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1 Summary 
The unfolded protein response (UPR) is a conserved signaling pathway, that is present in all eukaryotic 

cells and ensures endoplasmic reticulum (ER) homeostasis under stress conditions. In the 

phytopathogenic fungus U. maydis, the UPR is activated after plant penetration as a result of increased 

demands on the secretory pathway during the fungal/plant interaction. However, prolonged activation 

of the UPR is deleterious for U. maydis and UPR activity needs to be modulated during plant 

colonization. This modulation is achieved by the physical interaction between Cib1 (Clp1 interacting 

bZip 1), the central regulator of the UPR and Clp1 (Clampless 1), an important developmental regulator 

of U. maydis and the decisive factor for the induction of fungal proliferation after successful host 

penetration. The interaction between both proteins leads to increased stability of Clp1 and alters UPR 

gene expression. In this study, the functional consequences of this interaction on the physical properties 

of Cib1, the impact on Cib1 DNA binding and the transcriptional output of the UPR were characterized. 

Expression of clp1 leads to elevated ER stress resistance, increased protein stability and altered 

phosphorylation patterns of Cib1. Transcriptome analysis (RNAseq) during ER stress identified a set of 

65 upregulated UPR core genes, whose expression is differentially modulated upon clp1 induction. 

Chromatin immunoprecipitation of Cib1 with subsequent whole-genome sequencing (ChIPseq) 

identified UPR elements (UPRE) in promoters of the large majority of UPR core genes and revealed 

that Cib1 DNA-binding specificity is not altered by Clp1. In a comprehensive gene deletion analysis, a 

previously uncharacterized UPR target gene was identified that is specifically required for biotrophic 

growth of U. maydis. UMAG_02729 encodes an intramembrane cleaving signal peptide peptidase (spp1) 

that contains a conserved active site typical for aspartyl proteases. Plants inoculated with ∆spp1 mutants 

or strains expressing enzymatically inactive Spp1 triggered massive plant defense responses as 

evidenced by reactive oxygen species (ROS) accumulation and strongly increased expression of 

pathogenesis-related plant genes. Complementation of the spp1 deletion strain with orthologous genes 

from Sporisorium reilianum and Ustilago hordei recovered virulence and expression of the well-

characterized human ortholog HM13 suppressed the virulence defect of the spp1 deletion mutant in a 

dose-dependent manner. However, the virulence-specific function of Spp1 is not related to known 

functions of signal peptide peptidases, such as ER-associated degradation (ERAD), hypoxia adaptation 

or effector secretion. Deletion of predicted UPREs in the promoter of spp1 significantly reduced spp1 

expression upon ER stress. Co-immunoprecipitation analysis of Spp1 with subsequent LC-MS analysis 

revealed members of the signal peptidase complex (SPC) and the O-mannosyltransferase Pmt4, as 

potential interaction partners or substrates of Spp1. In summary, the data of this study revealed a 

potential mechanism on how UPR in U. maydis is modulated by Clp1 and a novel factor important for 

plant defense suppression that is not connected to previously known pathways related to signal peptide 

peptidase function or plant defense suppression by phytopathogenic fungi. 
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1 Zusammenfassung 
Die unfolded protein response (UPR) ist ein konservierter Signalweg, welcher in allen eukaryotischen 

Zellen vorkommt und die Homöostase des endoplasmatischen Retikulums unter Stressbedingungen 

aufrechterhält. In dem phytopathogenen Pilz Ustilago maydis wird die UPR nach der Penetration der 

Pflanze, aufgrund eines erhöhten Bedarfs des sekretorischen Signalwegs während der Pilz/Pflanzen-

Interaktion, aktiviert. Eine andauernde Aktivierung der UPR ist schädlich für U. maydis, weshalb die 

UPR Aktivität während der Pflanzenkolonisation moduliert werden muss. Diese Modulation findet 

durch die physische Interaktion zwischen dem zentralen UPR Regulator (Clp1 interacting bZIP 1) und 

dem wichtigen Entwicklungsregulator Clp1 (Clampless 1) statt. Clp1 ist ein entscheidender Faktor für 

das Auslösen der pilzlichen Vermehrung nach der Wirtspenetration. Die Interaktion beider Proteine 

führt zu einer erhöhten Stabilität von Clp1 und verändert die Expression von UPR Markergenen. In der 

vorliegenden Arbeit wurden die funktionellen Auswirkungen dieser Interaktion auf die physischen 

Eigenschaften von Cib1, die Cib1 DNA Bindung und die Transkription der UPR untersucht. Die 

Expression von clp1 führt zu einer erhöhten ER Stresstoleranz sowie einer erhöhten Proteinstabilität und 

eines veränderten Phosphorylierungsmusters von Cib1. In einer Transkriptomanalyse (RNAseq) unter 

erhöhtem ER Stressbedingungen konnte eine Gruppe von 65 hochregulierten UPR Hauptgenen 

identifiziert werden, deren Expression während der clp1 Induktion differenziell moduliert ist. Eine 

Chromatin-Immunopräzipitationsanalyse von Cib1 mit anschließender Sequenzierung (ChIPseq) 

identifizierte UPR-Elemente (UPRE) mit gehäuftem Vorkommen in Promotoren der UPR Hauptgene. 

Die DNA-Bindungsspezifität von Cib1 durch die Clp1 Induktion bleibt jedoch unverändert. In einer 

umfassenden Gendeletionsanalyse konnte ein zuvor nicht charakterisiertes UPR-Zielgen identifiziert 

werden, das speziell für das biotrophe Wachstum von U. maydis in der Pflanze erforderlich ist. 

UMAG_02729 codiert für eine intramembranspaltende Signalpeptid-Peptidase (spp1), welche ein 

konserviertes, aktives Zentrum aufweist, das typisch für Aspartylproteasen ist. Pflanzen, die mit ∆spp1-

Mutanten oder Stämmen infiziert wurden, die ein enzymatisch inaktives Spp1 exprimierten, lösten 

starke Pflanzenabwehrreaktionen aus, die durch die Akkumulation von reaktiven Sauerstoffspezies 

(ROS), sowie einer erhöhten Expression von Pflanzengenen der Pathogenese nachgewiesen werden 

konnte. Die Komplementierung des spp1-Deletionsstamms mit orthologen Genen aus Sporisorium 

reilianum und Ustilago hordei konnte die verlorene Virulenz vollständig wiederherstellen. Zusätzlich 

konnte gezeigt werden, dass die Expression des gut charakterisierten, humanen Orthologs HM13 den 

Virulenzdefekt der spp1-Deletionsmutante dosisabhängig unterdrückt. Allerdings steht die 

virulenzspezifische Funktion von Spp1 nicht im Zusammenhang mit bekannten Funktionen von 

Signalpeptidpeptidasen, wie beispielsweise der ER-assoziierten Degradation (ERAD), der Anpassung 

an Hypoxie oder der Effektorsekretion. Die Deletion vorhergesagter UPREs im Promotor von spp1 

reduzierte die spp1-Expression bei ER-Stress signifikant. Die Co-Immunopräzipitation von Spp1 mit 

anschließender LC-MS Analyse brachte Mitglieder des Signalpeptidase-Komplexes (SPC) und der O-

Mannosyltransferase Pmt4 als mögliche Interaktionspartner oder Substrate von Spp1 hervor. 
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Zusammenfassend zeigen die Daten dieser Studie einen potenziellen Mechanismus, wie die UPR in 

U. maydis durch Clp1 moduliert werden könnte. Zudem konnte ein neuer Faktor identifiziert werden, 

der für die Unterdrückung der Pflanzenabwehr wichtig ist und nicht mit den bisher bekannten 

Signalwegen der Signalpeptidpeptidasefunktion oder der Unterdrückung der Pflanzenabwehr durch 

phytopathogene Pilze zusammenhängt. 
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2 Introduction 

2.1 Ustilago maydis, the causative agent of corn smut disease 
Ustilago maydis is a phytopathogenic basidiomycete, which infects its host plant maize (Zea mays) as 

well as its wild progenitor teosinte (Z. mays ssp. parviglumis and ssp. mexicana) (Doebley, 1992). 

Systematically, U. maydis belongs to the phylum Basidiomycota, in the class of Ustilaginomycetes (true 

smut fungi) of the order of Ustilaginales (smut fungi) (Lutzoni et al., 2004). Initial disease symptoms of 

U. maydis are primarily reflected by increased anthocyanin 

production and chlorosis formation in the leaf tissue of its host 

plant. Subsequently, infected plants form the characteristic tumor-

like galls at all above-ground parts of the plants including the 

corncob, leaves, and stem (Fig 2.1A). The fungus is edible, and 

especially in Mexican cuisines, the galls of a U. maydis-infected 

corncob are considered as a delicacy, also known as “Huitlacoche” 

or the “Mexican truffle”. Bursting of these white galls at the end of 

its lifecycle causes the release and dispersal of their black 

melanized teliospores (Fig 2.1B, white arrow). This gives the maize 

plant a burned appearance, which is eponymous for Ustilago, from 

the Latin verb ustilare (to burn). U. maydis is considered as an 

agricultural pest, although yield loss due to corn smut in cultivated 

maize plants is limited to about 2% by the use of resistant maize 

varieties (Munkvold and White, 2016). U. maydis has become one 

of the most important model organisms for phytopathogenic fungi 

in recent decades. In 1964, Robert Holliday described the basic 

model of homologous recombination, also known as the Holliday 

structure, in U. maydis (Holliday, 1964). Sequencing and 

publishing of the approximately 20 Mb sized genome in 2006, 

enabled reverse genetic approaches (Kämper et al., 2006). 

Transcriptional profiling of the entire plant-associated development of U. maydis in 2018 provided new 

insights on gene regulation during in planta development on a whole-genome level (Lanver et al., 2018). 

U. maydis has a dimorphic life cycle, including a saprophytic, non-pathogenic phase and a biotrophic, 

pathogenic phase. Under laboratory conditions, the life cycle of U. maydis can be completed in three to 

four weeks. Genetic manipulations are possible in its saprophytic, haploid form in which the fungus can 

be easily cultivated on solid and liquid media. In addition, U. maydis is highly amenable to modification 

using molecular genetic standard methods and a highly efficient homologous recombination (Kämper, 

2004).  

Figure 2.1: Corncob infected with 
U. maydis. (A) Each of the white galls 
are developing out of a single   grain. 
Galls can be formed out of other plant 
tissue, like leaf and stem tissue. (B) 
Bursted galls release the melanized 
teliospores (arrow). 
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2.2 The lifecycle of U. maydis 
U. maydis is a phytopathogenic fungus that depends on its host plant maize to fulfill its lifecycle. The 

lifecycle can be divided into two phases, the saprophytic and biotrophic phase. In the saprophytic phase, 

cells are haploid and have a yeast-like growth (Fig 2.2A). On the plant surface, two haploid sporidia 

form conjugation tubes towards a pheromone gradient (Fig 2.2B), if both cells have compatible mating-

type loci (Banuett, 1995). Sensing of a compatible pheromone leads to cell cycle arrest in the G2 phase. 

(García-Muse et al., 2003; Sgarlata and Pérez-Martín, 2005). U. maydis enters the biotrophic phase of 

its lifecycle, after fusion of the conjugation tubes, that leads to the formation of the infectious dikaryon, 

which grows as a filament (Fig 2.2C). Plant penetration is mediated by developing the appressorium 

(Fig 2.2D), a specialized fungal infection structure (Snetselaar and Mims, 1993). 

 
Figure 2.2: Lifecycle of Ustilago maydis. (A) Haploid, heterothallic sporidia (B) Two sporidia with compatible 
mating-type loci forming a conjugation tube towards a pheromone gradient (C) Fusion of both sporidia led to the 
formation of the dikaryotic filament (D) Formation of the appressorium (E) Penetration of the plant surface and 
growth in planta (F) Proliferation and branching in planta (G) Spore formation and germination (modified after 
(Kämper et al., 2006; Heimel et al., 2010a)) 

During plant penetration, the plasma membrane of its host plant surrounds the invading hypha, which 

grows between the inter- and intracellular plant tissue (Fig 2.2E) (Snetselaar and Mims, 1993). The 

invagination of the plasma membrane creates an interaction zone between the fungus and the plant, 

where fungal secretion of effector proteins dampens the host's plant defense (Lanver et al., 2017). Only 

after successful penetration, the G2-cell cycle arrest is released and clamp cells are formed, which 

mediate the proper distribution of the two different nuclei during dikaryotic growth and ensure fungal 

proliferation in the host plant (Fig 2.2F) (Scherer et al., 2006). After massive proliferation and tumor 

induction, fungal hyphae undergo karyogamy and start to transform into diploid teliospores (Fig 2.2G) 

(Banuett and Herskowitz, 1996). The melanized teliospores are dispersed by wind, rain or insect vectors 

and germinate under suitable environmental conditions. After meiosis, haploid sporidia are released 

from the basidium by budding, and the life cycle starts all over again (Christensen, 1963). 
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2.3 The transcriptional network in U. maydis 
Cell recognition of two compatible sporidia, as well as fusion of both cells, is genetically controlled by 

the biallelic a-locus in U. maydis. Genes of the a mating-type locus that encode components for the cell-

cell recognition exist in the alleles a1 and a2. The a-locus contains the genes mfa1/2, encoding the 

pheromone Mfa (mating factor a) and pra1/2, encoding the pheromone receptor Pra (pheromone 

receptor a). Pheromone recognition during mating occurs when both sporidia possess different a-alleles. 

Thereby, the secreted lipopeptide mating factor is recognized by its cognate pheromone receptor of the 

other mating type (Bölker et al., 1992). Hence, formation of conjugation tubes is directed towards a 

pheromone gradient of the other mating type, which leads to the fusion of both conjugation tubes and 

subsequent formation of the dikaryotic filament (Spellig et al., 1994; Snetselaar et al., 1996). 

Furthermore, the signal cascade leads to activation of the b-locus via the transcription factor Prf1 

(Fig 2.4B) (Hartmann et al., 1996).  

The multiallelic b-locus in U. maydis controls the sexual and pathogenic development after fusion of 

two compatible sporidia. Its activation leads to a G2 cell cycle arrest that is released after plant infection 

as well as a downregulation of the a-pathway. In addition, activation of the b-locus is essential for the 

formation of the heterodikaryon and is crucial for the transition from the saprophytic growth to the 

biotrophic plant interaction (Schlesinger et al., 1997). The b-locus consists of two genes, bE (bEast) and 

bW (bWest), with a protein length of 473 AA and 644 AA, respectively (Fig 2.3A and B). Both genes 

are divergently transcribed by the same promoter (Fig 2.3A) and encoding for homeodomain proteins, 

unrelated in sequence (Gillissen et al., 1992). bE and bW can dimerize and form an active homeodomain 

transcription factor. However, dimerization only occurs, if both proteins originate from different alleles, 

leading to activation of the subsequent pathogenic development (Fig 2.3C). In contrast to the a-locus, 

which constitutes only two alleles, the b-locus consists of at least 19 different b alleles (J. Kämper, 

unpublished). The bE and bW proteins derived from different b alleles mainly differ in their N-terminal 

domains and intergenic spacer regions, which are highly variable (Fig 2.3B). DNA binding of bE/bW 

heterodimer is promoted by their homeodomain located in their conserved N-terminus, whereas their N-

terminal regions are necessary for dimerization of the heterodimer bE/bW (Kämper et al., 1995).  

Sexual and pathogenic development in U. maydis are tightly connected, and both controlled by a 

complex regulatory network of transcription factors. The generation of solopathogenic strains like CL13 

(a1 bW2/bE1) exploited the b-pathway by cloning compatible b-alleles into one strain. As a result, these 

strains enable plant infection without a mating partner, and gene deletion studies are effortless in haploid 

strains used for plant infection (Bölker et al., 1995). However, the virulence of the strain CL13 

significantly increased by introducing the mfa2 gene into the strain, to activate the pheromone signaling 

resulting in the commonly used SG200 (a1 mfa2 bW2/bE1) strain (Kämper et al., 2006). Moreover, the 

latter demonstrates that the interplay between both pathways is required to gain the full virulence of 

U. maydis during plant infection. 
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Formation of the bE/bW heterodimer leads to DNA binding of a conserved motif, b-binding site (bbs), 

in promoter regions of a small subset of b responsive genes (class 1 genes). Genes of class 1 are primarily 

involved in the regulation of further downstream targets (class 2 genes). However, 345 genes showed 

an altered expression upon complex formation of bE and bW. Moreover, most of these genes are 

important to establish the biotrophic phase, the cell cycle regulation and the polarized growth of the 

infectious filament (Urban et al., 1996; Heimel et al., 2010b).  

 
Figure 2.3: Schematic representation of the b-locus in U. maydis. (A) The multiallelic b-locus consists of two 
genes, bE (bEast) and bW (bWest), divergently transcribed by the same promoter. Arrows indicate transcriptional 
start site. Colors (blue and red) indicate different alleles. (B) Both proteins contain a homeodomain (HD) that 
promotes DNA binding. In contrast to the conserved, invariable C-terminus (C) of both proteins, the N-terminal 
domain has a high sequence variability (V) and is involved in dimer formation. Colors (blue and red) indicate 
proteins derived from different alleles. (C) Formation of the heterodimer only occurs, when b genes are derived 
from different b alleles. Minus (-) and plus (+) indicate “no interaction possible” or ”interaction possible”, 
respectively. Colors (blue and red) indicate proteins derived from different alleles (modified after (Brachmann et 
al., 2001)). 
 

However, the majority of class 2 genes lack a b-binding site in their promoter region that is found in 

promoters of class 1 genes. The central regulator of the b-dependent transcriptional cascade is rbf1 

(regulator of b-filament 1), a C2H2 zinc finger transcription factor, is part of the class 1 genes and is 

required for expression of around 90% of the b-regulated genes. b-dependent induction of Rbf1 is 

required for pathogenic development since deletion of rbf1 abolishes all b-mediated processes. The 

efficient formation of appressoria and the subsequent penetration of the leaf surface is mainly triggered 

by the zinc finger transcriptions factor Biz1, and the MAP kinase Kpp6, which are both induced by Rbf1 

(Heimel et al., 2010b).  

Another gene of the class 1 category is clp1 (clampless 1). Deletion of clp1 does not affect the growth 

of haploid cells, appressoria formation or plant invasion. However, after plant penetration, clp1 deletion 

strains are not able to form clamp cells and cannot proliferate in planta. clp1 has two predicted bbs 

motifs in its promoter and is one of the few directly b-regulated genes. clp1 is rapidly induced after 

formation of the b-heterodimer. However, the Clp1 protein is detectable only after appressoria 

formation, by enhanced protein stability of Clp1 via interaction with the regulator of the unfolded protein 
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response (UPR), Cib1 (Chapter 2.4.2). Clp1 then interacts with bW and Rbf1, which negatively 

interferes with the a and b-pathway (Fig 2.4C).  

 
Figure 2.4: Model of the transcriptional network of sexual and pathogenic development in U. maydis. (A) 
Cell recognition of two compatible sporidia mediated by a pheromone (Mfa)/receptor (Pra) system activates a 
MAPK signal transduction. Activation of this signal transduction triggers the transcription factor Prf1 that 
regulates genes of the a-locus, mfa and pra, as well as genes of the b-locus, bE and bW. In consequence, activation 
of the a-pathway leads to G2 cell cycle arrest and cell fusion of the pheromone-directed conjugation tubes. (B) 
Cell fusion of both sporidia leads to the formation of the dikaryotic filament, that is primarily controlled by the 
interaction of the compatible bE and bW homeodomain proteins, forming an active transcriptions factor. The 
master regulator of the pathogenic development, rbf1, is upregulated by bE/bW heterodimer. Induction of rbf1 is 
prerequisite for the establishment of the biotrophic phase, cell cycle regulation and polarized growth of the 
infectious filament (C) Expression of clp1 is induced after formation of the bE/bW heterodimer. However, the 
Clp1 protein is only detected after appressoria formation due to increased stability of the protein by binding of 
Cib1. Higher protein levels of Clp1 then lead to a downregulation of the a- and b-pathway by direct protein 
interaction with Rbf1 and bW, respectively. Repression of both pathways leads to the release of the cell cycle 
arrest the a- and b-pathway have established, which enables activation of further developmental processes (Heimel 
et al., 2010a; Heimel et al., 2013) 

Interaction of Clp1 with bW strongly affects the b-pathway by blocking all b-function. Furthermore, 

Clp1 interaction with Rbf1 represses the pheromone pathway, by reducing mfa1 and pra1 expression 

levels. Moreover, Clp1-mediated reduction of mfa1 expression levels leads to a downregulation of the 

b genes, since the a-pathway is required for expression of bE and bW. Hence, repression of both 

pathways also leads to a drastic downregulation of the complete signaling pathway, which is thought be 
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required for the release of the a- and b-mediated cell cycle arrest and necessary for the initiation of the 

further developmental programs after plant penetration. Since clp1 expression is regulated by the bE/bW 

heterodimer, this feedback regulation after plant penetration prevents complete suppression of the 

signaling pathway and establishes an oscillatory self-perpetuating regulatory network connecting cell 

cycle control to pathogenic development. (Scherer et al., 2006; Heimel et al., 2010a; Heimel et al., 

2013).  
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2.4 The Unfolded Protein Response (UPR) 
After filament formation and penetration of the plant surface, interaction between Clp1 and the central 

UPR regulator Cib1 increases the stability of the Clp1 protein. Thus, this interaction leads to the release 

of the b-dependent cell cycle arrest and promotes further development in planta. Moreover, the 

interaction between both proteins leads to elevated ER stress resistance, which might be crucial for 

efficient secretion of effector proteins in planta (Heimel et al., 2013).  

 

2.4.1 The UPR signaling pathways 
Most of the secreted and transmembrane proteins in eukaryotic cells enter the ER as unfolded 

polypeptides. Thus, these polypeptides are folded and post-translationally modified in the endoplasmic 

reticulum (ER) lumen. However, influx levels of pre-mature proteins can vary upon different 

developmental stages or environmental changes, affecting the physiological condition of the cell. To 

cope with an increased secretory demand, cells have to adapt to new conditions and restore the 

homeostasis of the ER. Thus, cells harbor control mechanisms that continuously monitor the protein-

folding status and adapt intracellular signaling pathways. Imbalances in demand for protein folding in 

the ER and protein-folding capacity leads to 

accumulation of unfolded or misfolded 

proteins in the ER (ER stress) and activation 

of the unfolded protein response (UPR) 

(Karagöz et al., 2019). The UPR plays a 

critical role in restoring the ER homeostasis, 

by preventing accumulation of potentially 

toxic proteins caused by an imbalanced 

protein-folding capacity of the ER. So far, 

three distinct branches of the UPR have been 

identified: The PERK (double-stranded 

RNA-activated protein kinase (PKR)-like 

ER kinase) and ATF6 (activating 

transcription factor 6) pathway, both only 

existing in metazoans, as well as the most 

conserved IRE1 (inositol-requiring enzyme 

1) pathway that is present from yeast to 

mammals (Mori, 2009). In metazoans, each 

branch is differently represented in different 

cell tissues. Activation of the PERK, ATF6 

or IRE1 pathway leads to the production of 

Figure 2.5: Schematic representation of UPR pathways 
compete with ER stress. The UPR pathways ATF6, PERK 
and IRE1 are activated upon ER stress to reestablish ER 
homeostasis. Activation of ATF6 and IRE1 increase the 
folding capacity of the ER, PERK and IRE1 decrease the level 
of proteins that enter the ER. All three UPR pathways can be 
found in metazoans. However, only the IRE1 pathway is 
conserved among all eukaryotes. Prolonged UPR activity 
activates cell’s apoptosis program (Walter and Ron, 2011). 
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the bZip transcription factors ATF4, ATF6(N) or XBP1 (X-box binding protein 1), respectively, and 

activate downstream UPR targets as homo- or heterodimers. UPR target genes are upregulated to 

decrease the load of proteins entering the ER (IRE1 and PERK) and increase the ER’s protein-folding 

capacity (IRE1 and ATF6). However, if cells cannot reestablish ER homeostasis and suffer from a 

prolonged UPR activity apoptosis is induced (Tabas and Ron, 2011; Hetz, 2012; Karagöz et al., 2019) 

(Fig 2.5).  

The best-studied and most conserved branch of the UPR among all eukaryotic cells is the Ire1 pathway 

(Fig 2.6). In S. cerevisiae, Ire1p is a single-pass ER transmembrane protein, consisting of a kinase and 

nuclease domain at its cytoplasmic region and an ER luminal domain of Ire1p that senses unfolded or 

misfolded proteins. Binding of un- or misfolded proteins leads to oligomerization and trans-

autophosphorylation of Ire1p accompanied by a conformational change of its protein structure. 

Oligomerization and structural changes of Ire1 facilitate activation of its RNase domain, which catalyzes 

unconventional splicing of the HAC1 mRNA (Gardner and Walter, 2011). The unconventional splicing 

event is highly specific, since Ire1p only excising the intron out of the mRNA that encodes the UPR 

transcription factor XBP1 in metazoans (Yoshida et al., 2001) and hac1 (homologous to ATF/CREB 1) 

in yeast (Cox and Walter, 1996; Gonzalez et al., 1999). The spliced HAC1 mRNA (HAC1i) is translated 

into the active Hac1p bZip transcription factor that directly binds to the cis-acting UPR element (UPRE) 

in promoters of UPR-target genes (Mori et al., 1996). The UPR can be induced by physiological ER 

stress inducers such as the overexpression of steady misfolded proteins (Oyadomari et al., 2002) or heat 

stress (Li et al., 2018). Moreover, the UPR can be activated by pharmaceutical ER stress inducers such 

Figure 2.6: Sensing of unfolded proteins 
via the Ire1 pathway. The Ire1 pathway is 
the most conserved UPR pathway among all 
eukaryotes. Ire1 is an ER residing 
kinase/endoribonuclease, which senses 
unfolded proteins with its luminal domain. 
Upon ER stress, Ire1 oligomerizes and trans-
autophosphorylates, that activates its RNase 
domain and the ability to unconventional 
splice mRNAs. Thus, unconventional 
splicing of Ire1 is highly specific and solely 
splicing the mRNA of the UPR 
transcriptions factor XBP1, encoding for the 
active transcription factor XPB1s in higher 
eukaryotes, that activates downstream UPR 
target genes. XBP1s binds a conserved 
consensus UPR element (UPRE) in 
promoters of UPR target genes. However, 
active Ire1 participates in unspecific mRNA 
decay (RIDD) of ER-bound mRNA, that 
supports the UPR by lowering the protein 
levels entering the ER (modified after 
(Dillin, 2014)). 
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as tunicamycin (TM) or dithiothreitol (DTT). Treatment of cells with tunicamycin inhibits N-linked 

glycosylation of proteins in the ER, by blocking an initial step of glycoprotein biosynthesis, which leads 

to accumulation unfolded glycoproteins. In contrast to tunicamycin, the reducing agent dithiothreitol, 

inhibits the cellular disulfide-bond formation of synthesized proteins, leading to an increase of misfolded 

proteins in the cytosol (Oslowski and Urano, 2011). 

Downstream targets of UPR are involved in regulating cell wall biogenesis, lipid biosynthesis, ER-

associated degradation (ERAD) and the formation of an enlarged ER (Reimold et al., 2001; Travers et 

al., 2000; Sims et al., 2005; Guillemette et al., 2013). In some organisms, IRE1 is also involved in a 

process called regulated Ire1-dependent decay (RIDD). Here, the active RNase domain of IRE1 

unspecifically degrades ER-bound mRNAs under ER stress conditions and by that, indirectly reduces 

the levels of proteins entering the ER (Hollien et al., 2009).  

 

2.4.2 The UPR in U. maydis 
The UPR is a conserved virulence determinant in various human and plant pathogenic fungi such as 

Aspergillus fumigatus (Richie et al., 2009), Cryptococcus neoformans (Cheon et al., 2011), Alternaria 

brassicicola (Joubert et al., 2011) as well as Ustilago maydis (Heimel et al., 2010a; Heimel et al., 2013). 

The master regulator of the UPR in U. maydis is Cib1 (Clp1 interacting bZip 1). Cib1 was initially 

identified as a Clp1-interacting protein, revealing a direct connection between the UPR and control of 

pathogenic development (Heimel et al., 2010a). Deletion of cib1 results in a block of pathogenic 

development after plant infection and increased expression of pathogenesis-related plant genes in maize. 

Expression of Clp1 alters the UPR and results in a dramatically increased ER stress tolerance. However, 

in contrast to initial expectations expression levels of cib1 and the UPR target gene bip1, an ER 

chaperone were reduced by Clp1, suggesting that Clp1 modulation counteracts a hyperactive UPR 

(Heimel et al., 2013).  

Moreover, the physical interaction between Cib1 and Clp1 leads to increased protein stability of Clp1. 

In consequence, the Cib1-mediated stabilization promotes accumulation of Clp1, which, in turn, reduces 

b-gene expression through the interaction between Clp1 and bW and Rbf1 (Chapter 2.3). Hence, UPR 

induction supports the release of the b-dependent G2 cell cycle arrest and promotes proliferation in 

Figure 2.7: Model of the 
developmental switch initiated by 
the UPR. An active UPR leads to 
reduced b-gene expression and release 
of the G2 cell-cycle arrest, by 
increased Clp1 stability via interaction 
with Cib1. Thus, proliferation in planta 
is initiated. Physical interaction of both 
proteins leads to a higher ER stress 
tolerance by counteracting a 
hyperactive UPR (modified after 
Heimel et al. (2013)). 
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planta. Thereby, the interaction between Cib1 and Clp1 might coordinate sexual and pathogenic 

development with proliferation in planta (Heimel et al., 2013) (Fig 2.7). 

Recent studies indicate that the UPR is involved in the effector secretion of U. maydis. In general, 

effectors are secreted proteins by pathogens, which target the hosts to modulate their physiology. This 

can be achieved by either avoid detection of the pathogen from the host’s defense or to suppress the host 

defense responses (Jonge et al., 2011). In U. maydis, an in silico prediction of UPR elements (UPRE) 

in promoter regions of 385 predicted effector genes without an enzymatic function, revealed that 76 

genes without UPR-related function harboring a UPRE in their promoter. However, only two of the 

tested genes, tin1-1 and pit2, had an UPR-dependent induction under different ER stress conditions. The 

effector gene pit2 encoding a cysteine protease inhibitor preventing salicylic acid-induced cell death in 

planta (Doehlemann et al., 2011). Deletion of the identified UPRE significantly reduced the virulence 

of deletion mutants. Moreover, protein levels of Pit2 increased upon ER stress and processing of pre-

mature Pit2 prior to secretion is a UPR dependent process (Hampel et al., 2016). The effector gene tin1-

1 is part of effector gene cluster 19A and is upregulated during later time points of in planta growth. In 

contrast to pit2, deletion of a sub-cluster comprising tin1-1 had only a minor effect on virulence (Brefort 

et al., 2014). Moreover, the ER co-chaperone Dnj1 is upregulated in a cib1-dependent manner and is 

required for secretion of the effector Cmu1 (chorismate mutase 1) under ER stress conditions (Lo Presti 

et al., 2016). The UPR in U. maydis is thought to support effector secretion by upregulation of specific 

effector genes as well as modulation of effector production and modification. This would decrease the 

load of misfolded or unfolded proteins in the ER during effector secretion, which redirects cellular 

energy resources to establish a biotrophic interaction with the plant (Hampel et al., 2016). 

  



Introduction 
 

 
14 

2.5 Signal Peptide Peptidases 
Signal peptide peptidases (SPP) and their close relatives, the signal peptide peptidase-like proteases 

(SPPLs), are members of the aspartyl intramembrane-cleaving proteases (I-CLiPs). These SPP/SPPLs 

were initially identified as homologs to presenilin proteases (PSEN) in the human genome. In the past 

two decades, however, SPP/SPPLs were shown to be present in all studied eukaryotes including fungi, 

plants, and animals (Ponting et al., 2002; Weihofen et al., 2002; Grigorenko et al., 2002). Interestingly, 

SPPs have an inverted topology compared to the distantly related PSENs. Therefore, SPP cleavage only 

occurs in membrane proteins with a type II orientation compared to PSENs, which are only processing 

type I oriented transmembrane proteins (McLauchlan et al., 2002; Weihofen et al., 2002). SPPs are ER 

membrane-localized proteins harboring several transmembrane domains (TMD) (Weihofen et al., 

2003). Embedded in TMDs are the characteristic YD and GxGD motifs, representing the proteolytic 

center for intramembrane-cleaving and the QPALLY motif of unknown function (Fig 2.8).  

 
Figure 2.8: Schematic representation of the SPP/SPPL domain topology and substrate processing. SPP and 
SPPL are multi-pass ER intramembrane proteases cleaving leftover signal peptides in the ER. Substrates of 
SPP/SPPL require a type II orientation in the ER membrane (C-Terminus in the ER lumen). All SPP/SPPL family 
members are predicted to consist of 9 TMDs, a conserved YD (TMD6) and GxGD (TMD7) motif within their 
catalytic center as well as conserved QPALLY motif embedded in TMD9. In general, initial processing of the 
precursor protein by the signal peptidase (1) is required for the final intramembrane cleavage of the signal peptide 
(2). Substrate is depicted in purple (modified after (Voss et al., 2013)). 

In general, SPPs cleave leftover signal sequences in the ER membrane after processing of the precursor 

protein by cleavage of a signal peptidase (SP) (Fig 2.8). Thus, SPP cleavage promotes the release of the 

signal peptide cleavage products and supports the maintenance of the ER homeostasis (McLauchlan et 

al., 2002; Golde et al., 2009; Lemberg and Martoglio, 2004). In addition, it was shown that SPP is 

involved in escorting misfolded proteins for degradation via its substrate binding site (Lee et al., 2010). 

Moreover, in vitro studies of the human SPP showed, that SPP is also involved in the generation of 

epitopes via signal peptide processing. In contrast to the more prevailing proteasome-dependent pathway 

of MHC class I epitope production, this pathway represents an alternative route for the generation of 

these molecules (Lemberg et al., 2001).  
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In various organisms, SPPs are involved in pathogenic development. In Aspergillus nidulans and 

Aspergillus fumigatus, SppA supports fungal pathogenesis by cleavage of SrbA, a decisive factor for 

hypoxia adaptation (Bat-Ochir et al., 2016). In the malaria parasite Plasmodium falciparum, PfSPP plays 

a critical role during the intraerythrocytic development of the human pathogen by the preservation of 

ER homeostasis (Baldwin et al., 2014). Furthermore, SPP was also described in the maturation process 

of the hepatitis C virus (HCV), whereby the HCV polyprotein is cleaved within the ER, allowing for the 

liberation of the core protein, which is necessary to constitute the viron capsid (McLauchlan et al., 2002). 

By contrast, the role of SPPs during pathogenesis of plant-infecting fungi has not been addressed, yet. 

 

2.6 Aim of this study 
The UPR is a highly conserved signaling pathway to ensure ER homeostasis under situations of 

increased demands on the secretory pathway, termed ER stress. Recent studies revealed that the UPR is 

a critical virulence determinant in various human and plant pathogenic fungi. In particular, a crosstalk 

between the UPR and pathogenic development was shown in Ustilago maydis. The bZip transcription 

factor Cib1 is the master regulator of the UPR in U. maydis and was initially identified as an interaction 

partner of the developmental regulator Clp1. The interaction between Clp1 and Cib1 modulates the UPR 

output to counteract a hyperactive UPR (Heimel et al., 2013; Heimel et al., 2010a). The aim of this 

study is, to gain a genome-wide view of the Clp1-dependent modulation of the UPR and to examine 

how the crosstalk between the UPR and developmental control pathway is accomplished. Furthermore, 

insight into the transcriptional regulation of an active UPR during Clp1 expression may reveal novel 

pathogenicity factors in U. maydis. 
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3 Results 
In Ustilago maydis, the unfolded protein response is tightly linked to the b-dependent signaling cascade 

that controls pathogenic development. Clp1, a decisive factor for pathogenic development, directly 

interacts with bW and the master regulator Rbf1, which negatively regulates the b-dependent gene 

expression. This releases the b-dependent cell cycle arrest and promotes proliferation in planta. Clp1 is 

a direct target of the bE/bW heterodimer and expression of clp1 mRNA is detectable early after 

formation of the b-heterodimer. However, the Clp1 protein is detectable only after plant penetration 

(Heimel et al., 2010a). In addition, Clp1 physically interacts with the central UPR regulator Cib1, by 

which Clp1 protein stability and ER stress resistance are increased. Plant-specific expression of effector 

genes results in high demand for protein secretion, leading to ER stress and activation of the UPR. UPR 

activation is facilitated by Ire1-dependent unconventional splicing of the cib1 mRNA resulting in the 

active bZIP transcription factor Cib1. The interaction between Clp1 and Cib1 affects the transcriptional 

output of the UPR and by this prevents deleterious UPR hyperactivation (Heimel et al., 2013).  

 

3.1 Functional consequences of the interaction between Cib1 and Clp1 
Expression of Clp1 leads to increased ER stress resistance, which is dependent on the physical 

interaction between Clp1 and Cib1 and thought to protect cells against hyperactivation of the UPR 

during extended UPR activation in planta (Heimel et al., 2013). U. maydis strains JB1 (WT) and 

UVO151 (Pcrg:clp1) (Scherer et al., 2006) were spotted on solid medium containing different 

concentrations of the ER stressor tunicamycin (TM), an inhibitor of N-glycosylation, to examine ER 

stress resistance during Clp1 induction. The strain UVO151, a derivative of JB1 (a1∆b), harbors the 

construct Pcrg:clp1 in the ip locus (Chapter 5.4.2). In this strain, clp1 can be expressed with the help of 

the arabinose-inducible crg1 promoter (Bottin et al., 1996). On solid medium containing low TM 

concentrations no obvious growth differences between WT and Pcrg:clp1 strains were apparent. (Fig 3.1, 

center panel). By contrast, on solid medium containing high TM concentrations, strain UVO151 

(Fig 3.1, Pcrg:clp1) showed increased ER resistance in comparison to the wildtype strain JB1 (Fig 3.1, 

WT, right panel). This indicates that clp1 expression leads to elevated ER stress resistance in U. maydis.  
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Figure 3.1: Induction of Clp1 during ER stress increases ER stress tolerance. ER stress assay of U. maydis 
strain JB1 (WT) and derivatives. Strains were grown in YEPSlight liquid medium to an OD600 of 1. Cells were 
washed once in YNB liquid medium and serial 10-fold dilutions were spotted on YNB solid medium supplemented 
with 1% (w/v) arabinose (YNBA) to induce the crg1 promoter-driven expression of clp1. Plates were 
supplemented with TM as indicated to activate the UPR and were incubated 48 h at 28°C. ∆cib1 served as a 
positive control for ER stress. 

