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2.   Thesis abstract 

Alzheimer’s disease (AD) is the most prevalent form of dementia that has vast emotional and 

economic implications in our society. There is no cure for this neurodegenerative disorder as 

the pathological changes occur years before the manifestation of the clinical symptoms. 

Thus, there is a great need for the development of effective and non-invasive biomarkers 

allowing the identification of patients at risk. During my Ph.D., I used next generation 

sequencing to study the small noncoding RNAome in the exosomes derived from 

cerebrospinal fluid (CSF), the majority of which are microRNAs (miRNAs) and piwi-

interacting RNAs (piRNAs). Statistical and machine learning methods were able to identify 

putative miRNAs and piRNAs signature that can classify AD and controls with an AUC of 

0.83. The piRNAs signature was suitable to predict conversion of patients suffering from mild 

cognitive impairment (MCI) to AD with an AUC of 0.86. The putative signature performed 

even better in the brain region with an AUC of 0.89 suggesting that we can use the 

smallRNAs signatures to perform a good diagnosis and prognosis between AD and controls. 

 

To better understand the mechanism that disrupts the human homeostasis leading to 

several neurodegenerative disorders, in a pilot study, I looked into the dynamic changes in 

higher order chromatin structure that control gene expression programs in synaptic plasticity, 

memory function, and neurodegenerative disorders by the use of Chromosome 

Conformation Capture (3C) based technique (3C-seq). One finding was related to the 

hallmark of AD (Aβ plaques). There was a preference of looping interactions involving 

BACE1 gene (initiates the Aβ generation that leads to the formation of Aβ plaques) in the 

neuronal population compared to the non-neuronal population. The results, however, for this 

pilot study should be interpreted cautiously due to small sample size and availability of the 

low resolution data.  

 

My study thus aims to provide further evidence that circulating small noncoding RNAs could 

be a suitable biomarker to detect the Alzheimer’s disease.  As these small noncoding RNAs 

are extremely stable both longitudinally and during the experimental procedures, they make 

excellent candidates for biomarkers for the prediction of the disease onset. The study also 

focuses on standardization and replication of the results by providing an open source access 

to the statistical and machine learning pipelines that were developed during the course of 

this study. This work also provides new insights to the genome stability, functions and the 

underlying mechanisms that are responsible for the correct gene expression in the genome 

and disruption of which causes these neurodegenerative disorders. 
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6.   Introduction 

6.1 Introduction to neurodegenerative disorders 

6.1.1 Potential classification of neurodegenerative diseases 

Neurodegenerative disorders belong to the category of disorders and diseases that are 

mainly associated with the neurons. They are identified by the escalating loss of neuronal 

structure and/or functions mostly in the brain and spinal cord [1, 2]. At present there are 

various treatment strategies that had seen different levels of success, but there are no cures 

for these disorders. These neurodegenerative disorders can broadly be classified into two 

categories on the basis of their effects. They can either affect the movements of the muscles 

or can cause cognitive decline [3, 4]. A selected list of few neurodegenerative disorders are 

mentioned in Table 6-1. 

Table 6-1 A small description of selected list of neurodegenerative disorders 

Disorders Description 

Alzheimer’s disease (AD) 

• The most common causes of dementia and 

characterized by the accumulation of amyloid 

plaques and neurofibrillary tangles 

• Symptoms include memory and cognitive 

decline 

• Disease onset starts around age 40 

Schizophrenia (SCZ) [5] 

• Psychotic disorder resulting in 

neurodegeneration  

• Symptoms include hallucinations, delusions and 

disorganized behavior  

• Disease onset starts in the early 20s 

Bipolar disorders (BD) 

• Majorly identified by extreme mood swings 

• Symptoms range from low depressive episodes 

to high maniac episodes 

• Disease onset starts around age 25 

Prion disease (CJD) • Also known as Creutzfeldt-Jacob disease and 

mainly characterized by amyloid plaques and 



 

Introduction  21 

spongiform 

• Symptoms include fast progressive dementia 

and changes in behavior 

• Usual disease onset is around age 60 

Amyotrophic Lateral Sclerosis (ALS) 

• Also known as Lou Gehrig's disease and mainly 

characterized by progressive degeneration of 

the muscles which results in paralysis 

• Symptoms include muscle weakness and 

paralysis 

• Disease onset starts in early teenage 

Parkinson's Disease (PD) 

• Chronic progressive disorder characterized by 

bradykinesia, tremors, impairment of postural 

balance and rigidity 

•  Apart from above mentioned characteristics, 

symptoms also include stress, anxiety, 

depression, memory loss and dementia    

• Usual disease onset is around age 60 

Spinocerebellar ataxia (SCA) 

• An autosomal dominant neurodegenerative 

disorder and mainly caused by ATNX1 gene 

mutation on chromosome 6 

• Symptoms include spasticity, dysarthria, gait 

difficulty and loss of coordination 

Dystonia 

• Characterized by agonizing and extended 

muscle contractions causing irregular postures 

and movements 

• Major symptoms include muscle cramps and 

spasms 

• Disease onset starts as early as the age of 12 

Multiple System Atrophy (MSA) 

• Also known as "Shy Drager", "Striatonigral 

degeneration" or "Olivopontocerebellar Atrophy"  

• Symptoms mainly include Parkinsonism, 

autonomic failure, and cerebellar findings 

• Disease onset starts around age 40 

Huntington's Disease (HD) • An autosomal dominant progressive 

neurodegenerative disorder caused by a defect 
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in HTT (Huntington) gene on chromosome 4 

• Symptoms include impaired gait, involuntary 

movements or rigidity in the muscles and 

cognitive decline 

• Disease onset starts around age 40 

Rett Syndrome 

• A neurodevelopmental disorder primarily 

affecting girl child 

• Symptoms include diminished motor skills, 

chorea, microcephaly 

• Disease onset starts around age of 6 months 

Progressive Supranuclear Palsy (PSP) 

• Also known as Steele-Richardson-Olszewski 

syndrome affecting stance and cognitive abilities 

• Symptoms include progressive hindrance of 

speech and swallowing, limited mobility and 

imbalance 

• Disease onset starts around age 55 

Tourette Syndrome 

• Mainly characterized by involuntary tics, 

twitching and uncontrollable vocal outbursts  

• Symptoms include motor and vocal tics and do 

not stop during sleep 

• The disease onset typically starts around age 7 

years 

6.1.2 The partnership of aging and neurodegeneration 

The advancement in modern medicine has increased the average lifespan with an unwanted 

side effect in the form of neurodegenerative diseases. These diseases are a major concern 

all over the world as they are one of the leading causes of disability in the elderly and 

ultimately lead to death. With the aging, the human brain starts to aggregate and accumulate 

abnormal and misfolded proteins causing lesions to the affected brain regions. With the 

progressive loss of neurons over the course of many years, it is very hard to estimate the 

real reason for the cell deterioration and ultimately the death of the neurons. Some important 

neuronal cell death mechanisms include Autophagy, apoptosis, excitotoxicity, and necrosis 

[6]. It is still a big challenge to understand how aging only affects the growth of the neurons 

and can be distinguished solely from the neurodegeneration.  
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6.1.3 Effects of neurodegeneration: The big picture 

The worldwide threat to human health from these disorders is increasing every day 

disturbing the lives of the patients, families and the community in general. Almost all 

neurodegenerative disorders are incurable to date and a huge amount of resources are 

being allocated to find the cure for these diseases. Developing a deep understating of the 

pathology and onset of disease progression is very important. For example, use of animal 

model systems to understand the working of certain disorders can play a major role in 

identifying key mechanisms of these neurodegenerative disorders. The final aim is to 

develop biomarkers that can identify, classify and ultimately predict the onset of the disease 

progression. 

6.2 Overview of dementia 

6.2.1 Mild Cognitive Impairment (MCI) 

6.2.1.1 MCI: normal aging or dementia? 

The decline of cognitive abilities due to aging remains an increasing problem in today’s 

world. Further, considering everyone with a diminished cognition to be diagnosed as an early 

form of Alzheimer’s disease (Alzheimer’s disease) is misleading. With the improvement in 

the disease diagnosis, it is easier to classify most of these cases as mild cognitive 

impairment (MCI) [7]. In MCI, a person is suffering from diminished cognition typically related 

to judgement, thinking, vocal skills and memory is worse than the average age-matched 

individual. The individuals with MCI may lead a relatively normal life as these symptoms are 

not enough to be classified as dementia [8]. However, there is a decent chance that an 

individual suffering from MCI may go on to have dementia. Proper care at this stage in term 

of lifestyle may help individuals to keep the symptoms same or even get better [9]. 

6.2.1.2 Symptoms of MCI 

An individual suffering from MCI display some or all of the below-mentioned symptoms [10, 
11]: 

• Memory complains which relates the diminishing of memory. This is mostly related to 

forgetting events like appointments 

• Diminishing of communication skills 

• Showing poor judgement and becoming more spontaneous 
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• Trouble keeping up a line of thoughts and taking extra time during the decision 

making 

All of the above mentioned symptoms are worse compared to normal aging but not enough 
to be classified as dementia [12]. 

6.2.1.3 Potential causes of MCI 

There are multiple causes to MCI some of which are treatable. It becomes more challenging 

to identify the real cause of MCI as the symptoms may improve over time or stay as it is or 

may deteriorate to dementia. As most of the causes of MCI are not understood, some of 

them have shown an improved understanding. Most of these causes are similar to dementia 

[13]. These include accumulation of amyloid plaques, Lewy bodies and misfolded protein 

tangles, neuronal injuries (motor or sensory signs), decreased levels of the CSF and 

shrinkage of the brain region mainly hippocampus, which is associated with episodic 

memory [14]. Figure 6.2-1 [15] left shows the normal hippocampal region while the shrunken 

hippocampus related to MCI is shown in the right. 

 

Figure 6.2-1 Brain shrinkage. The MRIs shows reduction in hippocampal region responsible 

for memory. Brain with normal cognitive function (Left) and suffering from Mild Cognitive 

Impairment (MCI) on the right. Inset shows the an overview of the right hippocampal region.  

6.2.1.4 Clinical criteria for the diagnosis of MCI and treatment 

Individuals suffering from MCI are difficult to diagnose as there are no specific protocols 

defined. However, there are certain clinical guidelines that are defined and followed by 

clinicians all over the world to perform the MCI diagnosis [16]. It is also important that these 
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guidelines also distinguish individuals suffering from MCI to dementia and Alzheimer’s 

disease [17]. These guidelines include: 

• A decline in cognitive performance over time 

• Memory and other reasoning abilities are impaired 

• A lookout for brain shrinkage, tumors and strokes using brain imaging techniques like 

MRI or CT scan 

• All the diagnosis of dementia and Alzheimer’s disease should be negative 

• Activities of daily living (ADL) should be intact 

 

There are currently no treatments available for MCI. However, few medications that are used 

for dementia and Alzheimer’s disease are used for MCI patients, but they do not always 

work. There is major research going on the development of biomarkers for MCI and a better 

understanding of MCI will definitely lead to a better understanding of dementia and 

Alzheimer’s disease [12]. 

6.2.2 Dementia 

6.2.2.1 Dementia – Information and Statistics 

Dementia can be broadly stated in terms of mental decline of an individual that negatively 

affects their life on a day to day basis [18]. In order to classify an individual to have 

dementia, there should be significant impairment in their mental abilities, communication 

skills, and long & short term memory.  Dementia affects about 50 million people worldwide 

with an annual increase of 7.7 million cases every year and the number of people with 

dementia are expected to triple by the year 2050. The economic burden caused by dementia 

is expected to be around 818 billion USD per annum and is the 7th leading cause of death 

worldwide [19, 20]. 

6.2.2.2 Symptoms of Dementia 

Dementia cannot be classified as a disease in clinical terms, but can be referred to as an 

umbrella term for a set of symptoms that collectively describes the decline in the cognitive 

abilities of a person that impairs their daily activities [21, 22]. Some common symptoms 

include: 

• Memory loss, disturbing daily life 

• Consistently displaying poor judgement 

• Irregular moods and behavior 

• Communication and language disturbances 
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• Overall increase in disorientation and confusion 

• Inability to show proper reasoning  and thinking 

The above mentioned symptoms are generally known as primary symptoms and often 

followed up with more in-depth and through check-ups in the clinics [23].   

6.2.2.3 Dementia - Types and Causes 

Dementia is majorly caused by loss of neurons in the brain. This affects the thinking, 

judgement and emotional balance of the individual [24]. Dementia is mainly classified into 

five subtypes [25]. They are: 

• Alzheimer’s Disease (Alzheimer’s disease) which is the most common form of dementia 

showing memory, language and spatial decline  

• Vascular Dementia (VaD) also known as multi-infarct dementia experiencing an abrupt 

onset and associated with vascular risk factors like stroke 

• Lewy Body Dementia (DLB) with individuals experiencing hallucinations 

• Fronto-Temporal Dementia (FTD) exhibiting behavior and personality changes 

• Other Dementias associated with other neurodegenerative diseases like Parkinson’s 

disease (PD), Huntington’s disease (HD), Creutzfeldt-Jakob disease, Progressive 

supranuclear palsy, Prion diseases etc. 

 

Figure 6.2-2 shows the MRI of the brain from different individuals who observed the changes 

in the white matter of three different individuals, one suffering from Vascular Dementia, one 

suffering from Lewy Body Dementia and an age-matched control. The changes progressed 

to worse from the control to Vascular Dementia [26]. 
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Figure 6.2-2 Axial proton density MRI showing white matter lesions and rating. A. Normal 

aged matched individual used as a control. B. Individual suffering from Vascular Dementia. 

C. An individual suffering from Lewy Body Dementia (Adapted from Barber et.al. [26]) 

 

Figure 6.2-3 displays the most common forms of dementia. Alzheimer’s disease accounts for 

almost two-thirds of all forms of dementia, contributing approximately 11.6% of all recorded 

deaths worldwide [25, 27].  

 

 

Figure 6.2-3 Types of Dementia 

6.2.3 Alzheimer’s Disease (AD) 

6.2.3.1 An overview of Alzheimer’s disease 

As mentioned in the previous section 6.2.2.3 above, Alzheimer’s disease is the most 

common cause of dementia, accounting for almost two-thirds of dementia cases. It is a 

progressive neurodegenerative disorder where the symptoms get worse and worse over 

time. Figure 6.2-4 shows the progression of Alzheimer’s disease patient over time and 

distinguishes between normal aging and Alzheimer’s disease. Approximately 45 million 

individuals are suffering from Alzheimer’s disease worldwide with one new case of dementia 

is occurring every 3.2 seconds and expected to be around 131 million by mid of the 21st 

century [28] (Figure 6.2-4).  
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Figure 6.2-4 Estimated yearly cases of Alzheimer's disease. Source World Alzheimer Report 

(2016) 

6.2.3.2 Disease pathology of Alzheimer’s disease 

There are two established pathological hallmarks of Alzheimer’s disease shown in Figure 

6.2-5 [29]. They are: 

• β-amyloid (Aβ) plaques also known as senile plaques(SPs) are the extracellular 

deposits of beta-amyloid peptides. These Aβ deposits are toxic to neurons as they 

cause loss of long term potentiation (LTP) and leads to neuronal death 

• Neurofibrillary Tangles (NFTs) also known as neuritic plaques or neuropil threads are 

characterized as intracellular accumulation of the insoluble hyperphosphorylated paired 

helical filaments of tau proteins that are associated microtubules 

 

Aβ deposits are very specific to Alzheimer’s disease and characterized to be the primary 

cause of Alzheimer’s disease, but their deposition amount does not correlate well with 

increasing dementia. Accumulation of tau proteins which second pathological hallmark of 

Alzheimer’s disease is also observed in other neurodegenerative diseases like FTD and 

prion disease. Hence, they were considered secondary to Aβ deposits. However, their 

accumulation amount correlated well with increasing dementia and became the foundation of 

Braak and Braak staging system of Alzheimer’s disease [30].  
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Figure 6.2-5 Amyloid plaques and tau neurofibrillary tangles in a human Alzheimer’s disease 

brain.  

The histopathology shows the Aβ plaques and neurofibrillary tangles in cortical tissue of an 

Alzheimer’s disease suffering individual. A.  Brown stains (spherical lesions) show amyloid-β 

plaques. B. Neurofibrillary tangles are shown by black arrows and neuropil threads shown by 

the white arrows. (Adapted from Nicoll et.al. [29]) 

6.2.3.3 Stages and Symptoms of Alzheimer’s disease 

As Alzheimer’s disease is the most common form of dementia, its symptoms are also the 

same to start with. They include loss of memory and disorientation, having difficulty with 

communication and rational thinking, displaying poor judgement and inability to learn new 

skills [31]. Alzheimer’s disease is a progressive neurodegenerative disorder and the disease 

progression occurring in various stages (Figure 6.2-6).  

A B 



 

Introduction  30 

 

Figure 6.2-6 A model of progression of Alzheimer’s disease.  A hypothetical model showing 

the progression of a normal individual from healthy to Alzheimer’s disease with the decline in 

cognition. The solid line representing aging shows a normal decline in cognitive functions 

compared to a demented individual (represented by dotted lines) 

 

The main stages that characterize Alzheimer’s disease are [32]: 

• Preclinical Alzheimer’s disease: There is a distinct lack of any clinical symptoms of 

Alzheimer’s disease at this stage [33]. Although the changes in the pathology have 

already begun by the accumulation of insoluble proteins. This typically goes on for years 

without any visible symptoms. The advent of new diagnostic techniques is now helping 

in diagnosing Alzheimer’s disease at this stage. The new Cerebrospinal fluid (CSF) 

biomarkers and advanced imaging techniques are showing some positive results 

 

• MCI due to Alzheimer’s disease: Individuals suffering from an MCI start to show the 

sign of cognitive decline [12]. Although not all individuals go to develop Alzheimer’s 

disease, the ones that do show a consistent progression in the loss of memory and 

other cognitive tasks starts to get their daily life affected 

 

• Mild Alzheimer’s disease: This is one of the early stages where Alzheimer’s disease is 

clinically diagnosed as an individual shows worsen symptoms in terms of memory, 

thinking, judgement, organization skills and behavior. They are still able to act 

independently, but their daily life activities started to get affected [34, 35] 
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• Moderate Alzheimer’s disease: This is the stage where the individual started to show 

obvious and clear signs of dementia [36]. This stage can last for several years where an 

individual starts to forget important personal information and events, erratic sleeping 

patterns, increasing the risk of getting lost, changes in the personality and behavior [37] 

 

• Severe Alzheimer’s disease: The final stage of Alzheimer’s disease where the 

individual their independence to do daily activities and requires constant care. At this 

stage, they are unable to respond to their environment, losing awareness of their 

surroundings, increasing episodes of forgetting family members with difficulty in 

communicating with them and a steep decline in performing physical activities [38] 

 

The disease onset is progressive and happens gradually over the years. The average life 

span after the diagnosis of Alzheimer’s disease is between 10 to 20 years [39, 40].  

6.2.3.4 Diagnosis and treatment of Alzheimer’s disease 

Like all neurodegenerative diseases, there is no cure for Alzheimer’s disease. The treatment 

can prolong the symptoms and may slow down the decline of cognitive abilities but they 

cannot stop them. The diagnosis is also improving with time. Doctors and clinicians are now 

looking at the detailed medical and family history of the individual suffering from Alzheimer’s 

disease in order to get a bigger picture of the individual’s development of the Alzheimer’s 

disease symptoms [41]. This may also help them diagnose Alzheimer’s disease at an earlier 

stage and help them slow down the disease progression [42]. Various other diagnostic tools 

include various laboratory tests for metabolic disorders, physical tests to check muscle 

strengths, cognitive and behavioral tests to check for mental abilities [43, 44]. The new 

diagnostic tools involve the imaging techniques like MRI [45], PET [46, 47], CT scans [48, 

49]and the use of new Cerebrospinal fluid (CSF) biomarkers to look the levels of beta 

amyloid plaques and neurofibrillary tangles [50-54]. The role of small non-coding RNAs like 

miRNAs and piRNAs can also be used as potential diagnostic tools in the future [55-58].  

6.3 Exosomes 

6.3.1 Overview of Exosomes 

Extracellular vesicles (EVs)[59] are released by all cells and historically were called “debris” 

as their functions were unknown. There are many types of extracellular vesicles that include 

microvesicles, ectosomes and exosomes. Microvesicles are groups of small vesicles that are 

budded off from the surface of cells through a bidding mechanism. They may be released 
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containing surface receptors, which can attach to the surface of another cell or may be 

completely taken up by another cell. Ectosomes are multisized vesicles mostly larger than 

exosomes that are secreted directly from the plasma membrane into the extracellular space 

[60]. Exosomes are smaller vesicles compared to the microvesicles and are produced by 

multivesicular endosomes (Figure 6.3-1) [61] which carries different types of cellular 

materials [62]. They are also taken up by other cells. 

 

Figure 6.3-1 Exosome Electron micrograph. Exosomes secreted from Epstein–Barr virus-

transformed B cell and multivesicular bodies (MVB). The MVBs content is either degraded in 

lysosomes or more exosomes are released after their fusion with the cellular membrane. 

Adapted from Edgar et. al. [61] 

6.3.2 Biogenesis and functions of exosomes 

Exosomes are normally 30-150nm sized vesicles, which are indicated that are derived from 

the multi-vesicular bodies. Exosomes are generated via endocytic pathways when cell 

internalizes receptors and deliver them to lysosomes for degradation by proteolysis [63]. The 

process begins (Figure 6.3-2) [64] when the cell surface receptors containing small peptides 

ubiquitin which marks them for degradation are fused inward into an endosome that 

squeezes into the interior of the endosome through invagination that results in a small 

intraluminal vesicle (ILVs) which goes to build many more of these ILVs and resulting in the 

formation of multi-vesicular bodies (MBVs). These MBVs primarily known to deliver the ILVs 



 

Introduction  33 

to the lysosomes  where these ILVs were degraded into sugars and amino acids to be used 

again by the cell. In the past couple of decades, another pathway is known where the MBVs 

instead of delivering the ILVs to the lysosomes for the degradation, actually travel to the cell 

surface where they fuse with the plasma membranes and the ILVs were expelled into the 

extracellular space which are now known as exosomes. The working mechanism of these 

pathways is still unclear [65]. These exosomes then can be targeted to other cells and 

tissues and the molecules that are contained within the exosomes are then be internalized 

by these targets to affect the signaling pathways or expression of the genes.  

 

Figure 6.3-2 Schematic of exosomes biogenesis. The surface receptors buds to smallRNAs 

and proteins in cytoplasm ILVs after budding with MBVs. From there they can either release 

exosomes or get degraded in lysosomes. Adapted from Schorey et. al. [64] 

Many biological functions have been identified for exosomes [63, 65]. They can act as 

proteins which are expelled out of the cells during some other cellular processes [66]. These 

also act as clearance mechanisms where unwanted proteins are secreted out of the cells. 

They have also been known to regulate immune response where their role in coagulation 

and inflammation are reported [67, 68]. They also function as messengers between cells, 

especially in neurons. They can also be selected where they are only captured and 

internalized by certain cell types [69]. 
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6.3.3 Role of exosomes in Alzheimer’s disease 

The two pathological hallmarks of Alzheimer’s disease are Aβ plaques and neurofibrillary 

tangles. The removal of unwanted materials from the cells through exosomes has been 

established and neurons use the exosomes to clear out the toxic beta amyloid (Aβ) proteins 

[70] (Figure 6.3-3).  These toxic beta amyloid (Aβ) proteins accumulate in the endosomes 

and their ILVs are then transported out as exosomes after the fusion of their respective 

MVBs to the cell membrane into the extracellular space [71].  

