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Summary 

Maize, a key cereal crop, stands alongside wheat and rice in global importance. Its domestication 

from teosinte in southern Mexico 10,000 years ago marked a turning point in human agriculture. 

Over the centuries, maize has spread globally, becoming a staple crop vital for food, feed, and 

biofuel. Modern plant breeding techniques and improved genetic backgrounds have propelled 

maize production, making it adaptable to diverse environments and significantly contributing to 

global food security. 

The increase in agronomic traits owes to multiple factors, including advancements in plant 

genetics, agronomic practices, and technological innovations. Agronomic practices, precision 

agriculture, and remote sensing contribute to higher yields, underscoring the multidimensional 

approach to crop improvement. Molecular markers and genomic selection enable breeders to 

identify genes controlling crucial agronomic traits like yield, flowering time, and plant height. 

Genetic markers, especially single nucleotide polymorphisms (SNPs), have been pivotal in 

developing improved maize varieties. 

The integration of sequencing technology has revolutionized plant breeding, making genetic 

information more accessible. The decreasing cost of sequencing has facilitated genome 

exploration, enabling the identification of genes controlling agronomic traits.  

Furthermore, researchers have identified that additive genetic variation predominantly 

contributes to the variation within a population. However, it is acknowledged that additive 

variation does not fully account for heritability, leaving a portion known as missing heritability. 

Consequently, an increasing number of studies are directing their focus toward understanding 

and incorporating this missing heritability to enhance the prediction of quantitative agronomic 

traits. Epistasis, representing complex interactions between genes, is one approach employed to 

calculate this missing heritability. However, detecting epistatic interactions poses challenges, 

notably the multiple testing problem. Additionally, environmental factors can modify gene 

effects, complicating their detection. To address these complexities and identify epistatic 

interactions while considering the impact of the environment on genotypes, a unique population 

must be tested across various environments. 



 Summary 7 

 

The initial study aimed to identify epistasis by environment interactions using genomes-to-field 

(G2F) data tested in multiple environments. In the second study, we aimed to investigate origin-

of-seed effects utilizing an Epistasis Mapping Population (EMP).  

Epistasis by environment (EEI) study delves into the complicated relationships between various 

agronomic traits in maize, exploring correlations, heritability, and quantitative trait loci (QTL) 

mapping across multiple environments to find the interactions between QTLs, QTLs by 

environment, and epistasis by environment interactions. The research investigated the following 

quantitative traits: pollination and silking days, plant and ear height, stand percentage, and yield. 

The initial analysis reveals strong correlations between pollen and silk days after pollination 

(DAP), as well as between plant height (PH) and ear height (EH). Moderate correlations exist 

among PH, EH, pollen DAP, and silk DAP, indicative of the intricate network of influences among 

these quantitative traits. Interestingly, the stand percentage exhibits a low correlation with other 

traits across locations, suggesting its sensitivity to external factors during the growing period. 

The subsequent QTL mapping analysis uncovers significant loci associated with the studied traits 

across environments. These findings align with previous research, emphasizing the genetic 

complexity of traits. Notably, the study identifies specific QTLs for each trait in different locations, 

underlining the substantial impact of environmental factors on trait expression. Our analysis 

extends to QTL-environment interactions, revealing location-specific markers and significant 

interactions for pollen DAP, silk DAP, PH, EH, and yield. This underscores the importance of 

considering the environment when interpreting genetic influences on these traits.  

Moreover, we identified significant epistatic interactions for each phenotypic trait. The following 

analysis introduces the concept of epistasis by environment interactions (EEI), illustrating pollen 

and silk DAP, PH, EH, and yield. EEI study comprehensively illustrates the genetic and 

environmental factors influencing agronomic traits in maize. Our research contributes valuable 

insights that can inform future breeding strategies and enhance our understanding of maize 

phenotypic traits' complex genetic and environmental interactions. 

In the second study, we utilized two diverse seed sources of Epistasis Mapping Populations 

(EMPs), which aim to identify epistatic interactions between genomic regions, to investigate 

origin-of-seed effects on mRNA levels. By comparing phenotypic performances, EMP helps 

identify regions of the genome where epistasis occurs, contributing valuable insights into gene 
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regulation and species evolution. EMPs reduce the multiple-testing and provide a nuanced 

understanding of gene interactions. The study focused on the influence of origin-of-seed on maize 

seedlings at the V2 growth stage with EMPs. While complete sets of EMPs are traditionally 

required for studying epistatic interactions, the study uses a subset of genotypes in this part of 

the research question. 

Our study found no differentially expressed genes (DEGs) between two seed sources at the V2 

growing stage. Despite limitations, such as a small sample size and focusing solely on mRNA 

expression, the study suggests that greenhouse and field environmental conditions do not 

significantly impact the progeny's gene expression at the V2 growing stage. In addition, robust 

comparisons between different genotypes validate the reliability of the analysis, reinforcing the 

conclusion that origin-of-seed effects do not lead to significant expression. Overall, this research 

contributes valuable insights into the origin-of-seed effect on maize seedlings, pointing out a 

direction for further investigations.
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Chapter 1: General Introduction 

Background information 

Throughout human history, the domestication and cultivation of plant species have been 

essential activities to ensure the survival and well-being of communities (Clement, 1999; Doebley 

et al., 2006; Janick, 2010). Improving the performance of such crops contributed to the gradual 

increase in the human population (Diepenbrock and Gore, 2015). A recent, major phase of 

agronomy as a driver in feeding the world’s population was the so-called Green Revolution, led 

by Norman Borlaug, also widely considered the father of modern agriculture (Evenson and Gollin, 

2003; Hobbs, 2007). We can describe the Green Revolution as a combination of several 

accomplishments that changed agriculture drastically: 1) agricultural mechanization, 2) 

availability of mineral nitrogen fertilizers, and 3) Borlaug's modern wheat and rice cultivars with 

short plant height and higher nitrogen usage efficiency (NUE), which utilized higher N doses more 

efficiently and thus provided significantly higher grain yield. This breakthrough set the stage for 

continued advancements in plant breeding techniques, leading to steady crop yields and food 

production improvement (Paddock, 1970; Rosset et al., 2000; Hedden, 2003; Patel, 2013). Today, 

plant breeding continues to play a critical role in modern agriculture, with scientists and breeders 

working together to develop improved varieties of crops that are better equipped to face the 

challenges posed by pests and diseases, are better adapted to changing climate conditions and 

hence have higher yields (Ronald, 2011; Begna, 2021). As a result, food and feed production has 

dramatically increased in recent decades, providing adequate nutrition for the world's growing 

population. The continued improvement in agriculture and food production is crucial in meeting 

the food needs of the growing human population (Borlaug, 1983; Serageldin, 2001; Kc et al., 

2018). 

Maize (corn, Zea mays L.)  is one of the three most important cereal crops globally, alongside 

wheat (Triticum aestifum L.)  and rice (Oryza sativa L.), in terms of production and consumption 

(Awika, 2011; Ranum et al., 2014; Macauley and Ramadjita, 2015). Maize is a staple crop that has 

played a significant role in human history and is an essential source of food, feed, and biofuel 

(Shiferaw et al., 2011; Datta et al., 2019; García-Lara and Serna-Saldivar, 2019). Maize was first 

domesticated in southern Mexico about 10,000 years ago from its wild ancestor, teosinte, and 
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introduced to Europe during the 15th century, quickly spread to the Old World (Pounds et al., 

1979; Tenaillon and Charcosset, 2011). Since then, maize has become a staple crop in many 

countries and is widely cultivated for human consumption and animal feed. With the 

development of plant breeding techniques and the improvement of its genetic background, maize 

production has increased rapidly (Duvick, 1996; Ortiz-Monasterio et al., 2007). Today, maize is a 

prominent crop because it is versatile, adaptable to various environments, and can provide a high 

yield around the globe (Thornton et al., 2009, 2010). The rapid yield increase in the production of 

maize has made it a critical food source for humans and animals in many countries. Also, maize 

has become a hard-to-forsake feed ingredient for livestock and poultry (Palacios-Rojas et al., 

2020; Grote et al., 2021; Wilson et al., 2021).  

The increase in yield can be attributed to several other factors. One of these factors is the 

advancement in plant genetics, allowing plant breeders to identify desirable traits and 

incorporate them into hybrid cultivars (Hallauer et al., 2010; Breseghello and Coelho, 2013). For 

example, molecular markers and genomic selection have enabled the identification of genes 

controlling agronomic traits, such as drought tolerance, pest resistance, and earliness, allowing 

for the development of cultivars better adapted to specific environmental conditions (Agbicodo 

et al., 2009; Randhawa et al., 2013). Improved agronomic practices have also contributed to the 

increase in maize yields. Adopting proper sowing techniques, using high-quality seeds, and 

implementing practical pest and disease management strategies have further improved crop 

yields (Coakley et al., 1999; Amanullah and Khalid, 2020). Furthermore, modern technologies, 

such as precision agriculture and remote sensing, have allowed farmers to monitor crop growth 

and make more informed decisions regarding crop management, leading to even higher yields 

(Brisco et al., 1998; Robert, 2002; Liaghat and Balasundram, 2010). In short, the increase in maize 

yield results from several factors, including advances in plant genetics, plant nutrition, and 

agronomic practices (Laidig et al., 2014). By utilizing these various techniques and technologies, 

farmers and plant breeders have improved the performance of maize and increased its yield, 

providing a critical source of food, feed, and biofuel for the world's growing population. 
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Infinitesimal model and linkage disequilibrium (LD) 

In the early 1900s, there were two predominant views on inheritance, the single-locus inheritance 

theory put forth by Mendel and the blending mechanism hypothesis proposed by the 

Biometricians of that time (Wright, 1984; Gluckman et al., 2016). These two hypotheses were 

gradually integrated over time, with Hardy-Weinberg introducing a formula in 1908 that showed 

how allele frequencies remain constant across generations in a closed population under the 

assumption that there is no mutation, selection, genetic drift, or random mating (Wittke-

Thompson et al., 2005; Edwards, 2008). Fisher, regarded as the father of quantitative genetics, 

combined Mendel's single-locus inheritance theory with the idea that continuous traits are 

influenced by many genes with small effects in his "infinitesimal model," introduced in 1918 

(Fisher, 1930; Toschi, 1960; Orr, 2005). In his model, Fisher explained that the visible variation of 

continuous traits observed in populations results from a complex interplay between genetic 

factors, environmental factors, and their interaction (G x E). Fisher's work marked a significant 

milestone in genetics, as it provided a framework for understanding that complex interplay 

between genetic and environmental factors that influence plant performance (Zondervan and 

Cardon, 2004; Atkinson and Urwin, 2012). This knowledge has enabled plant breeders to develop 

more effective breeding strategies, incorporating genetic and environmental factors into the 

breeding process. Today, the principles of single-locus inheritance, Hardy-Weinberg's formula, 

and Fisher's infinitesimal model form the foundation of modern genetics and plant breeding, 

providing the scientific community with a deep understanding of the genetic mechanisms that 

drive heritable changes in plant performance (Hill, 2010). Mendel's findings relied on absence of 

linkage between his monogenic traits under study, but it is agreed upon that genes on the same 

chromosome do not segregate independently (Ardlie et al., 2002; Flint-Garcia et al., 2003). LD 

became the foundation for genetic mapping, as genes that are physically closer together on a 

chromosome are more likely to be co-inherited into the next generation than otherwise (Kruglyak, 

1997; Altshuler et al., 2008). The segregation ratio indicates the distance between two genes, 

expressed in Morgan units, with physically closer genes showing less likely recombination in the 

offspring than distant genes or genes on different chromosomes (Olson et al., 1999; Rafalski, 

2002; Terwilliger and Göring, 2009). 
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Genetic markers and the importance of single nucleotide polymorphisms (SNPs) 

There are several types of genetic markers, including single nucleotide polymorphisms (SNPs) 

(Chanock, 2001; Syvänen, 2001; Nasu, 2002), insertion/deletion polymorphisms (INDELs) 

(McCauley, 1995), microsatellites, and restriction fragment length polymorphisms (RFLPs) 

(Tanksley et al., 1989), each with its advantages and limitations for specific applications (Dodgson 

et al., 1997; Liu and Cordes, 2004; Kumar et al., 2009). SNP markers are the most common and 

applied markers by researchers and plant breeders (Poland and Rife, 2012; Mammadov et al., 

2012; Nadeem et al., 2018). The application of genetic markers has become more widespread and 

accessible in the 21st century due to the rapid advancement of sequencing technology (Collard 

and Mackill, 2007; Kim et al., 2016). The decreasing cost of sequencing has allowed plant breeders 

to access the genomes of various plant species, providing valuable information that can be used 

to improve varieties of crop performance (Muir et al., 2016; Mardis, 2017). This information can 

be used to identify genes controlling important agronomic traits, such as drought tolerance, pest 

resistance, and yield, and then incorporate those desirable traits into cultivars (Forster et al., 

2004; Jena and Mackill, 2008; Pandey et al., 2014). Moreover, sequencing technology has allowed 

the development of more accurate and efficient methods in plant breeding. For example, 

genomic selection has enabled plant breeders to predict which plant should be agronomically 

best based on a joint exploitation of genomic information and phenotypic information rather than 

based on phenotypic measurements alone (Heffner et al., 2009; Crossa et al., 2017). This results 

in shorter crop varieties' improvement and more rapid and efficient breeder work (Carvalho, 

2006, 2017). In addition, sequencing technology has also led to the discovery of genes and 

pathways involved in plant growth, providing new insights into the underlying mechanisms that 

regulate agronomic traits. Additionally, new approaches such as CRISPR-Cas promise precise 

genetic modifications, which allow genetic modifications that can be used to improve plant 

performance for human needs (Chen et al., 2019).  

Importance of G2F 

Phenotypic observations of several genotypes in diverse environments must be obtained to 

assess any type of genotype by environment interactions (GxE or GEI), including epistasis by 

environment interaction (EEI). However, applying strictly common rules, definitions, and units 
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when phenotyping in different environments is challenging and requires a strict, agreed-on 

procedure to observe phenotypic traits. If analyses of GEI of quantitative traits should be 

performed with a focus on the single-loci contributions to such traits, genotyping and subsequent 

QTL analyses is a way to go. Both, phenotyping in diverse environments and genotyping of 

genotypes are challenging and costly. The “Genomes to field” (G2F) initiative created a maize 

population, and the collaborators of phenotyping across locations observed traits across the 

different locations (Figure 1). Also, genotyping was done by the G2F initiative. G2F aims to analyze 

and predict GxE with high accuracy, finding the effect of genes (single loci, QTLs) and epistatic 

interactions; and aims to discover candidate genes across environments or specific to 

environments. Several research teams exploited findings from these G2F experiments, especially 

with a focus on genomic prediction (Westhues et al., 2021; Kick et al., 2022; Rogers and Holland, 

2022) and on high-throughput phenotyping (Sankaran et al., 2020).  
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Figure 1: Genomes to Field (G2F) collaborators and the location of the genotypes tested (source: 

https://www.genomes2fields.org ).  

Importance of environment and QTL-by-environment interactions 

Researchers and breeders have evaluated genotype-environment interactions, and one of the 

main goals of plant breeding is to identify genotypes that perform well under a wide range of 

environmental conditions (Kang, 1997; Annicchiarico, 2002). Hence, identifying the genes 

involved in a plant's phenotype variation and understanding how these genes interact with the 

environment is important to predict genotypes that perform well across environments. To 

achieve this, researchers have exploited multi-environment trials, hence testing the agronomic 

performance of different genotypes under diverse environmental conditions (Fox et al., 1997; 

Malosetti et al., 2013). The results of such trials have shed light on the complex interplay between 

genes and environments, and the concept of GEI is widely accepted and well-studied in the 

scientific community (Moffitt et al., 2005; Pigliucci, 2005; Laitinen and Nikoloski, 2019). In many 

https://www.genomes2fields.org/
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species, such as maize, wheat, and rice, researchers have identified location-specific QTLs, which 

are regions on chromosomes that play a role in determining the performance of a genotype. 

