Theoretical studies of metal-metal cooperativity in pyrazolate-bridged complexes

Dissertation
for the award of the degree
"Doctor rerum naturalium" (Dr.rer.nat.) of the Georg-August-Universität Göttingen

within the doctoral program Chemistry of the Georg-August University School of Science (GAUSS)
submitted by
Anton Römer
from Bremen

Göttingen, April 2023

Thesis Committee

Prof. Dr. Ricardo A. Mata
Institute for Physical Chemistry, Georg-August-University Göttingen
Prof. Dr. Peter E. Blöchl
Institute of Theoretical Physics, Clausthal University of Technology
Prof. Dr. Jörg Behler,
Center for Theoretical Chemistry, Ruhr University Bochum
Members of the Examination Board
Reviewer: Prof. Dr. Ricardo A. Mata
Institute for Physical Chemistry, Georg-August-University Göttingen
Second Reviewer: Prof. Dr. Peter Blöchl
Institute of Theoretical Physics, Clausthal University of Technology

Further members of the Examination Board

Prof. Dr. Franc Meyer
Institute for Anorganic Chemistry, Georg-August-University Göttingen
Prof. Dr. Thomas Zeuch
Institute for Physical Chemistry, Georg-August-University Göttingen
Jun.-Prof. Dr. Daniel Obenchain
Institute for Physical Chemistry, Georg-August-University Göttingen
Dr. Oliver Bünermann
Institute for Physical Chemistry, Georg-August-University Göttingen

Statement of Authorship

With my signature I declare to have written this thesis by myself, without assistance from other parties and without the use of other documents, expect for those explicitly stated in the text.

Göttingen, April 2023

Danksagung

Mein vorrangiger Dank gebührt Prof. Dr. Ricardo A. Mata. Dies gilt zum einen für die Bereitstellung des Themas meiner Doktorarbeit und die hervorragende wissenschatfliche Betreuung. Zum anderen, und keineswegs minderen Teil, gilt es aber auch seinen ausdrücklichen Interesse und Bemühungen daran, ein Arbeitsklima zu erhalten, das gleichsam produktiv wie freundlich ist. Geschichten über mangelhafte Betreuung and schlechte Arbeitsklimata während der Promotion sind bedauerlicherweise gang und gäbe, aber meine Zeit in der Arbeitsgruppe Mata ist ein Paradebeispiel dafür, dass es nicht immer so kommen muss. Des Weiteren danke ich Prof. Dr. Peter E. Blöchl und Prof. Dr. Jörg Behler für meine Betreuung und die wissenschaftliche Kooperation.
Das Arbeitsklima könnte ohne die Gruppenmitglieder kaum bestehen. Somit möchte ich allen Mitgliedern der Arbeitsgruppen Mata und Behler, aktuellen wie vorherigen, ebenfalls dafür danken. Dies gilt noch einmal mehr für jene, die an meinen Projekten mitgewirkt und unterstützt haben, spezifisch Lukas Hasecke, Rafael Machleid und Roland Schulz.
Für ein "normales" Leben außerhalb der Uni habe ich (ohne besondere Reihenfolge) außerdem folgenden Personen zu danken: Lennart, Kirstin, Christian, Peter, Dominik, Charlotte, Philipp, Frieda, Sky, und Gordon. Ohne unsere fantastischen Erlebnisse wäre ich kaum derselbe Mensch, der ich heute bin.

Zu guter Letzt danke ich meiner Familie, insbesondere meinen Eltern Martina und Ulrich Römer. Ich mag zeitweise an mir selbst gezweifelt haben, aber auf eure unerschütterliche Unterstützung war stets Verlass.

Abstract

Transition metal complexes can play a variety of important roles in regard to catalysis, materials synthesis, photochemistry, and biological systems through use of their unique electronic structure, and the resulting chemical versatility. These complexes can be tuned towards a multitude of different applications through careful design of their ligand structure. Electronic structure methods can provide great insight into these aspects, being able to predict compound properties even before any synthetic efforts have taken place, or in elucidating reaction mechanisms and unexplained compound behaviour afterwards. The results from one such project are detailed in the first chapter of this work, describing the oxidative splitting of water molecules by a bimetallic $\mathrm{Ni}^{\mathrm{II}}$ complex, with special attention toward the metal-metal cooperativity.

Furthermore, transition metal complexes often exhibit spin transitions in response to external stimuli such as changes in temperature and pressure, a phenomenon known as spin crossover (SCO). This phenomenon goes hand in hand with changes in physical properties, and the attainable bi- or multistabilities grant these types of complexes wide potential application as molecular switches in display, memory and sensing devices. It is no surprise that they have gathered significant interest for decades, and many attempts are made to design SCO complexes with specific characteristics. Especially of interest currently are complexes containing two or even more transition metal centers. However, it is crucial to balance ligand field stabilization and spin pairing energies to reach magnetic multistability conditions. Again, electronic structure methods should be able to further the understanding of these aspects. However, the widely used general gradient approximation density functional calculations provide only qualitatively correct results, being known to overestimate the stability of low-spin (LSS) states. Higher level methods on the other hand are often not available for systems of any significant size.

The aim of this work then is to firstly demonstrate the application of a range of techniques involving density functional theory (DFT), which are currently in everyday use for the validation and explanation of experimental observations. From there on, this work extrapolates from these commonly used methods to develop a methodology to improve DFT techniques both in accuracy and in the range of applicable systems. Specifically, it is attempted to describe the spin states of a [2x2] Fe ${ }^{\mathrm{II}}$ grid complex in a self-consistent, $a b$ initio approach. Wave function methods are applied to the investigation of smaller model systems, with the result being used to parameterize a local hybrid functional.

Contents

1 Introduction 1
2 Theoretical Background 7
2.1 Density Functional Theory 7
2.1.1 Introduction 7
2.1.2 Exchange-correlation functionals 10
2.2 Coupled-cluster theory 13
2.3 Nudged elastic band method 15
2.4 Molecular dynamics simulations 16
2.5 Bayesian optimization 17
3 Oxidative $\mathrm{H}_{2} \mathrm{O}$ addition to a bimetallic $\mathrm{Ni}^{\mathrm{II}}$ complex 21
3.1 Introduction 21
3.2 DFT characterization 24
3.2.1 Structure optimizations 24
3.2.2 Reaction pathway 26
3.2.3 Exact energies 31
3.2.4 Further characterization of A.3 32
3.3 Discussion 38
4 Parameterization of DFT functionals for $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ 41
4.1 Introduction 41
4.2 Preparation of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system 42
4.3 Coupled-cluster benchmark calculations 43
4.3.1 Multireference diagnostics 46
4.4 Parameterization of hybrid functionals 47
4.4.1 Overview 48
4.4.2 Hybrid GGA type functionals 49
4.4.3 Range-separated hybrid functionals 51
4.5 Parameterization of PBE0r 53
4.6 Discussion 57
5 Extension of the $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ model set 61
5.1 Introduction 61
5.2 Considerations for new model complexes 62
5.3 Coupled-cluster benchmark calculations 63
5.4 Bayesian optimization 68
5.4.1 Results for complete model set 68
5.4.2 Reduced model set 71
5.5 Discussion 74
6 Application toward the [2x2] Fe ${ }^{\text {II }}$ grid complex 77
6.1 Introduction 77
6.2 Preparation of the grid complex structures 79
6.3 Influence of ZPVE 87
6.4 Application of model system parameterization 88
6.4.1 Influence of HF exchange factor per atom type 88
6.4.2 Brute force approach 90
6.4.3 Application of parameterization 93
6.5 Discussion 95
7 Summary and Outlook 99
List of Abbreviations 103
Bibliography 106
A Supplemental material for Chapter 3 131
A. 1 ORCA input files 131
A. 2 Structural data of relevant complexes 133
B Supplemental material for Chapter 4 141
B. 1 CP-PAW input files 141
B. 2 Structural data of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model 144
B. 3 Absolute energies (Eh) from SPE calculations 147
B. 4 UCCSD(T*)-F12B reference energies 149
C Supplemental material for Chapter 5 151
C. 1 Structural data of extended model set 151
C. 2 Cross-validation results 162
D Supplemental material for Chapter 6 167
D. 1 ORCA input files 167
D. 2 CP-PAW input files 168
D. 3 Structural data of converged [2x2] Fe ${ }^{\mathrm{II}}$ grid systems 170

Chapter 1

Introduction

Transition metal complexes

Transition metal complexes play a highly important role in regard to catalysis, materials synthesis, photochemistry, and biological systems [1] 3]. Their unique electronic structure results in versatile reactivities, which can be tuned towards a multitude of different applications. In general terms, these systems consist of one or more transition metal center, surrounded (and possibly connected) by a ligand structure. The chemical behaviour is mostly determined by the interaction between the s and p molecular orbitals of the ligands and the d orbitals of the metal(s).

Catalytic reagents containing first row transition metals, such as iron, cobalt or nickel, have been extensively investigated due to their relative abundance, low cost, and ease of handling when compared to lower row transition metals [4]. These complexes can potentially catalyse a wide range of processes, including oxidation, reduction, hydrogenation, carbon-carbon bond formation, and the splitting of water molecules, to name just a few examples [5, 6]. These applications have the potential to contribute greatly to advancements in both industry and academia.

Spin-crossover

Another important aspect of materials containing transition metals is the potential for spin-crossover (SCO) events. Since their initial discovery in 1931 [7], materials exhibiting this behaviour have garnered immense interest. The reason lies in their possible application as molecular switches for use in display, memory, and sensing devices, possibly even as qubits in quantum computation [813]. These materials are commonly based on d^{4} to d^{7} transition metals $\left.\boxed{14}-20\right]$, with complexes based on $\mathrm{Fe}^{\mathrm{II}}$ possibly the most notable example [21,22].

In general terms, a SCO describes the transition between a low-spin (LS) and highspin (HS) state, brought on by external stimuli such as temperature, pressure or light irradiation [23-25], and it requires a suitable ligand field at hand [26]. In octahedral $\mathrm{Fe}^{\mathrm{II}}$ complexes, occupation of the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals is favored for large ligand-field splitting energies, resulting in the ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \mathrm{~S}=0 \mathrm{LS}$ state. For weaker ligand fields, with a spinpairing energy larger than the ligand-field splitting energy, both $\mathrm{t}_{2 \mathrm{~g}}$ and e_{g} orbitals are occupied, resulting in the ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \mathrm{~S}=2 \mathrm{HS}$ state. Transitions between the spin states are generally accompanied by changes to the geometry of the metal environment, explained by the shift of electron density between bonding e_{g} and anti-bonding $\mathrm{t}_{2 \mathrm{~g}}$ orbitals. In octahedral $\mathrm{Fe}^{\mathrm{II}}$ complexes, the Fe-ligand bond is elongated by around $0.2 \AA$ on average, absent other factors such as a distorted ligand environment 26]. Some notable examples of such SCO complexes are shown in figure 1.1.

Up till now, these materials have been composed mainly of single center complexes with abrupt and well-defined transitions. However, supramolecular complexes combining multiple metal centers have come into focus in recent times [28 30. They exhibit unique SCO properties not found in their single-center counterparts, allowing for hysteretic and multistep transitions, as well as cooperative effects, since changes to one metal center can be communicated to another through changes to the ligand backbone structure. One such complex of interest is the $[2 \mathrm{x} 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex, synthesized by Meyer and coworkers in 2010 [30], and shown in figure 1.2 .

Describing the spin states of SCO complexes from a theoretical perspective has been attempted in a multitude of studies. Because of the inherent difficulties in computing the spin states accurately, internal references are often adopted 31,32. Calculations

(a) $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

(b) $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{NCH})_{6}\right]^{2+}$

(c) $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Figure 1.1: Examples of common small $\mathrm{Fe}^{\mathrm{II}}$ complexes. Complexes (a) and (b) exhibit the SCO phenomenon. All structures are in the LS state. Fe atoms are orange, N blue, C grey, O red, H white. Visualized with PyMOL [27].
are carried out on both the target and a reference complex, and the resulting values can be discussed in terms of relative trends instead of absolute values. This approach gains viability the more closely related targets and references are to each other.

It is yet a matter of debate which theoretical approaches are most reliable for the simulation of the energetics of Fe (II) SCO complexes. The aforementioned comparison to benchmark data is hampered, since experimental measurements will always include some sort of environment effect [33] and fully converged electronic struc-

Figure 1.2: Molecular structure of the $[2 \mathrm{x} 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex. Fe atoms are orange, C grey, N blue. H atoms are omitted for visual clarity. Visualized with PyMOL [27].
ture descriptions are unattainable for systems of any relevant size. Multireference approaches have been reported, including the use of RASSCF/RASPT2, CASSCF/CASPT2, NEVPT2 and SORCI $\lfloor 34-39$. Other studies rely on single-reference methods, such as coupled-cluster methods, though whether this is sufficient has ultimately not been completely determined. Divergence between CASPT2 values [35] and singlet-quintet gaps computed at the $\operatorname{CCSD}(\mathrm{T})$ level [40 can be interpreted as a failure in the single-reference description of coupled-cluster. As the weight of different configurations depends on the ligand in question, the validity of a coupledcluster approach has to be assessed system by system. It is unfortunately unclear
which methods can be relied upon to produce the best results for those cases where multireference becomes a greater issue.

Triple excitations have a sizeable contribution when comparing different spin states, which can be observed by comparing CCSD and $\operatorname{CCSD}(\mathrm{T})$ values in several previous studies 41, 42]. Second-order perturbation theory, even in a multi-reference framework, might not reliably capture all of the dynamical correlation differences upon transition. A balance between the two types of correlation is crucial [43]. This issue also arises in regard to the selection of the electron space to be expanded in correlated calculations. Pierloot and coworkers highlighted the importance of electronic correlation effects from the (3s3p) electrons in 2017 [36]. The study also demonstrates the strong basis set dependence in spin gap energetics.

Chapter 2

Theoretical Background

2.1 Density Functional Theory

2.1.1 Introduction

Density functional theory (DFT) is a widely used computational method to investigate the electronic structure of chemical many-body systems. The theory holds that ground-state properties are uniquely determined by the electron density of a system, offering a cost-effective approach when compared to wave function-based methods. In 1998 Walter Kohn was awarded the Nobel Prize in chemistry "for his development of the density-functional theory" [44, a clear statement to the importance of this method.

The basic workings of DFT can be derived in the following manner, starting with the time-independent Schrödinger equation 4547

$$
\begin{equation*}
\hat{\mathrm{H}}|\Psi\rangle=E|\Psi\rangle \tag{2.1}
\end{equation*}
$$

where $\hat{\mathrm{H}}$ is the Hamilton operator, Ψ the wave function and E the energy of the system. The Born-Oppenheimer approximation (BOA) 48,49 allows for separation of the Hamiltonian into nuclear and electronic terms, because of the large difference between their respective masses. For a system containing N nuclei and n electrons the Hamiltonian can be written as

$$
\begin{equation*}
\hat{\mathrm{H}}=\underbrace{-\frac{1}{2} \sum_{\mathrm{I}=1}^{N} \frac{1}{M_{\mathrm{I}}} \nabla_{\mathrm{I}}^{2}}_{\hat{\mathrm{T}}_{\mathrm{N}}} \underbrace{-\frac{1}{2} \sum_{i=1}^{n} \nabla_{i}^{2}}_{\hat{\mathrm{T}}_{\mathrm{e}}} \underbrace{-\sum_{i=1}^{n} \sum_{\mathrm{I}=1}^{N} \frac{Z_{\mathrm{I}}}{\left|\mathrm{R}_{\mathrm{I}}-\mathrm{r}_{i}\right|}}_{\hat{\mathrm{V}}_{\mathrm{eN}}} \underbrace{+\sum_{i=1}^{n} \sum_{j \gg}^{n} \frac{1}{\left|\mathrm{r}_{i}-\mathrm{r}_{j}\right|}}_{\hat{\mathrm{V}}_{\mathrm{ee}}} \underbrace{\sum_{\mathrm{I}=1}^{N} \sum_{\mathrm{J}>\mathrm{I}}^{N} \frac{Z_{\mathrm{I}} Z_{\mathrm{J}}}{\left|R_{\mathrm{I}}-\mathrm{R}_{\mathrm{J}}\right|}}_{\hat{\mathrm{V}}_{\mathrm{NN}}} \tag{2.2}
\end{equation*}
$$

where M are nuclear masses, Z nuclear charges, R nuclear position vectors, r electron position vectors. $\hat{\mathrm{T}}_{\mathrm{N}}$ and $\hat{\mathrm{T}}_{\mathrm{e}}$ denote the kinetic energy operators for the nuclei and electrons, while $\hat{\mathrm{V}}_{\mathrm{eN}}, \hat{\mathrm{V}}_{\text {ee }}$ and $\hat{\mathrm{V}}_{\mathrm{NN}}$ denote nucleus-electron, electron-electron, and nucleus-nucleus potential energy operators, respectively. In this "clamped nuclei" approximation the nuclei are considered to be stationary, resulting in a constant potential energy ($\hat{\mathrm{V}}_{\mathrm{NN}}=$ const.) The electronic Hamiltonian can now be written as

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{el}}(\mathrm{r})=\hat{\mathrm{T}}_{\mathrm{e}}(\mathrm{r})+\hat{\mathrm{V}}_{\mathrm{ee}}(\mathrm{r})+\hat{\mathrm{V}}_{\mathrm{Ne}}(\mathrm{r})+\hat{\mathrm{V}}_{\mathrm{NN}} . \tag{2.3}
\end{equation*}
$$

By repeatedly solving the electronic Schrödinger equation for sets of different nuclear positions a potential energy surface (PES) $E_{n}(\mathrm{R})$ can be constructed, which describes the energy of the system as a function of the molecular structure.

The Hartree-Fock (파) method 50,51 is the simplest approach for obtaining a solution to the electronic Schrödinger equation. The wave functions are approximated by a single Slater determinant, constructed from the molecular orbitals. A set of N -coupled equations for the N spin orbitals can be derived, which yield the HF wave function and the energy of the system. For simple molecules, this energy amounts to about 99% of the total energy, with the remaining 1% referred to as the correlation energy. Recovering this 1%, or parts thereof, requires higher levels of theory. Some examples are discussed in the next sections.

Hohenberg-Kohn theorems

Pierre Hohenberg and Walter Kohn postulated two theorems regarding systems of electrons moving under the influence of an external potential, which are integral to density functional theory (DFT) [52. The first, as alluded to in the beginning of this chapter, states that the electronic ground-state of a system is uniquely determined by the electron density. The second theorem states that the variational principle 53]
can be applied to the calculation of the ground state electron density. The variational principle establishes that the ground state energy $E_{\text {trial }}$ calculated with a trial wave function Φ has to be greater than the true ground state energy E_{0}. Thus, E_{0} can be found by minimizing the expectation value of the Hamiltonian through variation of the parameters of Φ :

$$
\begin{equation*}
E_{\text {trial }}=\langle\Phi| \hat{\mathrm{H}}|\Phi\rangle \geq E_{0} . \tag{2.4}
\end{equation*}
$$

Since the wave function is completely defined by the electron density, the principle applies to the calculation of the electron density as well. This reduces the computational effort significantly. Using ρ_{0} for the ground state electron density, the ground state energy can now be calculated with

$$
\begin{equation*}
E_{0}\left[\rho_{0}\right]=\hat{\mathrm{T}}\left[\rho_{0}\right]+E_{\mathrm{Ne}}\left[\rho_{0}\right]+E_{\mathrm{ee}}\left[\rho_{0}\right]+\hat{\mathrm{V}}_{\mathrm{NN}} . \tag{2.5}
\end{equation*}
$$

Kohn-Sham approach

Introduced by Walter Kohn and Lu Jeu Sham [54], the Kohn-Sham method simplifies the many-body problem of interacting electrons in a static external potential to a problem of non-interacting electrons moving in an effective potential. The nucleuselectron interaction $E_{\mathrm{Ne}}\left[\rho_{0}\right]$ and the classical part of the electron-electron interaction $\mathrm{J}_{\mathrm{ee}}\left[\rho_{0}\right]$ can be calculated exactly. The kinetic energy $T_{S}[\rho]$ is calculated from a noninteracting reference system with the same electron density, where the wave function can be represented as a Slater determinant [55] of orbitals. An effective potential is used to consider the indirect interaction of these Kohn-Sham orbitals. The unknown terms are combined into the exchange-correlation functional $E_{\mathrm{XC}}\left[\rho_{0}\right]$, accounting for both the quantum mechanical exchange of identical particles, and the effects of electron correlations due to the Coulomb repulsion between the electrons. In the Kohn-Sham approach the ground state energy can be calculated with

$$
\begin{equation*}
E_{0}\left[\rho_{0}\right]=\hat{\mathrm{T}}_{s}\left[\rho_{0}\right]+E_{\mathrm{Ne}}\left[\rho_{0}\right]+\mathrm{J}_{\mathrm{ee}}\left[\rho_{0}\right]+E_{\mathrm{XC}}\left[\rho_{0}\right]+\hat{\mathrm{V}}_{\mathrm{NN}} \tag{2.6}
\end{equation*}
$$

2.1.2 Exchange-correlation functionals

The exact terms for the exchange-correlation functional are unknown, except for select model systems like the free electron gas. Molecular properties can only be calculated in this manner by making approximations, leading to various levels of accuracy in the results. The different types of functionals can be classified according to their sophistication 56-58].

LDA

The simplest type of these approaches is the local density approximation (LDA), where $E_{\mathrm{XC}}\left[\rho_{0}\right]$ is approximated for each point in real space by the exchangecorrelation energy of a homogeneous electron gas. This is an acceptable assumption for the field of solid state physics, but for chemical systems it leads to an overestimation of bond energies. The first LDA was already proposed by Kohn and Sham. Another example is the VWN functional [59].

GGA

The generalized gradient approximation (GGA) offers an improvement by taking into account both the local electron density and its gradient $\nabla \rho$. This offers a better description of the local variance of the electron density inherent to molecular systems. Functionals based on this approximation demand for comparatively little computational effort and offer good results, especially concerning structural parameters, but are less reliable for other properties. Examples for commonly used GGA type functionals are PBE 60 and BP 86 61,62].

Meta-GGA

Meta-GGA type functionals are an extension of the GGA type, containing higherorder derivatives of the electron density. Nowadays this definition has shifted slightly to typically include a dependence on the kinetic energy density. Examples include TPSS 63 and M06-L 64.

2.1. DENSITY FUNCTIONAL THEORY

Hybrid-GGA

Hybrid-GGA type functionals 65] replace a percentage of the GGA exchange energy with the exact HF exchange energy [50, 51, according to the general formula

$$
\begin{equation*}
E_{\mathrm{xc}}=E_{\mathrm{xc}}^{\mathrm{GGA}}+a\left(E_{\mathrm{x}}^{\mathrm{HF}}-E_{\mathrm{x}}^{\mathrm{GGA}}\right), \tag{2.7}
\end{equation*}
$$

whereby a is the parameter governing the amount which is exchanged. This is considered an improvement because it alleviates the self-interaction error that GGA type functionals suffer from 66]. The GGA exchange energies are computed differently depending on the functional. For example, the PBE functional is used in the case of PBE0 67, 68], the Slater-Dirac/B88 exchange energies in the case of B3LYP 69]). The amount of replaced exchange a is found to have a major impact on a variety of properties, indicating that it might be possible to adapt hybrid functionals to best represent a specific system. This is further explored in chapter 4 . This type of functional is the currently dominant choice when more complex electronic configurations are of importance, for example in complexes containing transition metals 70, 71.

Range-separated hybrid-GGA

For range-separated hybrid GGA type functionals, the two-electron operator for the exchange is split into a short-range and a long-range term, according to the general formula 72,73

$$
\begin{equation*}
r_{12}^{-1}=\frac{1-\left[\alpha+\beta \operatorname{erf}\left(\mu r_{12}\right)\right]}{r_{12}}+\frac{\alpha+\beta \operatorname{erf}\left(\mu r_{12}\right)}{r_{12}} \tag{2.8}
\end{equation*}
$$

whereby α, β and μ are adjustable parameters. The first term governs the shortrange regime, the second term the long-range. At zero interelectronic distance the admixture of the HF exchange would be determined by α, while at larger distances it would be determined by $\alpha+\beta$. In short, the amount of HF exchange varies depending on the distance, which is especially useful in the case of metallic solid state systems, where pure hybrid-GGA functionals tend to overestimate exchange in the long-range regime [74. Examples are CAM-B3LYP [73] and wB97 [75].

Local hybrid functionals

Local hybrid functionals are a recent class of functionals, using admixtures of exact exchange dependent on the real-space geometries 76-78. Specifically the local hybrid functional PBE0r 79,80 is used extensively in this work, and will be discussed in the following.

The approach of the PBE0r functional is based on the idea of formulating the Fock term in a basis of local orbitals $\left|\chi_{\alpha}\right\rangle$ and implementing range separation by truncating the sum over four-center integrals, rather than dividing the Coulomb interaction into short- and long-range contributions. The local orbitals $\left|\chi_{\alpha}\right\rangle$ are divided into sets $\alpha \in \mathcal{C}_{R}$, which are centered at a specific atom identified by the index R. The orbital index α holds atomic site, angular momenta and spin indices as well as additional quantum numbers.

The exchange energy in the local approximation can be calculated with

$$
\begin{equation*}
E_{x}^{\mathrm{PBEOr}}=-\frac{1}{2} \sum_{R} \sum_{\alpha, \beta, \gamma, \delta \in \mathcal{C}_{R}}\langle\alpha \beta \mid \gamma \delta\rangle \rho_{\gamma \beta}^{(1)} \rho_{\delta, \alpha}^{(1)}, \tag{2.9}
\end{equation*}
$$

whereby $\langle\alpha \beta \mid \gamma \delta\rangle$ are the 4 -center, 2 -electron integrals. The one-particle reduced density matrix can be calculated from the occupations f_{n} and Kohn-Sham wave functions $\left|\psi_{n}\right\rangle$

$$
\begin{equation*}
\rho^{(1)}(\alpha, \beta)=\sum_{n}\left\langle\pi_{\alpha} \mid \psi_{n}\right\rangle f_{n}\left\langle\psi_{n} \mid \pi_{\beta}\right\rangle, \tag{2.10}
\end{equation*}
$$

as well as the local orbital projector functions $\left\langle\pi_{\alpha}\right|$. These projector functions obey the bi-orthogonality condition $\left\langle\pi_{\alpha} \mid \chi_{\beta}\right\rangle=\delta_{\alpha, \beta}$, meaning that the approximate sign becomes an identity if local orbitals span at least the same Hilbert space as the Kohn-Sham wave functions. Eq. 2.9 can be understood as an approximation of the exact exchange, since the four-center terms are limited to quadruples centered on the same atom. This breaks up the Coulomb interaction into atomic contributions. By dividing the hybrid terms into atomic contribution it allows to change the admixture of the HF exchange atom by atom. There are different approaches to finding the optimal parameterization $81-84$, which will be discussed further from chapter 4 onward.

To avoid double counting of the exchange term, it is required to subtract the respective PBE exchange. This is achieved by dividing the Coulomb interaction into the contribution of individual atoms using cutoff functions $g_{R}(\vec{r})$. Specifically, the electron density is partitioned into local contributions

$$
\begin{equation*}
n_{R}(\vec{r})=\sum_{\alpha, \beta \in \mathcal{C}_{R}} \sum_{\sigma}\left\langle\vec{r}, \sigma \mid \chi_{\alpha}\right\rangle \rho_{\alpha, \beta}^{(1)}\left\langle\chi_{\beta} \mid \vec{r}, \sigma\right\rangle \tag{2.11}
\end{equation*}
$$

and the cutoff functions defined as $g_{R}(\vec{r})=n_{R}(\vec{r}) / \sum_{R^{\prime}} n_{R^{\prime}}(\vec{r})$.
The double counting correction is simplified by evaluating both cutoff functions at the same position \vec{r}. This results in the simple expression

$$
\begin{equation*}
E_{\mathrm{DC}, \text { approx }}^{\mathrm{PBEEr}}=-\sum_{R} \int d^{3} r \frac{n_{R}(\vec{r})}{n(\vec{r})} n_{R}(\vec{r}) \epsilon_{x c}(\vec{r}) . \tag{2.12}
\end{equation*}
$$

Within the Car-Parinello Projector Augmented Wave (CP-PAW) code [85, 86], the density $n(\vec{r})$ is expressed in terms of partial wave expansion, while $n_{R}(\vec{r})$ is represented by local orbitals.

Range separation is achieved by disregarding offsite four-center integrals from the exchange and the corresponding double counting term. This provides a reasonable description of the atomic physics, specifically the atomic self-interaction correction. This makes PBE0r an appropriate functional for the description of transition metal compounds with partially filled d-shells.

2.2 Coupled-cluster theory

Coupled-cluster theory [87,88] offers an ab initio size-consistent and non-variational wave function approach for the computation of electron-electron correlation energy. It is asymptotically converging on the exact results, though this accuracy carries a hefty computational cost when compared to DFT.

The wave function is constructed with an exponential ansatz in the following form

$$
\begin{equation*}
\left|\Psi_{\mathrm{CC}}\right\rangle=\mathrm{e}^{\hat{\mathrm{T}}}\left|\Phi_{0}\right\rangle, \tag{2.13}
\end{equation*}
$$

whereby $\left|\Phi_{0}\right\rangle$ is the reference wave function, typically a single Slater determinant constructed from HF molecular orbitals. $\hat{\mathrm{T}}$ is the cluster operator, which yields a linear combination of excited determinants when acting upon $\left|\Phi_{0}\right\rangle$. It is constructed in the following form

$$
\begin{equation*}
\hat{\mathrm{T}}=\hat{\mathrm{T}}_{1}+\hat{\mathrm{T}}_{2}+\hat{\mathrm{T}}_{3}+\ldots \tag{2.14}
\end{equation*}
$$

whereby $\hat{\mathrm{T}}_{1}$ is the operator for all single excitations, $\hat{\mathrm{T}}_{2}$ the operator for all double excitations, and so forth. $\hat{\mathrm{T}}_{n}$ acting upon $\left|\Phi_{0}\right\rangle$ generates excited Slater determinants in the same order

$$
\begin{gather*}
\hat{\mathrm{T}}_{1}\left|\Phi_{0}\right\rangle=\sum_{i}^{o c c} \sum_{a}^{v i r} t_{i}^{a} \Phi_{i}^{a} \tag{2.15}\\
\hat{\mathrm{~T}}_{2}\left|\Phi_{0}\right\rangle=\sum_{i<j}^{o c c} \sum_{a<b}^{v i r} t_{i j}^{a b} \Phi_{i j}^{a b}, \tag{2.16}
\end{gather*}
$$

whereby t denotes the expansion coefficients, also called amplitudes. The exponential $\mathrm{e}^{\hat{\mathrm{T}}}$ of equation 2.13 can also be written in the form of a Taylor expansion

$$
\begin{equation*}
\mathrm{e}^{\hat{\mathrm{T}}}=1+\hat{\mathrm{T}}+\frac{\hat{\mathrm{T}}^{2}}{2}+\frac{\hat{\mathrm{T}}^{3}}{6}+\ldots=\sum_{k=0} \frac{\hat{\mathrm{~T}}^{k}}{k!} \tag{2.17}
\end{equation*}
$$

demonstrating the distinct advantage that upon truncation of the cluster operator, the wave function still contains contributions from higher order substitutions. Using $\hat{\mathrm{T}}=\hat{\mathrm{T}}_{2}$ as an example, the Taylor expansion contains the term $\frac{1}{2} \hat{\mathrm{~T}}_{2}^{2}$, yielding a fourfold excitation $\left|\Phi_{i j k l}^{a b c d}\right\rangle$ when acting upon $\left|\Phi_{0}\right\rangle$. Using no truncation would mean that the order of the cluster operator is equal to the total number of electrons in the system, and the calculation would converge upon the full configuration interaction (FCI) limit. In practice, some truncation is necessary, since considering the whole number of excitations is computationally not feasible, except for systems with a very small number of electrons, using a small basis set. The most common approach only includes single ("S") and double ("D") excitations ($\hat{\mathrm{T}}=\hat{\mathrm{T}}_{1}+\hat{\mathrm{T}}_{2}$), consequently denoted as CCSD 89, 90. Adding triple (" T ") excitations ($\hat{\mathrm{T}}_{3}$) yields CCSDT
[91, 92, though a perturbative treatment of the triples $\operatorname{CCSD}(\mathrm{T})$ [93] is a more cost effective approach, while yielding excellent results for a wide range of systems. For these reasons $\operatorname{CCSD}(\mathrm{T})$ has become known as the "gold standard" of computational chemistry 94 .

2.3 Nudged elastic band method

The nudged elastic band (NEB) method 95 97] can be used to find a minimum energy path (MEP) on a PES, connecting a given reactant and product state. This can be utilized to determine the transition states of reactions and thereby gain an estimate of the activation energies.

The method generates an initial path by creating a string of discrete intermediate structures, referred to as "images". This can be achieved by simple linear interpolation of the Cartesian coordinates, though more advanced methods exist 98, 99. The number of these images can be adapted according to the complexity of the MEP. During the NEB calculation the images are iteratively optimized toward the MEP using the atomic force component perpendicular to the current path, while the reactant and product states remain fixed. Virtual spring forces between neighbouring images are included to ensure roughly equal spacing along the path, typically in the range of of $0.01-1.0 \mathrm{Eh} / \mathrm{Bohr}^{2}$. These can also be energy-weighted, in order to increase the density of images in the vicinity of the barrier [100. A maximum along the MEP corresponding to a first order saddle point on the PES, signifies the transition state of the reaction. It is exceedingly unlikely to generate an image exactly at the maximum. Rather, the highest energy image can be converted to a "climbing image", which is pushed uphill in energy along the tangent to the path while relaxing downhill in orthogonal directions. The spring forces are disregarded for this image. In this manner the energy is minimized in respect to all degrees of freedom other than the one degree of freedom corresponding to the direction of the tangent, so that the image converges to the maximum of the MEP, i.e. the transition state. To ascertain the convergence a frequency calculation can be employed. Since the transition state is located at a first order saddle point of the PES, the structure should exhibit exactly one imaginary frequency, also corresponding to the atomic motion relevant to the reaction.

2.4 Molecular dynamics simulations

Treating the movement of the nuclei classically, Newton's equations of motion can be used to simulate the molecular dynamics (MD) of a system [101, 102], with

$$
\begin{equation*}
\ddot{x}_{N}(t)=\frac{F_{N}(x(t))}{m_{N}}, \tag{2.18}
\end{equation*}
$$

whereby \ddot{x} denotes the acceleration and m the mass of nucleus N, while F is the force acting upon it at time t. As the force is determined by the negative derivative of the PES with respect to the position $x_{N}(t)$, this is a coupled system of N differential equations. Solving this system analytically is not feasible for all but the simplest of systems. Instead numerical integration methods are applied, based on approximating the movement by taking time steps of finite length. Three common examples for these methods are the Verlet [103, velocity Verlet [104] and the leapfrog algorithm 105.