 

3.1.1 Fluorescence microscopy of Cib1-GFP strains revealed Clp1-

dependent impact on subcellular localization of the fusion protein 
Previous analyses have shown that the bZIP transcription factor Cib1 is localized in the nucleus of 

U. maydis when the UPR is activated (Heimel et al., 2013). To test the influence of Clp1 expression on 

the subcellular localization of the Cib1-GFP fusion protein, cells were treated with TM to activate the 

UPR and subsequently produce the active UPR regulator Cib1-GFP. A clear fluorescence signal was 

observed in the nucleus after 4 hours of UPR induction. Moreover, cells in which clp1 was induced, 

showed an additional and strong fluorescence signal in the cytoplasm compared to wildtype strain (Fig 

3.2), indicating a Clp1-dependent alteration of subcellular Cib1 localization. 

 
Figure 3.2: Cib1-GFP localization is altered upon Clp1 induction. The strains JB1cib1-GFP (WT) and 
UVO151cib1-GFP (Pcrg:clp1) were grown in liquid complete medium (CM) supplemented with 1% (w/v) glucose 
(CMG) to an OD600 of 0.8 to 1. Cells were subsequently shifted to CM medium supplemented with 1% (w/v) 
arabinose (CMA) to induce the crg1 promoter-driven gene expression of clp1 and were treated 4 h at 28°C with 
TM (5 µg/ml f.c.) to activate the UPR. Strains expressing Clp1 upon ER stress showed an additional and strong 
cytoplasmic GFP signal. DIC = differential interference contrast. Exposure time of GFP channel was set to 500 ms. 
Scale bar = 10 µm. 
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3.1.2 Induced expression of Clp1 leads to increased abundance of Cib1 

protein and decreased cib1s transcript levels 
The interaction between Clp1 and Cib1 results in an increased ER stress resistance (Heimel et al., 2013; 

Heimel et al., 2010a). The strains JB1cib1-GFP (WT) and UVO151cib1-GFP (Pcrg:clp1) were grown 

in CMG to an OD600 of 0.35, to examine the impact of Clp1 expression on Cib1 protein and cib1s 

transcript levels. Subsequently, cells were shifted to CMA to induce clp1 expression and were treated 4 

h at 28°C with TM to activate the UPR. During clp1 induction (Fig 3.3A, Pcrg:clp1), increased Cib1 

protein levels were observed in comparison to the wildtype. Moreover, a higher migrating band is visible 

in the wildtype strain, suggesting a post-translational modification of the protein (Fig 3.3A, WT). In 

contrast to the increased protein levels of Cib1-GFP, cib1s transcript levels were significantly lower 

during Clp1 expression (Fig 3.3B, Pcrg:clp1, P-value ≤ 0.001) compared to the wildtype strain (Fig 3.3B, 

WT). This indicates that a post-transcriptional mechanism controls the abundance of Cib1 in a Clp1-

dependent manner. Thus, the increased protein levels of Cib1 and the decreased cib1s expression raise 

the question, whether an enhanced translation of the cib1s mRNA or increased Cib1 protein stability 

leads to this result. 

 
Figure 3.3: Western hybridization of Cib1-GFP and qRT-PCR of cib1s in dependency of Clp1 expression. 
(A) The strains JB1cib1-GFP (WT) and UVO151cib1-GFP (Pcrg:clp1) were grown in liquid CMG to an OD600 of 
0.35 and subsequently shifted in CMA to induce the crg1 promoter-driven gene expression of clp1. Cells were 
treated 4 h at 28°C with TM (5 µg/ml f.c.) for UPR activation. Samples were resolved by SDS-PAGE (10%) and 
analyzed by Western hybridization. For detection of the Cib1-GFP fusion protein, a GFP specific antibody was 
used. Cib1-GFP levels are increased in strains expressing clp1 in comparison to the WT control. Ponceau S stained 
bands were used as a loading control. (B) Strains and growth condition were the same as described in (A). cib1s 
transcript levels were analyzed by qRT-PCR. Expression of cib1s is significantly decreased (P-value ≤ 0.001) in 
strains expressing Clp1. eIF2b (UMAG_04869) was used for normalization. The experiment was performed in 
three biological replicates with two technical replicates, each. Error bars represent the standard deviation of the 
mean of the biological replicates (SD). 
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3.1.3 Clp1 expression increases Cib1 protein stability 
Physical interaction between Cib1 and Clp1 leads to accumulation and increased stability of Clp1 

(Heimel et al., 2013). A cycloheximide chase assay (CHX), as well as a doxycycline (DOX)-based 

promoter shut-off assay (Zarnack et al., 2006) were performed, to examine the influence of clp1 

expression on Cib1 stability. The strains JB1cib1-GFP and UVO151cib1-GFP in the CHX experiment, 

and JB1-PtetO:cib1-GFP and UVO151-PtetO:cib1-GFP in the DOX experiment were grown in CMG to 

an OD600 of 0.35. Subsequently, cells were shifted to CMA to induce clp1 expression and were treated 

4 h at 28°C with TM to activate the UPR. After 4 hours of clp1 induction and UPR activation, 

cycloheximide or doxycycline was added to the culture to inhibit protein synthesis or stop expression of 

cib1 mRNA, respectively. Cib1-GFP levels were monitored over time and were quantified relative to 

T0 (Fig 3.4A and 3.4B). In the cycloheximide chase assay, protein stability of Cib1 was significantly 

increased (P ≤ 0.05) after 60 minutes (T60) of clp1 induction compared to WT control (Fig 3.4A). This 

observation was as well confirmed in the promoter shut-off assay with DOX. A significant increase of 

Cib1-GFP protein stability in the Pcrg:clp1 strain was observed 1 hour (T1, P ≤ 0.05), 2 hours (T2, P ≤ 

0.01), 3 hours (T3, P ≤ 0.01) and 4 hours (T4, P ≤ 0.05) after DOX treatment compared to the WT (Fig 

3.4B). Both results demonstrate that Cib1-GFP is stabilized upon Clp1 expression. 
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Figure 3.4: Clp1 expression increases 

Cib1-GFP protein levels. (A) For the 
cycloheximide chase assay, the strains JB1cib1-
GFP and UVO151cib1-GFP were 
exponentially grown in CMG and shifted to 
CMA liquid medium to induce clp1 expression 
and were treated with TM (5 µg/ml f.c.) to 
activate the UPR for 4 h at 28°C. After 4 h, 
100 µg/ml CHX was added to inhibit protein 
synthesis. Samples were taken before (T0), and 
after 30 min (T30), 60 min (T60) and 90 min 
(T90) of CHX treatment. Protein extracts were 
separated by SDS-PAGE (8%) and analyzed by 
Western hybridization with a GFP specific 
antibody. Ponceau S stained membranes served 
as a loading control and were used for 
normalization of protein levels. ImageJ was 
used for calculation of protein levels relative to 
T0. Depicted values represent the mean of three 
biological replicates. Error Bars represent the 
standard error of the mean (SEM). Statistical 
significance was calculated using Student’s t-
test. *P-value ≤ 0.05. (B) For the doxycycline-
based promoter shut-off assay the strains JB1-
PtetO:cib1-GFP and UVO151-PtetO:cib1-GFP 
were grown as described in (A). After 4 h UPR 
induction and clp1 expression, 10 µg/ml DOX 
was added to shut-off gene expression of cib1-
GFP. Samples were taken before (T0), and after 
1 h (T1), 2 h (T2), 3 h (T3) and 4 h (T4) of DOX 
treatment. Protein extracts were separated by 
SDS-PAGE (8%) and analyzed by Western 
hybridization with a GFP specific antibody. 
Ponceau S stained membranes served as a 
loading control and were used for normalization 
of protein levels. ImageJ was used for 
calculation of protein levels relative to T0. 
Depicted values represent the mean of three 
biological replicates. Error Bars represent the 
SEM. Statistical significance was calculated 
using Student’s t-test. *P-value ≤ 0.05 and **P-
value ≤ 0.01. 
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3.1.4 Cib1 is a phosphoprotein and phosphorylation is reduced in strains 

expressing Clp1 
In western hybridization experiments detecting Cib1-GFP, a higher migrating protein band was 

specifically detected in the wildtype but not the clp1 expressing strain (Figure 3.3A, 3.4A and 3.4B, 

WT). This observation might be the result of post-translational modification of the protein. A λ-

phosphatase assay was performed, to test whether Cib1 is modified by phosphorylation. Strains JB1cib-

GFP (WT) and UVO151cib1-GFP (Pcrg:clp1) were grown under the UPR-inducing conditions as 

described in chapter 3.1.2. The Cib1-GFP fusion protein was pulled down with magnetic agarose GFP-

trap beads and was treated with λ-phosphatase while Cib1-GFP was still bound to the beads. Phosphatase 

inhibitor was added to inhibit the λ-phosphatase as indicated. In samples obtained from the WT strain, 

a higher migrating band is observable compared to samples from the Pcrg:clp1 strain without λ-

phosphatase treatment (Fig 3.5, lane 1 vs. lane 4). However, the blurred and higher migrating protein 

band in the WT focalized to a distinct lower migrating protein band after addition of λ-phosphatase (Fig 

3.5, lane 1 vs. lane 2), which is similar to the untreated conditions once the phosphatase inhibitor was 

added (Fig 3.5, lane 1 vs. lane 3). In contrast to this observation, almost no change of protein band 

migration can be observed between conditions with clp1 expression. Moreover, the protein bands are 

located on a similar height as in the treated wildtype strain with the inhibited phosphatase (Fig 3.5, lane 

2 vs. lane 4, 5 and 6). This indicates that the clp1-dependent protein band migration of Cib1 is caused 

by phosphorylation of the protein. 

 
Figure 3.5: Altered phosphorylation of Cib1-GFP by expression of clp1. Western hybridization of Cib1-GFP 
after λ-phosphatase treatment. Protein extracts were prepared from the strains JB1cib1-GFP (WT) and 
UVO151cib1-GFP (Pcrg:clp1). Growth conditions and treatment with TM were identical as described in chapter 
3.1.1. The Cib1-GFP fusion protein was pulled down using magnetic agarose (MA) GFP-trap beads (Chromotek) 
and phosphatase treatment with λ-phosphatase (λ-PP, NEB) was performed on beads. Phosphatase inhibitor (PI) 
was used to inhibit λ-phosphatase function. For detection of the Cib1-GFP fusion protein, a GFP specific antibody 
was used. The assay was performed in three biological replicates.  
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3.1.5 LC-MS analysis confirms Cib1 phosphorylation and reveals altered 

phosphorylation patterns upon Clp1 expression 
A NetPhos-3.1 (Blom et al., 1999) analysis of the Cib1 protein sequence was performed to predict 

potential serine, threonine or tyrosine phosphorylation sites (Fig 3.6B). NetPhos predicted 68 serines, 

18 threonines and 3 tyrosines as potential phosphorylation sites in the Cib1 protein with a threshold 

value of 0.5 (scale from 0 to 1) (Figure 3.6B, gray line). Moreover, a liquid chromatography mass 

spectrometry (LC-MS) assay was performed, to examine potential phosphorylation sites of Cib1 in 

presence and absence of Clp1. Strains JB1 cib1-GFP (WT) and UVO151 cib1-GFP (Pcrg:clp1) were 

grown as described in chapter 3.1.2. GFP-trap enrichment of Cib1-GFP was performed from cell lysates 

of both strains. Immunoprecipitated Cib1-GFP was resolved on an SDS-PAGE and an excised, 

Coomassie-stained Cib1-GFP band (Appendix Fig 7.5) was used for in-gel trypsin digestion. 

Subsequently, eluted peptide samples were submitted to LC-MS analysis for phosphopeptide 

identification with the targeted selected ion monitoring (tSIM) method.  

Table 3.1: Identified phosphosites of Cib1-GFP by LC-MS analysis. Ratios of the peptide spectrum 

match (PSM) values between Pcrg:clp1 and WT were calculated for each identified phosphopeptide. 

position Sequence phosphosite 

Pcrg:clp1 vs. WT 
(n=3) 
[ratio] 

SD 
[+/-] 

2 – 31 TSTTTSTPPMFAVAQASTPSSPSAFASSSR Ser22 1.40 0.44 

32 - 55 LSETPVKQETHHIALADACSNSSK Ser33 0.90 0.25 

369 - 401 TAAQDQGAPTSATPSEPVSVGEGYAAAAGNALR Thr381 0.73 0.12 

462 - 475 RFQLLTSPLLATER Ser468 0.67 0.10 

 

In this approach, four different phosphopeptides could be identified (Table 3.1), which were present in 

wildtype (WT) and clp1 expressing conditions (Pcrg:clp1). Single phosphosites within these 

phosphopeptides are highlighted in red (Table 3.1). Two out of four identified phosphopeptides are 

derived from the N-terminal region of the protein (Table 3.1 and Fig 3.6A, Ser22 and Ser33), and two 

from the C-terminal region of the Cib1 (Table 3.1 and Fig 3.6A, Thr381 and Ser 468). The Ser468 

phosphosite is located in the previously (Heimel et al., 2013) identified Clp1 interaction domain 

(Fig 3.6A, Clp1-ID) and is predicted by the NetPhos analysis to be phosphorylated by a p38 mitogen-

activated protein kinase (prediction score (ps): 0.572). For the phosphosites Ser22 (ps: 0.984), Ser33 

(ps: 0.994) and Thr381 (ps: 0.931) no specific kinase was predicted by NetPhos (Appendix Table 1). 
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Figure 3.6: Schematic overview of Cib1 domains and putative phosphosites. (A) Schematic representation of 
Cib1 domain structure. The protein consists of the basic leucine zipper domain (bZip, blue box, 63AA) and the 
recently identified (Heimel et al., 2013) Clp1 interaction domain (Clp1-ID, green box, 140AA). Identified 
phosphosites by LC-MS analysis (Table 3.1) are depicted as yellow stars. The total length of the protein is 574AA. 
(B) Potential phosphorylation sites identified by the NetPhos-3.1 analysis (Blom et al., 1999). Y-axis is 
representing the prediction score of possible phosphorylation, whereas the x-axis is representing the sequence 
position within the Cib1 sequence. Phospho-serines, phospho-threonines and phospho-tyrosines are depicted in 
blue, red and yellow bars, respectively. The threshold of the prediction score for positive phosphosites prediction 
was 0.5 (gray line). 

In addition, the usage of the label-free quantification (LFQ) method for LC-MS analysis is an alternative 

approach for comparative quantification of proteins (Patel et al., 2009). To only scan masses of specified 

phosphopeptides, the measurement was performed in the tSIM mode. This enables a quantitative 

comparison of Cib1-GFP phosphopeptides between wildtype (WT) and clp1 expressing (Pcrg:clp1) 

conditions.  

Ratios of the PSM values between both strains and of each identified phosphopeptide were calculated 

(Table 3.1). Therefore, values above 1 representing a higher PSM count in wildtype (WT) compared to 

the clp1 expressing condition (Pcrg:clp1). Ratios were normalized to non-phosphorylated reference Cib1-

derived peptides in both samples. Among the identified phosphosites depicted in Table 3.1, Ser22 (ratio 

1.40 +/- 0.44) was higher phosphorylated and Thr381 (ratio 0.73 +/- 0.12) as well as Ser468 (ratio 0.67 

+/- 0.10) were less phosphorylated upon clp1 induction. Phosphorylation of Ser33 (ratio 0.90 +/- 0.25) 

was similar between wildtype and clp1 expressing conditions. Since Thr381 and Ser468 were less 

phosphorylated upon Clp1 induction and both phosphosites are located near or in the Clp1 interaction 

domain of Cib1, respectively, this may indicate that Clp1 has a protective effect on the phosphosites 

during interaction with Cib1. 
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To examine, if the newly identified phosphorylation sites Thr381 and Ser468 of Cib1 are involved in 

pathogenicity of U. maydis, phosphomimetic and phospho-null mutations in the solopathogenic haploid 

strain SG200 were generated. By site-directed mutagenesis the cib1 coding sequence was altered to 

replace amino acid residues Thr381 and Ser468 by alanine (T381A or S468A) and prevent 

phosphorylation at these sites, generating strains SG200cib1T381A-GFP and SG200cib1S468A-GFP. To 

mimic phosphorylation, site-directed mutagenesis of the cib1 coding sequence was used to replace 

amino acid residues Thr381 and S468 with glutamic acid (T381E or S468E), to generate the strains 

SG200cib1T381E-GFP and SG200cib1S468E-GFP. In addition, double mutants were generated in which 

both phosphomimic or phospho-null mutations were combined, generating the strains 

SG200cib1T381A/S468A-GFP and SG200cib1T381E/S468E-GFP. Virulence of the generated strains was 

examined in a plant infection assay. Strains were inoculated into 7-day-old maize seedlings and disease 

symptoms were rated 8 days after inoculation (dpi). However, the mutant strains were not impaired in 

virulence compared to wildtype (Fig 3.7). This indicates that the identified phosphosites Thr381A and 

Ser468A are not involved in pathogenicity.  

 
Figure 3.7: Phosphomutations of Cib1 had no impact on pathogenicity. U. maydis strain SG200 (WT) and 
derivatives were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 d after inoculation 
and grouped into categories depicted on the right side. n represents the number of inoculated plants in a single 
infection experiment. No major change in virulence could be observed. 

3.2 Consequences of Clp1 expression on UPR gene regulation 
The impact of clp1 expression on UPR gene regulation was previously investigated for a subset of 

known UPR target genes (Heimel et al., 2013). To identify a set of Cib1 regulated UPR core genes and 

to study the transcriptional changes by Clp1 on UPR target gene expression on a genome-wide level, a 

transcriptome analysis (RNAseq) was performed. To identify alterations of the DNA binding specificity 

of Cib1 upon clp1 induction, a comparative chromatin immunoprecipitation sequencing assay (ChIPseq) 

was performed. The ChIPseq analysis revealed novel UPR elements (UPRE) in cib1 regulated genes of 

U. maydis. 
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3.2.1 RNAseq analysis identifies a set of UPR core genes 
To identify genes upregulated during UPR stress, an RNAseq analysis was performed with RNA 

extracted from strains grown under ER stress induction. Strains JB1 (WT), JB1∆cib1 (∆cib1) and 

UVO151 (Pcrg:clp1) were grown in the minimal liquid medium, YNB, supplemented with 1% glucose 

(w/v) to an OD600 to 0.25 and subsequently shifted to YNB liquid medium containing 1% arabinose 

(w/v) to activate the crg1 driven gene expression. Cells were treated with TM for 4 hours at 28°C. 

Prepared RNA was submitted for library construction and subsequent sequencing in the single-end 

mode. Raw RNAseq reads were aligned using the STAR software (Dobin et al., 2013). Reads per million 

(RPM) were calculated and differential gene expression was analyzed with DESeq2 (Love et al., 2014) 

using an FDR threshold of 0.05 and a log2 fold change (log2FC) threshold of 2 (list with log2FC ≥ 1 in 

Appendix Table 2).  

For identification of UPR core genes, log2 fold-changes of gene expression of the strains WT, WT +TM 

and ∆cib1 +TM were compared with each other. Comparison between WT and WT +TM should reveal 

genes (if log2FC ≥ -/+ 2), which are differentially regulated upon ER stress. In contrast, the comparison 

between WT +TM and ∆cib1 +TM should reveal genes (if log2FC ≥ -/+ 2), which are differentially 

regulated in the WT strain upon ER stress induction and exclude genes, which are unspecifically 

regulated by TM induced ER stress in the ∆cib1 strain. The first comparison (Fig 3.8, WT vs. WT +TM, 

blue circle) revealed that of 204 differentially expressed genes, 103 genes were upregulated, whereas 

101 genes were downregulated upon ER stress. The second comparison (Fig 3.8, WT +TM vs. ∆cib1 

+TM, yellow circle) revealed that of 381 differentially expressed genes, 217 genes were upregulated 

and 164 genes were downregulated during UPR activation. Both sets were used to generate an 

intersection (Fig 3.8, overlap), which shared a total of 115 differentially regulated genes. 65 of these 

genes were upregulated, whereas 50 genes were downregulated during UPR activation (Fig 3.8, 

overlap).  

 
Figure 3.8: RNAseq analysis identified UPR core genes in U. maydis. Venn diagram shows the intersection of 
differentially regulated genes of WT compared with WT+TM (blue circle) and WT +TM compared with WT∆cib1 
+TM (yellow circle). Depicted numbers represent differentially regulated genes (log2FC ≥ -/+2). Both sets share 
115 genes (overlap), of which 65 genes were upregulated (red text) and 50 downregulated during UPR activation. 
Upward and downward arrows indicate upregulation and downregulation, respectively. A complete list of filtered 
UPR core genes (log2FC ≥ -/+2 and ≥ -/+1) can be found in Appendix Table 2.  
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The 65 identified upregulated UPR core genes were further analyzed using the functional catalog of the 

MIPS database (http://mips.helmholtz-muenchen.de/funcatDB) to analyze enrichment of the genes in 

specific functional categories. Genes are enriched in the functional categories “protein fate (folding, 

modification, destination)” (P-value ≤ 0.001, 22 genes), “protein binding” (P-value ≤ 0.05, 21 genes), 

“cellular transport, transport facilities and transport routes” (P-value ≤ 0.01, 20 genes) and “unfolded 

protein response (e.g. ER quality control)” (P-value ≤ 0.001, 8 genes). The complete FunCat analysis 

can be found in Appendix Table 4. Taken together, the 65 UPR core genes are upregulated during ER 

stress in strains with a functional cib1 expression (Fig 3.8) and enriched in functional categories with an 

ER and UPR-related function (Fig 3.9). This might indicate that the UPR core genes contribute to 

restoring the ER homeostasis and/or are involved in pathogenicity of U. maydis as virulence factors. 

Therefore, the identified set of UPR core genes were subjected to further analyses. 

 
Figure 3.9: UPR core genes are enriched in functional categories with ER and UPR-related function. To 
categorize the 65 identified UPR core genes, the functional catalog (FunCat) by the MIPS database 
(http://mips.helmholtz-muenchen.de/funcatDB) was used. Bars are representing the percentage of genes occurring 
in the functional class. Calculated P-values by FunCat are depicted as asterisks (*P-value ≤ 0.05, **P-value ≤ 0.01 
and ***P-value ≤ 0.001). Genes can occur in more than one category. A complete list of functional categories can 
be found in Appendix Table 4.  
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3.2.2 RNAseq reveals modulation of UPR core genes by Clp1  
In recent studies, a clp1-dependent UPR modulation was observed for a small set of UPR marker genes 

(Heimel et al., 2013). To address the clp1-dependent modulation of UPR core genes identified in this 

study, expression of UPR core genes was compared between WT and the clp1 expressing strain 

(Pcrg:clp1) under UPR inducing conditions (+TM). To visualize changes in gene expression, RPM values 

were used to generate a hierarchically clustered heat map (Fig 3.10). RNAseq analysis was performed 

on strains grown in axenic culture under ER stress induction. In addition, in planta expression of all 

UPR core genes was depicted in Figure 3.10 (2, 4 and 6 dpi), which was published recently by Lanver 

et al. (2018). By comparison, 47 of the 65 UPR core genes identified in the present study were found to 

be upregulated in planta, 13 are not regulated and 5 are downregulated at 2dpi. At 4 dpi, 12 UPR core 

genes are not regulated and 6 are downregulated in planta.  

 

 

 

 

Figure 3.10: Heat map of hierarchical 
clustered UPR core genes. Gene 
expression of the 65 UPR core genes is 
depicted in a hierarchically clustered heat 
map. For comparison of expression 
values, Row z-Scores were calculated by 
log2-transform, mean-center and SD-
scale the reads per million (RPM) of each 
gene. Calculation and visualization of 
data were performed with the ClustVis 
tool (https://biit.cs.ut.ee/clustvis). 
Diverging colors from blue to red of the 
row z-Score on the color bar indicate 
down- to upregulation, respectively. 
Hierarchical clustering of genes (y-axis) 
was performed by using the Euclidean 
distance and complete linkage method, 
which groups genes with similar 
expression profiles. Accession numbers 
of genes with their respective gene names 
written in clamps are depicted on the 
right. Sample types (WT, Pcrg:clp1, 
∆cib1) and treatment conditions (without 
tunicamycin [-TM], with tunicamycin 
[+TM]) are indicated at the top. 
Regulation of the 65 UPR core genes in 
planta (Lanver et al., 2018) is depicted for 
2, 4 and 6 days after inoculation (dpi). 
Green, gray and red boxes indicate 
upregulation, the absence of differential 
gene expression and downregulation, 
respectively.  
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At 6 dpi, 15 UPR core genes are not regulated and 4 are downregulated in planta (Fig 3.10). Three of 

the 65 UPR core genes (UMAG_00223, UMAG_01988, UMAG_11799) are upregulated during UPR 

activation (WT +TM), but not upregulated in the clp1 expressing strain (Pcrg:clp1 +TM) and in planta. 

This indicates a correlated gene expression between RNAseq data obtained from axenic culture under 

ER stress and plant-derived transcriptomic data. Furthermore, expression of the genes UMAG_12332, 

UMAG_02944, UMAG_04605, UMAG_01025 and UMAG_03507 is upregulated during UPR activation 

(WT +TM) as well as in clp1 expressing strain (Pcrg:clp1 +TM), but not upregulated in planta. The genes 

of a third group (UMAG_03665, UMAG_01232) are upregulated in the clp1 expressing strain (Pcrg:clp1 

+TM) compared to the wildtype strain (WT +TM), but not upregulated in planta (Fig 3.10).  

To visualize Clp1-dependent effects on the UPR core genes, log2 fold changes of the treated JB1 strain 

(WT +TM) compared to the treated UVO151 strain (Pcrg:clp1) were sorted in a descending manner and 

divided into six groups. 35 UPR core genes are not repressed by clp1 and only 3 of these 35 genes were 

upregulated more than 2-fold (log2FC ≥ 1). However, 30 UPR core genes were not or downregulated 

by clp1 induction (log2FC ≤ -0.1). 23 of these genes have a log2 fold change value between -0.1 and -

1.0. Of the 30 UPR core genes, 5 genes are more than 2-fold downregulated (log2FC ≤ -1.0 to -2.0) and 

2 genes are more than 4-fold (log2FC ≤ -2.0) negatively regulated by the clp1 induction (Fig 3.11). The 

Clp1-dependent modulation of the UPR core gene expression in axenic culture indicates, that this 

alteration might also be important for in planta development of U. maydis. 

 
Figure 3.11: Clp1-dependent modulation of UPR core genes. Expression values of UPR core genes were log2 
transformed and fold changes were calculated by comparison of the wildtype strain (WT) with the clp1 expressing 
strain (Pcrg:clp1), both treated with TM (WT +TM vs. Pcrg:clp1 +TM). Genes were sorted in a descending manner 
by their log2FC values. Red and blue colors of the bars are indicating increased or reduced expression in the 
Pcrg:clp1 strain, respectively. Light colors indicate tendencies for higher or lower expression. 
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3.2.3 Clp1 is dispensable for Cib1 DNA binding specificity 
In a previous study, a putative DNA binding motif of the bZip transcription factor Cib1 was predicted 

based on in silico promoter analysis and quantitative chromatin immunoprecipitation (qChIP) (Hampel 

et al., 2016). The determined consensus sequence of that study (TGCCACGT(C/G)(G/T)) is similar to 

the UPRE (UPR element) bound by the human or yeast Cib1 orthologs Xpb1 and Hac1, respectively 

(Fordyce et al., 2012; Kanemoto et al., 2005). To test if clp1-dependent modulation of UPR gene 

expression is connected to alterations of DNA binding specificity of Cib1, a comparative ChIPseq 

analysis was performed. To this end, U. maydis strains JB1cib1-3xHA (WT) and UVO151cib1-3xHA 

(Pcrg:clp1), both expressing triple HA tag fused to Cib1, were grown in CM liquid medium supplemented 

with 1% glucose (w/v) (CMG) to an OD600 of 0.35. Subsequently, cells were shifted to CM liquid 

medium supplemented with 1% arabinose (w/v) (CMA) to induce crg1 driven promoter expression of 

clp1 and treated with TM for 4 hours at 28°C, followed by chromatin-immunoprecipitation. DNA 

samples were submitted for library construction and subsequent sequencing in the single-end mode. 

Raw ChIPseq reads were aligned using Bowtie2 and peakZilla was used for peak calling. peakZilla 

provided a peak score (∆ normalized reads (IP-input) x distribution score), which consolidates the 

probability of DNA binding with the DNA binding specificity. Identified ChIP peaks and corresponding 

promoter regions were manually assigned to genes using a custom python script (Appendix File 1). To 

allocate identified peaks in overlapping promoter regions, expression values (log2FC) of the RNAseq 

analysis were used for peak assignment. If more than one peak was assigned for a promoter, peak scores 

were accumulated to a promoter score (1.5 kb upstream of transcription start site (tss), with a minimal 

peak score of ≥40 and a peak count/promoter cut-off of <4). In addition, assigned peaks were filtered 

with a promoter score cut-off of ≥100. With this approach, 476 peaks were identified (Appendix Table 

3), corresponding to 281 promoter regions in WT (JB1cib1-3xHA) and 654 identified peaks, 

corresponding to 405 promoter regions in Pcrg:clp1 (UVO151cib1-3xHA). 217 promoters were identified 

in both strains, whereas 63 and 188 are only identified in WT or Pcrg:clp1, respectively.  
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Table 3.2: Top 20 candidates of promoters with the highest promoter score identified by ChIPseq. 

Rank Name Accession 
number 

Promoter 
score 

Peak 
count 

1 bip1 UMAG_15034 922 1 
2 cib1 UMAG_11782 802 1 
3 pdi1 UMAG_10156 796 1 
4 ero1 UMAG_05219 783 2 
5 - UMAG_04980 553 1 
6 cak1 UMAG_11799 488 1 
7 - UMAG_02081 470 2 
8 - UMAG_05170 444 3 
9 - UMAG_11594 429 1 
10 lhs1 UMAG_00904 417 1 
11 - UMAG_03038 399 3 
12 dnj1 UMAG_05173 389 1 
13 - UMAG_03415 387 1 
14 - UMAG_02727 374 1 
15 - UMAG_01988 366 2 
16 - UMAG_12062 362 2 
17 - UMAG_10473 357 2 
18 - UMAG_05911 346 1 
19 - UMAG_01667 344 3 
20 - UMAG_04998 339 3 

Within the top twenty candidates of promoters with the highest promoter score (Table 3.2), promoters 

of the known UPR genes bip1, cib1, pdi1, ero1, lhs1 and dnj1 could be identified (Appendix Table 3). 

Promoter regions of assigned ChIPseq peaks were used for a motif-based analysis using the MEME 

(Multiple Em for Motif Elicitation)-ChIP web service (Machanick and Bailey, 2011). Exclusively 

identified peaks from WT or Pcrg:clp1 did not result in a consensus DNA binding motif. 

 
Figure 3.12: Cib1 DNA binding specificity is not altered upon Clp1 induction. For identification of centrally 
enriched DNA consensus motifs, FASTA files were generated from peaks in the 91 UPR gene promoters, which 
were present in wildtype (WT) and clp1 expressing condition (Pcrg:clp1). Files were subjected to MEME-ChIP 
analysis. The probability of nucleotide-occurrence in the consensus motif is represented by the height of the letters 
compared to the entire motif. Stacked letters indicate that more than one nucleotide can occur at the position in the 
motif. E-values were calculated based on the log likelihood ratio, width, sites, the background letter frequencies 
and the size of the training set. 

MEME-ChIP analysis of UPR core gene promoters, bound by Cib1 in WT and Pcrg:clp1 (log2FC ≥1, 

n=91 promoters), revealed a centrally enriched, 11 bp CREB3-like binding motif in the WT strain 

(Fig 3.12, WT, E-value: 4.6 x 10-44). The motif occurred 63 times within the 91 promoter regions of the 

WT strain. For the clp1 expressing Pcrg:clp1 strain, an almost identical 8 bp motif was identified 
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(Fig 3.12, Pcrg:clp1, E-value: 9.9 x 10-47), which overlaps with the motif predicted in WT, but lacks the 

terminal AAG triplet. This motif occurred 88 times within the 91 promoter regions of the Pcrg:clp1 strain.  

The Integrative Genome Viewer (IGV, (Robinson et al., 2017)) was used to visualize ChIPseq peaks 

and revealed that that peak shapes and peak locations were conserved between WT and Pcrg:clp1 

(Fig 3.13). Differences in the peak size of the known UPR target genes cib1, bip1, ero1, pdi1 and spp1 

in the Pcrg:clp1 strain (Fig 3.13, red lanes) were small compared to the WT (Fig 3.13, WT, blue lanes), 

except for cak1 promoter, where the peak height was increased in the clp1 expressing condition 

(Fig 3.13, cak1, Pcrg:clp1). For promoters of cib1, bip1, ero1 and pdi1 and spp1 peak sizes correlate with 

expression values of the RNAseq analysis. By contrast, the peak size of the cak1 promoter is inversely 

correlated with its expression values (Fig 3.13, RPKM inserts). 

 
Figure 3.13: Visualization of ChIP peaks in known UPR target genes. For visualization of ChIP peaks, 
normalized BigWig data files obtained from raw ChIPseq data were used and illustrated with the Integrative 
Genome Viewer (IGV). Peak profiles are represented by normalized read counts derived from two biological 
replicates in JB1cib1-3xHA (blue) and UVO151-cib1-3xHA (red) compared to the untagged mock control (gray). 
Gene expression determined by RNAseq analysis (Chapter 5.6.1) of respective genes is depicted in reads per 
kilobase of transcript, per million mapped reads (RPKM) as a mean of three biological replicates (insets). Error 
bars depict the SD. Scale bar corresponds to 1 kb. 

Overall, the identified peaks in 91 UPR promoters (log2FC ≥1) used for the MEME-ChIP analysis 

showed a total increase of promoter scores in the Pcrg:clp1 strain (Fig 3.14, left box). Promoter scores of 
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19 genes were lower, whereas promoter scores of 69 genes were higher during clp1 induction compared 

to wildtype. This correlation is explicitly pronounced for peaks with low promoter scores. 

However, for high scoring peaks (Fig 3.14), as retrieved for the promoters of bip1, ero1, pdi1 or cib1 

scores were consistently lower in Pcrg:clp1 strain (Fig 3.14, right box). Promoter scores of spp1 between 

both strains were almost identical (Fig 3.14, left box, WT: 260.82 vs. Pcrg:clp1: 261.41). Taken together, 

these results show that clp1 induction does not affect DNA binding specificity of Cib1 (Fig 3.12 and 

3.13) but differentially affects promoter scores, that indicates a post-translational mechanism that might 

affect the binding affinity of Cib1. Moreover, the identified Cib1-binding site (Fig 3.12, WT) perfectly 

matches to the promoter regions of pit1/2 and tin1-1 (Hampel et al., 2016). However, peak enrichment 

in the ChIPseq analysis was only detectable for the tin1-1 promoter (Appendix Fig 7.1).  

 
Figure 3.14: Comparison of promoter scores derived from ChIPseq analysis. Promoter scores of WT 
(JB1cib1-3xHA, x-axis) and Pcrg:clp1 (UVO151cib1-3xHA, y-axis) were compared in a scatter plot, to visualize 
changes of promoter scores during clp1 expression. Peak scores were calculated by peakZilla 
(https://github.com/steinmann/peakzilla) and were accumulated to a promoter score if more than one peak was 
assigned to a promoter region (1.5 kb upstream of transcription start site (tss), with a minimal peak score of ≥40 
and a peak count/promoter cut-off of ≥4). Only genes with promoter scores ≥100 and gene expression of log2FC 
≥1 were used for comparison. UPR core genes (log2FC ≥2) and UPR regulated genes (log2FC ≥1) are indicated 
as red and gray dots, respectively.  
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3.3 Deletion of UPR core genes identifies a novel pathogenicity factor 
The RNAseq analysis described in chapter 3.2.1 revealed a set of upregulated UPR core genes that are 

induced by ER stress in a cib1 dependent manner. Furthermore, the differential modulation of these 

UPR core genes by clp1 expression was observed (Fig 3.10 and 3.11). Most of the fungal effector 

proteins in U. maydis are highly upregulated during biotrophic growth (Lanver et al., 2018). Activation 

of the UPR after plant penetration marks a key step during pathogenic development, as it is important 

for effector secretion and expression (Heimel et al., 2013; Hampel et al., 2016). Thus, it was 

hypothesized that UPR core genes that are positively affected by clp1 expression might exert important 

functions during pathogenic development of U. maydis.  

3.3.1  Deletion of unrepressed UPR genes had no major impact on 

pathogenicity and ER stress resistance 
54 of the 65 UPR core genes (Fig 3.8), were modulated by clp1 expression (Fig 3.10 and 3.11). 30 UPR 

core genes were downregulated, whereas 11 genes were not regulated and 24 genes were upregulated 

during clp1 expression. It was assumed that unrepressed UPR core genes are important to establish 

biotrophic growth since expression of UPR regulated genes in planta described before is crucial for 

pathogenic development (Heimel et al., 2013; Hampel et al., 2016). To test this assumption, deletion 

mutants of the UPR core genes were generated in the solopathogenic strain SG200 (Bölker et al., 1995). 

