenario 1 (“Freedom day”): All mandatory restrictions are
lifted, resulting in a factor of k]NPI,self(HR � 0) � 1 ∀]. However, if
ICU occupancy increases, we leave room for individuals’
voluntary action based on perceived risk to reduce viral
transmission: k]NPI,self(HR > 0)< 1. We assume that communal
activities and workplaces leave more room for voluntary
preventive action than households and schools because of the
possibility of working from home, avoiding non-essential
gatherings etc. This difference is depicted in Supplementary
Figure S3.
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Scenario 2 (Moderate NPIs A): Easy-to-follow measures are
kept in place and potentially contagious contacts at school are
reduced to kSchoolNPI,self(HR � 0) � 0.5.

Scenario 3 (Moderate NPIs B): Further measures at work (e.g.,
home office or testing) reduce kWorkplaces

NPI,self (HR � 0) � 0.5.
Scenario 4 (Moderate NPIs C): Further reduction in

potentially contagious school contacts and restrictions affecting
communal contacts reduce kSchoolNPI,self(HR � 0) � 0.25 and
kCommunities
NPI,self (HR � 0) � 0.5.
Scenario 5 (Strong NPIs): Communal activities are further

reduced to kCommunities
NPI,self (HR � 0) � 0.2.

Table 1 lists all values for the different scenarios and
contexts of interaction between individuals. The reduction
of household contacts is assumed to remain the same for all
scenarios. Note that, as the stringency of measures increases,
room for voluntary adoption of health-protective behavior
usually decreases: To give an example, without mandatory
measures the level of contact reduction in communal activities
lies in the range 1−0.6, whereas in a scenario with strong
mandatory NPIs it lies in the range 0.2−0.1. The difference
between the two bounds effectively measures the room for
voluntary actions (0.4 for freedom day vs. 0.1 for strong NPIs).
An exception are school contacts in which moderate
restriction scenarios (2 and 3) display a wider range of
possible voluntary action than the freedom day scenario. As
health-protective behavior among children could be
encouraged but not imposed, their adherence to rules
constitutes a voluntary act.

4.5 Modeling the Introduction and Spread of
the Omicron VOC
Modeling the introduction and spread of the Omicron VOC
requires modifications to the model compartments, transition
rates, and parameters. In particular, these modifications allow
us to explore the effects of Omicron’s 1) extensive immune
escape and 2) potential reduced risk for severe course of the
disease. We implemented the introduction of Omicron VOC
as a total replacement of the previously dominating Delta
VOC on 15 Jan 2022. At that moment, we rearrange the
distribution of individuals between the “waned” and
“immune” compartments, increase the rate of waning
immunity to account for Omicron’s immune escape, and

reduce the probability of having a severe course. Explicitly,
before the introduction of the Omicron VOC, the immune
population is tracked in additional pseudo-compartments Vo,
Ro, Rv,o with a faster waning rate. In that way, there are
always less individuals in Vo, Ro, Rv,o than in V, R, Rv. At
the time of variant replacement, V − Vo, R − Ro, Rv − Rv,o

individuals are moved from the vaccinated and recovered
compartments to the respective waned compartments;
individuals previously protected against Delta would now
be susceptible to Omicron. We model booster-vaccination
protection against infection following a leaky scheme, thus
boostered individuals have a probability of η of being entirely
protected. With probability 1 − η, individuals remain in their
current compartment but are tracked as if the vaccine had
worked successfully.
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Impact of the Euro 2020 championship on
the spread of COVID-19

Jonas Dehning 1,6, Sebastian B. Mohr 1,6, Sebastian Contreras 1,
Philipp Dönges 1, Emil N. Iftekhar 1, Oliver Schulz 2, Philip Bechtle 3 &
Viola Priesemann 1,4,5

Large-scale events like the UEFA Euro 2020 football (soccer) championship
offer a unique opportunity to quantify the impact of gatherings on the spread
of COVID-19, as the number and dates of matches played by participating
countries resembles a randomized study. Using Bayesian modeling and the
gender imbalance in COVID-19 data, we attribute 840,000 (95% CI: [0.39M,
1.26M]) COVID-19 cases across 12 countries to the championship. The impact
depends non-linearly on the initial incidence, the reproduction number R, and
the number of matches played. The strongest effects are seen in Scotland and
England, where asmuch as 10,000 primary cases permillion inhabitants occur
from championship-related gatherings. The average match-induced increase
in R was 0.46 [0.18, 0.75] on match days, but important matches caused an
increase as large as +3. Altogether, our results provide quantitative insights
that help judge and mitigate the impact of large-scale events on pandemic
spread.

Passion for competitive team sports is widespread worldwide. How-
ever, the tradition of watching and celebrating popular matches
together may pose a danger to coronavirus disease 2019 (COVID-19)
mitigation, especially in large gatherings and crowded indoor settings
(see, e.g., refs. 1–6). Interestingly, sports events taking place under
substantial contact restrictions had only a minor effect on COVID-19
transmission7–11. However, large events with massive media coverage,
stadium attendance, increased travel, and viewing parties can play a
major role in the spread of COVID-19—especially if taking place in
settings with few COVID-19-related restrictions. This was the case for
the UEFA Euro 2020 Football Championship (Euro 2020 in short),
staged from June 11 to July 11, 2021. While stadium attendance might
only have a minor effect12–14, it increases TV viewer engagement15–17,
and encourages additional social gatherings18. These phenomena and
previous observational analyses19 suggest that the Euro 2020’s impact
may have been considerable. Therefore, we used this championship as
a case study to quantify the impact of large events on the spread of

COVID-19. Counting with quantitative insights on the impact of these
events allows policymakers to determine the set of interventions
required to mitigate it.

Two facts make the Euro 2020 especially suitable for the quanti-
fication. First, the Euro 2020 resembles a randomized study across
countries: The time-points of the matches in a country do not depend
on the state of the pandemic in that country and how far a team
advances in the championship has a random component aswell20. This
independencebetween the time-points of thematch and theCOVID-19
incidence allows quantifying the effect of football-related social gath-
eringswithout classical biasing effects. This is advantageous compared
to classical inference studies quantifying the impact of non-
pharmaceutical interventions (NPIs) on COVID-19 where implement-
ing NPIs is a typical reaction to growing case numbers21–23. Second, the
attendance atmatch-related events, and thus the cases associatedwith
each match, is expected to show a gender imbalance24. This was con-
firmed by news outlets and early studies25–28. Hence, the gender
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imbalance presents a unique opportunity to disentangle the impact of
the matches from other effects on pathogen transmission rates.

Here we build a Bayesian model to quantify the effect large-scale
sports events on the spread of COVID-19, using the Euro 2020 as case
study. In the following, we use “case” to refer to a confirmed case of a
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion in a human and “case numbers” to refer to the number of such
cases. Not all infections are detected and represented in the cases and
cases comewith a delay after the actual infection. Ourmodel simulates
COVID-19 spread in each country using a discrete renewal process22,29

for each gender separately, such that the effect of matches can be
assessed through the gender imbalance in case numbers. This is
defined as “(male incidence − female incidence)/total incidence”, and
through the temporal association of cases to match dates of the
countries’ teams. Regarding the expected gender imbalance at
football-related gatherings, we chose a prior value of 33% (95% per-
centiles [18%, 51%]) female participants, which is more balanced than
the values reported for national leagues (about 20%)24. However, this
agrees with the expected homogeneous and broad media attention of
events like the Euro 2020. For the effective reproduction number Reff
we distinguish three additive contributions; the base, NPI-, and
behavior-dependent reproduction number Rbase, a match-induced
boost on it ΔRfootball, and a noise term ΔRnoise, such that
Reff =Rbase +ΔRfootball +ΔRnoise. We assume Rbase to vary smoothly over
time,while the effect of singlematchesΔRfootball is concentratedonone
day and allows for a gender imbalance. The term ΔRnoise allows the
model to vary the relative reproduction number for each gender
independent of the football events smoothly over time. We analyzed
data fromall participating countries in the Euro 2020 that publish daily
gender-resolved case numbers (n = 12): England, the Czech Republic,
Italy, Scotland, Spain, Germany, France, Slovakia, Austria, Belgium,
Portugal, and the Netherlands (ordered by resulting effect size). We
retrieved datasets directly from governmental institutions or the

COVerAGE-DB30. See Supplementary Section S1 for a list of data sour-
ces. Our analyses were carried out following FAIR31 principles; all code,
including generated datasets, are publicly available (https://github.
com/Priesemann-Group/covid19_soccer).

Results
The main impact arises from the subsequent infection chains
We quantified the impact of the Euro 2020 matches on the repro-
duction number for the 12 analyzed countries (Fig. 1a) and for every
single match (Supplementary Fig. S8). On average, a match increases
the reproduction number R by 0.46 (95% CI [0.18, 0.75]) (Fig. 1a and
Supplementary Table S4) for a single day. In other words, when a
country participated in amatch of the Euro 2020 championship, every
individual of the country infected on average ΔRmatch extra persons
(see Supplementary Section S2 for more details). The cases resulting
from these infections occurring at gatherings on the match days are
referred to as primary cases.

However, primary cases are only the tip of the iceberg; any of
these cases can initiate a new infection chain, potentially spreading for
weeks (see Supplementary Section S2 for more details). We included
all subsequent cases until July 31, which is about two weeks after the
final. As expected, subsequent cases outnumber the primary cases
considerably at a ratio of about 4:1 on average (Supplementary
Table S3). As a consequence, on average, only 3.2% [1.3%, 5.2%] of new
cases are directly associated with the match-related social gatherings
throughout that analysis period (Fig. 1b). This surge of subsequent
cases highlights the long-lasting impact of potential single events on
the COVID-19 spread (see Supplementary Table S2).

We find an increase in COVID-19 spread at the Euro 2020matches
in all countries we analyzed, except for the Netherlands. In the Neth-
erlands, a “freedom day" coincided with the analysis period32 and was
accompanied by the opposite gender imbalance compared to the
football matches, thereby apparently inverted the football effect.

Fig. 1 | Quantifying the impact of the Euro 2020 on COVID-19 spread. a Using
Bayesian inference and an SEIR-like model, we infer the mean increase on the
reproduction number associated with Euro 2020 matches, ΔRmean

match, in each ana-
lyzed country (n = 12 countries). Almost all countries show a median of the mean
increase larger than zero (cf. SupplementaryTable S4). Note that in theNetherlands
(★) a complete lifting of restrictions was implemented on June 26 2021 (“freedom
day”). Apparently, its impact also had the opposite gender imbalance, making it
hard for themodel to extract the Euro2020’s effect (Supplementary Fig. S31).bThe
ΔRmean

match enables us to quantify the primary cases, i.e., cases associated directly with
the match days (as percentage of all cases from June 11 to July 31 2021). c Any

primary infection at a match can start an infection chain. The total number of
primary and subsequent cases that were inferred to be causally related to the Euro
2020 from its start until 31 July depend on the COVID-19 prevalence and the base
spread during the analysis period. In parentheses are the number of matches
played by the respective team. White dots represent median values, black bars and
whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and
the distributions in color (truncated at 99% CI) represent the differences by gender
(Supplementary Table S2). TheNetherlands is left out from the average calculations
and subsequent analyses.
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Therefore, we exclude the Netherlands from general averages and
correlation studies, but still display the results for completeness.

The primary and subsequent cases on average amounted to 2200
(95% CI [986, 3308]) cases per million inhabitants (Fig. 1c and Sup-
plementary Table S2). This amounts to about 0.84 million (CI: [0.39M,
1.26M]) cases related to the Euro 2020 in the 12 countries (cf. Sup-
plementary Table S3). With the case fatality risk of that period, this
corresponds to about 1700 (CI: [762, 2470]) deaths, assuming that the
primary and subsequent spread affects all ages equally.Most likely this
is slightly overestimated since the age groupsmost at risk fromCOVID-
19-related death are probably underrepresented in football-related
social activities and thus more unlikely to be affected by primary
championship-related infections. However, the overall number of
primary and subsequent cases attributed to the championship is
dominated by the subsequent cases, and the mixing of individuals of
different age-groups then mitigates this bias. Individually, three
countries, England, the Czech Republic, and Scotland showed a sig-
nificant increase in COVID-19 incidence associatedwith the Euro 2020,
and Spain and France show an increase at the one-sided 90% sig-
nificance threshold. In other countries such as Germany, only a rela-
tively small contribution of primary cases was associatedwith the Euro
2020 championship, and a small gender imbalance was observed. Low
COVID-19 incidence during the championship or imprecise temporal
association between infection and confirmation of it as a case can lead
to a loss of sensitivity and hinder the detection of an effect, as can be
seen from the large width of several posterior distributions (e.g., Italy
and Slovakia, which had particularly low incidence).

The strongest effect is observed in England and Scotland
Overall, the effect of the Euro 2020 was quite diverse across the par-
ticipating countries, ranging from almost no additional infections to
up to 1% of the entire population being infected (i.e., from Portugal to
England, Fig. 1). To illustrate this diversity, the comparison between
England, Scotland, and the Czech Republic is particularly illustrative

(Fig. 2). For all countries,wedisentangled the cases that are considered
to happen independently of the Euro 2020 (Fig. 2a, gray), the primary
cases directly associated with gatherings on the days of the matches
(red), and the subsequent infection chains started by the primary cases
(orange; see Supplementary Figs. S24–S36 for all countries).

England, being the runner-up of the championship and thus
played themaximumnumber ofmatches, displays the strongest effect
over the longest duration, with a substantial increase in reproduction
number ΔRmatch towards the last matches of the championship. This
reflects the increasing popularity of the later matches, as e.g., quanti-
fied by the increase of the search term on Google (Supplementary
Fig. S20). Scotland shows a particularly strong effect of a single match
(Scotland vs England) staged in London during the group phase, with
ΔRmatch = 3.5 [2.9, 4.2] (Fig. 2c). This means that on average over the
total Scottish population, every single person infected additional 3.5
persons at or around that single day. These are very strong effects. As a
consequence, in Scotland the subsequent cases from the single match
accounted for about 30% of the cases in the following weeks, illus-
trating the impact of such gatherings on public health.

Low overall incidence prevents large match-related spread
In theCzechRepublic, the situationwasdifferent compared to England
and Scotland, although the analyses point to similarly strong gather-
ings on thematchdays (i.e., largeΔRmatch, Fig. 1a).However, becauseof
theoverall low incidencemuch fewer peoplewere infected throughout
the championship. The advantage of low incidence or fewer games is
illustrated in two counterfactual scenarios. Even under the assumption
that the Czech team had continued to the final and the population had
gathered exactly like the English (i.e., showing the same ΔRmatch in the
matches they played), the total number of cases (per million) would
have been more than 40 times lower than in England, owing to the
lower base incidence and a lower base reproduction number (Fig. 2d).
Assuming, as a counterfactual scenario, that England had dropped out
in the group stage, the number of cases associated with the Euro 2020

Fig. 2 | Example cases illustrate that the spread associated with the Euro 2020
can encompass a substantial fraction of the observed cases. a The model
enables one to split the observed incidence (black diamonds) into: cases inde-
pendent of Euro 2020matches (gray area), primary cases (directly associated with
Euro 2020 matches, red area), and subsequent cases (additional infection chains
started by primary cases, orange area). See Supplementary Information for all
countries (Supplementary Figs. S24–S36).Here and in all following figures, the light
blue shaded area signifies the time span of the Euro 2020. b Football-related
gatherings, and hence the case numbers, show a gender imbalance. This facilitates
the inference of the football-related increase in COVID-19 spread. Here the tur-
quoise shaded areas correspond to 95% CI. c The effect of social gatherings at
match days is modeled as a single additive increase in the reproduction number

ΔRmatch concentrated on the day of each match. For example, ΔRmatch = 2 means
that, on the day of the match, each infected individual on average infected two
additional persons (on top of the base trend). d, e The counterfactual scenario
assumes that England would not have reached the knockout phase (d, Scen. 1), or
that the Czech fans and matches would have been equal to the English (i.e.,
reaching the final, and Czech people doing the same football-related gatherings as
the English by their impact on disease spread; e, Scen. 2). f In the counterfactual
scenarios, the Euro 2020 would have hadmuch smaller impact with fewermatches
(Scen. 1), or with an overall more favorable pandemic situation as in the Czech
Republic (Scen. 2). White dots represent median values, bars and whiskers corre-
spond to the 68% and 95% credible intervals (CI).
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would have been much lower. This suggests that both the success in
the championship and the base incidence and behavior in a country
influence the public health impact of such large-scale events.

To better understand the impact of the Euro 2020, we quantified
the determinants of the spread across countries. From theory, we
expect the absolute number of infections generated by Euro 2020
matches to depend non-linearly on a country’s base incidence N0,
which determines the probability to meet an infected person, and on
the effective reproductionnumber prior to the championshipRpre, as a
gauge for the underlying infection dynamics generating the sub-
sequent cases, which determines how strongly an additional infection
spreads in the population.We can then define the potential for COVID-
19 spread as the number of COVID-19 cases that would be expected
during the time T a country is playing in the Euro 2020 (N0 � RT=4

pre ),
assuming a generation interval of 4 days. Indeed, we find a clear cor-
relation between the observed and the expected incidence Fig. 3a,
R2 = 0.77 (95% CI [0.39,0.9]), p <0.001, with a slope of 1.62 (95% CI [1.0,
2.26]). The strong significance of this correlation relies mainly on
England and Scotland. However, the observed slope in an analysis
without these two countries (0.76, 95% CI: [−1.46, 3.04]), while not
significant at the 95% confidence level, is consistent with the findings
including all countries. This is shown in Supplementary Fig. S7.

Furthermore, quantifying correlations between N0 and Rpre and
the number of primary and subsequent cases related to the Euro 2020,
we see a trend for each (Supplementary Fig. S6a, b).However, these are
weak and statistically significant only for Rpre. Altogether, our data
suggest that a favorable pandemic situation (low Rpre and low N0)
before the gatherings, and low Rbase during the period of gatherings
jointly minimize the impact of the Euro 2020 on community con-
tagion. A prerequisite for this is that the known preventive measures,
such as reducing group size, imposing preventive measures, and
minimizing the number of encounters remain encouraged.

Independently on the epidemic situation, Euro 2020’s effect might
be influenced by people’s prudence and the team’s popularity and suc-
cess during the championship. While we do not observe any obvious
effect of local mobility as a measure of the prudence of people (Fig. 3b,
R2 = 0.06 (95%CI [0.00, 0.34]), p=0.54, and Supplementary Fig. S4), the
potential popularity—representedby thenumberofmatchesplayedand
hosted by a given country—had a more notable trend (Supplementary
Fig. S6c). Still, this correlation was not statistically significant. Moreover,
we found no relationship between the effect size and the Oxford gov-
ernmental response tracker33 (Supplementary Fig. S5).

Discussion
Large international-scale sports events like the Euro 2020 Football
Championshiphave thepotential to gather people like noother typeof
event. Our quantitative insights on the impact of such gatherings on
COVID-19 spread provide policymakers with tools to design the port-
folio of interventions required for mitigation (using, e.g., results of
refs. 22,23,34). Thereby, our quantification can support society in
carefully weighing the positive social, psychological, and economic
effects of mass events against the potential negative impact on public
health35. Our analysis attributes about 0.84 million (95% CI: [0.39M,
1.26M]) additional infected persons to the Euro 2020 championship.
Assuming that the primary and subsequent spread affects all ages
equally, this corresponds across the 12 countries to about 1700 (CI:
[762, 2470]) deaths. Thus, the public health impact of the EURO 2020
was not negligible.

To prevent the impacts of these events, measures, such as pro-
moting vaccination, enacting mask mandates, and limiting gathering
sizes, can be helpful. Besides, the effectiveness of such interventions
has already been quantified in different settings (e.g., refs. 22,23) so
that policymakers can weigh them according to specific targets and
priorities. Furthermore, focusedmeasures that aim tomitigate disease
spread in situ, such as testing campaigns and requiring COVID pass-
ports to attend sport-related gatherings and viewing parties, present
themselves as helpful options. In addition, one could encourage par-
ticipants of a large gathering to self-quarantine and test themselves
afterward. Moreover, the championship distribution of matches every
4–5 days coincides with the mean incubation period and generation
interval of COVID-19. This means that individuals who get infected
watching a match can turn infectious by the subsequent while poten-
tially pre-symptomatic. Such resonance effects between gathering
intervals and incubation time can increase the spread considerably34. It
thus depends on the design of the championships, on the precau-
tionary behavior of individuals, and on the basic infection situation
how much large-scale events threaten public health, even if the
reproduction number is transiently increased during these events.

Previous studies that evaluated the impact of sports events on the
spread of COVID-19 and considered the spectator gatherings at match
venues were not conclusive7,8,36. This agrees with our results as we find
the impact of hosting a match to be small to non-existent (Supple-
mentary Fig. S9). However, location having little effect may well be
specific to the Euro 2020, where matches were distributed across
different countries. In the traditional settings of the UEFA European

Fig. 3 | Which variables can predict the extent of the impact of Euro 2020
matches? a The potential for spread, i.e., the number of COVID-19 cases thatwould
be expected during the time T a country is playing in the Euro 2020 (N0 � RT=4

pre ), is
strongly correlated with the number of Euro 2020-related cases. Therefore, pol-
icymakers should simultaneously consider the initial incidence N0, reproduction
number prior to the event Rpre, and expected duration of an event T to assess
whether it is pertinent to allow it (The correlation is not significant if England and

Scotland are left out, but the slope is still consistent with this result.). b Mobility
changes from baseline during the Euro 2020 are not correlated with the number of
COVID-19 cases associated with the championship in each country. Furthermore,
the direction of the effect ofmobility per se in this context is unclear. The gray line
and area are the median and 95% CI of the linear regression (n = 11 countries; The
Netherlands was excluded for this analysis). Whiskers denote one standard
deviation.
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Football Championship or the FIFA World Cup, a single country or a
small group of countries hosts the entire championship, and the
championship is accompanied by elaborate supporting events, public
viewing, and extensive travel of international guests. Hence, for other
championships, such as, e.g., the FIFA World Cup 2022 in Qatar or the
Euro 2024 in Germany, the impact of location might be considerably
larger.

Our model accounts for slow changes in the transmission rates
that are unrelated to football matches through the gender-
independent reproduction number Rbase. We find Rbase to increase at
least transiently during the championship in all 12 countries except for
England and Portugal (Supplementary Figs. S24–S35). The above may
suggest that our estimate of the match effect ΔRmatch is conservative:
The overall increase of COVID-19 spreadmight in part be attributed to
Rbase, but will not be incorrectly associated with football matches. Our
results might further be biased if the incidence and the teams’ pro-
gression in the Euro 2020 are correlated. It is conceivable that high
incidencewould negatively correlatewith teamprogression through ill
or quarantined team members. However, there were only few such
cases during the Euro 202037, and the correlation might also be posi-
tive: At higher case numbers the team might be more careful. Hence,
the correlation is unclear and probably negligible.

The COVID-19 spread obviously depends on many factors. How-
ever, many of those parameters, such as the vaccination rate, the
contact behavior or motivation to be tested, are changing slowly over
time and hence can be absorbed into the slowly changing base
reproduction rate Rbase and the gender-asymmetric noise ΔRnoise;
other parameters, like social and regional differences, age-structure or
specific contact networks are expected to be constant over time and
average out across a country. To further test the robustness of our
model, we systematically varied the prior assumptions on the central
model parameters, among them the delay (Supplementary Fig. S12),
the width of the delay kernel (Supplementary Fig. S13), the change
point interval (Supplementary Fig. S14), the generation interval (Sup-
plementary Fig. S16) and a range of other priors (Supplementary
Fig. S17). Furthermore, when using wider prior ranges for the gender
imbalance, football-related COVID-19 cases remain unchanged but the
uncertainty increases (Supplementary Fig. S15), thus validating our
choice. Even for the case of prior symmetric gender imbalance
assumptions, the posterior distribution of the female participation
converges for the three most significant countries to median values
between 20 and 45%. As last cross-check, we made sure that we found
no effect when shifting the match dates by 2 weeks relative to the case
numbers (Supplementary Fig. S10) nor by shiftingmatchdates outside
the championship range, by more than ±30 days (Supplementary
Fig. S11).