For the propagation of positions $\mathrm{x}(\mathrm{t})$ and velocities $\mathrm{v}(\mathrm{t})$, the velocity Verlet algorithm reads

$$
\begin{gather*}
x_{i}(t+\Delta t)=x_{i}(t)+v_{i}(t) \Delta t+\frac{F_{i}(t)}{2 m_{i}} \Delta t^{2} \tag{2.19}\\
v_{i}(t+\Delta t)=v_{i}(t)+\frac{F_{i}(t)+F_{i}(t+\Delta t)}{2 m_{i}} \Delta t \tag{2.20}
\end{gather*}
$$

with Δt as the length of the timestep. Choosing a suitable Δt is crucial, since the computational cost decreases linearly with the size of the step. On the other hand, atomic motions such as the stretching vibration of hydrogen bonds (on a femtosecond timescale) can be lost when choosing too large a step. The initial atomic structure is given by the system, while initial velocity distributions can be obtained from a Maxwell-Boltzmann distribution, for example.

Following these equations the system would simulate the microcanonical NVE ensemble, with constant particle number N , volume V , and total energy E . The temperature T would deviate from its initial value, since some amount of the initial kinetic
energy will be exchanged with potential energy contributions, for example bond stretching. This runs counter to experimental conditions, which are often maintained at a constant temperature. To simulate the corresponding NVT ensemble, it is necessary to add a temperature control, referred to as a thermostat 106. Common examples are the Andersen [107], Berendsen [108], and Nose-Hoover 109 111] thermostat.

2.5 Bayesian optimization

Moving away from atomistic simulation methods, the Bayesian optimization (BO) method is a general data analysis tool applied in this work. The BO machine learning tool is frequently used for optimizing objective functions with long evaluation times. The objective function f is considered a derivative-free function, signifying that the function can only yield $f(x)$, not any of the derivatives. It is further assumed that f is a continuous function and that it lacks any special structures, like concavities or linearities. In general terms, the Gaussian process regression (GPR) technique is used after the evaluation of f to quantify the uncertainty of the sampled space. This information is then used by an acquisition function to decide on the next point to be sampled. This process can be repeated as often as needed, leading to the optimization of the objective function. The following describes the two main components of the $\overline{B O}$ technique, the GPR and the acquisition function, in further detail 112, 113].

Gaussian process regression

Firstly the objective function f is evaluated at a finite collection of points $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{d}$, with d as the number of dimensions to the domain 114. The resulting values can be collected into a vector $\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots f\left(x_{k}\right)\right]$. It is assumed that this vector is drawn at random by a probability distribution prior to the GPR By evaluating a mean function μ_{0} at each x_{i}, a mean vector is constructed. For each pair of points x_{i}, x_{j} a covariance function or kernel Σ_{0} is evaluated, yielding a covariance matrix. From this, a normal probability distribution can be computed with

$$
\begin{equation*}
f\left(x_{1: k}\right) \sim \operatorname{Normal}\left(\mu_{0}\left(x_{1: k}\right), \Sigma_{0}\left(x_{1: k}, x_{1: k}\right)\right), \tag{2.21}
\end{equation*}
$$

Using Bayes' Theorem [115, a posterior probability distribution can be obtained, offering a numerical value for the uncertainty of each point. If the prior distribution is acquired using n distributions, the value of f at a new point x can be inferred by calculating the conditional distribution:

$$
\begin{equation*}
f(x) \mid f\left(x_{1: k}\right) \sim \operatorname{Normal}\left(\mu_{n}(x), \sigma_{n}^{2}(x)\right) \tag{2.22}
\end{equation*}
$$

In this, $\mu_{n}(x)$ is the posterior mean, an average between prior mean $\mu_{0}(x)$ and an estimate based on $f\left(x_{1: n}\right)$, weighted based on the kernel. It is obtained with

$$
\begin{equation*}
\mu_{n}(x)=\Sigma_{0}\left(x, x_{1: n}\right) \Sigma_{0}\left(x_{1: n}, x_{1: n}\right)^{-1}\left(f\left(x_{1: n}\right)-\mu_{0}\left(x_{1: n}\right)\right)+\mu_{0}(x) . \tag{2.23}
\end{equation*}
$$

$\sigma_{n}^{2}(x)$ is called the posterior variance and offers a measure of the uncertainty for the calculated prediction. It is obtained with

$$
\begin{equation*}
\sigma_{n}^{2}(x)=\Sigma_{0}(x, x)-\Sigma_{0}\left(x, x_{1: n}\right) \Sigma\left(x_{1: n}, x_{1: n}\right)^{-1} \Sigma\left(x_{1: n}, x\right) \tag{2.24}
\end{equation*}
$$

Kernels are required to be positive semi-definite functions. They typically correlate points more strongly the closer they are in the input space. Two common examples are described in the following.

The Gaussian kernel (also called power exponential) is expressed as

$$
\begin{equation*}
\Sigma_{0}\left(x, x^{\prime}\right)=\alpha_{0} \exp \left(-\left\|x-x^{\prime}\right\|^{2}\right) \tag{2.25}
\end{equation*}
$$

whereby $\left\|x-x^{\prime}\right\|^{2}=\sum_{i=1}^{d} \alpha_{i}\left(x_{i}-x_{i}^{\prime}\right)^{2}$ and $\alpha_{0: d}$ are parameters of the kernel. Varying α influences how quickly $f(x)$ changes with x. The Matérn kernel is expressed as

$$
\begin{equation*}
\Sigma_{0}\left(x, x^{\prime}\right)=\alpha_{0} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu}\left\|x-x^{\prime}\right\|\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu}\left\|x-x^{\prime}\right\|\right) \tag{2.26}
\end{equation*}
$$

whereby K_{ν} is the modified Bessel function. The mean function is commonly chosen to be constant, with $\mu_{0}(x)=\mu$.

Acquisition function

The acquisition function is employed to determine the next point to be sampled, using the posterior probability distribution from the GPR. Most commonly used is the expected improvement function [116], which will be described in the following. It proposes that the best next point to be sampled is the one where the expected improvement to the optimization is highest. The function is defined as

$$
\begin{equation*}
\mathrm{EI}_{n}(x):=E_{n}\left[\left[f(x)-f_{n}^{*}\right]^{+}\right], \tag{2.27}
\end{equation*}
$$

whereby f_{n}^{*} is the point with the best value observed so far. The improvement to this value then is either given by $f(x)-f_{n}^{*}$ or set to 0 , should it be negative. By maximizing the expected improvement function on the posterior probability distribution, the next point to be sampled is determined [117. This is solved analytically by employing the normal density function, resulting in

$$
\mathrm{EI}_{n}(x)= \begin{cases}\left(\mu_{n}(x)-f_{n}^{*}\right) \Phi(Z)-\sigma_{n}(x) \phi(Z) & \text { if } \sigma_{n}(x)>0 \tag{2.28}\\ 0 & \text { if } \sigma_{n}(x)=0\end{cases}
$$

with $Z=\frac{\mu_{n}(x)-f_{n}^{*}}{\sigma_{n}(x)}$, whereby ϕ and Φ describe the cumulative density and the probability density functions of the normal probability distributions 118.
f is evaluated at the point of highest improvement and the result included in the next iteration of the posterior probability distribution. This in turn can be used again by the acquisition function. This optimization loop finishes upon reaching either a convergence criterion or a maximum number of iterations set beforehand.

Chapter 3

Oxidative $\mathrm{H}_{2} \mathrm{O}$ addition to a bimetallic $\mathrm{Ni}^{\text {II }}$ complex

The findings presented in this chapter and appendix A are currently being prepared for journal publication. In part they have been published in the PhD thesis of Roland Alexander Schulz as well 119]. The content of this chapter and the publication will carry similarities to both works, even though no further explicit citation is given. I want to explicitly thank Dr. Roland Alexander Schulz and Prof. Dr. Franc Meyer, who were responsible for the experimental part of this publication, as discussed in the introduction of this chapter.

3.1 Introduction

As mentioned in the introduction 1, complexes that can catalyze the splitting of water are of great interest. Many of the complexes currently used in large-scale applications are based on late transition metal complexes (120, making them in general more costly and difficult to handle. Few first-row transition metal complexes capable of activating water are known, though in recent years progress has been made in various ways. Homolytic activation of water has been reported with nickel complexes, where the H -atom equivalent is stored in noninnocent ligand scaffolds [121,122. Other approaches employ spectator ligands, and the water splitting results in M-OH and M-H bonds forming, with either mono- or bimetallic complexes [123].

A. 1

A. 3

A. $2(\mathrm{~K})$
$\xrightarrow{\text { [2.2.2]-Cryptand }}$

A. $\mu-\mathrm{OH}$

Figure 3.1: Reaction scheme of the oxidative water addition to a bimetallic $\mathrm{Ni}^{\mathrm{II}}$ complex, including related reactions.

Bimetallic $\mathrm{Ni}^{\mathrm{I} / \text { II }}$ complexes capable of activating a variety of molecules have recently been reported and characterized extensively by Meyer and coworkers 124,125. As is shown in figure 3.1, the complex is composed of a pyrazolate-bridged compartmental ligand with β-diketiminato (nacnac) chelate arms, providing highly preorganized two pincer-type binding pockets, containing the Ni centers.

Roland Schulz was able to demonstrate the oxidative addition of water to the dinickel complex A.1, resulting in the separation into hydride and hydroxyl groups connected to the Ni centers, A.3. The release of H_{2} forming A. $\mathbf{1}$ has also been previously demonstrated 125. This results in A.2(K), which can perform the addition as well. For A. 3 the potassium cation can be sequestered by the addition of a crone ether, resulting in complex A.3(K). Both A. $\mathbf{3}$ and A.3(K) decompose to A. μ - $\mathbf{O H}$ when heated above - $25 \mathrm{C}^{\circ}$.

The role of DFT in this project was to elucidate the exact manner of the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition, as well as the characterization of the products from this reaction, A. 3 and A.3(K).

3.2 DFT characterization

The ORCA 4.2.1 program package 126,127 was used for all calculations in this section. Default settings were applied, unless otherwise noted.

3.2.1 Structure optimizations

Crystallographic structure data of complex A.2(K) was obtained from 125. This data was translated into the XYZ format, which could then be used for the calculations in this section.

The geometry optimizations were performed using the BP86 functional 61,62] with the def2-SVP basis set 128, including def2/J auxiliary basis set 129 and Grimme's D3 dispersion correction with Becke-Johnson damping [130, 131].
The BP86 functional is known to yield reasonable structures when used for the geometry optimization of transition metal complexes [132]. The double-zeta basis set def2-SVP is sufficient as well. The use of higher order basis sets has a negligible effect on the structure, though energies and properties should be computed at a higher level of theory 133 , 134.

After successfully optimizing the structure of complex A.2(K), structures for A.1, A.2, A.3, A.3(K) and A. μ - OH were derived by initially adding the respective atoms in the approximate positions and optimizing again at the same level of theory as described above. The broken state symmetry formalism was used for the optimization of the structures of complexes $\mathbf{A . 2 (K)}$ and A.2, to account for the lone electron present at both Ni centers. The optimized structures of complexes A.1, A.2(K), A.2, A.3, A.3(K) and A. $\mu-\mathrm{OH}$ are shown in Figure 3.2. The structural data of complex $\mathbf{A . 2 (K)}$ and the input file for the geometry optimization is shown in appendix A.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.2: DFT optimized molecular structure of (a) A.1, (b) A.2(K), (c) A.2, (d) $\mathbf{A . 3}$, (e) A.3(K) and (f) A. $\mu-\mathrm{OH}$. Ni atoms are green, C grey, H white, K purple, N blue, O red. Most H atoms are omitted for clarity. Visualized with PyMOL [27].

3.2.2 Reaction pathway

The release of H_{2} from complex A. 1 has already been well described [125], leading to complex $\mathbf{A . 2 (K)}$ or $\mathbf{A . 2}$, respectively. The most important reaction to understand then is the addition of $\mathrm{H}_{2} \mathrm{O}$ to these complexes. The full description of a reaction pathway requires the reactants, products and the transition state, according to transition state theory [135]. The NEB method can be a useful approach in the search for transition states, provided that there are reasonably good guesses for the structures of reactants and products. The method is discussed in further detail in 2.3 .

Complex A. $\mathbf{3}$ is already a reasonable structure for the product of the NEB To search for a reasonable structure for the reactant, $\mathrm{H}_{2} \mathrm{O}$ molecules were placed in multiple positions around complex A.2 and the structure optimized at the same level of theory as described in 3.2.1. Some of the local minima found in this manner are clearly unsuitable as the reactant structure for the NEB, since the $\mathrm{H}_{2} \mathrm{O}$ has been moved to other areas of the complex (see figure 3.3a), or away from the complex altogether. However, for one of the local minima, A.4, the $\mathrm{H}_{2} \mathrm{O}$ has been positioned just slightly above the cleft between the two Ni centers (see figure 3.3b). Manually moving the $\mathrm{H}_{2} \mathrm{O}$ further into the cleft before optimizing actually results in complex A.3, with the $\mathrm{H}_{2} \mathrm{O}$ split into H and HO , connected to the two Ni centers. For these reasons complex A. 4 has been adopted as a reasonable structure for the reactant of the NEB.

The NEB method was employed using BP86-D3/def2-SVP and 8 virtual images, which converged upon a MEP and a climbing image, providing a good estimate for the transition state. This was further improved by using the transition state optimization feature implemented in ORCA, while calculating the exact Hessian. The resulting structure for the transition state A.TS1 is shown in figure 3.4.

Figure 3.3: Local minimum structures after DFT optimization of $\mathrm{H}_{2} \mathrm{O}$ placed in the vicinity of complex A.2(K). For (a) the $\mathrm{H}_{2} \mathrm{O}$ has been moved far away from the active site, while in (b) the $\mathrm{H}_{2} \mathrm{O}$ has remained quite close, making it a reasonable structure for the NEB reactant, i.e. A.4. Ni atoms are green, C grey, H white, K purple, N blue, O red. Most H atoms are omitted for clarity. Visualized with PyMOL [27].

Figure 3.4: Molecular structure of the transition state A.TS1 for the concerted pathway for the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition. Ni atoms are green, C grey, H white, K purple, N blue, O red. Most H atoms are omitted for clarity. Visualized with PyMOL [27].

Figure 3.5: Relative electronic energies for the reaction pathway of the concerted oxidative $\mathrm{H}_{2} \mathrm{O}$ addition to A.4. All energy values are relative to that of reactant A. 4 .

Examining the eigenmodes of A.TS1 yields exactly one imaginary frequency, which is a crucial characteristic for the recognition of a transition state. Furthermore, the atomic motion connected to this frequency, a stretching of the $\mathrm{H}-\mathrm{OH}$ bond, is exactly what would be expected for this transition state. For these reasons this has been accepted as a possible reaction path. Figure 3.5 shows the relative energies for this concerted pathway for the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition. The structural data for A.3, A. 4 and A.TS1, as well as the input files related to the search for the transition state can be found in appendix A.
A. 5 was another local minima found in the previous step, as shown in figure 3.6 . The presence of this minima alluded to the potential existence of another pathway with two distinct steps. The first step of this second pathway would be the approach of the $\mathrm{H}_{2} \mathrm{O}$ into the cleft of $\mathbf{A . 4}$, resulting in A.5 as an intermediate. In the second step the $\mathrm{H}_{2} \mathrm{O}$ would be split, resulting in $\mathbf{A} .3$ as a final product. Figure 3.7 shows a diagram of this hypothetical pathway. However, A.5 is already $9.8 \mathrm{kcal} / \mathrm{mol}$ higher in energy than A.4., making it similar in energy to A.TS1 of the concerted pathway, as can be seen in the next section 3.2.3. The respective transition states of this stepwise pathway would likewise be even higher in energy than A.TS1. It has to be concluded that this process would not be competitive in respect to the concerted pathway, even if theoretically possible. For this reason it was not investigated further.

Figure 3.6: Molecular structure of a hypothetical intermediate step A. 5 for the stepwise pathway for the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition. Ni atoms are green, C grey, H white, K purple, N blue, O red. Most H atoms are omitted for clarity. Visualized with PyMOL [27.

Figure 3.7: Relative electronic energies for a hypothetical stepwise addition of $\mathrm{H}_{2} \mathrm{O}$ to A.4. Energies of A.4, A. $\mathbf{3}$ and A. 5 calculated with BP86-D3/def2-SVP. A.TS2 and A.TS3 not calculated.

3.2.3 Exact energies

To improve the accuracy of the proposed reaction path, the electronic energies of A.4, A. 3 and A.TS1 were recalculated using the def2-TZVP basis set 128 and the conductor-like polarizable continuum model (CPCM) solvation model with default settings for THF [136].

Furthermore, frequency calculations (using BP86-D3/def2-SVP) were carried out, yielding an approximation for the zero-point vibrational energy (ZPVE) of each complex. Adding the ZPVE to the electronic energies results in an approximate Gibbs free energy $\left(\mathrm{G}^{0}\right)$. The resulting relative energies for A.4, A. 3 and A.TS1 are shown in figure 3.8, with a barrier height of kcal $/ \mathrm{mol}$.

Figure 3.8: Relative energies for the reaction pathway of the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition to A.4, with approximations for G^{0}. All energy values are relative to that of the reactant A.4.

The Eyring equation 3.1 can be used to calculate the rate of a chemical reaction k, with k_{B} being the Boltzmann constant, T the Temperature, h the Planck constant, ΔG^{*} the barrier height and R the ideal gas constant 137-139.

$$
\begin{equation*}
k=\frac{k_{B} T}{h} e^{-\frac{\Delta G^{*}}{R T}} \tag{3.1}
\end{equation*}
$$

The half-life of a reaction can then be calculated with $t_{1 / 2}=\frac{\ln 2}{k}$. For a barrier of $9.7 \mathrm{kcal} / \mathrm{mol}$ at a temperature of 213 K (the experimental conditions) the half-life would be 2.8 ms . This is in good agreement to the experimental observation of the reaction occurring almost instantaneously [119].

3.2.4 Further characterization of A. 3

Especially of interest was the interaction between the hydroxyl proton and the hydride connected to the Ni center in A.3, so an effort was made to further characterize this complex.

Molecular Dynamics

To investigate the evolution of the proton-hydride interaction over time, multiple MD simulations were performed, each running for 5000 timesteps with intervals of 1.0 fs . The Berendsen virtual thermostat was set to 250 K , in accordance with the experimental conditions. For this large amount of calculations the PBEh-3c functional [140] was used instead of BP86-D3/def2-SVP. PBEh-3c is significantly less computationally intensive while still producing reasonably accurate structures of transition metal complexes (141. These MD simulations were performed for A.3, A.3(K), and for an A. 3 with an additional explicit THF molecule, representing the solvent, the structure of which is shown in figure 3.9. Figure 3.10 shows the evolution of the proton-hydride distance from the simulations. An example for the input file for the $M D$ simulation can be found in appendix A.

Figure 3.9: Molecular structure of A. $\mathbf{3}$ with an additional explicit THF molecule, representing the solvent. Ni atoms are green, C grey, H white, K purple, N blue, O red. Most H atoms are omitted for clarity. Visualized with PyMOL [27].

Figure 3.10: Simulated evolution of the dihydrogen bond distance in (a) A.3, (b) A.3(K) and (c) A. 3 with explicit THF. Each timestep represents the evolution of the system by 1.0 fs .

Torsional barrier

To determine the strength of the intramolecular proton-hydride interaction a rotation of the hydroxyl group was simulated. Multiple "relaxed scans" were performed (using BP86-D3/def2-SVP), meaning that certain aspects of the structure are set to specific values, while the rest of the structure is allowed to relax during optimization. In this case it pertains to the $\mathrm{H}-\mathrm{O}-\mathrm{Ni}-\mathrm{N}$ dihedral angle, which is being changed by 30 degrees for every step, mimicking a rotation. This scan was first performed for complex A.3. Then the potassium cation was removed from the structure and the energies recalculated, approximating the torsion for complex A.3(K) as well. The resulting energy profile is shown in figure 3.11 .

Figure 3.11: Torsional energy profile of $\mathbf{A . 3}$ (in purple) and $\mathbf{A . 3 (K)}$ (in red). All energies are relative to the structure at 0° of torsion, with the hydrogen atoms facing each other.

For A. 3 it is evident that 0°, with the two hydrogen atoms facing each other, is indeed the most stable orientation. For $\mathbf{A . 3 (K)}$ the most stable configuration would probably be between 0° and -30°, in a region not directly covered by the scan. The differences in energy between this minimum and the height of the torsional barrier are 20 and $14 \mathrm{kcal} / \mathrm{mol}$, respectively.

However, it has to be noted that this rotation is also inhibited by the repulsion between the hydroxyl group and the aryl rings. In an effort to differentiate between proton-hydride interaction and steric hinderances another torsional scan was performed with a truncated structure, where the aryl rings of A. 3 have been exchanged with a single H atom. It has to be noted that for this structure the K^{+}has to be fixed in position, lest it is moved away during the relaxation. The rest of the structure was still allowed to relax as described previously. The resulting energy profile is shown in figure 3.12, with a maximum torsional barrier of $14 \mathrm{kcal} / \mathrm{mol}$.

Taking both effects into account allows for an estimation of the strength of the intramolecular proton-hydride interaction of around $10 \mathrm{kcal} / \mathrm{mol}$, which is well in line with previously reported values for dihydrogen bonds 142 .

Figure 3.12: Torsional energy profile of both A. $\mathbf{3}$ (in purple) and the truncated A. 3 (in red), with aryl rings replaced by H atoms. All energies are relative to the structure at 0° of torsion, with the hydrogen atoms facing each other.

3.2. DFT CHARACTERIZATION

IR spectrum

The frequency calculations in 3.2.3 allowed for the simulation of an infrared absorption spectrum, depicted in figure 3.13. Figure 3.14 shows a comparison of the experimental and the simulated spectrum, with the latter shifted by $-72 \mathrm{~cm}^{-1}$, so that the nickel-hydroxyl stretching vibrations at $3409 \mathrm{~cm}^{-1}$ overlap. Scaling or shifting of simulated IR spectra is commonly done to aid in the comparison to experimental spectra, since this approach of deriving the spectra does make rather large approximations, such as the disregard of anharmonicity [143]. Nonetheless, after overlaying the nickel-hydroxyl stretching vibrations the rest of the relevant absorption peaks are in very good agreement. The nickel-hydride stretching vibration can be assigned to the absorption band at $1890 \mathrm{~cm}^{-1}$ in the experimental spectrum, and $1962 \mathrm{~cm}^{-1}$ in the simulated spectrum.

Figure 3.13: Simulated IR absorption spectrum of complex A.3, using the numerical frequency routine of ORCA at BP86-D3/def2-SVP level of theory. Marked are the nickel-hydroxyl stretching vibrations at $3481 \mathrm{~cm}^{-1}$ and the nickel-hydride stretching vibration at $2034 \mathrm{~cm}^{-1}$.

Figure 3.14: Comparison of simulated and experimental IR spectra. The simulated spectrum is shifted by $-72 \mathrm{~cm}^{-1}$, so that the nickel-hydroxyl stretching vibrations overlap at $3409 \mathrm{~cm}^{-1}$.

3.3 Discussion

In summary, it was possible to employ various DFT methods to great effect. Optimizing the relevant complexes of the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition offered a more detailed picture of the structural information than experimental methods such as NMR or X-ray diffraction are able to provide by themselves. It might be possible to devise experiments to determine energetic values such as the barrier height of the transition state or the strength of the dihydrogen bond, but such experiments would likely prove complicated and costly, while DFT methods allow for comparatively easy access. Comparisons to benchmark values, such as between measured and simulated dihydrogen bond lengths or IR spectra, allow for the confidence that other simulated results can be relied upon as well, within the margin of error inherent to all computational methods.

3.3. DISCUSSION

A probable reaction pathway for the oxidative $\mathrm{H}_{2} \mathrm{O}$ addition was demonstrated, elucidating the metal-metal cooperativity of the two $\mathrm{Ni}^{\mathrm{II}}$ atoms and the role of the intramolecular cleft. The splitting of water, which is otherwise quite costly in energy ($119 \mathrm{kcal} / \mathrm{mol}$) [144], would not occur in this manner without this specific configuration.

The product of the addition was characterized as well. The structure of the intramolecular cleft promotes close proximity of the hydride and hydroxyl group after splitting. The extend of the dihydrogen bonding interaction, previously only inferred by NMR and NOE spectroscopy [119, was determined through the investigation of the torsional barrier. The MD simulations further detailed this interaction, demonstrating that the hydride and hydroxyl group are oriented toward each other most of the time, with only small and short deviations in the dihydrogen bond length. The role of the potassium cation was elucidated as well, keeping the cleft closed through its attractive interaction with the negatively charged aryl rings. Removing the cation leads to on average longer bond lengths of the dihydrogen bond, as shown in figure 3.10b

However, as already mentioned in section 2.1, it has to be acknowledged that DFT is far from being the perfect solution to all problems when it comes to computational chemistry. DFT is not a "black box" method, and the computational parameters, such as the functional and basis set, have to be chosen thoughtfully. There is an ever growing field of functionals and functional types, purporting ever more accuracy, but also complicating these decisions. For example, it has been shown that Hybrid-GGA type functionals, while generally reliable in terms of computed structures, can be problematic when it comes to other properties, such as spin transition energies 34]. In such cases the computed values become directly dependent upon the amount of exact HF exchange used, making this a crucial factor to consider in cases of transition metal compounds exhibiting spin-crossover behaviour.

The severity of these problems, as well as approaches to their resolution, will be the topic of the next chapter(s).

Chapter 4

Parameterization of DFT functionals for $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$

The findings presented in this chapter and appendix B have previously been published in MDPI's journal Molecules [145]. The content of this chapter and the publication will therefore be similar, even though no explicit citation is given. Authors retain full copyright over all articles published in MDPI journals.
I want to explicitly thank Lukas Hasecke, who was responsible for development and application of the $\operatorname{UCCSD}\left(T^{*}\right)$-F12B method and the Bayesian optimization procedure, and Prof. Dr. Peter E. Blöchl, who contributed with his knowledge about the CP-PAW method.

4.1 Introduction

As described in the Introduction 1 there are many and varied efforts to improve the computational description of the spin crossover (SCO) phenomenon in $\mathrm{Fe}^{\mathrm{II}}$ complexes. The findings of Phan et al. 146 were especially interesting, suggesting a strong correlation between the spin state of homoleptic diimine complexes of $\mathrm{Fe}^{\mathrm{II}}$ and the $\mathrm{N}-\mathrm{N}$ distances in these diimine ligands. This raised the question whether hybrid density functionals can be adequately parameterized to capture the effects of ligand field stabilisation under various geometric constraints.

This approach differs from previous benchmark studies, which focused on altering the chemical properties of the compound. It makes use of the most basic model system for a $\mathrm{Fe}^{\mathrm{II}}$ complex with N -coordinating ligands, specifically the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ species. A series of standard benchmark tests is established that can be applied to other centers and coordination structures as well, focusing on the ligand structure. The primary point of interest is the adiabatic HS-LS energy difference $\Delta E_{\mathrm{HL}}=E_{\mathrm{HS}}\left(\mathbf{R}_{\mathrm{HS}}\right)-E_{\mathrm{LS}}\left(\mathbf{R}_{\mathrm{LS}}\right)$, where $E_{\mathrm{XS}}\left(\mathbf{R}_{\mathrm{XS}}\right)$ refers to the energy of the HS $/ \mathrm{LS}$ states in their respective geometries. Only electronic energies are discussed, without consideration for environmental effects such as solution or solid-state interactions, although these can be introduced through standard embedding procedures.

4.2 Preparation of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system

Figure 4.1: Left panel: Conceptual diagram of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model complexes. The N-N distances were restricted pairwise to set values, marked by the dotted lines. All other geometry parameters are optimized for both HS and LS states.
Right panel: Influence of the N-N pair distance restraint upon the Fe-N distance.

Taking the work of Phan et al. [146] as a starting point, a range of model systems was constructed to mimic different ligand geometries. Since many SCO complexes contain bidentate ligands, pairwise restrictions were imposed on the N-N distances of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model, as depicted in figure 4.1. No symmetry constraints were applied. The range of N-N distances was set from 2.5 to $3.1 \AA$ in steps of $0.1 \AA$,
covering the optimal SCO range of 2.8-2.9 \AA predicted by Phan et al. and extending beyond. The complex geometries were optimized for all degrees of freedom other than the pairwise N-N distance, using the PBE0r [147] level of theory. This local hybrid functional is discussed extensively in section 2.1.2.

All calculations with PBE0r were carried out using the CP-PAW code package 85 , 86]. Initial geometry optimizations were carried out using 12.5% exact exchange for all atom types. An example of a corresponding input file is provided in appendix B. Also provided are the structures of the model system in HS and LS state with 2.5, 2.8 and $3.1 \AA$ pairwise N-N distance in XYZ format.

As observed from the optimized geometries in figure 4.1, constraining the $\mathrm{N}-\mathrm{N}$ distance to shorter values also leads to a reduction of the Fe-N coordination distance. The LS geometries exhibit a slightly more pronounced effect. This relationship is determined by the overlap between the nitrogen lone pairs and the Fe eg orbitals. When the distance between the coordinating nitrogen atoms is reduced, the orbital overlap can be partially preserved by also shortening the Fe-N distance, and vice versa. This change has a less destabilizing effect on the $S=0$ state, as it can more readily accept density in the e_{g} levels.

4.3 Coupled-cluster benchmark calculations

Coupled-cluster calculations were carried out to obtain benchmark values for the high-spin (HS)-low-spin (LS) gap ΔE_{HL}. A detailed breakdown of the values discussed in this section can be found in the appendix B.

Explicit correlation methods [148] were utilized to reach almost complete basis set limit accuracy while reducing computational costs as much as possible. The benchmark reference results were obtained using the unrestricted coupled-cluster (UCC) F12B method [149], which includes single, double, and perturbative triple excitations with the fixed amplitude 3C(FIX) ansatz [150], implemented in MOLPRO [151]. Additional complementary auxiliary basis set (CABS) singles correction and scaling of the perturbative triples were applied 152. The method-specific cc-pVTZ-F12 basis sets were used for the ammonia ligands [153], while the aug-cc-pwCVTZ basis was chosen for iron 154 to allow for adequate recovery of the 3s3p correlation. Following
the prior work on explicit correlation methods on transition metal complexes from Bross et al. [155], their aug-cc-pwCVTZ/MP2FIT was utilized as the density fitting basis and as the CABS for the resolution of identity. For the density fitting of the Fock matrices, def2-QZVPP [156 was used. The Hartree-Fock calculations for the recovery of the relativistic contributions to the F12B energy were performed using a cc-pwCVQZ-DK/cc-pwCVQZ [154 basis for iron and cc-pVQZ-DK/cc-pVQZ 157 for the remainder. The results for ΔE_{HL} are presented in figure 4.2.

Figure 4.2: Computed HS-LS gap for the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complex with varying N-N distances at the coupled-cluster level (including the DK correction and the scaled triples).

It can be observed that the restraints placed on the ligands contribute to a significant reduction of the ΔE_{HL}, from $-12.9 \mathrm{kcal} / \mathrm{mol}$ down to $-4.3 \mathrm{kcal} / \mathrm{mol}$. However, within the applied range, this reduction is not sufficient to invert the stability of the high-spin state over the low-spin state. For the fully relaxed model system the N-N distances are approximately 3.1 and $2.8 \AA$ for the HS and LS states, respectively.

The triples correction significantly favors the LS state, reducing the gap by approximately $10 \mathrm{kcal} / \mathrm{mol}$. A detailed breakdown of different energy components for the calculation of ΔE_{HL} as a function of the $\mathrm{N}-\mathrm{N}$ distance is presented in figure 4.3.

Some terms show a geometry dependence, particularly the CCSD correlation energy and the triples correction. It appears that the scaling of the triples $\left(\mathrm{T}^{*}\right)$ has little impact.

Figure 4.3: Left panel: different energy contributions to the $\operatorname{UCCSD}\left(\mathrm{T}^{*}\right)$-F12B reference energy.
Right panel: energy difference between a relativistic and non-relativistic $\operatorname{CCSD}(\mathrm{T})$ calculation for the reference complex.

As shown in Fig. 4.3 (left panel), the primary trend of the reference energy in dependence of the nitrogen pair distance for distances shorter than $2.9 \AA$ is mainly given by the CCSD energy. For larger distances the CCSD energy goes into saturation, and the overall trend is dominated by the decrease of the contribution of the perturbative triples excitation. The corrections for the perturbative triples and for the relativistic effects are largely independent of the geometry. The additivity of the scalar relativistic corrections to the HS-LS gap $\left(\Delta \mathrm{E}_{D K}\right)$ can be observed as well. It amounts to $2.51 \mathrm{kcal} / \mathrm{mol}$ for the model system, and has only a small effect on the total computed correlation energies.

The right side of Fig. 4.3 illustrates the energy difference between a relativistic and a non-relativistic canonical $\operatorname{CCSD}(\mathrm{T})$ calculation of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system. The calculation was performed using a second-order Douglas-Kroll-Hess Hamiltonian (DKH2) [158, 159 and a cc-pwCVTZ-DK/cc-pwCVTZ 154 basis set
for the iron atom, as well as a cc-pVDZ-DK/cc-pVDZ [157] basis set for the ligand atoms. The energy difference indicates that the correlation energy is mostly unaffected by relativistic effects, while the reference energy is significantly influenced. It is therefore a reasonable approximation to recover the relativistic effects solely from the reference calculations. The scalar relativistic corrections were computed at the Hartree-Fock level and added to the non-relativistic $\operatorname{CCSD}(\mathrm{T})$ values.

The convergence of ΔE_{HL} for the relaxed geometry of the hexaamino complex at the coupled-cluster level has already been extensively addressed by Neese and coworkers [160]. A comparison to the results presented here shows only small deviations. The computed scalar relativistic corrections here amount to $2.51 \mathrm{kcal} / \mathrm{mol}$, compared to $2.37 \mathrm{kcal} / \mathrm{mol}$. Regarding the basis set correction, moving from triple-zeta to complete basis set (CBS) extrapolation or in this case using the F12B value as the limit, the deviations are quite small. The CBS[Q:5] correction of Flöser et al. amounts to $-4.7 \mathrm{kcal} / \mathrm{mol}$, while the F 12 B value is at $-5.0 \mathrm{kcal} / \mathrm{mol}$. For $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ a total value of $\Delta E_{\mathrm{HL}}=-13.37 \mathrm{kcal} / \mathrm{mol}$ was obtained, compared to $-11.3 \mathrm{kcal} / \mathrm{mol}$ by Flöser et al. The minor deviation between their ΔE_{HL} results and the values presented here is mostly due to differences in the geometry optimization.

A recent report by Radoń is also noteworthy, where various electronic structure methods are benchmarked against experimentally derived $\mathrm{Fe}^{\mathrm{II}}$ spin-state energetics. $\operatorname{CCSD}(\mathrm{T})$ performs remarkably well 161 in these findings. Depending on the choice of reference orbitals the mean absolute error was about $1 \mathrm{kcal} / \mathrm{mol}$ when compared to the proposed back-corrected experimental data set. Other comparisons to experimental data have also been favorable to $\operatorname{CCSD}(\mathrm{T})$ 36, 41.

4.3.1 Multireference diagnostics

As mentioned in the Introduction 1, there is an ongoing debate regarding the single reference nature of both singlet and quintet states of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complex. This issue is in line with the difficulties encountered in achieving convergence in the level of theory for non-heme iron complexes, as exemplified by ref. [162]. Song et al. 163 proposed that the system contains a significant amount of static correlation based on their analysis of single excitation amplitudes.