 

 

Figure 6.3-3 Aβ proteins clearance through exosomes. Amyloid-β precursor protein (APP) 

gets cleaved to form Amyloid-β (Aβ) proteins. They are then released into the extracellular 

space through exosomes. Adapted from Yuyama, K et.al. [71] 

Second hallmark of Alzheimer’s disease, the neurofibrillary tangles associated with 

hyperphosphorylated microtubule associated tau protein is also secreted through the use of 

exosomes [72-74]. In the clinics, increased levels of phosphorylated tau proteins were 

observed from the blood exosomes of Alzheimer’s disease patients in comparison to the 

age-matched controls [75].  
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6.3.4 Exosomes as potential biomarkers for Alzheimer’s disease 

Exosomes can be excellent candidate biomarkers for early stage Alzheimer’s disease. 

Exosomes extracted from the cerebrospinal fluid (CSF) contains neurons and non-neuronal 

markers like beta-amyloid (Aβ) proteins, tau proteins and pTAU proteins. By checking at the 

levels of these proteins from the CSF exosomes, it is possible to diagnose an individual with 

MCI or Alzheimer’s disease [76, 77]. Exosomes also contains small non-coding RNAs like 

miRNAs and piRNAs which may also be used as potential biomarkers for the classification of 

Alzheimer’s disease from their aged matched controls [78, 79]. 

6.4 Biomarkers  

6.4.1 Definition of a biomarker 

A biomarker or “biological marker” is anything that can be measured as an indicator of a 

biological process which can range from anything is going on in the body, whether it is a 

normal development of the body or response of an individual’s body to a particular medicine 

[80].  These can range from simple measurements like blood pressure or cholesterol levels 

to complex measurements like the levels of tau proteins. Biomarkers can be used to provide 

information about an individual’s risk of developing a particular disease, the prognosis of that 

disease and to predict response to a particular medication for that disease [81]. 

Individualized medicine critically relies on the development of biomarker [82, 83]. Especially 

for slowly processing brain diseases, it is important to: 

• Develop markers that are rather stable over time in a healthy population 

• Safe an easy to measure 

• Cost efficient 

• Inform about treatment efficacy 

6.4.2 Types of biomarkers 

Biomarkers fall into two major categories; Prognostic and Predictive [81, 84].  

• Prognostic biomarkers can provide us with information regarding the progression of a 

disease. They are unaffected to the treatment plan and strategies of a particular patient 

suffering from the disease. These biomarkers are useful in the prognosis of the patient 

as to how aggressive the treatment plan should be in order to approach the treatment of 

the disease 
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• Predictive biomarkers can provide the prediction about the therapeutic outcome for a 

patient to receive certain medicine or treatment plan over another medicine or the 

treatment plan 

These classifications can also be fuzzy where particular biomarkers can be both prognostic 

and predictive thus providing crucial evidence about what kind of medicine or treatment plan 

should be planned for a patient and how aggressive it should be implemented [85, 86].  

6.4.3 Pros and cons of biomarkers 

Biomarkers are definitely useful as they could lead to faster and accurate diagnosis of a 

neurodegenerative disorder. One of the biggest pros that biomarkers provide is the 

prognosis about the disease. This can also help reduce the use of animal studies and 

postmortem tissue studies [87]. The new biomarkers development has the additional 

advantages that they are non-invasive with the development of the blood based biomarkers. 

On the other hand, developing a are cost efficient biomarker is still an open field as most of 

them require huge research infrastructure to develop [88]. Another drawback is that most of 

these biomarkers are not ready for use in the clinical community as they are mainly for 

research purposes.  

6.4.4 Potential biomarkers for MCI and Alzheimer’s disease 

Both in MCI and Alzheimer’s disease, the challenge is to find a good biomarker that is 

dealing with the brain, which is the most complex organ in the body[89]. Definitely, there 

cannot be a universal biomarker for these diseases and so developing a suitable list of 

biomarkers that can cover most of the disease symptoms will be very useful [90]. Using both 

neuroimaging biomarkers and cerebrospinal fluid biomarkers, early diagnosis of Alzheimer’s 

disease is possible [91-93]. These biomarkers have shown that the levels of Aβ plaques 

arise very early in the Alzheimer’s disease pathology and then plateaus as the disease 

progresses. On the other hand, tau proteins come later and are affected by the levels of Aβ 

plaques. Using the use of these biomarkers, an accurate diagnosis of the disease state can 

be estimated along with the other clinical measurements like memory and cognitive tests. 

This provides a better understanding of the disease progression from the preclinical 

Alzheimer’s disease stage to MCI and finally into the Alzheimer’s disease [88, 94, 95].  
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6.5 Epigenetics and role of Non-coding RNAs 

6.5.1 Introduction to Epigenetics 

Epigenetics refers to the information related to the expression of the genes inherited stably 

that does not affect the primary nucleotide sequence of the DNA [96-98]. Epigenetics 

determines which genes are expressed by turning them on and off and the expression 

patterns are maintained through the cell division. Epigenetic dysregulation can lead to 

varieties of diseases by either suppressing or overexpressing certain genes. Epigenetics 

basically comprises all the chromatin and DNA modifications along with all the other 

regulatory elements that drive gene expression [99].  

 

Figure 6.5-1 Epigenetics landscape in health and disease.  

All the cell in our body has the same genome, for example, the liver cell has the same 

genome as the neurons, but clearly a different phenotype and the difference between them 

is mediated not to a large extend by epigenetic regulation [100, 101]. An interesting thing is 

that during learning, the neuron seems to take on a different epigenetic state and it again 

changes between health and disease. Since the sequence of the genome cannot be 

changed and epigenetics is reversible, there are increasing interest in epigenetic therapies 

for brain diseases that can bring back the neuron into homeostasis [102-104].  

 

There are three key epigenetic mechanisms: 
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• Histone modifications 

• DNA methylation 

• The action of non-coding RNAs 

 

Figure 6.5-2 Key epigenetics mechanisms (Adapted from Fischer et.al. [105]) 

 

These factors are there to mediate the change from environmental and genetic factors into 

long term adaptive changes. Epigenetics provides the cell the molecular toolbox to drive the 

transient stimuli into long-term adaptive changes [105].  

6.5.2 A general overview of small non-coding RNAs (sncRNAs) 

The traditional central dogma of molecular biology dictates that the DNA is transcribed to 

RNA and then translated into proteins. Small RNAs have changed the landscape and 

modified this central dogma. Out of all the genome that is transcribed, only 2% of the 

transcripts actually translated into the proteins. The remaining 98% of the non-coding 

transcribed transcripts (ncRNAs) [106] are used for the infrastructural and regulatory 

functions in the human genome [107-109].  

 

Infrastructural ncRNAs [110] include: 

• Ribosomal RNAs (rRNAs): These are the most abundant RNAs constituting about 80% 

of total RNAs. These are synthesized in the nucleolus. They are the structural and 

catalytic component of the ribosomes 
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• Transfer RNAs (tRNAs): A ~80 nucleotide (nt) long sncRNA that transfers amino acids 

to ribosomes during protein synthesis. The tRNAs are amino acid specific with each 

molecule of tRNAs consists of an anticodon that are complementary to the codon on the 

mRNA molecule [111] 

• Small nuclear RNAs (snRNAs): Performs splicing and intron removal from the primary 

transcript to form the mature mRNA transcript. It is also involved in the production of 3’ 

ends of polyA deficient histone mRNAs [112] 

• Small nucleolar RNAs (snoRNAs): Primarily involved in the processing of rRNA. These 

are encoded in introns and can be anywhere from 60 to 300nt in length [112] 

 

Regulatory ncRNAs [109, 113-115] include: 

• MicroRNAs (miRNAs): The miRNAs are about 16-27 nt in length that regulates gene 

expression post transcriptionally either by translational repression or degradation of 

mature mRNAs. They are highly conserved from plants to animals.  

• Piwi-interacting RNAs (piRNAs):  Longer than miRNAs, piRNAs are 26-32 nt long and 

mainly involved in epigenetic regulation of transcription, silencing of the transposable 

elements mainly in germ cell development and post-transcriptional gene silencing 

• Small interfering RNAs (siRNAs): Similar to miRNAs and are about 19-25 nt in length 

which are involved in the degradation of the mRNA 

• Long non-coding RNAs (lncRNAs): These noncoding RNAs ranges from several 

hundred nucleotides to several thousand nucleotides. They are involved in both 

transcriptional and post transcriptional regulation, chromatin remodeling,  and genomic 

imprinting 

 

Other ncRNAs include: 

• Enhancer RNAs (eRNAs): These are a few hundred to about 1000 nucleotides long. 

They are involved in the transcriptional regulation by acting as transcription activators 

and can be used as the markers for enhancer identification [116, 117] 

• Promoter associated RNAs (PARs): These are about 20 to 200 nt long. They are mostly 

involved in enhancing or blocking the transcription of neighboring genes and resides in 

the vicinity of the basal promoter and TSS [118, 119] 
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6.5.3 Biogenesis of microRNAs (miRNAs) and piRNAs 

6.5.3.1 miRNAs biogenesis 

Gene regulation is important as they make cells different from each other since the genome 

of each cell is the same. miRNAs are regulating a lot of these genes. The biogenesis starts 

with the key proteins AGO, Drosha and Dicer. PolII polymerase transcribes the miRNAs as a 

part of a much larger transcript, which happens in the nucleus (Figure 6.5-3). Then the 

Drosha cleaves the hairpin just one helical turn from the base of the hairpin. That releases 

the pre-miRNA hairpin which is then transported out of the nucleus by the exportin 5 

complexes. In the cytoplasm, dicer cleaves the hairpin loop of the pre-miRNA to form a 

miRNA duplex and from there it is loaded onto a silencing complex containing AGO protein 

which is then used to target the mature mRNAs for silencing [120]. 

  

Figure 6.5-3 miRNA biogenesis (Adapted from Devaux et.al. [121]) 

 



 

Introduction  41 

6.5.3.2 piRNA biogenesis 

piRNAs although best characterized in the Drosophila but recent developments in the field 

have[122-124] provided more understanding about them in the mammals . The biogenesis 

starts from the transcription of the transposon or repeat elements containing uni- or bi-

directional promoters that are clustered or separated throughout the genome. This 

transcription produces piRNA precursors which are transported out of the nucleus. First, the 

longer precursors are cleaved to the length of 26-32 nucleotides in primary processing 

(Figure 6.5-4 A). From there they are loaded onto PIWI proteins in secondary processing 

which is also known as ping-pong amplification where piRNAs are amplified (Figure 6.5-4 B) 

and used for silencing [125].  

 

 

Figure 6.5-4 The biogenesis of piRNAs (Adapted from Watanabe & Lin et.al. (2014) [125]) 

6.5.4 Role of miRNAs and piRNAs in Alzheimer’s disease 

miRNAs and piRNAs although do not code for proteins themselves, but they play an 

important role in many biological processes by regulating the expression of the genes. The 

two hallmarks of Alzheimer’s disease pathology are Aβ plaques and neurofibrillary tangles. 

The Aβ plaques are formed by the increased level of BACE1 protein and many miRNAs are 

found to be associated with the regulation of the BACE1 protein levels [126]. The second 

hallmark is the neurofibrillary tangles which are formed by the hyperphosphorylated tau 

proteins. miRNAs also affects the phosphorylation of these tau proteins [127]. The role of 
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piRNAs is still not well known. The reduction in the piRNAs expression in Alzheimer’s 

disease is also linked to increase neuronal death as they drive transposable element 

dysregulation in tauopathy. piRNAs can also play a big role as a potential biomarker as the 

level of piRNAs are found to be upregulated in Alzheimer’s disease patients compared to the 

healthy controls [122, 128]. 

6.6 Machine learning in biomarker development 

6.6.1 Overview of machine learning 

Machine learning [129] and big data are the two most powerful things in healthcare in 

today’s world and revolutionized the field completely [130]. Machine learning is developing 

algorithms and code that can teach computer tasks over a period of time either from the 

gathered data or by interactively interacting with the environment. The digitization of the 

medical records has boosted the field by providing a huge amount of data which can be 

used to train and test the performance of the algorithms to better understand a disease 

mechanism [131, 132].  

 

 

Figure 6.6-1 A typical machine learning application used in biological data analysis (Adapted 

from Camacho et.al. (2018) [133]) 

 

Here (Figure 6.6-1) different type of data is collected over time, including several samples for 

genes, proteins and metabolites and other data related to the correlation between them 

[133]. Depending on the type of data, whether it is labeled or unlabeled, a suitable machine 

learning algorithm will be chosen. For unsupervised learning, an example would be the 

dimensionality reduction algorithm PCA or clustering algorithm can be chosen. In case of 

supervised learning where the labels of the data are available and depending on the 

biological question, classification or prediction algorithm will be chosen. The machine 



 

Introduction  43 

learning algorithm will output a model which will be validated on an untouched test dataset 

and depending on the performance of the test, the process will be either repeated to get 

better performance of the model are being used in the clinics and hospital for the purpose of 

diagnosis or prognosis of a disease [130, 134]. 

6.6.2 Types of learning 

6.6.2.1 Supervised learning 

There are mainly three different classes of machine learning algorithms, supervised, 

unsupervised and semi-supervised learning algorithms [135-137]. In supervised learning, the 

data is provided along with the labels where the data contains the dependent variables and 

the labels will be the independent variables. It can be used either for classification or 

prediction [138]. These algorithms typically require training data and training labels which the 

algorithm will learn and build a model and then measure the performance of the learning 

algorithm on the completely untouched test dataset and test labels [139, 140]. The main 

advantage is that these algorithms can directly be measured in terms of their performance 

and outputs a numerical measure on the accuracy and inaccuracy of these machine learning 

algorithms.  

6.6.2.2 Unsupervised learning 

On the other hand, unsupervised learning has no goals to predict or to classify the data, but 

mostly used to learn more about the data [141]. Basically trying to understand the underlying 

structure in the data or uncover some unusual patterns in the data. These algorithms do not 

require labeled data. The evaluations of these algorithms are also different in terms that 

there is no way of telling how accurate or inaccurate the algorithms are because there is no 

labeled data available. There are two kinds of evaluation that can be performed for these 

algorithms, indirect or qualitative evaluations. Qualitative evaluation is measured by looking 

at the results of the algorithms and seeing something relevant in the result that helps in the 

understanding of the data [142]. On the other hand, indirect evaluation is measured by 

providing the output of the unsupervised learning algorithm to some other algorithm and 

checking if the other algorithm has performed well or not.  

6.6.2.3 Semi-supervised learning 

Semi-supervised learning algorithms are the middle ground between supervised and 

unsupervised learning algorithms [136]. These are very useful when obtaining the labeled 
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data for supervised learning is expensive, but obtaining the unlabeled data is cheap. Semi-

supervised learning data is a mix of supervised learning data, i.e. the labeled data and 

unsupervised learning data i.e. the unlabeled data. The algorithm first starts only with the 

labeled data and then used on the unlabeled data to find the tentative labels which can be 

then used to improve the performance of the model. This can be then repeated again and 

again until the algorithm converges [134]. At this point, the model is generated which is more 

accurate and used only a small amount of labeled data and the generated the labels for the 

unlabeled data.  

6.6.3 Alternative categorization of learning algorithms 

6.6.3.1 Generative learning 

Generative learning algorithms use some characteristics of the population where it finds a 

distribution for each class and creates the model for each of them separately[143]. In a 

classification problem, the algorithm will try to find a boundary where it will choose a model 

that is more plausible than the other. These algorithms are mostly probabilistic [144] and can 

be implemented using both labeled and unlabeled data for estimating the overall distribution 

of the data [145, 146].  

6.6.3.2 Discriminative learning 

Discriminative learning algorithms focus mainly on finding the boundary between the two 

classes [147]. These boundaries can be linear or non-linear in nature. These algorithms do 

not penalize for the variance of the data. The variance can be very high or low and the 

algorithm will perform the same way if the boundary is found. It uses only the points that are 

closest to the boundary to make the decisions [148].  Basically, a lot of data can be ignored, 

including precious labeled data and focus on the important data which are used to identify 

the boundary. These algorithms are very powerful when there is plenty of training data but 

can only make use of the labeled data. These algorithms cannot be used for unsupervised 

learning [149].  

6.6.4 Prior knowledge in learning 

The machine learning algorithms cannot always provide better performance. In the absence 

of a huge amount of training data, the model cannot be created perfectly and the 

performance of the model would not be adequate. Incorporating some prior knowledge into 

the learning algorithm can improve the performance where the training data is limited and 
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the algorithm does not need to make deductions about the data from the training data itself 

[150]. The prior knowledge can be incorporated into a regularization function where many 

computationally efficient approaches are there to handle the knowledge [151-153].  

6.6.5 Handling heterogeneous data 

The data in today’s research comes from various fields [154]. This introduces a new 

challenge as most of the data have different structure and different meaning. The 

heterogeneity of the data is a major challenge in this field [155]. This type of data can be 

anything starting from a free text to proper continuous data, images, codes, etc. [156]. The 

data are inaccurate and contains a lot of missing points. The data can be very dynamic and 

may evolve over time also [157].  

6.6.6 Data munging and normalization 

6.6.6.1 Data munging and wrangling 

Data munging, which is also known as data wrangling is basically the process of preparing 

datasets for the data analysis [158]. A general rule of thumb in the data analysis is the 80/20 

rule where the 80% of the time is spent in cleaning and formatting the data into the right 

format and the remaining 20% of the time is used for the actual data analysis. One important 

aspect is the use of standard data formats. There are many accepted standard available 

now, for example, CSV, TSV, XML, JSON and structured query language files. Another 

critical step is cleaning the data [159]. The obtained data can have both errors and artifacts 

that need to be removed or properly handled. Errors can be noise in the data that happened 

during the time of the data acquisition, which cannot be corrected in the data analysis step. 

On the other hand, artifacts are problems that are generated during processing and during 

the handling of the data systematically [160, 161].   

6.6.6.2 Data normalization 

In biological datasets, the data normally represent some biological phenomenon, but this is 

not the case most of the time. Along with the underlying biological or true variance in the 

data, there is also non-biological variances in the data that are the artifacts of the data and 

should be removed or normalized [162].  For example, in the microarray data, an artifact can 

be dye biases that are resulting from the overall spot intensity or location on the array [163]. 

In the RNAseq experiment, these artifacts can be the sequencing biases or GC content 

biases or unknown biases introduced during the library preparation [164]. The normalization 
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process is used to remove the non-biological sources of variation which allows comparing 

results from multiple samples.  All the downstream analysis depends critically upon this step 

as using raw data or improper normalized data can provide misleading or completely wrong 

conclusions [165-167].  

6.6.7 Random forest and other machine learning algorithms used in 

the analysis 

With the advent of next generation sequencing (NGS), there is a huge influx of big data in 

the field of biology, which led to the development of new methods and techniques to 

process, analyze and visualize the data. Machine learning algorithms are one of the key 

classes of algorithms that are very useful with this kind of data. Both supervised and 

unsupervised methods are useful. The supervised methods can use the already existing 

labels for the biological data and can start to classify the data or perform prediction on new 

samples. One goal of these algorithms is to learn from the data and generate a model with 

high accuracy performance. This performance can further be increased by combining many 

learning models where the inherent noisy and unbiased models can create a new and better 

model with low variance. This is the main concept behind random forest (RF) algorithm [168, 

169]. 

  

Random forest algorithm offers many advantages over many other machine learning 

algorithms like support vector machines (SVMs), k-nearest neighbors (KNNs), neural 

networks (NNs), logistic regression and many more [170]. RF does not overfit the data 

easily, has high accuracy, can be implemented in parallel for faster computing and provides 

variable importance information which can be extremely useful in narrowing down the big list 

of features that contain only a few informative features to a small list of useful and 

informative features [171, 172].  
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Figure 6.6-2 Schematic diagram of internal working of RF algorithm 

 

RF is basically a bagging of de-correlated decision trees [173, 174]. The algorithms work on 

𝑖 iteration by selected 𝐵 bootstrap samples of size 𝑠 from the original training dataset 

𝑀 = 〈(m1, n1), … , (mk, nk)〉  

The random forest then grows the de-correlated tree 𝑇𝑖  to these bootstrap sampled datasets 

(𝐵). At the end of 𝑖 iterations, ensembles of all de-correlated decision trees are returned.  

Prediction is done by calculating the average of all predictions of all decision trees. 

Classification, on the other hand, is done by taking the majority vote of all single tree 

predictions (Figure 6.6-2). 

6.6.8 Feature selection 

It is a common knowledge in the field of machine learning that the performance of a given 

machine learning algorithm heavily depends on the quality and quantity of the features 

provided to the algorithm. Finding and selecting a good feature is a challenging task [175]. 

Features contain information related to the target variables. In a classification problem, 

features should provide the information on the available labels and the classification model 

will be defined in terms of these features [176]. This leads to a misunderstanding as 

including more features does not provide the algorithm a better discriminative power [177]. In 

healthcare (clinics) field getting patient data is expensive. With the limited amount of 

samples and a huge number of parameters (features) that can be measured in these 

samples, developing a machine learning algorithm is not an easy task [178]. The algorithm’s 

performance decreases as the amount of feature grow (Figure 6.6-3) [179].  
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Figure 6.6-3 Relationship between a machine learning algorithm's performance and the 

number of features  

This is due to the presence of irrelevant features which introduces noise in the data and 

redundant features that do not provide any additional information which degrades the 

performance of the learning algorithm. This curse of dimensionality is very problematic with 

limited training examples (clinical data, genomic and epigenomic datasets etc.) [179] and 

also limited computational resources as it increases the search space and ultimately this 

leads to overfitting. Thus, it becomes very important to perform feature reduction before 

training a learning algorithm. There are two types: 

• Feature selection: is selecting a smaller subset of the features from a larger set of 

features 

• Given a big set of features F = {x1, x2, …, xN} that contains both relevant, irrelevant and 

redundant features, a smaller set of relevant features F’⊂ F = {x1′, x2′, …, xM′} that 

optimizes the learning algorithm for better performance 

• Feature extraction: is the process of transforming or projecting the original set of 

features (N) into a higher dimensional plane with a reduced number of dimensions (M) 

 

The final goal is to either improve or maintain the learning algorithm’s performance by 

possibly simplifying the algorithm’s complexity (Figure 6.6-4).  
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Figure 6.6-4 Modified relationship between a machine learning algorithm's performance and 

the number of features 

6.6.9 Evaluation of learning models 

A good machine learning algorithm not only uses fewer resources, but should also perform 

well during the evaluation phase. This is important as these algorithms are going to be used 

on unseen and unlabeled data points for classification and prediction. There are many 

choices for the performance evaluation of these learning algorithms. In supervised learning, 

there are classifications and regression evaluation metrics while unsupervised learning has 

their own metrics.  