These QTLs are critical for breeders, as they provide valuable information about the performance 

of different genotypes in different locations, allowing breeders to make decisions according to 

the target environment (Weebadde et al., 2008; Barchi et al., 2012). Also, multi-environment 

trials have revealed stable QTLs consistent across different locations (Pilet et al., 2001; Hittalmani 

et al., 2003). These QTLs are valuable for breeders, as they can predict the phenotype accurately 

across different environmental conditions (Galiano-Carneiro et al., 2020).  

Epistasis 

Epistasis refers to the interaction between non-allelic genes that impact an organism's 

phenotype. Epistasis was first defined in the early 1900s by biologists and statisticians, with 

William Bateson defining it as the situation where genes at one locus mask the effect of genes at 

a different locus (Moore and Williams, 2009; de Visser et al., 2011; Mackay, 2014) (Figure 3). This 

concept is typically used to describe qualitative gene-gene interactions, such as determining eye 

color. Fisher, on the other hand, defined epistasis as deviation from additivity, meaning that the 

combined effect of genes at two loci on the phenotype is not identical with the sum of the 

individual effects of these loci (Fisher, 1919; Cordell, 2002; Moore, 2005). This concept of 

additivity should not be confused with intermediate gene action alleles at a locus, which is 

sometimes referred to as additive. The quantitative genetic perspective on epistatic interactions 

refers to whether and how the genes interact when causing a deviation from their expected joint 

effect on phenotype. Epistatic interactions have been debated among scientists for a long time, 

and they are easier to detect and observe in qualitative traits rather than quantitative traits 

(Whitlock et al., 1995; McKay et al., 2005; Phillips, 2008). As a result, epistatic interactions have 

often been overlooked or neglected in the study of quantitative traits. Detecting epistatic 

interactions in quantitative traits can require advanced statistical methods and a deeper 

investigation (Bender and Lange, 2001; Millstein et al., 2006). It is clear that epistatic interactions 

play a significant role in determining trait performance in plants, and therefore, scientific 

questions are built around epistatic interactions (Culverhouse et al., 2004; Carlborg and Haley, 

2004). 
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Figure 2: Epistasis encompasses genetic, biological, and statistical interactions influencing 

phenotypes. Genes undergo transcription and translation, directly impacting individual 

phenotypes (Genetic and biological epistasis). Additionally, interactions between proteins (shown 

as dashed lines) further shape phenotypic outcomes. Biological and genetic epistasis share a close 

relationship, involving molecular interactions within individuals. Statistical epistasis, however, 

operates at the population level, requiring variation among individuals to detect. It is important 

to note that epistasis can occur at the individual level without being statistically detectable (the 

figure is inspired by: (Moore, 2005)). 
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Epistasis is classified into three types based on its magnitude: negative, positive, and reciprocal 

sign epistasis. Negative epistasis occurs when the observed trait value resulting from the 

interaction between two mutations is lower than the expected sum of the gene effects. 

Conversely, positive epistasis is defined as a situation where the sum of the allele effects is greater 

than the interaction between the expected effects of the two genes. On the other hand, sign 

epistasis refers to a scenario in which the phenotypic value changes direction compared to the 

expected effects of the two genes (Phillips, 2008). Beneficial or deleterious alleles can impact the 

fitness of individuals, and genes can interact with each other. Positive and negative epistasis 

between two loci can alter the fitness effects in a population (de Visser et al., 2011; Bendixsen et 

al., 2017). For instance, even though two deleterious alleles individually many have detrimental 

effects, their joint occurrence and, hence, joint action could be beneficial in a competitive 

environment, and this surprise would hence be addressed as an epistatic interaction effect. 

Therefore, reciprocal sign epistasis can enhance the overall fitness of a population (Kvitek and 

Sherlock, 2011). In some cases, reciprocal sign epistasis can mitigate the adverse effects of 

deleterious mutations by suppressing their effects, a phenomenon known as genetic suppression 

(Mackay, 2014). 

In evolutionary genetics, increased epistatic interactions can contribute to the unpredictability of 

a population's fitness and phenotype. Conversely, additivity could lead to a smoother fitness 

landscape, where the fitness of potential genotypes becomes predictable (Figure 3) (Kvitek and 

Sherlock, 2011). Consequently, a population in Hardy-Weinberg equilibrium in a specific 

environment will reach its maximum fitness potential. However, when complex environmental 

changes occur in a population, the chances of new mutations increase, which may exhibit 

negative epistasis between two loci that improve a trait of interest (Poelwijk et al., 2011). 

Nevertheless, individuals carrying such new mutations have the potential to surpass their local 

fitness maximum and outperform previous generations in a suitable environment (Steinberg and 

Ostermeier, 2016). Therefore, epistasis is another source of variation that can be exploited, and 

enhancing our understanding of epistasis and its interaction with the environment can aid in 

addressing challenges related to global warming and improving agricultural varieties. 
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Figure 3: Interaction between two genes; additive (a), epistasis (positive) (b), reciprocal sign (c)). 

Below is a display of fitness landscapes between genes. When the number of additive interactions 

increases, the figure becomes smoother (d); with increased epistasis, the figure becomes rugged, 

and the fitness is unpredictable (e) (the figure is inspired by: (Shafee, 2014)). 

Epistasis-by-environment interactions 

The interaction between epistasis and environment is poorly understood, and only a few studies 

have been conducted on epistasis-environment interactions (EEI). In addition, testing a set of 

genotypes under diverse environmental conditions requires extensive resources and 

collaboration between multiple organizations. An excellent example of such collaboration is the 

Genomes2Field (G2F) program, a partnership between universities to test a set of genotypes in 

different locations. This program provides enormous data that allows researchers to study gene-
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environment and gene-gene interactions. Furthermore, this data provides an excellent 

opportunity for EEI in more detail. 

Epigenetics and epigenetic inheritance 

Epigenetics involves studying changes in gene expression or cellular phenotypes that occur 

without altering the underlying DNA sequence. Epigenetic changes profoundly impact an 

organism's development, health, and disease susceptibility. Epigenetic mechanisms encompass a 

range of processes, including the chemical modification of DNA and its associated proteins, 

particularly histones. Through these modifications, epigenetics controls gene activation and 

deactivation, thereby influencing the synthesis of proteins and other essential molecules vital for 

various cellular functions. Prominent epigenetic modifications within plants include DNA 

methylation and histone modifications. These mechanisms are intricately interconnected, 

forming a complex network that collectively governs gene regulation and cellular responses to 

environmental cues. (Matzke and Mosher, 2014; Kim et al., 2015; Miryeganeh and Saze, 2020). 

The term "epigenetic" first emerged in the 1940s, and it was redefined as "changes in a DNA 

sequence without altering the sequence," as officially established during the Cold Spring Harbor 

meeting in 2008 (Berger et al., 2009). While it is well known that DNA methylation undergoes a 

reset after germination in plants and during embryo development in humans and animals, some 

epigenetic markers can indeed be inherited by subsequent generations (Grossniklaus et al., 2013). 

The origins of these epigenetic changes are attributed to various factors, spanning from 

environmental influences such as stress and exposure to genetic and experiential influencers 

reverberating across generations. Epigenetic effects have also been observed in cloned plant 

progenies, revealing that successive cloning generations may not exhibit the same phenotype as 

the first generations. Researchers have pointed to an accumulation of methylation over later 

clonal generations to explain this phenomenon. A fundamental principle of epigenetics lies in the 

potential reversibility of these changes (Smulders and de Klerk, 2011). Nevertheless, there are 

cases where heritable epigenetic changes persist, exerting an enduring influence on mRNA 

expression in subsequent generations. Several types of epigenetic changes are summarized in the 

following sections: 
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DNA Methylation: DNA methylation is a fundamental epigenetic modification involving adding a 

methyl group to the cytosine base of a DNA molecule. This modification is pivotal in regulating 

gene expression by impeding the binding of transcription factors to the DNA sequence. In the 

context of plant genomes, DNA methylation primarily occurs in repetitive sequences that harbor 

CG dinucleotides; however, it can also extend to other sequence contexts such as CHG or CHH 

(where H represents A, C, or T), contingent upon the specific plant species (Bartels et al., 2018).  

In the intricate landscape of plants, DNA methylation serves multifaceted purposes. Notably, it 

silences transposable elements (TEs), mobile genetic entities that can potentially disrupt genomic 

integrity. This epigenetic silencing mechanism helps prevent the inappropriate activation and 

mobility of TEs, which can lead to genomic instability. Furthermore, DNA methylation 

orchestrates the precise control of nearby gene expression, exerting an influential role in fine-

tuning various biological processes (Miryeganeh and Saze, 2020). One intriguing facet of DNA 

methylation is its responsiveness to environmental cues. Methylated TEs often maintain their 

silenced state unless they encounter specific environmental triggers. For instance, in response to 

pathogenic challenges like those posed by Pseudomonas syringae, certain promoter regions of 

TEs in the model plant Arabidopsis can undergo demethylation. This demethylation event is linked 

to the activation of immunity-related genes, effectively reprogramming the plant's defense 

responses against the pathogen (Yu et al., 2013). 

Histone Modifications: Histones are pivotal proteins intricately involved in packaging DNA into a 

condensed structure known as chromatin. This packaging arrangement plays a crucial role in 

regulating the accessibility of DNA to various cellular processes, including transcription. Histone 

modifications can profoundly affect this accessibility, thus orchestrating the gene expression 

patterns essential for an organism's function and development. For instance, adding or removing 

chemical groups, such as acetyl or methyl groups, to specific histone residues can dictate whether 

a gene is actively transcribed or repressed. Precisely, histone acetylation typically corresponds to 

heightened gene expression. In contrast, histone methylation can have diverse outcomes—

activation or repression—depending on the histone residue and its context within the chromatin 

structure. 
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Several notable examples have emerged as key regulators of gene transcription across various 

species as histone modifications. Acetylation events targeting histone H3 or H4, as well as 

methylation modifications involving histone H3 at lysine 4, 9, and 27 positions (abbreviated as 

H3K4me, H3K9me, and H3K27me), have garnered attention for their role in gene expression 

modulation.  

 

Figure 4: The model of epigenetic inheritance illustrates the relationship between genetic and 

epigenetic alterations on the left, resulting in changes in phenotype on the right, and the impact 

of environmental factors on phenotype displayed within the red box. While alterations in 

genotype/epigenotype and corresponding phenotype epigenetic changes can sometimes revert, 

leading to progeny with traits identical to their parents, subsequent generations might inherit 

these changes, a phenomenon referred to as transgenerational or epigenetic inheritance (the 

figure is inspired by: (Miryeganeh and Saze, 2020)). 
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Small RNAs: Small RNA molecules, such as microRNAs and small interfering RNAs (siRNA), are 

involved in RNA interference (RNAi). These molecules can target and degrade complementary 

mRNA molecules or inhibit their translation into proteins. RNAi plays a role in regulating gene 

expression and responding to environmental stress. Small RNAs play a particular role in 

preventing TE expression of TEs in the genome or silencing mRNAs (Zamore and Haley, 2005; McCue 

and Slotkin, 2012; Wheeler, 2013). Those small RNAs are part of a complex methylation process 

called RNA-directed DNA methylation (RdDM). In short, RNA polymerase IV transcribes a single-

strand RNA, and RNA-dependent RNA polymerase 2 (RDR2) makes single-strand to double-strand 

RNAs, Dicer-Liker 3 (DCL3) cuts or shorten the double-stranded RNAs into sRNA duplexes, and 

those duplexes carry by Argonaute 4 (AGO4) to sequence-specific recognition target RNA or 

DNAs. In summary, small RNAs guide the sequence-specific recognition of target DNA, facilitating 

the recruitment of DNA methyltransferases and the establishment of DNA methylation patterns 

(Zhang and Zhu, 2011; Matzke and Mosher, 2014; Erdmann and Picard, 2020). 

Transgenerational Epigenetic Inheritance: Plants can transmit epigenetic modifications to their 

offspring. These modifications can be stable over multiple generations. For example, stress 

conditions experienced by a plant can lead to epigenetic changes that prepare its offspring to 

tolerate similar stresses better (Ashe et al., 2021; Anastasiadi et al., 2021). 

Epigenetic marks, such as DNA methylation and histone modifications, can accumulate over an 

individual's lifetime due to diverse environmental factors and experiences (Baulcombe and Dean, 

2014). Notably, some of these marks can endure and be passed on to future generations, 

potentially impacting gene regulation and cellular processes in those descendants (Ashe et al., 

2021). However, it is crucial to acknowledge that the mechanisms and extent of epigenetic 

inheritance remain topics of ongoing research and debate within the scientific community. While 

evidence supports the concept of transgenerational epigenetic effects, the precise mechanisms 

and the breadth of their impact are intricate and necessitate further investigation (Jablonka and 

Raz, 2009; Lacal and Ventura, 2018). 
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Importance of gene expression and origin-of-seed effect 

Gene expression, the process in which genetic information is utilized to produce functional 

products such as proteins, is crucial for the optimal functioning of cells and organisms (Koch, 

1996). It involves DNA transcription into RNA, RNA translation into a protein, and the expression 

of genes to control the quantity of gene products (Casassola et al., 2013) (Figure 5), which leads 

to specific functions and plays a significant role in the development, response to stress, and 

adaptation to changing environments (López-Maury et al., 2008). Additionally, environmental 

factors, which are heritable epigenetic changes, can impact gene expression and be passed on to 

future generations (Trerotola et al., 2015). Heritable epigenetic changes must be further 

investigated since this phenomenon could influence the phenotype of individuals (Gallusci et al., 

2017). 

 

 

 

Figure 5: Central Dogma of molecular biology (Figure is inspired by: (Koonin, 2012)). 



Chapter 1 General Introduction 24 

 

The impact of environmental factors on gene expression has been extensively studied, but the 

source material of EMP comes from two different sources. However, our understanding of the 

effects of the environment on seedlings remains incomplete. Therefore, we aim to investigate the 

origin-of-seed effects using genotypes raised under diverse environmental conditions, utilizing 

EMPs as a source material. This research investigates the differential expression of genes between 

two seed sources, a nursery (a field experiment) and a greenhouse, to determine whether 

material from different origins can be utilized in mRNA studies. 
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Aim of thesis 

Previous research has emphasized the importance of environmental conditions on the expression 

of genes and genotypes. The performance of a genotype may vary significantly in different 

environments. While epistasis can significantly influence an individual's phenotype, limited 

information on how the environment impacts epistasis is currently available. Furthermore, the 

effects of origin-of-seed factors on differentially expressed genes (DEGs) on seedling stages from 

different seed sources remain to be fully explored. We aimed to shed light on these topics; hence, 

the thesis was structured according to several chapters, from “General Introduction” to 

“Conclusion,” and the following are the aims of the two research chapters of the thesis: 

1. In the thesis's first research part, we aimed to identify significant QTLs and epistatic 

interactions across and between environments. This chapter investigated significant 

markers from the QTL analysis to identify QTL x environment and epistatic-by-

environment interactions. 

2. In the second research part, we examined the origin-of-seed effect of EMP and searched 

for expression differences between the two seed sources. 