Only 29 of 35 genes were investigated in this infection screen, as 3 gene deletions turned out to be lethal 

(UMAG_15029, UMAG_00481 and UMAG_06089) and 3 deletion strains were investigated before 

(UMAG_03034 [pers. communication Jörg Kämper, no phenotype], UMAG_04531 [pers. 

communication Regine Kahmann, no phenotype] and UMAG_10099 [Hampel (2016), reduced 

virulence]). All 29 deletion strains were tested in plant infection experiments and ER stress assays, to 

test for a role of the deleted genes in virulence and ER stress resistance. Of the 29 deletion mutants, only 

two gene deletions resulted in slightly reduced virulence compared to the wildtype strain (Fig 3.16, 

∆UMAG_11083 and ∆UMAG_12178) and none of the deletion strains showed altered ER stress 

resistance. Importantly, deletion of UMAG_02729, which encodes a signal peptide peptidase, resulted 

in the complete loss of virulence, as reflected by the absence of more tumor formation and only leaf 

chlorosis symptoms (Fig 3.15). This suggests that the UMAG_02729 is a novel UPR regulated key factor 

with a crucial function during pathogenic development of U. maydis. 
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Figure 3.15: The UPR core gene UMAG_02729 is crucial for pathogenicity in U. maydis. U. maydis strain 
SG200 (WT) and derivatives were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 d 
after inoculation and grouped into categories depicted below. n represents the number of inoculated plants in a 
single infection experiment. Data partially generated in (Hach, 2018). 
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Figure 3.16: UPR core genes are not involved in ER stress tolerance. ER stress assay of U. maydis strain SG200 
(WT) and derivatives. Serial 10-fold dilutions were spotted on YNBG solid medium supplemented with TM 
(0.5 µg/ml f.c.) as indicated. Plates were incubated for 48 h at 28°C. Data partially generated in (Hach, 2018). 
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3.3.2 The UPR regulated gene UMAG_02729 encodes a Signal Peptide 

Peptidase 
Deletion of the gene UMAG_02729 resulted in loss of virulence (Fig 3.15) and gene expression of 

UMAG_02729 is highly induced by the UPR and in planta (Fig 3.10, red box). A BLASTp (Basic Local 

Alignment Search Tool) analysis (Altschul et al., 1990) of the protein sequence of UMAG_02729 was 

performed. This identified a conserved Presenilin family domain (E-Value 4.57 x 10-34), characteristic 

for signal peptide peptidases (UMAG_02729 hereinafter referred to as spp1, signal peptide peptidase 1). 

BLASTp analysis of the protein sequence of Spp1 showed that Spp1 is the sole signal peptide peptidase 

in the genome of U. maydis. An analysis of the transmembrane topology with Phobius (Käll et al., 2004) 

predicted that the 416 amino acids (AA) long protein consists of 9 transmembrane domains (TMD). 

Neither SignalP (Petersen et al., 2011) nor Phobius could predict a signal peptide in the sequence of 

Spp1 (Fig 3.17).  

 

Figure 3.17: Schematic representation of the Spp1 domain structure. Gray boxes represent transmembrane 
domains (TMD). Red bars within TMDs mark the conserved YD, GLGD and QPALLY motifs. The protein has a 
total length of 416 AA.  

Multiple sequence alignment analysis using the MUSCLE (MUltiple Sequence Comparison by Log-

Expectation) algorithm (Chojnacki et al., 2017) and BLASTp was used to identify orthologues proteins 

of Spp1 in other organisms. For phylogenetic analysis orthologous proteins identified in the smut fungi 

Sporisorium reilianum (SrSpp1, sr13785, E-Value 0.0) and Ustilago hordei (UhSpp1, UHOR_04354, 

E-Value 0.0), as well as Homo sapiens (HM13, BC062595, E-Value 2 x 10-62), the human pathogen and 

cause of malaria disease Plasmodium falciparum (PfSPP, PF3D7_1457000.1, E-Value 1 x 10-44) and the 

ascomycetes Aspergillus nidulans (SppA, AN8681.2, E-Value 8 x 10-38), Aspergillus fumigatus (SppA, 

XP_747862.1, E-Value 5 x 10-29) and Saccharomyces cerevisiae (Ypf1p, AJS50108.1, E-Value 4 x 10-

31) were selected. Orthologs of the group of smut fungi showed the highest similarity to Spp1, with 

S. reilianum SrSpp1 of 0.06 substitutions per site (sps) and U. hordei UhSpp1 of 0.08 sps. Surprisingly, 

the H. sapiens HM13 and P. falciparum PfSPP were closer related to Spp1 with 0.67 sps and 0.79 sps, 

respectively, as compared to orthologs from ascomycetes, with A. nidulans SppA of 0.89 sps, 

A. fumigatus SppA of 0.94 sps and S. cerevisiae Ypf1p of 1.19 sps (Fig 3.18). 
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Figure 3.18: Spp1 is closely related to the human SPP HM13. Phylogenetic tree of U. maydis Spp1 and 
predicted orthologs from Sporisorium reilianum (SrSpp1), Ustilago hordei (UhSpp1), Homo sapiens (HM13), 
Plasmodium falciparum (PfSPP), Aspergillus nidulans (SppA), Aspergillus fumigatus (SppA) and 
Saccharomyces cerevisiae (Ypf1p). H. sapiens SPPL2B (Signal peptide peptidase-like 2B) was used as an 
outgroup. Construction of the phylogenetic tree was performed using the MEGA X software 
(https://www.megasoftware.net) by the Maximum Likelihood method based on sequence alignment by the 
MUSCLE algorithm of Figure 3.19. 

The family of signal peptide peptidases shares known motifs for the proteolytic site and substrate 

binding of the intramembrane protease. The active site is represented by the YD and the GLGD motif, 

whereas substrate interaction is promoted through the QPALLY motif (Voss et al., 2013). In the multiple 

sequence alignment performed in Figure 3.19, both motifs of the proteolytic site can be found in all of 

the aligned sequences. However, the substrate binding motif differs in A. fumigatus, where it seems to 

be absent or is only weakly conserved in its sequence (Fig 3.19). The YD, GLGD and QPALLY motifs 

of U. maydis are located within the TMD6, TMD7 and TMD9, respectively (Fig 3.17 and Fig 3.19).  
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Figure 3.19: Spp1 is a conserved signal peptide peptidase. Protein sequences of U. maydis Spp1 and predicted 
orthologs from indicated species were aligned using the MUSCLE algorithm 
(https://www.ebi.ac.uk/Tools/msa/muscle) and visualized by JalView (http://www.jalview.org). Conserved 
sequence motifs are highlighted with red-dashed boxes. The YD and GLGD motifs represent the active site of the 
aligned signal peptide peptidases. The QPALLY motif is conserved in all sequences except for 
Aspergillus fumigatus. Conservation rate of the sequence is shown in the histogram below, where “+” and “*” 
representing a conservation rate of 10 and 11, respectively. The Clustal X color scheme was used to group amino 
acids with similar properties. Full alignment is shown in Appendix Figure 7.2. 

 

3.3.3 Spp1 is localized to the perinuclear and cortical ER  
The bioinformatic analysis described in chapter 3.3.2 predicted several transmembrane domains in the 

sequence of Spp1. In addition, studies of orthologues proteins showed a localization at the ER membrane 

(Weihofen et al., 2002; Hsu et al., 2018; Avci et al., 2014). Spp1 was C-terminally tagged with mCherry 

and subcellular localization was monitored by fluorescence microscopy, to check the intracellular 
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localization of Spp1 in U. maydis. The spp1 gene was expressed under the native promoter (Pspp1:spp1-

mC) or the constitutive active otef promoter (Potef:spp1-mC). Both constructs were transformed in the ip-

locus of the SG200∆spp1 strain (WT). Moreover, deletion of the UPR regulator cib1 in the resulting 

strains was performed (∆cib1), to compare the localization of Spp1-mCherry during UPR activation 

between WT and ∆cib1. To induce the UPR individual strains were grown in CM liquid medium 

supplemented with 1% glucose (w/v) to an OD600 of 0.35 and treated with TM for 2 hours at 28°C.  

 
Figure 3.20: Spp1 is localized at the ER membrane and induced during ER stress. Expression of the Spp1-
mCherry fusion protein was monitored by fluorescence microscopy 2 h after TM-mediated UPR induction in the 
strains SG200∆spp1 Potef:spp1-mCherry and SG200∆spp1 Pspp1:spp1-mCherry (WT) and derivatives of these 
strains with an additional cib1 deletion (∆cib1). Exposure time of RFP channel was set to 750 ms. Cellular 
morphology was visualized by DIC microscopy. Scale bars = 10 µm. 

In the strains where Spp1-mCherry was expressed under the otef promoter, a bright fluorescence signal 

could be observed at structures that presumably correspond to cortical and perinuclear ER structures. 

Differences in intracellular localization or fluorescence signal intensity between the WT and ∆cib1 strain 

backgrounds could not be observed, whether cells were treated with TM or not (Fig 3.20, Potef:spp1-

mCherry). However, in strains expressing Spp1-mCherry under its native promoter, only the TM treated 

WT strain showed an increased fluorescence signal (Fig 3.20, Pspp1:spp1-mCherry, WT, +TM), 

indicating an essential role of the UPR for induction of spp1 expression. 

3.3.4 spp1 is involved in the biotrophic growth in planta 
Since deletion of spp1 led to an apathogenic phenotype in the plant infection assay (Fig 3.15), the 

question aroused, at which stage of pathogenic development spp1 mutant strains are blocked. It was 
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tested whether spp1 deletion mutants are capable of forming b-dependent filaments. Furthermore, the 

capability of spp1 deletions strains to invade the plant surface was analyzed. To investigate filament 

formation, the strains SG200 (WT) and SG200∆spp1 (∆spp1) were grown in YEPSlight to an OD600 of 1 

and spotted on potato dextrose (PD) charcoal medium. Formation of aerial hyphae was monitored on 

solid medium containing charcoal to mimic the plant’s hydrophobic surface (Banuett and Herskowitz, 

1988), which induces the b-dependent filament formation (Heimel et al., 2010b). The deletion mutant 

of spp1 (Fig 3.21, ∆spp1) showed no impairment in filament formation and no differences in the fuzzy 

appearance of the colony compared to the WT strain (Fig 3.21, WT). 

 
Figure 3.21: Filament formation is not impaired in spp1 deletion strains. U. maydis strain WT and the ∆spp1 
derivative were spotted on charcoal containing (1% w/v) potato-dextrose (PD) medium to induce filament 
formation. Plates were incubated for 24 h at 28°C and photographed. White fuzzy filaments indicate the formation 
of b-dependent filaments. 

To examine, if the spp1 deletion mutant is able to penetrate the plant surface, the strains SG200 (WT) 

and SG200∆spp1 (∆spp1) were grown in YEPSlight to an OD600 of 1 and were injected into 7-day-old 

maize seedlings. Infected leaf tissue was collected 3 dpi and stained with Chlorazol Black E to visualize 

invading hyphae in planta (Brachmann et al., 2003). The deletion mutant was able to form appressoria 

(Fig 3.22, ∆spp1, asterisks) and can penetrate the plant surface (Fig 3.22, ∆spp1). However, intercellular 

hyphae of the deletion mutant displayed a highly reduced proliferation in planta, restricted to the 

epidermal layer, and altered cell morphology with collapsed structures. In addition, intercellular hyphae 

formed constrictions at sites of plant cell traversal, compared to the WT strain (Fig 3.22, ∆spp1, arrows). 
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Figure 3.22: Deletion mutant of spp1 attenuated in growth after plant invasion. Fungal proliferation of WT 
and the ∆spp1 was investigated by Chlorazol Black E staining of infected leaf samples 3 dpi. WT strains showed 
extensive proliferation in planta, whereas the ∆spp1 mutant showed strongly reduced proliferation after plant 
penetration. Asterisks mark the site of plant penetration and arrows indicate the points of plant cell traversal by 
fungal hyphae. Scale bar = 10 μm. 

Since the overall plant colonization by the spp1 deletion mutant seemed to be lower (Fig 3.22), relative 

fungal biomass was measured and compared to the WT strain. For the analysis, the strains SG200 (WT), 

SG200∆spp1 (∆spp1) and SG200∆spp1 spp1D279A (spp1D279A), expressing a catalytically inactive Spp1 

mutant, were grown in YEPSlight to an OD600 of 1 and inoculated into 7-day-old maize seedlings. Infected 

leaf tissue was collected 2 and 4 dpi. At 2 dpi, the relative fungal biomass was significantly lower in the 

∆spp1 (P-value ≤ 0.01) and spp1D279A (P-value ≤ 0.01) strain compared to the wildtype (Fig 3.23, 2 dpi) 

and even more reduced after 4 dpi in the ∆spp1 (P-value ≤ 0.01) and spp1D279A (P-value ≤ 0.05) strains 

(Fig 3.23, 2 dpi). This indicates that the spp1 is not involved in normal vegetative growth. However, 

strains are strongly impaired during in planta growth (Fig 3.22) and form almost no biomass at 4 dpi 

(Fig 3.23), indicating growth suppression of the ∆spp1 strain by an active plant defense response. 
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Figure 3.23: Spp1 function is crucial for growth in planta. Genomic DNA was extracted from maize seedlings 
inoculated with indicated strains at 2 and 4 dpi. Relative fungal biomass was calculated using the U. maydis 
specific mfa1 gene as a fungal marker and the Zea mays specific glyceraldehyde 3-phosphate dehydrogenase gene 
(GAPDH) as a plant marker. Values reflect the ratio of fungal/plant DNA relative to plants infected with the WT. 
Values represent the mean of three biological replicates with two technical duplicates each. Error bars represent 
the SD. Statistical significance was calculated using Student’s t-test. **P-value ≤ 0.01, *P-value ≤ 0.05. Data 
generated in (Hach, 2018). 

 

3.3.5 The ∆spp1 phenotype can be suppressed by expression of Spp1 

orthologs  
Orthologous proteins of Spp1 in the multiple alignment analysis described in chapter 3.3.2 showed 

highly conserved motifs throughout all analyzed species. To examine, if these orthologs of Spp1 can 

complement the deletion phenotype of spp1 in the SG200 strain, orthologous genes were integrated as 

a C-terminal mCherry fusion in the SG200∆spp1 strain and expressed under the control of the otef-

promoter. 

 
Figure 3.24: Western hybridization analysis of Spp1 mutants and orthologous proteins of Spp1. Expression 
of indicated fusion proteins was analyzed by Western hybridization in derivatives of U. maydis strain 
SG200∆spp1. Proteins were expressed under the control of the constitutive active otef promoter. Protein extracts 
were prepared from exponentially growing cells cultured in CMG liquid medium. Ponceau S-stained membranes 
were used as loading control. No signal was detected for SppA-mC (A. nidulans) and Ypf1-mC (S. cerevisiae). 
Data generated in (Hach, 2018). 

Western hybridization revealed successful expression of orthologs of spp1 from U. hordei 

(UhSpp1-mC), S. reilianum (SrSpp1-mC) and H. sapiens (HM13-mC) (Fig 3.24, lane 3, 4 and 6). 
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Strains expressing the wildtype spp1 (Spp1-mC) from U. maydis, as well as the catalytically inactive 

mutant spp1D279A (Spp1D279A-mC) were used as controls (Fig 3.24, lane 1 and 2). By contrast, no 

expression was observed for strains harboring A. nidulans SppA-mC and S. cerevisiae Ypf1-mC 

(Fig 3.24, lane 5 and 7).  

Plant infection assays were performed, to test if expression of orthologous proteins was sufficient to 

complement the deletion phenotype of spp1. The strain SG200 (WT) and derivatives were grown in 

YEPSlight to an OD600 of 1 and were inoculated into 7-day-old maize seedlings. The strain with the 

integrated spp1-mC as well as the strains with orthologs of S. reilianum (srspp1-mC) and U. hordei 

(uhspp1-mC) could complement the ∆spp1 deletion phenotype. Surprisingly, the strain with a single 

copy of the human HM13-mC (HM13-mC (s)) was not able to recover the WT phenotype completely. 

In addition, a strain with multiple integrations of the HM13-mC construct HM13-mC (m)), was able to 

recover the phenotype of ∆spp1 better than the strain with only one copy of the gene. Moreover, the 

catalytically inactive mutant (spp1D279A) did not recover the phenotype of the spp1 deletion strain 

(Fig 3.25A and B). 
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Figure 3.25: Orthologous spp1 genes could recover the spp1 deletion phenotype. (A) U. maydis strains SG200 
(WT), SG200∆spp1 (∆spp1) and derivatives were inoculated into 7-d-old maize seedlings. In ∆spp1 derivatives, 
predicted orthologs or the catalytically inactive Spp1D279A mutant protein were expressed as mCherry (mC) fusion 
under the control of the constitutively active otef promoter. Disease symptoms were rated at 8 dpi. n represents the 
total number of inoculated plants derived from three (left) or two (right) independent experiments. For 
complementation tests using H. sapiens HM13, ∆spp1 strains harboring single (s) and multiple (m) integrations of 
the HM13-mCherry (HM13-mC) fusion construct were used. (B) Leaf samples for macroscopic analysis were 
photographed at 8 dpi. Data partially generated in (Hach, 2018). 
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3.3.6 Spp1 represses defense responses in planta 
Deletion of spp1 led to a highly reduced proliferation in planta (Fig 3.22 and 3.23), with chlorosis as 

the strongest symptom in the plant infection assay (Fig 3.15 and 3.25A and B). As this might indicate 

an activation of the plant defense response, the strains SG200 (WT), SG200∆spp1 (∆spp1) and 

SG200∆spp1 Pspp1:spp1D279A-mC (∆spp1 spp1D279A) were grown in YEPSlight to an OD600 of 1 and injected 

into 7-day-old maize seedlings and analyzed for reactive oxygen species (ROS) production. Infected 

leaf tissue was collected 24 hours post inoculation and stained with 3,3'-Diaminobenzidine (DAB) to 

visualize the formation of ROS in planta (Molina and Kahmann, 2007). Plants infected with the spp1 

deletion mutant and the catalytically inactive Spp1D279A mutant showed a strong accumulation of DAB 

when compared to the wildtype strain (Fig 3.26). 

 
Figure 3.26: spp1 mutants elicited plant defense responses. 3,3'-Diaminobenzidine (DAB) staining of leaf tissue 
infected with U. maydis SG200 (WT), SG200∆spp1 (∆spp1) and SG200∆spp1 Pspp1:spp1D279A-mC (∆spp1 
spp1D279A) was performed 24 h post inoculation. Brown precipitates reflect the presence of reactive oxygen species 
(ROS). Scale bar = 100 µm. Data generated in (Hach, 2018). 

ROS in plant cells are mainly derived from hydrogen peroxide (Bolwell and Wojtaszek, 1997). To test 

if the loss of virulence might be connected to hypersensitivity against ROS an oxidative stress assay 

with H2O2 was performed. The strains SG200 (WT), SG200∆spp1 (∆spp1) and SG200∆spp1 Pspp1:spp1-

mC (∆spp1 spp1-mC) were grown in YEPSlight to an OD600 of 1 and spotted on YNBG solid medium 

containing different concentrations of H2O2. After incubation for 48 hours at 28°C, no differences could 

be observed between WT, ∆spp1 and ∆spp1 spp1-mC (Fig 3.27). Moreover, the strains SG200 (WT), 

SG200∆cib1 (∆cib1) and SG200∆spp1 (∆spp1) were used in a cell wall stress assay, which was 

performed on solid medium containing either Congo Red or Calcufluor for cell wall stress. However, 

no differences in growth could be observed for the ∆cib1 or the ∆spp1 strain compared to the wildtype 

(Appendix Fig 7.4). The increased ROS formation in plant infections with U. maydis indicates a strongly 

activated plant defense response. However, ∆spp1 strains are not susceptible to cell wall stress as well 

as H2O2 stress, which indicates that spp1 is not necessary for cell wall integrity or detoxification of 

H2O2, respectively. 



Results 
 

 
47 

 
Figure 3.27: Spp1 is not crucial for H2O2 detoxification. H2O2 resistance of U. maydis strain SG200 (WT) and 
the ∆spp1 derivative was tested by serial 10-fold dilutions of strains, spotted on YNBG solid medium 
supplemented with the indicated concentration of H2O2. Plates were incubated for 48 h at 28°C. 

ROS are mainly derived from H2O2, which is produced by the NADPH oxidase complex in plants. 

(Bolwell and Wojtaszek, 1997). Therefore, the spp1 deletion strain was used in a plant infection assay 

with Diphenyleneiodonium (DPI), an inhibitor of ROS production mediated by the plant’s NADPH 

oxidase. (Molina and Kahmann, 2007; Fernández-Alvarez et al., 2009). However, treatment with DPI 

did not complement the ∆spp1 phenotype (Fig 3.28A). Furthermore, in Chlorazol Black E stainings of 

infected leaf tissue, no difference between the treated (Fig 3.28B, ∆spp1, DPI) and untreated (Fig 3.28B, 

∆spp1, control) condition could be observed.  
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Figure 3.28: Inhibition of ROS production in planta could not recover the virulence of the ∆spp1 mutant. 
(A) U. maydis strain SG200 (WT) and the ∆spp1 derivative were inoculated into 7-day-old maize seedlings. 
Cultures used for infection experiments were supplemented with 0.5 µM (f.c.) DPI or an equivalent volume of 
solvent (DMSO). Disease symptoms were rated 8 dpi and grouped into categories depicted on the right. n 
represents the total number of inoculated plants from three independent experiments. (B) Fungal morphology of 
SG200 (WT) and the ∆spp1 was investigated by Chlorazol Black E staining of DPI or control (DMSO) treated 
infected leaf samples at 3 dpi. Scale bar = 20 μm. 

Since infection of maize plants with deletion strain of spp1 as well as the catalytic inactive spp1D279A 

mutant led to an increased plant defense response by increased ROS formation (Fig 3.26), gene 

expression of several plant defense response genes was tested in infected leaf tissue. To determine the 

gene expression of defense-related plant genes, the strains SG200 (WT), SG200∆spp1 (∆spp1) and 

SG200∆spp1 Pspp1:spp1D279A-mC (spp1D279A) and the complementation strain, SG200∆spp1 Pspp1:spp1-

mC (∆spp1 spp1), were cultivated in YEPSlight to an OD600 of 1 and injected into 7-day-old maize 
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seedlings. Infected leaf tissue was collected 2 dpi and expression plant genes was analyzed by qRT-

PCR. The tested genes can be divided into two groups: PR1, PR3, PR4, PR5, ATFP4 and POX12, which 

can be conflated in the group of salicylic acid (SA)-related defense response genes (Fig 3.29 and 

Appendix Fig 7.3, dark gray bars) and CC9 as well as BBI, which are allocated in the group of jasmonic 

acid (JA)-related response genes (Fig 3.29, light gray bars). Suppression of the plant defense responses 

by biotrophic pathogens is maintained by counteracting the SA response pathway and induce JA-related 

defense responses to prevent programmed plant cell death (Glazebrook, 2005). Consistently, all SA 

marker genes were highly induced in the ∆spp1 and the spp1D279A strain compared to wildtype or the 

complementation strain (Fig 3.29 and Appendix Fig 7.3).  

Figure 3.29: Strains with loss 
of the Spp1 function elicited 
strong induction of plant 
defense response genes 
during infection of Zea mays. 
qRT-PCR based expression 
analysis of defense-related 
Z. mays genes in response to 
infection with indicated 
U. maydis strains. 7-day-old 
maize seedlings were used for 
inoculation and samples of 
infected leaf tissue were 
collected 2 dpi. Expression 
levels are depicted relative to 
plants infected with the WT and 
represent the mean of three 
biological replicates with two 
technical duplicates each. 
GAPDH was used for 
normalization. Dark gray and 
light gray color of the bars 
indicate SA responsive genes 
(PR1, PR5, ATFP4, POX12) 
and JA responsive genes (CC9, 
BBI), respectively. Error bars 
represent the SD. Statistical 
significance was calculated 
using Student’s t-test. *P-value 
≤ 0.05, **P-value ≤ 0.01 and 
***P-value ≤ 0.001. Data 
partially generated in (Hach, 
2018). 
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In comparison to plants infected with the WT strain, PR1 revealed the highest induction of all tested 

plant defense response genes. Gene expression of plants infected with the ∆spp1 mutant or the spp1D279A 

mutant, had 78 mean fold changes (mfc) and 151 mfc, respectively, compared to plants infected with 

the wildtype strain. Differences in expression levels for PR5 compared with plants infected with the 

wildtype were 15 mfc and 27 mfc in plants infected with the spp1 deletion mutant or the catalytically 

inactive spp1 mutant, respectively. For ATFP4, a mean fold change of 9 for plants infected with the 

spp1 deletion mutant, as well as 10 for plants infected with the catalytically inactive spp1 was measured 

compared to plants infected with the wildtype. For the POX12 gene, 2 mfc and 5 mfc in expression 

levels compared to plants infected with the wildtype strain were measured for the spp1 deletion mutant 

and the catalytically inactive spp1 mutant, respectively (Fig 3.29).  

For the additionally tested pathogenesis-related gene PR3, a mean fold change of 2 mfc and 4 mfc, for 

∆spp1 and spp1D279A were measured compared to the wildtype strain, and for PR4, mean fold changes 

of 14 mfc and 24 mfc for ∆spp1 and spp1D279A were observed compared to the wildtype strain (Appendix 

Fig 7.3).  

In contrast to the group of tested SA-responsive genes, the JA-responsive genes had an overall lower 

expression in planta. A decreased expression compared to the wildtype strain for CC9 could be observed 

with 3 mfc for both, the spp1 deletion mutant as well as the catalytically inactive spp1 mutant. A 

decrease in the expression could also be observed for BBI with 2 mfc in the spp1 deletion mutant and 

the catalytically inactive spp1 mutant compared to the wildtype strain (Fig 3.29). Taken together, this 

indicates that the loss of the Spp1 function may be involved in the suppression of the plant defense 

responses. 

 

3.3.7 Deletion mutants of ER-associated degradation pathway (ERAD) and 

sterol biosynthesis regulator, Srb1, are not impaired in virulence 
The unfolded protein response is strongly interconnected to the ER-associated degradation pathway 

(Travers et al., 2000). Signal peptide peptidase activity is necessary for proper function of the ERAD in 

human cells (Chen et al., 2014). In S. cerevisiae, misfolded proteins in the ER are labeled for 

proteasomal degradation by three subpathways within ERAD: degradation of misfolded proteins at the 

cytoplasmic side (ERAD-C), degraded via the Doa10 E3 ligase complex, detection of misfolded proteins 

within the ER lumen (ERAD-L) or the ER membrane (ERAD-M) is mediated by the Hrd1 E3 ligase 

complex (Ruggiano et al., 2014). To examine, if the Spp1 function is connected to ERAD, gene deletions 

of ERAD components were generated and used in a plant infection assay. The main components of the 

Doa10 complex (Doa10) and the Hrd1 complex (Hrd1 and Der1) were identified in the U. maydis 

genome by a BLASTp analysis. Deletion mutants in the strain background SG200 of the genes hrd1 

(UMAG_00542), der1 (UMAG_05898), doa10 (UMAG_10911) and der2 (UMAG_11402) were 
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generated and tested in a plant infection assay to assess their role in pathogenicity. The strains were 

cultivated in YEPSlight to an OD600 of 1 and injected to 7-day-old maize seedlings. None of the ERAD 

deletion mutants showed a reduced virulence compared to the wildtype strain. Surprisingly, neither the 

double deletion (∆hrd1 ∆doa10) nor the triple deletion strains (∆hrd1 ∆doa10 ∆der1 and ∆hrd1 ∆doa10 

∆der2) were reduced in virulence, indicating that ERAD is not essential for pathogenicity in U. maydis 

(Fig 3.30). In addition, the strains were tested in an ER stress assay, by growing the cells in YEPSlight to 

an OD600 of 1 and spotting them on YNBG solid medium containing TM. However, none of the strains 

showed an impairment in growth during extended UPR activity (Fig 3.31), indicating that the Spp1 

function is not related to ERAD.  

 
Figure 3.30: ERAD is dispensable for pathogenicity of U. maydis. U. maydis strain SG200 (WT) and 
derivatives were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 dpi. n represents the 
total number of inoculated plants from three independent experiments. 
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Figure 3.31: Deletion of ERAD genes did not affect ER stress tolerance. ER stress assay of U. maydis strain 
SG200 (WT) and derivatives. Serial 10-fold dilutions were spotted on YNBG solid medium supplemented with 
TM (0.5 µg/ml) as indicated. Plates were incubated for 48 h at 28°C. 

In A. nidulans the signal peptide peptidase SppA was reported to be involved in cleavage and activation 

of the sterol regulatory element-binding protein (SREBP), SrbA, which is necessary for hypoxia 

adaptation (Bat-Ochir et al., 2016). SppA is highly similar to U. maydis Spp1 (E-value 8 x 10-38) in the 

multiple alignment (Fig 3.19), which suggests a potential role of Spp1 in hypoxia adaption and cleavage 

of the identified srbA ortholog, srb1 (UMAG_05721), in U. maydis. A deletion mutant of srb1 was 

generated and tested in a plant infection assay, to examine if srb1 is involved in pathogenicity. The strain 

SG200 (WT) and srb1 deletion mutant (∆srb1) were grown in YEPSlight to an OD600 of 1 and inoculated 

into 7-day-old maize seedlings. However, the deletion mutant of srb1 does not affect pathogenicity 

compared to wildtype strain (Fig 3.32A). Moreover, the srb1 deletion strains were tested in an ER stress 

assay. The ∆srb1 strain (∆srb1) did not show an impairment in growth during ER stress compared to 

the wildtype (Fig 3.32B). 
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Figure 3.32: Characterization of the srb1 deletion strain in U. maydis. (A) U. maydis strain SG200 (WT) and 
the ∆srb1 derivative were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 dpi and 
grouped into categories depicted on the right. n represents the total number of inoculated plants from three 
independent experiments. (B) ER stress assay of U. maydis strain SG200 (WT) and the ∆srb1 derivative. Serial 
10-fold dilutions were spotted on YNBG solid medium supplemented with TM (0.5 µg/ml) as indicated. Plates 
were incubated for 48 h at 28°C. 

 

Furthermore, growth under hypoxic conditions was tested for the ∆spp1 mutant with additional UPR 

activation. However, no change in growth could be observed under hypoxia, neither with an inactive 

(Fig 3.33, TM, hypoxia) nor an active UPR (Fig 3.33, +TM, hypoxia). Both results indicate, that Spp1 

is not involved in hypoxia adaption in U. maydis. 

 
Figure 3.33: Growth of the ∆spp1 mutant is not impaired under hypoxic conditions. Hypoxia stress assay of 
U. maydis strain SG200 (WT) and derivatives. Serial 10-fold dilutions were spotted on YNBG solid medium 
supplemented with TM (2 µg/ml) as indicated. Plates were incubated in normoxia (21% O2) and hypoxia (1-5% 
O2) for 48 h at 28°C. 
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3.3.8 Effector secretion is not affected in ∆spp1 strains 
Secretion of effector proteins during the biotrophic interaction of pathogens with their host is a crucial 

step in the infection process. In U. maydis, the UPR is required for efficient effector secretion  (Hampel 

et al., 2016). To test if the loss of virulence of the ∆spp1 mutant can be connected to altered protein 

secretion, a  with the effectors pit2 (Hampel et al., 2016), pep1 (Doehlemann et al., 2009), tin2 (Tanaka 

et al., 2014) and cmu1 (Djamei et al., 2011) was performed.  

For pit2, the strains expressing a Pit2-mCherry fusion protein, SG200∆pit2-Potef:pit2-mCherry (WT) and 

SG200∆cib1∆pit2-Potef:pit2-mCherry (∆cib1) described in Hampel et al. (2016), as well as the newly 

generated strain SG200∆spp1∆pit2-Potef:pit2-mCherry (∆spp1), were grown in CMG to an OD600 of 0.35 

and treated (+) or untreated (-) with TM for 4 hours at 28°C.   

 
Figure 3.34: Secretion of Pit2-mC is not impaired in the spp1 deletion strain. Secretion of Pit2-mCherry was 
investigated by Western hybridization of protein extracts prepared from indicated strains expressing the Pit2-
mCherry fusion protein under the control of the constitutive active otef promoter. Strains were grown in CMG 
with or without 5 µg/ml TM (+) and were further incubated for 4 h at 28°C. Cell pellets and supernatant were 
separated by centrifugation. Proteins were separated by SDS-PAGE analysis followed by Western hybridization 
using a mCherry specific antibody. Data generated in (Hach, 2018). 

Secretion of Pit2-mC is strongly reduced under ER stress conditions in the deletion of the UPR 

regulator cib1 (Fig 3.34, supernatant, ∆cib1, +TM) compared to the wildtype (Fig 3.34, supernatant, 

WT, +TM). However, deletion of spp1 did not affect secretion of Pit2-mC under ER stress conditions 

(Fig 3.34, supernatant, ∆spp1 +TM). A similar approach was used for the effectors pep1, tin2 and 

cmu1. The effectors were expressed under the constitutive active otef promoter as C-terminal mCherry 

fusion proteins in the wildtype (WT) as well as in the spp1 deletion (∆spp1) strain background. None 

of the tested effector proteins were affected in secretion by the spp1 deletion (Fig 3.35, supernatant, 

∆spp1). UPR activation plays a major role in the post-translational modification of Pep1-mC and 

Cmu1-mC, resulting in a lower migrating protein band compared to the untreated condition in the WT 

and ∆spp1 strain background (Fig 3.35, pellet and supernatant, Pep1-mC and Cmu1-mC). However, 

UPR activation seems to be necessary for secretion of Pep1-mC and Tin2-mC, since only under ER 

stress secretion of either effector was observed (Fig 3.35, supernatant, Pep1-mC and Tin2-mC), which 

is not the case for Cmu1-mC, where a signal can be observed independently of ER stress (Fig 3.35, 

supernatant, Cmu1-mC). Taken together, the results of the secretion assays (Fig 3.34 and 3.35) suggest 

that deletion of spp1 is not required for effector secretion. However, secretion and processing of 

effector proteins in U. maydis seem to be closely connected to a functioning UPR. 
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Figure 3.35: Secretion of Pep1-mC, Tin2-mC and Cmu1-mC is not impaired in the ∆spp1 strain. Effector 
secretion was investigated by Western hybridization of protein extracts prepared from indicated strains expressing 
the respective mCherry fusion proteins under the control of the constitutive active otef promoter. Strains were 
grown in CMG with or without 5 µg/ml TM (+) and were further incubated for 4 h at 28°C. Cell pellets and 
supernatant were separated by centrifugation. Proteins were separated by SDS-PAGE analysis followed by 
Western hybridization using a mCherry specific antibody.  

 

3.3.9 Fungal UPR in planta is not elevated in ∆spp1 
Secretion in ∆spp1 is not impaired under axenic conditions, as indicated by the performed secretion 

assays in chapter 3.3.8. However, it might be possible that Spp1 is necessary to cope with the high load 

on the ER during extended effector secretion in planta. To test this assumption, expression analysis of 

the fungal UPR maker genes cib1s, bip1, lhs1, cne1 and UMAG_11594 in plants infected with SG200 

(WT), SG200∆spp1 (∆spp1) and SG200∆spp1 Potef:spp1D279A-mC (∆spp1 spp1D279A) was performed. 2 

dpi, infected leaf tissue was collected and subjected to RNA preparation with subsequent qRT-PCR 

analysis. However, only UMAG_11594 showed a slight upregulation in both mutant strains. Fungal 

expression of other UPR marker genes was similar in the ∆spp1 and ∆spp1 spp1D279A strains compared 

to the wildtype (Fig 3.36) This indicates that the loss of virulence in ∆spp1 mutants is not due to an 

increased ER stress in planta, which would be predicted if secretion of effectors was affected. 
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Figure 3.36: Genes of the fungal UPR are not upregulated in ∆spp1 strains during plant infection. qRT-PCR 
analysis was used to monitor fungal UPR gene expression in planta. Indicated U. maydis strains were inoculated 
in 7-day-old maize seedlings and infected leaf material was collected at 2 dpi. Expression levels are depicted 
relative to WT infected plants and represent the mean of three biological replicates with two technical duplicates 
each. eIF2b was used for normalization. Error bars represent the SD. 

 

3.3.10 Deletion of UPR elements (UPRE) in the spp1 promoter abolishes 

UPR-dependent induction of spp1  
Gene expression of spp1 is upregulated during the biotrophic interaction of U. maydis with its host plant 

and peak expression levels are reached 2 days after plant infection (Lanver et al., 2018). Moreover, 

RNAseq data and microscopic monitoring of Spp1 showed that the UPR regulator cib1 directly controls 

the gene expression of spp1 (Chapter 3.2.2 and 3.3.3). ChIPseq data of cib1 revealed a UPR element 

(UPRE), which consistently can be found in most of the UPR core gene promoters (Chapter 3.2.3). For 

spp1, two possible UPRE motifs, CTTCCACGTCT (Fig 3.37A and B, UPRE1) and GCGCTGTGCG 

(Fig 3.37A and B, UPRE2), were identified by their highest local peak enrichment in the spp1 promoter. 
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Figure 3.37: Scheme of UPREs in the spp1 promoter identified by ChIPseq. (A) Visualization of Cib1 binding 
in the spp1 promoter obtained by ChIPseq analysis (chapter 3.2.3). The depicted UPRE (UPRE1 and UPRE2) 
motifs were selected by their highest local peak enrichment (blue) in the promoter region of spp1. (B) List of 
identified UPREs in consecutive order. Nucleotides of UPREs are highlighted in their respective color. Distance 
from the spp1 transcription start site (tss) is depicted in base pairs (bp).  

 

Both UPREs of the spp1 promoter were deleted, to check if the newly identified UPRE1 and UPRE2 in 

the spp1 promoter are important for expression of spp1 under ER stress. The strains, generated in the 

∆spp1 deletion background, contained either a single deletion (Pspp1[∆UPRE1]:spp1-mC or 

Pspp1[∆UPRE2]:spp1-mC) or double deletion of both UPREs (Pspp1[∆UPRE1/2]:spp1-mC). The strains SG200 

(WT), SG200∆spp1 (∆spp1), SG200∆spp1 Pspp1:spp1-mC (Pspp1:spp1-mC), SG200∆spp1 

Pspp1[UPRE1]:spp1-mC (Pspp1[UPRE1]:spp1-mC), SG200∆spp1 Pspp1[UPRE2]:spp1-mC (Pspp1[UPRE2]:spp1-mC) 

and SG200∆spp1 Pspp1[UPRE1/2]:spp1-mC (Pspp1[UPRE1/2]:spp1-mC) were cultivated in YNBG to an OD600 

of 0.35 and treated with TM for 4 hours at 28°C. Samples were collected and subjected to RNA 

preparation with subsequent qRT-PCR analysis. Induction of the UPR was tested by the UPR marker 

genes cib1s and bip1. Under unstressed conditions, expression of the UPR marker genes was similar in 

all strains. However, expression of spp1 in the untreated Pspp1:spp1-mC was 4-fold increased when 

compared to wildtype strain (Fig 3.38, -TM). The expression of UPR marker genes during ER stress 

conditions was induced in all tested strains, whereas spp1 expression was only induced in the control 

strains but not in the UPRE deletion strains.  
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Figure 3.38: Strains with UPRE deletions in the spp1 promoter display a reduced expression during ER 
stress. qRT-PCR analysis was used to monitor spp1 gene expression in UPRE deletion strains. Indicated U. maydis 
strains were grown in YNBG to an OD600 of 0.35 and treated with or without 5 µg/ml TM for 4 h at 28°C. 
Expression levels are depicted relative to highest gene expression and represent the mean of three biological 
replicates with two technical duplicates each. eIF2b was used for normalization. Error bars represent the SD. 