Besides quantifying the impact of matches on the reproduction
number, our methodology allowed us to estimate the delay between
infections and confirmation of positive tests D without a requirement
to identify the source of each infection (Supplementary Fig. S19). Our
estimates for D in the participating countries were around 3-5 days
(England: 4.5 days (95%CI [4.3, 5]), Scotland: 3.5 days (95%CI [3.3, 3.8]),
Supplementary Figs. S24 and S33g and Supplementary Table S4). This
agrees with available literature and is an encouraging signal for the
feasibility of containing COVID-19 with test-trace-and-isolate38–42.
However, we expect that some individuals would actively get tested
right after a match, thereby increasing the case finding and reporting
rates. This can slightly affect our estimates for the delay distribution D
and would require additional information to be corrected. Altogether,
analyzing large-scale events with precise timing and substantial impact
on the spread presents a promising, resource-efficient complement to
classical quantification of delays.

Understanding how popular events with major in-person gather-
ings affect the spreading dynamics of COVID-19 can help us design
better strategies to prevent new outbreaks. The Euro 2020 had a

pronounced impact on the spread despite considerable awareness of
the risks of COVID-19. We estimate that, e.g., about 48% of all cases in
England until July 31 are related to the championship. In future, with
declining awareness about COVID-19 but potentially better immunity,
similarmass events, such as the footballworld cups, the Super Bowl, or
the Olympics, will still unfold their impact. Acute, long-COVID-19 and
post-COVID-19 will continue to pose a challenge to societies in the
years to come. Our analysis suggest that a combination of low Rpre and
low initial incidence at the beginning of the event, together with the
known preventive measures, can strongly reduce the impact of these
events on community contagion. Fulfilling these preconditions and
increasing health education in the general population can substantially
reduce the adverse health effects of future mass events.

Methods
To estimate the effect of the championship in different countries, we
constructed a Bayesian model that uses the reported case numbers in
12 countries. Ethical approval was not sought as we only worked with
openly available data. A graphical overview of the inference model is
given in Fig. 4 and model variables, prior distributions, indices,
country-dependent priors, and sampling performance are summar-
ized in Tables 1, 2, 3, 4 and 5, respectively.

Modeling the spreading dynamics, including gender imbalance
The model simulates the spread of COVID-19 in each country sepa-
rately using a discrete renewal process22,29,43. We infer a time-
dependent effective reproduction number with gender interactions
between genders g and g 0, Reff,g,g 0 ðtÞ, for each country21.

Even though participation of women in football fan activity has
increased in the last decades44, football fans are still predominantly
male24. Hence one expects a higher infection probability at the days of
thematch for themale compared to the female population. Integrating
this information into the model by using gender resolved case num-
bers, allows improved inference of the Euro 2020’s impact. In the
following, genders “male” and “female” are denoted by the subscripts
•g=1 and •g=2, respectively. Furthermore, we modeled the spreading
dynamics of COVID-19 in each country separately.

In the discrete renewal process for disease dynamics of the
respective country, we define for each gender g a susceptible pool Sg
and an infected pool Ig. With N denoting the population size, the
spreading dynamics with daily time resolution t reads as

Ig ðtÞ=
Sg ðtÞ
N

X2
g 0 = 1

Reff,g,g 0 ðtÞ
X10
τ =0

Ig 0 ðt � 1� τÞGðτÞ, ð1Þ

Sg ðtÞ= Sg ðt � 1Þ � Eg ðt � 1Þ, ð2Þ

GðτÞ=Gammaðτ;μ=4,σ = 1:5Þ: ð3Þ

We apply a discrete convolution in Eq. (1) to account for the latent
period and subsequent infection (red box in Fig. 4). This generation
interval (between infections) is modeled by a Gamma distributionG(τ)
with a mean μ of four days and standard deviation σ of one and a half
days. This is a little longer than the estimates of the generation interval
of the Delta variant45,46, but shorter than the estimated generation
interval of the original strain47,48. The impact of the choice of genera-
tion interval has negligible impact on our results (Supplementary
Fig. S16). The infected compartment (commonly I) is not modeled
explicitly as a separate compartment, but implicitly with the assumed
generation interval kernel.

The effective spread in a given country is described by the
country-dependent effective reproduction numbers for infections of
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individuals of gender g by individuals of gender g 0

Reff,g,g 0 ðtÞ=RbaseðtÞCbase,g,g 0 +ΔRfootballðtÞCmatch,g,g 0 +ΔRnoiseðtÞCnoise,g,g 0 ,

ð4Þ

where Cbase,g,g 0 , Cmatch,g,g 0 , and Cnoise,g,g 0 describe the entries of the
contact matrices Cbase, Cmatch, Cnoise respectively (purple boxes
in Fig. 4).

This effective reproductionnumber is a functionof threedifferent
reproduction numbers (yellow and orange boxes in Fig. 4):
1. A slowly changing base reproduction number Rbase (22) that has

the same effect on both genders; besides incorporating the epi-
demiological information given by the basic reproduction num-
ber R0, it represents the day-to-day contact behavior, including
the impact of non-pharmaceutical interventions (NPIs), voluntary
preventive measures, immunity status, etc.

2. The reproduction number associatedwith social gatherings in the
context of a football match Rmatch(t) (11); this number is only dif-
ferent from zero on days with matches that the respective

country’s team participates in and it has a larger effect on men
than on women.

3. A slowly changing noise term ΔRnoise(t) (31), which subsumes all
additional effects which might change the incidence ratio
between males and females (gender imbalance).

The interaction between persons of specific genders is imple-
mented by effective contact matrices Cmatch, Cbase and Cnoise. All three
are assumed to be symmetric.

Cbase describes non-football related contacts outside the context
of Euro 2020 matches (left purple box in Fig. 4):

Cbase =
1� coff coff
coff 1� coff

� �
, ð5Þ

with coff ∼Betaðα =8,β=8Þ: ð6Þ

Fig. 4 | Model overview illustrating the relationship between the chosen prior
distributions and the disease dynamics. Boxes in the flowchart are color-coded
according towhat they describe. Light blue boxes: delaymodulations. Greenboxes:
likelihoods. Redboxes: spreading dynamics. Purpleboxes: contactmatrices. Yellow

boxes: effects independent of football matches. Orange boxes: effects of the
football matches. Diamonds show prior distributions (blue) or incorporated data
(red), and gray circles denote any mathematical operation.
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Here, we have the prior assumption that contacts between women,
contacts between men, and contacts between women and men are
equally probable. Hence, we chose the parameters for the Beta dis-
tribution such that coff has a mean of 50% with a 2.5th and 97.5th
percentile of [27%, 77%]. This prior is chosen such that it is rather
uninformative. As shown in Supplementary Fig. S17, this and other
priors of auxiliary parameters do not affect the parameter of interest if
their width is varied within a factor of 2 up and down.

Cmatch describes the contact behavior in the context of the Euro
2020 footballmatches (right purplebox inFig. 4).Here,we assumeas a
prior that the female participation in football-related gatherings
accounts for≃ 33% (95% percentiles [18%,51%]) of the total participa-
tion. Hence, we get the following contact matrix

Cmatch,unnorm: =
ð1� ωgenderÞ2 ωgenderð1� ωgenderÞ

ωgenderð1� ωgenderÞ ω2
gender

 !
ð7Þ

Cmatch =
Cmatch,unnorm:

∣Cmatch,unnorm: � 0:5,0:5ð ÞT ∣2
ð8Þ

ωgender ∼Beta α = 10,β=20ð Þ: ð9Þ

The prior beta distribution ofωgender is bounded between at0 and
1 and with the parameter values of α = 10 and β = 20 has the expecta-
tion value of 1/3. The robustness of the choice of this parameter is
explored in Supplementary Fig. S15. Cmatch is normalized such that for
balanced case numbers (equal case numbers formen andwomen) and
an additive reproduction number Rmatch = 1 will lead to a unitary
increase of total case numbers. The reproduction number of women
will therefore increase by 2ωgenderΔRmatch(t) on match days whereas
the one of men will increase by 2(1 −ωgender)ΔRmatch, assuming
balanced case numbers beforehand.

Cnoise describes the effect of an additional noise term, which
changes gender balance without being related to football matches
(middle purple box in Fig. 4). For simplicity, it is implemented as

Cnoise =
1 0

0 �1

� �
, ð10Þ

whereby we center the diagonal elements such that the cases intro-
duced by the noise term sum up to zero, i.e. ∑i,jRnoise ⋅Cnoise,i,j =0.

Football-related effect
Our aim is to quantify the number of cases (or equivalently the fraction
of cases) associated with the Euro 2020, ΓEurog . To that end we assume

Table 1 | The intermediate variables of the model and their meaning

Variable Meaning Equation

Reff,g,g0 ðtÞ Effective reproduction number between genders g and g0 (4)

Sg(t) Number of susceptible persons of gender g (2)

Ig(t) Number of infected persons of gender g (1)

N Population size

G(τ) Generation interval (Gamma kernel) (3)

Rbase(t) Base reproduction number (22)

ΔRfootball(t) Time dependent additive reproduction number due to football matches (11)

ΔRnoise(t) Time dependent additive reproduction number due other non-balanced transmission (31)

ΔRmatch,m Additive reproduction number of match m (13)

Cbase Base contact matrix between genders (5)

Cmatch Contact matrix for football related gatherings (8)

Cnoise Contact matrix for other non-balanced transmission (10)

tm Day of match m

αprior Vector encoding country participation in matches

βprior Vector encoding whether country hosted matches

Δαm Difference of the effect of individual matches m (the country participated in) to mean effect of such matches (15)

Δβm Difference of the effect of individual matches m (the country hosted) to mean effect of such matches (20)

γn(t) Time-dependent base reproduction number in log-space between change point n and n + 1 (24)

Δγn Effect of the change point n (25)

~γnðtÞ Additive reproduction number due other non-balanced transmission between change point n and n + 1 (33)

Δ~γn Effect of the change point n on the non-balanced transmission (34)

Cy
gðtÞ Delayed number of infected persons of gender g (40)

�Dcountry Country dependent reporting delay Table 4

ĈgðtÞ Modeled number of cases of gender g (44)

ηt Fraction of daily delayed cases (45)

rd Average value of the fraction of delayed cases on weekday d (46)

ryd Logit-transformed average value of the fraction of delayed cases on weekday d (47)

Δrd† Deviation from the prior value of the fraction of delayed cases on weekday d (50)

Cg(t) Measured number of cases of gender g (53)

Rpre Reproduction number two weeks prior to the start of the Euro 2020 Used in Fig. 3

Iprimary Number of primary infected persons due to football matches (65)

Isubsequent Number of subsequent infected persons due to football matches (67)

Inone Number of infected persons without considering football matches (67)
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that infections can occur at public or private football screenings in the
two countries participating in the respective matchm (parameterized
by ΔRmatch,m). Note that for the Euro 2020 not a single country, but a
set of 11 countries hosted the matches. The participation of a team or
the staging of a match in a country may have different effect sizes.
Thus, we define the football related additive reproduction number as

ΔRfootballðtÞ=
X
m

ΔRmatch,m � δðtm � tÞ: ð11Þ

We assume the effect of eachmatch to only be effective in a small
time window centered around the day of a match m, tm (light orange
box in Fig. 4). Thus, we apply an approximate delta function δ(tm − t).
To guarantee differentiability and hence better convergence of the
model, we did not use a delta distribution but instead a narrow normal
distribution centered around tm, with a standard deviation of one day:

δðtÞ= 1ffiffiffiffiffiffi
2π

p exp � t2

2

� �
: ð12Þ

We distinguish between the effect size of each match m on the
spreadof COVID-19. Formodeling the effectΔRmatch,m, associatedwith
public or private football screenings in the home country, we intro-
duce one base effect ΔRmean

match and a match specific offset Δαm for a
typical hierarchical modeling approach (dark orange box in Fig. 4). As

prior we assume that the base effect ΔRmean
match is centered around zero,

which means that in principle also a negative effect of the football
matches can be inferred:

ΔRmatch,m =αprior,m ΔRmean
match +Δαm

� �
ð13Þ

ΔRmean
match ∼N 0,5ð Þ ð14Þ

Δαm ∼N 0,σα

� � ð15Þ

σα ∼HalfNormal 5ð Þ: ð16Þ

Table 2 | Prior distributions

Variable Meaning Prior distribution Equation

coff Off-diagonal term of non-football related interaction matrix Beta α =8,β=8ð Þ (6)

ωgender The fraction of female participation in football related gatherings compared to the total participation Beta α = 10,β= 20ð Þ (9)

ΔRmean
match Mean gathering-related match effect N μ=0,σ =5ð Þ (14)

ΔRmean
stadium Mean effect of hosting a match at the stadium N μ=0,σ =5ð Þ (19)

σα Prior value of the deviation from the mean match effect HalfNormal σ =5ð Þ (16)

σβ Prior value of the deviation from the mean stadium effect HalfNormal σ =5ð Þ (21)

R0 Value of Rbase(t) at t = 0 LogNormal μ= 1,σ = 1ð Þ (23)

σΔγ Prior value of the effect of the change points of the base reproduction number HalfCauchy 0:5ð Þ (26)

ln Length of the change point n log 1+ exp N 4,1ð Þð Þð Þ (27)

dn Date of the change point n 27th May 2021 + 10 � n+N 0,3:5ð Þ (29)

ΔR0,noise Value of ΔRnoise(t) at t = 0 N μ=0,σ =0:1ð Þ (32)

σΔ~γ Prior value of the effect of the change points of the reproduction number of other non-balanced transmission HalfCauchy 0:2ð Þ (35)
~ln Length of the non-balanced transmission change point n log 1+ exp N 4,1ð Þð Þð Þ (36)
~dn Date of the non-balanced transmission change point n 27th May 2021 + 10 � n+N 0,3:5ð Þ (38)

D Median of the latent period and reporting delay kernel logðN ðμ= expð�DcountryÞ,σ =σlog �DÞÞ (41)

σD Standard deviation of the delay kernel N ðμ=0:2 � �Dcountry,σ =0:08 � �DcountryÞ (43)

rybase,d Prior fraction of the logit-transformed weekday dependent delay (48), (49)

σr Prior deviation of the different weekdays from the prior of the fraction of delayed cases HalfCauchy 1ð Þ (51)

e Prior deviation of each day from the weekday dependent delay HalfCauchy 0:2ð Þ (52)

κ Overdispersion of the observed cases around the expected number of cases HalfCauchy 20ð Þ (54)

These are all the prior distributions and their meaning in our main model.

Table 3 | Indices

Index Meaning Values

⋅g Gender 1 =male; 2 = female

⋅m Match

⋅n Change point

⋅t Time (in days)

⋅d Weekday Monday, ..., Sunday

We use these standardized indices in our model.

Table 4 | Country-dependent priors on the delay structure

Country Reporting convention Prior
delay (

--
Dcountry)

Scale of prior
delay (σ

log
--
D
)

England Symptom onset 4 days 0.1

Scotland Symptom onset 4 days 0.1

Germany Reporting date 7 days 0.1

France Symptom onset 4 days 0.1

Austria Unknown 5 days 0.15

Belgium Unknown 5 days 0.15

The Czech
Republic

Unknown 5 days 0.15

Italy Unknown 5 days 0.15

The Netherlands Symptom onset 4 days 0.1

Portugal Unknown 5 days 0.15

Slovakia Unknown 5 days 0.15

Spain Unknown 5 days 0.15

These priors depend on the definition of the date in the daily case numbers, which for some
countries refers to symptom onset, sample collection or sample analysis.
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αprior,m is the m-th element of the vector that encodes the prior
expectation of the effect of a match on the reproduction number. If a
country participated in a match, the entry is 1 and otherwise 0. The
robustness of the results with respect to the hyperprior σα is explored
in Supplementary Fig. S17.

For Supplementary Fig. S9, we expand themodel by including the
effect of infections happening in stadiums and in the vicinity of it as
well as during travel towards the venue of the match. In detail, we add
to the football related additive reproduction number (Eq. (11)) an
additive effect ΔRstadium,m:

ΔRfootballðtÞ=
X
m

ðΔRmatch,m +ΔRstadium,mÞ � δðtm � tÞ: ð17Þ

Analogously to the gathering-related effect we apply the same
hierarchy to the effect caused by hosting a match in the stadium – but
change the prior of the day of the effect:

ΔRstadium,m =βprior,m ΔRmean
stadium +Δβm

� �
ð18Þ

ΔRmean
stadium ∼N 0,5ð Þ ð19Þ

Δβm ∼N ð0,σβÞ ð20Þ

σβ ∼HalfNormal 5ð Þ: ð21Þ

βprior,m encodes whether or not a match was hosted by the
respective country, i.e equates 1 if the match took place in the country
and otherwise equates 0.

Non-football-related reproduction number
To account for effects not related to the football matches, e.g., non-
pharmaceutical interventions, vaccinations, seasonality or variants, we
introduce a slowly changing reproduction number Rbase(t), which is
identical for both genders and should map all other not specifically
modeled gender independent effects (left yellow box in Fig. 4):

RbaseðtÞ=R0 exp
X
n

γnðtÞ
 !

ð22Þ

R0 ∼ LogNormal μ= 1,σ = 1ð Þ ð23Þ

This base reproduction number is modeled as a superposition of
logistic change points γ(t) every 10 days, which are parameterized by
the transient length of the changepoints l, the date of the changepoint
d and the effect of the change point Δγn. The subscripts n denotes the
discrete enumeration of the change points:

γnðtÞ=
1

1 + e�4=ln �ðt�dnÞ
� Δγn ð24Þ

Δγn ∼N ð0,σΔγÞ 8n ð25Þ

σΔγ ∼HalfCauchy 0:5ð Þ ð26Þ

ln = log
�
1 + expðlynÞ

� ð27Þ

lyn ∼N 4,1ð Þ 8n ðunit is daysÞ ð28Þ

dn =27
th May 2021 + 10 � n+Δdn for n=0, . . . ,9 ð29Þ

Δdn ∼N 0,3:5ð Þ 8n ðunit is daysÞ: ð30Þ

The idea behind this parameterization is that Δγn models the
change of R-value, which occurs at times dn. These changes are then
summed in Eq. (24). Change points that have not occurred yet at time t
do not contribute in a significant way to the sum as the sigmoid
function tends to zero for t < < dn. The robustness of the results
regarding the spacing of the change-points dn is explored in Supple-
mentary Fig. S14 and the robustness of the choice of the hyperprior σΔγ
is explored in Supplementary Fig. S17.

Similarly, to account for small changes in the gender imbalance,
the noise on the ratio between infections in men and women is mod-
eled by a slowly varying reproduction number (middle yellow box in
Fig. 4), parameterized by series of change points every 10 days:

ΔRnoiseðtÞ=ΔR0,noise +
�X

n

~γnðtÞ
�

ð31Þ

ΔR0,noise ∼N μ=0,σ =0:1ð Þ ð32Þ

~γnðtÞ=
1

1 + e�4=~ln �ðt�~dnÞ
� Δ~γn ð33Þ

Δ~γn ∼N ð0,σΔ~γÞ ð34Þ

σΔ~γ ∼HalfCauchy 0:2ð Þ ð35Þ

~ln = log 1 + expð~lynÞ
� �

ð36Þ

~l
y
n ∼N 4,1ð Þ 8n ðunit is daysÞ ð37Þ

~dn = 27
th May2021 + 10 � n +Δ~dn forn =0, . . . ,9 ð38Þ

Table 5 | Maximal R-hat values51

Country Max. R-hat of relevant
variables

Max. R-hat of all
variables

England 1.07 1.98

The Czech Republic 1.00 1.16

Scotland 1.01 1.10

Spain 1.05 2.24

Italy 1.01 1.10

Slovakia 1.00 1.15

Germany 1.01 1.42

Austria 1.00 1.15

Belgium 1.01 1.22

France 1.01 1.82

Portugal 1.00 1.14

The Netherlands 1.03 1.83

The convergence is good (≈1) for the relevant variables, which are the variables that encode the
reproduction number.
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Δ~dn ∼N 0,3:5ð Þ 8n ðunit is daysÞ: ð39Þ

Delay
Modeling the delay between the time of infection and the reporting of
it is an important part of themodel (blue boxes in Fig. 4); it allows for a
precise identification of changes in the infection dynamics because of
football matches and the reported cases. We split the delay into two
different parts: First we convolved the number of newly infected
people with a kernel, which delays the cases between 4 and 7 days.
Second, to account for delays that occur because of the weekly
structure (somepeoplemight delaygetting tested untilMonday if they
have symptoms on Saturday or Sunday), we added a variable fraction
that delays cases depending on the day of the week.

Constant delay. To account for the latent period and an eventual
apparition of symptoms we apply a discrete convolution, a Gamma
kernel, to the infected pool (right blue box in Fig. 4). The prior delay
distributionD is defined by incorporating knowledge about the country
specific reporting structure: If the reported date corresponds to the
moment of the sample collection (which is the case in England, Scotland
and France) or if the reported date corresponds to the onset of symp-
toms (which is the case in the Netherlands), we assumed 4 days as the
prior median of the delay between infection and case. If the reported
date corresponds to the transmission of the case data to the authorities,
we assumed 7 days as priormedian of the delay. If we do not knowwhat
the published date corresponds to, we assumed a median �Dcountry of
5 days, with a larger prior standard deviation σlog �D (see Table 4):

Cy
g tð Þ=

XT
τ = 1

Eg ðt � τÞ � Gammaðτ;μ=D,σ = σDÞ ð40Þ

D= log Dy� � ð41Þ

Dy ∼N �μ= exp
�
�Dcountry

�
,σ = σlog �D

� ð42Þ

σD ∼N �μ=0:2 � �Dcountry,σ =0:08 � �Dcountry

�
: ð43Þ

Here, Gamma represents the delay kernel. We obtain a delayed
number of infected persons Cy

g by delaying the newly infected number
of persons Ig(t) of gender g fromEq. (1). The robustnessof the choice of
the width of the delay kernel σD is explored in Supplementary Fig. S17.

Weekday-dependent delay. Because of the different availability of
testing resources during aweek, we further delay a fraction of persons,
depending on the day of the week (left blue box in Fig. 4). We model
the fraction ηt of delayed tests on a day t in a recurrent fashion,
meaning that if a certain fraction gets delayed on Saturday, these same
individuals can still get delayed on Sunday (Eq. (44)). The fraction ηt is
drawn separately for each individual day. However, the prior is the
same for certain days of the week d (Eq. (45)): we assume that few tests
get delayed on Tuesday, Wednesday, and Thursday, using a prior with
mean 0.67% (Eq. (48)), whereas we assume that more tests might be
delayed onMonday, Friday, Saturday and Sunday. Hence compared to
Cy
g , we obtain slightly more delayed numbers of cases Ĉg , which now

include a weekday-dependent delay:

Ĉg tð Þ= 1� ηt

� � � Cy
g tð Þ+ηt�1Ĉg t � 1ð Þ

� �
with Ĉg 0ð Þ=Cy

g 0ð Þ ð44Þ

ηt ∼Beta α =
rd
e
,β=

1� rd
e

� �
with d = Monday ,:::, Sunday ð45Þ

rd = sigmoid ryd

� �
ð46Þ

ryd = r
y
base,d +Δr

y
d ð47Þ

rybase,d ∼N �5,1ð Þ for d = Tuesday,Wednesday, Thursday ð48Þ

rybase,d ∼N �3,2ð Þ for d = Friday, Saturday, Sunday,Monday ð49Þ

Δryd ∼N 0,σr

� � ð50Þ

σr ∼HalfNormal 1ð Þ ð51Þ

e∼HalfCauchy 0:2ð Þ: ð52Þ

The parameter rd is defined such that it models the mean of the
Beta distribution of Eq. (45), whereas e models the scale of the Beta
distribution. rd is then transformed to an unbounded space by the
sigmoid f xð Þ= 1

1 + exp �xð Þ (Eq. (46)). This allows to define the hierarchical
prior structure for the different weekdays. We chose the prior of rybase,d
for Tuesday, Wednesday, and Thursday such that only a small fraction
of cases are delayed during the week. The chosen prior in Eq. (48)
corresponds to a 2.5th and 97.5th percentile of rd of [0%; 5%]. For the
other days (Friday, Saturday, Sunday,Monday), the chosenprior leaves
a lot of freedom for inferring the delay. Equation (49) corresponds to a
2.5th and 97.5th percentile of rd of [0%; 72%]. The robustness of the
other priors σr and e is explored in Supplementary Fig. S17.

