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1. Abstract 
 

Objective: α-synuclein and degeneration of dopaminergic neurons have been closely 

associated to Parkinson´s disease. The interaction of α-synuclein with the 

neurotransmitter dopamine has been connected to neurodegeneration, and suggested 

to be causatively involved in Parkinson´s disease (PD). Like α-synuclein, ß-synuclein 

is extensively expressed in the central nervous system. Recent findings in rodent 

models of PD suggest that ß-synuclein can aggregate and induce degeneration of 

dopaminergic neurons (Taschenberger et al. 2013). This suggests a link between ß-

synuclein and the dopaminergic neurotransmitter phenotype that has not been 

investigated so far. Therefore, the objective of this thesis is to generate a robust cell-

based model with dopaminergic neurotransmitter phenotype, and to study the 

neurodegeneration induced by ß-synuclein in the context of dopamine.    

Methods: Primary cortical neurons, isolated from rat pups during embryonic 

development day 18, were used to develop the cell-based model with dopaminergic 

neurotransmitter phenotype. Two approaches were employed. In a transdifferentiation 

approach, transcription factors known to induce the dopaminergic neurotransmitter 

phenotype were expressed in cortical neurons. In the second approach, enzymes, 

substrates, and transporter proteins necessary to mimic the dopaminergic 

neurotransmitter phenotype, were introduced into cortical neurons. Neurotoxicity of α-

synuclein, ß-synuclein, and γ-synuclein were comparatively elucidated in the 

developed cell-model.  

Results: In the first approach to develop the cell-model by transdifferentiation, 

transcription factors Ascl1, Nurr1, and Lmx1a (“ANL”) induced the expression of 

classical dopaminergic neurotransmitter markers tyrosine hydroxylase (TH), aromatic 
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L-amino acid decarboxylase (AADC), vesicular monoamine transferase 2 (VMAT2), 

and dopamine transporter (DAT) in 15-22% of total cortical neurons. Results further 

revealed that “ANL” induced the dopaminergic neurotransmitter phenotype only in 

cortical GABAergic neurons. GABAergic neurons lost their GABA neurotransmitter-

determining marker GAD65 by DIV 21, suggesting a true neuronal phenotype switch. 

However, “ANL” caused degeneration of glutamatergic neurons. Moreover, “ANL” was 

unable to transdifferentiate midbrain GABAergic neurons in culture. In conclusion, 

neuronal transdifferentiation was achieved in principle. However, due to low yield of 

desired neurons, and due to the profound loss of cells, the second approach was 

employed. 

In the second approach to develop the cell-based model, AADC, VMAT2 and multiple 

doses of extracellular L-3,4-dihydroxyphenylalanine (L-DOPA) were introduced into 

the cortical neurons. This resulted in robust dopamine production. Results suggested 

that most of the dopamine was incorporated into and presumably released by 

glutamatergic vesicles in the cell culture supernatant due to endogenous electrical 

activity of cortical neurons. Similarly, the introduction of DAT, VMAT2, and multiple 

doses of extracellular dopamine dramatically enhanced the intracellular dopamine 

levels. In conclusion, a cell-model based on AADC-VMAT2-L-DOPA, and another cell-

model based on DAT-VMAT2-dopamine were established.  

Using the developed cell-models, it was found for the first time that dopamine 

aggravates neurotoxic properties of ß-synuclein, and to a similar extent, of α-synuclein.  

It has been reported that α-synuclein impairs endogenous network activity by 

decreasing the action potential frequency (Tolo et al. 2018). However, in this study, it 

was found that dopamine production in α-synuclein and ß-synuclein overexpressing 

cells does not impair the endogenous network activity in vitro.  Furthermore, NMR 
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studies revealed that the binding affinity of dopamine with ß-synuclein is 10-100 fold 

less in comparison to the binding affinity of dopamine with α-synuclein, suggesting that 

ß-synuclein-dopamine binding might not be directly responsible for aggravated 

neurodegeneration. 

Conclusion: The results in this study provide new perspectives on the 

neurodegeneration induced by ß-synuclein in the context of the neurotransmitter 

dopamine. 
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2. Introduction 
 

2.1 Parkinson´s disease: A neurodegenerative disorder 
 

Parkinson´s disease (PD) is one of the most fast growing neurological disorders of the 

central nervous system. The number of people affected by PD is expected to double 

to a staggering 14.2 million by 2040 (Dorsey and Bloem 2018). PD affects 1-2% of all 

individuals over 65 years of age. There are no curative treatments available. The 

etiology of PD is not clear. Further understanding of biological mechanisms of PD at 

the cellular and molecular level is essential, and a need of the hour, to develop effective 

therapeutics. 

2.2 Characteristics of Parkinson´s disease 
 

2.2.1 Clinical features 

 

Dr. James Parkinson first described the clinical symptoms of PD in 1817. Typical motor 

symptoms of PD include tremor at rest, bradykinesia, akinesia, postural instability, and 

rigidity and non-motor symptoms include mainly sleep disturbances, depression, 

constipation, anosmia (Barker and Williams-Gray 2016). 

2.2.2 Pathophysiological features 
 

Two major pathophysiological hallmarks are known for PD. In 1912, Frederik Lewy 

discovered protein aggregates in the cell bodies of neurons. These aggregates were 

named after him as Lewy bodies and Lewy neurites. Formation of Lewy bodies and 

Lewy neurites are the first pathophysiological hallmark. Konstantin Tretiakoff in 1919 

suggested that the pathological feature of PD could be the loss of mostly dopaminergic 

neurons from the substantia nigra. This theory was accepted after decades and is 
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considered as one of the pathological hallmarks of PD (Drew 2016). In 1997, Spillantini 

and colleagues reported for the first time that the primary constituent of Lewy bodies 

is the misfolded protein α-synuclein (Spillantini et al. 1997). Therefore, the two major 

pathophysiological hallmarks of PD are the progressive loss of mostly dopaminergic 

neurons in the substantia nigra, and the formation of Lewy bodies and Lewy neurites 

majorly composed of the protein α-synuclein. 

 

 

 

 

 

 

 

 

 

In addition to α-synuclein, Lewy bodies and Lewy neurites are comprised of 14-3-3 

chaperon-like protein (Kawamoto et al. 2002), synphilin-1 (Wakabayashi et al. 2000), 

ubiquitin (Uryu et al. 2006). 

 

adapted from Spillantini et al. 1997 

Figure 2.1. Lewy bodies in neurons. 

(A) Pigmented neuron with two Lewy bodies immunopositive for α-synuclein. 

(B) Lewy body in pigmented neurons of substantia nigra immunopositive for α-synuclein. 

A B 
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2.3 The synuclein protein family 
 

Synucleins are natively unfolded proteins that possess very little or no ordered 

structure under physiological conditions (Uversky 2008). The synuclein family consists 

of three proteins: α-synuclein, ß-synuclein, and γ-synuclein.  

SNCA gene lies on chromosome 4 and encodes α-synuclein that is a 140 aminoacid 

protein (Campion et al. 1995). Three missense mutations (A30P, A53T, E46K) of 

SNCA gene with high penetrance had been identified as the first genetic evidence of 

the involvement of α-synuclein gene in PD (Kruger et al. 1998; Polymeropoulos et al. 

1997; Zarranz et al. 2004). SNCB gene lies on chromosome 5 and codes for ß-

synuclein that is a 134 aminoacid protein (Spillantini, Divane, and Goedert 1995). Two 

ß-synuclein mutations, V70M and P123H, were identified in highly conserved regions 

of ß-synuclein (Ohtake et al. 2004). These mutations were suggested to be linked to 

dementia with Lewy bodies. SNCG gene lies on chromosome 10 and codes for γ-

synuclein that is a 127 aminoacid protein (Lavedan et al. 1998). The overexpression 

of γ-synuclein in transgenic mice is linked to degeneration of motor neurons (Ninkina 

et al. 2009). Mutated forms of γ-synuclein are not reported so far. 

The proteins consist of three regions: N-terminal region, non-amyloid ß component 

domain (NAC), and C-terminal region. The highly conserved N-terminal region is 

amphipathic and rich in lysines, and contains 5 - 7 imperfect motif repeats of KTKEGV 

that is known to bind to membranes to form α-helices (Ulmer et al. 2005). NAC domain 

is rich in hydrophobic residues, and is supposed to be responsible for α-synuclein 

aggregation (Hashimoto et al. 2000; Spillantini et al. 1997; Ueda et al. 1993). In ß-

synuclein, NAC domain lacks 11 residues (71-82) that are known to be crucial for α-

synuclein oligomerization. In γ-synuclein, the NAC domain is not identical to α-

synuclein as it is less hydrophobic than the NAC domain of α-synuclein (Surguchov 
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2013). C-terminal region is negatively charged, highly disordered, and is known to bind 

metals, small molecules, and proteins (Ulmer et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

1 61 95 140 

A 
α-synuclein 

71 82 134 1 

B 
ß-synuclein 

127 1 

C 
γ-synuclein 

N-terminal region C-terminal region 

NAC 

Figure 2.2. The synuclein protein family. 

(A) α-synuclein: 140 amino acids long, highly conserved N-terminal region (1-61), NAC 

domain (61-95), and C-terminal region (95-140). 

(B) ß-synuclein: 134 amino acids long, highly conserved N-terminal region, lacks 11 

residues in the NAC domain, and least conserved C-terminal region. 

(C) γ-synuclein: 127 amino acids long, less conserved N-terminal region, less hydrophobic 

NAC domain, and least conserved C-terminal region. 
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2.3.1. Physiological roles of synucleins 
 

α-synuclein and ß-synuclein are mainly expressed in the central nervous system and 

γ-synuclein is mainly expressed in the peripheral nervous system. The physiological 

roles of synucleins are not clearly defined. There are studies performed which suggest 

their role in different cellular processes. α-synuclein and ß-synuclein are presynaptic 

proteins that suggests their association with synaptic vesicles (Kahle et al. 2000; Lee, 

Jeon, and Kandror 2008; Zhang et al. 2008; Chandra et al. 2004). α-synuclein controls 

vesicles exocytosis by directly interacting with phospholipase D2 (Payton et al. 2004). 

It is reported that α-synuclein can act as a chaperone protein for presynaptic SNARE 

protein, which is involved in the neurotransmitter dopamine release (Burre et al. 2010). 

α-synuclein interacts with target membrane- and vesicle-associated SNARE proteins, 

and therefore affects vesicle recycling, stability of target membrane-associated 

SNARE complexes, and the neurotransmitter release, like dopamine (Lashuel et al. 

2013; Scott et al. 2010).  

2.3.2. α-synuclein and neurodegeneration 
 

The reason for progressive degeneration of dopaminergic neurons is not clear. After 

21 years of research, the precise mechanism of action of α-synuclein mediated 

neurodegeneration is not fully understood.  

α-synuclein is an unfolded monomer which tends to aggregate. In the process of α-

synuclein aggregation and fibrillogenesis, the α-synuclein oligomers and amyloid fibrils 

are known to be toxic and may induce mitochondrial dysfunction, disrupt ER-Golgi 

trafficking, inhibit autophagy and proteasome pathways, and disrupt synaptic 

transmission (Lashuel et al. 2013). The toxic cytosolic ring-like α-synuclein oligomers 

may also disrupt membrane integrity and disturb intracellular calcium homeostasis 
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(Danzer et al. 2007). The toxic α-synuclein oligomeric forms cause toxicity by causing 

insults on mitochondria (Hsu et al. 2000), lysosome (Hashimoto, Kawahara, et al. 

2004), and microtubules (Alim et al. 2004). The α-synuclein oligomers are also known 

to affect axonal transport of synapsin 1, resulting in non-functional synapses (Scott et 

al. 2010). Furthermore, our group reported that overexpression of α-synuclein in 

cultured cortical neurons lead to cell death by increase in mitochondrial thiol oxidation, 

outer mitochondrial membrane permeabilization, and activation of caspases (Tolo et 

al. 2018). It is interesting to learn new mechanisms of neurodegeneration. However, 

the question why mostly dopaminergic neurons are degenerated in Parkinson´s 

disease remains to be answered. 

Figure 2.3. Mechanisms through which α-synuclein aggregates and causes 

toxicity (Lashuel et al. 2013) 

The unfolded α-synuclein monomer dimerizes to form ring-like oligomers that may form 

pore-like structures resulting in the influx of Ca2+ ions. The propagating dimer might 

oligomerize with α-synuclein monomer forming oligomers. Small oligomers further 

oligomerize to form amyloid fibrils that aggregate to form Lewy body. The intermediate α-

synuclein oligomeric forms are known to be toxic to neurons. 

adapted from Lashuel et al. 2013 
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α-synuclein has been intimately linked to Parkinson´s disease because α-synuclein 

rich Lewy bodies and Lewy neurites are also detected in dopaminergic neurons in 

substantia nigra. Although the mechanism of degeneration of mostly dopaminergic 

neurons is not clear so far, dopaminergic neurons exhibiting Lewy body pathology 

suggests a strong link between α-synuclein and the neurotransmitter dopamine.  

2.4 Dopamine and α-synuclein 
 

The interaction of dopamine to α-synuclein is known to affect the structural 

organization and aggregation propensities of α-synuclein. Dopamine can readily 

oxidize to dopamine quinone species, hydrogen peroxide, and other electrophiles at 

cytosolic pH (Graham 1978; Jenner and Olanow 1996; Sulzer and Zecca 2000). 

Conway and colleagues were the first to show in cell-free solution that oxidized 

dopamine can interact with α-synuclein oligomers and kinetically stabilize them 

resulting in the accumulation of protofibrils (Conway et al. 2001). 4 years later, Norris 

and colleagues showed that oxidized form of dopamine (dopaminochrome) interacts 

with the C-terminal region of α-synuclein 125YEMPS129, which inhibits α-synuclein 

fibrillization (Norris et al. 2005). This interaction was found to be non-covalent and 

reversible. Mutation or deletion of 125YEMPS129 motif restores the ability of α-synuclein 

to fibrillize (Norris et al. 2005). 4 years later, Herrera and colleagues demonstrated that 

a point mutation, E83A, in the NAC domain prevents dopamine to inhibit α-synuclein 

fibrillization (Herrera et al. 2008). These reports strongly suggest that dopamine 

oxidation is required for kinetic arrest of α-synuclein protofibrils. The mechanism, 

through which dopamine-α-synuclein adducts cause toxicity in a neuronal cell, is 

unexplored. Some in vitro studies revealed that dopamine-α-synuclein adducts inhibit 

the formation of SNARE, neurotransmitter release (Choi et al. 2013), and prevent 

degradation by chaperone-mediated autophagy (Martinez-Vicente et al. 2008).  
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With increasing in vitro evidences that dopamine inhibits α-synuclein fibrillization, very 

few groups have explained if this mechanism also takes place in vivo. To study this 

mechanism in vivo, Mor and colleagues, targeted a Lentiviral vector to substantia nigra 

expressing a mutated (R37E and R38E) form of tyrosine hydroxylase. Tyrosine 

hydroxylase is a rate-limiting enzyme for dopamine biosynthesis. The mutated form 

(TH-RREE) of tyrosine hydroxylase is devoid of feedback inhibition by dopamine. As a 

result, there was increased (up to 50% more) dopamine biosynthesis in substantia 

nigra. When TH-RREE was expressed in non-transgenic mice, 5 months post injection 

(5 mpi) there was no neurotoxicity observed. Interestingly, dopamine transporter was 

found to be upregulated, which suggests that cells protect themselves by tweaking the 

dopamine metabolic systems (Mor et al. 2017).  

Next, they increased dopamine levels in mice expressing human α-synuclein with 

A53T familial PD mutation. By 5 mpi, 62% of dopaminergic synapses were lost, and 

there was 25% decrease in the cell bodies in substantia nigra as compared with control 

vector-injected A53T mice. This indicated that the increased dopamine biosynthesis 

aggravated α-synuclein neurotoxicity in cells (Mor et al. 2017). It was suspected that 

oxidized dopamine might interact with α-synuclein motif 125YEMPS129, as this was 

observed in vitro (Conway et al. 2001; Herrera et al. 2008; Norris et al. 2005). 

In an attempt to understand the mechanism of neurotoxicity, Mor and colleagues used 

model organism Caenorhabditis elegans. The 125YEMPS129 motif of A53T α-synuclein 

was mutated to 125FAAFA129 and expressed along with increased dopamine levels in 

dopaminergic neurons. Interestingly, they found that enhanced dopamine production 

in A53T α-synuclein expressing worms did not result in neurotoxicity. This suggested 

that the interaction of dopamine with the 125YEMPS129 motif on C-terminal region of α-

synuclein was responsible to induce neurodegeneration in vivo (Mor et al. 2017).  
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After confirming that dopamine interacts with the 125YEMPS129 motif on C-terminal 

region of α-synuclein, Mor and colleagues extracted substantia nigra from increased 

dopamine producing A53T mice and control A53T mice and characterized α-synuclein 

species using size-exclusion chromatography and sodium dodecyl sulfate 

polyacrylamide gel electrophoresis. Results suggested that dopamine increased the 

steady-state level of α-synuclein oligomers (Mor et al. 2017). These reports confirm 

that dopamine induces neurodegeneration in vivo by directly interacting with 

125YEMPS129 motif in α-synuclein, thereby stabilizing the α-synuclein oligomeric 

species, and providing a link between dopamine toxicity and α-synuclein aggregation 

(Mor et al. 2017). 

2.5. Dopamine and ß-synuclein 
 

There is no genetic link between ß-synuclein and PD described so far, and ß-synuclein 

is not detected in Lewy bodies and Lewy neurites. ß-synuclein is present in similar 

levels as α-synuclein in the presynaptic nerve termini in the central nervous system 

(Mori et al. 2002).  

ß-synuclein and α-synuclein share a 78% sequence homology. There are more 

negatively charged residues in the C-terminus of ß-synuclein than α-synuclein, but ß-

synuclein lacks 11 residues in the NAC domain that are known to promote 

oligomerization in α-synuclein.  

