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Summary

In the context of nonparametric regression and inverse problems, variational multiscale methods
combine multiscale dictionaries (such as wavelets or overcomplete curvelet frames) with regu-
larization functionals in a variational framework. In recent years, these methods have gained
popularity in nonparametric statistics due to their good reconstruction properties. Nevertheless,
their theoretical performance is, with few exceptions, poorly understood. Further, the compu-
tation of these estimators is challenging, as it involves non-smooth large scale optimization
problems.

In this thesis we apply variational multiscale methods to the estimation of functions of bounded
variation (BV). BV functions are relevant in many applications, since they involve minimal
smoothness assumptions and give simplified, interpretable cartoonized reconstructions. These
functions are however remarkably difficult to analyze, and there is to date no statistical theory
for the estimation of BV functions in dimension d > 2.

The main theoretical contribution of this thesis is the proof that a class of multiscale estimators
with a BV penalty is minimax optimal up to logarithms for the estimation of BV functions in
regression and inverse problems in any dimension. Conceptually, our proof exploits a connection
between multiscale dictionaries and Besov spaces. We thus leverage tools from harmonic
analysis, such as interpolation inequalities, for our theoretical analysis.

Regarding the efficient computation of variational multiscale estimators, we present two ap-
proaches: a primal-dual method, and the semismooth Newton method applied to a regularized
problem and combined with the path-following technique. We discuss the implementation
of these methods and use them to illustrate the performance of multiscale BV estimators in

simulations.

The theoretical analysis presented in Chapters 2 and 3 has been partially submitted for publication,
and is available under del Alamo et al. (2018) and del Alamo and Munk (2019).
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CHAPTER 1

Introduction

We consider the problem of estimating a real-valued function f given observations of 7 f in the
commonly used white noise regression model (see e.g. Brown and Low (1996), Reif3 (2008)
and Tsybakov (2009))

dY(x) = Tf(x)dx + 2= dW(x), xe€M. (1.1)
Vn
Here M denotes a Borel-measurable open subset of R, T : Lz(Rd) - LZ(M) is a linear, bounded
operator, and dW denotes a Gaussian white noise process on LZ(M) (defined in Section 2.1).
The domain M in which the data dY is defined is given by the inverse problem under consid-
eration. Itise.g. M = R? if T is a convolution operator or the identity, or M = R X § d=1 jf
T is the Radon transform (Natterer, 1986), where S d=1 denotes the d-dimensional unit sphere.

—1/2 5 0 serves as a noise level, and we

See Figure 1.1 for an illustration. The parameter o n
may assume it to be known, since otherwise it can be estimated efficiently (see e.g. Spokoiny
(2002) or Munk et al. (2005)). The parametrization o n~ 12 is motivated by the fact that the
white noise model (1.1) is an idealization of a nonparametric regression model with n design
points and independent normal noise with variance 0% (see Section 1.10 in Tsybakov (2009)).
Consequently, we see n informally as the sample size, and have the following intuition: the larger

n, the lower the noise level in (1.1) and the easier it is to reconstruct f.

In this setting, our goal is to reconstruct the function f from observations dY in (1.1), and to

quantify the reconstruction error as the sample size n grows.

Two clarifications are due: first, observing dY in the model (1.1) means that we have access to a

finite number of projections

(¢,dY) :={p,Tf)p2 + if $(x) dW(x) (1.2)
Vn Jm
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for "test functions" ¢ € L>(M). The integral against white noise dW is a random variable, as
defined in Section 2.1. We stress the word finite, since we want our reconstruction procedure
to be computable in finite time. And second, the meaning of "reconstruct f" or "estimate f"
here is to come up with a procedure that, based on observations (1.1), produces a function that
resembles f in some sense. We will measure "resemblance” in an LY sense, and our benchmark

for good performance will be the minimax risk, defined in (1.12).

Without further assumptions, our task seems hopeless: if f can be just any function, then knowing
a finite amount of information is not enough for estimating it in a meaningful sense. A way of
solving this problem is to impose restrictions on f: these could either concern some qualitative
property (e.g. monotony or a general shape constraint (Diimbgen (2003), Guntuboyina and Sen
(2018))), or measure smoothness in a quantitative way (e.g. Holder or Sobolev smoothness (Tsy-
bakov, 2009)). The challenge here is to find conditions that make estimation possible, while still
being realistic in applications.

In this thesis we work with the assumption that f is a function of bounded variation (BV),
written f € BV, meaning it is in L! and its weak partial derivatives of first order are finite
Radon measures on R?. This restriction is not too burdensome: plenty of applications can be
modeled with functions of bounded variation. Crucially, the main finding of this thesis is that

this restriction is sufficient to enable the reconstruction of f in a statistical setting.

Truth (f) Transformed truth (7 f) Noisy data (dY)

Figure 1.1: Shepp-Logan phantom f, its Radon transform 7 f and data dY generated by adding
Gaussian white noise. 7 f is defined on LZ(R x [0, 27)).
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1.1 Methodology

Statistical models of inverse problems like (1.1) are relevant in plenty of applications, such
as medical imaging and tomography (Natterer and Wiibbeling, 2001), astronomy and mi-
croscopy (Bertero et al., 2009), oceanography and weather modeling (Wunsch, 1996), and
geology and mining (Tahmasebi et al., 2016), to mention just a few. Most inverse problems
of interest are ill-posed, meaning that the operator 7" does not have a bounded inverse. Conse-
quently, a naive application of T~! to the data dY will amplify the error. This motivates the use
of a form of regularization. To that end, several alternative approaches have been proposed, of
which we mention a few representative ones: the spectral method based on the singular value
decomposition (SVD, see e.g. Bissantz et al. (2007)); dictionary methods, where the observations
are projected onto a suitable frame in which denoising and inversion are performed (Cohen
et al. (2004), Hoffmann and Reiss (2008)); variational regularization methods, such as Tikhonov
(-Phillips) regularization (Phillips (1962), Morozov (1966), Scherzer et al. (2009)); iterative
methods with a form of regularization either in the iteration schema or as an early stopping rule
(see e.g. Bauer et al. (2009), Blanchard and Mathé (2012)); and Bayesian methods, in which
a prior distribution on the function space modeling f has a regularizing effect (see e.g. Stuart
(2010), Knapik et al. (2011)). Most related to this work are dictionary-based methods and

variational methods, which we briefly discuss from the perspective of this thesis.

a) Dictionary methods. The essential idea of dictionary methods is that, even though T does
not have a bounded inverse, it may have locally a bounded inverse. We distinguish two

variants of this approach, depending on the nature of the localization:

(i) Singular value decomposition (SVD). Let {¢;} denote an orthonormal basis of L2

that consists of singular vectors of the adjoint operator 7™, i.e. they satisfy
T"¢; = kj¢;

for singular values x; — 0 as j — oo. Such a basis exists if we assume T to be a
compact operator (see the spectral theorem for compact self-adjoint operators, e.g.
Theorem VII.3 in Reed and Simon (1972)). The SVD works as follows: if we project
the data dY onto the basis ¢ j» We get

(@j,dY) =(¢;, Tf)+on 2 (p;,dW)

=k}, ) +on 1?2 €.

Roughly, the projections (¢ ;, dY) rescaled by the singular value ; equal the coef-

ficients of f with respect to the basis ¢; plus noise. At this stage, truncation or
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thresholding of these noisy coeflicients yields an estimator for f. Even though
SVD-based methods are widely used and enjoy theoretical guarantees for estimating
Sobolev and Holder functions (Cavalier, 2011), they have a crucial weakness: the
user has no freedom in choosing the basis {¢ ;}, which is given solely by the operator
T. If it happens that the unknown function f is not sparse in this basis (or if its
coefficients do not decay fast enough), then SVD is bound to perform poorly for

reconstructing f. This brings us to the second kind of dictionary method.

(i1) Wavelet-vaguelette decomposition (WVD). Donoho (1995) introduced the WVD in
order to mitigate the deficiency of the SVD presented above. Given a linear operator
T and a wavelet basis {¢j}, his idea was to construct vaguelette systems {u ;} and {v ;}

satisfying

Tyj=kjvj

* —_— . .
Tuj =k,

along with some additional regularity conditions. Once we have such systems, we
project the observations dY onto u;, which gives us the wavelet coefficients of f
rescaled by the singular value «;. Performing thresholding in the wavelet domain and
transforming back to the image domain, which is known to perform optimally for
nonparametric regression (Donoho and Johnstone, 1998), yields a minimax optimal
reconstruction of f (Donoho, 1995). The success of this approach and its superiority
with respect to the SVD stems from the localizing nature of wavelet bases. A
disadvantage of this approach: not all operators have a WVD. However, extensions
of the WVD to deal with this problem have been proposed (see e.g. Picard and

Kerkyacharian (2006) and references therein).