To examine, if UPRE dependent spp1 regulation is important for virulence, a plant infection assay was 

performed. The strains used in the qRT-PCR analysis (Fig 3.38) were grown in YEPSlight to an OD600 of 

1 and inoculate into 7-day-old maize seedlings. However, the UPRE deletion strains were still 

pathogenic but formed less heavy and more small tumors (Fig 3.39). These results indicate that the basal 

expression of spp1 in the UPRE deletion strains is still sufficient to establish a biotrophic interaction 

with the plant.  
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Figure 3.39: UPRE deletion mutants display a slightly reduced virulence. U. maydis strains SG200 (WT) and 
derivatives were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 dpi and grouped into 
categories depicted on the right. n represents the total number of inoculated plants from two independent 
experiments. 

 

3.3.11 Bioinformatic prediction of UPR elements in SPP promoters 
Signal peptide peptidase activity in U. maydis is essential for pathogenicity (Chapter 3.3.1 and 3.3.5). 

Since the binding of Cib1 in the promoter region of spp1 is necessary for gene expression and a 

connection between the UPR and SPP expression is particular and not yet described, the question arises 

if the UPRE identified in the ChIPseq analysis (Chapter 3.2.3) can be found in other organisms SPP 

promoters. To answer this question, the identified UPRE (Fig 3.12) was subjected to MAST (Motif 

Alignment and Search Tool,  (Bailey and Gribskov, 1998)) by using the SPP promoter regions of the 

smut fungi U. maydis (spp1), S. reilianum (Srspp1), U. hordei (Uhspp1) and U. bromivora (Ubspp1) for 

motif search (Fig 3.40 and 3.41). 

 
Figure 3.40: Schematic representation of predicted UPREs in promoters of spp1 and orthologous genes. The 
identified Cib1 binding motif of the WT strain was subjected to the MAST (Motif Alignment and Search Tool, 
http://meme-suite.org/tools/mast) for motif search in the SPP promoter region of U. maydis, S. reilianum, 
U. hordei and U. bromivora. Schematic representation of identified UPREs (red boxes). Promoter regions and 
genes are highlighted in gray and blue, respectively. Transcription start sites (tss) are indicated by arrows. 
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The MAST analysis predicted two novel UPREs (predicted UPRE, pUPRE), pUPRE2 

(TGACGTGTTGG, P-value 3.1x10-5) and pUPRE3 (TTGACACGTCG, P-value 6.3x10-6), for 

U. maydis spp1 promoter (Fig 3.41B). In addition, the predicted pUPRE1 (CTTCCACGTCT, P-value 

6.3x10-6) is similar to the identified UPRE1 in the UPRE deletion assay (Chapter 3.3.10). For 

S. reilianum, U. hordei and U. bromivora only one pUPRE could be identified in their SPP promoters, 

with CTTCCACGTCT (P-value 6.3x10-6),  CTGCCACGTCT (P-value 2.1x10-5) and CTGCCACGTCT 

(P-value 2.1x10-5), respectively (Fig 3.41). The results of the MAST analysis indicate that fungal 

virulence, promoted by Spp1, might not be solely restricted to U. maydis. 

 

Figure 3.41: Predicted UPREs (pUPRE) in promoters of spp1 and orthologous genes. (A) The identified Cib1 
binding motif of the WT described in figure 3.12 is depicted in both orientations. (B) List of identified UPREs in 
consecutive order. Nucleotides of UPREs are highlighted in their respective color. Distance from the SPP 
transcription start site (tss) is depicted in bp. P-value represents the probability of a single random subsequence of 
the length of the motif scoring at least as good as the observed match. Distance from the SPP transcription start 
site (tss) is depicted in base pairs (bp) 

 

3.3.12 LC-MS analysis identifies potential Spp1 interaction partners  
Besides the initially described function of signal peptide peptidases (SPP) in cleaving left-over signal 

peptides in the ER membrane, only a little is known about other potential substrates and the contribution 

of their cleavage products in cellular processes (Voss et al., 2013). Since Spp1 seems not to be involved 

in ERAD (Chapter 3.3.7), H2O2 detoxification (Chapter 3.3.6) and growth under hypoxia 

(Chapter 3.3.7), a co-immunoprecipitation assay with subsequent liquid chromatography-mass 
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spectrometry (LC-MS) analysis was performed to identify possible interaction partners of Spp1 in 

U. maydis. To this end, strains were generated expressing the Spp1-GFP fusion protein and the 

catalytically inactive Spp1D279A-GFP mutant in the SG200∆spp1 background. Both fusion proteins were 

expressed under the control of the constitutive active otef promoter. The catalytically inactive Spp1D279A 

mutant was used to inhibit substrate cleavage and by this increase the probability to identify putative 

protease/substrate interactions. These protein interactions are transient and often hard to detect using 

immunoprecipitation techniques. To identify unspecific protein binding to the GFP tag, the strain SG200 

Potef:GFP-3xHA served as a negative control. The strains SG200∆spp1 Potef:spp1-GFP, SG200∆spp1 

Potef:spp1D279A-GFP and SG200 Potef:GFP-3xHA were grown in CMG to an OD600 of 0.35 and treated 4 

hours with or without TM for UPR induction. Protein extracts were subjected to immunoprecipitation 

using magnetic agarose GFP-trap beads. For quality control, an immunoblot was performed prior to LC-

MS analysis to check for sufficient protein levels in the untreated conditions, which was indeed the case 

(Fig 3.42).  

 
Figure 3.42: Western hybridization of pull-down of Spp1-GFP and Spp1D279A-GFP. Input and eluate fractions 
of the untreated conditions were used for quality control prior to LC-MS analysis. Samples were resolved by SDS-
PAGE (10%) and analyzed by Western hybridization. For detection of the Cib1-GFP fusion protein, a GFP specific 
antibody was used. The asterisk indicates the Spp1-GFP fusion protein with a predicted size of ~73 kDa. Data 
generated in (Hach, 2018). 

In the LC-MS analysis, a total number of 11 proteins were co-immunoprecipitated with Spp1-GFP 

and/or Spp1D279A-GFP. The proteins UMAG_02016 (Fig 3.43, not regulated in planta), UMAG_02266 

(Fig 3.43, downregulated in planta), UMAG_04994 (Fig 3.43, upregulated in planta) and 

UMAG_06273 (Fig 3.43, not regulated in planta) were identified in the treated and untreated conditions 

of Spp1-GFP and Spp1D279A-GFP at least twice. A BLASTp analysis revealed that UMAG_02016 has a 

predicted Cytochrome b5-like Heme/Steroid binding domain (E-value 1.25x10-9) and is related to Dap1p 

of S. cerevisiae (Similarity 66%, E-value 4x10-31). In Schizosaccharomyces pombe, Dap1 interacts with 

sterol biosynthesis proteins Erg5 and Erg11, which promotes normal sterol levels. The protein 

UMAG_02266 has a Brain acid soluble protein 1 (BASP1) domain (E-value 2.77x10-8) as well as a 

phosphatidate cytidylyltransferase domain (E-value 5.94x10-121) and is related to Cds1p of S. cerevisiae 

(Similarity 52%, E-value 8x10-105), which is an ER membrane-bound CDP-diacylglycerol synthase 

essential for vegetative cell growth (Shen et al., 1996). The protein UMAG_04994 has an 

oligosaccharyltransferase subunit beta (48 kDa) domain (E-value 5.41x10140) and is related to Wbp1p 
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of S. cerevisiae (Similarity 47%, E-value 7x10-26). The protein UMAG_10649 is related to an 

oligosaccharyltransferase complex subunit delta (ribophorin II) (Similarity 44%, E-value 1x10-15) in 

Cryptococcus gattii. Members of the oligosaccharyltransferase (OST) protein complex are essential for 

N-linked glycosylation of proteins (Kelleher and Gilmore, 1994). The protein UMAG_06273 has a 

flavodoxin domain (E-value 1.37x10-36) as well as an NADPH cytochrome p450 reductase (CYPOR) 

domain (E-value 0) and is related to Ncp1p of S. cerevisiae (Similarity 56%, E-value 5x10-152), which 

is involved sterol biosynthesis. The protein UMAG_02833 is related to the S. cerevisiae Sec66p 

(Similarity 55%, E-value 2x10-1) that is part of the Sec63 translocation complex (Feldheim et al., 1993). 

UMAG_05433 has a PMT1 domain (E-value 0) and is related to the dolichyl-phosphate-mannose-

protein O-mannosyl transferase Pmt4p of S. cerevisiae (Similarity 62%, E-value 0) and is required for 

O-linked glycosylation of secretory and cell surface proteins (Sanders et al., 1999). The protein 

UMAG_11590 has a PqqL domain and is predicted to be a Zn-dependent peptidase (E-value 7.34x10-

111). The protein is related to Mas1p of S. cerevisiae (Similarity 72%, E-value 9x10-170). Mas1p is a 

subunit of the mitochondrial processing protease (Witte et al., 1988). The protein UMAG_06480 does 

not have any conserved domains. Moreover, the protein can only be found in smut fungi such as 

U. bromivora (Similarity 78%, E-value 7x10-95), S. reilianum (Similarity 83%, E-value 1x10-85) and 

U. hordei (Similarity 80%, E-value 8x10-80). 

The protein UMAG_06089 (Fig 3.43, upregulated in planta) was only present in the treated Spp1-GFP 

and Spp1D279A-GFP conditions. BLASTp analysis of UMAG_06089 predicted a conserved microsomal 

signal peptidase 25 kDa subunit (SPC25) domain (E-value 3.04x10-38), which is part of the signal 

peptidase complex. The gene is a member of the UPR core genes (Fig 3.10), which is essential for 

U. maydis (Chapter 3.3.1) 

The protein UMAG_02578 (Fig 3.43, not regulated in planta) was only detectable in conditions with 

the catalytically inactive Spp1D279A-GFP mutant strain. In a BLASTp analysis of the protein sequence, 

a luminal heterokaryon incompatibility protein (Het-C) domain was predicted (E-value 0) that is related 

to het-C of Neurospora crassa (Similarity 53%, E-value 4x10-140) as well as TinC of A. nidulans 

(Similarity 60%, E-value 4x10-136). The protein in U. maydis has a predicted transmembrane domain 

(Phobius) and a larger cytosolic domain (241 AA), which is only present in smut fungi such as 

U. bromivora, S. reilianum and U. hordei. 
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Figure 3.43: Heat map of potential Spp1 interaction partners identified by LC-MS analysis. For LC-MS 
analysis, the strains SG200∆spp1 Potef:spp1-GFP, SG200∆spp1 Potef:spp1D279A-GFP and SG200 Potef:GFP-3xHA 
were grown in CMG to an OD600 of 0.35 and treated 4 h with or without TM (5 µg/ml f.c.) for UPR induction. 
Samples were taken and prepared protein extracts were subjected for immunoprecipitation with magnetic agarose 
GFP-trap beads (Chromotek). Proteins were eluted and subjected to LC-MS analysis. Data analysis was performed 
with MaxQuant (https://maxquant.org) 1.6.0.16 (parameter file in Appendix File 2) using the label-free 
quantification method. For statistical analysis of the MaxQuant output, the Perseus (1.6.2.3) framework was used. 
The heat map was generated in Perseus by filtering towards proteins being detected in the treated Spp1D279A-GFP 
condition. The GFP-3xHA control was used as a negative control, to decrease the number of non-specific or non-
interacting proteins. The LC-MS analysis was performed in three independent replicates, each indicated as a 
column in the heat map. Values for the proteins (rows) and the conditions (columns) are colored based on the 
protein abundance, in which high and low log2 LFQ (label-free quantification) intensity values are depicted in red 
and yellow, respectively. The range of log2 LFQ intensity values is indicated in the color bar shown below. Sample 
types (Spp1-GFP, Spp1D279A-GFP) and treatment conditions (without tunicamycin [-TM], with tunicamycin 
[+TM]) are indicated at the top. Gene regulation of the identified proteins in planta (Lanver et al., 2018) is depicted 
for 2, 4 and 6 days after inoculation (dpi). Green, gray and red boxes indicate upregulation, the absence of 
differential gene expression and downregulation, respectively. Data generated in (Hach, 2018). 

To examine if UMAG_02578 is involved in processes mediated by Spp1, subcellular localization was 

examined and deletions strains of UMAG_02578 were tested in a plant infection assay. UMAG_02578 

was tagged with GFP and expressed under the constitutive active otef promoter to determine its 

subcellular location during unstressed and ER stress conditions. The strain was grown in CMG to an 

OD600 of 0.8 and treated with or without TM for 2 hours at 28°C. The fusion protein UMAG_02578-

GFP is observable at ER-like structures and around the nucleus in treated and untreated conditions. 
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However, after UPR activation, a more prominent signal in the nucleus can be observed (Fig 3.44, +TM, 

white arrows).  

 
Figure 3.44: UMAG_02578-GFP accumulates upon ER stress at the nucleus of U. maydis. The strain SG200 
Potef:UMAG_02578-GFP was grown in CMG to an OD600 of 0.8 and were treated with or without TM (5 µg/ml 
f.c.) for 2 h at 28°C to activate the UPR. DIC = differential interference contrast. Exposure time of GFP channel 
was set to 350 ms. Scale bar = 20 µm. Data generated in (Hach, 2018). 

An infection assay was performed to address the question if UMAG_02578 is essential for pathogenicity. 

To this end, deletion mutants of UMAG_02578 were generated. The strains SG200 (WT) and the 

derivatives ∆UMAG_02578#1, ∆UMAG_02578#3 and ∆UMAG_02578#5 were grown in YEPSlight to 

an OD600 of 1 and inoculated into 7-day-old maize seedlings. However, all of the UMAG_02578 deletion 

mutants are indistinguishable from the wildtype strain (Fig 3.45). The function of the protein interaction 

between Spp1 and UMAG_02578 remains unclear and may be elucidated in the future. 
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Figure 3.45: Deletion mutants of UMAG_02578 have no impact on pathogenicity. U. maydis strain SG200 
(WT) and derivative were inoculated into 7-day-old maize seedlings. Disease symptoms were rated 8 dpi and 
grouped into categories depicted on the right. n represents the total number of inoculated plants. 
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4 Discussion 
In this study, the Clp1-dependent modulation of the UPR during biotrophic development of U. maydis 

was analyzed. It could be shown that the interaction of Clp1 with the central regulator of the UPR, Cib1, 

impacts subcellular localization, increases protein levels and stability, and alters phosphorylation pattern 

of Cib1. Further, it could be demonstrated, that the transcriptional output of the UPR upon clp1 

expression modulates a set of UPR core genes identified by RNAseq analysis. The observed modulation 

of the UPR is in line with previous studies on the regulation of specific UPR target genes during Clp1 

induction (Heimel et al., 2013). However, a genome-wide analysis to identify UPRE motifs in promoters 

of UPR regulated genes did not show an altered DNA binding of Cib1 during Clp1 expression. Deletion 

of UPR core genes that are not repressed upon Clp1 expression identified a novel pathogenicity factor 

spp1, encoding an ER resident signal peptide peptidase (SPP), specifically upregulated during 

pathogenic development (Lanver et al., 2018). Deletion of spp1 resulted in impaired growth in planta 

and a complete loss of virulence. Moreover, infected maize plants showed highly increased defense 

responses as evidenced by the production of reactive oxygen species and upregulation of defense-related 

genes. The virulence function of Spp1 is not connected to previously known SPP functions or cellular 

pathways in other organisms such as ER-associated degradation and hypoxia adaptation but requires 

Spp1 catalytic activity. This suggests that specific cleavage products generated by Spp1 catalytic 

activity, are of crucial importance to establish a compatible biotrophic fungal/plant interaction. 

 

4.1 Post-translational control of the UPR regulator Cib1 
In U. maydis, plant penetration marks a key step in the host adaptation of the fungus during biotrophic 

development. Further steps after the onset of plant penetration are controlled by the developmental 

regulator Clp1 and an active UPR (Heimel et al., 2010a; Heimel et al., 2013). The bZip transcription 

factor Cib1 is the central regulator of the UPR in U. maydis, and its interaction with Clp1 promotes in 

planta proliferation during pathogenic development (Heimel et al., 2013). Moreover, the interaction of 

Clp1 with Cib1 leads to an elevated ER stress resistance (Fig 3.1). Fluorescence microscopy of infected 

maize plants with strains expressing a Cib1-GFP fusion protein showed a strong nuclear fluorescence 

signal only after plant penetration (Heimel et al., 2010a). The Clp1 protein is highly unstable and UPR 

activation increases its stability significantly by physical interaction with Cib1 (Heimel et al., 2013). 

However, the consequences of Clp1 expression on the Cib1 protein have not been addressed, yet.  

 

4.1.1 Cib1 mutual stabilize each other Clp1 upon interaction  
To investigate the impact of Clp1 interaction with Cib1, Cib1 protein and cib1s transcript levels were 

monitored during clp1 expression (Fig 3.3). Protein levels of Cib1 were strongly increased in clp1 

expressing conditions (Fig 3.3A) and as reported before (Heimel et al., 2013), expression levels of cib1s 
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were significantly lower in clp1 expressing conditions (Fig 3.3B). This opens the question of whether 

increased stability of Cib1 or enhanced translation of the cib1s mRNA led to elevated Cib1 protein levels. 

Stability of Cib1 during clp1-expression was monitored over time with a cycloheximide chase assay 

(Fig 3.4A) and a doxycycline promoter shut-off assay (Fig 3.4B). Both assays showed a significant 

increase over time in Cib1 protein stability during the co-expression of Clp1. According to the promoter 

shut-off assay (Fig 3.4A), the estimated protein half-life of Cib1-GFP fusion protein increased from 2 h 

to more than 3 h. In line with this observation, it could be shown that in human cancer cell lines, a mutual 

increase of protein half-life was shown for the bHLH-type transcription factor STRA13 and its interactor 

MSP58, by possibly preventing proteasomal degradation (Ivanova et al., 2005). The observation of 

recent studies (Heimel et al., 2013), that increased stability of Clp1 is promoted by physical Cib1 

interaction is further supported by the performed stability assays (Fig 3.4A and B) of the present study, 

indicating a positive, mutualistic effect on protein stability between both proteins. Interestingly, the 

protein bands in strains with no clp1 expression were blurred and had higher migrating bands compared 

to strains with clp1 expression (Fig 3.3A and 3.4A and B), suggesting that Cib1 undergoes a post-

translational modification in a clp1-dependent manner.  

 

4.1.2 Cib1 phosphorylation is reduced in a Clp1-dependent manner 
Regulation of transcription factors is not only limited to their transcriptional control of upstream 

activators or repressors. In a multitude of biological processes involved in developmental or cell cycle 

programs, post-translational modifications of transcription factors play an essential role to adjust the 

downstream transcriptional output. Alongside other studied post-translational modifications of 

transcription factors such as SUMOylation, ubiquitination, acetylation, glycosylation and methylation, 

the most rapid alteration of transcription factor modification to adapt to changes in the environment are 

provided by protein phosphorylation or dephosphorylation. Alterations in the phosphorylation pattern 

of transcription factors can affect their retention time in the nucleus, protein half-life, interaction with 

co-factors or DNA binding specificity (Whitmarsh and Davis, 2000; Filtz et al., 2014). Such a change 

in DNA binding specificity was shown in U. maydis for Prf1 (pheromone response factor 1). 

Phosphorylation of Prf1 by the protein kinase A, Adr1, leads to expression of the a mating type genes 

whereas phosphorylation of Adr1 and the MAPK Kpp2 on different phosphorylation sites of Prf1 leads 

to activation of the b genes (Kaffarnik et al., 2003). 

 

In the present study, a phosphatase assay with Cib1 showed that Cib1 phosphorylation is reduced upon 

clp1 expression (Fig 3.5). In correlation with the observation of increased Cib1 stability by Clp1 

induction (Fig 3.4A and B), these data indicate that an unphosphorylated state of Cib1 may be crucial 

for its stability. In S. cerevisiae, the UPR regulator Hac1p and the transcriptional activator of amino acid 
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biosynthesis Gnc4p, are phosphorylated upon transcriptional initiation by Srb10p, a subunit of the 

SRB/mediator module of the RNA polymerase II holoenzyme. Phosphorylation marks Hac1p and 

Gcn4p for recognition by SCF(Cdc4) ubiquitin ligase leading to subsequent proteasomal degradation of 

the bZip transcription factors, which is referred to as the “black widow” model (Pal et al., 2007; Irniger 

and Braus, 2003; Kornitzer et al., 1994; Tansey, 2001; Chi et al., 2001). The LC-MS analysis revealed, 

that four possible phosphorylation sites of Cib1, Ser22, Ser33, Thr381, and Ser468, are differentially 

phosphorylated upon clp1 induction (Chapter 3.1.5). In particular, Ser22 and Ser33 seemed to be higher 

or not phosphorylated, respectively, in a Clp1-dependent manner. The phosphorylation sites, Thr381 

and Ser468 were less phosphorylated upon clp1 induction. Ser468 is predicted to be phosphorylated by 

a p38 mitogen-activated protein kinase (Appendix Table 1). In S. cerevisiae, the p38 MAPK Hog1p 

(high osmolarity glycerol 1) of the HOG can be activated by osmotic stress (Schüller et al., 1994) or 

heat stress (Winkler et al., 2002) and is crucial for freeze protection (Panadero et al., 2006). In Botrytis 

cinerea, strains with deletion of the HOG1 homolog BcSAK1 were unable to penetrate the unwounded 

plant surface (Segmüller et al., 2007). However, it is unclear if the homolog of Hog1 in U. maydis 

contributes to virulence. In mammals, the p38 MAPK is described as a stress-activated protein kinase 

(SAPK) involved in different physiological processes such as inflammation response, cell cycle 

regulation, apoptosis or development and are activated upon ER stress (Coulthard et al., 2009; 

Matsuzawa et al., 2002). In addition, it was demonstrated in liver cells of mice that p38 MAPK-

dependent phosphorylation of Xbp1s promotes nuclear translocation of Xbp1s, after a fasting period and 

subsequent refeeding of the mice (Coulthard et al., 2009). Microscopic analysis of the Cib1-GFP fusion 

protein revealed in addition to the expected nuclear localization a cytoplasmic signal upon clp1 induction 

(Fig 3.2). Hence, it appears possible that Cib1 shuttles between nucleus and cytosol in Clp1 and/or 

phosphorylation-dependent manner. In mammals, nucleocytoplasmic shuttling was reported for FoxO1, 

where neurotrophic factors promote nuclear exclusion of the transcription factor by affecting its 

phosphorylation pattern (Gan et al., 2005). Clp1 could support the nuclear export of Cib1 by inhibition 

of phosphorylation at specific residues. The phosphosites Thr381 and Ser468 are located near or in the 

Clp1 interaction domain, respectively, suggesting a steric inhibition of phosphorylation by Clp1. Thus, 

this could indirectly affect gene expression by translocation of Cib1 to the cytoplasm. This question 

could be addressed in future studies by monitoring the subcellular localization of cib1 phosphorylation 

mutants upon clp1 induction. In the present study, however, an infection assay of cib1 phospho-null or 

phosphomimic mutants did not show a significant change of infection symptoms compared to the 

wildtype (Fig 3.7). Since cib1-GFP fusion constructs were used to study the impact of the 

phosphomutations, it is possible that stabilizing properties of the GFP fusion (Janczak et al., 2015) 

diminished the virulence-dependent effects of the introduced phosphomutations. Hence, infection assays 

of cib1 phosphomutants should be repeated with a smaller fusion protein or no tag at all to counteract 

the positive effects of protein tags on target protein stabilization. However, protein stability of these 

Cib1 phosphorylation-mutants was not examined, yet. Phosphorylation of transcription factors often 
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occurs in posttranslational crosstalk prior to ubiquitination, leading to degradation of the respective 

protein by proteasomal-degradation (Magnani et al., 2000; Treier et al., 1994; Fuchs et al., 1996). It 

remains unclear if phosphorylation of Cib1 affects its function or promotes degradation, which should 

be addressed in future studies. In a previous study, a cib1433 mutant strain, lacking the Clp1-interaction 

domain (Clp1-ID, Fig 3.6) did not show modulation of the UPR target genes upon clp1 induction 

(Heimel et al., 2013). It will be quite interesting if destabilization of Cib1 occurs by phosphorylation-

dependent degradation, which may be counteracted by masking of possible phosphosites of Cib1 by 

Clp1 interaction.  

 

4.2 Modulation of the UPR in U. maydis is controlled by Clp1 

4.2.1 Clp1 is modulating the transcriptional output of the UPR 
For many pathogenic fungi, such as Aspergillus fumigatus (Richie et al., 2009), 

Cryptococcus neoformans (Cheon et al., 2014), Candida albicans (Wimalasena et al., 2008), 

Alternaria brassicicola (Joubert et al., 2011) or Ustilago maydis (Heimel et al., 2013; Hampel et al., 

2016) the unfolded protein response is essential for virulence. The ER represents a hub where most of 

the secreted and transmembrane proteins are post-translationally modified and folded, which is further 

supported by the UPR, governing the folding capacity of the ER and restoring ER homeostasis (Karagöz 

et al., 2019). An adjustable UPR is essential since hyperactivation of the UPR causes apoptosis 

(Woehlbier and Hetz, 2011). Modulation of the UPR can be achieved via different ways such as iron 

depletion and repletion (Cohen et al., 2017), lipid bilayer stress (Halbleib et al., 2017), phosphorylation 

of Ire1 (Welihinda et al., 1998), and regulation of Hac1 protein or mRNA stability (Tsvetanova et al., 

2012; Pal et al., 2007; Glazier et al., 2015). Especially during plant infection of U. maydis, an adjusted 

UPR supports the biotrophic phase, where an unregulated or hyperactive UPR is deleterious and might 

trigger cell death. The developmental regulator Clp1 mediates UPR adaptation through direct interaction 

with Cib1, resulting in strongly elevated ER stress resistance (Heimel et al., 2013).  

By RNAseq based transcriptome analysis of the UPR in U. maydis, 65 upregulated UPR core genes 

were identified (Fig 3.8). Most of these genes can be grouped into the ER-associated processes such as 

“unfolded protein response”, “stress response”, “protein folding and stabilization” and “protein/peptide 

degradation” (Fig 3.9), which are important for adaptation of the secretory pathway during increased 

ER stress (Travers et al., 2000; Arvas et al., 2006; Carvalho et al., 2012). Genes of the identified UPR 

core set are shown to be important for ER resistance in U. maydis and other fungi such as the ER 

chaperones, bip1 (UMAG_15034), also an interactor of Ire1 (Okamura et al., 2000; Jung et al., 2013) 

and lhs1 (UMAG_00904) (Yi et al., 2009), as well as dnj1 (UMAG_05173), an ER co-chaperone 

(Hampel et al., 2016), ero1 (UMAG_05219), an ER oxidoreductase (Frand and Kaiser, 1998), pd1 

(UMAG_10156), a protein disulfide isomerase (Marschall and Tudzynski, 2017) as well as the UPR 
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marker gene UMAG_11594 (K. Heimel pers. communication). The UPR core genes UMAG_05898/der1 

and UMAG_00542/hrd1, which are core members of the ERAD pathway and are implicated in 

degradation of misfolded proteins in the ER lumen and the ER membrane (Ruggiano et al., 2014), were 

shown to be upregulated upon ER stress before in budding yeast (Travers et al., 2000). Three members 

of the signal peptidase complex (SPC), UMAG_00481, UMAG_15029, homologs of SEC11, SPC3 in 

yeast, respectively, as well as UMAG_06089, a homolog of the mammalian SPC25, were identified as 

UPR core genes. It was shown that members of the signal peptidase complex are essential for many 

organisms (La Rosa et al., 2004; Fang et al., 1997; Meyer and Hartmann, 1997). Moreover, the yeast 

homolog of SPC3 in Colletotrichum graminicola is implicated in virulence (Thon et al., 2002). Proper 

effector secretion is essential for pathogenic fungi to compete with the defense response of their hosts 

(Lo Presti et al., 2015). Most of the UPR core genes are functional categorized to ER and UPR-related 

functions (Fig 3.9) and are upregulated in planta (Fig 3.10) (Lanver et al., 2018), which supports the 

model of a UPR that might be involved in the effector production, translocation into the ER or maturing 

of precursor effector proteins in the ER. 

The RNAseq experiment identified UPR target genes and revealed the clp1-dependent modulation of 

these genes (Fig 3.8) on a genome-wide level. 35 of the 65 identified UPR core genes, were not repressed 

by clp1 induction whereas 30 of these genes were downregulated upon clp1 expression. In line with 

previous studies (Heimel et al., 2013), the UPR core genes bip1, lhs1 and mpd1 showed reduced 

expression levels during a clp1-dependent modulation of the UPR. It was hypothesized that genes that 

are not repressed upon Clp1 induction might be important for virulence of U. maydis. Most of these 35 

UPR core genes have not been studied before and were subjected to a gene deletion screen, to examine 

ER stress resistance and monitor pathogenicity in a plant infection assay (Chapter 4.3.1).  

 

4.2.2 Clp1 does not alter DNA binding of Cib1 
In Hampel et al. (2016), a putative DNA binding motif of Cib1 was predicted based on an in silico 

promoter prediction and qChIP analysis (Hampel et al., 2016). To identify direct Cib1 regulated genes, 

a comparative ChIPseq analysis, including a strain expressing clp1, was performed and correlated with 

the UPR core gene set obtained by RNAseq analysis (log2FC ≥ 1). This generated a list of 91 UPR core 

gene promoters present in the WT and the Pcrg:clp1 condition. The identified Cib1 DNA binding 

site/UPRE by MEME-ChIP (Fig 3.12, WT, TGACGTGGAAG) is highly similar to the CREB3-like 

(TGCCACGTGGCA) and the Hac1-homolog XBP1 (TGACGTGGA) consensus sequence in higher 

eukaryotes (Jolma et al., 2013; Yamamoto et al., 2004). Moreover, the DNA binding motif of Hac1-like 

proteins might be similar, since only the bZip domain of the highly divergent Hac1-like proteins is 

conserved (Weirauch et al., 2014). In Drosophila melanogaster, the bZip transcription factor and Hac1-

homolog, CrebA, a major regulator of the secretory pathway, is upregulating genes of the general 

secretory machinery and tissue-specific secreted cargo (Fox et al., 2010). In U. maydis interaction of 
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Cib1 with Clp1 leads to an increased ER stress tolerance, which further supports efficient effector 

secretion during biotrophic growth in planta. Moreover, the effector genes pit2 and tin1-1 and the co-

chaperone dnj1 showed induced cib1-dependent expression under ER stress (Heimel et al., 2013; 

Hampel et al., 2016; Lo Presti et al., 2016). It can be speculated that a development specific UPR in 

U. maydis increases the production and secretion of effectors by directly regulate specific genes. These 

genes might be present in the list of the 91 UPR core gene promoters, which should be investigated in 

future research. 

The consensus sequence of Cib1 during expression of Clp1 was almost identical, but shorter, (Fig 3.12, 

Pcrg:clp1, TGACGTGG) in promoters of UPR core genes, lacking only the AAG triplet. It can be 

speculated that the Clp1 interaction could interfere with the DNA binding affinity of Cib1 by a physical 

or post-translational alteration of Cib1, such as the reduced phosphorylation during clp1 expression 

observed in this study (Chapter 3.1.4). It was shown in higher eukaryotes that the DNA binding affinity 

of Cys2His2 zinc finger proteins decreased more than 40-fold upon phosphorylation (Jantz and Berg, 

2004). In the present study, UPR core genes with the highest gene regulation showed increased promoter 

scores during clp1 expressing conditions (Fig 3.14). Therefore, expression of these genes in cib1 

phosphorylation mutant strains should be examined in future research. 

The UPR target genes bip1, cib1, lhs1 and dnj1 investigated in previous studies (Heimel et al., 2013; Lo 

Presti et al., 2016) were in the top 20 list (Table 3.2) with the highest promoter scores. This indicates a 

correlation between high promoter scores and regulation of UPR target genes with high expression levels 

during ER stress. A predicted UPRE (TGCCACGT[C/G][G/T]) in the promoters of the effector genes 

tin1-1 and pit1/2 was validated by qChIP analysis in a previous study (Hampel et al., 2016) and is highly 

similar to the UPRE motif identified by the MEME-ChIP analysis in the present study (Fig 3.12, WT, 

TGACGTGGAAG). However, differential gene expression was only observed for pit1 and not for tin1-1 

(Appendix Fig 7.1 and Appendix Table 2). In contrast, DNA binding of Cib1 was only identified in the 

tin1-1 promoter (Appendix Fig 7.1). It is possible that this is based on the different strain backgrounds 

used in Hampel et al. (2016)(SG200) and this study (JB1). In contrast to the SG200 strain, expressing 

an active b-heterodimer, the b-locus in the JB1 strain is deleted (Scherer et al., 2006). The JB1 strain 

was used in this study for RNAseq and ChIPseq experiments to avoid the combinatorial effects of 

different transcriptions factors. Expression of pit1/2 is controlled by the b-dependent transcription factor 

Hdp2 (Lanver et al., 2014) suggesting, that a genetic interaction between Cib1 and Hdp2 might foster 

the expression of pit1/2. 
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4.3 Spp1 is a novel pathogenicity factor 

4.3.1 Deletion of UPR genes modulated by Clp1 induction revealed Spp1 as 

a novel virulence factor in U. maydis 
Clp1-dependent modulation of the unfolded protein response counteracts a hyperactive and deleterious 

UPR (Heimel et al., 2013). In this study, a comparative RNAseq analysis revealed 65 UPR core genes 

upregulated in a cib1-dependent manner. Moreover, 35 of these genes showed an increased or an 

unchanged expression upon clp1 induction (Chapter 3.2.2). It was hypothesized that genes of this UPR 

core gene subset might be necessary for ER stress resistance or during pathogenic development. To test 

this assumption, deletion mutants of these UPR core genes were generated and subjected to ER stress- 

(Fig 3.16) as well as plant infection-assays (Fig 3.15). Three of those genes turned out to be essential 

for growth (Chapter 3.3.1), all of which are components of the signal peptidase complex that mediates 

signal peptide cleavage and translocation of proteins into the ER lumen (Paetzel et al., 2002). In yeast, 

disruption of some of the described subunits of the signal peptidase complex results in non-viable 

mutants (Meyer and Hartmann, 1997). However, upregulation of this complex during ER stress is in 

line with the increased secretory demand during effector secretion of U. maydis during plant 

colonization (Müller et al., 2008; Lanver et al., 2018). 

Surprisingly, the deletion mutants of the remaining 29 UPR core genes were not impaired in ER stress 

resistance (Fig 3.16), suggesting that they are not crucial for ER stress resistance. In the plant infection 

screen, 26 of the deletion mutants were not and 2 only slightly impaired in pathogenicity (Fig 3.15). 

Hence, some of the encoded proteins might have redundant or overlapping functions during ER stress 

or during in planta growth that might support the robustness of plant infection of U. maydis (Lachowiec 

et al., 2016). This assumption is mirrored by the functional redundancy of effector genes observed in 

U. maydis and other pathogenic fungi (Lanver et al., 2017).  

Alternatively, and as previously hypothesized (Heimel et al., 2013), it might also be possible that the 

main function of clp1-dependent UPR modulation is primarily to prevent the deleterious overexpression 

of the identified UPR core genes. In recent studies, overexpression of the spliced form of cib1 led to 

hyperactivation of the UPR and increased ER stress sensitivity (Heimel et al., 2013). 

Deletion of the gene, encoding signal peptide peptidase spp1 did not affect ER stress resistance 

(Fig 3.16) or impaired cell wall integrity (Appendix Fig 7.4) but resulted in a complete loss of virulence 

(Fig 3.15), suggesting that spp1 is a crucial factor of fungal virulence. Bioinformatic analysis predicted 

that Spp1 is a conserved signal peptide peptidase, crucial for intramembrane cleavage of left-over signal 

peptides in the ER membrane (Weihofen et al., 2002). Spp1 has a conserved domain structure containing 

9 TMDs as well as the catalytically active site comprised of a YD and a GLGD motif and the potential 

substrate binding motif QPALLY. In contrast to the highly similar Presenilins (Weihofen et al., 2002), 

a subgroup of aspartic membrane proteases, SPPs have an inverted topology of the active and substrate 
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binding site (Sato et al., 2008). This correlates with the substrate-specificity of signal peptides, by only 

accepting type II transmembrane domains (Weihofen et al., 2002). Fluorescence microscopy revealed 

that Spp1 is located at perinuclear ER and cortical ER structures (Fig 3.20). spp1 is highly expressed 

after UPR activation (Appendix Table 2, WT vs. WT +TM, log2FC 2.93), which was not described 

before in other organisms. This result is in agreement with the upregulation of spp1 during in planta 

colonialization of U. maydis (Lanver et al., 2018). However, expression spp1 was unaffected by the 

clp1-dependent UPR modulation (Appendix Table 2, WT +TM vs. Pcrg:clp1 +TM, log2FC 0.04) (Fig 

3.10), suggesting that stable expression of spp1 might be important for in planta growth. 