6.6.9.1 Classification metrics 

Typical choices for performance evaluation for classification models [180] include: 

Table 6-2 Common classification metrices [181-183] 

Metrics Description 

Accuracy 

• Most common and misused evaluation metric 

• It is basically the ratio of true predictions over total predictions 

• It is not suitable for imbalanced classes 

• The predictions or classifications are binary in nature as they 

assign each prediction or classification with either 0 or 1 

Logarithmic Loss  

• Also known as logloss which takes the uncertainty of predictions 

or classification into account 

• It is calculated by measuring the accuracy after penalizing the 

false classifications  

• The probability of each class has to be defined before the 
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evaluation 

Confusion Matrix 
• Useful for multi-class classification problems 

• It is represented in the form of a table where rows represent 

actual class and column represents the predicted class 

Precision-Recall 

• Precision represents the exactness of the model and calculated 

as a percentage of predicted positives are actually positive 

• The Recall represents the completeness of the model and 

calculated as the total positives labeled by the model 

• It is useful with the imbalanced classes 

Area Under ROC 

Curve [184] 

• Is commonly known as AUROC (Area Under the Receiver 

Operating Characteristic curve) 

• Provides both aggregated accuracy of AUC and true positive 

rates vs. false positive rates (ROC) with the variation in 

classification threshold 

• It also provides a good visual summary of the performance of the 

model 

6.6.9.2 Regression metrics 

Table 6-3 Common regression metrices [185-189] 

Metrics Description 

Mean Absolute Error 

• Also known as MAE and is calculated by averaging the absolute 

difference of each prediction of actual values 

• It provides a sense of the magnitude of the error and it is also less 

sensitive to outliers 

• It has the same unit as the original data 

Mean Squared Error 

• Also known as MSE and is calculated by averaging the squares of 

the difference of each prediction to actual values 

• It is sensitive to large outliers 

• Can be used in the comparisons of various statistical models 

R squared (r2) 

• Also known as the coefficient of determination and provides 

information on how good the predictions are compared to the 

actual values 

• It represents the amount of variation in the independent variable 
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that can be explained by the variance in the dependent variable 

• The values lie between 0 and 1 

 

6.6.9.3 Unsupervised learning metrics 

Evaluation of an unsupervised learning algorithm is a difficult task compared to the 

supervised learning evaluation. It varies mostly subjective as the definition of success with 

those algorithms on the basis of the question being asked. One of the most common 

categories of unsupervised learning algorithms is clustering algorithms [190, 191]. There are 

mainly two types of cluster validity measurements: 

• Extrinsic or external index: The clustering performance is measured indirectly on the 

basis of another learning algorithm (mostly supervised learning)  where a good 

performance of supervised learning algorithms reflects a good clustering of the data 

points 

• Intrinsic or internal index: The clustering performance is measured as to how well the 

clusters are by themselves without the use of any external input. It can be qualitative 

where the clustering is helpful in the understanding of the data 

Apart from the above mentioned criteria [192, 193], unsupervised learning can also be 

evaluated using other evaluation metrics like Rand index, F-score and Mutual information 

[194].  

6.7 Three dimensional organization of the genome 

6.7.1 General features of the 3D genome organization 

One of the most pressing questions in molecular biology was the organization of the DNA 

into the nucleus as the spatial organization and position of the genes and other regulatory 

elements drive the expression of these genes and any misregulation may result in a disease 

or disorder [195, 196]. Another question was how does the same genome result in so many 

different cell types in the body [197]? Biochemical elements like promoters, enhancers, and 

insulators are known for a long time now where promoters are normally the starting point of 

the transcription, enhancers controlling the rate of transcription and insulators controls which 

gene an enhancer can target [198]. At the smallest scale (Figure 6.7-1) [199] DNA is 

wrapped around the histone octamers also known as nucleosomes and at the highest scale, 

i.e. at the chromosome level scale each chromosome occupies a unique territory within the 
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nucleus [200, 201]. The intermediate steps in between are now being studied and the 

characterization of their functions is showing up.   

 

 

Figure 6.7-1 Common organizational structures in the genome adapted from Szalaj et.al 

(2018) [199]  

6.7.1.1 Chromosome territories 

The knowledge of chromosome territories (CTs) has been known more than a century. The 

chromatin in a non-dividing cell are known to occupy a certain place in the nucleus  where 

chromosomes with high gene density tends to cluster together with an inclination towards 

the center of the nucleus while gene poor chromosomes [202] co-occupy the regions that 

are at the boundary of the nucleus.   
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Figure 6.7-2 Chromosome territories (Adapted from Bolzer et.al. (2005) [203])  

Figure 6.7-2 is portraying a spectral karyotyping where each chromosome is artificially 

labeled with different colors where they occupy their own territories [203].  They are around 

50 – 250Mb in length. A common method of detection is Fluorescence In Situ Hybridization 

(FISH). 

6.7.1.2 Compartments 

The mammalian genomes have another level of organization in terms of active and inactive 

compartments [202, 204, 205]. The active compartment tends to interact with respective 

active compartments and an inactive compartment tends to interact with their respective 

inactive compartments [206]. The interactions between the active and inactive compartments 

are minimal. There is another observation that the active compartments have higher gene 

expressions compared to the inactive compartments where the gene expression is generally 

silenced [207]. However, the mechanism on how the compartments are formed or what 

constitutes an active compartment and what constitutes as inactive compartments is still 

unknown. Recent studies have shown that there are now at least 6 subcompartments [208].  

6.7.1.3 TADs 

Zooming into the specific compartment around 100 KB resolutions (Figure 6.7-1), there are 

different domains which are not alternating but more are domains. These domains are called 

topologically associating domains (TADs) [209, 210]. These were one of the biggest 

discoveries as a big black box in chromatin organization can be explained with TADs [211]. 

Genomic elements within the same TAD interact with each other, but they do not tend to 

interact with the genomic elements located in different TADs. These TADs are cell type 
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invariant. On average, TADs ranges from a few hundred KBs to several hundred MBs. The 

distributions of genomic elements have a specific pattern inside the TADs. Gene promoters, 

promoter associated histone marks such as H3K4me3 and insulator marks are tending to 

stay on the boundary of the toads while enhancer elements like H3K4me1 are spread all 

along the TAD. The boundary regions are especially enriched with insulator proteins like 

CTCF along with repeats and housekeeping genes [212, 213].  

6.7.1.4 subTADs 

Initially TADs are considered as cell type invariant and conserved across the species. This is 

still unclear as upto how much these domains are conserved. Although TADs are cell type 

invariant, the subdomains also known as subTADs are found to be cell type specific [214]. 

These subTADs are the domains where a specific regulatory mark like a promoter or 

enhancer can be co-regulated [215].  

6.7.1.5 Chromatin Loops 

The human genome is subpartitioned into approximately ten thousand loops [216]. Loops 

are basically two regions of chromatin that are linearly far apart but close to each other in 

3D. On average, loops are approximately 200kb in length and do not overlap with each other 

(Figure 6.7-1). This is one of the mechanisms to control gene expression [217]. The TSS 

and enhancer loop each other which express a gene. Loops are primarily formed by the 

binding of CTCF proteins to their respective motif binding sites which occurs at the boundary 

of the loops [218]. Recent studies have shown that the CTCF motifs that are involved in the 

formation of loops should be pointing towards one another [219-221].  

6.7.2 Tools to explore 3D genome organization 

The three dimensional organization of the genome can be understood from different 

approaches. Mainly NSG bases techniques and imaging techniques [222] are used to 

visualize these chromatin structures and DNA editing tools like CRISPR-Cas9 for the 

functional understating of the genome [223, 224].  

6.7.2.1 Imaging based tools 

Imaging tools helps to view the chromatin structures and to study the organization of 

genomic elements. Among the various techniques that are used these days to quantify the 

distances between elements and view the structures, some are: 

• Fluorescence in situ hybridization (FISH) [225] 
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• MB-FISH (Molecular Beacon-FISH) [226] 

• Super-resolution dipole orientation mapping (SDOM) microscopy [227] 

• Low-power super-resolution STED nanoscopy [228] 

• Cryo-electron microscopy (cryo-EM) [229] 

6.7.2.2 3C-based technologies 

The emergence of 3C (Chromosome Conformation Capture) [230] based techniques has 

revolutionized the field of three dimensional genome organization.  After the advent of the 

first 3C technique, many other variations have emerged. Some of them are:  

• Chromosome conformation capture-on-Chip (4C) [231] 

• Chromosome conformation capture carbon copy (5C) [232] 

• 3C-chip [233] 

• Combined 3C-ChIP-Cloning (6C) [234] 

• Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [235] 

• Hi-C [236] 

• Capture-C [237] 

6.7.3 Role of 3D genome organization in diseases 

In the healthy state of an individual, the three dimensional organization of the genome into 

proper domains and loops occur normally. Any disruptions in this organization results in the 

misregulation of the genomic elements causing disorder and diseases [238, 239]. In a 

healthy state the regulation of gene expression is controlled by restricting the enhancer 

promoter interactions to their domains. Disruptions in the boundaries of these domains 

(TADs) have shown to cause gene expression changes where an enhancer from one TAD 

can influence the expression of a gene in a different TAD. This can lead to various disorders 

like Schizophrenia, various types of cancer, etc. [240]. They are also linked to physical 

deformities like the F syndrome or Autosomal-dominant adult-onset demyelinating 

Leukodystrophy (ADLD). Developing a better understanding of these gene regulation can 

help understand the disease mechanism and provide the understanding on how they causes 

the pathogenic phenotypes [241, 242].  
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7.   Objectives 

The tight control of gene expression programs in the adult brain is critical for synaptic 

plasticity and memory formation. Epigenetic mechanisms [243, 244] are key processes that 

control gene expression at a systems level. There is emerging evidence that dynamic 

changes in histone modifications, DNA methylation/demethylation, and the expression of 

small noncoding RNAs provide brain cells a cellular and molecular toolkit by which 

environmental stimuli are transformed into long-term adaptive changes. In fact, epigenetic 

processes have been linked to synaptic plasticity and memory function and have emerged 

as promising novel therapeutic approaches to treat neuropsychiatric and neurodegenerative 

diseases [105]. These findings, however, are mechanistically not well understood. In almost 

over a decade, say from 2007, the new field of neuroepigenetics [245] has emerged, but the 

base publications in the field dated back to more than four decades ago [38]. During this 

time, although there has been tremendous development in technologies and discoveries of 

novel biomarker development, but there is a distinct lack of mechanistic insights.  

 

An important question that has so far not been addressed is how do neurons change their 

epigenome in a neuronal network? With this broader question in mind which I may not find 

an answer during my Ph.D., I am hoping to solve a part of the question by working on two 

aims which are described below. 

 

Aim1:  To study the epigenetic regulation of information in a neuronal network like exosomal 

transfer of small noncoding RNAs that may lead to the development of the new category of 

biomarkers for neurodegenerative disease especially focusing on Alzheimer’s disease 

• The main hypothesis for this aim is that the small noncoding RNAome measured in 

the brain, CSF and blood may be used to detect biomarker signatures for 

neurodegenerative disorders 

• First, use the high throughput next generation sequencing (NGS) techniques to 

quantify the expression of small noncoding RNAs in Alzheimer’s disease patients and 

their respective control samples 

• Then, develop targeted statistical and machine learning pipeline and tool kits to 

process the NGS data to identify informative and putative biomarker signatures 

• Finally, test the performance of these small noncoding RNAs signatures in different 

replication cohorts for: 

o Disease diagnosis, i.e. to classify Alzheimer’s disease patients from their 

respective controls with high precision and accuracy 
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o Disease onset, i.e. predict the conversion of some of the patients suffering 

from mild cognitive impairment to develop Alzheimer’s disease in due course 

of time 

• Perform the comparison of the performance of these small noncoding RNAs 

signatures to the existing clinical protein biomarkers 

 

Aim2:  To study the role of dynamic changes in higher order chromatin structure that control 

gene expression programs in neuronal plasticity 

• Understand the three dimensional (3D) organization of the genome inside neuronal 

and non-neuronal cells and its impact on the regulatory network using Chromosome 

Conformation Capture (3C) [230, 246] based techniques like 5C [232, 247], Hi-C 

[236] and 3C-seq [248] 

• The hypothesis is that the dynamic changes in higher order chromatin structure 

control gene expression [249] programs in synaptic plasticity, memory function, and 

neurodegenerative disorders 

• First, in a pilot project, the epigenome organization and higher order chromatin 

structures in FACS sorted non-neuronal and neuronal nuclei from the hippocampal 

region (CA1) under the naïve condition will be studied in C57BL/6J wild type mice 

using 3C-seq technique 

• Then, with the help of publicly available existing tools and if needed, develop new 

pipelines to identify long-range looping interactions and topologically associating 

domains (TADs) in neurons and non-neurons 

• Perform comparisons in the looping patterns in neuronal/non-neuronal interactions 

and domains and also identify few important differences related to the deregulation of 

the genes that may be involved in neurodegenerative disorders like Alzheimer’s 

disease 
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8.   Materials and methods 

8.1 Cerebrospinal fluid (CSF) from humans 

8.1.1 CSF from Alzheimer’s disease patients and control humans 

Cerebrospinal fluid was collected by performing a lumbar puncture (spinal tap) on 82 control 

humans (nonAD), 42 Alzheimer’s disease patients, 11 mciStable and 6 mciAD patients. The 

procedure was performed after the approval of Institutional review board (IRB) of Dept. of 

Medical Ethics and History of Medicine at University Medical Center Göttingen (IRB 

02/05/09). The samples were collected at the University Medical Center Göttingen 

(Germany), Department of Psychiatry, Göttingen (Germany), University Department of 

Neurology at Universitätsklinikum Tübingen (Germany) and Paracelsus Elena clinic Kassel 

(Germany). The samples were collected from Jan 2012 and Mar 2013 and from Apr 2013 

and Oct 2014. Standard operating protocols were applied during the collection and handling 

of the CSF from the individuals. 5 to 10 mL CSF was collected in 4 vials and protease 

inhibitors and preservative were added to the collected CSF. It was then centrifuged for 10 

mins at 2000 x g at room temperature to get rid of extra membrane fragments or cell debris. 

The resulting supernatant was flash frozen and stored in a minus 80°C freezer for the 

extraction of RNA from the exosomes.  

8.1.2 Extraction of CSF exosomes 

The flash frozen supernatant was removed from the minus 80°C and centrifuged three times 

at 4°C. First centrifugation was performed for 10 mins at 3500 x g and the supernatant was 

then centrifuged again for 10 mins at 4500 x g and the resultant supernatant was then 

centrifuged again for 30 mins at 10000 x g. The supernatant was then further subjected to 

ultracentrifugation for 10 mins at 100000 x g resulting in an exosomal and exosomal-free 

fraction which was then resuspended in 0.2ml TRI Reagent® (RNA Isolation Reagent from 

Merck). The exosomal fraction was then stored at minus 80°C freezer prior to RNA isolation.   

8.1.3 Total RNA isolation 

The exosomal fraction was homogenized with 1ml of TRI Reagent® (RNA Isolation Reagent 

from Merck). 25 μl/ml of distilled H2O [diethyl pyrocarbonate (DEPC) treated and 2 μl of 

glycogen was added to the mixture and incubated for 5 mins at room temperature followed 

by the addition of 0.2 ml of phenol/chloroform. The samples were shacked vigorously and re-
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incubated for an additional 5 mins followed by 15 mins of centrifugation at 1200 x g at 4°C 

and clean transfer of phase separated aqueous RNA was carefully collected. Overnight 

precipitation of collected aqueous RNA was performed at minus 20°C with 0.5 ml 

isopropanol. The precipitated RNA was centrifuged at 4°C at 12000 x g for half hour and 

after discarding the supernatant, the isolated pallet was washed twice with 75% ethanol and 

resuspended in 10 μl of RNAse free water after air drying the RNA pellet.  

8.1.4 SmallRNA library preparation 

Small RNA libraries were prepared from total RNA using the TruSeq®(Illumina) small RNA 

sample preparation kit according to the Illumina reference guide for TruSeq Small RNA 

Library Prep Kit. Briefly, the adapters are ligated to the RNA molecules. A cDNA library is 

generated by performing reverse transcription, amplification and gel purification of adapter 

ligated RNA molecules. SmallRNA sequencing was performed on the aliquoted cDNA 

libraries.  

8.2 Processing of next generation sequencing data 

8.2.1 Generation of raw fastq files 

For the processing of the sequencing data, a customized in-house pipeline was used. First, 

the HiSeq™ 2000 Sequencing System performs image analysis and basecalling using the 

machine’s internal software provided the primary data files in the *.bcl (binary base call) 

format. Illumina's bcl2fastq (v 1.8.4) [250] with default parameters was used to convert the 

base calls in the per-cycle BCL files to the per-read FASTQ format. Along with the 

conversion of base calls *.fastq reads, demultiplexing of the samples are also performed in 

parallel using the same Illumina's bcl2fastq (v 1.8.4) software with default parameters.  

8.2.2 Quality control (QC) for raw sequencing data 

Basic quality control for each generated *.fastq files was performed with illumine_qc.sh (v 

1.2.0) [251] with default parameters which produced fastq_screen plots for an overview of 

sequencing quality. If the samples pass the quality control step, they are stored in the DZNE 

[252] long term storage file server and can be used for further analysis. Before the transfer to 

the long term storage from the local Illumina machine storage, the MD5 checksums of all the 

*.fastq files and the directory are generated using md5checker.py (v 0.3.2) with default 

parameters.  
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8.3 SmallRNA mapping pipeline (GJSrMap) 

The smallRNAs mapping pipeline (GJSrMap) (v 2.5.0) [253] was used to align all the *.fastq 

files. All the following steps were performed on the GWDG’s high performance computing 

cluster (HPCC) [254] using gwdu103.gwdg.de as the master node. The jobs were launched 

on to short or long queues with a maximum of 12 cores, maximum time constraint of 24 

hours and maximum memory constraint of 16GB using FAT queue. The average run time of 

each job is approximately 13.58 mins, average memory used was 171.2 MB and average 

max threads were 26.75.  

 

The mapping is performed in the iterative manner. First all the relevant files are downloaded 

and processed for the reference genome (Table 8-1). We trim low-quality ends from reads 

before adapter removal having Phred quality score [255] less than or equal to 28. We then 

trim the 3' adapters and filter out the reads with the minimum length of 15 nucleotides. We 

first map the reads to the reference genome created from microRNA and piRNA sequences. 

Reads greater than 33bp were mapped to the reference genome created by other small non-

coding RNA. Remaining unmapped reads were then mapped to the human genome.  

 

We used bowtie [256] for all the reads alignment o the reference genome. We allowed no 

mismatches for the first part of the mapping and one mismatch for the rest of the mapping. 

Read count distribution and visualization was generated using in-house python script. Final 

data, summary and QC is collected as shown in (Figure 8.3-2 A and B) 
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Figure 8.3-1 The smallRNA mapping pipeline (GJSrMap) [253] 

8.3.1 Prepare custom reference genome 

The smallRNAs reads are aligned to the custom reference genome made from the small 

noncoding RNA sequences and also to the reference human genome sequence. This is to 

avoid the problems of multiple mapped reads and to increase the sensitivity of the mapping.  

 

Table 8-1 Description of small noncoding RNAs using in the mapping 

smallRNAs  Description 

miRNA Mature microRNA 

piRNA Piwi-interacting RNA 

rRNA Ribosomal RNA 

scRNA Small cytoplasmic RNA 

snRNA Small nuclear RNA 

snoRNA Small nucleolar RNA 

premiRNA microRNA precursors 

osncRNA 

- tRNA 

- Mt-tRNA 

- misc_RNA 

Other small noncoding RNA 

     - Transfer RNA 

     - Transfer RNA located in the mitochondrial genome 

     - Miscellaneous other RNA 

8.3.1.1 Small noncoding RNA and full genome sequences source 

Human precursor and mature miRNA sequences are downloaded from miRBase [257] 

(version.20) with genome-build-id: GRCh37.p5 and genome-build-accession:  

NCBI_Assembly:GCA_000001405.6.   

 

Human piRNAs sequences are downloaded from piRNABank [258] 

(http://pirnabank.ibab.ac.in/index.shtml).   

 

Human other small noncoding RNAs were downloaded from EnsEMBL release 75 - 

February 2014 for the GRCh37 version 

(ftp://ftp.ensembl.org/pub/grch37/current/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh37

.ncrna.fa.gz).  

 

http://pirnabank.ibab.ac.in/index.shtml
ftp://ftp.ensembl.org/pub/grch37/current/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh37.ncrna.fa.gz
ftp://ftp.ensembl.org/pub/grch37/current/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh37.ncrna.fa.gz
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The assembly of the human genome (hg19, GRCh37 Genome Reference Consortium 

Human Reference 37 (GCA_000001405.1) in Feb. 2009) as well as repeat annotations and 

GenBank sequences were downloaded from 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips and random contigs were filtered 

out using the Unix command grep [259].  

8.3.1.2 Pre-processing of the sequences 

Alignment of small noncodig RNAs is always a challenging task due to their origin from 

multiple genomic locations. In order to avoid multi-mapped reads, a custom reference 

genome is created with unique sequences of every smallRNAs. Multiple smallRNAs with 

same sequences are collapsed into the single smallRNAs with a new unique ID that is a 

combination of the individual IDs separated by a “|” symbol. This solves the problem of the 

multiple mapped reads, as there won`t be any read that needs to multi-mapped any more. It 

also makes mapping modular and fast.  An example collapsed sequence would be:  

 
>hsa-mir-6859-1|hsa-mir-6859-2|hsa-mir-6859-3|hsa-mir-6859-4 

TGTGGGAGAGGAACATGGGCTCAGGACAGCGGGTGTCAGCTTGCCTGACCCCCATGTCGCCTCTGTAG 

8.3.1.3 Custom reference genome indexes 

The custom reference genome indexes are built for the iterative steps in the pipeline. There 

are three custom reference genomes; pimiRNAs (miRNAs + piRNAs) reference genome, 

sncRNAs (all other small noncoding RNAs other than miRNAs and piRNAs) and the full 

human genome. Bowtie-build command with default parameters of the Bowtie (v 1.1.2) [256] 

alignment tool is used to build the indexes for pimiRNAs and sncRNAs. The index of the 

human genome (hg19) is downloaded from the Pre-build index library of bowtie tools 

(ftp://ftp.ccb.jhu.edu/pub/data/bowtie_indexes/hg19.ebwt.zip)  

8.3.2 Pre-processing and quality control before alignment 

8.3.2.1 Quality control for FastQ files 

At every iteration, from 0 to 3 of the iterative mapping pipeline, quality control of raw 

sequencing data is performed using FastQC (v 0.11.5) [260] using the default parameters 

and --quite option for the quite mode as the additional argument.  

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips
ftp://ftp.ccb.jhu.edu/pub/data/bowtie_indexes/hg19.ebwt.zip
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8.3.2.2 Low-quality read filtering  

Due to the shorter length of small noncoding RNAs compared to the sequencing read length, 

the sequencing adapters are also sequences which can cause a problem in the mapping as 

the partial adapter sequences do  not exists in the reference genome and hence can cause 

a very poor mapping. Before trimming the adapter sequences, low quality fastQ reads are 

removed to increase the quality of the mapping. FastQ reads having the Phred quality score 

of less than 28 encoded in ASCII33 are removed and not considered in the analysis using 

cutadapt (v 1.9.1) with the argument: 
--trim-qualities 28 or –q 28 

8.3.2.3 Adapter trimming and read size selection 

3’ adapter sequences are removed using the cutadapt (v 1.9.1) [261] and along with that two 

types of read size selection are also performed for the iterative mapping steps 1 and 2. For 

the first step, reads between 16 and 32 nucleotides are considered and for the second step, 

reads greater than 32 nucleotides are considered. Along with the adapter removal cutadapt 

also perform the size selection using the arguments: 

• --minimum-length 16 or -m 16: This option will remove any reads 

shorter than 16 nucleotides 

• --maximum-length 33 or -M 33: remove any reads greater than 33 

nucleotides 

• --too-long-output <filename>: This is the option that is set to save 

all the reads that are longer than 33 nucleotides in the same fastQ 

format 

8.3.3 Iterative mapping of the filtered fastQ reads 

This step is performed in three iterations followed by read quantification and the cleanup 

step.  