However, it is known that for denoising multiscale dictionary methods combined with
thresholding or truncation may generate artifacts (Gibbs phenomenon). The reason for
that is of computational nature: dictionary methods (especially wavelets) are designed for
compression, in which a function is represented with as few dictionary elements as possible
within a given error, typically measured by an L9-loss. But having few dictionary elements,
which are often oscillatory functions, induces oscillation artifacts in the reconstruction.
One way to circumvent this issue is to use overcomplete dictionaries or frames: in doing
S0, we give up compression properties but gain reconstruction accuracy (Grasmair et al.,

2018). Another way to solve this issue is given by variational regularization methods.

Variational regularization. This technique uses the assumption (or prior knowledge) that

the function f we wish to reconstruct is not arbitrary, but satisfies some regularity property,
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such as being in a certain function space. Assuming that the regularity of f is measured
well by a functional R(-), we may pose the estimation problem as an optimization problem:
Find a function f with a small R(-) value and such that T f is close to the observed data
dy,ie.,
f € argmin R(g) + S(Tg,dY), (1.3)
8

where S(T'g, dY) measures the similarity between 7'g and dY. A usual choice of S(:,-) is a
Hilbert space distance, although alternatives exist (see e.g. Nemirovski (1985) and Candes
and Tao (2007)). On the other hand, a common choice of the regularization functional
R(-) are Sobolev norms, but more subtle alternatives such a Besov (Hohage and Miller,
2019) or BV seminorms (Rudin et al., 1992) have been considered. We remark that
the estimator (1.3) has the advantage of automatically producing a function of the right
regularity (as measured by R), which limits the effect of artifacts. On the other hand,
variational estimators typically lack the spatial adaptation properties characteristic of
wavelet methods. The reason is that, for analytical and numerical simplicity, researchers
have mostly concentrated on regularization functionals R that are too smoothing (e.g. a

Hilbert space norm). This has the effect of producing oversmoothed reconstructions.

This dichotomy is the starting point of this work: Multiscale dictionary methods are locally
adaptive but prone to artifacts, and variational methods avoid artifacts at the price of losing spatial
adaptation. In this thesis we propose an estimation framework that combines the local adaptation
of multiscale dictionaries with the smoothness guaranties of variational regularization with the
BV seminorm (see Section 2.1). Since the BV seminorm is mildly smoothing, it preserves the
local reconstruction properties of dictionary methods. We prove that the proposed estimators are
minimax optimal up to logarithmic factors for estimating BV functions in any dimension for a

variety of inverse problems, including denoising (T = id), Radon inversion and deconvolution.

Functions of bounded variation

Functions of bounded variation are L! functions whose weak gradients are finite Radon measures.
They satisfy very weak regularity properties, and are suitable to model objects with disconti-
nuities. This is a desirable property for instance in medical imaging applications, where sharp
transitions between tissues occur, and smoother functions would represent them inadequately.
Consequently, BV functions have been studied extensively in the applied and computational anal-
ysis literature, see e.g. Chambolle and Lions (1997), Meyer (2001), Rudin et al. (1992), Scherzer
et al. (2009) and references therein.

Remarkably, the very reason for the success of functions of bounded variation in applications,
namely their low smoothness, has hindered the development of a rigorous theory for the corre-

sponding estimators in a statistical setting. In dimension d = 1, Mammen and van de Geer (1997)
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showed that the least squares estimator with a total variation (TV) penalty attains the minimax
optimal convergence rates when 7 is the identity operator. Further, Donoho and Johnstone (1998)
proved the optimality of wavelet thresholding over BV ind = 1 and T = id, while Donoho
(1995) extended these results to operators 7" admitting a WVD. In contrast, there are to the best
of our knowledge no statistical guarantees for estimating BV functions in dimension d > 2.
Roughly speaking, the main challenges in higher dimensions are twofold: first, the embedding
BV — L fails if d > 2; and second, the space BV does not admit a characterization in terms of
the size of wavelet coefficients. This makes wavelet thresholding unsuitable for estimating BV
functions. More generally, the space BV does not admit an unconditional basis (see Sections 17
and 18 in Meyer (2001)). In statistical terms this means that purely dictionary-based methods
are doomed to perform poorly for estimating BV functions.

On the other hand, the failure of the embedding into L™ for d > 2 is related to the fact that BV
behaves roughly like Sobolev spaces W5 with s < d/p. These spaces contain discontinuous
functions, and statistical estimation there is challenging and has received little attention. One
contribution of this thesis is to characterize the minimax estimation rates in these spaces.

An alternative route to estimating BV functions in higher dimension is to discretize the ob-
servational model. This approach has seen recent successes (see e.g. Hiitter and Rigollet
(2016), Dalalyan et al. (2017)), which we discuss in more detail in Section 1.4 below.

1.2 Multiscale total variation estimation

As stressed above, we want to construct a variational estimator of the form (1.3) which enjoys
the benefits of multiscale dictionaries. A way to achieve that is to include a multiscale dictionary

in the data-fidelity S(-, -). While there are several ways of doing so, we propose to use

S(Tg,dY) := max [(uw, Tg) — (uw, dY))|, (1.4)
weQ,

where {u,,} is a vaguelette system associated with the operator 7', and €2, is a finite set of indices,

typically corresponding to different locations and scales. In this thesis we consider the variational

estimator (1.3) with data-fidelity (1.4) in constrained form, i.e.,

f:q € argmin |g|gy subject to max |(uw, Tg) — (uy, dY>| < Yn, (1.5
g€F, we,

where vy, is a threshold to be chosen, and we minimize over a set of functions 7, to be specified

later. Notice that the operator T is inverted indirectly by the dictionary elements u,,. Indeed, by

the definition of the vaguelettes, the data-fidelity (1.4) is actually a constraint on the wavelet

coeflicients of g: they are forced to be close to the wavelet coeflicients of the unknown function
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f, up to noise terms. Consequently, 7, will enjoy the spatial adaptation properties of wavelet
methods, while the regularization term [g|gy in (1.5) ensures that fn is well-behaved in the BV

norm.

Example 1. In order to illustrate the estimator fy, consider the situation where d = 2, T = id,
and the multiscale dictionary consists of normalized indicator functions of dyadic squares (Ne-
mirovski, 2000),

1
d={—1
{m ()

where |B| denotes the Lebesgue measure of the set B. Consider a particular estimator f;, of the
form (1.5) as

B dyadic square C [0, 1]2},

f; € argmin |g|gy s.t. max|2% %'Lg(x)—f(x)dx—%f}gdW(x) < Yn, (1.6)

geFn dyadic |B

that is, €, consists of all squares B C [0, l]2 of size |B| > 1/n with vertices at dyadic positions.
The main peculiarity of f, is the data-fidelity term, which encourages proximity of f, to the truth
f simultaneously at all large enough dyadic squares B. This results in an estimator that preserves
features of the truth in both the large and the small scales, thus giving a spatially adaptive
estimator. This is illustrated in Figure 1.2 (see Chapter 4 for an algorithmic implementation): the
multiscale TV-estimator fn is represented in the lower left corner, and it succeeds to reconstruct
the image well at both the large (sky and building) and small scales (stairway). We show for
comparison the classical L2-TV-regularization estimator, also known as Rudin-Osher-Fatemi
(ROF) estimator (Rudin et al., 1992)

fa € argmin|lg - Yll3 + lglpy. (1.7)
which employs a global L? data-fidelity term. The parameter A is chosen here in an oracle way
so as to minimize the distance to the truth, where we measure the "distance" by the symmetrized
Bregman divergence of the BV seminorm (see Chapter 5). As seen in Figure 1.2, the L>-TV
estimator successfully denoises the image in the large scales at the cost of details in the small
scales. The reason is simple: the use of the L? norm as a data-fidelity, which measures the
proximity to the data globally. This means that the optimal parameter A is forced to achieve
the best trade-off between regularization and data fidelity in the whole image: in particular, in
rich enough images there will be regions where one either over-regularizes or under-regularizes,
e.g. in the stairway in Figure 1.2. Finally, we also show the curvelet thresholding estimator in
Figure 1.2. As expected, curvelet thresholding performs excellently on elongated structures
(stairway), but it introduces artifacts in locally constant regions (sky, building). In Chapter 5 we

present a broader quantitative comparison study of different methods.
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Original Observations

Figure 1.2: Row-wise, from top to bottom: original image and noisy version with signal-to-noise
ratio o ! Ilfllze = 5; zoom in of the original image and of the curvelet thresholding estimator;
zoom in of the multiscale TV-estimator (1.5) and of the estimator f,l from (1.7) with oracle
A* = argmin E[Dgy(f1, )], where Dy (-, -) denotes the symmetrized Bregman divergence of
the BV seminorm. See Chapter 5 for the details of the simulation.
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Choice of the threshold vy,

Both the constrained minimization (1.5) and the penalized minimization problem (1.3) involve
tuning parameters y, and A that have to be chosen. Crucially, there is an optimal choice for 7y,
and 4, in the sense that choosing a smaller parameter leads to overfitting the data, and choosing a
larger parameter induces oversmoothing.

