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1 Introduction

1.1 Brain

The brain is the core of information processing for humans. With billions
of neurons and tens of thousands of connections for each neuron, the brain
is in charge of a diversity of functional roles ranging from the sensory and
motor control to higher level learning and decision making.

Understanding the underlying mechanisms of how the brain realizes
such complicated functions is one of the most difficult questions. One line
of research starts with the behavioral experiments and tries to identify the
brain areas responsible for corresponding behaviors. Another line of research
starts with the dynamics of individual neurons and tries to identify the
neural circuits and the network connections responsible for the functional
roles. In this thesis, I will take the second approach and study the impact
of individual neuron properties on the action potential generation dynamics
and the encoding ability of the neuron populations.

1.2 Action Potential
1.2.1 Action Potential Generation Mechanisms

Action potentials are the major communication signals between cortical
neurons. Thousands of synaptic inputs lead to the continuous voltage
fluctuations in one neuron. Small fluctuations can not be passed down and
detected by the downstream neurons. Only large enough fluctuations which
trigger action potentials in the axon can be "known” by the other neurons.
In this sense, large amounts of input information are processed in the neuron
and compressed into discrete delta pules as the output. Understanding how
the information is integrated in the neuron, how the spikes are generated,
and the impact of spike generation dynamics on the neuron capability
contribute to unveiling the information encoding mechanisms of cortical
neurons

The early works of Hodgkin and Huxley |1H5|] characterized the ionic
mechanisms of action potential initiation and proposed a conductance-based
model to describe the action potential generation dynamics. An action
potential is triggered by a surge of sodium current entering the neuron.
When the voltage is high enough, the sodium current is reduced by the
inactivation of sodium channels and the voltage is brought down by the
potassium current. With the deinactivation of sodium channels, the sodium
current becomes available again for the next spike.

The conductance-based model proposed by Hodgkin and Huxley provides
a biophysical plausible framework for explaining action potential generation.
The neuron model is a type IT model. In a subsequent work of [6], type I
conductance-based models were also developed.

1.2.2 Action Potential Onset Rapidness

In [7], the authors pointed out two potential problems of conductance-based
models as applied to cortical nerve cells. As shown in Fig[l] for the spikes
recorded in cortical neurons, there is a kink at the initiation of a spike.
From the view of a phase plot, the voltage derivative rises rapidly in a short
voltage interval at the beginning of the spike. Observations above are valid
both in vivo and in vitro. However, for conductance-based models, there is



no kink at the initiation of spikes. The voltage derivative rises smoothly
with the voltage in its phase plot. The other potential problem is the
variation of the spike threshold. For cortical neurons, the spike threshold
has a broad range. However, for the conductance-based model, the spike
threshold range is quite narrow.
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Fig 1. Rapid action potential onset in cortical neurons. The
spikes recorded in vivo and in vitro have kinks at their initiation regime.
In their phase plots, the voltage derivatives rise rapidly within a small
voltage interval. For the conductance-based neuron model, the initiation
part of the spike is smooth. The voltage derivative rises slowly in the phase
plot. The figure is from .

Some studies argued that the rapid AP onset seen at the soma might
be an artifact of back-propagation of spiking voltage generated in the
axon . In subsequent work ﬂgﬂ, rapid AP onset was found to have further
implications for information encoding. In ﬂgﬂ, AP onset rapidness was
reduced in two ways shown in Fig[2] For the first method, the sodium
concentration was reduced outside the neuron, such that there is less sodium
current in each sodium channel. For the second method, TTX was used



to block some of the sodium channels. In both conditions, the sodium
current for the AP initiation was reduced which impaired the AP onset
rapidness. Fig[2B and C compare the encoding abilities of the neurons with
and without the rapid AP onset. The encoding abilities in high frequency
regime were impaired when the AP onset rapidness was reduced.
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Fig 2. Reducing AP onset rapidness impairs the encoding
ability of cortical neurons. Al. Reducing the sodium density outside
of the neuron or blocking some of the sodium channels make the kink at
the initiation of a spike less significant. A2. From the view of a phase plot,
the AP generation dynamics are less rapid in the two cases examined in
Al. B, C. Comparing the linear response functions of these two conditions
with that of the intact neuron, the encoding abilities in high frequency
regime are impaired. The figure is from @

Up till now, I explained the action potential generation dynamics of
conductance-based models and highlighted an important property of the
spikes in cortical neurons missing in some conductance-based models. In the
next section, I will summarize experimental evidences on fast information
processing in the brain. Then I will introduce the proposal of realizing fast
information processing by population firing rate encoding. Following this
path, I will introduce the experimental evidence on fast population encoding
and the theoretical approaches examining the impact of neuron morphology



and biophysics on the encoding ability. Based on the theoretical studies, I
will pose the my specific scientific questions addressed in this thesis.

1.3 Fast Information Processing in the Brain

The brain is capable of fast information processing. If someone throws
an apple towards another, it is quite simple for the receiver to read the
trajectory of the apple, predict the upcoming position, and catch the apple.
The whole process can take no more than a fraction of a second. In our
daily lives, fast information processing is applied everywhere. It requires a
quick reaction to stop the car to avoid an accident of hitting an unexpected
pedestrian. In video games, a sequence of rapid and precise controls of the
figure might be essential to realize perfect dodge and jump in one stage.
In an early experimental study [10], it was found that human brains can
perform a highly demanding visual processing task in less than 150ms. In
this experiment, the subjects were told to report whether a shortly given
image contained an animal or not. The presentation time of one image was
only 20ms. The types of animal images were versatile. What is more, the
animals were pictured in their natural environments which could distract
the subject. The subjects were asked to perform a go/no-go categorization.
We can see that the whole task contains several stages of information
processing in the brain. Reading the image requires visual information
processing. Telling whether an animal exists or not requires recognition
and decision making. Performing the final go/no-go categorization requires
motor controls planned ahead. According to the experimental results, the
subjects finished the task with an extremely high correct percentage in
around 500ms. Using event-related potential recordings, the potential
divergence of the no-go response from the go response indicated that the
time it took for the visual processing stage was roughly 150ms as shown in

Fig[3]
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Fig 3. The averaged event-related potentials over 15 subjects.
The event-related potentials diverge after 150ms. It is proposed to
correspond with the decision-related activation after the visual processing
of existence of animals. The figure is adapted from [10].

The experiment above was based on complicated natural images. In
a more simplified task, monkeys were trained to make a saccade towards
to the target that may show up in different positions [11]. The saccade
reaction time was well below 300ms. Introducing a small period of darkness



before appearance of the saccade target reduces the saccade reaction time
to around 100ms. A more recent work [12] used the compelled-response
paradigm to determine the time it takes for a monkey to make an accurate
color discrimination. In the two-alternative choice task, the go signal was
given before the appearance of two possible choices. The time gap separates
the motor-planning stage from the decision-making stage. The experimental
result shows that the color discrimination was performed in less than 30ms.

Following [10], the underlying mechanisms for fast information processing
have been investigated [13}14]. Arguing that the behavioral responses during
information processing are too fast to be encoded by the firing rates of
individual neurons, which require time average over a longer time window,
the authors proposed that information was encoded in the relative timing
of a few first spikes in individual neurons. The firing rates in a larger time
scale was proposed to describe the quantities of the stimulus rather than
its identity. Recording from the afferents in the median nerve of the upper
arm, the first few spikes were found to tell the directions of forces and the
shapes of stimuli on the fingertips [13].

An alternative idea may circumvent the problem of obtaining firing
rate over a long time window. Instead of calculating the firing rates of
individual neurons through long time averaging, the population firing rate
of a large population of neurons can be obtained in a short time scale by
population averaging. The information on the time varying stimulus could
be coded through the population firing rate. In the next section, I will
give an introduction to the findings on the evidences of fast information
encoding with population firing rates.

1.4 Fast Population Encoding

In this section, I will first introduce the scientific intuition behind the
proposal of population firing rate encoding. First, I will explain why
researchers favor firing rate rather than firing pattern for the information
encoding in the cortex. Second, I will introduce the experimental evidence
on fast population encoding. Applying different stimulus types, several
experiments have shown that a population of cortical neurons can represent
the stimuli extremely well, which is far beyond the limitations on the firing
rate of individual neurons or the membrane time constants of cortical
neurons. Third, I will introduce an important property of population
encoding, which will be used as a criterion for evaluating the performances
of theoretical models in realizing fast population encoding.

1.4.1 Fluctuation-Driven Firing and Weakly Correlated Corti-
cal Neurons

Cortical neurons display highly irregular firing patterns. Recordings from
primary visual cortex and extrastriate cortex showed that the coefficients
of variation (CV) of the inter-spike intervals (ISI) are close to 1, which
indicates that the firing patterns mimic a Poisson-like random processes [15].
The distribution of ISI has an exponential decay. Further experimental
studies showed that the higher order statistics of the ISI, the skewness
coefficient, is inconsistent with that generated by a leaky integrate and fire
model with Ornstein-Uhlenbeck Process stimuli [16]. What is more, the
irregular firing patterns are not reliable in different stimulus trails. Several
experiments showed that the responses of cortical neurons to the same



stimulus are highly variable [17-20]. So it is unlikely that information is
encoded in such stochastic and unreliable firing patterns.

In subsequent theoretical studies [21,22], the origin of irregular firing
was investigated. Each cortical neuron receives a large amount of synaptic
inputs in a diverse range. The majority of synaptic inputs are excitatory.
The impact of an individual synaptic input is quite limited to move the
voltage towards or away from the spiking threshold. It is speculated
that irregular firing is originated from highly fluctuating synaptic inputs.
However, one previous study showed that with irregular excitatory synaptic
inputs, an integrate and fire model failed to realize irregular firing [15], which
seemed to provide contradictory evidence on this opinion. In the works
of Shadlen [211]22], as shown in Fig[4] they reexamined this model setup
with a different approach. First, they reproduced the regular firing pattern
found in [15]. Then they examined the hypothesis that irregular firing is
a consequence of coincidence detection of afferent inputs. In this case, to
realize irregular firing, the time constant of the post synaptic potential
decay was tuned to 1ms, which was much smaller than the parameter range
of cortical neurons. In the third case, they took the inhibitory inputs into
consideration to balance the excitatory inputs. With a reasonable time
constant parameter, the neuron model acted as an integrator of synaptic
inputs. The spikes were a result of fluctuating synaptic inputs. Highly
irregular firing was reproduced in this case.

Another observation from the theoretical studies above is that the
neuron’s voltage is fluctuating in the subthreshold region when acting as an
integrator than that acting as an coincidence detector. This observation is
also supported by experiments. Several experimental studies show that with
intense synaptic bombardment, the membrane voltage is highly fluctuating
below the spiking threshold [23H25]. In visual cortex [23], the fluctuation
amplitude increases with the contrast of optimally oriented gratings.

Up till now, I have introduced the firing properties of cortical neurons,
from which we can see that driven by large numbers of excitatory and
inhibitory synaptic inputs, the membrane voltage mainly fluctuates below
the spiking threshold. The firing pattern generated under such stochastic
inputs are highly irregular. In the second part of this section, I will discuss
correlations between neighboring cortical neurons. We will see that cortical
neurons are weakly correlated. Based on this feature, the idea of encoding
information through population firing rates of weakly correlated cortical
neurons will be discussed.

Several experimental studies focused on the question how correlated the
signal and the noise carried by a population of cortical neurons are [26H30].
If the signal carried by cortical neurons are highly correlated, then there is
a redundancy on the information transmission. On the other hand, if the
noise carried by the cortical neuron are highly correlated, then it would be
difficult to average out the noise by receiving a large number of synaptic
inputs. Paired neuron recordings with single microelectrode on inferior
temporal cortical neurons showed that the signal carried by adjacent neurons
are relatively heterogeneous [26]. The noises in these neurons are much
more uncorrelated than the signal. The spike count covariation in middle
temporal visual area were found to be relatively weak [27]. The averaged
correlation coefficient is 0.12. Neuron pairs whose preferred directions are
less than 90° have more positive correlations compared to those whose
preferred directions are more than 90°.

The results above indicate that neighboring neurons with similar tuning
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Fig 4. Three models on the origin of irregular firing in cortical
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inhibitory inputs are introduced to balance the excitatory inputs. The time
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share similar signals and noises. In a subsequent study, with multi-electrode
recording, it investigated the impact of distances on signal correlations
and noise correlations of pairs of motor cortex neurons and parietal cortex
neurons . As shown in Fig [5, when two neurons are close to each
other, a larger signal correlation usually implies a larger noise correlation.
The scatter points between the two have a more positive slope in the
linear fit. Increasing the distance between two neurons makes the positive
relation diminishes. The noise correlations are much weaker than the signal
correlations. Also, the averaged noise correlation over all neuron pairs is
close to zero. Similar conclusions are drawn in a following study on
prefrontal cortex. This work showed that the correlation between excitatory
pyramidal neurons which transmit information from one area to another, are



less than those of inhibitory neurons which have more local effects. A more
recent work , with more refined examination of the noise correlation of
visual cortex, reported a much smaller correlation than previous results, and
proposed that either the shared inputs are limited or the neurons actively
decorrelated. A theoretical work demonstrated a recurrent neural network
model reproduced the weak correlation property .
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Fig 5. The relation between signal correlation and noise
correlation in pairs of motor cortex neurons and parietal cortex
neurons at different distances. CHT represents the center hold time
before the presence of peripheral targets. TET represents the total
experimental time between the target onset and the end of the movement.
In motor cortex, when a pair of neurons are close to each other, we observe
a more positive association between signal correlations and noise
correlations. The fitted curves of scattered points have larger slopes when
two neurons are close to each other. The noise correlations are less
distributed than the signal correlations in all cases. Similar results are
observed in parietal cortex. The figure is adapted from [28].

With the knowledge that cortical neurons are working in the fluctuation-
driven regime and firing highly irregular spikes, and that a population of
cortical neurons are weakly correlated, the following conclusions can be
drawn. Assume that a common signal is injected into a population of weakly
correlated cortical neurons. The signal amplitude is much smaller than the
background noise, such that the firing patterns of individual neurons are
dominated by stochastic fluctuations. It might be difficult to interpret the
underlying signal from the irregular firing of one neuron. However, for a
large population of weakly correlated neurons, each neuron’s background
noise can be regarded independent of the others’. The hidden properties of
the common input can thus be reflected in the population firing rate. This
is the idea of population encoding.
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1.4.2 High Bandwidth Encoding

In this section, I will summarize experimental works investigating the
population encoding of cortical neurons. I will show that the cortical
neurons can represent the small signals merged in the background noise
unexpectedly well. The encoding ability is described by the linear response
function, which displays a high bandwidth encoding for cortical neurons.

Several experimental studies have shown that a population of cortical
neurons are capable of representing a small signal merged in background
noise with their population firing rate extremely well [9,[33136]. In these
experiments, the cortical neurons are assumed to be weakly correlated, such
that the collective behavior of a whole population can be approximated
by the recordings on a few neurons over multiple trails. In each trail, the
signal is the same, but the background noise are independent of those in the
other trails. Two typical types of signals are step functions and sinusoidal
functions.

For layer 2/3 pyramidal neurons [9}36], when responding to a small
step current merged in the background fluctuations, the cortical neurons
could detect the signal instantaneously. Within 1 to 2 ms, the population
firing rate exhibited a drastic change once the step current was added to
the background fluctuations [9,36]. As shown in Fig |§|, the small step
current was chosen to have an amplitude of unitary postsynaptic current,
which is much smaller than the noise fluctuations shown as the blue curve.
The contribution of the step current is negligible seen from the combined
stimulus shown as the black curve. If injected into a cortical neuron, no
spikes can be generated. Only small amplitude voltage fluctuations are
observed. If we inject the cortical neurons with the combined stimulus,
highly irregular firing pattern are obtained, which give no clue about the
underlying small step current. However, if we examine the population firing
rate, a strong and instantaneous change follows the increase of the step
current. Similarly, the population firing rate drops instantaneously with the
decrease of the step current. The results above give a clear and intuitive
evidence on the signal tracking ability of a population of cortical neurons.

The fast signal tracking by a population of cortical neurons can be
represented in another way. Adding a small sinusoidal signal in the back-
ground noise, a population of cortical neurons can represent the signal with
a sinusoidal population firing rate having the same frequency [9,[33L[36]. As
shown in Fig|7 the red curves are the sinusoidal signals. The black curves
are the total inputs composed of the stochastic stimulus and the sinusoidal
signals. Comparing the left and right panels, we can see that depending
on the frequency of the sinusoidal signal, the population firing rate has the
same fluctuation frequency but a different phase shift from the signal.

In the linear regime, the population firing rate fluctuations are propor-
tional to the small amplitudes of sinusoidal signals. The ratio of the popula-
tion firing fluctuation amplitude to the sinusoidal fluctuation amplitude is
the dynamic gain of cortical neurons at related frequency. Experimentally, it
has been found that the dynamic gain of cortical neurons can be maintained
up to a few hundreds Hz [9}33}{36]. This implies that cortical neurons can
encode high frequency signals almost as good as low frequency signals. The
encoding ability is not limited by the membrane time constant and the
firing rate of individual neurons. We call this property of high bandwidth
encoding also ultrafast population encoding. Ultrafast population encoding
is not limited to layer 2/3 pyramidal neurons in the visual cortex [9,/36]. It

11
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Fig 6. Fast population encoding in response to a small step
current merged in background noise. A small step current is added
to a much larger stochastic noise. The step current alone is not able to
trigger spikes. The spike pattern generated with the combined stimulus is
highly irregular. Seen from the population firing rate, an instantaneous
change with 1 to 2 ms follows with the step current change. The figure is

adapted from .

is also found in layer 5 pyramidal neurons in the motor and somatosensory
cortex [33435].

To quantify population encoding ability, the linear response function of
the population firing rate has been adopted in experimental cell physiology.
The linear response function represents the dynamic gain as a function
of frequency. This concept was first introduced by Knight and later
theoretically elaborated in more biologically realistic and detailed neuron
models [38-47]. Theoretical progresses is summarized in later sections. Here
I will first discuss the linear response curves recorded in experiments. The
work of is one of the first studies that measured the linear response
curves of cortical neurons. This work implemented two types of stochastic
stimuli named as subthreshold stimulus and suprathreshold stimulus as
shown in Fig The subthreshold stimulus had large fluctuations and
a small mean, of which the mean itself was not able to trigger spikes.

12
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Fig 7. Fast population encoding of a small sinusoidal current
merged in background noise. A sinusoidal signal is added to the
background noise shown in the bottom figures. The red curve is the signal,
and the black curve is the total input. In the left panel, the frequency of
the sinusoidal signal is 10Hz. In the right panel, it is 250Hz. The upper
part of the panel is the spiking voltage trace and the raster plot of the
spike times over different trails. The lower panel is the sinusoidal
population firing rate fluctuations. The figure is adapted from .

The suprathreshold had small fluctuations and a large mean, of which the
mean itself was able to generate spikes. In both cases, the dynamic gain
maintained high values up to a few hundred Hz. In the suprathreshold
case, the linear response curve had a strong resonance at high frequencies.
The phase shift curves are similar in two conditions, and do not show a
saturation in the high frequency limit.

1.4.3 Sensitivity of the High Bandwidth Encoding to the Cor-
relation Time of Background Fluctuations

One characteristic property of ultrafast population encoding in cortical
neurons is the sensitivity of the dynamic gain to the correlation time
of background current fluctuations. Increasing the correlation time of
stochastic inputs enhances the dynamic gain at high frequency. This
phenomenon was first predicted in theoretical work on leaky integrate-and-
fire model (LIF) shown in Fig[9] This study shows theoretically that
injecting a white noise into the LIF model, the linear response function
decays with a slope of —% in the log-log scale. The phase shift converges to
45° lagged behind the input. It also shows that when the correlation time
of input becomes a non-zero number, the linear response function of the
LIF model will converge to a finite value in the large frequency limit. The
lag in the phase shift is also eliminated in high frequency limit. What is

13
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Fig 8. Linear response functions of layer 5 pyramidal neurons.
The red curve represents the linear response curve generated with a
stochastic input having a large noise fluctuation. The mean of the input is
not able to trigger spikes. The black curve represents the linear response
curve generated with a stochastic input having a weak noise fluctuation.
The mean of the input is able to trigger spikes. In both conditions, the
cortical neurons realize high bandwidth encoding above 100Hz. The lower
panel shows the phase shift for different frequencies in these two conditions.
The figure is adapted from [33].

more, a larger correlation time of inputs leads to a larger asymptotic value
of the dynamic gain.

Later the sensitivity of the dynamic gain to the correlation time of
the input was also observed in experimental studies [36] shown in Fig
In vitro recordings of layer 2/3 neurons show that the dynamic gain in
high frequency regime is enhanced when increasing the correlation time of
background fluctuations. This experimental study also provides supporting
evidence that ultrafast population encoding exists in vivo, rather than a
phenomenon observed in vitro.

1.5 Theoretical Approaches on Population Encoding

In this section, I will summarize theoretical approaches to population
encoding. First, I will highlight questions that exists in theoretical modeling.
Highly simplified models can realize high bandwidth encoding. However,
many conductance-based models with biophysical plausible AP generation
mechanisms fail to do so. Second, I will introduce a theoretical approach
to understand the impact of AP onset rapidness on population encoding.
Several lines of modeling work have shown that the population encoding
ability is enhanced when the AP onset dynamics becomes more rapid.
Following this finding, several lines of study have emerged to explore how
neuron morphology and AP generation mechanisms shape high bandwidth
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Fig 9. Sensitivity of the dynamic gain to the correlation time of
the stimulus in theoretical modeling. The mean firing rate of the
model is 10Hz. Increasing the correlation time of inputs enhances the
encoding ability in high frequency regime. The phase lag is eliminated
more quickly for a larger correlation time. The figure is adapted from [39].
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Fig 10. Sensitivity of dynamic gain to the correlation time of
the stimulus in experiments. A, B: sinusoidal signals are added to the
background noise with different correlation times. The correlation times in
A, B are 50ms and 5ms separately. The recordings are in vitro. D, E: the
linear response curve has a higher bandwidth for larger correlation time. C.
For comparison, a sinusoidal signal is injected in vivo. It shows that
cortical neurons in vivo can also encode high frequency signals. The dash
lines below the linear response curves are the 95 per cent significance level.
The figure is adapted from [36].

encoding. In the last part of this section, I will summarize two analytical
methods to calculate linear response functions.
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1.5.1 Ultrafast Population Encoding and Realistic Neuron Mod-
eling

Neuron models range from the simple LIF model to complicated multi-
compartment models. This simple LIF model acts as an integrator of
all afferent inputs. Spike generation dynamics are not considered in this
model. To generate spikes, a hard threshold is set. A spike is generated
once the voltage reaches the threshold. There is also no voltage downward
regulation mechanism included. The voltage is reset by hand after a
spike is generated. For more complicated quadratic integrate and fire
neuron model, spike generation dynamics is added to the model [43]. The
spiking voltage will go to infinity in finite time, and then rise from minus
infinity again. In this sense, no specific spiking threshold and reset voltage
are required. Another model which also shares the property of spiking
voltage going to infinity in finite time is the exponential integrate and fire
model [41]. In this model, the spike generation dynamics are described
by an exponential function, which is an approximation to the sodium
activation in a conductance-based model [6]. The most well-known model
that provide a complete spike generation dynamics with ion channels is the
Hodgkin-Huxley model [5]. In this conductance-based model, the sodium
current is the main driving force for generating spikes. When the voltage
is high enough, the inactivation of the sodium channels will block the
sodium current. Then the potassium current will bring down the voltage to
finish a spike. Beyond the Hodgkin—-Huxley model, the detailed structure
of the neuron morphology are considered into the model setup. Instead
of simplifying the neuron as a single compartment soma, an axon and a
dendrite are added to the neuron models [48}/49]. Different ion channels
may also be distributed in different neuron compartments rather than
concentrated at one point.