Likelihood
Next we want to define the goodness of fit of our model to the sample
data. The likelihood of that is modeled by a Student’s t-distribution,
which allows for someoutliers because of its heavier tails compared to
a Normal distribution (green box in Fig. 4). The error of the Student’s
t-distribution is proportional to the square root of thenumber of cases,
which corresponds to the scaling of the errors in a Poisson or Negative
Binomial distribution:

Cg ðtÞ∼StudentTν=4 μ= Ĉg ðtÞ,σ = κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉg ðtÞ+ 1

q� �
ð53Þ

κ ∼HalfCauchyðσ = 30Þ: ð54Þ

Here Cg(t) is the measured number of cases in the population of
gender g as reported by the respective health authorities, whereas
Ĉg ðtÞ is the modeled number of cases (Eq. (44)). The robustness of the
prior κ is explored in Supplementary Fig. S17.

Average effect across countries
In order to calculate the mean effect size across countries (Fig. 1b, c),
we average the individual effects of each country. To be consistent in
our approach, we build an hierarchical Bayesian model accounting for
the individual uncertainties of each country estimated from the width
of the posterior distributions. As effect size, we use the fraction of
primary cases associated with football matches during the cham-
pionship. Then our estimated mean effect size Îg across all countries c
(except theNetherlands) for the gender g is inferredwith the following
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model:

Îg ∼Normalðμ=0,σ = 2Þ with g = fmale, femaleg ð55Þ

τg ∼HalfCauchyðβ = 10Þ ð56Þ

Iyc,g ∼Normalðμ= Îg ,σ = τg Þ ð57Þ

σ̂c,g ∼HalfCauchyðβ = 10Þ ð58Þ

Is,c,g ∼ StudentTν =4 μ= Iyc,g ,σ = σ̂c,g

� �
: ð59Þ

The estimated effect size of each country (the fraction of primary
cases) is denoted by Iyc,g and the effect sizeof individual samples s from
the posterior of the main model is denoted by Is,c,g.

We applied a similar hierarchical model but without gender
dimensions and with slightly different priors to calculate the average
meanmatcheffectΔRmean

match (Fig. 1a). Hereby reusing the samenotation:

Î ∼Normalðμ=0,σ = 10Þ ð60Þ

τ ∼HalfCauchyðβ = 10Þ ð61Þ

Iyc ∼Normalðμ= Î,σ = τÞ ð62Þ

σ̂c ∼HalfCauchyðβ= 10Þ ð63Þ

ΔRmean
match,c,s ∼ StudentTν =4 μ= Iyc ,σ = σ̂c

� �
, ð64Þ

where ΔRmean
match,c,s are the posterior samples from the main model runs

of the ΔRmean
match variable.

Calculating the primary and subsequent cases
We compute the number of primary football related infected
Iprimary,g(t) as the number of infections happening at football related
gathering. The percentage of primary cases fg is then computed by
dividing by the total number of infected Ig(t).

Iprimary,g ðtÞ=
SðtÞRfootballðtÞ

N

X
g 0

Ig 0 ðtÞCfootball,g 0 ,g ð65Þ

f g =
X
t

Iprimary,g ðtÞ
Ig ðtÞ

t 2 ½11th June, 31st July� ð66Þ

To obtain the subsequent infected Isubsequent,g(t), we subtract
infected obtained fromahypothetical scenariowithout football games
Inone,g(t) from the total number of infected.

Isubsequent,g = Ig ðtÞ � Iprimary,g ðtÞ � Inone,g ðtÞ ð67Þ

Specific, we consider a counterfactual scenario, wherewe sample from
our model leaving all inferred parameters the same expect for the
football related reproduction number Rfootball,g(t), which we set
to zero.

Sampling
The sampling was done using PyMC349. We use a NUTS sampler50,
which is a Hamiltonian Monte-Carlo sampler. As random initialization
often leads to some chains getting stuck in local minima, we run 32

chains for 500 initialization steps and chose the 8 chains with the
highest unnormalized posterior to continue tuning and sampling. We
then let these chains tune for additional 2000 steps and draw
4000 samples. The maximum tree depth was set to 12.

The quality of the mixing was tested with the R-hat measure51

(Table 5). The R-hat value measures how well chains with different
starting values mix; optimal are values near one. We measured twice:
(1) for all variables and (2) for the subset of variables encoding the
reproduction number. Variables modeling the reproduction number
are the central part of our model (lower half of Fig. 4). As such, we are
satisfied if the R-hat values is sufficiently good for these variables,
which it is (≤1.07). The highR-hat when calculated over all variables is
mostly due to the weekday-dependent delay, which we assume is not
central to the results we are interested in.

Robustness tests
In the base model for each country, we only consider the matches in
which the respective country participated. It is reasonable to ask
whether the matches of foreign countries occurring in local stadium
have an effect on the case numbers, caused by transmission in and
around the stadium and related travel. To investigate this question we
ran a model with an additional parameter (in-country effect) asso-
ciating the case numbers to the in-country matches (Eq. (17)). In some
countries the in-country effect parameter and the original fan gath-
ering effect are covariant, as a large number of matches are played by
the country at home, whereas in other countries the additional para-
meter had no significant effect (Supplementary Fig. S9).

We checked that the inferred fractions of football related cases
are robust against changes in the priors of the width σD of the delay
parameter D (see Supplementary Fig. S13) and the intervals of change
points of Rbase (Supplementary Fig. S14). The results are also, to a very
largedegree, robust against amoreuninformativeprior on the fraction
of female participants in the fan activities dominating the additional
transmission ωgender (Supplementary Fig. S15). To reduce CO2 emis-
sions, we performed fewer runs for these robustness tests:We only ran
the models for which the original posterior distributions might indi-
cate that one could find a significant effect. Each country required
eight cores for about 10 days to finish sampling.

In order to further test the robustness of the association between
individual matches and infections, we varied the dates of the matches,
i.e., shifted them forward and backward in time. The results for the
twelve countries under investigation are shown in Supplementary
Figs. S10 and S12. In the countries where sensitivity to a championship-
related case surge exists, a stable association is obtained for shifts by
up to 2 days. As shown for the examples of England and Scotland in
Fig. S19, such a shift is compensated by themodel by a complementary
adjustment of the delay parameter D. For larger shifts, the model
might associate other matches to the increase of cases, as matches
took place approximately every 4 days.

Correlations
In order to calculate the correlation between the effect size and various
explainable variables (Fig. 3 andSupplementary Figs. S4 andS6),webuilt
a Bayesian regression model, using the previously computed posterior
samples from the individual runs of each country. Let us denote the
previously computed cumulative primary and subsequent cases related
to the Euro 2020 by Ys,c, for every sample s and analyzed country c, and
the explainable variable from auxiliary data by Xc. We used a simple
linear model to check for pairwise correlation between Ys,c and Xc:

Ŷ c =β0 +β1X̂ c ð68Þ

β0 ∼Normalðμ=0,σ = 10000Þ ð69Þ

Article https://doi.org/10.1038/s41467-022-35512-x

Nature Communications |          (2023) 14:122 11



β1 ∼Normalðμ=0,σ = 100000Þ ð70Þ

We used every sample s obtained from the main analysis to incorpo-
rate uncertainties on the variable Yc from our prior results. The aux-
iliary data Xcmight also have errors ϵc, whichwemodel using a Normal
distribution. Additionally, we allow our estimate for the effect size Ŷ c

to have an error for each country c in a typical hierarchicalmanner and
choose uninformative priors for the scale hyper-parameter τ. As prior
we considered 10k a reasonable choice for the β parameter as our data
Xc is normally in a range multiple magnitudes smaller:

X̂ c ∼Normalðμ=Xc,σ = ϵcÞ 8c ð71Þ

τ ∼HalfCauchyðβ= 10000Þ ð72Þ

Y y
c ∼Normalðμ= Ŷ c,σ = τÞ 8c: ð73Þ

Again using uninformative priors for the error, the likelihood to obtain
our results given the individual country effect size estimate Y y

c from
the hierarchical linear model is

Ys,c ∼ StudentTν =4 μ= Y y
c ,σ = σ̂c

� �
with ð74Þ

σ̂c ∼HalfCauchyðβ = 10000Þ: ð75Þ

Therefore, our regression model includes the “measurement
error” σ̂c, which models the heteroscadistic effect size of every coun-
try, and an additional model error τ which models the homoscedastic
deviations of the country effect sizes from the linear model. In the
plots, we plot the regression line Ŷ c with its shaded 95% CI, and data
points (X̂ c, Y

y
c) where the whiskers correspond to the one standard

deviation, modeled here by ϵc and σ̂c.
The coefficient of determination, R2, is calculated following the

procedure suggested by Gelman and colleagues52. Their R2 measure is
intended for Bayesian regression models as it notably uses the
expected data variance given the model instead of the observed data
variance. For our model, it is defined as

R2 =
Explained variance

Residual variance+ Explained variance
=

1
nc�1

P
cŶ

2
c

τ2 + 1
nc�1

P
cŶ

2
c

, ð76Þ

wherenc is the number of countries.With this formula, one obtains the
posterior distribution of R2 by evaluating it for every sample.

As auxiliary data, we used:
1. Mobility data: We use the mobility index mc,t provided by the

“Google COVID-19 Community Mobility Reports”53 for each
country c at day t during the Euro 2020 (t∈ [June 11 2021, July
11 2021]), whereN denotes the number of days in the interval. The
error is the standard deviation of the mean:

Xc =
1
N

X
t

mc,t ð77Þ

ϵc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X
t

ðmc,t � XcÞ2
s

ð78Þ

2. Reproduction number: We use the base reproduction number
Rpre,c for each country c as inferred from our model 2 weeks prior

to the Euro 2020 (t∈ [May 28 2021, June 11 2021]).

Xc =
1
N

X
t

Rpre,cðtÞ ð79Þ

ϵc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
t

ðRpre,cðtÞ � XcÞ2
s

ð80Þ

3. Cumulative reported cases: From the daily reported cases C(t) two
weeks prior to the Euro 2020 (t∈ [May 28 2021, June 11 2021]), we
computed the cumulative reported cases normalized by the
number of inhabitants pc in each country c. Note: We also used
reported cases without gender assignment here.

Xc =
P

tCðtÞ
pc

ð81Þ

ϵc = 0
! ð82Þ

4. Potential for COVID-19 spread: As for the cumulative casesweused
the daily reported cases C(t) two weeks prior to the Euro 2020
(t∈ [May 28 2021, June 11 2021]), and we computed the cumula-
tive reported cases normalized by the number of inhabitants pc in
each country c. Furthermore, we used the base reproduction
number Rbase(t) 2 weeks prior to the Euro 2020, as well as the
duration of a country participating in the championship Tc
(Table S5) to compute the potential for spread:

N0 =
P

tCðtÞ
pc

ð83Þ

Xc =N0 �
P

tR
Tc=4
pre,cðtÞ
N

ð84Þ

ϵc = 0
! ð85Þ

5. Proxy for popularity: To represent popularity of the Euro 2020 in
country c, we used the union of the number of matches played by
each country nmatch,c and the number of matches hosted by each
country nhosted,c (Table S5). By “union” we mean the sum without
the overlap, i.e., we take the sum of these numbers and subtract
the number of home matches nhome,c

Xc =nmatch,c +nhosted,c � nhome,c ð86Þ

ϵc = 0
! ð87Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from our model runs, i.e., from the sampling is available on
G-node https://gin.g-node.org/semohr/covid19_soccer_data. The daily
case numbers stratified by age and gender were acquired from the
local health authorities (see also Supplementary section S1 from the
following sources: Robert Koch Institut, Germany; Santé publique,
France; National Health Service, England; Österreichische Agentur für
Gesundheit und Ernährungssicherheit GmbH, Austria; Sciensano,
BelgiumMinisterstvo zdravotnictví, Czech Republic; National
Institute for Public Health and the Environment, The Netherlands;
and COVerAGE-DB.
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Code availability
All code to reproduce the analysis and figures shown in themanuscript
as well as in the Supplementary Information is available online on
GitHub https://github.com/Priesemann-Group/covid19_soccer or via
https://doi.org/10.5281/zenodo.738631354.
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Summary
In the summer of 2021, European governments removed most NPIs after experiencing prolonged second and third
waves of the COVID-19 pandemic. Most countries failed to achieve immunization rates high enough to avoid resur-
gence of the virus. Public health strategies for autumn and winter 2021 have ranged from countries aiming at low
incidence by re-introducing NPIs to accepting high incidence levels. However, such high incidence strategies almost
certainly lead to the very consequences that they seek to avoid: restrictions that harm people and economies. At high
incidence, the important pandemic containment measure ‘test-trace-isolate-support’ becomes inefficient. At that
point, the spread of SARS-CoV-2 and its numerous harmful consequences can likely only be controlled through
restrictions. We argue that all European countries need to pursue a low incidence strategy in a coordinated manner.
Such an endeavour can only be successful if it is built on open communication and trust.

Copyright � 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Introduction
In light of decreasing COVID-19 infection rates in early
summer 2021, governments in many European coun-
tries removed most non-pharmaceutical interventions
(NPIs) aimed at controlling the pandemic. In addition
to the growing (deceptive) sense of complete safety that
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the progress in vaccination programmes conveys, there
is also considerable pressure on policymakers to “give
people back their freedom”. This pressure is rising
amidst growing frustration about the protracted pan-
demic and loss of public trust in governments.1,2

While the rate of fully vaccinated people is not suffi-
cient to interrupt infection chains and reduce infection
rates in most European countries, especially in the East
and among young people, and emerging variants of con-
cern (VOCs) show partial immune escape, lifting cer-
tain NPIs means living with a relatively high incidence
of cases. Such high incidence means hundreds of cases
per week per 100,000 people. While in some countries
case numbers have begun to drop, the first 18 months
of the pandemic have taught us that it is extremely diffi-
cult, if not impossible, to maintain stable incidence at
intermediate levels, especially given the increased repro-
duction number of the Delta variant. Pursuing a low-
incidence strategy consequently seems warranted for
the winter, especially when people spend more time
indoors. However, achieving a low COVID-19 incidence
across Europe will continue to be impossible without good
communication, public trust, and a coordinated pan-Euro-
pean approach.3,30

Search strategy and selection criteria
Work for this study has emerged from a previous Delphi
study led by Viola Priesemann and Emil Iftekhar.4 The
scientific procedure of the Delphi study consisted of
bias-avoiding discussions between scientists of various
disciplines and European countries. These discussions
were guided, summarised, and synthesized by facilita-
tors. For the insights of this work, the participants of
said Delphi study analysed different public health policy
strategies against the backdrop of the advantages and
disadvantages of different possible scenarios developed
in the Delphi study. The considered content arose from
three iterations of the authors providing input and evi-
dence and subsequent evaluation by the main authors.

Hastily reducing all NPIs means accepting high
COVID-19 incidence
NPIs encompass a wide range of measures and policies,
from practices with little impact on personal freedom
(e.g., regular disinfection of public spaces) to those that
many people consider highly restrictive or invasive (e.g.,
restrictions on movement). In many countries politi-
cians felt compelled to abolish mask mandates the
moment infection numbers declined.

Examples from Israel and Singapore suggest, how-
ever, that even in countries with high vaccination rates,
especially when colliding with waning immunity, lifting
all NPIs will contribute to high incidence and associated
undesirable effects.5-8 Other factors contributing to ris-
ing incidence in the winter months include travel and

cross-border commutes in and out of regions with high
incidence; disadvantageous seasonality effects9-11; insuf-
ficient support for people to enable self-isolation; low-
ered risk perception, and inadequate governmental
communication around harm reduction10,11; and the
emergence of VOCs with partial immune escape, such
as Delta.6,12,13

Against this backdrop, repealing most NPIs appears
to be a risky strategy. At incidence levels exceeding 50
cases per 100,000 people per week, test-trace-isolate-
support systems (TTIS) capacity is quickly exceeded.
This makes it impossible to detect and break many
chains of infection. A further rapid increase in inci-
dence to the point of complete loss of control over trans-
mission can then potentially result.12,13 Exempting
vaccinated people from NPIs, such as mask wearing or
testing, poses further challenges to containment. This
is because these individuals may still get infected and
transmit the virus; given frequent exemption of testing
requirements for vaccinated people on the basis of Euro-
pean Union’s Digital Covid Certificate, their role in
transmission chains needs to be assessed in terms of
contribution to the spread of VOCs, particularly given
Delta’s higher transmissibility. Without effective TTIS
systems, infections will rise unreported, and many
infection chains will not be detected and broken in
time. If this happens in winter 2021/2022, incidence
could reach levels as high as 500 cases per week per
100,000 people.16

The costs of high incidence
The first 18 months of the pandemic have taught us that
accepting a high incidence of COVID-19 is unwise - even
since vaccines have been available. First, a high incidence
incurs direct harm to the health of considerable parts of
the population - particularly the most vulnerable, includ-
ing economically deprived and/or socially marginalised
populations,17 who tend to be less well-served by vaccina-
tion programmes and campaigns.18 The harms include a
higher COVID-19 associated mortality and more cases of
Long COVID, including pulmonary, cardiovascular, and
renal sequelae.19,20 Many people either cannot be vacci-
nated for health reasons or show poor immune response
to the vaccine (e.g., people with weakened immune sys-
tems), and thus remain at risk.21

Second, a high incidence also has negative impacts
on the workforce; when people fall ill or need to isolate
or quarantine, others need to do their work. This addi-
tional workload increases the likelihood of burnout, as
has become evident especially among healthcare work-
ers.22 Assuming an incidence of 100 new infected per-
sons per 100,000 per week among the working
population, and a quarantine period of ten days, then
on average 1% of the population will be off work on any
given workday. An additional >1% would need to self-
isolate due to being a close contact of an infected
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person. Consequently, high incidence makes it unlikely
that quarantine orders can and will be adhered to or
would even be mandated by some governments. Conse-
quently, the effectiveness of this vital means to mitigate
viral transmission is diminished.

Third, in the domain of education, infected children
and their close contacts are excluded from attending
school or childcare. In this manner, a high incidence
also harms children and their education, even if schools
remain open. This adds to the existing harms that chil-
dren have already experienced during the pandemic.23

Fourth, a high incidence coupled with only part of
the population being vaccinated or naturally immune
after disease gives the virus more opportunities to
mutate and increases evolutionary pressure on it to
escape such immunity. This increases the probability of
new VOCs emerging and spreading unnoticed in
Europe.24 This is compounded by the fact that vacci-
nated people are unlikely to maintain the same vigilance
levels regarding potential SARS-CoV-2 transmission as
during the first phase of lockdowns.25 A VOC that ren-
ders existing vaccines less effective taking a foothold in
Europe would prolong the pandemic and potentially
cost even more lives and livelihoods.

Fifth, a central challenge is to avoid hospitals reach-
ing and exceeding capacity. Assuming a slow COVID-
19 incidence increase, largely effective vaccines, and fast
progress in vaccination (including boosters where
appropriate), hospitalization rates are unlikely to reach
the levels of winter 2020/2021 (Figure 1). However,
even if COVID-19-related hospitalizations remain sub-
stantially fewer than in previous waves, additional bur-
dens will be placed on health systems: (a) With NPIs
lifted and lowered risk perception, influenza, Respira-
tory Syncytial Virus, and pneumonia cases are likely to
be more than last year26 and (b) due to postponement
of surgeries and routine care during the pandemic there
is a large backlog of patients in need of care.27 Indeed, if
incidence increases before a sufficient proportion of
people has been vaccinated (against COVID-19 and
influenza), health systems may reach capacity limits
(Figure 1) - with all this implies for quality of care and
patient safety.

Finally, the economic, social, and health related bur-
dens of NPIs should not be neglected either.30,31 Many
of these burdens hit vulnerable and disadvantaged
groups particularly hard. Maintaining and achieving
low incidence is likely to reduce the need for the kinds
of restrictions that are most harmful. Nevertheless,
unintended negative consequences to ostensibly laud-
able measures are well characterised in the history of
public health. As such, the role of NPIs in producing
harm must be closely and carefully monitored.

In sum, strategies that seek to accommodate or
accept high incidence at the current pandemic stage
ironically lead to the very consequences they set out to
prevent: With rising incidence, more invasive NPIs,

potentially even lockdowns, become necessary. This, in
turn, increases the negative effects both of the virus
itself as well as the harms incurred by NPIs and other
pandemic prevention and containment measures.
Moreover, the zig-zag courses that pandemic measures
inevitably take when too many NPIs are dropped too
quickly make it more difficult to communicate to the
public and for people and businesses to plan ahead.
This adversely impacts upon the psychological wellbe-
ing, whilst simultaneously eroding public trust.28

A low incidence strategy to avoid illness,
deaths, and lockdowns
An alternative to accepting a high COVID-19 incidence
is to achieve and maintain a low incidence by combin-
ing increasing population immunization with moderate
NPIs in the winter and progressive social and economic
policy measures to enhance public health.16,29 The
rationale for this recommendation rests on the follow-
ing three pillars: First, when incidence is high, retaining
control over viral transmission is much more difficult.
At low incidence, in contrast, TTIS systems can func-
tion effectively.14,15 Second, as population vaccination
coverage progresses - including younger age groups for
whom vaccines are newly approved or authorised, the
effective reproduction number Reff is continuously
reduced, necessitating only moderate NPIs to keep Reff

below 1. Finally, a key aim of low incidence is to avoid
the more restrictive measures that would follow spikes
in infection rates, consequently lessening the harms
incurred by NPIs. For this reason, a strategy success-
fully maintaining a low incidence provides more stabil-
ity and helps to protect from the manifold social,
psychological, and economic harms of such more
restrictive measures (see Table 1).

Overall, a pan-European commitment is crucial. The
core pillars necessary to achieve and maintain low inci-
dence include a clear political commitment across all
Europe to rapidly achieve high vaccination coverage, the
close and systematic monitoring of the spread of SARS-
CoV-2 and its VOCs across regions and countries, and a
systematic and representative sampling of SARS-CoV-2
infection among asymptomatic and symptomatic car-
riers together with monitoring of new variants present-
ing an early warning system. Should a new Delta wave
occur in the winter, or should novel VOCs that can
evade vaccines emerge, coordinated timing of NPIs
across Europe will be essential to avoid the ‘ping-pong’
effects of cross-border spread.29 The better (and earlier)
less-invasive NPIs such as the use of masks, the prohibi-
tion of mass gatherings, or good testing regimes are
maintained, the lower is the risk that more invasive
NPIs will be needed. Last but not least, a common Euro-
pean strategy is needed to share vaccines with countries
that do not have sufficient supply. Coordinated global
cooperation will greatly facilitate the pursuit of a low
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COVID-19 incidence strategy, and thus indirectly the
suppression of the emergence of new VOCs. This would
allow control of the pandemic and the discussed risks of
the high-incidence scenario would be avoided.

In sum, at low incidence, further damage to health,
economy and society could be prevented. Unlike in
2020, European countries now have the ability to effec-
tively implement moderate NPIs (e.g., indoor facemasks,
lateral-flow testing). We have a better understanding of
the effectiveness of different NPIs than a year ago. This
means that societies are, now, in a better position to
choose the minimum and least invasive set of NPIs nec-
essary to reach and maintain low incidence, alongside
social and economic policy measures (such as easily
accessible payments to enable self-isolation) that will like-
wise play a vital role in keeping cases low.