Deletion of spp1 could be complemented by expression of SPPs from other smut fungi such as Srspp1 

of S. reilianum, Uhspp1 of U. hordei or the human HM13/SPP (Fig 3.25). In contrast to SPPs from 

closely related species, which regained full virulence after introduction in the ∆spp1 strain, the human 

HM13 only partially restored virulence, although in a dose-dependent manner (Fig 3.25). The human 

HM13 cDNA clone was not codon optimized for U. maydis, which is probably the reason for the dose-

dependent effect on virulence. Codon optimization of heterologous genes is a common procedure to 

improve expression levels and increase the yield of the respective protein in biotechnology (Hu et al., 

2013; Tokuoka et al., 2008; Wang et al., 2015). Taken together, the bioinformatic analysis, the 

subcellular localization and complementation of spp1 deletions strains with the well-studied human SPP 

ortholog, suggests that Spp1 is a bona fide SPP. Moreover, Spp1 is the only predicted SPP in the genome 

of U. maydis, whereas higher eukaryotes harbor up to five members of the SPP family, cleaving different 

kinds of substrates in several tissues and cell compartments (Fluhrer et al., 2009; Voss et al., 2013). This 

argues against the possibility that other SPPs in the genome of U. maydis cover the loss of spp1 during 

vegetative growth or ER stress adaptation (Fig 3.16 and 3.21). Complementation of the spp1 deletion 

with the Spp1D279A mutant did not restore virulence of the strain in plant infection assays, implicating 

that the catalytical activity is crucial for pathogenicity. Mutation of the conserved aspartates in the 

YD/GLGD motif was shown to abolish cleavage of known SPP substrates (Boname et al., 2014). 

The deletion mutant of spp1 is apathogenic in plant infection assays (Fig 3.15 and 3.25). However, the 

spp1 deletion mutant was still able to invade the plant surface (Fig 3.22). This phenotype is similar to 

those observed by ∆cib1 and ∆clp1 strains (Heimel et al., 2013), suggesting that the time point of the 

Spp1 function is simultaneously or shortly after UPR activation in planta. The stunted fungal growth in 

planta might be the result of the inability to suppress plant the plant defense response or the failed 

expression of hydrolytic enzymes to degrade the plant cell wall. In addition, it was observed that the 

spp1 deletion strain is forming hyphal constrictions at areas traversing plant cells (Fig 3.22, arrows). 

The biomass of ∆spp1 strains in planta is significantly decreased (Fig 3.23). Biotrophic pathogens like 

U. maydis typically attempt to suppress the salicylic (SA) and induce the jasmonic acid (JA)-mediated 

plant responses (Glazebrook, 2005). Expression of several pathogen-related plant defense genes of the 

SA pathway was highly induced upon infection with the ∆spp1 or the spp1D279A strain, whereas 
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expression of JA-marker genes was suppressed (Fig 3.29 and Appendix Fig 7.3). In agreement with this 

result, the formation of reactive oxygen species (ROS) in these mutants was strongly increased (Fig 

3.26), since SA-related genes trigger ROS production upon pathogen attack (Kawano, 2003). In previous 

studies, the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI), was used to counteract the 

H2O2 sensitivity of U. maydis mutants (Molina and Kahmann, 2007). However, the addition of DPI to 

inoculated spp1 deletions strains was not able to restore pathogenicity and did not affect on in planta 

growth (Fig 3.28A and B). Moreover, spp1 deletions trains were not sensitive to H2O2 stress during 

vegetative growth (Fig 3.27), indicating that Spp1 is not involved in the downstream response to H2O2 

stress.  

 

4.3.2 Spp1 supports the establishment of the biotrophic interaction in planta 
In U. maydis, Spp1 is specifically required during growth in planta and deletion of spp1 did not impair 

vegetative growth or ER stress resistance. It is known from other organisms, that the general function 

of SPP is to remove left-over signal peptides in the ER membrane after processing of the translocated 

precursor protein by the signal peptidase complex (SPC). However, besides the clearing of signal 

sequence remnants of the ER membrane, SPPs are able to process different types of substrates containing 

a type II transmembrane domain (Chen et al., 2014; Avci et al., 2014; McLauchlan et al., 2002; Lemberg 

and Martoglio, 2004; Baldwin et al., 2014). It is tempting to speculate that Spp1 produces bioactive 

products with a virulence-specific function by cleavage of membrane-bound proteins during U. maydis 

plant infection. In Plasmodium falciparum, the use of pharmacological inhibitors of PfSPP’s proteolytic 

activity inhibits intraerythrocytic development by blocking the ERAD-dependent degradation of 

unstable proteins (Harbut et al., 2012). In human, SPP is also implicated in ERAD by interacting with 

Derlin1 and the E3 ubiquitin ligase TRC8. Interaction of SPP with members of ERAD leads to cleavage 

of the membrane-bound XBP1u. Furthermore, subsequent liberation of XBP1u leads to proteasomal 

degradation of XBP1s and thereby fine-tuning the UPR signaling (Chen et al., 2014). In S. cerevisiae, 

the SPP Ypf1p interacts with the E3 ubiquitin ligase Doa10p and the ERAD factor Dfm1p to degrade 

Zrt1p, a high-affinity zinc transporter, in a zinc-dependent manner (Avci et al., 2014). In U. maydis, 

genes encoding major components of the ERAD complex were deleted in different combination to assess 

their contribution to virulence during plant infection and ER stress resistance. However, deletion of 

ERAD components did not impair pathogenicity and ER stress resistance (Fig 3.30 and 3.31). In 

A. fumigatus, multiple deletions of genes encoding ERAD component did not affect pathogenicity, but 

showed hypersensitivity to ER, thermal, and cell wall stress (Krishnan et al., 2013). In contrast to this 

study, the fungal UPR of U. maydis during in planta growth is not elevated in spp1 deletion strains (Fig 

3.36), indicating no increased UPR due to a higher load of unfolded proteins in the ER. Taken together, 

both results suggest that the virulence-specific Spp1 function in U. maydis is not connected to the ERAD 

pathway. In A. nidulans and A. fumigatus, the sterol regulatory element-binding protein (SREBP) srbA 
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is sequentially cleaved by a Dsc complex-associated proteolysis following SppA cleavage. Cleavage by 

SppA releases the bHLH transcription factor SrbA that activates genes essential for hypoxia adaptation 

(Bat-Ochir et al., 2016; Willger et al., 2008). In this study, the srbA homolog of U. maydis, srb1 

(UMAG_05721) was deleted. However, deletion of srb1 had no impact on virulence and ER-stress 

(Fig 3.32). Moreover, the ∆spp1 strain was not impaired in growth under hypoxic conditions (Fig 3.33), 

indicating that Spp1 is dispensable for hypoxia adaptation. 

In humans, during the maturation of the hepatitis C virus, the ER membrane-embedded hepatitis core 

protein C is processed by the HM13 (McLauchlan et al., 2002; Filipe and McLauchlan, 2015). However, 

this can be excluded for the U. maydis Spp1 function, because a similar mechanism does not exist in 

fungi or plants. The human SPP was also found to be involved in MHC class I antigen presentation on 

the cell surface. Major histocompatibility complex (MHC) class I molecules are produced of signal 

peptides by subsequent cleavage of SPP liberating the fragment to the cytosol. Thus, the transporter 

associated with antigen processing (TAP) protein complex transports the fragment back into the lumen 

of the ER where it binds to an HLA-E molecule. Transport of this complex via the secretory pathway to 

the cell surface leads to protection against natural killer cells (Weihofen and Martoglio, 2003; Oliveira 

et al., 2013). Participation of MHC molecules in fungi can be excluded since MHC molecules are only 

present in jawed vertebrates (Flajnik and Kasahara, 2001).  

Plant defense response suppression by biotrophic pathogens is required to establish a compatible 

interaction with their hosts (Lo Presti et al., 2015) and effectors that suppress the PTI are well studied 

in plant pathogens (Irieda et al., 2019; Boller and He, 2009; Park et al., 2012; Liu et al., 2016) The data 

generated in this study strongly suggest that Spp1 function is necessary to overcome the host innate 

immune response. The loss of spp1 during plant infection resulted in an increased expression of plant 

defense genes (Fig 3.29 and Appendix Fig 7.3) as well as an oxidative burst by the plant (Fig 3.26). 

However, spp1 deletion did not impair general the effector secretion, since the effectors Pit2 

(Doehlemann et al., 2011), Pep1 (Hemetsberger et al., 2012), Tin2 (Tanaka et al., 2014) and Cmu1 

(Djamei et al., 2011) monitored in the secretion assay, were still secreted under axenic conditions 

(Fig 3.34 and 3.35). Nevertheless, PAMP-triggered immunity (PTI) of the plant might be suppressed by 

secreted, Spp1-derived molecules to avoid the generation of ROS and hypersensitive response (HR). It 

is possible that this is mediated by small, secreted peptides previously processed and activated by Spp1. 

The effectors Pit2, Pep1 and Cmu1 were possible substrates/targets for an Spp1 mediated activation, in 

relation to the observed upregulation of SA-related genes and the ROS generation in plants infected with 

spp1 deletion strains. Pit2 inhibits maize cysteine proteases that promote SA-related plant defense, Pep1 

suppresses the plant immunity by inhibiting POX12, a peroxidase in maize generating ROS upon 

pathogen detection and the chorismate mutase Cmu1 is secreted in high amounts to counteract the SA-

induced immune responses (Lo Presti et al., 2015). Interestingly, secretion of Tin2 and Pep1 and 

processing of Pep1 and Cmu1 is dependent on ER stress and in an Spp1-independent way (Fig 3.35). 
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This indicates coordination and modulation of the general effector secretion by the UPR, which should 

be addressed in future studies.  

 

4.3.3 Spp1 is a direct Cib1 target with functional UPREs in its promoter  
spp1 is specifically induced during in planta growth (Lanver et al., 2018), which is probably connected 

to its upregulation during UPR activation observed in axenic conditions (Fig 3.10 and Heimel et al. 

(2013)). Furthermore, spp1 is induced in a cib1-dependent manner, indicated by fluorescent microscopy 

with strains harboring a Pspp1:spp1-mC fusion constructs in wildtype and ∆cib1 strain backgrounds. After 

UPR activation, an increased fluorescence signal was only observed in strains with wildtype background 

(Fig 3.20), indicating a direct cib1 regulation. In a recent study, an in silico prediction of UPRE motifs 

in promoters of U. maydis effector genes as well as a subsequent qChIP analysis revealed the DNA 

binding motif of Cib1 in promoters of the effector genes pit1/2 and tin1-1. Strains harboring a deletion 

of the UPRE motif (TGCCACGTCG) in the pit1/2 

promoter lost UPR-dependent pit1/2 gene 

expression and were significantly impaired in 

virulence (Hampel et al., 2016). In the present 

study, a genome-wide ChIPseq analysis of Cib1 

binding sites was performed, to reveal directly Cib1 

regulated UPR core genes as well as modulation of 

the Cib1 binding site by Clp1 expression 

(Chapter 3.2.3). The ChIPseq analysis revealed a 

strong Cib1 binding in the promoter of spp1 

(Fig 3.13 and 4.1). However, promoter scores 

between wildtype (ps 260.82) and the clp1 

expressing conditions (ps 261.41) were almost identical (Fig 3.13 and 3.14 and Appendix Table 3). This 

correlates well with the result of the RNAseq analysis, where expression of spp1 during ER stress 

conditions is not affected by clp1 induction (Appendix Table 2, WT +TM vs. Pcrg:clp1 +TM, log2FC = 

0.04). Two potential UPRE motifs, UPRE1 (CTTCCACGTCT) and UPRE2 (GCGCTGTGCG) were 

identified in the spp1 promoter according to their local peak enrichment (Fig 4.1, red bell curves). Since 

deletion of UPREs in promoters of pit1/2 and tin1-1 affected gene expression under ER stress (for pit1/2 

and tin1-1) and virulence of UPRE deletion strains (for pit1/2) in infected maize plants, strains harboring 

deletions of the potential UPRE motifs identified in the spp1 promoter were generated (Chapter 3.3.10). 

TM-induced expression of spp1 was significantly reduced in strains lacking one (∆UPRE1 or ∆UPRE2) 

or both (∆UPRE1/2) of the identified UPREs (Fig 3.38), indicating that spp1 is a direct target of Cib1. 

Since expression of spp1 under ER stress condition was significantly reduced to basal expression levels, 

it can be speculated that the spp1 promoter comprises only two functional UPREs. The reverse 

Figure 4.1: Schematic representation of the Cib1 
binding site in the spp1 promoter. The depicted 
UPREs sequence (UPRE1 and UPRE2) were selected 
according to their local peak enrichment. 
Bioinformatic prediction revealed more UPREs 
(pUPRE2 and pUPRE3) in the spp1 promoter. Peak 
enrichment is indicated as solid red and blue bell 
curves. Overlapping area of the bell curves is indicated 
as dotted pink and blue lines. 
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complement sequence of the first UPRE1 is highly similar to the UPRE motif identified by MEME-

ChIP analysis (Fig 3.12, WT, TGACGTGGAAG). However, the second UPRE2 is only poorly 

conserved compared to the UPRE identified by MEME-ChIP (Fig 3.12, WT, TGACGTGGAAG) and 

thus might resemble a DNA binding site of a different, putatively interacting transcription factor of Cib1.  

Surprisingly, the UPRE deletion strains did not resemble the deletion phenotype of spp1 and were still 

pathogenic, but showed fewer infection symptoms than the wildtype (Fig 3.39). Integration of the UPRE 

deletion constructs was performed in the strain background of ∆spp1 and was integrated via homologous 

recombination into the ip locus. It appears possible, that the chromatin structure of the ip locus 

(Brachmann, 2001) has a more relaxed and transcriptionally active conformation compared to the native 

genomic locus of the spp1 promoter. This can lead to increased basal expression levels of spp1, which 

may be sufficient for progression of in planta growth. To test this assumption, deletions of the identified 

UPREs should be performed in the spp1 promoter at the native genomic locus. Moreover, spp1 is fused 

to the fluorophore mCherry in constructs harboring the UPRE deletion in the spp1 promoter. Fusion 

with fluorescent tags could increase the protein stability of the target protein (Mestrom et al., 2019; 

Janczak et al., 2015). Thus, basal expression levels could be sufficient to generate potentially stabilized 

Spp1-mCherry proteins that fulfill the function of Spp1 during growth in planta. Furthermore, it cannot 

be excluded that other transcription factors can bind the spp1 promoter during plant infection and 

activate gene expression of spp1. Since the full-length spp1 promoter (1.4 kb) was used for the UPRE 

deletion assay, truncated variants of the promoter should be generated. The UPRE1 is located 433 bp 

upstream of the tss, which may mark the minimal promoter size (433 bp) to induce spp1 expression 

under ER stress conditions.  

In silico prediction of UPREs in the SPP promoters of closely related smut species predicted three 

UPREs (pUPRE1: CTTCCACGTCT, pUPRE2: TGACGTGTTGG, pUPRE3: TTGACACGTCG) for 

U. maydis spp1 promoter, and one in the SPP promoters of S. reilianum (pUPRE1: CTTCCACGTCT), 

U. hordei (pUPRE1: CTGCCACGTCT) and U. bromivora (pUPRE1: CTGCCACGTCT). pUPRE1 (P-

value 6.3x10-6) of U. maydis is identical with the UPRE1 identified in the UPRE deletion assay 

(Chapter 3.3.10). The identified pUPRE2 (P-value 3.1x10-5) and pUPRE3 (P-value 6.3x10-6) are also 

highly similar to the motif used for the prediction analysis. It will be interesting to examine if pUPRE2 

and pUPRE3 are crucial for expression and/or virulence of spp1. Interestingly, the pUPRE1 identified 

in the Srspp1 promoter of S. reilianum is identical with pUPRE1 of U. maydis and the position of the 

pUPRE1 (424 bp upstream of tss) of S. reilianum are as well conserved in U. hordei and U. bromivora 

(433, 384 and 373 bp upstream of tss, respectively). RNAseq analyses of U. hordei and U. bromivora 

revealed that expression of the spp1 homologs Srspp1 and Ubspp1 was increased during biotrophic 

growth (Ökmen et al., 2018; Rabe et al., 2016), which suggests that the crosstalk between the UPR and 

the Spp1-function during biotrophic growth a might not be restricted to U. maydis. 
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4.3.4 UMAG_02578 is a potential Spp1 interaction partner identified by LC-

MS analysis 
SPPs are described to be involved in different cellular processes such as the removal of remnant signal 

sequences (Weihofen et al., 2002), ERAD dependent degradation of misfolded proteins (Harbut et al., 

2012; Chen et al., 2014), hypoxia adaptation (Bat-Ochir et al., 2016; Willger et al., 2008) or production 

of MHC class I molecules (Weihofen and Martoglio, 2003; Oliveira et al., 2013). Spp1 is not involved 

in ERAD (Chapter 3.3.7), H2O2 detoxification (Chapter 1.3.6) and growth under hypoxia 

(Chapter 3.3.7). To identify potential interaction partners of Spp1 strains expressing Spp1-GFP and the 

Spp1D279A-GFP fusion proteins were used for Co-IP experiments and subsequent LC-MS analysis.  

This identified 11 proteins that were co-immunoprecipitated with Spp1-GFP and/or Spp1D279A 

(Fig 3.43). The identified proteins can be grouped into three groups: Proteins, which are upregulated 

(UMAG_06089, UMAG_02833, UMAG_04994, UMAG_06480, UMAG_10649), not regulated 

(UMAG_02016, UMAG_06273, UMAG_05433, UMAG_02578) or downregulated (UMAG_11590, 

02266) in planta (Lanver et al., 2018). It can be speculated, that genes of the upregulated group are 

crucial for the function of Spp1 during in planta growth.  

The protein UMAG_06089 is predicted to be a microsomal signal peptidase subunit and was identified 

as a member of the UPR core genes (Chapter 3.2.2). However, deletion of the gene is lethal for 

U. maydis. UMAG_06089 was only identified during ER stress conditions, which is in line with 

RNAseq data (Appendix Table 2, WT vs. WT +TM, log2FC 2.14). In mammals, the hetero-oligomeric 

signal peptide complex (SPC) consists of five different subunits, which promoting cleavage of the signal 

peptides of translocated proteins in the ER. It was reported that the SPC25 subunit is required for the 

interaction of SPC with the translocation machinery (Kalies et al., 1998). In addition, a homolog of the 

member of the Sec63 translocation complex, Sec66p in budding yeast (Feldheim et al., 1993), was 

identified as a potential interaction partner of Spp1 (Fig 3.43, UMAG_02833). Direct interaction of an 

SPP with SPC25 and Sec66 was not shown before. Since translocation of precursor proteins, cleavage 

of their signal peptide and processing of signal sequences by SPP is an intergradient process in the ER 

membrane, it seems most likely that this interaction is real. In human, SPP is interacting with TRAM1, 

a translocon-associated membrane protein (Oresic et al., 2009). Therefore, it can be speculated, that 

Spp1 is interacting with the translocation complex Sec63-Sec66. In addition, the signal peptidase 

complex is tethered to the translocation machinery via SPC25 which leads to an indirect interaction with 

Spp1.  

The protein UMAG_02016 has a predicted Cytochrome b5-like Heme/Steroid binding domain and is 

related to Dap1p of S. cerevisiae. In S. pombe, Dap1 promotes normal sterol levels by interacting with 

Erg5 and Erg11, both required for ergosterol biosynthesis (Hughes et al., 2007). Erg5 and Erg11 are 

controlled by the sterol regulatory element-binding protein (SREBP) Sre1 (Todd et al., 2006). In 
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A. nidulans and A. fumigatus, the SREBP SrbA is activated by its SPP SppA, which is required for 

hypoxia adaptation (Bat-Ochir et al., 2016). Moreover, the protein UMAG_06273 is related to the 

NADPH-cytochrome P450 reductase Ncp1p of S. cerevisiae, which is involved sterol biosynthesis and 

coordinately regulated with Erg11p (Turi and Loper, 1992). However, Spp1 is not required for hypoxia 

adaptation and the SrbA homolog in U. maydis Srb1 is not required for pathogenicity (Chapter 3.3.7). 

It can be speculated, that Spp1 indirectly regulates sterol levels in U. maydis via the Dap1p and Ncp1p 

homolog UMAG_02016 and UMAG_06273, respectively, by activation or degradation of both proteins. 

However, it remains unclear if sterol biosynthesis can be linked to the biotrophic growth of U. maydis. 

It will be interesting to elucidate if deletion of each gene is connected to the pathogenicity of U. maydis 

during plant infection. 

The protein UMAG_05433 identified by the LC-MS analysis is related to Pmt4p of S. cerevisiae and is 

required for O-linked glycosylation of secretory and cell surface proteins (Sanders et al., 1999). Deletion 

of the PMT4 gene in C. neoformans resulted in an abnormal growth morphology, defective cell 

separation and attenuation of virulence (Olson et al., 2007). However, spp1 deletion mutants were not 

impaired in growth under cell wall stress conditions and showed a normal vegetative growth 

(Appendix Fig 7.4 and Fig 3.21). In U. maydis, deletion of UMAG_05433/pmt4 led to a loss of virulence 

during plant infection (Fernández-Alvarez et al., 2009) and the transmembrane protein Pit1 was 

identified as a Pmt4 target. Mannosylation of Pit1 by Pmt4 might be crucial for effector secretion, since 

deletion of pit1 results in avirulence of U. maydis strains during plant infection (Fernández-Álvarez et 

al., 2012). It can be speculated that the interaction between Spp1 and Pmt4 might important for 

mannosylation of effector proteins. 

Surprisingly, the protein UMAG_02578 was only identified in conditions with the catalytically inactive 

Spp1D279A-GFP mutant strain. To identify UMAG_02578 subcellular localization, it was fused to GFP 

and expressed with under the constitutive active otef promoter under normal and ER stress conditions. 

Under normal conditions, the UMAG_02578-GFP fusion protein can be observed at ER-like structures. 

However, upon ER stress an elevated nuclear fluorescence signal could be observed, indicating an ER 

stress-dependent accumulation at the nucleus (Fig 3.44). UMAG_02578 consists of a predicted 

transmembrane domain (Phobius) as well as a luminal heterokaryon incompatibility protein (Het-C) 

domain. However, the transmembrane domain seems only to be conserved homologs of UMAG_02578 

in smut fungi. The het locus in filamentous fungi such as N. crassa regulating self/nonself-recognition 

during vegetative growth, crucial for the formation of a hyphal network. The fusion of cells occurs if 

het alleles are identical. However, if individuals have different het alleles, cells undergo programmed 

cell death, also termed as heterokaryon incompatibility (Glass and Dementhon, 2006; Glass and Kaneko, 

2003). In N. crassa, 11 different heterokaryon incompatibility (het) loci exist (Perkins, 1988). One of 

the well-studied het loci is the multiallelic het-c locus, which consists of two genes, het-c and pin-c 

(partner for incompatibility with het-c). The het-c gene encodes a 966 AA plasma membrane protein 
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containing a HET domain and a signal peptide, whereas the pin-c encodes a protein with a HET domain. 

Moreover, nonself recognition and heterokaryon incompatibility are mediated by the interaction 

between Het-C and Pin-C (Sarkar et al., 2002; Saupe et al., 1996; Kaneko et al., 2006). However, genes 

encoding HET domains are absent in S: cerevisiae and S. pombe as well as in the basidiomycetes 

C. neoformans and Coprinus cinereus (Kaneko et al., 2006). However, the function of the HET domain-

containing protein UMAG_02578 in U. maydis is not yet described. In contrast to the plasma membrane-

located Het-C of N. crassa, UMAG_02578 is located at ER-like structures (Fig 3.44), has a predicted 

transmembrane domain and has no predicted signal peptide. Moreover, UMAG_02578 is the sole gene 

encoding a HET domain in the U. maydis genome and might have a different function than the 

self/nonself recognition described in N. crassa. Different functions for HET domain-containing genes 

are described such as for A. nidulans, where TinC interacts with the mitotic kinase NimA. Expression 

of a TinC lacking an N-terminal region lead to defects in the cell cycle and colony growth. However, 

deletion or overexpression of full-length TINC did not reveal an identifiable phenotype (Davies et al., 

2004). The latter could be similar to U. maydis UMAG_02578 since an infection of maize plants with 

UMAG_02578 deletion strains did not affect pathogenicity of U. maydis. It can be speculated that only 

the C-terminal, luminal domain of UMAG_02578 is bioactive, whereas the full-length protein may be 

constitutively processed by Spp1 to inactive the function of UMAG_02578. 

Further research should address the function of these potential interaction partners of Spp1, during ER 

stress conditions and pathogenicity of U. maydis. It is quite intriguing that the pathogenicity of 

U. maydis is solely constituted by the conserved catalytic activity of Spp1. The Spp1 function is not 

related to ERAD, hypoxia adaptation or other identified SPP substrates. It can be speculated that either 

specific activation of Spp1 or cleavage of substrates that are expressed during in planta growth, cause 

plant defense suppression. Since an elevated fungal UPR could not be observed in plants infected with 

∆spp1 strains, it is unlikely that an excess of left-over signal peptides in the ER membrane leads to 

growth inhibition in planta. It is possible that specific plant signal leads to the expression of specific 

substrates, that need to be cleaved by Spp1. Since it was possible to pull-down potential interaction 

partners of Spp1 in axenic culture, a co-immunoprecipitation of Spp1 from infected leaf tissue with 

subsequent identification of interaction partners by LC-MS should be performed, which may shed new 

light to the underlying mechanism. In summary, the results of this study revealed a novel pathway in 

fungal pathogens to suppress the host defense and establish a biotrophic interaction. 
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4.4 Model of the Clp1-dependent modulation of the UPR 
Fusion of two compatible sporidia leads to the formation of the b-heterodimer that initiates biotrophic 

growth of U. maydis on the plant surface of its host plant maize. Subsequently, both events (activation 

of the pheromone pathway during cell/cell fusion and the formation of the bE/bW complex) trigger and 

maintain a G2-cell cycle arrest. The active transcription factor bE/bW induces expression of genes 

encoding the developmental regulator Clp1 and the master regulator of the b-dependent transcriptional 

cascade Rbf1. Clp1 is stabilized after appressoria formation and plant penetration of the leaf surface by 

the central regulator of the UPR and bZip transcription factor Cib1. Thus, increased Clp1 levels repress 

the b-dependent gene expression by the interaction between Clp1 and the bE/bW heterodimer and Rbf1, 

resulting in a release of the G2 cell cycle arrest (Heimel et al., 2010a; Heimel et al., 2010b; Heimel et 

al., 2013). The results of the present study provide new insights into the Clp1-dependent modulation of 

Cib1 function during pathogenic development. In particular, a hypothetical model can be proposed in 

which Clp1 negatively affects the transcriptional activity of Cib1, reducing Cib1 phosphorylation and 

increasing the stability of Cib1 (Fig 4.2A). In this model, the interaction of Clp1 might either mask the 

Cib1 transactivation domain (Fig 4.2B), interfere with Cib1 homodimer formation (Fig 4.2C) or alter 

the subcellular localization of Cib1. (Fig 4.2D)  

 
Figure 4.2: Model of the Clp1-dependent modulation of the Cib1 function. (A) The results of the present study 
revealed that the interaction of Clp1 with Cib1 increases Cib1 stability and decreases phosphorylation at the Clp1 
interaction domain of Cib1. The reduced phosphorylation is probably a result of (B) Clp1-mediated masking of 
the Cib1 activation domain, preventing Cib1 phosphorylation by a yet unknown kinase. Thus, Clp1 interaction 
with Cib1 modulates the transcriptional activity observed in the expression levels of UPR core genes during clp1 
induction. However, the Clp1-dependent modulation of gene expression can be achieved via different hypothetical 
mechanisms, such as (C) the Clp1-dependent inhibition of Cib1 homodimer formation or (D) the cytosolic export 
of Cib1 in a Clp1-dependent manner. 



Discussion 
 

 
82 

The results of this study further support the idea of a mutual stabilization between Clp1 and Cib1 during 

the interaction. In Heimel et al. (2013) half-life of Clp1 was shown to be less than 30 min, which is 

much shorter than the Cib1 half-life (>180 min) upon clp1 induction (Fig 3.4A and B). Hence, the 

negative impact on the transcriptional activity of Cib1 by Clp1 interaction (Fig 4.2A) would be transient, 

but preventing a deleterious UPR gene expression. The expression of Clp1 and Cib1 is active throughout 

all stages of in planta growth (Heimel et al., 2010b; Heimel et al., 2013; Lanver et al., 2018), indicating 

that the UPR needs to be consistently adjusted. This mechanism could buffer the fluctuating demands 

on the ER caused by effector waves during biotrophic growth, to sustain a perpetual UPR gene 

expression. The underlying mechanism of Clp1-dependent modulation of the Cib1 phosphorylation 

pattern (Chapter 3.1.4 and 3.1.5) is still elusive and requires further research. It will be interesting to 

examine if Cib1 is phosphorylated during transcriptional regulation or by external signals in Clp1-

dependent manner. Further research should focus on the identified UPR core genes repressed by clp1 

(Chapter 3.2.2). It can be speculated that the UPR in U. maydis can be divided into two states according 

to the Clp1-dependent modulation of UPR core genes. Thus, UPR core genes repressed by Clp1 sustain 

general UPR functions like protein folding or degradation of misfolded proteins. In contrast, UPR core 

genes that are positively affected by Clp1 may be composed of uncharacterized genes with potentially 

redundant virulence-specific functions as well as three core components of signal peptidase complex 

(Chapter 3.2.2), suggesting that the UPR might be adjusted to optimize effector secretion during in 

planta growth.  

4.5 Conclusion 
The present study shed new light on the Clp1-dependent modulation of the UPR, which was initially 

described in Heimel et al. (2013). It could be shown that crosstalk between the developmental regulator 

Clp1 and the UPR regulator Cib1, not only affects UPR gene expression but also changes physical 

properties of the bZip transcription factor Cib1 by increased protein stability and modulated 

phosphorylation. Transcriptomic analysis revealed a novel set of UPR genes regulated by Cib1 and 

modulated in a clp1-dependent manner. Genome-wide mapping of UPR elements in promoters was 

correlated with transcriptomic data and revealed directly Cib1 regulated UPR genes. However, no 

change in DNA binding specificity was observed in clp1 expressing conditions. Importantly, the novel 

pathogenicity factor Spp1 was identified as a direct Cib1 regulated gene, which is crucial for the 

pathogenicity of U. maydis. In summary, the data generated in this study indicates that Spp1 functions 

in a novel pathway to suppress the host defense response and establish in planta growth of biotrophic 

plant pathogens. 
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5 Materials and Methods 

5.1 Material and sources of supply 

5.1.1 Escherichia coli strain 
For vector cloning the Escherichia coli strain TOP10 (Invitrogen) was used, which is a derivative of the 

strain DH10B with the following genetic markers: F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 

∆lacX74 recA1 endA1 araD139 ∆(ara leu) 7697 galU galK rpsL nupG λ- (Casadaban and Cohen, 1980; 

Durfee et al., 2008). 

 

5.1.2 Ustilago maydis strains 
Table 5.1: Ustilago maydis strains used in this work 

Strain Genotype Resistance Reference 
SG200 a1:mfa2, bE1, bW2 PhleoR Kämper et al. 

(2006) 
JB1 a1, ∆b HygR Scherer et al. 

(2006) 
UVO151 a1, ∆b, Pcrg:clp1 HygR, CbxR Scherer et al. 

(2006) 
UKH6 a1:mfa2, bE1, bW2, ∆cib1 PhleoR, HygR Heimel et al. 

(2010a) 
UKH8 a1, b1, ∆cib1 HygR Heimel (2010) 

UMH72 a1, ∆b, ∆cib1#1 HygR, NatR Heimel et al. 
(2013) 

UMH243 a1:mfa2, bE1, bW2, ∆pit2,  
Potef:pit2-mCherry (#1) 

PhleoR, 
HygR, CbxR 

Hampel et al. 
(2016) 

UMH244 a1:mfa2, bE1, bW2, ∆pit2,  
Potef:pit2-mCherry (#1), ∆cib1 

PhleoR, 
HygR, CbxR, 
NatR 

Hampel et al. 
(2016) 

UDM28 ipR[Potef:GFP-3xHA]ipS PhleoR, CbxR pers. com. 
D. Martorana 

UDM80 a1:mfa2, bE1, bW2, cib1-GFP PhleoR, HygR pers. com. 
D. Martorana 

 

Table 5.2: Ustilago maydis strains generated in this work 

Strain Genotype Resistance Source 
UNP6#1 a1:mfa2, bE1, bW2, ∆spp1 PhleoR, HygR SG200 

UNP6#2 a1:mfa2, bE1, bW2, ∆spp1 PhleoR, HygR SG200 

UNP6#3 a1:mfa2, bE1, bW2, ∆spp1 PhleoR, HygR SG200 

UNP12#1 a1:mfa2, bE1, bW2, ∆UMAG_12149 PhleoR, HygR SG200 

UNP13#1 a1, ∆b, Pcrg1:clp1, cib1-GFP HygR, CbxR, 
NatR 

UVO151 

UNP13#2 a1, ∆b, Pcrg1:clp1, cib1-GFP HygR, CbxR, 
NatR 

UVO151 

UNP13#3 a1, ∆b, Pcrg1:clp1, cib1-GFP HygR, CbxR, 
NatR 

UVO151 
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UNP14#1 a1, ∆b, cib1-GFP HygR, NatR JB1 

UNP14#2 a1, ∆b, cib1-GFP HygR, NatR JB1 

UNP14#3 a1, ∆b, cib1-GFP HygR, NatR JB1 

UNP15#1 a1:mfa2, bE1, bW2, ∆UMAG_11651 PhleoR, HygR SG200 

UNP17#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:spp1-mCherry]ips (multiple) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP18#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Pspp1:spp1-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP19#1 a1, ∆b, Pcrg1:clp1, cib1-3xHA HygR, CbxR, 
NatR 

UVO151 

UNP19#2 a1, ∆b, Pcrg1:clp1, cib1-3xHA HygR, CbxR, 
NatR 

UVO151 

UNP19#3 a1, ∆b, Pcrg1:clp1, cib1-3xHA HygR, CbxR, 
NatR 

UVO151 

UNP20#1 a1, ∆b, cib1-3xHA HygR, NatR JB1 

UNP20#2 a1, ∆b, cib1-3xHA HygR, NatR JB1 

UNP20#3 a1, ∆b, cib1-3xHA HygR, NatR JB1 

UNP21#1 a1:mfa2, bE1, bW2, ∆UMAG_00542 PhleoR, HygR SG200 

UNP21#2 a1:mfa2, bE1, bW2, ∆UMAG_00542 PhleoR, HygR SG200 

UNP21#3 a1:mfa2, bE1, bW2, ∆UMAG_00542 PhleoR, HygR SG200 

UNP22#1 a1:mfa2, bE1, bW2, ∆UMAG_05898 PhleoR, HygR SG200 

UNP22#2 a1:mfa2, bE1, bW2, ∆UMAG_05898 PhleoR, HygR SG200 

UNP22#3 a1:mfa2, bE1, bW2, ∆UMAG_05898 PhleoR, HygR SG200 

UNP23#1 a1:mfa2, bE1, bW2, ∆UMAG_10911 PhleoR, HygR SG200 

UNP23#2 a1:mfa2, bE1, bW2, ∆UMAG_10911 PhleoR, HygR SG200 

UNP23#3 a1:mfa2, bE1, bW2, ∆UMAG_10911 PhleoR, HygR SG200 

UNP24#1 a1:mfa2, bE1, bW2, ∆UMAG_11402 PhleoR, HygR SG200 

UNP24#2 a1:mfa2, bE1, bW2, ∆UMAG_11402 PhleoR, HygR SG200 

UNP24#3 a1:mfa2, bE1, bW2, ∆UMAG_11402 PhleoR, HygR SG200 

UNP25#1 a1:mfa2, bE1, bW2, ∆UMAG_05721 PhleoR, HygR SG200 

UNP25#2 a1:mfa2, bE1, bW2, ∆UMAG_05721 PhleoR, HygR SG200 

UNP25#3 a1:mfa2, bE1, bW2, ∆UMAG_05721 PhleoR, HygR SG200 

UNP26#1 a1, ∆b, Pcrg1:clp1, Ptef:tTA*, PtetO:cib1-GFP HygR, CbxR, 
NatR, PhleoR 

UNP13#3 

UNP26#2 a1, ∆b, Pcrg1:clp1, Ptef:tTA*, PtetO:cib1-GFP HygR, CbxR, 
NatR, PhleoR 

UNP13#3 

UNP26#3 a1, ∆b, Pcrg1:clp1, Ptef:tTA*, PtetO:cib1-GFP HygR, CbxR, 
NatR, PhleoR 

UNP13#3 

UNP27#1 a1, ∆b, Ptef:tTA*, PtetO:cib1-GFP HygR, NatR, 
PhleoR 

UNP14#2 

UNP27#2 a1, ∆b, Ptef:tTA*, PtetO:cib1-GFP HygR, NatR, 
PhleoR 

UNP14#2 

UNP27#3 a1, ∆b, Ptef:tTA*, PtetO:cib1GFP HygR, NatR, 
PhleoR 

UNP14#2 

UNP28#1 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911 

PhleoR, 
HygR, NatR 

UNP21#3 

UNP28#2 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911 

PhleoR, 
HygR, NatR 

UNP21#3 



Materials and Methods 
 

 
85 

UNP35#1 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_05898 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP35#2 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_05898 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP35#3 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_05898 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP36#1 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_11402 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP36#2 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_11402 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP36#3 a1:mfa2, bE1, bW2, ∆UMAG_00542, 
∆UMAG_10911, ∆UMAG_11402 