Increasing computation power allows us to describe the neuron model
to an extent of unprecedented complication. However, one may wonder
whether the most complicated model is the most realistic model. As it is
point out in [50], a realistic model should be capable of reproducing the
key functions of the neurons we are trying to simulate. If we take the
ultrafast population encoding as the key feature of a cortical neuron, then
the simplest LIF model is a quite elegant and ”realistic” model. Not only
can it realize high bandwidth encoding, but also the encoding ability in the
high frequency regime is sensitive to the correlation time of the input as
shown in Fig[9} In comparison, the complicated conductance-based model
can be quite deficient in capturing the encoding properties of cortical neuron.
Many linear response functions of conductance-based models are found to
have cutoff frequencies on the scale of the firing rates. Also, the dynamic
gain in the high frequency regime is insensitive to the correlation time
of inputs [41,/46]. The exponential integrate and fire model also displays
similar behavior when its parameters are tuned to match a conductance-
based model [41]. The results above indicate that single-compartment
conductance based models may have some key functional features missing.
Some studies resort to the more complicated multi-compartment model
framework [48,/49,[51L|52]. While some others focus on the AP generation
dynamics [46}/53]. A more detailed introduction on these two parts will
be given in following sections. Here as the next step, I will first review an
AP generation phenomenon that has been proposed closely associated with
ultrafast population encoding, and related theoretical modeling works on
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this phenomenon.

1.5.2 The Impact of AP Onset Rapidness on Population Encod-
ing

In the previous section, I have introduced the studies on AP generation
dynamics. One important phenomenon that is observed in cortical neurons
but missing in conductance-based neuron models is the rapid AP onset
[7). When generating an AP, the neuron voltage will rise rapidly from
subthreshold fluctuations. As shown in the phase plot, there is a kink at the
initiation part of a spike. While for the conductance-based models, related
regions in the phase plot are quite smooth as shown in Fig[l] Rapid AP
onset is proposed to be closely associated with ultrafast population encoding.
One experimental study showed that impairing the AP onset rapidness will
reduce the encoding ability of cortical neurons [9]. The dynamic gain in
the high frequency regime decays faster if we reduce the sodium current
per sodium channel or block some of the sodium channels shown in Fig
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Fig 11. The impact of AP onset rapidness on population
encoding. In the left column, A, describes the radius of the curvature in
the I-V curve. A smaller A, indicates a faster AP onset. The high
bandwidth encoding is enhanced for smaller A, values. In the right
column, the AP onset dynamics is described by a linear curve. The
parameter r defines the rapidness of AP onset. r is 10 in the figure of
bottom left. r is 100 in the figure of bottom right. 7, is the correlation
time of input. A more rapid AP onset improves the encoding ability of the
neuron model. The linear response function is more sensitive to the
correlation time of the input. The figures are adapted from [41},45].

Several theoretical modeling works have shown that increasing the
onset rapidness of AP generation can improve the encoding ability of the
neuron models [41,43}45,/46]. In the early study of [41], by decreasing the
radius of the curvature in the I-V curve of EIF model, the spike generation
voltage will rise more rapidly. The linear response functions have a better
encoding in the high frequency regime shown in Fig Similarly in a
piece-wise linear model, the slope of the I-V curve represents the AP onset
rapidness [45]. Increasing the slope will make the neuron model converge
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to a LIF model, which reproduces ultrafast population encoding [39]. The
models above describe the onset rapidness with a functional parameter
without explicitly representing it with biophysical parameters. In [46],
it was proposed that cooperative gating of sodium channels could act as
the underlying mechanisms of rapid onset. According to this proposal,
activation of one sodium channel may increase the activation probability of
neighboring sodium channels, which makes the collective sodium current
activation dynamics more rapid than that of individual channels. With
cooperative gating of sodium channels, AP onset is more rapid. Together,
the encoding ability is enhanced.

With the knowledge of close connection between rapid AP onset and
ultrafast population encoding, rapid AP onset has been added as a criterion
to be examined in subsequent modeling works trying to reproduce ultrafast
population encoding [48,/49.52,|53]. However, it is not clear whether these
two properties are really equivalent to each other. In the later sections,
we will take more detailed look at the underlying mechanisms of rapid AP
onset and ultrafast population encoding in different hypotheses.

1.5.3 Fokker-Planck Approach and Gauss-Rice Approach to Pop-
ulation Encoding

Before introducing the hypotheses on the underlying mechanisms of ultrafast
population encoding, I will give a brief summary of two analytical methods
for calculating the linear response function. Analytical methods are lim-
ited to some idealized conditions or may require additional assumptions,
which makes them unsuitable tools when dealing with complicated models
describing detailed biophysical properties of the cortical neurons. However,
they still provide insight on many features of linear response functions.

The first analytical method is the Fokker-Planck approach. The in-
troduction of this method follows the work of [39,/45]. In this case, the
neuron model is driven by a stochastic input composed of a small amplitude
signal and background noise. The simplest background noise that can be
tackled analytically is white noise with a zero mean and constant variance.
The small amplitude signal is a sinusoidal function of time. The voltage
fluctuation dynamics can be described as a stochastic differential equation.
As for the LIF model in [39], it has the following form:

dVv
TmE =Viest =V + Iin + U(t) (1)

Here 7,, is the membrane time constant. V is the neuron voltage. Vet
is the resting potential. I;,, is the small amplitude signal. n(t) is the zero
mean white noise, with an intensity of 02 . The spike threshold is denoted
Vin. A spike is generated when the voltage reaches the spike threshold. The
voltage is reset to Vs after a spike.

To calculate the linear response function based on the LIF model, we
need the population firing rate r(t). 7(¢) can be decomposed as a mean firing
rate ro determined by the background noise, a sinusoidal fluctuation term
r1(t), and higher order nonlinear terms. The linear term r(t) determines
the dynamic gain and the phase shift.

For infinite numbers of LIF neurons driven by different realizations of
the background noise together with the same sinusoidal signal, the voltage
values at each moment obey a probability distribution denoted as P(V,t).
The Fokker-Planck approach is based on the equation for P(V,t) as below:
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The population firing rate is associated with the probability flux at the
spike threshold V.

V — Iln(t) - V;"est]P (2)
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r(t) =

For the LIF model with white noise, the linear term ri(t) can be
calculated analytically [39], so that we can get the linear response function
explicitly. For a piece-wise linear model with a finite boundary, which is
a generalization of the LIF, the linear response function can be derived
analytically in the same way with further boundary conditions between
different linear pieces [45]. The piece-wise linear model also analytically
reveals how the linear response function decays in the limit of infinite
threshold.

One limitation of the Fokker-Planck approach is that it can’t provide
explicit expressions of the linear response functions when the correlation
time of the background noise is non-zero. However, with the Gauss-Rice
approach, we can provide an estimation of the linear response function
when the background noise has a non-zero correlation time. Below I will
give a brief introduction to the Gauss-Rice approach. The neuron model is
also the LIF model. The stochastic background noise is generated by an
Ornstein—Uhlenbeck process represented as:

Tdl = —Idt +270dW (t) (4)

7 is the correlation time of the noise. o is the standard deviation of the
noise. W is a Wiener process satistying Wy g — Wy ~ N(0, dt).

The Gauss-Rice approach has the following assumptions on the neuron
dynamics [44,/47]. In the previous case, the neuron model has a spiking
threshold across which the voltage will be reset. The voltage distribution
has a cutoff at the threshold. In the Gauss-Rice approach, a spike is
generated when the voltage crosses the threshold from below. The voltage
will not be reset but keep fluctuating after the spike time as shown in
Fig We assume the voltage distribution and the voltage derivative
distribution are Gaussian. Following [47], when the voltage variance is
stationary, the voltage derivative is uncorrelated with the voltage. So the
probability density at time ¢ can be represented as:

. 1 _%M _(‘/;\/72(0)2
PV V) =g e Py e %)
v

Here oy and oy, are the standard deviations of the voltage and voltage

derivative. V(t) and V (t) are the mean voltage and mean voltage derivative
at time ¢t. The population firing rate is the rate crossing the threshold 6
from below.

v(t) = (5(V — 0)0()V), (6)

_ / AL 4 (7)
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Linearizing the firing rate to the first order, we have:

u(t)zyo(H@.V(t)Jr\/jV(t)) @®

oy oy Oy

Fourier transforming both sides of the equation, we can obtain the
dynamic gain as a function of frequency:

0 T 1.
_ 4 Z . )W 9
vi(w) VO(U‘Q/ +zw\/g UV) (w) (9)
where V(w) can be obtained with the Fourier transform of the LIF model
equation. - - -
W, V(w) = —V(w) + I(w) (10)
Here I(w) is the Fourier transform of the mean of the input. The
stochastic background noise is averaged out, so here it is the Fourier
transform of the small amplitude sinusoidal signal. In , it was shown
that both oy and oy, can be obtained analytically. In this sense, we can
derive the linear response function analytically.

stt) |

Fig 12. Spike generation mechanism of Gauss-Rice approach. In
this figure, the mean voltage is assumed to be 0. W is the spike threshold.
Each time the voltage crosses the threshold in the positive direction is
counted as a spike. The voltage will not be reset after the spike generation.
s(t) is the spike time represented as the raster plot. The voltage
distribution is assumed to be Gaussian. The figure is adapted from .

Although the Gauss-Rice approach provides an alternative to derive
linear response functions analytically, it should be noted that the formula is
a good approximation to the exact linear response function only when the
voltage and voltage derivative distribution have close to Gaussian statistics.
If the background noise has a large mean and a small variance, the real
voltage distribution will be highly skewed, which is not well approximated
by Gaussian distributions. Furthermore, in , it was shown that the
Gauss-Rice approach is a good approximation when the correlation time of
the input is close to the membrane time constant of the model. Intuitively
speaking, if the correlation time is too small, then with the same stimulus,
there might be more spikes counted in the case of no-reset condition. This
is because the voltage will fluctuate around the threshold. While having a
reset will make the voltage have less likely to fluctuate around the threshold.
Gauss-Rice approach will provide additional spikes which undermine the
encoding ability at high frequency. On the other hand, when the correlation
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time of the input is much larger than the membrane time constant, Gauss-
Rice assumption make the neuron model have a better encoding ability,
and overestimates the high bandwidth encoding.

1.6 Three Hypotheses on the Impact of Neuron Mor-
phology and Biophysics on Population Encoding

Up to now, I have shown that animals can do fast information processing
on the behavioral level. Based on the observation that cortical neurons
are driven by highly fluctuating inputs, and that cortical neurons are
weakly correlated, population firing rate encoding was introduced. Several
experimental studies have shown that cortical neurons can realize high
bandwidth encoding with the population firing rate. The encoding ability
is enhanced when the correlation time of the input is increased. Theoretical
studies have found that neuron models with rapid AP onset can realize
ultrafast population encoding, although it is not clear whether these two
features are equivalent with each other.

In cortical neurons, what are the underlying mechanisms that make the
neurons realize fast population encoding? Several hypotheses have been
proposed. In this part, I will give an introduction to these hypotheses.
Following the progress of previous work, I will raise my scientific questions.

1.6.1 Axonal Hypothesis

Action potentials are generated in the axon initial segment (AIS) separated
from the soma [55H60]. As shown in Fig synaptic inputs from the
dendrites are integrated in the soma and transmitted down to the AIS. The
ATS is 15 to 40 pum from the soma depending on the neuron type [61-65].
The two major ion channels associated with the AP generation at the AIS
are sodium and potassium channels. The sodium channels shape the spike
initiation. For pyramidal neurons, the sodium channels distributed in the
distal AIS are found to have a lower threshold which makes the AIS the
location for AP initiation [66]. The potassium channels that regulate spike
duration are distributed in the more distal part of the AIS [67]. Some studies
propose that the AIS has a much higher ion channel densities compared
to the soma so that the action potential generation is in the AIS [66{68].
The sodium channel density is proposed to be 50 times larger than that
in the soma [68]. Similarly, the potassium channel density is proposed
to be 10 times larger [67]. Some other studies draw different conclusions.
With high-speed fluorescence sodium imaging, it was shown that the action
potential-associated sodium influx in the AIS is only three times larger
than that in the soma [69]. Another recent study showed that without high
ion channels densities in the AIS, the AP is still initiated in the AIS [70].
The AP timing however was impaired in this condition. So still a higher
ion channel density is considered beneficial for precise AP timing rather
than determining the AP initiation site.

With the separation of AP initiation site from the soma, the synaptic
inputs integrated in the soma decay along the transportation down the axon.
The high frequency components of the synaptic current are filtered more
than the low frequency components. Action potentials are generated with
the filtered current entering the AIS. Experimental recordings of the action
potentials usually are obtained in the soma. The somatic spike shape and
timing can deviate from that in the AIS. So it is important to understand the
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impact of separation of AP initiation site on spike generation dynamics and
spike timing detection, which further determine the population encoding of
cortical neurons. Several modeling works simplify the neuron as a single
compartment soma omitting the detailed structure that might affect AP
initiation and population encoding.

Previous studies [48])51] proposed that the separation of the AP initiation
site has a big impact on shaping sharp spikes in the soma and directly
leads to fast population encoding. Brette implemented a simple multi-
compartment model composed of a soma and an axon, with a standard
sodium activation function at the AP initiation site. When moving the AP
initiation site away from the soma, the lateral current entering the soma rises
more rapidly as a function of somatic voltage. A larger separation implies
a larger resistance between the soma and the AP initiation site. Increasing
the clamped somatic voltage will trigger a sodium current entering the
ATS. When the sodium current is large enough, the lateral current will
change the direction entering the soma. So for the same amount of sodium
current entering the AIS, a larger resistance can make the axonal voltage
reach a higher value for the same somatic voltage, which leads to more
sodium current entering the AIS. The positive feedback results in a new
equilibrium point of axonal voltage which triggers a large amount of lateral
current. For the spikes seen at the soma, the somatic voltage derivative
is influenced by this lateral current. A sharper spike is observed at the
soma when the lateral current rises rapidly. Furthermore, representing the
sodium activation function as the function of somatic voltage, this function
becomes steeper when the AP initiation is farther away from the soma.
The sodium activation function seen at the soma can be similar to that
of the cooperative gating sodium activation function [46]. Based on this
observation, it was proposed that fast population encoding can be realized.
The linear response function of related neuron models however have not
been calculated directly.

1.6.2 Cooperative Gating of Sodium Channels Hypothesis

Several types of ion channels are found to operate in a cooperative gating
manner, which means ion channels are not opening or closing independent
of the state of other ion channels [72H75]. For example, the sodium channels
in rat and rabbit cardiac myocytes can open and close in double and triple
units simultaneously [72]. Depending on the channel open probability, the
potassium channels from the soil bacteria streptomyces lividans operate
in different gating modes. In the low open probability condition, two
potassium channels have been observed to activate together. In the high
open probability condition, up to five channels have been observed to be
coupled for activation [73]. Similar cooperative gating phenomena have
also been found for calcium channels in skeletal muscle [74] and nicotinic
acetylcholine receptors |75]. Fig[14]shows an example of cooperative gating
from [73]

The cooperative gating hypothesis focuses on the AP activation dy-
namics. Cortical neurons have rapid AP onset dynamics [7]. Traditional
conductance-based models however often fail to reproduce this property [56].
In the traditional modeling assumption, the sodium channel activation dy-
namics are independent of each other, which means the rising slope of the
total sodium current is the same as that of the standard activation slope
of individual sodium channel current. To explain the rapid AP onset, one
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Fig 13. Morphology of a pyramidal neuron with a myelinated
axon The synaptic inputs are integrated in the soma and transmitted to
the axon, indicated by the green arrow. Action potentials are generated in
the AIS separated from the soma and conducted by the myelinated axon.
The action potentials seen at the soma are from the AIS. The figure is

from .

hypothesis proposed that a group of highly clustered sodium channels may
operate in a cooperative way . The activation of one sodium channel
may increase the activation probability of its neighboring sodium channels.
In this sense, the collective sodium current rises more rapidly than inde-
pendent sodium channel current. In a theoretical study , by tuning the
activation slope of the piece-wise linear I-V curve, the model mimicked the
rapid collective sodium current, and the influence on the linear response
function was obtained analytically. In a subsequent theoretical study @H,
the impact of rapid collective sodium current was compared across different
neuron models.

A cooperative gating model was built based on this hypothesis in [46].
Fig shows the sodium activation function of the cooperative gating
sodium channels. The parameter A describes how strong the neighboring
channels are affected by the activated channel. Based on the assumption
of cooperative gating, when the voltage is low, few sodium channels are
activated, the collective sodium current was well approximated by sodium
current of independent channels. The sodium activation functions in the
figure have a similar rising speed when V is small. For larger V values, a
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Fig 14. Cooperative gating of potassium channels. The upper
figure is the low open probability condition. The lower figure is the high
open probability condition. The current axis is divided by the dash lines.
Each piece is 4pA, which is the current of one potassium channel. In the
low open probability condition, potassium current are dominated by 8pA,
which indicates two potassium channels are cooperatively activated. In the
high open probability condition, potassium current are dominated by 20pA,
which indicates five potassium channels are cooperatively activated. The
figure is adapted from .

strong cooperative coupling will trigger more neighboring sodium current,
which makes the sodium activation function rises more rapidly.

In , adding cooperative gating of the sodium channels enhanced the
encoding ability of the conductance-based model in high frequency regime.
The enhancement was limited when the percentage of cooperative gating
channels is small. The sensitivity of the dynamic gain to the correlation
time of the input remains to be examined. The results above indicate that
to realize high bandwidth encoding, a strong enough cooperative gating
of the sodium channels is required. The ratio of the cooperative gating
channels should also be high enough. In a later work, setting cooperative
gating model into a multi-compartment framework, sharp spikes at the
soma could be reproduced . The impact of cooperative gating on the
linear response function was not checked in this multi-compartment model.

1.6.3 Dendritic Load Hypothesis

Dendrites integrate synaptic inputs from other neurons [76,[77]. The in-
tegrated inputs are transmitted to the soma and further determine the
spiking behaviors at the AIS. The role of the dendrites in encoding is not
merely a linear summation of different synaptic inputs . Depending
on the biophysical properties, the impact of dendrites can be categorized in
following a few aspects. First is the stimulus transmission in the passive
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Fig 15. Sodium activation functions with cooperative gating.
is the membrane voltage. m” is the activation probability of the
cooperative gating channels. A describes the coupling strength with the
neighboring sodium channel. There is no cooperative gating when A is
equal to 0. When A\ is large, the sodium activation function rises more
rapidly. The figure is from [46].

dendrites . High frequency fluctuations in the synaptic inputs are more
attenuated when transmitted down to the soma. Also, the synaptic input
from the more distal end of the dendrites has a longer time delay to reach
the soma. Second is the summation of the excitatory and inhibitory inputs
under different input locations . Two excitatory inputs close to each
other reduce the effect of each other. The total impact of the two is a
sub-linear summation. In contrast, two excitatory inputs separated from
each other have a linear summation. The existence of shunting inhibition
changes the membrane conductance without changing the voltage, which
reduce the impact of excitatory inputs . Third is the impact of
active ion channels in the dendrite on the dendrite computation. Synaptic
inputs can trigger more ion currents entering the soma, which may amplify
the synaptic inputs and affect the spike timing [83H85]. For some neuron
types, it is even possible to have dendritic action potential transmitted
to the soma. [86H88] This type of behavior is classified as supra-linear.
Reversely, the action potentials generated at the AIS can also interact with
ion channels in the dendrites.

Recently, it has been proposed that the computation ability in the
dendrites may impact the population encoding ability of cortical neurons
. Without any explicit requirements on the AP generation dynamics,
implementing a multi-compartment model composed of a dendrite, a soma
and an axon, high bandwidth encoding was observed. The cutoff frequency
of the linear response function was above 100Hz, which was far larger than
the firing rate of the neuron model. Increasing the dendrite size enhanced
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the encoding ability of the neuron model. One interesting observation of
the linear response properties was that even without the dendrite, the multi-
compartment model was also realizing a high cutoff frequency of the linear
response function. The linear response function had a resonance at around
50Hz. The resonance is smaller but maintained when adding a dendrite
to the neuron model. Compared with the simpler multi-compartment
model proposed in the axonal hypothesis [48], this model has a complete
AP generation mechanism which includes sodium and potassium channels.
The inactivation of sodium channels was also considered. The soma was
also equipped with ion channels. The results above indicate that high
bandwidth encoding can be realized without cooperative gating of sodium
channels. However, this work does not examine the sensitivity of the linear
response function to the correlation time of stochastic input, so it remains
unclear whether the neuron model can reproduce fast population encoding
in cortical neurons.

In a subsequent work, the impact of dendrite morphology on population
encoding was studied in Purkinje cells. The Purkinje cells are inhibitory
neurons of the cerebellum, which have very large dendrites. Experiments
showed that the linear response function of Purkinje cell displayed a strong
resonance around 200Hz under white noise stochastic stimulation combined
with a sinusoidal signal. The cutoff frequency of the linear response function
even approached 1000Hz. The resonance in the linear response function
was proposed to be introduced by the large dendrite. In the theoretical
modeling part, a two-compartment model composed of a big dendrite and a
soma was shown that increasing the dendrite size or reducing the soma size
can further enhance the resonance in high frequency regime as we can see
in Fig But this effect was restricted to the condition that the sinusoidal
signal is injected at the soma and the background noise injected in the
dendrite. Injecting the sinusoidal signal in the dendrite or injecting both
the signal and the background noise to the soma failed to reproduce high
frequency resonance as shown in Fig[I8

Two aspects of this work require further exploration. One is the exami-
nation of the sensitivity of the dynamic gain to the correlation time of the
input. It remains to check whether the high bandwidth encoding here is
fast population encoding. Second there is a seeming contradiction on the
impact of soma size between the axonal hypothesis model and the model
for the Purkinje cell. In the axonal hypothesis, we have a big soma and a
thin axon. The AP is initiated in the AIS. As we will show latter, with a
step-like sodium activation function, reducing the soma size can enhance
the encoding ability. The two-compartment model has a big dendrite and a
soma. The AP is initiated in the soma. We can see a mapping between the
morphologies of these two models. However, in the second case, increas-
ing the dendrite can enhance the encoding ability, which seems to be in
contradiction with the first result. Further explorations on the underlying
mechanisms of two separate observations are thus required.