8.3.3.1 Iteration 1: mapping to pimiRNA reference genome 

The filtered fastQ reads between the size of 16 and 33 nucleotides are mapped to the 

custom pimiRNA reference genome.  The mapping is performed using bowtie (v 1.1.2) with 

fine-tuned parameters for optimal mapping.  

• -v 0 is used is set for end-to-end hits with zero mismatches to keep 

the mapping very conservative for this iteration 

• -p/--threads 4 are the number of alignment threads for faster mapping 
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• -S/--sam is set for writing all the mapped reads into the Sequence 

Alignment Map (SAM) format 

• -a/--all is set to get all alignments for every read 

• -m 1 is set to remove all alignments that have more than one 

reportable alignments 

• --un <unmapped_fastq> to save all the unmapped reads for iteration 3 

where these reads will be mapped again but to the entire human genome  

The resulting SAM files are converted to BAM (Binary SAM) files and indexed using 

samtools (v 1.3.1) [262]. This iteration is run using the “fat” queue with four maximum 

numbers of cores.  

8.3.3.2 Iteration 2: mapping to sncRNA reference genome 

The fastQ reads longer than 32 nucleotides are mapped to the custom sncRNA reference 

genome. The mapping is performed using bowtie (v 1.1.2) with same parameters except  

• -v 1 is used is set for end-to-end hits with one possible mismatch 

for a little relaxed mapping strategy 

The unmapped reads from the previous iteration 0 and current iteration 1 are then 

concatenated for the next step and saved to the file. The resulting SAM files are converted to 

BAM files and indexed using samtools (v 1.3.1). This iteration is also run using the “fat” 

queue with four maximum numbers of cores.  

8.3.3.3 Iteration 3: mapping to full genome 

The unmapped reads from both iteration 1 and iteration 2 are then mapped to the human 

genome. The mapping is performed using bowtie (v 1.1.2) with the same parameters as 

iteration 2. The resulting SAM file is converted to the BAM file. It is then concatenated with 

the BAM files from iteration 0 and iteration 1 along with the remaining unmapped fastQ reads 

in the iteration 3 and indexed using samtools (v 1.3.1). Low quality mapping reads are 

filtered using samtools with the option mapq >= 30. The final BAM file in then converted to 

the SAM file for the read counting step. This iteration 3 is run using the “fat” queue with four 

maximum numbers of cores.  

8.3.4 Read counting and summary statistics 

8.3.4.1 Read counting and summary quality control report 

Read counting is performed on the SAM file using the AWK [263] unix tool and distributing 

the counts for each smallRNA into their respective classes. Along with the raw read counts 
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distribution, normalized counts are also generated by simple RPM (reads per million) where 

the counts are divided the total uniquely mapped reads for the sample and multiplying it by 

the million. This is sufficient as smallRNAs read length distribution is narrow and hence bias 

to GC content or read length do not occur in the normalization of these reads. 

 

A summary quality control report is also generated apart from individual quality control 

reports for each iteration of the pipeline. MultiQC (v 0.9) [264] is used with default 

parameters for each iteration and also a combined QC for all the iterations. The report is 

provided in the form of plots and also HTML reports.  

8.3.4.2 Summary mapping and smallRNA statistics 

A customized python script is used to create the following mapping and smallRNA statistics 

plots. 

 

Figure 8.3-2 Sequencing quality control, mapping and smallrnaome distribution 
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Few plots are shown in Figure 8.3-2 Sequencing quality control, mapping and smallrnaome 

distribution. A. Shows the sequence quality information for 16 samples. X-axis represents 

the nucleotide position within the read and the Y-axis represents the quality scores (Phred 

score). The plot is divided into three parts according to the quality scores. The red part 

represents poor quality, orange part represents reasonable quality and the green part 

represents the good quality calls from the sequencer. The quality score  from the Illumina is 

Q scores (Q = -10log10P) [255] which is an estimate of the probability of a particular base 

being called incorrectly. The score is averaged over the entire read length and deteriorates 

towards the end of the read. A Phread quality score of 30 tells us the probability of 1 

incorrect base call for every 1000 base calls the sequencer makes. B. A barplot of uniquely 

mapped reads for each sample. On average, a quarter million reads were uniquely mapped 

to the small non-coding RNAome. One sample seems to have a failed sequencing. C. 

Representation of small non coding RNAs in serum samples. The majority of the detected 

small non coding are microRNAs covering 95% of entire small non coding RNAome. D. Top 

10 expressed miRNAs (Blue). Last bar represents an aggregate summary of remaining 

expressed microRNAs. The inset violin plot shows the distribution of entire detected 

microRNAome. Similar plots are provided for all the other smallRNAs. 

8.4 Data filtering and normalization 

 

 

Figure 8.4-1 Sample filtering, feature normalization and filtering 

All the samples with library size (total uniquely mapped reads) less than 50000 reads were 

removed from the analysis as they do not contribute valuable information to the downstream 

analysis. Samples that were less than 40 years were also removed from the analysis in 

order to maintain the uniform age distribution (Figure 8.4-1).   
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8.4.1 Normalization of smallRNAs 

Various normalization strategies for the miRNA and piRNA normalization were tested as 

there was no standard normalization protocol available for the smallRNAs although many 

comparison references are available [265, 266].   

 

Figure 8.4-2 Various normalization strategies 

 

The raw data after visualization was found to be pretty variable (Figure 8.4-2A).  

Quantile normalization [267, 268] aligns the count distribution of samples. The quantile 

scaling factor for ith sample  𝜑𝑖 has the form of 

𝜑𝑖
𝑞𝑞𝑞𝑞𝑞𝑖𝑞𝑞 = 10𝐿𝐿𝑔10𝑄𝑖−�

1
𝑁�Σ𝑗=1

𝑁 log10 𝑄𝑗 

Where N is the total number of samples, 𝑄𝑖 ,𝑄𝑗 are upper quantiles of ith and jth samples. 

Figure 8.4-2 B shows the upper quantile normalization of the samples which is a lot less 

variation compared to the raw data. 

 

Median normalization [269] implemented DESeq2 which is specifically implemented for the 

negative binomial distributed counts data has the form of 

𝜑𝑖𝑚𝑞𝑚𝑖𝑞𝑞 = 𝑀𝑀𝑀𝑖𝑀𝑛𝑠 �
𝐶𝑠𝑖

�Π𝑗=1𝑁 𝐶𝑠
𝑗�

1
𝑁
� 
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Where N is the total number of samples,  𝐶𝑠𝑖 , 𝐶𝑠
𝑗 are the counts of smallRNA s for the ith and 

jth sample. Figure 8.4-2 C shows the median normalization of the samples which is similar to 

the quantile normalization and also has a lot less variation compared to the raw data. 

 

Variance stabilization normalization [269-273] for the negative binomial distribution is given 

by  

𝜑(𝑥)𝑉𝑉𝑉 =  
𝑙𝑙𝑙�1 + 2𝑥𝛼0 + 𝛼1 + 2�𝑥𝛼0(1 + 𝑥𝛼0 + 𝛼1) �

log[2]  

Where, 𝛼0,𝛼1are the two constants for dispersion 𝛼 representing asymptotic dispersion and 

extra-Poisson factor respectively.  The VST is a transformation 𝜑(𝑥)𝑉𝑉𝑉 for a random 

variable X whose variance- mean relationship is 𝜈 =  𝜇 +  𝜇2𝛼0 + 𝜇𝛼1and variance (X) is 

equal to 𝜈(𝐸(𝑋)) which makes the 𝜑(𝑥)𝑉𝑉𝑉 homoscedastic. 

 

Figure 8.4-2 D shows the VSN of the samples which is a lot less variation compared to the 

raw data and other transformation and used for all the downstream analysis. The VSN 

counts were also corrected for cohort effects as the samples were collected from multiple 

centers along with the removal of the unwanted variances using the R (v 3.2.2)[274] 

package RUVSeq (v 1.14.0) [164].  

8.4.2 Filtering of non-expressed smallRNAs 

miRNAs and piRNAs having variance stabilized normalized (VSN) read counts of least 0.5 in 

the 95% of Alzheimer’s disease and control samples separately were considered as 

expressed smallRNAs (Figure 8.4-1). We performed the filtering on miRNAs and piRNAs 

obtaining a set of 154 expressed miRNAs and 43 expressed piRNAs and were considered 

for further analysis.  

8.5 Statistical and machine learning analysis 

Due to the low number of samples and high number of features, various statistical and 

machine learning methods are applied to reduce the number of uninformative features and 

get a list of informative features that can be used as a potential signature for biomarkers.  
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Figure 8.5-1 Feature selection 

 

In order to obtain informative miRNAs (154) and piRNAs (43), “Measure of Relevance (MoR) 

procedure [275] on 61 samples of cohort 1 was applied. Considering high dimensionality of 

the features compared to a very small set of samples, the MoR procedure can reduce 

features set to small informative features set by evaluating distribution overlap (assuming 

that samples are independent), biological difference, dispersion parameters of the samples 

and weighing factor common to all features. The 𝑀𝑙𝑅𝑗 value for jth smallRNA feature is 

given by: 

𝑀𝑙𝑅𝑗 =
1

�(𝑛1 + 𝑛2)
2   

.
�𝑝1

𝑗 − 𝑝2
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��𝑝𝑗(1 − 𝑝𝑗) � 1
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+ 1
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𝑗 − 𝑈�2

𝑗
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𝑗
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𝑈𝑘2
𝑗

2 − 2𝑠𝑈𝑘1
𝑗 𝑈𝑘2
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Where, 𝑛1,𝑛2 are two sub samples from N, p shows all smallRNA features and 𝑝𝑗 represents 

jth feature, 𝑈�1
𝑗 ,𝑈�2

𝑗, 𝑠
𝑈𝑘1
𝑗

2 , 𝑠
𝑈𝑘2
𝑗

2 , 𝑠𝑈𝑘1
𝑗 𝑈𝑘2

𝑗 represents means, variances and covariance of rank 

transformed values of jth smallRNA feature for two sub samples 1 and 2.  

The absolute MoR values for each feature are then sorted in decreasing order and a suitable 

selection and evaluation criterion is applied to the information chain as described in [275]. 

We also applied reliability analysis (RiA) [276] to obtain a reduced set of informative features 

by applying MoR procedure (500 iterations) to a randomly selected subgroup of samples and 

features and features with a relative frequency higher than 0.25 during 500 iterations were 

selected. We chose features that were common between MoR and RiA as reliable features 

for further analysis. 
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Figure 8.5-2 miRNAs and piRNAs 

 

8.5.1 Variable ranking and removal of low ranked variables 

Given the very low number of samples, the reliable features were further ranked [277] by 

sorting the features according to some scoring function 𝑆(𝑖) values given by [188, 278]: 

𝑆(𝑖):𝐹 →  Ω 

Where, 𝑆(𝑖) is the scoring function computed from the values of training data with a set of 

features 𝐹 =  (𝐹1, … ,𝐹𝑞) and Ω is the probability space which is the set of possible 

classifications{𝑐1, … , 𝑐𝑞}. 

 

A combination of various machine learning algorithms were used and the mean score was 

calculated from the scoring functions which were used to rank the reliable features.  

 

First, Ridge regression [279] which is also known as Tikhonov regularization was used. Here 

the loss function is a linear least squares function with l2 regularization. The linear least 

square function is calculated using singular value decomposition (SVD) on the input matrix 

𝑀(𝑛,𝑝) with the complexity of 𝑂(𝑛𝑝2) where𝑛 ≥ 𝑝. The ridge algorithm with default 

parameter given by  
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None, 

normalize=False, random_state=None, solver='auto', tol=0.001) 

is used. The output are the coefficients which the Ridge algorithm minimized by applying a 

penalty on the size of the coefficients (the residual sum of squares). The minimization 

function is given by 
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min
𝜔
‖𝑀𝑀 − 𝑦‖22 + 𝛼‖𝑀‖22  

 

Where, 𝛼 is the regularization strength, 𝑦 is the output variable and 𝑀 are the coefficients of 

the linear model. 

 

Along with the Ridge, where l2 regularization parameters are set, Bayesian regression can 

estimate these parameters by fine tuning from the data. Bayesian Ridge [280-283] 

regression given by  
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, 

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,  

n_iter=300, normalize=False, tol=0.001, verbose=False) 

basically, estimates the probabilistic model where the output 𝑦 is assumed to be Gaussian 

around 𝑀𝑀 is given by  

𝑝(𝑦|𝑀,𝑀,𝛼) = Ν(y|Mω,α) 

 

Where, 𝛼 is treated as a random variable that will be estimated from the data.  

 

The priors for 𝑀 is given by spherical Gaussian 

 

𝑝(𝑀|𝜆) = Ν(𝑀|0, 𝜆−1𝐈𝐩) 

 

Where 𝜆 is the estimated precision of the weights. 

 

Then, a univariate linear regression tests [284] (𝑓𝑟𝑞𝑔𝑟𝑞𝑠𝑠𝑖𝐿𝑞()) was used for testing the effect 

of a single regressor, sequentially for many regressors. It is performed by first calculating the 

correlation between each regressor (𝑖) and the target using  

 

��𝑀[: , 𝑖]–  𝑚𝑀𝑀𝑛(𝑀[: , 𝑖])� ∗  �𝑦 –  𝑚𝑀𝑀𝑛𝑦��

�𝑠𝑠𝑀(𝑀[: , 𝑖]) ∗  𝑠𝑠𝑀(𝑦)�
 

 

It is frst converted to a 𝐹score and then to a p-value. 

 

A random forest regressor (RF) [168, 169] given by 
RandomForestRegressor(n_estimators=10, criterion=’mse’, max_depth=None, 

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 

max_features=’auto’, max_leaf_nodes=None,min_impurity_decrease=0.0, 
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min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, 

random_state=None, verbose=0, warm_start=False) 

results in the meta estimator that fits many sub classification decision trees. The classifier 

uses the average of probabilities predicted by each sub decision trees to get the final 

classification for each class. 

 

Then, LassoLarsCV [285], a cross-validated Lasso, using the LARS algorithm given by 
LassoLars(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, 

precompute=’auto’, max_iter=500, eps=2.220446049250313e-16, copy_X=True, 

fit_path=True, positive=False) 

The optimization objective function to minimize is: 

 

min 
𝜔

1
2𝑛𝑠𝑞𝑚𝑠𝑞𝑞𝑠

‖𝑀𝑀 − 𝑦‖22 + 𝛼‖𝑀‖1  

 

Where, 𝛼 is the regularization strength, 𝑦 is the output variable and 𝑀 are the coefficients of 

the linear model. The lasso estimate thus solves the minimization of the least-squares 

penalty with 𝛼‖𝑀‖1 added, where 𝛼 is a constant and ‖𝑀‖1is the 𝑙1norm of the parameter 

vector. 

 

In the end, mean rank is calculated by averaging the scores from each algorithm and 

features with mean rank lower than 0.30 are filtered out.  

8.5.2 Multivariate analysis of covariance 

We also filtered out miRNAs and piRNAs that were confounded by age and gender by 

applying multivariate analysis of covariance (MANCOVA) [286, 287] on the reliable features 

with significant values less than 0.05. 

8.5.3 Model selection and performance  

The performance of selected features is then evaluated in an independent test cohort. The 

average Error and average number of trees parameter were calculated using a 10 fold cross 

validation on CV data which was obtained from the training data.    
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Figure 8.5-3 Optimal model selection and performance evaluation 

 

The random forest model implemented in R (v 3.2.2) with the package randomforest (v 

4.6.14) is trained with stratified sampling and class weights of 0.5 and 1.0 were used for the 

control class and the Alzheimer’s disease class to minimize the false negatives. Prediction 

on the training and test data is performed using the predict function from randomforest and 

roc function is used to get the test performance from the untouched test cohort data. The 

AUC values are plotted using the pROC [288] package with 500 stratified bootstrap [289] 

iterations to provide the confidence interval computed with Delong’s method [290] for the 

AUC values.  Smoothing of the AUROC curve was performed by calculating the 𝛼 and 𝛽 

coefficients of a linear regression line of the smoothed curve which is given by 

 

𝜙−1(𝑆𝐸) = 𝛼 + 𝛽𝜙−1(𝑆𝑆) 

 

Where, 𝜙is the normal quantile function value of sensitivities (SE) and specificities (SP). 

The variable importance is calculated from the importance function in randomforest package. 

The total decrease in node impurities is measured by taking the average node impurities on 

every split of the variable for all the trees generated in the random forest model. This node 

impurity is measured by Gini index (𝐼𝐺) which is given by 

 

𝐼𝐺(𝑝) = 1 − Σ𝑖=1𝐶 𝑝𝑖2 

 

Where, 𝐶 is the number of classes in the total samples set with 𝑖 ∈ {1,2, … ,𝐶}, and 𝑝𝑖are the 

number of samples that belong to the particular class 𝑖 in the total sample set. The Gini 

index for each variable is obtained and a Barplot of decreasing variable importance is 

plotted.  
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8.6 Handling of mice and nuclei preparation 

8.6.1 Ordering and upkeep of mice 

All mice used in the pilot experiment were adult male mice bought from JANVIER LABS. 

These wild type (WT) C57B16/J mice were pathogen free and were housed in the standard 

conditions with ad libitum access to food and water. The animal husbandry facility is located 

in  the basement of the European Neuroscience Institute (ENI), Göttingen that follows and 

ensure ethical experimental practices in accordance with animal protection laws and were 

approved by the Veterinary Institute in Oldenburg.  

8.6.2 Tissue collection 

Animals were sacrificed by cervical dislocation and the whole brain was isolated in ice-cold 

Dulbecco’s Phosphate Buffered Salt (DPBS, PAN-biotech GmbH) supplemented with EDTA-

free protease inhibitor cocktail (Roche). The CA1 and ACC regions were isolated, snap 

frozen in liquid nitrogen, and stored at −80 °C. 

8.6.3 Nuclei isolation and sorting 

In order to look at the interactions from neuronal and non-neuronal population of the cells for 

CA1 region, fluorescence-activated cell sorting (FACS) is used to sort the isolated nuclei. 10 

mice were pooled in each group to extract a sufficient amount of chromatin. Frozen mouse 

tissue from 10 mice was homogenized with the help of a micro pestle in low sucrose buffer 

(0.32 M Sucrose, 10 mM HEPES pH 8.0, 5mM CaCl2, 3 mM Mg(CH3COO)2, 0.1 mM EDTA, 

1% Triton X-100) and crosslinked with 1% formaldehyde (Sigma-Aldrich) for 5min at room 

temperature. The reaction was quenched by incubating for 5 min with 125mM glycine. The 

nuclei were centrifuged and re-suspended in 3ml of low sucrose buffer with protease 

inhibitors (Roche Complete) using. Nuclei were further homogenized mechanical 

homogenizer (IKA T 10 basic Ultra-Turrax) for half a minute.  The nuclei were purified 

through a sucrose cushion (10mM HEPES pH 8.0, 1M sucrose, 3 mM Mg(CH3COO)2, 1mM 

DTT) by centrifugation (3,200 rcf for 10 min in Oak Ridge centrifuge tubes).  6ml of cushion 

was used per 1.5 ml of lysate. The nuclear pellet was re-suspended in PBS, and aggregated 

were cleared by filtering through 70µm filter. The nuclei were stained with anti-NeuN 

Antibody, clone A60 (Trade name: Chemicon and catalogue number MAB377) diluted 1:500 

in PBS-T (0.1% Tween 20 in PBS) with 5% BSA and 3% goat serum, incubated for 30 min at 

4°C. The nuclei were washed 4 times with PBD-T and stained for 15min with anti-mouse 

Alexa 488 (Life Technologies) diluted 1:1000. The nuclei were washed once with PBS-T and 
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re-suspended in PBS-T with 5% BSA. Nuclei sorting was performed using the FACS 

machine (BD FACSARIA III) which is a 13 color 15 parameter high speed digital benchtop 

cell sorter with four excitation lasers that are adjustable. 

8.7 Chromosome Conformation Capture Sequencing (3C-Seq) 

8.7.1 Preparation of 3C library 

The sorted nuclei (NeuNpos and NeuNneg) from CA1 were then crosslinked with 

formaldehyde (1% final concentration) at room temperature (25°C approximately) for 10 

mins. The crosslinking reaction was stopped by adding glycine (final concentration 125mM). 

The crosslinked nuclei were pelleted down and washed with 1X PBS. The crosslinked nuclei 

were then again pelleted, frozen in dry ice and stored at -80°C.  

 

For the 3C library preparation, both samples were processed in parallel under similar 

experimental conditions. Briefly, the crosslinked nuclei were resuspended in 200 µL of 

NEBuffer DpnII (50 mM Bis-Tris-HCl, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT (pH 6 at 

25°C)). The chromatin was then solubilized by adding SDS (0.1% final concentration) and 

incubating at 65°C for exactly 10 min. The SDS is quenched by Triton X-100 with 1% final 

concentration. The chromatin was next digested with 600 units of DpnII (NEB) restriction 

enzyme and incubated overnight at 37°C in a thermomixer (Eppendorf). DpnII was heat 

inactivated the following morning by incubating the digestion mixture at 65°C for 30 minutes. 

A ligation mixture (cocktail mix in Table 8-2 The ligation master mix) was prepared 

containing 30U of T4 DNA ligase (Invitrogen) to the samples and incubated for 4 hours at 

16°C.  The ligated samples were reverse crosslinked by adding 600 µg of Proteinase K and 

incubating them at 65°C overnight. DNA was purified using standard phenol-chloroform 

extraction followed by DNA precipitation using sodium acetate pH 5.2 (to a final 

concentration of 0.3M) and 2.5 volume of ice-cold absolute ethanol. The mixture was 

incubated at minus 80°C for 1 hour and then centrifuged at 12000 x g for 20 minutes at 4°C. 

The pellet was then resuspended in TE buffer and passed through Amicon-Ultra 30K column 

(0.5 mL) and washed with TE buffer pH 8 for 3 times. The washed DNA which contains the 

3C library was collected by inverting the column on a fresh collection tube place by spinning 

at 1000 x g for 2 minutes. The NeuN-3C library was then subjected to 3C QC step. 

Table 8-2 The ligation master mix 

 1 reaction (µl) per 15ml tube 
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8.7.2 Quantification of 3C library 

Successful preparation of 3C library was validated using 3C qPCR with standard conditions. 

Due to the very low yield of 3C library, QC of only one sample (NeuNneg) could be 

performed. 3C primers were designed (Table 8-3) on a gene desert region of the mouse 

genome (mm9) in Chr 5 near the DpnII cut site to probe for a short range interaction. The 

qPCR analysis showed the positive amplification curve (Fig 7.3.2). The qPCR product was 

run on an EtBr stained 2% agarose gel. A DNA band of 384 bp was detected which conform 

to the expected amplicon size showing the successful preparation of the NeuN-3C library. 

One pair of primers (primer 25 and 26) probing an interaction 4.1 kb apart were used for 3C 

qPCR using 3µL of NeuN-3C library with expected Amplicon size 384 bp. The location of the 

primers and restriction enzymes around the primers and between them are shown in Figure 

8.7-1. 