Summary of material and method 

1. In the first research chapter, we calculated Mega Environments (ME) and best linear 

unbiased estimation (BLUEs) of genetic values across MEs. We used these BLUEs for 

further analysis. Also, QTL mapping and identifying significant main effect QTLs was 

performed. In order to investigate epistasis-by-environment interactions (EEI), we used a 

linear mixed model approach. The significance of EEIs was assessed with permutation 

tests. 

2. The second research chapter examined potential origin-of-seed effects by conducting 

differential expression analysis on our Epistasis Mapping Population (EMP). In addition, 

we compared distinct genotypes to check the validity of the analysis. The results of this 

study will be presented and discussed in the final sections. 
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Chapter 2: Identification of Significant Quantitative Trait Loci (QTL) in Diverse Mega 

Environments (MEs) and Interactions Between Epistasis by Environment in Maize 

Abstract 

Genes play a crucial role in determining the phenotype of organisms. Identifying the genes 

responsible for phenotypic traits is vital to improving these traits' performance through breeding 

programs. This study used a quantitative trait locus (QTL) mapping approach to identify the 

phenotypic traits contributing to phenotypic performance. The dataset used was from the 

Genomes to Field (G2F) program in maize, which created and distributed a mini nested 

association mapping (NAM) population across 29 locations. Phenotypic observations were made 

using a standardized operation procedure (SOP) by G2F collaborators. The following phenotypes 

were evaluated: pollen days after plantation (pollen DAP), silking DAP (silk DAP), plant height (PH), 

ear height (EH), stand percentage (stand %), and yield. The environments were compacted into 

seven multi-environment trials (MEs) to increase the power and simplify the data. The learnMET 

R package and the NASApower package with a k-means approach were used to create the MEs. 

The genotyping was done using skim-sequenced and single nucleotide polymorphic (SNP) markers 

called using the Practical Haplotype Graph (PHG) approach by the G2F initiative. The genotypic 

data were filtered based on a 10 kb window and minor allele frequency (MAF) > 0.02 criteria. A 

linkage map was created using Lep-MAP3 software with the Kosambi mapping function. Ten 

linkage groups (LG) were selected for further analysis, and a simple interval mapping (SIM) 

approach was applied to identify significant markers. This chapter aimed to identify significant 

QTLs associated with quantitative traits, and several significant QTLs, along with location-specific 

ones, were found.  
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Material & Methods 

Population 

In this study, we utilized a mini Nested Association Mapping (NAM) population of maize created 

through the G2F initiative in 2018. The NAM population consisted of three double haploid (DH) 

families, each comprising three inbred lines crossed with a common parent (Figure 1). The NAM 

population comprised 306 individual DH lines, excluding the parents. The DH families (Mo44, 

PHN11, and MoG) were genotyped and phenotyped, containing 100, 142, and 64 individual 

plants, respectively. The inbred lines were crossed with a location-specific tester (PHT69 or 

LH195), and the phenotypic performance of the resulting hybrids was evaluated in 29 diverse 

environments. Field trials were conducted separately in different locations across the US, Canada, 

and Germany by G2F collaborators, and each collaborator followed a Standard Operation 

Procedure (SOP) before, during, and after harvesting. The phenotypic observations for six traits 

were recorded: number of days after planting to pollen shed (pollen DAP), number of days after 

planting to silking (silk DAP), plant height (PH), ear height (EH), stand percentage in a plot (stand 

%), and yield. The measurements were taken according to the SOP, with pollen and silk DAP 

measured when 50% of the plot flowered and silked, respectively. PH and EH were calculated in 

centimeters (cm) from ground level to the flag leaf and ground to the primary ear, respectively. 

Stand percentage was calculated as a ratio of harvested plants to sowed plants, and yield was 

measured in bushels per acre (bu/Ac) by a harvester at each location and corrected for moisture 

content. All the phenotypic data collected are available on the G2F website 

(https://www.genomes2fields.org). 
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Figure 1: Illustration of Population of Genomes to Field (G2F). Three inbred lines (Mo44, PHN11, 

MoG) crossed with a common parent PHW65. Each arrow indicates a distinct DH family of 100, 

142, and 64 genotypes.  

Mega environments (MEs) 

To reduce the number of QTL mapping tests per environment and increase statistical power, we 

adopted a strategy of clustering locations into Mega Environments (MEs) based on their 

environmental data. The environmental covariates (ECs) of the Genomes to Field (G2F) dataset 

were calculated using the daily environmental data from NASApower with ten fixed window days 

across the locations (Sparks, 2018). We used the learnMET/R package, which implements the 

NASApower/R tool, to perform this task (Westhues et al., 2021). We then employed the k-means 

algorithm on ECs to cluster the locations into seven different MEs, as shown in Figure 2. One ME 

was excluded from the statistical analysis due to missing observations on pollen DAP, silk DAP, 

PH, and EH. 
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Figure 2: Creation of mega environments (MEs) with 29 locations of Genomes to field (G2F) with 

environmental covariates (ECs) from NASApower R package. 

Genotyping 

The G2F consortium employed the Practical Haplotype Graph (PHG) to genotype the NAM 

population in 2018. The inbreeds of G2F were sequenced with an average coverage of 

approximately 5x, and Novogene sequenced pools of 24 on a HiSeq X Ten lane. A total of 573 

samples and 3.6 million SNPs were called. Initial filtering was performed by estimating the SNP 

call error of PHG through comparison with previous Genotype-by-sequencing (GBS) calls (Elshire 

et al., 2011). Additionally, mismatched SNPs coinciding with GBS calls (>2%) and minor allele 

frequency (MAF) below 0.000001 were filtered out. After these filtering steps, the final number 

of SNPs and individuals was 1.3 million and 312, respectively (Gage, 2018). 
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Principle Component Analysis (PCA) 

Principal Component Analysis (PCA) is a widely used statistical method to investigate patterns and 

structures in large datasets. PCA reduces the dimensionality of data and identifies individuals' 

genetic structure. In this study, we performed a PCA using the SNPrelate R package on 1.3 million 

SNP markers from 312 individuals. The resulting plot in Figure 3 allows us to visualize the samples' 

genetic relatedness and population structure. The PCA can further investigate the relationships 

between the individuals and identify any outliers or subpopulations.  

  

Figure 3: Distribution of the individuals in the first two principal components. Each dot represents 

an individual, and the dot's color represents a group of individuals. 

Filtering, marker trimming, and linkage mapping 

We applied additional filtering and trimming to the SNP markers based on the following criteria: 

SNPs with a minor allele frequency (MAF) below 0.02 and markers with a missing value rate higher 

than 0.1 were removed. Most markers fell within the MAF range of 0.00 to 0.02, as shown in 
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Figure 4. Therefore, we chose the MAF filtering threshold based on the allele frequency 

distribution in the NAM population. After applying the filters, the final number of SNPs used in 

the analysis was 1.1 million. 

 

Figure 4: Distribution of allele frequencies before filtering minor allele frequency (MAF) < 0.02 (A) 

and after filtering MAF markers (B). 

In addition to the initial filtering and trimming steps, we further trimmed the SNP markers with 

the TASSEL software (Bradbury et al., 2007). Specifically, we selected one marker for every 10-kb 

window. After trimming, the total number of markers that remained for linkage mapping was 

14,559. To create a linkage map, we used Lep-MAP3 software (Rastas, 2017), which employs the 

MSTmap algorithm and can consider cofactors in the analysis, such as family. The following 

parameters were defined for the software: we used a LOD score of 18 to separate chromosomes 

with the SeparateChromosome2 function. Subsequently, we selected ten linkage groups (LG) out 

of 40 and used the OrderMarkers2 function to order the LGs, with the Kosambi mapping function 

applied. We manually matched the LGs with the SNP physical positions to find the chromosome 

numbers of the LGs. Co-segregating markers were discarded, resulting in 2,415 SNP markers 



Chapter 2 Epistasis-by-Environment Interactions 32 

 

utilized for QTL mapping. Finally, we examined the recombination fraction distribution between 

the 2,415 SNP markers (Figure 5). 

 

Figure 5: Recombination fraction (RF) of marker comparison between 2,415 SNP markers. If there 

is no linkage between markers, RF is 0.5. In a fully link situation, RF is 0. 

Best linear unbiased estimation (BLUEs) 

The best linear unbiased estimation (BLUE) values of the phenotypes were estimated using a 

linear mixed model and were then utilized in the QTL mapping. BLUE values were estimated 

separately for all locations and mega environments, and these values were used as phenotypic 

values in the QTL mapping. The linear mixed model used a kth tester (𝑇𝑘), pth family (𝐹𝑝), ith 

genotypes (𝐺𝑖), and rth replication (𝑅𝑟) as random effects. jth mega environment (𝑀𝐸𝑗) is 

considered a fixed effect, and y is explained as the trait of interest (Formula 1). A similar linear 

mixed model was used for each mega environment separately. Genotypes were used as fixed 

effects. If the mega environment contained only one tester, the tester effect (𝑇𝑘) was discarded 
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from the analysis. Additionally, the locations (𝐸𝑗) were evaluated and used as random effects 

instead of the ME (𝑀𝐸𝑗) from model 1 (Formula 2). The linear mixed models were evaluated using 

the lme4 R package (Bates et al., 2015). The distribution of BLUE values for each trait is given in 

All locations (Figure 6) in all MEs (Figures 7 to 12). 

Formula 1: 

  

Formula 2: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑦 =  μ + 𝐺𝑖 + 𝑀𝐸𝑗 + 𝑇𝑘 + 𝐹𝑝 + 𝑅𝑟 +  ε 

𝑦 =  μ + 𝐺𝑖 + 𝐸𝑗 + 𝑇𝑘 + 𝐹𝑝 + 𝑅𝑟 +  ε 
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Figure 6: Density plot of phenotypic traits of pollen DAP (A), silk DAP (B), PH (C), EH (D), stand % 

(E), and yield (F) across locations. 
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Figure 7: Density plot of phenotypic traits of pollen DAP ME 1 (A), ME 3 (B), ME 4 (C), ME 5 (D), 

ME 6 (E), and ME 7 (F) across mega environments. 
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Figure 8: Density plot of phenotypic traits of silk DAP ME 1 (A), ME 3 (B), ME 4 (C), ME 5 (D), ME 

6 (E), and ME 7 (F) across mega environments. 
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Figure 9: Density plot of phenotypic traits of plant height ME 1 (A), ME 3 (B), ME 4 (C), ME 5 (D), 

ME 6 (E), and ME 7 (F) across mega environments. 
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Figure 10: Density plot of phenotypic traits of ear height ME 1 (A), ME 3 (B), ME 4 (C), ME 5 (D), 

ME 6 (E), and ME 7 (F) across mega environments. 
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Figure 11: Density plot of phenotypic traits of stand percentage ME 1 (A), ME 3 (B), ME 4 (C), ME 

5 (D), ME 6 (E), and ME 7 (F) across mega environments. 
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Figure 12: Density plot of phenotypic traits of yield (bu/Ac) ME 1 (A), ME 3 (B), ME 4 (C), ME 5 (D), 

ME 6 (E), and ME 7 (F) across mega environments. 
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Broad sense heritability 

Broad sense heritability (H2) is an essential measure of the extent to which phenotypic variation 

in a specific population is attributable to genetic variation. We used the formula James B. Holland 

and colleagues described in 2003 (Holland et al., 2003). It is calculated using the following 

formula: 

H2 =
σg

2

σg
2 +

σε
2

ph

 

where σg
2 is the genotypic variance, σε

2 is the error variance, and ph is the number of replications 

per environment. The genotypic variance (σg
2) can be estimated as the variance among genotypes 

within a population. It is a measure of the total genetic variation in the population that 

contributes to phenotypic differences in the trait of interest. The error variance (σε
2) represents 

the variation not explained by genetic factors, such as environmental effects, measurement error, 

and other sources of variability. 

The number of replications per environment (ph) is an essential factor in calculating H2, as it 

influences the precision and accuracy of the estimates. The more replications performed, the 

more precise the estimates of genotypic and error variances will be and the more reliable the 

estimate of H2 will be. 

Broad sense heritability is an essential parameter in plant breeding and genetics, as it measures 

the potential for selection to improve the trait of interest. High heritability indicates that a large 

proportion of the phenotypic variation is attributed to genetic factors, and thus, selection is likely 

to be effective in improving the trait. Conversely, low heritability indicates that environmental 

factors are more prominent in determining the phenotype, and selection may be less effective. 

Therefore, an accurate estimation of H2 is crucial for optimizing breeding strategies and 

improving crop yields. 

QTL mapping 

The R/qtl package (Broman et al., 2003) analyzed 2,415 SNP markers and the Best Linear Unbiased 

Estimation (BLUE) values of the observed phenotypic traits. Simple Interval Mapping (SIM) was 
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performed using the three DH families of the NAM population as interactive and additive 

covariates with Haley and Knott (HK) regression method (Haley and Knott, 1992). This approach 

allows loci detection with both main effects and epistatic interactions with other loci. 

Epistasis QTL mapping:  

The scan-two function was utilized to calculate the LOD scores of epistatic interactions across 

locations and MEs. Significance thresholds were determined with 1000 permutations. To evaluate 

epistasis by environment interactions (EEI), we selected the markers that exceeded the 

significance threshold of SIM and scan-two tests. Recorded markers were utilized for further 

statistical analysis for each specific phenotypic trait, and recorded markers are shared in Figure 

13. In order to avoid multiple testing problems, not all significant markers from the scan-two 

analysis were included in the linear mixed model. Thus, a few significant markers from the scan 

two analysis were selected for further analysis. The number of selected markers for EEI analysis 

were 11 markers for pollen and silk DAP, 11 and 14 markers for plant and ear height, 12 for stand 

%, and 14 for yield. 
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Figure 13: Selected markers for EEI analysis. Significant markers from QTL mapping and epistasis 

search were selected for EEI analysis. 

Epistasis by environment interactions:  

A linear mixed model has been created with the significant peak markers from the SIM and 

epistasis QTL mapping for each phenotype separately. The linear mixed model is described in 

Formula 3. Y is the phenotypic value for each ME, 𝜇 is the grand mean, 𝛽𝑗 is the effect of the jth 

marker, 𝛼𝑖𝑘 effect of marker i and k, 𝑞𝑗, 𝑞𝑖, 𝑞𝑘 are the effect of j,k, and kth markers, 𝛿𝑗𝑛 is the 
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effect of the jth marker in the nth location, 𝜂𝑖𝑘𝑛 is the effect of i and kth marker in the nth 

location, and ε is the error term.  

Formula 3: 

 

 

Restricted maximum likelihood (REML) was used instead of maximum likelihood (ML) due to high 

dimensionality because of interaction terms in the model. We used false discovery rate (FDR) 

correction (Benjamini and Hochberg, 1995) to correct p-values for multiple testing. The accuracy 

of the linear mixed model was tested with a permutation test for each trait and ME. The 

phenotypic value is permuted for each genotype, and we select markers 1000 times randomly. 

The underlying reason for the permutation test is to shuffle the data and test it several times 

under the assumption of a null hypothesis. Because the expectation is the null hypothesis, an 

even distribution of p-values from 0 to 1 under this assumption is expected. However, the 

distribution might have false positive values under a problematic model, and the distribution of 

p-values might skew to the left or right of a figure. In the analysis, we selected three to eight 

markers for each permutation test and ran the same model 1000 times. Permutation tests aimed 

to answer any false positives depending on different complex models. Lastly, we created a p-value 

distribution for the permutation tested of each ME (Figure 14). 