In penalized estimation, the optimal parameter A typically depends on the unknown function f,
and there are data-driven approaches to estimate it, such as e.g. cross validation (Wahba, 1977),
or a version of Lepskii’s balancing principle (Lepskii, 1991) for inverse problems (Mathé and
Pereverzev, 2003).

We prefer constrained over penalized minimization because the optimal y,, depends on the noise
model but not on f, and it can be computed using known or simulated quantities only. To see
that the optimal vy, is independent of f, consider the following trade-off: the smaller y,, the
fewer functions satisfy the constraint in (1.5). Since the best reconstruction we can hope for is
the true regression function f, the optimal y;, is the one that is large enough to let f be a feasible

function, but no larger. In this sense, note that f satisfies the constraint in (1.5) precisely when
o

max [{uy, T ) — {uy,dY) = max —|(u, dW)H| < yy. 1.8

max (e, Tf) = (e d¥)| = max \/ﬁ|< s dW)| < v (1.8)

Assume for a moment that u,, € L? with lluwll;2 = 1 for all w. Then the left-hand side is
the maximum of the absolute value of #Q2,, standard normal random variables times o n1/2,
Consequently, a simple computation (see the claim in equation (2.12)) implies that (1.8) holds

asymptotically almost surely for the universal threshold

yn = kon” V% \21og#Q,, (1.9)

with x depending on the dictionary @ in an explicit way (see Theorem 4). This argument can be
adapted to the case that the u,, do not have norm one, as long as they remain bounded above and
below by positive constants. We remark that this universal choice of the parameter y,, appears to
us as a great conceptual and practical advantage of the estimator (1.5), in contrast to penalized
estimators such as (1.7) requiring more complex parameter-choice methods (e.g. Lepskii (1991)
or Wahba (1977)).

Multiscale data-fidelity

There are several reasons why the multiscale data-fidelity (1.4) is preferable over more classical
choices, such as the L2-norm. For the sake of simplicity, we illustrate them here in the case
where T is the identity and {u,} is an orthonormal wavelet basis. In that case, the multiscale

constraint in (1.5) requires the wavelet coeflicients of f» to be close to the coefficients of f, up to
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noise terms:
(uteor fnd = (e ) = 0™V 2y, dW)| <y Yo € Q.

In particular, similarity between £, and f is required at all positions in all scales. On the other
hand, using the L2 data-fidelity and writing it in terms of the wavelet basis (which is possible by
orthonormality) imposes a constraint of the form

Z Ktteos ) = Cttans ) = 0™ 2y, W) < L2, (1.10)

we),

This is a constraint on the average error, and it enforces similarity between £, and f on average,
and not pointwise. We have seen above that the optimal choice of 7, is given by (1.9), which
implies that (1.8) holds asymptotically almost surely. For the L? data-fidelity we choose the
threshold L, analogously, i.e., such that the true function fn = f satisfies (1.10) with high
probability. In that case, the summands in (1.10) would be squares of independent normal
random variables (by orthogonality of u,), so L% should be a quantile of a )(2 random variable
with #Q,, degrees of freedom. This gives roughly L, ~ o n~1/2 \JEQ,. The difference between

the multiscale and L? constraints is now apparent:

multiscale constraint: £ ball of radius on~ /22 log #€y,,
L2 constraint: £2 ball of radius o n~1/2 VH#Q,,

where both constraints are on the wavelet domain. Due to the norm equivalence ||x||p~ <
lxll,2 < VEQ, Ixllp=, Yx € £°(Qy,), the difference between the constraints may not seem
excessive. However, the difference is considerable. Indeed, in this thesis we choose the number
of constraints #€2, to behave polynomially in n (see Assumption 4). Consequently, the radius in
the multiscale constraint tends to zero as n — oo, while the radius in the L? constraint tends to a
constant or diverges if n = O(#€,). Hence, the multiscale constraint set is much smaller for n

large, and we expect the multiscale data-fidelity to produce more faithful reconstructions.

The constraint in (1.5) can also be interpreted from a hypothesis testing perspective (Lehmann
and Romano, 2006). Given a candidate function g, we can ask how likely it is that the observed
data dY arose from g. The question can be made precise by testing, for each w € €, the

hypothesis
Hy : (uw,8) = (uw, f) against Ky, : (U, g) # (Uw, ).

The log-likelihood ratio test for testing this hypothesis under model (1.1) is given by [(uy, &) —
(uy, dY)|, so the multiscale data-fidelity (1.4) is a test statistic for testing the hypotheses H,,
simultaneously for all w € €,,. Choosing y,, appropriately, the constraint in (1.5) includes exactly

the functions that pass all these tests.
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Finally, there is a seemingly unrelated yet crucial reason for using (1.4) as a data-fidelity term.
For T = id and {u,} a smooth enough wavelet basis, the multiscale data-fidelity (1.4) is a
truncation of the Besov B;O‘fég norm of g — dY, seen as a random temperate distribution. More

precisely, we have
llgllze

Jn

for any function g € L® and a suitable set Q,. This is a Jackson-type inequality (Cohen,

2003), representing how well a function can be approximated in the Besov B;ﬂf norm by its

—d2 < C max [uy, g+ C 1.11
Il < € max [(uan £) (1.11)

coefficients with respect to {u,}. It is well-known that smooth enough wavelet bases satisfy this
condition (Cohen, 2003). In Section 2.4 we will show (1.11) for more general multiscale systems,
e.g. systems of indicator functions of dyadic cubes, and mixed frames of wavelets and curvelets
and of wavelets and shearlets. Remarkably, inequality (1.11) allows us to relate the statistical
multiscale constraint in (1.4) to an analytic object: the Besov norm. This connection allows us to
leverage tools from harmonic analysis to analyze the performance of the estimator (1.5).

Besides the mathematical reasons just given, there is also a practical motivation for using multi-
scale data-fidelites. In fact, multiscale dictionaries are widely used and known to perform well
since the introduction of wavelets (see e.g. Daubechies (1992) and Donoho (1993)). Moreover,
overcomplete frames such as curvelets (Candes and Donoho, 2000), shearlets (Labate et al.
(2005), Guo et al. (2006)) and other multiresolution systems (see Haltmeier and Munk (2014)
for a survey) have been shown to perform well in theory and numerical applications, specially in
imaging. Several works have proposed variants of the multiscale data-fidelity (1.4) in a variational
estimation setting (Meyer (2001), Starck et al. (2001) Durand and Froment (2001), Malgouyres
(2001), Candes and Guo (2002), Malgouyres (2002), Osher et al. (2003), Haddad and Meyer
(2007) Garnett et al. (2007)). Closer to our work, multiscale methods using overcomplete frames
in combination with a BV penalty have been empirically shown to yield promising results for
function estimation (Malgouyres (2002), Candes and Guo (2002), Dong et al. (2011), Frick et al.
(2012), Frick et al. (2013)). The theory in those cases is still lacking, which motivates the present

work.

Challenges

Until now we have motivated the estimator (1.5) as a synthesis of very successful techniques for
solving inverse problems, and we have illustrated and explained the multiscale constraint. Before
we turn to the discussion of the optimal convergence properties of f;,, let us admit two limitations
of the multiscale TV-estimator. First, not every operator 7 has an associated vaguelette system
{uw}, as we use in (1.5). In fact, only reasonably homogeneous operators have such a system
(see Donoho (1995)). On the other hand, for our theory we do not need the whole generality

of the WVD (see Assumption 4 in Chapter 3), and many practically relevant operators such
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as the Radon transform, convolution or integration satisfy our assumptions (see Examples 2 in
Chapter 3).

The second limitation concerns the solution of the optimization problem in (1.5), which is a
non-smooth, high dimensional optimization problem (since n and #€2,, might be large). Due to
the non-smoothness, standard interior point methods (Nesterov and Nemirovsky, 1994) are not
applicable here, and the large number of variables makes it a challenging optimization problem.
However, the computation of (1.1) is now feasible due to recent progress in convex optimization,
e.g. in primal-dual methods (Chambolle and Pock, 2011) and acceleration thereof (Malitsky and
Pock, 2018), and in semismooth Newton methods with the path-following technique (Clason
et al., 2010). In Chapter 4 we present different approaches to compute the minimum in (1.5), and

discuss their advantages and disadvantages in terms of runtime and precision.