 

Table 8-3 3C primers details 

# 
Name of the 

Primers 

Chr5 

Start 
Chr5 

End 

Nucleotide sequence 

(5’-3’) 

Tm 

(°C) 

GC 

(%) 
bp 

25 Mouse_MMC9_DpnII_Fwd1 133376673 133376693 CAGGACCTGATTGCTAAACTG 53.4 47.6 21 

26 Mouse_MMC9_DpnII_Rev1 133384528 133384549 TGTATACCCGCACACAATGAAT 54.5 40.9 22 

 

 

10X ligation buffer 447 

10mg/ml BSA 48 

100mM ATP 48 

Water 4023 

T4 DNA ligase  

(ligase separately added into individual tubes) 
30 
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Figure 8.7-1 Genomic location of primers and restriction enzymes 

 

After the primer design and checking for an interaction, 3C reactions were performed. 3 µL 

of the NeuN-3C DpnII library were used per reaction (Table 8-4) 

Table 8-4 Reaction usage 

 

Then PCR amplification was performed using the parameters (Table 8-5). The fluorescence 

signal measured in relative fluorescence units (RFU) and the number of PCR cycles are 

plotted in a PCR amplification curve (Figure 8.7-2). The background fluorescence was 

plotted as green line. 

Table 8-5 PCR tubes 

 Components 1X (µl) 

1 KAPA SYBR mix (2X) 10.0 

2 Forward 3C primer (10uM) 1.0 

3 Reverse 3C primer (10uM) 1.0 

4 Template (3C library) 3.0 

5 DNAse and RNAse free water 5.0 

 Total volume (per reaction) 20.0 

# Step Temperature (°C) Time Number of cycle(s) 

1 Initial denaturation 98 3 mins 1 

2 Denaturation 98 15 seconds 1 

3 Annealing and Elongation 60 30 seconds 54 
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Figure 8.7-2 PCR amplification curve 

Table 8-6 Standard curve range 

Well Fluor Target Sample name Cq 

C03 SYBR 25-26 (nearby) 250516 NeuNneg DpnII-3C library (0.6ng) 41.63 
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Figure 8.7-3 Melting curve and 3C interaction on a gel 

The Cq value of the standard curve is calculated and shown in Table 8-6 

The melt curve analysis program (Figure 8.7-3): 

• 65°C for 5 seconds 

• 95°C for 0.5°C/cycle 

• 12°C for ∞ 

The negative rate of change of fluorescence units compared to the temperature (°C) is 

plotted in Figure 8.7-3 A showing a single peak. The qPCR product was run on a 2% 

agarose gel for the confirmation of the short range interaction (3C product) of the expected 

size from the 3C library from Figure 8.7-3 B. 

8.8 Sequencing of 3C-seq library 

8.8.1 Preparation of 3C library 

The sorted nuclei were first homogenized by Dounce homogenizer to lyse almost all cells. 

The quality of homogenization was checked under the microscope. It is then crosslinked with 

1% formaldehyde at room temperature (25°C approximately) for 10 mins. The crosslinked 

chromatin was digested with DpnII (GATC) restriction enzyme overnight at 37°C. DpnII was 

inactivated the next morning and a ligation mixture was added and samples were kept for 5 

hours for DNA ligation. The samples were heated at 65°C with proteinase K treatment 

100 bp 
ladder 

Primers 
25-26 
nearby 
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overnight to reverse crosslink the ligated samples. DNA was precipitated and washed 

thoroughly.  

8.8.2 Quantification of 3C library and library preparation 

Short and long looping interactions were quantified using PCR with standard conditions (50 

cycles). Due to the very low yield of genomic DNA, only one QC of (NeuN minus) could be 

performed. Small distance primers were designed at the DpnII site to check for short range 

interactions. The PCR product was run on 2% agarose gel with the water control and the 

band intensities were quantified with the standard imaging software.  The titration curve of 

PCR product vs. input DNA should be plateaued for a successful 3C library preparation. The 

library preparation was performed with NEBNext® Ultra� DNA Library Prep Kit for Illumina 

(cat. no. E7370L). For PCR primers primer with index 2 for samples 3C CA1 pos and index 4 

for 3C CA1neg was used. Finally, the sequencing was performed on Illumina HiSeq2500.  

8.9 Processing of 3C-seq sequencing data 

8.9.1 Generation of raw fastQ files and quality control 

The generation and quality control of the raw fastQ files for the 3C-seq sequencing data is 

performed in the same way as mentioned in the section 8.2.1 above for the generation of 

raw fastQ files and section 8.2.2 above for the quality control reporting of the raw fastQ files. 

The quality control statistics were presented in Table 9-5, Figure 9.6-1 and Figure 9.6-2. 

Additional file conversions and quality controls are described in the subsequent sections with 

the subsequent analysis.  

8.9.2 Iterative mapping to the reference genome 

The 3C-seq paired end data is unique in the sense that the paired end mode cannot be used 

even when the reads are paired end as they do belong to the same fragment. The two ends 

of the read are in-fact comes from two different genomic locations. In order to optimize the 

mapping, they are mapped like single end reads and later the information is combined to get 

the chromatin looping interaction. Another, important point about the 3C-seq data is that the 

DNA fragments that goes into the sequencing contain a restriction enzyme junction. With the 

four-base cutter DpnII, an average fragment size is around 300-500 bp. The fragments are 

then sequenced with PE 2x150 bp paired end sequencing. With these parameters, around a 

quarter of the reads contains a restriction enzyme junction as only a part of the fragment is 

sequenced.   
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The mapping is performed iteratively starting with the first 25 bp of the reads from the 5’ end 

are mapped to the mouse reference genome. The assembly of the mouse genome (mm9, 

NCBI Build 37 in July 2007) as well as repeat annotations and GenBank sequences were 

downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/mm9/bigZips and random 

contigs were filtered out using Unix command grep [259].  

 

The mapping for each read pair is individually performed using bowtie (v 1.1.2) [256] with 

fine-tuned parameters for optimal mapping. The first iteration is conservative in nature, 

allowing no mismatches during the mapping of the roads. The parameters are:   

• -v 0 is used is set for end-to-end hits with zero mismatches to keep 

the mapping very conservative for this iteration 

• -p/--threads 8 are the number of alignment threads for faster mapping 

• -S/--sam is set for writing all the mapped reads into the Sequence 

Alignment Map (SAM) format 

• -a/--all is set to get all alignments for every read 

• -m 1 is set to remove all alignments that have more than one 

reportable alignment 

• --un <unmapped_fastq> to save all the unmapped reads for next 

iteration where these reads will be mapped again but with a longer 

read length 

 

The resulting SAM files are converted to BAM (Binary SAM) files using samtools (v 1.3.1) 

[262] with the command: 
samtools view -S -b input.sam > output.bam 

 

The resulting BAM file is indexed using the command: 
samtools index output.bam 

 

In the next and all subsequent iterations until the read length is reached or all the reads are 

mapped uniquely, the reads are trimmed with 5 bp longer than the previous iteration and 

mapped with one mismatch using bowtie (v 1.1.2) with same parameters except  

• -v 1 is used is set for end-to-end hits with one possible mismatch 

for a little relaxed mapping strategy 

 

The individual mapped BAM files from every iteration was combined into one BAM file and 

indexed using samtools. All the unmapped reads were discarded in this case. All the 

mapping iterations were performed on the GWDG’s high performance computing cluster 

(HPCC) [254] using gwdu103.gwdg.de as the master node. The jobs were launched on to 

http://hgdownload.soe.ucsc.edu/goldenPath/mm9/bigZips
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“fat” queue with a maximum of 16 cores, a maximum time constraint of 48 hours and 

maximum memory constraint of 32GB.   

8.9.3 Reads assignment to restriction enzyme fragments and filtering 

The list of restriction enzyme fragment is created by assigning all the fragments that are 

separated by the restriction enzyme DpnII (GATC) which is a four-base cutter. For DpnII, 

there will be approximately 6 million restriction enzyme fragments. After the mapping is 

finished, the reads are also assigned to these genomic restriction enzyme fragments. This is 

important as it will be used to filter out the various 3C-seq library preparation and 

sequencing related artifacts are shown in Figure 8.9-1. Following the assignment of all the 

mapped reads to the restriction enzyme fragments, all the reads that do not fall into the 

unique valid pairs are filtered out and only the unique valid pairs are considered for the 

downstream analysis. The results of the mapping and all the artifacts are presented in Table 

9-7.  
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Figure 8.9-1 3C-seq mapping artifacts (Adapted from Fides Lay’s HiC workshop [291]) 

8.9.4 Assign reads to genomic bins and perform iterative correction 

After the identification of the unique valid pairs, the reads are binned to a particular 

resolution for further analysis. As mentioned in the previous section, there are approximately 

6 million genomic fragments identified by 3C-seq. This makes approximately 36 trillion 

possible pairwise interactions. Even with the advanced next generation sequencing, working 

with the fragment level resolution requires a very high depth of sequencing, which need a 

high amount of input material and can be very expensive. Due to the lack of enough reads, a 

lot of fragments and their corresponding pairwise looping interaction cannot be identified. To 

get an abstract idea, instead of working with fragment level resolution, the data were binned 

to a certain resolution, for example 1 MB bins or 500 KB bins [236]. This will also level out 

outliers and reduce noise. All the restriction fragments whose center falls into the bin is 

assigned to the bin. The 3C-seq neuronal and non-neuronal data are binned to 100 kb, 200 

kb, 500 kb, and 1 Mb sized bins. Due to an insufficient number of unique valid pairs, 100 kb 
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bins and 200 kb bins do not provide enough information to call topologically associating 

domains or get any conclusion from the binned data. In this pilot study, 500 KB and 1 MB 

data are used. After binning is performed, low quality bins that do not convey any information 

are filtered out (marked as NANs) and not be used in further downstream calculations. After 

the filtering at the bin level, Iterative correction of the matrix is performed. This removes 

various known bias like variable length of fragments and GC content [292, 293] and 

unknown bias [294]. The iterative correction and normalization is performed by applying 

Sinkhorn–Knopp balancing algorithm [295] to the binned data [296, 297]. The normalized 

matrix Ψ𝑞𝐿𝑟𝑚𝑞𝑞𝑖𝑛𝑞𝑚 being doubled stochastic with both the sum of rows and column being 1 is 

given by 

 

Ψ𝑞𝐿𝑟𝑚𝑞𝑞𝑖𝑛𝑞𝑚𝑖,𝑗 = Ψ𝑟𝑞𝑟Ψ𝑚𝑖𝑞𝑔𝐿𝑞𝑞𝑞𝑖,𝑖Ψ𝑚𝑖𝑞𝑔𝐿𝑞𝑞𝑞𝑗,𝑗
 

 

Where, Ψ𝑟𝑞𝑟 is the initial raw count matrix binned at a particular resolution (1 Mb or 500 kb), 

Ψ𝑚𝑖𝑞𝑔𝐿𝑞𝑞𝑞 is the bias matrix and 𝑖, 𝑗 are the bins of the matrix. These matrices are all 

symmetric matrix and can be visualized as square heatmaps (Figure 9.7-1) or triangular 

heatmaps (Figure 9.7-5). 

8.9.5 Defining topological regions and domains 

Within the various levels of chromatin organization, at a certain level of abstractions lies the 

few 100s KB structures that have a specific looping interaction profile. These domains are 

called topologically associating domains or TADs [209, 210, 292] (6.7.1.3 above). Both the 

insulation score [298] and directionality index [209] methods are used to identify TADs for 

the matrices binned at 500 kb resolution.  
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Figure 8.9-2 Schematic to identify topologically associating domains (TADs) by two 

competing methods 

 

TADs used in the study for the neuronal and non-neuronal populations are called with 

insulation delta span which is the insulation delta window of size 2 Mb and insulation square 

of size 1.5 Mb for the 500 kb resolution TADs identification.  
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9.   Results 

9.1 CSF exosomes and small non-coding-RNAome 

9.1.1 Analysis of isolated RNA from CSF exosomes and exosomal free 

CSF fraction 

We started the analysis with the aim to confirm that small non-coding RNAs are enriched 

within CSF exosomes. To this end, we obtained CSF from 36 individuals and isolated 

exosomes, which were confirmed via immunoblot analysis of the marker proteins Flotilin-2 

and CD-63, electron microscopy and via analysis of particle size (Figure 9.1-1 A, B, C). Next, 

we analyzed isolated RNA from these exosomes and from the exosomal free CSF fraction 

via a bioanalyzer microfluidics device. The corresponding electropherogramms show that a 

significant amount of RNA with a particularly high peak of a small RNA species is detectable 

in the exosomal CSF fraction. In contrast, comparatively little RNA was obtained from 

exosomal free CSF. Treating RNA samples obtained from CSF exosomes with DNAase did 

not affect RNA integrity while treatment with RNAase eliminated the small RNA peak (Figure 

9.1-1 D, E, F, G). This data confirms that the human CSF contains exosomes that carry 

small RNAs. 
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Figure 9.1-1 Profile of exosomal RNA from human CSF A. Exosomes isolated from human 

CSF was analyzed via EM. B. Fragment size using a nanosight instrument and via 

immunoblot for exosomal marker proteins. C. Electropherogram showing the profile of RNA 

isolated from exosomes. D. Electropherogram showing the profile of RNA isolated from 

exosome free CSF. E. Electropherogram showing the profile of RNA isolated from exosomes 

treated with DNAase (F) and RNAase (G). 

9.1.2 miRNAs and piRNAs in CSF exosome small non-coding-

RNAome 

The advent of the next generation sequencing (NGS) technologies and the decreasing cost 

of sequencing, enabled the scientific community to study small RNAs in detail. Analysis of 

small RNAs is challenging due to the short and repeatable sequences. There are many tools 

to analysis small RNA data [299]. However, there were many shortcomings associated with 

these existing tools and to get a global and complete picture of the small RNAs I developed 

the small RNA mapping and analysis pipeline: GJSrMap 

(https://github.com/gauravj49/gjsrmap). The pipeline is available as a standalone installation 

(cloned from github) or through the webtool which will be accessible in the future from the 

https://github.com/gauravj49/gjsrmap
https://github.com/gauravj49/gjsrmap
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webpage (http://www.fischerlab.uni-goettingen.de/tools/gjsrmap). Details and inner working 

of the pipeline is mentioned in the methods and material section 8.3 above. 

We analyzed the small RNA content of CSF exosomes obtained from two independent 

cohorts of Alzheimer’s disease patients and individuals that did not suffer from any 

neurodegenerative disorder and performed small RNA-sequencing according to DZNE 

RNAome database SOPs using Illumina reagents on an in-house Illumina HiSeq 2000. All 

the analysis of the data is performed in-house. Majority of CSF smallRNAs are miRNAs and 

piRNAs (Figure 9.1-2 A).  Amongst the 5 highest expressed miRNAs in CSF exosomes were 

miR-10a-5p, miR-22-3p and mIR-204-5p that have been previously linked to memory 

function and/or neurological diseases [300-304]. Recent studies also show the role of 

piRNAs in neurological diseases like Alzheimer's disease [122] and cancer [305]. The 5 top 

expressed piRNAs showed comparable expression levels to miRNAs (Figure 9.1-2 B).  

Compared to the genomic piRNAome, the CSF piRNAome has a completely different profile. 

A majority of genomic piRNAs are coming from distal intergenic regions and only a fraction 

comes from 1st exon. On the other hand, the majority of piRNAs in the CSF pen-name 

comes from 1st exon and a small fraction come from the distal intergenic regions (Figure 

9.1-2 A). This is quite interesting as a recent study [306] shown that the small non-coding 

RNAs derived from the first exons of protein coding genes are better at distinguishing 

between patients compared to healthy individuals. This suggests that piRNAs may have a 

potential role in classifying and predicting the disease pathology. 

 

 
Figure 9.1-2 miRNAome and piRNAome in CSF exosomes  

A. Pie chart (Left) representing small non coding RNAs in human CSF exosomes. Here 

miRNAs and piRNAs make up almost entire small non coding RNAome. Pie chart (top right) 

showing genomic annotation of human piRNAome. Here, the majority of piRNAs lies in the 

distal intergenic region. Pie chart (bottom right) shows genomic annotation of expressed 

http://www.fischerlab.uni-goettingen.de/tools/gjsrmap
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piRNAome in the human CSF exosomes. Here, the majority of piRNAs lies in the 1st exon of 

genes.  B. Top 5 expressed miRNAs (Blue) and piRNAs (Red) in human CSF exosomes. 

Here y-axis represents the mean normalized expression and x-axis represents 

miRNAs\piRNAs. 

9.1.3 miRNAs arm expression in CSF exosomes and brain tissues 

Mature microRNAs are derived from both 5’ and 3’ ends of their pre-microRNAs which are 

known as 5-p and 3-p arms. The 5-p and the 3-p arm of a given miRNA are often expressed 

at different levels. We need to quantify the expression of both arms to define if the 5-p, 3-p 

or both arms of a given miRNA are biologically active since the precise biological function of 

many miRNAs are still unclear. The highest expressed arm is often considered to be the 

active one. It was previously suggested that the inactive arm of a given microRNA is sorted 

into exosomes as a cellular clearance mechanism, while at the same time there is evidence 

that transport of molecules from one cell to another via exosomes serves important 

biological functions. 

 

Figure 9.1-3 Heat map showing expression values of the 3-p and 5-p arms of all miRNAs 

detected in human CSF and in the human cortex (Brodmann Area 9)  

Thus, we performed small RNA-sequencing from postmortem human prefrontal cortex 

(Brodmann area 9) and compared the expression pattern of the 5-p and 3-p arms for all 

miRNAs detected in CSF to the corresponding expression pattern observed in the human 

brain. The pattern of the 3-p vs. 5-p arms of microRNAs detected in CSF was similar to the 

pattern observed in postmortem human brain tissue and confirmed that for the majority of 

the miRNAs only one arm was highly expressed (Figure 9.1-3). This finding supports the 

view that the small non-coding-RNA content of CSF exosomes – at least in part – resembles 

the small non-coding-RNA content of the parent cells. The data have to be interpreted with 
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care, since the parental cell for CSF detected exosomes is not precisely known and likely 

includes not only various brain regions but also other cells [307]. 

9.1.4 Cellular small non-coding-RNAome and exosomal small non-

coding-RNAome 

After looking into the expression of mature microRNA arms and profiling the small non-

coding-RNAome in exosome, the follow-up analysis is to study the relationship between 

cellular small non-coding-RNAome and exosomal small non-coding-RNAome which may 

lead to the understanding of cellular small non-coding-RNAome from the profile of exosomal 

small non-coding-RNAome. 
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Figure 9.1-4 Pearson correlation between miRNA and piRNA expression values of 

hippocampal and cortical neurons against the miRNA and piRNA expression in the 

exosomes released from these cells. Here x-axis represents the normalized expression of 

exosomal small RNA and the y-axis represents the normalized expression of cellular small 

RNA. The Pearson correlation coefficient and significance level are mentioned in the plot. 

 

To address the questions if the small non-coding-RNA content of exosomes released from 

neurons allows making conclusions about the corresponding cellular small non-coding-

RNAome, we decided to test the correlation of miRNA and piRNA expression in primary 

cortical and hippocampal neurons and in their corresponding exosomes. Exosomes were 

isolated from the media supernatant of the corresponding cells. Subsequently the exosomal 

and the cellular RNA was prepared and subjected to smallRNA sequencing. For both, 

miRNAs and piRNAs, we detected a highly significant correlation between cellular and 

exosomal fractions (Figure 9.1-4). 

9.2 A CSF miRNAs/piRNAs signature to diagnose Alzheimer’s 

disease patients along with the available clinical markers 

9.2.1 Demographic information for the samples included in the 

biomarker signature analysis 

The study was performed on two independent cohorts of Alzheimer’s disease patients and 

controls. Cohort 1 consisted of 23 Alzheimer’s disease patients and 38 control individuals 

after removing outliers and age-matched control individuals that did not suffer from any 

neurodegenerative disorder (Table 9-1).  

Table 9-1 showing demographic information for the samples included in the biomarker 

signature analysis. Abbreviations: AD, Alzheimer’s disease; F, female; M, male. 
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Samples were collected at the University Medical Center Göttingen (Germany) between Jan 

2012 and Mar 2013. Cohort 2 consisted of 19 Alzheimer’s disease cases and 44 control 

individuals after removing outliers and age-matched control individuals from which CSF 

samples were collected at the University Medical Center’s in Göttingen, Tübingen, and 

Kassel (Germany) between Apr 2013 and Oct 2014. 

9.2.2 Performance of clinical signatures on replication cohort 

The hallmarks of the Alzheimer’s disease are the presence of Amyloid-β plaques and tau 

tangles in the brain. The traditional CSF clinical biomarkers to identify Alzheimer’s disease 

correspond to Aβ1-42, total-Tau (tau) and phospho-Tau (pTAU) [308]. Various studies [309-

315] have shown that Alzheimer’s disease patients have higher levels of pTAU (Figure 9.2-1 

A).  

 

Figure 9.2-1 showing summary statistics about the clinical markers used in the study. 

Abbreviations: Alzheimer’s disease, Alzheimer’s disease; Aβ40 and Aβ42, amyloid beta 

peptide 40 and 42 amino acids; pTAU is phosphorylated TAU. B. Receiver operating 

characteristic (ROC) plot was obtained during the performance testing of the clinical markers 

on replication cohort 2 with mean test AUC of 0.87. The training was done on cohort 1 with a 

tenfold cross validation. An inset plot showing the variable importance which explains how 

good a variable in classifying the data. Here x-axis represents the mean decrease in Gini 

and the y-axis shows each variable which are ordered top-to-bottom as most- to least-

important. In this case, pTAU is most informative. 

A random forest machine learning classification approach with a 10 fold cross-validation 

protocol was used to assess the combined performance of both clinical markers (pTAU and 
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Aβ42/40 ratio). Clinical marker pTAU was found to be more informative than the Aβ42/40 

ratio (Inset plot Figure 9.2-1 B). The performance of this model was then tested on cohort 2 

which allowed us to distinguish Alzheimer’s disease patients from controls with an AUC of 

0.87 (Figure 9.2-1 B).  

9.2.3 Identification of small non-coding RNAs signature 

Small RNA sequencing data obtained from cohort 1 was used to perform an iterative feature 

selection protocol (section 8.5.1 above and section 8.5.2 above). Data filtering and 

normalization of the data (section 8.4 above) was performed first given the small number of 

samples and a large number of miRNAs and piRNAs in the data. The measure of relevance 

procedure [275] was then used to trim down the number of miRNAs and piRNAs and to keep 

the informative variables (Figure 9.2-2).  
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Figure 9.2-2 Identification and quantification of small non-coding RNAs signature  
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A. Showing the Measure of Relevance (MoR) for miRNAs (left) and piRNAs (right) signature 

for identifying differences between Alzheimer’s disease and control samples in cohort 1. The 

dotted red line represents critical more value. The miRNAs and piRNAs that are above 

dotted red line are considered informative. miRNAs marked in blue and piRNAs marked in 

red are part of the final signature. Inset showing fold change (log) of most informative 

signature and their significance level (p-value <= 0.1) with Significance codes: 0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 after performing MANCOVA by age and gender as confounding 

factors. B Barplots showing the expression of the putative signature in training cohort 1 and 

replication cohort 2. The expression of control samples was scaled to one and the 

expression of Alzheimer’s disease samples were scaled appropriately. Dark color shows 

control samples and light shade of the same color represents the Alzheimer’s disease 

samples. Here, the signature follows the same trend in both training and replication cohort. 

Five signatures are upregulated in Alzheimer’s disease compared to controls while one 

signature is downregulated. 

  

In addition, a reliability test [276] was performed to ensure the effectiveness of the 

informative variables that can discriminate between the samples reliably. MiRNAs and 

piRNAs that were detected in both of the above mentioned approaches and were not 

affected by age or gender were considered as the candidate signature for further analysis. 