1.7 A Brief Summary of My Work

In chapter two, I will first introduce the numerical methods for calculating
the linear response functions, which include the Fourier transform method
and the vector strength method. I will show that the linear response
functions obtained with these two methods fit with each other. Then I
will introduce the bootstrapping and null hypothesis test which tell us the
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Fig 16. The impact of dendrite size on AP onset and population
encoding. a) shows the neuron models with different dendrite sizes.
Pazon describes the conductance ratio between the dendrite plus the soma
and the axon. b) shows the stimulus setup for calculating linear response
function. Injecting the soma with a small sinusoidal signal merged in
stochastic stimulus, the tuning ratio between the firing rate fluctuation
amplitude and the sinusoidal amplitude is the dynamic gain at related
frequency. c¢) shows the AP onset rapidness of different models. d) shows
the linear response functions of different models. Based on ¢) and d), a
larger dendrite enhances the onset rapidness and the encoding ability. The

figure is adapted from .

confidence interval and frequency credibility region of the dynamic gain. In
the last part of the chapter, I will show that previous work of evaluating
the AP onset rapidness as the slope at some specific point on the phase plot
or the I-V curve is inaccurate to indicate the encoding ability of the neuron
model. The AP generation dynamics and the stimulus together determine
the time it takes from spike initiation to spike detection. The time delay in
between acts as a low pass filter of the linear response function. Without
the spike detection delay, the encoding ability of the neuron model is similar
to the LIF model. One simple parameter to quantify the random variable
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Fig 17. The impact of soma and dendrite size on population
encoding in Purkinje cells. A. Increasing the soma size reduces the
dynamic gain in high frequency regime. The resonance frequency is
decreased with the soma size. B. Increasing the dendrite size enhances the
dynamic gain in high frequency regime. The resonance frequency is slightly
reduced with dendrite size. C. Increasing the strength of stochastic
fluctuations has week effects on linear response functions. The figure is

from [52].
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Fig 18. The linear response functions under different locations
of signal and noise injection. The high bandwidth and high frequency
resonance are realized only when the signal is injected in the soma and the
stochastic fluctuations is injected in the dendrite. As it is shown in A.
Injecting the signal in the dendrite or injecting the fluctuations only in the
soma fail to reproduce high bandwidth encoding. The figure is from .

of the spike detection delay is its std.

In chapter three, I will examine the axonal hypothesis which proposes
that rapid AP onset and fast population encoding can be realized by
separating the AP initiation site from the soma . I will calculate the
linear response function of the neuron model and show that with a standard
sodium activation function, the linear response function has a low cutoff
frequency at the range of the firing rate. The dynamic gain of the linear
response functions in the high frequency regime is not sensitive to the
correlation time of the input. Replacing the sodium activation function
with a step-like function can fix these two problems. In both conditions,
no clear impact of the AP initiation site is observed. By comparing the
relations between the somatic and axonal voltage during AP generation,
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I propose that suppression of the sodium current before AP initiation is
crucial for realizing fast population encoding. In this sense, the sodium
activation dynamics have high voltage sensitivity during AP generation. In
the last part of this section, I simplified the multi-compartment model to a
single compartment model. With the Gauss-Rice approach, I obtain the
linear response function analytically when the sodium activation function is
a step-like function. Based on the formula, it can be seen how the dynamic
gain is sensitive to the soma size.

In chapter four, I will examine the cooperative gating model which
claims to realize fast population encoding without requiring suppression
of the sodium current explicitly before AP initiation [46]. I will first show
that with the parameters given in the paper, it is not able to reproduce
the linear response functions. The linear response function has a low cutoff
frequency. The dynamic gain is not sensitive to the correlation time of
inputs. Increasing the ratio and cooperativity of the sodium channels
will make the neuron model not able to generate spikes properly. Adding
cooperative gating to the sodium inactivation can fix the problem of spike
generation, but the neuron model still can’t realize fast population encoding.
In comparison, if we design a piece-wise linear sodium activation function
which suppresses the sodium current before AP initiation, without too high
activation slope, we can reproduce the fast population encoding in the
multi-compartment model investigated in [48]. We can also observe the
impact of AP initiation site on the encoding ability. The AP initiation
site determines the lateral current entering the soma during AP initiation,
which changes the AP onset rapidness when the sodium activation dynamics
are not too voltage sensitive. As the last part of this section, I will also
examine the impact of soma size on the encoding ability numerically. With
a smaller soma, the encoding ability of the neuron model is enhanced.

In chapter five, I will examine the encoding ability of the neuron model
proposed in |49]. This work seems to indicate that fast population encoding
can be realized without requiring rapid AP onset or cooperative gating of
the sodium channels. I will first reproduce the high bandwidth encoding.
Then I will show that the dynamic gain in the high frequency regime
isn’t sensitive to the correlation time of the input, which implies that the
neuron model can’t reproduce fast population encoding as found in the
experiments [36]. By calculating the F-I curve, I find that the neuron model
is of type II excitability capable of high frequency repetitive firing. When
responding to the stochastic stimulus, the neuron model is more likely to
generate bursts of spikes. The dynamic gain values near the burst firing
frequency are selectively enhanced, which results in the high bandwidth
encoding. In the last part of this chapter, I will show that an active soma
with ion channels in the multi-compartment model, and the relative position
of the sodium and potassium channels along the voltage axis determine the
ability of high frequency repetitive firing of this neuron model.
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2 Methods

In this chapter, I will introduce the numerical methods for calculating linear
response functions. The introduction is based on the multi-compartment
model in [48], which will be extensively studied in following chapters. In the
first section of this chapter, I will give an overview of the multi-compartment
model, which includes the model morphology, biophysical parameters, and
ion channel dynamics. In the second section, I will talk about tuning the
parameters of stochastic inputs to obtain the firing rates and firing patterns
we need. During this process, the rule of defining spike time and reset
voltage to generate a spike will be given. In the third part, I will introduce
two numerical methods to calculate the linear response functions. For the
first method, the linear response function is obtained with the Fourier
transform. For the second method, the linear response function is obtained
with vector strength which captures the tuning ratio between the firing
rate fluctuation and sinusoidal signal. The comparison between these two
numerical methods will be provided. In the fourth part, I will introduce
the bootstrapping confidence interval and null hypothesis test, which tell
us the reliability of the linear response functions we have calculated. In the
last section of this chapter, I will provide a view to evaluate the impact
of AP generation dynamics on population encoding. I will show that the
traditional way of evaluating AP onset rapidness as the slope of one point in
the phase plot might be misleading to indicate the encoding ability. For type
I neuron model, the AP generation rapidness corresponds to the dynamics
after the local minimum in the phase plot. This part of dynamics provides
an uncertainty on spike time detection. Rapid AP onset can reduce the
uncertainty and improve the encoding ability. The linear response function
can be decomposed into a LIF like part related to the subthreshold dynamics
and a low-pass filter related to the AP onset dynamics.

2.1 Introduction to Brette’s Model

The multi-compartment model is composed of a soma and an axon. The
soma is a cylinder of which the diameter and length are both 50um denoted
as d. The axon is a cylinder, with a diameter of 1um denoted a, and
a length of 600um denoted L. Fig provides the morphology of the
multi-compartment model.

In the aspect of neuron biophysical parameters, following previous
work [48], the soma is passive. The specific membrane resistance R,, is
3000012 - cm?. The specific membrane capacitance c,, is 0.75uF/cm?. The
longitude resistance R, is 150§ - cm. The resting potential is —75mV. For
the axon, the passive biophysical parameters are the same as those of the
soma. Sodium channels are inserted at one point in the axon initial segment.
The position of the sodium channels is also the position of AP initiation
site. The distance between the soma and the AP initiation site is denoted
Ppngo. In this work, we set Pyg as 20um, 40um, and 80um separately to
study its impact on population encoding. Potassium channels and other
ion channels are not included. Only the sodium activation dynamics is
considered. Inactivation of the sodium channels is not included. To generate
a spike, the voltage values across the neuron model are reset to resting
potential once a threshold is reached by the voltage at the AP initiation site.
The sodium current is represented as Ing = gng - m(Va) - (Eng — Vo). Here
GNa is the sodium peak conductance. We set it as 5.23 x 1073S. m is the
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Fig 19. Morphology of the multi-compartment model. The soma
is of a cylindrical shape with equal length and diameter denoted d. The
axon is represented by a tube with a length L and constant diameter a.
Sodium channels are located at one point in the axon which is marked in
red. This is also the AP initiation site. The distance between the soma
and the initiation site is denoted Py,. The stimulus is injected in the
middle of the soma, where also the somatic voltage V is recorded. The
axonal voltage V is recorded at the AP initiation site.

sodium activation function describing the ratio of sodium channels being
activated at the given voltage V,. V, is the voltage at the AP initiation
site. E'nq is the balanced voltage of the sodium channels set as 60mV. The
activation function of sodium channels is represented as:

m(Va) =1/(1 +exp((Vin — Va)/ka))- (11)

The midpoint voltage V,, is set to —40mV. k, is proportional to the inverse
of activation slope at V,,. A larger k, implies slower sodium activation.
When £k, is close to zero, the sodium activation function is close to a step
function. When examining the axonal hypothesis, we used the standard
sodium activation function, where k, is set to 6mV. The activation variable
of the sodium channels m will be reset together with the voltage values
when a spike is generated. All the parameters above are the default values.
New parameter values will be stated when it is changed.

The neuron model equations are as below. Here we use V(z,t) and
Vo (y,t) to denote the voltage value somewhere on the soma and on the
axon at some time point. The denotations Vi and V, refer to the voltage in
the middle of the soma and the voltage at the AP initiation site.

For the voltage of soma:

cma‘/s(l',t) _ d 82‘/8(1‘,t) _ Vs(.f,t) - V;est + £(5($ _ g) (12)

ot 4R,  Ox? R, md 2

1. is the somatic input injected in the middle of the soma.

For the voltage of axon:

aVa (ya t) a 62Va(y7 t) Va (ya t) B erest INa(y> t)

m———— = — 6(y — Png
¢ ot 4R,  0y? R,, + Ta (v Na)
(13)
Where:
Ina(y,t) = gna - m(Va(y, 1)) - (Ena — Va(y, 1)); (14)
d
de—:fn =Moo — M. (15)
The boundary conditions are:
‘/s(dv t) =V, (07 t)7 (16)
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2.2 Simulation Setup and Parameter Searching

In the aspect of simulations, I used NEURON 7.3 and Python 2.6 for all
the simulations on multi-compartment models [89]. For single compartment
models, Python 2.6 are used. The simulation time step is 0.025ms, which is
the default time step in NEURON. For the multi-compartment introduced
above, reducing the time step to 0.005ms doesn’t make a big difference
on the linear response functions. So 0.025ms can be regarded as a small
enough time step for precise calculation of the linear response functions.
For all the other neuron models simulated below, the time step is 0.025ms
if not stated in specific.

To generate spikes in Brette’s model, stochastic stimuli are injected
in the middle of the soma. The stochastic stimuli are generated with an
Ornstein-Uhlenbeck (OU) process represented by the following equation:

7dl. = —(Io — Iinean)dt + V270dW (t) (20)

7 is the correlation time of the stimulus I.. The mean and the std of I,
are denoted I,eqn and o respectively. W (t) is the Wiener process satisfying
Wt+dt — Wt ~ N(O, dt)

In order to study the impact of different neuron and stimulus parameters
on the linear response function, it is expected that the neuron models in
different parameter settings are firing at similar working point so that
simulation results are comparable. So here we use the firing rate and the
firing irregularity, which is the coefficient of variation (CV) of the inter
spike intervals (ISI), to quantify the working point of the neuron model.
In this way, there exists a unique pair of mean and std of the stimuli to
reproduce the required firing rate and CV (of ISI). For Brette’s model, the
mean and the std of stimuli are tuned to reproduce a mean firing rate of
about 5Hz. CV is controlled to be around 0.85.

To find the mean and the std, it is necessary to determine the voltage
that indicates the spike time and the voltage for reset to finish a spike. We
call these two voltages as spike time threshold and reset threshold. Since
the spikes are generated at the AP initiation site, these two voltage values
are defined based on V,,. To define the spike time threshold, we first set
reset voltage to 60mV, so that there is no spikes if the injected stimulus
is not too big. Injecting the soma with a constant input, we choose the
voltage at which the voltage derivative reaches its maximum as the spike
time threshold. The spike time threshold is insensitive to the stimulus
amplitude if it is not too high. Temporarily choosing spike time voltage as
the reset threshold, we can find a constant input to generate 5Hz firing rate.
In the simulation, setting the neuron firing time to be 20s, we manually
choose a upper bound and a lower bound for the constant input. Injecting
the neuron with the average of the upper bound and the lower bound, if
the firing rate is larger than 5Hz, the average will be set as the new upper
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bound. Otherwise the average will be set as the new lower bound. The
iteration above will end if the difference between the upper bound and the
lower bound is smaller than 0.1% of the maximum of absolute values of the
upper bound and the lower bound. Similarly, we can set the target firing
rate to OHz to find the constant input that is about to trigger spikes. To
mimic the time it takes to finish a spike and the following refractory period,
we choose the voltage 2ms after the spike time voltage under the constant
input that generate 5Hz firing rate as the new reset threshold.
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Fig 20. Mean-std, and mean-CV relation for Brette’s model. In
the first row and the second row, the correlation times of the input are set
to 5ms and 50ms separately. The color codes for all figures are given in B.
kg = 6mV. When the sodium activation is slow, it requires less current to
generate the same firing rate when AP initiation site is further away from
soma. The mean-CV decays faster as well. The mean-CV relation is more
noisy than mean-std relation.

Up till now, we have determined the spike time threshold and reset
threshold of the neuron model. Now we will search for the mean and std of
the stimulus to reproduce the expected firing rate and CV. In this step, for
a give mean, we first search for the std such that the firing rate is about
5Hz. The searching method is the same as above. The simulation time is
increased to 200s. The precision is changed from 0.1% to 1%. Then for
different values of the mean, we can get the related std which reproduce
the firing rate. For each pair of mean and std, we can estimate the CV
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with 200s simulation, so that we obtain the plot of mean and CV. Fig
is an example of the mean-std and mean-CV relation for Brette’s model.
For each color code, we choose 200 scatter points. In the interval from the
constant to trigger spikes to the constant to generate 5Hz firing rate, the
CV is changing faster with the mean, so we have 100 points in this region.
When the mean is small, the mean-std relation is close to linear. When
the mean is close to the constant input that is about to trigger spikes, the
mean-std relation is becoming nonlinear. As for the mean-CV relation, it
is more noisy than the mean-std curve. It is hard to fit a clear curve for
the mean-CV relation. When the mean is close to the constant to trigger
5Hz firing rate, CV decays quickly to zero. This indicates that the firing
pattern is converge to regular firing. When the correlation time of the
input is increased to 50ms, the mean-std relation and mean-CV relation are
more noisy than the case of bms. But still we can observe similar relations.
Based on the mean-CV plot, we can pick the mean value associated with
the required CV. Then in the mean-std plot, we can find corresponding std.

2.3 Two Methods for Calculating Linear Response Func-
tions

In this section, I will introduce two numerical methods for calculating the
linear response functions. I will also compare the performance of these two
methods.

For the first method, the linear response function is calculated with
the Fourier transform of the spike triggered average (STA) divided by the
power spectral density of the OU process [9}/35]. The Fourier transform
of the STA is the Fourier transform of the cross correlation of the input
stimulus and the output spike times. Power spectral density is the Fourier
transform of the auto correlation of the input stimulus. The ratio of the two
describes the tuning ability across different frequencies, which is exactly the
linear response function. Fig[21]is an illustration of the simulation steps
based on Brette’s model. Here the position of the sodium channels is 20um
from the soma. The correlation time of the input is 5ms. The first two
panels give an example of the stimulus and firing patterns. In this case,
the spike time threshold is -35mV. The reset threshold is -23mV. The spike
time is determined as the time bin that axonal voltage crosses the spike
time threshold from below. The STA is obtained by averaging stimulus
intervals centered at the spike times. In the simulations of Brette’s model,
the stochastic stimulus is of 20.5 seconds with the initial value as I,,cqn.-
The first 0.5 seconds are for randomizing the initial condition. We used the
spikes that are emitted in the following 20 seconds and have a complete
STA in this period of time to calculate the STA. The duration of the STA is
0.8 seconds. During the simulation, we generated 400 pieces of data. Each
piece of data contains 50 realizations of the 20 seconds stimulus and the
spike times. From each piece of data, we obtained a STA from 5000 spikes.
The final STA for Fourier transform is an average of 400 such STAs. In
total, the STA is obtained by averaging 2 million pieces of stimuli centered
at the spike times. As for the power spectral density of the OU process, it
can be calculated analytically.

The figures in the third panel of Fig[2I]show the Fourier transform of the
STA and the power spectral density of the stimulus. The Fourier transform
components are complex numbers. Here we show the absolute values. We
can see that in the high frequency regime, the Fourier components become
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Fig 21. Calculation of the linear response function with Fourier
transform. A and B are an illustration of the stimulus and firing patterns
of the neuron model. C is the spike triggered average. D is the phase shift
of the Fourier transform of STA cutting from the middle. E and F are the
amplitude of the Fourier components and power spectral density of the
stimulus. G is the linear response function after the filtering by Gaussian
filters. The noise in high frequency regime is smoothed out.
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very noisy. In fact, the phase shift of related components are also dominated
by the noise which are highly fluctuated. To smooth out the noise in high
frequencies, each complex Fourier component of the STA is filtered by
a Gaussian filter centered at its frequency. The variance of the filter is
chosen to be scaled with the frequency. For low frequency components, the
noise is very small. The variance of the Gaussian filter is small, so that
the filtered components are close to the original components. For higher
frequency components, the variance of the Gaussian filters increases with
the frequency so that the noise terms can be averaged out. The filtering
equation can be expressed as below.
n _op2. UlLl=s1D?
. . e fli)2
FEST Aneuli] = ) fESTA[]] —
j=1 Zzzl e F2

The ith term of the filtered Fourier transform of STA is denoted as
ftST Apewli]. The jth term of the original Fourier transform of STA is
denoted as ftSTA[j]. The fractional part multiplied with ftSTA[j] is a
discrete representation of a Gaussian distribution. The variance of the
distribution is correlated with ith term in frequency components. For small
i, the variance is small. The ft.ST Aycw[i] is almost the same as the old one.
For large i, the ftST Ayew(i] is an average of a large range of old ftST Alj]
values. The last figure of Fig[21]is a representation of the linear response
function filtered by the Gaussian filters. The gain curve is normalized by
its first component.

Two potential problems should be pointed out for this method. When
we apply the Gaussian filtering to the Fourier transform of the STA, it is
expected that the phase shifts in the low and intermediate frequency regimes
are small such that the filtering doesn’t average out the dynamic gain. So
before the Fourier transform, it is necessary to consider where to cut the
STA and attach them with two ends. Here we cut the STA from the middle.
From the phase shift plot we can see that there is no drastic phase change
in corresponding frequency regimes. The second problem is the Gaussian
filter. For small correlation time of the stimulus, the filtered dynamic gain
looks smooth with the frequency. However, for the large correlation time
of the stimulus, the dynamic gain is highly fluctuated. The fluctuation is
an artifact of the filtering. Also, in the limit of large frequencies, the size
of the filter is very large, which may average out the trend of the dynamic
gain. So it is required to figure out the confidence interval of the linear
response function. In the next section, I will talk about the bootstrapping
and null hypothesis test which tells us up to which frequency the linear
response function is reliable enough.

The second method is based on the observation that cortical neurons
can represent the sinusoidal signal merged in the background noise with
population firing rates [9,/33]. The population firing rate is also in the
form of sinusoidal fluctuations. The tuning ratio between the population
fluctuation amplitude and the sinusoidal signal amplitude is the dynamic
gain of related frequencies. In the experimental recording or the simulations,
it may require large amount of spike times to average our the noise and
obtain the sinusoidal population firing rate fluctuations. This problem is
more serious for high frequency signals since the population firing rate
fluctuations are getting smaller. In [44], it pointed out an alternative way
to get around this problem. The fitting of the sinusoidal function can be
substituted with averaging over the complex vectors generated with the

(21)
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spike times. Below is an illustration of this idea. Assume t1, to, ..., ty are
the spike times of the neuron to K trials of sinusoidal signals merged in
background noise. The time interval for each trial is T. The averaged firing
rate for one trial is denoted as v(t). Based on the linear response property,
v(t) can be expressed as v(t) ~ vy + Avy(w) cos(wt — @). 1 is the mean
firing rate satisfying N = KTvy. v1(w) is the linear term of the sinusoidal
fluctuation. ¢ is the phase shift between the firing rate and the original
signal. Then for r = vazl exp(iwt;)/N, it is equivalent to:

T N
r= % /o exp(iwt) - 25(t — t;)dt (22)

Zf\il d(t —t;) is the total firing rate of K trails of stimuli, which can be
approximated as K - (vg + Avq (w) cos(wt — ¢)). Then:

T
r= % i exp(iwt)(1 + ATI;I -cos(wt — ¢))dt (23)
T
A
= % /0 exp(iwt)(1 + TVol -cos(wt — ¢))dt (24)
Ay (w) )
= o exp(i¢) (25)

For different frequencies of the sinusoidal signals, assume that their
amplitudes are small such that they don’t change the mean firing rate.
Then we have vy (w) ~ %+ vazl exp(iwt;)|. Note that w is 27 f in the
simulation. f is the frequency of the sinusoidal signal. Fig [22] is an
illustration of the vector strength method.