ß-synuclein has been shown to have a potential to confer neuroprotection against α-

synuclein in different experimental set-ups in vitro and in vivo. The α-ß-synuclein 

bigenic mice had reduced neurodegenerative effects as compared to α-synuclein mice 

(Hashimoto et al. 2001). Furthermore, Hashimoto and colleagues demonstrated that 

ß-synuclein coimmunoprecipitates with α-synuclein and inhibits α-synuclein 
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aggregation in dose-dependent manner in vitro. The mechanism of neuroprotection is 

being widely studied. Recent studies in cell-free solution by Leitao and colleagues 

suggest that ß-synuclein inhibits α-synuclein aggregation by incorporating into α-

synuclein oligomers (Leitao et al. 2018). The α-synuclein oligomers can act as a 

template to seed the nucleation of free monomers through surface interaction between 

oligomers and free α-synuclein monomers. This process is called as autocatalytic 

surface interactions. Brown and colleagues determined that ß-synuclein competes for 

the binding of α-synuclein monomers to α-synuclein oligomers, thereby inhibiting the 

autocatalytic surface interactions (Brown et al. 2016).  

Until 2012, ß-synuclein was considered as nonamyloidogenic. In 2013, our group 

reported that in vivo ß-synuclein forms proteinase K resistant aggregates, similar to α-

synuclein, suggesting that ß-synuclein is amyloidogenic (Taschenberger et al. 2013). 

Recently it was reported that the fibrillation propensity of ß-synuclein also depends on 

the pH. Moriarty and colleagues found that ß-synuclein fibrillates at acidic pH 5.8, but 

not at pH 7.3. The N-terminal domain of ß-synuclein is 90% identical to α-synuclein. 

When ß-synuclein contained the N-terminal domain of α-synuclein, ß-synuclein lost its 

ability to fibrillate, even at pH 5.8 (Moriarty et al. 2017), suggesting that N-terminal 

domain of ß-synuclein is important for fibrillation of ß-synuclein. The NAC domain of 

ß-synuclein lacks 11 residues found in the NAC domain of α-synuclein. When α-

synuclein contained the NAC domain of ß-synuclein, the chimeric (α-synuclein + NAC 

domain of ß-synuclein) synuclein fibrillated only at acidic pH 5.8 (Moriarty et al. 2017), 

suggesting that ß-synuclein fibrillates at pH 5.8 due to its NAC domain. Interestingly, 

Moriarty and colleagues also showed that a point mutation of glutamic acid to alanine 

(E61A) resulted in robust and rapid fibrillation of ß-synuclein and α-synuclein at both 

pH 5.8 and 7.3, suggesting that residue glutamic acid at 61 position in ß-synuclein is 

crucial for its fibrillation. The C-terminal domain, which has the lowest sequence 
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similarity to α-synuclein, was not found to be involved in ß-synuclein fibrillation 

(Moriarty et al. 2017).  

ß-synuclein is known as a component of axonal lesions in hippocampus associated 

with DLB and PD (Galvin et al. 1999).  The DLB-linked P123H mutation of ß-synuclein 

causes progressive neurodegeneration in transgenic mice, which is aggravated when 

crossed with α-synuclein transgenic mice (Fujita et al. 2010). The bigenic mice (α-

synuclein/P123H ß-synuclein) showed enhanced loss of tyrosine hydroxylase, L-

DOPA decarboxylase (AADC), dopamine transporter (DAT), and 40% reduction in 

dopamine concentration (Fujita et al. 2010). P123H mutation in ß-synuclein may 

disturb the polyproline II helix making the C-terminal region of mutant ß-synuclein more 

flexible like in α-synuclein (Bertoncini et al. 2007), causing it to misfold and aggregate 

α-synuclein (Fujita et al. 2010). In 2013, our group, Taschenberger and colleagues, 

reported that ß-synuclein degenerated nigral dopaminergic neurons, similar to α-

synuclein, in rodent models of PD (Taschenberger et al. 2013). α-synuclein, ß-

synuclein, γ-synuclein, and enhanced green fluorescent protein (EGFP) were 

expressed by adeno-associated viral vectors in rat substantia nigra. Vesicular 

monoamine transporter 2 (VMAT2) positive cells were counted. At 8th week after 

injection, ß-synuclein induced neurodegeneration in 45% of dopaminergic neurons, 

which was found to be similar to α-synuclein induced neurodegeneration 

(Taschenberger et al. 2013). Dopaminergic neurons were not lost in EGFP and γ-

synuclein expressing cells. The results suggested that not only α-synuclein, but also 

ß-synuclein should be considered as a toxic molecule in PD, DLB, and other 

synucleinopathies (Taschenberger et al. 2013). 

As ß-synuclein induced neurodegeneration of nigral dopaminergic neurons, it strongly 

indicated to a connection between ß-synuclein and the neurotransmitter dopamine, 
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which has not been investigated so far. Therefore, the aim of this thesis is to investigate 

the neurotoxicity of ß-synuclein in the context of the neurotransmitter dopamine. 

In order to study the neurodegeneration induced by ß-synuclein in the context of 

dopamine, a robust dopamine producing cell-based model is very essential. There are 

few in vitro cell-based models developed for Parkinson´s disease. 

2.6. Cell-based models for PD 
 

Phaeochromacytoma (PC12) cells are derived from rat adrenal medulla (Greene and 

Tischler 1976). PC12 cells do not originate from the CNS. Although PC12 cells can be 

differentiated into non-dividing cells, they still have cancerogenous properties, and 

have a physiology that is very different from normal cells in tissue (Hyman and Simons 

2011). MN9D is another cell-line in use. It is derived from mice by the fusion of ventral 

mesencephalic cells and neuroblastoma cells. MN9D cells expressed TH, voltage-

dependent sodium channels, and synthesized dopamine (Choi et al. 1992). However, 

they were reported to lack electrical activity of “dopaminergic neuron-like cells” (Rick 

et al. 2006). Another cell-line commonly used is SH-SY5Y that mimics dopaminergic 

neurons. This cell-line is a sub-clone of a clone isolated from a neuroblastoma bone 

marrow biopsy (Biedler, Helson, and Spengler 1973). It is difficult to differentiate into 

dopaminergic cells and they originate from a cancerogenous tissue. However, it is 

reported that TH and AADC could not be detected in this cell-line, and cannot be used 

as a cell-based model for PD research (Xie, Hu, and Li 2010).  

Primary midbrain cells isolated from ventral mesencephalon of mouse or rat pups at 

embryonal development day 12-15 are used. These cultures contain only 5 – 10% of 

dopaminergic neurons in a pool of GABAergic cells, and are short-lived (Yan, Studer, 

and McKay 2001; Prasad et al. 1994).  
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Another dopaminergic cell-model widely used for PD research is Lund Human 

Mesencephalic cells (LUHMES). LUHMES cell-line was developed when v-myc was 

introduced to immortalize 2-month-old fetal human ventral mesencephalic cells (Scholz 

et al. 2011; Lotharius et al. 2005). It was shown that human-derived LUHMES cells 

could be differentiated to post-mitotic neurons within 5 days in the presence of 

tetracycline that turns off myc oncogene (Scholz et al. 2011). It is reported that during 

the process of differentiation of LUHMES cells, dopaminergic markers TH, AADC, 

receptor tyrosine kinase, and DAT were expressed (Scholz et al. 2011). The 

expression required the presence of dibutryl cyclic adenosine monophosphate (cAMP) 

and glial cell derived neurotrophic factor (GDNF) in the cell culture medium. LUHMES 

were also demonstrated to have electrophysiological properties. The intracellular 

dopamine was detected to be less than 0.2 nanograms (per 10,000 cells) (Scholz et 

al. 2011). Even though LUHMES differentiate into “dopaminergic neuron-like cells”, 

they are originated from non-neuronal cells immortalized by v-myc oncogene and they 

are difficult to maintain in vitro for longer duration. 

The discovery that forced expression of transcription factors to reprogram human 

fibroblasts into induced pluripotent stem cells (iPSCs) revolutionized regenerative 

medicine (Takahashi and Yamanaka 2006). Human derived induced pluripotent stem 

cells (hiPSCs) are used widely in PD research in recent years as they carry the genetic 

make-up of the patients. Human iPSCs can be differentiated into dopaminergic 

neurons using different protocols (Arenas, Denham, and Villaescusa 2015). 

Interestingly, forced expression of transcription factors converted fibroblasts (Caiazzo 

et al. 2011) and hiPSCs (Theka et al. 2013) into dopaminergic neurons (iDA). The 

transcription factors used were Ascl1: Achaete-scute homolog 1; Lmx1a: LIM 

homeobox transcription factor 1, alpha; Nurr1: Nuclear Receptor Related 1. The iDA 

neurons were also generated by ectopic expression of Nurr1 and Pitx3: Pituitary 
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homeobox 3 in mouse iPSCs (Salemi et al. 2016). It was interesting to learn that 

dopaminergic neurotransmitter phenotype determining transcription factors involved 

Lmx1a, Nurr1, and Pitx3. It is reported that Lmx1a is central and acts as a core 

component for determining dopaminergic phenotype by forming an Lmx1a-Wnt1-ß-

catenin autoregulatory loop (Chung et al. 2009; Andersson et al. 2006). Additionally, 

Lmx1a upregulates Nurr1 and Pitx3, and Nurr1 and Pitx3 in turn regulate the 

expression of dopaminergic neurotransmitter battery of genes (Arenas, Denham, and 

Villaescusa 2015). In contrast, Ascl1 is a pan-neuronal marker that is not involved in 

dopaminergic fate determination. Ascl1 is known to play a pivotal role in 

transdifferentiation, that is, to convert mouse fibroblasts into induced neurons 

(Vierbuchen et al. 2010) by acting as a pioneer transcription factor (Wapinski et al. 

2013). In spite of the recent advances, the number of dopaminergic neurons obtained 

in vitro by transdifferentiation or patterning and differentiation vary from 7 – 70%, and 

the dopamine production reported from different protocols is also variable (Marton and 

Ioannidis 2018; Arenas, Denham, and Villaescusa 2015).  

In contrast, the cortical neurons from rodent embryos can be readily isolated in very 

large amounts. These neurons survive in culture for several weeks, show endogenous 

non-stimulated neuronal network activity, and are a reliable and valuable cellular model 

for neurobiological studies. It has not been investigated so far, if postnatal cortical 

neurons can be experimentally prompted to switch their neurotransmitter phenotype to 

another neurotransmitter phenotype of interest. Using the knowledge gained from the 

existing cell-based models, and the recent progresses made in the field of regenerative 

medicine, a transdifferentiation strategy was devised to induce the dopaminergic 

neurotransmitter phenotype in readily available rat cortical neurons with an objective 

to generate a large number of neurons with the dopaminergic neurotransmitter 

phenotype. 
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To develop a dopaminergic cell-based model through transdifferentiation strategy, the 

transcription factors Ascl1, Nurr1, Lmx1a, and Pitx3 were introduced into rat cortical 

neurons at embryonal development day 18. Results suggested that Ascl1, Nurr1, and 

Lmx1a transdifferentiated only cortical GABAergic neurons to dopaminergic neurons 

with the upregulation of classical dopaminergic markers TH, AADC, VMAT2, and DAT. 

Due to low yield of dopaminergic neurons and profound loss of cells that were unable 

to transdifferentiate, an alternate experimental paradigm was exploited. In this 

approach AADC, VMAT2, L-3,4-dihydroxyphenylalanine (L-DOPA) or DAT, VMAT2, 

dopamine were introduced into cortical neurons to mimic the dopaminergic 

neurotransmitter phenotype. As a result, robust dopamine production and enhanced 

intracellular dopamine levels were achieved. Using the cell-based model, which mimics 

the dopaminergic neurotransmitter phenotype, it was found for the first time that 

dopamine aggravated the neurotoxic properties of ß-synuclein, and to a similar extent, 

of α-synuclein. NMR studies revealed that dopamine might not be directly involved in 

aggravating neurotoxicity of ß-synuclein. Taken all together, the results of this thesis 

provide new perspectives on the neurodegeneration induced by ß-synuclein in the 

context of the neurotransmitter dopamine. 
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2.7. Aim of the thesis 
 

To generate a robust cell-based model with dopaminergic neurotransmitter phenotype, 

and to study the neurodegeneration induced by ß-synuclein in the context of dopamine. 

2.7.1. Objectives 
 

▪ To generate a dopaminergic cell-based model by inducing dopaminergic 

neurotransmitter phenotype using a transdifferentiation approach: introduction 

of transcription factors Ascl1, Lmx1a, Nurr1, and Pitx3 into rat cortical neurons 

isolated at embryonal day of development 18. 

 

▪ To generate a dopaminergic cell-based model by mimicking the dopaminergic 

neurotransmitter phenotype: introduction of AADC, VMAT2, and extracellular L-

DOPA or DAT, VMAT2, and extracellular dopamine into rat cortical neurons 

isolated at embryonal day of development 18. 

 

▪ To study the neurotoxicity induced by ß-synuclein in a cell-based model with 

dopaminergic neurotransmitter phenotype. 
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3. Results 
 

3.1 Primary approach to develop a dopaminergic cell-model 

by transdifferentiating primary cortical neurons using 

transcription factors 
 

Transcription factors, Ascl1: Achaete-scute homolog 1, Lmx1a: LIM homeobox 

transcription factor 1, alpha, Nurr1: Nuclear Receptor Related 1 and Pitx3: Pituitary 

homeobox 3, were employed to transdifferentiate primary cortical neurons isolated at 

day 18 (E18) from rat embryos. 

3.1.1 Endogenous levels and overexpression of transcription 

factors in primary cortical neurons 
 

In order to determine the time-point of the introduction of transcription factors into 

cortical neurons, the endogenous levels of Nurr1, Ascl1, Lmx1a, and Pitx3 were 

analyzed. 

Cortical neurons were isolated from E18 rat embryos and plated on poly-L-ornithine 

and laminin-coated wells (150,000 cells/well). Western blot of the cell lysates was 

performed at day in vitro (DIV) 0, 2, 4, 7, 9, 11, 14.  

Results indicated that Nurr1 peaked at DIV 4 and Lmx1a peaked at DIV 7 (Fig.3.1.A). 

The endogenous Ascl1 was sparingly detected until DIV 9 in primary cortical neurons 

(Fig.3.1.A). Furthermore, Pitx3 was endogenously expressed (Fig.3.1.A) consistently 

until DIV 14. The results indicated that at DIV 0, the endogenous levels of Ascl1, Nurr1, 

and Lmx1a were low; however, Pitx3 expressed consistently until DIV 14. It was 

hypothesized that an early introduction of transcription factors will allow efficient 

transdifferentiation of cortical neurons. Therefore, DIV 0 was determined to be an ideal 
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time-point to introduce Nurr1, Ascl1, Lmx1a, and Pitx3. In order to determine if the 

introduced transcription factors can be detected in cortical neurons, the next objective 

was to establish the overexpression pattern of Nurr1, Ascl1, Lmx1a, and Pitx3. 

Monocistronic adeno-associated virus vectors with neuron-specific human synapsin 1 

gene promoter (Kugler et al. 2003) drove the overexpression of transcription factors 

Ascl1, Nurr1, Lmx1a, and Pitx3 in rat E18 primary cortical neurons (Fig.3.1.B). AAV 

serotype 6 (AAV-6) was used. Primary cortical neurons were isolated from E18 rat 

embryo and plated on poly-L-ornithine and laminin-coated wells on a 24-well plate. 

AAV-6 vectors expressing Ascl1, Nurr1, Lmx1a, and Pitx3 were introduced into primary 

cortical neurons at day in vitro (DIV) 0.  

Western blot analysis revealed that anti-Nurr1, anti-Ascl1, and anti-Lmx1a antibody 

detected a robust overexpression of Nurr1 (Fig.3.1.C), Ascl1 (Fig.3.1.D), and Lmx1a 

(Fig.3.1.E) respectively, in cultured cortical neurons. Overexpression of Pitx3 was not 

achieved in cortical neurons because Pitx3 was endogenously expressed (Fig.3.1.A) 

consistently until DIV 14. When Pitx3 was tagged with an AU1 tag at the N-terminus of 

Pitx3, anti-AU1 antibody detected the expression levels of AU1-Pitx3 achieved by the 

transgene (Fig.3.1.F).  
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Figure 3.1. Endogenous levels and overexpression of transcription factors in 

rat primary cortical neurons. 

(A) Endogenous levels of Nurr1, Ascl1, Lmx1a, and Pitx3. The endogenous levels of Nurr1, 

Ascl1, Lmx1a, and Pitx3 in cortical neurons were detected by anti-Nurr1, anti-Ascl1, anti-

Lmx1a, and anti-Pitx3 antibody using Western blot. 

(B) Monocistronic AAV vector genomes encoding Nurr1, Ascl1, Lmx1a, and Pitx3. The 

expression of Nurr1, Ascl1, Lmx1a, and Pitx3 was driven by human synapsin 1 promoter. 

WPRE: woodchuck hepatitis virus post-transcriptional control element, bGH-pA: bovine 

growth hormone fused to poly adenylation site, AU1: AU1 epitope tag, hSyn1: human 

synapsin 1 gene promoter, ITR: inverted terminal repeat. 

(C, D, E, F) Overexpression of transcription factors after 7 days post-transduction (dpt), 

DIV 7: (C) The anti-Nurr1 antibody detected the overexpression of Nurr1; (D) the anti-Ascl1 

antibody detected the overexpression of Ascl1. (E) the anti-AU1 and anti-Lmx1a antibody 

detected the overexpression of AU1.Lmx1a and Lmx1a respectively; (F) the anti-AU1 and 

anti-Pitx3 antibody detected the expression of AU1.Pitx3 and Pitx3, respectively. Western 

blots were normalized to ß-tubulin expression at the respective time-points. 