The set of ‘informative and ’‘relevant’ miRNAs and piRNAs was further reduced after filtering 

out low ranking miRNAs and piRNAs measured using machine learning feature selection 

methods (Figure 9.2-2 C). In the end, three miRNAs, namely hsa-miR-27a-3p, hsa-miR-30a-

5p, miR-34c-3p and three piRNAs, namely hsa-piR-019949, hsa-piR-020364 and hsa-piR-

019324 were identified and treated as potential small non-coding RNAs signature.  

9.2.4 The role of clinical and small non-coding RNA signatures 

At present clinical markers are used extensively in hospitals and clinics for the diagnosis of 

Alzheimer’s disease. These clinical markers have been shown to have a high sensitivity 

rates (95%) but poor specificity rates (36%) [311]. Nonetheless, these clinical biomarkers are 

now used as a common diagnostic tool for the diagnosis of Alzheimer’s disease [316]. 
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Figure 9.2-3 Heatmaps showing Pearson correlation coefficient between the normalized 

expression of putative biomarker signature and levels of clinical markers in cohort 1 (top) 

and in the replication cohort 2 (bottom). The Pearson correlation coefficients and a two-

sample paired t-test were calculated and the significance is marked as (*) with p-value < 

0.05. 

Due to the complex pathologies of neurodegenerative diseases and the fact that multiple 

clinical phenotypes can be linked to just one disease pathology and vice versa, it is 

important to know whether the same information and resulting diagnosis is provided by the 

clinical markers and small non-coding RNA signatures or they cover different aspects of 

disease pathology and whether the combination of both can provide a clearer picture. For 

this, a correlation analysis of clinical and small non-coding RNA signatures is performed. 

Almost all clinical and small non-coding RNA signatures are not correlated (Figure 9.2-3).  

9.2.5 The performance of small non-coding RNAs signatures on 

replication cohort 

The performance of the small non-coding RNAs signatures was performed in three different 

stages. First, the performance of only miRNAs signature was performed using a random 

forest machine learning classification approach with a 10 fold cross-validation protocol. The 

miRNAs alone signature performed very close to a random classifier with the poor AUC of 

0.56 (A). The most informative feature was hsa-miR-30a-5p (Figure 9.2-4 A inset). In 

comparison to miRNAs, little is known about the role of piRNAs that were however, 

expressed at similar levels in the CSF exosomes (Figure 9.2-2 C). The performance of  
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piRNAs signature was far better in comparison to the miRNAs and were able to distinguish 

Alzheimer’s disease patients from controls with an AUC of 0.82 (Figure 9.2-4 B). The most 

informative feature was hsa_piR_019949 (Figure 9.2-4 B inset). The performance of 

combined miRNAs and piRNAs signature provides a slight improvement on the diagnosis 

and were able to distinguish Alzheimer’s disease patients from controls with an AUC of 0.83 

(Figure 9.2-4 C).  The top two most informative features were hsa_piR_019949 and hsa-

miR30a-5p (Figure 9.2-4 C inset).  

 

Figure 9.2-4 Performance of signature on replication cohort. A. ROCs showing the 

performance of miRNA signature on separate replication cohort (cohort 2). The training was 

done on cohort 1 with tenfold cross validation. Mean AUC of 0.56. Barplot (right) shows the 
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variable importance explaining how good a variable is in classifying the data. Here x-axis 

represents the mean decrease in Gini and the y-axis shows each variable which are ordered 

top-to-bottom as most to least important. In this case, hsa-miR-30a-5p is most informative. 

B. ROCs showing the performance of piRNA signature on separate replication cohort (cohort 

2). Mean AUC of 0.82 was obtained. Barplot (right) show the variable importance explaining 

how good a variable is in classifying the data. Here x-axis represents mean decrease Gini 

value and the y-axis shows each variable which are ordered top-to-bottom as most- to least-

important. In this case, hsa_piR_019949 is most informative. C. ROCs showing the 

performance of combined miRNA and piRNA signature on separate replication cohort 

(cohort 2). Interestingly the mean AUC of 0.83 was obtained suggest that the combined 

signature performed way better than the miRNA signature and marginally better than the 

piRNA signature. An inset plot showing the variable importance which explains how good a 

variable in classifying the data. Here x-axis represents the mean decrease in Gini and the y-

axis shows each variable which are ordered top-to-bottom as most- to least-important. In this 

case, hsa_piR_019949 is most informative. D. ROCs showing the performance of combined 

clinical markers and smallRNA signature on separate replication cohort (cohort 2). The mean 

AUC of 0.98 was obtained showing that the combined signature performed massively better 

than the individual clinical markers or the smallRNAs signature. 

 

Apart from the similar performance, the miRNAs/piRNAs signature also does not correlate 

significantly with the Aβ and phospho-Tau levels (Figure 9.1-4) suggesting that the small 

non-coding RNAs signatures provide an additional layer of support to the current diagnosis 

of Alzheimer’s disease patients. In order to cover all the aspects that both clinical markers 

and smallRNAs signature provide, the performance of both clinical markers and smallRNA 

signature was evaluated and had a massive improvement in the diagnosis where they were 

able to distinguish Alzheimer’s disease patients from controls with an AUC of 0.98 (Figure 

9.2-4 D).  The top three most informative features were hsa_piR_019949, hsa-miR-30a-5p 

and Aβ42/40 ratio (Figure 9.2-4 D inset).  
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9.3 CSF smallRNAs signature along with the available clinical 

markers as a promising biomarker to predict the progression 

from mild cognitive impairment (mci) to Alzheimer’s disease  

9.3.1 Demographic information for the samples included in the 

biomarker signature analysis 

The prediction cohort used in this study is cohort 3 where the samples were collected 

Erlangen (Germany). Cohort 3 consisted of 17 individuals with MCI of which 10 years later, 6 

individuals had converted to Alzheimer’s disease (mciAD) while 11 did not develop 

Alzheimer’s disease (mciStable) (Table 9-2).  

Table 9-2 Showing demographic information for the samples included in the biomarker 

signature analysis. Abbreviations: mciAD, mild cognitive impairment patients that went on to 

develop Alzheimer’s disease; mciStable, mild cognitive impairment patients that did not 

develop Alzheimer’s disease; F, female; M, male. 

 

9.3.2 The role of small non-coding RNA signatures in predicting the 

onset of disease progression 

The expression profile of many smallRNAs signatures of the MCI individuals (Figure 9.3-1) 

does not follow the same direction for their respective counterparts showing there are some 

differences that are unique to MCI individuals.  
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Figure 9.3-1 A. Barplot (left) showing the expression of the putative signature in training 

cohort 1 and predictive replication cohort 3. The expression of mciStable samples was 

scaled to one and the expression of mciAD samples was scaled appropriately. Dark color 

shows control/mciStable samples and light shade of the same color represents the 

Alzheimer’s disease/mciAD samples. Three signatures are downregulated in mciAD 

compared to mciStable and remaining three signatures are unregulated.  

9.3.3 The performance of small non-coding RNAs signatures on 

predictive replication cohort 3 for the predicting the onset of 

disease progression 

Similar to disease diagnosis, the performance of the small non-coding RNAs signatures was 

performed in three different stages. First, the performance of only miRNAs signature was 

performed using a random forest machine learning classification approach with a 10 fold 

cross-validation protocol. The miRNAs alone signature performed very close to a random 

classifier with the AUC of 0.70 (Figure 9.3-2 A). The performance of combined miRNAs and 

piRNAs on the other hand performed poorly with an AUC of 0.62 (Figure 9.3-2 C). The 

performance of piRNAs signature is excellent with an AUC of 0.86 (Figure 9.3-2 B).   
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Figure 9.3-2 Performance of signature on predictive replication cohort 

A. ROCs (top left) showing the performance of miRNA signature on separate predictive 

replication cohort 3. Mean AUC of 0.70 was obtained suggesting decent predictive ability. B. 

ROCs showing the performance of only piRNA signature on separate predictive replication 

cohort 3. The training was done on cohort 1 with a tenfold cross validation. Mean AUC of 

0.86 suggesting excellent predictive ability. C. ROC shows the performance of combined 

miRNA and piRNA signature on separate predictive replication cohort 3. The mean AUC of 

0.0.62 was obtained suggesting a poor performance of smallRNAs signature. 

9.4 CSF smallRNAs signature in blood and brain 

9.4.1 Demographic information for the samples included in the 

biomarker signature analysis 

The samples from the blood plasma exosomes cohort (cohort 4) were collected in Göttingen 

(Germany). Cohort 4 consisted of 10 Alzheimer’s disease patients and 12 control individuals 

after removing outliers and age-matched control individuals that did not suffer from any 
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neurodegenerative disorder (Table 9-3). The samples for cohort 5 are the postmortem brain 

tissue samples from the Prefrontal Cortex region. These samples are taken from the 

published study [317]. The samples were collected and processed in Leuven, Belgium. 

Cohort 5 consisted of 6 Alzheimer’s disease and 6 control individuals.   

Table 9-3 showing demographic information for the samples included in the biomarker 

signature analysis. Abbreviations: PFC, Prefrontal Cortex; AD, Alzheimer’s disease; F, 

female; M, male 

 

9.4.2 Role of CSF exosomes small non-coding RNA signatures in 

blood and brain 

The expression profile of many CSF exosomes smallRNAs signature in the blood plasma 

exosomes and prefrontal cortex region of the brain. The entire smallRNAs signatures 

obtained from the CSF exosomes are expressed in the prefrontal cortex of the brain. 

However, few piRNAs were not expressed in the plasma exosomes (Figure 9.4-1). 
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Figure 9.4-1 Barplots showing the expression of the putative signature in training cohort1, 

plasma exosomes cohort 4 and PFC brain cohort 5. The expression of control samples was 

scaled to one and the expression of Alzheimer’s disease samples was scaled appropriately. 

Dark color shows control samples and light shade of the same color represents the 

Alzheimer’s disease samples. 

9.4.3 Performance of CSF exosomes small non-coding RNAs 

signatures in plasma exosomes blood samples (cohort 4) and 

from the post mortem brain tissue samples from the Prefrontal 

Cortex region (cohort 5) 

Similar to disease diagnosis, the performance of the small non-coding RNAs signatures was 

performed at three different stages. First, the performance of only miRNAs signature was 

performed using a random forest machine learning classification approach with a 10 fold 

cross-validation protocol. The miRNAs alone signature performed very well in classifying 

Alzheimer’s disease against the controls with an AUC of 0.84 (Figure 9.4-2 A) in cohort 4. 

The same miRNAs alone signature also performed well in cohort 5 with an AUC of 0.70 (Fig. 

Figure 9.4-2 D). Then the performance of piRNAs signature was assessed in both cohorts. 

The piRNAs only signature performance was not good at classifying Alzheimer’s disease 

against the controls with an AUC of 0.67 (Figure 9.4-2 B) in cohort 4. On the other hand, the 

same piRNAs alone signature performed extremely well in cohort 5 with an AUC of 0.97 

(Figure 9.4-2 E).         
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Figure 9.4-2 Performance of signature in blood and brain samples 

A. ROCs showing the performance of miRNA signature on plasma exosomes cohort 4. 

Mean AUC of 0.83 was obtained suggesting good classification ability. B. ROCs showing the 

performance of only piRNA signature on plasma exosomes cohort 4. The training was done 

on cohort 1 with a tenfold cross validation. Mean AUC of 0.67 suggesting some classification 

ability. C. ROCs shows the performance of combined miRNA and piRNA signature on 

plasma exosomes cohort 4. The mean AUC of 0.78 was obtained suggesting that the 

combined signature also has good classification ability on the blood data. D. ROCs showing 

the performance of miRNA signature on PFC brain cohort 5. Mean AUC of 0.70 was 

obtained suggesting classification ability. E. ROCs showing the performance of only piRNA 

signature on PFC brain cohort 5. The training was done on cohort 1 with a tenfold cross 

validation. Mean AUC of 0.97 suggesting extremely good classification ability. F. ROCs 

shows the performance of combined miRNA and piRNA signature on PFC brain cohort 5. 

The mean AUC of 0.89 was obtained suggesting that the combined signature has very good 

classification ability on the PFC brain data. 

The performance of combined miRNAs and piRNAs, on the other hand, performed well in 

the diagnosis of Alzheimer’s disease. Here the smallRNAs signature performed with an AUC 

of 0.78 (Figure 9.4-2 C). On the other hand, the same signature performed even better in 
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classifying Alzheimer’s disease and controls in the brain region with an AUC of 0.89 (Figure 

9.4-2 F). This result suggests that we can use the non-invasive techniques with these 

smallRNAs signatures to perform a good diagnosis between Alzheimer’s disease and 

controls. 
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9.5 Functionally enriched piRNAs and miRNAs gene target 

pathways 

9.5.1 Pathway analysis of miRNAs signature functional targets  

 

Figure 9.5-1 Signature miRNAs-gene targets regulatory network 

A. Signature miRNAs are represented by blue circles and the orange circles represent the 

gene targets of the corresponding miRNAs. The grey edge connecting two miRNAs 

represents that there is a regulatory link between the two entities. The network is generated 

by the webtool miRwalk (v 3.0) [318, 319]. The most common targets of all miRNAs are 

called as hub genes. B. Pathways that are enriched in all genes-targets of the three miRNAs 

signature. C. Pathways that are enriched in only hub gene-targets of the three miRNAs 

signature. 
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In order to look at the involvement of the miRNAs target genes in the relevant biological 

pathways that shows the disease characteristics, pathway analysis of the confirmed target 

genes from the three miRNAs is performed. As one miRNA can regulate several genes and 

one gene can be regulated by several miRNAs [320], it forms a complex network of 

functionally enriched gene targets of the miRNAs. The miRNAs-gene target network for the 

signature miRNAs is shown in Figure 9.5-1 A. The analysis of all the confirmed targets of the 

three signature miRNAs revels the association of the target genes with pathways that are 

highly relevant to Alzheimer’s disease pathogenesis. Some of the major players that are well 

known are pathways linked to inflammatory processes [321-330] various signalling pathways 

like IGF1[331-336] and mTOR signaling [337, 338] and to HIF1alpha related hypoxia [339-

342] (Figure 9.5-1 B). After investigating all the targets of the miRNAs signature, a subset of 

gene targets that are commonly regulated by all the three signatures also termed “hub 

genes” were investigated (Figure 9.5-1 A). Coincidently, very similar and common pathways 

were identified by these hub genes (Figure 9.5-1 C) and mostly involved HIF1α mediated 

hypoxia, several pathways that are related to inflammatory processes and unique pathways 

like regulation of androgen receptor activity [343, 344] that are shown to have a role in 

Alzheimer’s disease. 

9.5.2 Functional annotation of piRNAs signature targets 

The other smallRNAs in the signature are the three piRNAs and till date, unlike miRNAs, the 

functions of piRNAs in the brain are still not well studied.  One important role or function of 

these piRNAs is the silencing of the transposon elements [345-347] along with maintaining 

the integrity of the genome [348]. The piRNAs are conserved poorly evolutionary among the 

various species [349]. In the human genome, a majority of the piRNAs (~70%) comes from 

the distal intergenic regions (Figure 9.1-2 A top right pie chart). However, in comparison to 

the globally expressed piRNAs,  the piRNAs that are expressed in the CSF exosomes, a 

larger number of the expressed piRNAs comes from the first exons (Figure 9.1-2 A bottom 

right pie chart). It has also been reported recently that the smallRNAs coming from the first 

exon are predictive of disease [306]. This is also true for the three piRNAs in the signature 

that are also mainly coming from the first exon and the targets of the genes, for example 

neurexin 1 (NRXN1) [350-352] have been reported to be involved in Alzheimer’s disease 

(Table 9-4).  
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Table 9-4 Detailed Annotation of CSF piRNAs signature with their Alzheimer’s disease 

associated alterations 

piRNA Annotation Symbol 
Alzheimer’s 

disease 

Association 
hsa_piR_019324|chr5:71851020-

71851050|+ Distal Intergenic CARTPT [353] 

hsa_piR_019949|chr11:122559947-

122559977|+ 
Exon (uc021qrq.1/uc021qrq.1, exon 1 

of 1) UBASH3B [354] 

hsa_piR_020364|chr10:72972395-

72972420|- Distal Intergenic PLA2G12B [355] 

hsa_piR_020364|chr14:102317092-

102317117|+ Promoter (<=1kb) ZNF839 [356] 

hsa_piR_020364|chr17:8227039-

8227064|- 3' UTR LINC00324 [357] 

hsa_piR_020364|chr2:50936204-

50936229|- 
Intron (uc021vhg.1/9378, intron 21 of 

22) NRXN1 [358] 

hsa_piR_020364|chr6:26554122-

26554147|+ 
Exon (uc021ynp.1/uc021ynp.1, exon 1 

of 1) HMGN4 [359, 360] 

hsa_piR_020364|chr6:27177263-

27177288|- 
Exon (uc021ypd.1/uc021ypd.1, exon 1 

of 1) HIST1H2BK [361] 

hsa_piR_020364|chr6:27237619-

27237644|- 
Exon (uc021ypk.1/uc021ypk.1, exon 1 

of 1) POM121L2 [362] 

hsa_piR_020364|chr6:27293892-

27293917|+ 
Exon (uc021ypq.1/uc021ypq.1, exon 1 

of 1) VN1R10P [363] 
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9.6 3C-seq Quality control and mapping statistics 

9.6.1 3C-seq library quality 

The sequencing is performed on Illumina HiSeq2500. As the project was the pilot project and 

the initial input was low, the quality of the data was not of high resolution. The data is still of 

very good quality. 

Table 9-5 General sequencing statistics 

Sample Duplicates (%) GC content (%) 
Average sequence 

length (bp) 

Initial number of 

reads 

NeuNneg_R1 78.76 43 112 144279949 

NeuNneg_R2 75.21 43 113 144279949 

NeuNpos_R1 90.79 42 93 215566744 

NeuNpos_R2 87.19 43 94 215566744 

 

The average number of sequencing reads for the NeuNneg samples are around 144 million 

reads and 215 million reads for the NeuNpos samples. The overall %GC of all bases in all 

sequences were found to be similar in both samples with nearly all of them to be 43%. 

Although the initial number of reads is higher in the NeuNpos sample compared to the 

NeuNneg samples, the average sequence length of the NeuNneg samples were higher than 

NeuNpos samples (Table 9-5). The overall quality of the samples for both NeuNneg and 

NeuNpos samples is found to be good with average quality per read to be around Phred 

score of 35 (Figure 9.6-1 A). The x-axis represents the length of sequencing reads and the 

y-axis shows the Phred quality score. The Phred quality [255] 𝑄𝑃ℎ𝑟𝑞𝑚 is given by  

 

𝑄𝑃ℎ𝑟𝑞𝑚 = −10 log10 𝑆𝑟 

 

Where 𝑆𝑟 is the probability of incorrect base call.  
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Table 9-6 Relationship of base call accuracy and Phred quality score 

Phred quality score (𝑸𝑷𝑷𝑷𝑷𝑷) Probability (𝑷𝑷) Base call accuracy (%) 

10 10-1 90.000 

20 10-2 99.000 

30 10-3 99.900 

40 10-4 99.990 

50 10-5 99.999 

 

There is however a small percentage of reads with poor quality, but they are still above the 

recommended a good quality threshold of a Phred score of 30 (Table 9-6). The level of 

duplicates is also normal for a 3C-seq library [364] with 15% of library have an enrichment 

artifact peak around 10000 duplication level (Figure 9.6-1 B). The plot shows the number of 

duplicates on the axis and y-axis representing the percentage of library containing those 

duplicate numbers of reads.  The high duplicate number of reads at the end of the plot 

(Figure 9.6-1 B) showed in solid lines shows the high enrichment or PCR amplification of 

certain interactions. Dotted line representing de-duplicated set of reads, however, 

disappears the peak representing that the library does not contain any contaminant or any 

high sequencing based technical duplication. 
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Figure 9.6-1 Quality score distribution over all sequences and duplicate sequences 

The distributions of over-represented sequences are less in non-neuronal samples 

compared to the neuronal samples (Figure 9.6-2). It might be due to some biological 

sequences or just PCR amplification artifacts. These are however taken care of in the 

normalization step. 
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Figure 9.6-2 Overrepresented Sequences 

9.6.2 3C-seq iterative mapping and iterative correction 

After the through quality check for the 3C-seq raw data, the reads were mapped to the 

mouse genome (mm10). Due to the use of the four cutter DpnII, average fragment sizes are 

around 300-500 bp and with 101bp sequencing paired-end reads, only  20% of the reads are 

a valid read pair that contains the restriction enzyme junction.  The reads were trimmed to 

contain the largest potential ligation junction. The reads are then mapped iteratively starting 

with the length of 25bp from 5’ end and increasing 5 bp for every subsequent iteration till the 

length of the read (section 8.9.2 above). Approximately 52% reads were mapped to the 

neuronal samples and 67% reads were mapped for non-neuronal samples (Table 9-7). After 

all the filtering of various types, approximately 12.5 M and 1.8 M reads were found to be 

uniquely valid pairs of neuronal and non-neuronal samples. The iterative correction was then 

performed to reveal the relative interaction probabilities both cis (intra) and trans (inter) 

chromosomal interactions.  

Table 9-7 Iterative mapping results 

 General HiC terms NeuNneg NeuNPos 

Mapping 
Side 1 mapped 96027256 111813998 

Side 2 mapped 95512770 111460268 

Total Reads 
Reads without unused chromosomes 102270189 120752492 

Reads removed unused chromosomes 0 0 

DS reads Total DS reads 89269837 102521774 
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DS + SS 102270189 120752492 

SS reads removed 13000352 18230718 

Reads removed 

Same fragment 70549394 81622867 

Self-circles 3870368 2706058 

Dangling ends 66665741 78902539 

Extra dangling ends 9082595 7152212 

Error 13285 14270 

Valid pairs 

Total valid pairs 9637848 7152212 

Duplicates removed 7852492 13746695 

Unique valid pairs 1785356 12567075 

 

9.7 Three dimensional landscape of neuronal and non-neuronal 

populations 

9.7.1 Chromatin interaction patterns in the two types of CA1 cell 

population 

Another way to understand the neurodegenerative disorders is to look at how the various 

neuronal and non-neuronal cells interact. To explore the three dimensional architecture of 

the neuronal and non-neuronal cells, 3C-seq was performed. The two libraries of 

approximately 144M and 215 M (Table 9-5) reads were generated for non-neuronal and 

neuronal samples. The samples were iteratively mapped (Table 9-7), corrected and 

normalized using iterative correction (balancing) [296] and final contact matrices were 

produced. As expected, the inter-chromosomal interactions are higher compared to the intra-

chromosomal interactions (Figure 9.7-1). Even with higher number of reads in the non-

neuronal population (Figure 9.7-1 Left), the numbers of looping interactions are higher than 

the neuronal population (Figure 9.7-1 Right). The alternative interaction pattern also reflects 

the compartments in the two populations [365, 366]. 
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Figure 9.7-1 Chromatin interaction contact maps for non-neuronal and neuronal population 

9.7.2 TADs in neuronal and non-neuronal population 

To understand the higher order chromatin structure in the neuronal and non-neuronal 

populations, Topologically Associating Domains (TADs) were identified for all the 

chromosomes using the insulation score [367] and the directionality index [209]. However, 

TADs calculated with the insulation scores were considered due to better similarities with the 

published data [366, 368-370]. The number of TADs in the neuronal population is marginally 

higher than the non-neuronal population (Figure 9.7-2 (inset)). This may not affect the overall 

interaction pattern, but it may affect certain genes which may be specific to those 

populations. This will be further explained in the section 9.7.4 below. The TADs from the 

mouse mm9 cortex are taken from the original published study [209] with 40kb resolution.  
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Figure 9.7-2 Number of Topologically Associating Domains (TADs) for neuronal and non-

neuronal populations 

9.7.3 Local interaction patterns in chromosome 9 (mm9) for neuronal 

and non-neuronal populations 

The chromatin interactions tend to stay within the same TAD and inter-TAD interactions are 

not that common. This can be seen in both neuronal and non-neuronal population. However, 

the density of neuronal inter-tad interactions is less than the non-neuronal population (Figure 

9.7-4). This is an interesting finding as that means there is more long range looping in the 

non-neuronal population compared to the neuronal population. The result, however, should 

be considered with precaution given the low sequencing depth. 