 

 

 

 

 

 

 

𝑦 = 𝜇 + 𝐺𝑖 + 𝑀𝐸𝑗 + 𝐹𝑝 + ∑ 𝛽𝑗𝑞𝑗

𝑗

+ ∑ 𝛼𝑖𝑘𝑞𝑖𝑞𝑘 +  

i,k

∑ 𝛿𝑗𝑛𝑞𝑖𝑒𝑛 +  

j,n

∑ 𝜂𝑖𝑘𝑛𝑞𝑖𝑞𝑘𝑒𝑛 + ε

i,k,n
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Figure 14: Distribution of p-values of 1000 permutation test results. P-value results were divided 

into five categories: Full model (red), QTL, QTL-environment interactions epistasis, and EEI 

(orange), QTL, epistasis, EEI (blue), epistasis and EEI (black), and EEI (green). P-values are 

distributed evenly for each model across the agronomic traits. 
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Results 

Linkage mapping 

The genetic data used in this study consisted of 2,415 markers. The distribution of markers across 

the ten chromosomes was not uniform, with chromosome 1 having the highest number of 

markers (365) and chromosome 10 having the lowest (142). The genetic distance between 

markers varied across chromosomes, with chromosome 1 having the longest total length 

(245.810 cM) and chromosome 10 having the shortest (131.755 cM). Each chromosome has 365, 

263, 263, 275, 271, 196, 201, 252, 182, and 142 SNP markers, respectively, and the length of the 

chromosome from 1 to 10 in order of 245.810, 167.030, 183.892, 167.193, 180.433, 150.694, 

163.312, 152.307, 147.454, 131.755 centimorgans. The markers were somewhat evenly 

distributed across the genetic map (Figure 15). We compared the physical positions to the genetic 

positions and found that the relationship between the two maps was mostly linear, except around 

the centromere, as shown in Figure 16. To ensure the accuracy of our genetic map, we estimated 

recombination frequencies est.rf(), and simulating the genotypes when the observed marker data 

was given with sim.geno(), and calculated the conditional genotype probabilities with 

calc.genoprob() functions in the qtl/r package. The markers were evenly distributed across the 

genetic map, although some regions had a higher density of markers. For example, chromosome 

3 had a concentration of markers around 50 cM, while chromosome 5 had a concentration 

between 50 and 100 cM. The minimum and maximum distances between adjacent markers were 

0.326 and 6.241 centimorgans, respectively. The power of a QTL mapping analysis is unaffected 

by the abundant markers as well as the distance between adjacent markers between 0 and 10 cM 

(Rebai et al., 1995; Semagn et al., 2006). Therefore, we did not apply further filtering steps to 

remove redundant markers. 
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Figure 15: Genetic map of G2F NAM population. X-axes indicate the chromosomes, and the y-

axes indicate the genetic location of the markers. 
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Figure 16: Physical positions and genetic positions of the SNP markers for each chromosome in 

maize. X-axes represent the physical positions (megabase pairs (Mbp)) of SNPs, and Y-axes 

represent the genetic distances of SNPs (centiMorgan (cM)) (from A to J). 
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Phenotype  

Our study aimed to investigate the following phenotypes: days to anthesis for pollen (pollen DAP), 

days to anthesis for silk (silk DAP), plant height (PH), ear height (EH), stand percentage (stand %), 

and grain yield. The observations ranged from 45 to 82 days for pollen DAP, 46 to 82 days for silk 

DAP, 106 to 359 cm for PH, 49 to 234 cm for EH, 3 to 97% for stand %, and 13.35 to 370.70 bushels 

per acre for grain yield. The data for each phenotype was normally distributed. A linear mixed 

model was applied, and best linear unbiased estimates (BLUEs) were calculated for new 

phenotypic observations across all locations and mega environments, as done in previous 

publications (Zhang et al., 2014; Bloom, 2015). Our study observed deviations from the expected 

and fitted values; however, these deviations did not violate the normality assumption. The 

calculated BLUE values for each genotype ranged from 59.25 to 65.22 days for pollen DAP, 60.09 

to 66.91 days for silk DAP, 192.4 to 240.5 cm for plant height, 83.99 to 120.36 cm for ear height, 

52.36 to 79.50% for stand percentage, and 123.3 to 178.2 bushels per acre for grain yield. The 

pollen DAP for each ME ranged from 60.48 to 69.94 days for ME1, 58.42 to 70.05 days for ME3, 

51.02 to 60.51 days for ME4, 58.79 to 68.19 days for ME5, 66.32 to 72.32 days for ME6, and 61.75 

to 68.51 days for ME7. The BLUE values for each ME for silk DAP, plant height, ear height, stand 

percentage, and grain yield ranged from 61.34 to 71.48 days for silk DAP, 161.9 to 253.8 cm for 

plant height, 83.17 to 120.06 cm for ear height, 41.90 to 79.78% for stand percentage, and 115.1 

to 208.4 bushels per acre for grain yield for ME1, 59.64 to 71.88 days for silk DAP, 200.6 to 261.4 

cm for plant height, 91.34 to 130.03 cm for ear height, 61.13 to 82.74% for stand %, and 114.5 to 

201.6 bushels per acre for grain yield for ME3, 53.45 to 63.48 days for silk DAP, 168.4 to 235.7 cm 

for plant height, 75.79 to 123.95 cm for ear height, 47.66 to 95.33% for stand %, and 108.7 to 

190.5 bushels per acre for grain yield for ME4, 60.33 to 69.77 days for silk DAP, 183.4 to 244.7 cm 

for plant height, 78.64 to 135.92 cm for ear height, 35.64 to 79.37% for stand %, and 116.1 to 

199.5 bushels per acre for grain yield for ME5, 66.67 to 71.40 days for silk DAP, 202.3 to 260.0 cm 

for plant height, 60.52 to 115.19 cm for ear height, 45.10 to 89.78% for stand %, and 89.45 to 

163.82 bushels per acre for grain yield for ME6, and 63.19 to 70.02 days for silk DAP, 203.6 to 

261.3 cm for plant height, 90.53 to 135.11 cm for ear height, 32.33 to 87.88% for stand %, and 

139.5 to 233.5 bushels per acre for grain yield for ME7, respectively (Figures 6 to 12).  
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Correlations 

The correlation analysis revealed strong associations between the pollen and silk DAP across all 

locations and MEs, with correlation coefficients ranging from 0.71 to 0.94 (Figure 17). The 

correlations between pollen DAP and other traits, including PH, EH, stand percentage (%), and 

yield, were moderate, ranging from 0.29 to 0.59, 0.35 to 0.55, -0.22 to 0.02, and -0.18 to 0.21, 

respectively. Similarly, the correlations between silk DAP and the other traits were moderate and 

consistent with those observed for pollen DAP. Furthermore, PH and EH showed a strong positive 

correlation across all locations and MEs, with correlation coefficients ranging from 0.61 to 0.83. 

The correlation between PH and yield was moderate, ranging from -0.01 to 0.47, whereas the 

correlation between PH and stand percentage was weak, ranging from -0.25 to 0.08. The 

correlation between yield, PH, EH, and stand percentage varied depending on the MEs, but 

generally, the relationships were moderately correlated. The correlation between yield and PH 

ranged from 0.21 to 0.40, whereas the correlation between yield and EH ranged from 0.07 to 

0.44, and the correlation between yield and stand percentage ranged from 0.22 to 0.49. The 

lowest correlation was observed between yield, PH, EH, and stand percentage in ME 3, with 

coefficients of -0.08, -0.12, and 0.23, respectively. 

Interestingly, the correlation between stand % and the other traits, including pollen DAP, silk DAP, 

PH, EH, and yield, was the weakest among all correlations. These findings suggest that the stand 

% may be influenced by factors other than the traits evaluated in this study. Overall, these results 

provide valuable insights into the correlations between various traits in maize and can be used to 

guide future breeding efforts for optimizing maize production. 

 

 

 

 

 

 



Chapter 2 Epistasis-by-Environment Interactions 55 

 

 

Figure 17: Correlations between the phenotypic traits across locations and mega environments 

(MEs). Across locations (A), ME1 (B), ME3 (C), ME4 (D), ME5 (E), ME6 (F), and ME7 (G). 

Heritability 

Table 1 presents the heritability estimates of all phenotypic traits across multiple environments 

(MEs). The heritability of pollen DAP ranged from 0.140 to 0.89, with the highest estimate 

observed in ME6 and the lowest in ME3. Moderate heritability (0.504-0.546) was observed for 

pollen DAP in ME2 and ME6, while relatively high heritability (0.741) was observed in ME1. Silk 

DAP showed a similar trend, with heritability ranging from 0.149 to 0.785 across locations and 

MEs, except for ME6, where the heritability was relatively low. PH and EH exhibited the highest 

heritability estimates among all traits, with the highest heritability of PH observed across all 

locations (0.93) and the lowest in ME4 (0.622). For ME1, ME3, ME5, ME6, and ME7, the 

heritability estimates ranged from 0.709 to 0.826 for PH. Similarly, the heritability of EH was 

highest across all locations (0.922) and the lowest in ME4 (0.686). The heritability estimates for 
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EH in ME1, ME3, ME5, ME6, and ME7 ranged from 0.651 to 0.76. Heritability of Stand % ranged 

between 0.482 - 0.882 across all locations, with the highest estimate observed in ME1 and the 

lowest in ME4. The heritability of yield ranged from 0.362 to 0.833, with the highest estimate 

observed in all locations and the lowest in ME4. The heritability estimates for yield varied across 

MEs, ranging from 0.515 to 0.656. 

Table 1: Heritability of the phenotypic traits across the locations and mega environments (MEs) 

for pollen DAP, silk DAP, PH, EH, stand %, and yield. 

 Pollen DAP Silk DAP Plant Height Ear Height Stand % Yield 

Location H2 H2 H2 H2 H2 H2 

All L. 0.79 0.78 0.93 0.92 0.88 0.83 

ME 1 0.78 0.79 0.76 0.74 0.58 0.61 

ME 3 0.14 0.15 0.71 0.69 0.48 0.58 

ME 4 0.56 0.56 0.62 0.65 0.55 0.36 

ME 5 0.64 0.69 0.83 0.76 0.67 0.62 

ME 6 0.89 0.26 0.76 0.66 0.75 0.51 

ME 7 0.84 0.78 0.73 0.68 0.63 0.66 
 

QTL mapping 

We conducted SIM separately in all locations and MEs to identify significant QTLs for each 

phenotype. Significant markers were identified for each trait, and the -log10 p-value of the peak 

markers LOD was compared across locations. We applied a 1000 permutation test with a 5% alpha 

value to determine the significance threshold for SIM. We calculated a 95% confidence interval 

(95% CI) for each analysis and selected one marker from each CI for further statistical analysis. 

We used SIM to identify significant QTLs for each phenotypic trait across all locations of MEs, as 

shown in Figure 18. For pollen DAP, we applied a threshold of 4.25-4.66 LOD scores across all 

locations and MEs and found two significant markers in all locations: one on chromosome 1 at 

138.9 cM with a LOD score of 4.68 and the other on chromosome 5 at 81.1 cM with a LOD score 

of 19.5. The second confidence interval (CI) of the QTL position showed significant results across 



Chapter 2 Epistasis-by-Environment Interactions 57 

 

MEs, with LOD scores ranging from 10.1 to 20.49, except for ME4. In addition, one and two 

additional QTLs were found on chromosomes 9, 4, and 8, respectively, in ME6 and ME7 (Table 2). 
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Table 2: LOD and phenotypic variation explained by the marker (R2) score of significant markers 

for each phenotypic trait and each ME given under R2 and LOD columns. 95 % confidence interval 

(CI) values and the peak cM of the significant markers were given under the Distance column. In 

addition, the name of the marker (Marker) under which chromosome (Chr) is also specified. 
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Figure 18: Simple interval mapping (SIM) of pollination days after plantations (pollen DAP) across 

locations and for each mega environment (MEs). The significant threshold is calculated by 

permutation test for each analysis separately. 

Significant markers and interactions between markers were identified for the phenotypic trait of 

silk DAP (Figure 19, Table 2) across locations and MEs. Three key markers were detected on 
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chromosomes 5, 9, and 10 at positions 81.1 cM, 28.8 cM, and 63.7 cM, respectively, across all 

locations. The LOD scores of each marker were 14.7, 4.81, and 6.77, respectively. The 90% CI of 

each significant marker on chromosomes 5, 9, and 10 intersect with other MEs. For example, the 

marker on chromosome 5 was also identified in ME1, ME3, ME6, and ME7. Additionally, the 

marker on chromosome 10 across all locations was found in ME1, ME4, and ME5. A marker on 

chromosome 1, at position 187 cM, was only identified in ME4. The SIM LOD threshold for silk 

DAP for all locations and each ME was 4.36, 4.45, 4.33, 4.74, 4.94, 4.40, and 4.52, respectively. 
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Figure 19: Simple interval mapping (SIM) of silk days after plantations (silk DAP) across locations 

and for each mega environment (MEs). The significant threshold is calculated by permutation test 

for each analysis separately. 

Several significant markers were identified in chromosomes 1, 3, and 5 for PH at positions 168.33 

cM, 74.06 cM, and 1.63 cM across locations (Figure 20, Table 2). Similar significant markers were 



Chapter 2 Epistasis-by-Environment Interactions 62 

 

found in the same regions for chromosomes 1 and 3 across different MEs, except for chromosome 

5, which showed significance for ME4 and ME6. Location-specific QTLs were found in ME3, ME5, 

ME6, and ME7, with chromosomes 9 and 10 on ME3, chromosome 7 on ME7, chromosomes 8 

and 9 on ME6, and chromosome 8 on ME7. 
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Figure 20: Simple interval mapping (SIM) of plant height (PH) across locations and for each mega 

environment (MEs). The significant threshold is calculated by permutation test for each analysis 

separately. 

Two significant markers on chromosomes 3 and 5 at positions 72.1 and 98.7 cM were found for 

the EH observations across all locations (Figure 21, Table 2). Significant QTLs were identified in 



Chapter 2 Epistasis-by-Environment Interactions 64 

 

each ME as follows: chromosomes 1, 3, and 5 for ME1; chromosomes 3 and 10 for ME3; 

chromosomes 5 and 9 for ME4; chromosomes 3 and 5 for ME5; chromosomes 1 and 9 for ME6; 

and chromosomes 3 and 9 for ME7. 

 

Figure 21: Simple interval mapping (SIM) of ear height (EH) across locations and for each mega 

environment (MEs). The significant threshold is calculated by permutation test for each analysis 

separately. 
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We found one ME-specific significant peak for stand percentage, chromosome 8, positions 98.4 

on ME4 (Figure 22, Table 2). 

 

Figure 22: Simple interval mapping (SIM) of stand percentage (stand %) across locations and for 

each mega environment (MEs). The significant threshold is calculated by permutation test for 

each analysis separately. 

Lastly, we investigated yield and identified several significant peaks across locations and MEs. 

Two markers were specific to MEs: on chromosome 3 at position 174 and chromosome 8 at 

position 91.2 for ME1 and ME3 (Figure 23, Table 2). Moreover, a marker on chromosome 2 at 

position 95.1 was significant across all locations and in ME5 and ME7. 
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Figure 23: Simple interval mapping (SIM) of yield across locations and for each mega environment 

(MEs). The significant threshold is calculated by permutation test for each analysis separately. 
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Epistasis QTL mapping 

We performed a 1000 permutation test and applied a 5% significance threshold for SIM and the 

two-dimensional QTL search. The threshold for significant two-dimensional QTL for epistatic 

interactions was 5.29-5.44 for all locations and MEs. Significant epistatic interactions were found 

between chromosomes 7 and 10 for all locations, chromosomes 2 and 8 for ME1, chromosomes 

2 and 9 for ME4, and chromosomes 2 and 7, and chromosomes 7 and 10 for ME6 (Table 3). No 

significant epistatic interactions were found for ME3, ME5, and ME7. 