1.3 Main results

The main result of this thesis states that the estimator (1.5) is minimax optimal (up to logarithmic
factors) for estimating BV functions in any dimension for a family of inverse problems. The
concept of minimax optimality is based on the notion of minimax risk over a set of functions X,
which is a measure of the difficulty of a statistical problem and a benchmark for the performance
of estimators. It is defined as the error of the best estimator in the most difficult instance in the

set X, i.e.,

R(LL, X) := inf{ sup Efllf— Sl fis an estimator using (1.1)}, (1.12)
feX

where the infimum runs over all estimators, i.e., over all measurable functions f Y, o LZ(Rd),
where Y, is the sample space where the process in (1.1) takes values (see Section 1.2.2 in Giné
and Nickl (2015) for more details). Here, the expectation is taken with respect to the measure
that generates the observations, which depends on f. The error is measured here in an L7-sense.
The minimax rate over X with respect to the L9-risk is defined as the rate at which R(L?, X)
tends to zero as the noise level in (1.1) tends to zero, i.e., as n — oo.

In order to formulate our results, define for L > 0 the parameter set
BV, := (g € BV N D(T)|lgly < L, ligllz~ < L, supp g < [0, 11}, (1.13)

where D(T') C LZ(R‘Z) denotes the domain of the operator 7. In Theorem 5 below we show that

the minimax rate over the set BV} satisfies

liminf n™™ @5 @) R(LY, BY,) > 0,

n—00
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where 8 > 0 is the degree of ill-posedness of the operator 7. This means that no estimator can
—min{—— L .
have an L9-error tending to zero strictly faster than n min{ gz @ uniformly over BV}, For

givend, > 0 and g € [1, oo], define the number

1
S forg<1+2/(d+2
9qgp 1= d+2f+2 1 /d+20) (1.14)
s@mp  forg>1+2/(d+2p).

Our main theorem can be stated informally as follows.

Theorem 4 (Informal). Let the dimension d > 2, and for 8 > 0 let 7 have a WVD with singular
values behaving as k; = 2B (see Assumption 4 in Chapter 3). Let the threshold y;,, be as in (1.9)
for k > k* depending on T and d only. Then the estimator f,, attains the minimax optimal rate of

convergence over BV} up to a logarithmic factor,

sup E[llfn — fllpa] < Cpn~% logn (1.15)
fEBVL

for n large enough, for any ¢ € [1, ), any L > 0 and a constant C;, > 0 independent of n, but
dependenton L, o, d and T. For d = 1, (1.15) holds with an additional log n factor.

The estimator f, is nearly optimal in the sense that there exists no estimator such that the
left-hand side of (1.15) is o(n_ﬁqﬁ ).

The theorem refers to inverse problems for which 7 has a WVD. As we show in Chapter 3, this
includes the cases of regression 7' = id, Radon inversion, and deconvolution.

The theorem proves convergence when the function f is supported on the unit cube, as stated
in (1.13). The reason for this constraint is that, since we only have a finite amount of information,
we cannot hope to recover a function with infinite support. The restriction to the unit cube
is in a sense arbitrary: any regular enough compact set would do. While the restriction to
compactly supported functions is a common practice in nonparametric statistics, there is an
alternative: to assume that the regression function f is periodic, i.e. defined on the torus T4, See
for instance Grasmair et al. (2018) for an example of function estimation under a periodicity
assumption.

The proof of Theorem 4 relies on the compatibility between the multiscale constraint and the
B;,dég B norm, as expressed in (1.11) for 8 = 0. This allows us to use techniques from harmonic

analysis to analyze f,, such as the interpolation inequality between the spaces B;,dég P and BV,

2 d+2p3

p T 12542 —d/2-
lglize < Cllglls 2 gl Vg € BIL ™ 0By (1.16)

for any ¢ € [1, %], d > 2. A variant of this inequality was proven in Cohen et al. (2003)
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by a delicate analysis of the wavelet coefficients of functions of bounded variation (see Ledoux
(2003) for an alternative approach). The inequality (1.16) is the first step towards bounding the
L4-risk of f,: inserting g = f, — f we can bound it in terms of the B;,déf P and the BV -risks. The
BV-risk is bounded by a constant with high probability, while the B;f’lg P _risk can be related to

the multiscale data-fidelity in (1.5). In fact, under suitable assumptions we have

1o = Allgaps < € max Koy, Tfad = Gt TH|+ Cllfa = fllps ™2
00,00 w n

PN g
< € max [(uw, T fn) = (e, dY)| + C— max
weQ, n weQ,

f Uy(x) dW(x)
M

+ Cl\fn = fllg= ™12,

The first term is bounded by y, = O(n~!/? \/logTQn) by construction, and it represents
the error that we allow the minimization procedure to make. The second term behaves as
omn=172 \/logTQn) asymptotically almost surely, and it represents the stochastic error arising
from the randomness of the observations. The third term is a truncation error, stemming from
the use of only a finite amount of information. Inserting the result in (1.16) yields the conclusion
that || fn —fllfe £ C n_m log n with high probability for g < 1 + 2/(d + 2). The bound for
g > 1 +2/(d + 2p) follows from Holder’s inequality applied between L!*2/(@+25) and 1. For
d = 1 we proceed analogously with some modifications. In Section 2.3 we give a more detailed
sketch of the proof.

Minimax risk over Besov spaces

As stated in Theorem 4, the minimax rate over BV, presents a sharp transition depending on
the L9-risk: it is n_@ for g < 1 +2/(d + 2B), and it deteriorates to n_m otherwise. A
remarkable consequence is that the L™ minimax risk does not tend to zero, i.e., there is no
estimator that is L™ -consistent uniformly over BV functions.

More generally, this behavior is characteristic of Besov spaces B;J for s < d/p. This was
observed for the first time by Goldenshluger and Lepskii (2014) and Lepskii (2015) in the

context of density and function estimation, respectively. They considered anisotropic Nikolskii

N
peo>

for different smoothness and integrability indices for different spatial directions. In Theorem 6

spaces, which in the isotropic case coincide with the Besov spaces B and in general allow

we generalize their results in the isotropic case and establish the minimax rates for regression

and mildly ill-posed inverse problems over all spaces
By NL®)L :={g € B, N L= |ligllg;, < L. ligllz~ < L, supp g < [0, 119 (1.17)

fors <d/p,s >0, p,t€[l,00] and L > 0.
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s
Dense regime
n_ﬁ
Sparse regime
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Figure 1.3: Regimes for the minimax rates for regression (8 = 0) over Besov BZ ; Spaces, together
with the associated rates. The sloped line is given by g = p(1 + 2s5/d).

Our result completes the picture of minimax rates over Besov spaces. Beyond the well-known
dense and sparse regimes, which correspond to g/p < 1 +2s/(d+2B) and g/p > 1 +2s/(d +20),
s > d/ p, respectively, our results concern the regime g/p > 1 + 2s/(d + 28) and s < d/p. The
three regimes are depicted in Figure 1.3 for § = 0. The new regime, in which the minimax rate
behaves differently than in the others, is in a sense a middle ground between the dense and the
sparse regime. Indeed, the minimax risk in the dense regime is driven by functions with mass
everywhere, meaning that those functions are the most challenging to estimate. On the other
hand, the minimax risk in the sparse regime is driven by localized spikes. In the new regime,
the risk is driven by blocks of spikes at different locations and scales, and the precise amount of

spikes depends on the quantity d — sp > 0. For that reason, we refer to it as multiscale regime.

1.4 Related work and contributions

In spite of the success of BV functions in imaging applications (see e.g. Scherzer et al. (2009) and
references therein), there are surprisingly few works that analyze the estimation of BV functions
in a statistical setting. Starting with the seminal paper of Rudin et al. (1992) that proposed the
TV-regularized least squares (ROF) estimator for image denoising, the subsequent development
of TV-based estimators depends greatly on the spatial dimension.

In dimension d = 1, Mammen and van de Geer (1997) showed that the ROF-estimator attains the
optimal rates of convergence in the discretized nonparametric regression model, and Donoho
and Johnstone (1998) proved the optimality of wavelet thresholding for estimation over BV. We
also refer to Davies and Kovac (2001) and Diimbgen and Kovac (2009) for a combination of TV-

regularization with related multiscale data-fidelity terms in d = 1, and to Li et al. (2017) for the
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combination of a multiscale constraint with a jump penalty for segmentation of one-dimensional
functions. In statistical inverse problems, the only work proving minimax optimal convergence
rates for the estimation of BV is, to the best of our knowledge, Donoho (1995). He shows that
thresholding of the WVD is minimax optimal over a range of Besov spaces B;J and for a class
of B-smoothing inverse problems, meaning that the singular values of the operator T behave
as kj = 278 In the case relevant for BV (s = p = 1), minimax optimality holds for the range
B < 1-4d/2,1.e. for f-smoothing operators in dimension d = 1 and g € [0, 1/2). The present
work is hence an improvement, since we do not impose any limitation on 8 nor on the dimension
d. On the other hand, our estimator is suboptimal by the log n factor in (1.15), while Donoho’s

estimator achieves the exact minimax rate.