 

The difference in interaction pattern can be observed clearly from the Figure 9.7-5. There 

are many places, for example, the region on chromosome 9 with genomic location 

chr9:10,000,000-40,000,000 and chr9:40,000,000-55,000,000 where the genes that are the 

boundary of the TADs has a lower expression in the neuronal population compared to the 

non-neuronal population (Figure 9.7-5). This may be due to the miRNAs that are present in 

the region or genes may be regulated by H3K27m3 peaks (denoted by the Cbellum 

H3K27me3 [371, 372]) Track. On the other hand, the genomic region in the neuronal 

population chr9: 90,000,000-92,000,000 (marked by red arrow in Figure 9.7-5) has higher 

neuronal interactions compared to the non-neurons and a distinct reduction in the number of 

H3K27m3 peaks in the region. This might suggest that the high interaction pattern may be 

between the TSS of the expressed genes and the H3K4me1 marks. The targets of miRNAs 

that are involved in neurodegeneration from example with the Alzheimer’s disease (miR-30a-

5p [373], let-7i-5p [374], 181a-5p [375] etc.) are also present in the region (for example: Sik2 
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(SIK2 salt inducible kinase 2)) with links to neurodegeneration [376-378]. A thorough 

analysis needs to be performed in the next phase of the study. 

 

 

Figure 9.7-3 Figure 9.7-4 Local interaction patterns in chromosome 9 (mm9) for neuronal 

and non-neuronal populations 
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Figure 9.7-5 CA1 interactions looping profiles in neuronal and non-neuronal population 

9.7.4 Interactions pattern near the BACE1 gene 

One of the pathological hallmarks of Alzheimer’s disease (Alzheimer’s disease) is the 

formation of the Aβ plaques. BACE1 plays the key role in initiating the formation of these Aβ 

plaques [379-382]. The interaction profile of the region containing the BACE1 genes 

becomes crucial to understand. For this, a 5 MB region looping interaction profile is 

generated (Figure 9.7-6). The same neuronal over non-neuronal interaction values are 

plotted as the heatmap. As mentioned in section 9.7.2 above that there is a marginal 

decrease in the number of TADs in the neuronal and the non-neuronal population. The TAD 

in the genomic location of the BACE1 gene is missing the non-neuronal population, while the 

TAD in the neuronal population is expanded to have more interactions. However, the TAD 

left to the BACE1 gene in the non-neuronal population shows a higher number of looping 

interactions (chr9:44,5000,000–45,000,000) as it is more bluish. Also, the bins containing the 

BACE1 gene have higher interactions in the neuronal samples compared to the non-

neuronal samples. The gene density (Figure 9.7-6: Refseq genes) and density of enhancers 

(H3k4me1) marks are also higher near the BACE1 gene resulting in an increase in the 
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looping interaction of TSS in the neuronal samples. The absence of TADs around the 

BACE1 gene in the non-neuronal population, and, an increase in the looping interactions of 

the TSS and the enhancers of the BACE1 genes in the neuronal population suggesting the 

role of 3D genome organization in the Alzheimer’s disease. At this point, the results should 

be very carefully examined as this is the pilot study that resulted in the low number of 

mapped reads to perform the analysis at a higher resolution.  

 

 

Figure 9.7-6 The interaction pattern in the vicinity of the BACE1 gene 
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10.   Discussion 

The work reported in this thesis provides an outlook into the fast progressing 

neurodegenerative disorders especially the Alzheimer’s disease. It shows the need for the 

development of not only the sensitive, accurate, cheap and non-invasive biomarkers that can 

help in the diagnosis, prognosis, and prediction of the onset of a disease, but also focuses 

on the development of the statistical and computational pipelines and toolkits to provide a 

way to replicate the results and perform new analysis without introducing new technical 

biases. It also sheds a light on how the chromatin is organized in the genome and basic 

differences in the looping interactions between the neuronal and non-neuronal cell 

populations by the use of the latest techniques like 3C-seq. 

 

The discussion is divided into two parts, one for each aim similar to methods and results 

sections to provide a clear understanding and interpretation of the work performed in line 

with the current published research. The conclusion finally provides a bird’s eye view of the 

study that wraps up the two aims and provides a bigger picture to the current state of the 

biological question that is investigated in this study.  

10.1 miRNAs and piRNAs as biomarker for Alzheimer’s disease 

Neurodegenerative disorders, for example, Alzheimer’s disease and mild cognitive 

impairment that are identified by cognitive decline over a period of time and ultimately 

resulting in dementia, in general, diminishes the quality of life and affects not just the 

individual suffering from it but everyone around them [383-387]. At present, the goal in the 

research community is to develop biomarkers for the diagnosis [388-390] and prognosis 

[391-394] of these neurodegenerative disorders as the underlying disease mechanism that 

may help find good and effective biomarkers remains poorly understood. There has been an 

increasing number of reports [395-397] on circulating miRNAs and piRNAs as potential 

biomarkers for neurodegenerative disorders, providing much needed abilities for early 

diagnosis, disease distinction, disease prognosis and possible therapeutic benefits. During 

the course of my studies, I investigated a small number of miRNAs and piRNAs as a putative 

signature that shows both diagnostic potential (Figure 9.2-4) as well as the disease 

progression from MCI to Alzheimer’s disease (Figure 9.3-2). 

  

I focused my study to identify the potential biomarker signatures for the Alzheimer’s disease 

that uses the expression level of small noncoding RNAs (for diagnosis and prediction of the 
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disease) by putting significant effort into the characterization of the small noncoding 

RNAome in humans. In order to identify a fairly non-invasive biomarker signature, the first 

step is to check the content of small noncoding RNAs from the CSF exosomes as it has 

been reported recently that CSF exosomes contain proteins and small noncoding RNAs that 

can be used as biomarker signature [58, 69, 398] (Section 6.4 above) for these 

neurodegenerative disorders. After successfully establishing that CSF exosomes contain the 

small noncoding RNAs (Section 8.1 above), another challenge was to check their 

expression. With the advent of NGS technologies, this was made possible experimentally. 

However, there were many bioinformatics challenges to quantify and summarize the 

expression of these small noncoding RNAs. These small noncoding RNAs often originates 

from multiple locations in the genome. This leads to the problem of uniquely aligning a 

particular small noncoding RNA that has multiple genomic origins to the reference genome. 

Traditional mapping software uses the common strategy of mapping (aligning) the small 

noncoding RNA reads to a reference genome, which normally leads to poor alignment 

(mapping) percentage as they either discard the multiple aligned small noncoding RNAs or 

randomly choose one of the mapping (normally the first alignment found). To address such 

issues, I successfully developed a pipeline (Section 8.3 above) that takes care of the 

multiple genomic origins of these small noncoding RNAs in the genome and provides the 

correct expression for these small noncoding RNA molecules.  

 

From there, identification of informative small noncoding RNAs among the thousands of 

small noncoding RNAs was the challenge. I applied various statistical and machine learning 

approaches (Section 8.4 above and 8.5 above) to achieve this task where in the end, I 

identified a signature containing three miRNAs and three piRNAs. I further evaluated their 

diagnostic performance (Section 9.2.5 above) and the disease progression performance 

from MCI stable to MCI Alzheimer’s disease (Section 9.3.3 above). I also compared the 

diagnostic (Alzheimer’s disease vs. CL) performance of these small noncoding RNAs 

signature to the existing protein based clinical biomarkers specifically the levels of pTAU and 

Aβ42/Aβ40 ratio for the same human samples (Section 9.2.2 above). In the end, the small 

noncoding RNAs signature alone had good diagnostic and predictive abilities (Figure 9.2-4 C 

and Figure 9.3-2 C). Moreover, the diagnostic ability of these signatures increased 

tremendously by the use of the combination of both the protein based clinical biomarkers 

and the small noncoding RNAs signature (Figure 9.2-4 D).  

 

Another important task is to find non-invasive biomarkers which can diagnose brain 

conditions as accurately as possible. The hypothesis here is that whether the expression of 

the small noncoding RNAs present in the bodily fluids such as blood, saliva or urine can also 
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be used as a biomarker signature. In order to check this hypothesis, I looked at the 

expression level of the particular small noncoding RNAs that I obtained as a biomarker 

signature (Section 9.2.5 above) in plasma exosomes. Almost all the small noncoding RNAs 

signature was expressed in plasma exosomes. Moreover, the diagnostic ability of the small 

noncoding RNAs signature in plasma exosomes was also good (Figure 9.4-2 A, B, C). 

Finally, I also wanted to check that the expression level of the small noncoding RNAs 

signature obtained from CSF exosomes reflects some (not all) changes in the brain. To this 

end, I checked the expression level of the small noncoding RNAs signature in brain tissue. 

All six small noncoding RNAs signature were expressed in the brain tissue. Furthermore, the 

diagnostic ability of these small noncoding RNAs signature to classify between Alzheimer’s 

disease and controls was excellent (Figure 9.4-2 D, E, F). This suggests that the small 

noncoding RNAs can be targeted as biomarker candidates for the Alzheimer’s disease 

diagnosis.  

 

Finally, in order to get a better understanding of the functions of these small noncoding 

RNAs (miRNAs and piRNAs); I analyzed the role their targets play in the regulatory 

machinery of the disease pathway. I characterized these small noncoding RNAs from their 

target genes to find functionally similar co-expressing smallRNAs-gene target pairs that can 

be used as potential therapeutic drug targets for the Alzheimer’s disease. For all small 

noncoding RNAs (miRNAs and piRNAs) signature, I report plausible functional targets that 

have a role in the Alzheimer’s disease pathogenesis (Figure 9.5-1).  

10.1.1 Characterization of CSF exosomes  

Most neurodegenerative diseases including Alzheimer’s disease can be characterized by the 

aggregation of certain proteins in the brain and can be only be confirmed after the port-

mortem analysis of the brain tissue. Targeting the pathways that lead to the aggregation of 

these proteins are reported to have therapeutic potential [399-401]. Detection of these 

aggregated proteins in the brain is also possible by the use of neuroimaging techniques 

[402] which led to the rapid advances in the field of neuroimaging and the development of 

the neuroimaging markers [403-405]. However, the accuracy and sensitivity of these 

neuroimaging markers are still poor [406]. Identification of protein and small noncoding 

RNAs based markers [407, 408] offer a complementary approach for the characterization 

and early detection of the neurodegenerative disorders. These markers can be measured 

from bodily fluids like Cerebrospinal fluid (CSF), peripheral blood, saliva, breastmilk or urine 

and can be used in the clinics as non-invasive biomarkers. 
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Recent studies have shown that small noncoding RNAs especially miRNAs and piRNAs are 

present in the bodily fluids as free smallRNAs or within the extracellular vesicles (EVs) like 

exosomes [409-413]. One of the major challenges that other researchers and I have faced is 

the lack of standard operating protocols in the collection, extraction, and handling of bodily 

fluids for RNA isolation. The lack of standardization affects the downstream analysis as it 

can introduce major biases. Few studies [414-416] tried to address this issue, but still, there 

is an urgent need for standardization of such protocols for multi cohort studies. Furthermore, 

development and open access to the manufacturing standards, clinical certification, and 

standard data analysis protocols should be encouraged. 

 

One drawback of CSF based biomarkers is the complicated and invasive collection 

procedure of CSF (through a lumbar puncture (Section 8.1.1 above)). On the other hand, a 

fairly practical and non-invasive collection procedure of peripheral blood makes the blood 

based biomarkers a promising candidate for the diagnosis of Alzheimer’s disease. There are 

few studies reported recently on the development of the non-invasive biomarkers from blood 

plasma [417-419] or blood serum [420, 421]. However, a major caveat in the development of 

the non-invasive blood based biomarkers is the concentration of the Alzheimer’s disease 

pathology related proteins in the brain that is reflected at a far lower amount in the blood 

than compared to CSF. For example, the concentration of TAU proteins in CSF is ~250 

pg/ml [422], while the concentration of TAU measured in blood plasma is ~5 pg/ml [423]. 

This makes the quantification of TAU proteins in blood plasma difficult as the TAU proteins 

need to be isolated from blood plasma containing highly abundant proteins such as albumin 

that has a concentration of ~50 mg/ml [424]. 

 

SmallRNAs from CSF offers more and detailed information about the brain than the 

smallRNAs coming from blood plasma or serum as the extracellular matrix of the brain is in 

direct contact with the CSF [425]. Many smallRNAs detected in CSF exosomes are also 

highly expressed in the brain, suggesting the possible communication link between the brain 

and distal organs by the use of exosomes [426]. The cellular and exosomal small noncoding 

RNAome profile is found to be highly correlated as reported in the section 9.1.4 above and 

shown in the  

 

Figure 9.1-4. I also investigated the profile of mature miRNAs in whole cells and exosomes. 

Mature miRNAs are derived from the precursor miRNAs. Moreover, there is no mechanism 

known yet that reports which mature miRNAs arm is functional [427, 428]. One hypothesis is 

that after the stem loop of premature miRNAs is cleaved by the Dicer, two mature strands 5p 

and 3p arms are produced. Depending on the stability of either or both arm may be 
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functional and the unstable arm is degraded [429, 430]. It has been reported previously [431, 

432] that the inactive strand of the miRNAs are cleared by the use of exosomes and hence 

most miRNAs found in the exosomes are for degradation. However, as shown in the Figure 

9.1-3 there is no such pattern observed. Both the cellular miRNAs and exosomal miRNAs 

showed the same expression pattern, whether it be the active or inactive arm. This 

relationship also strengthens the idea that the small noncoding RNAs in CSF exosomes in 

some part reflects the small noncoding RNAs snapshot of the cell of origin which may reside 

in the brain.   

10.1.2 Characterization of NGS analysis and small noncoding RNAs 

Profiling of small noncoding RNAs using the next generation sequencing technologies is a 

challenging task. This is due to the duplication or multiple origins of several small noncoding 

RNAs within the genome. Many published tools [302, 303, 433-439] for the profiling of the 

small noncoding RNAs either completely failed to address or poorly address the multi-origin 

of the small noncoding RNAs. Briefly, their mapping strategy included mapping the small 

noncoding RNA reads to the full reference genome and then annotating the mapped reads 

with the annotation database or file. During this process, they either discard the multiple 

mapped reads completely or use only the first or a randomly mapped location strategy. This 

leads to a significant drop in assessing the expression of some of highly expressed small 

noncoding RNAs. For example, one of the highest expressed miRNA in the brain hsa-miR-

181a-5p [303, 440-443] is either completely missing or reported extremely low read counts 

using the current approach. However, there are other tools [444-447] that offer a different 

strategy quantified miRNAs correctly, but do not quantify other small noncoding RNAs such 

as piRNAs, snRNAs or snoRNAs.  

 

Thus, I developed my own mapping strategy. I used the custom reference genome created 

by the sequences of the small noncoding RNAs and mapped the small noncoding RNA 

reads to this custom reference genome with iterative mapping strategy shown in Figure 

8.3-1.  The mapping pipeline (GJSrMap) [253] described in detail in section 8.3 above, has 

several advantages over the existing pipelines and available tools. One of the biggest 

advantages is the modularity of the pipeline. All of its sections are customizable from the 

choice of alignment software (section 8.3.3 above) to the building of the custom reference 

genome (section 8.3.1.3 above) and the annotation of the smallRNAs (section 8.3.4.1 

above). By default, the pipeline is optimized to run a high performance cluster computing 

(HPCC) system, but it can easily be customized to run on a local server or computer. The 
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pipeline also provides the logs and statistics for every iteration related to the mapping of the 

reads.  

 

A big part of the pipeline is the quality control steps taken to ensure the clean and high 

accuracy during the mapping and read counting process. First, the fastQ files are checked 

for the quality of sequencing. Then, before the alignment, adapters are trimmed and the 

reads with low quality scores are filtered out. Afterward, alignment of reads to the 

customized reference genome is performed iteratively. Final BAM files are filtered to remove 

the low quality mapping and sorted for the counting. After read counting is performed, the 

reads are assigned to each small noncoding RNAs class such as miRNAs and piRNAs. Both 

raw and normalized reads (Counts per million (CPM) [448] as default) are provided for the 

assessment of the mapping. Future versions of the pipeline will include the quantile, median 

and variance stabilized normalization (default) methods (section 8.4.1 above).  

 

The pipeline also provides a detailed summary of mapping quality, library size distribution, 

distribution of small noncoding RNA classes found in the sequencing reads and the 

distribution of individual small noncoding RNAs within each class (Figure 8.3-2). Samples 

with low uniquely mapped read counts are recommended to be removed from the further 

downstream analysis as do not offer any information. The pipeline can distinguish between 

the real useful biological products and degradation products and provides additional 

information on the distribution of the special infrastructural small RNA classes such as 

rRNAs, pre-mature miRNAs, and snoRNAs (section 6.5.2 above). If they are present in high 

percentages, then the RNA isolation or the library preparation part needs to be tested.  

 

In the CSF data, miRNAs distribution is the most highest as expected, but surprisingly 

second most abundant class of small RNAs are the piRNAs (Figure 9.1-2). All the top five 

miRNAs in the human CSF samples are reported to play a role in neurodegeneration. MiR-

10-5p is reported to be involved with Sporadic Amyotrophic Lateral Sclerosis, Parkinson 

disease and Alzheimer disease [301, 449]. MiR-22-3p is reported to regulate cell 

proliferation [450] and inhibits cell apoptosis [451]. MiR-204-5p is reported as a biomarker 

candidate in Frontotemporal Dementia (FTD) [452] and as a therapeutic target in 

endometrial carcinoma [453]. MiR-26a-5p is reported to regulate the expression of inducible 

nitric oxide synthase in human osteoarthritis chondrocytes [454] and play an active role in 

tumorigenesis [455] growth and in multiple sclerosis [456]. MiR-10b-5p is involved in 

Huntington’s disease [457] and breast cancer [458]. However, not much known about the 

roles of piRNAs and only recently a few studies reported the role of piRNAs in Alzheimer’s 
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disease [122, 459] in cancer [460-462] in cardiac regeneration [463] and retinal 

degeneration [464].  

 

In the human genome (Figure 9.1-2), 70.6% of piRNAs comes from the distal intergenic 

regions, 4.1% from the promoters of the genes and only about 1.2% comes from the 1st exon 

of a gene. Compared to piRNAs from the CSF exosomes, I found that 61% of piRNAs 

originate from 1st exon of a gene, 18.5% from the promoters of the genes and only 13.5% 

from the distal intergenic regions of the genome.  A recent study [306] in cancer research 

reported that the smallRNAs from the 1st exons can distinguish between cancer and healthy 

individuals. The ones near the TSS are also found to be conserved between tissues. The 

three piRNAs from the biomarker signature has origin from the protein coding genes that are 

associated with Alzheimer’s disease (Table 9-4). This shows that there is a great need to 

study these classes of small noncoding RNAs apart from miRNAs to get a complete picture 

of the regulation of the genes that are involved in the disease pathology. 

10.1.3 Role of clinically established CSF biomarkers for Alzheimer’s 

disease diagnosis 

At the core of Alzheimer’s disease pathology are the key molecular hallmarks amyloid-beta 

(Aβ) peptides and phosphorylated TAU, which are the key components of insoluble plaques 

and tangles respectively. Both have been closely correlated with the Alzheimer’s disease 

progression. One of the major functions that are disrupted [465, 466] in the pathogenesis of 

Alzheimer’s disease is the interaction of various signalling pathways believe to regulate the 

phosphorylation of TAU [467-470]. The highly soluble TAU protein when gets hyper-

phosphorylated particularly mediated by CDK5 [471, 472], dissociates from is microtubules 

in the axons and form paired helical filaments (PHF) [473, 474] which are insoluble 

aggregates and believed to cause axonal transport impairment [475]. This in turn is believed 

to cause neuronal dysfunction [476] and cognitive decline in Alzheimer’s disease [477, 478]. 

 

One of the major updates to the Alzheimer's Disease Diagnostic Guidelines [479] that were 

included in 2011 by the National Institutes of Health and the Alzheimer’s Association is to 

recognize the potential use of the brain and CSF biomarkers. The use of positron emission 

tomography (PET) scans [480] and cerebrospinal fluid (CSF) analysis to check the elevated 

levels of TAU [481, 482] and/or decreased levels of amyloid-beta (Aβ) [483, 484] in CSF for 

the amyloid plaques and neurofibrillary tangles build up is suggested but not implemented in 

the clinics yet [12, 479, 485, 486].  
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The role of Aβ and TAU from CSF as biomarkers [487-489] has now been validated in many 

population studies [490, 491] and cohorts [492]. Recently, many studies [493-495] have 

shown that Aβ42/40 ratio has better accuracy in the clinical diagnosis of Alzheimer’s disease 

compared to the levels of Aβ40 or Aβ42 alone. It has also been shown that the Aβ42/40 ratio 

is highly correlated to the levels of pTAU in the Alzheimer’s disease patients [496, 497].  In 

line with the current research that is reported, I also found the levels of pTAU and Aβ42/40 

ratio elevated in the Alzheimer’s disease patients compared to the controls (Figure 9.2-1). In 

terms of classification abilities of these protein based clinical biomarkers, I also see a good 

diagnostic performance with an AUC of 0.87 (Figure 9.2-1) for Aβ42/40 ratio and pTAU in 

distinguishing the Alzheimer’s disease patients from controls. An interesting observation 

here is that when compared to each other, pTAU is found to be more informative than 

Aβ42/40 ratio (Figure 9.2-1 inset barplot).  

10.1.4 The CSF miRNA/piRNA signature as biomarker for Alzheimer’s 

disease diagnosis 

One important aspect of the clinically established CSF protein biomarkers (Aβ40, Aβ42 TAU, 

pTAU and Aβ42/40 ratio) [498] along with positron emission tomography (PET) scans is that 

they are biased towards the clinical hallmark pathology of Alzheimer’s disease i.e. the build-

up of insoluble amyloid plaques and neurofibrillary tangles in the brain. However, other 

methodologies such as exploring epigenetics mechanisms that might explain alternative part 

of Alzheimer’s disease pathogenesis and might provide other methods for disease 

diagnosis, prognosis and therapeutic targets [499] should be investigated. Small noncoding 

RNAs like miRNAs and piRNAs are present in bio fluids like CSF and blood and are shown 

to have both diagnostic and prognostic abilities as a biomarker for Alzheimer’s disease. 