PhleoR, 
HygR, NatR, 
CbxR 

UNP28#1 

UNP40#1 a1, ∆b, ipR[Potef:eGFP-3xHA]ipS (single) HygR, CbxR JB1 

UNP43#1 a1:mfa2, bE1, bW2, ∆UMAG_01025 PhleoR, HygR SG200 

UNP44#1 a1:mfa2, bE1, bW2, ∆UMAG_12304 PhleoR, HygR SG200 

UNP45#1 a1:mfa2, bE1, bW2, ∆UMAG_12332 PhleoR, HygR SG200 

UNP47#1 a1:mfa2, bE1, bW2, cib1S468A-GFP PhleoR, NatR SG200 

UNP47#2 a1:mfa2, bE1, bW2, cib1S468A-GFP PhleoR, NatR SG200 

UNP47#3 a1:mfa2, bE1, bW2, cib1S468A-GFP PhleoR, NatR SG200 

UNP50#1 a1:mfa2, bE1, bW2, cib1S468E-GFP PhleoR, NatR SG200 

UNP50#2 a1:mfa2, bE1, bW2, cib1S468E-GFP PhleoR, NatR SG200 

UNP50#3 a1:mfa2, bE1, bW2, cib1S468E-GFP PhleoR, NatR SG200 

UNP59#1 a1:mfa2, bE1, bW2, ∆UMAG_02487 PhleoR, HygR SG200 

UNP60#1 a1:mfa2, bE1, bW2, ∆UMAG_04605 PhleoR, HygR SG200 

UNP61#1 a1:mfa2, bE1, bW2, ∆UMAG_10006 PhleoR, HygR SG200 

UNP62#1 a1:mfa2, bE1, bW2, ∆UMAG_12318 PhleoR, HygR SG200 

UNP63#1 a1:mfa2, bE1, bW2, ∆UMAG_03541 PhleoR, HygR SG200 

UNP64#1 a1:mfa2, bE1, bW2, cib1T381E-GFP PhleoR, NatR SG200 

UNP64#2 a1:mfa2, bE1, bW2, cib1T381E-GFP PhleoR, NatR SG200 

UNP64#3 a1:mfa2, bE1, bW2, cib1T381E-GFP PhleoR, NatR SG200 

UNP67#1 a1:mfa2, bE1, bW2, cib1T381A-GFP PhleoR, NatR SG200 

UNP67#2 a1:mfa2, bE1, bW2, cib1T381A-GFP PhleoR, NatR SG200 

UNP67#3 a1:mfa2, bE1, bW2, cib1T381A-GFP PhleoR, NatR SG200 

UNP70#1 a1:mfa2, bE1, bW2, ∆UMAG_02578 PhleoR, HygR SG200 

UNP70#3 a1:mfa2, bE1, bW2, ∆UMAG_02578 PhleoR, HygR SG200 

UNP70#5 a1:mfa2, bE1, bW2, ∆UMAG_02578 PhleoR, HygR SG200 

UNP72#1 a1:mfa2, bE1, bW2, cib1T381A,S468A-GFP PhleoR, NatR SG200 

UNP72#2 a1:mfa2, bE1, bW2, cib1T381A,S468A-GFP PhleoR, NatR SG200 

UNP72#3 a1:mfa2, bE1, bW2, cib1T381A,S468A-GFP PhleoR, NatR SG200 

UNP75#1 a1:mfa2, bE1, bW2, cib1T381E,S468E-GFP PhleoR, NatR SG200 
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UNP75#2 a1:mfa2, bE1, bW2, cib1T381E,S468E-GFP PhleoR, NatR SG200 

UNP75#3 a1:mfa2, bE1, bW2, cib1T381E,S468E-GFP PhleoR, NatR SG200 

UNP78#2 a1:mfa2, bE1, bW2, ∆UMAG_10921 PhleoR, HygR SG200 

UNP79#1 a1:mfa2, bE1, bW2, ∆UMAG_11083 PhleoR, HygR SG200 

UNP82#1 a1:mfa2, bE1, bW2, ∆UMAG_00258 PhleoR, HygR SG200 

UNP83#1 a1:mfa2, bE1, bW2, ∆UMAG_10686 PhleoR, HygR SG200 

UNP84#1 a1:mfa2, bE1, bW2, ∆UMAG_11190 PhleoR, HygR SG200 

UNP85#1 a1:mfa2, bE1, bW2, ∆UMAG_03665 PhleoR, HygR SG200 

UNP86#1 a1:mfa2, bE1, bW2, ∆UMAG_11763 PhleoR, HygR SG200 

UNP87#1 a1:mfa2, bE1, bW2, ∆UMAG_04896 PhleoR, HygR SG200 

UNP89#1 a1:mfa2, bE1, bW2, ∆UMAG_01112 PhleoR, HygR SG200 

UNP90#1 a1:mfa2, bE1, bW2, ∆UMAG_01232 PhleoR, HygR SG200 

UNP91#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:HM13-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#1 

UNP91#2 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:HM13-mCherry]ips (multiple) 

PhleoR, 
HygR, CbxR 

UNP6#1 

UNP92#1 a1:mfa2, bE1, bW2, ∆spp1, ipr[Pspp1(∆UPRE1):spp1-
mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP92#2 a1:mfa2, bE1, bW2, ∆spp1, ipr[Pspp1(∆UPRE1):spp1-
mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP92#3 a1:mfa2, bE1, bW2, ∆spp1, ipr[Pspp1(∆UPRE1):spp1-
mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP93#1 a1:mfa2, bE1, bW2, ∆spp1, ipr[Pspp1(∆UPRE2):spp1-
mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP94#1 a1:mfa2, bE1, bW2, ∆spp1, 
ipr[Pspp1(∆UPRE1,∆UPRE2):spp1-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP94#2 a1:mfa2, bE1, bW2, ∆spp1, 
ipr[Pspp1(∆UPRE1,∆UPRE2):spp1-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP94#3 a1:mfa2, bE1, bW2, ∆spp1, 
ipr[Pspp1(∆UPRE1,∆UPRE2):spp1-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP98#1 a1:mfa2, bE1, bW2,  
ipr[Potef:pep1-mCherry]ips (single) 

PhleoR, CbxR SG200 

UNP99#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:pep1-mCherry]ips (single) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP100#2 a1:mfa2, bE1, bW2,  
ipr[Potef:tin2-mCherry]ips (multiple) 

PhleoR, CbxR SG200 

UNP101#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:tin2-mCherry]ips (multiple) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP102#1 a1:mfa2, bE1, bW2,  
ipr[Potef:cmu1-mCherry]ips (double) 

PhleoR, CbxR SG200 

UNP103#2 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:cmu1-mCherry]ips (double) 

PhleoR, 
HygR, CbxR 

UNP6#3 

UNP104#1 a1:mfa2, bE1, bW2, ∆spp1, 
ipr[Potef:spp1-mCherry]ips, ∆cib1 

PhleoR, 
HygR,CbxR, 
NatR 

UNP17#1 

UNP105#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Pspp1:spp1-mCherry]ips, ∆cib1 

PhleoR, 
HygR, CbxR, 
NatR 

UNP18#1 
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Table 5.3: Ustilago maydis strains generated in a supervised master thesis (Hach, 2018) 

Strain Genotype Resistance Source 
UCH002#1 a1:mfa2, bE1, bW2, ∆spp1,  

ipr[Potef:spp1D279A-mCherry]ips (single) 
HygR, 
PhleoR, CbxR 

UNP6#3 

UCH003#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:YPF1-mCherry]ips (multiple) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH004#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:sppA-mCherry]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH006#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Pspp1:spp1D279A-mCherry]ips (multiple) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH007#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:spp1-GFP]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH008#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:UhSpp1-mCherry]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH009#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:SrSpp1-mCherry]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH010#1 a1:mfa2, bE1, bW2, ∆UMAG_05009 HygR, PhleoR SG200 

UCH011#1 a1:mfa2, bE1, bW2, ∆UMAG_03507 HygR, PhleoR  SG200 

UCH012#1 a1:mfa2, bE1, bW2, ∆UMAG_11513 HygR, PhleoR  SG200 

UCH013#1 a1:mfa2, bE1, bW2, ∆UMAG_02944 HygR, PhleoR  SG200 

UCH014#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:spp1D279A-GFP]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH015#1 a1:mfa2, bE1, bW2, ∆UMAG_03404 HygR, PhleoR  SG200 

UCH016#1 a1:mfa2, bE1, bW2, ∆UMAG_12178 HygR, PhleoR  SG200 

UCH017#1 a1:mfa2, bE1, bW2, ∆pit2,  
ipr[Potef:pit2-mCherry (#1)]ips, ∆spp1 

HygR, 
PhleoR, 
CbxR, NeoR 

UMH243 

UCH020#1 a1:mfa2, bE1, bW2, ∆spp1,  
ipr[Potef:HM13-mCherry]ips (single) 

HygR, 
PhleoR, CbxR 

UNP6#3 

UCH021#1 a1:mfa2, bE1, bW2,  
ipr[Potef:UMAG_02578-GFP]ips 

HygR, 
PhleoR, CbxR 

SG200 

UCH021#2 a1:mfa2, bE1, bW2,  
ipr[Potef:UMAG_02578-GFP]ips 

HygR, 
PhleoR, CbxR 

SG200 

UCH021#3 a1:mfa2, bE1, bW2,  
ipr[Potef:UMAG_02578-GFP]ips 

HygR, 
PhleoR, CbxR 

SG200 

 

5.1.3 Chemicals 
All chemicals used in this work were p.a. quality and were obtained from Ambion, Amersham, BioRad, 

Carl Roth, chromotek, Difco, Duchefa, Fluka, Formedium, Gerbu, Invitrogen, Merck, Millipore, New 

England Biolabs, Pharmacia, Promega, Riedel-de-Han, Roche, Seakem, Serva, Sigma-Aldrich and 

Thermo Fisher Scientific. For further details see Brachmann et al. (2001). 

 

5.1.4 Kits 
In this work the kits QIAquick Gel Extraction Kit for the isolation of DNA fragments from agarose gels, 

QIAquick PCR Purification Kit (Qiagen) for the purification of DNA fragments and plasmids, TOPO 

TA Cloning® Kit (Invitrogen) for the cloning of DNA fragments, TurboDNase Kit (Ambion) for DNase 
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digestion of genomic DNA in RNA samples for qRT-PCR and RNAseq analysis, MesaGreen qPCR 

MasterMix for SYBR Assay Kit (Eurogentech) for qRT-PCR, RevertAid First Strand cDNA Synthesis 

Kit (Thermo Fisher Scientific) for cDNA syntheses, RNeasy Mini Kit (Qiagen) for purification of RNA 

samples for RNAseq were used. For western-blotting with the Trans-Blot Turbo system (Bio-Rad), the 

Trans-Blot Turbo RTA Midi PVDF Transfer Kit was used. 

 

5.1.5 Enzymes and antibodies 
Table 5.4: Enzymes used in this work 

Name Company, catalog # 
Restriction enzymes Thermo Fisher Scientific 
T4 DNA Ligase Thermo Fisher Scientific, EL0014 
FastAP Thermosensitive Alkaline Phosphatase Thermo Fisher Scientific, EF0654 
Lambda Protein Phosphatase New England Biolabs, P0753S 
Klenow Fragment, LC Thermo Fisher Scientific, EP0054 
Taq DNA Polymerase New England Biolabs, M0273S 
Phusion DNA polymerase Thermo Fisher Scientific, F-530XL 
Phusion DNA polymerase own production 
Q5 High-Fidelity DNA Polymerase New England Biolabs, M0491L 
Lysozyme (from chicken egg white) Serva, 28263.02 
Lysing enzyme (from Trichoderma harzianum) Sigma-Aldrich, L1412 

 

Table 5.5: Antibodies used in this work 

Name (produced in) Concentration Company, catalog # 
RFP antibody (mouse) 1:1000 chromotek, 6G6 
Anti-GFP, N-terminal antibody (rabbit) 1:4000 Millipore, G1544 
Monoclonal Anti-HA antibody (mouse) 1:4000 Sigma-Aldrich, H9658 
Anti-Mouse IgG (H+L), HRP Conjugate (goat) 1:4000 Promega, W402B 
Anti-Rabbit IgG (H+L), HRP Conjugate (goat) 1:4000 Promega, W401B 
Anti-Digoxigenin-AP, Fab fragments (sheep) 1:10000 Roche, 11093274910 
GFP-Trap Magnetic Agarose - chromotek, gtma  
Monoclonal Anti-HA−Agarose antibody (mouse) - Sigma-Aldrich, A2095 
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5.1.6 Nucleic acids 
For gel electrophoresis the DNA size standard “GeneRuler DNA Ladder Mix (Thermo Fisher 

Scientific)” was used. 

The oligonucleotides were synthesized by Eurofins Genomics Germany GmbH. The nucleotide 

sequences are indicated from the 5 'end to the 3' end. 

Table 5.6: In this work used oligonucleotides 

Name Sequence 5' -> 3' 
Fusion of Cib1 with GFP or 3xHA 
CibGFP_Lb_sense CAATCCTCAAATGAAGGCGTTCGC 
CibGFP_Lb_as GTGGGCCGCGTTGGCCGCAGCGACGATTGAGGCCATCAGAC 
CibGFP_Rb_sense CACGGCCTGAGTGGCCTGTTGAACACGTGCGTCAGTCCC 
CibGFP_Rb_as CTCGCCACCTGTAGACAAACAAG 
Promotor replacement with tetO 
11782_LB_KIN_for GTTCGCTGTCTGTTGATCTTTCC 
11782_LB_KIN_rev GTGGGCCATCTAGGCCGATGAGAGACGAACGTGAAGATC 
11782_RB_KIN_for CACGGCCTGAGTGGCCATGACTAGCACCACCACGTC 
11782_RB_KIN_rev GGTGCAGAAACACTGATCTGG 
Cib1 phosphosite mutation 
cib1_S468A_for TCCAGCTTCTCACGGCTCCTCTGTTGGCC 
cib1_S468A_rev GGCCAACAGAGGAGCCGTGAGAAGCTGGA 
cib1_S468E_for CAGCTTCTCACGGAGCCTCTGTTGGCC 
cib1_S468E_rev GGCCAACAGAGGCTCCGTGAGAAGCTG 
cib1_T381A_for CCGACGTCTGCCGCCCC GTCTGAACCT 
cib1_T381A_rev AGGTTCAGACGGGGCGG CAGACGTCGG 
cib1_T381E_for CCGACGTCTGCCGAACC GTCTGAACCT 
cib1_T381E_rev AGGTTCAGACGGTTCGG CAGACGTCGG 
Gene deletions  
00258_LB_KO_for GATCCGGTGATTGCGTCAGAA 
00258_LB_KO_rev GTGGGCCATCTAGGCCGATGACTCATGAGCACGCAG 
00258_RB_KO_for CACGGCCTGAGTGGCCAGACTCCGTAACAACACAAGAGG 
00258_RB_KO_rev CGAGCTATGGAGGACGGG 
00481_LB_KO_for GGGCCAGAATGACGACGGAG 
00481_LB_KO_rev CACGGCCATCTAGGCCCCACACACGAACCCCACCC 
00481_RB_KO_for CACGGCCTGAGTGGCCGCTGCTCGATCCAGCGATGG 
00481_RB_KO_rev GATCTGCGTCGCTGTCGTCG 
00542_LB_KO_for CGAGCGGAAGAGCACATCTTG 
00542_LB_KO_rev CACGGCCTGAGTGGCCCTTTGTCAAAACGTTTGAGGATCAGC 
00542_RB_KO_for CACGGCCATCTAGGCCCTCTCTCCCACCTCACTGCA 
00542_RB_KO_rev CGAATGGAAGCCCTCTGGGA 
01025_LB_KO_for GAGGAACAGGGAACCACACAG 
01025_LB_KO_rev CACGGCCTGAGTGGCCGGTAAAGGAAGAAGTGCCGACG 
01025_RB_KO_for CACGGCCATCTAGGCCGCTGTTGCTTTTTCGATCCGGATC 
01025_RB_KO_rev CAATATGGACCGAACCGGGTG 
01112_LB_KO_for CAATCCCTTGTATCTCTGGGC 
01112_LB_KO_rev GTGGGCCTGAGTGGCCCAAGACGCGACGTCAATCTTC 
01112_RB_KO_for CACGGCCATCTAGGCCGACGATTCTCAAGAGTCACAAGAC 
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01112_RB_KO_rev CTCTTGTCTTCGTTCTGCTTGC 
01232_LB_KO_for CGAACCGAGGTAAAGGTGGAG 
01232_LB_KO_rev GTGGGCCATCTAGGCCCGCGTTCTTCCACTCCACTC 
01232_RB_KO_for CACGGCCTGAGTGGCCGGCTGTCTTTCGCGCGTG 
01232_RB_KO_rev CGCGTGTGATTCGTATTTGCTAC 
02487_LB_KO_for GTTCACTTTGGCCGATCCTCA 
02487_LB_KO_rev GTGGGCCTGAGTGGCCGCTGTGCGCCGGATCTG 
02487_RB_KO_for CACGGCCATCTAGGCCGATAGATATATCCTTACACAGAACC 
02487_RB_KO_rev CTGTGCGTAGAGTGTTGATGG 
02729_LB_KO_for CGACTCACGACTCCCCTTTTCAAA 
02729_LB_KO_rev CACGGCCTGAGTGGCCGATTGCGGAGTTCTGGAACAGAGC 
02729_RB_KO_for CACGGCCATCTAGGCCGCTGTAATTTGTCATCTTTCCTCGA 
02729_RB_KO_rev GATGCCCGAACTTGTCAACACA 
02944_LB_KO_for CTGAGTCAAAGGCGAAAGAGG 
02944_LB_KO_rev GTGGGCCTGAGTGGCCCTTGGGCTTAGAAGCAATCCAC 
02944_RB_KO_for CACGGCCATCTAGGCCGAAGGCATCTGCACGTCAATC 
02944_RB_KO_rev GGTTTGTTCAGAGGTTGGAGC 
03404_LB_KO_for CCGAAGCCACAAATTCGAGATG 
03404_LB_KO_rev GTGGGCCATCTAGGCCTCATCTTGACCCCTTGTCGTC 
03404_RB_KO_for CACGGCCTGAGTGGCCTGAGACAAGAGTGGCAGGGT 
03404_RB_KO_rev CGAGCTTAGGAGAGCTGTTGA 
03507_LB_KO_for CGAGTACCTCGAAGGCAAGT 
03507_LB_KO_rev GTGGGCCATCTAGGCCTGACGTCATTCACGATTCCGG 
03507_RB_KO_for CACGGCCTGAGTGGCCGGTGCAAGTGCTTGTAGATGC 
03507_RB_KO_rev TGGCTGTGTTCAAAGGTTCGC 
03541_LB_KO_for CATCTGATGCTCTGAACGTGC 
03541_LB_KO_rev GTGGGCCTGAGTGGCCGTGGTCGATTTGGTTCGACTTATTA 
03541_RB_KO_for CACGGCCATCTAGGCCGGCTGCTGTTGATTGCCAGA 
03541_RB_KO_rev CGTTCAGGTTCTGGGCAGTTT 
03665_LB_KO_for GCTTCGCGCTTATCAGTCTAC 
03665_LB_KO_rev GTGGGCCATCTAGGCCGTTGAACGAGAACGGCTTGC 
03665_RB_KO_for CACGGCCTGAGTGGCCTCATGCTGTTGAGCAGTACAAC 
03665_RB_KO_rev GATCAACGAGAGCGACCACAC 
04605_LB_KO_for CGATGGGTAGGGATGGAATG 
04605_LB_KO_rev GTGGGCCATCTAGGCCCGTGCGCAACGGTGTGTG 
04605_RB_KO_for CACGGCCTGAGTGGCCTGCCAGCCAAGTTTCGCAGAT 
04605_RB_KO_rev CAAGCAACTCGACACGCCATA 
04896_LB_KO_for CGTTCCATCACGAATGCTAACC 
04896_LB_KO_rev GTGGGCCTGAGTGGCCAGTCGAAGCTTGGATAGGCTTTAC 
04896_RB_KO_for CACGGCCATCTAGGCCCTTACCGAGAAACCTGTCGTC 
04896_RB_KO_rev CCTTGGTGTACGAGCATTGGAT 
05009_LB_KO_for CAGCGCGTAGAGAGGTAAAG 
05009_LB_KO_rev GTGGGCCATCTAGGCCTGCAACCGCACAGCCTCC 
05009_RB_KO_for CACGGCCTGAGTGGCCAAGTATGCAGGCTTCTCCCCAT 
05009_RB_KO_rev AGCTGAGTTGGGTTGCGATCAA 
05898_LB_KO_for CCGTGGCTGAGAAAGGCTATC 
05898_LB_KO_rev CACGGCCATCTAGGCCGGCTGGCTAGGGAAAAGAAATTGTA 
05898_RB_KO_for CACGGCCTGAGTGGCCCGCTGACATGATTGCTCCTTGTG 
05898_RB_KO_rev CGGTGCTCCCAGACGAATCAA 
06089_LB_KO_for GAAAGCCCAAGATCGAATCGC 



Materials and Methods 
 

 
91 

06089_LB_KO_rev GTGGGCCATCTAGGCCACAGGCACGACGTTCCATGTT 
06089_RB_KO_for CACGGCCTGAGTGGCCGATGAACGTGACGTGTAGGGA 
06089_RB_KO_rev GCAAGGCTTGTTGTTGTGGTTG 
10006_LB_KO_for CGTACAGAAGAGGCGATCCAA 
10006_LB_KO_rev GTGGGCCTGAGTGGCCGTTGTCCTAGTAGGTCGAGCT 
10006_RB_KO_for CACGGCCATCTAGGCCCCGACGCCCTACGCATC 
10006_RB_KO_rev CATGGTCCCGCTAACTGTG 
10686_LB_KO_for GAGGTGACGTTGATGGATTGG 
10686_LB_KO_rev GTGGGCCTGAGTGGCCTCGCTTGCGTGTTTACGGTC 
10686_RB_KO_for CACGGCCATCTAGGCCTGTGAGAATGTCTCGCTCAGTG 
10686_RB_KO_rev CGAGCGCAACAATGAGACTGAA 
10921_LB_KO_for CTACCTCAACCGACTACTACC 
10921_LB_KO_rev GTGGGCCATCTAGGCCAATTTTTATTGGCCACATTCGTGATT 
10921_RB_KO_for CACGGCCTGAGTGGCCTGTAAACAAGAACTACCAATCTGTC 
10921_RB_KO_rev CAAGCCAGCCAAATGTCACAG 
11083_LB_KO_for TGCTAGAATCAAGTCGCCGATG 
11083_LB_KO_rev GTGGGCCATCTAGGCCGATGACTGTGTGTGTGTGCC 
11083_RB_KO_for CACGGCCTGAGTGGCCCCATAATCGCACGCCTGCAC 
11083_RB_KO_rev GAATCCGAATCGCTCATTGGC 
11190_LB_KO_for CAAGCACAAGGATCTGGGCAAAG 
11190_LB_KO_rev GTGGGCCTGAGTGGCCCTGCCCTGTCGCTCGCG 
11190_RB_KO_for CACGGCCATCTAGGCCGTTCAACTAGATGCGAACGATGC 
11190_RB_KO_rev GCCGAGGTGAAGATCATTGTTG 
11513_LB_KO_for GGGACACGCCAAGTTTGATC 
11513_LB_KO_rev GTGGGCCTGAGTGGCCTGTGCTGGTTGAAGCGGTTG 
11513_RB_KO_for CACGGCCATCTAGGCCGGCGTTGCTCCATTCACGAT 
11513_RB_KO_rev GGAGCGGAAACAAAGAGCAAC 
11651_LB_KO_for TCGGCCTCTCTTGTCAACAATCC 
11651_LB_KO_rev CACGGCCTGAGTGGCCCTTGGCAATGACAGGTTGCGG 
11651_RB_KO_for CACGGCCATCTAGGCCTCGCTTGATCCACCCTTATGCTT 
11651_RB_KO_rev CTCGTTCAGCGTGCTTCGCT 
11763_LB_KO_for CGGAAGAGCGTCATTGAGAAG 
11763_LB_KO_rev GTGGGCCATCTAGGCCCACAGCGCACCTTTCATTTGC 
11763_RB_KO_for CACGGCCTGAGTGGCCATCGAGTCAAGGAACTGTTACAAC 
11763_RB_KO_rev CAGTCGAGCTTCGCTTTCTCA 
12149_LB_KO_for GACCGAACCTGTCAACTTGCTG 
12149_LB_KO_rev CACGGCCTGAGTGGCCGGCGAATGGGATACGTTGAAGC 
12149_RB_KO_for CACGGCCATCTAGGCCGGGAGGCCGCAGTTCGCACGTA 
12149_RB_KO_rev GAACGTCGGCAAAGCAGGC 
12178_LB_KO_for TGACAAGCCAGAAAGCGACAC 
12178_LB_KO_rev GTGGGCCATCTAGGCCTGACCATGTCAAATATCGAGAGATAG 
12178_RB_KO_for CACGGCCTGAGTGGCCAGTTGGACGAGACTTGGCTATG 
12178_RB_KO_rev CAACGAAACGAGAAGGCATCG 
12304_LB_KO_for CGAACACGACAGTACCGACTC 
12304_LB_KO_rev CACGGCCATCTAGGCCTTCCGACAGCGGTTGACATTCAC 
12304_RB_KO_for CACGGCCTGAGTGGCCGGTCGCCGGTGTGACACG 
12304_RB_KO_rev GCTGATTCTGGCCCTTTCATGCC 
12318_LB_KO_for CTTATTGCGTCATCCGCCCAG 
12318_LB_KO_rev GTGGGCCTGAGTGGCCGATCTGTGCAGTGCTGATTGG 
12318_RB_KO_for CACGGCCATCTAGGCCAAGCGTGCCGAGCTGTGG 
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12318_RB_KO_rev CACGCCATGTTGCTGGATGAG 
12332_LB_KO_for CATTCTTACCTCTTTGCTCCCCTAG 
12332_LB_KO_rev CACGGCCTGAGTGGCCGGGTGGTAAATGCGCTGCTCC 
12332_RB_KO_for CACGGCCATCTAGGCCTCTACCCCCCAAGAATGAGCCAG 
12332_RB_KO_rev CGTTGGCACGGGACATCGTTC 
15029_LB_KO_for GCGCGTCTCAGACCTTGTTG 
15029_LB_KO_rev GTGGGCCTGAGTGGCCGTTGTTTGGTGTTATTCGAGACG 
15029_RB_KO_for CACGGCCATCTAGGCCAGCACACTTTATAATTGCTCTCTC 
15029_RB_KO_rev GCGATTCTGCCAAGCAAGCC 
00542_LB_KO_for CGAGCGGAAGAGCACATCTTG 
00542_LB_KO_rev CACGGCCTGAGTGGCCCTTTGTCAAAACGTTTGAGGATCAGC 
00542_RB_KO_for CACGGCCATCTAGGCCCTCTCTCCCACCTCACTGCA 
00542_RB_KO_rev CGAATGGAAGCCCTCTGGGA 
05898_LB_KO_for CCGTGGCTGAGAAAGGCTATC 
05898_LB_KO_rev CACGGCCATCTAGGCCGGCTGGCTAGGGAAAAGAAATTGTA 
05898_RB_KO_for CACGGCCTGAGTGGCCCGCTGACATGATTGCTCCTTGTG 
05898_RB_KO_rev CGGTGCTCCCAGACGAATCAA 
10911_LB_KO_for CTCATCGTTAGCACCGCTCCA 
10911_LB_KO_rev CACGGCCATCTAGGCCATGCGACGCTTCAGGGCATCA 
10911_RB_KO_for CACGGCCTGAGTGGCCGATTGGTGGTGGGCTATGATGC 
10911_RB_KO_rev GTCGTCGTCCGAGTAGCTGTA 
11402_LB_KO_for CAAATCCGATCCGCCTCTTGG 
11402_LB_KO_rev CACGGCCATCTAGGCCGATCAGCCAATCTGAACGAGTCTG 
11402_RB_KO_for CACGGCCTGAGTGGCCGGCTGCTATGCGCTGCTAC 
11402_RB_KO_rev GCAGGTTATCCAACAGAGCGG 
05721_LB_KO_for TCGATCTTCGCTATCCGCCTC 
05721_LB_KO_rev GTGGGCCATCTAGGCCTCTGGAGCGTGTCGTGTATGG 
05721_RB_KO_for CACGGCCTGAGTGGCCGTGTCAAGCAAGAGGCAGTGAC 
05721_RB_KO_rev CCTGTATGCGATATGTGCCACC 
cib1_lba AGCTTGGACTAGTAAATGGGACCG 
cib1_rba ATTATCCCTTCGCCTTCCCCTTC 
Spp1 related 
02729_CBX_for CACGGATCCATGTCGAGTGATAGAGATCTTTTTATCA 
02729_CBX_rev GTGTCATGAAGTCCTTTTTGGAGGAAATTGCTC 
02729_pro1.4_for TATCATATGGATTGCGACTTGGTATGCGAGGG 
02729_pro_rev ATAGGATCCGATTGCGGAGTTCTGGAACAGAGC 
02729_D279A_for GCTTGGATTGGGCGCCATTGTGATCCCGG 
02729_D279A_rev CCGGGATCACAATGGCGCCCAATCCAAGC 
SrSpp1_CBX_for CACGGATCCATGTCCAACGACAGAGACCT 
SrSpp1_CBX_rev GTGTCATGAACTCCTTCTTCGCCGTGGAT 
UhSpp1_CBX_for CACGGATCCATGTCTGGGGATAGAGATCTG 
UhSpp1_CBX_rev GTGTCATGAACTCCTTTTTGGTCGACTTGC 
HM13_CBX_for CACCCCGGGATGGACTCGGCCCTCAGC 
HM13_CBX_rev GTGCCATGGATTTCTCTTTCTTCTCCAGCCCC 
sppA_CBX_for CACGGATCCATGGCTGAGGTCAGTCCAC 
sppA_CBX_rev GTGTCATGAACTCGGATGTCGCAGTAGC 
YPF1_CBX_for CACGGATCCATGGACAAGTATTTGAATTCATTTGTTG 
YPF1_CBX_rev GTGGGATCCAGAAGATTCGTCATCCAAGAGATC 
02578_CBX_fwd CACTCATGAATGACCGACCAAGCTTTGAAAG 
02578_CBX_rev GTGTCATGAAGTAGCCCCCGCCATAACC 
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02578_LB_KO_for ACGGCCTCGTCGCCTTTC 
02578_LB_KO_rev GTGGGCCATCTAGGCCACGACTAACTCTACGCGCATCT 
02578_RB_KO_for CACGGCCTGAGTGGCCGCTCACCTTTCTTCTTGTTCAGTA 
02578_RB_KO_rev CGAGATGTTTCTGACCACAGC 
02729_∆UPRE_for GATTTGATTTTGTGGCAAGCCCACGCGC 
02729_∆UPRE_rev GCGCGTGGGCTTGCCACAAAATCAAATC 
02729_∆UPRE2_for TAAAGCCGACTTCGTTGCAAGTCTGTCG 
02729_∆UPRE2_rev CGACAGACTTGCAACGAAGTCGGCTTTA 
qPCR 
RT_cib1_spliced_f GCCTCCCTGCAGCGGATGC 
RT_cib1_rev CATCGACGTTGTTTCCGGCCT 
RT_00904_f GCTGAAGCAAAGGCCAACTTG 
RT_00904_r TTCTTGTCCTGCGCCTGTTTG 
RT_15034_f AGGCATGGCTCGACGAGAACA 
RT_15034_r GGTAAATCTTGGCGGTGATGGG 
RT_10287_f CATCGGAGCGATCAAGGAGATG 
RT_10287_r TGGTGACCTTGACCTTGCTGC 
RT_05352_f CTGCGGACTATGCGACTCAGTT 
RT_05352_r TGTGCTAGCCACTTTTCGCTTT 
RT_04198_f AGATCGTCGCGGCCATCTACT 
RT_04198_r ATGGCGGACCACACATACACG 
RT_02729_f TGGGCTTCACCAAGTCATACACTC 
RT_02729_r CGCCTGGAAGAAGTGCATCAC 
RT_11594_f TCGTCATATCCTCTTCCGCGT 
RT_11594_r ACATCCTCATCCCGTCCAAGA 
RT_eIF2b_f ATCCCGAACAGCCCAAAC 
RT_eIF2b_r ATCGTCAACCGCAACCAC 
mfa1-RT-FW GCTTTCGATCTTCGCTCAGAC 
mfa1-RT-RV CAACAACACAGCTGGAGTAGC 
RT_pr1_f ACTACGTGGACCCGCACAAC 
RT_pr1_r CGGAGTGGATCAGCTTGCAGTC 
RT_pr3_f GAACAACTACAGCAGCCAGGTG 
RT_pr3_r GAGACAATAGCTGACATGCGTC 
RT_pr5_f TATCGGCCGGAATAGGCTCTG 
RT_pr5_r CGCGTACATACAAATGCGTGC 
RT_pr4_f CGTTCAAGCCCATCGACA 
RT_pr4_r CGTGTGGGATCACATCCATATAAC 
CC9-qRT-fw TATGGGTCCTTGACGTTCTC 
CC9-qRT-rv GGATCATCCGTAGCCATCTG 
BBI-qRT-fw CCGACATCCTCTTCAACTTCTG 
BBI-qRT-rv TTCTCTGAAGCGGCACAC 
POX12-qRT-fw CTGAACAAGTTCTTCGCGG 
POX12-qRT-rv AGGTCCACGTAGTACTTGTTG 
ATFP4-qRT-fw CAGCCTGTGGACATATGC 
ATFP4-qRT-rv GCACATGCCCTTAACCTC 
RT_GAPDH_f CTTCGGCATTGTTGAGGGTTTG 
RT_GAPDH_r TCCTTGGCTGAGGGTCCGTC 
Secretion assay 
pep1_CBX_for CACGGATCCATGATGACCACACTGGTGCAAAC 
pep1_CBX_rev GTGCCATGGACATGCCAAACATGCTACCGATTC 
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tin2_CBX_for CACGGATCCATGAATAGACTTCAGTCCTACACC 
tin2_CBX_rev GTGCCATGGAAAGAGGGAAGCGAGGGAGC 
cmu1_CBX_for CACCCCGGGATGAAGTTGAGCGTGTCCATCTTTG 
cmu1_CBX_rev GTGCCATGGAGGTGCACTTGTTGGCGTGG 

 

5.1.7 Other materials 
Whatman® gel blotting paper (Sigma-Aldrich), rotating wheel, glass beads 150-212 microns (Sigma-

Aldrich), nylon membrane Hybond N+ (Amersham), nitrocellulose membrane (Carl Roth), Petri dishes 

(Greiner, Carl Roth), 1.5 ml and 2 ml reaction vessels (Eppendorf, Carl Roth), 0.2 ml PCR tubes, 15 ml 

and 50 ml reaction tubes (Sarstedt), 1.5 ml polystyrene cuvettes (Carl Roth), sterile filter 0.20 μm and 

0.45 µm (Carl Roth), 1 ml disposable syringes (B. Braun), pipette tips 10 µl, 200 µl, 1000 µl (Sarstedt), 

pipette tips for RNA 10 µl, 200 µl, 1000 µl (Biozym) 

 

5.1.8 Buffers and Solutions 
Standard buffers and solutions were prepared according to Ausubel et al. (1987), Sambrook et al. (1989) 

and Sambrook and Russell (2001). Other buffers and solutions are listed at the respective methods. 

 

5.1.9 Liquid and solid media 
Table 5.7: E. coli media 

Name Recipe 
YT solid medium  
(Sambrook et al., 1989) 

8 g tryptone 

5 g yeast extract 

5 g NaCl 

15 g agar 

Fill up with H2Obid to 1 l and autoclave. 

Added 100 μg/ml ampicillin (f.c.) for selection of positive 

transformants. 
dYT liquid media 
(Sambrook et al., 1989) 

16 g tryptone 

10 g yeast extract 

5 g NaCl 

Fill up with H2Obid to 1 l and autoclave. 

Added 100 μg/ml ampicillin (f.c.) for selection of positive 

transformants. 
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Table 5.8: U. maydis media 

Name Recipe 
CM solid medium 

(Holliday) 

1.5 g NH4NO3 

2.5 g casamino acids 

0.5 g Herring Sperm DNA 

1 g yeast extract 

10 ml vitamin solution (see below) 

62.5 ml salt solution (see below) 

0.5 ml trace element solution (see below) 

20 g agar 

Fill up with H2Obid to 980 ml and adjust pH with NaOH to pH 7.0 

and autoclave. After autoclaving add 2% (v/v) of a 50% glucose 

solution (1% f.c.) or 2% (v/v) of a 25% arabinose solution (1% 

f.c.) 

CM liquid medium 

(Holliday) 

1.5 g NH4NO3 

2.5 g casamino acids 

0.5 g Herring Sperm DNA 

1 g yeast extract 

10 ml vitamin solution (see below) 

62.5 ml salt solution (see below) 

0.5 ml trace element solution (see below) 

fill up with H2Obid to 980 ml and adjust pH with NaOH to pH 7.0 

and autoclave. After autoclaving add 2% (v/v) of a 50% glucose 

solution (1% f.c.) or 2% (v/v) of a 25% arabinose solution (1% 

f.c.) 

Salt solution  

(Holliday) 
8 g KH2PO4 

2 g Na2SO4 

1 g MgSO4 * 7 H2O 

Fill up with H2Obid to 1 l and sterile filtrate. 

Trace elements solution 
(Holliday) 

60 mg H3BO3 

191 mg MnCl2 

400 mg ZnCl2 

47 mg NaMoO4 * 2 H2O 

140 mg FeCl3 * 6 H2O 

557 mg CuSO4 * 5 H2O 

Fill up with H2Obid to 1 l and sterile filtrate. 

Vitamin solution 

(Holliday) 
100 mg thiamin 

20 mg calcium pantothenate 

50 mg 4-Aminobenzoic acid 

20 mg nicotinic acid 
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20 mg choline chloride 

40 mg myo-inositol 

50 mg folic acid 

Fill up with H2Obid to 1 l and sterile filtrate. 

NSY glycerin 
(storage medium for -80°C) 

8 g nutrient broth 

1 g yeast extract 

5 g sucrose 

800 ml 87% glycerin 

Fill up with H2Obid to 1 l and autoclave. 

Regeneration agarlight  

(Schulz et al., 1990) 

15 g (w/v) BD Difco™ Agar 

182.2 g (w/v) sorbitol 

10 g (w/v) yeast extract 

4 g (w/v) BD Bacto™ yeast extract 

4 g (w/v) sucrose 

Fill up with H2Obid to 1 l and autoclave. 

YEPSlight liquid medium 

(Tsukuda et al., 1988) 
10 g yeast extract 

4 g peptone 

4 g sucrose 

Fill up with H2Obid to 1 l and autoclave. 

YNB liquid medium 1.7 g Yeast nitrogen base 

Fill up with H2Obid to 1 l, adjust with 5M NaOH to pH 5.6 and 

autoclave. 

After autoclaving add 2% (v/v) of a 50% glucose solution (1% 

f.c.) or 2% (v/v) of a 25% arabinose solution (1% f.c.) as well as 

0.2% (v/v) 20% ammoinium sulfate. 

YNB solid medium 1.7 g Yeast nitrogen base 

Fill up with H2Obid to 1 l, adjust with XXX to pH 5.X. and 

autoclave. 

After autoclaving add 2% (v/v) of a 50% glucose solution (1% 

f.c.) or 2% (v/v) of a 25% arabinose solution (1% f.c.) as well as 

ammoinium sulfate (20%) as carbon source (0.2% f.c.). 