The two diagnostics used most often are the T1 diagnostic based on the Frobenius norm and the D1 diagnostic based on the matrix 2-norm [164]. The computed values vary between 0.049 and 0.087 , depending on the spin state and basis set combination. This would exceed the threshold of 0.04 suggested to safely signify a single reference character [164], but such thresholds were derived from small molecule calculations without consideration for transition metals. Recent assessments 165 for 3-d transition metal compounds indicate that the threshold should be placed at $\mathrm{D} 1<0.15$. In practice it is best to combine several diagnostics for a more robust assessment. Wilson and coworkers recommended using a combination of D1 and T1 (which should remain below 0.05) as well as a computed percentage of the atomization energy.

Calculations were carried out to verify the multireference descriptors for the DFT optimized structure of the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system. The results for the D1 diagnostic (with a triple-zeta quality basis set) are slightly higher (0.092 for the LS and 0.045 for the HS state) than those of Song et al., but still well below the threshold of 0.15 suggested by Wilson and coworkers. The T1 values $(0.02$ for the LS and 0.013 for the HS state) are below the threshold as well, comparing to the suggested value of $\mathrm{T} 1<0.05$). Having fulfilled two out of three criteria, this supports the assessment made by Flöser et al. 160 that the multireference character of both states is amenable.

There were no significant changes in both T1 and D1 diagnostics over the studied range of different geometries.

4.4 Parameterization of hybrid functionals

Computational details

The ORCA 4.2.0 program package [126, 127] was used for all DFT calculations in this section.

The range of functionals included in this study were the GGAs PBE 60 and BP86 61,62, the meta-GGAs TPSS 63] and M06-L [64, the hybrid GGAs PBE0 67,68 and B3LYP 69] (both with varying amounts of exact exchange), and the rangeseparated hybrid functional CAM-B3LYP [73] (with variation in the amount of
initial exact exchange and in the distance parameter). The cc-pwCVQZ-DK 154 basis set was used for the Fe atom and cc-pVQZ-DK [157] for the ligand atoms. Relativistic effects are taken into account by using the second-order DKH2 158, 159]. The RIJCOSX approximation [166] was used to speed up calculation time. Grimme's D3 method with Becke-Johnson damping 167,168 was used for dispersion correction, with the exception of M06-L. The convergence threshold was set to 10^{-9} H by using the 'verytightscf' keyword.

4.4.1 Overview

Every functional was used to carry out single-point energy calculations for the range of model complexes (meaning the structure was not re-optimized). From this the HSLS gap could be calculated and compared to the benchmark values. The numerical values resulting from the calculations discussed in this and the following section are presented in the appendix B.

Figure 4.4 provides an overview of the results for the GGA and meta-GGA functionals, as well as the hybrid and range-separated hybrid functionals when used with default parameters. This will be discussed further in the next section.

The simpler GGA type functionals exhibit reasonable agreement with each other, but deviate from the benchmark values. As expected, these functionals assume the LS state to be highly stable, leading to a very large ΔE_{HL}. TPSS produces strongly divergent values as well, while the performance of M06-L is notably better.

However, it can be observed that the coupled-cluster values predict an almost linear relationship between ΔE_{HL} and $d_{\mathrm{N}-\mathrm{N}}$. Almost all GGA and meta-GGA type functionals reproduce this behaviour quite well, except for M06-L, which flattened out by $d_{\mathrm{N}-\mathrm{N}} \geq 3.0 \AA$. Nonetheless, the comparison of SCO complexes on the basis of GGA is supported by the results, as the slope is almost the same as for the reference values. This, in turn, signals the possibility of reproducing trends across different ligands or distortions as well.

Figure 4.4: Overview of ΔE_{HL} from DFT calculations (lines) in relation to the coupled-cluster values (bars). In absolute values the hybrid functionals as well as M06-L outperform the remaining GGA and meta-GGA functionals. However, the slope evident in the coupled-cluster results is best reproduced by TPSS, BP86 and PBE0, while all other functionals level out too much at larger N-N distances.

4.4.2 Hybrid GGA type functionals

As described in 2.1.2, in hybrid GGA type functionals a certain percentage of the GGA exchange energy is replaced by the exact exchange energy calculated with HF The replaced amount can vary, but the two functionals presented here have a relatively similar admixture in their default settings. For B3LYP it is $a=0.2$ and for PBE0 it is $a=0.25$. Especially of interest for this study was the behaviour of these functionals for varying amounts of HF exchange.

The results for ΔE_{HL} are provided in figure 4.5. Non-default admixture parameters are marked by placing the value in parenthesis, while the admixture with default parameteres is left unmarked. The $\operatorname{B3LYP}(0.15)$ variant is one exception, since it has been popularised by Reiher and coworkers [169] and it is marked here as B3LYP*, in line with the common literature nomenclature.

Figure 4.5: Comparison of ΔE_{HL} values for the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system computed with reparameterized (a) B3LYP and (b) PBE0 functionals. Values in parenthesis show non-default HF exchange parameters. The bars depict the coupledcluster benchmark values.

The profiles for B3LYP and PBE0 look rather similar, with an optimal admixture observed at 20% exchange. It is unexpected to observe the same optimal range of admixture for two different functionals. Especially for B3LYP, one might expect a lower optimal value, as an admixture of 15% (e.g. B3LYP*) has been suggested for the energetics of Fe-S complexes [169]. This parameterization has also been validated for the first transition metal row [170]. Still, the overestimation of the LS state stability is evident. A nearly perfect linear relationship between ΔE_{HL} and the value of a can be observed, which several authors have suggested before but not confirmed for a fixed functional form [163, 171, 172.

When comparing the two functionals, it is noteworthy that the $\operatorname{PBEO}(0.20)$ variant performs slightly better than B3LYP. The slope is better represented by the parameterized PBE0, while B3LYP underestimates the relative stability of the HS state at larger distances. This deviation cannot be corrected by adjusting the parameter a. While smaller values of the parameter may improve the slope, the absolute values will diverge, reducing the overall overlap with the benchmark values.

4.4.3 Range-separated hybrid functionals

The CAM-B3LYP functional 73 was selected for this study, which has $\alpha=0.19$, $\beta=0.46$ and $\mu=0.33$ for its default parameters. This type of functional has been developed with the calculation of electronically excited states and spectra in mind, and is regularly used for the calculation of spin energetics 42, 161, 173.

For this study β was left unchanged, while α and μ were varied between slightly lower ($\alpha_{1}=0.13, \mu_{1}=0.25$) and slightly higher ($\alpha_{2}=0.25, \mu_{2}=0.40$) values. Figure 4.6 illustrates the results obtained from calculations with the original set of parameters $\left(\alpha_{0}, \mu_{0}\right)$ and the variations.

Similar to the case of B3LYP, the default CAM-B3LYP $\left(\alpha_{0}, \mu_{0}\right)$ produces results in good agreement with the benchmark values, although the slope is not perfectly reproduced. The most significant deviation can be observed for distances exceeding $2.9 \AA$, with the HS state being too unstable. It was however not possible to correct this behaviour through the variations of the α and μ parameters, while maintaining a good accuracy for the absolute ΔE_{HL} values at the same time.

Figure 4.6: Comparison of ΔE_{HL} values for the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system computed with refitted CAM-B3LYP. The bars depict the coupled-cluster benchmark values. $\alpha_{0}=0.19, \mu_{0}=0.33$ are the original parameters. Varied parameteres are $\alpha_{1}=0.13, \alpha_{2}=0.25, \mu_{1}=0.25, \mu_{2}=0.40$

4.5 Parameterization of PBE0r

As mentioned in section 2.1.2, for the local hybrid functional PBE0r the hybrid terms are divided into atomic contributions, allowing for the adjustment of the admixture of the exact exchange separately for each atom species. For the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system this offers 3 independent variables, though it can be demonstrated that the amount of HF exchange used for H atoms has only a small influence on the HS-LS gap, even for systems with a much higher number of H atoms (see also figure 6.7). Solving this 3-dimensional optimization problem of finding the ideal amount of Hartree-Fock exchange for iron, nitrogen and hydrogen was tackled with an automated BO procedure, which will be discussed in this section.

Figure 4.7: Diagram with an overview of the automated Bayesian optimization of PBE0r HF exchange parameters. The process starts by selecting a set of parameter values and computing ΔE_{HL} for the model systems, using the PBE0r functional. The RMSE is calculated by comparing the PBE0r results to the benchmark values, resulting in numerical value for the "quality" of the fit for this point in the sampling space. The Gaussian process regression produces values for the uncertainty between calculated points, letting the acquisition function choose the most promising next set of parameters, and the process is repeated. This figure has been graciously provided by Lukas Hasecke.

As discussed in section 2.5, the BO procedure is a machine learning tool, offering the opportunity to efficiently find the global minimum of a reference by varying a set of parameters [112, 113]. In this study, the root mean square error (RMSE) between the ΔE_{HL} values from the $\operatorname{UCCSD}\left(\mathrm{T}^{*}\right)$-F12B benchmark and the values from the reparameterized PBE0r functional was used as the reference for the optimization. The parameters were the percentages of the element-specific HF exchange amounts. The Bayesian optimization was performed using a Gaussian process regression with a Matérn52 kernel and an expected improvement acquisition function, implemented in GPyOpt [174]. The HF exchange percentages were restricted to the range of $1-25 \%$. In order to ensure effective optimization, the whole space was explored with 50 points determined by Latin hypercube sampling [175] prior to optimization. Subsequently, an additional 50 points were iteratively selected based on the acquisition function. Figure 4.7 offers an overview of the BO procedure, while the results from the acquisition function are presented in figure 4.8 .

Figure 4.8: Sampled points during the Bayesian optimization process of the HF exchange percentages for the three atom species. The points are color coded according to the root mean-square error (RMSE) between the computed values and the coupled-cluster benchmark.

For the HF exchange factor of the Fe species the BO process clearly identifies 9% as the optimal value. This is found in a range consistent with several previous studies on various classes of transition metal compounds and materials, including a recent study on lithium manganese oxides (with the final value for Mn in this particular case also at 9% (84) and DFT studies of perovskites 81, 176.

Figure 4.9: 2D-cut of the posterior distribution (at a fixed 9% HF-exchange for Fe) after 80 sampled points. A valley around 11% is clearly identifiable for the N atom scaling.

The HF exchange parameterization of PBE0r is most important for transition metal ions with partially filled d-shells such as Fe. The influence of the parameterization of hydrogen, on the other hand, can be expected to always be marginal. This is clearly demonstrated in figure 4.9, which shows a 2 -dimensional cut of the sampled points at 9% HF exchange for iron. Varying the nitrogen HF exchange parameter in this region can change the RMSE of the fit by up to $1.0 \mathrm{kcal} / \mathrm{mol}$, while the effect of varying the hydrogen parameter is an order of magnitude smaller. This indicates that particular attention must be paid to the description of the nitrogen species as well, especially considering the direct coordination to the metal.

Figure 4.10 shows a comparison of ΔE_{HL} computed with PBE0r for varying amounts of HF exchange, applied to all atom species. Unsurprisingly, using 9% HF exchange for all species yields the best agreement to the coupled-cluster benchmark values.

Figure 4.10: Comparison of ΔE_{HL} values computed with PBE0r. The numbers in parenthesis indicate the amount of HF exchange for all atom species. The bars depict the coupled-cluster benchmark values.

$\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$ model system

A second model with ethane-1,2-diimine (with the chemical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}$) as the ligand was devised to observe whether the lack of dependence on the nitrogen HFexchange fraction was maintained when considering more complex models of SCO complexes. This bidentate ligand should provide a better analogon for relevant SCO complexes.

In a new series of calculations, the percentage of HF exchange for the nitrogen species was varied while keeping every other species at 9%. The results, shown in figur 4.11, reveal that the dependence of ΔE_{HL} on the exchange admixture is larger than for the simple $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system. Although the reference data for the diimine model is not provided here, one can straightforwardly compare the dependence. Changes in the exchange functional for the local density located at
the nitrogen atoms will impact the charge distribution along the double bond to the carbon, which will affect the coordination to the metal. In the simpler $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model, only protons were present, which took up little density.

The diimine model, among others, is discussed in more detail in chapter 5

Figure 4.11: Comparison of the dependence of ΔE_{HL} on the exchange admixture for the simple model $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, and the more complex $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$.

4.6 Discussion

The primary focus of this study was to assess the feasibility of parameterizing hybrid density functionals to accurately reproduce the energy gap between the high-spin and low-spin state of N -coordinated $\mathrm{Fe}^{\mathrm{II}}$ complexes, taking the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ system as a reference. The set of model complexes with varying N-N distances was constructed (as described in section 4.2) in order to ensure that the approach is remains robust in the presence of changes to the complex structure. Essentially, a broad range of ligands was simulated using only a few reference calculations. Optimally, the obtained results should not be compromised by subtle variations in the coordination geometry. This is crucial for the precise modeling of the dynamics of SCO complexes and to ensure the predictive capability of the approach.

It has been reported repeatedly in the literature (for example 177), that pure GGA type functionals tend to overestimate the stability of low-spin states. Despite this issue, many of the calculations on SCO complexes are still conducted at this level of theory due to the low computational cost and ease of implementation. Another factor is that using pure GGA type functionals also ensures that the ground-state is a LS state. The HS state is favored by entropy because of its longer bonds, so for actual SCO complexes where the transition occurs by heating up the system will require a small energy difference between the two, but with the LS state being lower in energy. The difficulties are especially pronounced for multicentered complexes, where benchmarks are much scarcer. In the case of the [2x2] Fe ${ }^{\mathrm{II}}$ grid complexes synthesized at the Meyer group [30], a number of theoretical studies have accurately predicted that the LS states are indeed more stable 178, 179, consistent with magnetic susceptibility measurements. However, the reported energy differences between the different spin states are generally too large for an SCO-capable complex. Theory has only provided a qualitative understanding of the process so far. The $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex will be discussed further in chapter 6.

The results obtained from the wave function analysis strongly support the singlereference character of both singlet and quintet states in the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model. This suggests that coupled-cluster methods are an adequate benchmarking method for the discussion of the spin state energetics for these systems. The local coupledcluster results of Flöser et al. 160 could be largely confirmed, though the approach for benchmarking DFT functionals presented here is different. The changes in coordination while keeping the same ligands provides insight into how the DFT method performs when structural changes occur in the complex, which is a fundamental issue in the theoretical description of SCO complexes.

The results demonstrate that while many functionals can be tuned to reproduce a reference singlet-quintet gap ΔE_{HL}, it is much more challenging to capture the trends occuring with structural changes. It is also observed that only the GGA functionals or hybrids with significantly reduced percentages of non-local exchange can match the coupled-cluster ΔE_{HL} slope, e.g. the energy gap as a function of the ligand structure. This observation validates the approach of Jakubikova 31, although it should to be noted that the model system used in this study is relatively small.

The hybrid GGA type functional $\operatorname{PBE} 0(0.20)$ and the local hybrid PBE0r with an admixture of 9% for the Fe species were identified to be the best performing (parameterized) functionals. The latter offers reduced computational cost and can be readily employed for the simulation of larger systems, including oligo-nuclear SCO complexes such as the [2x2] Fe ${ }^{\mathrm{II}}$ grid system mentioned earlier. However, some issues have to be addressed as well. It can be discerned from figure 4.11 that the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model system only provides part of the picture. To achieve results that are applicable to all $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ complexes in general, the chemical diversity of the range of model systems would have to be expanded. This expansion should include important factors for common SCO complexes, such as the coordination to conjugated systems or the distortion of the octahedral geometry due to ligand constraints and steric effects. These more realistic models would also be more demanding in regard to the multidimensional tuning of the local hybrid functional. This extension of the model system set is discussed further in the next chapter 5 .

Chapter 5

Extension of the $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ model set

5.1 Introduction

As discussed in chapter 4, there is merit to the approach of parameterization of DFT functionals for an accurate but cost-effective description of $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ complexes. To reiterate briefly, the initial approach involved constructing a set of small model complexes, computing benchmark values with a high level wavefunction method, and then fitting the DFT method to the benchmark with a Bayesian optimization procedure.

However, it has also been discussed that the first iteration of this approach was too simplistic, as it relied solely on a series of geometrically distorted $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complexes for the model set. This lacks the chemical diversity of many of the $\mathrm{Fe}^{\mathrm{II}}$ SCO complexes actually in existence, which often feature multidentate ligands and incorporate C atoms $13,23,31,32,146,177,180$.

Presented in this chapter are efforts to improve the approach by extending the set of model systems, the results from these improvements, as well as the complications inherent to this approach.

5.2 Considerations for new model complexes

To be considered for the new set of model complexes, the systems obviously have to contain a $\mathrm{Fe}^{\mathrm{II}}$ core. It was deemed appropriate to narrow the scope of this work to systems with the $\mathrm{Fe}\{\mathrm{N}\}_{6}$ motif, meaning that the first coordination sphere contains only six N atoms, in a roughly octahedral configuration. The rest of the systems should consist only of H, C and N atoms, as these are the most common species for the "backbones" of ligand structures associated with $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ complexes. The ligands should connect to the $\mathrm{Fe}^{\mathrm{II}}$ core in mono-, bi- or tridentate configurations, all of which are commonly observed in Fe SCO systems [13, 23, 31, 32, 146, 177, 180. Additionally, there are restrictions imposed by the coupled-cluster benchmark method. As described in 4.3, it is possible to compute single point energies for a system like $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, but for much larger systems this becomes impractical. Another coupled-cluster variant was established to remedy this to a degree, which is described in 5.3. Even so, it was necessary to keep the model complexes as small as possible.

Apart from the well studied $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complex $34,160,163,181,182$, there is alltogether not much research into systems conforming to all of these considerations, especially with the limitation of the system size. Some of the distorted $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complexes from the previous model set (see chapter (4) were used again, specifically the one with the smallest $(2.5 \AA)$, the middle $(2.8 \AA)$, and the largest $(3.1 \AA) \mathrm{N}-\mathrm{N}$ pairwise distance. From here on these complexes are assigned as B.01, B. 02 and B.03, respectively. It was assumed that using more of the distorted $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complexes would not add any more information to the model set.

The [2x2] Fe_{4} grid complex synthesized by Meyer et al. 30 with its tridentate ligands gave inspiration toward the construction of $\mathbf{B} .04\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{3} \mathrm{C}_{4} \mathrm{H}_{6}\right)_{2}\right]^{0}\right)$, B. $05\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{3} \mathrm{C}_{4} \mathrm{H}_{6}\right)\left(\mathrm{N}_{3} \mathrm{C}_{4} \mathrm{H}_{7}\right)\right]^{1+}\right)$ and $\mathbf{B . 0 6}\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{3} \mathrm{C}_{4} \mathrm{H}_{7}\right)_{2}\right]^{2+}\right)$. B. 07 $\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\mathrm{NCH})_{2}\right]^{2+}\right)$, B. $11\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{4} \mathrm{H}_{2}\right)_{3}\right]^{2+}\right)$ and B. $12\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{6} \mathrm{CH}_{4}\right)_{2}\right]^{2+}\right)$ are not directly based on literature, but try to mimic motifs found in other SCO complexes, while using a minimal amount of atoms. B. $08\left(\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{NCH})_{6}\right]^{2+}\right)$ is an-
other well studied Fe ${ }^{\text {II }}$ SCO complex [160]. Both B. $09\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]^{2+}\right)$ and B. 10 $\left(\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{H}_{8}\right)_{3}\right]^{2+}\right)$ are based upon structures found in another work benchmarking quantum chemistry methods for $\mathrm{Fe}^{\mathrm{II}}$ complexes 161 .

For systems where no structures from previous studies were available the initial guess was obtained by placing the atoms in the expected positions by hand. All of the structures were optimized with the CP-PAW code package [85, 86] using the PBE0r functional with 12.5% HF exchange, in the same manner as described in 4.1.

Figures 5.1 and 5.2 show all of the model systems in both HS and LS state constructed for this study. The structures are also presented in XYZ format in appendix C , except for the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ variants (B.01, B. 02 and B.03), which are given in appendix B . Not all of the new model systems could be used in the end, for reasons that will be discussed in the next sections.

5.3 Coupled-cluster benchmark calculations

Even though the new model systems presented here are only slightly larger when compared to the $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ complex, they are already too large to be effectively analysed with the canonical coupled cluster (CC) method discussed in 4.3 . Instead, a local CC variant was applied, using the PNO-UCCSD(T)-F12b method [183] and the $3^{*} \mathrm{~A}($ LOC,FIX) ansatz 184, 185). The other aspects of the calculations were kept identical, i.e. additional CABS singles correction and scaling of the perturbative triples were applied [152]. The method-specific cc-pVTZ-F12 basis sets were used for the ligands [153], while the aug-cc-pwCVTZ basis was chosen for iron 154 to allow for adequate recovery of the 3 s 3 p correlation. Following the prior work on explicit correlation methods on transition metal complexes from Bross et al. [155], their aug-cc-pwCVTZ/MP2FIT was utilized as the density fitting basis and as the CABS for the resolution of identity. For the density fitting of the Fock matrices def2-QZVPP [156 was used. The Hartree-Fock calculations for the recovery of the relativistic contributions to the F12B energy were performed using a cc-pwCVQZ-DK/cc-pwCVQZ [154 basis for iron and cc-pVQZ-DK/cc-pVQZ 157 for the remainder.

(a) B. 01

(c) B. 03

(e) B. 05

(b) B. 02

(d) B. 04

(f) B. 06

Figure 5.1: First half of the DFT optimized molecular structures of the new model set. HS systems are on the left and LS systems on the right for each pair. Fe atoms are orange, C grey, H white, N blue. Visualized with PyMOL [27].

(a) B. 07

(c) B. 09

(e) B. 11

(b) B. 08

(d) B. 10

(f) B. 12

Figure 5.2: Second half of the DFT optimized molecular structures of the new model set. HS systems are on the left and LS systems on the right for each pair. Fe atoms are orange, C grey, H white, N blue. Visualized with PyMOL [27].

For complexes B. 11 and $\mathbf{B} .12$ it was not possible to converge the benchmark calculations, making them unusable for the BO procedure. It can be noted that both complexes contain N-N double bonds, possible hinting at an issue in the local CC method for describing this specific kind of environment. For the purposes of this study it was deemed acceptable to disregard these two complexes, since multidentate ligands connected by $\mathrm{N}-\mathrm{N}$ double bonds are a relatively rare motif. Aromatic motifs containing $\mathrm{N}-\mathrm{N}$ bonds exist of course, but including such structures would make applying the local CC benchmark method impossible due to the extraneous number of electrons in the system.

The local CC benchmark method was applied to an unconstrained $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ system as well, the structure of which can be found in the appendix C. The ΔE_{HL} results from the benchmark calculations for all new systems are presented in table 5.1. The values from the canonical CC calculations will continue to be used as a benchmark for B.01, B. 02 and B.03.

5.3. COUPLED-CLUSTER BENCHMARK CALCULATIONS

		LCCSD(${ }^{*}$)-F12	RHF-DK	RHF	CABS	$\Delta E_{\mathrm{HL}}^{C C}(\mathrm{kcal} / \mathrm{mol})$
$\left[\mathrm{Fe}^{\text {II }}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	HS (Eh)	-1601.826259	-1608.50953	-1599.458712	-0.005658	-13.334787
	LS (Eh) $\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$	-1601.800598	$\begin{aligned} & -1608.38607 \\ & -77.476347 \end{aligned}$	$\begin{aligned} & -1599.331218 \\ & -80003599 \end{aligned}$	-0.006042	
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	-16.102745		251	0.240707	
B. 04	HS (Eh)	-1902.968391	-1908.45269	-1899.283187	-0.005661	6.263247
	LS (Eh)	-1902.972485	-1908.31256	-1899.137561	-0.006052	
	$\Delta \mathrm{DK}$ (kcal/mol)		-87.932959	-91.381567		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	2.569346		608	0.245293	
B. 05	HS (Eh)	-1903.368902	-1908.86209	-1899.691886	-0.005919	13.638622
	LS (Eh)	-1903.385002	-1908.73150	-1899.556034	-0.006292	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-81.946745	-85.248581		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	10.102891		836	0.233896	
B. 06	HS (Eh)	-1903.642238	-1909.1767	-1900.007368	-0.006199	6.494444
	LS (Eh)	-1903.646506	-1909.03246	-1899.857358	-0.006550	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-90.536697	-94.132559		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	2.678452		862	0.220130	
B. 07	HS (Eh)	-1825.117842	-1831.07665	-1821.936227	-0.005060	0.969483
	LS (Eh)	-1825.112716	-1830.92410	-1821.777390	-0.005443	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-95.725659	-99.671715		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	-3.216887		056	0.240314	
B. 08	HS (Eh)	-1822.648883	-1828.73569	-1819.594664	-0.004270	-10.115045
	LS (Eh)	-1822.625844	-1828.57718	-1819.429608	-0.004646	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-99.468370	-103.574342		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	-14.456795		972	0.235778	
B. 09	HS (Eh)	-1826.345118	-1832.244308	-1823.104186	-0.005457	10.944690
	LS (Eh)	-1826.356049	-1832.09546	-1822.949223	-0.005849	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-93.400993	-97.240574		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	6.859455		582	0.245653	
B. 10	HS (Eh)	-1833.702527	-1839.34205	-1830.203211	-0.007130	-4.986031
	LS (Eh)	-1833.690037	-1839.22338	-1830.080331	-0.007464	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-74.466064	-77.108233		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	-7.837831		169	0.209630	
B. 11	HS (Eh)	-1922.195052	-1927.877520	-1918.650616	-0.006288	29.892710
	LS (Eh)	-1922.235034	-1927.76465	-1918.530904	-0.007096	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		-70.823850	-75.120488		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	25.089071	4.296638		0.507001	
B. 12	HS (Eh)	-1999.570517	-2004.24736	-1994.994416	-0.006983	38.078849
	LS (Eh)	-1999.621822	-2004.80908	-1995.547150	-0.007380	
	$\Delta \mathrm{DK}(\mathrm{kcal} / \mathrm{mol})$		352.480961	346.845433		
	$\Delta E_{\mathrm{HL}}(\mathrm{kcal} / \mathrm{mol})$	32.194219		528	0.249102	

Table 5.1: Detailed breakdown of energy composition from local CCSD(T*)-F12B calculations for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and the extended model set.

5.4 Bayesian optimization

No major changes were made to the BO procedure as it has been presented in 4.5. However, the HF exchange factor regarding H atoms was permanently set to 12.5% to reduce the dimensionality of the fitting problem to only 3 parameters, i.e. the Fe, N and C HF exchange percentages. As discussed previously, the H HF exchange percentage is found to have a negligible contribution to the total effect on the ΔE_{HL}.

5.4.1 Results for complete model set

The result from the Bayesian optimization procedure for the complete extended model set is shown in figure 5.3. Each point reflects an iteration of the procedure, with a unique set of parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points, with the darkest hue corresponding to the best result. While the parameter for the HF exchange of the C atoms was part of the fitting procedure, it became apparent that it had little influence on the quality of the fit. The distribution of the sampled points also becomes much easier to evaluate when reduced to two dimensions, which is why the results from the Bayesian optimizations will be presented in this manner.

The best performing iteration had an RMSE of $10.47 \mathrm{kcal} / \mathrm{mol}$ and used HF exchange factors of 10.4% for $\mathrm{Fe}, 6.4 \%$ for N and 5.0% for C . Using these factors to evaluate the ΔE_{HL} of the (unconstrained) $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ yielded a result of -14.42 $\mathrm{kcal} / \mathrm{mol}$. These values are shown and reviewed in table 5.4 in the discussion 5.5.

Cross-validation

To evaluate the performance of the procedure and specifically the extended model set, a cross-validation was carried out. In this approach, also referred to as "leave-one-out" validation, the model set is divided into training and test sets. The training set contains all model systems except for one, which is instead contained in the test set. Using only the training set, the Bayesian optimization procedure is carried out. The resulting set of HF exchange parameters, optimal for this specific training set, can then be used to compute the $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ of the test set complex. Comparing the

Figure 5.3: 2D representation of the result of the BO procedure using the extended (10) model set. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.
result can to $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ (from the CC benchmark) provides insight into the whether the fit based on this subset of model complex would be useful for the description of the complex placed in the test set. This was repeated for all 10 systems of the extended model set, placing each of them in the test set in turn. The results are presented in table 5.2 .

Test set system	RMSE $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{E}_{X}^{H F}(\mathrm{Fe})$	$\mathrm{E}_{X}^{H F}(\mathrm{~N})$	$\mathrm{E}_{X}^{H F}(\mathrm{C})$	$\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ $(\mathrm{kcal} / \mathrm{mol})$	$\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ $(\mathrm{kcal} / \mathrm{mol})$	$\Delta \Delta E_{\mathrm{HL}}$ $(\mathrm{kcal} / \mathrm{mol})$
B.01	10.18	0.106	0.053	0.050	-7.40	-4.27	-3.13
B.02	10.25	0.105	0.050	0.050	-11.98	-9.42	-2.56
B.03	10.22	0.104	0.055	0.050	-15.46	-12.91	-2.55
B.04	10.02	0.106	0.058	0.050	2.02	6.26	-4.25
B.05	8.79	0.105	0.069	0.050	5.23	13.64	-8.41
B.06	10.39	0.102	0.060	0.050	7.47	6.49	0.98
B.07	9.50	0.098	0.064	0.050	7.75	0.97	6.78
B.08	7.50	0.100	0.057	0.050	0.53	-10.12	10.65
B.09	10.32	0.104	0.050	0.050	13.40	10.94	2.45
B.0	10.33	0.106	0.050	0.051	-7.06	-4.99	-2.07

Table 5.2: Results from Bayesian optimization procedures (as described in 4.5 in the attempt to cross-validate the extended model set. The "Test set system" column denotes the system left out of the training set. The RMSE is the discrepancy between BO and CC benchmark ΔE_{HL} values for the best iteration, and can be taken as the measure of quality of the fit. $\mathrm{E}_{X}^{H F}$ are the corresponding HF exchange parameters. $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ values are the ΔE_{HL} for the test set system, computed with the HF factors derived from the Bayesian optimization of the training set. $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ values are the ΔE_{HL} for the test set system, computed with the CC benchmark method. $\Delta \Delta E_{\mathrm{HL}}$ values are the difference between $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ and $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$.

The RMSE values are for the most part consistent, with notable exceptions for B.05, B.08, and B.07 to a lesser degree. The HF exchange parameter varies by less than 1% for Fe atoms and less than 2% for N atoms. For C it is almost completely consistent at 5%, the lower bound of the parameterization. The $\Delta \Delta E_{\mathrm{HL}}$ values show that for most systems of the extended model set, they are quite well represented by their respective training set. There is a discrepancy of less than $5 \mathrm{kcal} / \mathrm{mol}$ between values from coupled-cluster calculations and from the DFT calculations, parameterized with the results from the BO procedure. The notable exceptions are again B.05, B.08, and B.07.

5.4.2 Reduced model set

Since the exclusion of B. 05 and B. 08 yielded the largest reduction of the RMSE, another BO procedure was carried out with the remaining 8 model systems. The results are shown in figure 5.4. The best performing iteration had an RMSE of 5.64 $\mathrm{kcal} / \mathrm{mol}$ and used HF exchange factors of 9.5% for $\mathrm{Fe}, 8.4 \%$ for N and 5.0% for C. Using these factors to evaluate the ΔE_{HL} of the (unconstrained) $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ yielded a result of $-12.52 \mathrm{kcal} / \mathrm{mol}$. These values are shown and discussed further in table 5.4 The cross-validation was repeated for this reduced model set as well, with the results presented in table 5.3 .

Figure 5.4: 2D representation of the result of the BO procedure using the reduced (8) model set. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Test set system	RMSE $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{E}_{X}^{H F}(\mathrm{Fe})$	$\mathrm{E}_{X}^{H F}(\mathrm{~N})$	$\mathrm{E}_{X}^{H F}(\mathrm{C})$	$\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ $(\mathrm{kcal} / \mathrm{mol})$	$\Delta E_{\mathrm{HL}}^{\mathrm{CC}}(\mathrm{kcal} / \mathrm{mol})$	$\Delta \Delta E_{\mathrm{HL}}$ $(\mathrm{kcal} / \mathrm{mol})$
B.01	5.477	0.098	0.078	0.054	-6.345	-4.268	-2.078
B.02	5.544	0.098	0.079	0.05	-10.980	-9.422	-1.558
B.03	5.560	0.098	0.077	0.066	-14.922	-12.910	-2.012
B.04	4.624	0.092	0.104	0.052	1.503	6.263	-4.760
B.06	5.608	0.095	0.086	0.05	7.391	6.494	0.897
B.07	2.690	0.091	0.087	0.192	10.069	0.970	9.100
B.09	5.606	0.094	0.086	0.05	12.292	10.945	1.347
B.10	5.640	0.095	0.089	0.05	-5.082	-4.986	-0.096

Table 5.3: Results from Bayesian optimization procedures (as described in 4.5) in the attempt to cross-validate the reduced model set. The "Test set system" column denotes the system left out of the training set. The RMSE is the discrepancy between BO and CC benchmark ΔE_{HL} values for the best iteration, and can be taken as the measure of quality of the fit. $\mathrm{E}_{X}^{H F}$ are the corresponding HF exchange parameters. $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ values are the ΔE_{HL} for the test set system, computed with the HF factors derived from the Bayesian optimization of the training set. $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ values are the ΔE_{HL} for the test set system, computed with the CC benchmark method. $\Delta \Delta E_{\mathrm{HL}}$ values are the difference between $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ and $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$.

Eliminating B. 05 and $\mathbf{B . 0 8}$ significantly reduces the RMSE for all training sets. The RMSE and exchange parameters are quite consistent, with the exception of B.07, which was to be expected. The reduction of the RMSE when moving B. 07 to the test set is even bigger than before (as shown in table 5.2), meaning that the relative discrepancy of $\mathbf{B} .07$ to the training set is bigger. It is also the only system for which $\Delta \Delta E_{\mathrm{HL}}$ has significantly increased relative to the values from the cross-validation of the complete extended set.

Since the training set without B. 07 had such a significant reduction of the RMSE, the HF exchange parameters of the best iteration $(9.1 \%$ for Fe atoms, 8.7% for N atoms and 19.2% for C atoms) were used to compute the ΔE_{HL} of the (unconstrained) $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ once more. This yielded a result of $\Delta E_{\mathrm{HL}}=-11.75$ $\mathrm{kcal} / \mathrm{mol}$. These values are shown and discussed further in table 5.4.

Figures with 2D representations of the result of the BO procedures for all crossvalidation training sets, for both extended and reduced model set, can be found in the appendix C.

5.5 Discussion

The previously mentioned results for the BO procedure applied to the "extended", the "reduced" and the "minimized" model set are summarized in table 5.4 for the sake of comparison.