In higher dimensions, the situation becomes more involved due to the low regularity of functions
of bounded variation. There are roughly two approaches to deal with this: either employ a
finer data-fidelity term, or discretize the problem. Concerning the first approach, we distinguish
three different variants of the ROF-model that are related to our setting. First, Meyer (2001)
proposed the replacement of the L?-norm in the ROF functional by a weaker norm designed to
match the smoothness of Gaussian noise. Several algorithms and theoretical frameworks using
the Besov norm Bgol,oo (Garnett et al., 2007), the G-norm (Haddad and Meyer, 2007) and the
Sobolev norm H~! in d = 2 (Osher et al., 2003) were proposed, but the statistical performance
of these estimators was not analyzed. A different approach started with Durand and Froment
(2001), Malgouyres (2001) and Malgouyres (2002), who proposed estimators of the form (1.5)
with a wavelet basis. Following this approach and the development of curvelets (see e.g. Candes
and Donoho (2000) for an early reference), Candes and Guo (2002) and Starck et al. (2001)
proposed the estimator (1.5) with a curvelet frame and a mixed curvelet and wavelet family,
respectively, which showed good numerical behavior. A third line of development that leads to
the estimator (1.5) began with Nemirovski (1985) (see also Nemirovski (2000)). He proposed a
variational estimator for nonparametric regression over Holder and Sobolev spaces that used a
data-fidelity term based on the combination of local likelihood ratio tests: the multiresolution
norm. That type of data-fidelities were also proposed by Frick et al. (2012) and Frick et al. (2013)
in combination with a BV penalty. In statistical inverse problems, Dong et al. (2011) proposed an
estimator using TV-regularization constrained by the sum of local averages of residuals, instead
of the maximum we employ in (1.5). In a nutshell, the situation (both in regression and in inverse
problems) for the estimation of BV functions in dimension d > 2 is the following: a plethora
of estimation procedures has been proposed, many of which employ data-fidelity terms weaker
than the L2-norm. Nevertheless, no convergence guaranty has been proven for any of these
methods. In that sense, this thesis presents the first statistical analysis of a method for estimating
BV functions in regression and inverse problems in higher dimensions. Moreover, we prove that

such method is optimal in a minimax sense up to logarithms.
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The other approach to TV-regularization in higher dimensions is to discretize the observational
model (1.1), thereby reducing the problem of estimating a function f € BV to that of estimating
a vector of function values (f(x1),..., f(x,)) € R™ In particular, the risk is measured by the
Euclidean norm of R", and not by the continuous L2-norm. TV-regularized least squares in this
discrete setting is nowadays fairly well understood. The recent works by Hiitter and Rigollet
(2016) and Dalalyan et al. (2017) proved convergence of the TV least squares estimator in any
dimension in a variety of discretized models, including functions defined on certain graphs.
These rates were shown to be minimax optimal (Sadhanala et al., 2016). Also, the generalization
from BV to trend-filtering is a current research topic (Guntuboyina et al. (2017), Wang et al.
(2016)). However, this discretized model is radically different from the continuous model
we consider. To see that, notice that BV functions are indistinguishable from Sobolev whi
functions in the discretized model. Conversely, BV functions can have jump singularities,
which makes their estimation significantly more challenging than estimating a Sobolev function.
Therefore, the analysis of discrete TV-regularization is inspiring, but it regrettably does not
solve the problem in the continuous setting: different and genuinely continuous tools are needed,
such as the interpolation inequality (1.16). Another drawback of this approach is that the BV
seminorm is quite sensitive to discretization. In fact, it has been shown that the minimizers
of the discretized TV-regularized least squares estimator do not necessarily converge to their
continuous counterparts in a reasonable sense as the discretization tends to zero (see Lassas and
Siltanen (2004) and Section 4.2 below for more details). Besides, a limitation of discretized
models is that they typically discretize the functions and the BV seminorm with respect to the
same grid. The discretization of the signals is usually determined by the application, but different
discretizations of the BV seminorm can have different effects, so it might be desirable to choose
how to discretize it (see e.g. Condat (2017)). It is hence useful to study the estimation of BV
functions in the continuous setting, since it gives insight on how the estimation problem is,
independently of the discretization of signals or functionals.

An interesting connection of our result with discrete models is that the minimax rate of estimation
of BV functions with respect to the discrete L?-risk was shown by Sadhanala et al. (2016) to
ben~ min{ 7.5} up to logarithms. This coincides with the rate in Theorem 4 for ¢ = 2, so our
results explain the phase transition in this rate as arising from the use of the L2 risk. Furthermore,
the same rate was shown by Han et al. (2017) to be minimax for estimating bounded, component-
wise isotone function in the discrete model, again with respect to the discrete L2-risk. This means
that the statistical complexity of estimating BV functions equals the complexity of estimating
isotone functions: this result is well-known in dimension d = 1, but we are not aware of any such
resultind > 2.
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At a technical level, our work is inspired by several sources. We have already mentioned Donoho
(1995), who introduced the WVD as a means for using wavelet methods in inverse problems
(see also Abramovich and Silverman (1998) for a variant of the WVD, and Candés and Donoho
(2002) for a refined approach for Radon inversion). Besides these works, there have been
several approaches that implicitly use the WVD idea. We refer to Schmidt-Hieber et al. (2013)
and Proksch et al. (2018) for hypothesis testing in inverse problems, where multiscale dictio-
naries adapted to the operator 7 are employed. Another source of inspiration for our work
are nonparametric methods that combine variational regularization techniques with multiscale
dictionaries. Here we refer to Candes and Guo (2002), Dong et al. (2011) and Frick et al. (2012)
for an empirical analysis of such methods in simulations, and to Nemirovski (1985) and Grasmair
et al. (2018) for a theoretical analysis. Moreover, the proof of our main result is based on the
above mentioned interpolation technique: an interpolation inequality of the form (1.16) is used
to relate the risk functional, the regularization functional and the data-fidelity. This technique
was used by Nemirovski (1985) and Grasmair et al. (2018) for estimating Sobolev functions,
using an extension of the Gagliardo-Nirenberg interpolation inequalities (Nirenberg, 1959), and
we use it here for the estimation of BV functions employing generalizations thereof (Meyer
(2001), Cohen et al. (2003)).

The second main contribution of this thesis is the study of the minimax rates over Besov spaces
Bz’t with s < d/p, which determine the minimax rates over BV. This parameter regime has
remained mainly ignored in the statistics literature, presumably due to the technical difficulties it
presents. Only Goldenshluger and Lepskii (2014) and Lepskii (2015) have considered estimation
in an anisotropic generalization of these spaces. Our results complement theirs and show that
the minimax rates for regression and inverse problems behave differently than in the other

better-known regimes.

Finally, in this thesis we also consider the efficient numerical computation of the estimator (1.5).
The challenge of solving the minimization problem in (1.5) lies on the high dimensionality of
the constraint set (#€,, is typically larger than n), and on the non-smoothness of the objective
function. An approach for solving this kind of optimization problems was proposed by Frick
et al. (2012) and Li (2016). It uses an Alternating Direction Method of Multipliers (ADMM)
approach that alternatively minimizes the objective and projects to the constraint set. The
drawback of this approach is the projection step, which is typically extremely time consuming.
Instead, in this thesis we propose two alternative approaches that circumvent the projection
step and can be efficiently implemented: a primal-dual method based on the Chambolle-Pock
algorithm (Chambolle and Pock, 2011), and a semismooth Newton method combined with the
path-following technique (see e.g. Hintermiiller (2010)). We discuss the implementation of these

methods and illustrate their performance in simulations.
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Organization of the thesis

In Chapter 2 we consider the regression problem (7" = id): we introduce the main assumptions
on the multiscale dictionaries, and state our main theorem. We also sketch the proof of the
theorem, give concrete examples of dictionaries {¢,}, and discuss how to adapt our results to the
nonparametric regression model. In Chapter 3 we consider linear inverse problems: we state
our assumptions and main theorem, and illustrate the examples of deconvolution and Radon
inversion explicitly. We also present a result concerning the minimax rates for regression and
inverse problems over Besov spaces. In Chapter 4 we present different methods for solving
the optimization problem (1.5) and discuss their implementation. In Chapter 5 we illustrate the
performance of the multiscale TV-estimator in simulations in d = 1 and d = 2 for regression and
deconvolution. We also compare the multiscale TV-estimator quantitatively with other estimation
methods. In Chapter 6 we discuss our results and present open questions and extensions. The
main proofs are given in Chapter 7, while some independent results from harmonic analysis are

reproduced in Appendix A.
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CHAPTER 2

Regression in the white noise model

In this chapter we consider nonparametric regression in a white noise model, i.e., the problem
of estimating a function f from observations (1.1) with 7" = id. We present the main concepts
needed to construct the multiscale TV-estimator (1.5), and the assumptions that guarantee that
it is nearly minimax optimal over the set BVy. We also give concrete examples of multiscale

TV-estimators using particular dictionaries.