Applying the vector strength method, we calculated the linear response
function of Brette’s model and compared it with the Fourier transform
method shown in Fig We used the previous stochastic stimulus as the
background noise. The firing rate is 5Hz with the background noise. We
picked the sinusoidal frequencies as the following set: 1, 2, 5, 10, 20, 50, 80,
100, 200, 400, 500, 800, 1000 (Hz). For each sinusoidal frequency, we used
the following amplitudes: 1,1/2,1/5,1/10,1/20. For each frequency and
amplitude, each trial of the simulation is 20s with 0.5s of randomization.
The simulation time is 10% of the Fourier transform method, which is 40000
seconds. When calculating the dynamic gain, we averaged the complex
vectors of the spike times, then divided with the amplitude. Here we did
not normalize it with the firing rates. Fig[23| A shows the linear response
functions calculated with different amplitudes of the sinusoidal signals.
For low frequencies, a large sinusoidal signal introduces large sinusoidal
fluctuations in the firing rate. If the sinusoidal signal amplitude is too big,
it might not be able to observe complete sinusoidal firing rate since the
firing rate may become zero. Also, if we examine the averaged firing rate of
the sinusoidal fluctuated firing rate, it may be different from the averaged
firing rate generated with the background noise. This is why the dynamic
gain values of the low frequencies calculated with the large amplitudes are
smaller than those calculated with the small amplitude signals. When the
sinusoidal amplitudes are small enough such that they have limited impact
on the average firing rate, the dynamic gain values are aligned with each
other. However, when the sinusoidal signal is too small, it requires more
data to average out the noise. As shown in the figure, the linear response
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Fig 22. Vector strength method for calculating linear response
functions A. A small sinusoidal signal is added to the background noise.
B. Irregular firing patterns under the combined stimulus. For each spike
time, it is mapped to one phase in the sinusoidal fluctuations. C. Each
phase corresponds to a unit length vector in the complex plan. D. The
average of all complex vectors normalized by the sinusoidal amplitude and
the firing rate is the dynamic gain of related frequencies in the linear
response function. The figure is from [9)].

functions is not different from zero. In figure B, the correlation time is 5ms,
the sinusoidal amplitude is chosen to be 1/5. To compare the performance
of these two methods, the dynamic gain values at 10Hz are aligned. We can
see that the two linear response functions match each other up to 1000Hz.
In figure D, the correlation time is 50ms. The amplitude is chosen to be
1/2. The dynamic gain values at 10Hz are aligned. The two methods fit
well at low frequencies. Due to the filtering artifact, the linear response
function calculated with the Fourier transform method fluctuates in the
high frequency regime.

In this section, I introduced two methods for calculating the linear
response function. I also showed that these two methods’ results fit with
each other in a large frequency region. The Fourier transform method
can provide more data points on the linear response function with less
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Fig 23. Calculation of the linear response function with the
vector strength method. For A and C, the linear response functions
are calculated with the vector strength method. The dynamic gain is the
absolute value of the averaged complex vectors divided by the sinusoidal
amplitude. The linear response functions are not normalized with the first
elements of the curve. For B and D, it is a comparison of the linear
response curves of Brette’s model calculated with the Fourier transform
method and the vector strength method. Position of the sodium channels
is Pyo = 20pm. Correlation time of the stimulus is 5ms in B and 50ms in
D. The sinusoidal amplitudes for all frequencies are 1/5 in B and 1/2 in D.
The linear response function of the Fourier transform method is
normalized. For comparison, in B, the 20Hz components of the vector
strength method is aligned withe 20Hz components of the Fourier
transform method. In D, the alignment frequency is 10Hz.

computation time. However, in the high frequency regime, the linear
response functions are quite noisy. The vector strength methods requires
more computation time. Also, it is necessary to examine whether the
dynamic gain obtained with the given sinusoidal amplitude is in the linear
regime. The linear response functions in the following chapters will be
calculated with the Fourier transform method. In the next section, I will
introduce the methods for estimating the confidence intervals of the linear
response functions.

2.4 Bootstrapping and Null Hypothesis Testing

To test the accuracy of the linear response function calculation, I estimated
the bootstrap confidence interval and tested the null hypothesis.

As mentioned above, each linear response function is calculated from
the average of 400 pieces of STA. For bootstrapping, I performed random
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sampling with replacement over these 400 pieces of STA to calculate a new
linear response function 1000 times. The upper bound and the lower bound
of the confidence interval represent the range of the middle 95 percent of
the 1000 curves.

For the null hypothesis test, I shuffled the spike times from each 20
seconds of simulations. Keeping the neighboring spikes intervals, we added
a random number to all spike times, then the spike times are mod 20.
In this way, the CVs of ISI are the same, so that the firing irregularities
are the same. The shuffled spike times provide no information about the
feature of the stimulus. For each shuffling, we obtained 400 new STAs
and then one new linear response function. Repeating this procedure 500
times, we obtained the 95 percent upper bound from the 500 curves as the
dynamic gain significance border. When the linear response curve are below
this border, it cannot be distinguished from zero gain, which indicates the
gain curve are not reliable any more. In Fig[24] the plateau of the null
hypothesis curve in low frequency regime originates from the small random
numbers used in shuffling. The increase of the null hypothesis curve in high
frequency region is not affected by the shuffling method.

1 7=5ms 1 7=50ms
10 T T 10
A —— linear response curve B ——linear response curve
—_— bootstrapp?ng upper bound —bootstrapp?ng upper bound
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Fig 24. Bootstrapping confidence intervals and null hypothesis
test. Based on Brette’s model with Py, = 20um, I provide an illustration
of the bootstrapping confidence interval and null hypothesis curve. For the
short correlation time of the stimulus, the confidence intervals are smaller
than that of the large correlation time. The confidence interval becomes
more fluctuated in the high frequency regime in B. The linear response
curves outside the bootstrapping boundary is a result of the artifact of
filtering. The null hypothesis curve is higher for large correlation time.
The dynamic gain values after about 300Hz are not significant.

Fig[24) gives an example based on Brette’s model with Py, = 20um. For
short correlation time 5ms in A, we can see that the confidence interval are
quite small up to 1000Hz. Also, the null hypothesis curve is well below the
linear response curve. This implies that our simulation data are sufficient
for a precise representation of the dynamic gain. The Gaussian filtering
successfully smooth out the noise in the dynamic gain. As for the case of
the large correlation time 50ms, the Gaussian filtering does not not exhibit
a good enough performance. In the limit of large frequencies, there is a
trend that dynamic gain and related confidence interval may rise again.
This originates both from the reset by hand boundary effect and the noise
decay rate smaller than the decay rate of power spectral density of the
stimulus. The null hypothesis curve for the large correlation time is much
higher than that with short correlation time. The linear response curve is
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below the null hypothesis curve around 300Hz. So in this case, the linear
response function after that is not informative. In the following chapters,
when analyzing the impact of different factors on the linear response curve,
we will only compare frequency regions with a significant dynamic gain.
Also, the bootstrapping confidence intervals are represented as shaded areas
around the linear response curve.

2.5 Evaluation of the AP Initiation Dynamics on Pop-
ulation Encoding

In this section, I will give an evaluation of the impact of AP initiation
dynamics on population encoding. I will first show that previous quantifi-
cation of the AP onset rapidness with a slope is inadequate to capture the
encoding ability of the neuron model. The encoding ability is determined
by both the AP initiation dynamics and the properties of stimulus. Then
I will show that this complicated contribution can be described by the
time delay between the spike initiation and the spike detection, which is a
random variable. If there is no delay, the neuron model is similar to a LIF
neuron. The distribution of time delay acts as a filter of the high bandwidth
encoding.

In previous studies, when quantifying the AP onset rapidness of cortical
neurons, people used the slope at a given voltage derivative in the phase
plot [7]. In the simplified theta neuron, the onset rapidness is evaluated as
the slope at the unstable fixed point in its I-V curve [43]. In the subsequent
studies, AP onset rapidness are proposed to be closely associated with the
encoding ability of the cortical neurons [9]. One problem of the evaluation
of the AP onset rapidness is that the choice of the slope is quite arbitrary
which may not represent the key dynamic regions related to the encoding
ability. For example in the theta neuron, the activation slope near the local
minimum of the I-V curve, V=0, is much slower than that at the unstable
fixed point. For a large mean but small std stimulus, we can expect that
the voltage will be fluctuated around V=0 for the most of the time. The
spikes are triggered by random upward fluctuations. The spike generation
time is mostly determined by the slow activation regime near V=0. In
this case, the slope at the unstable fixed point in the original I-V curve
provides limited information about the AP onset rapidness. Similarly, if
we change the stimulus into a small mean and large std one, the spikes are
more likely to be generated by large upward fluctuations, which drive the
voltage quick leaving the slow activation regime. The rapid AP generation
dynamics will bring the voltage to the reset threshold, while the downward
fluctuations from the stimulus are not able to counter this driving force.
In this case, the slow activation dynamics near V=0 play a less significant
role. The activation dynamics in the larger voltages seems to be a better
representation of the AP onset dynamics.

Fig[25] and Fig[26] are the simulation illustrations of the argument above.
In Fig[25] I designed two models based on a theta model. The theta model

is described as: iV
— = V2 —1. 26

T (26)

The membrane time constant is 7,,, = 10ms. Once the voltage reaches the
reset threshold V' = 3, it will be reset to —5. The other two models have
the same dynamics as the theta model when V is smaller than 0. When V

is larger than 0, the neuron models are described by following equations
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separately:
av

=02V =1)(V - 5) (27)

Tm

dv
— =y2_q 28
Tm dt ( )

The voltages will be reset to -5 once they reach V' = 3. We can see that all
three models have the same local minimum V = 0 and the same unstable
fixed point V = 1. For simplicity, we name the original theta model as
thetal, the other two models as theta2 and theta3. At the unstable fixed
point, thetal model has the highest slope, while theta3 has the lowest slope.
At the local minimum of the I-V curve, the slopes on the right hand side
have the reversed relations. Following the evaluation criterion of previous
work, we would expect that thetal model should have the best encoding
ability.

reset threshold is V=3

dV/dt

05r

0.5 VA
—0.2(V-1)(V-5)
V2.1

CO jum - - - - —

-3 -2 -1 0 1 2

Fig 25. I-V curves of three neuron models. The first model is the
theta neuron model shown as the blue curve. The voltage will be reset to
-5 once it reaches the boundary V=3. For the second and the third model,
they have the same dynamics as the first model before V=0. The dynamics
after V=0 are given in related equations. The boundary voltage and reset
voltage are the same as those in the first model.

Fig [26] provides the linear response curves of three neuron models under
two types of stimuli. Here in the simulation, I fixed the firing rate to be
5Hz. In figure A, the mean of the stimulus is fixed to be 0.95. In figure B,
the mean of the stimulus is fixed to be 0. To calculate the linear response
curve, I used 10% of the spike numbers as that in Brette’s model introduced
above. I generated 400 pieces of STA. For each STA, it is generated with
500 spikes. The bootstrapping are the same as that of the Brette’s model.
The null hypothesis curve is calculated with 100 trials of random shuffling.
These three neuron models have simpler dynamics than Brette’s model,
so 10% data can still provide a quite precise result. The bootstrapping
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confidence intervals are on the scale of the line width. The thin lines below
the linear response curves are the null hypothesis curves.

mean =0.95 mean =0

=
o
=}

theta, 7=5ms

theta, 7=50ms
theta2, 7=>5ms
theta2, r=>50ms ~ A
theta3, 7=>5ms -
theta3, 7="50ms

Dynamic Gain
=
<)
K

=
o
N)

F=s=~-2

10*
Frequency(Hz) Frequency(Hz)
Fig 26. Linear response functions of three neuron models with
different types of stimuli. The linear response functions for three
models are in blue, red and black separately. The continuous lines are for
the stimuli with correlation time 5ms. The dash lines are for the stimuli
with correlation time 50ms. The thinner lines below are the null hypothesis
curves for related linear response curves. In figure A, the mean of the
stimuli are fixed to be 0.95. The std of the stimuli are tuned to reproduce
5Hz firing rates. The third model has the best encoding ability. In figure
B, the mean of the stimuli are fixed to be 0. The firing rate is 5Hz. With
large stimuli fluctuations, the first model has the best encoding ability.

In Fig[20]A, the mean of stimuli are fixed to be 0.95. The std of stimuli
are much smaller. We can see that all three models have a low cutoff
frequency in their linear response curves. This is due to the slow AP onset
as a whole. However, we can still compare the encoding performances
across different models. For the third model, the slope at V' = 0 from the
right hand side is infinity. The voltage derivative will immediately reach a
relatively high value once V' > 0 compared to the other two models. This
helps to bring the voltage to generate a spike rather than fluctuated in the
low voltage regime. Note here the key element for encoding is the high
value of voltage derivative rather than the slope at one particular point.
An sufficient amount of increase of voltage derivative in a short voltage
interval usually implies high slope existed in this voltage interval. However
a high slope at one given point doesn’t imply high voltage derivative. In
this sense, what really matters is the "average AP initiation speed” in a
sufficiently large voltage interval, rather than "how fast the AP initiation
speed changes”. This idea is supported by the Fig 26B. When the mean
of stimuli are fixed to be 0, the std of stimuli are much larger. With large
voltage fluctuations, the spikes are more likely to be triggered by the large
voltage kick originated from the stimuli, rather than brought up by the AP
initiation dynamics near V = 0. The large voltage kick brings the voltage
to higher values. The voltage derivative values at related regime matters
more for the AP onset rapidness. So we can see from the figure B that
the first theta model shows a slightly better encoding ability. The results
above support our assertion that quantifying the AP onset rapidness as
the slope at a given point in the I-V curve is inadequate for quantifying
encoding ability. For the more general case in the experiments, without the
knowledge of neuron equations, describing the AP onset with the slope at
one point in the phase plot has the exactly the same problem.
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Up till now, we have already known that the encoding ability is a com-
plicated properties determined by the stimulus property and AP initiation
dynamics. A slope is not sufficient to describe this property. So the question
becomes: is there a parameter to capture the encoding ability of a neuron
model? In the following part of this section, I will show that this parameter
is the time delay between the spike initiation and the spike detection.

It has been known that the LIF neuron has an extremely good encoding
ability [39]. In its I-V curve, the reset threshold is set at the voltage
having the global minimum of voltage derivative. The neuron model doesn’t
have the AP generation dynamics. We can assume that AP initiation
speed is infinite. The spike detection time is exactly the spike initiation
time. However, if the reset voltage is not at the minimum of the voltage
derivative, for example, the theta neuron, the spikes are generated with
a saddle node bifurcation when injecting a constant input to the neuron.
Then it takes some time for the voltage to reach the reset threshold. In
the examples above, the theta neuron model fails to reproduce the high
bandwidth encoding. However, it can be expected that if we shift the
reset threshold towards the minimum of the voltage derivative voltage, the
encoding ability would be similar to that of a LIF-like neuron.

theta with reset threshold V=0.2

dv/dt

Fig 27. Theta neuron model with reset threshold at V' = 0.2. The
time constant of the neuron model is 1ms. Once the voltage reaches the
reset threshold, it will be reset to —5.

Fig is a neuron model designed based on this idea. The neuron

equation is:
dv

—=V2_1 29

T (29)
The reset threshold is set to V = 0.2. Once the voltage reaches this value,
it will be reset to V = —5. Here the time constant of the neuron model

is set to be 1ms. We denote this neuron model as thetad. Based on the
neuron dynamics, we can see that it is quite close to the LIF-like neuron
models, except that the reset threshold is slightly shifted from V = 0. One
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may expect that the encoding ability of this model should be similar to
that of the LIF neuron. However, with the simulation knowledge of three
theta neurons above, we know that the encoding should be dependent
on the properties of stimulus. Fig 28] shows the linear response functions
generated with two types of stimuli. For large std stimuli, the linear response
functions share the similar properties of those of the LIF model. Increasing
the correlation time of the stimulus enhances the dynamic gain in the high
frequency regime. In contrast, the linear response functions generated with
the small std stimuli have much lower cutoff frequencies. The dynamic gain
values are also insensitive to the correlation time of the stimuli.
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Fig 28. Linear response curves of the theta neuron with reset
threshold V = 0.2. The denotations are the same as Fig The firing
rates of all conditions are tuned to be 5Hz. In figure A, with a large mean
and a small std stimulus, the linear response function shows a lower cutoff
frequency compared to those generated with a zero mean and a large std
stimulus in B. Also the dynamic gain in the high frequency regime is
insensitive to the correlation time of the input in figure A.

One intuitive explanation for the different performances of the linear
response functions can be deduced based on the spike time detection. For
the case of large std stimulus, the spikes are triggered by the kick of the
stimulus. The AP generation dynamics play a limited role. If we inject the
same stimulus to the theta neuron model with a reset threshold at V' = 0,
the spike detection time should be almost in the same time bins as that
with reset threshold at V' = 0.2. The STAs obtained for calculating the
linear response functions are almost the same. However, if the stimuli have
a large mean and a small std, the extremely slow AP generation dynamics
near V = 0.2 matters for the spike time detection. In the case of reset
voltage at V' = 0, a spike is detected when the stimuli drives the voltage
to touch V = 0. But for the case of reset threshold V' = 0.2, it still takes
another period of "random walk” to make the spike time reach the new reset
threshold. Since the std is small, each step of the random walk is relatively
small. The expected time to reach V = 0.2 is longer. So compared with the
spike time obtained in V' = 0, the spike times in this case first may have a
few missing because of the spike failure. Here the spike failure is defined as
the voltage fluctuates across 0 without touching the reset threshold. Second,
the existing spike times have different degrees of delays compared with the
LIF like model. So the STA is a distorted version compared to the ”perfect”
one in the LIF like model.

Fig [29] shows the probability histograms of spike time detection delays
for two types of stimuli. For each type of stimulus, I simulated the neuron
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Fig 29. Probability histograms of time delay between spike
initiation and spike detection. A: For the large mean small std
stimulus, the probability histograms of the time delay have a larger range.
B: In comparison, for the zero mean large std stimulus, the probability
histograms of the time delay are more centralized around small values.

model for 200 seconds. The time points that the voltage reaches the reset
threshold is taken as the spike detection time. The last time point that
the voltage passes V = 0 from below before reaching the reset threshold is
chosen as the spike initiation time. The time delay from the spike initiation
to the spike detection is a random variable that describes the contribution
of AP generation dynamics and stimulus properties on the encoding. If the
probability distribution of this random variable has a high std, it implies
that the neuron model is highly unreliable of tracking the spike initiation.
On the other hand, if the probability distribution is a delta function, it
implies that the neuron model has a perfect representation of spike initiation.
Once it detects the spike initiation time, it will spend a fixed time interval
of time to report this time point. For the LIF-like neuron, this fixed time
interval is zero. For more general case, it means the neuron generate a spike
of which the spike shape is not affected by the stimulus. From Fig[29 we can
see that when the stimulus has a zero mean and large std, the time delay
distribution is highly centralized around 1ms. The probability distribution
decays quickly when the time delay gets larger. A larger correlation time
of the stimulus actually broadens this distribution. This implies that the
sensitivity of the dynamic gain to the correlation time is mainly from the
contribution of the LIF like model. A finite time spike generation dynamics
reduces the sensitivity. For those neuron models that fails to observe the
contribution of the correlation time in the linear response functions, it is
because the time delay distribution is too broad. In figure A, it shows the
time delay distribution of the stimulus having a large mean and a small std.
The distributions have a larger std. The decay of the distribution tail is
slower.

Following the results on the simplified 1-D neuron model, we can ask
the following two questions. How to generalize this observation to the
more complicated conductance-based models or even experiments? Is it
possible to separate out the effect of AP initiation dynamics from the
linear response functions, so that the final linear response function can be
represented as a multiplication of a LIF like linear response function with
a low pass-filter? For the first question, it is quite intuitive to solve. In
the theoretical modeling, the neuron models are classified as type I and
type II based on the type of bifurcations at the spike initiation. We call
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the voltage where the bifurcations happen as the rheobase voltage, which is
the term spike initiation voltage used above. When the input is stochastic,
even if the stimulus has pushed voltage across the rheobase voltage, it is
still possible to bring down the voltage without generating a spike. So we
will take the last time point that the voltage passes the rheobase voltage in
the positive direction before the spike as the spike initiation point. To track
this time point, we first need a high enough voltage to locate the existence
of a spike, then we can find out the nearest time point crossing the rheobase
voltage. This criterion can also be used in the experiment. By injecting
constant inputs into the neuron, we can find the rheobase voltage. This also
applies for the complicated neuron models with no explicit expression of the
rheobase voltage. As for the high enough voltage to locate the spikes, the
criterion I introduced in Brette’s model is the voltage that has the maximum
voltage derivative during a spike. With this choice of the spike detection
voltage, we only take the time delay before this voltage into the calculation
of the linear response function. The neuron model we are examining can
be approximated as having a reset threshold at the spike detection voltage.

Fig is an illustration of this idea. Here I used the Wang-Buzsaki
model, denoted as WB model below. WB model is a type I conductance-
based neuron model. We can numerically determine the rheobase voltage
at -60mV. Injecting a constant input to make it fire at 5Hz, the voltage
that has the maximum voltage derivative is -9mV. Fig [30] A marks out the
time points that voltage reaches -60mV and -9mV during spike initiations.
If we take the spike times found with -60mV, the neuron model is similar
to a LIF neuron. All the time delays caused by AP generation dynamics
are abandoned. The STA calculated in this condition has a large amplitude.
The peak of the STA is exactly at the center of the STA time interval. If we
take the spike time found with -9mV, the spike times have different delays
compared to those found by -60mV. The pieces of stimuli centered at the
new spike times are shifted to the right in the time domain compared with
the old one. The peak of the related STA are shifted to the left. In Fig
B, the STA calculated with the spike times at -9mV are flattened and
shifted to the left. Here the spike numbers used for STA is 10% of that
used in Brette’s model. The correlation time of the stimulus is 50ms.

It can be expected that if we change the spike detection voltage from
-60mV to -9mV, the LIF like STA will converge to the flattened STA.
The corresponding linear response curves will converge from high cutoff
frequency to low cutoff frequency. Also the spike time delay distribution
will change from a delta function to a distribution with broad range. Fig
is an illustration of the impact of spike detection voltage. The linear
response function calculated with the spike time voltage with maximum
voltage derivative, which is -9mV, are generated with the same amount of
spikes as that in Brette’s model. The other three linear response curves are
generated with 10% of the data. Here I omit the null hypothesis curves.

When the spike time voltage is at the spike initiation voltage, the
linear response functions are similar to that of the LIF model. In the large
frequency limit, the dynamic gain values become constant. Moving the spike
time voltage towards —9mV, which has the maximum voltage derivative,
the dynamic gain converges to related values. During the convergence,
the dynamic gain in the high frequency regime remains the feature of
becoming a constant. Based on this observation, we can expect that the
linear response function with spike voltage at —9mV decays with a slope of
-1 in the intermediate frequencies in log-log scale. The dynamic gain in this
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Fig 30. Comparison of the STA calculated with the spike
voltage at -9mYV and spike voltage at -60mV. A: an illustration of
the spiking voltage traces of Wang-Buzsaki model. The correlation time of
the stimulus is 50ms. The red dots in the voltage trace indicate the spike
times when the spike time detection voltage is -9mV and -60mV separately.
B: a comparison of the STA calculated based on these two spike time
voltages. At -60mV, there is no spike time detection delay, the STA has a
larger amplitude. The peak of the STA is at the center of the time interval.
At -9mV, the STA is filtered by the random spike detection delay. The
peak of the STA is shifted to the left.
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Fig 31. Comparison of the linear response functions calculated
with different spike voltages. The mean and the std of the stimulus
are tuned to reproduce bHz firing rate. The CV of ISI is around 0.85. The
linear response functions are similar to those of LIF models when the spike
detection voltage is near the spike initiation voltage. The dynamic gain
values in low frequencies converge more quickly to those of the spike
voltage at —9mV when the correlation time of the stimulus is larger.

range is determined by the exponential AP activation function. In the limit

48



of large frequencies, the linear response function becomes flat, which is the
boundary effect of finite spiking voltage. For the large correlation time of
the stimulus, the dynamic gain in the low frequency regime converges more
quickly. For both correlation times, the uncertainty introduced by the spike
detection delay is mainly originated from the 10mV from -60mV to -50mV.
The linear response functions generated with spike voltage at —50mV is
already a close approximation of those with spike voltage at —9mV. This
implies that the spike time detection delay distribution is already close to
be stabilized.
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Fig 32. The std of the spike detection delay across different
spike voltages. 200 seconds of spiking voltages are generated for spike
time detection. The bifurcation voltage is at —60mV . For different spike
detection voltages, the std of the spike detection delay is calculated as an
estimation of the uncertainty introduced by the dynamics between the
bifurcation voltage and the spike detection voltage. Here the figure plots
the std over the voltage difference in between.