Model set	RMSE $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{E}_{X}^{H F}(\mathrm{Fe})$	$\mathrm{E}_{X}^{H F}(\mathrm{~N})$	$\mathrm{E}_{X}^{H F}(\mathrm{C})$	$\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ $(\mathrm{kcal} / \mathrm{mol})$
Extended (10 systems)	10.47	0.104	0.064	0.050	-14.42
Reduced (8 systems)	5.64	0.095	0.084	0.050	-12.52
Minimized (7 systems)	2.69	0.091	0.087	0.192	-11.75

Table 5.4: Results from the BO procedure for the different model sets. Shown are the RMSE as a measure of the quality of the fit, the predicted optimal exchange parameters $\mathrm{E}_{X}^{H F}$ for each atom species, and the ΔE_{HL} for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ when computed by the PBE0r functional using the respective $\mathrm{E}_{X}^{H F}$.

These results can now be compared to the $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ of the unconstrained $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ system computed with the local CC variant, which amounts to -13.33 $\mathrm{kcal} / \mathrm{mol}$ (see 5.1). Removing B. 05 and B. 08 from the extended set not only lowers the RMSE significantly, but also produces a $\Delta E_{\mathrm{HL}}^{\mathrm{BO}}$ in better agreement to the benchmark $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$. It has to be said that the difference in agreement is rather small, with $\Delta \Delta E_{\mathrm{HL}}=1.09 \mathrm{kcal} / \mathrm{mol}$ for the extended set, and $\Delta \Delta E_{\mathrm{HL}}=-0.81 \mathrm{kcal} / \mathrm{mol}$ for the reduced set. Removing B. $\mathbf{0 7}$ lowers the RMSE again, but the deviation to $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ of the unconstrained $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is increased, with $\Delta \Delta E_{\mathrm{HL}}=-1.58$ $\mathrm{kcal} / \mathrm{mol}$. This demonstrates that the RMSE can only be taken as measure of the internal cohesion of a given model set, and not necessarily be relied upon to mark the quality of the end result. It can be noted that Neese and coworkers reported a result of $-11.3 \mathrm{kcal} / \mathrm{mol}$ for the ΔE_{HL} of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, though this was achieved with a DLPNO-CCSD (T) coupled-cluster variant 160 .

These results demonstrate that it is possible to achieve a deviation smaller than 1.0 $\mathrm{kcal} / \mathrm{mol}$ to the coupled-cluster benchmark values, but that the correct choice of model systems is of utmost importance. While it is possible to improve the model set by "pruning" systems which contribute to a bad fit, this improvement is not entirely self-reliant. Without knowledge of the desired $\Delta E_{\mathrm{HL}}^{\mathrm{CC}}$ of the unconstrained $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ it would be hard to tell whether the reduced set or the minimized set produced better results. It also has to be noted that this result, and the respective HF exchange factors, are only optimal for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, and not necessarily for $\mathrm{Fe}^{\text {II }} \mathrm{SCO}$ complexes in general. This will become evident in the following chapter 6. which aims to describe the spin states of a $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex.

Regardless, as already discussed in chapter 4, the vast majority of commonly used DFT functionals yield results with much greater deviation to those of coupledcluster level of theory. For this reason, the Bayesian optimization procedure can be considered a significant improvement, which is also transferable to target systems with different charges, ligand structures, or transition metal centers.

Chapter 6

Application toward the $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex

6.1 Introduction

This chapter aims to use the Bayesian optimization procedure, which was established in chapter 4 and improved upon in chapter 5, to describe the spin states of a [2x2] Fe ${ }^{\mathrm{II}}$ grid complex, already mentioned briefly in the introduction 1, and depicted in figure 6.1. This complex has been first synthesized by Meyer and coworkers in 2010 [30] and extensively characterized with experimental methods 186 188. Especially useful for this investigation is a measurement of the dependence of the magnetic susceptibility on the temperature, reported by Benjamin Schneider and shown in figure 6.2. It clearly demonstrates the complex going through multiple successive SCO events upon cooling down from room temperature. Knowledge of this temperature dependency also enables some thermodynamic considerations. Since $\chi_{M} T$ can be correlated to the fraction of Fe cores in the HS state, 6.2 allows for an assessment of the equilibrium temperature $T_{1 / 2}$ for the first two spin transition events. From this the complete ΔH for the transition from $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ to $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ can be estimated at $6 \mathrm{kcal} / \mathrm{mol} \llbracket 189]$.

Figure 6.1: Molecular structure of the [2x2] Fe ${ }^{\mathrm{II}}$ grid complex. Fe atoms are orange, C grey, N blue. H atoms are omitted for clarity. Visualized with PyMOL [27].

Theoretical studies of this complex [178] and of similar ones [190] have been less extensive so far. This is not surprising, since the size of the system and the intricacies of SCO capable transition metals complicate any approach aiming to calculate energetic states to a reasonable degree of accuracy.

As shown in figure 6.1, the complex consists of four $\mathrm{Fe}^{\mathrm{II}}$ atoms in arranged in a square-shaped configuration, which are bridged by four pyrazolate-based ligands. Each ligand coordinates to two $\mathrm{Fe}^{\mathrm{II}}$ atoms simultaneously through its tridentate binding pockets, such that every Fe atom is surrounded by a roughly octahedral $\{\mathrm{N}\}_{6}$ environment. When discussing the separate Fe cores of the $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex, they are noted as $\mathrm{Fe}_{1}, \mathrm{Fe}_{2}, \mathrm{Fe}_{3}$ and Fe_{4}. For this investigation these cores

Figure 6.2: Temperature dependence of $\chi_{M} T$ for the [2x2] Fe ${ }^{\mathrm{II}}$ grid complex. Expected values for the different spin states are marked with the dotted lines. Reported by Benjamin Schneider [188.
are assumed to be interchangeable, and their absolute position irrelevant. However, Fe_{1} always is positioned across from Fe_{3}, and adjacent to Fe_{2} and Fe_{4}. The total charge of the complex is $4+$, since each pyrazolate-based ligand carries a charge of $1-$. Stepwise oxidation of the $\mathrm{Fe}^{\mathrm{II}}$ cores has been achieved as well, leading to mixed-valent and even a fully oxidized [2x2] Fe ${ }^{\mathrm{III}}$ grid complex 30,186$]$. Since only $\mathrm{Fe}^{\mathrm{II}}$ states are considered in this work, the total charge of $4+$ for the complex is dropped throughout.

6.2 Preparation of the grid complex structures

The basic structure of the grid complex was taken from earlier studies by Ingolf Harden, under the supervisison of Peter Blöchl. It was then re-optimized, using the latest CP-PAW code version at that time \downarrow, and taking dispersion forces into

[^0]account. The PBE0r functional was employed for these optimizations, using $6 \% \mathrm{HF}$ exchange for all atom types. $6 \% \mathrm{HF}$ exchange can be considered a roughly correct amount, which is sufficient for the structural optimization, since the influence of the exchange factor on the geometries is negligible. An example for the input file of such an optimization can be found in the appendix D.

Because the spin state of the Fe atom has a significant impact on the surrounding structure (see 1), each spin state permutation has to be considered a unique system, and its structure optimized separately. It is assumed that for a given spin state all variants are interchangeable, e.g. for $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ it is irrelevant whether it is the $\mathrm{Fe}_{1}, \mathrm{Fe}_{2}, \mathrm{Fe}_{3}$ or Fe_{4} in the HS state. However, for $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ there are two distinguishable configurations: cis, where the two Fe cores in the HS state are next to each other, and trans, where the two cores are apart. Thus there are 6 systems under consideration in this work: $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4},\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$, cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$, trans$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2},\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$.

Converging the systems to the intended spin state is non-trivial. As can be seen in the appendix D, the input file includes the total spin S of the system (in \hbar). Each LS Fe ${ }^{\mathrm{II}}$ core contributes 0.0 to this value, while each $\mathrm{HS} \uparrow \mathrm{Fe}^{\mathrm{II}}$ core raises the value by $2.0 \hbar$. However, an $\mathrm{HS} \downarrow \mathrm{Fe}^{\mathrm{II}}$ core would also lower this value by $2.0 \hbar$, and while the \uparrow / \downarrow designation is arbitrary, the two spin directions cancel each other out in regard to the total spin S. This has the effect that, for example, while trying to converge the electronic structure of $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ with total $\mathrm{S}=0.0 \hbar$, one might instead converge upon a state like $\left(\mathrm{Fe}_{\mathrm{HS} \downarrow}\right)\left(\mathrm{Fe}_{\mathrm{HS} \uparrow}\right)\left(\mathrm{Fe}_{\mathrm{HS} \downarrow}\right)\left(\mathrm{Fe}_{\mathrm{HS} \uparrow}\right)$, which is also a (local) minimum. Even though $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ is energetically more stable, converging from a state like $\left(\mathrm{Fe}_{\mathrm{HS} \downarrow} \downarrow\right)\left(\mathrm{Fe}_{\mathrm{HS} \uparrow}\right)\left(\mathrm{Fe}_{\mathrm{HS} \downarrow} \downarrow\right)\left(\mathrm{Fe}_{\mathrm{HS} \uparrow}\right)$ to $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ is highly improbable, since it would entail the simultaneous spin crossover event on all 4 Fe cores, changing from their HS states to LS. This issue can be somewhat alleviated by placing an external potential upon all Fe d-orbitals, orientating them in the same spin direction before the structure optimization. This reduces the likelihood of the occurrence of unintended spin states, but it is still a possibility, as can be observed below.

Density of states visualization

The electronic structure obtained from the optimizations can be visualized by the Kohn-Sham density of states (DOS), which provide information about the orbital occupations. This can be qualitatively compared to experimental observations. Since the DOS is quite unique to the system and its spin state, it can also be used as a "fingerprint". By comparing the results from a calculation with another it is possible to make sure that the intended spin state has been converged upon. The two extreme cases, $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$, can serve as a benchmark. For the sake of completion their total DOS is depicted in 6.3 .

The Fermi level (i.e. the HOMO energy) can be observed here, at -12.14 eV for $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, and -11.77 eV for $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$. The DOS at this level is almost exclusively constructed from Fe d-states. The band gap can also be observed, separating the occupied (valence) states from the unoccupied (conduction) states. For $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ the band gap amounts to 0.86 eV , while for $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ it is 1.77 eV . It can be noted that for $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, the d-orbitals contribute little to the unoccupied states, being eclipsed by contributions from the ligand structure. For $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ the opposite is true, with the Fe d-orbitals contributing much more density. Separating the contributions from $\mathrm{t}_{2 \mathrm{~g}}$ and e_{g} orbitals, as shown in the following figures 6.46.6a), demonstrates that specifically the $t_{2 g}$ orbitals (in green) are mainly responsible.

Plotting only the DOS of the Fe d-orbitals makes it easier to distinguish the spin states, visualizing the unique shapes of the HS states (figure 6.4a) and the LS states (figure 6.4b) of the Fe cores. It can also be observed that for $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ all states have the same spin-direction (\uparrow).

These "fingerprints" can now be compared to the d-electron DOS of the intermediate states $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ (figure 6.5a, cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ (figure 6.5b), trans$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ (figure 6.5c) and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ (figure 6.5d).

Figure 6.3: Visualization of the DOS in the optimized (a) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and (b) $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ structure. The total DOS are colored black. The ligand DOS are colored red, while the DOS of the d-orbitals of the Fe atoms are colored yellow $\left(\mathrm{Fe}_{1}\right)$, blue $\left(\mathrm{Fe}_{2}\right)$, green $\left(\mathrm{Fe}_{3}\right)$ and magenta $\left(\mathrm{Fe}_{4}\right)$. The partial DOS plots are stacked, so that their contributions can be distinguished. Lighter colors represent unoccupied orbitals.

Figure 6.4: Visualization of the DOS of the d-orbitals of the Fe atoms in the optimized (a) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and (b) $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ structure. $\left(\mathrm{Fe}_{1}\right)$ is represented by the first graph from the top, $\left(\mathrm{Fe}_{2}\right)$ by the second, $\left(\mathrm{Fe}_{3}\right)$ by the third, $\left(\mathrm{Fe}_{4}\right)$ by the last. The contributions from $\mathrm{t}_{2 \mathrm{~g}}$ are shown in green and those from e_{g} in blue. Lighter colors represent unoccupied orbitals.

Figure 6.5: Visualization of the DOS of the d-orbitals of the Fe atoms in the optimized (a) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$, (b) cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$, (c) trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ and (d) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ structure. $\left(\mathrm{Fe}_{1}\right)$ is represented by the first graph from the top, $\left(\mathrm{Fe}_{2}\right)$ by the second, $\left(\mathrm{Fe}_{3}\right)$ by the third, $\left(\mathrm{Fe}_{4}\right)$ by the last. The contributions from $\mathrm{t}_{2 \mathrm{~g}}$ are shown in green and those from e_{g} in blue. Lighter colors represent unoccupied orbitals.

For (6.5a) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ and (6.5d $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ it can be concluded that the structure optimization indeed converged upon the intended spin states. The DOS of the Fe d-orbitals look identical to those of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ when it comes to HS and LS states, respectively. For (6.5a) $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$, the single HS state is located at Fe_{3}, while the rest of the Fe atoms are in the LS state. For (6.5d $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$, the single LS state is located at Fe_{3}, while the rest of the Fe atoms are in the $\mathrm{HS}(\uparrow)$ state.

Unfortunately, the same cannot be concluded for (6.5b) cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ and (6.5c) trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$. Upon close inspection it can be observed that for 6.5b cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ the Fe_{1} exhibits a DOS that is different from the intended LS state. The same holds for Fe_{4} of (6.5c) trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$, which seems to have converged upon the same state, judging from the shape of the DOS. It can also be noted that both systems are significantly higher in energy than all other systems computed in this section, in contrast to experimental observations, which locate an $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ state between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$. From this it has to be concluded that it was not possible to converge correctly to the intended state for both cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ and trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$. The converged structures for $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4},\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3},\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ however are presented in XYZ format in appendix D.

Figure 6.6a depicts the DOS of the Fe d-orbitals for another unsuccessful attempt at converging on the intended spin state for trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$, for curiosities sake. In this case, while Fe_{1} and Fe_{3} have converged correctly to a LS and HS state, respectively, Fe_{2} and Fe_{4} have again not converged to the target states. The states of these two Fe atoms are markedly different from those shown in figure 6.5b and figure 6.5 c , but identical to one another.

(a) trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$

Figure 6.6: Visualization of the DOS of the d-orbitals of the Fe atoms in a failed structure optimization of trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$. $\quad\left(\mathrm{Fe}_{1}\right)$ is represented by the first graph from the top, $\left(\mathrm{Fe}_{2}\right)$ by the second, $\left(\mathrm{Fe}_{3}\right)$ by the third, $\left(\mathrm{Fe}_{4}\right)$ by the last. The contributions from $t_{2 g}$ are shown in green and those from e_{g} in blue. Lighter colors represent unoccupied orbitals.

Estimating $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$

In a previous study by Borshch and Zueva [178], the relative energies of the spin states were calculated as presented in table 6.1. These values will be shown again in the discussion 6.5

Though calculated using the GGA type functional PBE, the relative ordering of the spin states is in agreement with the experimental observations 188. Taking the magnetic susceptibility measurements 6.2 into account, it seems reasonable to assume that trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ can be located energetically roughly halfway between $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$, with cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ being somewhat higher in energy. trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ will be included at this position in the tables in section 6.4.3 to aid in visual clarity, though marked with a *.

Spin state	$\Delta E_{P B E}$
$\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$	0.0
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$	11.2
cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$	27.0
trans-(Fe $\left.\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$	22.8
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$	43.1
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$	64.5

Table 6.1: Energies of the spin states of the [2x2] $\mathrm{Fe}^{\mathrm{II}}$ grid complex relative to the total energy of $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, calculated by Borshch and Zueva [178] using PBE. All energy values in kcal/mol.

6.3 Influence of ZPVE

So far, all observations on the various $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ systems have taken only electronic energies at 0 K into account. Computing the multitudes of frequencies for the grid complexes to a relevant degree of accuracy was not possible, but an estimation can still be made by a comparison to the model systems. Table 6.2 shows the ZPVE for both HS and LS state for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and for B.05, computed with a selection of commonly used functionals. Out of all the model systems B. 05 can be assumed to provide the ligand environment that is the most similar to that of the grid complexes. It is identical both in the charge of the ligand per Fe core (${ }^{1-}$ for B. 05 and ${ }^{4-}$ in the grid complex) and in the octahedral environment being heavily distorted by the tridentate ligands. The ZPVE were calculated using the ORCA 4.2.0 program package [126, 127], using various functionals with a DKH-def2TZVPP basis set [128], including sarc/J auxiliary basis set 129] and Grimme's D3 dispersion correction with Becke-Johnson damping [130,131. Relativistic effects are taken into account by using the second-order DKH2 158, 159. An example of the input file can be found in the appendix D.

Regardless of model system and of functional, the ZPVE is higher for LS state than for the HS state. This is to be expected, because of the on average shorter bond length in the LS complexes (see 1]. For $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, with a negative ΔE_{HL}, this results in a widening of the gap. For B. 05 and the [2x2] grid complex on the other

		BP86	M06-L	B3LYP	PBE0
[\mathrm{Fe}^{\mathrm{II}}(\mathrm{NH}_{3})_{6}]{$^{2+}{ }^{2+}$ ZPVE $_{\text {HS }}$}	140.09	145.02	143.79	144.70	
	ZPVE $_{\text {LS }}$	144.00	148.82	148.09	149.48
	Δ ZPVE $_{\text {HL }}$	-3.91	-3.80	-4.30	-4.78
$\mathbf{B y y} \mathbf{0 5}$	ZPVE $_{\text {HS }}$	134.84	139.33	139.22	140.44
	ZPVE $_{\text {LS }}$	138.25	141.89	139.99	143.63
	Δ ZPVE $_{\text {HL }}$	-3.42	-2.56	-0.77	-3.19

Table 6.2: ZPVE of HS and LS states of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and $\mathbf{B . 0 5}$, computed with various functionals. $\triangle \mathrm{ZPVE}_{\mathrm{HL}}$ is calculated by subtracting the ZPVE of the LS state from the ZPVE of the HS state. All energy values in kcal/mol.
hand, ΔE_{HL} becomes smaller. The amount of $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ seems also large unaffected by model system and functional, the only outlier being B3LYP on B.05.

It seems reasonable to use the result from the PBE0 calculation on the $\mathbf{B} \mathbf{. 0 5}$ model system, since it is closest in both system and method to the grid complex, and it is in good agreement with most other $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ results as well. The $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ for the grid complex can in this manner be estimated at around $-3 \mathrm{kcal} / \mathrm{mol}$ per Fe core, i.e. $-12 \mathrm{kcal} / \mathrm{mol}$ in total when applied to the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$.

6.4 Application of model system parameterization

6.4.1 Influence of HF exchange factor per atom type

It has been stated previously that the effect of the HF exchange factor on the ΔE_{HL} of the studied $\mathrm{Fe}^{\mathrm{II}}$ SCO systems is negligible when it comes to H atoms, and rather small when it comes to C atoms. Also, when it comes to the amount of HF exchange in regard to Fe and N atoms, it can be seen, for example from the 2D representations of the results from the BO of the extended model set (see 5.3), that it is to some degree interchangeable. Lowering the amount of HF exchange for Fe atoms can be compensated up to a point by increasing the amount of HF exchange for N atoms, and vice versa.

To investigate these aspects further, the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ was determined with single-point energy calculations, using a range of different HF ex-
change parameters. The parameter for a given atom type was varied between 10% and 3%, while the parameters for all other types were kept fixed at 10%. The results are depicted in figure 6.7.

Figure 6.7: Results from single-point energy calculations for the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$. The HF exchange factor $\mathrm{E}_{X}^{H F}$ is varied only for the given atom type, while $\mathrm{E}_{X}^{H F}$ for all other types is kept fixed at 10%. The dotted grey line is drawn as a visual aid at $\Delta E_{\mathrm{HL}}=28.5 \mathrm{kcal} / \mathrm{mol}$, which is the size of ΔE_{HL} when computed with all HF exchange factors at 10%.

This aptly demonstrates how much smaller the influence of the HF exchange factor is for H and C atoms. When varying between 10% and 3%, the ΔE_{HL} only changes by $-0.2 \mathrm{kcal} / \mathrm{mol}$ for the H atom factor, and $-2.8 \mathrm{kcal} / \mathrm{mol}$ for the C atom factor. Contrary to this, varying the N atom factor between 10% and 3% changes the ΔE_{HL} by $25.7 \mathrm{kcal} / \mathrm{mol}$, and varying the Fe atom factor changes the ΔE_{HL} by $62.7 \mathrm{kcal} / \mathrm{mol}$. It is interesting to note that the H and C HF exchange factors not only have a significantly smaller influence on the ΔE_{HL}, but also lead to smaller (i.e. more negative) values for the ΔE_{HL}. This runs somewhat contrary to the commonly
held belief that GGA type functionals always and without exception over-stabilize the LS state for SCO systems 177.

6.4.2 Brute force approach

A comparison of the quality of these results can also be made to an approach using "brute force", where instead of a directed search the entirety of the available sampling space is probed uniformly. Using the structures of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, the ΔE_{HL} was determined with single-point energy calculations. The HF exchange factors for Fe, N and C atoms were varied each between 3.0% and 10.5% in steps of 0.5%, for all possible combinations of factors. The complete results with all 4096 ΔE_{HL} values are depicted in figure 6.8, though a 2 D horizontal slice at a fixed C atom HF exchange factor of 10% offers a clearer representation in figure 6.9 .

From this it is evident that there are many combinations of the Fe/N HF exchange factors for which the correct ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ can be reproduced. If ΔE_{HL} is assumed to be around $20 \mathrm{kcal} / \mathrm{mol}, \mathrm{Fe} / \mathrm{N} \mathrm{HF}$ exchange factors of $4.5 \% / 10.0 \%, 6.0 \% / 7.0 \%$ and $7.5 \% / 3.5 \%$ all fulfill this condition, for example. The merits of this approach are discussed further in chapter 7.

Figure 6.8: Results from single-point energy calculations for the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$. The HF exchange factor $\mathrm{E}_{X}^{H F}$ is varied for Fe, N and C atoms between 3.0% and 10.5% in steps of 0.5%, for all possible combinations of factors.

Figure 6.9: Results from single-point energy calculations for the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$. The HF exchange factor $\mathrm{E}_{X}^{H F}$ is fixed at 10% for C atoms, and varied for Fe and N atoms between 3.0% and 10.5% in steps of 0.5%.

6.4.3 Application of parameterization

When comparing the results from the BO procedure (see 5.4) to the viable $\mathrm{Fe} / \mathrm{N} \mathrm{HF}$ exchange factor combinations from the brute force approach, it becomes apparent that the former cannot be relied upon to produce sensible results in regard to the [2x2] $\mathrm{Fe}^{\mathrm{II}}$ grid complex. Even the latest iteration with the "minimized" model set predicts $9.1 \% / 8.7 \%$ as optimal for the Fe / N HF exchange factors. For the ΔE_{HL} between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ this combination will produce a negative ΔE_{HL}, in contrast to the experimental observations.

However, an additional BO procedure was carried out, in the same manner as described in 5.4, but using solely the B. 05 model system. By using only a single system, the BO procedure is sure to produce HF exchange factors that are optimal for the representation of exactly this system. The results for B.05 are presented in figure 6.10

For the B. 05 model system, the predicted optimal HF exchange parameters are 5.0\% for Fe atoms, 10.5% for N atoms and 20.0% for C atoms (while H remained fixed at $12.5 \%)$. Using these parameters, single-point energy calculations were carried out, using the converged $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid structures. These values can then be corrected by the $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ per $\mathrm{Fe}^{\mathrm{II}}$ core in the LS state, as estimated previously. The results for the electronic energies $\Delta E_{\text {el }}$ as well as the corrected energies ΔH_{0}, relative to the total energy of $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, are presented in table 6.3 .

As a point of comparison, the energy gap between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ was calculated once more, using an HF exchange factor of 25% for all atom types, as is the default setting for the PBE0 functional. The result, $\Delta_{\mathrm{HL}}^{\text {default }}=-109.3 \mathrm{kcal} / \mathrm{mol}$, is discussed in the following section.

Figure 6.10: 2D representation of the result of the BO procedure using only the $\mathbf{B} .05$ model system. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Spin state	$\Delta E_{\text {el }}$	ΔH_{0}
$\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$	0.0	0.0
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$	0.1	-2.9
trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$	4.3^{*}	-
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$	8.6	-0.4
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$	18.3	6.3

Table 6.3: Energies of the spin states of the $[2 \mathrm{x} 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex relative to $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, calculated using HF exchange parameters of 5.0% for Fe atoms, 10.5% for N atoms, 20.0% for C atoms and 12.5% for H atoms. The value of ΔH_{0} is computed by adding $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ per $\mathrm{Fe}^{\mathrm{II}}$ core in the LS state to ΔE_{el}. The value for trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ was interpolated at half the value of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$. All energy values in kcal/mol.

6.5 Discussion

The previously reported values $\Delta E_{\text {el }}$ from the DFT calculations parameterized with the results from the BO applied to the $\mathbf{B} .05$ model system are presented once more in table 6.4, as are the values ΔH_{0}, corrected by the ZPVE estimation. For the sake of comparison, the values ΔE_{PBE} reported by Borshch and Zueva 178 are shown once more as well.

Spin state	$\Delta E_{\text {el }}$	ΔH_{0}	ΔE_{PBE}
$\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$	0.0	0.0	0.0
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$	0.1	-2.9	11.2
trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$	4.3^{*}	-	22.8
$\left(\mathrm{Fe}_{\mathrm{eSS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$	8.6	-0.4	43.1
$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$	18.3	6.3	64.5

Table 6.4: Energies of the spin states of the [2x2] Fe ${ }^{\mathrm{II}}$ grid complex relative to $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4} . \Delta E_{\text {el }}$ has been calculated using HF exchange parameters of 5.0% for Fe atoms, 10.5% for N atoms, 20.0% for C atoms and 12.5% for H atoms. The value of ΔH_{0} is computed by adding $\Delta \mathrm{ZPVE}_{\mathrm{HL}}$ per $\mathrm{Fe}^{\mathrm{II}}$ core in the LS state to ΔE_{el}. ΔE_{PBE} are the values reported by Borshch and Zueva [178]. The values for trans$\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ marked with * were interpolated at half the value of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$. All energy values in kcal/mol.

When computing $\Delta E_{\text {el }}$ for the spin crossover events of the [2x2] Fe ${ }^{\mathrm{II}}$ grid complex by using the HF exchange parameters obtained from the BO procedure applied to the B. 05 model system, the results conform rather well to the experimental observations (see 6.2). A total ΔE_{HL} of $18.3 \mathrm{kcal} / \mathrm{mol}$ for the difference between $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ is a reasonable value, considering that at room temperature the total spin state is exclusively $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ [188]. Upon cooling down the spin crossover events to $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ and $\left.\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ could be observed (though whether this species is cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ or trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ could not be clearly determined). The observations upon cooling below 20 K are less clear, and $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ and $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ could not be observed separately. This conforms to the calculated values for $\Delta E_{\text {el }}$, which place these two states at almost the same level in energy.

Adding the estimated ZPVE changes the relative energies significantly. Since the ZPVE has a stronger effects on Fe atoms in the LS state, the amount of the energetic difference depends on the total spin state of the system. With the correction, $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ can be found at a slightly lower level in energy than $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, which still matches the experimental observations. At first glance, placing $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ at a similar level in energy as $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ seems contrary to the observations, which can clearly differentiate the $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ state. However, the relaxation from $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ to $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ would include simultaneous transitions of all four Fe centers, making it much less likely than the relaxation to $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$. Finally, the ΔH_{0} for $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ seems somewhat too low to match the stability of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ at room temperature. It can be concluded that this method of estimating the ZPVE might have been too superficial. On the other hand, a ΔH_{0} of $6.3 \mathrm{kcal} / \mathrm{mol}$ concurs very well with the thermodynamic estimation.

The values reported by Borshch and Zueva 178 are demonstrating once again the overstabilization of LS states by GGA type functionals 177. The general trends of the experimental observations are reproduced, except for the energy level of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$. If correct, a difference in energy of $11.2 \mathrm{kcal} / \mathrm{mol}$ should have been observable.

On the other hand, calculating $\Delta_{\mathrm{HL}}^{\text {default }}$ with an HF exchange factor of 25%, which is the commonly used default setting for PBE0 [67, 68], clearly demonstrates why hybrid functionals cannot be used for the description of the energy levels of SCO complexes, without first considering the parameters. $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ is calculated at a much lower level on energy than $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, at an absurd $\Delta_{\mathrm{HL}}^{\text {default }}=-109.3 \mathrm{kcal} / \mathrm{mol}$, in stark contrast to the experimental observations. The $[2 \times 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex could not be counted as a SCO complex, were this result even remotely accurate.

The complex exhibits an inverse cooperativity in regard to the spin crossover events. When starting from $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$, the first SCO is essentially free, but every successive one needs to cross a higher energetic threshold. This is explained by the changes to the ligand structure upon SCO, as mentioned in 1. After the first SCO, the changes are communicated through the ligand backbone, distorting the environment of the adjacent Fe cores in a manner that is unfavorable for the next SCO. This also explains why Borshch and Zueva [178] found the trans- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ to be more stable in energy than its cis- $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{2}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{2}$ counterpart. Influences of fixed ligand structures upon the ΔE_{HL} of SCO complexes in general have already been widely reported 14 16, 188, 191.

Chapter 7

Summary and Outlook

To summarize, the general usefulness of a range of DFT techniques, which are currently in everyday use for the validation and explanation of experimental observations, has been demonstrated in chapter 3. Chapter 4 reviewed the the recurrent issues of DFT methods when it comes to the description of transition metal SCO complexes. Also presented are the initial attempts at the development of a procedure to alleviate these issues. This was done by reparameterizing the HF exchange factors through the use of the Bayesian optimization machine learning tool, on the basis of benchmark values computed with a coupled-cluster method. This approach was then refined, as described in chapter 5. A local CC variant allowed for the inclusion of a broader range of systems into the model set, leading to broader applicability and increased accuracy in the results. It has been demonstrated that the BO procedure is quite capable of finding an optimal set of HF exchange parameters for the calculation of the HS-LS energy gap for small $\mathrm{Fe}^{\mathrm{II}} \mathrm{SCO}$ systems, such as $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$. However, this is dependent on finding a range of model systems that are structurally similar to the target system. As demonstrated in chapter 6, for a $[2 \mathrm{x} 2] \mathrm{Fe}^{\mathrm{II}}$ grid complex this approach does not work as well. On the other hand, using only the HF exchange parameters from the model system B.05, which is structurally the most similar model to the grid complex, resulted in energies in very good agreement to experimental observations. This leads to the conclusion that the BO procedure is still valid and can be a useful tool for the parameterization of hybrid functionals, as long as the correct model systems are chosen.

It could be stated that the "brute force" approach as discussed in chapter 6.4.2 can produce results on par with those of the developed BO procedure. While not wrong, it has to be noted that evaluating those results is only possible based on the knowledge gained from experimental observations. It would contribute little to no value to a purely in silico-driven methodology, which could be seen as the ultimate goal of these studies. Furthermore, the "brute force" approach required an excessive 8192 separate calculations, the energy cost of which can be estimated at around $1,400 \mathrm{kWh}$. The cost of the Bayesian optimization procedure is somewhat harder to estimate, but amounts to roughly 10%. This includes the coupled-cluster benchmark calculations, which are the most expensive part. Later modifications to the procedure, such as the "pruning" discussed in 5.5, are much less costly.

From a conceptual perspective, the BO procedure can also be compared to a neural network approach, such as the HDNNP championed by Jörg Behler et al. 192 195. In both methods a training set is used to parameterize a posterior function, with the goal of being able to use the less costly functional afterwards, which should have a degree of accuracy approaching that of the benchmarking method. While the basic idea is the same, there are some important differences to note. As opposed to the BO procedure, neural networks are a "black box". Fitting a training set to the neural network optimizes a series of weights and biases, influencing the equations by which the energies are computed for a given configuration. These weights and biases have no physical meaning by themselves, as they are purely mathematical constructs. Systematic improvements are still possible, but they often rely on statistical methods for the search of outliers or poorly defined configurational spaces. Consequently the number of data points in the training set has to be much higher. Another key difference lies in the ability to extrapolate away from data covered by the training set. Neural network potentials are not able to do so with any degree of accuracy, whereas a parameterized functional should have fewer issues in this regard.

By trying to approximate the spin transitions for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and for the $[2 \mathrm{x} 2]$ $\mathrm{Fe}^{\mathrm{II}}$ grid complex as discussed in chapter 4, 5 and 6, it has become apparent that there are strict limitations to the types of model systems that should be included. Specifically, this approach works best for models systems that are structurally as similar to the target complex as possible. Recent works in our group by Rafael Machleid have started taking this factor into account. Here the local Fe environment is
expressed through the use of descriptor called "local many-body tensor representation" (LMBTR) [196, 197, making it possible to assign a quantitative value to the structural similarity between any two complexes. When applied to a target complex and the model systems in its respective training set, this standardized similarity model (SSM) can be used to assign separate weights to the contribution of each model. The higher the structural similarity to the target complex is, the more influence the model system has on the predicted parameterization, significantly lowering the deviations between HS-LS energy gaps computed with the benchmark coupledcluster method and with the parameterized DFT. The works of Rafael Machleid investigated $\mathrm{Fe}^{\text {III }}$ SCO complexes, but the methodology should be easily transferable to $\mathrm{Fe}^{\mathrm{II}}$ or even other transition metals such as Co or Mn [15 18, 198.

An issue remains with the benchmark calculation of the model system. It is desirable to expand the diversity of available model systems as far as possible, possibly including aromatic and charged ligand systems, or highly distorted geometries [14, 22, 26, 199, 200]. However, being able to only compute systems of rather small sizes with the coupled-cluster method is a starkly limiting factor. Trade-offs can be made between accuracy and available system size [35, 36, 40 42], as has been done with the local CC variant to a small degree. But this in turn limits the potential accuracy of the end result. After all, a parameterized method can only ever be as accurate as its benchmark method 193 .

This problem can be alleviated through the development of more efficient benchmarking methods, advances in raw computing power, or ideally both. Looking at recent efforts in these fields [160, 183, 201, 203] can provide confidence that these solutions will be coming sooner rather than later.