PD-Charcoal solid medium 24 g potato dextrose broth 

8 g charcoal 

20 g agar 

Fill up with H2Obid to 1 l and autoclave. 
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5.1.10  Plasmids 
Table 5.9: In this work used plasmids 

Name Resistance Reference Description 

pCR2.1 AmpR 
KanR Invitrogen Cloning of PCR and ligated 

products 

p123 AmpR Aichinger et al. (2003) 
Consists of an otef promoter and 
GFP. For the integration of 
constructs into the ip locus. 

p123-mCherry AmpR Teichmann et al. (2010) Similar to p123. Consists of 
mCherry instead of GFP. 

pcib1-3xGFP AmpR 
KanR Heimel et al. (2010a) For C-terminal fusion of 3xGFP to 

cib1 in the cib1 locus. 

pBS-hhn AmpR Kämper (2004) Consists of the hygromycin 
resistance cassette. 

pUMa389 AmpR Becht et al. (2006) 

For C-terminal fusion with 
enhanced GFP as reporter gene. 
Consists nourseothricin resistance 
cassette 

pUMa793 AmpR Becht et al. (2006) 
For C-terminal 3xHA fusion. 
Consists nourseothricin resistance 
cassette. 

pUMa707  AmpR Zarnack et al. (2006) 

Promoter replacement with 
regulated tetracycline promoter. 
Consists of a phleomycin 
resistance cassette. 

 

In this work generated plasmids 

Cloning steps of plasmids were checked by restriction analysis and introduced PCR amplicons were 

verified by sequencing. 

 

Gene deletions 

All gene deletions were performed according to Kämper (2004). Flanking gene borders (~1 kb) were 

PCR amplified from genomic DNA of U. maydis (UM521), which integrated a SfiI restriction site on 

each border. Both fragments were ligated to a SfiI HygR fragment of the plasmid pBS-hhn (Kämper, 

2004). The ligation product integrated into the pCR2.1 TOPO vector (Invitrogen). 

 

pCR2.1-cib1-GFP and pCR2.1-cib1-3xHA 

For the cib1-GFP fusion, the 5.5 kb SfiI 3xGFP-HygR fragment of plasmid pcib1-3xGFP (Heimel et al., 

2010a) was replaced with the 2.5 kb SfiI GFP-NatR fragment from pUMa389 (Becht et al., 2006) to 

generate the plasmid pCR2.1-cib1-GFP. The resulting vector was used to generate plasmid pCR2.1-

cib1-3xHA by exchanging the SfiI GFP-NatR cassette with a 1.8 kb SfiI 3xHA-NatR fragment from 

pUMa793 (Becht et al., 2006).  

 

pCR2.1-cib1T381A-GFP and pCR2.1-cib1T381E-GFP 

To generate the phospho-null (cib1T381A-GFP) or phospho-mimic (cib1T381E-GFP) mutation in cib1-

GFP, a point mutation was introduced into the ORF of cib1 by standard PCR procedures. Cloning of 
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the PCR fragment followed the procedure as described for pCR2.1-cib1-GFP, yielding the plasmids 

pCR2.1-cib1T381A-GFP and pCR2.1-cib1T381E-GFP. 

 

pCR2.1-cib1S468A-GFP and pCR2.1-cib1S468E-GFP 

To generate the phospho-null (cibS468A-GFP) or phospho-mimic (cib1S468E-GFP) mutation in cib1-GFP, 

a point mutation was introduced into the ORF of cib1 by standard PCR procedures. Cloning of the PCR 

fragment followed the procedure as described for pCR2.1-cib1-GFP, yielding the plasmids pCR2.1-

cib1S468A-GFP and pCR2.1-cib1S468E-GFP. 

 

pCR2.1-cib1T381A,S468A-GFP and pCR2.1-cib1T381E,S468E-GFP 

To generate the double phospho-null (cib1T381A,S468A-GFP) or double phospho-mimic (cib1T381E,S468E-

GFP) mutations in cib1-GFP, point mutations were introduced into the ORF of cib1 by fusion PCR. 

Cloning of the PCR fragments followed the procedure as described for pCR2.1-cib1-GFP, yielding the 

plasmids pCR2.1-cib1T381A,S468A-GFP and pCR2.1-cib1T381E,S468E-GFP. 

 

pCR2.1-Ptef:tTA-tetO:cib1-GFP 

For replacement of the cib1 promoter with a tetracycline-regulated promoter, 1 kb upstream of the cib1 

start codon and 1 kb of the cib1 open reading frame (ORF) were PCR amplified from genomic DNA, 

ligated to the SfiI cassette of pUMa707 (Zarnack et al., 2006) and integrated in the pCR2.1 TOPO vector 

(Invitrogen) generating plasmid pCR2.1-Ptef:tTA-tetO:cib1-GFP 

 

p123-Potef:spp1-mC, p123-Potef:Srspp1-mC, p123-Potef:Uhspp1-mC and p123-Potef:sppA-mC 

To generate the spp1-mCherry fusion, the ORF of spp1 (UMAG_02729, UM521) lacking the stop codon 

was PCR amplified from genomic DNA introducing a BamHI site at the 5’ end and a BspHI site at the 

3’ end and integrated into p123-mCherry (Teichmann et al., 2010), to yield p123-Potef:spp1-mC. Cloning 

of orthologous genes from Sporisorium reilianum Srspp1 (sr13785, strain SRZ1), Ustilago hordei 

Uhspp1 (UHOR_04354, strain Uh4857-4) and Aspergillus nidulans sppA (ANID_08681, strain 

AGB551) followed the same procedure, generating plasmids p123-Potef:Srspp1-mC, p123-Potef:Uhspp1-

mC and p123-Potef:sppA-mC, respectively. 

 

p123-Potef:YPF1-mC 

For cloning of S. cerevisiae YPF1 the ORF (YKL100C, strain sigma 1287) was PCR amplified from 

genomic DNA introducing BamHI sites at the 5’ and 3’ end removing the stop codon and integrated into 

p123-mCherry (Teichmann et al., 2010) to yield plasmid p123-Potef:YPF1-mC. 

 

 

 



Materials and Methods 
 

 
99 

p123-Potef:HM13-mC 

The cDNA of the human HM13 (BC062595, cDNA clone) was PCR amplified from the vector 

pCS6(BC062595)-TCH1303-GVO-TRI (BioCat) introducing an XmaI site at the 5’ end, a NcoI site at 

the 3’ end and removing the stop codon and subsequently ligated into p123-mCherry (Teichmann et al., 

2010) to yield p123-Potef:HM13-mC.  

 

p123-Pspp1:spp1-mC 

To replace the otef promoter in p123-Potef:spp1-mC with the spp1 promoter, a 1.4 kb spp1 promoter 

fragment was PCR amplified introducing a NdeI site at the 5’ end and a BamHI site at the 3’ end. The 

PCR fragment was integrated into p123-Potef:spp1-mC to generate p123-Pspp1:spp1-mC.  

 

p123-Potef:spp1D279A-mC and p123-Pspp1:spp1D279A-mC 

To generate the catalytically inactive version of spp1 (spp1D279A), a point mutation was introduced into 

the ORF of spp1 by standard PCR procedures. Cloning of the PCR fragment followed the procedure as 

described for p123-Potef:spp1-mC and p123-Pspp1:spp1-mC, yielding the plasmids p123-Potef:spp1D279A-

mC and p123-Pspp1:spp1D279A-mC, respectively. 

 

p123-Potef:spp1-GFP and p123-Potef:spp1D279A-GFP 

To generate the spp1-GFP fusion as well as a variant with the catalytically inactive spp1 (spp1D279A-

GFP), similar cloning procedures were used as described for p123-Potef:spp1-mC and p123-

Potef:spp1D279A-mC, respectively. PCR fragments were integrated into p123 (Aichinger et al., 2003) 

instead of p123-mCherry, generating the plasmids p123-Potef:spp1-GFP and p123-Potef:spp1D279A-GFP. 

 

p123-Potef:pep1-mC 

To generate the pep1-mCherry fusion, the ORF of pep1 (UMAG_01987, UM521) lacking the stop codon 

was PCR amplified from genomic DNA introducing a BamHI site at the 5’ end and a NcoI site at the 3’ 

end and integrated into p123-mCherry (Teichmann et al., 2010), to yield p123-Potef:pep1-mC.  

 

p123-Potef:tin2-mC 

To generate the tin2-mCherry fusion, the ORF of tin2 (UMAG_05302, UM521) lacking the stop codon 

was PCR amplified from genomic DNA introducing a BamHI site at the 5’ end and a NcoI site at the 3’ 

end and integrated into p123-mCherry (Teichmann et al., 2010), to yield p123-Potef:tin2-mC.  

 

p123-Potef:cmu1-mC 

To generate the cmu1-mCherry fusion, the ORF of cmu1 (UMAG_05731, UM521) lacking the stop 

codon was PCR amplified from genomic DNA introducing an XmaI site at the 5’ end and a NcoI site at 

the 3’ end and integrated into p123-mCherry (Teichmann et al., 2010), to yield p123-Potef:cmu1-mC. 
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p123-Pspp1[∆UPRE1]:spp1-mC, p123-Pspp1[∆UPRE2]:spp1-mC, p123-Pspp1[∆UPRE1/2]:spp1-mC 

To generate the deletion of UPRE1 (Chapter 3.3.10) in the promoter of spp1, the promoter fragments 

Pspp1-∆UPRE1-LB (Primer: 02729_pro1.4_for and 02729_∆UPRE_rev) and Pspp1-∆UPRE1-RB 

(Primer: 02729_∆UPRE_for and 02729_pro_rev) were PCR amplified. To generate a full-length 

promoter lacking the UPRE1, an overlapping PCR (Primer: 02729_pro1.4_for and 02729_pro_rev) was 

performed on both sub-fragments. The generated Pspp1-∆UPRE1 full-length fragment was cloned as 

described for p123-Pspp1:spp1-mC, yielding p123-Pspp1[∆UPRE1]:spp1-mC. Deletion of UPRE2 (Chapter 

3.3.10) in the spp1 promoter was performed similar as described for deletion of UPRE1, by using 

different primers for generation of the promoter sub-fragments (02729_pro1.4_for and 

02729_∆UPRE2_rev or 02729_∆UPRE2_for and 02729_pro_rev), generating the plasmid p123-

Pspp1[∆UPRE2]:spp1-mC. To generate a double deletion of UPRE1 and UPRE2, the promoter sub-fragments 

were PCR amplified from p123-Pspp1[∆UPRE2]:spp1-mC with the primers 02729_pro1.4_for and 

02729_∆UPRE_rev (Pspp1-∆UPRE1/2-LB) or 02729_∆UPRE_for and 02729_pro_rev (Pspp1-

∆UPRE1/2-RB) and cloned as described for p123-Pspp1[∆UPRE1]:spp1-mC, yielding p123-

Pspp1[∆UPRE1/2]:spp1-mC. 

 

p123-Potef:02578-GFP 

To generate the UMAG_02578-GFP fusion, the ORF of UMAG_02578 lacking the stop codon was PCR 

amplified from genomic DNA (UM521) introducing a BspHI site at the 5’ and the 3’ end, and integrated 

into p123 (Aichinger et al., 2003), to yield p123-Potef:02578-GFP. 

 

5.2 Standard methods of microbiology 

5.2.1 Cultivation of E. coli 
E. coli strains were cultivated either as shake cultures at 200 rpm or on solid media under aerobic 

conditions at 37°C. For inoculation of E. coli, dYT liquid medium and YT solid medium were used 

(Ausubel et al., 1987; Sambrook et al., 1989). For plasmid selection, the antibiotics ampicillin (100 

μg/ml) were used. Cultures were stored at -80°C in glycerol, and were streaked out and grown on YT 

solid media before further inoculation. 

 

5.2.2 Transformation of E. coli 
To preparation of chemical-competent bacterial cells, a modified protocol according to Hanahan et al. 

(1991) was used. 100 ml of SOB medium were inoculated with 1 ml of a fresh TOP10 overnight culture 

and incubated to an OD600 of 0.5 at 37°C and 200 rpm. The cells were centrifuged (4.000 rpm, 10 min, 

4°C), resuspended in one-third of the starting volume in ice-cold CCMB80 buffer and incubated on ice 
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for 20 min. The cells were centrifuged again (4.000 rpm, 10 min, 4°C) and resuspended in 1/12 of the 

starting volume. The cell suspension was aliquoted into 50 μl portions and stored at -80°C. 

CCMB80-buffer  
10 mM KOAc pH 7.0  

80 mM CaCl2 x 2H2O  

20 mM MnCl2 x 4H2O  

10 mM MgCl2 x 6H2O  

10% (v/v) glycerin  

in H2O (pH 6.4) 

SOB-medium (liquid) w/o magnesium  
0.5% (w/v) yeast extract  

2% (w/v) tryptone/peptone 

10 mM NaCl  

2.5 mM KCl  

in H2O 

For the transformation of E. coli strains, the cells were thawed on ice, and 10 µl plasmid solution (1-5 

ng plasmid) or the ligation mixture was added to a volume of 50 µl cells and incubated on ice for 15 

min. After a heat shock of 30-60 sec at 42°C, the transformation mixture was streaked out on YT plates 

with the appropriate antibiotic and incubated overnight at 37°C. 

 

5.2.3 Cultivation of U. maydis 
U. maydis strains were cultured in YEPSlight, CM or YNB liquid medium at 28°C and 180 rpm shaking 

in baffled flasks. For cultivation on solid media, CM, YNB or PD solid medium was used. The following 

antibiotics were used for selection: Carboxin (2 μg/ml, Sigma-Aldrich, 45371), Hygromycin B (200 

μg/ml, InvivoGen, ant-hg-5), G418/geneticin (400 µg/ml, Merck/Calbiochem, 345810), Phleomycin 

(40 µg/ml, InvivoGen, ant-ph-1) or Nourseothricin (50 μg/ml, Werner BioAgents, clonNAT). For long-

term storage of the strains, strains were inoculated in YEPSlight and grown overnight at 28°C. 

Subsequently, 0.9 ml of the culture was mixed with 0.9 ml NSY-glycerol and stored at -80 ° C. For 

further use of the stored strains, cells were streaked out on CM solid media and grown overnight at 28°C. 

For RNA isolation of strains as well as stress assays performed on solid media (ER stress, cell wall stress 

and growth in hypoxia), strains were inoculated in liquid or solid YNB medium, respectively. 

 

5.2.4 Measurement of cell density in U. maydis 
The cell density of liquid cultures was determined photometrically using a UV-1202 (Shimadzu) at 600 

nm. In order to ensure a linear reference, the cell suspensions were diluted to a value below OD600 of 

1.0. The respective culture medium was used as a reference. An OD600 of 1.0 corresponds to 1-5 x 107 

cells/ml. 
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5.2.5 Transformation of U. maydis 
Generation of U. maydis protoplasts 

The transformation protocol was modified according to Schulz et al. (1990) and Gillissen et al. (1992). 

YEPSlight liquid medium was inoculated with strains grown on solid medium and shaken in baffled flasks 

at 28°C overnight. Thus, the preculture was diluted in 50 ml of YEPSlight to an OD600 of 0.2 and shaken 

at 28°C to a cell density of OD600 of 0.8-1.0. Subsequently, cells were centrifuged (3500 rpm, 5 min, 

4°C, Heraeus Biofuge Stratos, rotor #3057) and washed once with ice-cold 25 ml SCS. For 

protoplastation of the cells, 2 ml SCS with 20 mg/ml lysing enzyme (Sigma-Aldrich, L1412) was added. 

The protoplastation of the cells was monitored at room temperature microscopically until two-thirds of 

the cigar-shaped cells start to form spherical shapes on their cell poles. After protoplastation (5-15 min), 

10 ml of ice-cold SCS was added and the protoplasts were gently pelleted by centrifugation at 2000 rpm 

(10 min, 4°C, Heraeus Biofuge Stratos, rotor #3057). The latter wash step was repeated once, to 

completely remove the lysing enzyme of the cells and stop the protoplastation. Cells were then washed 

with 10 ml of ice-cold STC, and the pellet was resuspended in 0.5 ml of ice-cold STC and aliquoted into 

100 µl portions. Protoplasts can be stored for 3-4 h on ice or at -80 ° C for several months. 

Transformation of U. maydis protoplasts 

For transformation, 100 μl of protoplasts were incubated with 1 to 10 μl of linearized plasmids or PCR 

amplified and purified DNA constructs (3-5 μg) and 1 μl of heparin solution (15 mg/ml) for 15 min on 

ice. Thereafter, 500 μl STC/PEG solution was added and further incubated for 15 min on ice. 

Subsequently, the entire transformation approach was gently streaked out on a regeneration agar 

medium supplemented with antibiotic for selection of positive transformants. After 4 to 7 days of 

incubation at 28°C, the grown colonies were single-streaked with toothpicks on antibiotic-containing 

CM plates. 

SCS 
Solution 1: 

20 mM sodium citrate  

1 M sorbitol  

in H2O 

 

Solution 2: 

20 mM citric acid 

1 M sorbitol  

in H2O 

 

STC 
10 mM Tris-Cl, pH 7.5  

100 mM CaCl2  

1 M Sorbitol  

in H2O 

The solution can be autoclaved for 

sterilization. 

 

STC/PEG 
90 ml STC 

60 g PEG 4000 

Dissolve PEG in STC buffer. The buffer 

can be autoclaved for sterilization. 
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Add solution 2 to solution 1 until a pH of 

5.8 is reached. The final buffer can be 

autoclaved for sterilization. 

 

5.2.6 Microscopic analysis of U. maydis strains 
Fluorescent microscopic analysis of U. maydis strains 

For fluorescence microscopic analysis, 100 µl of 2% (w/v) agarose was applied on a glass slide and 

immediately a second glass slide was put on top, to generate a flat surface. After 5 min, the second glass 

slide was removed and 5 μl of U. maydis culture, with an OD600 of 0.8, was spotted on the prepared 

agarose surface and covered with a coverslip. Microscopic analysis was performed using an Axio 

Imager.M1 (ZEISS) equipped with a CoolSNAP HQ2 CCD camera (PHOTOMETRICS). For 

fluorescence microscopy, filters with the following excitation and emission spectra were used: GFP 450-

490 nm and 515-565 nm, RFP 550-580 nm and 590-650 nm. Images were processed with ZEN 2.3 blue 

edition (ZEISS) and ImageJ 1.48 (https://imagej.nih.gov/ij) 

Analysis of in planta growth of U. maydis 

Chlorazole Black E staining was performed according to Brachmann et al. (2001). For microscopic 

analysis of cells after TM treatment U. maydis strains were grown in CM to an OD600 of 0.35. TM was 

added to a final concentration of 5 µg/ml and cells were incubated for the indicated time to induce the 

UPR. Microscopic analysis was performed using an Axio Imager.M2 equipped with an AxioCam MRm 

camera (ZEISS) or an Axio Imager.M1 (ZEISS) equipped with a CoolSNAP HQ2 CCD camera 

(PHOTOMETRICS). Images were processed with ZEN 2.3 blue edition (ZEISS) and ImageJ 1.48 

(https://imagej.nih.gov/ij). 

Analysis of ROS formation in planta 

For the detection of reactive oxygen species (ROS) in infected leaf tissue, 3,3’-diaminobenzidine (DAB) 

was used as described previously in Molina and Kahmann (2007). Briefly, leaves (third leaf) were 

detached with a razor blade 1 cm above and 2 cm below the injection site 24 h post infection and 

incubated for 12 h in 1 mg/ml DAB solution under darkness at room temperature. For decolorization, 

leaves were immersed in ethanol (96 %) for 48h. For storage of the specimens, the leaves were 

transferred into 10 % (v/v) glycerol. Brown polymerization products resulting from the reaction of DAB 

with ROS were microscopically identified using a binocular microscope (Keyence Digital Microscope 

VHX-500F). Images were processed with ImageJ 1.48 (https://imagej.nih.gov/ij). 
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5.2.7 Induction of ER-Stress in U. maydis 
For induction of ER stress in expression studies, YNB liquid medium was inoculated with U. maydis 

strains and grown over the day. In the evening, the cell density of the culture was measured and adjusted 

to an OD600 of 0.3 to the next day and grown overnight. Cells were treated with 5 μg/ml tunicamycin 

(f.c.) and harvested after 4 h of treatment by centrifugation (4°C, 3500 rpm, 5 min, Heraeus Biofuge 

Stratos, rotor #3047). After centrifugation, cell pellets were flash-frozen in liquid nitrogen. Frozen 

pellets were stored in -80°C for further use. 

To examine cell growth under ER stress, strains were grown in YEPSlight overnight. Cell density was 

measured and adjusted that it reached an OD600 of 1 after 5 h of growth. Cells were centrifuged (3500 

rpm, 5 min, Heraeus Pico 17) and a 10-fold dilution series starting at an OD600 of 1 was prepared in 

YNB (without glucose and ammonium sulfate). 3.5 μl of each dilution was spotted on YNB solid 

medium (with or without a tunicamycin) and incubated for two days at 28°C. 

 

5.2.8 Infection of Zea mays with U. maydis 
For infection of Zea mays with U. maydis strains, YEPSlight liquid medium was inoculated with 

U. maydis strains and grown to an OD600 of 0.8. Cells were harvested by centrifugation (3000 rpm, 5 

min, RT, Heraeus Biofuge Stratos) and subsequently resuspended in water (to an OD600 of 1.0). 500 μl 

of the cell suspension was injected with a disposable syringe around 1 cm above the ground into the 

interior of the leaf vortex of 7-day-old maize plants of the maize variety “Early Golden Bantam”. The 

infected plants were grown for eight days in a climatic chamber (CLF Plant Climatics GroBank's TS-

110). Infection symptoms were rated according to criteria modified from Kämper et al. (2006). 

Program GroBanks:  

during the day 8:00 - 22:00, 28°C, light intensity 250 μmol  

at night 22:00 - 8:00, 22°C 

 

5.3 Standard methods of molecular biology 

5.3.1 Handling of nucleic acids 
Determination of DNA concentration 

The concentration of nucleic acids was determined photometrically. An absorbance value of 1 at a 

wavelength of 260 nm and a slice thickness of 1 cm, corresponds to a concentration of about 50 μg/ml 

double-stranded DNA and 33 μg/ml single-stranded DNA. To measure the purity of the DNA, the 

quotient of the optical densities at the wavelengths 260 nm and 280 nm was used (1.8 for pure DNA). 



Materials and Methods 
 

 
105 

Lower values indicate contamination with proteins, higher values indicate impurities with salts or 

sugars. All measurements were performed with a Nanodrop ND-1000 spectrophotometer. 

 

5.3.2 Isolation of nucleic acids 
Minipreparation of plasmid DNA of E. coli 

Plasmid DNA isolation of E. coli was performed according to Sambrook et al. (1989). 1.5 ml of an 

E.  coli overnight culture was pelleted (13000 rpm, 30 sec, RT, Heraeus Pico 17). The cell pellet was 

resuspended in 300 μl STET and 30 μl lysozyme solution (10 min, 1500 rpm, Vibrax VRX (IKA)) and 

incubated for 1 min at 95°C in a heating block (Eppendorf Thermomixer compact). The lysed cells and 

the denatured genomic DNA were centrifuged (13,000 rpm, 15 min, RT, Heraeus Pico 17). The pellet 

was removed from the aqueous solution using a sterile toothpick. Plasmid DNA was precipitated with 30 

µl of Minilysate(III) solution and 500 µl of isopropanol, and subsequent centrifugation (13,000 rpm, 15 

min, RT, Heraeus Pico 17). The plasmid DNA pellet was washed with 70% ethanol. After drying, the 

plasmid DNA pellet was taken up in 100 μl of TE buffer containing 20 μg/ml RNase A and dissolved 

for 20 min at 50°C in a heating block (Eppendorf Thermomixer compact). 

STET buffer 
10 mM Tris-HCl (pH 8.0) 

100 mM NaCl 

1 mM Na2-EDTA 

5% (v/v) TritonX-100 

in H2Obid 

Lysozyme solution 
10 mg/ml lysozyme 

in 1x TE buffer 

Mini lysate(III) solution 
3 M NaAc (pH 4.8) 

in H2Obid 

 

Genomic DNA isolation of U. maydis 

For genomic DNA isolation of U. maydis, 2 ml of a U. maydis overnight culture, grown in 3-5 ml of 

YEPSlight medium, was centrifuged (2 min, 13000 rpm, RT, Heraeus Pico 17). The supernatant was 

discarded and 500 μl U. maydis lysis buffer, as well as 300 mg glass beads, were added to the cell pellet. 

To disrupt the cells, the mixture was shaken vigorously (10 minutes, 1500 rpm, RT, Vibrax VRX (IKA)) 

and incubated for 15 min at 65°C (Eppendorf Thermomixer compact). After incubation for 5 min on 

ice, 100 µl 8M potassium acetate was added, mixed vigorously and centrifuged (15 min, 13000 rpm, 

RT, Heraeus Pico 17). 500 µl of supernatant was transferred into a fresh reaction tube, 300 µl 

isopropanol was added to the supernatant and mixed vigorously before centrifugation (15 min, 13000 

rpm, RT, Heraeus Pico 17). After centrifugation, the supernatant was removed and the pellet was washed 

with 70% EtOH (5 min, 13000 rpm, RT, Heraeus Pico 17). The supernatant was removed completely 

and the pellet was dried for about 5 minutes at room temperature and taken up in 35 μl of TE buffer with 

50 μg/ml RNaseA. Subsequently, the DNA was dissolved at 50°C and 850 rpm for 20 min (Eppendorf 
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Thermomixer compact). For quality control, 1 μl of the genomic DNA was applied to a 0.8% agarose 

gel and analyzed (modified after Hoffman and Winston (1987)). 

 

U. maydis lysis buffer 
50 mM Tris-HCl (pH 7.5) 

50 mM Na2-EDTA 

1% (w/v) SDS 

in H2Obid 

For usage mix 50:50 with 1x TE. 

8M potassium acetate (KOAc) 
8M KOAc 

in H2Obid 

 

 

RNA isolation of U. maydis 

This method is based on the protocol of the manufacturer Invitrogen and was used for the preparation 

of total RNA from U. maydis liquid cultures or infected maize leaves. 

A) From U. maydis liquid culture: 15 ml of the cell culture was pelleted (5 min, 3500 rpm, RT, 

Heraeus Biofuge Stratos, rotor #3047), the supernatant was discarded and the cell pellet was 

flash frozen in liquid nitrogen (and optionally stored at -80 ° C). 

B) From infected maize leaves: A piece of the 3rd leaf (about 1 cm below the injection site and 

2 cm long) was cut off and immediately flash frozen in liquid nitrogen (and optionally stored at 

-80 ° C). The leaf material was ground in a mortar with liquid nitrogen to a fine powder (possibly 

stored at -80 ° C). 

1 ml of TRIzol (Invitrogen) was pipetted onto the frozen cell pellet or the plant material and transferred 

into 2 ml reaction vessels with 300 mg of glass beads. The mixture was shaken (8 min, 2000 rpm, Vibrax 

VRX (IKA)) and incubated for 5 min at RT. After addition of 200 μl chloroform, the samples were 

mixed briefly (SI Vortex-Genie 2) and incubated for 2 to 3 minutes at RT. After centrifugation (10 min, 

13000 rpm, Sigma 1-15) the clear supernatant was removed and transferred into a 1.5 ml reaction vessel 

with 500 µl of isopropanol, incubated for 10 min at RT and centrifuged again (15 min, 13000 rpm, 

Sigma 1-15). The supernatant was removed and the RNA pellet was washed with 750 μl ethanol (70%) 

(13000 rpm, 5 min, Sigma 1-15). The supernatant was removed completely and the RNA pellet was 

dissolved in 60 μl H2O (RNase free, Ambion) at 55°C for 10 min. For quality control, 1 μl of the RNA 

was loaded on an 0.8% agarose gel. 
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5.3.3 in vitro modification of DNA  
Protocols modified after Sambrook et al. (1989) 

Restriction digest of DNA 

For cleavage of double-stranded DNA, type II restriction endonucleases were used with the buffer 

conditions recommended by the manufacturer. A typical reaction mixture contained: 

0.5 μg DNA 

10 μg albumin (if recommended) 

0.5 U restriction enzyme 

in 20 μl reaction buffer 

After incubation for 30 min at 37°C (or the temperature optimal for the particular enzyme), 4 μl of 5x 

loading dye was added to the mixture and the reaction products were analyzed on an agarose gel. 

Dephosphorylation of linear DNA fragments 

5'-end phosphate groups can be cleaved off with the aid of the Antarctic Phosphatase (New England 

Biolabs). Since DNA strands cannot ligate without 5'-end phosphate groups, a religation of linearized 

plasmids can be prevented. A typical reaction mixture contained: 

1 μg of linearized plasmid DNA 

1 U Antarctic Phosphatase 

in 100 μl of Antarctic Phosphatase Buffer 

The mixture was incubated for 30 min at 37°C and heat inactivated for 10 min at 65°C. The linearized 

plasmid was purified using the QIAquick PCR Purification Kit (Qiagen). 

Blunting of 5'-end overhanging DNA Fragments 

The Taq polymerase is capable to fill up 5'-end overhanging DNA fragment ends in the presence of 

deoxynucleotides and magnesium ions to produce blunt ends. This approach is the method of choice to 

ligate incompatible fragment ends. A typical reaction mixture contained: 

1 μg of DNA fragments 

50 μM dNTPs 

1 U Taq polymerase 

in 50 μl of Taq PCR buffer 
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The mixture was incubated for 30 min at 72°C. Treated DNA fragments can be used directly in a ligation 

reaction. 

Ligation of DNA fragments 

Double-stranded DNA fragments were covalently linked by T4 DNA ligase. The fragment was used in 

5-fold molar excess over the dephosphorylated, linearized plasmid DNA. A typical reaction mixture 

contained: 

100 ng linearized, dephosphorylated vector 

5-fold molar excess of the linear fragment 

1 U T4 DNA ligase 

in 10 μl T4 ligase buffer 

The mixture was incubated either at room temperature for about 6 h or at 16° C overnight. Plasmids 

were transformed in E. coli cells. Plasmid DNA was isolated from transformants and was restriction 

digested. DNA fragments were analyzed on an agarose gel. 

 

5.3.4 Gel electrophoresis of nucleic acids 
Nondenaturing agarose gel electrophoresis 

Nucleic acids can be separated, identified and isolated with an agarose gel in an electric field according 

to their size (Sambrook et al., 1989). In general, agarose gels contain between 0.8 and 2% agarose. For 

this purpose, the appropriate amount of agarose was boiled in 0.5x TBE buffer. Ethidium bromide was 

added after cooling to about 60°C (final concentration 0.5 µg/ml) and poured into an electrophoresis 

slide. After solidification of the gel, the gel chamber was filled with 0.5x TBE buffer. Samples were 

mixed in a 6:1 ratio with loading dye before they were loaded into the wells of the gel. Electrophoresis 

was performed at constant voltage (5-10 V/cm). The DNA bands could be detected with UV transmitted 

light (wavelength 254 nm) and a GelJet Imager 2004 (Intas). 

5x TBE buffer 
500 mM Tris-Borat (pH 7.9) 

10 mM Na2-EDTA 

in H2Obid 

6x loading dye 
50% (w/v) sucrose 

0.25% (w/v) bromophenol blue 

0.25% (w/v) xylene cyanol FF 

in TE buffer 
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5.3.5 Transfer and detection of DNA on membranes (Southern-Blot) 
For transfer and detection of DNA on membranes, genomic DNA was digested with restriction enzymes 

and separated in a 0.8% agarose gel (2.5 h, 90 V). Before transfer, the agarose gel was incubated in 0.25 

M HCl for 20 minutes to cleave some of the purine bases in the DNA fragment. This facilitates the 

transfer of large DNA fragments. Subsequently, the gel was washed for 20 min in DENAT solution and 

further for 20 min in RENAT solution. Transfer to a nylon membrane (Roti-Nylon plus, Carl Roth) was 

performed by capillary blot method. Thus, the transfer solution (20x SSC buffer) was taken up from a 

buffer reservoir via capillary forces through the gel into a stack of paper towels placed on the gel. The 

DNA fragments are released vertically from the gel by the buffer stream and bind to the overlying 

positively charged nylon membrane. An evenly distributed weight on the paper stack guarantees a tight 

connection between the respective layers of the transfer system. The Southern-Blot was set up in the 

following order from bottom to top: 

Whatman paper (as connection to the buffer reservoir) 

Agarose gel 

Nylon membrane (Roti-Nylon plus) 

Three layers of Whatman paper (same size as agarose gel) 

Stack of paper towels 

Glass plate 

weight (~500 g) 

The Southern-Blot was performed overnight. Subsequently, the membrane was dried at room 

temperature and the DNA was fixed on the membrane by ultraviolet radiation (UV table for 1 min each 

side). 

Digoxigenin-labeled probe 

For the preparation of the probe, 6.6 μl (maximal DNA amount of 1.5 μg) of the amplified flanking 

regions (LB + RB) of the gene to be examined was denatured for 10 min at 99°C. The following 

components were added after cooling on ice: 

1 μl 10x labeling buffer (Random Primer 6 (NEB, S1230S) in 10x buffer for Klenow fragment 

1 μl 10x BSA 

1 μl 10x DIG-dNTP mix (1 mM dATP, dCTP, dGTP, 0.65 mM dTTP and 0.35 mM DIG-

dUTP) 

0.5 μl Klenow fragment (Thermo Scientific) 
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This reaction was incubated for 1 h or overnight at 37°C and then used for the specific detection of 

immobilized nucleic acids. 

Specific detection of immobilized nucleic acids 

The nylon membrane with the transferred immobilized nucleic acids was preincubated for 20 min at 

65°C with Southern-hybridization buffer. Meanwhile, the probe was dissolved in 15 ml Southern 

hybridization buffer and denatured at 95°C for 10 min in the water bath. The hybridization of the probe 

was performed at 65°C overnight in the hybridization oven. Subsequently, hybridization was followed 

by several washes for 15 min each at 65°C with 20 ml 2x SSPE, 1x SSPE, 0.1x SSPE, respectively, and 

5 min with DIG wash buffer at room temperature. The membrane was blocked with DIG2 buffer for 30 

minutes to avoid non-specific binding of the anti-DIG antibody to the membrane. Thus, the membrane 

was incubated for 30 min with 10 ml of anti-digoxigenin-AP antibody solution (1:10000 in DIG2). The 

membrane was washed twice with 50 ml of DIG wash buffer for 15 min and equilibrated with 40 ml 

DIG3 buffer for 5 min. After incubation for 5 minutes with 10 ml of CDP-Star® solution (1:500 in 

DIG3, New England Biolabs), the chemiluminescence was detected with a chemiluminescence imaging 

system (Peqlab). The exposure time was between 10 s and 15 min. 

HCl 
0.25 M HCl (37% (w/v)) 

in H2Obid 

 

DENAT solution 
1.5 M NaCl 

0.4 M NaOH 

in H2Obid 

 

RENAT solution 
1.5 M NaCl 

282 mM Tris-HCl 

218 mM Tris 

in H2Obid 

 
20x SSC buffer  
3 M NaCl  

300 mM sodium citrate  

in H2Obid (pH 7.4)  

 

 

20x SSPE buffer  
3 M NaCl  

DIG1  
0.1 M maleic acid 

0.15 M NaCl  

in H2Obid (pH 7.5) 

 
DIG2  
5% (w/v) skimmed milk powder 

in DIG1 (see above) 

 

DIG3  
0.1 M maleic acid 

0.1 M NaCl  

0.05 M MgCl2  

in H2O (pH 9.5) 

 

DIG wash buffer  
0.3% (v/v) Tween-20 in DIG 1 (see below)  
 
Na-phosphate buffer (1 M) 
Solution 1: 

1 M Na2HPO4 x 2 H2O 

in H2Obid 
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227 mM Na2PO4 x H2O  

20 mM Na2-EDTA x 2 H2O  

in H2Obid (pH 7.4)  

Solution 2: 

1 M Na2HPO4 x 2 H2O 

in H2Obid 

Add solution 2 to solution 1 until pH 7.0 is 

reached. 
 
Southern-hybridization buffer 
500 ml Na-phosphate buffer (1 M) 

350 ml SDS solution (20%) 

Fill up to 1 L with H2Obid. 

 

 

5.3.6 Polymerase chain reaction (PCR)  
The method is modified according to Innis (1990). For the amplification of DNA fragments the Phusion 

DNA polymerase or for advanced applications the Q5 polymerase (New England Biolabs) was used. In 

general, the reactions were performed with a hot-start in a volume of 50 μl. The PCR reaction starts with 

an initial denaturation, followed by approximately 30 cycles of denaturation, annealing and elongation. 

In the end, a final elongation of 2 min or 5 min was performed. The elongation time was determined 

depending on the size of the expected PCR product and the polymerase which was used. The annealing 

temperatures were mostly 60°C but were modified if necessary. The reactions took place in the 

thermocycler T100 from Bio-Rad. 

PCR reaction with Phusion or Q5 polymerase 

10 ng template DNA 

200 μM dNTPs 

1 μM Oligonucleotide 1 

1 μM Oligonucleotide 2 

1 x HF buffer (Thermo Fisher Scientific) or Q5 buffer (New England Biolabs) 

1 U Phusion polymerase or Q5 polymerase (New England Biolabs) 

in H2Obid 

 

Program Phusion 

98°C/∞ - 98°C/30 s - (98°C/10 s - 58-68°C/15 s - 72°C/ x min) x 30 - 72°C/5 min - 12°C/∞ 
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Program Q5 

98°C/∞ - 98°C/30 s - (98°C/10 s - 58-68°C/15 s - 72°C/ x min) x 30 - 72°C/2 min - 12°C/∞ 

 

5.3.7 Quantitative reverse transcription-PCR (qRT-PCR) 
DNase treatment and cDNA synthesis 

The TURBO DNA-free kit (Ambion) was used for the DNase treatment of the isolated total RNA. The 

RNA quality was previously checked by agarose gel electrophoresis and the concentration was 

determined at a wavelength of 260 nm with the nanodrop. The reaction mixture contained: 

4.25 μg RNA 

0.75 μl Turbo DNase  

2.5 μl buffer 

In 21.5 µl H2O RNase free water (Ambion) 

After 30 min incubation at 37°C, the reaction was terminated by addition of 2.5 μl of DNase inactivation 

and incubated for 5 min at RT. After centrifugation (2 min, 10000 rpm, Heraeus Pico 17), the supernatant 

was removed and used for cDNA synthesis. 