Table 3: Significant epistatic interactions between markers on pollen DAP, silk DAP, PH, EH, stand 

%, and yield. LOD full is the full model of two QTLs and the interaction between the QTLs, fv1 is 

the conditional-interactive LOD score which indicates evidence for a second QTL allowing for the 

possibility for epistasis, LOD interactions is the indication of epistasis QTL, LOD add is the additive 

QTL on both chromosomes. LOD av1 is the evidence for the second QTL position assuming no 

epistatic interactions.  

Pollen DAP chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

All Loc. 7 and 10 128 53.9 7.36 4.5 5.32 2.04 -0.82 

ME 1 2 and 8 19.9 77.1 7.67 4.95 6.06 1.62 -1.11 

ME 4 2 and 9 149 80.1 6.88 4.52 5.84 1.05 -1.32 

ME 6 2 and 7 135.3 64.4 6.52 3.89 5.46 1.05 -1.57  
7 and 10 133.1 53.9 9.42 6.79 6.24 3.18 0.56 

Silk DAP chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

All Loc. 1 and 3 18 14.6 6.11 2.48 5.53 0.58 -3.06 

ME 1 1 and 3 53.28 96.6 6.55 4.52 6.33 0.22 -1.81  
3 and 8 3.66 147.1 8.31 5.47 5.63 2.68 -0.16 

ME 7 1 and 2 27.8 133.7 6.57 3.25 5.28 1.29 -2.03  
1 and 7 162.4 154 8.99 4.08 5.7 3.28 -1.62  
2 and 6 93.8 93.5 7.43 4.11 5.52 1.91 -1.41  
2 and 9 15 128.5 7.89 4.32 5.55 2.35 -1.23  
6 and 9 68.6 22.6 9.25 5.67 6.04 3.21 -0.36  
8 and 9 30.4 20.9 9.18 5.6 5.92 3.26 -0.32 

Plant Height chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

ME 3 1 and 2 220.3 75.8 6.7 -0.29 5.47 1.24 -5.76  
3 and 7 131.6 46.4 7.22 -0.06 5.44 1.78 -5.5  
4 and 6 101.7 58.2 8.54 6.13 7.1 1.44 -0.98 



Chapter 2 Epistasis-by-Environment Interactions 68 

 

 
8 and 10 31.7 25.8 9.59 2.81 5.64 3.95 -2.83 

ME 4 1 and 8 95.4 111.1 6.05 0.7 5.57 0.48 -4.87  
5 and 10 123.9 85 8.37 3.26 5.85 2.51 -2.59  
6 and 7 143.2 145.8 7.24 4.57 6.13 1.11 -1.56 

ME 5 1 and 7 208.9 120.6 10.36 5.13 6.07 4.29 -0.94  
2 and 7 141.8 104 11.13 6.25 5.97 5.16 0.28 

ME 6 3 and 4 125.7 86 8.35 2.52 6.27 2.08 -3.75 

ME 7 1 and 2 198.7 36.3 7.27 0.15 5.48 1.79 -5.33  
5 and 8 16.7 49 11.51 5.64 5.44 6.07 0.19 

Ear Height chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

ME 3 3 and 10 6.1 118.7 7.8 2.75 6.01 1.78 -3.27 

ME 6 1 and 4 113.7 47.4 10.01 5.45 6.19 3.82 -0.74  
8 and 10 49.4 72.6 6.98 4.57 5.6 1.37 -1.03 

ME 7 1 and 7 9.15 138.6 7.88 4.94 6.19 1.69 -1.26 

Stand % chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

All Loc. 2 and 6 123.5 93.5 12.09 7.53 7.98 4.12 -0.45  
2 and 7 131.1 105.9 9.99 6.52 7.75 2.24 -1.23 

ME 3 1 and 6 141.86 111.1 10.46 7.7 6.83 3.63 0.88  
2 and 5 90.21 82.1 8.88 7.22 7.06 1.82 0.15 

ME 5 1 and 9 52.63 0.654 7.3 4.75 6.08 1.22 -1.33  
6 and 9 84.65 95.459 7.98 4.02 6.16 1.81 -2.14 

ME 7 1 and 6 76.16 7.19 9.86 5.38 7.3 2.56 -1.93  
3 and 9 155.45 101.34 10.04 6.36 6.66 3.38 -0.3  
4 and 6 164.74 57.85 12.36 7.87 8.93 3.43 -1.06  
4 and 7 0 170.66 7.09 3.71 6.41 0.67 -2.7 

Yield 
(bu/Ac) 

chr position 1 position 2 
lod 
full 

lod 
fv1 

lod 
interaction 

lod 
add 

lod 
av1 

All Loc. 2 and 5 9.48 68 8.85 3.45 5.5 3.35 -2.05  
6 and 8 99.36 58.5 7.31 4.2 5.56 1.76 -1.36  
7 and 8 30.1 15.4 10.87 5.65 7.05 3.81 -1.41 

ME 1 1 and 6 19.3 28.1 7.26 5.64 6.18 1.08 -0.53  
4 and 8 114.4 66.7 8.36 4.7 5.67 2.69 -0.98  
5 and 7 25.9 127.8 9.79 5.66 6.2 3.59 -0.54  
6 and 8 14.4 67.7 8.99 5.32 8.02 0.97 -2.7  
7 and 8 27.8 24.2 7.42 3.29 5.5 1.92 -2.21 

ME 3 1 and 8 209.8 82.4 12.27 5.88 5.7 6.57 0.18  
1 and 9 19.6 128.1 8.01 6.14 6.65 1.36 -0.51  
3 and 4 108.7 109.2 9.34 7.14 5.9 3.43 1.24  
3 and 7 76.7 57.9 8.43 4.69 5.49 2.95 -0.79  
4 and 9 169.3 59.8 7.36 5.17 6.24 1.12 -1.07  
6 and 8 99.4 83.7 12.21 5.83 5.77 6.45 0.06 
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7 and 8 51.3 139.2 8.87 2.48 6.53 2.34 -4.04 

ME 4 4 and 10 89.6 130.11 6.85 4.3 5.56 1.29 -1.26 

ME 5 3 and 7 143 98.4 9.84 7.37 7.12 2.72 0.26  
7 and 8 45.8 15.4 8.11 4.97 5.9 2.21 -0.94 

ME 6 1 and 5 1.96 92.52 7.63 3.97 6.46 1.17 -2.5  
1 and 8 25.83 61.12 8.08 4.41 5.87 2.21 -1.46  
5 and 8 103.96 138.58 7.3 5.05 6.15 1.14 -1.1  
7 and 10 94.48 108.86 8.51 4.76 6.03 2.48 -1.27 

ME 7 1 and 2 129.1 91.5 11.48 5 6.34 5.13 -1.34  
2 and 8 127.5 52.9 12.15 5.68 5.96 6.2 -0.28  
4 and 7 0 160.2 9.24 6.05 6.84 2.4 -0.79 

 

Several significant epistatic interactions were found for silk DAP in all locations and ME1 between 

chromosomes 1 & 3 and 3 & 8. No significant interactions were found in other locations except 

ME7, where six significant epistatic interactions were identified between chromosomes 1 & 2, 1 

& 7, 2 & 6, 2 & 9, 6 & 9, and 8 & 9 (Table 3). The significant epistatic thresholds were 5.38, 5.36, 

8.45, 5.53, 5.87, 5.37, and 5.26 across locations and MEs. 

Significant epistatic interactions were found for all locations except for ME2 and ME4, following 

a two-dimensional search for PH. Four, three, two, one, and two significant epistatic interactions 

were found for ME3, ME4, ME5, ME6, and ME7, respectively, between chromosomes 1 and 2, 3 

and 7, 4 and 6, 8 and 10 on ME3, 1 and 8, 5 and 10, 6 and 7 on ME4, 1 and 7, 2 and 7 on ME5, 3 

and 4 on ME6, and 1 and 2, 5 and 8 on ME7 (Table 3). 

Significant epistatic interactions were found for EH across locations ME3, ME5, and ME7. 

Especially for ME3 and ME6, we observed two epistatic interactions between the chromosomes 

for all locations 2 & 6 and 2 & 7, ME3, 1 & 6 and 2 & 5, and ME5 1 & 9 and 6 & 9, and Four 

significant epistatic interactions on chromosomes 1 & 6, 3 & 9, 4 & 6, and 4 & 7 (Table 3). 

A two-dimensional scan for all locations has successfully identified epistatic interactions for yield. 

We observed three, five, seven, one, two, four, and three epistatic interactions on all locations, 

ME1, ME3, ME4, ME5, ME6, and ME7 (Table 3). 
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Epistasis by environment interactions 

A linear mixed model was created separately for the six phenotypic observations (pollen DAP, silk 

DAP, PH, EH, stand %, and yield). The models considered genotype, environment, family, epistasis, 

QTL, QTL-environment interaction, and EEI effects, and FDR correction was applied to detect 

significant p-values (Table 4). Sixteen, eight, twelve, twenty, fourteen, and eighteen significant 

markers from SIM and two-dimensional epistasis searches were selected for the linear mixed 

models of pollen DAP, silk DAP, PH, EH, stand percentage, and yield, respectively. Significant EEI 

effects were observed for pollen DAP, silk DAP, PH, and yield but not for EH. Environment and 

family effects were statistically significant for each phenotypic trait. In the analysis of pollen DAP, 

two significant QTLs, two QTL-environment interactions, and two EEI were identified. For silk DAP, 

two significant QTLs, two QTL-environment interactions, one epistasis interaction, and one EEI 

were detected. Analysis of PH revealed six significant QTLs, two QTL-environment interactions, 

and one EEI. In the analysis of EH, five significant QTLs, one QTL-environment interaction, and 

three epistatic interactions were found. For stand percentage, two significant QTLs and one EEI 

were observed. Lastly, two QTLs, three QTL-environment interactions, and one EEI were found 

for yield (Figure 24 A to F, Figure 25). 
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Table 4: Significant terms for each phenotypic trait on pollen DAP, silk DAP, PH, EH, stand %, and 

yield. Adjusted P-values (Padj) is the P-values of the FDR corrected P-values (Pr(>F)).  

Pollen DAP Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) Padj 

Location 19048.6 2721.23 7 21.73 6444.25 0 0 

S5_144805011 21.2 21.25 1 237.2 50.32 0 0 

S4_146407719 5.2 5.16 1 237.17 12.23 0 0.01 

Location:S7_169202944  10.2 1.69 6 1434 4.01 0 0.01 

Location:S2_9498230 8.6 1.43 6 1434 3.39 0 0.05 

Location:S9_48378188:S2_224615471 8.9 1.49 6 1434 3.53 0 0.04 

Location:S2_9498230:S2_224615471 10.2 1.7 6 1434 4.03 0 0.01 

Silk DAP Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) padj 

Location 47927 6846.8 7 2 11532.9 0 0 

S5_144805011 37 37.5 1 237.52 63.11 0 0 

S10_125572892 26 26 1 237.1 43.84 0 0 

Location:S10_125572892 23 3.9 6 1434 6.51 0 0 

Location:S1_266472728 24 4 6 1434 6.71 0 0 

S6_132320681:S9_8224784  7 6.9 1 237.13 11.67 0 0.01 

Location:S9_10972540:S3_4836798 14 2.4 6 1434 3.99 0 0.01 

Plant Height Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) padj 

Location 464859 66408 7 2 2021.03 0 0.01 

S1_236244055 613 613 1 236.14 18.67 0 0 

S3_157440022 1034 1034 1 236.13 31.47 0 0 

S5_1564701  569 569 1 236.77 17.32 0 0 

S9_157493113 373 373 1 236.16 11.36 0 0.01 

S10_64147115 406 406 1 236.02 12.37 0 0.01 

S8_33490583 530 530 1 236.17 16.14 0 0 

Location:S1_236244055 833 139 6 1428 4.22 0 0.01 

Location:S8_33490583 706 118 6 1428 3.58 0 0.02 

Location:S3_157440022:S8_33490583 649 108 6 1428 3.29 0 0.04 
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Ear Height Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) padj 

Location 180503 25786.1 7 2 1510.7 0 0.01 

S3_152447071 1019 1019.3 1 198.04 59.71 0 0 

S5_178308576 541 541.1 1 198.27 31.7 0 0 

S10_84124156 207 206.6 1 198.06 12.11 0 0.01 

S5_1890045 341 341.1 1 198.3 19.98 0 0 

S9_104861090 603 603.3 1 198.25 35.35 0 0 

S8_23383882 212 211.8 1 198.13 12.41 0 0.01 

Location:S1_5106842 619 103.2 6 1200 6.04 0 0 

S5_178308576:S9_104861090 222 221.6 1 198.02 12.98 0 0.01 

S1_189290778:S4_23889254 365 364.8 1 198 21.37 0 0 

S1_5106842:S7_172473946 197 196.8 1 198.07 11.53 0 0.02 

Stand % Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) padj 

Location 1032825 147546 7 2 9958.63 0 0.02 

S7_161220674:S1_38255817 155 155 1 198.46 10.47 0 0.05 

S1_38255817:S9_331601 181 181 1 198.95 12.18 0 0.04 

Location:S6_142400130:S9_144139888 339 56 6 1194 3.81 0 0.04 

Yield (bu/Ac) Sum Sq Mean Sq  NumDF DenDF F value Pr(>F) padj 

Location 1351892 193127 7 2 1565.1 0 0.02 

S2_180671323 3201 3201 1 199.9 25.94 0 0 

S7_128747685   1335 1335 1 199.74 10.82 0 0.03 

Location:S2_180671323 2929 488 6 1206 3.96 0 0.02 

Location:S3_225468828 4470 745 6 1206 6.04 0 0 

Location:S2_201906553 3870 646 6 1206 5.23 0 0 

Location:S6_93911476:S8_118250825 3130 522 6 1206 4.23 0 0.02 
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Figure 24 – A: Significant interaction plots for each mega environment (MEs) for pollen DAP 

between two markers (S9_48378188 and S2_224615471).  
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Figure 24 – B: Significant interaction plots for each mega environment (MEs) for pollen DAP 

between two markers (S2_9498230 and S2_224615471).  
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Figure 24 – C: Significant interaction plots for each mega environment (MEs) for silk DAP between 

two markers (S9_10972540 and S3_4836798).  
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Figure 24 – D: Significant interaction plots for each mega environment (MEs) for plant height (PH) 

between two markers (S3_157440022 and S8_33490583).  
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Figure 24 – E: Significant interaction plots for each mega environment (MEs) for stand percentage 

(stand %) between two markers (S6_142400130 and S9_144139888).  
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Figure 24 – F: Significant interaction plots for each mega environment (MEs) for yield (yield 

(bu/Ac)) between two markers (S6_93911476 and S8_118250825).  
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Figure 25: Significant EEI plot for each trait (pollen and silk DAP, plant height, ear height, stand %, 

and yield (bu/Ac)).  
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Discussion 

Correlations & heritability 

It is well known that there is a correlation between agronomic traits, and correlations can account 

for genetic and non-genetic relationships between two or more traits (Silva et al., 2016). In 

previous studies, A strong correlation between pollen DAP and silk DAP has been found (Ribaut 

et al., 1996). This is expected since the inflorescence time for maize tassel and silk is consecutive. 

Expectedly, we found a strong correlation between the pollen and silk DAP. As previous studies 

found, PH and EH, with which we found a strong correlation between the two traits, are other 

highly correlated quantitative traits (Malik et al., 2005).  