List of Abbreviations

BOA	Born-Oppenheimer approximation
BO	Bayesian optimization
CASPT2	complete active space second-order perturbation
CASSCF	complete active space self-consistent field
CABS	complementary auxiliary basis set
CBS	complete basis set
CC	coupled cluster
CCSD (T)	coupled cluster with single, double and perturbative triple excitations
CP-PAW	Car-Parinello Projector Augmented Wave
CPCM	conductor-like polarizable continuum model
DFT	density functional theory
DOS	density of states
DKH2	Douglas-Kroll-Hess Hamiltonian
GGA	generalized gradient approximation
GPR	Gaussian process regression
HF	Hartree-Fock
HS	high-spin

LDA local density approximation
LS low-spin
MD molecular dynamics
MEP minimum energy path
NEB nudged elastic band
NEVPT2 N-electron valence state perturbation theory
PES potential energy surface
RASPT2 restricted active space second-order perturbation
RASSCF restricted active space self-consistent field
RMSE root mean square error
SCO spin crossover
SORCI spectroscopy oriented configuration interaction
ZPVE Zero-point vibrational energy

Bibliography

[1] G. A. Lawrance. Introduction to Coordination Chemistry. Wiley, 2010. doi: 10.1002/9780470687123.fmatter.
[2] F. A. Cotton and G. Wilkinson. Advanced Inorganic Chemistry. Wiley, 5th edition, 1989.
[3] R. K. Sodhi and S. Paul. Metal Complexes in Medicine: An Overview and Update from Drug Design Perspective. Canc Therapy \& Oncol Int J., 14:555883, 2019. doi:10.19080/CTOIJ.2019.14.555883,
[4] F. Cavani, G. Centi, S. Perathoner, and F. Trifiró. Sustainable Industrial Chemistry: Principles, Tools and Industrial Examples. Wiley, 2009.
[5] T. Rauchfuss. Inorganic Syntheses, Volume 35. Wiley, 2010.
[6] R. A. Sheldon and H. van Bekkum. Fine Chemicals through Heterogeneous Catalysis. Wiley, 2008.
[7] L. Cambi and A. Cagnasso. Atti accad. naz. lincei, cl. Sci. Fis., Mat. Nat., Rend, 13(254):809, 1931.
[8] N. Amin, S. Said, M. Salleh, A. Afifi, N. Ibrahim, M. Hasnan, M. Tahir, and N. Hashim. Review of fe-based spin crossover metal complexes in multiscale device architectures. Inorg. Chim. Acta, 544:121168, 2023. doi:10.1016/j. ica.2022.121168
[9] G. Molnár, L. Salmon, W. Nicolazzi, F. Terki, and A. Bousseksou. Emerging properties and applications of spin crossover nanomaterials. J. Mater. Chem. C, 2:1360-1366, 2014. doi:10.1039/C3TC31750A.
[10] S. Brooker. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem. Soc. Rev., 44:2880-2892, 2015. doi:10.1039/C4CS00376D.
[11] A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev., 40:3313-3335, 2011. doi:10.1039/C1CS15042A.
[12] J. R. Galán-Mascarós, E. Coronado, A. Forment-Aliaga, M. Monrabal-Capilla, E. Pinilla-Cienfuegos, and M. Ceolin. Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles. Inorg. Chem., 49(12):5706-5714, 2010. doi:10.1021/ic100751a.
[13] K. Senthil Kumar and M. Ruben. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev., 346:176-205, 2017. doi:10.1016/j.ccr.2017.03.024.
[14] U. Rastetter, A. Jacobi von Wangelin, and C. Herrmann. Redox-active ligands as a challenge for electronic structure methods. J. Comput. Chem., 44(3):468479, 2023. doi:10.1002/jcc. 27013 .
[15] R. Akiyoshi, Y. Komatsumaru, M. Donoshita, S. Dekura, Y. Yoshida, H. Kitagawa, Y. Kitagawa, L. F. Lindoy, and S. Hayami. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar-LigandSubstituent Motion. Angew. Chem. Int. Ed., 60(23):12717-12722, 2021. doi:10.1002/anie.202015322.
[16] S.-Y. Zhang, H.-Y. Sun, R.-G. Wang, Y.-S. Meng, T. Liu, and Y.-Y. Zhu. Construction of spin-crossover dinuclear cobalt(ii) compounds based on complementary terpyridine ligand pairing. Dalton Trans., 51:9888-9893, 2022. doi:10.1039/D2DT00436D.
[17] D. Villaman, C. J. McMonagle, M. R. Probert, O. Peña, Y. Moreno, and M. Fuentealba. Structural studies of a manganese(iii) complex with spincrossover and thermochromic properties. CrystEngComm, 22:3221-3233, 2020. doi:10.1039/C9CE01962F.
[18] Z. Liu, S. Liang, X. Di, and J. Zhang. A manganese(iii) complex that exhibits spin crossover behavior. Inorg. Chem. Comm., 11(7):783-786, 2008. doi:
10.1016/j.inoche.2008.03.030
[19] D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey, and G. W. Smith. Spin crossover in chromium(II) complexes and the crystal and molecular structure of the high spin form of bis [1,2-bis(diethylphosphino)ethane]di-iodochromium(II). J. Chem. Soc., Chem. Commun., pages 1322-1323, 1989. doi:10.1039/C39890001322.
[20] L. F. Lindoy and S. E. Livingstone. Complexes of iron(II),cobalt(II) and nickel(II) with α-diimines and related bidentate ligands. Coord. Chem. Rev., 2(2):173-193, 1967. doi:10.1016/S0010-8545(00)80204-0.
[21] P. Gütlich, Y. Garcia, and H. A. Goodwin. Spin crossover phenomena in Fe(II) complexes. Chem. Soc. Rev., 29:419-427, 2000. doi:10.1039/B003504L.
[22] C. Cook, F. Habib, T. Aharen, R. Clérac, A. Hu, and M. Murugesu. HighTemperature Spin Crossover Behavior in a Nitrogen-Rich FeIII-Based System. Inorg. Chem., 52(4):1825-1831, 2013. doi:10.1021/ic301864d.
[23] P. Gütlich, A. B. Gaspar, V. Ksenofontov, and Y. Garcia. Pressure effect studies in molecular magnetism. J. Phys. Condens. Matter, 16(14):S1087, 2004. doi:10.1088/0953-8984/16/14/019.
[24] V. N. Raj M., K. Bhar, T. A. Khan, S. Jain, F. Perdih, P. Mitra, and A. K. Sharma. Temperature induced spin crossover behaviour in mononuclear cobalt(ii) bis terpyridine complexes. MRS Advances, 4(28-29):1597-1610, 2019. doi:10.1557/adv.2019.166.
[25] J.-F. Létard. Photomagnetism of iron(ii) spin crossover complexes-the T(LIESST) approach. J. Mater. Chem., 16:2550-2559, 2006. doi:10.1039/ B603473J.
[26] D. J. Harding, P. Harding, and W. Phonsri. Spin crossover in iron(III) complexes. Coord. Chem. Rev., 313:38-61, 2016. doi:10.1016/j.ccr.2016.01. 006.
[27] Schrödinger, LLC. The PyMOL molecular graphics system, version 2.3. February 2019.
[28] R. W. Hogue, S. Singh, and S. Brooker. Spin crossover in discrete polynuclear iron(II) complexes. Chem. Soc. Rev., 47:7303-7338, 2018. doi:10.1039/ C7CS00835J,
[29] M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, and J.-M. Lehn. Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays. Angew. Chem. Int. Edit., 43(28):3644-3662, 2004. doi:10.1002/anie. 200300636.
[30] B. Schneider, S. Demeshko, S. Dechert, and F. Meyer. A Double-Switching Multistable Fe4 Grid Complex with Stepwise Spin-Crossover and Redox Transitions. Angew. Chem. Int. Edit., 49(48):9274-9277, 2010. doi:10.1002/ anie. 201001536
[31] D. N. Bowman and E. Jakubikova. Low-Spin versus High-Spin Ground State in Pseudo-Octahedral Iron Complexes. Inorg. Chem., 51(11):6011-6019, 2012. doi:10.1021/ic202344w.
[32] D. N. Bowman, A. Bondarev, S. Mukherjee, and E. Jakubikova. Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study. Inorg. Chem., 54(17):8786-8793, 2015. doi:10.1021/acs.inorgchem.5b01409.
[33] R. A. Mata and M. A. Suhm. Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction? Angew. Chem. Int. Edit., 56(37):1101111018, 2017. doi:10.1002/anie. 201611308.
[34] A. Fouqueau, M. E. Casida, L. M. L. Daku, A. Hauser, and F. Neese. Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, $[\mathrm{Fe}(\mathrm{NH} 3) 6] 2+$. J. Chem. Phys., 122(4):044110, 2005. doi: 10.1063/1.1839854.
[35] M. Kepenekian, V. Robert, B. Le Guennic, and C. De Graaf. Energetics of [Fe(NCH)6] $2+$ via CASPT2 calculations: A spin-crossover perspective. J. Comput. Chem., 30(14):2327-2333, 2009. doi:10.1002/jcc.21236.
[36] K. Pierloot, Q. M. Phung, and A. Domingo. Spin State Energetics in FirstRow Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory. J. Chem. Theory Comput., 13(2):537-553, 2017. doi:10.1021/acs.jctc.6b01005.
[37] M. Radoń, E. Broclawik, and K. Pierloot. Electronic Structure of Selected FeNO7 Complexes in Heme and Non-Heme Architectures: A Density Functional and Multireference ab Initio Study. J. Phys. Chem. B, 114(3):15181528, 2010. doi:10.1021/jp910220r.
[38] S. Vancoillie, H. Zhao, M. Radoń, and K. Pierloot. Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models. J. Chem. Theory Comput., 6(2):576-582, 2010. doi:10.1021/ct900567c.
[39] M. Radoń, E. Broclawik, and K. Pierloot. DFT and Ab Initio Study of IronOxo Porphyrins: May They Have a Low-Lying Iron(V)-Oxo Electromer? J. Chem. Theory Comput., 7(4):898-908, 2011. doi:10.1021/ct1006168.
[40] A. Domingo, M. Àngels Carvajal, and C. de Graaf. Spin crossover in Fe(II) complexes: An ab initio study of ligand σ-donation. Int. J. Quantum Chem., 110(2):331-337, 2010. doi:10.1002/qua.22105.
[41] M. Radoń. Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Calculations. J. Chem. Theory Comput., 10(6):2306-2321, 2014. doi:10.1021/ct500103h.
[42] L. M. Lawson Daku, F. Aquilante, T. W. Robinson, and A. Hauser. Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of $[\mathrm{M}(\mathrm{NCH}) 6] 2+(\mathrm{M}=\mathrm{Fe}, \mathrm{Co})$. J. Chem. Theory Comput., 8(11):4216-4231, 2012. doi:10.1021/ct300592w.
[43] M. Radon. Revisiting the role of exact exchange in DFT spin-state energetics of transition metal complexes. Phys. Chem. Chem. Phys., 16:14479-14488, 2014. doi:10.1039/C3CP55506B.
[44] W. Kohn. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys., 71:1253-1266, 1999. doi:10.1103/ RevModPhys.71.1253.
[45] E. Schrödinger. Quantisierung als Eigenwertproblem, Erste Mitteilung. Ann. Phys., 384(4):361-376, 1926. doi:10.1002/andp. 19263840404.
[46] E. Schrödinger. Quantisierung als Eigenwertproblem, Zweite Mitteilung. Ann. Phys., 384(6):489-527, 1926. doi:10.1002/andp.19263840602.
[47] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 28(6):1049-1070, 1926. doi:10.1103/PhysRev. 28. 1049 .
[48] M. Born and W. Heisenberg. Zur Quantentheorie der Molekeln. Ann. Phys., 379(9):1-31, 1924. doi:10.1002/andp. 19243790902.
[49] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys., 389(20):457-484, 1927. doi:10.1002/andp. 19273892002.
[50] D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Philos. Soc., 24(1):89-110, 1928. doi:10.1017/S0305004100011919.
[51] V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Physik, 61(1):126-148, 1930. doi:10.1007/BF01340294.
[52] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136:B864-B871, 1964. doi:10.1103/PhysRev.136.B864.
[53] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math., 1909(135):1-61, 1909. doi:doi:10.1515/crll.1909.135.1.
[54] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140:A1133-A1138, 1965. doi:10.1103/ PhysRev.140.A1133.
[55] J. C. Slater. The Theory of Complex Spectra. Phys. Rev., 34:1293-1322, 1929. doi:10.1103/PhysRev.34.1293.
[56] K. Burke. Perspective on density functional theory. J. Chem. Phys., 136(15):150901, 2012. doi:10.1063/1.4704546.
[57] R. Peverati and D. G. Truhlar. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil. Trans. R. Soc. A, 372(2011):20120476, 2014. doi:10.1098/rsta.2012.0476.
[58] J. P. Perdew and K. Schmidt. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc., 577(1):1-20, 2001. doi:10.1063/1.1390175
[59] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58(8):1200-1211, 1980. doi:10.1139/p80-159.
[60] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77:3865-3868, 1996. doi:10.1103/ PhysRevLett.77.3865.
[61] J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 33:8822-8824, 1986. doi: 10.1103/PhysRevB.33.8822.
[62] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098-3100, 1988. doi:10.1103/ PhysRevA.38.3098.
[63] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett., 91:146401, 2003. doi:10.1103/PhysRevLett.91.146401.
[64] Y. Zhao and D. G. Truhlar. A new local density functional for maingroup thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 125(19):194101, 2006. doi: 10.1063/1.2370993.
[65] A. D. Becke. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 98(2):1372-1377, 1993. doi:10.1063/1.464304.
[66] A. V. Arbuznikov. Hybrid exchange correlation functionals and potentials: Concept elaboration. J. Struct. Chem., 48(1):1-31, 2007. doi:10.1021/acs. jpclett.9b01983.
[67] C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., 110(13):6158-6170, 1999. doi:10.1063/1.478522.
[68] M. Ernzerhof and G. E. Scuseria. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys., 110(11):5029-5036, 1999. doi:10.1063/1.478401.
[69] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 98(45):11623-11627, 1994. doi:10.1021/j100096a001.
[70] P. Borlido, J. Schmidt, A. W. Huran, F. Tran, M. A. L. Marques, and S. Botti. Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. Npj Comput. Mater., 6(1):96, 2020. doi:10.1038/s41524-020-00360-0.
[71] T. Ohto, M. Dodia, J. Xu, S. Imoto, F. Tang, F. Zysk, T. D. Kühne, Y. Shigeta, M. Bonn, X. Wu, and Y. Nagata. Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water-Air Interface. J. Phys. Chem. Lett., 10(17):4914-4919, 2019. doi:10.1021/acs.jpclett.9b01983.
[72] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys., 115(8):3540-3544, 2001. doi:10.1063/1.1383587.
[73] T. Yanai, D. P. Tew, and N. C. Handy. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 393(1):51-57, 2004. doi:10.1016/j.cplett.2004.06.011.
[74] M. Marsman, J. Paier, A. Stroppa, and G. Kresse. Hybrid functionals applied to extended systems. J. Phys.: Condens. Matter, 20(6):064201, 2008. doi: 10.1088/0953-8984/20/6/064201.
[75] J.-D. Chai and M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 10:6615-6620, 2008. doi:10.1039/B810189B.
[76] T. M. Maier, A. V. Arbuznikov, and M. Kaupp. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WIREs Comput. Mol. Sc., 9(1):e1378, 2019. doi: 10.1002/wcms. 1378 .
[77] Grotjahn, Robin and Furche, Filipp and Kaupp, Martin. Development and Implementation of Excited-State Gradients for Local Hybrid Functionals. J. Chem. Theory Comput., 15(10):5508-5522, 2019. doi:10.1021/acs.jctc. 9b00659.
[78] M. Haasler, T. M. Maier, R. Grotjahn, S. Gückel, A. V. Arbuznikov, and M. Kaupp. A Local Hybrid Functional with Wide Applicability and Good Balance between (De)Localization and Left-Right Correlation. J. Chem. Theory Comput., 16(9):5645-5657, 2020. doi:10.1021/acs.jctc.0c00498.
[79] P. E. Blöchl, C. F. J. Walther, and T. Pruschke. Method to include explicit correlations into density-functional calculations based on density-matrix functional theory. Phys. Rev. B, 84:205101, 2011. doi:10.1103/PhysRevB. 84. 205101.
[80] P. E. Blöchl, T. Pruschke, and M. Potthoff. Density-matrix functionals from Green's functions. Phys. Rev. B, 88:205139, 2013. doi:10.1103/PhysRevB. 88.205139 .
[81] J. He and C. Franchini. Screened hybrid functional applied to $3 d^{0} \rightarrow 3 d^{8}$ transition-metal perovskites $\mathrm{La}_{\mathrm{L}} \mathrm{O}_{3}(M=\mathrm{Sc}-\mathrm{Cu})$: Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. Phys. Rev. B, 86:235117, 2012. doi:10.1103/PhysRevB.86.235117.
[82] A. Alkauskas, P. Broqvist, and A. Pasquarello. Defect levels through hybrid density functionals: Insights and applications. Phys. Status Solidi B, 248(4):775-789, 2011. doi:10.1002/pssb. 201046195.
[83] J. H. Skone, M. Govoni, and G. Galli. Self-consistent hybrid functional for condensed systems. Phys. Rev. B, 89:195112, 2014. doi:10.1103/PhysRevB. 89.195112 .
[84] M. Eckhoff, P. E. Blöchl, and J. Behler. Hybrid density functional theory benchmark study on lithium manganese oxides. Phys. Rev. B, 101:205113, 2020. doi:10.1103/PhysRevB.101.205113.
[85] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50:1795317979, 1994. doi:10.1103/PhysRevB.50.17953.
[86] P. E. Blöchl and J. Schimpl. Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull. Mater. Sci., 26:33-41, 2003. doi:10.1007/BF02712785
[87] F. Coester and Kümmel. Short-range correlations in nuclear wave functions. Nucl. Phys., 17:477, 1960.
[88] J. Čížek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys., 45:4256, 1966.
[89] G. D. Purvis and R. J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 76:1910-1918, 1982.
[90] R. J. Bartlett and M. Musiał. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys., 79:291-352, 2007.
[91] J. Noga and R. J. Bartlett. The full CCSDT model for molecular electronic structure. J. Chem. Phys., 86:7041-7050, 1987.
[92] G. E. Scuseria and H. F. Schaefer. A new implementation of the full CCSDT model for molecular electronic structure. Chemi. Phys. Lett., 152:382-386, 1988.
[93] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. A fifthorder perturbation comparison of electron correlation theories. Chem. Phys. Lett., 157:479-483, 1989.
[94] J. Řezáč and P. Hobza. Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," $\operatorname{CCSD}(\mathrm{T})$ at the Complete Basis Set Limit? J. Chem. Theory Comput., 9:2151-2155, 2013.
[95] G. Mills, H. Jónsson, and G. K. Schenter. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Science, 324(2):305-337, 1995. doi:10.1016/0039-6028(94)00731-4.
[96] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 113(22):9978-9985, 2000. doi:10.1063/1.1323224.
[97] H. Jónsson, G. Mills, and K. W. Jacobsen. Nudged elastic band method for finding minimum energy paths of transitions, pages 385-404. World Scientific, 1998. doi:10.1142/9789812839664_0016.
[98] S. Smidstrup, A. Pedersen, K. Stokbro, and H. Jónsson. Improved initial guess for minimum energy path calculations. J. Chem. Phys., 140(21):214106, 2014. doi:10.1063/1.4878664.
[99] O. Weser, B. Hein-Janke, and R. A. Mata. Automated handling of complex chemical structures in z-matrix coordinates - the chemcoord library. J. Comput. Chem., 44(5):710-726, 2023. doi:10.1002/jcc.27029.
[100] G. Henkelman, B. P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22):9901-9904, 2000. doi:10.1063/1.1329672.
[101] B. J. Alder and T. E. Wainwright. Phase Transition for a Hard Sphere System. J. Chem. Phys., 27(5):1208-1209, 1957. doi:10.1063/1.1743957.
[102] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys., 31(2):459-466, 1959. doi:10.1063/1.1730376.
[103] L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev., 159:98-103, 1967. doi: 10.1103/PhysRev.159.98.
[104] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys., 76(1):637-649, 1982. doi:10.1063/1.442716.
[105] R. Hockney, S. Goel, and J. Eastwood. Quiet high-resolution computer models of a plasma. J. Comput. Phys., 14(2):148-158, 1974. doi:10.1016/ 0021-9991(74)90010-2.
[106] P. H. Hünenberger. Thermostat Algorithms for Molecular Dynamics Simulations, pages 105-149. Springer Berlin Heidelberg, 2005. doi:10.1007/b99427.
[107] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72(4):2384-2393, 1980. doi:10.1063/1. 439486.
[108] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):3684-3690, 1984. doi:10.1063/1.448118.
[109] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2):255-268, 1984. doi:10.1080/ 00268978400101201 .
[110] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1):511-519, 1984. doi:10.1063/1.447334.
[111] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31:1695-1697, 1985. doi:10.1103/PhysRevA.31.1695.
[112] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2951-2959. Curran Associates, Inc., 2012. URL: http://papers.nips.cc/paper/ 4522-practical-bayesian-optimization-of-machine-learning-algorithms. pdf.
[113] P. I. Frazier. A tutorial on bayesian optimization. http://arxiv.org/abs/ 1807.02811, 2018.
[114] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005. doi:10.7551/mitpress/3206.001.0001.
[115] J. Joyce. Bayes' Theorem. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2021 edition, 2021.
[116] J. Močkus. Optimization Techniques IFIP Technical Conference Novosibirsk, July 1-7, 1974, pages 400-404. Springer Berlin Heidelberg, 1975. doi:10. 1007/3-540-07165-2_55.
[117] E. Brochu, V. M. Cora, and N. de Freitas. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning, 2010. arXiv:1012.2599.
[118] J. Močkus, V. Tiesis, and A. Zilinskas. The Application of Bayesian Methods for Seeking the Extremum. Towards Global Optimization, 2(117-129):2, 1978.
[119] R. A. Schulz. Activation and transformation of small molecules at a bimetallic β-diketiminato nickel platform. Georg-August-Universität Göttingen, 2022.
[120] J. Magano and J. R. Dunetz. Large-Scale Applications of Transition MetalCatalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev., 111(3):2177-2250, 2011. doi:10.1021/cr100346g.
[121] D. V. Gutsulyak, W. E. Piers, J. Borau-Garcia, and M. Parvez. Activation of Water, Ammonia, and Other Small Molecules by PC(carbene)P Nickel Pincer Complexes. J. Am. Chem. Soc., 135(32):11776-11779, 2013. doi:10.1021/ ja406742n.
[122] M.-C. Chang, K. A. Jesse, A. S. Filatov, and J. S. Anderson. Reversible homolytic activation of water via metal-ligand cooperativity in a T-shaped $\mathrm{Ni}(\mathrm{ii})$ complex. Chem. Sci., 10:1360-1367, 2019. doi:10.1039/C8SC03719A.
[123] O. V. Ozerov. Oxidative addition of water to transition metal complexes. Chem. Soc. Rev., 38:83-88, 2009. doi:10.1039/B802420K.
[124] D.-H. Manz, P.-C. Duan, S. Dechert, S. Demeshko, R. Oswald, M. John, R. A. Mata, and F. Meyer. Pairwise H2/D2 Exchange and H2 Substitution at a Bimetallic Dinickel(II) Complex Featuring Two Terminal Hydrides. J. Am. Chem. Soc., 139(46):16720-16731, 2017. doi:10.1021/jacs.7b08629.
[125] P.-C. Duan, R. A. Schulz, A. Römer, B. E. Van Kuiken, S. Dechert, S. Demeshko, G. E. Cutsail III, S. DeBeer, R. A. Mata, and F. Meyer. Ligand Protonation Triggers H2 Release from a Dinickel Dihydride Complex to Give a Doubly "T"-Shaped Dinickel(I) Metallodiradical. Angew. Chem., 60(4):18911896, 2021. doi:10.1002/anie. 202011494.
[126] F. Neese. The ORCA program system. WIREs Comput. Mol. Sci., 2(1):73-78, 2012. doi:10.1002/wcms.81.
[127] F. Neese. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci., 8(1):e1327, 2018. doi:10.1002/wcms.1327.
[128] F. Weigend and R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Phys. Chem. Chem. Phys., 7:3297-3305, 2005. doi:10.1039/ B508541A.
[129] F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 8:1057-1065, 2006. doi:10.1039/B515623H.
[130] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFTD) for the 94 elements H-Pu. J. Chem. Phys., 132(15):154104, 2010. doi: 10.1063/1.3382344.
[131] S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32(7):14561465, 2011. doi:10.1002/jcc.21759.
[132] H. Hirao. Which DFT Functional Performs Well in the Calculation of Methylcobalamin? Comparison of the B3LYP and BP86 Functionals and Evaluation of the Impact of Empirical Dispersion Correction. J. Phys. Chem. A, 115(33):9308-9313, 2011. doi:10.1021/jp2052807.
[133] T. Weymuth, E. P. A. Couzijn, P. Chen, and M. Reiher. New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. J. Chem. Theory Comput., 10(8):3092-3103, 2014. doi:10.1021/ ct500248h.
[134] W. Koch and M. C. Holthausen. A Chemist's Guide to Density Functional Theory. Wiley-VCH, 2nd edition, 2001. doi:10.1002/3527600043.ch8.
[135] K. J. Laidler and M. C. King. Development of transition-state theory. J. Phys. Chem., 87(15):2657-2664, 1983. doi:10.1021/j100238a002.
[136] V. Barone and M. Cossi. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A, 102(11):1995-2001, 1998. doi:10.1021/jp9716997.
[137] H. Eyring and M. Polanyi. On Simple Gas Reactions. Z. Phys. Chem. Abt. $B, 12: 279-311,1931$. doi:doi:10.1524/zpch.2013.9023.
[138] H. Eyring. The Activated Complex in Chemical Reactions. J. Chem. Phys., $3(2): 107-115,1935$. doi:10.1063/1.1749604.
[139] M. G. Evans and M. Polanyi. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., 31:875-894, 1935. doi:10.1039/TF9353100875.
[140] S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys., 143(5):054107, 2015. doi:10.1063/1. 4927476
[141] G. Savasci, M. Borges-Martínez, R. Berger, C. Ochsenfeld, and R. MeraAdasme. A comparison of computational methodologies for the structural modelling of biologically relevant zinc complexes. J. Mol. Model., 25(9):258, 2019. doi:10.1007/s00894-019-4139-8.
[142] N. V. Belkova, L. M. Epstein, O. A. Filippov, and E. S. Shubina. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chem. Rev., 116(15):8545-8587, 2016. doi:10.1021/acs.chemrev.6b00091.
[143] M. K. Kesharwani, B. Brauer, and J. M. L. Martin. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A, 119(9):1701-1714, 2015. doi:10.1021/jp508422u.
[144] A. K. Chandra and T. Uchimaru. A DFT Study on the C-H Bond Dissociation Enthalpies of Haloalkanes: Correlation between the Bond Dissociation Enthalpies and Activation Energies for Hydrogen Abstraction. J. Phys. Chem. A, 104(40):9244-9249, 2000. doi:10.1021/jp001815x.
[145] A. Römer, L. Hasecke, P. Blöchl, and R. A. Mata. A Review of Density Functional Models for the Description of $\mathrm{Fe}(\mathrm{II})$ Spin-Crossover Complexes. Molecules, 25(21), 2020. doi:10.3390/molecules25215176.
[146] H. Phan, J. J. Hrudka, D. Igimbayeva, L. M. Lawson Daku, and M. Shatruk. A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Trisdiimine Complexes. J. Am. Chem. Soc., 139(18):6437-6447, 2017. doi:10. 1021/jacs.7b02098.
[147] M. Sotoudeh, S. Rajpurohit, P. Blöchl, D. Mierwaldt, J. Norpoth, V. Roddatis, S. Mildner, B. Kressdorf, B. Ifland, and C. Jooss. Electronic structure of $\mathrm{Pr}_{1-x} \mathrm{Ca}_{x} \mathrm{MnO}_{3}$. Phys. Rev. B, 95:235150, 2017. doi:10.1103/PhysRevB.95. 235150.
[148] L. Kong, F. A. Bischoff, and E. F. Valeev. Explicitly Correlated R12/F12 Methods for Electronic Structure. Chem. Rev., 112(1):75-107, 2012. doi: 10.1021/cr200204r.
[149] T. B. Adler, G. Knizia, and H.-J. Werner. A simple and efficient $\operatorname{CCSD}(T)$ F12 approximation. J. Chem. Phys., 127(22):221106, 2007. doi:10.1063/1. 2817618
[150] G. Knizia and H.-J. Werner. Explicitly correlated RMP2 for high-spin openshell reference states. J. Chem. Phys., 128(15):154103, 2008. doi:10.1063/ 1.2889388.
[151] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut,
K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn. Molpro, version 2019.2, a package of ab initio programs, 2019.
[152] G. Knizia, T. B. Adler, and H.-J. Werner. Simplified CCSD(T)-F12 methods: Theory and benchmarks. J. Chem. Phys., 130(5):054104, 2009. doi:10.1063/ 1.3054300
[153] K. A. Peterson, T. B. Adler, and H.-J. Werner. Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms $\mathrm{H}, \mathrm{He}, \mathrm{B}-\mathrm{Ne}$, and Al-Ar. J. Chem. Phys., 128(8):084102, 2008. doi:10.1063/1.2831537.
[154] N. B. Balabanov and K. A. Peterson. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys., 123(6):064107, 2005. doi:10.1063/1. 1998907.
[155] D. H. Bross, J. G. Hill, H.-J. Werner, and K. A. Peterson. Explicitly correlated composite thermochemistry of transition metal species. J. Chem. Phys., 139(9):094302, 2013. doi:10.1063/1.4818725.
[156] F. Weigend. Hartree-Fock exchange fitting basis sets for H to Rn. J. Comput. Chem., 29(2):167-175, 2008. doi:10.1002/jcc. 20702.
[157] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90(2):10071023, 1989. doi:10.1063/1.456153.
[158] A. Wolf, M. Reiher, and B. A. Hess. The generalized Douglas-Kroll transformation. J. Chem. Phys., 117(20):9215-9226, 2002. doi:10.1063/1.1515314.
[159] B. A. Heß. Relativistic Effects in Heavy-Element Chemistry. Ber. Bunsenges. Phys. Chem., 101(1):1-10, 1997. doi:10.1002/bbpc. 19971010102.
[160] B. M. Flöser, Y. Guo, C. Riplinger, F. Tuczek, and F. Neese. Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics. J. Chem. Theory Comput., 16(4):2224-2235, 2020. doi:10.1021/acs.jctc. 9b01109.
[161] M. Radoń. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Phys. Chem. Chem. Phys., 21:4854-4870, 2019. doi:10.1039/C9CP00105K.
[162] M. Feldt, Q. M. Phung, K. Pierloot, R. A. Mata, and J. N. Harvey. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. J. Chem. Theory Comput., 15(2):922-937, 2019. doi:10.1021/acs.jctc.8b00963.
[163] S. Song, M.-C. Kim, E. Sim, A. Benali, O. Heinonen, and K. Burke. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes. J. Chem. Theory Comput., 14(5):2304-2311, 2018. doi:10.1021/acs. jctc.7b01196.
[164] C. L. Janssen and I. M. B. Nielsen. New diagnostics for coupled-cluster and Møller-Plesset perturbation theory. Chem. Phys. Lett., 290(4):423-430, 1998. doi:10.1016/S0009-2614(98)00504-1.
[165] W. Jiang, N. J. DeYonker, and A. K. Wilson. Multireference Character for 3d Transition-Metal-Containing Molecules. J. Chem. Theory Comput., 8(2):460468, 2012. doi:10.1021/ct2006852.
[166] F. Neese, F. Wennmohs, A. Hansen, and U. Becker. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange. Chem. Phys., 356(1-3):98-109, 2009. doi:10.1016/j.chemphys.2008.10.036.
[167] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFTD) for the 94 elements H-Pu. J. Chem. Phys., 132(15):154104, 2010. doi: 10.1063/1.3382344.
[168] S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32(7):1456-

1465, 2011. doi:10.1002/jcc.21759.
[169] M. Reiher, O. Salomon, and B. Artur Hess. Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor. Chem. Acc., 107(1):48-55, 2001. doi:10.1007/s00214-001-0300-3.
[170] O. Salomon, M. Reiher, and B. A. Hess. Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set. J. Chem. Phys., 117(10):4729-4737, 2002. doi:10.1063/1. 1493179 .
[171] E. I. Ioannidis and H. J. Kulik. Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J. Chem. Phys., 143(3):034104, 2015. doi:10.1063/1.4926836.
[172] G. Ganzenmüller, N. Berkaïne, A. Fouqueau, M. E. Casida, and M. Reiher. Comparison of density functionals for differences between the high- (T2g5) and low- (A1g1) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)('NHS4')]. J. Chem. Phys., 122(23):234321, 2005. doi:10. 1063/1.1927081.
[173] O. S. Siig and K. P. Kepp. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. J. Phys. Chem. A, 122(16):4208-4217, 2018. doi:10.1021/acs.jpca.8b02027.
[174] The GPyOpt authors. Gpyopt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt, 2016.
[175] W.-L. Loh. On Latin hypercube sampling. Ann. Statist., 24(5):2058-2080, 1996. doi:10.1214/aos/1069362310.
[176] M. Sotoudeh, S. Rajpurohit, P. Blöchl, D. Mierwaldt, J. Norpoth, V. Roddatis, S. Mildner, B. Kressdorf, B. Ifland, and C. Jooss. Electronic structure of $\mathrm{Pr}_{1-x} \mathrm{Ca}_{x} \mathrm{MnO}_{3}$. Phys. Rev. B, 95:235150, 2017. doi:10.1103/PhysRevB.95. 235150 .
[177] M. Swart, A. R. Groenhof, A. W. Ehlers, and K. Lammertsma. Validation of Exchange-Correlation Functionals for Spin States of Iron Complexes. J. Phys. Chem. A, 108(25):5479-5483, 2004. doi:10.1021/jp049043i.
[178] S. A. Borshch and E. M. Zueva. Theoretical Study of Spin-State and Redox Multistability in an Iron $[2 \times 2]$ Grid Complex. Eur. J. Inorg. Chem., 2013(5-6):1009-1014, 2013. doi:10.1002/ejic. 201201074.
[179] M. A. Naumova, A. Kalinko, J. W. L. Wong, S. Alvarez Gutierrez, J. Meng, M. Liang, M. Abdellah, H. Geng, W. Lin, K. Kubicek, M. Biednov, F. Lima, A. Galler, P. Zalden, S. Checchia, P.-A. Mante, J. Zimara, D. Schwarzer, S. Demeshko, V. Murzin, D. Gosztola, M. Jarenmark, J. Zhang, M. Bauer, M. L. Lawson Daku, D. Khakhulin, W. Gawelda, C. Bressler, F. Meyer, K. Zheng, and S. E. Canton. Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum. J. Chem. Phys., 152(21):214301, 2020. doi:10.1063/1.5138641.
[180] Y. Sunatsuki, H. Ohta, M. Kojima, Y. Ikuta, Y. Goto, N. Matsumoto, S. Iijima, H. Akashi, S. Kaizaki, F. Dahan, and J.-P. Tuchagues. Supramolecular Spin-Crossover Iron Complexes Based on Imidazole-Imidazolate Hydrogen Bonds. Inorg. Chem., 43(14):4154-4171, 2004. doi:10.1021/ic0498384.
[181] K. Pierloot and S. Vancoillie. Relative energy of the high-(T2g5) and low-(A1g1) spin states of $[\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 6] 2+$, $[\mathrm{Fe}(\mathrm{NH} 3) 6] 2+$, and $[\mathrm{Fe}(\mathrm{bpy}) 3] 2+$: CASPT2 versus density functional theory. J. Chem. Phys., 125(12):124303, 2006. doi:10.1063/1.2353829,
[182] L. Wilbraham, P. Verma, D. G. Truhlar, L. Gagliardi, and I. Ciofini. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space SecondOrder Perturbation Theory at a Significantly Reduced Computational Cost. J. Phys. Chem. Lett., 8(9):2026-2030, 2017. doi:10.1021/acs.jpclett. 7 7b00570
[183] Q. Ma and H.-J. Werner. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J. Chem. Theory Comput., 17(2):902-926, 2021. doi:10.1021/acs.jctc.0c01129.
[184] W. Klopper and C. C. M. Samson. Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets. J. Chem. Phys.,

116(15):6397-6410, 2002. doi:10.1063/1.1461814
[185] H.-J. Werner, T. B. Adler, and F. R. Manby. General orbital invariant MP2F12 theory. J. Chem. Phys., 126(16), 2007. doi:10.1063/1.2712434.
[186] M. Steinert, B. Schneider, S. Dechert, S. Demeshko, and F. Meyer. Spin-State Versatility in a Series of Fe4[2×2] Grid Complexes: Effects of Counteranions, Lattice Solvent, and Intramolecular Cooperativity. Inorg. Chem., 55(5):23632373, 2016. doi:10.1021/acs.inorgchem.5b02762.
[187] E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gütlich, E. Wegelius, and K. Rissanen. Spin Crossover in a Supramolecular $\mathrm{Fe}_{4} \mathrm{II}[2 \times 2]$ Grid Triggered by Temperature, Pressure, and Light. Angew. Chem. Int. Ed., 39(14):2504-2507, 2000. doi:10.1002/ 1521-3773(20000717)39:14<2504::AID-ANIE2504>3.0.CO;2-B.
[188] B. Schneider. Multistabile Gitterkomplexe. Georg-August-Universität Göttingen, 2012.
[189] W. Nicolazzi and A. Bousseksou. Thermodynamical aspects of the spin crossover phenomenon. C. R. Chim., 21(12):1060-1074, 2018. Spin crossover phenomenon / Phénomène de transition de spin. doi:10.1016/j.crci. 2018. 10.003 .
[190] E. M. Zueva, E. R. Ryabikh, and S. A. Borshch. Theoretical Analysis of Spin Crossover in Iron(II) [2 $\times 2$] Molecular Grids. Inorg. Chem., 50(21):1114311151, 2011. doi:10.1021/ic2016929.
[191] Y. Pan, Y.-S. Meng, Q. Liu, W.-Q. Gao, C.-H. Liu, T. Liu, and Y.-Y. Zhu. Construction of SCO-Active Fe(II) Mononuclear Complexes from the Thiopybox Ligand. Inorg. Chem., 59(11):7398-7407, 2020. doi:10.1021/acs. inorgchem.9b03506.
[192] J. Behler. Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys. Condens., 26(18):183001, 2014. doi:10.1088/ 0953-8984/26/18/183001.
[193] J. Behler. Constructing high-dimensional neural network potentials: A tutorial review. Int. J. Quantum Chem., 115(16):1032-1050, 2015. doi:10.1002/qua. 24890 .
[194] J. Behler. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. Angew. Chem. Int. Edit., 56(42):12828-12840, 2017. doi:10.1002/anie. 201703114.
[195] J. Behler. Four Generations of High-Dimensional Neural Network Potentials. Chem. Rev., 121(16):10037-10072, 2021. doi:10.1021/acs.chemrev. 0c00868
[196] H. Huo and M. Rupp. Unified representation of molecules and crystals for machine learning. Mach. learn.: sci. technol., 3(4):045017, 2022. doi:10. 1088/2632-2153/aca005.
[197] L. Himanen, M. O. Jäger, E. V. Morooka, F. F. Canova, Y. S. Ranawat, D. Z. Gao, P. Rinke, and A. S. Foster. Dscribe: Library of descriptors for machine learning in materials science. Comput. Phys. Commun., 247:106949, 2020. doi:10.1016/j.cpc.2019.106949.
[198] J. I. van der Vlugt, S. Demeshko, S. Dechert, and F. Meyer. Tetranuclear CoII, MnII, and CuII Complexes of a Novel Binucleating Pyrazolate Ligand Preorganized for the Self-Assembly of Compact [2×2]-Grid Structures. Inorg. Chem., 47(5):1576-1585, 2008. doi:10.1021/ic701951a.
[199] M. Kaneko and S. Nakashima. Computational Study on Thermal Spin-Crossover Behavior for Coordination Polymers Possessing trans Fe(NCS)2(pyridine)4 Unit. Bull. Chem. Soc. Jpn., 88:1164, 2015. doi: 10.1246/bcsj. 20150026.
[200] K. Senthil Kumar, Y. Bayeh, T. Gebretsadik, F. Elemo, M. Gebrezgiabher, M. Thomas, and M. Ruben. Spin-crossover in iron(ii)-Schiff base complexes. Dalton T., 48:15321-15337, 2019. doi:10.1039/C9DT02085C.
[201] A. Nowak and K. Boguslawski. A configuration interaction correction on top of pair coupled cluster doubles. Phys. Chem. Chem. Phys., 25:7289-7301, 2023. doi:10.1039/D2CP05171K.
[202] Y. Sherry and N. C. Thompson. How Fast Do Algorithms Improve? [Point of View]. Proc. IEEE, 109(11):1768-1777, 2021. doi:10.1109/JPROC. 2021. 3107219.
[203] A. Chiolerio, T. C. Draper, C. Jost, and A. Adamatzky. Electrical properties of solvated tectomers: Toward zettascale computing. Adv. Electron. Mater., 5(12):1900202, 2019. doi:10.1002/aelm. 201900202 .