Implementing a low incidence strategy -
communication and trust
It remains critical that policies to mitigate and recover
from the pandemic define a clear, timely, and accurate
communication strategy early on, and include a suffi-
cient degree of democratic involvement and coordina-
tion involving all stakeholders. Aside from the
democratic imperative to do so, the effectiveness of
rules and recommendations largely depends on the will-
ingness and ability of populations to adhere to them.31

Opaque and ambiguous communication has been iden-
tified as an important reason for declining public trust
and falling public commitment to pandemic
measures.1,3 The importance of clear communication
strategies that include scientific evidence and openly
acknowledge uncertainties, are key to public trust.32

Faster progress should also be made on establishing
mechanisms of actively tackling misinformation and
systematically developing counter arguments regarding

COVID-19 vaccines and NPIs.33 The support of locally
respected persons, primary healthcare with strong links
to communities, and the use of culturally adapted strate-
gies can greatly contribute to sound messaging, with
sincerity, openness, and empathy, to enhance public
awareness and adherence.34,35 In addition, those resid-
ing in countries where measures are in place should
have resources available to them for adherence to be
economically and psychologically viable.4,36

Conclusion
Despite important progress in vaccination coverage, and
the ability to reach low incidence across many European
countries over the summer months of 2021, there is a
risk of a resurgence of COVID-19 cases in winter. This is
especially important if vaccination rates among the most
vulnerable groups of the population are insufficient.
Decision makers should think ahead and take decisive
measures to avoid the failures of 2020: Evidence-based
proactive and effective regulations, instead of knee-jerk
reactions, across Europe are needed, alongside bold and
imaginative social and economic policy to support and
enhance public health. With uncertainty regarding chil-
dren and vulnerable groups, such as those immunocom-
promised, and, especially, with the catastrophically low
availability of vaccines in the Global South, a high inci-
dence in Europe will have global implications that will
ultimately adversely impact everyone.

We have yet to overcome the pandemic, but an end is
at least conceivable. Until then, the goal is to minimize
the cost, emerging from the virus directly, and from
measures to prevent its spread, to our communities and
societies in Europe and across the world. The way to
achieve this is with coordinated European commitment
and cooperation, including a Pan-European voice within
the global multilateral dialogue, to effectively control the
transmission of SARS-CoV-2.

Table 1: Conditions and implications of corner scenarios for two hypothetical incidence regimes in Europe.
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Key Messages

- While at this point of the pandemic incidence lev-

els have a different meaning (due to vaccination),

they remain very relevant for policymaking. For

example, they correlate with the risk of long

COVID, determine the effectiveness of test-trace-

isolate-support programs, and predict the propor-

tion of serious cases requiring hospitalisation.

- A high incidence strategy may seem the easiest

route for political decision makers, but it is fraught

with risks, provides less stability, and ultimately

incurs higher costs.

- A low-incidence strategy in Europe seems achiev-

able and more advantageous for public health, soci-

ety, and for the economy.

- To achieve low incidence, a moderate and targeted

set of NPIs should be maintained or re-introduced

alongside progressive social and economic policy

that enables social practices aligned with the goal

of decreasing the impacts of the pandemic until

vaccination coverage is sufficient.

- Pan-European commitment and cooperation is key

to the success of this strategy.
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D I S C U S S I O N





8
L E S S O N S F O R R E S P O N D I N G T O PA N D E M I C S

This thesis leverages concepts and tools from physics and dynamical
systems theory to further the quantitative modeling of infectious dis-
ease transmission, with a focus on gaining insights into the COVID-19
pandemic. Collectively, the works included demonstrate the power of
complex-systems-inspired mathematical modeling for not only deepening
our theoretical understanding of epidemics, but also generating action-
able evidence to inform public health policy making during crisis events
like COVID-19. Beyond analyzing specific topics like non-pharmaceutical
interventions and vaccination, the thesis emphasizes the critical need to
incorporate psychological, social, and policy dimensions beyond purely
epidemiological factors.

In chapter 3, we performed an expert consultation to inform our quan-
titative work. We identified key control parameters and regime shifts
for our analyses: population immunity and vaccination, the emergence
and prevalence of variants of concern, and public responses to pandemic
policy. We further elucidated predictions for the pandemic that high-
lighted key uncertainties, guiding the further research questions of this
thesis.

Building on this, chapter 4 focused on reopening strategies as vac-
cination campaigns progressed in 2021. Using an extended SIR model
incorporating vaccination rollout, we quantified sustainable rates of
lifting non-pharmaceutical interventions (NPIs) based on immunization
pace. We found that a slow lifting of restrictions at the pace of the
vaccine roll-out offered the best trade-off between preventing resurgences
and restoring freedoms. This demonstrated the value of data-driven
models in mapping out acute complex policy trade-offs.

In chapter 5, we incorporated additional real-world evidence by linking
intensive care unit (ICU) occupancy to individuals’ voluntary health-
protective behaviour and vaccine acceptance. Our model estimated that
moderate NPIs balancing perceived risk and freedom enable behavioral
adaptation that helps stabilize control. Neither a "full freedom" nor a
more restrictive approach appeared optimal. This underlined the need
for nuanced behavioral insights alongside epidemiological modeling.

Shifting focus, chapter 6 leveraged the "natural experiment" of the
Euro 2020 football championship to statistically estimate its impact on
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transmission. By modeling male/female case imbalance and the timing
of matches, we inferred a significant growth in infections associated with
the events. This data-driven approach demonstrated the value of studies
utilising unique circumstances to quantify epidemiological impacts in a
complex world.

Finally, chapter 7 synthesized multi-disciplinary expert opinions and
some of this thesis’ findings for health policy recommendations. We
argued that coordinated efforts across Europe to maintain low incidence
outperform a high-incidence accepting alternative on various dimensions.

In synthesis, the insights of chapter 3 inspired the complex systems
models in chapter 4, chapter 5 and chapter 6 that provided quantitative
insights about real-world COVID-19 pandemic response and also guided
policy recommendations, e.g., in chapter 7.

While developing sophisticated dynamical models grounded in epi-
demiological mechanisms, we also emphasized designing scenarios or
studies to specifically inform policy questions. Football matches and
ICU occupancy provided natural experiments to quantify gathering im-
pacts and behavioral adaptation (chapter 6 and chapter 5, respectively).
In chapter 3, expert forecasts synthesized qualitative and big-picture
insights to complement mechanistic models. This demonstrated the
importance of not just theoretical modeling but embedding models
within data and domain context.

Beyond mathematically modeling governmental interventions, a method-
ological contribution was representing COVID-19 transmission through
a nonlinear dynamics perspective focused on regime shifts. This ap-
proach illuminated, e.g., how feedback loops between disease spread
and human intervention make the difference between controlled epi-
demics and explosive spread when passing critical tipping points. Such
nonlinear phenomena like infection plateaus and multi-wave dynamics
emerged from the models but cannot easily be captured by simple
SIR approaches. Hence, our work elucidated how factors like voluntary
behavioral changes and responsive policies can help maintain desirable
regimes and prevent uncontrolled epidemics. From a physics viewpoint,
epidemic modeling benefits tremendously from thinking in terms of
dynamical systems.

In the following, we will discuss some of the overarching insights of
this thesis in more detail and in the context of other scientific evidence.
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8.1 maintaining low incidence: the best strategy?

A key insight is that, under certain conditions, a low incidence strategy
for COVID-19 causes less public health and other societal damage than
accepting high incidence (chapter 3, chapter 4, chapter 6 and chapter 7).

A key containment measure, test-trace-isolate (TTI), is most effective
when the incidence is low (chapter 1, chapter 3, and chapter 4). Fur-
thermore, there will always be some incidence that will be deemed too
high by society, e.g., when hospitals, intensive care units or health care
systems would collapse, or when too many people would be too sick
to ensure that essential infrastructure is running smoothly (chapter 7
and chapter 4). At the latest by then, containment measures would
be needed. Hence, to minimise the amount of intrusive measures in
such a system, it is optimal to choose a low incidence strategy, where
TTI can replace other more intrusive measures and enable containment,
mitigation or control. This way, there is not only less direct public
health damage through fewer infections, hospitalisation, long-COVID
and deaths (chapter 4), but also less other damage to society because, ul-
timately, fewer non-pharmaceutical interventions have to be introduced
(chapter 7).

We further find that the necessary mitigation of spread does not
have to be achieved through mandatory measures alone (chapter 5).
Additional voluntary health protective behaviour has the ability to close
the gap to protect health systems, while still leaving the population with
some agency to minimise the negative impacts of the pandemic on their
lives. For example, if mandates are in place that effectively allow home-
office, people can make use of the home-office option if they perceive it
to be the appropriate thing to do. This benefit of joint voluntary and
mandatory behaviour was also found in other compartmental modelling
work (e.g. [28, 29]). Complementing these complex systems modelling
results, statistical work finds that the effect of NPIs on disease spread is
also derived from voluntary behaviour [30] and that voluntary behaviour
in the absence of mandatory measures can even have the same order
of magnitude of effect as mandatory behaviour change [31]. Given
that health-protective behaviour through mandatory measures (in part)
replaces voluntary health-protective behaviour [32], finding the right
balance between mandatory and voluntary behaviour to achieve low
incidence is key.

The benefit of a low incidence strategy goes so far as to enable
countries to hold large-scale events with minimal public health damage
(chapter 6). In line with other work (e.g. [33–36]), we find that most
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of the additional cases caused by such events arise from secondary
infections, i.e. when people get infected during the event and afterwards
infect others in their surroundings. Together with the previous findings,
this allows us to connect the dots and suggest an interpretation: In a
low incidence regime (and with low reproduction number), TTI is able
to stop most infection chains, which would make up the majority of the
public health damage, and thereby leads to a much safer event. The large
impact of preventing secondary infections arising from superspreading
events has also been found in theoretical stochastic modelling work (e.g.
[37]).

8.1.1 Low incidence less attractive if hospitals are never overwhelmed

However, once the situation changes, it is necessary to re-evaluate the
costs and benefits of a strategy. In a different situation, one of the
underlying assumptions may not hold anymore. Let us consider for
example the assumption that it will be necessary to implement severe
NPIs at some point to avert health system or infrastructure collapse.
If such NPI implementation will not happen in any plausible scenario,
TTI at peak effectiveness is not required anymore to complement less
intrusive measures in mitigating the spread sufficiently. Then, a low
incidence strategy is not required to achieve better control and may not
be the best option anymore. So, which pandemic situation changes would
make implementing severe NPIs at any point obsolete? We illustrate
the multiple pathways here with a SIHR model, i.e. a SIR model where
people may be hospitalised in case of severe disease, before they recover
(Figure 8.1A).

The baseline scenario is chosen such that the number of COVID-
19 hospitalisations during a wave would exceed maximum hospital
capacity by far (Figure 8.1B, gray dashed line). For this scenario, let us
consider that only NPIs that are in tendency perceived as less intrusive
are implemented, such as mask wearing. If the goal is to make more
intrusive NPIs obsolete, one option to ensure that hospitals are not
overwhelmed is to increase the maximum hospital capacity. This was
done to some extent at the beginning of the COVID-19 pandemic [38].
However, often high enough hospital capacity is only possible in high-
income countries [39], and only to a certain extent: While it may be
possible to set up more hospital beds or acquire treatment material, it
is difficult to hire more healthcare workers quickly [40]. Hence, if it is
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Figure 8.1: Multiple developments avoid hospital overload. A: We illustrate
this with a SIHR model. Compared to the classical SIR model, the SIHR
model allows infected people to get hospitalised due to a severe disease
course and recover afterwards. B: The baseline scenario (gray dashed line)
is calculated with β = 0.2, γI = 0.1, α = 0.01 and γH = 0.1. If hospital
capacities are large enough, hospitals are not overwhelmed even with a
full wave. Else, different developments can cause fewer hospitalisations:
via fewer infections through less transmission, i.e. smaller β = 0.14 (green
line), more immunised or recovered R and thereby fewer susceptible S

in the population, i.e. only 73% suscpeptible in the beginning instead of
99% (yellow line), milder disease, i.e. smaller α = 2.5 · 10−3 (red line),
shorter hospital stays through better treatment, i.e. larger γH = 0.35
(blue line), and faster recovery before the disease becomes severe, i.e.
larger γI = 0.145 (brown line).
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not possible to increase hospital capacities sufficiently, the number of
hospitalisations needs to decrease somehow.

First, it is possible that the transmission probability decreases, leading
to fewer infections and, thus, hospitalisations (Figure 8.1B, green line).
This could for example happen through new kinds of measures or
technologies that, e.g., increase indoor air quality and, thereby, reduce
infections indoors [41]. Or it could happen through (partly) sterilising
immunity, i.e. that immune individuals do not spread the disease (as
much) [42].

After a COVID-19 infection or vaccination, people are temporarily
immune against infection. In consequence, the susceptible compartment
gets smaller, which also reduces the number of infections and thereby
of hospitalisations (Figure 8.1B, yellow line). We have also seen that
in chapter 4 and chapter 5. Even if the immunity wanes over time,
the severity of COVID-19 after re-infection decreases (chapter 4 and
chapter 5), lowering the probability of hospitalisation (Figure 8.1B,
red line). In the context of the SIHR model, a lower hospitalisation
probability would also be caused by a new variant of SARS-CoV-2 that
induces less severe disease. This was the case with the Omicron variant.
During the work regarding chapter 5, there was still a lot of uncertainty
regarding the properties of Omicron. However, by now it is clear that it
induces less severe disease than previous prevalent variants (e.g [43]).
On the other hand, it also increases the probability of breakthrough
infections, i.e. it is more likely to evade existing immunity (e.g [44]),
and induces weaker immunity in persons it infected (e.g. [45]). Thereby,
the decrease in hospitalisations is to some extent counteracted through
the mechanism represented by the green and red lines in Figure 8.1B.
However, the protecting effect of vaccinations is not completely cancelled
(e.g. [46]), which ultimately contributed to a better controlled pandemic
and better health outcomes (e.g. [47]).

Next, the number of hospital patients would be reduced if the patients
tended to recover faster in hospitals (Figure 8.1B, blue line). This could
also be a result of a new variant, but also of better hospital care and
treatment. In fact, it has become clear that oxygen supplementation
and mechanical ventilation improve COVID-19 patient outcomes (e.g.
[48]) and antiviral drugs have become available as well (e.g. [49]).

Lastly, if there is medicine that facilitates recovery even before hospi-
talisation, hospitalisations would decrease as well (Figure 8.1B, brown
line).

To summarise, any one or any combination of these mechanisms is
principally able to achieve a situation where the COVID-19 pandemic
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does not overwhelm hospitals without too intrusive measures, making a
low incidence strategy obsolete. At the time of writing, a combination
of said mechanisms is thereby actually decreasing the advantages of a
low incidence strategy.

8.1.2 Health-protective behaviour at low incidence?

There is one potential difficulty of the low incidence strategy that has
not been discussed yet: the social, economic and psychological barriers
to implementing a low incidence strategy.

We have seen that voluntary behaviour is dependent on incidence
through mechanisms such as risk perception (chapter 5). Risk-perception
and information based behaviour change has also been used in other
COVID-19 modelling work (e.g. [29, 50]). Accordingly, most people
would not voluntarily engage in health-protective behaviour at too low
incidence. Hence, there would be no voluntary behaviour contribution
to spread mitigation at low incidence.

Furthermore, we have learned that adherence to mandatory measures
needs to be facilitated as well (chapter 3). If the cost of adhering to
measures is too high compared to the perceived benefit, mandatory
measures also lose their effectiveness. A low incidence might give the
momentary impression that the benefit of adhering to measures is not
large enough and thereby would nullify the mandatory contribution to
the mitigation of the spread as well.

Hence, our findings suggest that if there is no voluntary health-
protective behaviour and no adherence to mandatory measures at low
incidence, one can only wait until incidence, the related public health
damage, risk perception, and health-protective behaviour increases
again, before one can implement more intrusive NPIs. Under such
circumstances it would not be possible to rely on a low incidence
strategy.

However, by now empirical evidence has accumulated, suggesting that
health-protective behaviour is not as strongly and clearly dependent
on the pandemic state and would, thus, not need to undermine a
low incidence strategy: Even though adherence to health-protective
measures is empirically found to be dependent on risk perception (e.g.
[51–54]), the correlation between risk perception and behaviour varies
over time [55] and risk perception does not seem to correlate well with
incidence [54]. In fact, prosocial tendencies, values and worldviews, trust
in institutions and perceptions about efficacy of measures and strategies
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matter for health-protective behaviour as well (e.g. [56, 57]), according
to some empirical studies even more than risk perception and incidence
[55, 58]. Especially if the objective risk is low, risk perception plays a
subordinate role besides factors such as trust [59]. And if the risk is
perceived as high, while the efficacy of measures is perceived as low, it
even disincentivises health-protective behaviour [53].

These findings also have implications for the validity of our work
in chapter 5: The self-regulation of the population’s health-protective
behaviour dependent on the pandemic state may not be as effective in
controlling the spread as modelled. Therefore, empirical validation of
this feedback between disease spread and behaviour is warranted. First
statistical quantitative analyses, partially including complex psychologi-
cal models, do infer this feedback loop in two European countries [60,
61]. A further global and more detailed analysis is also being conducted
within the infoXpand research consortium that I was also a part of and
supported by [62]. Hence, the answer to the question of whether a low
incidence strategy is feasible from a psychological perspective remains
unclear until more evidence is gathered.

In conclusion, a low COVID-19 incidence strategy offers public health
benefits by enabling effective test-trace-isolate and avoiding overwhelm-
ing hospitals, thereby minimizing the need for stringent NPIs. However,
sustaining low incidence has costs and may become unnecessary if hospi-
tals are not overwhelmed regardless of NPIs or if people do not engage
sufficiently in health-protective behaviour at low incidence.

8.2 vaccination

8.2.1 Heterogeneity and vaccinating superspreaders

As explained in Section 8.1.1, we find that sufficient vaccination cov-
erage greatly reduces the need for NPIs (chapter 3, chapter 4, and
chapter 5). This is in line with other analyses (e.g. [63–65]). Like others
(e.g. [65, 66]), we model the vaccination roll-out starting with the oldest
most vulnerable age groups and ending with the youngest age groups
(chapter 4). Under the assumption that older age groups are vaccinated
with a higher proportion and with the higher vulnerability of older age
groups to disease, said vaccination strategy leads to better pandemic
control (chapter 4 and chapter 5). Similar modelling work has equivalent
findings (e.g. [65, 66]).
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However, we hint at the fact that the spread mitigating effect of
vaccination does not simply linearly scale with the total coverage (chap-
ter 4): The contact behaviour and network structure matter as well,
affecting what would be the optimal vaccination strategy. Indeed, other
modelling research suggests that population immunity may be reached
at a lower threshold and faster if younger age groups are vaccinated
first (e.g. [67]). This is because there is heterogeneity in disease spread:
younger age groups tend to have more contacts and may thereby be
able to infect more people and are more likely to be infected as well
(e.g. [68]). The conditions for this mechanism to hold, however, are
high enough vaccine effectiveness [69] and sufficient vaccine coverage
[70]. Furthermore, while incidence might come under control faster by
vaccinating younger populations earlier, the number of deaths could be
higher compared to the alternative [70–72].

In general, heterogeneity in exposure, susceptibility, infectivity or
other contact behaviour leads to a lower population immunity threshold
compared to the homogeneous counterfactual (e.g. [73–76]). This is
especially the case if, e.g., susceptibility and infectivity is correlated [77].
In other words, a good vaccination strategy might be one that vaccinates
network hubs and thereby minimises the impact of super-spreaders (e.g.
[78, 79]).

If the vaccination roll-out coincides with the implementation of NPIs,
it is important to note that the exact results of the impact depend on
how the heterogeneity is modelled. For example, degree heterogeneity
lowers the population immunity threshold if interventions are modelled
as a change in transmission rate. However, if modelled as a change in the
contact network, the threshold is lowered less because highly connected
nodes may be shielded and stay susceptible [80]. Therefore, population
immunity thresholds strongly depend on the mathematical model of
disease spread, vaccination and NPIs.

In practice, it might be politically feasible to vaccinate younger
populations first. However, targeting network hubs specifically is difficult
because it is not easy to assess which people are the most important
network hubs. Modelling studies find that vaccinating essential workers
in high-contact occupations first is promising in this regard [81–83].
Nonetheless, deciding what counts as ‘essential’ may be controversial,
making it hard to design a fair and non-discriminatory policy for a
vaccination program that focuses on people with more contacts.

In the end, the trade-off between different vaccination strategies
depends on various considerations and factors [70, 71].
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8.2.2 Vaccine uptake, hesitancy and barriers

Regardless of the strategy of the vaccination program, it will only be
successful if the vaccine uptake is as high as planned, i.e. if people
actually get vaccinated.

Like others (e.g. [84, 85]), we model that vaccination uptake rises and
falls with the number of people in intensive care through mechanisms
such as risk perception (chapter 5). In Section 8.1.2, we discuss that
health-protective behaviour is also – and maybe even more so – depen-
dent on factors other than risk perception. The same applies to getting
vaccinated, which is an example of health-protective behaviour: Vaccine
hesitancy is, e.g., correlated with concerns about vaccine safety and
side effects (e.g. [86–88]), a lack of trust (e.g. [86, 88]) and perceived
low efficacy of getting vaccinated (e.g. [86–88]). Marginalised groups
tend to be affected even stronger, also due to being mistreated and
neglected by official institutions in other circumstances as well (e.g
[89, 90]). Community-based interventions, monetary incentives, and
digital health literacy interventions have been found to address some
these problems and reduce vaccine hesitancy (e.g. [91]), along with
supportive political leadership (e.g. [92]). In chapter 3, we considered
the possibility of a vaccination mandate; but due to being contrary to
people’s desire to make an informed individual decision to vaccinate, a
general vaccination mandate for COVID-19 is not recommended (e.g.
[93]). Instead, strengthening pro-social values such as solidarity is put
forward (e.g. [3, 94]).

Beyond vaccine hesitancy, there are further barriers that diminish
vaccine uptake. As is done in other models (e.g. [84, 85]), we assume
that everyone who wants to get vaccinated, gets vaccinated (chapter 4
and chapter 5). However, in reality, there are systemic issues that pose
structural barriers to uptake: a lack of time, missing transportation
options, high costs, or a lack of clinics or outlet locations can prevent
people from getting vaccinated (e.g. [95, 96]). In general, accessibility
and convenience play a large role in uptake (e.g. [96, 97]). Barriers are
especially high for ethnic minorities and migrants, with added language
and communication issues, fear of deportation, lack of specific guidelines
and knowledge of health-care professionals, as well as reduced physical,
legal and bureaucratic access (e.g. [89, 98–100]). Hence, more attention,
awareness and inclusive action are called for (e.g. [99]).

Another level of barriers are supply-side barriers that low- and middle-
income countries have had and still have to face. Low- and middle-income
countries have little vaccine production, have trouble procuring high-
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quality vaccines due to their costs, got pushed to the end of the cue
in the global vaccine procurement, lack infrastructure and resources
for vaccine storage and distribution, and have sub-optimal vaccine
delivery and administration (e.g. [101]). The COVID-19 Vaccines Global
Access (COVAX) initiative was meant to solve the issue through a
joint and equitable international procurement mechanism; however, “its
impact was undermined by [vaccine] donors’ and industry’s pursuit
of national security, diplomatic and commercial interests” [102]. In
response, international cooperation, rethinking issues around intellectual
property and globally diversifying vaccine production are suggested (e.g.
[103, 104]).

In summary, achieving sufficient COVID-19 vaccine uptake faces
multiple challenges. Vaccine hesitancy driven by various factors be-
sides risk-perception can only be overcome through communication,
community engagement, and more systemic political action. Uptake
barriers like limited accessibility, especially for marginalized groups,
would also need to be addressed through systemic improvements. Also,
global inequities in vaccine access highlight the need for international
cooperation and supply-side solutions. Comprehensively tackling will-
ingness, access, and availability is key to realizing the public health
potential of vaccines. These issues remain important to be tackled as
waning immunity against COVID-19, other diseases such as influenza
and potential new pandemics keep the need for successful vaccination
programs high. The models presented in this thesis and other models in
the literature simplify these complex dynamics, but integrating social
and policy perspectives remains vital for proper pandemic analysis and
response.

8.3 global perspective

In part ii, we model and discuss the COVID-19 pandemic from a
European perspective. We suggest that strategies may not work well
if only implemented nationally but that international cooperation and
coordination on at least an European level is crucial (chapter 3 and
chapter 7). For example, coordinated implementation or relaxation of
NPIs across Europe could greatly contribute to mitigation of disease
spread [105]. Otherwise, mobility and the introduction of new cases and
perhaps even new variants of concern diminish the feasibility of, e.g.,
a low incidence strategy. In fact, multi-seeding independent outbreaks
through mobility is shown to increase incidence non-linearly [106]. Hence,
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we have used some of these results to evidence science communication
to call for pan-European action [4, 107–109].