Dr. Sebastian Kügler, Monika Zebski and Sonja Heyroth produced viruses (AAVs). Monika 

Zebski cloned the AAV vector genomes with AU1 tagged transcription factors. Department 

of Neurology, University Medical Center Goettingen (UMG). 
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Summary: Primary cortical neurons at DIV 0 was determined to be an ideal time-

point to introduce Nurr1, Ascl1, and Lmx1a. AAV-6 vectors robustly overexpressed 

Ascl1, Nurr1, and Lmx1a in primary neurons. The anti-AU1 antibody detected the 

expression of AU1-Pitx3; however, the Pitx3 overexpression was not achieved due 

to endogenously expressed Pitx3 in primary cortical neurons. If the overexpression 

of Ascl1, Nurr1, Lmx1a (“ANL”) induced dopaminergic phenotype in cortical 

neurons, remained to be elucidated. 
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3.1.2. Ascl1, Nurr1, and Lmx1a (“ANL”) induce the expression 

of tyrosine hydroxylase in cortical neurons 
 

After it was clear that “ANL” overexpressed in cortical neurons, the next objective was 

to overexpress transcription factors in different combinations to determine which 

combination induced the expression of dopaminergic marker, tyrosine hydroxylase 

(TH), in primary cortical neurons.  

Primary cortical neurons were isolated from E18 rat embryos and plated on coverslips 

coated with poly-L-ornithine and laminin on a 24-well plate (150,000 cells/well). AAV-

6 vectors with neuron-specific hSyn1 gene promoter (Kugler et al. 2003) expressing 

Ascl1, Nurr1, Lmx1a, and Pitx3 (22.5 x 108 vector genomes (vg)/150,000 cells) were 

introduced into cortical neurons at DIV 0 in different combinations (Fig.3.2.A).  

ICC results suggested that the combination of transcription factors Ascl1, Nurr1, and 

Lmx1a (“ANL”) induced the expression of TH (Fig.3.2.B). At DIV 7 (Fig.3.2.C), the 

combination of “ANL” resulted in 3-8% of TH positive neurons. Nurr1 alone was able 

to induce TH expression in 1-2% of cortical neurons unlike other transcription factors 

expressing alone. At DIV 14 (Fig.3.2.C), the combination of Ascl1 and Nurr1 (AN) was 

sufficient to induce the expression of TH. The expression of “ANL” resulted in 10-18% 

of TH positive neurons. At DIV 21 (Fig.3.2.C), the combination of AN resulted in 5-20% 

and “ANL” resulted in 15-24% of TH positive neurons. Furthermore, “ANL” 

overexpressing neurons were less in number as compared to the untreated neurons 

(Fig. 3.2.B). Overall, the results suggested that the yield of TH positive neurons after 

Ascl1 and Nurr1 overexpression was less than 25%. The introduction of Pitx3 alone 

and in combinations with “ANL” did not induce TH expression (data not shown). 
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Figure 3.2. Ascl1, Nurr1, and Lmx1a (“ANL”) induce the expression of TH in 

cortical neurons. 
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Figure 3.2. Ascl1, Nurr1, and Lmx1a (“ANL”) induce the expression of TH in 

cortical neurons. 

(A) Experimental schematic to detect the expression of dopaminergic neuronal marker, 

tyrosine hydroxylase (TH). Cortical neurons were isolated from E18 rat embryo and plated 

on poly-L-ornithine and laminin-coated wells (150,000 cells). AAV vectors expressing Ascl1, 

Nurr1, Lmx1a, and Pitx3 were introduced into cortical neurons at DIV 0 in different 

combinations. 

(B) Expression of Ascl1, Nurr1, and Lmx1a (“ANL”) induced the expression of TH. 

Representative immunofluorescence images of “ANL” treated cortical neurons 

immunopositive for neuronal marker NeuN (green) and dopaminergic neuronal marker TH 

(red), and images of untreated cortical neurons immunonegative for TH at DIV 14. Nuclei 

were counterstained with DAPI (blue). Scale bars: 10 µm, 20µm (magnified image). 

(C) Quantification of TH positive neurons. Different percentages of TH positive neurons 

resulted from different combinations of transcription factors at DIV 7, DIV 14, and DIV 21. 

1-way ANOVA with Dunnet’s test calculated statistical significances by comparison with 

untreated neurons. **p=0.0021, ****p<0.0001. Bars show mean ± standard deviation and 

represent the percentage of TH positive cells normalized to NeuN. N = 4-6 independent 

experiments. Statistical power > 0.85. 

Summary: Overexpression of Ascl1, Nurr1, and Lmx1a (“ANL”) induced TH 

expression in 15-24% of cortical neurons by DIV 21. The combination of Ascl1 and 

Nurr1 was sufficient to induce TH expression, and the Ascl1, Nurr1, together with 

Lmx1a did not significantly increase TH positive (TH+) neurons. The overall number 

of neurons in “ANL” overexpressing group were less in comparison to the group of 

untreated neurons. Furthermore, the introduction of Pitx3 alone and in combinations 

with “ANL” did not induce TH expression. 
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3.1.3 Dopaminergic neuron-like cells express dopaminergic 

neuronal markers 
 

As “ANL” overexpression induced TH in cortical neurons, the next objective was to 

determine if “ANL” also induced the expression of dopaminergic markers in 

dopaminergic neuron-like cells.  

Neuron-specific AAV-6 vectors expressing Ascl1, Nurr1, and Lmx1a (“ANL”, total viral 

load 75 x 108 vector genomes (vg)/150,000 cells) were introduced into cortical neurons 

at DIV 0. Untreated neurons and “ANL” overexpressing neurons were stained for TH, 

and individually counter-stained for aromatic L-amino acid decarboxylase (AADC), 

vesicular monoamine transferase 2 (VMAT2), and dopamine transporter (DAT).  

ICC results indicated that TH expressing neurons co-expressed AADC (Fig.3.3.A), 

VMAT2 (Fig.3.3.B), and DAT (Fig.3.3.C). Furthermore, unspecific signal was 

observed in untreated neurons. The pattern of the unspecific signal was different from 

the pattern observed in “ANL” overexpressing neurons, and it appears that the 

unspecific signal was observed due to the different secondary antibodies used. 
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Figure 3.3. Dopaminergic neuron-like cells express dopaminergic neuronal 

markers at DIV 21. 

(A, B, C) Induction of dopaminergic markers. Representative immunofluorescence images 

of untreated and Ascl1, Nurr1, and Lmx1a (“ANL”) overexpressing cortical neurons at DIV 

21, stained for tyrosine hydroxylase (TH; red) and counter-stained for (A) aromatic L-amino 

acid decarboxylase (AADC; magenta), (B) vesicular monoamine transferase 2 (VMAT2; 

green), and (C) dopamine transporter (DAT; cyan). Scale bar: 10µm. 

Summary: “ANL” induced TH expression along with the expression of other 

dopaminergic markers, AADC, VMAT2, and DAT, which are necessary for a 

functional dopaminergic neuron. Unspecific signal was observed in untreated 

neurons. The pattern of the unspecific signal was different from the pattern observed 

in “ANL” overexpressing neurons, and it appears that the unspecific signal was 

observed due to the different secondary antibodies used. 
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3.1.4 Cortical GABAergic neurons, a subpopulation of cortical 

neurons, transdifferentiate to dopaminergic neuron-like cells 
 

“ANL” induced dopaminergic neurotransmitter phenotype in 15 – 24% of total cortical 

neurons, which suggests that not all cortical neurons do transdifferentiate. The 

transduction efficacy of AAV6 vectors in cortical neuron culture is sufficient to reach > 

90% of all neurons (Taschenberger et al. 2013; Tolo et al. 2018). Therefore, I wondered 

why the percentage of transdifferentiated cortical neurons was limited to 15%. 

To understand the reason behind the low yield of dopaminergic neuron-like cells 

(cDNs) after “ANL” overexpression, untreated neurons and “ANL” overexpressing 

neurons were stained for TH and counter-stained with Ascl1 and Nurr1 at DIV 14. 

Immunocytochemistry results suggested that even though the majority of cortical 

neurons overexpressed Ascl1 and Nurr1, TH was induced only in a subpopulation of 

Ascl1 and Nurr1 overexpressing cortical neurons (Fig.3.4.A). 

The majority of cortical neurons are glutamatergic and only 5-20% are GABAergic 

(Dichter 1980; Herrero et al. 1998; Stichel and Muller 1991). Immunocytochemical 

analyses of cDNs (identified as TH), GABAergic neurons (identified as GAD 65), and 

glutamatergic neurons (identified as CaMKIIß) revealed that TH expression was 

induced in GABAergic neurons because TH and GAD65 colocalize (Fig. 3.4.B). TH 

expression was not induced in glutamatergic neurons because TH and CaMKIIß did 

not colocalize (Fig.3.4.C). 

Quantification of neuronal cell numbers revealed that the percentage of TH+ cells 

increased significantly by DIV 14 and DIV 21, and the percentage of GAD+ cells 

dropped significantly by DIV 21 in “ANL” overexpressing cortical neurons (Fig.3.4.D), 

Interestingly, the results indicated that out of the pool of cortical GABAergic neurons, 
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55% of neurons co-expressed TH and GAD65 at DIV 7, which significantly dropped 

(15%) at DIV 14. Intriguingly, none of the neurons coexpressed TH and GAD65 

markers at DIV 21 (Fig.3.4.D). 

Next, absolute number of TH+, GAD+, and CaMKIIß+ cells were plotted. 68% of “ANL” 

overexpressing CaMKIIß+ cells already degenerate at DIV 7 (Fig.3.5.A). Even though 

there was a significant drop in the cortical neuronal cell counts at DIV 14 and at DIV 

21 due to the age of the culture, the “ANL” overexpressing CaMKIIß+ cell counts further 

dropped by 80% at DIV 14 and DIV 21 in comparison to the untreated neurons. There 

was a significant rise in the number of “ANL” overexpressing TH+ cell counts at DIV 7, 

DIV 14, and DIV 21 in comparison to the untreated cells at the same time-points 

(Fig.3.5.B). The rise in the TH+ cell counts can be attributed to the previous results, 

which revealed that TH was induced in “ANL” overexpressing GAD+ cells (Fig.3.4.B). 

This suggests that the source of TH+ cells are basically GAD+ cells. The number of 

“ANL” overexpressing GAD+ do not change significantly in comparison to the untreated 

neurons at DIV 7 (Fig.3.5.C). There was a significant drop observed in the GAD+ cell 

counts at DIV 14 and DIV 21 in comparison to the untreated neurons, because majority 

of GAD+ cells transdifferentiated to TH+ cells (Fig.3.5.B.C). However, the GAD+ cell 

counts actually drop or the expression of GAD65 was lost in the process of 

transdifferentiation, was not clear. To conclude, “ANL” overexpression aggravated 

degeneration of cortical glutamatergic neurons (identified as CaMKIIß), but not 

GABAergic neurons (identified as GAD 65), and increased the yield of dopaminergic 

neuron-like cell (identified as TH+). 
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Figure 3.4. Cortical GABAergic neurons, a subpopulation of cortical neurons, 

transdifferentiate to dopaminergic neuron-like cells. 
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Figure 3.4. Cortical GABAergic neurons, a subpopulation of cortical neurons, 

transdifferentiate to dopaminergic neuron-like cells. 

(A) TH expression was induced in a subpopulation of cortical neurons. Representative 

immunofluorescence images of “ANL” treated cortical neurons immunopositive for 

dopaminergic neuronal marker TH (red), and transcription factors Ascl1 (magenta) and 

Nurr1 (cyan) at DIV 14. Untreated cortical neurons were immunonegative for TH, Ascl1, 

and Nurr1. White arrowhead indicates neurons expressing TH, Ascl1, and Nurr1, whereas 

white arrow indicates neurons expressing only Ascl1 and Nurr1, but not TH. Scale bar: 10 

µm. 

(B) TH and GAD65 colocalize. Representative immunofluorescence images of Ascl1, 

Nurr1, and Lmx1a (“ANL”) treated cortical neurons. “ANL” overexpressing cells 

immunopositive for dopaminergic marker TH (red) and GABAergic marker GAD65 (green), 

whereas untreated neurons immunonegative for TH, but immunopositive for GAD65. TH 

and GAD65 colocalized at DIV 14 in “ANL” expressing neurons. Nuclei were counterstained 

with DAPI (blue). White arrow indicates cDN and white arrowhead indicates GABAergic 

neuron. Scale bar: 10 µm.  

(C) TH and CaMKIIß do not colocalize. Representative immunofluorescence images of 

“ANL” treated cortical neurons immunopositive for TH (red) and glutamatergic marker 

CaMKIIß (green), whereas untreated cortical neurons immunonegative for TH, but 

immunopositive for CaMKIIß. TH and CaMKIIß did not colocalize at DIV 14 in “ANL” 

expressing neurons. Nuclei were counterstained with DAPI (blue). White arrow indicates 

cDN and white arrowhead indicates glutamatergic neuron. Scale bar: 10 µm. 

(D) Quantification of different neuronal cell-types in “ANL” expressing neurons: 

Quantification of percentages of dopaminergic-like neurons (red bars), GABAergic neurons 

(green bars), and neurons coexpressing TH and GAD65 (blue bars) in “ANL” expressing 

neurons. 1-way ANOVA with Dunnet´s test calculated statistical significances by 

comparison with DIV 7. **p=0.0021, ***p=0.0002, ****p<0.0001. Bars show mean ± 

standard deviation and represent the percentage of dopaminergic-like, GABAergic, 

normalized to NeuN; TH and GAD65 coexpressing neurons were normalized to GAD65. 

Statistical power for all conditions > 0.95. 
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Figure 3.5. “ANL” cause degeneration of glutamatergic neurons. 

(A) Quantification of absolute cell counts of glutamatergic neurons (identified as CaMKIIß). 

68% of “ANL” overexpressing CaMKIIß+ cells already degenerated at DIV 7. There were 

significantly less CaMKIIß+ cells in comparison to untreated cells at DIV 14 and DIV 21. 

The age of the culture also affected the total cell counts; however, “ANL” overexpression 

aggravated degeneration of glutamatergic neurons. 

(B) Quantification of absolute cell counts of dopaminergic neuron-like cells (identified as 

TH+). There was a significant rise in the number of “ANL” overexpressing TH+ cell counts 

at DIV 7, DIV 14, and DIV 21 in comparison to untreated cells at the same time-points. 

(C) Quantification of absolute cell counts of GABAergic neurons (identified as GAD65+). 

There was no significant drop in GAD65+ cell counts at DIV 7; however, the cell counts 

dropped significantly at DIV 14 and DIV 21. This might be due to the results explained in 

figure 2.4.B that GAD+ cells undergo transdifferentiation to TH+ cells. 

Student´s unpaired two-tailed t-test with Welch´s correction calculated statistical 

significances by comparison with untreated. **p=0.0021, ****p<0.0001. Bars show mean ± 

standard deviation and represent the absolute cell counts per square millimeter. N = 4-5 

independent experiments. Statistical power for all conditions > 0.95. 
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3.1.5 “ANL” overexpression diminishes the expression of 

GAD65 marker in cortical GABAergic neurons 
 

In order to understand if GABAergic neurons deplete in number during 

transdifferentiation, the next objective was to determine if the GABAergic neurons lose 

their phenotype in the process of fate switch.  

ICC results indicated that GAD65 marker in untreated and “ANL” expressing neurons 

was intact at DIV 7 (Fig.3.6); however, GAD65 was diminished in “ANL” expressing 

neurons at DIV 14 and DIV 21 (Fig.3.6). It appears that there is some residual GAD65 

staining still present in the neurites. “ANL” overexpressing neurons were positive for 

Ascl1 and Nurr1, and untreated neurons were negative for Ascl1 and Nurr1, suggesting 

that the concerted overexpression of both Ascl1 and Nurr1 diminishes GAD65. Overall, 

these results suggest that the “ANL” diminishes the cytoplasmic GAD65, while some 

residual GAD65 staining still persists in the neurites of GABAergic neurons. 

 

Figure 3.6. Ascl1, Nurr1, and Lmx1a (“ANL”) overexpression diminishes the 

expression of GAD65 marker in cortical GABAergic neurons. 
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Figure 3.6. Ascl1, Nurr1, and Lmx1a (“ANL”) overexpression diminishes the 

expression of GAD65 marker in cortical GABAergic neurons. 

“ANL” expression altered the expression pattern of GAD65 in GABAergic neurons. 

Representative immunofluorescence images of “ANL” treated cortical neurons 

immunopositive for GAD65 (green) at DIV 7, but not at DIV14 and DIV 21, whereas GAD65 

expression was maintained in untreated cortical neurons until DIV 21. “ANL” treated cortical 

neurons were immunopositive for Ascl1 (red) and Nurr1 (cyan) until DIV 21, whereas 

untreated cortical neurons were immunonegative for Ascl1 and Nurr1. White arrow indicates 

GABAergic neuron, red arrowhead indicates Ascl1 and white arrowhead indicates Nurr1 

overexpressing neurons. Nuclei were counterstained with DAPI (blue). Scale bar: 10µm. 

Summary: “ANL” induces dopaminergic neurotransmitter phenotype only in cortical 

GABAergic neurons (GAD+ cells), but not cortical glutamatergic neurons (CaMKIIß+ 

cells). As a result, TH+ neurons significantly increase from DIV 7 to DIV 14 and DIV 

21, while GAD+ cells significantly decrease from DIV 7 to DIV 21. Furthermore, 

“ANL” diminished GAD65 expression in GABAergic neurons, suggesting a neuronal 

phenotype switch. “ANL” aggravated the degeneration of glutamatergic neurons; 

however, “ANL” induced dopaminergic neurotransmitter phenotype in GABAergic 

neurons, thereby increasing the number of dopaminergic neuron-like cells (TH+ 

cells) in cortical culture. 

 

Overexpression of “ANL” in GABAergic neurons diminished GAD65 expression at 

DIV 14 and DIV 21 in an attempt to transdifferentiate GABAergic neurons to 

dopaminergic (DA) neuron-like cells. In order to enhance the yield of DA neurons, it 

was hypothesized that midbrain neuronal (mDN) culture may yield more number of 

dopaminergic neurons upon “ANL” overexpression, because GABAergic neurons 

are predominantly present in a mDN culture (Gaven, Marin, and Claeysen 2014). 
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3.1.6 Rat primary midbrain GABAergic neurons do not 

transdifferentiate towards dopaminergic neurotransmitter 

phenotype 
 

Given the fact that GABAergic neurons transdifferentiated to TH+ neurons, it was 

hypothesized this effect can be boosted in a neuronal culture that consists of a majority 

of GABAergic neurons. It is reported that the GABAergic neurons (GAD+ cells) are 

predominantly present in a midbrain culture along with a minority of TH+ neurons 

(Gaven, Marin, and Claeysen 2014). I thus overexpressed “ANL” in neurons isolated 

from rat E14.5 midbrain. 