To quantify how much uncertainty is introduced by each part of the AP
generation dynamics, the std of the spike detection delay is plotted over the
voltage difference between the spike initiation voltage and the spike detection
voltage shown in Fig 200 seconds of spiking voltages was simulated
for the estimation of std. With the exponential AP generation dynamics
in WB model, the slow AP generation dynamics near the spike initiation
voltage brings the majority of the uncertainty in spike time detection. The
increase of std in each voltage step describes the impact of this part of AP
generation dynamics on encoding. When the voltage difference from the
spike initiation is 10mV, the std of time delay has reached its convergence,
which fits with the observation in the linear response function. Another
observation is that a longer correlation time of the stimulus introduces more
uncertainty. From the view of simulation, with a given time step, large
correlation time implies less stimulus change in each time step. A small
stimulus kick elicits to a limited AP generation driving force, which makes
it easier to bring down the voltage again in the next time step. In contrast,
with a shorter correlation, it is less likely to bring back the voltage after a
large voltage kick. As a result, the voltage may linger in the low voltage
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regime for a longer time when the correlation time is large.

I have shown that the impact of AP initiation dynamics and stimulus
properties on encoding is to introduce random time delay between the spike
initiation time and the spike detection time. Ideally, if there is no time
delay, the linear response functions are similar to those of LIF models. In
reality, the random time delay undermines the encoding ability in the high
frequency regime. The linear response functions generated with the stimuli
having long correlation times are affected more. The contribution of each
part of the AP initiation dynamics on the randomness of time delay can
be described by the increase of std of random time delay. For exponential
AP activation dynamics in WB model, the majority of the randomness is
caused by the 10mV dynamics after the bifurcation voltage. Now it comes
to address the question of separating the low pass filtering effect of spike
detection delay on the linear response function.

Denote the spike initiation times in one trial of simulation as t1,t2, ..., tN.
The corresponding spike detection delays are denoted as x1,xs,...,zx. The
pieces of stimuli centered at the spike initiation times are s(t1), s(t2), ..., s(tn).
Each piece of stimulus s(t;) is of length T'. Similarly, the pieces of stimuli
centered at the spike detection times are s(t1+x1), s(ta+x2), ..., s(tx+zN).
The LIF like STA is an average of all s(¢;) aligned together, represented as:

STALr(t) = Eivzl s(t;). Here t takes the range of [-Z, Z]. The STA
filtered by the spike detection delay is ST A tijtered(t) = % Zfil s(t; + ;).
With the given AP initiation dynamics and stimulus, the spike detection
delay obeys the distribution P(x). If the delay is a fixed number z* inde-
pendent of other factors, then ST Ayiiterea(0) = ST Arrr(z*). The filtered
STA is a shift of LIF like STA to the left. More generally, for all the
stimuli s(¢, ) that has a spike detection delay of x, denote their average as
ST A()(t). Then:

ST Atittetealt) = / STA(t + x)P(x)dx (30)
0

With the current model and stimulus properties, a few observations can be
made as below. First, although in theory the range of x can go to infinity,
in the neuron modeling it usually takes of the value of a few ms to a few
tenth ms. So the distribution of x is mainly concentrated in a relatively
short range. Second, it can be expected that the STA of large time delay
have less amplitude than that of short time delay. If it doesn’t require too
much current to have a firing rate difference, and the firing patterns doesn’t
consist of some pieces with too low firing rate and some other pieces with
too high firing rate, then the STA for different time delay should be similar.
This is equivalent to require that the F-I curve of the neuron model doesn’t
have a too low slope. Also the firing patterns are not consist of some pieces
of too low firing and some pieces of too high firing, which implies a high CV
or a change of stimulus properties during the simulation. For the simulation
on WB model, the conditions above seem to be satisfied, so we would expect
no too big differences between different ST A, (¢t). Then we can assume for
the following approximation:

STAfiltered(t) =~ / STALIF(t + I)P(I)dx (31)
0
To examine this assumption, I compared the STA obtained with the

spike detection time and the STA obtained with the spike initiation time
and filtered with the detection delay, as shown in Fig [33]
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Fig 33. Comparison of the STA of WB model and its
approximation as the filtering of a LIF like STA. The STA curves
from the linear response functions in Fig[31] The distributions of the spike
detection delay are approximated with 1000 sampling values from the
simulation. For both correlation times of the stimuli, the filtered STA fits
relatively good with the original STA. Comparing the STA in the
frequency domain, it can be seen that the major difference of the two is in
the high frequency regime.

For each type of stimulus, we obtained 1000 spike time delays as an
approximation of the true distribution of 7. The STA obtained with the
spike initiation time is filtered as % Zf\il STApL;r(t+ 7). The filtered
STA is a relatively good approximation of the original one, which captures
the shift of the maximum of STA from the middle of the time interval. The
difference between the two curves are mainly from the amplitudes of the
STA having different time delays. Those STAs with shorter delays should
have slightly larger amplitudes, which make the original STA have a larger
amplitude and a peak near the center of the interval. For further comparison,
I examined the STA in the frequency domain. In the low frequency regime,
the frequency components from two STA fit with each other. In the high
frequency regime, the filtered STA shows less amplitude. However, as we
have show in the simulation methods above, the high frequency components
are dominated by the noise, which provides limited information about the
true frequency components values.

I also examined the linear response curves directly for the approximation.
The final gain curve is the Fourier transform components of STA divided
by the power spectral density of the stimulus. The differences in the
frequency components are amplified by the power spectral density. For the
large correlation time, the power spectral density decays faster with the
frequency compared to that of the short correlation time. That’s why the
frequency components of the STA seem to fit better, but the gain curves
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Fig 34. Comparison of the linear response curves of WB model

and their approximations as the filtering of a LIF like STA. For
both linear response curves, the differences in the frequency components of
STA are amplified by the power spectral density of the stimulus.

have larger differences. Note here that for the filtered STA, the phase
shift of the frequency components are more fluctuated than the original
ones. When smoothing out the noise in the frequency components, it is
necessary to check where to cut the STA for the Fourier transform. To find
the optimized cut point, I calculated the std of the first 200 to 300 phase
shift terms, and took the cut point that has the least std of the phase shift
terms. The number of the phase shift chosen for calculating std depends on
the correlation time of the stimulus. For short correlation times, the phase
shift is less noisy, it is eligible to choose a larger range of phase shift values.
For long correlation times, the phase shift becomes noisy quickly with the
increase of frequency. So less terms can be chosen for std.

As a summary, here I proposed an approximation to separate the impact
of AP initiation dynamics and stimulus properties on spike time detection
delay from the linear response functions of the neuron model, such that
it can be represented as LIF like linear response functions and low pass
filters. The approximation provides a relatively good performance for the
low frequency components of the STA. The differences in the frequency
components are amplified by the power spectral density shown in the
linear response curves. For further refinement of the approximation, the
adjustment of the amplitude of the STA with different time delay should
be considered.
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3 The Impact of AP Initiation Site Location
on Fast Population Encoding

In this chapter, I will examine the axonal hypothesis proposed by Brette [48].
I will show that axonal AP initiation on its own is not sufficient to generate
an ultrafast response and reproduce high bandwidth encoding observed
in cortical neuron populations. The linear response functions in the high
frequency regime are furthermore insensitive to the correlation times of
inputs, which also contradicts previous experiments. Tuning the activation
slope of sodium current, I will examine the impact of voltage sensitivity of
sodium channels on population encoding. When high voltage sensitivity is
introduced, the two disagreements are resolved. I will give an explanation for
the dissociation of onset rapidness and the ultrafast response. The results
above will show that high onset rapidness of action potential initiation is
not sufficient for the ultrafast response. In the last section of this chapter,
I will introduce a simplified description of the multi-compartment model
with threshold sodium channel gating. The analytic linear response formula
highlights the roles of different parameters on encoding ability.

3.1 The Impact of AP initiation Site on Population
Encoding

According to the axonal hypothesis, spikes are initiated in the axon sepa-
rated from the soma [59,/90]. Increasing the separation distance of the AP
initiation site makes the sodium activation dynamics seen from the soma
more instantaneous. The spiking voltage at the soma has a sharp onset,
which leads to fast population encoding. One supporting evidence of this
proposal is the relation between AP initiation site and lateral current enter-
ing soma. Fixing somatic voltage at different values, when the separation of
AP initiation site is large enough, the lateral current has a step-like change.
The sodium activation ratio also has a discontinuity [48].

The axonal hypothesis highlights the role of neuron morphology on
population encoding in cortical neurons. The detailed structure of cortical
neurons are neglected in traditional simplified single-compartment models.
The axonal hypothesis provides a more complete description of the neuronal
dynamics. Recently more studies have been working on the contribution
of different neuronal parts to AP generation dynamics and population
encoding [49,52. Following the path of axonal hypothesis, there are two
aspects remained for further examination. One is in the dynamic spiking
condition, how the sodium activation dynamics seen from the soma change
with the AP initiation site. It is necessary to check that whether the
instantaneous step-like change observed in the stationary condition still
holds in the dynamic spiking condition. The second aspect is the direct
calculation of the linear response functions to study the impact of AP
initiation site on dynamic gain. For more detailed illustration of the axonal
hypothesis, it is given in the introduction. The neuron model setup and
simulation methods are given in the previous method chapter.

Fig[35] examines the sodium activation dynamics for different positions of
sodium channels Pyy,. Fig shows the activation ratio of sodium channels
m as a function of axonal voltage V, recorded at the AP initiation site. The
activation function can be described as m(V,) = 1/(1+exp((Vin — Vo) /ka))-
For standard sodium activation dynamics, k, is set to 6mV. Fig [35]B
compares original activation curve with representations of m as the functions
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of somatic voltage recorded at the center of soma given three different AP
initiation sites. Injecting a constant input which generates 5Hz firing rate
in each model, I recorded the somatic voltage Vy and the sodium activation
variable m at the same time. As the positions of sodium channels move
further away from the soma, the activation curves rise up more rapidly
in lower voltage regime. This indicates that the observation in stationary
condition is also valid in dynamic spiking condition. Here we remove the
reset threshold in the simulation so that more complete curves can be plot.
The constant input that generates 5Hz firing rate is determined with the
models having their reset thresholds.
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Fig 35. Apparent sodium activation curves versus axonal and
somatic voltage. A: Standard sodium activation curve represented as
the function of axonal voltage. Activation parameter is k, = 6mV. B:
Represented as the function of somatic voltage, the sodium activation
variable appears more voltage sensitive as the initiation site is further away
from the soma. The green curve is the activation curve from A for
comparison.

From the perspective of spike shapes and their phase plots, a larger
separation of AP initiation site makes the spikes sharper seen at the soma.
Injecting a constant input to drive the neuron model firing at about 5Hz, 1
plot the spikes seen at the soma in Fig[36]B. Since the spike generation is
in the axon, somatic voltage has a time delay and rises later than axonal
voltage. However, somatic voltage is reset together with axonal voltage
once axonal voltage reaches the reset threshold. So the spike shapes seen
at the soma are relatively small. Only the beginning parts of spikes are
kept. But it suffices to analyze the impact of AP initiation site on spike
shapes. We can see that the kink at the beginning of a spike is slightly
larger when Py, = 80um. The phase plot Fig[36]D confirms the observation.
The slope of phase plot is steeper when the separation of AP initiation is
larger. Driven by stochastic stimuli, the somatic voltage derivative also rises
more quickly for large Py, as shown in Fig[36F. It should be noticed in Fig
that the spike generation at the AP initiation is also sharper when the
initiation site is farther away from the soma. The phase plot of Fig [36C
shows that the axonal voltage derivative is much larger for Py, = 80um
than that of Py, = 20um. The axonal voltage derivative difference is not
a consequence of the stimulus strength. In Fig [BGE, the phase plots of
the axonal voltage are generated with stochastic stimuli. The phase plot
curves vary with the instantaneous stimulus that triggers the spike. But
the variation is limited. The axonal voltage derivative difference is mainly
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resulted from the lateral current entering the soma. When the AP initiation
site is close to the soma, as a current sink, there will be more current leaked
into the soma during the generation of a spike. This leads to similar spike
shapes seen from soma and seen from axon. When the AP initiation site
is far away from soma, the lateral current leak is less, which results in a
sharper spike at the AP initiation site.
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Fig 36. Sharper spike onset dynamics seen at soma for larger
separations of AP initiation site. A, B: The spike shapes under
constant inputs triggering a firing rate around 5Hz in three conditions
separately. C, D: The phase plots of the spiking voltages under constant
inputs. Drastic drop of voltage derivative at the end of each curve
corresponds to the negative voltage derivative at the voltage reset. E, F:
The phase plots of spiking voltages under stochastic inputs triggering a
firing rate of about 5Hz. The CV of inter spikes intervals is 0.85 + 0.05.
Correlation time of input is 5ms. All the figures share the same legend in
B.
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For the next step, I examined the population encoding ability of the
neuron model. If the axonal hypothesis can explain ultrafast population
encoding, we should be able to reproduce high bandwidth encoding and
sensitivity of dynamic gain to the correlation time of inputs [9,[33H36]. Fig
shows the linear response functions of the multi-compartment model with
different position of sodium channels. Simulation setup and denotations
follow the methods section. In Fig [B7A, I fixed the correlation time of
inputs to 5ms. When the AP initiation site is 20um from soma, the linear
response function has a cutoff frequency of 10Hz, which is on the same scale
of firing rates. In the intermediate frequency regime from 10Hz to 100Hz,
the linear response function decays with a slope close to -1 in log-log scale.
So for a short correlation time of the input, linear response properties of
the neuron model is similar to that of the conductance-based model [41].
Increasing the separation distance of AP initiation site slightly enhances
the dynamic gain in intermediate frequency regime. After that the dynamic
gain decays faster than the Py, = 20um case. In Fig[37B, I tuned the
correlation time of input to 50ms. For a large correlation time, the cutoff
frequencies of the linear response functions are still on the scale of 10 to
20Hz. The impact of AP initiation site is still limited. Fig[37[C, D, and E
compare the sensitivity of dynamic gain to the correlation time of inputs
in three conditions. Having a larger correlation time only slightly enhance
the resonance effect near the firing rate frequency. The dynamic gain after
that decays faster than that of the short correlation time case.

In Fig a larger correlation time makes the linear response functions
more variable in high frequency regime. Related null hypothesis curves
also have larger values for higher frequencies. This is because a larger 7
makes the stimulus vary slower with time. To realize the same firing rate
and CV of ISI, the mean of stimulus is larger, and the std of stimulus is
smaller. This indicates the spikes are likely to be clustered in the time
intervals when the stimulus slowly passes through the threshold to trigger
spikes. This leads to the STA calculated from these spikes represent similar
information of the stimulus. With the same firing rates, the final STA of
a larger 7 is more noisy. As a result, the linear response curves in higher
frequency is less reliable. Each realization of the null hypothesis curve is
more fluctuated in the high frequency part, so the final 95 percent upper
bound is higher than that of the small correlation time.

From Fig |37 we can see that the axonal hypothesis can realize a more
rapid AP initiation seen from the soma, but it is not sufficient to reproduce
ultrafast population encoding. For a fixed correlation time of input, when
Py is equal to 80um, the dynamic gain in the high frequency decays faster
than those in the other two cases, which indicates that further separation
of the AP initiation site will not enhance the encoding ability in high
frequency regime. This implies that the conclusion of limited contribution
of AP initiation site on dynamic gain is not an artifact of insufficient large
parameter. Similarly, a larger correlation time of input could only lead to a
further decay of dynamic gain in the high frequency regime.

Based on the results above, it indicates that the slow sodium activation
function at the axon might be the fundamental reason for low cutoff fre-
quency in linear response functions. The rapid onset dynamics probably
should be a property indeed exists rather than a phenomenon seen from
the soma. Separating AP initiation site from soma only makes the onset
dynamics at higher voltage more rapid. The initial part of sodium activation
function is still relatively slow. So it might be necessary to accelerate the
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Fig 37. Linear response of the neuron model with a standard
sodium activation curve. A, B: For a fixed correlation time of input,
increasing the separation of AP initiation site from the soma has a limited
impact on population encoding. Correlation time is denoted as 7. The
green horizontal line indicates at which frequency the dynamic gain decays
by a factor of v/2. The shaded areas around each curve are 95 percent
confidence intervals. The dash line below is the 95 percent significance
border for the null hypothesis that dynamic gain is zero. In A, the
confidence intervals are thinner than the line widths. A and B share the
same legend panel in B. C, D, E: For a fixed AP initiation site, increasing
the correlation time of input does not enhance the dynamic gain in high
frequency regime. C, D, and E share the same legend panel in E. The mean
fire rate for all cases is 5Hz. The CV of inter spike intervals is 0.85 £ 0.05.

dynamics in this part as well. One way to realize this feature is to make
the sodium activation dynamics more voltage sensitive, so that the sodium
channels are activated avalanche-like once a threshold voltage is reached.

3.2 The Impact of High Voltage Sensitivity of Sodium
Channels on Population Encoding

In this section, I will look into the impact of voltage sensitivity of sodium
channels on the dynamic gain. I assume that the sodium channels are
highly sensitive to the axonal voltage. When a spike is initiated, sodium
channels are more likely to be activated avalanche-like together. To describe
this assumption, I changed the parameter k, in sodium channel activation
function from 6mV to 0.1mV. Fig shows the activation function with
the new k,. Similarly as Fig[35B, I compared the sodium channel activation
function with those representing it as the functions of somatic voltages.
Different from the previous case, increasing Py, delays the activation.
When the sodium activation function is sensitive to the axonal voltage, the
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neuron model can be regarded as passive before sodium activation. In this
condition, injecting a constant input in the soma will lead to a voltage
decrease from the soma to the AP initiation site. A larger Py, leads to
a larger voltage difference. When reaching the same sodium activation
threshold at the AP initiation site, the somatic voltage should be larger
when Py, is larger. It is equivalent to a delay of the sodium activation
function seen from the soma.
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Fig 38. Sodium activation curve with a high intrinsic voltage
sensitivity graphed versus axonal and somatic voltage. A: The
sodium activation curve is represented as a function of axonal voltage.
Activation parameter is k, = 0.1mV. B: Represented as the function of
somatic voltage, the sodium activation variable has higher activation
voltages when the AP initiation site is further away from the soma. The
green curve is the activation curve from A for comparison.

With respect to spike shapes and phase plots seen from the axon, Fig
A, C, and E show that they share a similar feature to those in Fig
Separating AP initiation site from the soma reduces the current leaked into
soma when generating a spike. So the spike shape and the voltage derivative
are larger when Py, is larger. But seen from the soma, a larger Py, delays
the rise of the voltage derivative in the phase plot Fig D. This is in
accordance with the observation of the sodium activation functions. In
Fig BIF, injecting the stochastic stimulus into the soma, the neuron model
with a smaller Py, has a sharper AP initiation dynamics. The slope in
the phase plot is steeper and less affected by the stochastic fluctuations
when emitting spikes. The sodium activation at the axon is already well
approximated by a step-like function. Increasing the separation distance of
the AP initiation site has very limited effect on the activation function seen
at the soma. Here the major difference is the amplitude of lateral current
entering the soma for generating spikes. A larger Py, leads to a smaller
lateral current, which results in a less sharper spike in the soma.

Fig[0A, B provide the linear response functions for different Py, values
under the same 7. The bootstrapping confidence intervals are thinner than
the line widths in Fig [f0JA. Compared with the linear response functions
with a standard sodium activation function, the dynamic gain in the high
frequency regime is enhanced when high voltage sensitivity of sodium
activation dynamics is introduced. The linear response functions become
more flat in the high frequency part, which indicates that the neuron model
can be well approximated as a LIF neuron when the AP initiation site is
close to the soma. Separation of the AP initiation site acts as a low pass
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Fig 39. Sharper spike onset dynamics at the soma for smaller
separations of AP initiation site. A, B: The spike shapes under
constant inputs triggering similar firing rates in three conditions separately.
C, D: The phase plots of the spiking voltages under the constant inputs.
Drastic drop of voltage derivative at the end of each curve corresponds to
the negative voltage derivative at voltage reset. E, F: The phase plots of
the spiking voltages under the stochastic inputs triggering a firing rate of
about 5Hz. The CV of inter spikes intervals is 0.85 4+ 0.05. Correlation
time of the input is 5ms. All the figures share the same legend in B.

filter on the dynamic gain. The neuron model has worse encoding at high
frequencies. Tuning the correlation time of input to 50ms in Fig[40B, the
linear response functions reproduce the high cutoff frequencies observed in
experiments [9,[33H36]. The AP initiation plays the same role as that in Fig
[MOA. In Fig[0C, D, and E, we show the impact of correlation time on the
dynamic gain for different Py,,.

The simulation results above show that when high voltage sensitivity
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Fig 40. Population dynamic gain with the high voltage
sensitivity sodium activation curve. A, B: For a fixed input
correlation time, increasing the separation of the initiation site reduces the
dynamic gain in high frequency regime. The denotations in the figure are
the same as those of Fig In A, the confidence intervals are thinner than
the line widths. A and B share the same legend panel in B. C, D, E: For a
fixed initiation site, increasing the correlation time of inputs enhances the
dynamic gain in the high frequency regime. C, D, and E share the same
legend panel in E. The mean fire rate for all cases is 5Hz. The CV of inter
spike intervals is 0.85 %+ 0.05.

is introduced into the sodium activation dynamics, both high bandwidth
encoding and enhanced dynamic gain with large correlation time are re-
produced. A larger separation distance of the AP initiation site can not
further accelerate the sodium activation dynamics seen from the soma. The
major impact it has on population encoding is reducing the dynamic gain
at high frequencies.