However, for a global pandemic, solely regional cooperation is not
enough: SARS-CoV-2 and later variants of concerns emerged in various
continents but spread worldwide (e.g. [110]). Globalised supply chains
were affected by national COVID-19 policies as well (e.g. [111]). Global
international cooperation can be a solution to this problem. After
insufficient cooperation during the COVID-19 pandemic, “governments
are [at the time of writing] negotiating a new pandemic treaty and
revising the International Health Regulations” [112]. As discussed in
previous Section 8.2.2, this could, e.g., contribute to global vaccine
equity.

We have also seen the important role of data in modelling and
pandemic response. The complex models in chapter 4, chapter 5 and
chapter 6 as well as a lot of the modelling literature cited above were
heavily informed by various kinds of data and data sources. Our and
other rigorous statistical analyses would not have been possible at all
if not for the ample database in a few countries (e.g. [5, 6, 26, 63]).
Unfortunately, such good data were rarely available in a lot of low- and
middle-income countries. One might argue that model results such as the
ones of this thesis are completely transferable internationally and answer
the key pandemic response questions of every country. However, results,
such as the public health outcomes of specific mitigation strategies,
already vary between countries in Europe (e.g. [5, 24, 63]). On a global
level, the variety in contact patterns, age structures, cultural norms,
political and socio-economic circumstances, and seasonality demand
different models and yield different results and conclusions. Besides that,
data is also in itself essential to understand the state of the pandemic.
Hence, the unavailability of data for modelling, monitoring, and analysis
is another important factor undermining successful global coordination
and equity. For pandemic preparedness and future response, robust
funding for disease surveillance systems and data platforms are thus
crucial [113].

In summary, while the models in this thesis focus on Europe, the
COVID-19 pandemic demands global cooperation and equitable access.
Pathogens ignore borders, and variants emerging anywhere endanger
principally everyone everywhere. Regional coordination like in Europe
helps, but fully containing pandemics necessitates worldwide collabora-
tion on travel restrictions, data sharing, vaccine distribution, and more.
Moreover, limited model generalisability makes tailoring insights to local
contexts essential and highlights the problem of insufficient data from
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low- and middle-income countries. By supporting global surveillance
and response capacity along with international partnerships, pandemic
preparedness will improve. But the fundamental reality is that the world
is interconnected — locally optimizing alone cannot solve global crises.





9
T H E R O L E O F C O M P L E X S Y S T E M S
M O D E L L I N G I N PA N D E M I C R E S P O N S E

The COVID-19 pandemic has demonstrated the immense value of using
complex systems approaches to model infectious disease transmission
dynamics. Framing epidemiology as a complex dynamical system en-
ables a clear qualitative and detailed quantitative understanding of
public health emergencies. Specifically, this thesis illustrates several key
strengths of the complex systems perspective for informing pandemic
response:

First, it articulates core conceptual arguments and mechanistic hy-
potheses about disease spread, behavioral changes, and policy impacts
through formal mathematical models. The presented models act as
theoretical representations to test assumptions. Think back for example
to the analysis of the test-trace-isolate intervention in, e.g., chapter 1 or
to the illustration of the relevance of the feedback loop between disease
spread and human behaviour (chapter 5). Even simple prototypes can
elucidate first-order effects and trade-offs, such as the existence of a
disease spread tipping point (chapter 2) or the effects of higher immunity
or new virus variants on hospitalisations (chapter 8).

Second, incorporating real-world data into the models facilitates esti-
mating rough magnitudes and outcomes. With care, useful projections
can inform preparedness and evaluation of response measures. For exam-
ple, chapter 4 shows us that an immediate lifting of restrictions at the
considered time would not even be the option with “the most freedom”.
Furthermore, we illustrate that no measures at all would have been
catastrophic in the winter of 21/22, but also that too many measures
would have been counter-productive (chapter 5). Hence, models act as
virtual laboratories grounded by observations.

Third, complex system models can explicitly analyse mechanics that
are not directly observable and trade-offs arising from feedbacks and
non-linearities inherent to epidemiology. In chapter 5, we are able to
consider the impacts of multiple such trade-offs: On the one hand, more
mandatory measures in winter cause fewer severe cases of COVID-19
while implemented. On the other hand, this leads to less immunity in
the population in spring through two mechanisms at the same time: less
post-infection immunity through the lower incidence and less vaccination
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coverage due to the behavioural feedback. To understand whether this
would mean another uncontrolled wave in spring, one even needs to take
favourable seasonality into account. Without a quantitative approach
like in this thesis, understanding the relative impact of these different
mechanistic contributions would not be feasible. Thereby, models aid
systematic exploration of such dynamics.

Finally, simpler mathematical models efficiently search the phase
space and identify key mechanisms. Their findings in turn inform de-
tailed agent-based and computational models. Hence, complex systems
modeling provides the theoretical scaffolding for data-driven forecasting
and also post-factual statistical analyses (e.g. chapter 6). In the SIR-type
framework including more complex dynamics through, e.g., reporting
delays, we are able to accurately quantify the impact of real-world event
on the pandemic.

However, models alone cannot suffice. Interdisciplinary communica-
tion is vital to ensure models capture relevant mechanisms from across
the health sciences, social sciences, and humanities (e.g. [114]). Mod-
els must be embedded in policy contexts through communication as
well. And even the best models cannot foretell unprecedented events or
control messy real-world dynamics. Humility remains essential.

In summary, a dynamical systems perspective generates critical in-
sights, guides intuition, estimates outcomes, and informs decisions.
Alongside domain knowledge and political acumen, it is an invaluable
tool for understanding and responding to pandemics. But one needs
to keep in mind that it is only one complementary tool among many
required to safeguard public health in a complex world.
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Methods 

The methodology to generate and compile the content of this manuscript is inspired by the Delphi method.1 It 

describes a process for facilitating discussions or forecasts by groups of people. Key characteristics of this method 

are that (a) the participants do not communicate directly with each other while formulating their opinions and that 

(b) the synthesis of the content is moderated by designated facilitators. One advantage of the Delphi method is 

that it reduces some common group biases.2 The facilitators in this case were Viola Priesemann, Emil Iftekhar, 

Sebastian Mohr, and Simon Bauer (all affiliated with the Max Planck Institute for Dynamics and Self-

Organization, Göttingen, Germany). The precise individual steps of the process were the following: 

1. Formulating instructions for the collaborators 

The facilitators drafted general instructions and sets of guiding questions to send out to the collaborators (see 

supplementary material “questions.zip”). The guiding questions were formulated with the aim of serving as 

inspiration only. The facilitators prepared four different sets of questions, structured along five general headings: 

1. On general aspects of COVID-19 

2. What is the perspective for the coming summer? 

3. What is the perspective for the coming winter? 

4. What is the perspective for the coming 3-5 years? 

5. Mitigating the effects of the COVID-19 pandemic 

Each questionnaire included general questions and questions regarding a specific field of research: epidemiology 

and dynamics, public health, social sciences, and virology. The initial outline of this methodology and the guiding 

questions were refined with the help of some experts (see Table 1) and finalized by the facilitators.  

 

Name Country of affiliation Field of expertise 

Peter Klimek Austria Mathematical modeling 

Barbara Prainsack Austria Political science, bioethics 

Eva Schernhammer Austria Public health, medicine 

Carlos Martins Portugal Family medicine 

Mirjam Kretzschmar The Netherlands Infectious disease dynamics 

Table 1: List of experts contributing to the design of the methodology and the formulation of the instructions for 

the rest of the collaborators. 

2. Choosing the collaborators  

The facilitators chose the collaborators for the Delphi study such that all four selected fields were about evenly 

represented and that as many European countries as possible were represented. The prospective collaborators were 

largely selected from the facilitators’ existing professional networks or based on recommendations by colleagues. 

As a result, 98 experts from 31 countries were contacted. As the invitations were via email, it is possible that the 

invitations did not reach a few of them due to spam filtering. Of the experts that were contacted, 30 people from 

17 European countries replied and subsequently contributed to the study as collaborators (see Table 2 and Figure 

4). Note that three of the collaborators were also involved in refining the questionnaires and methods. Even though 

this is not a strict division of labor between facilitators and collaborators, we deem the thereby-introduced 

influence on the content as negligible. 



 

Figure 4: Country affiliations of the collaborators (marked in yellow). 

 

Name Country of affiliation Questionnaire assigned by facilitators 

Thomas Czypionka Austria Social sciences 

Peter Klimek Austria Epidemiology and dynamics 

Eva Schernhammer Austria Epidemiology and dynamics 

Peter Willeit Austria Epidemiology and dynamics 

Philippe Beutels Belgium Epidemiology and dynamics 

Steven Van Gucht Belgium Virology 

Pirta Hotulainen Finland Epidemiology and dynamics 

Eva Grill Germany Public health, virology 

Gérard Krause Germany Epidemiology and dynamics 

Armin Nassehi Germany Social sciences 

André Calero Valdez Germany Social sciences 

Elena Petelos Greece Public health 

Sotirios Tsiodras Greece Virology 

Anthony Staines Ireland Public health 

Uga Dumpis Latvia Virology 

Rudi Balling Luxembourg Virology 

Enrico Glaab Luxembourg Virology 

Sarah Cuschieri Malta Public health 



Jenny Krutzinna Norway Social sciences 

Tyll Krüger Poland Epidemiology and dynamics 

Ewa Szczurek Poland Epidemiology and dynamics 

Helena Machado Portugal Social sciences 

Matjaž Perc Slovenia Epidemiology and dynamics 

Claudia Hanson Sweden Public health 

Joacim Rocklöv Sweden Epidemiology and dynamics 

Nicola Low Switzerland Epidemiology and dynamics 

Mirjam Kretzschmar The Netherlands Epidemiology and dynamics 

Sebastian Funk UK Epidemiology and dynamics 

Martin McKee UK Public health 

Martyn Pickersgill UK Social sciences 

Table 2: List of collaborators participating in the Delphi-survey and their respective countries of affiliation. The 

third column indicates which of the four field-specific questionnaires the collaborator received from the 

facilitators. 

3. Writing the document 

All collaborators (see Table 2) were invited to take part in this Delphi forecast on the long-term perspective 

regarding the COVID-19 pandemic in Europe. They were provided (a) an explanation of the steps of the process, 

(b) the general instructions and (c) at least one set of questions related to their field of expertise. The collaborators 

were asked to send their input separately to facilitators and to not communicate with each other. Though provided 

with guiding questions, answering them was communicated to be optional and the collaborators were welcomed 

to make further points. 

 

After receiving all inputs, the facilitators summarised and synthesized the inputs into one document. The resulting 

document was sent out to the collaborators, along with all single replies of the collaborators. This was followed 

by two rounds of revisions; in each round, (1) the collaborators were asked to send their comment separately to 

the facilitators, (2) the facilitators incorporated the comments, and (3) presented the updated document to the 

collaborators. The contributions of the collaborators included references to pertinent scientific literature to support 

and evidence their statements. In the second step of incorporating the collaborators’ comments, the facilitators 

added additional references to some statements in the manuscript. These additional references were then accepted, 

amended, or corrected by the collaborators. As a last step, the collaborators were able to suggest minor corrections 

in a shared online document and were asked to confirm their authorship after the finalization of the draft. The 

process of writing the document started on March 8, 2021, and ended on May 6, 2021. 
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S1 Eigenvalues of the homogeneous contact matrix

Here we will demonstrate a general case for the eigenvalues of a homogeneous contact matrix, for which
every column accounts for the fraction age-groups represent respect to the total population.

Theorem S1.1. Let C be a square n × n matrix, such that all columns are identical, i.e., Ci,• = fi, f ∈ Rn,
and

∑
i fi ̸= 0. Then C is diagonalizable and has a single non-zero eigenvalue λ =

∑
i fi.

Proof. First, we note that the dimension of the kernel of T : Rn → Rn, T (u) = Cu, i.e, the vector space
ker (T ) = {u|Cu = 0} is n−1. Thus, there are n−1 linearly independent vectors associated to the eigenvalue
λ = 0, which algebraic multiplicity has therefore to be equal or larger than n−1. Then, we study the nature
of the characteristic polynomial:

p(λ) = det (C − λI) (1)

=

∣∣∣∣∣∣∣∣∣∣

−f1 − λ f1 . . . f1

f2 f2 − λ . . . f2
...

...
. . .

...

fn fn . . . fn − λ−

∣∣∣∣∣∣∣∣∣∣

(2)

column j − column 1, ∀j>1−−−−−−−−−−−−−−−−−−−−→ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−f1 − λ λ λ . . . λ

f2 −λ 0 . . . 0
f3 0 −λ . . . 0
...

...
...

. . .
...

fn 0 0 . . . −λ−

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

row 1 + row j, ∀j>1−−−−−−−−−−−−−−−→ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−∑i fi − λ 0 0 0 0
f2

| − λ 0 . . . 0
f3 0 −λ . . . 0
...

...
...

. . .
...

fn 0 0 . . . −λ|−

∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

The highlighted zone in the determinant corresponds to −λIn−1, with In−1 the identity matrix in Rn−1×n−1.
Let Ĩj

n−1 be In−1, but with the j′th row replaced by a row of zeros. Using that |aA| = an|A| for an n × n

arbitrary matrix, and that |D| =
∏

dii for a diagonal matrix, we calculate p(λ) by minor determinants:

p(λ) =
(∑

i

fi − λ

)
|−λIn−1| +

n∑

i=2
(−1)i−1fi

�
�
�∣∣∣Ĩj

n−1

∣∣∣ (5)

=
(∑

i

fi − λ

)
(−1)n−1λn−1. (6)

As we found the last eigenvalue, and, by definition, it has at least one eigenvector, we completed the required
set of n eigenvectors and concluded the demonstration.

Corollary S1.1.1. When C is a contact matrix as defined in theorem S1.1 and f accounts for the fraction
age-groups represent respect to the total population, the largest eigenvalue of matrix C is 1.

Proof. Direct from theorem S1.1, knowing that
∑

i fi = 1.
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SUPPLEMENTARY INFORMATION

S1 MODEL
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Supplementary Figure S1: Age-stratified SEIRD-ICU compartmental model with vaccination and feedback loops for the
interplay between information and disease spread. Besides considering relevant compartments to capture COVID-19 dynamics, we
explicitly incorporate mechanisms of voluntary preventive action through behavioural changes in response to information and individual
perception of risks. We incorporate two mechanisms of voluntary action: (i) individuals can voluntarily adapt their immediate health-
protective behaviour, adapting it according to their possibilities and the risk they perceive, and (ii) adapt their willingness regarding
vaccination, being likelier to accept vaccine offers when feeling at risk for prolonged periods. Transition rates and other variables are listed
in Tables S3 and S5, but omitted in the figure for clarity purposes.

We model the spreading dynamics of SARS-CoV-2 by a deterministic age-stratified compartmental
model. Our model incorporates disease spreading dynamics (SEIRD), intensive care unit stays
(ICU), the roll-out of a single-dose equivalent vaccine and boosters thereof (V), the protection from
which wanes over time, and the interplay between risk perception and disease spread through the
self-regulation of voluntary health-protective behaviour. We assume that health-protective behaviour
is modulated by the perception of risk. When perceiving risks, humans tend to weigh more recent
developments more heavily as well as put more weight on developments in the timescale relevant
for the decision to be made (i.e., shorter timescales for immediate actions and longer ones for
one-time decisions with sustained consequences) Zauberman et al. (2009). Explicitly, if perceiving
increased risk, individuals can (i) adapt their level of potentially contagious contacts they have

1
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and (ii) adapt their willingness towards seeking vaccination. For a graphical representation of the
dynamics see Fig. S1.

In our model, susceptible (S) individuals can acquire the virus from infected individuals and
subsequently progress to the exposed (S → E) and, after the latent period, to the infectious (E → I)
compartment. Vaccinated and recovered individuals can be infected after their immunity has waned.
Alternatively, our model can be interpreted such that waning immunity increases the probability
of breakthrough infections. Individuals whose natural or vaccine-induced immunity has waned are
modelled via two compartments (Wn and W v, respectively), which feature no protection against
infection but against a severe course of the disease, i.e., have reduced probabilities of requiring
intensive care or dying. If infected, they transit to different exposed (En, Ev) and infectious (In, Iv)
compartments so that vaccinated and unvaccinated individuals are separated.

The infectious compartments have three different possible transitions: i) direct recovery (I, In → R

and Iv → Rv) with rate γ, ii) admission to ICU (I, In → ICU and Iv → ICUv) with rate δ (reduced
by a factor (1− κ) for In, Iv) or iii) direct death (I, In, Iv → D) with rate θ (reduced by a factor
(1−κ) for In, Iv). We assume the recovery and death rate in ICU to be independent of immunisation
status. That way, individuals receiving ICU treatment either recover at a rate γICU (ICU→ R and
ICUv → Rv) or die at a rate θICU (ICU, ICUv → D). Note that the probability to get admitted to
an ICU is reduced for infected individuals with waned immunity. However, their death rate in ICU
is equal to that of those infected for the first time. We use two ICU compartments to separate the
vaccinated from the unvaccinated compartments to keep track of individuals who can still receive a
vaccine after recovering.

Each compartment is split into sub-compartments for the age groups that interact with each
other following the contact matrix described in Sec. S1.2. Full age-structured model equations
are presented in Sec. S3. Apart from the transmission-relevant interactions, the effect of having
different age groups is incorporated into our vaccine feedback (described in Sec. S2.1) as well as in
the transition rates between compartments (described in Sec. S2.2).
S1.1 Memory kernel
In this section we specify the memory kernel that measures how risk perception builds on past

development of the ICU occupancy. These memory kernels (Fig. S2) relate to two processes occurring
on different timescales. Voluntary adaption of health-protective behaviour depends on the perceived
risk in the recent past, HR(t), defined as:

HR(t) := ICUtot ∗ GpR,bR
=
∫ t

−∞
dt′ ICUtot(t′)GpR,bR

(−t′ + t) . (1)

ICUtot(t) is the sum of all patients in ICU treatment at time t: ICUtot(t) = ∑
i ICUi(t) + ICUv

i (t).
The arguments of the Gamma distribution GpR,bR

are set to pR = 0.7 (shape) and bR = 4 (rate),
resulting in a curve that peaks at around four days in the past (Fig. S2a). Depending on HR(t),
individuals reduce their potentially contagious contacts in different contexts by a weighting factor
kNPI,self (Fig. 2, main text) within thresholds determined by current mandatory NPIs (Fig. S3). See
Sec. S4 for a sensitivity analysis on parameter choices.
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Supplementary Figure S2: Modelling the relationship between perceived risk and pandemic developments. Based on the
information that individuals receive on the recent developments of the pandemic (e.g., ICU occupancy), they form their perception of risk.
The way individuals perceive these temporal trends is biased towards recent developments, prioritising them over past developments
for their decisions Zauberman et al. (2009). Furthermore, we assume a delay in individuals’ reactions to ICU occupancy because of
(i) delays inherent to the information spreading dynamics, and (ii) need for recurrent stimuli and various sources for accepting new
information. Therefore, we convolve the ICU occupancy time series with a Gamma delay kernel (a), which captures both the delay related
to information delivery and the subjective perception of time described above. Vaccine dynamics require a further delay related to the
time required to build up immunity: Individuals whose immunity takes effect at a certain time made their decision and got vaccinated
some time ago. The length of this delay depends on whether it is a first time or booster vaccination (c). b,d: Once convoluted with
ICU occupancy (German example shown here), we obtain a measure for perceived risk HR, Hu and Hw, respectively, for the voluntary
adaption of immediate health-protective behaviour, first-time vaccination, and booster vaccination. In comparison with the actual ICU
development, the variables H∗ are smoother and delayed in time, representing non-instantaneous decisions based on individuals’ perception
of the recent ICU occupancy.

Time memory for vaccination willingness is assumed to work in the same way, but with different
Gamma distributions, for two reasons. Firstly, there is a delay τu or τw between the decision to
be vaccinated and the onset of immunity. Secondly, vaccination willingness is assumed to depend
more strongly on past ICU occupancy compared to more immediate health-protective behaviour.
Combined, it translates into a Gamma distribution Gpvac,bvac that is shifted in time and is flatter
(Fig. S2c), which is characterised by the parameters τu, τw, pvac = 0.4 and bvac = 6:

Hu,w(t) := ICUtot ∗ Gpvac,bvac =
∫ t

−∞
dt′ ICUtot(t′)Gpvac,bvac(−t′ − τu,w + t). (2)

The subscripts u and w indicate first and booster doses, respectively. Booster doses are usually
only a single dose so τw is just the delay between administration of the dose and onset of immunity,
which we assume to be 2 weeks. The parameter τu is larger than τw because we include the delay of
around 6 weeks for most vaccines that need two doses. For the initial conditions of HR and Hu,w,
ICU and ICUv are set to a constant ICU(t < 0) = ICU(t = 0) (same for ICUv) in the past.
S1.2 Spreading dynamics
In our model, the spreading dynamics are governed by the sizes of the infectious compartments

I, In, Iv and the compartments S,Wn,W v, from which a transition to an infected state is possible.
We include the effects of (i) mandatory non-pharmaceutical interventions (NPIs), (ii) individuals
voluntarily adapting their health-protective behaviour based on perceived risk, and (iii) seasonality.
Each is represented by a factor k that acts as a multiplicative reduction or increase on the spreading
dynamics.
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Seasonality is described by the factor kseasonality (see Equation 7 below). Mandatory NPIs and
individuals’ voluntary preventive actions are represented by kNPI,self(HR). It does not factorise into
single contributions of mandatory NPIs and voluntary preventive action because we assume the
level of NPIs and voluntary behaviour to be coupled.

We introduce an infection term ∑
j CjiIj that governs the spreading between age groups i and j.

The term is present in all differential equations that include transmissions, i.e., the transitions

Si → Ei non vaccinated, non infected
Wn
i → Eni waned infected (unvaccinated)

W v
i → Evi waned vaccinated (potentially infected previously)

. (3)

include a term proportional to ∑j CjiIj , which is subtracted from the susceptible and waned and
added to the exposed states.

Cij is the overall contact matrix, which we describe below, and Ii is a term describing the
infectiousness of age group i. We define it as

Ii := β · kseasonality ·
Ieff
i

Mi
with Ieff

i := (Ii + Ini + Ivi + ΨMi) . (4)

β is the spreading rate, Ieff is the effective size of the infectious compartments, Mi is the total
population size of age group i, and Ψ is an external influx of infections, which we assume to be
distributed equally over the population, e.g., being the largest for the largest age group.

The coupling between age groups is represented by a pre-COVID-19 contact matrix Cij . This
matrix represents the static, non-ICU-dependent contact behaviour of the different age groups
(age group i potentially infecting age group j). It can be interpreted as the sum of various layers
of contextual contacts (work-, school-, community-, and household-related contacts) Mistry et al.
(2021). For a graphical representation of the contextual layers, see Fig. 1, main text, and Fig. S3.
Depending on the context, some of these contacts can be voluntarily reduced according to individuals’
perception of risk. Hence, we use each of the contextual layers of the matrix Cνij separately and
weigh each layer with reduction factors kνNPI,self(HR). We use HR as an effective measure of the ICU
occupancy that reflects the population’s perceived risk (see subsection S1.1). Finally, we normalise
the overall contact matrix Cij by its spectral radius when its values are not reduced because of
mandatory NPIs or voluntary protective behaviour, i.e., at kNPI,self = 1 and HR = 0. That way, the
largest eigenvalue of the contact matrix Cij = ∑

ν C
ν
ij equals one in the absence of mandatory NPIs

and voluntary measures.

The resulting infection term present in all transmission-related differential equations for age group
i is thus

∑

j

CjiIj = β · kseasonality
∑

j

(∑

ν
Cνji · kνNPI,self

)
Ieff
j

Mj
, (5)

4



Supplementary Material

with j counting age groups and ν counting layers of the contact matrix. Having a normalised contact
matrix Cij , we can approximate the seasonal reproduction number R0,seasonal(t), which is defined
as the largest eigenvalue of the next generation matrix Diekmann et al. (2010), at HR = 0. By
assuming that δ, θ � γ, we get

R0,seasonal(t) ≈ kseasonality(t)β
γ
, (6)

with γ = ∑
i γiMi. Postulating that R0 = 5 at kseasonality = 1, we can use this formula to calculate

the spreading rate β. Note that this only holds true if seasons are long compared to the duration of
an infection. With the latent period being 1

ρ = 4 days and the duration in the infected compartment
approximately 1

γ = 10 days, the duration of an infection is roughly two weeks which is shorter than
the time scale over which seasonality varies significantly.