Primary midbrain neurons were isolated from E14 rat embryo and plated on coverslips 

coated with poly-L-ornithine and laminin on a 24-well plate (500,000 neurons/well). 

AAV-6 vectors expressing Ascl1, Nurr1, and Lmx1a (total viral load 75 x 108 

vg/500,000 cells) were introduced into midbrain neurons at DIV 0 (Fig.3.7.A).  

Untreated neurons and “ANL” overexpressing neurons were stained for dopaminergic 

marker, TH, and a pan-neuronal marker, NeuN (Fig.3.7.B). ICC results indicated that 

“ANL” overexpression did not increase the percentage of TH positive neurons 

significantly in comparison to the untreated neurons (Fig.3.7.C). Unexpectedly, there 

were significantly less TH+ cells in “ANL” treated cells in comparison to the untreated 

cells at DIV 14 and DIV 21. TH+ cells were observed in the untreated midbrain neurons, 

because the midbrain culture consists of a minority (< 5%) of TH+ cells (Gaven, Marin, 

and Claeysen 2014). Furthermore, cells were stained with TH, and counter-stained 

with GABAergic marker, GAD65. The ICC results indicated that TH and GAD65 do not 

colocalize in a midbrain GABAergic neuronal cell (Fig.3.7.D) suggesting that midbrain 

GABAergic neurons cannot be transdifferentiated into dopaminergic neurotransmitter 

phenotype. 
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Figure 3.7. Rat primary midbrain GABAergic neurons do not transdifferentiate 

towards dopaminergic neurotransmitter phenotype 
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Figure 3.7. Rat primary midbrain GABAergic neurons do not transdifferentiate 

towards dopaminergic neurotransmitter phenotype 

(A) Experimental schematic to detect the expression of dopaminergic cell marker, tyrosine 

hydroxylase (TH). Midbrain neurons were isolated from E14 rat embryo and plated on poly-

L-ornithine and laminin-coated wells. Adeno-associated viral vectors expressing Ascl1, 

Nurr1, and Lmx1a (total viral load 75 x 108 viral genomes/500,000 cells) were introduced 

into midbrain neurons at DIV 0. 

(B) Expression of Ascl1, Nurr1, and Lmx1a (“ANL”) did not induce the expression of TH. 

Representative immunofluorescence images of untreated and “ANL” treated midbrain 

neurons immunopositive for neuronal marker NeuN (green) and dopaminergic neuronal 

marker TH (red, white arrow) at DIV 14. Nuclei were counterstained with DAPI (blue). White 

arrow indicate dopaminergic neurons. Scale bars: 10 µm. 

(C) Quantification of TH positive neurons. The quantification of TH positive neurons in 

untreated group of neurons (white bar), and “ANL” overexpressing neurons (black bar) at 

DIV 7, DIV 14, and DIV 21. Bars show mean ± standard deviation and represent the 

percentage of surviving neurons normalized to NeuN. Student´s unpaired two-tailed t-test 

with Welch´s correction calculated statistical significances by comparison between the two 

groups. **p=0.0021, ***p<0.0002. N=2 independent experiments. Statistical power > 0.80 

(F) TH and GAD65 did not colocalize. Representative immunofluorescence images of 

untreated and “ANL” treated midbrain neurons immunopositive for dopaminergic marker TH 

(red) and GABAergic marker GAD65 (green) at DIV 14. TH and GAD65 did not colocalize 

in “ANL” overexpressing midbrain neurons. Nuclei were counterstained with DAPI (blue). 

White arrow indicates dopaminergic neuron and white arrowhead indicates GABAergic 

neuron. White arrow indicate dopaminergic neurons, and white arrowhead indicates 

GABAergic neurons. Scale bars: 10 µm. 

Elisabeth Barski performed the primary midbrain culture. Claudia Fokken stained the 

coverslips. Anupam Raina captured images, generated data, analyzed trends statistically, 

and derived conclusion. Department of Neurology, UMG. 
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Summary: “ANL” overexpression could not transdifferentiate the midbrain 

GABAergic neurons towards dopaminergic neurotransmitter phenotype; however, 

“ANL” transdifferentiated cortical GABAergic neurons towards dopaminergic 

neurotransmitter phenotype (Fig.3.4.B) suggesting that the region of the rat embryo, 

from where the GABAergic postnatal cells are isolated, plays an important role in 

determining the chances of neurotransmitter phenotype switch. However, the 

mechanism remains to be elucidated. 
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3.1.7 Summary of results – I 
 

Transcription factors Ascl1, Nurr1, and Lmx1a transdifferentiated rat cortical 

GABAergic neurons, but not rat midbrain GABAergic and not rat cortical glutamatergic 

neurons, to dopaminergic neuron-like cells, thereby, providing evidence that neuronal 

transdifferentiation could be achieved in principle. Intriguingly, the induction of another 

neurotransmitter phenotype is dependent on the region of embryo used for isolating 

cells to induce transdifferentiation in vitro; suggesting that microenvironment of 

different embryonal regions might be a limiting factor for triggering transdifferentiation 

of postnatal neuronal cells. 

Due to an insufficient yield of dopaminergic neurons, and the profound loss of neurons, 

the cell-model developed by transdifferentiation of cortical neurons cannot be used to 

study neurodegeneration induced by ß-Synuclein in the context of dopamine 

production. 

In order to circumvent this challenge, an alternate approach was employed in which 

specific proteins necessary for dopamine production in a dopaminergic neuron, were 

introduced into cortical neurons. 
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3.2. Alternate approach to develop a dopaminergic cell-

model by mimicking the dopaminergic neurotransmitter 

phenotype in cortical neurons 
 

As the primary approach to generate dopaminergic neurons did not develop as 

desired, an alternate experimental paradigm was exploited. It was hypothesized that 

the introduction of specific enzymes, transporter proteins, and substrates, which are 

necessary for dopamine production, may produce dopamine in cortical neurons. 

Aromatic L-amino acid decarboxylase (AADC), vesicular monoamine transferase 2 

(VMAT2), and L-3,4-dihydroxyphenylalanine (levodopa; L-DOPA) or dopamine 

transporter (DAT), VMAT2, and dopamine were introduced into cortical neurons 

(Fig.3.8). 

  

Figure 3.8. Mimicking the dopaminergic neurotransmitter phenotype in 

cortical neurons 

AADC decarboxylates L-DOPA to produce dopamine. Cytosolic dopamine is sequestered 

into synaptic vesicles by VMAT2. Synaptic vesicles fuse to the cell membrane to release 

dopamine into synaptic cleft when neurons depolarize. DAT pumps dopamine from the 

synaptic cleft back into the cytosol. 
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3.2.1 Introduction of AADC, VMAT2, and extracellular L-DOPA 

or DAT, VMAT2, and extracellular dopamine into cortical 

neurons 
 

The cortical neurons isolated from rat pups on embryonic day of development 18 (E18) 

consist of a majority (80-95%) of glutamatergic neurons and a minority (5-20%) of 

GABAergic neurons (Dichter 1980; Herrero et al. 1998; Stichel and Muller 1991). 

Cortical neurons are maintained with glial cells that grow up to 40-50% of all cells in 

later stages.  

Adeno-associated viruses of serotype 6 (AAV6) were applied to the culture medium 

with cells (250,000 cells) at the time of preparation before seeding. Monocistronic 

AAV6 vectors expressed AADC and VMAT2 (AD-VM) or DAT and VMAT2 (DT-VM) in 

the transduced cells (Fig.3.9). AD-VM or DT-VM expression was driven by hSyn1 

promoter that restricts the expression of AD-VM or DT-VM strictly to neurons (Kugler 

et al. 2003).  

10µM L-DOPA was applied to the culture medium of AD-VM expressing cells from DIV 

3 onwards every alternate days. L-DOPA was uptaken into cortical neurons 

presumably by L-type amino acid transporter (Sampaio-Maia, Serrao, and Soares-da-

Silva 2001). In the control condition, the cells were transduced with AAV6 vectors 

expressing AADC and VMAT2, but L-DOPA was not applied to the culture medium of 

control cells. This system was named as cell-based model 1 (Fig.3.10.A). 

12.5µM dopamine was applied to the culture medium of DT-VM expressing cells from 

DIV 7 onwards every four days. DAT is a membrane-spanning protein that pumps 

dopamine from the synaptic cleft back into the cytosol (Sonders et al. 1997). In the 

control condition, cells did not express DT-VM, but dopamine was applied to the culture 

medium of cells. This system was named as cell-based model 2 (Fig.3.10.F). 
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The supernatant and intracellular fraction of cells from each well (250,000 cells) were 

treated with buffer containing 1:1 ratio of 1% sodium metabisulfite and 2M 

perchloroacetic acid to stabilize dopamine. The processed supernatant and 

intracellular fractions were analyzed by HPLC with electrochemical detection of 

catecholamines. For better representation, the concentration (µM) of catecholamines 

were represented as the amount (nanograms) of total catecholamines obtained from 

10,000 cells.  

From cell-based model 1, results indicated that intracellular dopamine (Fig.3.10.B.C) 

peaked up to 0.8-1.0 nanograms (per 10,000 cells) at DIV 19 in the condition where L-

DOPA was applied to the medium. In the control group where L-DOPA was not applied, 

intracellular dopamine, DOPAC, and HVA were not detected at DIV 15 and DIV 19, 

suggesting a tight control over the system. Unexpectedly, dopamine was detected in 

the supernatant (Fig.3.10.D.E). Furthermore, HVA accumulation was observed in the 

supernatant. It appears that glutamatergic vesicles presumably sequester the 

dopamine produced intracellularly and release it into the supernatant (Benoit-Marand 

2013; Granger, Wallace, and Sabatini 2017) due to the endogenous electrical activity 

of cortical neurons (Opitz, De Lima, and Voigt 2002; Ramakers, Corner, and Habets 

1990; Sun, Kilb, and Luhmann 2010). Dopamine released into the supernatant is 

uptaken by the glial cells present in the cortical culture, which degrade it to DOPAC 

and HVA by monoamine oxygenase-A (MAO-A), aldehyde dehydrogenase, and 

catechol-O-methyltransferase (COMT) (Liesi et al. 1981; Swahn and Wiesel 1976). 

Taken together, the results suggested that multiple doses of 10µM L-DOPA in AADC 

and VMAT2 expressing cells produced dopamine robustly. 

From cell-based model 2, results indicated that the intracellular dopamine was 

drastically enhanced up to 3 nanograms (per 10,000 cells) already at DIV 15 
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(Fig.3.10.G) and up to 5 nanograms (per 10,000 cells) at DIV 19 (Fig.3.10.H) when 

12.5µM dopamine was applied to the culture medium with cells expressing DAT and 

VMAT2. In the control condition, where dopamine was applied to the cells that did not 

express DAT and VMAT2, intracellular dopamine was not detected, therefore 

establishing a tight control over the system. In the supernatant (Fig.3.10.I.J), 

dopamine, DOPAC and HVA were detected in both the conditions because glial cells 

uptake dopamine that was applied to the medium, and degrade it to DOPAC and HVA 

(Liesi et al. 1981). Taken together, the results suggested that the introduction of DAT 

resulted in the uptake of dopamine into the cytosol of cortical neurons.  

 

 

 

Figure 3.9. Monocistronic AAV vectors introduced into cortical neurons. 

Monocistronic AAV vector expressing (A) human aromatic L-amino acid decarboxylase 

(AADC), (B) human dopamine transporter (DAT),  and (C) vesicular monoamine transferase 

2 (VMAT2). 

hSyn1: human synapsin 1 gene promoter, WPRE: woodchuck hepatitis virus post-

transcriptional control element, bGH-pA: bovine growth hormone poly-adenylation site, Int-

a: intron, ITR: inverted terminal repeat. 

Dr. Sebastian Kügler, Monika Zebski and Sonja Heyroth produced viruses (AAVs). Monika 

Zebski cloned the AAV vector genomes. Department of Neurology, University Medical 

Center Goettingen (UMG). 
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Figure 3.10. The two different cell-based models developed. 
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Figure 3.10. The two different cell-based models developed. 

(A) Schematic of the cell-model 1. Cells were transduction with adeno-associated virus 

vectors expressing aromatic L-amino acid Decarboxylase (AADC) and vesicular 

monoamine transferase 2 (VMAT2) before seeding at DIV 0. 10µM of L-3,4-

dihydroxyphenylalanine (L-DOPA) was applied to the cells from days in vitro (DIV) 3 

onwards in the intervals of every two days. The levels of intracellular dopamine, 3,4-

dihydxroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were quantified at DIV 

15 and DIV 19. 

(B, C) Intracellular dopamine, DOPAC, and HVA detected at (B) DIV 15 and (C) DIV 19.  

(D, E) Supernatant dopamine, DOPAC, and HVA detected at (D) DIV 15 and (E) DIV 19.  

The group of cells expressing AADC and VMAT2 and not treated with extracellular L-DOPA 

(white bar) acted as a control for the group expressing AADC and VMAT2 and treated with 

L-DOPA (black bar). Bars represent nanograms (ngs) of dopamine, DOPAC, and HVA from 

10000 cells. Error bars represent the standard deviation of metabolite levels. N=3 

independent transductions. 

(F) Schematic of the cell-model 2. Cells were transduced with AAV vectors expressing 

dopamine transporter (DAT) and vesicular monoamine transferase 2 (VMAT2) before 

seeding at DIV 0. 12.5µM of extracellular dopamine was applied to the cells from DIV 7 

onwards in the intervals of every four days. The intracellular dopamine, DOPAC, and HVA 

levels were quantified at DIV 15 and DIV 19. 

(G, H) Intracellular dopamine, DOPAC, and HVA detected at (G) DIV 15 and (H) DIV 19.  

(I, J) Supernatant dopamine, DOPAC, and HVA detected at (I) DIV 15 and (J) DIV 19. The 

group of cells not expressing DAT and VMAT2 (white bar) acted as a control for the group 

of cells expressing DAT and VMAT2 vectors (black bar). Bars represent nanograms (ngs) 

of dopamine, DOPAC, and HVA from 10000 cells. Error bars represent the standard 

deviation of metabolite levels. N=3 independent transductions. 
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Summary: Two cell-based models were established. Introduction of AADC, VMAT2 

into cortical neurons and extracellular doses of L-DOPA (cell-model 1) resulted in 

robust dopamine production. Glutamatergic vesicles presumably sequester the 

dopamine produced intracellularly and release it into the supernatant (Benoit-

Marand 2013; Granger, Wallace, and Sabatini 2017) due to the endogenous 

electrical activity of cortical neurons (Opitz, De Lima, and Voigt 2002; Ramakers, 

Corner, and Habets 1990; Sun, Kilb, and Luhmann 2010).  Introduction of DAT, 

VMAT2 into cortical neurons and extracellular doses of dopamine (cell-model 2) 

resulted in enhanced intracellular dopamine in comparison to cell-model 1. The 

intracellular dopamine levels detected in both the cell-models after 19 days in culture 

ranged from 0.8 to 5.0 nanograms (per 10,000 cells).  

In this study, I found that the intracellular levels in both the cell-models is the highest-

ever achieved in comparison to the existing dopaminergic neuronal cell-models 

used for PD research. Taken together, both the developed cell-models laid a solid 

foundation to study and investigate the neurodegeneration induced by ß-synuclein 

in the context of the neurotransmitter dopamine. 
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3.2.2 Toxicity of different concentrations of L-DOPA and 

dopamine 
 

The introduction of AADC-VMAT2 and extracellular L-DOPA or DAT-VMAT2 and 

extracellular dopamine successfully produced dopamine and enhanced the 

intracellular dopamine levels. To understand the effect of L-DOPA and dopamine on 

cortical neurons, the toxicity of different doses of L-DOPA and dopamine was next 

investigated.  

3.2.2. (I) Enzymatic degradation of unmetabolized L-DOPA is toxic 

to cortical neurons 
 

It was necessary to determine the toxicity of different doses of L-DOPA. This study 

involved the application of dopamine-degrading enzyme inhibitors tranylcypromine. 

Tranylcypromine (Tcp) is a small molecule that inhibits MAO-A and MAO-B. Tolcapone 

(Tol) is another small molecule inhibitor that inhibits COMT. These inhibitors were used 

to prevent the degradation of L-DOPA by MAO and COMT enzymes. 

Cortical neurons were transduced with monocistronic adeno-associated virus vector 

expressing nuclear mCherry (9 x 108 vg of virus/250000 cells) to label the nuclei. 

12.5µM, 25µM, and 50µM of L-DOPA was applied to the cell culture medium from DIV 

7 onwards in the intervals of every four days. Dopamine-degrading enzyme inhibitors 

Tcp (4µM/250,000cells) and Tol (5nM/250,000 cells) was applied once to the cell 

culture supernatant at DIV 7 (Fig.3.11.A.B). Cell culture medium that was not treated 

with L-DOPA acted as a control. Cells were also transduced at DIV 3 with neuron-

specific AAV vector expressing nuclear mCherry (NmC) to label the nuclei. The nuclei 

of the surviving neurons were counted at DIV 11, 15, and 19. 
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With different concentrations of L-DOPA application to the neurons, results indicated 

that 50µM doses of L-DOPA were toxic to the cortical neurons at DIV 19 (Fig.3.11.C.D) 

suggesting that it is a very high dose. Interestingly, 25µM L-DOPA doses were toxic to 

the cells where inhibitors were not applied to the medium (Fig.3.11.C), whereas these 

doses were not toxic to the cells where inhibitors were applied to the medium 

(Fig.3.11.D). This suggested that intracellular L-DOPA is metabolized by COMT to 3-

O-methyldopa (Kaenmaki et al. 2009), which is further metabolized to vanillactic acid. 

The metabolite 3-O-methyldopa might be toxic to cortical neurons (Lee et al. 2008). 