 

Out of all the small noncoding RNAs, miRNAs are the most studied ones. Their abundance 

and stability mark their key features to be a good biomarker candidate [500]. Many studies 

have reported miRNAs as novel and non-invasive biomarkers for Alzheimer’s disease [501-

506] by the use of various approaches. One array based study reported miRNAs in brain 

and CSF from Alzheimer’disease patients and non-demented controls and could identify 60 

differentially expressed miRNAs in CSF [502]. Another recent study investigated eight 

selected miRNAs in CSF from Alzheimer’s disease patients and reported lower miR-146a 

levels in Alzheimer’s disease [507]. In a targeted approach miR-let-7b was found to be 

increased in the CSF from Alzheimer’s disease patients [508]. Another study employed the 

array based nano-string technology to study miRNAs level in CSF from Alzheimer’s disease 

patients and identified miR-27a-3p to be reduced in the CSF from Alzheimer’s disease 
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patients [509], while miR-100, miR-103 and miR-375 levels in CSF were found to 

discriminate Alzheimer’s disease patients from non-demented individuals [276]. Another 

group of scientists reported that the loss of miR-9, miR-137 miR-181c and miR-29a/b-1 

increases the levels of the rate limiting enzyme Serine palmitoyltransferase (SPT) resulting 

in the increased levels of Aβ [510]. It has also been shown that the loss of miR-29a/b-1 

cluster resulted in elevated levels of BACE1 gene and consequently levels of Aβ in sporadic 

Alzheimer’s disease [511]. 

 

Recently, another class of small noncoding RNAs, piRNAs has gained traction. Although, 

many studies already reported their various functions such as post transcriptional regulation 

of protein coding genes and stability of mature mRNAs [512], chromatin stability [513, 514], 

regulation of epigenetic mechanisms [515, 516] and most importantly suppression of 

transposons [347, 517, 518]. First reports have only been recently published that piRNAs 

also play a role in the pathogenesis of various disease [122, 459, 519-522]. Some reported 

piRNAs with their respective target genes that are shown to play a role in Alzheimer’s 

disease are piR-38240 (cytochrome c), piR-34393 (karyopherin subunit alpha 6), and piR-

40666 (RAB11A) having an inverse gene expression relationship [122].  

 

In this study, I developed a specialized mapping pipeline (section 8.3 above) and used 

various statistical and machine learning algorithms (section 8.5 above) to obtain a set of 

miRNAs and piRNAs that can be useful in early diagnosis, disease distinction, disease 

prognosis and possible therapeutic benefits in Alzheimer’s disease. Identification of a few 

most informative miRNAs and piRNAs from the entire small noncoding RNAome with a 

limited number of samples was a challenging task. First, I applied the Measure of Relevance 

(MoR) procedure [275] and a reliability test [276] to obtain a significantly reduced set of 

informative miRNAs and piRNAs that are expressed in at least 95% of the samples (section 

8.5.1 above). After the removal of the uninformative smallRNAs, a more sophisticated 

variable ranking is calculated using various machine learning algorithms that provide a mean 

ranked score for each informative signature (section 8.5.1 above). I chose a threshold of 

0.30 after the discussion with experts in machine learning and filtered out the miRNAs and 

piRNAs that were found below this threshold. The miRNAs and piRNAs are also checked if 

they are confounded by age and gender by using MANCOVA analysis (section 8.5.2 above).   

 

After taking all the measures to ensure the effectiveness of the miRNAs and piRNAs, I got 

three miRNAs, namely hsa-miR-27a-3p, hsa-miR-30a-5p, miR-34c-3p and three piRNAs, 

namely hsa-piR-019949, hsa-piR-020364 and hsa-piR-019324 as the putative biomarker 

signature. In order to avoid redundancy of the information provided by these small 
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noncoding RNAs signature and protein based clinical biomarkers used in the study (pTAU 

and Aβ42/40 ratio), I performed the correlation analysis (section 9.2.4 above Table 9-1). I 

found that they do not correlate which means that they provide information on a different 

aspects of the Alzheimer’s disease pathology. This is also very promising as in the future a 

combination of both types of markers can provide a bigger picture rather than an incomplete 

picture by looking at just the individual marker’s diagnosis and prognosis. From here, I 

investigated the diagnostic abilities of the miRNAs and piRNAs signature. I developed a 

random forest model by training the model on cohort 1 data (Table 9-1 row 1) containing 23 

Alzheimer’s disease and 38 control samples. I then used a 10 fold cross-validated approach 

to test the performance of the model (details of the entire procedure is mentioned in section 

Model selection and performance) on an independent replication cohort 2 (Table 9-1 row 2). 

Surprisingly, miRNAs alone signature performed very close to a random model (Figure 9.2-4 

A), while piRNAs signature performed with a high classification accuracy (Figure 9.2-4 B). 

When both miRNAs and piRNAs signature was checked together, a marginal (1%) increase 

in performance to the piRNAs is observed (Figure 9.2-4 C). As the protein based clinical 

biomarkers and the small noncoding RNAs signature provide different information (Section 

9.2.4 above), I looked at the combined power of both types of signature. The combined 

signature performed significantly better to the point of almost perfect classification of 

Alzheimer’s disease and controls (Figure 9.2-4 D) with an AUC of 0.98. This is very 

promising as it can be a very good diagnostic marker, although it needs to be tested on a 

larger cohort with more patients and age matched controls.   

10.1.5 The predictive power of CSF miRNAs/piRNAs signature from  

MCI to Alzheimer’s disease 

While cost-efficient and reliable biomarkers for correct diagnosis of Alzheimer’s disease are 

important, an equally pressing the issue is the detection of markers that could predict the 

conversion of patients suffering from mild cognitive impairment (MCI) to Alzheimer’s disease 

[523]. To this end,  I investigated the predictive abilities of the small noncoding RNAs 

signature in a separate predictive replication cohort 3 (Table 9-2) with 17 MCI individuals of 

which 10 years later, 6 individuals progressed to develop Alzheimer’s disease (mciAD) while 

11 did not develop Alzheimer’s disease (mciStable).  

 

When I evaluated the predictive abilities of the small noncoding RNAs signature, miRNAs 

alone signature performed well with an AUC of 0.70 (Figure 9.3-2A). The piRNAs signature 

showed an excellent predictive ability (Figure 9.3-2 B) with an AUC of 0.86. The combined 

miRNAs and piRNAs signature did not demonstrate predictive abilities with an AUC of 0.62 
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(Figure 9.3-2 C). Nonetheless, this shows the excellent diagnostic and predictive abilities of 

the piRNAs signature in Alzheimer’s disease pathogenesis which has not been reported 

earlier. This data suggest that the CSF exosomal miRNAs and mostly piRNAs signature can 

be used to diagnose Alzheimer’s disease patients and might also be suitable to predict MCI 

patients that are likely to convert to Alzheimer’s disease with careful consideration.  

 

10.1.6 Diagnostic properties of CSF miRNA/piRNA signature for plasma 

and brain tissue samples 

So far, I have discussed the diagnostic and predictive abilities of the two types of CSF 

biomarkers: proteins and small noncoding RNAs based markers. These markers are 

reported to be most investigated by the research community and included as the 

recommended biomarkers in the updated guidelines for clinical diagnostic criteria for 

Alzheimer’s disease by the National Institutes of Health and the Alzheimer’s Association 

[479]. However, obtaining CSF is still invasive as compared to other bodily fluids like saliva, 

urine and blood. There has been a significant increase in the number of studies published 

recently reporting the development and potential therapeutic use of blood based biomarkers 

for Alzheimer’s disease [506, 524-527]. Besides the obvious ease of obtaining blood 

compared to CSF, another advantage these blood based biomarkers provide is that they can 

be obtained in higher volume and are more economic than obtaining CSF. However, this 

also means that the expression of the proteins and smallRNAs that are measured from blood 

based techniques will be diluted and specificity to the brain might not be correlated. The 

technological recent advancements in the field have led to better and more accurate 

detection of these proteins and smallRNAs from blood that can be used as biomarkers for 

MCI and Alzheimer’s disease [78, 528-532]. 

 

To test the diagnostic abilities of the current miRNAs and piRNAs signature found in my 

study, I evaluated them in an independent blood plasma exosomes cohort 4 with 10 

Alzheimer’s disease and 12 control individuals. The miRNAs signature displayed high 

diagnostic abilities (Figure 9.4-2 A) classifying the Alzheimer’s disease individuals from 

controls with an AUC of 0.84. On the other hand, piRNAs displayed some diagnostic abilities 

with an AUC of 0.67 (Figure 9.4-2 B). The combined signature also displayed high diagnostic 

abilities in classifying the Alzheimer’s disease individuals from controls with an AUC of 0.78 

(Figure 9.4-2 C).  The ability of small noncoding RNAs signature to classify Alzheimer’s 

disease individuals from controls in plasma exosomes makes them a potential candidate for 

biomarker signature.  
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It has been reported that the cerebrospinal fluid (CSF) is been in contact with the brain and 

reflects the events happened inside the brain [533-535]. This makes the small noncoding 

RNAs derived from the CSF exosomes highly informative as they can be used to understand 

the processes happening inside the brain [536]. One can also argue that the smallRNAs 

signature from these CSF exosomes can also closely reflect the brain events that can be 

used as markers to identify certain disease symptoms [532, 537-539]. The exosomes (that 

ends up in CSF and blood plasma/serum) may also originate from other cells, including 

diseased neurons and can inform us about the cellular status inside the brain. The 

hypothesis is whether the miRNAs and piRNAs signature I identified from CSF exosomes 

can demonstrate a diagnostic ability to classify Alzheimer’s disease individuals and controls 

in the brain tissue. I downloaded a publicly available datasets and used the samples 

published in that study[317] to look at the diagnostic abilities of the small noncoding RNAs 

signature. The miRNAs signature shows decent diagnostic ability with an AUC of 0.70 

(Figure 9.4-2 D). In comparison to the miRNAs, piRNAs shows excellent diagnostic ability 

with the AUC of 0.97 in classifying individuals with Alzheimer’s disease from controls (Figure 

9.4-2 E). The combined signature also displayed excellent diagnostic ability to classify 

individuals with Alzheimer’s disease from controls (Figure 9.4-2 E).  

 

However, there is still no clear understanding on the origin of smallRNAs in the CSF 

exosomes from the brain. The smallRNAs in the CSF exosomes cannot be assumed to 

come from the neurons exclusively. These smallRNAs can very well come from other non-

neuronal cells, which may alter our understanding of the results. There is also the issue of 

small cohort sizes that only provides a small snapshot from which Alzheimer’s disease 

associated neurodegeneration can be studied. Certainly, a large cohort study is needed to 

confirm the findings I evaluated and reported here. In the meantime, the small noncoding 

RNAs signature (three miRNAs, namely hsa-miR-27a-3p, hsa-miR-30a-5p, miR-34c-3p and 

three piRNAs, namely hsa-piR-019949, hsa-piR-020364 and hsa-piR-019324) may be used 

as a diagnostic tool for Alzheimer’s disease classification and an early measure for disease 

prediction from MCI to Alzheimer’s disease with considerable precautions.  

10.1.7 Functional characterization of CSF miRNAs/piRNAs signature 

The target gene predictions from the miRNAs and piRNAs signature identified many genes 

that play a key role in Alzheimer’s disease pathogenesis related pathways. Some of them 

include the heterodimerization of Retinoid X receptors (RXRs)/Retinoic Acid Receptors 

(RARs) [540] with other receptors and selective targeting of those receptors may help in the 
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Aβ removal and better cognition; the mTOR signalling pathways which may play an 

important part in the development of the Alzheimer’s disease [541],  the influence of the 

CD40 and its ligand (CD40L) in the Alzheimer’s disease pathogenesis [542-544] 

inflammation related pathways like IL1-mediated signalling events [325, 326, 328, 545]; IGF1 

pathway [332, 336]; and hypoxia related pathway [339-342] showing to play a role in 

Alzheimer’s disease pathology. I also looked at the set of genes that were the common 

targets for the three miRNAs signature, which I termed as “hub genes” to see if there is a 

core set of pathways that is involved in the disease pathology. I found a very similar set of 

pathways like the hypoxia (HIF-1a and HIF-2a regulated) pathways and calcium signalling in 

the CD4+ TCR pathways [439] playing the role in disease pathology. Since, piRNAs are new 

to this field and very little is known about the target of these piRNAs like we know about the 

miRNAs, a general overview about the piRNAs targets was checked. I found that a majority 

of piRNAs genomewide lies in the distal intergenic regions (Figure 9.1-2 A). On the other 

hand, contrary to the genomewide consensus, the majority of the CSF exosomes piRNAs 

lies in the 1st exons of their targets (Figure 9.1-2 A). The three piRNAs in signature also lies 

in the 1st exons. This is an important finding as it is been shown recently that the smallRNAs 

that comes from the 1st exon of their targets plays an important role in disease prediction 

[306]. Some of the genes the piRNAs are originating from for example NRXN1 [350-352] and 

UBASH3B [546, 547] are also linked with Alzheimer’s disease. Thus the results described in 

section 9.5 above support our hypothesis and cement our belief that the miRNAs and 

piRNAs signature could possibly reflect the interactions of these gene regulatory pathways 

that might play a key role in Alzheimer’s disease pathogenesis. 

10.2 Three dimensional architecture of neuronal and non-

neuronal cells 

In the first aim, I looked at the epigenetic regulation of gene expression and mainly the role 

of small noncoding RNAs involved in the regulatory mechanism. Another way to understand 

the regulation of the gene expression is to study the role of chromatin conformation in 

looping of the genomic elements that are involved in this process of regulation. This field of 

study is quite recent and new mechanisms are constantly being discovered that elucidate 

the role of three dimensional organization of the chromatin involved in controlling the gene 

expression. The hypothesis here is that by studying the chromosomal conformation 

differences between the neuronal and non-neuronal cells, especially at the locations of 

regulatory elements that are crucial in the neurodegenerative disease pathways may open 

up new research frontiers to understand the disease mechanism. For this, we performed a 
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pilot experiment to look at the conformational differences in the chromatin architecture of 

neurons and non-neurons in the CA1 region of wildtype mouse.  

10.2.1 3C-seq library quality assessment, reads alignment and 

balancing 

The overall quality of the samples was good with average read quality about 35 (Phred 

score) for all the samples (Figure 9.6-1). One point to note is that the subset of reads are is 

always going to have variable read quality with few good quality subsets and others with 

poor quality. It is however only considered when the majority of the subset has poor quality 

as they are supposed to be only a very small percentage of total sequences. Low quality 

reads have a small Phred score (Table 9-5) which, if present in large number in the 

sequencing library can be costly in the price of the experiment and may lead to an 

inaccurate understanding of the results. The high quality reads were then aligned to the 

mouse genome (mm9) by using the iterative mapping procedure which led to the mapping of 

52% and 67% in the neuronal and non-neuronal populations respectively (Table 9-6). The 

3C-seq technical artifacts were filtered out and iterative correction and normalization 

(balancing) were performed to enhance the possibility of detecting the looping interactions 

with high probabilities.  

10.2.2 The conformational differences and identification of TADs in the 

neuronal and non-neuronal CA1 populations 

I then looked at the genomewide interaction patterns of neurons and non-neurons in the 

CA1 cells. The initial libraries had approximately 215 and 144 million reads for neuronal and 

non-neuronal population. After iterative mapping, iterative correction and balancing of the 

interaction matrix were performed, I was left with approximately 12.5 and 1.7 million valid 

unique interaction pairs for the neuronal and non-neuronal population. As the experiment 

was a pilot and the quality of the libraries was good, I went ahead to perform the basic 

analysis to look at the differences between the two population cells. The results, however, 

should be very carefully and cautiously interpreted as they may or may not represent the full 

picture. However, given the quality of the data, I can still look at the basic interaction 

patterns. My first observation was that even with the higher number of initial reads as well as 

raw unique valid pairs, after balancing, there was a  small increase in the looping 

interactions in the non-neuronal population compared to the neuronal population when 

visualized and inspected through the genomewide chromatin interactions heatmaps (Figure 

9.7-1). This should, however, be cautiously interpreted as quantification is required both in 

the biological setup and computational setup.  I then identified the topologically associating 
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domains (TADs) (6.7.1.3 above) from the neuronal and non-neuronal population and 

compared them to the published results (Figure 9.7-1). The number of TADs were also 

marginally higher in the neuronal population (1098) compared to the non-neuronal 

populations (1057). This number, however, might change when the TADs calling is 

performed at a higher resolution (current resolution is 500 kb genomic bins). It may be 

speculated that this may not affect the overall interaction pattern, but may be responsible for 

the differences in the interaction patterns that may be involved in disease mechanism. 

10.2.3 Interaction pattern differences on a single chromosome (chr9) 

and near a single gene (BACE1) 

In the end, I wanted to check the instances of the looping interactions that were different 

between neurons and non-neurons. I looked into the particular chromosome, chr 9 which 

has a very important gene (BACE1) that is involved in the Alzheimer’s disease pathology 

[379, 381, 382, 548, 549]. However, due to the low number of uniquely valid pairs, I 

performed the analysis by the visual inspection of the data which still provided some striking 

evidences in the looping patterns of neurons and non-neurons near the BACE1 gene. The 

data and results should be cautiously interpreted. When I looked at the general interaction 

pattern on chromosome 9, there were few genomic locations with lower number of 

interactions and few genomic locations have a higher number of interactions in neurons 

compared to non-neurons (section 9.7.3 above). For one of the examples, there was a 

reduction in the gene expression pattern (Figure 9.7-5) that has a miRNAs cluster and also 

an increase peak density for H3K27m3 peaks which is a repressive mark. This calls for a 

compressive analysis for the next part of the study in the future. The absence of 500 Kb 

binned resolution TAD in non-neurons may play a role in the looping interaction pattern of 

the BACE1 gene which right now is a speculation. A high resolution TADs map should 

confirm the absence of this particular TAD in the BACE1 gene vicinity. The specific 

interaction profile of the BACE1 gene was crucial to understand and even with the low 

resolution data, I was able to identify that there was a decrease in the interaction pattern of 

the BACE1 genes in non-neurons compared to neurons. Along with that, the enhancer’s 

density was also higher for the neurons near the BACE1 gene compared to the non-neurons 

(Figure 9.7-6). All the results in this pilot study suggest that there is a difference in the 

conformation of the cells from neuronal and non-neuronal population with a distinctive 

interaction pattern but it should be interpreted carefully.  
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11.       Conclusions 

The epigenetic regulation of gene expression plays a major role in memory formation and 

synaptic plasticity. The epigenetic mechanisms involve the regulation of proper gene 

expression by DNA methylation and demethylation, histone modifications and the role of 

noncoding RNAs along with the genetic and environmental factors. Deregulation of these 

epigenetic mechanisms [428, 550-553] along with the disruption of the three dimensional 

architecture of the genome results in a crisscrossing of the complex interconnection of long 

range looping interactions [238, 554] leading to the disease pathogenesis. Understanding 

these mechanisms becomes critical in fast progressing neurodegenerative disorders like 

Alzheimer’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS). The 

need to develop biomarkers for the diagnosis, prognosis, and prediction of the onset of 

Alzheimer’s disease - which can lead to personalized therapeutic tools - is very important. 

The key objectives of my study were to identify putative small noncoding RNAs biomarkers 

by the use of machine learning and statistical methods and get a basic understanding of the 

underlying mechanism that may be probable causes of Alzheimer’s disease by looking into 

the three dimensional topology of the chromatin in the neuronal and non-neuronal samples. 

Those were the two main goals of my study and a brief summary of both aims is presented 

below. 

 

The first aim was to study the epigenetic regulation of information in a neuronal network like 

exosomal transfer of small noncoding RNAs, which leads to the development of putative 

biomarkers for disease diagnosis, prognosis, and prediction. The data suggest that 

exosomes released from neurons mainly reflect the small noncoding RNA composition of the 

parental cells. This data is in line with other studies performed, for example on cancerous 

cells [555-558]. The analysis of CSF exosomes at least in the part that reveals the 

pathological small noncoding RNAome changes occurring in the brain as the top expressed 

miRNAs and piRNAs found in the CSF exosomes are linked to brain function [373, 509, 522, 

559, 560]. This data also suggest that the analysis of miRNAs and piRNAs expression alone 

is suitable for the diagnosis and prognosis of Alzheimer’s disease in an independent 

replication cohort during the biomarker development phase but not sufficiently high for use in 

clinical practice as of now. However, the combination of both the existing clinical protein 

markers like pTAU and Aβ42/Aβ40 ratio and small noncoding RNAs signature (three 

miRNAs, namely hsa-miR-27a-3p, hsa-miR-30a-5p, miR-34c-3p and three piRNAs, namely 

hsa-piR-019949, hsa-piR-020364 and hsa-piR-019324) provides very high accuracy and 

may be used in the clinics for the disease diagnosis and prognosis compared to the use of 
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individual markers. Taking into account that small noncoding RNAs are extremely stable 

[561-563] and are rather unaffected by repeated freezing and thawing cycles our findings 

suggest that both miRNAs and piRNAs [564] should be considered as the additional 

biomarker for diagnosis and patient stratification. It is also reported that the changes in these 

small noncoding RNAs represent a combination of environmental and genetic risk factors 

and not simply Aβ or Tau load providing additional and valuable information for the onset of 

Mild Cognitive Impairment (MCI) and Alzheimer’s disease. Finally, the study reported that 

the analysis of these small noncoding RNAs from CSF exosomes potentially informs about 

many molecular and biological processes that might fail to classify patients when assessed 

individually. This may be the primary reason for the excellent performance of the reported 

piRNAs signature and a good performance for miRNAs signature in predicting the 

conversion of MCI patients from mciStable to mciAD.  

 

Through this study, I also provide various statistical and machine learning toolkits and 

pipelines with open source access to the code. This not only ensures that the results of the 

study can be replicated, but also, at the same time, make sure that the same pipelines can 

be used on a larger cohort so that the data is analyzed in a standard way which will avoid 

various biases that may introduce during data analysis and interpretation of the results. This 

is very important, as before, making any major deduction of the usability of these small 

noncoding RNAs signatures as biomarkers from this study, the data should be systematically 

tested in a study with bigger population size and conducted over a longer period of time in 

the clinical setup. 

 

The second aim was to study the role of dynamic changes in higher order chromatin 

structure that control gene expression programs in neuronal plasticity. This was a pilot study 

with the goal to get a glimpse of the three dimensional organization of the genome inside the 

neuronal and non-neuronal population of the cells and its impact on the genetic and 

epigenetic regulatory network by the use of Chromosome Conformation Capture (3C) based 

technique (3C-seq). The study was successfully performed with the 3C-seq technique in the 

FACS sorted neuronal and non-neuronal nuclei from CA1 (the specific sub region of the 

dorsal hippocampus) in the mouse. The 3C-seq experiment was successful, but due to the 

low input RNA concentration, the library could not be sequenced deep enough to get a 

fragment level resolution data for the analysis. Even with the low resolution data (500 kb 

bins), the study reported that there is a difference in the number of topologically associating 

domains in the neuronal and non-neuronal population of the cells. The study reports many 

regions where there are distinct interaction pattern in the neuronal and non-neuronal cells for 

example between the TSS of a gene and an enhancer mark (H3k4me1); suggesting their 
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involvement in the regulation of a gene that might be a part of the disease pathway. One 

such finding reported a distinct looping interaction pattern of the BACE1 gene with the 

neighboring enhances present in neuronal cells compared to the corresponding non-

neuronal cells. The data and results, however, should be interpreted by carefully as the data 

cannot be binned at a higher resolution for more concrete TAD calling and assessment of 

the looping interactions within those TADs. However, it does provide an overview of how the 

looping interaction pattern is present in the two sub populations of the cells in the CA1 

region. In the future, I want to look at the role of the selected small noncoding RNAs found 

the aim 1 in different neuronal and non-neuronal populations. I also want to see the effects 

of these small noncoding RNAs on the proteome if we knock out some of them to look at the 

gain or loss of function.  

 

In the end, my Ph.D. work will significantly contribute to better understanding on how the 

epigenetic code controls neuronal plasticity and memory function which will help not only to 

better understand the brain, but may also help to identify novel therapeutic avenues to treat 

cognitive dysfunction and complex brain diseases. 
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