We incorporate the effect of seasonality kseasonality as a time-dependent sinusoidal modulation
factor, as proposed in Gavenčiak et al. (2021):

kseasonality = 1 + µ cos
(

2πt+ d0 − dµ
360

)
, (7)

where µ is the sensitivity to seasonality, d0 the starting day of the simulation, and dµ the day with
the highest effect on seasonality. We set dµ = 0, corresponding to January 1st. For simplicity, we
assume that one month has 30 days and a full year, thus, 360 days. This approximation does not
affect the results in the observed time horizon.
S1.3 Contact matrices
In our model, individuals can adapt the level of contagious contacts based on their perception of

risk. Explicitly, we consider the contact matrices for the German population reported in Mistry
et al. (2021), which differentiate between four different contexts (Households, Schools, Workplaces,
and Communities). These matrices are represented in Fig. S3a, c, e, g. Then, depending on the
perception of risk, the scenario of mandatory NPIs, and how much freedom these allow for in
different contexts, we calculate a weighting factor kmin ≤ kνNPI,self(H) ≤ kmax that multiplies each
matrix (Fig. S3b, d, f, h). Scenario-dependent threshold values for the weighting factors are reported
in Table 1 and explained in the Methods Section, main text.

The contact matrix for the Community context is equally distributed, meaning that each individual
("x-axis") has the same probability of being infected by any contact ("y-axis"), independent of age.
Because the age groups are different in size, a horizontal pattern emerges; it is likelier to be infected
by an individual part of a larger age group.

Although straightforward to understand, the household layer of contacts applied to our mean-
field model may lead to unrealistic results in some situations. For example, consider an ideal full
lockdown policy where any transmissions between households were perfectly eliminated. Obviously,
in such a theoretical scenario, the pandemic would quickly end as infected individuals would not
transmit the virus any further than to contacts within their household. However, under a mean-field
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compartmental model, the distinction between people in one’s household and another household
cannot be made, which would lead to a viral spread even under such a scenario. To solve this
issue, the factor kHouseholdsNPI,self (H) is scaled by a factor which is the average of the other reductions:
1
3
∑
ν k

ν
NPI,self(H) , ν ∈ {Schools, Workplaces, Communities}. In that way, eliminating all contacts

in contexts aside from households should end the pandemic.

a b c d

e f g h

60-6
9

70-7
9

80+
60-6

9
70-7

9
80+

0-1
9

20-3
9

40-5
9

60-6
9

70-7
9

80+
0-1

9
20-3

9

40-5
9

60-6
9

70-7
9

80+
0-1

9
20-3

9

40-5
9

60-6
9

70-7
9

80+
0-1

9
20-3

9

40-5
9

Age of individuals

Age of individuals Age of individuals

Age of individuals

80+

70-79

60-69

40-59

20-39

0-19

A
ge

of
co

nt
ac

ts
A

ge
of

co
nt

ac
ts

A
ge

of
co

nt
ac

ts
A

ge
of

co
nt

ac
ts

0 Hmax 50

ICU HR

0.0

0.2

0.4

0.6

0.8

1.0

k N
P
I,
se
lf

Households

Scenario 1
Scenario 3
Scenario 5

80+

70-79

60-69

40-59

20-39

0-19

0 Hmax 50

ICU HR

0.0

0.2

0.4

0.6

0.8

1.0

k N
P
I,
se
lf

Schools

80+

70-79

60-69

40-59

20-39

0-19

0 Hmax 50

ICU HR

0.0

0.2

0.4

0.6

0.8

1.0

k N
P
I,
se
lf

Workplaces
80+

70-79

60-69

40-59

20-39

0-19

0 Hmax 50

ICU HR

0.0

0.2

0.4

0.6

0.8

1.0

k N
P
I,
se
lf

Communities

0.00 0.05 0.10 0.0 0.2 0.4

0.1 0.2 0.03 0.04 0.05

Supplementary Figure S3: The mechanism of the reduction of potentially contagious contacts. The contact matrix for interactions
within households, schools, workplaces and communal activities (a,c,e,g) and the ICU-occupancy-dependent reduction kνNPI,self(HR)
(b,d,f,h) for scenarios 1,3, and 5. Each matrix entry is multiplied by the value of kνNPI,self(HR) (b,d,f,h), which decreases linearly with
perceived ICU occupancy HR up to the point Hmax = 37 where no further reduction is taken as motivated by Fig. 2, main text.

S1.4 Vaccination effects and waning immunity
Our model includes the effect of vaccination, where vaccines are for simplicity administered with

a single-dosage delivery scheme. Vaccinated individuals cannot be infected while being in the
vaccinated compartment, but will proceed to the waned immunity compartment W v at a rate Ω
Thomas et al. (2021); Puranik et al. (2021). The same applies to recovered individuals, who also
lose their post-infection immunity at rate Ω Turner et al. (2021). Hence, people transition from
compartment Ri to compartment Wn

i and from Rvi and Vi to W v
i at rate Ω.

We assume the emptying of the immune compartments to be exponential with rate Ω or,
equivalently, with half-life period T1/2 = ln(2)/Ω. In other words, we assume that after T1/2,
half of the immune individuals have completely waned immunity and the other half is still fully
immune. Within the mean-field approximation, this corresponds to all individuals in the immune
compartments having halfway waned immunity after T1/2. This time, when the effectiveness against
infection η reduces to 50%, equals to about 5 months according to empirical data (for vaccination)
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Tartof et al. (2021). Hence, the waning immunity rate is given by

Ω = ln(2)
T1/2

≈ ln(2)
5 · 30 days ≈

1
225

1
days . (8)

As soon as individuals enter one of the waned compartments they can be infected with the same
probability as individuals never infected or vaccinated before. However, we assume that robustness
against a severe course of the disease remains high Tartof et al. (2021); Chemaitelly et al. (2021);
Pegu et al. (2021); Naaber et al. (2021) which leads to a reduction of (1− κ) to the probability
of requiring treatment in ICUs or dying directly. The parameter κ is estimated using κobs, which
denotes the full protection against hospitalisation as in observed studies. The parameter κ used in
our model is lower than κobs because it is the effectiveness against hospitalisation once an individual
is already infected. We estimate it via

(1− η)(1− κ) = (1− κobs) (9)

with η being the vaccine effectiveness against an infection. According to Tartof et al. (2021) it holds
that η = 0.5 and κobs = 0.9 (both after five months). Thus, we estimate κ ≈ 0.8 and approximate it
to be independent of the time after vaccination.
S1.5 Vaccine uptake
The age group dependent vaccine uptake is described by two different functions: one for susceptible

individuals (φi) and one for individuals whose immunity has waned (ϕi). The core idea is to vaccinate
only if willingness for vaccine uptake is larger than the fraction of already vaccinated; if the fraction
of individuals who are willing to be vaccinated with a first dose (uwilling) is larger than the fraction
of already vaccinated (ucurrent), vaccinations are carried out at a rate proportional to the difference
of the two.

Willingness to be vaccinated depends on the past development of the ICU occupancy numbers.
uwilling can shift between a minimum and a maximum value (ubase and umax = 1−χu), representing
the general observed acceptance for the first dose and people who are strictly opposed to vaccines
or cannot be immunised because of age or other preconditions (making up χu), respectively. The
sensitivity constant αu determines how sensitive to ICU occupancy the vaccine hesitancy is (see
Sec. S1.5.1). The willingness to receive the first dose of the vaccine is then described by

uwilling
i = ubase

i +
(
umax
i − ubase

i

)
(1− exp (−αuHu)) . (10)

Hence, uwilling
i is a fraction for each age group i between zero and one and the total number

of people willing to be vaccinated in each age group i is thus uwilling
i Mi. For the differences in

the parameters ubase
i and ui,max between age groups, see Sec. S2.1 and for a graphical example

representation of uwilling see Fig.2e, main text.
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The function that determines the rate at which first time vaccines are administered is denoted by
φ. It determines the transition away from Si and Wn

i , is age group dependent, and is described via
a softplus function:

φi(Hu) = 1
tu
· Si +Wn

i

Mi(1− ucurrent
i ) · ε ln

(
exp

(
1 + 1

ε

(
uwilling
i (Hu)− ucurrent

i

)))
, (11)

where ε is a curvature parameter. Multiplying by Si+Wn
i

Mi(1−ucurrent
i ) ensures that we only vaccinate

if people are actually present in S or Wn. Dividing by tu smoothens the transition between the
state of vaccinating and not vaccinating, the physical explanation being that people require time
(of the order of tu days) to organise a vaccine, which reduces the vaccination rate after crossing
the threshold. tu is assumed to be constant here. However, when there is a lot of demand for
vaccine uptake, tu is likely larger in reality due to administrative and logistical problems. For the
implementation of φi into the model equations, see Sec. S3. In the term dSi

dt we multiply φ by Si
Si+Wn

i

and in the term dWn
i

dt we multiply by Wn
i

Si+Wn
i
, effectively splitting up the vaccinations among the two

groups.

The administration of booster doses works in a similar way. First, we define a function for the age
group dependent willingness to accept a booster dose:

wwilling
i = wbase

i +
(
wmax
i − wbase

i

)
(1− exp (−αwHw)) . (12)

The function for booster doses ϕ can then be written as

ϕi(Hw) = 1
tw
· W v

i

Mi(ucurrent
i − wcurrent

i ) · ε ln
(

exp
(

1 + 1
ε

(
wwilling
i (Hw)ucurrent

i − wcurrent
i

)))
, (13)

We only vaccinate if willingness among those who received a first dose is larger than the fraction
of already boostered people, i.e. ucurrent

i is the upper limit for wcurrent
i .

S1.5.1 Assessment of sensitivity to ICU occupancy for vaccination dynamics
In our model, we assume the willingness in the total population to be vaccinated for the first

time to range between threshold values ubase and umax. The difference umax − ubase is the fraction
of people that, initially hesitant, decide to accept the vaccine offer based on their perception of
risk. In order to estimate how sensitive this group is to risk perception in the form of awareness
about the ICU occupancy, we proceed as follows. If we estimate the ICU occupancy at which half
of the people belonging to this initially hesitant group accepts a vaccination, we can calculate the
sensitivity parameter αu: Let H1/2 be this ICU occupancy. We then have to solve

ubase + 1
2
(
umax − ubase

) != ubase +
(
umax − ubase

) (
1− exp

(
−αuH1/2

))
, (14)
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which reduces to

αu = log2
H1/2

. (15)

We assume Hmax, i.e., the threshold at which no further adaption of health-protective behaviour
occurs, as a first estimate for H1/2 to obtain an approximate value for the sensitivity as αu = log2

Hmax
=

log2
37 ≈ 0.02. The quantified effect that this parameter has on the results is explored in Sec. S4.

S1.5.2 Tracking vaccinated individuals
Transition rates between the susceptible (Si) and waned (Wn

i ,W
v
i ) compartments due to

vaccination depend on the difference between willingness to be vaccinated and the fraction of
currently vaccinated. Thus, it is necessary to keep track of how many people have received a first and
booster dose, respectively. This is modelled by integrating over the vaccination rates. It translates
into two additional differential equations:

d

dt
ucurrent
i = φi(Hu) and d

dt
wcurrent
i = ϕi(Hw) , (16)

where ucurrent and wcurrent are the fraction of people who received a first and booster dose,
respectively. The initial conditions for ucurrent

i and wcurrent
i are the total reported numbers of

administered vaccine doses Ritchie et al. (2021).
S1.6 Exploring vaccination rate and ICU occupancy trends in different European

countries
The main assumption underlying the vaccination feedback is that vaccination willingness follows

ICU occupancy. In the case of Romania this relation is evident (Figure S4): Approaching winter 2021,
case numbers and ICU occupancy had a steep rise, arguably due to insufficient immunity among
the population, as vaccine coverage was under 30% Ritchie et al. (2021). Under such circumstances,
there was a lot of "room for improvement" within the unvaccinated population not strictly opposed
to vaccines, which led to a steep surge in administered doses (Fig. S4). Note that there might also be
other underlying causes for increased vaccine uptake: For example, imposing restrictions only onto
unvaccinated might motivate vaccine uptake. While this is a governmental choice not considered in
our model, such enforcements usually follow high levels of ICU occupancy and are thus indirectly
accounted for.

In countries other than Romania, the trend is less visible (Fig. S4). Several countries show
an increase in vaccine uptake in October 2021; however, it is unclear whether this is mainly
motivated by voluntary behaviour following an increase in ICU occupancy. Concurrently, requests
for launching country-wide booster campaigns were on the rise, which might have been the
leading cause of increased vaccine uptake. However, whether the causes are voluntary behaviour
or institutional recommendations regarding vaccinations, both follow perceived risk (on individual
level vs governmental level) and lead to the same effect: increased ICU occupancy leads to increased
vaccine uptake. Apart from Estonia and Belgium, we do not observe countries in which a rise in
ICU occupancy is not followed by a rise in vaccinations. If the contrary is the case, i.e., vaccines
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rising despite ICU occupancy staying low, this could be attributed to external motivations and
would require further country-specific investigation.

In countries where we observe increasing vaccines following ICU occupancy, we should note that
the delay between the two varies a lot. While in Romania and Bulgaria, the delay seems to be of
the order of one month, we observe that in Germany, Austria and the Czech Republic, there does
not seem to be any relevant delay. Note that the vaccination curve measures daily administered
vaccines and not the onset of immunity (which the kernel in our model represents). The effect of
the delay incorporated in our model is quantified in the sensitivity analysis S4.
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Supplementary Figure S4: Vaccination rate and ICU occupancy trends across selected countries. ICU occupancy per million
inhabitants and daily vaccinations per 10,000 inhabitants for several European countries and Israel. Booster doses and first time doses are
added together.

S2 AGE STRATIFICATION
S2.1 Age-dependent vaccine uptake
Although there are vaccines accredited for children below 12 years in the European Union, we

assume that these age groups will have much lower uptakes, affecting our parameters umax
i (maximum

vaccine uptake) and wmax
i (maximum booster uptake). Furthermore, due to likelier side effects of

vaccines for the young, but lesser consequences of an infection, we assume that these parameters as
well as the baseline acceptances for vaccines increase with age. Thus, ubase

i , wbase
i , umax

i and wmax
i
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become age-dependent. All vaccine-related parameters are listed in Table S1. Note that wmax
i is a

fraction of ucurrent
i and not of Mi, thus it is no contradiction if wbase

i > ubase
i .

Table S1. Different age groups and age-dependent parameters related to vaccine uptake.

Group ID age group fraction of population Mi/M umax
i wmax

i ubase
i wbase

i

1 0-19 0.18 0.35 0.76 0.2 0.1
2 20-39 0.25 0.9 0.8 0.5 0.25
3 40-59 0.28 0.92 0.84 0.55 0.275
4 60-69 0.13 0.94 0.88 0.6 0.3
5 70-79 0.09 0.96 0.92 0.65 0.325
6 80+ 0.07 0.98 0.96 0.7 0.35

S2.2 Age-dependent transition rates
Differing disease severity after a SARS-CoV-2 infection for different age groups translates into

age-dependent transition rates between our model compartments. More specifically, we include
age-dependent parameters for the natural recovery rate γ, the ICU admission rate δ, the death rate
θ and the recovery as well as death rates from ICU, γICU and θICU, respectively. Table S2 lists the
different parameters as reported in Bauer et al. (2021).

Table S2. Age-dependent transition parameters related to the ICU-, death- and recovery rates. All parameters are given
in units of days−1.

ID Age group
Recovery rate
γi
[
day−1

] ICU adm. rate
δi
[
day−1

] Death rate
θi
[
day−1

] ICU rec. rate
γICU,i

[
day−1

] ICU death rate
δICU,i

[
day−1

]

1 0-19 0.09998 0.000014 0.000002 0.19444 0.00556
2 20-39 0.09978 0.000204 0.000014 0.19222 0.00778
3 40-59 0.09867 0.001217 0.000111 0.084745 0.006164
4 60-69 0.09565 0.004031 0.000317 0.081401 0.009508
5 70-79 0.09314 0.005435 0.001422 0.091355 0.019756
6 80+ 0.08809 0.007163 0.004749 0.084233 0.082433

S3 MODEL EQUATIONS
The combined contributions of the infection-spreading and vaccination dynamics are represented by
the set of equations below. The time evolution of our model is then completely determined by the
initial conditions of the system. The first-order transition rates between compartments are given by
the probability for an individual to undergo this transition divided by the average transition time,
e.g., the recovery rate γ is the probability that an individual recovers from the disease divided by
the time span of the recovery process. Note that in principle γ should be different for the I and
IB compartment, as the probability to recover is larger for individuals previously immunised. We
neglect this difference as it is negligible within the margin of error since the probability to recover is
close to 1 in both cases. The subscripts i denote the sub-compartments for each age group and Cij
the contact matrix that describes the interactions within the age groups.
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Ieff
i = (Ii + Ini + Ivi + ΨMi)

︸ ︷︷ ︸
effective incidence

(17)

Ii = β kseasonality
Ieff
i

Mi︸ ︷︷ ︸
effective infection rate

(18)

Cij =
∑

ν
Cνij k

ν
NPI,self

︸ ︷︷ ︸
sub-matrices times reductions

(19)

dSi
dt

=− Si
∑

j

CjiIj
︸ ︷︷ ︸

unvaccinated infections

−Miφi(Hu) Si
Si +Wn

i︸ ︷︷ ︸
first vaccinations

(20)

dWn
i

dt
=− Wn

i

∑

j

CjiIj
︸ ︷︷ ︸
waned infections

−Miφi(Hu) Wn
i

Si +Wn
i︸ ︷︷ ︸

first vaccinations

+ ΩRi
︸ ︷︷ ︸

waning natural immunity

(21)
dW v

i

dt
=− W v

i

∑

j

CjiIj
︸ ︷︷ ︸
waned infections

−Miu
current
i ϕi(Hw)

︸ ︷︷ ︸
booster vaccinations

+ ΩVi + ΩRvi
︸ ︷︷ ︸

waning immunity

(22)

dVi
dt

= Mi

(
φi(Hu) + ucurrent

i ϕi(Hw)
)

︸ ︷︷ ︸
vaccinations

− ΩVi
︸︷︷︸

waning vaccine immunity
(23)

dEi
dt

= Si
∑

j

CjiIj
︸ ︷︷ ︸

unvaccinated exposed

− ρEi
︸︷︷︸

end of latency

(24)

dEni
dt

= Wn
i

∑

j

CjiIj
︸ ︷︷ ︸

unvaccinated waned exposed

− ρEni
︸ ︷︷ ︸

end of latency

(25)

dEvi
dt

= W v
i

∑

j

CjiIj
︸ ︷︷ ︸

vaccinated waned exposed

− ρEvi
︸ ︷︷ ︸

end of latency

(26)

dIi
dt

= ρEi
︸︷︷︸

start of infectiousness

− (γi + δi + θi) Ii
︸ ︷︷ ︸

→recovery, ICU, and death

(27)

dIn

dt
= ρEni

︸ ︷︷ ︸
start of infectiousness

− (γi + (δi + θi)(1− κ)) Ini
︸ ︷︷ ︸
→recovery, ICU (reduced),

and death (reduced)

(28)
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dIvi
dt

= ρEvi
︸ ︷︷ ︸

start of infectiousness

− (γi + (δi + θi)(1− κ)) Ivi
︸ ︷︷ ︸
→recovery, ICU (reduced),

and death (reduced)

(29)

dICUi

dt
= δi (Ii + (1− κ)Ini )
︸ ︷︷ ︸
nonvaccinated ICU

− (γICU,i + θICU,i)ICUi
︸ ︷︷ ︸
recovery or death in ICU

(30)

dICUv
i

dt
= δi(1− κ)Ivi
︸ ︷︷ ︸
vaccinated ICU

− (γICU,i + θICU,i)ICUv
i

︸ ︷︷ ︸
recovery or death in ICU

(31)

dDi

dt
= θi (Ii + (1− κ) (Ini + Ivi ))
︸ ︷︷ ︸

death without ICU

+ θICU,i (ICUi + ICUv
i )

︸ ︷︷ ︸
death in ICU

(32)

dRi
dt

= γi(Ii + Ini )
︸ ︷︷ ︸
direct recovery

+ γICU,i ICUi
︸ ︷︷ ︸

recovery

− ΩRi
︸ ︷︷ ︸
waning

post-infection immunity
(33)

dRvi
dt

= γiI
v
i

︸ ︷︷ ︸
direct recovery

+ γICU,i ICUv
i

︸ ︷︷ ︸
recovery from ICU

− ΩRvi
︸ ︷︷ ︸
waning

post-infection immunity
(34)

ducurrent
i

dt
= φi(Hu)

︸ ︷︷ ︸
current first vaccinations

(35)

dwcurrent
i

dt
= ϕi(Hw)

︸ ︷︷ ︸
current booster vaccinations

(36)

(37)
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Table S3. Model parameters (in order of first appearance) related to infection dynamics. ∗ :Levin et al. (2020)Salje
et al. (2020)Bauer et al. (2021)Linden et al. (2020) The parameters referring to Table S2 are age-dependent.

Pa Meaning Value
(default) Unit Source

γ Recovery rate Tab. S2 day−1 He et al. (2020); Pan et al. (2020)
δ Avg. hospitalisation rate

(I → ICU)
Tab. S2 day−1 ∗

κ Reduction of
hospitalisation rate
(given infection) for
individuals with waned
immunity

0.8 − Eq. 9

θ Avg. death rate Tab. S2 day−1 ∗

γICU Recovery rate from ICU Tab. S2 day−1 ∗

θICU Avg. ICU death rate Tab. S2 day−1 ∗

Cij Contact matrix − − Mistry et al. (2021)
β Spreading rate 0.5 day−1 Eq. 6
Ψ Influx of infections 1 people/day Assumed
R0 Basic reproduction

number (Delta variant)
5.0 − Liu and Rocklöv (2021)

ρ Rate of leaving exposed
state

0.25 day−1 Bar-On et al. (2020); Li et al. (2020)

µ Sensitivity to seasonality 0.267 – Gavenčiak et al. (2021)
d0 Day when the time series

starts
240 day Chosen

dµ Day with the strongest
effect on seasonality

0 day Gavenčiak et al. (2021)

Ω Waning immunity rate
(base)

1
225 day−1 Tartof et al. (2021), Eq. 8

η Vaccine eff. against
transmission 5 months
after vaccination

0.5 − Tartof et al. (2021)

κobs Observed vaccine eff.
against severe disease 5
months after vaccination

0.9 − Tartof et al. (2021)

S3.1 Initial conditions
A primary task for defining the initial conditions is distributing the population size of M = 106

individuals onto our model compartments (Fig. S1). In reality, however, there are no well-defined
compartments. For example, a person vaccinated a few months ago cannot be classified into either
a V or Wn compartment, but is instead in a vaccinated state with reduced vaccine effectiveness.
Furthermore, available data on vaccinated or infected individuals is often age-stratified by different
age groups or not age-stratified at all. To approach these data challenges, we obtain the initial
conditions through the following procedure (Fig. S5):

We postulate that we want to look at a population that is 60% vaccinated and 20% recovered
(including the non reported cases). Let the resulting numbers of people be called V tot = 0.6M and
Rtot = 0.2M , respectively. These values are inspired by the situation in Germany as of September
1st 2021. Next, we take German data on daily new infections N and ICU occupancy ICUtot at this
point in time Ritchie et al. (2021); am RKI (2020). These four values will be used to build all the
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Table S4. Model parameters (in order of first appearance) related to the behavioural feedback loops. The range column
describes the range of values used in the various scenarios.

Parameter Meaning Value
(default) Unit Source

pR, bR Shape and rate parameters of the
memory kernel for the risk perception
relevant to immediate health-protective
behaviour, respectively

0.7, 4.0 − Assumed

τu, τw Memory time of the ICU capacity and
delay to immunisation

2, 6 weeks Assumed

pvac, bvac Shape and rate parameters of the
memory kernel for the risk perception
relevant to vaccination, respectively

0.4. 6.0 − Assumed

kν Weighting factors for the contextual
contact matrices

Tab. 1, main text − Assumed

ubase, wbase Base fractions of vaccine acceptance
(first and booster, respectively)

Tab. S1 − Wouters et al. (2021)

χu, χw Fraction of the population refusing
vaccine (first and booster, respectively)

Tab. S1 − Betsch et al. (2020)

αu, αw Sensitivity of the population to ICU
occupancy

0.02 people−1 Eq. 15

ε Curvature parameter for the softplus
function describing the vaccination rate

1 − Chosen

tu, tw Organization time for vaccine (first and
booster resp.)