12.5µM doses of L-DOPA were not found to be toxic. 

Figure 3.11. Enzymatic degradation of unmetabolized L-DOPA is toxic to cortical 

neurons. 
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Figure 3.11. Enzymatic degradation of unmetabolized L-DOPA is toxic to 

cortical neurons. 

(A, B) Schematic of 2 different experimental set-ups. Cells were transduced with 

monocistronic adeno-associated virus vector expressing nuclear mCherry (9 x 108 

vg/250000 cells) to label the nuclei.  0µM, 12.5µM, 25µM, and 50µM of L-3,4-

dihydroxyphenylalanine (L-DOPA) was applied to the cells from days in vitro (DIV) 7 

onwards in the intervals of every four days. The nuclei of the surviving cells were counted 

at DIV 11, 15, and 19. (A) 0µM, 12.5µM, 25µM, and 50µM of L-DOPA was applied to the 

cells. (B) The inhibitors (INB) of dopamine-degrading enzymes, monoamine oxidase (MAO) 

and catechol-O-methyltransferase (COMT) were applied to the cells in combination with 

0µM, 12.5µM, 25µM, and 50µM of L-DOPA. 

(C, D) Cell count was plotted for cells treated with 0µM (control, white), 12.5µM (light grey), 

25µM (dark grey), and 50µM (black) of L-DOPA. (C) without MAO and COMT inhibitors (D) 

with MAO and COMT inhibitors together. 

Bars represent the percentage of surviving cells (normalized to DIV 11). Error bars 

represent standard deviation (SD) of cell count percentage. Statistics by 1-way analysis of 

variance/Dunnett’s test where light grey, dark grey and black bars were compared against 

the white bar (control). ***p<0.0002, ****p<0.0001. N=3 independent transductions. Power 

> 0.90. 
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3.2.2. (II) Extracellular dose of 10µM L-DOPA every alternate days 

was not toxic to AADC-VMAT2 expressing cortical neurons 
 

Previous results suggested that dopamine-degrading enzymes might degrade 

unmetabolized L-DOPA into compounds toxic to cortical neurons. Therefore, the next 

objective was to determine the toxicity of multiple doses of L-DOPA metabolized to 

dopamine. 

Cells were transduced with AAV-AADC and AAV-VMAT2 vectors (9 x 108 vg of each 

virus/250000 cells) before seeding at DIV 0 (Fig.3.12.A). In order to produce 

dopamine, 10µM of L-DOPA was applied to the neurons in the intervals of every two 

days from DIV 3 onwards (Fig.3.12.B). Neuronal cells were transduced at DIV 3 with 

monocistronic AAV vectors expressing the enhanced green fluorescent protein (EGFP, 

60x108 vg of virus/250,000 neurons). Cells were also transduced at DIV 3 with neuron-

specific AAV vector expressing nuclear mCherry (NmC) to label the nuclei. The nuclei 

of the surviving neurons were counted at DIV 11, 15, and 19. 

In total, there were three groups of cells: 

1. No L-DOPA (control): Cells did not express AADC-VMAT2, and no L-DOPA was 

applied to the culture supernatant. 

2. Metabolized L-DOPA: Cells expressed AADC-VMAT2, and L-DOPA was applied to 

the culture supernatant. 

3. Unmetabolized L-DOPA: Cells did not express AADC-VMAT2, and L-DOPA was 

applied  

Results indicated that the cell counts dropped by 50% in the group of cells where L-

DOPA was not unmetabolized (Fig.3.12.C) in comparison to the control (Fig.3.12.A). 
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When L-DOPA was metabolized to dopamine (Fig.3.12.B), the cell counts did not drop 

as compared to control. This suggested that multiple doses of 10µM L-DOPA was not 

toxic to the cortical neurons when metabolized to dopamine. 

 

 

Figure 3.12. Extracellular dose of 10µM L-DOPA every alternate days was not 

toxic to AADC-VMAT2 expressing cortical neurons. 
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Figure 3.12. Extracellular dose of 10µM L-DOPA every alternate days was not 

toxic to AADC-VMAT2 expressing cortical neurons. 

(A, B, C) Schematics of 3 different types of the experimental set-up. Primary cortical 

neurons were transduced with adeno-associated virus vectors at 3 days in vitro (DIV) 

expressing the enhanced green fluorescent protein (EGFP) (60x108 vg/250,000 neurons). 

Cells were also transduced with AAV vector expressing nuclear mCherry (NmC) to label 

the nuclei. The nuclei of the surviving cells were counted at DIV 11, 15, and 19. Cells were 

transduced with AAV-AADC and AAV-VMAT2 vectors before seeding at DIV 0. To produce 

dopamine, 10µM of L-DOPA was applied to the cell culture supernatant in the intervals of 

every two days from DIV 3 onwards. (A) The experimental set-up lacked the expression 

AADC-VMAT2 and L-DOPA application. (B) The cells expressed AADC-VMAT2 and 

supernatant was also treated with L-DOPA. AADC metabolized L-DOPA. (C) The cells did 

not express AADC and VMAT2 but supernatant was treated with L-DOPA. Cells were 

unable to metabolize L-DOPA as they lacked the expression of AADC. 

(D) Surviving cells analyzed at DIV 15 and DIV 19. L-DOPA untreated group (white bar) 

acted as a control for metabolized L-DOPA group (black bar) and unmetabolized L-DOPA 

group (light grey bar).  

Bars represent the percentage of surviving cells (normalized to DIV 11). Error bars 

represent standard deviation (SD) of cell count. Statistics by 1-way analysis of 

variance/Dunnett’s test where light grey bar (unmetabolized L-DOPA) was compared 

against controls (white and black bars). **p=0.0021, ***p<0.0002. N=11-12 independent 

transductions. 5 independent experiments 
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3.2.2. (III) Extracellular dose of 12.5µM dopamine every 4 days is not 

toxic to DAT-VMAT2 expressing cortical neurons 
 

As the introduction of DAT and VMAT2 along with the application of extracellular 

dopamine enhanced the intracellular dopamine levels, it was necessary to determine 

the toxicity of different doses of dopamine. 

Cells were transduced with AAV-DAT and AAV-VMAT2 vectors (9 x 108 vg of each 

virus/250000 cells) before seeding at DIV 0. Cells were treated with 12.5µM, 25µM, 

and 50µM of dopamine, in the intervals of every 4 days from DIV 7 onwards. Dopamine 

degrading enzyme inhibitors Tcp (4µM/250,000cells) and Tol (5nM/250,000 cells) was 

applied once to the cell culture supernatant at DIV 7. Cell culture medium that was not 

treated with extracellular dopamine acted as a control. Cells were also transduced with 

monocistronic AAV vector expressing nuclear mCherry (9 x 108 vg of virus/250000 

cells) to label the nuclei.  The nuclei of the surviving neurons were counted at DIV 11, 

15, and 19. 

Results suggested that 50µM doses of dopamine was toxic (Fig.3.13.A.E), whereas 

the same doses of dopamine in the presence of inhibitors (Fig.3.13.B.F) was not toxic 

to the cortical neurons (without DAT-VMAT2) in which dopamine was not taken up 

(Fig.3.13.). Furthermore, results suggested that 25µM and 50µM dopamine doses 

were toxic to the cells (with DAT-VMAT2), which can uptake dopamine in the presence 

of inhibitors (Fig.3.13.D.H). Interestingly, in the absence of inhibitors (Fig.3.13.C.G), 

25µM dopamine doses were not toxic, whereas 50µM dopamine doses were toxic to 

the cells (with DAT-VMAT2), which can uptake dopamine. The results suggested that 

dopamine-degrading enzyme inhibitors might have further enhanced the intracellular 

dopamine levels with 25µM extracellular dopamine doses, resulting in the toxicity of 
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cortical neurons. The dose of 12.5µM extracellular dopamine every 4 days was not 

found to be toxic to the cortical neurons expressing DAT and VMAT2. 

 

Figure 3.13. Extracellular dose of 12.5µM dopamine every 4 days is not toxic to 

DAT-VMAT2 expressing cortical neurons. 
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Figure 3.13. Extracellular dose of 12.5µM dopamine every 4 days is not toxic 

to DAT-VMAT2 expressing cortical neurons. 

(A, B, C, D) Schematic of 4 different experimental set-ups. Cells were transduced with AAV-

DAT and AAV-VMAT2 vectors before seeding at DIV 0. Cell culture supernatant was treated 

with 0µM, 12.5µM, 25µM, and 50µM of dopamine, in the intervals of every 4 days from DIV 

7 onwards.  Cells were also transduced with monocistronic AAV vector expressing nuclear 

mCherry (9x108 vg of virus/250000 cells) to label the nuclei.  The nuclei of the surviving 

cells were counted at DIV 11, 15, and 19. (A, B) Dopamine was not uptaken in this 

experimental set-up as DAT and VMAT2 was not expressed by cells. (C, D) Dopamine was 

uptaken intracellularly by the cells in this set-up because the cells expressed DAT and 

VMAT2. (B, D) the inhibitors (INB) of dopamine-degrading enzymes, monoamine oxidase 

(MAO) and catechol-O-methyltransferase (COMT), were applied to the cell culture 

supernatant. 

(E, F, G, H) Cell count was plotted for all conditions. Cell culture supernatant was treated 

with 0µM (control, white), 12.5µM (light grey), 25µM (dark grey), and 50µM (black) of 

dopamine. (E, G) without MAO and COMT inhibitors and (F, H) with MAO and COMT 

inhibitors. 

Bars represent the percentage of surviving cells (normalized to DIV 11). Error bars 

represent standard deviation (SD) of cell count percentage. Statistics by 1-way analysis of 

variance/Dunnett’s test where light grey, dark grey and black bars were compared against 

the white bar (control). *p=0.0332, ***p<0.0002, ****p<0.0001. N=3 independent 

transductions. Power > 0.80. 
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Summary: 10µM L-DOPA every alternate days from DIV 3 onwards until DIV 19 

was not toxic to cortical neurons expressing AADC and VMAT2. Cortical neurons 

can tolerate up to 12.5µM of L-DOPA administered every 4 days from DIV 7, 

whereas the limit of tolerance was increased up to 25µM L-DOPA when coupled 

with dopamine-degrading enzyme inhibitors. The results suggested that 

endogenous dopamine-degrading enzymes (COMT) might degrade unmetabolized 

L-DOPA (Kaenmaki et al. 2009) into compounds that might be toxic to cortical 

neurons. Furthermore, Mosharov and colleagues reported that different higher 

doses (200µM to 1000µM) of L-DOPA are toxic to mice midbrain dopaminergic 

neurons in vitro, suggesting that higher intracellular L-DOPA induces toxicity to 

dopaminergic neurons in vitro (Mosharov et al. 2009). 

Furthermore, the dose of 12.5µM extracellular dopamine every 4 days from DIV 7 

onwards was not toxic to the cortical neurons expressing DAT and VMAT2. Very 

high intracellular dopamine levels was apparently achieved when 25µM doses were 

coupled with dopamine-degrading enzyme inhibitors. These cortical neurons were 

found to be toxic to very high intracellular dopamine levels. 
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3.3. Neurodegeneration induced by ß-synuclein in the 

context of dopamine 
 

Our group reported that ß-synuclein induces neurodegeneration of nigral dopaminergic 

neurons in rodent model of PD (Taschenberger et al. 2013). This study suggested a 

possible link between dopamine and ß-synuclein. Therefore, it was of interest to study 

the neurotoxicity induced by ß-synuclein in the context of the neurotransmitter 

dopamine. The established cell-models with dopaminergic neurotransmitter phenotype 

were used. 

Primary cortical neurons were transduced with AAV vectors (Fig.3.14) at DIV 3 

expressing enhanced green fluorescent protein (EGFP), and bicistronic AAV vectors 

coexpressing EGFP + α-synuclein, EGFP + ß-synuclein and EGFP + γ-synuclein 

(60x108 vg of virus/250,000 neurons). Cells were also transduced with monocistronic 

AAV vector expressing nuclear mCherry (NmC) to label the nuclei. The nuclei of the 

surviving cortical neurons were counted at DIV 11, 15, and 19  

3.3.1. Dopamine aggravates ß-synuclein neurotoxicity in cell-

model with robust dopamine production: based on AADC, 

VMAT2, and L-DOPA 
 

In order to study the neurodegeneration induced by ß-synuclein in the context of robust 

dopamine production, this experiment was divided into 3 groups of cells: 

Group – 1 (control): Untransduced cells with no L-DOPA application to the culture 

medium (Fig.3.15.A) 

Group – 2 (control): Cells transduced by neuron-specific AAV 6 vectors expressing 

AADC and VMAT2. L-DOPA was not applied to the culture medium (Fig.3.15.B). 
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Group – 3 (dopamine-producing): Cells transduced by neuron-specific AAV 6 vectors 

expressing AADC and VMAT2. L-DOPA was applied to the culture medium 

(Fig.3.15.C). 

Figure 3.14. Monocistronic and bicistronic AAV vectors to study 

neurodegeneration 

(A, B, C) Bicistronic AAV vector genomes: Bicistronic AAV vectors coexpressing (A) 

enhanced green fluorescent protein (EGFP) + α-synuclein, (B) EGFP + ß-synuclein, (C) 

EGFP + γ-synuclein. (D, E) Monocistronic AAV vectors genomes: Monocistronic AAV 

vectors expressing (D) EGFP, and (E) Nuclear mCherry (NmC) 

hSyn1: human synapsin 1 gene promoter, NLS: nuclear localization signal, WPRE: 

woodchuck hepatitis virus post-transcriptional control element, bGH-pA: bovine growth 

hormone fused to poly adenylation site, Int-a: intron, SV40: simian virus 40, TB: transcription 

blocker, ITR: inverted terminal repeat. 

Dr. Sebastian Kügler, Monika Zebski and Sonja Heyroth produced viruses (AAVs). Monika 

Zebski cloned the AAV vector genomes. Department of Neurology, University Medical 

Center Goettingen (UMG). 
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Intriguingly, results further suggested for the first time that dopamine production in ß-

synuclein overexpressing cells (Fig.3.15.D) aggravated neurodegeneration. 

Dopamine production in ß-synuclein overexpressing cells exacerbated the 

degeneration of 25 – 45% more cells in comparison to the controls at DIV 19.  

Results suggested that dopamine production in α-synuclein overexpressing cells 

(Fig.3.15.E) aggravated neurodegeneration of 20 - 30% more cells in comparison to 

the controls at DIV 19.  

Dopamine production in γ-synuclein expressing cells (Fig.3.15.F) aggravated 

degeneration of 13% more cells in comparison to the controls at DIV 19. However, the 

drop in cell-counts was not statistically significant. Dopamine production in EGFP 

expressing cells (Fig.3.15.G) did not aggravate degeneration of cells.  
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Figure 3.15. Robust dopamine production aggravates neurotoxicity of ß-

synuclein, and to similar extent, of α-Synuclein. 
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Figure 3.15. Robust dopamine production aggravates neurotoxicity of ß-

synuclein, and to similar extent, of α-Synuclein. 

(A, B, C) Schematics of 3 different types of the experimental set-up. Cells were transduced 

with AAV-AADC and AAV-VMAT2 before seeding at DIV 0. To produce dopamine, 10µM 

of L-DOPA was applied to the cells in the intervals of every two days from days in vitro (DIV) 

3 onwards. At DIV 3 cells were transduced with adeno-associated virus  vectors at 3 days 

in vitro (DIV) expressing the enhanced green fluorescent protein (EGFP), and bicistronic 

AAV vectors coexpressing EGFP + α-synuclein, EGFP + ß-synuclein and EGFP + γ-

synuclein (60x108 vg of virus/250,000 neurons). Cells were also transduced with 

monocistronic AAV vector expressing nuclear mCherry (NmC) to label the nuclei. The nuclei 

of the surviving cells were counted at DIV 11, 15, and 19. (A) Dopamine was not produced 

in this set-up because it lacked the AADC-VMAT2 and L-DOPA application. (B) Although 

the AADC-VMAT2 was expressed, dopamine was not produced in this set-up because cells 

were not treated with L-DOPA. (C) Dopamine was produced in this set-up because cells 

expressed AADC-VMAT2 and were also treated with L-DOPA. 

 (D, E, F, G) Surviving cells expressing ß-synuclein, α-synuclein, γ-synuclein, and EGFP, 

respectively, analyzed at DIV 15 and DIV 19.  

Bars represent the percentage of surviving cells normalized to DIV 11. Error bars represent 

standard deviation (SD) of cell count. Statistics by 1-way analysis of variance/Dunnett’s test 

where black bar (dopamine-producing neurons) was compared against controls (white and 

grey bar). **p=0.0021, ****p<0.0001. N=10-13 independent transductions. 5 independent 

experiments. Power > 0.90. 
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3.3.2. Dopamine aggravates ß-synuclein neurotoxicity in cell-

model with enhanced intracellular dopamine: based on DAT, 

VMAT2, and dopamine 
 

In order to study the neurodegeneration induced by ß-synuclein in the context of 

enhanced intracellular dopamine, this experiment was divided into 4 groups of cells: 

Group – 1 (control): Untransduced cells with no dopamine application to the culture 

medium (Fig.3.16.A) 

Group – 2 (control): Cells transduced by neuron-specific AAV 6 vectors expressing 

DAT and VMAT2. Dopamine was not applied to the culture medium (Fig.3.16.B). 

Group – 3 (extracellular dopamine; no uptake): Untransduced cells with dopamine 

application to the culture medium (Fig.3.16.C) 

Group – 4 (intracellular dopamine; uptake): Cells transduced by neuron-specific AAV 

6 vectors expressing DAT and VMAT2. Dopamine was applied to the culture medium 

(Fig.3.16.D). 

Interestingly, the results from this cell-model supported the results from the dopamine-

producing cell-model. It was found that enhanced dopamine levels in ß-synuclein 

overexpressing cells (Fig.3.16.E), aggravated the degeneration of 42% more cells in 

comparison to the control groups. Moreover, it appeared that the extracellular 

dopamine in ß-synuclein overexpressing cells, aggravated the degeneration of 20% 

more cells in comparison to the group of cells without dopamine application in the 

culture medium.  