2.1 Basic definitions and notation

In this section we set some notation and give the definitions of mathematical objects that will

appear throughout the thesis.

Basic notation

We denote the Euclidean norm of a vector v = (vq,...,vg) € RY by |v| := (v% + o+ v?l)l/z.
The logarithm to the base b > 1 of a number x > 0 is written as logy, x, while log x denotes
the natural logarithm of x. For a real number x, define |x| := max{m € Z|m < x} and
[x]:= min{m € Z | m > x}. The cardinality of a finite set X is denoted by #X.

We say that two norms || - || and || - || in a normed space V are equivalent, and write |[v|lo =< [[v]|g,
if there are constants ¢y, ¢y > 0 such that ¢| < [Vl|g/|V|le < ¢ for all v € V. The same notation
is used to denote that two sequences a; and b, n € N, grow at the same rate: we write a, < by,
if there are constants ¢y, cp > 0 such that ¢y < liminf a, /b, < limsupa,/b, < cy. Moreover,
we denote by C a generic positive constant that may change from line to line.

For a Borel-measurable set M C R, the space L>(M) consists of all equivalence classes of
real-valued square integrable functions over M with respect to the Lebesgue measure on RY. Ttis

a Hilbert space with the inner product

(g ) = (g, h) 2 = fM c(OhW dx, g h e L2,
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and its Hilbert space norm arises from this inner product. Whenever it is clear from the context,
we will drop the symbols M or R4 from the notation of the function spaces, writing e.g. L?
instead of LZ(Rd), etc.

Finally, N (u, o2) denotes a normal distribution with expectation u € R and variance o2, for

o> 0.

Gaussian white noise process

In (1.1) we consider the Gaussian white noise process dW as a stochastic process over the Hilbert

space L2(M). 1t is defined by its action on elements of L2, given by

(ardW) = [ g0 dWen) ~ NO.IglE,)

E[<ga dW><h’ dW)] = <g’ h>LZa

for any g,h € LZ(M). We refer to Section 2.1 of Giné and Nickl (2015) for more details.

Functions of bounded variation over R?

For k € N, let CK(R?) denote the space of k-times continuously differentiable functions on
R4. The space of functions of bounded variation BV consists of functions g € L' whose weak
distributional gradient Vg = (0y,8,--- ,0x,8) 1s a R%-valued finite Radon measure on R¥. The

finiteness implies that the bounded variation seminorm of g, defined as
glgy := sup{j;&d gV - h(x)dx|h € C'RERY), |hl|z- < 1},

is finite. Here, V- h := Z?:l Jx;h; denotes the divergence of the vector field h = (hy,..., hg). BV
is a Banach space with the norm ||gllgy = lIgll;1 + |glpy (see Evans and Gariepy (2015)). Here
Cl(R?; R?) denotes the set of continuously differentiable functions on R4 taking values on R4,
By Lebesgue’s decomposition theorem (see Section 1.6.2 in Evans and Gariepy (2015)), the
weak gradient of a function of bounded variation can be decomposed as a Lebesgue-absolutely
continuous measure, plus a Lebesgue singular measure. The singular measure is concentrated on

sets of codimension one, and it represents jump discontinuities of the function.

Wavelet bases

For § € N, let {/jr | (J, k,e) € A} be an S -regular (see below) wavelet basis for L2(R9) whose

elements are S times continuously differentiable with absolutely integrable S -th derivative. The
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wavelets are indexed by the set

A:={(ike)|j=0, keZdecE, 2.1
0,14 if j=0,

E; = {0, 1} J
{0, 1}9\(0,...,0) else.

In particular, we consider wavelets of the form

W ike(x) = 2092y 027 x — k),

where Ye(z1, -+ ,29) = Hflzl e, (z;) is the tensor product of one-dimensional wavelets, and
Y() ife; =1,
Ve () = l
@(-) else,

denotes either the mother wavelet ¢ or the father wavelet ¢ of a wavelet basis of L2(R). The index
(0,---,0) € E refers here to (shifts of) the father wavelet ¢ o = (- — k). See e.g. Section 4.2

in Giné and Nickl (2015) for the construction of such a basis.

S -regularity. The assumption of S -regularity ensures that the wavelets form a basis not only of
L2, but also of a range of Besov spaces. Even though we shall not need its precise form in this

thesis, the definition of S -regularity is given for completeness in Appendix A.1.

Daubechies wavelets. Quite often in this thesis we will need S -regular wavelet bases whose
elements have compact support. An example of such a basis are Daubechies wavelets, introduced
by Daubechies (1992). We recall that one-dimensional Daubechies wavelets with D vanishing
moments have support of size 2D—1 (with respect to the Lebesgue measure) and are [0.18-(D—-1)]
times continuously differentiable (see Theorem 4.2.10 in Giné and Nickl (2015)). An S -regular
wavelet basis formed by tensorization of one-dimensional Daubechies wavelets needs to satisfy
D =1+ 6S in order to have S continuous derivatives. Consequently, the mother and father

wavelets have support of size (12§ + 4.

A subset of wavelets. In this thesis we will mainly deal with functions g supported inside the
unit cube, supp g C [0, 119. We will use their wavelet expansion intensively, so for a basis of
compactly supported wavelets, let us introduce the set of wavelets with nonzero overlap with the
unit cube

Q= {(j.k.e) € Alsupp ¥z N (0,17 # 0}, 2.2)

In the following we will mostly work with the wavelets indexed by the set Q2. For each n € N,
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n> 2d, define the subset
Q= {(ike) eQ|j=0,..,J-1}, (2.3)

as the set of indices of wavelets at scales rougher than J = L%l log, n]. If we work with compactly
supported Daubechies wavelets, which at scale j = 0 have support of size (125 + )4, we
conclude that, for any n > 2d ,

yidy< T _gid gy,
(128 + 1)4

Besov spaces

Let (ke | (j, k,e) € A} denote an S -regular wavelet basis as defined above. For p,q € [1, o]
and s € R with § > |s|, the Besov norm of a (generalized) function is defined as

lslgy, = (3 29D (S b)) (2.4)

jGNo kezd eEEj

with the usual modifications if p = co or g = co.

If s > 0and p € [1, 00), the Besov space Bf, Rd) consists of LP functions with finite Besov

4
norm, while if s > 0 and p = oo, then B;,,q(Rd)qconsists of continuous functions with finite Besov
norm. In these cases, (., §) denotes the coefficients of g with respect to the wavelet basis.

If s <0, Bz’q(Rd) consists of temperate distributions S*(Rd) with finite Besov norm. Here,
S*(R?) denotes the space of temperate distributions, defined as the topological dual of the space
S(Rd) of Schwartz functions: infinitely differentiable functions C“(Rd) whose derivatives decay
at infinity faster than any polynomial (see Section A.2 in the Appendix). In that case, (¥t ¢, &)

is interpreted as the action of g € S* (RY) on the regular function v jz .

Fourier transform

The Fourier transform of a function g € L! (Rd) is defined as
ARGE f g e dx, £eRY,
R
and the inverse Fourier transform of 4 € Ll(Rd) as

7 = [ )€ de
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The Fourier transform can be extended as a bounded operator to L2. Moreover, it maps Schwartz
functions to Schwartz functions, and it can be extended by duality to temperate distributions
S*(RY) (see e.g. Section 4.1.1 in Giné and Nickl (2015)).

Dictionaries

In this thesis we will extensively use dictionaries: sets of functions that act as probe functionals.

Unless otherwise stated, they will be denoted by
Q= {py |w € Q},

where ¢, € L2(R?) are the elements of the dictionary, indexed by w € Q, where Q is a
potentially countably infinite set. Examples of dictionaries include wavelet bases, but also
frames (Christensen, 2003) and vaguelette systems (see Chapter 3). We will sometimes denote

the dictionary elements by ¢,. In particular, the symbol ¢y does not necessarily denote a wavelet.

2.2 Main results

The main ingredient of the multiscale TV-estimator (1.5) is the multiscale dictionary, on which

we impose the following assumptions.