7 days Assumed

Hmax Risk perception above which no further
adoption of voluntary health-protective
behaviour occurs

37 − Fitted to Betsch et al. (2020)
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Supplementary Figure S5: The procedure of obtaining initial conditions for the model compartments. Starting with parts
of the population attributed to different states N , ICU, V tot, and Rtot, we calculate reasonable values for the initial conditions of all
compartments step by step. Compartment sizes in the figure are chosen arbitrarily and do not represent actual size in terms of people.
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other compartments. First, however, we have to uniformly age-stratify these values. ICU occupancy
and the number of new COVID-19 cases can be obtained in an age-stratified way for the case of
Germany. For the number of vaccinated and recovered, we assess countries that report age-stratified
data, such as Denmark, and distribute the total numbers V tot and Rtot onto the various age groups
as can be seen in Tab. S6. Given the initial values for V tot

i , Rtot
i , Ni and ICUtot

i for every age group
i, we calculate the values for all other compartments:

Immune compartments separated by vaccination status and previous infection
First, we consider the possibility that individuals were both previously vaccinated and infected.
Thus, to avoid overestimating the number of immunised individuals, we estimate the overlap between
V tot
i and Rtot

i : As a first order estimate, we assume that the probability of being vaccinated and
having recovered are independent of each other. That way, the probability of being both vaccinated
and recovered is given as the product of the two probabilities:

Prob(x ∈ V tot
i ∧ x ∈ Rtot

i ) = Prob(x ∈ V tot
i ) · Prob(x ∈ Rtot

i ) (38)

Accordingly, the fraction of vaccinated in the total population for age group i, V
tot

i
Mi

, is the same as
the fraction of vaccinated in the recovered part of the population, Rv

i
Rtot

i
. Hence, the initial numbers

of recovered vaccinated, Rvi , and unvaccinated individuals, Ri, are estimated via

Rvi = V tot
i

Mi
Rtot
i and Ri = Rtot

i −Rvi . (39)

Consequently, we receive the number of vaccinated individuals without previous infection by
subtracting the overlap:

Vi = V tot
i −Rvi . (40)

This process is illustrated in Fig. S5.

Waned compartments separated by immunity status
Next, we consider the fraction of vaccinated and recovered individuals whose immunity has waned
(see Tab. S6): For the recovered, we assume that the time point at which infections took place in
the past was age-independent and thus attribute the same fraction of waned natural immunity to
all age groups. However, this assumption does not hold for vaccine-induced immunity because older
age groups were typically vaccinated at an earlier point in time. We subtract the waned fractions
from the compartments Vi, Ri and Rvi , obtaining Wn

i and W v
i .

Susceptible compartment
The susceptible compartment Si comprises of all individuals not belonging to any of the other
compartments. It can be calculated via

Si = Mi − Vi −Ri −Rvi −Wn
i −W v

i −Ni − ICUtot
i . (41)
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Exposed and infectious compartments separated by immunity status
We estimate the initial conditions for the exposed and infected compartments by first estimating
Etot
i = Ei + Eni + Evi and Itot

i = Ii + Ini + Ivi by

Etot
i = 1

ρ
Ni and Itot

i = 1
γi + δi + θi

Ni . (42)

The fractions 1
ρ and 1

γ+δ+θ are the average times spent in the exposed and infected compartments,
respectively (approximately).

To find out how Etot
i and Itot

i distribute onto their sub-compartments, i.e., for the different immune
status and age groups, we look at their origin: Because all the infections in Ei originate from Si, the
ones in Eni fromWn

i and the ones in Evi fromW v
i , we can distribute Etot

i onto the sub-compartments
via

Ei = Si
Si +Wn

i +W v
i

Etot
i , Eni = Wn

i

Si +Wn
i +W v

i

Etot
i , Evi = W v

i

Si +Wn
i +W v

i

Etot
i (43)

and analogously for Itot
i .

ICU compartments separated by vaccination status
To determine the distribution of ICUtot

i onto the compartments ICUi and ICUv
i , we consider that

the probability to require ICU care for individuals in the compartments Ini and Ivi is reduced by a
factor of (1− κ). Hence,

ICUv
i = Ivi (1− κ)

Ii + (Ini + Ivi )(1− κ)ICUtot
i and ICUi = ICUtot

i − ICUv
i . (44)

The initial condition for the dead is set to Di = 0, for the currently vaccinated to ucurrent
i = V tot

i

and for the currently boostered to wcurrent
i = 0. For the initial condition of H∗, values of past ICU

occupancy development are needed. Here, we assume a constant past value of the ICU occupancy at
t ≤ d0 for both ICU compartments.

S4 SENSITIVITY ANALYSIS
The results of this model depend on the choices of all parameters involved. While some epidemiological
parameters are well understood and quantified at this point in the pandemic, some other parameters
of our model remain uncertain, but might have a large impact on the results. In this section we
analyse the sensitivity of our results to changes in parameters. We vary each parameter independently
across its assumed range (see Sec. S4.2) and look at how this affects the maximal ICU occupancy
observed in the first (winter) and second (spring) waves. We choose a moderate scenario (Scenario
3) for the analysis and look at how the two peaks of ICU occupancy (one in winter, one after lifting
restrictions) change in magnitude.
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S4.1 Sensitivity to additional parameters
For a more precise analysis we introduce new parameters to our model (Tab S7). Firstly, we

consider the possibility of previously immunised individuals having a reduced viral load and thus
being less infectious. This has been reported for vaccinated individuals e.g. in Harris et al. (2021)
for the Alpha variant of SARS-CoV-2, but is unclear for current and future variants. In the model,
it can be represented by a change in Ieff , introducing a parameter σ for reduced viral load in the
infectious compartments In and Iv:

Ieff
i = (Ii + σ(Ini + Ivi ) + ΨMi) (45)

Next, we include the possibility that post-infection and vaccine-induced immunity wane at different
rates Ωn and Ωv, respectively. Lastly, we introduce a parameter that affects the shape of kseasonality.
The transmission of SARS-CoV-2 is strongly reduced in outdoor encounters in comparison to indoor
encounters. Thus, winter typically offers more opportunities for viral spread than summer because
more activities are performed inside. However, the transition between summer and winter might
look different than the standard sinusoidal suggested in Eq. 7. In particular, it could be the case
that above a certain temperature most activities move outside all at once, resulting in a steeper
transition between summer and winter as soon as temperatures allow for it. To model this, we
introduce an exponent ξ ∈ [0, 1] that modifies the sinusoidal:

kseasonality = 1 + µ · sgn (cos (t?)) · |cos (t?)|ξ with t? = 2πt+ d0 − dµ
360 . (46)

That way, for ξ → 0 the cosine in kseasonality becomes a step function.
S4.2 Parameter ranges
The way we vary parameters differs between age-dependent and non-age-dependent parameters as

well as between parameters bound to the [0, 1] interval (e.g., κ) and those belonging to arbitrary
intervals. For the age-independent parameters κ, σ, ξ ∈ [0, 1] we vary them in the range [0.5, 1] (for κ
and σ) and [0, 1] (for ξ). For the age-dependent rates with arbitrary range, δi, γICU,i, θi, and θICU,i,
we consider a range around their default value by a factor of two. For example, for δi we vary across
the ranges [ δ

default
i

2 , 2δdefault
i ]∀i at the same time for all age-groups. Figure S7 summarises these

results.

Parameters related to the memory kernel pR, bR, pvac, and bvac as well as the sensitivities to vaccine
uptake αu and αw are also varied around their default value by a factor of two.

For age-dependent parameters related to vaccine uptake ubase
i , wbase

i , χui , and χwi which are bound
to the interval [0, 1], we look at their base value multiplied by a factor in the range [0.8, 1.2] and vary
one parameter for all age groups at the same time. Figure S8 summarises these results. Parameters
τu, τw, tu, tw, Hmax, and the influx Ψ are varied in a range chosen broad enough such that an effect
is observable.

The average immunity waning times (Ωn)−1 and (Ωv)−1 are varied in the range between 4 months
and 1 year and the waning rates thus is the range of the inverse values.
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S4.3 High impact parameters
In this section we discuss parameters that have a large impact on the quantitative results when

being varied.

As expected, the waning rate of vaccine-induced immunity Ωv, leads to much higher waves when
increased. The peak of the wave after lifting restrictions is more than doubled for an average waning
time of 4.5 months instead of the 7.5 months used as default.

The vaccine efficacy κ also plays an important role in the second wave, as by that time, most
infections will originate from the waned compartments.

Naturally, the transition rates to ICU δi have a large impact on the magnitude of the waves.
Interestingly, the impact is a lot stronger for the second wave than for the first wave. The reason
is that the first wave mainly affects the unvaccinated younger age groups that are less likely to
transition to ICU, whereas the second wave affects all age groups similarly.

One of the main uncertainties in our model is the choice of the sensitivity parameters αu and αw
that modulate vaccine uptake in dependence of risk perception Hu and Hw. Lower values imply a
population less reactive to threat, which results in higher waves as can be seen in Fig. S8. On the
other hand, for large values of αu and αw, ICU occupancy seems to plateau, not decreasing any
further. This suggests a limitation on what voluntary vaccination alone can do to prevent bringing
ICUs to capacity limits (given our model assumptions).
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S5 AGE-STRATIFIED RESULTS
Figures S10-S14 show the age-stratified results for all scenarios of the main text.
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Table S5. Model variables.

Variable Meaning Unit Explanation
M Population size people Default value: 1,000,000
S Susceptible

compartment
people Non-infected people, who may acquire the virus.

V Vaccinated
compartment

people Non-infected, vaccinated people. Less likely to be
infected or develop severe symptoms

Wn Waned post-
infection immunity
compartment

people Non-infected people whose post-infection immunity
has already waned, thus may acquire the virus.

W v Waned vaccine
immunity
compartment

people Non-infected people whose vaccine-induced
immunity has already waned, thus may acquire
the virus.

E Nonvaccinated
exposed compartment

people Nonvaccinated, non-previously-infected people
exposed to the virus.

En Nonvaccinated, waned
exposed compartment

people Nonvaccinated, previously-infected people exposed
to the virus whose post-infection immunity has
waned.

Ev Vaccinated exposed
compartment

people Exposed people with waned vaccine immunity.

I Infectious
compartment

people Infectious people from the susceptible compartment
S.

In Nonvaccinated,
waned infectious
compartment

people Infectious people from En.

Iv Vaccinated infectious
compartment

people Infectious people with waned vaccine-induced
immunity.

ICU Nonvaccinated
hospitalised

people Nonvaccinated hospitalised people (from I and In)
.

ICUv Vaccinated
hospitalised

people Previously-vaccinated, hospitalised people (from
Iv) .

R Unvaccinated
Recovered

people Unvaccinated recovered people (with or without
requiring intensive care).

Rv Vaccinated Recovered people Vaccinated recovered people (with or without
requiring intensive care).

H∗ Avg. ICU occupancy people Auxiliary variable measuring the memory on past
ICU occupancy.

ucurrent, wcurrent Vaccinated
individuals,
independent of the
compartment

− Integral over the vaccination rates φ, ϕ.

kseasonality Seasonal variation
of SARS-CoV-2
transmission

− Eq. 7.

kNPI,self Reduction of infections
due to mandatory
NPIs and voluntary
behaviour

− Sec. S1.3

φ(t), ϕ(t) Administration rate of
first-time and booster
vaccine doses (resp.)

doses/day Eq. 11, 13
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Table S6. Initial conditions by age group. The total population size in the model is M = 106. The column V tot
i +Rtot

i −Rv
i

Mi
shows the

effective fraction of the population that is immune, which for the entire population is 68% (with
∑

i
Rtot
i /M = 0.2 and

∑
i
V tot
i /M = 0.6).

Sources: 1: Bauer et al. (2021), 2: Ritchie et al. (2021), 3:am RKI (2020)

ID age group Mi/M
V tot

i
Mi

Rtot
i
Mi

Ni ICUtot
i

W v
i

Vi+Rv
i

Wn
i

Ri

V tot
i +Rtot

i −Rv
i

Mi

1 0-19 0.18 0.15 0.2 18.5 0.14 5% 50% 0.32
2 20-39 0.25 0.56 0.2 16.8 1.24 5% 50% 0.65
3 40-59 0.28 0.67 0.2 15.9 4.90 10% 50% 0.74
4 60-69 0.13 0.77 0.2 6.4 3.10 20% 50% 0.82
5 70-79 0.09 0.88 0.2 3.5 2.46 30% 50% 0.90
6 80+ 0.07 0.95 0.2 2.3 1.62 40% 50% 0.96
Source - 1 assumed assumed 2 3 assumed assumed calculated

Table S7. Additional model parameters introduced in the sensitivity analysis.

Parameter Meaning Value
(default) Unit Source

σ Relative viral load of
recovered/vaccinated individuals

1 − Levine-Tiefenbrun et al. (2021)

Ωn Waning rate of post-infection immunity 1
125 day−1 Tartof et al. (2021)

Ωv Waning rate of vaccine immunity 1
125 day−1 Tartof et al. (2021)

ξ Shape of the seasonality function
kseasonality

1 − Gavenčiak et al. (2021)
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Supplementary Figure S10: Age-stratified results for scenario 1.
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Supplementary Figure S11: Age-stratified results for scenario 2.
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Supplementary Figure S12: Age-stratified results for scenario 3.
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Supplementary Figure S13: Age-stratified results for scenario 4.
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Supplementary Figure S14: Age-stratified results for scenario 5.
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S1 Data sources

We used the daily COVID-19 case numbers, resolved by age and country, as reported publicly by the state
health institute or equivalent of each country covered in this work. The data was retrieved either directly or
taken from COVerAGE-DB [1]:

• Germany: Robert Koch Institut
https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74

• France: Santé publique France
https://www.data.gouv.fr/fr/datasets/taux-dincidence-de-lepidemie-de-covid-19

• England: National Health Service
https://coronavirus.data.gov.uk/details/download

• Scotland: Public Health Scotland
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland

• Austria: Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH
https://covid19-dashboard.ages.at/

• Belgium: Sciensano
https://epistat.wiv-isp.be/covid/

• The Czech Republic: Ministerstvo zdravotnictví
https://onemocneni-aktualne.mzcr.cz/covid-19

• Italy: Istituto Superiore di Sanità
Aggregated by COVerAGE-DB from
https://www.epicentro.iss.it/coronavirus/sars-cov-2-sorveglianza-dati

• The Netherlands: National Institute for Public Health and the Environment
https://data.rivm.nl/covid-19/

• Slovakia: The Institute for Healthcare Analyses (IZA) of the Ministry of Health
Aggregated by COVerAGE-DB from
https://github.com/Institut-Zdravotnych-Analyz/covid19-data

• Spain: Ministry of Public Health
Aggregated by COVerAGE-DB from
https://cnecovid.isciii.es/covid19/

To estimate the deaths associated with the Euro 2020 cases we calculate the case fatality risk by using the
number of deaths and number of cases as reported by Our World in Data (OWD) [2].

For showcasing the stringency of governmental measures (panel C in Fig. S24-S36), we used data from the
Oxford COVID-19 Government Response Tracker [3] and the public health and social measures (PHSM)
severity index [4] from the World Health Organization (WHO). For our correlational analysis of cases and
human mobility (Fig. 3B and S4), we used data from the COVID-19 Community Mobility Reports [5]
provided by Google. For correlation with pre-Euro 2020 incidences (Fig.S6B) we use case numbers as
reported by the Johns Hopkins University (JHU) [6]. Lastly, we used data from Google Trends [7] to
investigate people’s interest in the Euro 2020 (Fig. S20).
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S2 Supplementary analysis: our results in context

Supplementary Figure S1: Our results in context: How much of an effect do short but strong increases
of transmission have? A–C: Understanding Euro 2020 matches as point interventions where the reproduction
number is allowed to increase drastically from its base level Rbase for one day (∆R = 2.0, yellow curve), we compare
its cumulative effect with different scenarios of lifting restrictions. These effects are in the order of magnitude of
those reported in the literature [8]. The purple lines represent the same effect as a single increase but distributed
over one week (∆R = 0.28 ≈ 2/7), while the red curve represents a permanent lifting of those restrictions. The effect
of the yellow and purple interventions is similar for t ≤ 2 weeks because the product between ∆R and the duration of
the intervention is the same. D: We observe long-term effects of consecutive interventions even when Rbase is lower
than one (red dotted line). The impact of these effects increases exponentially with Rbase. E: Similarly, the final
incidence (after six weeks) increases with Rbase. The red dotted line indicates that an incidence ratio larger than
one can already result from values of Rbase smaller than one. Altogether, the cumulative effect of short but strong
interventions (such as Euro 2020 matches) can be compared to lifting all bans on gatherings for a certain period of
time. Curves were generated using a linear SEIS model without immunity for illustrative purposes.

To put our results in context, we compare the impact that different hypothetical scenarios of lifting of
restrictions would have on case numbers (Fig. S1). Using a linear SEIS model for illustrative purposes, we
evaluate three scenarios: i) Recurrent, bi-weekly (period T = 2 weeks) large events that strongly increase the
reproduction number over its base level Rbase for one day by ∆Rs = 2.0 (yellow curves). This effect size is
comparable to what we inferred for some heated matches (e.g., Scotland - England for Scotland: ∆Rmatch =
3.5 [2.9, 4.2], England - Italy for England: ∆Rmatch = 2.0 [1.6, 3.5], England - Italy for Italy: ∆Rmatch =
0.9 [−0.7, 4.4], and the Czech Republic - Denmark for the Czech Republic: ∆Rmatch = 2.7 [0.8, 4.4]). ii) A
temporary one-week lifting of restrictions, with an effect equal to a single-day large event by distributing the
increase in Rbase over a week: ∆Rw = 0.28 ≈ 2/7 (purple curves). iii) A permanent lifting of restrictions to
the level of the second scenario: ∆Rp = 0.28 for the considered time span (red curves). The value for ∆Rs

in the first scenario is comparable to the largest effects found for the England-Scotland matches, while those
in the second and third scenarios are similar to the effect of banning all private gatherings of 2 people or
more as reported in [8].

The effect of interventions is comparable whenever the products between ∆R and the duration of the in-
terventions are the same (e.g., yellow and purple curves for t ≤ 2 weeks in Fig. S1A, B). In other words,
the cumulative effect of short but strong interventions (such as Euro 2020 matches), can be compared to

3



Supplementary Information of
Impact of the Euro 2020 championship on the spread of COVID-19

lifting all bans on gatherings for a certain period of time. However, for regularly recurring interventions
of size ∆Rs, we observe permanent long-term effects when Rbase + ∆Rs/T ≥ 1; the impact of recurring
interventions increases disproportionately over time (Fig. S1A–C). Controlling the long-term effect of recur-
rent increases of the reproduction number is possible if the underlying reproduction number Rbase is small
enough. Small changes of Rbase substantially impact the outcome, even below the Rbase = 1 threshold, and
in an exponential manner (Fig. S1D, E). This underlines the importance of control strategies if large-scale
events are expected to temporally increase the spread of COVID-19.

On the other hand, quantitatively, the expected size z of an infection chain depends on the effective repro-
duction number Reff. As long as Reff is larger than one, the infection chains can become arbitrarily large.
But even if Reff < 1, one single infection is expected to cause z = (1 − Reff)−1 infections before the chain
dies out. For example, if Reff = 0.9, a single infection caused by the Euro 2020 implies z = 10 infections
in the total chain. Thus, in comparison, the primary cases have only a small contribution; the majority of
the impact of an event like the Euro 2020 is the spread of subsequent infections into the general population
(e.g., Fig. 2A).

4



Supplementary Information of
Impact of the Euro 2020 championship on the spread of COVID-19

S3 Supplementary Tables

Country Median percentage
of primary cases

Median percentage
of subsequent cases

Median percentage
of primary and

subsequent cases

Probability that
football increased cases

Avg. 3.2% [1.3%, 5.2%] - - > 99.9%
England 12.4% [5.6%, 22.5%] 36.0% [27.9%, 44.7%] 47.8% [36.0%, 62.9%] > 99.9%
Czech Republic 9.7% [3.3%, 16.2%] 47.8% [24.2%, 58.7%] 57.7% [28.7%, 72.6%] > 99.9%
Scotland 3.3% [1.3%, 8.1%] 36.6% [28.6%, 43.9%] 40.8% [30.9%, 50.3%] > 99.9%
Spain 2.8% [-1.1%, 9.2%] 24.1% [-16.3%, 60.6%] 26.9% [-16.9%, 69.2%] 91.8%
Italy 2.1% [-5.8%, 10.9%] 16.1% [-230.2%, 69.5%] 18.7% [-235.6%, 78.4%] 74.1%
Slovakia 1.6% [-7.7%, 10.2%] 15.5% [-88.2%, 50.6%] 17.3% [-95.7%, 60.0%] 70.8%
Germany 1.4% [-1.8%, 4.2%] 22.1% [-36.3%, 44.8%] 23.6% [-38.0%, 48.6%] 86.7%
Austria 1.2% [-2.2%, 4.8%] 24.0% [-62.9%, 60.8%] 25.2% [-65.0%, 65.2%] 79.4%
Belgium 0.6% [-2.3%, 4.2%] 9.2% [-60.0%, 47.9%] 9.8% [-62.2%, 51.8%] 67.6%
France 0.5% [-0.2%, 1.4%] 23.1% [-8.4%, 45.8%] 23.6% [-8.6%, 47.0%] 94.1%
Portugal 0.3% [-2.6%, 2.7%] -4.4% [-55.1%, 24.5%] -4.1% [-57.4%, 26.9%] 60.6%
The Netherlands -1.5% [-3.3%, -0.2%] -49.1% [-111.7%, -1.4%] -50.6% [-114.6%, -1.7%] 1.5%

Supplementary Table S1: Credible intervals from the posterior distribution of the number of football related
cases divided by the total number of cases during the championship. CI denotes 95% credible interval.
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Country
Primary cases
per mil. people

(male)

Primary cases
per mil. people

(female)

Primary and
subsequent cases
per mil. people

Avg. - - 2228 [986, 3308]
England 3595 [2661, 5729] 1686 [1143, 3453] 10600 [8185, 13875]
Czech Republic 94 [40, 142] 65 [22, 108] 459 [229, 577]
Scotland 1352 [940, 1758] 351 [222, 517] 7897 [6136, 9529]
Spain 594 [-217, 1722] 387 [-160, 1346] 4518 [-2840, 11595]
Italy 55 [-121, 227] 27 [-77, 131] 319 [-4001, 1335]
Slovakia 8 [-30, 38] 4 [-19, 25] 57 [-313, 196]
Germany 15 [-16, 36] 7 [-11, 24] 174 [-280, 359]
Austria 42 [-70, 141] 23 [-45, 100] 642 [-1646, 1661]
Belgium 34 [-112, 198] 18 [-81, 155] 411 [-2611, 2174]
France 43 [-12, 95] 27 [-8, 76] 1515 [-552, 3008]
Portugal 41 [-331, 340] 25 [-247, 251] -449 [-6294, 2960]
Netherlands -186 [-328, -31] -98 [-222, -13] -4805 [-10851, -166]

Supplementary Table S2: Cases attributed to the Euro 2020 per million inhabitants and related 95 %
credible intervals in the male and female population. Primary and primary plus secondary cases are shown separately.
Subsequent cases are almost gender-symmetric in all countries (see also Fig. S2). This indicates that also possible
unobserved characteristics of the primary football-related infections in terms of other factors – such as age – are most
likely distributed over the whole population in the course of subsequent infections.