The enhanced intracellular dopamine levels in α-synuclein overexpressing cells 

(Fig.3.16.F) aggravated the degeneration of 28% more cells in comparison to the 

control groups. The enhanced intracellular dopamine levels in γ-synuclein (Fig.3.16.G) 
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and EGFP overexpressing cells (Fig.3.16.H) did not aggravate the degeneration of 

cells in comparison to the control groups.  

 

Figure 3.16. Enhanced intracellular dopamine aggravates neurotoxicity of ß-

synuclein. 
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Figure 3.16. Enhanced intracellular dopamine aggravates neurotoxicity of ß-

synuclein. 

(A, B, C, D) Schematics of 4 different types of the experimental set-up. Cells were 

transduced with AAV-DAT and AAV-VMAT2 vectors before seeding at DIV 0. To take up 

dopamine, 12.5µM of dopamine was applied to the cell culture supernatant, in the intervals 

of every 4 days from DIV 7 onwards. Cells were transduced with adeno-associated virus  

vectors at 3 days in vitro (DIV) expressing enhanced green fluorescent protein (EGFP), and 

bicistronic AAV vectors coexpressing EGFP + α-synuclein, EGFP + ß-synuclein and EGFP 

+ γ-synuclein (60x108 vg of virus/250,000 neurons). Cells were also transduced with AAV 

vector expressing nuclear mCherry (NmC) to label the nuclei. The nuclei of the surviving 

cells were counted at DIV 11, 15, and 19. (A) Dopamine was not uptaken in this set-up 

because it lacked the DAT-VMAT2 and dopamine application. (B) Although the DAT-

VMAT2 was expressed, dopamine was not uptaken in this set-up because dopamine was 

not applied to the culture supernatant. (C) Dopamine was not uptaken as DAT-VMAT2 was 

not expressed, but dopamine was applied to the culture supernatant. (D) Dopamine was 

uptaken in this set-up because the cells expressed DAT-VMAT2 and they were also treated 

with dopamine. 

(E, F, G, H) Surviving cells overexpressing ß-synuclein, α-synuclein, γ-synuclein, and 

EGFP, respectively, analyzed at DIV 15 and DIV 19.  

Bars represent the percentage of surviving cells (normalized to DIV 11). Error bars 

represent standard deviation (SD) of cell count. Statistics by 1-way analysis of 

variance/Dunnett’s test where black bar (intracellular dopamine) was compared against 

controls (white and grey bar), and patterned bar (extracellular dopamine) was compared 

against the controls. *p=0.0332, **p=0.0021, ***p<0.0002, ****p<0.0001. N=11-13 

independent transductions. 5 independent experiments. Power > 0.90. 

Summary: Robust dopamine production and enhanced intracellular dopamine 

aggravates the neurotoxic properties of ß-synuclein, and to a similar extent, of α-

synuclein. Dopamine did not aggravate cell loss in EGFP and γ-synuclein 

expressing cells. 
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3.4. Dopamine does not modulate the endogenous network 

activity in ß-synuclein and α-synuclein overexpressing 

cells 
 

The spontaneous network activity is impaired in several psychiatric and 

neurodegenerative diseases like depression, Alzheimer´s and Parkinson´s disease 

(Mohan et al. 2016; Tessitore et al. 2012). Our group reported that α-synuclein impairs 

endogenous network activity by decreasing the action potential frequency (Tolo et al. 

2018).  Therefore, it was important to study the modulation in endogenous network 

activity by ß-synuclein in the presence of dopamine. 

This experiment was divided into 2 groups of cells: 

Group – 1 (control): Untransduced cells with no L-DOPA application to the culture 

medium (Fig.3.18.A). 

Group – 2 (dopamine-producing): Cells transduced by neuron-specific AAV 6 vectors 

expressing AADC and VMAT2. L-DOPA was applied to the culture medium 

(Fig.3.18.B) 

Primary cortical neurons (with and without AADC-VMAT2 expression) were transduced 

at DIV 2 with AAV6 vectors expressing calcium sensor (GCaMP) and anti-apoptotic 

factor (Bcl-xL). Bcl-xL maintained the neuronal viable cell counts until the end of DIV 

23. Primary cortical neurons were later transduced with bicistronic AAV6 vectors at 

DIV 3 coexpressing NmC + α-synuclein, NmC + ß-synuclein and NmC + γ-synuclein 

(60x108 vg of virus/250,000 neurons). 

Each event of synchronized depolarization of 10% of neurons was defined as a burst. 

The frequency of bursts (per minute) was counted at DIV 15 and 19. The average 

percentage of neurons involved in a single synchronous depolarization was defined as 
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the percentage of network participation, which was calculated at DIV 15 and 19. The 

nuclei of the surviving cortical neurons were counted at DIV 15, and 19. 

 

Results suggested that dopamine production did not impair the frequency of action 

potentials and the percentage of network participation in ß-synuclein, α-synuclein, and 

γ-synuclein overexpressing cells (Fig.3.18.D.E.F). Bcl-xL maintained constant cell 

counts in the control and the dopamine-producing group of neurons (Fig.3.18.C). 

Fig. 3.17. Bicistronic and monocistronic AAV vectors to study modulation in 

endogenous network activity 

(A, B, C) Bicistronic AAV vector genomes: Bicistronic AAV vectors coexpressing (A) nuclear 

localized mCherry (NmC) + α-synuclein, (B) NmC + ß-synuclein, (C) NmC + γ-synuclein. 

(D, E) Calcium sensor and anti-apoptotic factor: Monocistronic AAV vectors expressing (D) 

GCaMP, calcium sensor, and (E) BcL-xL, an anti-apoptotic factor. 

hSyn1: human synapsin 1 gene promoter, NLS: nuclear localization signal, WPRE: 

woodchuck hepatitis virus post-transcriptional control element, bGH-pA: bovine growth 

hormone poly-adenylation site, Int-a: intron, M13: a peptide sequence from myosin light-

chain kinsae, ITR: inverted terminal repeat. 

Dr. Sebastian Kügler, Monika Zebski and Sonja Heyroth produced viruses (AAVs). Monika 

Zebski cloned the AAV vector genomes. Department of Neurology, University Medical 

Center Goettingen (UMG). 
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Figure 3.18. Dopamine does not modulate the endogenous network activity in ß-

synuclein and α-synuclein expressing cells. 
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Figure 3.18. Dopamine does not modulate the endogenous network activity in 

ß-synuclein and α-synuclein expressing cells. 

(A, B) Schematics of 2 different types of the experimental set-up. Cells were transduced 

with AAV-AADC and AAV-VMAT2 vectors before seeding at DIV 0. To produce dopamine, 

10µM of L-DOPA was applied to the cells in the intervals of every two days from DIV 3 

onwards. Cells were transduced at DIV 2 with adeno-associated virus vectors expressing 

calcium sensor (GCaMP) and anti-apoptotic factor (Bcl-xL). At DIV 3, cells were transduced 

with bicistronic AAV vectors coexpressing nuclear mCherry (NmC) + α-synuclein, NmC + 

ß-synuclein, and NmC + γ-synuclein (60x108 vg/250,000 neurons). (A) Dopamine was not 

produced in this set-up because neurons lacked the AADC-VMAT2 and L-DOPA 

application. (B) Dopamine was produced in this set-up because cells expressed AADC-

VMAT2 and L-DOPA was applied to the cell culture supernatant. Each event of 

synchronized depolarization of 10% of cells was defined as a burst.  

The frequency of bursts per minute was counted at DIV 15 and 19. The average percentage 

of cells involved in a single synchronous depolarization was defined as the percentage of 

network participation, which was calculated at DIV 15 and 19.   

(D.1, E.1, F.1) Burst frequency and (D.2, E.2, F.2)  network participation of cells expressing 

ß-synuclein (D), α-synuclein (E), and γ-synuclein (F), analyzed at DIV 15 and DIV 19. (C) 

Number of surviving cells expressing ß-synuclein, α-synuclein, and γ-synuclein.  

Bars represent the burst frequency (D.1, E.1, F.1) and the network participation of cells 

(D.2, E.2, F.2). Error bars represent standard deviation (SD) of burst frequency, network 

participation percentage, and cell counts. Statistics by unpaired 2-tailed t-test with Welch´s 

correction, where black bar (dopamine-producing neurons) was compared against white 

bar (non-dopamine producing neurons). N=9 independent transductions. 3 independent 

experiments. Power > 0.90. 

Kristian Leite performed the experiment, generated data, and assisted to prepare figure 

legends. Anupam Raina analyzed and plotted the data, identified trends from the plots to 

derive conclusion, and generated the figure with legends. Department of Neurology, 

University Medical Center Goettingen (UMG). 
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Summary: Results suggest that dopamine does not impair the endogenous network 

activity in α-synuclein and ß-synuclein overexpressing cortical neurons. The impact 

of α-synuclein and ß-synuclein on electrical activity is mechanistically not well 

characterized. In the absence of dopamine production, Tolo and colleagues 

reported that α-synuclein impairs endogenous network activity of cortical neurons in 

vitro (Tolo et al. 2018). To speculate, dopamine production might itself enhance the 

burst frequency in these cell-models in such a way that impairments in network 

activity by α-synuclein and ß-synuclein is completely masked or not detected. 

However, this needs to be further studied. 
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3.5. Dopamine interacts with ß-synuclein 
 

Dopamine interacts with α-synuclein at 125YEMPS129 motif in the C-terminus and alters 

its aggregation properties by increasing total steady-state levels of α-synuclein 

oligomers (Mor et al. 2017). In this thesis, it was found that dopamine aggravated the 

neurotoxicity of ß-synuclein, and to a similar extent, of α-synuclein. Therefore, it was 

of interest to study the interaction of dopamine to ß-synuclein. 

The NMR spectra were collected and recorded on a Bruker 800MHz spectrometer at 

10°C in 20mM sodium phosphate buffer (pH 6.0), 2mM TCEP (tris(2-

carboxyethyl)phosphine), and 10% D2O (deuterated water). Two-dimensional 1H -15N 

heteronuclear single quantum coherence (HSQC) spectrum was recorded to study the 

interaction of dopamine with β-synuclein. 100µM of β-synuclein were titrated against 

different concentrations of dopamine ranging from 0.02mM to 2mM. Chemical shift 

perturbations (CSP) were calculated using the formula CSP = [(δH)2 + (0.1 δN)2]1/2, 

where δN and δH are chemical shift differences (parts per million (ppm) of nitrogen 

and proton, respectively. 

The NMR spectra (CSP > 0.35 ppm) results of β-synuclein and dopamine studies (Fig. 

3.19.A) indicated that dopamine interacted all over β-synuclein with a dissociation 

constant (ß.Kd) value of 2.10 ± 0.16 mM (Fig. 3.19.B). In the N-terminal domain (NTD) 

of β-synuclein, dopamine interacted with K6, A17, V49, Q50, and K60 (Fig. 3.19.C). In 

the non-amyloid beta component (NAC) domain of β-synuclein, dopamine interacted 

with I77. In the C-terminal domain (CTD) of β-synuclein, dopamine interacted with E87, 

M112, and Y127 (Fig. 3.19.D). The Kd value of dopamine´s interaction with α-synuclein 

is reported (using surface plasmon resonance (SPR)) to be 10-100 fold less than ß.Kd 

(Jha et al. 2017), suggesting a weak binding of dopamine to ß-synuclein in comparison 

to the binding of dopamine to α-synuclein. 
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Figure 3.19. Dopamine interacts with ß-synuclein. 
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Figure 3.19. Dopamine interacts with ß-synuclein. 

 (A) A large number of residues of ß-synuclein show chemical shift perturbations (CSP) 

upon binding dopamine. Overlay of the NMR spectra of the representative residues D3, 

A70, Q125, and A135 are shown. The spectra are shown using the color scheme: free ß-

synuclein (blue), 0.5 mM dopamine bound to ß-synuclein (magenta) and 1.0mM dopamine 

bound to ß-synuclein (red). 

(B) All the residues of ß-synuclein that showed significant 15N CSP (Δδ) were fitted 

simultaneously to determine the Kd = 2.10 + 0.16 mM (standard error of fitting). The error 

bar on the data points for a residue was calculated from repeat measurement of ß-synuclein 

peak positions at 1 mM dopamine concentration. 

(C) The residue-wise difference of the 15N chemical shifts between free and bound ß-

synuclein in solution (Δδ). The error bars represent standard error of fitting. 

(D) The full-length ß-synuclein modeled based on its homology with α-synuclein using the 

Swiss-Model program. The residues with CSP values in the 15N dimension, i.e., Δδ > 0.4 

ppm, (in red; shown in stick representation) were mapped onto the modeled structure of ß-

synuclein (in golden). For modeling, the full-length α-synuclein structure from its pathogenic 

fibrils was used as the template (PDB 2n0a; Tuttle et al. 2015). 

Dr. Kalyan Chakrabarti analyzed NMR spectra and plotted data to determine the Kd. 

Modeled full-length ß-synuclein. Generated the figure with legends. Dr. Stefan Becker 

kindly provided the purified α-synuclein and ß-synuclein. Department of NMR-based 

Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen. 

Anupam Raina performed the experiment under the supervision of Dr. Kalyan Chakrabarti, 

generated the data, and identified trends from the plots to derive conclusion. Department of 

Neurology, University Medical Center Goettingen (UMG). 

Summary: Dopamine interacted all over β-synuclein. The ß.Kd value was found to 

be 2.10mM, which is 10-100 fold more than the reported (using SPR) α.Kd value. 

This suggests that it is probably not ß-synuclein-dopamine binding directly 

responsible for aggravated neurotoxicity. 
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3.6 Summary of Results – II 
 

Two different in vitro cell-based models with dopaminergic neurotransmitter phenotype 

were established using glutamatergic cortical neurons, which demonstrated robust 

dopamine production, and enhanced intracellular dopamine levels. Both the cell-

models acted as valuable research tools to study the neurodegeneration induced by 

ß-synuclein in the context of dopamine. 

Dopamine aggravated the neurotoxic properties of ß-synuclein, and to a similar extent, 

of α-synuclein. Dopamine does not impair the endogenous network activity in ß-

synuclein and α-synuclein expressing cells. Dopamine interacted all over ß-synuclein 

with binding affinity of 10-100 fold lower in comparison to α-synuclein and dopamine 

interaction.  
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4. Discussion 
 

So far, the potential neurotoxicity of ß-synuclein had not been linked to a dopaminergic 

neurotransmitter phenotype, and dopamine had not been known to aggravate 

neurotoxic properties of ß-synuclein.  Rather, α-synuclein is linked to dopaminergic 

neurotransmitter phenotype because studies revealed that dopamine stabilized 

potentially toxic α-synuclein oligomers in vitro by interaction with 125YEMPS129 motif in 

C-terminus of α-synuclein (Conway et al. 2001; Mazzulli et al. 2007; Mazzulli et al. 

2006; Norris et al. 2005), and dopamine increased total steady-state levels of α-

synuclein oligomers and promoted larger oligomer conformations in vivo (Mor et al. 

2017). Furthermore, ß-synuclein aggregates and induces neurodegeneration of 

dopaminergic neurons in vivo (Taschenberger et al. 2013). Therefore, it was important 

to investigate the link between ß-synuclein and dopamine, which might explain the 

neurodegeneration of mostly dopaminergic neurons in Parkinson´s disease. The 

results of this study provide new perspectives on neurodegeneration induced by ß-

synuclein in the context of the neurotransmitter dopamine. 

A therapeutic intervention for Parkinson´s disease (PD) is desperately needed. PD is 

a progressive neurodegenerative disorder that affects more than 7 million people 

around the globe, and the number is expected to double, with over 14 million cases by 

2040 (Dorsey and Bloem 2018). The motor symptoms include tremor at rest, rigidity, 

bradykinesia or akinesia, and non-motor symptoms include depression, cognitive 

decline, and sleep disturbances (Jellinger 2012). The pathophysiological features of 

PD include progressive degeneration of dopaminergic neurons in the substantia nigra 

and accumulation of Lewy bodies and Lewy neurites in substantia nigra and other 

regions of brain, which are protein rich intracellular inclusions majorly comprised of 

aggregated form of protein α-synuclein (Spillantini et al. 1997; Goedert et al. 2013). 
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The studies indicate a relationship between α-synuclein and the neurotransmitter 

phenotype dopamine. 

The interaction of dopamine with α-synuclein conferring neurodegeneration or 

neuroprotection is heavily debated. Cytosolic dopamine (DA) oxidizes to electrophilic 

dopamine-quinone (DAQ) and reactive oxygen species which may interact with 

cytosolic dopamine or cytosolic proteins to form neurotoxic products (Cubells et al. 

1994; Graham 1978; Jenner and Olanow 1996; Sulzer and Zecca 2000). α-synuclein 

oligomerizes to protofibrils, which further oligomerize to form fibrils (Lashuel et al. 

2013). The intermediate α-synuclein protofibrils are suggested to be most neurotoxic. 

Lansbury and colleagues suggest that in a cell-free solution, DAQ or dopamine might 

interact with α-synuclein to form DAQ-α-synuclein (DAQ-αS) or DA-α-synuclein (DA-

αS) adduct which stabilizes toxic protofibrils, thereby promoting neurodegeneration 

(Conway et al. 2001; Sulzer 2001). Even though α-synuclein and dopamine adducts 

are known to be cytotoxic in vitro, not much is known about how α-synuclein and 

dopamine adducts and DAQs can impair dopaminergic neurons in vivo. Using 3 

different mice systems with enhanced dopamine production (by more than 50%), wild-

type mice (control), A53T mice, and human α-synuclein expressing A53T mice, 

Giasson, Mor and colleagues demonstrated that enhanced dopamine production (by 

more than 50%) in A53T mice expressing human α-synuclein resulted in the loss of 

dopaminergic synapses (by 62%) and the number of cell bodies in the substantia nigra 

(by 25%) after 5 months post injection (mpi) (Mor et al. 2017; Giasson et al. 2002). 