Assumption 1. Consider a dictionary ® = {¢,, | weQ}C L2 for a countable set Q and functions
satisfying ||¢|l;2 = 1 for all w € Q. For each n € N, consider a subset €, C Q of polynomial
growth, meaning that

cn' <#Q, < Q) forallneN

for a polynomial Q and constants ¢,I" > 0. The sets €2, are assumed to satisfy the inequality

Igllg-ar2 < C max [(geo. &)| + Cliglipeo n™ /2
00,00 weQ,

for any g € L™ and a constant C > 0 independent of n and g.
Examples 1.

a) The simplest example of a system @ satisfying Assumption 1 is a sufficiently smooth
wavelet basis. Indeed, the assumption follows from the characterization of Besov spaces

in terms of S -regular wavelets with S > [d/2] (see Proposition 2 below).

b) Another example of a family @ satisfying Assumption 1 is given by translations and

rescalings of (the smooth approximation to) the indicator function of a cube. In Section 2.4
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we verify the assumption for such a system, that has been used previously as a dictionary

for function estimation (Grasmair et al., 2018).

¢) In Section 2.4 we show that frames containing a smooth wavelet basis and a curvelet or a

shearlet frame (which play a prominent role in imaging) satisfy Assumption 1.

Definition 1. Assume the model (1.1), and let @ be a dictionary satisfying Assumption 1. We

denote

fo € argmin |glgy subject to max [(¢w, g} — (Bw» V)| < Vn, (2.5)
geF, weQ,

as multiscale TV-estimator with respect to the dictionary @, where we minimize over the set
Fun =g € BV N L |ligllzs < logn, supp g < [0, 11}, (2.6)

In (2.5) we use the convention that, whenever the "argmin" is taken over the empty set, fg is

defined to be the constant zero function. &

The reason for requiring the support to be inside the closed unit cube in (2.6) is to make the
set F, closed. This is important for ensuring existence of a minimizer in (3.4) as the limit of a

minimizing sequence (see Proposition 1 below).

In the following we assume that n > 2, so that we do not have to worry about the case log 1 = 0.
The reason for minimizing over the set F, is that, in the analysis of the estimator fg, we will
need upper bounds on its supremum norm. As it turns out, the upper bound can be chosen to grow
logarithmically in n without affecting the polynomial rate of convergence of the estimator (but
yielding additional logarithmic factors in the risk). Alternatively, if we knew an upper bound L
for the supremum norm of f, we could choose F,, = {g € BVNL™ |||gllz~ < L, supp g C [0, 119y,
In that case, the risk bounds in Theorem 1 below would improve by some logarithmic factors
(see Remark 1).

Proposition 1. In the setting of Definition 1, for each n € N there exists almost always a
minimizer fg € BV N L™ of (2.5).

Proposition 1 guarantees that the multiscale TV-estimator as defined in (2.5) indeed exists. We
give its proof in Section 7.3.1. We are now ready to state the convergence properties that the
multiscale T'V-estimator enjoys.
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Theorem 1. Let d € N, and assume the model (1.1) with f € BV} for some L > 0 and the set
BV defined in (1.13). Let further g € [1, o).

a) Lety, beasin (1.9) with k > 1, and let ® be a family of functions satisfying Assumption 1.

Then for any n € N with n > el the estimator fg in (2.5) with parameter 7y, satisfies

N _minf L L .
sup [Ifp — fllze < Cn~ ™77 (10g )3 —minid:2) 2.7)
fEBVL

with probability at least 1 — (#Qn)l_Kz, for a constant C > 0 independent of n.

b) Under the assumptions of part a), if K2>1+ ﬁ then

A — min{-L L .
sup E[lfp — fllza] < Cn~ Mint@23g) (1og p)3-mintd.2) 2.8)
fEBVL
holds for n large enough and a constant C > 0 independent of n. The number I" > 0 in the

condition on «? is the same as in Assumption 1.
Notice that part a) of the theorem implies that (2.7) holds asymptotically almost surely if K2 > 2.

Remark 1. The logarithmic factors in (2.7) and (2.8) are equal to (log n)2 ford = 1 and
to logn for d > 2. They arise in part from the bound ||fpll;~ < logn (that we get from
minimizing over J, in (2.6)), while some of them arise from the estimation procedure itself.
Indeed, if we alldditionally constrain the estimator to || fp|lz~ < C, the factors can be improved to
(logn)

: 1 : 1 1
Hmin{z5.25) and (log n)mm{m’d_q} ford = 1 and d > 2, respectively. See Remark 3 below
for an explanation of the different factors.

Remark 2. Recall that our parameter set BV in (1.13) involves a bound on the supremum

norm. This bound can be relaxed to a bound on the Besov Bgo’oo norm without changing the

convergence rate n - min{z3.7;) for fp. Indeed, assume for simplicity that ® is an orthonormal
wavelet basis of L2, and for n € N let Q,, C Q index the wavelet coeflicients with nonzero overlap
with the unit cube up to level J = Lcll, log, n], as in (2.3). As we will see below, the proof of
Theorem 1 relies on an inequality of the form

rhax ke &) < max 22 e N -
(J,k,e)EQKw]’k’e 8 (j,k,e)eQ, |<¢]’k’e 8l (2.9)

for sufficiently smooth g with supp g € [0, 114. But this inequality for all J € N is equivalent to
llgllgo < C (see Jackson-type inequalities for Besov spaces, e.g. in Section 3.4 in Cohen (2003)).

Consequently, Theorem 1 can be extended to show that the estimator fg with an orthonormal
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wavelet basis O attains the optimal polynomial rates of convergence uniformly over the enlarged

parameter space
BVy :={g€BV|lglpy < L. llglz < L. suppgcI[0,11%).

One could ask whether the requirement ||g|| Bl < L can be relaxed further. This is not the
case if d > 2. Indeed, since the embedding B%:oo C Bgo,oo holds for d = 1 only (for functions
supported on the unit cube; see the definition (2.4)), and since we have BV C Bioo, we see that a
typical function of bounded variation does not belong to Bgo’oo if d > 2. Hence, the Jackson-type
inequality in (2.9) cannot hold for general functions of bounded variation in d > 2. This explains
why our parameter space is the intersection of a BV-ball with an L*-ball (or a Bgo,oo-ball).
Finally, we remark that most works in function estimation deal with Holder or Sobolev W*-
functions with s > d/p, so the assumption f € L* is implicit. Alternatively, we refer to Section
3 in Lepskii et al. (1997) and to Delyon and Juditsky (1996) for examples of estimation over
Besov bodies B‘]’,,q where uniform boundedness has to be assumed explicitly if s < d/p.

We can now state one of the main results of this thesis, which is a direct consequence of

Theorem 1.

Theorem 2. Under the assumptions of Theorem 1, the estimator fg is asymptotically minimax
optimal up to logarithmic factors over the parameter set BV} defined in (1.13) with respect to

the L9-risk for g € [1, ) in any dimension d € N.

Proof. The claim follows from the fact that the minimax rate for estimation over the smaller
class (Bi N L), c BV}, defined in (1.17), satisfies

—min{-L L
R(LY, (B% (| NL)) =2 Cron min{7,3-2;)

for n € N. This follows from Theorem 6 in Section 3.2 with S = 0, which states lower bounds
for the minimax risk over Besov spaces. This rate matches the one in Theorem 1 up to the
logarithmic factor, which implies that the multiscale TV-estimator is minimax optimal, up to the

logarithm. o

We remark that the rate in Theorem 2 matches the result in Han et al. (2017) for estimation of
bounded, component-wise isotone functions in the nonparametric regression model. Indeed,
they show that the minimax rate with respect to the empirical L2-risk scales as n”~ min{ 7.5} ,
which equals the risk bound in Theorem 2 for ¢ = 2. This is not entirely surprising, since
bounded, component-wise isotone functions on a compact set have bounded variation. However,

this correspondence is surprising in that it suggests that the class of bounded BV functions is
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statistically as complex as the class of bounded isotone functions. While this result is well-
known in dimension d = 1, where any BV function there can be expressed as the difference of
two monotone functions, no such result in d > 2 was known. Interestingly, Han et al. (2017)
prove optimality of the slower rate n~1/2d by constructing a lower bound based on antichains in
the set of isotone functions, while our proof of the lower bound is based on a construction of

approximately dense linear combinations of wavelets.

2.3 Sketch of the proof of Theorem 1

We prove Theorem 1 in Section 7.1 as a corollary of Theorem 4, which proves convergence rates
of a multiscale TV-estimator for inverse problems. In this section we give a sketch of the proof

of Theorem 1. It relies on the following interpolation inequality proved by Cohen et al. (2003).