Country Primary cases
(male)

Primary cases
(female)

Primary and
subsequent cases

Estimated deaths
associated with primary

and subsequent cases

England 93619 [69591, 145127] 43872 [29946, 87030] 567280 [436870, 747399] 1227 [945, 1616]
Czech Republic 494 [215, 753] 346 [116, 558] 4920 [2455, 6182] 60 [30, 75]
Scotland 3478 [2444, 4481] 908 [574, 1320] 41720 [31766, 50146] 90 [69, 108]
Spain 13570 [-4463, 40212] 8870 [-3339, 31389] 211952 [-122694, 546650] 503 [-291, 1298]
Italy 1535 [-3399, 6718] 750 [-2219, 3824] 17810 [-243916, 79338] 170 [-2327, 757]
Slovakia 21 [-87, 100] 11 [-47, 67] 320 [-1809, 1087] 4 [-24, 14]
Germany 618 [-629, 1460] 306 [-440, 944] 14626 [-23538, 29644] 304 [-489, 616]
Austria 178 [-308, 626] 97 [-179, 436] 6078 [-15534, 15387] 34 [-86, 85]
Belgium 191 [-600, 1091] 101 [-441, 834] 5352 [-31477, 24778] 14 [-84, 66]
France 1357 [-331, 2920] 857 [-219, 2325] 95929 [-40644, 190114] 423 [-179, 838]
Portugal 202 [-1683, 1667] 122 [-1229, 1255] -5205 [-72249, 29231] -22 [-300, 121]
Netherlands -1573 [-2756, -277] -838 [-1859, -106] -82805 [-181983, -3149] -75 [-164, -3]
Total 114769 [81915, 167796] 56781 [36247, 100400] 844609 [396860, 1253494] 1689 [794, 2507]

Supplementary Table S3: Total cases attributed to the Euro 2020 and related 95 % credible intervals. The
associated deaths are calculated under the assumption that the cases were equally distributed among age-groups and
using the case fatality risk for the respective country in the time window of the Euro 2020.
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Country ∆Rmean
match Delay D

Avg. 0.46 [0.18, 0.75]
England 0.75 [0.01, 1.66] 4.55 [4.36, 4.94]
Czech Republic 1.26 [-0.50, 3.19] 5.53 [4.75, 6.32]
Scotland 1.09 [-2.77, 4.69] 3.52 [3.35, 3.74]
Spain 0.37 [-0.72, 1.83] 6.91 [5.43, 7.82]
Italy 0.28 [-1.11, 1.79] 5.51 [3.96, 7.11]
Slovakia 0.32 [-2.27, 2.56] 5.00 [3.67, 7.28]
Germany 0.33 [-0.62, 1.12] 6.82 [5.69, 8.43]
Austria 0.28 [-0.90, 1.45] 4.58 [3.46, 6.37]
Belgium 0.11 [-0.61, 0.92] 5.09 [3.71, 6.69]
France 0.30 [-0.46, 0.97] 3.68 [3.13, 4.46]
Portugal -0.02 [-1.33, 1.34] 5.49 [4.30, 6.55]
Netherlands -0.74 [-3.30, 1.36] 5.70 [4.28, 6.00]

Supplementary Table S4: Average effect of Euro 2020 matches on the spread of COVID-19, per country.

Country Matches
played

Matches
hosted

Union
Time between first and last
match of the country (days)

England 7 8 9 28
Czech Republic 5 0 5 19
Scotland 3 4 5 8
Spain 6 4 7 22
Italy 7 4 8 30
Slovakia 3 0 3 9
Germany 4 4 5 14
Austria 4 0 4 13
Belgium 5 0 5 20
France 4 0 4 13
Portugal 4 0 4 12
Netherlands 4 4 5 14

Supplementary Table S5: Number of matches played by the national team in the Euro 2020, matches played in
the country and the union of the two categories. The union denotes the sum of the first two numbers without the
overlapping matches.
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S4 Supplementary Figures

Supplementary Figure S2: Overview of the sum of primary and subsequent cases accountable to the
Euro 2020. Calculations account for cases until July 31st, i.e., about three weeks after the championship finished.
In the Netherlands (⋆) the “freedom day” occurred on the same time as the Euro 2020. This effect also had a gender
imbalance, thus, making it hard for our model to extract the Euro 2020 effect (see. Fig. S31). White dots represent
median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and the
distributions in color (truncated at 99% CI) represent the differences by gender (n = 12 countries).
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Supplementary Figure S3: Overview of cases in all considered countries apart from the Netherlands
We split the observed incidence (black diamonds) of the three countries with the largest effect size into i) cases
independent of Euro 2020 matches (gray area), ii) primary cases (directly associated with Euro 2020 matches, red
area), and ii) subsequent cases (additional infection chains started by primary cases, orange area). See Figure 2 for
more details. The turquoise shaded areas correspond to 95% CI. In the box plots, white dots represent median values,
turquoise bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively.



10

Supplementary Figure S4: We found no significant correlation between cases arising from the Euro 2020
and human mobility. Using mobility data from the “Google COVID-19 Community Mobility Reports” [5], we
tested for correlation against the fraction of Euro 2020 related cases. Using the different categories (A-F) from the
Mobility Report we found no significant correlation in either. The gray line and area are the median and 95% credible
interval of the linear regression (n = 11 countries; The Netherlands was excluded for this analysis). Whiskers denote
one standard deviation.

Supplementary Figure S5: We found no significant correlation between cases arising from the Euro 2020
and the stringency of governmental interventions. We correlated the average Oxford governmental response
tracker [3] in the two weeks before the championship with the total number of cases per million inhabitants related to
football gatherings. The gray line and area are the median and 95% credible interval of the linear regression (n = 11
countries; The Netherlands was excluded for this analysis). Whiskers denote one standard deviation.
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Supplementary Figure S6: We found slight trends in the correlations between the impact of Euro 2020
and the base reproduction number and country popularity. While these correlations are below the classical
significance threshold of 0.05, they are less explanatory than the potential for spread (defined in Fig. 3). There was
no significant correlation between the initial COVID-19 incidence and the impact of the Euro 2020. The gray line
and area are the median and 95% credible intervals of the linear regression (n = 11 countries; The Netherlands was
excluded for this analysis). Whiskers denote one standard deviation.

Supplementary Figure S7: Prediction of the impact of Euro 2020 matches without the two most significant
countries in the main model (England and Scotland). The potential for spread, i.e., the number of COVID-19
cases that would be expected during the time T a country is playing in the Euro 2020 (N0 · R

T/4
pre ) is still correlated

with the number of Euro 2020-related cases after removing the two most significant entries from the analysis but
not significantly. The observed slope without the most significant countries (median: 0.76, 95% CI: [-1.46, 3.04]) is
consistent within its uncertainties with the slope including all countries (median: 1.62, 95% CI: [1.0, 2.26])). Due to
the post-hoc nature of the removal of the most significant entries, this result is only shown for information. The gray
line and area are the median and 95% credible interval of the linear regression (n = 9 countries; The Netherlands,
England and Scotland were excluded for this analysis). Whiskers denote one standard deviation.
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Supplementary Figure S8: Effect of single Euro 2020 matches on the spread of COVID-19 across com-
peting countries. White dots represent median values, colored bars and whiskers correspond to the 68% and 95%
credible intervals (CI).
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S4.1 Model including the effect of stadiums

Supplementary Figure S9: Including in our model the potential local transmission around the stadium
where the matches occur does not significantly increase the overall effect. In addition to the effect of
football-related gatherings (A), we extended our model to include an additive effect on the reproduction number
when a country hosted a match (B) (for those countries that hosted matches, i.e. n = 6 countries). We assume that
local transmissions in and around the stadium would be detected mainly in the venue’s country. However, football-
related cases in a country where matches have a significant contribution to COVID-19 spread are tied to the dates
of matches played by the country’s team (A) and not to the country of the stadium venue (B), which is especially
visible for England and Scotland. This also explains why previous attempts at measuring Euro 2020-related cases
focusing on stadium venues were inconclusive. For Spain, an increase in the base reproduction number close to the
date of a match makes the model inconclusive. In transparent is the region of the posterior of which we suppose that
the model identifies the increase incorrectly; that is, where the posterior delay is smaller than 5.5 days. White dots
represent median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively,
and the distributions in color (truncated at 99% CI) represent the differences by gender.

S4.2 Testing the detection of a null-effect

13
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Supplementary Figure S10: A temporal offset of 14 days leads to no inferred effect. An artificial offset of
the match data of 14 days decouples the gender ratio changes and the matches. This leads to no inferred effect of
the championship – even in the three countries with the largest effect sizes in the main model (A-C). White dots
represent median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI) (n = 12
countries). Shaded turquoise area denotes 95% CI.



Supplementary Information of
Impact of the Euro 2020 championship on the spread of COVID-19

Supplementary Figure S11: Changing the days of the match by a large offset results in a non-significant
effect. To test the reliability of our results, we ran counterfactual scenarios where the date of the matches was moved
to lie outside the championship period. As expected, such offsets lead non-significant results of the average effect
size across countries. White dots represent median values, black bars and whiskers correspond to the 68% and 95%
credible intervals (CI) (n = 11 countries, The Netherlands was excluded for this analysis).

S4.3 Robustness of parameters

15
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Supplementary Figure S12: Robustness test for the effect of the temporal association between matches
and cases by varying the effective delay. We applied an artificial variation of all match days in a positive or
negative direction. Under these relatively small variations of the delay, the gender imbalance is strong enough to
lead to a stable effect size as the prior of the delay still allows for a sufficient shift of the posterior delay. The model
run for France with a 1-day offset is missing because of an unknown, sampling-based error. White dots represent
median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and the
distributions in color (truncated at 99% CI) represent the differences by gender (n = 11 countries, The Netherlands
was excluded for this analysis).
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Supplementary Figure S13: Robustness test for the effect of the width of the delay kernel. In this robustness
test, we varied the prior for the width of the delay kernel from the country-specific default (green) towards smaller
(yellow) and larger (purple) widths (left column). In the violin plots, the left side is the prior for men; the right side
for women. The right column shows the priors and resulting posterior of the standard deviation of the delay kernel
σD. Except for England and Scotland (A2, D2), the data does not constrain this parameter. The results are not
significantly modified in any country by changing the prior assumptions on this parameter (left column). On average,
allowing for larger widths increases the effect size over the reported results. White dots represent median values,
black bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and the distributions in
color (truncated at 99% CI) represent the differences by gender.
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Supplementary Figure S14: Robustness test for the effect of the allowed base reproduction number
variability. We propose models with three different base change point intervals: 6 days (yellow), 10 days (green),
and 20 days (purple). In the violin plots, the left side is the distribution for men; the right side for women. We do not
find significant differences in the fraction of football-related cases (left column) nor in the base reproduction numbers
Rbase (right column). On average, allowing less variation in Rbase – i.e., removing the freedom of the model to absorb
potential gender-symmetric and non-time-resolved cases related to football matches into short-timescale variations of
Rbase – increases the effect size over the reported baseline results. Shaded areas in panels *2 correspond to 95% CI.
White dots represent median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI),
respectively, and the distributions in color (truncated at 99% CI) represent the differences by gender.
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Supplementary Figure S15: Robustness test for the effect of the fraction of female participation in football
related gatherings The default model employs a relatively constraining prior for the fraction of female participation
in football-related gatherings (green) motivated by [9]. To check for the influence of this assumption, in an alternative
model, we assume a more uninformative prior with mean female participation of 50% participation (purple) instead
of 20% (green) (A2-G2). We do not find large differences in the results. On average, the total fraction of cases
attributed to football matches grows when allowing the assumption of larger female participation in the fan gatherings.
Hence, more cases are attributed to the Euro 2020 overall than in the baseline model. At the same time, a constraint
used by the model for associating cases and matches is relieved. Thus, on average, the uncertainty of the posterior
slightly grows (A1-G1). White dots represent median values, black bars and whiskers correspond to the 68% and
95% credible intervals (CI), respectively, and the distributions in color (truncated at 99% CI) represent the differences
by gender.
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Supplementary Figure S16: Robustness test for the effect the generation interval. We propose models with
three different generation intervals: with a mean of 4 days (yellow), 5 days (green), and 6 days (purple). The
lack of significant difference in the fraction of football-related cases (left column) shows that if we assume a longer
generation intervals than our base assumption of 4 days our conclusions do not change. One remarks that the the base
reproduction numbers Rbase (right column) increases with a longer assumed generation interval, which is expected
because a the increase of cases that needs to be modeled stays fixed. In the violin plots, the left side is the distribution
for men; the right side for women. Shaded areas in the right column correspond to 95% CI. White dots represent
median values, black bars and whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and the
distributions in color (truncated at 99% CI) represent the differences by gender.
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Supplementary Figure S17: Robustness test for the remaining priors not studied in the previous figures.
Many of the priors in the model are relatively uninformative for the model. In these runs, we increased and decreased
the prior value of the equations (16), (26), (35), (51), (52) and (54) by a factor of 2. In the violin plots, the left side
is the distribution for men; the right side for women. White dots represent median values, black bars and whiskers
correspond to the 68% and 95% credible intervals (CI), respectively, and the distributions in color (truncated at 99%
CI) represent the differences by gender.
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Supplementary Figure S18: The combination of the case numbers of England and Scotland leads to
similar results. Because England and Scotland had each a team participating in the Euro 2020 we analyzed
them separately, even if both are part of the United Kingdom. Here we added the case numbers of both (denoted as
GB) and combined their matches for a new model run. The overall results do not change much in this alternative
parametrization. White dots represent median values, black bars and whiskers correspond to the 68% and 95%
credible intervals (CI), respectively, and the distributions in color (truncated at 99% CI) represent the differences by
gender (n = 11 countries).

S4.4 Further analyses

Supplementary Figure S19: Our model is able to identify the delay between infection and reporting of
it. We tested counterfactual scenarios for England, Scotland and the Czech Republic where the dates of the matches
were changed. Despite the same prior delay, the model managed to adapt the inferred delay to match the expected
delay from the original model. White dots represent median values, black bars and whiskers correspond to the 68%
and 95% credible intervals (CI).
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Supplementary Figure S20: Relative popularity of the search term “football” in England and Scotland
measured using “Google Trends” [7] in the category “sport news”. Vertical red lines represent the final and match of
Scotland vs England, respectively.
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Supplementary Figure S21: Male-female imbalance over time shows the largest deviations during cham-
pionship. We plotted the gender imbalance directly from our data (left column). All countries which showed
significant effects had their largest imbalance change during or slightly after the championship (red), and also a num-
ber of non-significant countries display this behavior. In addition, the standard deviation of the imbalance during
the championship (red) was on average larger than before the championship (orange, right column). This indicates
that the large changes in imbalance during the championship were highly unusual and can’t be attributed to chance
alone. The red time period are the 30 days of the tournament plus the 5 days after and the orange time period the
ones up to 35 days before the tournament.
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Supplementary Figure S22: The inferred noise terms do not depend strongly on the length of the analyzed
time-period. We plotted the size of our gender noise term σ∆γ̃ and the size of the change-points of the base
reproduction number σ∆γ . When beginning the run of our model a month earlier (blue), the noise terms do not
change significantly compared to our base model (orange). White dots represent median values, colored bars and
whiskers correspond to the 68% and 95% credible intervals (CI).
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Supplementary Figure S23: The inferred effect size (percentage of football-related primary infections)
do not depend strongly on the length of the analyzed time-period. To showcase that the total length of
the analyzed period doesn’t change significantly our results, we compare the percentage of football-related primary
infections one-month-longer runs (blue) compared to our base model (orange). White dots represent median values,
colored bars and whiskers correspond to the 68% and 95% credible intervals (CI).
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S4.5 Posterior of parameters
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Supplementary Figure S24: Overview of the posterior for England. We compare (A) the time-dependence of
the incidence before, during (blue shaded area) and after the championship; (B) the gender imbalance of observed
cases; (C) Oxford governmental response tracker (OxCGRT) [3] and public health and social measures severity index
(PHSM) [4] (not part of the model); (D) the gender-symmetric base reproduction number Rbase; (E) the gender-
asymmetric football reproduction number Rfootball; (F) gender-asymmetric noise related reproduction number Rnoise;
and (G) to (Q) the prior and posterior of various parameters. In mid July the incidence starts dropping. In contrast,
the number of deaths continues to increase. Together, this indicates that the testing policy was changed around
that time. England is one of the two countries where the delay D and the female participation in fan activities
dominating the additional transmission can be measured and significantly constrained with the data compared to
the prior distribution (G and I). Red diamonds show data not used for the analysis. This comes with an increase
in the uncertainty in the model prediction. One notes two slight bumps of the base reproduction number: one
during and one after the end of the championship. The first bump may indicate that our model is not able to
fully attribute a part of the effective reproduction number to ∆Rfootball and is attributing the effect of England’s
matches in the group phase to the base reproduction number instead. The second bump might be explained hereby:
During the championship there may be generally more social contacts, which are not in temporal synchronization
with the matches, and therefore not explained by ∆Rfootball but by Rbase instead. Hence, after the championship the
base reproduction number decreases and increases again when measures are lifted (C). The turquoise shaded areas
correspond to 95% credible intervals.
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Supplementary Figure S25: Overview of the posterior for Austria. For an explanation of the panel structure,
see supplementary Fig. S24. Austria shows a low significance for assigning cases to matches. The increase of Rbase

coincides with the relaxation of restrictions C, but the subsequent decrease is not explained. The turquoise shaded
areas correspond to 95% credible intervals.
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Supplementary Figure S26: Overview of the posterior for Belgium. For an explanation of the panel structure,
see supplementary Fig. S24. Belgium shows a low significance for assigning cases to matches, but an intermittent
increase of Rbase during the championship. The turquoise shaded areas correspond to 95% credible intervals.
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Supplementary Figure S27: Overview of the posterior for the Czech Republic. For an explanation of the
panel structure, see supplementary Fig. S24. The overall incidence is relatively low, which increases the noisiness of
the data. This is especially apparent in the gender imbalance (B). The base reproduction number is slowly increasing
during the analyzed time-period, which can be partially explained by a decrease of the stringency index (C). The
match effects are greater for later matches, beginning from the last group match until the quarterfinals (E), which is
the expected variation. The turquoise shaded areas correspond to 95% credible intervals.
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Supplementary Figure S28: Overview of the posterior for France. For an explanation of the panel structure, see
supplementary Fig. S24. France shows a very pronounced increase of Rbase over the course of the championship and
a very small fraction of cases assigned to matches of the French team. This hints at a rather gender-neutral effect
of match-induced infections in France, in agreement with the results shown in Fig. S15. The peak of Rbase occurs
on July 11th when clubs etc re-opened. It is unclear why the base reproduction number decreases this much again
afterwards. The turquoise shaded areas correspond to 95% credible intervals.
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Supplementary Figure S29: Overview of the posterior for Germany. For an explanation of the panel structure,
see supplementary Fig. S24. Germany shows an increase of Rbase and of the gender imbalance over the course of the
championship (B). It might be the case that the Euro 2020 contribution is not tightly tied to matches of the German
team, prohibiting the model to explain the observed gender imbalance via the individual matches (E), leading to an
increase of ∆Rnoise instead (F). The turquoise shaded areas correspond to 95% credible intervals.
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Supplementary Figure S30: Overview of the posterior for Italy. For an explanation of the panel structure, see
supplementary Fig. S24. Italy is one of the countries where an intermittent increase in Rbase is observed (D). The
development of the base reproduction number also coincides well with the relaxations and reinstatement of restrictions
(C). Match-related football effects are not clearly visible (E). The turquoise shaded areas correspond to 95% credible
intervals.
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Supplementary Figure S31: Overview of the posterior for the Netherlands. For an explanation of the panel
structure, see supplementary Fig. S24. The country wide “freedom day” on June 26th [10] is clearly visible in the
incidence numbers A as well as the posterior base reproduction number B. Its effects overshadow possible effects
from the Euro 2020 and we removed this country from subsequent analyses. The turquoise shaded areas correspond
to 95% credible intervals.
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Supplementary Figure S32: Overview of the posterior for Portugal. For an explanation of the panel structure,
see supplementary Fig. S24. Together with England, Portugal has the highest Rbase before the championship. It is
the only country in which a decrease of Rbase over the course of the championship is observed. The fact that Rbase

remains low after the championship could be a hint that the possible increase of cases due to the Euro 2020 in Portugal
is small compared to the reduction stemming from unrelated changes. The turquoise shaded areas correspond to 95%
credible intervals.
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Supplementary Figure S33: Overview of the posterior for Scotland. For an explanation of the panel structure,
see supplementary Fig. S24. Scotland is the country with the most significant effect of a single match, in this
case against England. While this is in full agreement press reports (see also Fig. S20), the prior assumption of an
exceptional large effect of this game is not built into the model. This clear association, thus, is a successful validation
of the model functionality. The relaxation of governmental restrictions on August 9th is also well reflected in the
development of the base reproduction number. The turquoise shaded areas correspond to 95% credible intervals.



S4.5 Posterior of parameters 38

Supplementary Figure S34: Overview of the posterior for Slovakia. For an explanation of the panel structure,
see supplementary Fig. S24. Hardly any significant effects, apart from a small but long-lasting increase in Rbase, are
observed. The turquoise shaded areas correspond to 95% credible intervals.
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Supplementary Figure S35: Overview of the posterior for Spain. For an explanation of the panel structure,
see supplementary Fig. S24. The national state of emergency ended in Spain on June 21st, in the middle of the
championship. The model has therefore some difficulty to separate the effect of the relaxation of restrictions and
the one of the matches, which translates into wide credible intervals in Rbase (C) and ∆Rfootball (D). The turquoise
shaded areas correspond to 95% credible intervals.
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Supplementary Figure S36: Overview of the posterior for the combined data of England and Scotland For
an explanation of the panel structure, see supplementary Fig. S24. The turquoise shaded areas correspond to 95%
credible intervals.
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S4.6 Chain mixing of selected parameters

Supplementary Figure S37: Chain mixing of selected parameters for England Here we plot the unnormalized
log-posterior probability (A) and selected parameters (B – F) as function for each draw and MCMC chain. Orange
and blue depict two chains with the highest between-chain variance, the two least converging chains. The gray lines
and histogram represent the ensemble of all chains. For our parameters of interest (B, C) the posterior distribution
mixes well, even if the individual chains do not mix well in some other parameters (D – F), indicating that despite
the degeneracy of some parameters, the inference of our parameters of interest is not affected. Panel D is a plot of the
parameter with the worst mixing (the highest R-hat value). Panels E and F show that the non-converging behavior
can be explained as the exchange between two nearly degenerate solutions in two of the auxiliary parameters.
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Supplementary Figure S38: Chain mixing of selected parameters for Austria Here the fraction of cases delayed
by weekday on Thursdays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.

Supplementary Figure S39: Chain mixing of selected parameters for Belgium Here the fraction of cases delayed
by weekday on Fridays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.
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Supplementary Figure S40: Chain mixing of selected parameters for Czech Republic Here the fraction of
cases delayed by weekday on Thursdays is the parameter with the highest R-hat values as seen in panel D. For a
further detailed description of the panels see supplementary Fig. S37.

Supplementary Figure S41: Chain mixing of selected parameters for France Here the fraction of cases delayed
by weekday on Wednesdays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.
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Supplementary Figure S42: Chain mixing of selected parameters for Germany Here the fraction of cases
delayed by weekday on Thursdays is the parameter with the highest R-hat values as seen in panel D. For a further
detailed description of the panels see supplementary Fig. S37.

Supplementary Figure S43: Chain mixing of selected parameters for Italy Here the fraction of cases delayed
by weekday on Thursdays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.
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Supplementary Figure S44: Chain mixing of selected parameters for Portugal Here the fraction of cases
delayed by weekday on Wednesdays is the parameter with the highest R-hat values as seen in panel D. For a further
detailed description of the panels see supplementary Fig. S37.

Supplementary Figure S45: Chain mixing of selected parameters for Portugal Here the fraction of cases
delayed by weekday on Saturdays is the parameter with the highest R-hat values as seen in panel D. For a further
detailed description of the panels see supplementary Fig. S37.
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Supplementary Figure S46: Chain mixing of selected parameters for Scotland Here the fraction of cases
delayed by weekday on Wednesdays is the parameter with the highest R-hat values as seen in panel D. For a further
detailed description of the panels see supplementary Fig. S37.

Supplementary Figure S47: Chain mixing of selected parameters for Slovakia Here the fraction of cases delayed
by weekday on Thursdays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.
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Supplementary Figure S48: Chain mixing of selected parameters for Spain Here the fraction of cases delayed
by weekday on Fridays is the parameter with the highest R-hat values as seen in panel D. For a further detailed
description of the panels see supplementary Fig. S37.
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