They further reported that the striatal dopamine levels were reduced by 37% from 2.5 

mpi to 5 mpi in human α-synuclein expressing A53T mice (Mor et al. 2017). However, 

the striatal dopamine levels did not drop significantly in A53T mice as compared to the 

wild-type mice (Mor et al. 2017). Mor and colleagues further reported that enhanced 

dopamine levels increased the total steady-state levels of α-synuclein oligomers and 
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boosted larger oligomeric conformations by performing in vitro assays from oligomers 

isolated from the substantia nigra of A53T mice with enhanced dopamine production 

and control mice (Mor et al. 2017). The studies so far, provide a link between the 

neurotransmitter phenotype dopamine and α-synuclein aggregation.  

Interestingly, non-amyloidogenic ß-synuclein might confer neuroprotection against α-

synuclein (Hashimoto et al. 2001; Park and Lansbury 2003; Hashimoto, Rockenstein, 

et al. 2004); however, the neurodegenerative and neuroprotective role of ß-synuclein 

is still disputed. In 2010, Fujita and colleagues demonstrated that P123H ß-synuclein, 

one of the mutants of ß-synuclein associated with familial dementia with Lewy bodies 

(DLB), stimulated neurodegeneration, and might seed the aggregation of α-synuclein 

in vivo (Fujita et al. 2010). It was in 2013 that Taschenberger and colleagues were the 

first to report that ß-synuclein aggregates, and induces neurodegeneration in 

dopaminergic neurons to a similar extent as α-synuclein in vivo (Taschenberger et al. 

2013). The evidence that ß-synuclein aggregates in dopaminergic neurons, strongly 

suggests a link between ß-synuclein and the neurotransmitter phenotype dopamine 

that was not investigated so far. 

In order to investigate the link between ß-synuclein and neurotransmitter phenotype 

dopamine, a better cell-model with dopaminergic neurotransmitter phenotype is highly 

demanded. Dopaminergic neurons isolated from rodent midbrain embryos contain only 

a minority of dopaminergic neurons in a majority of GABAergic neuronal culture. 

Additionally, the midbrain cultures are difficult to prepare, and are short-lived (Yan, 

Studer, and McKay 2001; Prasad et al. 1994). Dopaminergic neurons can be 

generated from human midbrain neural stem cells (Ribeiro et al. 2013), human 

fibroblasts (Caiazzo et al. 2011), or human induced pluripotent stem cells (iPSCs) 

(Kriks et al. 2011); however, the yield of dopaminergic neurons is not sufficient, greatly 



                                                                                                                       Discussion 
 

78 | P a g e  

 

variable, a robust dopamine production in the generated dopaminergic neurons is 

highly questionable (Marton and Ioannidis 2018). In contrast, the cortical neurons from 

rodent embryos can be readily isolated in very large amounts, and thus are valuable 

research tools. These neurons survive in culture for several weeks, show endogenous 

non-stimulated neuronal network activity, and are a reliable cellular model for 

neurobiological studies. It has not been investigated so far, if postnatal cortical neurons 

can be experimentally (in vitro) prompted to switch their neurotransmitter phenotype to 

another neurotransmitter phenotype of interest. The approach of experimentally 

switching readily available cortical neurons to the desired neurotransmitter phenotype 

would deliver the advantage that neuronal morphology and all functionalities have 

already been established, and a large number of neurons with the desired 

neurotransmitter phenotype could be achieved. 

4.1. Project 1: Transdifferentiation of primary cortical 

neurons towards dopaminergic neurotransmitter 

phenotype 
 

4.1.1. Important transcription factors for inducing 

dopaminergic neurotransmitter phenotype: Lmx1a, Nurr1, 

Pitx3, and Ascl1 
 

I investigated transcription factors known to be important for patterning and 

differentiation into dopaminergic neurons for their potential to induce dopaminergic 

neurotransmitter phenotype in cortical neurons isolated from E18 embryonal rat brain. 

Transcription factors Nurr1 (nuclear receptor 4a2), Lmx1a (LIM homeobox 

transcription factor 1a), and Pitx3 (pituitary homeobox 3) are known to be important for 

patterning and differentiation into dopaminergic neurons (Arenas, Denham, and 

Villaescusa 2015). Shh specifies the floor plate by upregulating Foxa2 at E8 in mice 
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(Ang et al. 1993). Moreover, one of the major events in the patterning of midbrain floor 

plate is the upregulation of Lmx1a/b by Foxa2 and Wnt1/ß-catenin (Chung et al. 2009). 

Foxa2 (Lin et al. 2009) together with Otx2 (Ono et al. 2007) regulate the expression of 

Lmx1a/b. ß-catenin upregulates Lmx1a and Otx2, and on the other hand, Lmx1a 

upregulates Wnt1 and Msx1, thus forming an Lmx1a-Wnt1-ß-catenin autoregulatory 

loop together with Foxa2 and Otx2 (Chung et al. 2009). Furthermore, Lmx1a 

upregulate Nurr1 and Pitx3 which are necessary for the differentiation and survival of 

midbrain dopaminergic neurons (Arenas, Denham, and Villaescusa 2015). 

Interestingly, studies revealed that the deletion of both Lmx1a and Lmx1b leads to 

almost complete loss of midbrain dopaminergic neurons (Yan et al. 2011). Addionally, 

Nurr1 and Pitx3 regulate each other (Volpicelli et al. 2012). Nurr1 upregulates En1, 

which in turn regulates Pitx3, TH (tyrosine hydroxylase), VMAT2 (vesicular monoamine 

transporter 2), DAT (dopamine transporter), therefore inducing the expression of 

dopaminergic battery of genes (Veenvliet et al. 2013). In summary, the studies 

suggested that Lmx1a is one of the most essential transcription factor for specification 

into midbrain dopaminergic neurons. Furthermore, Nurr1 and Pitx3 are crucial for 

terminal differentiation, and survival of midbrain dopaminergic neurons, and 

maintenance of dopaminergic neurotransmitter phenotype. 

I also investigated a pan-neuronal transcription factor Ascl1 that was used with Brn1 

and Myt1l to transdifferentiate fibroblasts into induced neurons (Vierbuchen et al. 

2010). Ascl1 along with Nurr1 and Lmx1a transdifferentiated fibroblasts to 

dopaminergic neurons (Caiazzo et al. 2011). Wapinski and colleagues revealed that 

Ascl1 alone was able to push the fate of fibroblasts to induced neurons, suggesting 

that Ascl1 plays a key role in the process of transdifferentiation (Wapinski et al. 2013). 

Therefore, we also introduced Ascl1, along with Lmx1a, Nurr1, and Pitx3 to 

transdifferentiate cortical neurons towards dopaminergic neurotransmitter phenotype. 
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4.1.2. Ascl1, Nurr1, and Lmx1a (“ANL”) induce dopaminergic 

neurotransmitter phenotype in a subpopulation of cortical 

neurons 
 

Cortical neurons can be isolated in large amounts from rat pups at embryonic day of 

development 15 – 19 (E15 - E19). These neurons survive in culture for several weeks, 

show endogenous non-stimulated neuronal network activity, and are a reliable cellular 

model for neurobiological studies. The majority of cortical neurons are glutamatergic, 

while GABAergic neurons make up 5-20%, and catecholaminergic neurons are present 

in very low amounts (Dichter 1978, 1980; Herrero et al. 1998; Stichel and Muller 1991). 

The relative percentage of catecholaminergic (TH+) neurons depends on the time of 

isolation of cells. Cortical neurons isolated at E13 contained large amounts of TH+ 

neurons, which lose their phenotype over time, while cortical neurons isolated at E18 

contain only very minor amounts of TH+ neurons from the time of seeding (Iacovitti et 

al. 1987). 

The cortical cultures were isolated at E18 and maintained in the presence of glial cells, 

which at later stages constitute 40-50% of all cells. The transcription factors were 

expressed in these neurons by adeno-associated viral (AAV) vectors from the time of 

seeding onwards. Transcription factors were driven by hSyn1 promoter that restricts 

the expression of transcription factors strictly to neurons (Kugler et al. 2003). Moreover, 

each transcription factor, Nurr1, Lmx1a, and Pitx3, when overexpressed alone in 

human iPSCs, was capable to pattern and differentiate human iPSCs to 50% of 

dopaminergic neurons, suggesting that Nurr1, Lmx1a, and Pitx3 are functional 

(Mahajani et al. unpublished data). 

Results suggested that Ascl1, Nurr1, and Lmx1a (“ANL”) overexpression induced the 

expression of TH in a subpopulation (15-22%) of cortical neurons. The cortical 
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dopaminergic neuron-like cells (cDNs) expressed all classical dopaminergic markers, 

TH, AADC, DAT, and VMAT2 that are necessary for producing dopamine, suggesting 

an induction of dopaminergic neurotransmitter phenotype. The results further suggest 

that Ascl1 alone cannot induce dopaminergic neurotransmitter phenotype; however, 

Nurr1 alone can induce dopaminergic neurotransmitter phenotype in a small number 

(< 2.5%) of cortical neurons already at DIV 7 but their numbers did not increase over 

time. Combining Nurr1 expression with Lmx1a did not increase the overall TH+ cell 

numbers. Intriguingly, Nurr1 when combined with Ascl1 significantly enhanced the 

yield of dopaminergic neuron-like cells (12%), and the yield was insignificantly 

improved by coexpression of Lmx1a with Ascl1 and Nurr1. 

Currently, it is unclear how Ascl1 together with Nurr1 induces dopaminergic 

neurotransmitter phenotype in a subpopulation of cortical neurons. Studies with Ascl1 

suggest that Ascl1 is a pioneer transcription factor, which may access the silent sites 

directly on the nucleosomes to initiate transdifferentiation (Bertrand, Castro, and 

Guillemot 2002; Iwafuchi-Doi and Zaret 2014; Wapinski et al. 2013). 

In conclusion, results demonstrated that the concerted action of Ascl1, Nurr1, and 

Lmx1a (“ANL”) induced dopaminergic neurotransmitter phenotype in a subpopulation 

of cortical neurons, however the mechanism remains to be elucidated. 

4.1.3. Cortical GABAergic neurons transdifferentiate to 

dopaminergic neuron-like cells (cDNs) 
 

The transduction efficacy of AAV6 vectors in cortical neuron culture is sufficient to 

reach > 90% of all neurons (Taschenberger et al. 2013; Tolo et al. 2018). Therefore, I 

wondered why the percentage of transdifferentiated cortical neurons was limited to 

15%. Immunocytochemical analyses of cDNs (identified as TH), GABAergic neurons 
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(identified as GAD 65), and glutamatergic neurons (identified as CaMKIIß) revealed 

that TH expression was induced in GABAergic neurons because TH and GAD65 

colocalize. At DIV 7, cDNs coexpressing TH and GAD65 amounted to 55%, which at 

DIV 14 and 21 dropped significantly. Furthermore, results suggested GAD 65 marker 

in GABAergic neurons diminishes by DIV 21 suggesting a transdifferentiation to 

dopaminergic neurotransmitter phenotype. Results further revealed that “ANL” 

overexpression specifically caused degeneration of glutamatergic neurons already at 

DIV 7, resulting in drop of overall number of neurons. As it was found that GABAergic 

neurons are the source of cDNs, the drop in the number of GABAergic neurons can be 

accounted by an increase in the number of cDNs (TH+) from DIV 7 to DIV 21 and 

diminishing of GAD65 marker from DIV 7 to DIV 21. 

In light of the published data, the results are novel because I demonstrated for the first 

time that postnatal cortical GABAergic neurons could be transdifferentiated to 

dopaminergic neuron-like cells by Ascl1, Nurr1, and Lmx1a in vitro. In the context of 

cortical neurons, it is reported that Fezf2 could reprogram the postnatal callosal 

projection neurons to its subtype corticofugal projection neurons (Arlotta et al. 2008; 

De la Rossa et al. 2013).  The recently published data (September 2018) by Niu and 

colleagues revealed that striatal GABAergic neurons could be reprogrammed to 

dopaminergic neuron-like cells by Sox2, Nurr1, Lmx1a, Foxa2 and valproic acid in vivo 

(Niu et al. 2018). They reported that this combination yielded 1,700 TH+ cells per 

injection in an adult mouse striatum after 36 weeks post injection (Niu et al. 2018). 

In conclusion, I have shown that cortical GABAergic neurons can be transdifferentiated 

to dopaminergic neurotransmitter phenotype at the cost of significant loss of 

glutamatergic neurons in cortical culture. 
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4.1.4. Midbrain GABAergic neurons cannot transdifferentiate 

into dopaminergic neurotransmitter phenotype 
 

In order to improve the yield of dopaminergic neurons, I next hypothesized that “ANL” 

overexpression in rat E14.5 midbrain neurons might enhance the yield of dopaminergic 

neurons; as it is reported that the GABAergic neurons (GAD+ cells) are predominantly 

present in a midbrain culture along with a minority of TH+ neurons (Gaven, Marin, and 

Claeysen 2014). I thus overexpressed “ANL” in neurons isolated from rat E14.5 

midbrain. 

To my surprise, I found that there was no increase in the amount of TH+ neurons, 

because the midbrain GABAergic neurons did not transdifferentiate into dopaminergic 

neurotransmitter phenotype.  

Cortical GABAergic neurons (cGNs) primarily originate from medial ganglionic 

eminence (MGE) and caudal ganglionic eminence (CGE), and a minority from lateral 

ganglionic eminence (Pleasure et al. 2000; Butt et al. 2005; Wonders and Anderson 

2006). Transcription factors Nkx2.1 and Lhx6 are majorly involved in the specification 

of cGNs originating from MGE (Azim et al. 2009; Zhao et al. 2008), whereas Gsx1/2 

and Ascl1 along with Dlx1/2/5/6 are majorly involved in the specification of cGNs 

originating from CGE (Casarosa, Fode, and Guillemot 1999; Wang et al. 2010; Xu et 

al. 2010). Ascl1 upregulates Dlx1/2 which upregulates Dlx5/6 in CGE precursors (Long 

et al. 2009). Ectopic overexpression of Dlx2/5 can induce the expression of GAD65/67 

in forebrain and midbrain slice cultures (Colasante et al. 2008; Stuhmer et al. 2002).  

The development and specification of midbrain GABAergic neurons (mGNs) are not 

well understood. The mGNs originate from ventral hindbrain and require transcription 

factors Tal2 and GATA2 to upregulate Tal1 and GATA3 for the maintenance of 
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GABAergic phenotype (Achim et al. 2012; Joshi et al. 2009). Mutation in GATA2 leads 

to a switch in the fate of mGNs to glutamatergic neurons (Achim, Salminen, and 

Partanen 2014; Kala et al. 2009). 

Due to the indirect involvement of Ascl1 in the upregulation of GAD65 through Dlx2 in 

CGE-derived precursor cells, might be cGNs, which pattern and differentiate from 

CGE-derived precursor cells, are more amenable to fate change than mGNs upon 

ectopic overexpression of Ascl1, Nurr1, and Lmx1a (“ANL”). I demonstrated that 

GAD65 marker expression is diminished upon “ANL” overexpression in cortical 

neurons. In light of the published data, my results suggest that Ascl1 may act as a 

switch, which controls the expression of GAD65 in cooperation with the ectopic 

overexpression of Nurr1 and Lmx1a in CGE precursor cells derived postnatal cortical 

neurons.  

In conclusion, midbrain GABAergic neurons did not transdifferentiate into 

dopaminergic neurotransmitter phenotype because it appears that the cortical 

GABAergic postnatal cells may undergo patterning, differentiation, and migration in a 

different microenvironment than midbrain GABAergic postnatal cells. However, the 

mechanism remains to be elucidated. 
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4.2. Project 2: Creating a dopaminergic cell-model by the 

introduction of AADC, VMAT, and extracellular L-DOPA or 

DAT, VMAT2, and extracellular dopamine into cortical 

neurons 
 

Transdifferentiation of cortical neurons using transcription factors resulted in low yield 

of dopaminergic neurons, and led to profound loss of neurons that were unable to 

transdifferentiate. Therefore, an alternate strategy was employed in which aromatic 

amino acid decarboxylase (AADC), vesicular monoamine transferase 2 (VMAT2), and 

extracellular L-3,4-dihydroxyphenylalanaine (L-DOPA) or dopamine transporter (DAT), 

VMAT2 and extracellular dopamine were introduced into the cortical neurons. 

Dopamine is produced when L-DOPA is decarboxylated by AADC, and cytosolic 

dopamine is sequestered into synaptic vesicles by VMAT2 (Cartier et al. 2010).  

The cortical neurons isolated from rat pups on embryonic day of development 18 (E18) 

consist of a majority (80-95%) of glutamatergic neurons and a minority (5-20%) of 

GABAergic neurons (Dichter 1980; Herrero et al. 1998; Stichel and Muller 1991). 

Cortical neurons are maintained with glial cells that grow up to 40-50% of all cells in 

later stages.  

Two cell-based models were established. Introduction of AADC, VMAT2 into cortical 

neurons and extracellular doses of L-DOPA resulted in robust dopamine production. 

Introduction of DAT, VMAT2 into cortical neurons and extracellular doses of dopamine 

resulted in enhanced intracellular dopamine levels. 

4.2.1. Comparison with the existing cell-models 
 

One of the in vitro dopaminergic cell-models routinely used are Lund Human 

Mesencephalic cells (LUHMES) and human iPSCs derived dopaminergic neurons. 
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Both, LUHMES (Scholz et al. 2011) and iPSCs (Chambers et al. 2009; Kriks et al. 

2011; Theka et al. 2013) are human derived cells which are differentiated into 

dopaminergic neurons. Even though both the cell-models are human derived and 

exhibit endogenous electrical activity, the intracellular dopamine levels reported for 

LUHMES derived dopaminergic neurons are less than 0.2 nanograms (per 10,000 

cells) (Scholz et al. 2011). The intracellular dopamine levels in iPSCs derived 

dopaminergic neurons are not reported. The released dopamine is 2.25 nanograms/ml, 

however they do not report the total cell-count present at the time-point of dopamine 

quantification from the supernatant (Kriks et al. 2011). Some of the other in vitro cell-

models still used are neuroblastoma cell-line SH-SY5Y and pheochromocytoma cell-

line PC12 (Chutna et al. 2014; Hasegawa et al. 2004; Kim et al. 2015; Roberti, Jovin, 

and Jares-Erijman 2011). Although primary midbrain neurons contain only a minority 

(5 – 10%) of dopamine producing neurons, they are also used to study molecular 

mechanisms in the context of Parkinson´s disease (Aksenova et al. 2005; Tonges et 

al. 2014). In this thesis, I found that the developed cell-models mimicking the 

dopaminergic neurotransmitter phenotype, resulted in robust dopamine production and 

enhanced intracellular dopamine levels reaching up to 5.0 nanograms (per 10,000 

cells), which is the highest-ever achieved in comparison to the existing dopaminergic 

neuronal cell-models used for PD research.  