Furthermore, moderate correlations between PH, EH, pollen DAP, and silk DAP are reported since 

one quantitative trait influences another, as previous studies demonstrated (Messmer et al., 

2009). We found a similar interaction pattern between the PH, EH, pollen DAP, and silk DAP. A 

correlation between stand % and other agronomic traits is expected to be close to zero in a fully 

germinated experiment. However, during a growing period, external influencer factors might 

affect and eliminate plants in an experiment, which stand % might correlate with other traits 

indirectly (Zhao et al., 2018). Across locations, we observed no correlation with stand %, but we 

found low negative correlations in ME1 for pollen DAP and silk DAP and all agronomic traits in 

ME3, except for yield. As expected, stand % and yield correlated low to moderate across MEs. 

Previous research indicates that yield is a highly quantitative agronomic trait influenced by 

external factors, such as environments (Kravchenko and Bullock, 2000). Therefore, yield 

correlated poorly with all traits in the experiment. 

H2 across locations was high for each phenotypic trait, especially for PH and EH. Also, H2 is 

calculated in previous publications for PH and EH, which was reported as a highly heritable trait 

(Li et al., 2017). In addition, heritability calculation could be affected by external factors, such as 

the environment and the missing data (Stirling et al., 2002; Nakagawa and Freckleton, 2008). H2 

was high across MEs as well. However, H2 was low in ME3 for pollen and silk DAP and ME6 for silk 

DAP due to the high error variance. Phenotyping errors or missing values might cause high error 

variance. The missingness for ME3 for pollen and silk DAP was one environment out of five. For 

ME6, all genotypes within environments in ME6 were observed except for some missing values 
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for silk DAP. It was observed that phenotypic variation between environments within MEs was 

high for the corresponding trait. As stated previously, low heritability has low power to detect 

minor QTLs (Viana et al., 2017). Our analysis with low heritability MEs detected major QTLs, but 

minor effect QTLs and significant epistatic interactions were not observed in low H2; therefore, 

for EEI statistical analysis, there were no significant QTLs from low H2.  

Linkage and QTL mapping 

QTL mapping analysis revealed significant QTLs for pollen and silk DAP, PH, EH, stand %, and yield 

across environments or location-specific QTLs in our analysis. Similar results were revealed in 

previous publications on each phenotypic trait. A study worked on maize and identified QTLs male 

and female flowering time with 234 individuals. They genotyped F2 populations on 142 loci, and 

F3 families were evaluated. QTLs on chromosomes 1, 2, 4, 5, 8, 9, and 10 accounted for 48% of 

the phenotypic variation on anthesis and silking DAP (Ribaut et al., 1996). Another study found 

several significant QTLs on PH in all chromosomes with four populations of maize (Beavis et al., 

1991). Other studies discovered identical results on pollen and silk DAP, PH, EH, stand %, and yield 

(Yan, 2003; Messmer et al., 2009; Cai et al., 2012; Leng et al., 2022). Various QTLs were found 

across locations for each corresponding trait. However, location is a substantial factor in 

identifying QTLs. Each publication indicated several stable QTLs across locations. 

Genetics controls flowering and silking time; it has also been known that the environment affects 

naturally evolved populations. It has been discovered that one large effect of QTL controlling the 

flowering time is called Vgt1, located on chromosome 8 (Salvi et al., 2007). However, follow-up 

studies indicated that the flowering time is quantitative and controlled with many minor effects 

QTLs. A study with over 4000 maize landraces across 22 environments discovered significant SNPs 

associated with flowering time. In addition, the study revealed that more than 50% of the 

identified SNPs for the flowering time were also associated with altitude, which indicates 

environmental effects on flowering time (Romero Navarro et al., 2017). A study with two near-

isogenic lines (NILs) of F3 maize lines identified significant QTLs on flowering time on 

chromosomes 1, 8, and 10 (Koester et al., 1993). Also, Our study found significant QTLs on 

chromosomes 1, 4, 5, 8, 9, and 1, 5, 9, and 10 for pollen and silk DAP, respectively. As indicated 
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previously, the correlation between the two traits is high. Therefore, some of the QTLs 

colocalized.  

Plant height and ear height are complex traits influenced by genetic and environmental factors. 

Several studies have identified significant quantitative trait loci (QTLs) associated with maize 

plants and ear height. Multiple factors, including hormones such as gibberellins and 

environmental effects such as light and temperature, regulate the expression of genes that 

control plant height and ear height. Understanding the genetic basis of these traits can help 

breeders develop maize varieties with improved agronomic performance and yield potential (Cai 

et al., 2012). For PH, on chromosomes 1, 3, 5, 7, 8, 9, and 10, significant QTLs were found. In one 

study, significant QTLs for PH in maize were found on chromosomes 1, 3, 5, 8, and 9. The study 

was conducted in different stages of the PH and concluded that QTLs related to the PH differently 

express in various stages of maize growth (Yan, 2003). Another study worked with 103 

microsatellite markers, and the F2:4 family found QTLs on PH and EH on chromosomes 2, 3, 4, 8, 

and 9. The QTLs explained 41.5% of EH and 78.27% variance for PH (Zhang et al., 2006). Another 

large effect of QTL on PH (32.3% variation explained) on chromosome 3 within four cM intervals 

was found. Furthermore, they created Segmental isolines and narrowed the interval of the QTL 

to 12.6 kb (Teng et al., 2013).  

As for EH, significant QTLs were found on chromosomes 1, 3, 5, 9, and 10. EH and PH are strongly 

correlated traits. Therefore, in some cases, our experiment and the literature share the co-located 

QTLs. A study with F2:3 and RIL maize populations found shared QTL locations on chromosomes 

1, 2, and 5 for the F2:3 population and chromosomes 2, 3, and 9 for the RIL population (Li et al., 

2016). Another study was conducted on 14 diverse locations to identify QTLs on PH and EH on 

maize with F1 maize hybrid lines. Researchers successfully identified stable QTLs across 

environments for both traits (Li et al., 2017). 

Stand % in a plot indicates how the genotypes resist environmental factors. Green snap and stalk 

lodging are two factors that could influence agronomic traits, such as yield. Thus, stand % is one 

factor that points out how the plants are resilient to those external factors. This study identified 

only one significant QTL on chromosome 8 in ME 4. In a study focusing on maize, researchers 

evaluated stalk bending strength (SBS) using parameters like maximum load to breaking (F max), 
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breaking moment (M max), and critical stress (σ max) in a population of 216 recombinant inbred 

lines. The heritability of these SBS traits was high, with values ranging from 0.75 to 0.81. Through 

genetic analysis, they identified multiple quantitative trait loci (QTLs) responsible for significant 

portions of the genotypic variance in these SBS traits, concentrated in specific genomic regions. 

The study also explored using genomic prediction methods, such as GBLUP and BayesB, which 

showed higher predictive accuracy than QTL mapping (Hu et al., 2013).   

Many studies have identified significant QTLs for yield in maize in every chromosome. In one 

study, a significant QTL for yield on chromosome 1 was found under drought and well-water 

regimes with 101 SSR markers with a RIL population (Guo et al., 2008). Another study on yield 

components in maize has discovered several QTLs related to ear length, diameter, ear number, 

ear weight, and prolificacy, respectively, 5, 5, 2, 2, and 3 QTLs identified. They identified significant 

QTLs on each chromosome except chromosome 6 (Karen Sabadin et al., 2008). Another study 

indicated that plant density could influence yield components in maize. Researchers sow the 

plants under two diverse plant densities with F2:3 genotypes derived from two elite inbred lines 

to test their results. According to their results, 30 QTLs were detected with high-density sowing. 

Also, they indicated that the high plant density affects some yield component traits, such as ear 

length (Guo et al., 2011). Our study identified several significant QTLs on yield on chromosomes 

2, 3, 5, 7, and 8.  

In conclusion, numerous studies on PH, EH, pollen and silk DAP, stand %, and yield have identified 

significant QTLs contributing to each trait of interest. However, the specific significant QTLs can 

vary depending on the population, environment, and the number of individuals included in the 

study. The examples provided for each trait showed both similar and different results. Our 

analysis also found significant QTLs consistent across different environments or specific to certain 

locations. Furthermore, the subsequent chapter revealed significant QTL-environment 

interactions and epistasis effects, as well as significant epistasis by environment interactions, 

which were evaluated using a mixed linear model approach. 
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QTL environment interactions 

Although the main effect of QTLs had been found in the previous analysis, many indicated 

location-specific QTLs. For instance, we observed a significant marker on chromosome 5, position 

81.1, for Pollen DAP across the location (Table 2). However, a marker located on chromosome 9, 

position 60.5, was only observed on ME6. One reason for the location-specific marker is an 

interaction between genetics and the environment (QTL x environment). Previous studies 

observed QTL x environment interactions, as we observed in our analysis. Fériani et al. 

investigated barley with previously mapped SSR markers under two diverse locations in Tunisia. 

Although the number of the environment is limited, they found significant QTL x environment 

interactions (Fériani et al., 2020). Wang et al. studied introgressed rice lines under six 

environments with yield-related phenotypic traits with SNP markers. They found significant 

markers for each tested trait. In addition, they pointed out that the majority of the significant 

markers are environment-specific (Wang et al., 2014). Despite the obstacles, such as few markers 

and environments to test the genotypes, previous researchers indicated significant QTL x 

environment interactions. In this research, we were able to find significant QTL x environment 

interactions: two for pollen, silk DAP, and PH, one for EH, and three for yield traits among 2415 

markers and six MEs. For pollen DAP, two significant interactions were found between the 

environments and chromosomes 7 and 2. For silk DAP, chromosomes 1 and 10 interact with 

environments. Also, two significant QTL and environment interactions were found for PH 

between chromosomes 1 and 8. Only one significant QTL environment interaction was found on 

chromosome 1 for EH. No significant QTL x environment interactions were found for stand %. 

Lastly, three significant interactions with environments were found for chromosomes 2 and 3 for 

yield. 

Epistasis 

The interaction between genetics and environment attracted researchers' attention to 

understand the underlying reasons. Yu et al. have identified epistatic interactions on plant height 

in rice. They used 240 F2:3 families from a cross between two elite inbred lines. Significant 

epistatic interactions for plant height and heading date had been identified (Yu et al., 2002). 

Another study with maize RIL population derived between the cross B73 and By804 high-oil line 
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identified 42 major QTLs as well as 36 epistasis loci related to palmitic acid, stearic acid, oleic acid, 

linoleic acid, and oil. Researchers indicated that additive major QTLs play a crucial role in epistatic 

interactions, contributing to the oil content in maize (Yang et al., 2010). 

In our research, significant epistatic interactions were found for each phenotypic trait. Five 

epistatic interactions have been found for pollen DAP. For silk DAP, nine significant epistatic 

interactions were found, and six of the significant epistatic interactions were found on ME7. 

Twelve and four significant epistatic interactions were found for PH and EH. Ten epistatic 

interactions were found for stand %, and twenty-six significant epistatic interactions were found 

for yield. 

Epistasis by environment interactions 

Epistasis may vary depending on the environmental conditions observed and explained in the 

previous chapters. This can complicate the identification and characterization of QTLs for a given 

trait, as the effect of epistasis may be indistinct in different environments. Previous studies have 

proven that environmental factors are crucial in genetics, and researchers identified QTL x 

environment interactions. However, epistasis by the environment is largely unknown. In this 

study, we found significant epistasis by environment interactions for pollen and silk DAP, PH and 

EH between chromosomes 2 and 9, 2 and 2 for pollen DAP, 3 and 9 for silk DAP, 3 and 8 for PH, 

and lastly, 6 and 8 for yield. Only a few studies pointed out the EEI. A study of the Chinese 

rapeseed DH population with 282 lines in four locations revealed significant epistasis by 

environment interactions with a linear mixed model on the oil seed content. Their study used the 

analysis with 125 SSR markers (Zhao et al., 2005). Another study focused on identifying the EEI 

with association mapping study on cotton cultivars with 323 accessions with 651 SSR markers 

under nine diverse environmental conditions on yield-related traits with an LMM approach. They 

indicated that the heritability of significant EEI is higher than additive and epistasis for two yield-

related traits, namely, lint yield and boll number (Jia et al., 2014). Limitations of the previous 

studies were the low number of environments and the low number of markers evaluated in the 

experiments.  

In conclusion, main QTLs are identified for each corresponding phenotypic trait; also, 

environmental conditions affect phenotypic observations of identical genotypes. Thus location-
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specific QTLs have been identified in addition to the main effect QTLs. The main effect of QTLs 

was detected in previous studies alongside environment-specific QTLs. The effect of QTL-

environment interactions is illustrated in different studies. However, there are few studies 

focused on EEI. This study focused on identifying the main effect of QTLs, interactions of QTL-

environment, and EEI with a linear mixed model. The results indicate that there are interactions 

between epistasis and environment. Permutation tests indicated that the linear mixed model 

results of EEI are trustworthy. Therefore, researchers should consider this factor when they 

analyze their data. Further investigation is needed to understand the underlying reasons for EEI. 
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Chapter 3: Gene Expression Analysis to Detect the Effect of the Origin of Seeds for an Epistasis 

Mapping Population Experiment in Maize 

Abstract 

Epigenetic modifications are an important factor that could impact the phenotype of individual 

plants, and the next generations could inherit those modifications. Therefore, understanding the 

epigenetic effects on a gene expression level between genotypes could improve the underlying 

reason for phenotypic variation.  

In this study, we used a unique maize population called the Epistasis Mapping Population (EMP), 

created to identify epistatic interactions efficiently by reducing the number of tests required to 

detect epistasis. This population was generated by crossing near-isogenic lines (NILs) with the 

recurrent parent B73 and each other. Crossing only 20 NIL founders in all 190 pairwise 

combinations, the population encompasses approximately 75% of the genome to test for pairwise 

interactions. 

We conducted a preliminary study to evaluate whether there is an origin-of-seed effect on gene 

expression between two distinct environments (Nursery (field) and greenhouse (GH)). We grew 

a subset of the EMP, which included two NILs (B73 and the F1NILs) in a controlled environment. 

We harvested the above-ground tissues at the end of the V2 growth stage and performed 3'-tag 

Digital Gene Expression (DGE) analysis. BrAD-seq protocol for the library preparation was utilized, 

and the libraries were sequenced by Illumina sequencing technology. Our bioinformatics pipeline 

included quality control, mapping the reads to the B73v5 reference transcriptome, and using the 

R package DESeq2 to detect significantly differently expressed (DE) genes. 

Although we observed DE genes between all the genotypes tested, we did not detect any DE 

genes between seeds of different origins. Our results suggest an insignificant origin-of-seed effect 

on transcription in above-ground tissue at the V2 stage.  
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Material & Method 

Population and growth condition 

Our research uses an Epistasis Mapping Population (EMP). EMPs were created by backcrossing 

near-isogenic lines (NIL) to B73 (BC-NILs) and crossing them with each other to create F1-NILs. 

The NIL founders were created by Eichten et al. by crossing B73 to Mo17, backcrossing to B73 for 

two generations, and self-crossing for four generations (Eichten et al., 2011). The main goal of the 

EMPs is to decrease the number of tests required to detect epistatic interactions with 20 NIL 

founders, 20 BC-NILs, and 190 F1-NIL hybrids. The effect of BC-NIL1 and BC-NIL2 is α1 and α2, 

which can be calculated compared to the introgressed region of BC-NIL1 and BC-NIL2 to B73. If 

the sum of α1 and α2 is not equal, we can conclude that there are epistatic interactions between 

the introgressed regions. Otherwise, there are no epistatic interactions (Figure 1). 