For cDNA synthesis, the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific) was 

used according to the manufacturer's instructions. Thus, 6 μl of DNase digested RNA was used. For 

long-term storage, samples were stored at -80°C. The qRT-PCR reactions were performed in a Bio-Rad 

CFX Connect. 

qRT-PCR reaction 

1 μl cDNA 

5 μl 2x MESA GREEN qPCR Master Mix (Eurogentech) 

2 μl Primer Mix (each primer 2 pmol) 

2 μl nuclease-free H2O (Ambion) 

qRT-PCR Programm 

95°C/5 min - (98°C/15 s - 62°C/20 s - 72°C/ 40 s) x 37 - Melting curve: 72°C - 95°C 
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5.4 Genetic methods 

5.4.1 PCR amplification of gene deletion and fusion constructs for U. maydis 
Gene deletions and gene fusions were performed according to Kämper (2004). The strategy is based on 

homologous recombination by replacing the open reading frame of a gene (ORF) with a resistance 

cassette. Thus, gene deletion or fusion constructs were transformed into U. maydis containing the 

resistance cassette and 1000 bp of the homologous regions (LB and RB) flanking the gene. The 

homologous regions of the genome were amplified by PCR and SfiI restriction sites were inserted via 

the primers. The resistance cassette and flanking gene borders were restriction digested with SfiI and 

ligated overnight at 16°C. The ligation product was isolated via an agarose gel (QIAquick Gel Extraction 

Kit) and cloned via topo cloning in the vector pCR2.1 (Invitrogen). All resistance cassettes used are 

listed in Brachmann et al. (2004). 

 
Figure 5.1: Schematic representation of the gene deletion by homologous recombination. The deletion 
construct consists of a homologous region (LB and RB), SfiI restriction sites (green) and the resistance cassette 
(hygromycin (HygR) as an example). The gene of interest (GOI) is replaced after the transformation of the gene 
deletion construct by homologous recombination. 

 

5.4.2 Integration of constructs in the ip locus of U. maydis 
The substitution of histidine for leucine (A257S) in the succinate dehydrogenase (sdh1; UMAG_01172) 

of U. maydis leads to resistance to the antibiotic carboxin (Broomfield and Hargreaves, 1992). This can 

be used to target constructs into the sdh1 locus (ip (iron-sulfur protein) locus) of U. maydis. Thus, 

plasmids contain the mutated variant of sdh1 (ipR) and the gene of interest with its own promoter or an 

overexpression promoter. The linearized plasmid (usually linearized with SspI) are transformed into 

U. maydis and integrated into the native locus (ipS) by homologous recombination. The integrated 

construct is then flanked by the mutated (ipR) and the native sdh1 variant (ipS). Integration of the plasmid 

can occur once (single) or multiple times in the ip locus, which can be examined by Southern-Blot. 
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Figure 5.2: Schematic representation of the ectopic integration of constructs in the ip locus. The plasmid to 
be integrated is flanked by the mutated ipR and the sdh1 (ipS) gene. After linearization of the plasmid, the construct 
is integrated into the native ipS locus by homologous recombination. Constructs can be integrated into again in the 
native ipS locus resulting in multiple integrations of the constructs. Depicted is the spp1-mC fusion construct under 
expression of the otef promoter (Potef). 

 

5.5 Biochemical methods 

5.5.1 Protein extraction of U. maydis for protein analyses 
Standard protein extraction 

To prepare protein extracts, 15 ml of a CM liquid culture were centrifuged (5 min, 3500 rpm, 4°C, 

Heraeus Biofuge Stratos, rotor #3047). The pellet was washed once with ice-cold TBS buffer (5 min, 

3500 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3047). Subsequently, the pellet was resuspended in 300 

μl of TBS+ lysis buffer and transferred into a 2 ml reaction vessel with 300 mg glass beads. The samples 

were flash frozen in liquid nitrogen and stored at -80°C. The cells were disrupted for 30 min at 4°C on 

the Vibrax VRX (IKA) at 1500 rpm. Finally, the samples were centrifuged (13000 rpm, 10 min, 4°C, 

Heraeus Biofuge Stratos, rotor #3331) and the supernatant was transferred to a new reaction vessel. For 

long-term storage, the samples were flash-frozen and stored at -80°C. After determining the protein 

concentration via the Nanodrop ND-1000, the samples were adjusted to the desired concentration with 

H2O. For further use in SDS gel electrophoresis, SDS sample buffer (Roti Load 1, Carl Roth) was added 

in a 1:4 ratio and samples were boiled for 3 min at 98°C.  

TBS buffer 
50 mM Tris HCl (pH 7.5) 

150 mM NaCl 

 

 

TBS+ (lysis buffer) 
1x TBS 

add 1:100 of Triton X-100 (10%) and 1:100 

protease inhibitor (cOmplete, Roche) 

 

 

Isolation of proteins of culture supernatant of U. maydis 

For secretion assays of Pit2-mC, Pep1-mC, Tin2-mC and Cmu1-mC, strains were inoculated for an over 

day culture in CM liquid medium and incubated shaking at 28°C. In the evening, strains were adjusted 

to an OD600 of 0.35 for the next day. After growth overnight, OD600 was checked and the UPR was 

activated (5 µg/ml f.c.) for 4 h at 28°C. After UPR activation, 10 ml of the cultures were collected and 
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centrifuged (5 min, 3500 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3047) to obtain the pellet fraction. 

The pellet was subjected to the standard protein extraction method. The remaining 40 ml of the culture 

was centrifuged (10 min, 3500 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3047) and 30 ml supernatant 

was transferred into a new 50 ml reaction vessel and stored on ice. Subsequently, each supernatant was 

sterile filtered with a 20 ml syringe and a sterile filter (0.2 µm pore size, Sarstedt) into a Vivaspin sample 

concentrator with a molecular weight cut-off of 10 kDa (28-9323-60, Sartorius). After centrifugation 

(35 min, 5000 g, 4°C, Heraeus Biofuge Stratos, rotor #3047), 200 µl of concentrated supernatant was 

collected and transferred into a fresh 1.5 ml reaction vessel. 30 µl of supernatant was boiled with 10 µl 

SDS sample buffer (Roti Load 1, Carl Roth) at 98°C for 3 min. Samples of the pellet and the supernatant 

fraction were subjected to SDS-PAGE and western-hybridization for further analysis. 

Protein extraction of Spp1-GFP/ Spp1D279A-GFP for Western hybridization 

Cell pellets were resuspended in 300 μl TBS (supplemented with 1x cOmplete proteinase inhibitor mix 

(Roche) and 2% (w/v) digitonin (4005, Carl Roth) and transferred into 2 ml reaction vessel with 300 mg 

glass beads. Samples were flash-frozen in liquid nitrogen and stored at -80 °C. The cells were disrupted 

for 30 min at 4°C on the Vibrax VRX (IKA) at 1500 rpm. Subsequently, the samples were centrifuged 

(2 min, 1200 g, 4°C, Heraeus Biofuge Stratos, rotor #3331), to enrich the supernatant with ER 

membranes. The supernatant was transferred to a new 1.5 ml reaction vessel and centrifuged again (20 

min, 22000 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3331). Finally, 10 µl of SDS sample buffer 

(Roti Load 1, Carl Roth) was added to 30 μl of the supernatant, incubated for 10 min at 65°C 

and stored at -20°C until Western hybridization. 

 

5.5.2 SDS polyacrylamide gel electrophoreses of proteins 
The discontinuous SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed after Laemmli 

(1970), in combination with the Mini-PROTEAN Tetra Handcast System (Bio-Rad). The separation of 

proteins was performed at 100 V until the blue loading dye band of the SDS sample buffer reached the 

end of the separation gel. For a size standard in the protein gels, the PageRuler Prestained Protein Ladder 

(10 to 180 kDa, 26616, Thermo Fisher Scientific) was used. For detection of protein bands, the gels 

were fixed for 60 min (fixing solution) and stained for 3 h in Coomassie staining solution. After staining, 

the gels were decolorized with fixing solution for 1 h and further decolorized in H2O, with a piece of 

white paper towel overnight. 

Stacking gel 
125 mM Tris-Cl (pH 6.8) 

4% (w/v) acrylamide mix 

0.1% (w/v) SDS  

0.05% (w/v) ammonium persulfate 

Protein gel running buffer 
25 mM Tris-Cl 

250 mM glycine 

0.1% (w/v) SDS  

in H2Obid (pH 8.8) 
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0.1% (v/v) TEMED 

 

Separating gel 
375 mM Tris-Cl (pH 8.8) 

8-12% acrylamide mix 

0.1% (w/v) SDS  

0.05% (w/v) ammonium persulfate 

0.1% (v/v) TEMED 

 

 
Fixing solution 

40% (v/v) ethanol 

10% (v/v) acetic acid 

in H2Obid 

 

Coomassie staining solution 

0.1% (w/v) SERVA blue R (SERVA) 

45% (v/v) ethanol 

10 (v/v) acetic acid 

in H2Obid 

 

5.5.3 Detection of immobilized proteins (Western-Blot) 
To transfer proteins from SDS-polyacrylamide gels to a PVDF membrane (Amersham Hybond P 0.45 

PVDF, GE Healthcare), a Semi-Dry Electroblotter (Peqlab) or the Trans-Blot Turbo system (Bio-Rad) 

was used. For western-hybridization with the system of peqlab, the membrane was activated in methanol 

(Standard) for 1 min and then equilibrated in Western transfer buffer. The SDS-polyacrylamide gel was 

also equilibrated in Western transfer buffer. The blotting of proteins was performed for 2 h at 75 mA 

per SDS gel. Western-hybridization with the Bio-Rad system was performed according to the 

manufacturer's manual. The blot (with peqlab system) was set up as followed from top to bottom: 

 

Subsequently, the membrane was shaken for 30 min in blocking solution to prevent nonspecific binding 

of the antibody. Incubation of the primary antibody was performed overnight at 4°C. On the next day, 

the membrane was washed three times with TBS-T for 5 minutes and incubated with the secondary 

antibody for 1-2 hours at RT. Subsequently, the membrane was washed three times for 5 min with TBS-

T and once for 5 min with TBS. For the development of the membrane, it was incubated with 1 ml 

Luminata Crescendo Western HRP Substrate (Millipore). The signals were detected with a 

chemiluminescence imaging system (Peqlab) and evaluated with ImageJ 1.48 

(https://imagej.nih.gov/ij). To stain protein bands, the membrane was incubated with Ponceau S staining 

solution for 20 min and washed three times with H2O. 

TBS-T  
0.1 % (v/v) Tween-20 in TBS 

 

Blocking solution 

5% (w/v) skim milk powder 

in TBS-T  
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Western transfer buffer  
192 mM Glycine 

15% (v/v) methanol 

in 25 mM Tris-HCl (pH 10.4) 

 

antibody solution 

5% (w/v) skim milk powder 

in TBS-T with an appropriate antibody 

 

5.5.4 Stability assay of Cib1 
Stability of Cib1-GFP in response to Clp1 expression was determined with a doxycycline (DOX) based 

promoter shut-off system (PtetO:cib1-GFP) (Zarnack et al., 2006). U. maydis strains were grown in CM 

supplemented with 1% glucose (CMG) to an OD600 of 0.35 and shifted to CM supplemented with 1% 

arabinose (CMA) to induce Pcrg1-driven clp1 expression. For UPR activation, TM was added to a final 

concentration of 5 µg/ml. 4 h after UPR induction DOX (10 µg/ml) was added (T0) and protein extract 

was prepared from samples taken at the time points 1 h (T1), 2 h (T2), 3 h (T3) and 4 h (T4) after DOX 

treatment. Cycloheximide (CHX)-based determination of Cib1-GFP was performed as described before 

(Heimel et al., 2013). Briefly, cells were grown as described for promoter shut-off assays. Protein 

biosynthesis was inhibited using CHX (100 µg/ml) and cells were sampled directly before (T0), or at 

the time points 30 min (T1), 60 min (T2) or 90 min (T3) after CHX treatment. Cib1-GFP levels were 

quantified using ImageJ 1.48 (https://imagej.nih.gov/ij) and normalized to Ponceau S stained bands. 

Stability of proteins was calculated relative to T0. Experiments were performed in three biological 

replicates. Statistical significances (P-value) were calculated using the Student’s t-test. 

 

5.5.5 On-bead phosphatase assay of Cib1 
The protein phosphatase assay was performed after immunoprecipitation of Cib1-GFP followed by on-

bead treatment with lambda-phosphatase (New England Biolabs). Cells were incubated as described for 

promoter shut-off experiments (Chapter 5.5.4). Briefly, 4 h after TM-mediated UPR activation 

(5 µg/ml), equal culture volumes were centrifuged (5 min, 3500 rpm, 4°C, Heraeus Biofuge Stratos, 

rotor #3047), washed once with TBS, supplemented with 2x cOmplete proteinase inhibitor (Roche), (PI) 

and 1x phosphatase inhibitor cocktail (PhI). The pellet was resuspended in 750 µl buffer B-300, flash-

frozen in liquid nitrogen and disrupted in a cell mill (Retsch MM400, 30Hz, 2min). After cell lysis, 750 

µl of B+300, was added and the whole cell lysate was centrifuged (30 min, 22000 rpm, 4°C, Heraeus 

Biofuge Stratos, rotor #3331). The supernatant was added to 60 µl of magnetic agarose GFP-Trap beads 

(chromotek) and incubated for 3 h at 4°C on a rotating wheel. After washing the beads 2x with 500 µl 

of B-300 buffer and removing the supernatant, beads were resuspended in 600 µl of buffer B-300 

(supplemented only with 2x PI, not with PhI) evenly distributed in 200 µl aliquots. The supernatant was 

discarded and 1x lambda phosphatase buffer (NEB) was added to each sample. 1200U of lambda 

phosphatase were added. Control samples were left untreated or supplemented with 2x PhI. After 

incubation for 30 min at 30°C, the supernatant was discarded and 30 µl 1x Roti Load 1 (Carl-Roth) was 
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added to the beads and boiled at 98°C for 3 min. Samples were run on a 10% SDS-PAGE and subjected 

to Western hybridization. All steps were performed in Protein LoBind Tubes (Eppendorf). Experiments 

were repeated in three independent experiments. 

Phosphatase inhibitor (PhI) 
1 mM NaF 

0.5 mM Na3VO4 

8 mM β-glycerophosphate 

B-300 
300 mM NaCl 

100 mM Tris (pH 7.5) 

10% glycerol 

1 mM EDTA 

supplemented with 2x PI and 1x PhI 

 

B+300 
0.1% NP40 in B-300 buffer 

 

5.5.6 Identification of Cib1 phosphosites 
The identification of Cib1 phosphosites was performed by immunoprecipitation of Cib1-GFP during 

absence and induction of Clp1. Cells were incubated as described for promoter shut-off experiments 

(Chapter 5.5.4). Briefly, 4 h after TM-mediated UPR activation (5 µg/ml), equal culture volumes were 

centrifuged (5 min, 3500 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3047), washed once with TBS, 

supplemented with 2x cOmplete proteinase inhibitor (Roche), (PI) and 1x phosphatase inhibitor cocktail 

(PhI). The pellet was resuspended in 750 µl buffer B-300, flash-frozen in liquid nitrogen and disrupted 

in a cell mill (Retsch MM400, 30Hz, 2min). After cell lysis, 750 µl of B+300, was added and the whole 

cell lysate was centrifuged (30 min, 22000 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3331). The 

supernatant was added to 40 µl of magnetic agarose GFP-Trap beads (chromotek) and incubated for 3 

h at 4°C on a rotating wheel. After washing the beads 3x with 500 µl of B-300 buffer and removing the 

supernatant, 30 µl 1x Roti Load 1 (Carl-Roth) was added to the beads and boiled at 98°C for 3 min. 

Subsequently, the supernatant was transferred into a new 1.5 ml reaction vessel and samples were run 

on a 10% SDS-PAGE at 100 V until the blue loading dye of the SDS sample buffer ran out of the 

separation gel. Gels were fixed 60 min with fixing solution, stained 3 h with Coomassie staining solution 

and destained for 1 h with fixing solution (Chapter 5.5.2). Visible protein bands of Cib1-GFP were cut 

out and subjected to LC-MS analysis (Chapter 5.5.8, Orbitrap Velos Pro and Q Exactive HF). 

 

5.5.7 Immunoprecipitation of Spp1-GFP / Spp1D279A-GFP in U. maydis 
For immunoprecipitation of Spp1-GFP / Spp1D279A-GFP, strains were grown to an OD600 of 0.35 and 

UPR was activated with 5 µg/ml TM for 4 h. Subsequently, equal culture volumes were centrifuged (5 

min, 3500 rpm, 4°C, Heraeus Biofuge Stratos, rotor #3047) and washed once with TBS (supplemented 

with 2x cOmplete proteinase inhibitor (PI, Roche)). The pellet was resuspended in 300 μl of TBS 
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(supplemented with 2x PI), transferred into a fresh 2 ml reaction vessel containing 300 mg glass beads. 

The samples were flash frozen in liquid nitrogen and stored at -80°C. The cells were disrupted for 30 

min at 4°C on the Vibrax VRX (IKA) at 1500 rpm. Subsequently, the samples were centrifuged (2 min, 

1200 g, 4°C, Heraeus Biofuge Stratos, rotor #3331), to enrich the supernatant with ER membranes. The 

supernatant was transferred to a new 1.5 ml reaction vessel and centrifuged again (20 min, 22000 rpm, 

4°C, Heraeus Biofuge Stratos, rotor #3331). The supernatant was removed completely and the pellet 

dissolved in 100 μl of TBS supplemented with 2% (w/v) digitonin (4005, Carl Roth) and 1x PI. Digitonin 

permeabilizes ER membranes and supports the release of ER membrane proteins (Baghirova et al., 

2015). For Western hybridization of Spp1-GFP / Spp1D279A-GFP, 10 μl of SDS sample buffer (Roti Load 

1, Carl Roth) was added to 30 μl of the samples and incubated for 10 min at 65°C. The remaining 70 μl 

of the samples were filled up to 500 μl with TBS (supplemented with 2% (w/v) digitonin and 1x PI). 

The sample was transferred to a fresh 1.5 ml reaction vessel with 15 µl of washed magnetic agarose 

GFP-Trap beads (washed 3 times in 500 μl 1x TBS supplemented with 1x PI) and incubated for 3 h at 

4°C on a rotating wheel. Subsequently, GFP trap beads were washed 7x with 500 μl TBS (supplemented 

with 0.1% of digitonin and 1x PI). Finally, 50 μl of TBS (supplemented with 0.1% of digitonin and 1x 

PI) was added to the beads as well as 16.6 µl of SDS sample buffer (Roti Load 1, Carl Roth) and 

denatured for 3 min at 95°C. Subsequently, the supernatant was transferred into a new 1.5 ml reaction 

vessel and samples were run on a 10% SDS-PAGE at 100 V until the blue loading dye of the SDS 

sample buffer ran 10 mm into the separation gel. Lanes were cut out (10 mm) and gel pieces were fixed 

60 min with fixing solution and subjected to LC-MS analysis (Chapter 5.5.8, Orbitrap Velos Pro). 

 

5.5.8 Mass spectroscopic analyses (LC-MS) 
RSLCnano Ultimate 3000 system and Orbitrap Velos Pro 

The cutout gel lanes were each cut into 10 pieces and subjected to tryptic digestion according to 

Shevchenko et al. (1996) followed by LC-MS analysis. Subsequently, peptides were purified with C18 

stop and go extraction (stage) tips according to Rappsilber et al. (2003) and Rappsilber et al. (2007). 

The resulting peptide solution was dried completely in the SpeedVac concentrator and resolved in the 

sample buffer (2% acetonitrile, 0.1% formic acid) for LC-MS analyses. LC-MS analysis for protein 

identification was performed with an Orbitrap Velos ProTM Hybrid Ion Trap-Orbitrap mass 

spectrometer. 4 μl of peptide solutions were loaded and washed on an Acclaim® PepMAP 100 pre-

column (#164564, 100 μm x 2 cm, C18, 3μm, 100 Å, Thermo Fisher Scientific) with 100% loading 

solvent A (2% acetonitrile, 0.07% trifluoroacetic acid) at a flow rate of 25 μl/min for 6 min. Peptides 

were separated by reverse phase chromatography on an Acclaim® PepMAP RSLC column (75 μm x 50 

cm (#164540), C18, 3 μm, 100 Å, Thermo Fisher Scientific) with a gradient from 98% solvent A (0.1% 

formic acid) and 2% solvent B (80% acetonitrile, 0.1% formic acid) to 65% solvent B in 121 min and 

subsequently to 98% solvent B in 1 min followed by 16 min at 98% solvent B. The flow rate for the 
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gradient was 300 nl/min. Peptides eluting from the chromatographic column were on-line ionized by 

nanoelectrospray at 2.4 kV with the Nanospray Flex Ion Source (Thermo Fisher Scientific). Full scans 

of the ionized peptides were recorded within the Orbitrap FT analyzer of the mass spectrometer within 

a mass range of 300-1850 m/z at a resolution of 30,000. Collision-induced dissociation (CID) 

fragmentation of data-dependent top-ten peptides was performed with the LTQ Velos Pro linear ion 

trap. For data acquisition and programming, the XCalibur 2.2 software (Thermo Fisher Scientific) was 

used.  

RSLCnano Ultimate 3000 system and Q Exactive HF 

The cutout gel lanes were each cut into 10 pieces and subjected to tryptic digestion according to 

Shevchenko et al. (1996) followed by LC-MS analysis. Subsequently, peptides were purified with C18 

stop and go extraction (stage) tips according to Rappsilber et al. (2003) and Rappsilber et al. (2007) and 

analyzed with nanoflow LC coupled to nano ESI mass spectrometry. Nano LC - RSLCnano Ultimate 

3000 system (Thermo Scientific): Peptides of 3 or 4 µl sample solution were loaded with 0.07% TFA 

on an Acclaim® PepMap 100 pre-column (100 µm x 2 cm, C18, 3 µm, 100 Å, Thermo Scientific) at a 

flow rate of 20 µl/min for 3 min. Analytical peptide separation by reverse phase chromatography was 

performed at a flow rate of 300 nl/min on an Acclaim® PepMap RSLC column (75 µm x 50 cm, C18, 

3 µm, 100 Å, Thermo Scientific). Peptides were separated by a gradient from 96% solvent A (0.1% 

formic acid) and 4% solvent B (80% acetonitrile, 0.1% formic acid) to 45% solvent B in 82 min followed 

by a gradient to 90% B in 12 min and a constant flow of 90% B for 3 min (Optima® LC/MS solvents 

and acids were purchased from Fisher Chemical).  

Nano ESI mass spectrometry – Q Exactive HF (Thermo Scientific): Chromatographically eluting 

peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray Flex Ion Source 

(Thermo Scientific) at 1.5 kV (liquid junction) and continuously transferred into the mass spectrometer. 

Full scans within the mass range of 300-1,800 m/z were taken from the Orbitrap-FT analyzer at a 

resolution of 60,000 with parallel data-dependent top 10 MS2-fragmentation (HCD). The resolution of 

dd-MS2 scans was 15,000. For tSIM analyses, the loop count equaled the number of m/z values on the 

inclusion list. LCMS method programming and data acquisition were performed with the software 

XCalibur 4.0 (Thermo Scientific).  

 

5.6 Whole-genome sequencing approaches 

5.6.1 RNAseq 
For RNAseq, strains were grown in YNB supplemented with 1% glucose and 0.2% ammonium sulfate 

(YNBG) overnight to an OD600 of 0.25 and shifted to YNB supplemented with 1% arabinose and 0.2% 

ammonium sulfate (YNBA) to induce Clp1 expression (Pcrg:clp1). To induced the UPR, TM was added 
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to a final concentration of 5 µg/ml and cells were further incubated for 4 hours at 28°C. Cells were 

harvested and quick-frozen in liquid nitrogen. RNA extraction followed the procedure as described in 

chapter 5.3.2. 

5 µg of total RNA was used to enrich mRNA using the NEB Next Poly(A) mRNA Magnetic Isolation 

Module (NEB) according to the manufacturer's instructions. Strand-specific cDNA libraries were 

constructed with the NEBNext Ultra directional RNA library preparation kit for Illumina (NEB). To 

assess the quality and size of the libraries samples were run on an Agilent Bioanalyzer 2100 using an 

Agilent High Sensitivity DNA Kit as recommended by the manufacturer (Agilent Technologies). The 

concentration of the libraries was determined using the Qubit® dsDNA HS Assay Kit as recommended 

by the manufacturer (Life Technologies). Sequencing was performed using the HiSeq4000 instrument 

(Illumina Inc) and the HiSeq 3000/4000 SR Cluster Kit for cluster generation and the HiSeq 3000/4000 

SBS Kit (50 cycles) for sequencing in the single-end mode, running 1x 50 cycles. A minimum of 15 

Million raw reads was generated for individual samples. 

Raw RNAseq reads were aligned to the Ustilago maydis genome from Ensembl Genomes 33 (Kersey 

et al., 2018) using STAR version 2.4.1 (Dobin et al., 2013). Read counts and RPM (reads per million) 

were calculated using custom Python scripts. Differential expression was assessed with DESeq2 (Love 

et al., 2014) at an FDR threshold of 0.05 and a log2 fold change threshold of 1 or 2. RNAseq data were 

deposited at EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under accession E-MTAB-7463. 

 

5.6.2 Chromatin immunoprecipitation sequencing (ChIPseq) 
ChIP analysis was done essentially as described before Hampel et al. (2016), with the modification that 

Chromatin was sheared in a Covaris S200 set to yield a DNA average size of approximately 100–300 

bp. DNA was recovered by column purification (QIAquick PCR Purification Kit, Qiagen) and subjected 

to library preparation.  

For ChIPseq experiments, the libraries were prepared from 1 ng of enriched DNA or input DNA using 

the NEBNext Ultra II DNA Library Prep with Beads as recommended by the manufacturer (New 

England BioLabs). To assess the quality and size of the libraries, samples were run on an Agilent 

Bioanalyzer 2100 using an Agilent High Sensitivity DNA Kit as recommended by the manufacturer 

(Agilent Technologies). The concentration of the libraries was determined using the Qubit® dsDNA HS 

Assay Kit as recommended by the manufacturer (Life Technologies GmbH). Libraries were sequenced 

on a HiSeq4000 instrument (Illumina Inc) using the HiSeq 3000/4000 SR Cluster Kit for cluster 

generation and the HiSeq 3000/4000 SBS Kit (50 cycles) for sequencing in the single-end mode, running 

1x 50 cycles. A minimum of 40 Million raw reads was generated for the ChIPseq experiments. 
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Raw ChIPseq reads were aligned using Bowtie2 version 2.0.0-beta7 (Langmead and Salzberg, 2012) to 

the Ustilago maydis genome from Ensembl Genomes 33 (Kersey et al., 2018). Peak calling was 

performed using PeakZilla, GitHub commit version 7167f084e024676bcb34e5b5c3e1281910423c25 

(Bardet et al., 2013). ChIPseq data was deposited at EBI ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/) under accession E-MTAB-7460. Peak calling was performed 

individually for both biological replicates. Only peaks identified in both replicates were used for further 

analyses. Assignment of peaks to genes in case of divergent promoters was based on the relative distance 

to the translational start site (tss) and on gene expression after TM treatment. Peak scores were 

accumulated to promoter scores if more than one peak was identified in the promoter of a single gene 

and at least one peak score was above 40. Promoter scores were filtered by a cut-off of 100. Promoters 

harboring more than four peaks could never be assigned to differentially expressed genes and were thus 

discarded from further analysis. Normalized bigWig files were generated from BAM files derived from 

both replicates and visualized using the Integrative Genomics Viewer (IGV) (Robinson et al., 2017). 

For identification of possible binding motifs of Cib1, sequences of assigned ChIP peaks derived from 

the UPR core gene set were subjected to the MEME (Multiple EM for Motif Elicitation)-ChIP analysis 

(Machanick and Bailey, 2011). 

 

5.7 Bioinformatic analyses 

5.7.1 Sequencing of DNA and plasmids used for cloning 
Sequencing of PCR products or plasmids were performed by the companies GATC Biotech AG 

(Konstanz) and Microsynth Seqlab (Göttingen). 

 

5.7.2 Sequence and structural analysis 
The following applications were used for bioinformatic analyses of DNA and protein sequences and 

larger data sets (RNAseq/ChIPseq/LC-MS data): 

ApE (A plasmid Editor) by M. Wayne Davis 

ApE was used for sequence analysis, in silico cloning and editing of plasmids and genomic sequences, 

primer design and multiple alignments of DNA. 

mFold (Zuker, 2003) 

mFold was used for the prediction of the secondary structure of qPCR amplicons 

(http://www.bioinfo.rpi.edu/applications/mfold/). 

UniProt (Universal Protein Resource) 
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UniProt was used for downloading protein sequences (FASTA format) of different organisms 

(http://www.uniprot.org). 

BLASTp Basic Local Alignment Search Tool (Altschul et al., 1990; Boratyn et al., 2012) 

BLASTp was used to identify similar protein sequences to a query protein sequence as well as domains 

in query protein sequences (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp) 

FunCat 

UPR core genes were further analyzed using the Functional Catalogue annotation (FunCat) of the MIPS 

U. maydis database (http://mips.gsf.de/funcatDB/). 

Phobius (Käll et al., 2007) 

The Phobius web server was used to identify possible transmembrane domains in a query protein 

sequence (http://phobius.binf.ku.dk/index.html). 

MaxQuant (Tyanova et al., 2015) and Perseus (Tyanova et al., 2016) 

LC-MS data analysis was performed with MaxQuant (https://maxquant.org) 1.6.0.16 (parameter file in 

Appendix File 2) using the label-free quantification method. For statistical analysis of the MaxQuant 

output, the Perseus (1.6.2.3) framework was used. The heat map of potential Spp1 interaction partners 

(Fig 3.43) was generated in Perseus. 

ClustVis Web Tool (Metsalu and Vilo, 2015) 

The ClustVis Web Tool was used to generate a heat map of the identified UPR core genes (Fig 3.10). 

Hierarchical clustering was performed using Euclidean distance and complete linkage for genes. 
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7 Appendix 

7.1.1 ChIPseq analysis revealed Cib1 binding in tin1-1 promoter 

 
Figure 7.1: ChIPseq analysis of effector genes pit1/2 and tin1-1 in U. maydis. Visualization of Cib1 binding in 
promoters of U. maydis effector genes pit1 and tin1-1 obtained by ChIPseq analysis. Strains, growth conditions 
and visualization of data was performed as described in chapter 3.2.3. 
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7.1.2 SPP share highly conserved motifs  
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Figure 7.2: Complete multiple alignment of SPP orthologs. Protein sequences of U. maydis Spp1 and predicted 
orthologs from indicated species were aligned using the MUSCLE algorithm 
(https://www.ebi.ac.uk/Tools/msa/muscle) and visualized by JalView (http://www.jalview.org).  

 

7.1.3 ∆spp1 led to increased expression of PR3 and PR4 in planta 

 
Figure 7.3: qRT-PCR analysis of pathogenesis-related plant genes of Zea mays. qRT-PCR based expression 
analysis of defense-related Z. mays genes in response to infection with indicated U. maydis strains. 7-day-old 
maize seedlings were used for inoculation and samples of infected leaf tissue were collected 2 dpi. Expression 
levels are depicted relative to plants infected with the WT and represent the mean of three biological replicates 
with two technical duplicates each. GAPDH was used for normalization. Additional SA responsive genes PR3, 
PR4 were tested. Error bars represent the SD. Statistical significance was calculated using Student’s t-test. *P-
value ≤ 0.05 and ***P-value ≤ 0.001. 
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7.1.4 ∆spp1 strains are not impaired in cell wall stress 

 
Figure 7.4: Cell wall stress assay of ∆spp1 strain. Cell wall stress resistance of U. maydis strain SG200 (WT) 
and the ∆spp1 derivative was tested by serial 10-fold dilutions of strains, spotted on YNBG solid medium 
supplemented with Calcofluor White (50 µM) or Congo Red (100 µM) as indicated. Plates were incubated for 
48 h at 28°C. 

 

7.1.5 Coomassie staining of the Cib1 protein in an SDS-polyacrylamide gel 

 
Figure 7.5: Coomassie staining of an SDS-polyacrylamide gel used for phosphosite identification of Cib1. 

The strains JBcib1-GFP (WT) and UVO151cib1-GFP (Pcrg:clp1) were grown as described in Chapter 

3.1.5. Proteins were extracted and Cib1-GFP was immunoprecipitated. Samples were separated by SDS-

polyacrylamide gel (10%). After separation, the SDS-polyacrylamide gel was stained with Coomassie 

and Cib1-GFP bands were excised and subjected to LC-MS analysis. 
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7.1.6 Files and tables 
Appendix File 1: AF2_ChIPseq python scripts.zip 

ZIP compressed files. Run the python scripts in the following order:  

 1. peak2promoter.py 

Change: 

worksheetID (JB1 or UVO151) 

 2. peak2gene.py 

Change: 

worksheetID, columnExpression and xFactor according to the used expression data 

(JB1 or UVO151) 

 3. promoterScoreSum.py 

Change: 

worksheetID (JB1 or UVO151) 

The file “ChIPseq_raw.xlsx” contains RNAseq data of chapter 3.2.1 and promoter information of all 

genes of U. maydis. Results will be automatically saved in “ChIPseq_raw.xlsx” after data processing of 

each script  

 

Appendix File 2: AF1_LC-MS Spp1 parameter file.xml 

Parameter file of MaxQuant v. 1.6.1.6. from Spp1-GFP immunoprecipitation with subsequent LC-MS 

analysis. Settings used in MaxQuant for raw data can be obtained from this parameter file. 

 

Appendix Table 1: AT1_NetPhos.xlsx 

Full list of predicted phosphosites in the Cib1 protein sequence by NetPhos-3.1. 

 

Appendix Table 2: AT2_RNAseq.xlsx 

Normalized expression of U. maydis genes (RPKM) and comparison between strains. 

 

Appendix Table 3: AT3_ChIPseq.xlsx 
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Peaks identified by ChIPseq analysis in strain JB1cib1-3xHA. 

 

Appendix Table 4: AT4_FunCat.xlsx 

FunCat analysis of UPR core genes. 

 

Appendix Data/CD-ROM 
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List of abbreviations 
Abbreviation Description 
% percent 
(v/v) volume per volume 
(w/v)  weight per volume 
°C degree Celsius 
AA amino acids 
ATF4 activating transcription factor 4 
ATF6  activating transcription factor 6 
bbs b-binding site 
bE  bEast 
BLASTp  basic local alignment search tool 
bp base pairs  
bW bWest 
bZIP basic-region leucine zipper 
CbxR carboxin resistance 
cDNA  complementary DNA 
ChIPseq chromatin immunoprecipitation sequencing 
CHX cycloheximide chase assay  
Cib1 Clp1 interacting bZIP 1 
Clp1 Clampless 1 
Clp1-ID Clp1 interaction domain  
CM complete medium 
C-terminus carboxy-/COOH-terminus 
DAB diaminobenzidine  
DIC  differential interference contrast 
DMSO dimethylsulfoxide  
DNA deoxyribonucleic acid 
DOX doxycycline-based promoter shut-off assay  
dpi days after inoculation  
DPI diphenyleneiodonium  
DTT dithiothreitol  
eIF2b  eukaryotic initiation factor 2 
ER endoplasmic reticulum 
ERAD ER-associated degradation  
E-Value  expected value 
FunCat functional catalog  
GAPDH glyceraldehyde 3-phosphate dehydrogenase gene  
GFP green fluorescent protein 
HA  hemagglutinin 
HCV hepatitis C virus 
Het-C heterokaryon incompatibility protein 
HM13 minor histocompatibility antigen H13 
HR hypersensitive response  
HygR hygromycin resistance 
I-CLiPs aspartyl intramembrane-cleaving proteases  
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IGV integrative genome viewer  
ip iron-sulfur protein 
Ire1 inositol-requiring enzyme 1 
JA jasmonic acid  
kb kilobase pairs 
kDa kilodalton 
LB left border 
LC-MS  liquid chromatography-mass spectrometry 
LFQ label-free quantification  
log2FC log2 fold change  
MA magnetic agarose  
MAPK stress-activated protein kinase  
MAST  Motif Alignment and Search Tool 
Mb megabase pairs 
mC mCherry 
MEME  Multiple Em for Motif Elicitation 
mfc mean fold changes  
MHC major histocompatibility complex  
mRNA messenger RNA 
MUSCLE  MUltiple Sequence Comparison by Log-Expectation 
NatR nourseothricin resistance 
NeoR neomycin/geniticin resistance 
N-terminus amino-/NH2-terminus 
OD  optical density 
ORF open reading frame  
PCR  polymerase chain reaction  
PD potato dextrose 
PERK  double-stranded RNA-activated protein kinase (PKR)-like ER kinase 
PhI phosphatase inhibitor 
PhleoR phleomycin resistance 
PI proteinase inhibitor  
ps prediction score  
PSEN presenilin proteases  
PSM  peptide spectrum matches 
PTI PAMP-triggered immunity  
pUPRE  predicted UPRE 
P-value probability value 
PVDF  polyvinylidene difluoride 
qChIP quantitative ChIP 
qRT-PCR quantitative reverse-transcription PCR 
RB right border 
RFP  red fluorescent protein 
RIDD regulated IRE1-dependent decay of mRNA 
RNA ribonucleic acid 
RNAseq RNA sequencing 
ROS reactive oxygen species 
RPKM  reads per kilobase million 
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RPM reads per million 
rpm rounds per minute 
RT room temperature 
SA salicylic acid  
SAPK stress-activated protein kinase 
SD standard deviation 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SEM standard error of the mean 
SPC signal peptidase complex  
Spp1 Signal peptide peptidase 1 
sps substitutions per site 
SREBP sterol regulatory element-binding protein  
TM tunicamycin  
TMD transmembrane domain 
tSIM  targeted selected ion monitoring 
tss transcription start site  
UPR unfolded protein response 
UPRE UPR element 
WT  wildtype 
Xbp1 X-box binding protein 1 
YNB yeast nitrogen base 
∆ delta/deletion 
λ-PP λ-phosphatase  
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