Appendix A

Supplemental material for Chapter 3

A. 1 ORCA input files

Optimization of A. 2

```
!BP86 def2-SVP def2/J D3BJ Opt PAL8 tightscf tightopt slowconv
%scf
BrokenSym 1,1
MaxIter 600
DIISMaxEq 20
directresetfreq 10
end
*xyzfile 0 3 *.xyz
```

NEB with A. 4 as reactant and A. 3 product

```
!BP86 def2-SVP def2/J D3BJ NEB-TS PAL8 slowconv
%neb
NEB_End_XYZFile "g3.xyz"
Nimages 8
end
%scf
BrokenSym 1,1
```

MaxIter 600
DIISMaxEq 20
directresetfreq 10
end
*xyzfile 03 g4.xyz

Transition state optimization, using the NEB's climbing image
!BP86 def2-SVP def2/J D3BJ PAL8 OptTS slowconv NumFreq
\%geom
Calc_Hess true
NumHess true
Recalc_Hess 5
end
\%scf
BrokenSym 1,1
MaxIter 600
DIISMaxEq 20
directresetfreq 10
end
*xyzfile 0 3 4-3_CI.xyz

MD simulation of A. $\mathbf{3}$ with explicit THF molecule
! MD PBEh-3c PAL8
\%md
timestep 1.0_fs
initvel 250_K
thermostat berendsen 250_K timecon 10.0_fs
dump position stride 1 filename "trajectory.xyz"
run 5000
end
*xyzfile 01 md_thf.xyz

A. 2 Structural data of relevant complexes

Optimized A.2K complex, in XYZ format

101			
Coordinates from ORCA-job ga			
C	-0.07883610225069	21.39359663916554	22.78939122487010
C	-1.08766359540147	20.40222065717644	22.96256440665080
C	-1.02892555097725	19.48171745410627	24.04693660133042
C	0.04821364827644	19.56827056889062	24.94665811387301
C	1.05065297491450	20.53576181090074	24.78255959701728
C	0.98402201574527	21.43701106896818	23.70873814842992
N	-2.14779152673843	20.31888127611749	22.01668609151903
C	-3.24775560513601	21.08779035480527	22.16619558331503
C	-3.37142519741498	21.93352687162730	23.41741868060502
C	-2.09454493333161	18.40089638243915	24.17364040040205
C	-2.33555241264024	17.92583626762335	25.61192949599611
C	-0.13667304462450	22.32154118303392	21.58221495487156
C	0.48177828651217	23.70397358384894	21.83426885247031
Ni	-1.82223988744401	19.21863869271571	20.55461919821208
N	-3.39745965114924	19.66346769687622	19.52615031075573
C	-4.32422243222648	20.54367582989221	19.92428327295358
C	-4.27556152499384	21.16783037151130	21.19772691907347
C	-3.41499403169869	19.10994859956636	18.17330586553161
C	-2.38291273716905	18.01835041048718	18.10870476945475
N	-1.49143427607768	17.96682531195434	19.14776179662079
N	-0.67507029527851	16.89249661016864	18.96082996882055
C	-1.03317321444893	16.27412211476232	17.79389981160287
C	-2.12852000999422	16.95309397733587	17.21769532762029
C	-0.23351987950354	15.05893398346974	17.41160522479380
N	0.56688992485777	14.66025093490440	18.56614601258059
C	1.38656961965653	13.60692539610993	18.50155658060711
C	2.20669900814627	13.21521352294838	19.59613200780831
C	2.27037500315353	13.78981364072584	20.88401750137416
C	3.22970820096604	13.18841581372635	21.89352243002106
K	-2.92657259574972	15.97149057918960	20.53005093758022
Ni	0.49890224084636	15.86676124995948	20.06914046229490
N	1.54280976050526	14.87001144056459	21.24849671713196
C	1.37509394517718	15.19284981290200	22.61858396852964
C	1.94184444439547	16.39319317908535	23.13739785863235
C	1.78256972237333	16.68172540244953	24.50388605766018
C	1.06411760982505	15.82187373789364	25.34813046908237
C	0.46782903855005	14.66505865681644	24.82051608605965
C	0.60147647945035	14.33089386925603	23.46060560769867
C	2.64031824612750	17.35877523299543	22.19151627469496
C	1.60981859563068	18.33008453230613	21.58542917246300
C	-0.11082696402812	13.11556344959429	22.86267706009717
C	-0.55481844154277	12.07344929042638	23.89614760635851
C	1.47186346493619	12.79736921636136	17.22361491127134
C	-1.29981547704178	13.56352288048817	21.98700430673312
C	3.79129692927430	18.14011191978836	22.83822292472648
C	-1.73090678473688	17.21628732566418	23.26087269300283
C	0.50613203680184	21.63160092857875	20.36297166837445
C	-5.46293616838009	20.90968825710082	18.99293947366772
H	-2.64710022333700	16.72120964199075	16.28090934560333
H	-0.91548617018384	14.24396628306885	17.06957854365789
H	0.41108098370418	15.29621736476357	16.53013205974991
H	0.47716217204980	12.40026324015470	16.92773833320753
H	2.16348138864517	11.94195220463875	17.33239916110392
H	1.82569677315561	13.42173355910417	16.37496741934577
H	2.87625519214169	12.36290209546502	19.41554901629484
H	3.88198293249917	13.97647218987802	22.32347659810805
H	3.86572154643262	12.41641791339091	21.42236006018554
H	2.70400706236190	12.72418982043744	22.75389906726402
H	-0.11606818949908	14.01413208857591	25.48743771337862
H	0.96100528991541	16.05510237383867	26.41924609231174

H	2.22822623862756	17.59931902858255	24.91148418872084
H	3.05024454398582	16.74726669051768	21.36060621221980
H	4.33295188125421	18.72955143843496	22.06991969142655
H	4.51995881938037	17.46457490461409	23.33138616998622
H	3.42346369599992	18.86238920922097	23.59676117283059
H	1.18175827051001	18.98657305736876	22.36724353639416
H	0.75267927381923	17.79933979363605	21.10345636448560
H	2.07003847138849	18.96683525509920	20.80322975258672
H	0.59610667050065	12.61302783986992	22.17000603556886
H	-1.78078433256521	12.69415455548640	21.49054376387830
H	-0.91545646451888	14.25598130615566	21.19737801059969
H	-2.05863104140559	14.07742316758430	22.61859782547885
H	0.29043087806764	11.75025492512457	24.53656004776306
H	-0.95969351459624	11.17507659924723	23.38738322790448
H	-1.35544089615412	12.45914443012582	24.56272082089261
H	-3.18495879681556	19.90127327766626	17.41802560926642
H	-4.41293597835627	18.70316362891517	17.88169425780018
H	-5.08069036573631	21.38485856153606	18.06410505177593
H	-6.16766382606213	21.61446624990983	19.47222054708488
H	-6.03543990377952	20.01228651948323	18.67313466846863
H	-5.11433048015030	21.83348641580920	21.44381247144734
H	-3.26896390171922	21.31593181795484	24.33356733905028
H	-4.34227449171051	22.46134272084879	23.44976189970431
H	-2.55845545881681	22.68844902242148	23.46971134416225
H	0.10576254951277	18.86681586087943	25.79102890982269
H	1.88671337414184	20.59033282372554	25.49726358363739
H	1.77772913916807	22.18909989041580	23.58506015076265
H	-1.20922236436474	22.46802416941368	21.33659346621567
H	1.58587941317957	21.44435080249368	20.53612974677969
H	0.39802959607324	22.25027344274441	19.44771075090774
H	0.01437056295408	20.64962820924132	20.17113526412260
H	0.04897356210303	24.18653055551515	22.73478755974363
H	0.30043698762030	24.37047203233591	20.96590451296609
H	1.58197763343406	23.64827248180155	21.97599946345136
H	-3.03883374234334	18.83650036679485	23.78363851517224
H	-1.61555957409585	17.58581759826308	22.21037936288165
H	-2.52079461650858	16.43111234043050	23.30879772135571
H	-0.77702178184355	16.74979084990613	23.56581023363114
H	-3.20341385193276	17.23479638903879	25.65058321624166
H	-2.54283465156310	18.77587356107122	26.29327504662908
H	-1.46105114071106	17.36996944772365	26.00827567072235

Optimized A. 3 complex, in XYZ format

104

Coordinates from ORCA-job gd			
C	-0.37518617397377	20.99977384541864	22.51072702673551
C	-1.46058162957891	20.21622689147698	23.00104136286686
C	-1.36216086869867	19.52450246145612	24.23819748948732
C	-0.16007475257462	19.61959873571800	24.97009607482352
C	0.92643672443562	20.36987246313386	24.49191717275028
C	0.81479205788449	21.05453820535158	23.26714959910645
N	-2.65926208498170	20.14418293988104	22.23555870630674
C	-2.67516240350369	19.26131500059433	21.21494498867276
C	-1.47485639784289	18.36117720814399	20.98925507840430
C	-2.52639379484096	18.69375145334129	24.76026226679522
C	-2.16948773367051	17.19619036805749	24.80412410810868
C	-0.53958712216126	21.79745943193231	21.21867101377527
C	0.77681904450745	22.07133361106266	20.48108704901163
Ni	-4.08893362589539	21.27498119190495	22.75599152931995
N	-5.24150287055590	20.71069418291116	21.38488618915869
C	-4.98846263401971	19.81578649600049	20.42501000352715
C	-3.76308029408365	19.11747061549290	20.33987529530620
C	-6.56636410643354	21.33887015452811	21.39710821237626
C	-6.66660895014614	22.20365787939064	22.60288724422504
N	-5.49725218349764	22.45609897233220	23.24545659718106
N	-5.76173217737286	23.26170654794812	24.31205510979848
C	-7.10424219168619	23.49818454431520	24.34087050821434

C	-7.72738325337203	22.84693741902559	23.26257765195267
C	-7.60867128516476	24.33342707949781	25.46825791729527
N	-6.45904908416873	24.85001331592381	26.20920067533865
C	-6.67680169573045	25.65649177555195	27.24743361208797
C	-5.61524321945559	26.27398252811930	27.95368710460934
C	-4.24722011581470	26.18415098562525	27.64936782838684
C	-3.29687966355832	27.03261187941978	28.47664498404708
Ni	-4.76548829914893	24.34643077898611	25.48915949202061
N	-3.75050871038262	25.40446607442091	26.65719724098737
C	-2.34307390201683	25.44030263906900	26.46437737878613
C	-1.80298511421321	26.19188978691587	25.37859992824351
C	-0.40254498379071	26.26353156462746	25.23725854688659
C	0.45532599215121	25.61461705161218	26.14266304331852
C	-0.08968046634538	24.84570387572836	27.18553410291371
C	-1.48531259619931	24.73319647024294	27.35859886327028
C	-2.74494401213073	26.88122601847734	24.40374211782106
C	-3.07601700089539	28.31521876703682	24.85748248187770
C	-2.08233303867756	23.79840737482826	28.40735501337484
C	-2.42412236886127	22.44499320250243	27.75319111238397
C	-8.09332353624827	25.96651397636075	27.68408987837460
C	-1.20443547049249	23.61515457573544	29.65144289584882
C	-2.24970144532877	26.83729287573700	22.95300030152100
C	-6.04786779471126	19.49977920705831	19.38932554988302
C	-3.02381004161153	19.20907101539899	26.12223728535404
C	-1.31509638496804	23.10411457988989	21.48629708563832
K	-1.08560580139068	23.13445032682525	24.72995132759976
H	-8.79088218933679	22.83909934894849	23.00149112100446
H	-8.24358717374397	25.16501553647088	25.08161070994286
H	-8.27601658819911	23.72102929857322	26.12177113099560
H	-8.66053737632475	26.47987220124395	26.87785144962504
H	-8.10352274581198	26.61526538783878	28.57868059462025
H	-8.65384407583699	25.03742092524195	27.92092512848611
H	-5.89266715420314	26.93373720701734	28.78652378976270
H	-2.63358382526599	26.41516380730548	29.11778915225749
H	-3.86495885877111	27.71706894989020	29.13299294199632
H	-2.62387632896917	27.63614719587909	27.83460158499426
H	0.02515555524910	26.84903254296562	24.40893622757039
H	1.54753676479500	25.70489085157606	26.03403513858089
H	0.58534625425040	24.32166239653322	27.87882242315159
H	-3.04836832459277	24.23658681960616	28.72847687290593
H	-1.74415394781453	23.02066826134280	30.41627538145442
H	-0.92548470899955	24.58756325478603	30.10618983565683
H	-0.26611066046598	23.06728011035123	29.42154206456408
H	-1.50873994714270	21.90931757521350	27.41761525961606
H	-3.09865689954161	22.58865585413166	26.88267379683738
H	-2.94712201487777	21.77413905628087	28.46410115551516
H	-3.68778820950536	26.29189053578982	24.45270120988306
H	-3.01860272972254	27.25826397013775	22.27402735418186
H	-2.05867141846449	25.79459346368083	22.62451645957721
H	-1.32042768900708	27.42509620701654	22.79858303722840
H	-3.56109496144382	28.31763685539057	25.85302958369611
H	-3.77865514330170	28.79551774678675	24.14496667862095
H	-2.16218639701883	28.94380517274807	24.91704674741173
H	-7.37623232985601	20.57359058532734	21.40353683589041
H	-6.72925614893725	21.94931525423245	20.47595955893527
H	-6.96315072991745	19.07974082431334	19.85788767415576
H	-5.67367183909892	18.76511888943885	18.65337879027738
H	-6.36520141979585	20.41030669163965	18.83809377425996
H	-3.66233726413831	18.37674080401178	19.53603696330719
H	-0.55801937522891	18.93997228394712	20.75258804728476
H	-1.66729580986666	17.65968109967626	20.15728132534485
H	-1.23928112264626	17.77506407179079	21.90079414349879
H	1.67337173111687	21.63172333522546	22.89175356414548
H	1.86498843937164	20.41675135160103	25.06652211718075
H	-0.07372118131533	19.08877922267164	25.93107662059240
H	-3.35612806364896	18.83349921883872	24.03813289439388
H	-2.23858401415094	19.13625255649195	26.90614684487824
H	-3.89681277840963	18.61748248921077	26.46735740090426
H	-3.32556412223425	20.26757045645950	26.00674050832208

H	-1.84338021208062	16.82336580782610	23.81150052055386
H	-3.04777608251464	16.59461065932021	25.11735547719578
H	-1.34874860729266	16.99290216345134	25.52461573479022
H	-1.18339658009130	21.19335881481737	20.54736814647536
H	-2.23952757398952	22.89900541766037	22.06910914072398
H	-1.61338978520260	23.59638818008840	20.53922480846083
H	-0.68077380647645	23.83589022794122	22.03657362540599
H	0.57542377586965	22.54201530137839	19.49758051775824
H	1.34810967861427	21.13752427154145	20.30312332176584
H	1.43287701855720	22.76806212375605	21.04486818391895
O	-3.13409597716746	21.76715289211809	24.25818264065606
H	-3.56564625661139	24.08995851181879	24.69287411412569
H	-3.68609330757272	22.46631361563904	24.68243882887567

Optimized A. 4 complex, in XYZ format

Coordinates from ORCA-job gd			
C	-0.30767808778248	21.11372809681496	.64847936958234
C	-1.45274910976448	20.34813206134561	. 03679625289170
C	-1.49339679548864	19.70570979872203	24.31757447225201
c	-0.43621622954224	19.92682134214899	22051001817596
C	0.66675017733275	20.72855874583006	24.87069750256063
c	0.72828695372531	21.29976906994650	94
N	-2.57238740145962	20.23312568078572	22.17723265302817
C	-2.58260302920830	19.32284964691195	17388026848643
C	-1.37363051609754	18.42824693107312	938483
c	-2.69901680235304	18.85181546453437	. 69015557426699
c	-2.31293477066123	. 54337831810973	25.39719078735497
c	-0.22515712174066	21.75803255346297	26548088755892
C	1.13247812317627	21.49952139824044	20.58975695463101
i	-4.03692489835570	21.25767095193499	22.69245407703201
N	-5.26414763719819	20.62525412116703	21.38900181900547
C	-4.97393986812080	19.73659536493374	064
c	-3.69063414049795	19.13380811877200	20.32747725482508
c	-6.62137145833880	21.14482213374670	21.53087623337434
C	-6.67530294852250	22.01271154496270	22.753032090156
N	-5.49026887295947	22.29555825448057	23.36819720813030
N	-5.74204635883012	23.11460384511227	. 43250595156267
C	-7.08789077780482	23.33367466374262	24.48785349793915
c	-7.72532765843355	22.65058334516052	362
C	-7.59668676283487	24.21453269255831	25.58806967493082
N	-6.45421866483776	24.79827617497392	846
C	-6.63897045412743	25.60754565863781	27.32601459383984
c	-5.55597028212552	26.21192256928643	. 01923485658666
c	-4.18689998831119	26.11105936595823	.711042461
C	-3.20095633330724	26.88209929422920	28.56737306154
Ni	-4.76075822746439	24.26344212731648	59686722018355
N	-3.71506831657583	25.35666455218079	26.69018722964214
C	-2.34217371217879	25.41084366759023	26.35397844638049
c	-1.91484498293735	26.25899376770459	25.28195965502
c	-0.55028442100493	26.26055223683437	24.93122114507746
c	0.38322357969585	25.46618333834957	25.61982414244985
C	-0.04675854730376	24.63790365545360	26.67237683850664
C	-1.40162156484031	24.59114715272529	27.05403253965264
c	-2.93775175720999	27.10373925289167	24.53333346849871
c	-3.26902993161904	28.40769757606459	25.2865099823215
c	-1.90474919751190	23.60749470488515	28.10500074639868
c	-2.50195575432625	22.37206786742401	27.40497327184168
C	-8.04581760960491	25.91357993696962	27.79805559401192
c	-0.84996291714824	23.20510596011724	29.14177157542160
C	-2.54652147149386	27.39999843962886	23.08004670956639
C	-6.04587442986420	19.31017821321519	19.45513868992516
C	-3.71201925628412	19.66514855393205	25.51871341568487
C	-0.53972799253079	23.26708704530060	21.31268545515706
K	-1.64752449596007	23.21091146593586	24.36001559705059
H	-8.79512070986194	22.62585190286502	23.2013295848
H	-8.26308950568921	25.00397797646963	25.1655

H	-8.23580979800266	23.62054627468493	26.28560854538208
H	-8.64574107452019	26.38755601805324	26.99155967624162
H	-8.03969267202109	26.59320326119427	28.66982528802392
H	-8.58278483132569	24.98430696166801	28.08595157501967
H	-5.81771109009281	26.85105235584954	28.87330354455260
H	-2.55491761314835	26.19718389115729	29.15712913487720
H	-3.72982014165453	27.54655641050661	29.27526618038483
H	-2.51488247118690	27.49712428315887	27.95040397129356
H	-0.21051526856266	26.89480282356802	24.09916075261534
H	1.44629507285626	25.49013265118341	25.33503821976423
H	0.68752888175961	24.01088544470269	27.19974811825702
H	-2.74452063647226	24.09760017989205	28.63694157462517
H	-1.30832878565444	22.57934284858586	29.93438350881885
H	-0.39476217119601	24.09268889439693	29.62603204052336
H	-0.03111822941892	22.60532861953889	28.69056231078611
H	-1.71583259995924	21.78547403494636	26.88222443797079
H	-3.28697177580722	22.68286240372916	26.67169010659972
H	-2.99297060129925	21.69260412209551	28.12963123142185
H	-3.87132189746698	26.49226245225538	24.53399884393576
H	-3.38308580983375	27.91613082988971	22.56631320450455
H	-2.33630167602220	26.46933864045172	22.51930607950871
H	-1.66468045821972	28.07251697241025	23.01600059172643
H	-3.70591979703587	28.20895646855103	26.28219030888159
H	-4.01075538857028	29.00040574731963	24.71203891654365
H	-2.35995408352124	29.03178276968554	25.41783646616317
H	-7.37041807056306	20.32173701385570	21.61541249622435
H	-6.92495282230865	21.73767159879354	20.63328854888371
H	-6.90362461748137	18.83347060166255	19.97691782766962
H	-5.65349470774121	18.58978518893624	18.71363537955934
H	-6.45822058216451	20.18302847011064	18.90571899535367
H	-3.56917907430686	18.38860612237674	19.52931409989286
H	-0.44634596412689	19.00693817726759	20.80664451174561
H	-1.52149353638131	17.72804697119041	20.15151918725964
H	-1.18534121687971	17.83336274590929	21.91296779294917
H	1.60676443673689	21.90319846902258	23.30916700961971
H	1.48384381386732	20.89400285911524	25.58922376987304
H	-0.46564454442341	19.45312992175950	26.21395020958384
H	-3.20182706989105	18.59313524744776	23.73589011110425
H	-3.31104954824283	19.90697673461970	26.52255897889227
H	-4.65890378270818	19.10370591592095	25.64902653349160
H	-3.96756167010951	20.61727009770430	24.99898642129248
H	-1.57837654898261	16.96085418253055	24.80455844025496
H	-3.21210247482095	16.91227741201362	25.54999203102183
H	-1.87138273574346	17.72457130002644	26.39994728917485
H	-1.01485283090477	21.28949672704384	20.64520679895780
H	-1.57977932893683	23.46806699118748	21.63690961915398
H	-0.43438665369719	23.72342098155112	20.30713931455357
H	0.15969398532232	23.81089896505694	21.98687977943141
H	1.12094942279468	21.86830262832940	19.54435923831432
H	1.37962351419097	20.41859683811551	20.57095051303109
H	1.96131433984040	22.02167897942071	21.11240384482860
0	-3.46977516318054	24.34727958723284	22.74216045202557
H	-4.08922809286689	24.63833474793221	23.46587504125720
H	-3.91367062373015	23.49901256295021	22.46114134185370

Optimized A.TS1 complex, in XYZ format

Coordinates from ORCA-job gt			
C	2.83250175659584	-1.69807037120924	-1.87810084529316
C	1.55199002467078	-2.27939781214511	-1.63171977945812
C	1.30486021258679	-2.98050364970029	-0.40933234479314
C	2.36037302893419	-3.13790575261251	0.51101716684993
C	3.63439872793987	-2.59838759226294	0.26011862219545
C	3.85298444030152	-1.86891747586499	-0.92120644129697
N	0.50784837225550	-2.19821217759150	-2.59306182967227
C	0.48066434441184	-3.13629507416459	-3.56917996435965
C	1.67481579534864	-4.05010106427581	-3.75902759092101

C	-0.08885785392223	-3.49736904200098	-0.07154508040745
c	-0.09602436942592	-5.00132969358598	0.23943999765141
C	3.08042901753023	-0.84662938450343	-3.11629314260437
C	4.34412443834987	-1.25334976619445	-3.89271004160752
Ni	-0.99452278059382	-1.17528304188692	-2.04886483919650
N	-2.25951515425657	-2.09540903539223	-3.11083451167405
c	-1.96164152842166	-2.89721936034723	-4.13556933576694
C	-0.64402395186949	-3.35952753797603	-4.38316237590174
c	-3.66667519332176	-1.82308341376184	-2.78916484653377
c	-3.70669617765276	-1.03521790287757	-1.51940949732
N	-2.52477047822855	-0.47578363265590	-1.14447176772091
N	-2.69805835522230	0.18653659677386	0.02484315668489
c	-4.00558348121309	0.04992051186503	0.39178425876759
c	-4.69124088019320	-0.72560832638508	-0.56536346489663
c	-4.41918206956886	0.71764811427700	1.66510671341481
N	-3.30829799915978	1.53713424207743	2.12948455232582
c	-3.49759218045610	2.39584802889624	3.12839487636564
c	-2.46432585012370	3.26600878018909	3.57416707415135
c	-1.14669715867095	3.34103304390953	3.09268330783382
c	-0.24170773510777	4.40525462215364	3.69024585369643
Ni	-1.65591637920888	1.31257400571496	1.12151656573395
N	-0.65776461063106	2.54088970572101	2.10838541773380
c	0.73130648525887	2.53779843708821	1.87963266017353
c	1.26216378137238	3.11512697302551	0.67799494069051
c	2.65422230355023	3.10311803985976	0.47915844117563
c	3.52839576843840	2.56933530374717	1.44814919765995
C	3.00155465825231	2.01667855663602	2.63199154134664
c	1.61292384893753	1.97764300211671	2.86777754231695
c	0.28619221614127	3.65141816256362	-0.35532407519024
c	-0.33901429214994	4.99980420799481	0.04741969345279
c	1.02079538220218	1.27277579577857	4.09136378119931
c	0.40790163128346	-0.08900213808321	3.70087225483582
c	-4.84645927729983	2.48948787560325	3.81378123766010
c	2.00232316548161	1.12590564020272	5.25859975742061
c	0.85509914262054	3.71870303274928	-1.77565659313949
c	-3.07015392968999	-3.40359231697035	-5.03481436922185
c	-0.71153506430762	-2.66706836583724	1.06895671658652
c	3.13107075326907	0.64079137697384	-2.71905301809101
к	1.78144360922058	-0.12734324576385	0.80647278638216
H	-5.74682619145223	-1.01791055874125	-0.56215291070409
H	-5.34471873949191	1.31577897982644	1.49257879472556
н	-4.69671886697624	-0.04917903736794	2.42933368162891
н	-5.64388845437809	2.78738739468875	3.09897418189855
H	-4.83098208841025	3.22664591522631	4.63804066428447
н	-5.15303782099478	1.50751700727998	4.23370917103842
н	-2.73471659542244	3.98115924619792	4.36351352442993
н	0.60175562187867	3.97492567783780	4.26898249421420
H	-0.81576869299251	5.06922354371966	4.36262809128877
н	0.22130450456045	5.02489643283905	2.89556147756853
н	3.07301581710699	3.52924393734403	-0.44459816444504
н	4.61716320622867	2.59776542748132	1.28767879529732
H	3.69239259543082	1.60547486686521	3.38398895852273
H	0.16639889744353	1.88616833143736	4.44380272508026
H	1.48648982040392	0.70447485316611	6.14503276450456
H	2.44005800015684	2.10187743486886	5.55170416878286
H	2.83941427909196	0.43797500275640	5.01403116985411
H	1.19444324469598	-0.83468635439566	3.44315299681145
H	-0.30006836109149	0.03412744005049	2.84817364987344
H	-0.16752341287978	-0.52215751426123	4.54414561357083
H	-0.55261502031900	2.90279045140165	-0.33233220327119
н	0.04961369729939	3.95128261593916	-2.50168852794256
H	1.32723715216473	2.76265654938897	-2.08180480695438
H	1.62864200555310	4.50942703844167	-1.88291717849898
H	-0.90191911233220	4.91123778537646	0.99412812436902
H	-1.05216583572378	5.33741326902219	-0.73334879686124
H	0.43816902820701	5.78393102980261	0.16646451867361
H	-4.24527974272556	-2.76869704588360	-2.67593821517082
H	-4.15885130924061	-1.26021691335854	-3.61906387683597
H	-3.78884716305127	-4.03868734854480	-4.4730219060162

H	-2.66487011020505	-4.00335983465348	-5.87026078486490
H	-3.65596911962306	-2.56252142654771	-5.46141191109498
H	-0.51717967332084	-4.05992301136117	-5.21945180210688
H	2.62115847942207	-3.49142813091711	-3.89618259286013
H	1.52572991664219	-4.70986454126088	-4.63306520746731
H	1.82121659003645	-4.68937408234164	-2.86265170585017
H	4.84535807215888	-1.42901278950562	-1.10650377340047
H	4.45249486992526	-2.74444091574335	0.98228088336729
H	2.18221719099752	-3.69718791212605	1.44382299617319
H	-0.72034682364178	-3.32721949453979	-0.96780265186272
H	-0.13484993765696	-2.77040282561243	2.01317512663051
H	-1.75020016236500	-2.99665593626406	1.27113020157466
H	-0.78636710947155	-1.58805929885886	0.80751233365799
H	0.34225941152660	-5.58629602293629	-0.59446198265253
H	-1.13395685642055	-5.35873911194056	0.39763999855386
H	0.47875009341858	-5.23915957525299	1.15949748444464
H	2.20189705849533	-0.98292800120230	-3.77840079262441
H	2.20198877483555	0.92385522375145	-2.18815935086357
H	3.23163465107496	1.29525524182695	-3.60824080265140
H	3.98805582239622	0.85015840490273	-2.04322391502196
H	4.42712361587926	-0.66678792250149	-4.82944256728936
H	4.33393274491944	-2.32825494980566	-4.16452571970897
H	5.26712688729614	-1.06667896699007	-3.30454283270603
O	0.09004563883216	0.35625926962646	-1.09802049001487
H	-0.54130024694584	0.79783120259538	-0.26405867882309
H	0.04775360479635	1.07226306738527	-1.76890280148631