3.3 Somatic and Axonal Voltage Dissociation

Up till now, I have shown that with a standard sodium activation function,
the axonal hypothesis can reproduce sharp AP onset seen at the soma. But
it is not sufficient to reproduce fast population encoding. Fast population
encoding is not equivalent to sharp spikes seen at the soma. Adding high
voltage sensitivity to the sodium channels can fix the encoding ability. It
remains unclear what properties of the standard sodium activation leads
to the low cutoff frequencies in linear response functions. In this section, I
will provide an explanation for the discrepancies between sharp spikes and
fast population encoding.
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The spikes seen at the soma are shaped by the lateral current entering
the soma, which is a reflection of the sodium current in the axon. The
sharp initiation of a spike is a result of the instantaneous change of the
lateral current. Based on the view of axonal hypothesis, we can regard it as
the sodium current generated at the soma. The somatic sodium activation
function is the axonal sodium activation function represented as the somatic
voltage, as shown in Fig|35B. The step-like change in the sodium activation
function seen from the soma describes the dissociation of axonal voltage
and somatic voltage during a spike. When a spike is generated in the axon,
the axonal voltage at the AP initiation site is brought up by the sodium
current. The somatic voltage is still at a lower level due to the resistance
in between. So we can see a high sodium activation ratio at a low somatic
voltage. A steeper sodium activation function in Fig indicates a faster
dissociation of the somatic voltage and the axonal voltage.

In Fig[A1] I plot the dissociation dynamics between these two voltages
under different AP initiation sites. The plot is generated by constant inputs.
Here the reset voltage is removed so that we can see the trend of trajectories
in the limit of large voltages. Continuous lines represent the dissociation
dynamics of the neuron model with a standard sodium activation function.
The green diagonal line is for reference. For different positions of sodium
channels, all three curves stay close or below the green diagonal line. When
the axonal voltage is low, almost all the sodium channels are closed. The
somatic voltage is slightly larger than the axonal voltage if we inject a
constant input in the soma. But here in the figure it is negligible. When the
axonal voltage gets larger, more sodium channels are activated. The axonal
voltage becomes larger than the somatic voltage. Two voltages start to
dissociate. At the early stage, the dissociation rate is slow. This matches to
the slowly rising part of the sodium activation functions in Fig[35B. A larger
separation of the AP initiation site leads to a faster voltage dissociation
in higher voltage regime. When the sodium channels are all activated, the
sodium current amplitude is determined by the voltage difference between
the axonal voltage and balanced voltage of sodium channels. So in this
voltage regime, the dissociation is slowly getting smaller.

I also plot the voltage dissociation for the model with high voltage
sensitivity in sodium activation function. The dash lines are used, and the
color code is the same as the continuous ones. Different from the previous
case, the dissociation curves are above the diagonal line until around
—40mV, then they switch to the other side of the diagonal line. A larger
Py leads to a larger dissociation. In this case Py, has no significant effect
on dissociation speed, all three dissociation dynamics are instantaneous.

Through comparison we can see that when Py, = 80um, the voltage
dissociation dynamics are fast in the higher voltage regime for both types
of sodium activation functions. The major difference of these two curves
is the beginning part, which might be the cause of low cutoff frequency in
the population encoding. A slow dissociation of the somatic and the axonal
voltages corresponds to the slow rising part of the sodium activation function.
The spike timing will be more perturbed by the stochastic stimulus if the
spike initiation is slow. A sharp spike voltage rising after the slow spike
initiation can be reproduced with the separation of AP initiation site, but
it doesn’t improve the encoding ability of the neuron model. With a high
voltage sensitivity of the sodium channels, sodium currents are suppressed
before the stimulus drives the voltage to spiking threshold. When a spike is
initiated, sufficient amount of the sodium current are triggered in a short
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Fig 41. Dissociation of somatic and axonal voltages with and
without high voltage sensitivity of the sodium channels. The
continuous lines are the dissociation curves of the models with standard
sodium activation dynamics. The dash lines are the dissociation curves of
the models with high voltage sensitivity of the sodium activation dynamics.
The green line is the diagonal line.

time to bring the voltage high enough for spike detection. In this sense, it
avoids the random perturbation of the spike time. Reflected in the voltage
dissociation dynamics, it is the close coupling of the somatic and axonal
voltage before a spike is initiated and a rapid dissociation during spike
generation.

3.4 Simplified Model Representation

In this section, I will further examine the contributions of different pa-
rameters to the dynamic gain for the neuron model having high voltage
sensitivity in sodium channels. We will simplify the multi-compartment
model into two equations describing the somatic voltage and the axonal
voltage. With this simplification, we can obtain the linear response function
analytically. From the approximations we can see that the position of
sodium channels play a limited role in determining the cutoff frequency.
Instead, the diameter of the soma has a large impact on the encoding.
First I will introduce the reduced model. The soma is represented as
a sphere of diameter d. We assume it is isopotential of voltage Vs. The
somatic membrane is passive with specific membrane leak conductance
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and capacitance denoted as gy, and c¢,,. The soma receives an externally
injected current and a lateral current from the axon. The AP initiation site
is represented by a cylinder of diameter a and length a. a is much smaller
than d. The voltage at this place is denoted as V,. The specific membrane
leak conductance and capacitance are denoted as gr, and ¢,,. The action
potential initiation site receives the lateral current from the soma and the
sodium current. Only the activation part of the sodium channels will be
included. Once V, reaches a threshold 3, V, and V; will be reset to the
resting potential E,,s simultaneously. The soma and the AP initiation site
is connected by a cylinder shape resistance. The diameter of the cylinder is
a. The length of the cylinder is denoted as Py,. The intracellular resistance
is denoted as 7y,. The lateral current is determined by the voltage difference
and the resistance in between. Below are the equations and a table of
abbreviations.

st Va - V;;

mz?cmW = 7d*gr(Epas — Vi) + —p + e (32)
1
V. Vs =V, _
A ey —= = 7a°gr(Epas = Va) + T pr +70%gNa(Ena = Va)m(Va) (33)
za?
d Diameter of soma
Cm Specific membrane capacitance
Vs Somatic voltage
t Time
gL Specific leak conductance

Epqs | Resting potential
Va Axonal voltage

L Intracellular resistance

Py, | Distance between soma and AP initiation site
a Diameter and length of AP initiation site

1. Electrode current

Jgna | Specific sodium conductance

Eng | Sodium balanced potential

m Sodium channel activation function
P Spike threshold

To calculate the linear response curve, the electrode current is repre-
sented as Eqn . For simplicity, we will represent the sodium activation
function as a Heaviside function, such that below ¢ = —40mV it is 0, above
—40mV, it is 1. Once V, reaches —40mV’, we will reset V; and V, to Epqs.
In this way, we can omit the sodium current term. Denoting Ep.s — V, as
V, V, — Vs as w, we can simplify the equations as below.

av w
= = 4
g = I e P (34)
w a? + d? 1.
i =T P @ T R (%)

1 a’4d? Cm
Denote Tgrp Pra O Cpy,- Denote —=— as rq. Denote g as Ty.

C

Denote s as T,. The equations can be further simplified
gL(1+L2
49,7 PNg-d
to:
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dv
TVE:—V—FCPNQ"U} (36)

dU) Ie
Twgr T YT md? - gr(1+r4-Cpy,) 87

According to the parameters we chose for simulation, g% is R, which
is 3000052 - ecm?. vy, is 1508 - em. Py is chosen to be 20um. 1y is 22.5ms.
Cpy, is 25000, far larger than 1. d is much larger than a, so rq can be
approximated as 1. These approximations imply that 7, is far smaller than
Ty. We can thus substitute w = directly into Eqn .

Ie
md?-gr,(1+rq4-Cpy,)

H:}% can be approximated by 1. Then our final equation becomes:
d Ppng
dv I,
— =V - —- 38
Vit T - gy (38)

Taking the Gauss-Rice approach [44,47], the linear response function
can be represented as:

0 . w1 1
r(w) = (E + iw §g)m (39)
Here 6 is the voltage distance between the average voltage under the
stochastic input and the spike threshold . oy is the standard deviation
of V, which is also the standard deviation of V,. oy, is the standard
deviation of V, which is also the standard deviation of V,. For this simple
model, we can obtain oy and oy, analytically where 0% = W#

R gr)2(r+71v)’
0‘2-/ = Gt - Substituting these two terms into Eqn l} and
taking the absolute value, we obtain the dynamic gain. With a ditference
of a coefficient, we can represent the formula as:

Ty 7202
1 2 1 272 40
Ir(w)] cx\/ +w 27r(7'v—|—7')929%d4/\/ + w2t (40)

Based on the formula we can see that the linear response function is most
sensitive to the soma diameter d. Decreasing d can increase dynamic gain
which improves the ability of population encoding. This observation is valid
when the soma diameter is large enough such that the multi-compartment
model can be well approximated as an integrate and fire model. When the
soma size is small, the role of lateral current will become more important.
Comparing the analytical formula here and the simulation results with
ke = 0.1mV, one major difference is the dynamic gain in the high frequency
limit. Here the dynamic gain doesn’t decay in the high frequency. This
difference is originated in the filtering of the high frequency components of
the stimulus when transmitting from soma to AP initiation site. At the AP
initiation site, the spikes are triggered by the filtered stimulus. However,
when calculating the linear response function, the Fourier transform of the
STA is divided by the unfiltered stimulus injected in the soma. That’s why
we can see a decay of the dynamic gain in the simulation results.

3.5 Discussion

Linear response analysis of neuron population encoding is first proposed by
Knight [37]. Recently it is introduced in experiments [9}33},34},36,91]. It is
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found that cortical neurons are capable of ultrafast population encoding.
The cutoff frequencies of the linear response function are above 100Hz
which are much higher than the firing rates of individual neurons. The
dynamic gain in the high frequency regime is enhanced when increasing the
correlation time of the stimulus [36]. Rapid AP onset is proposed to be
closely associated with these properties 7]. Reducing AP onset rapidness
impairs the encoding ability [9]. Several hypotheses have been proposed
to explain the ultrafast population encoding and rapid AP onset [7,48,/49].
One hypothesis proposed that rapid AP onset seen at the soma is caused
by the separation of AP initiation site from the soma [48]. A larger
separation of the AP initiation site can make the spikes sharper seen from
the soma. In this way, it can realize ultrafast population encoding. In this
chapter, I calculated the linear response function of the neuron model and
examined the impact of AP initiation site on population encoding. With
a standard sodium activation function, the neuron model has a low cutoff
frequency on the scale of the firing rate. A larger separation of the AP
initiation site has a limited impact on the encoding ability. Increasing
the correlation time of input does not enhance the dynamic gain in high
frequency regime. This indicates that sharp spikes in the soma is not
equivalent to ultrafast population encoding. Adding voltage sensitivity to
sodium activation dynamics can recover the features of ultrafast population
encoding. Comparing somatic and axonal voltages dissociation dynamics,
I proposed that the slow sodium activation dynamics at the initiation
of a spike is more likely to be affected by the stochastic stimulus. This
undermines the spike time detection precision. Sharp spikes rising from the
fluctuating voltages correspond to the large sodium current after the spike
initiation, which doesn’t reduce the impact of stochastic stimulus on spike
time detection. High voltage sensitivity of the sodium activation dynamics
reduces the spike initiation time which can further reduce the uncertainty
in spike time detection. Based on our results, AP generation dynamics
are the key factors for realizing ultrafast population encoding. Without a
proper spike generation mechanism, separation of the AP initiation site
alone is not sufficient to explain ultrafast population encoding.
Comparing the phase plots of spike generation dynamics in Fig
and Fig [39] we can see that the contributions of AP initiation site to
spike generation are mainly in two aspects. One is the size of the lateral
current. When the AP initiation site is closer to the soma, there will be
a larger lateral current entering the soma when a spike is generated. The
voltage derivative of the spike is smaller. In comparison, when the AP
initiation site is far from the soma, the AP generation is more isolated
from the soma. There will be less lateral current which leads to larger
voltage derivative during a spike. A lager separation of the AP initiation
site slightly enhanced the dynamic gain in intermediate frequency regime.
When the sodium activation function is like a step function, the impact of
lateral current is limited. A large amount of the sodium current is triggered
when a voltage threshold is reached. The AP onset dynamics are much more
rapid in the axon as seen in Fig[39] The size of the lateral current change
the maximum voltage derivative during a spike. But AP onset dynamics
are almost unaffected. In this case, the major impact of the AP initiation
site is the filtering of the stimulus. The stochastic stimulus is injected in
the soma and transmitted into the AP initiation. During the transmission,
the high frequency components of the stimulus is reduced more than the
low frequency components. A larger separation of the AP initiation site
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has a larger filtering of the high frequency components. The spike times
generated by the filtered stimulus have less contribution from the high
frequency components. When calculating the linear response function, the
Fourier transform of the STA is divided by the power spectral density of
the stimulus injected in the soma. So the linear response functions show a
worse encoding ability for the high frequency regime when the AP initiation
site is farther away from the soma as shown in Fig [f0] Here in our current
model, the soma is simplified as a passive compartment. For more general
case, if the ion channels are added to the soma, injecting a stimulus into the
soma may trigger additional ion current entering the AP initiation site. The
linear response function may have a higher bandwidth than that generated
by injecting the stimulus directly into the AP initiation site.

Besides the axonal hypothesis, another hypothesis proposed cooperative
gating of sodium channels to explain the rapid AP onset and ultrafast
population encoding [43,/46]. According to the hypothesis, it proposes
that when generating spikes, the activation of one sodium channel may
increase the activation probability of neighboring sodium channels. In this
sense, the activation function of individual sodium channel might be in the
form of the standard sodium activation functions in our multi-compartment
model, but for a collection of sodium channels, the total sodium activation
current will display instantaneous activation. Following the cooperative
gating hypothesis, when the voltage is low, the total sodium activation
current is well approximated by the sodium current generated by a group
of independent sodium channels. This implies that if the sodium activation
function of the individual channel has slow initiation dynamics, the collective
sodium activation function should have a slow initiation part followed by
an instantaneous rising phase. Based on the results in our work, a slow
initiation part may undermine the population encoding ability. So it requires
that the cooperative gating strength should be strong enough such that the
sodium current rise rapidly at a low voltage. The slow AP initiation regime
is removed. The sodium activation current should be small enough before a
threshold across which sufficient amount of sodium current is triggered for
spike generation. In this way, fast AP initiation reduces the perturbation
of the stochastic input to the spike time detection. High voltage sensitivity
is similar but not equivalent to the cooperative gating hypothesis.

One recent study [49] highlighted the importance of dendrite size in
determining cutoff frequency of the linear response function. One interesting
observation is that without the dendritic tree, the neuron model can realize
a high cutoff frequency over 100Hz in its linear response function. The
multi-compartment model has a complete AP generation mechanism which
includes sodium activation, sodium inactivation and potassium current.
Cooperative gating and high voltage sensitivity are not required in the
AP generation dynamics. It seems to indicate that ultrafast population
encoding can be realized without any assumptions on the AP generation
dynamics. However, it doesn’t examine whether the dynamic gain in the
high frequency is sensitive to the correlation time of the stimulus. It is
worth exploring the underlying mechanisms of high cutoff frequencies in its
linear response functions.

66



4 The Implications of High Voltage Sensitiv-
ity

In this chapter, I will present a few implications derived from high voltage
sensitivity of the sodium activation function. In the previous chapter, I
have shown that with a standard sodium activation function, the multi-
compartment model proposed by Brette fails to reproduce fast population
encoding. However, based on the axonal hypothesis, the multi-compartment
model in [48] is considered to be equivalent to the cooperative gating
model, which claims to realize rapid AP onset and high bandwidth encoding
[46]. So in this chapter, I will first take a closer look at the cooperative
gating model and examine whether it is able to realize fast population
encoding. Second, since the slow sodium activation is the cause of low
cutoff frequency in the linear response function, can we enhance the encoding
ability by increasing the voltage sensitivity in the low voltage regime without
introducing unrealistic high activation slope in higher voltage regime? Third,
in the previous chapter, I failed to see a clear impact of AP initiation site
on population encoding, so in what conditions can AP initiation make a
significant contribution to linear response function? Fourth, I also have
shown that seen from the equations, linear response function is most sensitive
to the soma size. But this is based on the requirement that other parameters
such as stimulus and neuron morphology are fixed. When calculating the
linear response functions, we control the firing rate and firing patterns such
that the neuron model’s ”working conditions” are fixed. Does the strong
impact observed in the formula still apply under this evaluation criterion?

I will show that based on the parameters given in [46], which is 10%
of strong cooperative gating sodium channels, it is not able to reproduce
high bandwidth encoding. Also the dynamic gain is not sensitive to the
correlation time of the background current. Increasing the ratio of coop-
erative gating sodium channels does not reproduce ultrafast population
encoding, but make the model unable to generate spikes properly. Large
stimulus fluctuations may make the voltage trapped in the intermediate
voltage. One way to fix this problem is to have small std in the stimulus
and small time steps in simulation. However, this solution does not recover
high bandwidth encoding. Reducing the cooperativity makes it possible to
have larger ratio of cooperative gating sodium channels. But this leads to
slow AP initiation, which undermines the encoding.

Then I will show that with a piece-wise linear sodium activation function
in Brette’s model, the slow sodium activation at the beginning of spike
generation is removed. Fast population encoding can be realized with a
slope similar to that of the standard sodium activation function. With
this sodium activation function, increasing the separation distance of AP
initiation site can enhance the encoding ability.

In the last part of this chapter, I will examine the impact of soma size
on the encoding ability of Brette’s model. I will show that reducing the
soma size can enhance the encoding ability when we fix firing rate and
firing pattern.

4.1 Population Encoding of the Cooperative Gating
Model

Previously I have shown that seen from the soma, the sodium activation
dynamics become more rapid when the AP initiation site is moved away
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from the soma. If we take this representation as writing the axonal sodium
activation dynamics into the somatic voltage equation, the resulting sodium
activation dynamics shares similar features of the cooperative gating sodium
channel dynamics as shown in Fig [I5] Both activation curves keep the
slow activation dynamics in the low voltage regime. When the voltage
is large enough, the sodium activation variables rise rapidly. The rising
speed depends on the separation distance of the AP initiation site or the
cooperativity of the sodium channels. Based on these observations, the
multi-compartment model in [48] is considered to be equivalent with the
cooperative gating model.

Cooperative gating hypothesis proposes a biophysical mechanisms of
sodium channels aimed to reproduce rapid AP onset and fast population
encoding [46]. The hypothesis suggests that the activation of one sodium
channel increases the activation probability of neighboring sodium channels,
which is formulated as below:

mZ = moo(V + KJ(mZL (V))*h) (41)

Moo (V) is the gating variable of individual sodium channels. mZ (V)
is the gating variable of cooperative gating sodium channels. K describes
the number of neighboring sodium channels that are coupled together
for cooperative gating. J describes the coupling strength. K.J describes
the cooperativity among sodium channels. h is the inactivation variable
of the individual sodium channels. (mZ (V))*h is the open probability of
cooperative gating sodium channels. In [46], z is 3. At voltage V, the gating
variable of cooperative gating sodium channels takes the value which is
equivalent to that of the independent gating variable at V + K J(mZ (V))h.
A stronger cooperativity KJ implies a higher gating variable value at V.
One observation is that when the voltage is very low, few sodium channels
are activated. In this case, (mZ (V))*h takes a small value so that the open
probability of the cooperative gating channels are similar to that of the
independent sodium channels. Fig |15 shows this feature.

In the implementation of cooperative gating models, it also changed the
equation describing sodium gating variable. The factor of time constant
of sodium channels 7¢ is changed from 1 to 0.01, which makes the sodium
activation function tracks the stationary form better at corresponding
voltages. Besides, the equation of sodium gating variable is in the form
of Tm% = m2, — m3, rather than Tm% = Mo — M. Since the time
constant of the sodium channels are quite small, it is expected to make
limited difference. In the following results, to analyze the encoding ability
of the cooperative gating model, I will stick to the equation and parameters
used in [46].

Fig [42| shows the comparison of linear response functions of the original
Wang-Buzsaki model and the cooperative gating model. In this figure, the
ratio of cooperative gating channels is 10% of the total sodium channels.
The parameter KJ that describes the strength of cooperativity is set to 1000.
The stimulus of neuron model is composed of a constant input, a sinusoidal
signal, and a zero-mean background noise generated with the OU process.
The constant input is able to generate 10Hz firing rate. The properties of
stimulus are not specified in [46], so the CV of ISI is unknown. From the
figure we can see that by adding cooperative gating sodium channels, the
dynamic gain in low frequency and high frequency are enhanced. However,
the cutoff frequencies of the linear response curves are still around 20 to
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30Hz. Also, with more rapid AP onset, the dynamic gain in the high
frequency is still insensitive to the correlation time of the stimulus. The
encoding performance of the cooperative gating model does not fit with
the experimental results @ or the theoretical results of LIF neuron [39).
This seems to indicate that with the current parameters, it is not sufficient
to reproduce high bandwidth encoding. To realize fast population encoding,
it requires to increase the cooperativity and the ratio of cooperative gating
sodium channels.

1

=
—_

—&— WB, 1,540 ms
—2— WB, 1,=40 ms, gNax10
—&—- cWB, 17,720 ms
0.01 —+&— cWB, 17,740 ms

' —&— cWB, 1,=60 ms

firing rate modulation, v./v,

10" 10' 10° 10’
frequency (Hz)

Fig 42. Linear response functions of cooperative gating models
from . WB represents the original model without cooperative gating.
cWB represents the cooperative gating model. KJ is set to be 1000. The
ratio of cooperative gating models is set to 10%. 7. is the correlation time
of background current. According to the simulation results in , the
original model fails to reproduce high bandwidth encoding. Increasing the
sodium conductance doesn’t change this feature. By introducing
cooperative gating sodium channels, the dynamic gain in the high
frequency regime is enhanced. But there is still no dependence on the
correlation time of background current.

In the next section, I will examine the encoding ability of the cooperative
gating model. I will first show that the model proposed in and the
example code provided in the supplementary material are two different
models. The model in the paper has the cooperative gating of inactivation
of sodium channels. While the model used in the code doesn’t have the
cooperative gating of inactivation of sodium channels. With the model
provided in the code, it is not able to reproduce the linear response curves
in Fig[42] when the stimulus is fluctuation-driven. Fluctuation-driven means
the mean of stimulus is not able to trigger spikes. The spikes are triggered
by the fluctuations in stimulus. If we increase the cooperativity or the ratio
of cooperative gating sodium channels, the neuron model can’t generate
spikes properly. The major reason for this problem is the inactivation of
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sodium channels. If the sodium channels are deinactivated at a high voltage,
large amount of sodium current will be available again which makes it
impossible to bring down the voltage for the next spike. In this case, the
voltage is blocked in some intermediate value. Adding cooperative gating
to the inactivation variable h can solve this problem. With cooperative
gating of sodium inactivation, the sodium channels will be block till a low
enough voltage before deinactivated, then the neuron model can generate
spikes properly.

4.2 Examination of the Cooperative Gating Model

As the first step of examination of the cooperative gating model, I would
like to first restate the definition of cooperative gating model with a more
rigorous expressions and denotations.