 

Figure 1: Design of the Epistasis Mapping Population (EMPs). α1 represents the effect of the 

introgressed region between BC-NIL1 and NIL1, while α2 represents the effect between BC-NIL2 

and NIL2. α1,2 is the effect of F1-NIL1,2. The impact of the hybrid is equal to the sum of α1 and 

α2, indicating no epistasis. If there is epistasis between the introgressed regions, the impact of 

the hybrid will differ. 

For this study, we selected B73, 2 NILs (b169 and b175), and an F1 NIL hybrid of the selected NILs 

(b169 x b175) from two seed sources, which one seed source was from a field experiment 

(TB_nursery) in 2016, and the second was from a greenhouse (GH) in 2017. We had two different 
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seed sources because the missing genotypes of EMP were re-created in the 2017 GH experiment. 

The selected genotypes for the experiment were grown in a controlled environment 

(greenhouse). Above-ground parts of the maize plants (leaves and stems) were harvested, and 

the roots of the plants were not included in RNA extraction. Plants were collected at the end of 

the V2 stage (Figure 2). Four genotypes were replicated five times, and each replicated genotype 

was pooled twice from each seed source. Each pool was homogenized, and homogenized samples 

were kept at -80 °C for further analysis.  

 

Figure 2: Photos of the experiment 

RNA isolation, gene expression analysis 

The cDNA libraries were prepared following the BrAD-seq (Breath Adapter Directional 

sequencing) protocol (Townsley et al., 2015). Strand-specific DGE was used with mRNA 

fragmentation using oligo L-3ILL-20TV.2. mRNA fragmentation was carried out at 25 °C for 1 

second, 94 °C for 3 minutes, 30 °C for 1 minute, and 20 °C for 4 minutes. The reverse transcriptase 

(RT) program for cDNA synthesis was as follows: 25 °C for 10 minutes, 42 °C for 50 minutes, 50 °C 

for 10 minutes, and 70 °C for 10 minutes. The PCR enrichment protocol consisted of 98 °C for 30 

seconds, 12 cycles of 98 °C, 65 °C, and 72 °C for 10, 30, and 30 seconds, respectively, and 72 °C 

for 5 minutes. The libraries were then checked by DNA electrophoresis, and the cDNA libraries 

were sent to an external facility for sequencing. 
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Quality control, RNA alignment, data collection 

The quality of the raw sequencing data for each sample was assessed using FastQC ("FastQC," 

2015). Cutadapt was then used to remove adapter sequences and low-quality nucleotides, with 

parameters -q, -m, -l, and --max-n (-q 5 -m 20 -l 50 --max-n 3) (Martin, 2011). Between 40.04 to 

61.11 % of the raw reads for each sample were removed.  

The high-quality reads were aligned to the B73v5 reference transcriptome using Kallisto, which 

the data is obtained from the maizeDGB database (Bray et al., 2016; Portwood et al., 2019). 

Kallisto pipeline was configured with a fragment length mean of 180, a standard deviation of 20, 

and a k-mer length of 31 for each sample. 62.98 – 69.57 % of the raw reads for each sample were 

aligned to the B73v5 reference transcriptome. The report for alignment for each sample can be 

seen in (Table 1). 
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Table 1: Kallisto runs for each sample describe raw read before and after quality control, the 

percentage of removed reads, the number of aligned sequences (NAS), and the percentage of 

aligned to the reference transcriptome. 

Run Sample (34) 

Raw 
reads 

BeforeQC 

Raw reads 
AfterQC 
(RRAQC) 

Percentage of 
remove 
cleaning 

Number of 
Aligned 

Sequence (NAS) 

Percentage 
Align 

(RRAGQ/NAS) 

s111 b169A 4450496 2248933 50.53 1478170 65.73 

s112 b175A 5360644 2703651 50.44 1830513 67.71 

s113 b73A 5952645 3637491 61.11 2427390 66.73 

s114 b169/b175A 7346277 2941662 40.04 1965041 66.80 

s121 b169B 6868029 3422706 49.84 2275053 66.47 

s122 b175B 5226325 2583760 49.44 1627139 62.98 

s123 b73B 9455119 4724712 49.97 3120545 66.05 

s124 b169/b175B 9431741 4855705 51.48 3227706 66.47 

s211 b169A 9832830 4836143 49.18 3264010 67.49 

s212 b175A 6412962 3251022 50.69 2130968 65.55 

s213 b73A 7703771 3810105 49.46 2650794 69.57 

s214 b169/b175A 17960068 9062340 50.46 5987319 66.07 

s221 b169B 3351868 1644454 49.06 1076298 65.45 

s222 b175B 3004551 1522723 50.68 1008403 66.22 

s223 b73B 8692789 4355562 50.11 2953864 67.82 

s224 b169/b175B 5551977 2811051 50.63 1936105 68.87 

s311 b169A 6264826 3215286 51.32 2168759 67.45 

s312 b175A 10979046 5176741 47.15 3366794 65.04 

s314 b169/b175A 3714961 1886668 50.79 1246110 66.05 

s321 b169B 3747956 1935181 51.63 1297044 67.02 

s322 b175B 7060394 3661156 51.85 2458562 67.15 

s323 b73B 6631023 3348640 50.50 2305474 68.85 

s324 b169/b175B 2663031 1335463 50.15 886879 66.41 

s411 b169A 4021699 1950649 48.50 1298522 66.57 

s412 b175A 2609937 1328625 50.91 876192 65.95 

s421 b169B 3897133 1988464 51.02 1320688 66.42 

s422 b175B 4442197 2283557 51.41 1539027 67.40 

s423 b73B 2627651 1364637 51.93 919939 67.41 

s424 b169/b175B 4615663 2356390 51.05 1599055 67.86 

s511 b169A 5656513 2853807 50.45 1921680 67.34 

s512 b175A 4157546 2143117 51.55 1423055 66.40 

s513 b73A 4190794 2150508 51.32 1475452 68.61 

s514 b169/b175A 4679979 2417193 51.65 1651525 68.32 

s521 b169B 7007271 3551138 50.68 2420640 68.17 

s522 b175B 2816127 1450801 51.52 960362 66.20 

s523 b73B 4000212 2016125 50.40 1320413 65.49 

s524 b169/b175B 6514683 3247326 49.85 2164467 66.65 
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Outlier, principle component analysis (PCA), and statistical analysis 

Differential expression genes (DEG) were identified using the R package DESeq2 (Love et al., 

2014). We filtered the raw and normalized gene counts according to the following criteria: first, 

we discarded any gene with a non-normalized count of less than 10 across all 34 samples. This 

step discards outliers and improves normalizations. Second, we normalized the remaining genes 

using the estimateSizeFactors command implemented in the DESeq2 package and discarded any 

genes with a normalized count of less than five across less than 30 of the 34 samples. This step 

aimed to discard genes with outliers if only a few samples had high normalized DEGs. Before 

filtering, the initial gene count was 39,756, and after the two filtering steps, the count was 

reduced to 14,410 genes. 

Next, we examined Cook's distances of the samples and performed Principal Component Analysis 

(PCA) with the top 100 highly expressed genes. DESeq2 was used to perform differential 

expression analysis based on the Negative Binomial Distribution with the DESeq function 

implemented in the package. We selected log fold change (|log2FC| > |2|) to determine 

significance and adjusted p-values with FDR < 0.05 as thresholds. 

 

 

 

 

 

 

 

 

 

 



Chapter 3 Origin-of-Seed 93 

 

Results 

Cook's distances and PCA 

The Cook's distance is a statistical analysis used to identify outliers by examining the influential 

points in a least-squares regression model. The Cook's distances for each sample can be seen in 

Figure 3, where the A and B symbols next to the genotype names represent two different seed 

sources: GH and TB_Nursery. The Cook's distances indicated no outlier genes in the samples. 

Additionally, we compared the samples using principal component analysis (PCA) performed on 

the post-filtered top 100 highly expressed genes (100 out of 14,410 genes). Figure 4 illustrates 

the PCA of the genotypes with five replications. Principal Components 1 (PC1) and Principal 

Components 2 (PC2) explained 18% and 12% of the variation, respectively. Two samples marked 

as b169 genotypes were clustered with b175 genotypes in PC analysis and thus discarded from 

the analysis.  

 

Figure 3: Cook's distances of the DE genes from the sequenced samples. The X-axis indicates the 

influence points in a linear model, while the Y-axis shows the sequenced samples. 
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Figure 4: The principal component analysis (PCA) plot illustrates the tested genotypes. The X and 

Y-axes represent the first and second principal components (PC1 and PC2). The conditions are 

denoted by two separate seed sources, TB_Nursery and greenhouse (GH). The genotypes are 

labeled with different symbols. Red circles in the figures are marked as outliers. 

DEG analysis 

First, we compared different seed sources, and the results are presented in the volcano plot in 

Figure 5. The dots in the figure represent the DEGs, and we assessed the significance based on 

|log2FC| > |2| and adj p-values < .05 thresholds, which are marked in red. However, we found 

no significant DEGs between the two seed sources. 
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Figure 5: Volcano plot of differently expressed genes (DEGs) between the two seeds of origin. X-

axes illustrate the log fold changes between the seed sources (log2FoldChange), and the Y-axes 

demonstrate the p-values of each data point. Significance is determined if the data point exceeds 

the -2 or +2 log fold change and, in addition, if the adjusted p-value is smaller than 0.05 (Padj < 

0.05). 

Second, we compared seeds of origins within the groups, and the comparison was with a low 

sample; DE genes were not found in the two comparisons, but we found one DEG for B73 and 

b175 and no DEG for b169 and b169/b175.  
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Figure 6: Volcano plot of differently expressed genes (DEGs) between the two seeds of origin 

within different groups of genotypes. b169 (A), b175 (B), B73 (C), b169/b175 (D). X-axes illustrate 

the log fold changes between the seed sources (log2FoldChange), and the Y-axes demonstrate 

the p-values of each data point. Significance is determined if the data point exceeds the -2 or +2 

log fold change and, in addition, if the adjusted p-value is smaller than 0.05 (Padj < 0.05). 

Next, we compared different genotypes with each other. Figure 7 shows the DEGs for each 

genotype comparison (A, B, C, D, E, F). We identified 28, 24, 17, 71, 30, and 20 upregulated or 

downregulated DEGs between b169/b175 & B73, b169/b175 & b169, b169/b175 & b175, B73 & 

b169, B73 & b175, and b169 & b175, respectively. Figure 8 displays a heatmap of each 

comparison. 
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Figure 7: Volcano plot of differently expressed genes (DEGs) between the two genotypes. B73 vs. 

b169 (A), B73 vs. b175 (B), b169 vs. b175 (C), b169/b175 vs. B73 (D), b169/b175 vs. b169 (E), 

b169/b175 vs. b175 (F). and the Y-axes demonstrate the p-values of each data point. Significance 

is determined if the data point exceeds the -2 or +2 log fold change and, in addition, if the adjusted 

p-value is smaller than 0.05 (Padj < 0.05). 

For example, the DEG Zm00001eb017120 on chromosome 1 was reported in previous studies to 

be significant between the genotypes b169/b175 & b169 and B73 & b169, and it is involved in 

managing the Terponoid defense compound (Fontana et al., 2011; Block et al., 2019). Another 

DEG, Zm00001eb098980, on chromosome 2 was found to be significant between B73 & b175 and 

b169 & b175 and is known to play a role in encoding plastid RNA polymerase complex, DNA 

binding, and protein binding (Majeran et al., 2012; Williams-Carrier et al., 2014).  



Chapter 3 Origin-of-Seed 98 

 

 

Figure 8: Heatmap of differently expressed genes (DEGs) between genotypes. DEGs are centered 

according to Z-scores (Right side of the figure). Genotypes and seed sources are indicated with 

four and two colors (red, blue, orange, and light-green for genotypes. Dark-green and purple for 

origin of seed), respectively. b169 vs. b175, B73 vs. b175, B73 vs. b169, b169/b175 vs. b175, 

b169/b175 vs. b169, b169/b175 vs. B73, first, second, third, fourth, fifth, and sixth categories, 

respectively. Each box represents DEGs between the genotypes and conditions. 
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Discussion 

Epistasis mapping population (EMP) 

Beissinger and his group created an epistasis mapping population (EMP) to study the epistatic 

interactions affecting quantitative traits. EMP is designed to identify the epistatic interactions 

between genetic loci contributing to the expression of a quantitative trait. This was achieved by 

crossing near-isogenic lines (NILs) with each other and with the B73 reference line (Eichten et al., 

2011). NILs were created by backcrossing the original inbred line Mo17 to a reference inbred line 

B73 multiple times, resulting in lines (NILs) that are, in their genetic makeup, nearly identical to 

B73, except for specific chromosomal regions of interest. Such NILs then were crossed with B73 

a last time, creating backcrossed NILs. EMPs aim to compare the phenotypic performance of the 

backcrossed NILs with B73; and with F1-hybrids between two backcrossed NILs. The trait 

differences between two backcrossed NILs and B73 should add up to the difference between their 

F1-hybrid and B73. If this was the case, no epistatic interactions were detected; otherwise, 

epistasis occurs between the chromosomal regions on the genome that are represented by any 

two focal backcrossed NILs and their F1-hybrid. Utilizing EMPs will help reduce the multiple-

testing problem in such epistasis research, will hence increase the ability to detect epistatic 

interactions, and will reduce false positive results. In addition to identifying epistatic interactions, 

EMPs may provide insight into the underlying mechanisms of gene regulation and the role of 

epistasis in the evolution of species. By understanding the genetic basis of quantitative traits, 

EMPs can contribute to increasing the efficiency of plant breeding methods and strategies. In 

conclusion, EMPs are a useful tool in studying the genetics of quantitative traits, providing 

valuable information about the role of epistasis in trait determination and enabling the 

development of more effective breeding strategies. 

Origin of seed 

Previous studies have investigated the effect of environments in following generations on late-

growth stage phenotypic differentiation (Herman and Sultan, 2011; Kou et al., 2011). Dyer et al., 

2010, investigated Aegilops (Aegilops triuncialis) offsprings with parents grown in different soil 

conditions, and they observed early flowering of the Aegilops offspring of parents grown in 

serpentine soil (Dyer et al., 2010). In our study, we focused on the effect of origin-of-seed on 
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maize seedlings at the V2 stage, and we used a subset of genotypes from EMPs from two different 

seed sources. Our main objective in this study was to test the origin of the seed effect. Since there 

is a lack of a full EMP set from one origin, we did not investigate epistatic interactions, which 

require a complete set of NILs, BC-NILs, and F1NIL hybrids. Although desirable, adtually obtaining 

the complete set from only one seed source was challenging. Therefore, to inprect this item, we 

set up a preliminary experiment to determine whether gene expression differed between the two 

here-used seed sources (origins of the seed). 

Investigating gene expression differentiation between genotypes is time-consuming due to the 

computational challenges of aligning mRNAs to the reference genome. However, software 

options are available to align libraries to the reference genome, such as Bowtie2 and STAR. To 

overcome these challenges, we used Kallisto and aligned the transcripts to the reference 

transcriptome. This approach significantly reduced the alignment time, taking approximately five 

minutes per sample and three hours for all samples combined. Additionally, Kallisto is known for 

its high accuracy compared to other software options (Du et al., 2020). 

Our study focused on EMPs to examine DEGs in the progeny from two distinct seed sources, 

aiming to understand whether diverse environmental conditions affect the progeny of parents 

producing seed in those environments. In contrast to previous studies, upregulated and 

downregulated genes were insignificant between the two seed sources. However, it is worth 

noting that previous studies examined different growth stages of plants compared to our study. 