Appendix B

Supplemental material for Chapter

B. 1 CP-PAW input files

```
*.strc file for the optimization of pairwise constrained [Fe}\mp@subsup{}{}{\textrm{II}}(\mp@subsup{\textrm{NH}}{3}{}\mp@subsup{)}{6}{}\mp@subsup{]}{}{2+}\mathrm{ model system
using PBE0r
!STRUCTURE
!GENERIC LUNIT[AA]=1. !END
!OCCUPATIONS EMPTY=10 NSPIN=2 SPIN[HBAR]=2. CHARGE[E]=2. !END
!CONSTRAINTS
    !BOND ATOM1='N_01' ATOM2='N_O2' MOVE=T NSTEP=1 VALUE=4.724 !END
    !BOND ATOM1='N_O3' ATOM2='N_O4' MOVE=T NSTEP=1 VALUE=4.724 !END
    !BOND ATOM1='N_O5' ATOM2='N_06' MOVE=T NSTEP=1 VALUE=4.724 !END
    !END
    !'SPECIES NAME='FE' NPRO=1 1 1 LRHOX=4
    !NTBO NOFL=1 0 1 CV=T raug/rcov=1.15 LHFWEIGHT=0.080
            focksetup=F cv=T NDDO=F 31=F BONDX=F !END
    !AUGMENT ID='FE_NDLSS_VO' Z= 26.00000 ZV= 8.
            TYPE='NDLSS' RBOX/RCOV= 1.200 RCSM/RCOV= 0.250
            RCL/RCOV= 0.800 0.800 0.800}00.800 0.800
        !GRID DMIN= 0.100E-05 DMAX= 0.100 RMAX= 20.000 !END
        !POT POW= 3.000 RC/RCOV= 0.702 !END
        !CORE POW= 3.000 RC/RCOV= 0.702 !END
    !END
```

```
!END
!SPECIES NAME='N_' NPRO=1 1 1 LRHOX=4 RAD/RCOV=1.4
    !NTBO NOFL=1 1 0 CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.080
        FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
    !AUGMENT ID='MY_NDLSS_N' EL='N' ZV= 5.
        TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=.25
        RCL/RCOV=0.75 0.75 0.75 0.75
        !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
        !POT POW=3. RC/RCOV=0.75 VALO_X=-4.3 !END
        !CORE POW=2. RC/RCOV=0.75 !END
    !END
!END
!SPECIES NAME='C_' NPRO=1 1 1 LRHOX=4 RAD/RCOV=1.4
    !NTBO NOFL=1 1 O CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.080
        FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
    !AUGMENT ID='MY_NDLSS_C' EL='C' ZV= 4.
        TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=.25
        RCL/RCOV=0.85 0.85 0.85 0.85
        !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
        !POT POW=3. RC/RCOV=0.75 VALO_X=-2.7 !END
        !CORE POW=2. RC/RCOV=0.75 !END
    !END
!END
!SPECIES NAME='H_' M=2. NPRO=1 1 LRHOX=2 RAD/RCOV=1.2
    !NTBO NOFL=1 O CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.080
        FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
    !AUGMENT ID='MY_NDLSS_H' EL='H' ZV= 1.
        TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=.25
        RCL/RCOV=1.2 1.2 1.2 1.2
        !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
        !POT POW=3. RC/RCOV=1. VALO_X=-1.6 !END
        !CORE POW=2. RC/RCOV=1. !END
    !END
!END
!LATTICE T= 0.00000 6.90000 6.90000
            6.90000 0.00000 6.90000
```

6.900006 .900000 .0000 !END			
! ATOM NAME= 'FE1' $\mathrm{R}=$	0.78135	3.03110	12.31354 !END
! ATOM NAME= 'N_01' $\mathrm{R}=$	-0.38282	3.30934	10.52564 !END
! ATOM NAME= 'N_02' $\mathrm{R}=$	-0.54065	1.35312	12.07401 !END
! $\mathrm{ATOM} \mathrm{NAME=} \mathrm{'N-03'} \mathrm{R}=$	2.47003	2.14026	11.31866 ! END
! ATOM NAME= 'N_04' $\mathrm{R}=$	2.24845	4.55400	11.93017 !END
! ATOM NAME= 'N_05' $\mathrm{R}=$	1.39773	2.68495	14.34201 !END
! ATOM NAME= 'N_06' $\mathrm{R}=$	-0.53750	4.10138	13.63647 !END
! ATOM NAME $=$ ' $\mathrm{H}_{-} 01$ ' $\mathrm{R}=$	-0.24074	4.17232	9.96608 !END
! ATOM NAME $=$ ' H _02' $\mathrm{R}=$	-1.37693	4.56787	13.24192 !END
! ATOM NAME= 'H_03' $\mathrm{R}=$	-0.33027	2.62500	9.74887 !END
! ATOM NAME= 'H_04' $\mathrm{R}=$	-1.56828	1.49211	12.05918 !END
! ATOM NAME= 'H_05' $\mathrm{R}=$	-0.51014	0.58817	12.77534 !END
! $\mathrm{ATOM} \mathrm{NAME=} \mathrm{'H-06'} \mathrm{R}=$	3.38076	2.12723	11.81349 !END
! ATOM NAME= 'H_07' $\mathrm{R}=$	2.46407	4.80044	10.94669 !END
! ATOM NAME= 'H_08' $\mathrm{R}=$	2.06357	5.51685	12.27294 !END
! ATOM NAME $=$ ' $\mathrm{H}_{-} 09$ ' $\mathrm{R}=$	2.26719	2.14322	14.51056 !END
! ATOM NAME $=$ 'H_10' $\mathrm{R}=$	2.43216	1.13026	11.08004 !END
! ATOM NAME $=$ ' H_{-11} ' $\mathrm{R}=$	1.59441	3.47852	14.97880 !END
! ATOM NAME= 'H_12' $\mathrm{R}=$	-0.99859	3.62098	14.43059 !END
! ATOM NAME= 'H_13' $\mathrm{R}=$	-0.15737	4.92145	14.14454 !END
! ATOM NAME= 'H_14' $\mathrm{R}=$	0.77476	2.13293	14.95971 !END
! $\mathrm{ATOM} \mathrm{NAME=} \mathrm{'H-15'} \mathrm{R}=$	3.21643	4.45779	12.28865 !END
! ATOM NAME= 'H_16' $\mathrm{R}=$	2.79258	2.49364	10.39885 !END
! $\mathrm{ATOM} \mathrm{NAME=} \mathrm{'} \mathrm{H}$ _17' $\mathrm{R}=$	-1.41404	3.37299	10.61104 !END
! ATOM NAME= 'H_18' $\mathrm{R}=$	-0.44779	0.76295	11.22736 !END
! ISOLATE ! END			
! END			
! EOB			

B. 2 Structural data of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ model

Table B.1: N-N pair distance of $2.5 \AA$. a) high-spin, b) low-spin, in XYZ format
(a)

FE	0.78135	3.03110	12.31354
N	-0.38282	3.30934	10.52564
N	-0.54065	1.35312	12.07401
N	2.47003	2.14026	11.31866
N	2.24845	4.55400	11.93017
N	1.39773	2.68495	14.34201
N	-0.53750	4.10138	13.63647
H	-0.24074	4.17232	9.96608
H	-1.37693	4.56787	13.24192
H	-0.33027	2.62500	9.74887
H	-1.56828	1.49211	12.05918
H	-0.51014	0.58817	12.77534
H	3.38076	2.12723	11.81349
H	2.46407	4.80044	10.94669
H	2.06357	5.51685	12.27294
H	2.26719	2.14322	14.51056
H	2.43216	1.13026	11.08004
H	1.59441	3.47852	14.97880
H	-0.99859	3.62098	14.43059
H	-0.15737	4.92145	14.14454
H	0.77476	2.13293	14.95971
H	3.21643	4.45779	12.28865
H	2.79258	2.49364	10.39885
H	-1.41404	3.37299	10.61104
H	-0.44779	0.76295	11.22736

(b)

FE	0.84908	3.00986	12.33825
N	-0.21820	3.18064	10.70853
N	-0.23274	1.38088	12.44341
N	2.30667	2.18910	11.32266
N	1.96856	4.57742	11.97896
N	1.69689	2.78426	14.08995
N	-0.43064	3.94914	13.48509
H	-0.13751	4.03582	10.12640
H	-1.31644	4.31314	13.08462
H	-0.11354	2.47812	9.95265
H	-1.26398	1.46192	12.52459
H	-0.07841	0.70284	13.21368
H	3.26584	2.24186	11.71256
H	2.20086	4.80525	10.99486
H	1.64486	5.52030	12.26859
H	2.61013	2.29724	14.16794
H	2.29129	1.17003	11.12574
H	1.92920	3.62675	14.64836
H	-0.83198	3.45280	14.30257
H	-0.12653	4.81892	13.96062
H	1.19073	2.24647	14.81745
H	2.92325	4.61991	12.38267
H	2.50588	2.52244	10.36074
H	-1.25129	3.16694	10.79513
H	-0.18743	0.70986	11.65492

Table B.2: N-N pair distance of $2.8 \AA$. a) high-spin, b) low-spin, in XYZ format

(a)

FE	8.08091	6.59883	5.92752
N	6.87245	7.05523	7.68722
N	7.59348	4.58055	6.59388
N	6.35472	6.74433	4.58644
N	8.23774	8.68549	5.31130
N	9.98238	6.60132	7.01563
N	9.43954	5.96423	4.34379
H	9.08518	5.84944	3.37676
H	8.99305	9.28127	5.69645
H	10.27848	6.53680	4.13751
H	10.58247	5.75626	7.01165
H	9.96775	6.77533	8.03774
H	6.53006	6.96717	3.58923
H	7.43477	9.30882	5.51121
H	7.85946	3.78232	5.98899
H	6.81880	8.04092	8.00268
H	5.76103	5.90662	4.44502
H	6.59738	4.33374	6.73825
H	7.12517	6.62136	8.59369
H	5.85900	6.83663	7.68396
H	7.97544	4.23029	7.49157
H	5.60408	7.43558	4.76846
H	8.36168	8.90956	4.30665
H	10.70046	7.30429	6.76227
H	9.90110	5.04198	4.44494

(b)

FE	8.09750	6.58190	5.91287
N	7.18000	7.26004	7.54556
N	7.73184	4.71502	6.51715
N	6.38601	6.56397	4.89131
N	8.39805	8.46279	5.32196
N	9.82926	6.56698	6.90882
N	9.05923	5.91425	4.29725
H	8.55387	5.85680	3.39443
H	9.07353	9.05502	5.83905
H	9.89780	6.43188	3.97626
H	10.44895	5.74279	6.80722
H	9.81274	6.62291	7.94390
H	6.25570	7.24736	4.12326
H	7.58954	9.11085	5.32711
H	7.75340	3.94409	5.82510
H	7.51008	8.14960	7.96287
H	6.13359	5.70051	4.37644
H	6.81011	4.51285	6.94590
H	7.18780	6.67415	8.40041
H	6.16598	7.47316	7.51355
H	8.33846	4.29046	7.24237
H	5.48916	6.71398	5.38856
H	8.73906	8.64390	4.35993
H	10.52842	7.30947	6.72566
H	9.46460	4.96048	4.31064

Table B.3: N-N pair distance of $3.1 \AA$. a) high-spin, b) low-spin, in XYZ format

(a)

FE	1.67865	6.57736	-0.37345
N	2.04971	4.38831	-0.37834
N	3.66827	6.88660	0.48672
N	0.87690	6.45765	1.66167
N	-0.32198	6.23306	-1.18819
N	1.31621	8.76746	-0.42901
N	2.48935	6.70392	-2.42275
H	1.23321	5.72775	2.30498
H	2.89857	7.60535	-2.72765
H	0.82223	9.15545	-1.25340
H	0.73853	9.20382	0.31233
H	-0.13757	6.28097	1.77311
H	-1.13118	6.29156	-0.54539
H	-0.67677	6.85228	-1.93966
H	3.86472	7.76608	0.99795
H	1.89138	3.86781	-1.26060
H	4.02935	6.21279	1.18605
H	2.99910	4.03238	-0.16378
H	3.27588	6.07716	-2.67103
H	-0.53258	5.31757	-1.62535
H	0.96355	7.27689	2.28995
H	2.11950	9.42150	-0.41096
H	1.88019	6.52290	-3.24073
H	4.47664	6.89398	-0.16031
H	1.50450	3.77854	0.25793

(b)

FE	1.74681	6.59135	-0.38339
N	1.86318	4.55940	-0.56911
N	3.62144	6.93933	0.35497
N	1.17047	6.31638	1.55526
N	-0.08997	6.45963	-1.27322
N	1.39164	8.58413	-0.09661
N	2.52523	6.68398	-2.26776
H	1.72296	5.64145	2.11353
H	2.80957	7.60047	-2.65881
H	1.43027	9.23270	-0.90336
H	0.45994	8.84295	0.27438
H	0.22094	5.95524	1.75976
H	-0.94613	6.47433	-0.69044
H	-0.33709	7.20905	-1.94357
H	3.72192	7.33074	1.30869
H	1.77961	4.13276	-1.50915
H	4.29750	6.15827	0.43189
H	2.71302	4.06186	-0.24708
H	3.40127	6.15776	-2.43535
H	-0.31134	5.63271	-1.85611
H	1.17662	7.11908	2.20933
H	1.98806	9.11718	0.56129
H	1.96602	6.34038	-3.06893
H	4.21304	7.61251	-0.16394
H	1.14944	4.00009	-0.06900

B. 3 Absolute energies (Eh) from SPE calculations

Using PBE, BP86, TPSS and M06-L

	PBE	BP86	TPSS	M06-L
$2.5 \AA$, HS	-1611.31394182704	-1612.21181225286	-1612.04541650429	-1611.8312296385
$2.5 \AA$, LS	-1611.33504264393	-1612.23203305343	-1612.06943423148	-1611.82617037154
$2.6 \AA$, HS	-1611.32669581554	-1612.22458186504	-1612.05819837707	-1611.84543307343
$2.6 \AA$, LS	-1611.34489446973	-1612.24198183326	-1612.0794918585	-1611.83691670181
$2.7 \AA$, HS	-1611.33581983985	-1612.23372142758	-1612.06728580552	-1611.85489181217
$2.7 \AA$, LS	-1611.35084864319	-1612.248039278	-1612.08563838146	-1611.84367729907
$2.8 \AA$, HS	-1611.34174799896	-1612.23970247011	-1612.07307793425	-1611.86089127433
$2.8 \AA$, LS	-1611.35387535836	-1612.25111882385	-1612.08887837626	-1611.84808257695
$2.9 \AA$, HS	-1611.34546305524	-1612.2434864492	-1612.07701036119	-1611.86492073313
$2.9 \AA$, LS	-1611.35464639159	-1612.25190109507	-1612.08984512315	-1611.85059770242
$3.0 \AA$, HS	-1611.34789125528	-1612.24553346853	-1612.07906433559	-1611.86717974695
$3.0 \AA$, LS	-1611.35434760779	-1612.25164217608	-1612.0897802799	-1611.85213183204
$3.1 \AA$, HS	-1611.34703690399	-1612.24497736748	-1612.07845143695	-1611.86621919722
$3.1 \AA$, LS	-1611.35214635849	-1612.2494748855	-1612.08773294594	-1611.85178194351

Using B3LYP with $10,15,20$ and 25% exact exchange

	B3LYP(10\%)	B3LYP(15)	B3LYP (20)	B3LYP (25%)
$2.5 \AA$, HS	-1610.94952594267	-1611.33284328771	-1611.71736748635	-1612.10304650325
$2.5 \AA$, LS	-1610.95982682662	-1611.33402051468	-1611.70983687101	-1612.08721943538
$2.6 \AA$, HS	-1610.96271412583	-1611.34636099819	-1611.73120044291	-1612.11718169432
$2.6 \AA$, LS	-1610.97047172445	-1611.34506518765	-1611.72127420517	-1612.09904226486
$2.7 \AA$, HS	-1610.97217288164	-1611.35610715504	-1611.74122273941	-1612.12747017399
$2.7 \AA$, LS	-1610.97709332561	-1611.35202710027	-1611.72857203556	-1612.1066711232
$2.8 \AA$, HS	-1610.97826791859	-1611.3624037942	-1611.74773319818	-1612.13415231224
$2.8 \AA$, LS	-1610.98071558478	-1611.35597638502	-1611.73284655096	-1612.11126838357
$2.9 \AA$, HS	-1610.98218728739	-1611.36649115501	-1611.75196277805	-1612.13855274433
$2.9 \AA$, LS	-1610.98194828978	-1611.35747163195	-1611.73460230896	-1612.11328218151
$3.0 \AA$, HS	-1610.98431129668	-1611.36873438923	-1611.75432275792	-1612.14102661488
$3.0 \AA$, LS	-1610.98243579007	-1611.35838715145	-1611.7359427516	-1612.11504346795
$3.1 \AA$, HS	-1610.98381943511	-1611.36825944887	-1611.75385919713	-1612.14057173513
$3.1 \AA$, LS	-1610.98093853655	-1611.35728324445	-1611.73523147549	-1612.11472270883

Using PBE0 with $10,15,20$ and 25% exact exchange

	PBE0(10\%)	PBE0(15\%)	PBE0 (20%)	PBE0 (25%)
$2.5 \AA$, HS	-1610.19032949751	-1610.57443830335	-1610.95974208347	-1611.34619005557
$2.5 \AA$, LS	-1610.2034804874	-1610.57788548789	-1610.95390384975	-1611.33148349425
$2.6 \AA$, HS	-1610.20265934361	-1610.58710726414	-1610.97273611442	-1611.35949646403
$2.6 \AA$, LS	-1610.2128425653	-1610.58765273006	-1610.96407110037	-1611.34204471464
$2.7 \AA$, HS	-1610.21125206993	-1610.59599630844	-1610.98191177494	-1611.36894841734
$2.7 \AA$, LS	-1610.21828956788	-1610.59344298127	-1610.97020205597	-1611.34851340839
$2.8 \AA$, HS	-1610.21681329215	-1610.60171221025	-1610.98781482125	-1611.37504807853
$2.8 \AA$, LS	-1610.22093900877	-1610.59642377858	-1610.97351412287	-1611.35215618729
$2.9 \AA$, HS	-1610.2202669135	-1610.60539465663	-1610.99171872331	-1611.37907052025
$2.9 \AA$, LS	-1610.2215300658	-1610.59728131866	-1610.9746375486	-1611.35354408794
$3.0 \AA$, HS	-1610.22235497658	-1610.60760914915	-1610.9937569479	-1611.38151452511
$3.0 \AA$, LS	-1610.22070085199	-1610.5968853808	-1610.9746765613	-1611.35401470996
$3.1 \AA$, HS	-1610.22167243693	-1610.60692282577	-1610.99334317653	-1611.38087573236
$3.1 \AA$, LS	-1610.217934554	-1610.5945209746	-1610.97271333933	-1611.35245399318

Using CAM-B3LYP with $\left(\alpha_{0}, \mu_{0}\right),\left(\alpha_{1}, \mu_{0}\right),\left(\alpha_{2}, \mu_{0}\right),\left(\alpha_{0}, \mu_{1}\right),\left(\alpha_{0}, \mu_{2}\right)$

	CAM-B3LYP	$\left(\alpha_{0}, \mu_{1}\right)$	$\left(\alpha_{0}, \mu_{2}\right)$	$\left(\alpha_{1}, \mu_{0}\right)$	$\left(\alpha_{2}, \mu_{0}\right)$
$2.5 \AA$, HS	-1611.89097577089	-1611.38747833672	-1611.34299951079	-1611.32222823265	-1611.39591141635
$2.5 \AA$, LS	-1611.88502938301	-1611.38712082845	-1611.3352590941	-1611.32594234899	-1611.38469827048
$2.6 \AA$, HS	-1611.90462900745	-1611.40066280693	-1611.35661406234	-1611.3354673646	-1611.40946764075
$2.6 \AA$, LS	-1611.89623137055	-1611.39789258956	-1611.3464137077	-1611.33666790873	-1611.39587739764
$2.7 \AA$, HS	-1611.9143714551	-1611.40998418537	-1611.36627554501	-1611.34482354735	-1611.41908369007
$2.7 \AA$, LS	-1611.9033706846	-1611.40465986678	-1611.35349645168	-1611.34340933566	-1611.40296421048
$2.8 \AA$, HS	-1611.92072680228	-1611.4160269421	-1611.3725759077	-1611.35090858822	-1611.4253387383
$2.8 \AA$, LS	-1611.90750911106	-1611.40849385138	-1611.35757995123	-1611.34716155503	-1611.40710894382
$2.9 \AA$, HS	-1611.92487100184	-1611.41991707505	-1611.37666955806	-1611.35481991459	-1611.42940894953
$2.9 \AA$, LS	-1611.90921614652	-1611.40998443155	-1611.35926313759	-1611.34857109198	-1611.40886083442
$3.0 \AA$, HS	-1611.92716104295	-1611.42202476781	-1611.37888774683	-1611.35693627744	-1611.43160961759
$3.0 \AA$, LS	-1611.91037039356	-1611.41074158913	-1611.36034750735	-1611.34923305786	-1611.41001186591
$3.1 \AA$, HS	-1611.92671882773	-1611.42158427981	-1611.37845776168	-1611.35648840979	-1611.43118697517
$3.1 \AA$, LS	-1611.90942223563	-1611.40943538083	-1611.35931037198	-1611.34781841344	-1611.40905120747

Using PBE0r with 8, 9,11 and 12.5% exact exchange

	PBE0r(8.00\%)	PBE0r(9.00\%)	PBE0r(11.00\%)	PBE0r(12.50\%)
$2.5 \AA$, HS	-92.3344956	-92.3300055	-92.3233405	-92.320538
$2.5 \AA$, LS	-92.3311828	-92.3232491	-92.3100367	-92.3026846
$2.6 \AA$, HS	-92.3462091	-92.3414424	-92.3341483	-92.3308191
$2.6 \AA$, LS	-92.3405257	-92.3323971	-92.3187345	-92.3109804
$2.7 \AA$, HS	-92.3543663	-92.3493436	-92.3414466	-92.3376116
$2.7 \AA$, LS	-92.3460165	-92.3377	-92.3235982	-92.3154653
$2.8 \AA$, HS	-92.3588657	-92.3536212	-92.345276	-92.3410611
$2.8 \AA$, LS	-92.3480944	-92.3396194	-92.3251619	-92.3167136
$2.9 \AA$, HS	-92.3611994	-92.355807	-92.347126	-92.3426369
$2.9 \AA$, LS	-92.3481381	-92.3395613	-92.3248698	-92.316218
$3.0 \AA$, HS	-92.3628447	-92.3573201	-92.3483529	-92.3436116
$3.0 \AA$, LS	-92.3474557	-92.3387272	-92.3236782	-92.3147042
$3.1 \AA$, HS	-92.3612848	-92.3566503	-92.3474327	-92.3424879
$3.1 \AA$, LS	-92.3447425	-92.3358379	-92.3203811	-92.3110351

B. $4 \mathrm{UCCSD}\left(\mathrm{T}^{*}\right)$-F12B reference energies

d_{N-N} / \AA	$\Delta E_{\mathrm{HL}}^{\mathrm{UCCSD}-\mathrm{F} 12 \mathrm{~B}}$	$\Delta E_{\mathrm{HL}}^{\mathrm{UCCSD}\left(\mathrm{T}^{*}\right)-\mathrm{F} 12 \mathrm{~B}}$	$\Delta E_{\mathrm{HL}}(\mathrm{DK})$	$\Delta E_{\mathrm{HL}}^{\mathrm{UCCSD}\left(\mathrm{T}^{*}\right)-\mathrm{F} 12 \mathrm{~B}}+\Delta E_{\mathrm{HL}}(\mathrm{DK})$
2.5	-16.9678	-7.0318	2.7643	-4.2675
2.6	-18.5519	-8.7567	2.7098	-6.0468
2.7	-20.1476	-10.4659	2.6602	-7.8057
2.8	-21.5542	-12.0082	2.5865	-9.4216
2.9	-23.0885	-13.6150	2.5470	-11.0680
3.0	-23.5710	-14.4150	2.3962	-12.0188
3.1	-23.8446	-15.1072	2.1977	-12.9095

Table B.4: Breakdown of energy composition, values given in kcal/mol.

Appendix C

Supplemental material for Chapter 5

C. 1 Structural data of extended model set

Table C.1: Complex B.04. a) high -spin, b) low -spin, in XYZ format

(a)				(b)			
C	-4.03919	2.74058	1.17980	C	-4.69435	2.66647	0.61049
N	-4.23759	2.57732	-0.09666	N	-4.56617	2.70882	-0.68004
FE	-2.54894	2.84874	-1.32974	FE	-2.71656	2.83720	-1.27685
N	-2.56108	0.85866	-2.08646	N	-2.60351	0.92502	-1.52558
C	-2.95835	0.72512	-3.31604	C	-2.71629	0.54629	-2.76173
C	-3.38380	1.86534	-4.03365	C	-2.91100	1.57076	-3.69866
N	-3.33950	2.98000	-3.33371	N	-2.95632	2.76871	-3.11406
C	-3.69832	4.17565	-3.75732	C	-3.13914	3.92034	-3.76419
C	-3.50025	5.20039	-2.80692	C	-3.13777	5.01494	-2.88894
N	-2.98278	4.90508	-1.65227	N	-2.94660	4.74185	-1.63476
C	-2.72561	2.95514	1.63903	C	-3.50457	2.73080	1.34909
N	-1.82808	2.97784	0.67000	N	-2.43717	2.84526	0.55534
C	-0.52436	3.10695	0.84167	C	-1.17961	2.93400	0.98967
C	0.19588	3.10834	-0.36526	C	-0.27275	3.04394	-0.07334
N	-0.45465	2.97844	-1.48657	N	-0.79039	3.02643	-1.26333
H	-4.09564	4.36814	-4.75361	H	-3.27161	3.97954	-4.83991
H	-3.73607	1.81315	-5.06378	H	-3.02566	1.42773	-4.76824
H	-3.77808	6.22297	-3.07509	H	-3.28961	6.03260	-3.25181
H	-2.98463	-0.24672	-3.81624	H	-2.66864	-0.50136	-3.06155
H	-2.30668	-0.06658	-1.70725	H	-2.47267	0.13544	-0.87795
H	-2.89882	5.76207	-1.08323	H	-2.96927	5.58053	-1.03880
H	-0.04780	3.20692	1.81606	H	-0.91255	2.91773	2.04129
H	-2.47756	3.05528	2.69500	H	-3.43734	2.70520	2.43205
H	-4.85550	2.70454	1.90452	H	-5.66520	2.59037	1.10177
H	1.28156	3.22298	-0.33696	H	0.79993	3.13968	0.09969
H	-5.24192	2.42521	-0.27502	H	-5.47075	2.67404	-1.16958
H	0.20607	3.02223	-2.27725	H	-0.08220	3.11474	-2.00543

Table C.2: Complex B.05. a) high -spin, b) low -spin, in XYZ format

(a)				(b)			
C	-4.67581	2.52599	1.03123	C	-4.69278	2.70755	0.53929
C	-3.37562	2.60454	1.61238	C	-3.52669	2.80642	1.34484
N	-2.41927	2.74014	0.73928	N	-2.45926	2.87889	0.59687
C	-1.11382	2.81604	1.17211	C	-1.18741	2.98442	1.12828
C	-0.17275	2.95047	0.24434	C	-0.21788	3.05014	0.22882
N	-0.60016	3.01872	-1.12483	N	-0.64047	3.00512	-1.15511
FE	-2.92040	2.78940	-1.22056	FE	-2.64227	2.82950	-1.21162
N	-3.09715	4.77771	-1.71044	N	-2.73138	4.72490	-1.59393
C	-3.03488	5.08543	-2.97507	C	-3.04453	4.99280	-2.82820
C	-2.82713	4.05294	-3.91595	C	-3.20416	3.89265	-3.68058
N	-2.77059	2.86019	-3.36177	N	-2.96875	2.74450	-3.05028
C	-2.58659	1.70840	-3.97184	C	-2.99918	1.53620	-3.60541
C	-2.57987	0.60913	-3.08481	C	-2.66412	0.53425	-2.68533
N	-2.70603	0.83216	-1.80755	N	-2.41313	0.92844	-1.47118
N	-4.71623	2.59608	-0.25690	N	-4.42386	2.70663	-0.72759
H	-2.73881	4.23401	-4.98561	H	-3.45462	3.95176	-4.73471
H	-2.46916	1.60141	-5.04878	H	-3.22840	1.36959	-4.65261
H	-3.14175	6.11435	-3.32316	H	-3.16475	6.01471	-3.18824
H	-2.46624	-0.39962	-3.48479	H	-2.60970	-0.51415	-2.97862
H	-2.72074	-0.06407	-1.29671	H	-2.18702	0.14876	-0.83788
H	-3.29063	5.62601	-1.15615	H	-2.63075	5.57096	-1.01607
H	-0.87743	2.76043	2.23345	H	-1.02372	3.00700	2.20260
H	-3.20714	2.55073	2.68742	H	-3.50790	2.82265	2.43128
H	-5.56434	2.41878	1.65311	H	-5.70094	2.64213	0.94207
H	0.88396	3.01348	0.49605	H	0.83770	3.13297	0.47310
H	-5.69489	2.53394	-0.58449	H	-5.27788	2.63952	-1.30727
H	-0.20312	3.90211	-1.50077	H	-0.23718	3.84427	-1.61559
H	-0.01687	2.33316	-1.64235	H	-0.08979	2.25012	-1.60774

Table C.3: Complex B.06. a) high -spin, b) low -spin, in XYZ format

(a)				(b)			
C	-4.78097	2.88944	0.84422	C	-4.67732	2.68593	0.56782
N	-4.66920	2.68972	-0.41143	N	-4.47544	2.67293	-0.70189
FE	-2.68696	2.81583	-1.18209	FE	-2.66842	2.82837	-1.27011
N	-2.54630	0.61018	-1.54613	N	-2.52237	0.84088	-1.51037
C	-2.73069	0.32051	-2.94809	C	-2.74458	0.52334	-2.91063
C	-2.94515	1.33676	-3.77717	C	-2.97073	1.55036	-3.71324
N	-2.98796	2.59279	-3.20864	N	-2.95913	2.78639	-3.08260
C	-3.24737	3.63436	-3.91530	C	-3.14505	3.89369	-3.72972
C	-3.25422	4.88185	-3.16659	C	-3.07801	5.02240	-2.84225
N	-3.00162	4.79240	-1.91847	N	-2.84234	4.69523	-1.62166
C	-3.54323	3.12625	1.57186	C	-3.46476	2.79112	1.33195
N	-2.48367	3.10108	0.84478	N	-2.43361	2.87309	0.55175
C	-1.23559	3.29274	1.40007	C	-1.14031	2.97161	1.04415
C	-0.20855	3.29089	0.55743	C	-0.20274	3.02710	0.11238
N	-0.48342	3.13364	-0.85066	N	-0.66457	2.99463	-1.26471
H	-3.42956	3.60764	-4.99281	H	-3.33253	3.95411	-4.80100
H	-3.09442	1.20197	-4.84698	H	-3.15402	1.46347	-4.78186
H	-3.47671	5.82086	-3.67776	H	-3.21671	6.05136	-3.17677
H	-2.68219	-0.71214	-3.29247	H	-2.70822	-0.51499	-3.23464
H	-3.23811	0.01777	-1.04520	H	-3.19940	0.25803	-0.97847
H	-3.03463	5.73573	-1.48896	H	-2.82375	5.52428	-1.00076
H	-1.11347	3.41157	2.47552	H	-0.94165	2.99318	2.11330
H	-3.53251	3.29915	2.65085	H	-3.41032	2.80122	2.41942
H	-5.73397	2.88092	1.37699	H	-5.66602	2.62558	1.02409
H	0.81842	3.43445	0.89104	H	0.86351	3.10113	0.31811
H	-5.60852	2.53673	-0.82343	H	-5.36567	2.62681	-1.22991
H	-0.08124	3.97714	-1.30668	H	-0.27505	3.84883	-1.71195
H	0.20540	2.43551	-1.19212	H	-0.08138	2.28220	-1.74761
H	-1.68590	0.09482	-1.27331	H	-1.64573	0.34880	-1.24378

Table C.4: Complex B.07. a) high -spin, b) low -spin, in XYZ format
(a)
$\left|\begin{array}{llll}\text { FE } & -1.80596 & 3.11574 & 0.02073 \\ \text { N } & -0.46377 & 2.71792 & -1.59572 \\ \text { N } & -3.13904 & 2.64204 & 1.62102 \\ \text { N } & -0.86539 & 4.64474 & 1.08989 \\ \text { N } & -2.88582 & 4.53437 & -1.04214 \\ \text { N } & -3.08099 & 1.50606 & -0.68469 \\ \text { N } & -0.34055 & 1.70078 & 0.76519 \\ \text { C } & -3.95566 & 1.68603 & 1.45422 \\ \text { C } & -3.93436 & 1.04291 & 0.12837 \\ \text { C } & 0.55378 & 1.31230 & -0.04287 \\ \text { C } & 0.46013 & 1.87020 & -1.40484 \\ \text { C } & -3.45350 & 5.26919 & -1.64575 \\ \text { C } & -0.37161 & 5.41303 & 1.71699 \\ \text { H } & -4.00808 & 5.97609 & -2.25433 \\ \text { H } & 0.11053 & 6.15267 & 2.34812 \\ \text { H } & 1.35887 & 0.61930 & 0.21475 \\ \text { H } & 1.15789 & 1.53243 & -2.17847 \\ \text { H } & -4.62346 & 0.22552 & -0.09938 \\ \text { H } & -4.64594 & 1.32047 & 2.22259 \\ \text { H } & -0.18494 & 1.26263 & 1.69309 \\ \text { H } & -0.44148 & 3.04032 & -2.58213 \\ \text { H } & -3.14520 & 0.99442 & -1.58537 \\ \text { H } & -3.23556 & 3.01754 & 2.58398\end{array}\right|$
(b)

FE	-1.67054	3.02118	0.03397
N	-0.43934	3.33884	-1.37852
N	-2.82788	2.43944	1.42539
N	-1.03585	4.41502	1.05090
N	-2.93474	4.11975	-0.72532
N	-2.49910	1.49873	-0.78938
N	-0.19807	1.93333	0.58583
C	-3.56145	1.41861	1.21942
C	-3.36434	0.85681	-0.11127
C	0.83373	1.91024	-0.15934
C	0.68969	2.74989	-1.34163
C	-3.68920	4.76968	-1.20092
C	-0.67163	5.23457	1.69417
H	-4.42677	5.40456	-1.67008
H	-0.31441	6.04000	2.31934
H	1.73087	1.32894	0.05634
H	1.46591	2.85667	-2.10054
H	-3.90251	-0.01859	-0.47937
H	-4.25930	1.00318	1.94915
H	-0.08830	1.33638	1.42628
H	-0.53972	3.93606	-2.22057
H	-2.36284	1.09464	-1.73506
H	-2.97382	2.83974	2.37188

Table C.5: Complex B.08. a) high -spin, b) low -spin, in XYZ format
(a)
(b)

$\left.$| N | -1.69729 | -0.66066 | -0.02221 |
| :--- | :--- | :--- | :--- |
| FE | -1.72497 | 1.43751 | -0.00001 |
| N | 0.37373 | 1.46091 | 0.02051 |
| N | -1.70146 | 1.46015 | -2.09240 |
| N | -1.74855 | 1.41487 | 2.09238 |
| N | -1.75276 | 3.53566 | 0.02219 |
| N | -3.82372 | 1.41414 | -0.02051 |
| C | -1.77582 | 1.39009 | 3.19853 |
| C | 1.47964 | 1.47997 | 0.04464 |
| C | -1.65424 | -1.76589 | -0.04505 |
| C | -1.67421 | 1.48488 | -3.19853 |
| C | -1.79573 | 4.64090 | 0.04503 |
| C | -4.92963 | 1.39500 | -0.04463 |
| H | -1.80130 | 1.36673 | 4.27919 |
| H | -1.61612 | -2.84663 | -0.06671 |
| H | 2.56092 | 1.50082 | 0.06768 |
| H | -1.64868 | 1.50818 | -4.27919 |
| H | -1.83393 | 5.72163 | 0.06672 |
| H | -6.01092 | 1.37418 | -0.06765 |$|\quad|$| N | -1.33573 | -0.40253 | -0.04749 |
| :--- | :--- | :--- | :--- |
| FE | -1.80747 | 1.39691 | -0.04407 |
| N | -0.03577 | 1.85319 | 0.29134 |
| N | -1.48347 | 1.48784 | -1.87362 |
| N | -2.13229 | 1.30519 | 1.78552 |
| N | -2.27767 | 3.19627 | -0.03962 |
| N | -3.57935 | 0.94166 | -0.38110 |
| C | -2.33816 | 1.24543 | 2.86594 |
| C | 1.01587 | 2.11483 | 0.48883 |
| C | -1.04459 | -1.46499 | -0.04705 |
| C | -1.27729 | 1.54658 | -2.95406 |
| C | -2.56654 | 4.25929 | -0.03794 |
| C | -4.63094 | 0.68163 | -0.58107 |
| H | -2.53984 | 1.18514 | 3.92518 |
| H | -0.75858 | -2.50649 | -0.04398 |
| H | 2.04596 | 2.37349 | 0.68382 |
| H | -1.07558 | 1.60581 | -4.01334 |
| H | -2.85038 | 5.30139 | -0.03914 |
| H | -5.66092 | 0.42423 | -0.77835 | \right\rvert\,