According to the cooperative gating hypothesis, the stationary activa-
tion function is denoted as mZ (V). Following the same denotation, the
inactivation variable should be denoted as h (V). Corresponding dynamic
activation variable and inactivation variable should be denoted as m” (V)
and h7 (V). The time constants of these two variables should be 7,/ and

T;L] . The definition of the cooperative gating model should be:

Mm% (V) = Moo (V + KJ(m (V) "hZ (V) (42)
dm’

T,r‘i? =ml, —m’ (43)

T = T (V 4+ KJ (m (V) "hZ, (V) (44)

As for the inactivation of cooperative gating sodium channels, if it
doesn’t have cooperative gating, then it has the same dynamics of standard
inactivation variable. If it has the similar cooperative gating expression,
then it should be:

R (V) = hoo(V + KpJn(mZ (V)" hL (V) (45)
S LSRN (46)

h dt %)
il = (V4 Kpdu(mL (V))*hL (V) (47)

If the ratio of cooperative gating sodium channels is denoted as p, the
equation for cooperative gating model should be:

Cm% - gL(VL - V) + gNa[p(mJ)$hJ + (1 *P)(m)zh](VNa . V) (48)

+ gKn4(VK - V) + Iea:t (49)

Here ¢, is the specific membrane capacitance. V is the membrane volt-
age of the single compartment neuron. gy, is the specific leak conductance.
gne and gg are the specific conductance of sodium channels and potassium
channels. Vy,, Viv,, and Vi are the balanced voltage of leak, sodium and
potassium separately. I.,; is the external input.

With the more rigorous denotations, I will point out the unclear parts
in original model expressions. First, in the definition of cooperative gating
sodium channels Eqn it used the variable h rather than h”7, which
seems to imply that the inactivation of the cooperative gating model is the
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same of those without cooperative gating. However, in its equation for the
cooperative gating model, the inactivation variable for cooperative gating
sodium channels is 27. Second, when showing the stationary cooperative
gating sodium activation functions with different cooperativities, the inacti-
vation variable of cooperative gating sodium channels is set to a constant
denoted as Hy, which is 1 according to the author’s thesis. Then in the
expression of the cooperative gating model, it says that the inactivation
curve of the cooperative channels b7, has the same amount of voltage shift
I (V) = h(V + HoKJm” (V)), and 7/ (V) = 7,(V + HoKJm’(V)). The
specific value of Hy here is not given in the thesis. Third, in the code
provided in the supplementary material, the inactivation of cooperative
gating channels are the same with that of the standard sodium channels. It
is not clear the linear response curves in Fig[42] are generated with which
type of model. Also, for the model with the cooperative gating of sodium
inactivation, it is not clear whether it is a constant parameter Hy, or it has
the same form with that of activation function.

To examine the impact of cooperative gating of sodium channels, I first
calculated the linear response functions based on the model provided in
the code, which has no cooperative gating of sodium inactivation. Fig
[43] shows the linear response curves of the original WB model and the
cooperative gating model. The stimulus is tuned to reproduce 5Hz firing
rates. The CV of ISI is about 0.85. The time step is set to 0.025ms.
Without cooperative gating, the WB model has a low cutoff frequency in
its linear response function. Increasing the correlation time of the stimulus
only slightly enhances the dynamic gain in the low frequency regime. The
linear response curve has a larger decay slope in the high frequency limit.
With 10% of cooperative gating sodium channels, there is no significant
differences in the linear response curves.

p=0,KJ=0 p=0.1, KJ=1000

10!

T

- 7=5ms
— 7=50ms

Dynamic Gain

Frequency (Hz) Frequency (Hz)

Fig 43. Simulation of the WB model without and with
cooperative gating of the sodium channels. In both conditions, the
neuron models fail to reproduce fast population encoding. With the given
ratio and strength of cooperativity of the cooperative gating sodium
channels, there is no significant improvement of the dynamic gain in the
linear response curves. The firing rate is 5Hz. The CV of ISI is about 0.85.

Note here are two differences in the simulation conditions compared to
those in the original work. The first is the simulation method. In the original
work, it injected the neuron model with a sinusoidal signal merged in the
stochastic noise. The dynamic gain is measured as the tuning ratio between
the amplitude of firing rate sinusoidal fluctuation and the amplitude of
sinusoidal signal. In the figure above, I used the Fourier transform method.
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In the method chapter, I have shown that these two methods are equivalent
with each other. So the difference in the dynamic gain is not a result of the
simulation methods difference. The second difference is the properties of
the stimulus. In the original method, the background noise is composed of
a constant mean value, and a zero-mean stochastic stimulus generated with
the OU process. The mean of the stimulus can generate 10Hz firing rate.
The std of the stochastic stimulus is not specified. It is not clear about the
exact firing rate with the stochastic noise and sinusoidal signal. So it is
possible that the neuron model firing is mean-driven. In my simulations
above, the mean of the stimulus is not able to trigger spikes. The neuron
model firing is fluctuation driven. The firing rate is 5Hz.

To examine the influence of stimulus properties on the encoding ability,
I fixed the parameter p and KJ to be 0.1 and 1000, and find the constant
input to trigger 10Hz firing rates. Then I found the std of stimulus such
that the CV of ISI is close to 0.8. With the simulation conditions above,
I calculated the linear response function of models with and without the
cooperative gating of the sodium inactivation. Fig[44] shows that in both
cases, the linear response functions have no significant differences with
those in Fig 3]
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.E 100 . e ——— E
8 \
9 -1
= 10 3
©
c
3102} I ]
10'3 I I I I
10! 102 10! 102

Frequency (Hz) Frequency (Hz)

Fig 44. Linear response functions of the cooperative gating
models without and with cooperative gating of sodium
inactivation. The mean of stimulus can generate 10Hz firing rate. The
std of stimulus is tuned to make the CV of ISI about 0.8. In A, there is no
cooperative gating of sodium inactivation. In B, cooperative gating of
sodium inactivation is added. For both models, no significant improvement
of the encoding abilities are detected compared with the original WB
model.

The limited difference in encoding between WB model and cooperative
gating model with p = 0.1 and KJ = 1000 can be explained by the
uncertainty in spike time detection discussed in the method chapter. Fig
and [32| have shown that the uncertainty of spike time detection for the WB
is mainly generated in the first 10mV after the spike generation bifurcation.
Setting the spike detection voltage 10mV after the bifurcation voltage, the
corresponding linear response functions are quite similar to those with spike
detection voltage set at much larger value. Fig shows the activation
function of cooperative gating sodium channels used in [46]. Injecting the
stochastic stimulus that generated the linear response function, I recorded
the voltage and sodium activation function for the rising phase of the first
spike. The activation function rises slowly in low voltage regime. When
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reaching about -50mV, the activation function rises instantaneously to 1.
The bifurcation voltage for the original WB model is at about -60mV. So
we can see that the rapid onset at -50mV fails to erase the spike detection
uncertainty. Even if all the sodium channels have the cooperative gating
activation dynamics, the neuron model can’t reproduce fast population
encoding.
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Fig 45. Activation function of the cooperative gating sodium
channels. With KJ = 1000, the sodium activation function rises rapidly
when the voltage is around —50mV.

To fix the problem above, both p and K .J should be increased. To reduce
the spike detection uncertainty, the cooperative gating sodium activation
functions should rise at a smaller voltage near the spike initiation voltage.
Also, the ratio parameter should be high enough such that the slow rising
dynamics from the standard sodium channel have less influence on the
AP initiation. However, the model provided in the code, which has no
cooperative gating of the sodium inactivation, may not generate spikes
properly when p and K.J take larger values. Fig[4f]is an illustration of this
problem. Fixing KJ = 1000, I increased the ratio of cooperative gating
sodium channels to 20%. With the stochastic stimulus that generates the
linear response curves in Fig [f3B, the neuron model will stop generating
spikes and have its voltage blocked in some intermediate value. The blocked
voltage is caused by the large upward fluctuations in the stimulus. The
inactivation of the sodium channels will be deinactivated at a larger voltage
when responding to a large amplitude input. The early deinactivation will
trigger more sodium current which may prevent the potassium current
bringing down the voltage. Instead, the extra sodium current will balance
with the potassium current at some intermediate voltage. For neuron mod-
els with cooperative gating sodium channels, it is more likely to happen.
Stronger cooperativity of the sodium channels indicates that the sodium
current will have a step change at smaller voltage. With the same sodium
inactivation dynamics, there will be more sodium current during the dein-
activation. Fig[47] provides an illustration of this phenomenon. The time
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step is set to be 0.001ms. Injecting a slightly larger constant input to the
cooperative gating model, the inactivation variable of the sodium channels
rises faster near -50mV. Previously, I have shown that for KJ = 1000,
the cooperative gating sodium activation function rises instantaneously at
-50mV. The slight difference of the inactivation dynamics leads to the block
of spike generation.
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Fig 46. With a higher ratio of cooperative gating sodium
channels, the firing behaviors are blocked by large stimulus
fluctuations. Setting p = 0.2, KJ = 1000, with the stimulus that
generates the linear response curves in Fig[43B, the spiking behaviors are
blocked. Reducing the time step from 0.025ms to 0.001ms doesn’t resolve
this problem.
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Fig 47. The sodium channels are deinactivated earlier when the
stimulus amplitude is larger, which leads to the block of spiking
behavior. With p = 0.2, KJ = 1000, the neuron model is injected with
constant inputs. Here dt=0.001ms. Slightly increasing the constant input
makes the sodium inactivation variable rise earlier, which leads to the block
of the spike generation. Figure B is a zoom-in of figure A near -50mV.

To make the neuron fire properly, it requires the sodium channels to
be inactivated until the voltage is low enough. One simple solution is to
introduce cooperative gating of the sodium inactivation. The expressions
are given by Eqn |45 to Note here we can choose a different coupling
strength K} Jp, from that of the sodium activation. Based on the equa-
tions of cooperative gating of sodium inactivation, during the activation
of sodium channels, the inactivation variable will decrease earlier. During
the deinavtivation of sodium channels, the cooperative gating inactivation
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variable will take a smaller value compared to that of the standard sodium
inactivation variable. Fig shows the dynamics of cooperative gating
sodium inactivation variable. The coupling strength K.J of the sodium
activation is 8000. The coupling strength KjJ;, of the sodium inactivation
is also 8000. The ratio of sodium channels that have both cooperative
gating of sodium activation and inactivation is 0.7. The neuron model is
injected with a stochastic stimulus to reproduce 5Hz firing rate and CV of
ISI about 0.85. The correlation time of the stimulus is 50ms. The behavior
of inactivation variable fits with the deduction based on the equation.
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Fig 48. Cooperative gating of the sodium inactivation variable.
With KjJ, = 8000, the inactivation variable drops to a lower value during
the sodium activation. The inactivation variable will also be smaller during
the deinactivation of sodium channels. The sodium channels are
deinactivated instantaneously at a low enough voltage, so that the neuron
can generate spike properly with strong cooperative gating of sodium
activation dynamics.

Up till now, I have fixed the problem of spike generation of the neuron
model with strong cooperative gating of sodium activation. However, this
still doesn’t resolve the problem of reproducing fast population encoding. In
Fig [ 9A, the parameter KJ is increased to 15000. The ratio parameter p is
set to 1. To make the neuron fire, the parameter Kj,Jy, is set to 30000. With
such strong cooperative gating, the encoding ability in the high frequency
regime are much more improved compared with the original WB model.
In the high frequency limit, the linear response curves become flat which
reflect that the AP activation dynamics are similar to that of LIF model.
Even so, the neuron model still fails to reproduce a high cutoff frequency
in its linear response functions. Increasing the correlation time of the input
shares the similar features with the WB model.
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Fig 49. Linear response functions of the neuron models with
strong cooperative gating of sodium channels. The coupling
parameter for the sodium activation KJ is set to 15000. To make the
neuron model fire properly, the coupling parameter of the sodium
inactivation KpJp, is set to 30000. All sodium channels are of cooperative
gating channels. A: with strong cooperative gating of sodium activation,
the encoding ability is greatly enhanced compared to the original WB
model. However, the linear response functions are still not sensitive to the
correlation time of inputs. The firing rate is about 5Hz. The CV of ISI is
about 0.85. B. Shifting the sodium activation and inactivation dynamics
by 5mV to the positive direction, both high bandwidth encoding and
sensitivity of the dynamic gain to the correlation time are reproduced. The
firing rate is about 5Hz. The CV of ISI is about 1 for 7 = 5ms and about
1.5 for 7 = 50ms.
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Fig 50. Phase plot at spike initiation of the cooperative gating
model with and without shifting the sodium dynamics. The
parameters are the same as those in Fig[#9] A: the neuron models are
injected with constant inputs of 5Hz firing rate. B: the neuron models are
injected with stochastic inputs for calculating the linear response function.
The correlation time of the input is 50ms. The simulation time is 1s. The
time step is 0.001ms. For the neuron model with shifted sodium activation
dynamics, burst firing was detected in the simulation. So the spikes
recorded are more than those without shifting the sodium dynamics.

With the knowledge of uncertainty in spike detection delay, we know that
high cooperative gating doesn’t really remove the slow activation dynamics
after the spike threshold. Strong cooperative gating of sodium activation
does make the activation function have an instantaneous rise when reaching
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some voltage. By the same time, it also increases the sodium activation
probability at lower voltage values. This may make the spike initiated at
a lower voltage, which does not effectively remove the slow AP initiation.
Two methods can solve this problem. One is to suppress the slow sodium
activation at the low voltage such that the collective open probability of the
sodium channels in low voltage regime is smaller than independent sodium
channels. In this way we remove the slow initiation part of the sodium
activation. The other is to shift the sodium activation and inactivation
dynamics in the positive direction along the voltage axis. At higher voltages,
there will be more leak and potassium current to overcome before spike
generation. The slope of potassium activation curves will also increase with
the voltage. To change the slope of voltage derivative from negative to
positive, it requires more sodium current which may have a more rapid
activation dynamics. Fig[d9B shows the impact of shifting sodium dynamics
on population encoding. Here it not only reproduces the properties of fast
population encoding, but also displays a resonance peak in high frequency
regime. This is because shifting the sodium dynamics also changes the AP
generation mechanisms, which makes the neuron model more likely to have
burst firing. Even with a small std stimulus, the CV of the ISI can already
reach 1 when the correlation time is Hms. For larger correlation time 50ms,
the burst firing feature is more significant. This makes it difficult to search
for the stimulus parameters to reproduce the same CV in Fig [I9A. So here
I only control the firing rate to be 5Hz. In the next chapter, I will show
that shifting the sodium dynamics will change the neuron model from type
I to type II. There will be a high discontinuity in the neuron model’s F-1
curve, which leads to burst firing.

In the last part of this section, I will examine the uncertainty of the
spike detection directly for these two models. In Fig I plotted the phase
plots of the cooperative gating model with and without shifting the sodium
dynamics. The phase plots focus on AP initiation. In A, the phase plots are
generated with the constant inputs for 5Hz firing rate. In B, the phase plots
are generated with the stochastic inputs used in Fig The correlation
time is 50ms. In the method chapter, we know that the original WB has
a spike initiation voltage at -60mV. The spike detection delay is mainly
happened in the first 10mV after the spike initiation. It can be expected
that this delay will be shorter if the AP initiation is more rapid. The std
of spike detection delay in WB model is approximately 20ms when the
correlation time is equal to 50ms. Here with strong cooperative gating
of sodium activation, the spike initiation voltage is at about —62.26mV .
From the phase plot in A we can see that the rapid onset is at -60mV. The
current realization of the cooperative gating keeps the slow AP initiation. In
comparison, the spike initiation voltage for the model with shifted sodium
dynamics is -53.48mV. The slow initiation part is shortened. This property
is also kept with the stochastic input. I also estimated the std of spike
detection delay numerically for these two models with the stimuli I used for
calculating the linear response functions. The estimation is based on the
spikes generated in 20s simulation, shown in Fig[32] For the model without
shifting the sodium dynamics, the spike detection voltage is at -16mV. The
std of the spike detection delay is about 18.57ms, which is similar to the
original WB model. For the model with shifted sodium activation, the spike
detection voltage is at -38mV. The std of the spike detection delay is only
about 4.50ms. The spike detection voltages in these models are the voltages
that have the maximum voltage derivative, so the estimated std values are
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not affected by too small spike detection voltages.

4.3 The Impact of AP Initiation Site Location and
Soma Size on Population Encoding

In previous chapter, I failed to see the impact of AP initiation site on
encoding ability of Brette’s model. One may wonder whether this parameter
has a contribution to population encoding. If it does, then in which condition
can we observe its impact? From the phase plots of the AP generation
dynamics, we have already known that separating the AP initiation site
further away from the soma can reduce the lateral current entering the
soma during AP generation. When the neuron model has a slow sodium
activation function, the encoding ability is undermined by the slow sodium
activation dynamics. A change of the lateral current in this condition does
not have a big impact on the AP initiation dynamics. In the other extreme
condition, the sodium activation function is designed like a step function.
The major role of separating AP from the soma is filtering high frequency
components of the stochastic stimulus. The high frequency components are
more damped out compared with the low frequency components. However,
when calculating the linear response function, the Fourier transform of the
STA is divided by the power spectral density of the injected current in the
soma rather than that of the current received by the AP initiation site. So
the linear response functions in this condition are similar to those of the
LIF model in the low frequency regime. In the high frequency regime, the
gain curves have a decay rather than remain flat. So what will happen if
we design a sodium activation function that both remove slow AP initiation
and have a not too high activation slope? Removing slow AP initiation
reduces the major resource of uncertainty in spike detection. A not too
high sodium activation slope can let the lateral current make a contribution
to the rapidness of spike generation. With these two criteria satisfied, we
can see the impact of AP initiation site on the encoding ability.

The further implication of this sodium activation function design is
to highlight the importance of removing slow sodium initiation. Previous
design of onset rapidness focused on the slope at some specific point on
the phase plot or the I-V curve. These points are usually far away from
the spike initiation voltage. When the high bandwidth encoding is realized,
the slope at this point is extremely high. Here I will show that with the
condition of removing slow initiation fulfilled, the high bandwidth encoding
can be realized without too high slope at the middle point of activation
function as we previously measured.

To design a sodium activation function that both without slow activation
and with a not too high activation slope, I implement a piece-wise linear
function described as:

0 if V, <-50mV
Moo (Va) = § 45 (Vo +50) if -50mV< V, <-10mV (50)
1 if V, >-10mV

The activation part has a constant slope of 1/40. Compared with the
standard sodium activation function used in Brette’s model, which has
a slope of 1/24 at the middle point with k, = 6mV, the current sodium
activation function seems to be slower. However, near the spike initiation
voltage, the AP generation dynamics is much more rapid for this piece-wise
linear function.
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Fig 51. Piece-wise linear sodium activation curve versus axonal
and somatic voltages. A: The sodium activation variable m is 0 below
-50mV. m is 1 above -10mV. The sodium activation function in between is
linear. B: Represented as the function of somatic voltage, the sodium
activation function has a higher activation slope for a larger separation of
AP initiation site. The voltage from which the activation function starts to
rise is slightly delayed.

Fig[51]shows the sodium activation function and its representation as the
function of somatic voltage with different AP initiation locations. Similar to
the representation of standard sodium activation function in Brette’s model,
the activation dynamics seen from the soma becomes more rapid when the
AP initiation separation is larger. Also, because of the suppression of the
sodium current at the low voltage, the new representations keep the feature
of sodium current suppression. The representations of the piece-wise linear
function also share a feature of representing step-like function. For larger
separation distances, the voltages that the sodium current rise from zero
are delayed. As a summary, the sodium activation function representations
are more similar to the step-like functions. From the view of writing the
axonal sodium activation function into the somatic voltage equation, the
AP initiation dynamics become more rapid.

In Fig I compare spike shapes and phase plots of neuron models
equipped with piece-wise linear sodium activation function. Seen from
the AP initiation site, the spike shapes become sharper when the AP
initiation site is further away. However seen from the soma, there is no
such significant difference. The spike initiation part is slightly less smooth
when Py, = 80um. In the aspect of phase plots of the axonal voltage, we
can see a clear impact of lateral current on the AP onset dynamics. The
lateral current does not change the voltage where the spike is initiated.
All three curves rise around -50mV. But for a larger separation of the AP
initiation site, there is less lateral current entering the soma during spike
generation. As a result, the spike generation speeds are clearly faster in
corresponding models. Seen from the soma, the somatic voltage also rises
more rapidly for a larger Py,. The observations above are also valid when
injecting stochastic stimuli into the soma.

Through calculating the linear response functions directly, we can see
that with a piece-wise linear sodium activation function, the encoding ability
in the high frequency regime is enhanced when the AP initiation site is
separated further from the soma. Besides, for all three positions of the
AP initiation sites, the encoding ability is improved for larger correlation
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Fig 52. Sharper spike onset dynamics at the soma and the axon
for larger separations of AP initiation site. A, B: The spike shapes
under constant inputs triggering a firing rate around 5Hz in three
conditions separately. C, D: The phase plots of the spiking voltages under
the constant inputs. The drastic drop of the voltage derivative at the end
of each curve corresponds to the negative voltage derivative at the voltage
reset. E, F: The phase plots of the spiking voltages under the stochastic
inputs triggering a firing rate of about 5Hz. The CV of inter spikes
intervals is 0.85 £ 0.05. Correlation time of the input is 5ms. All the
figures share the same legend in B.

time of the input. For Py, = 80um, the linear response function has a
cutoff frequency of about 200Hz when the correlation time of the input is
50ms. It can be expected that further increasing the slope of the piece-wise
linear activation function will improve the encoding ability for all three AP
initiation sites. But the impact of the AP initiation sites on the encoding
will begin to wane. This implies that the phenomenon in Fig 53| could only
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Fig 53. Linear response functions of neuron models with a
piece-wise linear sodium activation curve. All the denotations are
the same as those in the previous chapter. In this case, increasing the
separation distance of AP initiation site enhances the encoding ability of
neuron models. Both high bandwidth encoding and sensitivity of the
dynamic gain to the correlation time of the background current are
reproduced.

be observed when the lateral current size is comparable to the AP initiation
current. If the sodium activation slope is larger, or the sodium conductance
is much higher, then the encoding ability would be similar to that of the
LIF like model. The filtering effect on the stimulus when transmitting
from the soma to the AP initiation site may have a larger influence on the
dynamic gain.