Additionally, our study only analyzed mRNA expression, and further statistical analyses are 

needed to evaluate potential methylation differences between genetically identical genotypes to 

fully understand the epigenetic effects on the next generation. Furthermore, the specific 

environmental conditions to which the parents of the progeny were exposed remain unknown. 

As previous studies have indicated, stress factors can influence progeny, allowing for the 

inheritance of epigenetic factors to subsequent generations. Although parents of the genotypes 

grew in distinct environmental conditions in our experiment, since the environmental conditions 

are greenhouse and field, the expected environmental conditions exposed were not extreme. 

Therefore, the observed results match our null hypothesis.  
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Although the comparison of mRNA levels between different seed sources showed no differentially 

expressed (DE) genes, a single DE gene was found within the B73 and b175 groups. On the other 

hand, the expected distribution of DGE distribution between two comparisons is not one but 

many genes, as shown in the genotype comparison in Figure 7. In addition, in this study, the 

sample size for comparing genotypes is lower than for origin-of-seed comparison with two seed 

sources. Therefore, previous studies have shown that low sample sizes can decrease the precision 

and power of differential expression analysis, leading to false positives (Stretch et al., 2013; Ching 

et al., 2014). Hence, comparing the seed sources within or between the genotypes in this study 

may not have been entirely accurate due to the low sample size, and false positives may have 

been expected. Despite the low sample size between each genotype comparison, several DE 

genes were observed for each different genotype comparison. 

After analyzing the Differentially Expressed Genes (DEGs), we found no significant expression 

differences between the seed sources from the field and the greenhouse in maize seedlings at 

the V2 growth stage. In addition, to validate the reliability of our analysis, we compared different 

genotypes, and as expected, we observed DEGs among all possible genotype combinations. 

Therefore, we can conclude that DEGs between the seed sources are not large since we would 

have observed them frequently. Therefore, the probability of interfering with the origin-of-seed 

effects for further analysis with EMPs is low.
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Chapter 4: General Discussion 

Importance of epistasis and previous findings 

Genetic variation is one of the primary drivers of phenotypic variation within and between 

populations. Genetic variation can arise be steered via various sources, including mutations, gene 

flow (migration), random genetic drift, and natural and artificial selection (Barton et al., 1997). 

Additionally, genetic variation can be influenced by the history of a given population, including its 

effective population size, its genetic structure, and by past migration events (Epperson, 1993; 

Gomez et al., 2014). Environmental factors, such as soil quality and temperature, usually also 

markedly impact the phenotypes of plants (Chesson, 1986; Hill and Mulder, 2010). Moreover, 

environmental factors can interact with genetic factors to create complex and often 

unpredictable phenotypic outcomes (Hill, 1975; Via and Lande, 1985). Therefore, a plant 

genotype performing better-than-others in one environment may perform inferior in another 

setting.  

It is widely accepted that the phenotypic performance of genotype is – for most agronomically 

relevant traits – to a high extent determined by genetics. Sir Ronald Fisher previously described 

genetic variation as a heritable contribution to phenotypic variation, which he subdivided into 

variation due to additive effects, dominance effects, and epistasis (Fisher, 1930; Meredith Jr., 

1984; Barton and Turelli, 1989). Additive genetic variation is that part of the genetic variation that 

is usually inherited in future (sexually produced) generations and has been extensively studied in 

animal and plant breeding (Falconer, 1965; Moll and Stuber, 1974; Leary et al., 1985). Many 

studies have produced similar results, with additive variation accounting for most of the genetic 

variation in a population. However, some studies have emphasized the importance of dominance 

and epistasis variation (Willis and Orr, 1993). In a study on Arabidopsis thalia, researchers found 

that epistatic interactions between two loci affected flowering time (Koornneef et al., 2004). 

Another study on rice indicated that epistatic interactions influence grain yield (Li et al., 1997). 

According to classical Quantitative Genetic theory (Falconer, 1996) and a simulation study by 

Carter et al. (2005), epistatic interactions can be relevant and even increase the additive genetic 

variation. Thus, with positive directional epistasis, the population has a higher local maximum 

compared to only additive interactions (Carter et al., 2005). Gambe, in 1962 studied 15 maize 
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crosses and concluded that dominance and epistasis effects are more important for inheritance 

than additive effects. Also, epistasis variation was larger than additive effects (Gamble, 1962). In 

his study, Gamble utilized a mean comparison of the progenies and the parents. Although means 

can indicate epistatic interactions, negative and positive epistatic interactions can cancel each 

other out. Therefore, estimating the genetic parameters based on variation can improve the 

detection of epistasis interaction, and a well-known design of this approach is the North Carolina 

design (Hohls, 1996; Abdallah and McDaniel, 2000). However, one drawback of this approach is 

that it requires large population size. Another study compared hybrid maize lines, F1, F2, F3, back-

crosses, second back-crosses, and selfed back-cross generations in acid and non-acid soils and 

found low variation caused by epistasis in non-acid soils but significant epistasis in acid soils. In 

addition, they notably indicated increasing epistasis interaction with GxE interactions (Ceballos et 

al., 1998). As we think in the simulation study of Carter et al. (2005) and the study of Ceballos et 

al. (1998), epistasis plays a crucial role in evolving a population in a particular environment. In 

self-fertilizing plants such as wheat, additive genetic variation can explain most of the variation in 

a population. Ketata et al. (1976) found that additive genetic variation was more important than 

dominance and epistatic genetic variants in wheat; in addition, they cautioned that a model 

without epistatic interactions could lead to biased results (Ketata et al., 1976). A study on maize 

found significant epistatic interactions under different environmental conditions, well-watered, 

and drought. This suggests epistatic interactions can significantly determine how plants respond 

to changing environmental conditions, which is especially relevant given climate conditions 

(Messmer et al., 2009).  

Additive genetic variation and, to some extent, dominance-related genetic variation have 

traditionally been the focus of plant breeding efforts for many years, but researchers have 

increasingly recognized epistatic interactions' importance. Taking epistasis into account can lead 

to a more accurate understanding of the inheritance of traits and could ultimately help to develop 

more effective and sustainable plant breeding strategies (Moore and Williams, 2009). 

QTL by environment and epistasis, and epistasis by environment interactions 

QTL mapping studies' power and resolution are closely tied to the specific population and 

environment being studied. In our research, we have identified significant QTLs and compared 
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them to similar and dissimilar peaks on chromosomal locations reported in previous studies in 

the literature. Notably, we observed LOD score changes in QTLs across different environmental 

conditions, suggesting an interaction between QTLs and the environment. Such interactions have 

been documented earlier in various studies in the literature. 

As demonstrated in our analysis, environmental conditions can influence certain QTLs' effects. 

These interactions have been captured using a linear mixed model, as discussed in the first 

chapter of our study. Given the ongoing impact of global warming, understanding these QTL-

environment interactions is crucial for the breeding goal of developing adapted plant materials 

for specific local conditions. 

Furthermore, it is essential not to overlook nor neglect existing epistatic gene-to-gene 

interactions, as they can modulate and enhance genotype performance in future generations. As 

previous studies have indicated, detecting agronomically favorable epistatic interactions among 

QTLs may be just as essential as identifying QTLs related to the trait of interest. 

Moreover, epistasis-environment interactions can play a decisive role in enhancing genotypes 

that may have reached their potential trait performance. Our study provides valuable insights 

into the field of plant breeding, shedding light on the interactions between QTLs and the 

environment, as well as the potential for epistasis-environment interactions in shaping future 

breeding programs. 

Epistasis mapping population (EMP) and differential expression genes (DEG) 

Detecting the epistatic interaction between loci is challenging and requires a large sample size of 

a research population. In addition, statistical challenges to detect significant epistatic interaction, 

such as multiple testing problems, sample size limitation, and computational challenges, must not 

be forgotten. Multiple testing problems arise when many statistical tests are conducted 

simultaneously. Multiple testing increases the occurrence of false positives in statistical analysis, 

and p-values need correction in order to avoid false positives. In association studies, researchers 

test thousands or millions of genetic markers or other variables for their association with a 

particular outcome, such as for association between marker genotypes and phenotypic 

differences between the pertinent genotype groups. Particular methods have been developed to 
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address this issue. One and most used method is to adjust the significance level to reduce false 

positives in an experiment. Researchers use the Bonferroni correction and false discovery rate 

(FDR) test as popular methods (Verhoeven et al., 2005). Both methods aim to reduce type I errors 

due to multiple testing to detect true positive p-values. FDR is less stringent with false positives 

than Bonferroni at the cost of increasing type I errors. Either way, adjusting the p-values does not 

solve the fundamental problem of detecting the epistatic interactions because both methods also 

eliminate statistically true epistatic interactions. Therefore, minor epistatic interactions are 

undetected with statistical analysis. Other approaches to reduce this dilemma are increasing the 

sample size or decreasing the number of markers used in the statistical analysis (such reduction 

could be, e.g., based on linkage disequilibrium between used and kicked-out markers). However, 

the first method increases the costs of phenotyping and genotyping. The second method is 

decreasing the computational time to detect the epistatic interactions, but the precision and 

resolution of the interactions depend on the existing and exploited LD and multiple testing 

problems are not completely eradicated.  

Epistasis mapping populations (EMPs) were specifically created to address the issue of multiple 

testing. EMPs utilize near-isogenic lines (NILs). In our case, these NILs were developed by Eichter 

and his group (Eichten et al., 2011). EMPs aim to test randomly introgressed chromosomal regions 

instead of testing all (i.e., very many) marker loci that can be displayed by the available assays, 

residing more or less anywhere in the genome. The advantage of testing a relatively small number 

of regions comes with the disadvantage that there will be several or many QTLs within any of 

these regions. Their small, large, positive, and negative epistatic interactions with the several or 

many QTLs on any other region may cancel out. Hence, if no epistasis is detected, this does not 

propose that there is none. On the other side, if epistatic interactions are indeed detected with 

that approach, they are not less real and convincing as if accruing with alternative approaches. 

In this preliminary study, we examined the expression differences between two seed sources of 

EMPs: seed sources were greenhouse and field environment. Differentially Expressed Genes 

(DEGs) between these origins of the used seed would refer to variations in gene expression 

patterns resulting from differences in these two environmental conditions. Our analysis did not 

identify significantly upregulated or downregulated DEGs between the two distinct seed origins. 
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As expected, the up or downregulation of DEGs between different genotypes confirmed the 

reliability of the analysis. 

Some studies have suggested that environmental effects, possibly through epigenetic 

mechanisms, can influence seed dormancy levels and phenotypic observations in genetically 

identical genotypes under diverse environmental conditions (Fenner, 1991; Penfield and 

MacGregor, 2017). However, the inheritance of these epigenetic effects from parents to offspring 

remains a question. For instance, Elwell et al. (2011), investigated the effect of seed size on the 

next generation of Arabidopsis thaliana. They sowed and harvested seeds under six diverse 

environmental conditions and subsequently observed traits such as primary root growth, 

gravitropism, and flowering time based on seed size. They concluded that historical effects on 

parents could influence progeny phenotype (Elwell et al., 2011). Molinier et al. (2006) with 

Arabidopsis thaliana plants treated with ultraviolet-C or flagellin observed increased somatic 

homologous recombination of a transgenic reporter in subsequent generations (Molinier et al., 

2006). Lira-Medeiros et al. (2010) focused on phenotypic differences between SM and RS 

locations and found distinct observations for quantitative traits such as tree diameter, leaf width, 

and leaf area. The researchers later discovered that one location (SM) exhibited hypomethylation 

compared to the other (RS) (Lira-Medeiros et al., 2010). However, genetic investigation of the 

inheritance of epigenetic factors to the next generations remains limited. 



Chapter 4 General Discussion 107 

 

General conclusion 

Here, genetic and breeding research work on maize with a focus on epistasis and epistasis-

environment interactions was presented. QTL mapping was conducted for several traits analyzed 

either across all locations or specific to mega-environments. Significant QTLs were identified for 

each trait, with varying numbers detected in different mega environments. The analysis provided 

valuable information about the genomic regions associated with these traits. It is crucial to 

understand how the impact of segregating QTLs on trait variation changes if environmental 

parameters change, and for the following reasons: firstly, cultivar development unavoidably 

depends on our ability to predict the agronomic value of here-and-now tested candidates in 

farmers’ field condition, there-and-then; and secondly, this level of difficulty of this task is 

increased by the ongoing climate change because this makes our historical data less informative 

(Hansen et al., 2010; Aerni, 2023). 

Estimating the QTL effects on different environments can increase our analytic understanding 

and, hence, the usefulness of such QTL data in a breeding program. Therefore, estimates of the 

interaction effects of relevant QTLs with meaningful environments will probably help improve any 

breeding program. 

Epistasis QTL mapping revealed significant epistatic interactions between various sections of 

chromosomes for several pertinent traits across different environments. These interactions can 

provide insights into the complex genetic interactions underlying these traits. Breeders often 

neglect epistatic interactions in a breeding program. The main focus so far has been to estimate 

and employ additive genetic variation. Meanwhile, the global challenges are severe enough to 

put us on the lookout even for secondary and tertiary important sources of genetic variation. So, 

unquestionably, epistasis should not be ignored anymore because of its potential to improve 

breeding populations. Complex interaction can help populations overcome current metabolic and 

adaptation limitations, and breeders might discover individual and genotypes that surpass all 

sofar known genotypes. 

Lastly, our study explored epistasis by environment interactions (EEI) to understand how different 

environments might influence genetic interactions. Significant EEI effects were observed for 
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pollen days to anthesis, silk days to anthesis, plant height, and yield. These findings indicate that 

the genetic control of these traits can be influenced by the specific environment in which they are 

assessed. Our study indicates that effects of environments on epistatic interactions exist. We are 

pointing out that the breeding programs that consider epistatic interactions should be aware of 

the potential environmental effects on epistasis, and these interactions might alter the observed 

effect of epistatic interactions. Therefore, future breeding programs should evaluate epistatic 

interactions across a range of diverse environmental conditions or consider environmental factors 

when advertising their products. 

The origin-of-seed study comprehensively analyzed genetic data and gene expression patterns in 

various maize genotypes and seed sources. The analysis included an outlier assessment using 

Cook's distances, principal component analysis (PCA) for data visualization, and a comparison of 

differentially expressed genes (DEGs) to uncover genetic variations. The study aimed to 

investigate the impact of origin-of-seed on maize seedlings at the V2 growth stage, with a specific 

focus on understanding epigenetic interactions using gene expression data. The analysis was 

conducted with the available resources and a subset of genotypes consisting of EMP parents, BC-

NILs, and F1NIL hybrids from different seed sources. 

While no significant differences in gene expression were observed between different seed 

sources, the DEG analysis revealed specific genes that were significantly differentially expressed 

when comparing different maize genotypes. This suggests that, in our experimental conditions, 

diverse environmental conditions did not lead to detectable gene expression differences in the 

progeny of parents that produced the seed in these environments. It is important to note that 

our study focused solely on mRNA expression and did not explore methylation differences, 

essential for a comprehensive understanding of epigenetic effects, constituting a complex aspect 

of epigenetics.  

Overall, The EEI study provided a comprehensive analysis of genetic and phenotypic data for 

various traits in maize. The results contribute to our understanding of the genetic architecture 

and relationships between these traits, which can be invaluable for optimizing maize production 

in future breeding efforts. Identifying significant QTLs and epistatic interactions across different 
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environments opens new avenues for targeted genetic improvement in maize breeding 

programs.
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