Table C.6: Complex B.09. a) high -spin, b) low -spin, in XYZ format

(a)

FE	-1.59760	1.60383	0.13280
C	-2.36323	3.80238	1.94311
C	-2.28799	2.60613	2.81292
N	-1.92250	1.53113	2.25354
N	-3.58005	1.00575	-0.44459
C	-3.74963	-0.21960	-0.71357
C	-2.54971	-1.08061	-0.61772
N	-1.49819	-0.51365	-0.19917
N	0.47172	1.95228	0.24712
C	1.06201	2.31186	-0.82070
C	0.21049	2.39748	-2.01134
N	-1.01738	2.12519	-1.82391
N	-2.15785	3.60023	0.71112
H	2.12761	2.54853	-0.88906
H	0.63822	2.68331	-2.97518
H	-2.62146	-2.13706	-0.89311
H	-4.70806	-0.66069	-1.00109
H	-2.54430	2.69315	3.87342
H	-2.59317	4.77636	2.38337
H	-4.48250	1.51277	-0.51404
H	-0.71816	-1.19763	-0.17312
H	-1.53587	2.20804	-2.71844
H	1.15050	1.92315	1.03077
H	-2.21787	4.49826	0.19413
H	-1.92482	0.75440	2.94123

(b)

FE	-1.72488	1.58158	-0.00130
C	-2.25184	3.74509	1.60218
C	-2.16296	2.61087	2.50572
N	-1.90915	1.52343	1.88732
N	-3.55173	1.19173	-0.33579
C	-3.88670	-0.02499	-0.52582
C	-2.75135	-0.92706	-0.43651
N	-1.66454	-0.30709	-0.18383
N	0.16369	1.76635	0.05855
C	0.78313	2.01877	-1.02863
C	-0.11927	2.10602	-2.16388
N	-1.33570	1.91482	-1.82854
N	-2.06029	3.40875	0.38608
H	1.86315	2.15828	-1.10773
H	0.21221	2.30919	-3.18257
H	-2.83009	-2.00724	-0.57495
H	-4.90515	-0.35689	-0.72950
H	-2.30239	2.69082	3.58568
H	-2.45633	4.76385	1.93262
H	-4.36708	1.82919	-0.39436
H	-0.85767	-0.95495	-0.12294
H	-1.97336	1.97193	-2.64382
H	0.81180	1.70689	0.86532
H	-2.11849	4.22330	-0.25240
H	-1.84845	0.71738	2.53622

Table C.7: Complex B.10. a) high -spin, b) low -spin, in XYZ format

(a)				(b)			
C	-1.97443	4.18340	1.80618	C	-2.58721	3.49398	2.05304
N	-2.14039	3.81816	0.37270	N	-2.46253	3.41442	0.56632
FE	-1.74684	1.65131	0.04316	FE	-1.63845	1.68055	-0.00593
N	0.45081	1.94350	0.00110	N	0.21844	2.31430	0.42959
C	0.98833	1.79089	-1.38067	C	0.98986	2.58907	-0.81959
C	0.04034	2.48710	-2.31855	C	0.04230	3.25565	-1.77101
N	-1.31994	1.91885	-2.09836	N	-1.18348	2.40328	-1.82006
C	-2.53248	3.07295	2.65448	C	-2.96464	2.12491	2.53632
N	-1.91158	1.78802	2.22668	N	-2.02852	1.15730	1.88735
N	-1.65101	-0.54778	-0.11540	N	-0.99705	-0.15443	-0.47749
C	-2.92158	-1.10363	-0.65489	C	-1.98862	-0.87433	-1.33228
C	-4.06732	-0.41182	0.02982	C	-3.35173	-0.53455	-0.80766
N	-3.87679	1.06163	-0.10845	N	-3.40131	0.94949	-0.64065
H	2.00586	2.18121	-1.47934	H	1.88971	3.18757	-0.64828
H	0.36186	2.40270	-3.36001	H	0.49626	3.41619	-2.75354
H	-2.99210	-2.19013	-0.54395	H	-1.82881	-1.95643	-1.35304
H	-4.07050	-0.64928	1.09904	H	-3.50694	-0.98863	0.17649
H	-2.38166	3.27680	3.71884	H	-2.94652	2.07076	3.62948
H	-2.45806	5.13492	2.04675	H	-3.31192	4.24550	2.38260
H	-4.62010	1.48165	0.47999	H	-4.27256	1.12863	-0.10717
H	-1.50127	-1.04076	0.78483	H	-0.84460	-0.77577	0.33939
H	-1.96688	2.52053	-2.63764	H	-1.89594	2.97574	-2.30973
H	1.01849	1.30909	0.58976	H	0.82974	1.70084	0.99974
H	-1.62330	4.55519	-0.14077	H	-2.05033	4.32146	0.27829
H	-0.98247	1.76930	2.68673	H	-1.19548	1.13922	2.50599
H	-5.02481	-0.75107	-0.37674	H	-4.13541	-0.91424	-1.47140
H	-2.95167	-0.89888	-1.73122	H	-1.87433	-0.50960	-2.35859
H	-3.61424	2.98555	2.50261	H	-3.98155	1.87444	2.21559
H	-0.90138	4.30403	1.99029	H	-1.61132	3.78471	2.45639
H	1.03074	0.72074	-1.60828	H	1.32658	1.62966	-1.22589
H	0.00801	3.55717	-2.08659	H	-0.24423	4.24409	-1.39671
H	0.82193	2.85599	0.32936	H	0.29902	3.18685	0.98657
H	-1.34704	1.06877	-2.69189	H	-0.99215	1.70705	-2.56571
H	-3.10481	4.10850	0.12629	H	-3.42440	3.55979	0.20493
H	-2.38422	1.05837	2.79118	H	-2.41617	0.22076	2.10881
H	-0.90199	-1.00373	-0.66711	H	-0.08389	-0.28995	-0.94966
H	-4.25884	1.29689	-1.04370	H	-3.70036	1.31083	-1.56702

Table C.8: Complex B.11. a) high -spin, b) low -spin, in XYZ format
\(\left|\begin{array}{llll}\mathrm{N} \& -1.82371 \& 4.20214 \& 1.33145

\mathrm{~N} \& -1.63909 \& 3.75970 \& -0.33441

\mathrm{~N} \& -1.72143 \& 2.55969 \& -0.39547

\mathrm{FE} \& -1.86079 \& 1.15105 \& 1.19426

\mathrm{~N} \& -1.36164 \& -0.64451 \& 0.07163

\mathrm{~N} \& -0.28748 \& -1.19296 \& 0.05525

\mathrm{~N} \& 0.82725 \& -0.20270 \& 0.90576

\mathrm{~N} \& 0.21703 \& 0.73925 \& 1.34786

\mathrm{~N} \& -1.84604 \& 3.18748 \& 1.97920

\mathrm{~N} \& -2.44338 \& 0.22725 \& 3.07419

\mathrm{~N} \& -3.55297 \& -0.13931 \& 3.36028

\mathrm{~N} \& -4.63368 \& 0.31277 \& 2.07254

\mathrm{~N} \& -3.98301 \& 0.75701 \& 1.16254

\mathrm{H} \& 0.93833 \& 1.32912 \& 1.84815

\mathrm{H} \& -2.01294 \& -1.27571 \& -0.47257

\mathrm{H} \& -1.82867 \& -0.06143 \& 3.88652

\mathrm{H} \& -4.68211 \& 1.00979 \& 0.40933

\mathrm{H} \& -1.95361 \& 3.48893 \& 2.98781

\mathrm{H} \& -1.60758 \& 2.31997 \& -1.41989\end{array}\right|\)| |
| :--- | :--- | :--- | :--- | :--- |
| N |\(\quad\left|\begin{array}{lllll}\mathrm{N} \& -1.78430 \& 3.95983 \& 1.42156

\mathrm{~N} \& -1.81985 \& 3.68387 \& -0.00513

\mathrm{~N} \& -1.86433 \& 2.45460 \& -0.18509

\mathrm{FE} \& -1.89096 \& 1.22289 \& 1.21701

\mathrm{~N} \& -1.64797 \& -0.29754 \& 0.16456

\mathrm{~N} \& -0.53184 \& -0.79690 \& -0.05746

\mathrm{~N} \& 0.48836 \& -0.01589 \& 0.62797

\mathrm{~N} \& -0.05138 \& 0.93708 \& 1.21465

\mathrm{~N} \& -1.81795 \& 2.88649 \& 2.04659

\mathrm{~N} \& -2.21620 \& 0.25952 \& 2.77935

\mathrm{~N} \& -3.35804 \& -0.00409 \& 3.19012

\mathrm{~N} \& -4.34002 \& 0.53127 \& 2.25480

\mathrm{~N} \& -3.74846 \& 1.10055 \& 1.32225

\mathrm{H} \& 0.72020 \& 1.46845 \& 1.68478

\mathrm{H} \& -2.34365 \& -0.89529 \& -0.34256

\mathrm{H} \& -1.55000 \& -0.14599 \& 3.47991

\mathrm{H} \& -4.49263 \& 1.46283 \& 0.67900

\mathrm{H} \& -1.79223 \& 3.13690 \& 3.06423

\mathrm{H} \& -1.88649 \& 2.30922 \& -1.22287\end{array}\right|\)

Table C.9: Complex B.12. a) high -spin, b) low -spin, in XYZ format

(a)

FE	-1.73810	2.88822	-0.01008
N	-3.41605	2.87828	1.22366
N	-2.80810	1.18973	-0.73701
N	-0.26549	1.97838	1.24970
N	-0.06214	2.90143	-1.24567
N	-0.66376	4.58228	0.72363
N	-3.21080	3.78930	-1.27785
N	-4.59182	2.63027	0.95097
N	0.92554	2.27378	1.35534
N	0.55176	4.70659	0.87645
N	1.11475	3.14445	-0.97319
N	-4.02311	1.06248	-0.89196
N	-4.40177	3.49278	-1.38124
C	-4.75992	2.31963	-0.51721
C	1.28535	3.44939	0.49564
H	2.34341	3.64131	0.65414
H	-5.81737	2.12488	-0.67626
H	-3.08115	4.61436	-1.91494
H	-3.41723	3.07391	2.25660
H	-2.40174	0.26157	-1.01639
H	-0.39615	1.15152	1.88426
H	-0.06244	2.70897	-2.27922
H	-1.06775	5.51044	1.00650

(b)

FE	-1.86866	2.80310	0.07190
N	-3.37133	2.72243	1.20333
N	-2.69375	1.37217	-0.83016
N	-0.77699	1.71822	1.15675
N	-0.36599	2.88376	-1.05954
N	-1.04357	4.23403	0.97394
N	-2.96034	3.88800	-1.01295
N	-4.54912	2.57054	0.86528
N	0.41335	1.89798	1.43153
N	0.15254	4.34458	1.26023
N	0.81180	3.03563	-0.72149
N	-3.88986	1.26162	-1.11645
N	-4.15069	3.70824	-1.28772
C	-4.64712	2.45839	-0.62567
C	0.90979	3.14781	0.76946
H	1.95733	3.27658	1.02937
H	-5.69465	2.32962	-0.88558
H	-2.67695	4.77107	-1.50205
H	-3.37154	2.79338	2.24970
H	-2.22369	0.50786	-1.19288
H	-1.06039	0.83516	1.64587
H	-0.36577	2.81279	-2.10591
H	-1.51363	5.09835	1.33665

Table C.10: $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$. a) high -spin, b) low -spin, in XYZ format

(a)

FE	8.07222	6.59657	5.92788
N	6.82730	7.18765	7.67111
N	7.68101	4.49563	6.50803
N	6.26123	6.59558	4.60496
N	8.37914	8.71583	5.35188
N	9.91203	6.62282	7.20885
N	9.36684	5.99924	4.22552
H	8.94801	5.95307	3.27978
H	9.15358	9.23850	5.79790
H	10.20833	6.57291	4.03690
H	10.48351	5.76076	7.26187
H	9.78650	6.82993	8.21599
H	6.41200	6.86607	3.61634
H	7.58631	9.35627	5.53421
H	7.92708	3.76986	5.81207
H	6.90847	8.17312	7.97828
H	5.76003	5.69896	4.47350
H	6.70149	4.23010	6.71587
H	6.99132	6.69833	8.56922
H	5.79879	7.09537	7.59099
H	8.15976	4.12610	7.34866
H	5.47154	7.22097	4.84534
H	8.55885	8.92484	4.35334
H	10.64502	7.31513	6.97297
H	9.79548	5.05886	4.28902

(b)

FE	8.09587	6.58167	5.91205
N	7.16780	7.27092	7.56833
N	7.72674	4.68666	6.51776
N	6.35688	6.55768	4.87718
N	8.40750	8.49156	5.32287
N	9.85069	6.56153	6.91981
N	9.07085	5.91017	4.27310
H	8.54901	5.86540	3.37863
H	9.07826	9.06662	5.86552
H	9.90814	6.44299	3.97340
H	10.45081	5.72443	6.80413
H	9.81410	6.62009	7.95454
H	6.23653	7.25915	4.12359
H	7.58378	9.12061	5.32600
H	7.74496	3.93337	5.80600
H	7.52428	8.15588	7.97416
H	6.13525	5.68859	4.35727
H	6.80223	4.50696	6.95114
H	7.17680	6.66540	8.40975
H	6.15611	7.49196	7.51347
H	8.35043	4.27569	7.23671
H	5.46944	6.69022	5.39638
H	8.76194	8.65490	4.36225
H	10.54046	7.30897	6.71968
H	9.46776	4.95284	4.30317

C. 2 Cross-validation results

Figure C.1: 2D representation of the result of the BO procedure using a training set composed of all systems from the extended (10) model set, except for the noted test set complex. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Figure C.2: 2D representation of the result of the BO procedure using a training set composed of all systems from the extended (10) model set, except for the noted test set complex. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Figure C.3: 2D representation of the result of the BO procedure using a training set composed of all systems from the reduced (8) model set, except for the noted test set complex. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Figure C.4: 2D representation of the result of the BO procedure using a training set composed of all systems from the reduced (8) model set, except for the noted test set complex. Each point reflects an iteration, with a unique set of HF exchange parameters and resulting RMSE. The color gradient is derived from the mean of the Gaussian process regression, reflecting the predicted RMSE values inbetween sampled points.

Appendix D

Supplemental material for Chapter 6

D. 1 ORCA input files

Frequency calculation of B. 05 model system in HS state
!PBEO DKH-def2-TZVPP SARC/J D3BJ PAL8 tightscf slowconv Numfreq DKH2 grid6
\%method
ScalHFX $=0.10$
end
\%scf
MaxIter 200
DIISMaxEq 10
directresetfreq 10
end
*xyzfile 15 *.xyz

D. 2 CP-PAW input files

*. strc file for the optimization of $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ using PBE0r with $6 \% \mathrm{HF}$ exchange.
Structural data omitted for brevity

```
!STRUCTURE
    !GENERIC LUNIT[AA]=1. !END
    !OCCUPATIONS EMPTY=10 NSPIN=2 SPIN[HBAR]=6. CHARGE[E]=4. !END
    !SPECIES NAME='Fe' NPRO=1 1 1 LRHOX=4
        !NTBO NOFL=1 0 1 CV=T raug/rcov=1.15 LHFWEIGHT=0.06
                focksetup=F cv=T NDDO=F 31=F BONDX=F !END
        !AUGMENT ID='FE_NDLSS_VO' Z= 26.00000 ZV= 8.
                TYPE='NDLSS' RBOX/RCOV= 1.200 RCSM/RCOV= 0.250
                RCL/RCOV=}00.800 0.800 0.800 0.800 0.800 <llll
            !GRID DMIN= 0.100E-05 DMAX= 0.100 RMAX= 20.000 !END
            !POT POW= 3.000 RC/RCOV= 0.702 !END
            !CORE POW= 3.000 RC/RCOV= 0.702 !END
        !END
    !END
    !SPECIES NAME='N_' NPRO=1 1 1 LRHOX=4 RAD/RCOV=1.4
        !NTBO NOFL=1 1 0 CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.06
                FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
        !AUGMENT ID='MY_NDLSS_N' EL='N' ZV= 5.
                        TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=. 25
                        RCL/RCOV=0.75 0.75 0.75 0.75
            !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
            !POT POW=3. RC/RCOV=0.75 VALO_X=-4.3 !END
            !CORE POW=2. RC/RCOV=0.75 !END
        !END
    !END
    !SPECIES NAME='C_' NPRO=1 1 1 LRHOX=4 RAD/RCOV=1.4
        !NTBO NOFL=1 1 0 CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.06
        FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
    !AUGMENT ID='MY_NDLSS_C' EL='C' ZV= 4.
        TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=. 25
        RCL/RCOV=0.85 0.85 0.85 0.85
```

```
            !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
            !POT POW=3. RC/RCOV=0.75 VALO_X=-2.7 !END
            !CORE POW=2. RC/RCOV=0.75 !END
        !END
!END
!SPECIES NAME='H_' M=2. NPRO=1 1 LRHOX=2 RAD/RCOV=1.2
        !NTBO NOFL=1 O CV=T RAUG/RCOV=1.2 LHFWEIGHT=0.06
                        FOCKSETUP=F CV=T NDDO=F 31=F BONDX=F !END
        !AUGMENT ID='MY_NDLSS_H' EL='H' ZV= 1.
                TYPE='NDLSS' RBOX/RCOV=1.2 RCSM/RCOV=. 25
                RCL/RCOV=1.2 1.2 1.2 1.2
            !GRID DMIN=1.E-6 DMAX=.15 RMAX=9. !END
            !POT POW=3. RC/RCOV=1. VALO_X=-1.6 !END
            !CORE POW=2. RC/RCOV=1. !END
        !END
    !END
!LATTICE T= 0.00000 17.00000 17.00000
                        17.00000 0.00000 17.00000
                        17.00000 17.00000 0.0000 !END
    !ATOM NAME= 'Fe1' R= 3.50707 14.65479 15.03014 !END
    !ATOM NAME= 'Fe2', R= 4.94646 10.36137 16.23403 !END
        [...]
!ISOLATE !END
!ORBPOT_x
    !POT ATOM='Fe1' Value=+0.1 TYPE='D' RC=1.5 S=1 !END
!POT ATOM='Fe2' Value=+0.1 TYPE='D' RC=1.5 S=1 !END
!POT ATOM='Fe3' Value=+0.1 TYPE='D' RC=1.5 S=1 !END
!POT ATOM='Fe4' Value=+0.1 TYPE='D' RC=1.5 S=1 !END
        !END
!END
! EOB
```


D. 3 Structural data of converged [2x2] Fe ${ }^{\mathrm{II}}$ grid systems

Optimized $\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{4}$ complex, in XYZ format

3.59659	14.71786	15.31269
4.98745	10.35807	16.14063
9.13302	11.34609	14.30240
8.03795	15.85687	14.57871
4.59061	13.52803	16.64888
5.08489	12.29429	16.82962
4.05269	16.03967	16.57621
2.82956	16.36225	14.42328
6.26247	10.11326	17.49518
5.41796	8.43900	15.85998
5.95386	10.76838	14.38628
7.13237	11.15065	13.87316
3.50412	10.28503	14.98564
3.51068	9.96691	17.46260
9.15375	11.99738	12.54002
11.04376	11.88611	14.15672
8.84877	12.90533	15.60569
8.42323	14.17449	15.68959
9.43979	10.42272	15.91506
9.45878	9.47587	13.60415
7.57118	16.52204	16.26995
7.39432	17.66462	14.06696
6.36698	15.08435	13.68816
5.11604	14.66596	13.93061
8.75990	15.53358	12.87250
9.94323	16.46434	14.86403
2.76668	13.64045	14.01587
1.90201	14.28342	16.25962
5.65802	13.51886	18.65009
4.93671	14.27413	17.75131
5.75873	12.29364	18.02790
4.56162	15.65427	17.76546
4.60548	16.51732	18.85578
4.13711	17.80988	18.70772
3.63528	18.21491	17.48209
3.59457	17.30188	16.43636
2.97770	17.51327	15.13956
2.54382	18.74801	14.67402
1.91421	18.83579	13.44876
1.73728	17.67114	12.72269
2.20525	16.47724	13.23944
6.42021	11.08786	18.41620
7.06200	10.84975	19.62887
7.52200	9.57623	19.90651
7.34117	8.56838	18.97167
6.70612	8.86747	17.77516
6.31746	7.92019	16.74489
6.78092	6.61423	16.65970
6.31836	5.78968	15.65300
5.39797	6.30433	14.75563
4.98135	7.61512	14.89452
5.67141	10.98542	12.14688
5.06452	10.66599	13.34209
6.95741	11.31295	12.51912
3.71413	10.30917	13.65233
2.72265	9.93724	12.75000
1.48476	9.55469	13.23306

H	1.23416	17.67369	11.75825
H	2.06613	15.56341	12.67178
H	7.15023	11.65030	20.36008
H	7.99924	9.35831	20.86029
H	7.65716	7.55093	19.18683
H	7.50102	6.24976	17.38922
H	6.66146	4.75955	15.57480
H	4.99009	5.69729	13.95034
H	4.25673	8.02886	14.19931
H	5.22960	11.01237	11.15857
H	2.93815	9.92766	11.68434
H	0.69979	9.24033	12.54783
H	0.30436	9.22113	15.00114
H	0.16496	9.52689	17.16215
H	0.34022	9.31964	19.63793
H	2.61973	9.50556	20.68072
H	4.55909	9.91910	19.24770
H	7.26345	11.67907	9.76753
H	9.43626	12.28060	8.69863
H	11.43204	12.64192	10.13826
H	12.92257	13.22942	11.67896
H	14.64403	13.20992	13.48223
H	13.99078	12.30678	15.73396
H	11.70078	11.48868	16.07672
H	9.01606	13.45430	18.87325
H	10.23280	11.18443	19.09941
H	10.97190	8.80103	19.06600
H	10.72028	7.48737	16.97150
H	10.17595	6.51862	15.09442
H	10.07129	5.72289	12.73685
H	9.59255	7.41467	10.93967
H	9.21413	9.74803	11.56585
H	8.30921	15.83064	19.48459
H	7.64789	18.22306	19.73455
H	6.99660	19.51556	17.71210
H	6.14866	20.29247	15.80226
H	5.88833	21.21076	13.49810
H	6.63490	19.78975	11.56560
H	7.57421	17.56338	12.00967
H	5.43951	13.98660	10.69875
H	7.61876	15.00851	9.74717
H	9.94437	15.73259	9.20393
H	11.48550	16.33871	11.05754
H	12.68316	16.56655	12.87375
H	13.72685	17.39925	14.97669
H	12.26203	17.65209	17.00309
H	9.89853	17.03689	16.85352
H	3.03635	13.12605	10.69557
H	0.66725	12.41297	11.01643
H	-0.34153	12.55595	13.28486
H	-0.84390	12.47259	15.45196
H	-1.46566	13.06790	17.79164
H	0.13441	14.47704	19.12084
H	2.23740	15.20301	18.08108

Optimized $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{1}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{3}$ complex, in XYZ format

	180		
c 8 s 2			
Fe	3.54987	14.79800	15.34781
Fe	4.84057	10.40365	15.96449
Fe	9.02795	11.45052	14.44362
Fe	8.02486	15.93637	14.79400
N	4.49853	13.53158	16.63350
N	5.01199	12.29796	16.72225
N	3.99790	16.04618	16.68058
N	2.84998	16.48990	14.51379
N	6.22063	10.09796	17.19300

N	5.20971	8.47432	15.59768
N	5.74390	10.83847	14.25622
N	6.96466	11.12615	13.79589
N	3.33778	10.39633	14.84567
N	3.42261	10.00821	17.30805
N	9.17942	11.64991	12.36864
N	11.21511	12.02095	13.94328
N	8.93717	13.12918	15.83175
N	8.41580	14.35523	15.94924
N	9.80556	10.61682	16.20064
N	9.49789	9.20322	14.03957
N	7.50626	16.64577	16.44999
N	7.36490	17.68862	14.19596
N	6.40302	15.08437	13.85855
N	5.11622	14.74381	14.02553
N	8.84651	15.47165	13.16387
N	9.90261	16.61763	15.11199
N	2.73152	13.78750	13.99313
N	1.81376	14.38178	16.22464
C	5.67798	13.43373	18.56767
C	4.89234	14.22366	17.75494
C	5.75885	12.24345	17.87614
C	4.50708	15.59938	17.84842
C	4.54578	16.40444	18.98225
C	4.06488	17.69896	18.90255
C	3.56162	18.16629	17.69954
C	3.53290	17.31204	16.60555
C	2.94828	17.59513	15.30683
C	2.51438	18.85027	14.89923
C	1.95345	19.00777	13.64765
C	1.84805	17.89264	12.83432
C	2.30200	16.67302	13.30131
C	6.47584	11.03240	18.13458
C	7.29699	10.75922	19.22374
C	7.87218	9.50597	19.33347
C	7.60993	8.54700	18.36793
C	6.76363	8.86855	17.31557
C	6.25105	7.95410	16.30940
C	6.72369	6.66485	16.10489
C	6.11457	5.85377	15.16813
C	5.03420	6.36042	14.46641
C	4.62293	7.65785	14.70850
C	5.60027	10.84651	12.00762
C	4.90054	10.68488	13.18875
C	6.88897	11.13159	12.42581
C	3.52854	10.40403	13.50546
C	2.50155	10.07967	12.62728
C	1.25587	9.75844	13.13983
C	1.06006	9.75278	14.51121
C	2.12896	10.06108	15.34372
C	2.16044	9.93886	16.79286
C	1.04288	9.72097	17.58713
C	1.19513	9.54086	18.94799
C	2.47422	9.58283	19.47593
C	3.54294	9.81935	18.63125
C	8.07858	11.37249	11.64227
C	8.12154	11.26636	10.25254
C	9.33509	11.41163	9.61004
C	10.47084	11.67786	10.35553
C	10.35911	11.80461	11.73613
C	11.49210	12.10962	12.62327
C	12.74581	12.48787	12.15012
C	13.75185	12.78191	13.05094
C	13.47273	12.70436	14.40534
C	12.20093	12.32230	14.79516
C	9.04576	13.71599	18.01720
C	9.33408	12.73579	17.08381
C	8.44423	14.71269	17.26789
C	9.96976	11.44817	17.24801

H	14.74230	13.06651	12.69895
H	14.23013	12.92335	15.15503
H	11.95082	12.24680	15.85267
H	9.23092	13.69991	19.08473
H	10.86281	11.80230	19.17678
H	11.97474	9.56944	19.22170
H	11.66817	8.03049	17.30641
H	10.97444	6.73584	15.82381
H	10.43196	5.43880	13.78471
H	9.24556	6.60559	11.90170
H	8.69558	9.00385	12.15316
H	8.24545	16.11595	19.69726
H	7.47552	18.48430	19.84056
H	6.80543	19.67095	17.76211
H	6.03066	20.37305	15.77029
H	5.85418	21.18750	13.42143
H	6.67823	19.69341	11.57920
H	7.62255	17.48795	12.15778
H	5.63831	13.85899	10.87139
H	7.97991	14.42580	10.08080
H	10.38182	14.95780	9.65939
H	11.77096	15.83241	11.52598
H	12.77802	16.47786	13.32618
H	13.65675	17.64871	15.34037
H	12.04264	18.18774	17.19137
H	9.70757	17.50072	16.97680
H	3.14815	13.28151	10.68787
H	0.73157	12.68871	10.88081
H	-0.38151	12.85157	13.09831
H	-0.99806	12.77216	15.23694
H	-1.67138	13.29548	17.57905
H	-0.03884	14.53291	19.03392
H	2.14034	15.18238	18.10316

Optimized $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{3}\left(\mathrm{Fe}_{\mathrm{LS}}\right)_{1}$ complex, in XYZ format

180

c8s6			
Fe	3.60190	14.60556	15.17045
Fe	4.94132	10.36174	16.11563
Fe	9.07830	11.33959	14.58332
Fe	7.93887	15.69699	14.68141
N	4.52934	13.38789	16.69990
N	5.09229	12.18973	16.86164
N	3.89169	15.98618	16.69654
N	2.80925	16.67038	14.42583
N	6.32485	10.06833	17.34374
N	5.32887	8.46014	15.72425
N	5.80942	10.84045	14.41046
N	7.02717	11.11566	13.94499
N	3.41637	10.42216	15.02384
N	3.53424	9.94303	17.46473
N	9.20801	11.77158	12.54728
N	11.26519	12.00815	14.12411
N	8.88245	12.88410	15.99593
N	8.37907	14.12037	16.05455
N	9.86231	10.46875	16.32604
N	9.52324	9.14436	14.13181
N	7.66934	16.60494	16.54845
N	7.09906	17.77507	14.30973
N	6.35656	14.86770	13.50918
N	5.07782	14.51384	13.66385
N	8.78252	15.59489	12.76434
N	10.14802	16.47063	14.81354
N	2.54207	13.83879	13.54279
N	1.53410	14.09375	15.90540
C	5.74633	13.45341	18.60928
C	4.91219	14.16461	17.76404

H	11.49437	16.45644	10.95434
H	12.72822	16.56037	12.62804
H	13.95361	17.24828	14.66796
H	12.67812	17.44105	16.82381
H	10.26316	16.91285	16.82180
H	2.99935	13.61540	10.20929
H	0.54922	13.17062	10.31389
H	-0.60050	13.20224	12.50747
H	-1.28807	12.85523	14.51370
H	-2.04711	12.95601	16.87228
H	-0.44361	13.78520	18.61808
H	1.82845	14.49622	17.90094

Optimized $\left(\mathrm{Fe}_{\mathrm{HS}}\right)_{4}$ complex, in XYZ format

180			
c8s8			
Fe	3.70677	14.73857	15.26925
Fe	5.07929	10.59554	16.13712
Fe	9.10595	11.42891	14.33234
Fe	8.01783	15.74462	14.59898
N	4.74475	13.71702	16.80120
N	5.26448	12.50628	17.00446
N	3.91594	16.20606	16.75769
N	2.89256	16.74262	14.42683
N	6.28693	10.24083	17.80984
N	5.75308	8.43692	16.03718
N	5.91329	10.96131	14.22177
N	7.09109	11.29496	13.69165
N	3.45848	10.24919	14.86230
N	3.23458	10.10730	17.44759
N	9.22554	11.85490	12.28067
N	11.23418	12.10047	13.89301
N	8.89060	12.90481	15.82874
N	8.44910	14.15902	15.92210
N	9.72890	10.43006	16.07199
N	9.53159	9.21674	13.77883
N	7.74016	16.61165	16.48325
N	7.20532	17.82514	14.26374
N	6.39943	14.92078	13.50409
N	5.13736	14.54851	13.72150
N	8.79793	15.60434	12.66363
N	10.20823	16.48836	14.66231
N	2.64084	13.77584	13.73858
N	1.70431	14.08223	16.13164
C	5.61000	13.70309	18.88128
C	4.94181	14.45913	17.92786
C	5.80171	12.47814	18.25799
C	4.45100	15.82104	17.93631
C	4.48900	16.66605	19.04009
C	3.95821	17.93749	18.92143
C	3.42534	18.34248	17.71028
C	3.42385	17.45267	16.63879
C	2.90383	17.77662	15.29937
C	2.47782	19.05280	14.94216
C	2.02784	19.28643	13.65670
C	2.02465	18.23689	12.75439
C	2.46182	16.99703	13.18673
C	6.41004	11.24191	18.70450
C	7.02729	11.04938	19.93689
C	7.50285	9.78834	20.25089
C	7.37178	8.75825	19.33407
C	6.76285	9.01992	18.11063
C	6.55234	8.02208	17.04823
C	7.13530	6.75870	17.06080
C	6.89421	5.88993	16.01282
C	6.07986	6.30838	14.97338
C	5.53885	7.58072	15.03223

H	5.91693	14.00229	19.87647
H	4.91412	16.32060	19.97957
H	3.95156	18.61351	19.77501
H	2.99557	19.33544	17.61062
H	2.49660	19.86533	15.66414
H	1.68084	20.27627	13.36431
H	1.67678	18.36702	11.73186
H	2.46315	16.14913	12.50347
H	7.10857	11.87184	20.64434
H	7.96579	9.60147	21.21855
H	7.71959	7.75890	19.58184
H	7.77742	6.45605	17.88468
H	7.33276	4.89330	16.01031
H	5.85402	5.65763	14.13138
H	4.88745	7.94367	14.23725
H	5.25650	10.80352	10.98791
H	2.93710	10.05100	11.53504
H	0.69908	9.29861	12.33788
H	0.26520	9.17265	14.77060
H	-0.00377	9.35613	16.82468
H	-0.09621	9.36064	19.29813
H	2.00219	9.87526	20.57858
H	4.08017	10.33755	19.30960
H	7.28254	11.35380	9.56948
H	9.45820	11.79330	8.43208
H	11.47031	12.26026	9.79897
H	12.93207	13.07216	11.13371
H	14.70503	13.47024	12.82187
H	14.19712	12.99054	15.23391
H	11.95104	12.11180	15.82171
H	9.34715	13.53522	19.03873
H	10.45478	11.26319	19.26054
H	11.32368	8.92454	19.24810
H	11.13255	7.57352	17.18390
H	10.60577	6.49740	15.47848
H	10.22169	5.42750	13.28007
H	9.35933	6.84087	11.39060
H	8.95169	9.24716	11.80393
H	8.56244	15.88452	19.67115
H	7.91133	18.27479	19.95433
H	7.17257	19.57629	17.98040
H	6.17025	20.35661	16.25305
H	5.51402	21.31139	14.05935
H	5.95289	19.96988	11.98377
H	7.04357	17.74935	12.21445
H	5.39167	14.16995	10.44897
H	7.64618	14.84165	9.58574
H	9.94278	15.60084	8.97844
H	11.48056	16.35437	10.76524
H	12.72477	16.66520	12.40977
H	13.97837	17.38678	14.41958
H	12.76118	17.51570	16.61276
H	10.35812	16.91759	16.67010
H	2.96699	13.40264	10.40230
H	0.55975	12.79650	10.64394
H	-0.47954	12.82373	12.89308
H	-1.00814	12.45111	14.94048
H	-1.68070	12.60493	17.32280
H	-0.12030	13.71922	18.94357
H	2.02309	14.63496	18.08800

[^0]: ${ }^{1}$ Development version, revision 1216, latest changes at 19.01.2019