4.2.2. Multi-transmitter phenotype: A boon or a drawback? 
 

It is reported that dopaminergic neurons in the substantia nigra also release GABA 

(Tritsch, Ding, and Sabatini 2012). It was found that VMAT2 can sequester GABA into 

vesicles and release it in the striatum and nucleus accumbens (Tritsch, Ding, and 

Sabatini 2012). Sabatini and colleagues propose that all dopaminergic neurons from 

the substantia nigra release GABA. In another report, a subset of dopaminergic 
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neurons in the ventral tegmental area express vesicular glutamate transporter 2, which 

also release glutamate in the striatum and nucleus accumbens (Howe and Dombeck 

2016). These reports suggest that the release of GABA and glutamate by 

dopaminergic neurons is a physiological phenomenon. In the developed cell-based 

models, glutamatergic or GABAergic neurotransmitter phenotype was not eliminated. 

Glutamatergic vesicles presumably sequester the dopamine produced intracellularly 

and release it into the supernatant due to the endogenous electrical activity of cortical 

neurons (Opitz, De Lima, and Voigt 2002; Ramakers, Corner, and Habets 1990; Sun, 

Kilb, and Luhmann 2010), thereby mimicking the same physiological process 

demonstrated by midbrain dopaminergic neurons. In conclusion, based on the reports 

published and the studies performed in this thesis, I can say that having a multi-

transmitter phenotype in the developed cell-models is a boon and thus, an important 

ingredient for making this cell-based model more valuable for PD research. 

4.2.3. Dopamine aggravates neurotoxicity of ß-synuclein 
 

Our group reported that when ß-synuclein is overexpressed in substantia nigra of 

rodent model of PD, ß-synuclein induces neurodegeneration of dopaminergic neurons 

(Taschenberger et al. 2013). This report suggested a link between ß-synuclein and 

dopamine, which was not investigated so far. Therefore, it was of interest to study the 

neurotoxicity induced by ß-synuclein in the context of the neurotransmitter dopamine. 

After the cell-models with dopaminergic neurotransmitter phenotype were established, 

the neurotoxicity of ß-synuclein was investigated in the developed cell-models. 

Intriguingly, results suggested for the first time that dopamine production and 

enhanced intracellular dopamine aggravated the neurotoxic properties of ß-synuclein 

and α-synuclein.  
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As discussed in the introduction, dopamine is known to interact with 125YEMPS129 motif 

present in the C-terminal domain of α-synuclein (Conway et al. 2001; Norris et al. 

2005). This interaction leads to kinetic stabilization of α-synuclein oligomers and 

inhibits their fibrillization (Conway et al. 2001). Dopamine aggravates 

neurodegeneration of dopaminergic neurons in human α-synuclein A53T transgenic 

mice by binding to 125YEMPS129 motif and increasing the steady state levels of α-

synuclein oligomers (Mor et al. 2017). As a result, the toxic α-synuclein oligomeric 

species may result in several cellular dysfunctions. The dissociation constant (α.Kd) of 

dopamine binding to α-synuclein using NMR is not yet studied. 

Interestingly, from the results it appears that dopamine binds all over ß-synuclein, and 

to Y127, E87, M112 on the C-terminus with a dissociation constant (ß.Kd) of 2.10 mM. 

Comparing ß.Kd with α.Kd (as reported) indicates that the binding affinity of dopamine 

to α-synuclein is much weaker than the binding affinity of dopamine to α-synuclein. On 

comparing the C-terminal regions of α-synuclein and ß-synuclein, the 125YEMPS129 

motif of α-synuclein is different by 119YEDPP123 on ß-synuclein, suggesting that the 

lack of 125YEMPS129 motif on ß-synuclein might be the reason of poor affinity of 

dopamine to ß-synuclein (Fig. 4.1). This suggests that it is probably not ß-synuclein-

dopamine binding directly responsible for aggravated neurotoxicity. 

Next, I scrutinized potentially toxic metabolites known to be involved in dopamine 

metabolism. One of the metabolites that is known to be involved in α-synuclein 

aggregation is 3,4-dihydroxyphenylacetaldehyde (DOPAL). DOPAL is generated by 

the enzyme MAO. It is highly unstable and a toxic product of dopamine (DA) 

metabolism. Reports suggest that DOPAL:DA ratios are higher in PD brains as 

compared to the healthy control brains (Goldstein et al. 2011). It has been reported 

that DOPAL can covalently modify the lysine residues (shown in figure 4.1) in cell-
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models (HEK293T and primary cortical neurons) and cell-free solution (Plotegher et al. 

2017). DOPAL can oligomerize α-synuclein, and α-synuclein-DOPAL oligomers are 

reported to permeabilize lipid membranes, thus affects the structural and functional 

integrity of synaptic vesicles (Plotegher et al. 2017). 

When I analyzed the structural similarities of ß-synuclein and α-synuclein, I found that 

ß-synuclein contains 8 lysine residues (out of 11 possible binding sites) at the same 

position found in α-synuclein to which DOPAL is known to bind covalently. In 

conclusion, considering the existing reports about DOPAL, the results from this my 

thesis provides a clue about the possible role of toxic DOPAL, and not dopamine 

directly, in aggravating the neurotoxicity of ß-synuclein. 

 
 

Figure 4.1 Comparison of α-synuclein and ß-synuclein sequences 

A – α-synuclein, B – ß-synuclein, N – N-terminal region, NAC – NAC domain, C – C-terminal 

region 

Hydrophobic residues (gray), positively charged residues (blue), negatively charged 

residues (red), uncharged-polar residues (green) (Williams, Yang, and Baum 2018). 

Blue box: dopamine binding site on α-synuclein and the corresponding site on ß-synuclein. 

Blue arrows: reported binding sites of DOPAL on α-synuclein and the corresponding site on 

ß-synuclein. 
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5. Conclusion and perspectives 
 

The results of this thesis demonstrate for the first time that dopamine aggravates the 

neurotoxic properties of ß-synuclein. It has been reported that α-synuclein impairs 

endogenous network activity by decreasing the action potential frequency (Tolo et al. 

2018). However, in this study, it was found that dopamine production in α-synuclein 

and ß-synuclein expressing cells, does not impair the endogenous network activity in 

vitro. Furthermore, NMR studies revealed that dopamine interacted all over ß-

synuclein and the binding of ß-synuclein-dopamine was weak in comparison with α-

synuclein-dopamine binding (reported in literature using surface plasmon resonance). 

This suggested that ß-synuclein-dopamine binding might not be directly responsible 

for aggravated neurodegeneration. Taken all together, this study provides new 

perspectives on the neurodegeneration induced by ß-synuclein in the context of the 

neurotransmitter dopamine. 

The results of my thesis demonstrate that probably it is not ß-synuclein-dopamine 

binding directly responsible for aggravated neurotoxicity of ß-synuclein. Digging further 

deep into dopamine metabolism, an unstable and a toxic intermediate, 3,4-

dihydroxyphenylacetaldehyde (DOPAL), came into picture. DOPAL is produced by the 

oxidation of dopamine by monoamine oxygenase. It is known to bind to lysine residues 

on α-synuclein and promote its aggregation forming DOPAL-α-synuclein oligomers 

that can permeabilize synaptic vesicles (Plotegher et al. 2017). ß-synuclein contains 8 

lysine residues (out of 11 possible binding sites) at the same position found in α-

synuclein to which DOPAL is known to bind covalently. This suggests that DOPAL 

might also bind to ß-synuclein with almost same binding affinity. If this holds true, 

DOPAL-ß-synuclein binding, might play a role in aggravating the neurotoxic properties 
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of ß-synuclein. Investigating neurotoxicity of ß-synuclein in the context of DOPAL might 

open new frontiers to unravel the enigma of Parkinson´s disease. 
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6. Materials and Methods 
 

6.1. Animal procedures 
 

All experiments were performed with female Wistar rats (Janvier labs). All the 

procedures involving Wistar rats were performed according to the local regulation and 

the Directive 2010/63/EU of the European Parliament and of the Council on the 

protection of animals used for scientific purposes. 

The female Wistar rats were housed in cages in groups of 5 with 12 hour/12 hour 

dark/light cycle, providing access to water and food ad libitum. 

6.2. Primary neuronal culture 
 

Primary cortical cell cultures were prepared from embryonic development day E17.5 

from rat pups as described (Zahur et al. 2017). Primary midbrain cell cultures were 

prepared from embryonic development day E14.5 from rat pups as previously 

described (Weinert et al. 2015; Roser et al. 2018). The cortical plate or the ventral 

midbrain was isolated from the rat embryos. 0.25% Trypsin (Gibco;15090-046) was 

used to dissect the isolated tissue into single cells, and incubated at 37°C for 15 mins. 

The cells were either seeded in 24-well plate (on 12mm coverslips for 

immunocytochemistry) pre-coated with poly-L-ornithine (50µg/ml; Sigma; P-3655) and 

laminin (2µg/ml; Sigma; L2020), or cells were pre-treated with viral vectors for 30 mins. 

at 37°C incubator in Neurobasal medium (750µL/well; Invitrogen; 21103-049) with 1% 

Penicillin-Streptomycin-Neomycin (PSN; Gibco; 15640-055), L-Glutamine (0.5mM; 

Invitrogen; 25030-081), 0.5% transferrin (Applichem; A3124-0250), and 2% B27 serum 

(Invitrogen; 10889-038), until further analyzed. Cell density of 250,000 was plated for 

Western blots and cell density of 150,000 was plated for immunocytochemistry per 
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well. Transduction with viral vectors was performed at DIV 0 (Ascl1, Lmx1a, Nurr1, 

Pitx3) and immunocytochemistry was performed at DIV 7, 14, and 21. Pre-treatment 

of cells was performed with AAV vectors AADC and VMAT2. AAV vectors with 

transgene as α-synuclein, ß-synuclein γ-synuclein, GCaMP3.1, BcL-xL, EGFP, NmC 

were introduced into the cells at DIV 3. 

6.3. Construction and propagation of viral vectors 
 

Adeno-associated viral vectors (recombinant) were prepared by transient transfection 

of vector plasmids (Fig.3.1, 3.9, 3.14, 3.17) in HEK293 cells with DP6 helper plasmid. 

Heparin affinity chromatography and iodixanol gradient centrifugation were used to 

purify viral particles from cell lysates. These AAV viral vectors overexpressed the 

transgene under the control of human synapsin 1 promoter, as described (Kugler et al. 

2003; Kugler et al. 2007). Dialysis against PBS was performed and 20µL were frozen 

in -80°C. Genome titer was quantified by qPCR and purity was determined by SDS-

PAGE (>98%). 

6.4. Immunocytochemistry 
 

Immunocytochemistry was performed as previously described (Mahajani et al. 2017) 

with minor modifications as given: 0.1% Triton X-100 in PBS was used as a washing 

solution. Cells were blocked and membraned were permeabilized by 5% neonatal goat 

serum (Genetex; GTX73206). Coverslips were incubated with primary antibody at 4°C 

overnight (16hrs.) and with secondary antibody for 1 hr. After washing, cells were 

coated with DAPI for 2 mins. After that, washing and mounted on Mowiol medium 

(Sigma, 81381). Zeiss Axioplan2 microscope (automated) with Zeiss AxioCam ERc5s 

camera and 20x or 40x – Plan NEOFLUAR objective and Zeiss Axiovision software 
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was used to take fluorescent images ImageJ was used to quantify cell counts manually, 

and also automatically using an algorithm designed (Kristian Leite 2018). 

6.5 Antibodies 
 

Anti-Tyrosine hydroxylase (rabbit, AB152, 1:500) 

Anti-DOPA decarboxylase (rabbit, ab3905, 1:500) 

Anti-VMAT2 (goat, Everest, 1:500) 

Anti-GAD65 (mouse, MAB351, 1:500) 

Anti-DAT (rat, MAB369, 1:500) 

Anti-CaMKIIß (rabbit, ab34703, 1:1000) 

Anti-Nurr1 (mouse, ab41917, 1:500) 

Anti-Ascl1 (rabbit, ab74065, 1:1000) 

Secondary antibodies conjugated with cy2/cy3 (Dianova1:500) 

4´, 6´ diamidino-2-phenylindole (DAPI, 2µg/ml, D3571) 

For Western blot, anti-mouse-HRP (Dianova, 1:4000) 

Anti-rabbit-HRP (Dianova, 1:3000) 

Anti-ß-Tubulin (Sigma, T4026, 1:500) 

6.6. Western Blot 
 

Western blot was performed as described in a recent publication from our group (Tolo 

et al. 2018) with minor modifications as given. PVDF membranes were washed briefly 
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twice in 1x TBS-T and then again washed twice in 1x TBS-T after 5 mins incubation. 

Anti-Nurr1, anti-Lmx1a, anti-Pitx3, anti-Ascl1, and anti-AU1 tag antibody was used to 

detect desired protein. Chemoluminescent detectin was performed on BioRad 

ChemiDoc XRS+ Imager. 

6.7. HPLC 
 

HPLC analysis of dopamine, DOPAC, and HVA was performed as previously 

described (Tereshchenko et al. 2014) with minor modifications as given. Supernatant 

samples (400µL) were diluted in 1:1 ratio of sodium metabisulfite (NaMBS) and 2M 

perchloroacetic acid (PCA, 100µL) an incubated in ice for at least 10 mins. Cells were 

treated with 3% trichloroacetic acid (200µL), and incubated for 10 mins. at 37°C 

incubator. 180µL was added to 1:1 mixture of NaMBS and PCA.  Processed samples 

were spun at 4° for 30 mins. and filteres through 0.2µm filter, and loaded onto HPLC. 

6.8. NMR 
 

ß-synuclein was purified as described (Taschenberger et al. 2013; Hoyer et al. 2002). 

The NMR spectra were collected and recorded on a Bruker 800MHz spectrometer at 

10°C in 20mM sodium phosphate buffer (pH 6.0), 2mM TCEP, and 10% D2O. Two-

dimensional 1H -15N heteronuclear single quantum coherence (HSQC) spectrum was 

recorded to study the interaction of dopamine with α-synuclein and β-synuclein (Mori 

et al. 1995). 100µM of α-synuclein and β-synuclein were titrated against different 

concentrations of dopamine ranging from 0.02mM to 2mM. Chemical shift 

perturbations (CSP) were calculated using the formula CSP = [(δH)2 + (0.1 δN)2]1/2, 

where δN and δH are chemical shift differences (parts per million (ppm) of nitrogen 

and proton, respectively. 
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6.9. Statistical analysis 
 

The data from experiments were analyzed for significant differences (statistically) 

between groups by 1-way ANOVA with Dunnet´s posthoc test. Statistical power 

between groups were computed by G*Power3.1 (Faul et al. 2009) with the settings as 

previously described (Tolo et al. 2018). 
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8. Abbreviations

ANL – Ascl1, Nurr1, and Lmx1a 

Ascl1 - Achaete-scute homolog 1 

Lmx1a - LIM homeobox transcription factor 1, alpha 

Nurr1 - Nuclear Receptor Related 1 

Pitx3: Pituitary homeobox 3 

cDNs – cortical dopaminergic neuron-like cells 

cGNs – cortical GABAergic neurons 

mGNs – midbrain GABAergic neurons 

TH – Tyrosine hydroxylase  

AADC - L-amino acid decarboxylase 

L-DOPA - L-3,4-dihydroxyphenylalanine 

VMAT2 - vesicular monoamine transferase 2 

DAT - dopamine transporter 

AAV – Adeno-associated viral vectors 

NTD – N-terminal domain 

CTD – C-terminal domain 

DIV  - days in vitro 

ICC – immunocytochemistry 

UT – untreated 

AD-VM – AADC+VMAT2 

DT-VM – DAT+VMAT2 

DOPAC – 3,4-dihydroxyphenylacetic acid 

HVA – homovanillic acid 

HPLC – high-performance liquid chromatography 

MAO-A - monoamine oxygenase-A  
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COMT - catechol-O-methyltransferase 

hSyn1 – human synapsin 1 

WPRE - woodchuck hepatitis virus post-transcriptional control element 

bGH-pA - bovine growth hormone poly-adenylation site 

Int-a - intron 

ITR - inverted terminal repeat 

ngs – nanograms 

PD – Parkinson´s disease 

Tol - Tolcapone  

Tcp – Tranylcypromine 

EGFP - enhanced green fluorescent protein 

NmC – nuclear mCherry 

SD – standard deviation 

vg – viral genomes 

INB – dopamine-degrading enzyme inhibitors 

α-synuclein – alpha-synuclein 

ß-synuclein – beta –synuclein 

γ-synuclein – gamma-synuclein 

NLS – nuclear localization sequence 

M13 - a peptide sequence from myosin light-chain kinsae 

ITR  inverted terminal repeat 

HSQC - heteronuclear single quantum coherence 

CSP - Chemical shift perturbations 

Ppm – parts per million 

Kd - Dissociation constant 

PDB – protein Data Bank 

NMR – Nuclear Magnetic Resonance 

E18 - embryonic day of development 18 



  Abbreviations 

 

116 | P a g e  

 

iPSCs – induced pluripotent stem cells 

MGE - medial ganglionic eminence  

CGE - caudal ganglionic eminence  

LUHMES - Lund Human Mesencephalic cells 

PC12 - pheochromocytoma cell-line 

GABA – γ-aminobutyricacid 

DOPAL - 3,4-dihydroxyphenylacetaldehyde 

Dopamine – DA 

HRP – Horseradish peroxidase 

PVDF - Polyvinylidene fluoride 

ANOVA – Analysis of variance 
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