In the last part, I will examine the impact of soma size on population
encoding. In previous chapter, with the simplified model, I have shown
that the linear response function is most sensitive to the diameter of the
soma. But this is based on the assumption that other parameters are fixed.
In simulation, I controlled the firing conditions across different models
to evaluate the encoding ability. Here I will apply this criterion to check
the impact of soma size on the encoding. I calculated the linear response
functions of the neuron model with a small soma. The sodium activation
is the step-like function with k, = 0.1mV. The soma size is decreased to
10pm from 50um. The major difference between these two types of models
is the size of the lateral current. With a smaller soma, the lateral current is
smaller, which makes the AP initiation dynamics reach a higher maximum
voltage derivative. The difference in the lateral current has limited effect
on the uncertainty of spike time detection. As a result, we can see that the
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Fig 54. Linear response of the neuron model with the step-like
sodium activation curve and a small soma. All the denotations are
the same as with the previous chapter. The sodium activation parameter
ko is 0.1mV. The diameter of the soma is set to 10um. The encoding
ability is further enhanced compared with the model having a big soma.

linear response functions are better approximations of the LIF model. The
dynamic gain decay in the high frequency limit are similar to that of the
big soma model.
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5 High Bandwidth Encoding with High Fre-
quency Repetitive Firing

In the introduction chapter, I introduced the proposal that a large dendrite
can enhance the population encoding ability of the neuron model [49]. One
interesting observation of the neuron model implemented in this work is
that even without the dendrite part, the neuron model can already realize
a cutoff frequency above 100Hz in its linear response function. Here the
neuron model doesn’t require rapid AP onset. No cooperative gating of
the sodium channels are assumed. These results seem to indicate that high
bandwidth encoding can be realized without rapid AP onset. So one may
wonder, what are the underlying mechanisms that realize high bandwidth
encoding? Furthermore, is the dynamic gain in the high frequency regime
sensitive to the correlation time of the input? If so, it implies that fast
population encoding can be realized without explicit restrictions on spike
onset rapidness or cooperative gating of sodium channels.

In this chapter, I will look into this neuron model and provide an
explanation for the high bandwidth encoding. First, I will give a more
detailed introduction to the neuron model used in [49] and reproduce high
bandwidth encoding in its linear response functions. Second, I will show
that the high bandwidth encoding is realized by high frequency repetitive
firing. The F-I curve of the neuron model has a high discontinuity at the
threshold where the neuron begins to generate spikes. This implies that
the neuron is more likely to generate a burst of spikes in a short time
interval, which results in a high CV of ISI. The high frequency repetitive
firing enhances the dynamic gain at corresponding frequencies in the linear
response function and helps to realize the high cutoff frequency. Third, I
will show that the multi-compartment framework and the relative position
of the sodium and potassium activation dynamics on the voltage axis are
the two major reasons for high frequency repetitive firing. Shifting the
sodium activation function towards the positive direction in the voltage
axis will change the neuron model from a type I model to a type II model.
This will lead to the high discontinuity in the F-I curve.

5.1 Introduction to Eyal’s Model

In this section, I will first give an introduction to the multi-compartment
model used in [49]. Here I only consider the model without the dendrite. Fig
is a representation of the morphology of the multi-compartment model
adapted from [49|, which is first proposed in [92,93]. The neuron model is
composed of a soma, an axon initial segment(AIS) and a myelinated axon.
The soma is a cylinder of length 30um. The diameter of the soma is 20um.
The AIS is of length 50um. The diameter of AIS is 1um. The myelinated
axon is of length 1000um. The diameter of myelinated axon is 1pum. During
the simulation, the somatic voltage is recorded in the middle of soma.
The axonal voltage is recorded 47um from the soma in the AIS. Sodium
and potassium channels are distributed in the soma and the AIS. The
myelinated axon is passive and has much smaller specific leak conductance
and specific capacitance than that of the soma and the AIS. The specific
leak conductance at the soma and the AIS is 3.3 x 107°5/cm?. The specific
leak conductance at the myelinated axon is 6.6 x 10=7S/em?. The balanced
voltage for the leak E,q, is -70mV. The specific capacitance in the soma and
the AIS is 0.75uF/cm?. The specific capacitance in the myelinated axon is
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0.02uF /em?. The longitude resistance for all compartments is 10052 - cm.
The sodium current density is described as:

inNg = tadj - gna - mh - (V — Eng) (51)

tadj is a parameter associated with the temperature, which is described as
2.3(37-Temp)/10 The temperature Temp is fixed to be 23 degrees. gy is
the specific sodium conductance, which is set to 800pS/um? in the soma.
In the AIS, the specific sodium conductance is 8000pS/um?. m is the
activation variable of sodium channels. h is the inactivation variable of
sodium channels. FEy, is the balanced voltage equal to 50mV. For the
activation variable m, it has the equation:

dm
where:
1

Tm = tadj(a + b) (53)
oo = (54)

(tha - V)/Qa
= ot ey (o~ V)ae) 1 o

_ (V - tha)/qa
I SV tha) fa) 1 o0

Here R, is 0.182ms™ . Ry is 0.124ms™!. g, describes the activation
slope, which is set to 9mV. th, is -25mV.

Voltage Recording at Soma

Voltage Recording at AIS

Myelinated Axon

Soma

Fig 55. Neuron morphology of Eyal’s model. The neuron model is
composed of a soma, an axon initial segment and an myelinated axon. The
ion channels are distributed in the soma and the axon initial segment,
which are the blue regions in the model. The figure is adapted from the
neuron morphology in .

The inactivation variable h has the equation:

Th% =he —h (57)

where: )
™ Gadj{an+ ) %)
o ! (59)

14 exp((V = thing)/qiny)
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_ (thi —V)/qi

o = fadi exp((thi1 — V)/qi) — (60)
_ (V —thi)/q

b = Rg% (( — thlg)/qi) 1 (61)

Here Ry is 0.024ms™ 1. R, is 0.0091ms~t. ¢; is 5mV. th;; is -40mV.
thig is -65mV. thinf is -55mV. Qinf is 6.2mV.
The potassium current density is:

iK:tadj-QK-n~(V—EK) (62)

tadj is the same as above. The specific potassium conductance gy is
320pS/pum? at the soma, and 1500pS/um? at the AIS. Ex is -85mV. The
potassium activation variable n has the equations:

dn
Tagy =Moo =N (63)
where: .
™ = adi(an 100 (64
an

Noo = PR (65)

(than )/qan
n — Ran an 66
0 XD ((Fran — V) fdan) (66)

(V - than)/qan
b, = RonGan 67
0 (V= Chan) ) (o7

Here Ry, is 0.02ms™'. Ry, is 0.002ms ™!, g4, describes the activation
slope, which is set to 9mV. thy, is 25mV.

Fig provides the sodium activation dynamics m? of Eyal’s model based
on its parameters. As a comparison, I also plotted the sodium activation
dynamics of Brette’s model m. For both sodium activation curves, they
share a similar activation speed. In Eyal’s model, the sodium channels are
activated at a larger voltage. Injecting the soma with a constant input, we
can obtain the phase plot of spike generation dynamics shown in Fig At
the AIS, the axonal voltage derivative rises slowly with the voltage, which
doesn’t reproduce the rapid AP onset proposed in [7]. Seen from the soma,
the somatic voltage derivative rises faster than that in the AIS. Based on
the criterion of AP onset rapidness proposed in [7], the slope of phase plot
at 20mV /ms doesn’t have significant improvement in the soma than that
in the axon.

To calculate the linear response functions of Eyal’s model, I searched
for the mean and the std of the stochastic stimulus to reproduce a firing
rate of 5Hz shown in Fig The mean-std relation is similar to those of
the Brette’s model and WB model. However, for the mean-CV relation,
when the mean is getting larger, the CV of the ISI is not decreasing to zero.
For three different correlation times of the inputs, it is not possible to find
a common CV in the reasonable range. Later I will provide an explanation
why the mean-CV relation is different from what we observed in previous
chapters. So for this model, I fixed firing rate and mean of the stimulus
when calculating the linear response function. Here the mean is chosen
to be 0.03nA. Fig[59] shows the linear response functions of Eyal’s model.
I successfully reproduced the high cutoff frequency of the linear response
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Fig 56. Sodium activation dynamics of Eyal’s model. The blue
curve is the sodium activation dynamics of the Eyal’s model, which is m3.
As a comparison, the red curve is the sodium activation dynamics of
Brette’s model, which is m. No rapid onset is included in both conditions.

functions when 7 = 5ms, which is given in [49]. The linear response function
also has a resonance near 40Hz. However, increasing the correlation time of
inputs doesn’t enhance the encoding ability in the high frequency regime.
Only higher resonance effect is obtained. This is contradictory with the
observations in experimental studies [36]. So we can see that without rapid
AP onset, Eyal’s model only reproduces the high cutoff frequency in its
linear response functions. The dynamic gain in the high frequency regime
is not sensitive to the correlation time of inputs. Eyal’s model is proposed
to simulate the layer 2/3 pyramidal neurons, but it doesn’t capture the fast
population encoding observed in pyramidal neurons.

It remains unclear about the underlying mechanisms that realize high
bandwidth encoding in Eyal’s model. In Fig I plotted the F-I curve of
Eyal’s model. Different from the type I models we studied in the previous
chapter, the F-I curve of Eyal’s model has a high discontinuity. Once the
constant input is across a threshold, the neuron model will generate a firing
rate above 30Hz. This indicates that Eyal’s model is a type II model. For
a large mean and small std stimulus, the neuron will stay quiet when the
stimulus is not enough to generate spikes. However, when the stimulus is
slightly larger than the rheobase current, the neuron will generate a trial of
high frequency repetitive firing in a short interval, which makes the CV of
the ISI extremely high. For the type I neuron models we investigated before,
the F-I curve is continuous with the constant input. The slope of F-I curve
near the rheobase current is not high enough to realize high frequency firing
with a short increase of the input current. The high frequency repetitive
firing behavior explains the different mean-CV curve observed in Eyal’s
model.

Following this line of deduction, we can explain the resonance in linear
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Fig 57. Phase plots of AP generation dynamics of Eyal’s model.
The neuron model is injected with a constant input. The voltage at the
AIS are recorded 47pum from the soma. The voltage at soma is recorded in
the middle of soma. The AP initiation dynamics are not rapid compared
with the recordings in the cortical neurons . The AP initiation dynamics
at the soma are more rapid than that of the AIS.
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Fig 58. Mean-std and mean-CV relation of Eyal’s model. In A,
each pair of mean and std reproduces a firing rate of 5Hz in Eyal’s model.
In B, it plots the CV of ISI over the mean for each data point in A.

response functions and the high bandwidth encoding. Since the neuron
firing patterns are more likely to have pieces of high frequency burst firing,
a large amount of the inter-spike intervals will fall in the range around the
inverse of typical burst firing rate. From the view of vector strength method
for calculating linear response functions, the amplitude of complex vector of
typical burst firing rate will be selectively enhanced. For large mean small
std stimulus, the frequency that are selective enhanced is the frequency
near rheobase current in the F-I curve. If the enhanced frequency is high,
it is possible to make the cutoff frequency of the linear response function
much higher than the averaged firing rate without requiring rapid AP onset.
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Fig 60. F-I curve of Eyal’s model. The F-I curve has a big
discontinuity at the rheobase current. This implies that the neuron model
is a type II model. The neuron model is able to realize high frequency
repetitive firing once the input is across the rheobase current.

For Eyal’s model, the resonance frequency is around 40Hz. One simple
way to examine this explanation is to plot the histogram of the inter-spike
intervals. If the histogram has a strong peak at the inverse of the resonance
frequency, then it indicates that the explanation is plausible. Fig[61] shows
the histograms of ISI for different correlation times of the input. For a
larger correlation time, the CV of ISI is larger. The histogram has a larger
peak, where the peak of histogram fits with the resonance frequency in the
linear response functions.
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Fig 61. Histogram of the ISI for Eyal’s model. For each correlation
time, with the stimulus for calculating the linear response function, I
generated one million ISI values for the histogram. For larger correlation
times, the CV of the ISI is larger. The histogram has a larger peak at a
smaller IST value, which fits with the resonance frequency in the linear
response function.

5.2 The Mechanisms for High Frequency Repetitive
Firing

In previous section, I have shown that the high bandwidth encoding in

Eyal’s model is realized with high frequency repetitive firing. In this section,

I will explore the underlying mechanisms for this phenomenon. As it can

be seen that Eyal’s model is a complicated multi-compartment model with
ion channels distributed in soma and AIS. The ion channels includes both
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sodium and potassium channels which constitute a complete AP generation
mechanism. In comparison, the WB model is only a single-compartment
model. Also, Brette’s model doesn’t have complete AP generation dynamics.
Brette’s model needs to reset the voltage by hand. The simulation results
in the previous chapters have shown that the original WB model and the
Brette’s model can’t reproduce high bandwidth encoding. In the following
work, by comparing with these two models, I will simplify Eyal’s model
step by step toward these two models in order to find out the mechanisms
that are responsible for high bandwidth encoding.

First I will study the impact of multi-compartment framework on pop-
ulation encoding in Eyal’s model. In Fig[62| A and B, I removed the ion
channels in the soma of Eyal’s model. The F-I curve in A shows that there
is a smaller discontinuity in the firing rate when the neuron model begins
to generate spikes. The neuron model is less capable of high frequency
repetitive firing. As reflected in the linear response functions, when the cor-
relation time of input is 5ms, the cutoff frequency is much lower compared
to that of the original Eyal’s model. Increasing the correlation time, we can
reproduce high bandwidth encoding. But the resonance peak is shifted to
the lower frequency. In B, the firing rate is fixed to be around 5Hz. Here
the mean of stimulus is fixed to be 0.005nA so that the neuron model is in
the fluctuation-driven regime.

30

n
o

10°

z)

H
n
S

101

Firing Rate (|
S @
Dynamic Gain

o

1073
8 1071 107 10°
001 0012 0014 0016 0018 002 Inout F H2)
Constant Input (nA) nput Frequency(Hz
50 :
— 7=5ms
¢ D — 7=20ms
“ = 100—<\ — 7=50ms
g ®
= (O]
33 9
< €10t
220 &
= =
. a
10 1022
0 T 7 3
500 1000 1500 10 10 10

Constant Input (nA/cmz) Input Frequency(Hz)
Fig 62. The impact of multi-compartment framework on
population encoding in Eyal’s mdoel. A, B: The F-I curve and the
linear response functions of Eyal’s model with a passive soma. C, D: The
F-I curve and the linear response functions of Eyal’s model written into a
single compartment model. The active soma and the separation of the AP
initiation site from the soma enhance the discontinuity in the F-I curve
and the encoding ability.

In Fig [62] C and D, I wrote Eyal’s model into a single compartment
model. The dynamics of ion channels are the same as those of original
model. To make the neuron model fire properly, the sodium conductance is
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set to be 0.085/em?. The potassium conductance is set to be 0.0155/cm?.
The unit of input current is adjusted from nA to nA/em?. The firing rate
is fixed to be about 5Hz. The mean is fixed to be 0nA/cm?. Similar as
the multi-compartment model with a passive soma, the high frequency
repetitive firing ability is reduced. The high bandwidth encoding can be
realized when the correlation time of input is large enough. So from these
two models we can see that the multi-compartment model framework does
make a contribution to the high frequency repetitive firing. Having an
active soma enhances the ability of high frequency repetitive firing for the
neuron model. This is particular effective for the cutoff frequency of the
linear response functions generated with short correlation time stimulus.
For the gain curves generated with large correlation time stimulus, the main
impact is on the peak of resonance frequency.
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Fig 63. The impact of sodium-potassium AP generation

mechanisms on population encoding in Eyal’s model. A, B: The
F-I curve and the linear response functions of Eyal’s model with sodium
dynamics shifted 10mV towards the negative direction. C, D: The F-I
curve and the linear response functions of Eyal’s model with reset by hand.
The relative position of the sodium and potassium dynamics in the voltage
axis determines the high frequency repetitive firing in Eyal’s model.

In the second part of this section, I will study the impact of sodium-
potassium AP generation mechanisms on population encoding in Eyal’s
model. Eyal’s model is built from the model in [92,(93], in which the
sodium dynamics are shifted by 10mV towards the positive direction in
the voltage axis. In Fig[63] A and B, I shifted back the sodium dynamics.
The F-I curve shows that without injecting external current, this neuron
model will generate spikes automatically. The rheobase current to trigger
spikes is negative. But still we can obtain the F-I curve as from previous
models. The stochastic input that generates the aimed firing rate will have
a negative mean. For this neuron model, the discontinuity in the F-I curve
disappeared. The neuron model turns into a type I model. In the aspect of
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the linear response functions, without high frequency repetitive firing, the
cutoff frequencies decrease to 20 to 30Hz. The dynamic gain in the high
frequency is not sensitive to the correlation time of the input, which makes
this model similar to the WB model. Here the firing rate is about 5Hz.
The mean of input is fixed to be —0.006nA. In Fig[63] C and D, I write
the sodium and potassium dynamics of Eyal’s model into Brette’s model.
The AP initiation point is 47um from the soma, which is the same as the
recording point in Eyal’s model. The sodium and potassium conductance at
the AP initiation point are the total conductance at the AIS in the original
model. Here I reset the voltage to the resting potential by hand once it
reaches a threshold. In this way, the oscillation dynamics for AP generation
breaks down. When calculating the linear response function, the firing rate
is fixed to be 5Hz. The CV of ISI is fixed to be about 0.85. The linear
response functions have cutoff frequencies around 20Hz, similar to those
of Brette’s model. Based on the linear response properties of these two
models, we can see that a complete AP generation mechanism is important
for high frequency repetitive firing. The relative position of sodium and
potassium dynamics on the voltage axis determines the size of discontinuity
in the F-I curve.
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Fig 64. Two types of spike generation bifurcations for different
positions of the sodium dynamics on the voltage axis. In A and B,
the blue curves represent the AP initiation dynamics, which is
9r.(Er — V) + gnam3(Eng — V). Here the inactivation of sodium channels
is taken as 1. The red curves represent the potassium current dynamics
—grn*(Exg — V). The black curves represents the AP initiation dynamics
with a constant external current, which is
9r.(Er = V) + gnam®(Enag — V) + Iezt. In A, all the parameters and
equations are taken from the WB model given in [46]. The AP generation
bifurcation is a saddle node bifurcation. In B, the sodium dynamics are
shifted by 10mV on the voltage axis towards the positive direction. The
AP generation bifurcation is a Hopf bifurcation.

Fig[64] provides an illustration of the change of AP generation bifurcation
by shifting the sodium dynamics along the voltage axis. Here I use the
parameters and equations from WB model given in [46] as an example. For
the neuron equation:

dv
Cm% - gL(EL - V) + gNamSh(ENa - V) + gKTl4(EK - V) + Iewt (68)

Ltake g1, (EL—V)+gnam (Ena—V )+ 1Iep over V and —ggni (Ex—V)
over V as two nullclines. The inactivation variable h is assumed to be 1 at low
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voltages. In A, with the original sodium dynamics, there are two intersection
points between two nullclines if the external current is 0. Increasing the
external current will lead to a saddle node bifurcation which makes the
neuron start to generate spikes. In B, the sodium dynamics are shifted by
10mV in the positive direction. When increasing the external current, the
stable fixed point is moved to the right and becomes an unstable fixed point.
The Hopf bifurcation happens for the spike generation. So we can see that
by changing the relative position of sodium and potassium dynamics along
the voltage axis, the neuron type is changed from a type I neuron to a type
IT neuron, which makes it possible to generate high frequency repetitive
firing.
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6 Summary

In this thesis, I studied the impact of neuron morphology and biophysics on
population encoding. I first introduced simulation methods for calculating
the linear response functions which quantify the encoding ability. I showed
that the Fourier transform method and the vector strength method provide
linear response curves which fit with each other. I also proposed that
the uncertainty of time delay between the spike initiation voltage and
the spike detection voltage act as a low pass filter in the linear response
function. Without the time delay, the linear response functions are similar
to those of LIF-like neuron model. Then I examined the axonal hypothesis
proposed by Brette [48]. I found that with a standard sodium activation
function, separating the AP initiation site from the soma is not sufficient
to reproduce fast population encoding. The sharp spikes seen at the
soma do not necessarily imply high bandwidth encoding. To realize fast
population encoding, removing slowly activated sodium current before the
AP initiation is also required. This suggests that high voltage sensitivity
of sodium activation dynamics might be important for fast population
encoding.

The idea of high voltage sensitivity is complementary to the idea of
cooperative gating of sodium channels proposed in [46]. Cooperative gating
of sodium channels implies that sodium channels will be activated avalanche-
like once the voltage is large enough. When the voltage value is low,
the activation dynamics of cooperative gating sodium channels can be
approximated with that of independent sodium channels. High voltage
sensitivity of sodium channels points out that the activation ratio of sodium
channels before AP initiation should be smaller than that provided in the
standard sodium activation function. The slow sodium activation is usually
merged in the low voltage fluctuations dominated by the stochastic stimulus,
which makes it seem negligible for population encoding. However, I found
that it can play an important role in determining the high bandwidth
encoding. So it remains to be further examined in the sodium activation
dynamics of cortical neurons. One possibility is that the current function
form for the sodium activation dynamics does not capture the sodium
activation dynamics of individual sodium channels. Another possibility is
that some other types of currents need to be included in the model.

In the following chapter, I examined the encoding ability of the coop-
erative gating model [46]. Based on the given parameters including ratio
of cooperative gating sodium channels and strength of cooperativity, I did
not manage to realize fast population encoding. The cooperative gating
dynamics did not resolve the problem of slow activation near AP threshold.
Increasing the ratio or the strength of cooperativity failed to realize high
bandwidth encoding as well. One additional implication from the exam-
ination of the cooperative gating model is on the inactivation of sodium
channels. High voltage sensitivity of sodium activation implies a large
amount of activated sodium channels once some specific voltage is reached.
When finishing generating a spike, if the sodium channels are deinactivated
before this specific voltage, the large amount of sodium current will prevent
the voltage from being reset properly. Instead, the voltage will be locked at
some intermediate value and not generating spikes anymore. Avoiding this
phenomenon required that a sufficient amount of sodium channels blocked
until the voltage is below the sodium activation voltage. The inactivation
dynamics in WB model fail to capture this feature. To fix this problem, a
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better description of the inactivation dynamics remains for further study.
Here in my work, one way found to fix this problem was to introduce
cooperative gating of deinactivation of sodium channels. Sodium channels
then are blocked until the voltage is low enough. Then the sodium channels
are deinactivated together. In this way, the neuron model can fire properly.

In the last chapter, I studied the underlying mechanisms of the multi-
compartment model used in [49] for realizing high bandwidth encoding.
Without requiring high voltage sensitivity on sodium activation dynamics,
the cutoff frequency of its linear response functions is above 100Hz. Here 1
reproduced high bandwidth encoding, and showed that the dynamic gain
in the high frequency regime was not sensitive to the correlation time of
stimulus. This indicates that the neuron model does not fully reproduce fast
population encoding. Then I showed that the F-I curve of the neuron model
had a discontinuity at rheobase current. The high bandwidth encoding is
realized with high frequency repetitive firing which selectively enhances the
dynamic gain in the high frequency region. Comparing with the neuron
models that have low cutoff frequencies in their linear response functions,
I showed that an active soma and the relative position of sodium and
potassium dynamics along the voltage axis determine the high frequency
repetitive firing ability of the neuron model.

In this thesis, I used the linear response function to quantify the popu-
lation encoding ability of different neuron models. From the view of neural
network, it is still unclear how the encoding ability of cortical neurons
impact the information transfer and information processing in the neu-
ral network. Especially in a network with both excitatory (type I) and
inhibitory (type II) neuron. It would be interesting to study the mixed
networks in the future.
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