Theorem 3 (Theorem 1.5 in Cohen et al. (2003)). Let s € Rand 1 < p < oo, and assume that
y:=1+(s—1)p’/d satisfies either y > 1 or y < 1 — 1/d, where p’ denotes the Holder conjugate
of p. Then for any 0 < 6 < 1 such that

l: 1;9+6’, t=(1-0)s+46
q p
we have the inequality
lgllg;,, < C gl lglly (2.10)
for any function g € BV N Bf,, p(Rd) and a universal constant C > 0.

The proof of part a) of Theorem 1 proceeds as follows.

1. For n € N, define the event

Ay = { max < g%}- 2.11)

weL),

f Pw(x) dW(x)
R4

This event represent the situation when the noise dW is "well-behaved". Indeed, A,
requires that the largest noise fluctuation in the projected data is smaller than /n o1 Vn-
Since ﬁy dw(x)dW(x) ~ N(0, 1) for [|¢pwll;2 = 1, we have the bound

P( max
we,

f boo(X) AW ()| = z) <#Q, e 2, 2.12)
R4

for any n € N and ¢ > 0. This bound follows from the union bound and elementary
computations (see Proposition 11 in Section 7.3.2). By the choice of vy, in (1.9), we

conclude that
2
P(Ay) > 1 — (#Q,)' <,
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which tends to one as n — oo for k > 1. To prove Theorem 1 we will show that (2.7) holds

conditionally on the event ‘Aj,.

. Using a particular case of (2.10) with s = —d/2, p = oo and ¢t = 0, and embeddings
between L9 and Besov Bg,q spaces (see Proposition 8 in Section 7.1), we bound the L9-risk

of fp as
Ifo = fllzs < Cllfo = AIZ /2||fq> fliz (2.13)
ford > 2and g < 1+ 2/d. A different strategy is needed for d = 1, see Remark 3.

The rest of the proof consists in showing that the right-hand side behaves as nm s logn

conditionally on Aj,.

. By Assumption 1, the Besov norm in (2.13) can be bounded as

1o - g < Cgé%i [(bwr foo — )| + C||ch \/f”L (2.14)

The first term satisfies

max [(bws fo — )] < max [(bws fo) = (w. V)| + max |<¢w,f> — {$pw, dY)|

f bw(x) dW(x)

<)/n+—max

< 2vn,
n weQ, I

where the second inequality follows by construction of fg and the third one holds condi-
c Vol tflle . ~Ltlogn
X R

lfollz~ < logn by construction and ||f]|;~ < L by f € BV}. Using the expression (1.9)

tionally on A;. The second term in (2.14) is bounded by , since

for v, we have the bound

A log #Q, L+logn
- —ap < C +C 2.15
o = fllgar < €/ — Nz (2.15)

conditionally on A,.

. The bounded variation norm in (2.13) satisfies

Ifo = fllay = lfo — Al + 1 fo — flav

<|fo = fliL= + lfolav + | flBV,

where we bound the L!-norm by the L®-norm using the fact that supp (fp — f) C [0, 114

The supremum norm of the difference can then be bounded as in step 3. In order to bound
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L

|folgy, notice that conditionally on Ay, and for n > e we have

max (9o, f) = (fardV) < yn and |IfllL> < L < logn,
wel),

and hence the function f is feasible for the minimization problem (2.5) that defines fg.

Therefore we conclude that | fq)l Bv < |flpy conditionally on A, and we have
Ifo = fllpy < logn+ L +2|f|py < 3L+ logn,

where the second inequality follows from f € BV7.

5. Combining steps 3 and 4 with equation (2.13) yields the bound

2 log#Q, L+1 o
Ilfo — fllLe SC(\/E_,_ + Ogn)d 2(3L+logn)d%
" Vn

conditionally on Aj,.

6. The previous argument gives the risk bound for ¢ < 1+2/d. For g € [1 +2/d, o), Holder’s

inequality implies that

d+2 1— d+2 1

||fd) - f”Lq < ||f(D - f||Ld|q+2/d||fCD - f”Loo da < Cl’l_% 1Ogn’

conditionally on Aj,.

Remark 3. While in this sketch we only considered the case d > 2, the proof for d = 1 is
analogous, but somewhat more involved. Essentially, we use Theorem 3 to bound the Bg’3 risk
by O(n~1/@+2)) "and then show that for smooth enough functions g € L™ N BV, the L3-risk can
be controlled by the Bg’s—risk at the cost of the log n factor. The difficulty here lies in the fact
that the embedding B(S)’3 — L3 does not hold, so a refined analysis is needed. We then extend
this risk bound to ¢ < 3 using the compact support of the functions, and to g > 3 using Holder’s

inequality.
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2.4 Examples

We present now several dictionaries @ that satisfy Assumption 1, and hence can be used to

construct the multiscale TV-estimator with the minimax optimality guaranty given by Theorem 2.

Wavelet bases

For§S e N, let ® = {1, | (j, k,e) € Q} be a subset of an S -regular basis of Daubechies wavelets
for L2(R9) as described in Section 2.1. Recall that the index set Q denotes the indices such that
Supp ¥ ke N (0, l)d #0. Forne N, n > 2d, define the subset €, as in (2.3), which satisfies
#Q, < n.

Proposition 2. An §-regular basis of Daubechies wavelets for L? as in Section 2.1 with § >
max{1, d/2} satisfies Assumption 1 with the sets Q, in (2.3), a linear polynomial Q(x) = ¢ x and

parameter [ = 1.

The proof of Proposition 2.4 is given in Section 7.3.3. Proposition 2 implies that @ satisfies
Assumption 1, so by Theorem 2 the multiscale TV-estimator with dictionary @ is minimax

optimal up to logarithms for estimating BV functions in any dimension.

Remark 4 (Comparison with wavelet thresholding). In dimension d = 1, Donoho and Johnstone
(1998) proved that thresholding of the empirical wavelet coefficients of the observations gives an
estimator that attains the minimax optimal convergence rate over BV. In contrast, our estimator
combines a constraint on the wavelet coefficients with control on the BV-seminorm: this second
aspect is crucial in higher dimensions. As equation (2.13) in the sketch of our proof illustrates,
we bound the risk by the B;fg -norm of the residuals, which is the maximum of their wavelet
coeflicients, and the BV-norm of the residuals. The optimality of the estimator (2.5) depends
crucially on the bound ||fp — fllgy < logn, which essentially amounts to a bound on the high
frequencies of the residuals. But that is precisely the difficulty with wavelet thresholding of BV
functions in higher dimensions. To the best of our knowledge, wavelet thresholding has been
shown to converge over Besov spaces B;)J for s > d(1/p — 1/g)+ only (see e.g. Delyon and
Juditsky (1996)). This condition guaranties that the wavelet coefficients of the truth f decay
fast enough, which itself allows one to control the high frequencies of the residuals. But that
assumption is not satisfied for BV in dimension d > 2, since we have Bi,l C BV, which satisfies
1 >d/2 ford =1 only.

This remark matches the empirical observation that wavelet thresholding may present Gibbs-like
artifacts, i.e., to present abnormally high frequencies. We verify this in simulations in Chapter 5.
On the other hand, variational estimators with a suitable regularization functional automatically

control the high frequencies.
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General multiscale systems

In this example we present a more general multiscale system, and show that the corresponding
multiscale TV-estimator is minimax optimal up to logarithms for estimating BV functions. Our
motivation is to prove optimality of the estimator proposed by Frick et al. (2012), which has
the form (1.5) for a multiscale dictionary consisting of indicator functions of cubes at different
locations in different scales. That estimator was shown to perform well in denoising and
deconvolution, which we verify in simulations in Chapter 5. Here, we prove optimality for a

general family of estimators constructed with multiscale systems satisfying Assumption 2.

Assumption 2. The system of functions ® = {1/ | (j, k) € Qp, n € N} satisfies the following
conditions:

a) for each n € N the set (2, is defined as

n={G.k)|j=0,....0 -1, ke Dj},
Z)j:{k:(kl"" ’kd)|ki:_2_j+li2_R(1+21_j), li:0,...,2R—1, i = 1,...,d},

where J = [1log, n] and R = |J max({1,d/2}];

b) there is a function y € C*°(R?) with suppy C [0, 119, satisfying

IF Tl >0 for g1 <2, [Wll2 =1, Wl <2,
such that all functions i j; € ® are given by translation, dilation and rescaling of ¢, i.e.,
Wja@) = 212 g2k - 2)
for j>0and k € D;.

In words, the dictionary @ contains functions at scales j = 0,...,J — 1 and, for each scale,
it contains shifted versions of the same function by a distance 27X in each coordinate, where
R =|J max{1,d/2}]. This choice of R gives an increased spatial resolution as compared with
wavelets, which would have R = J. The reason for choosing this R is that, unlike wavelets, the
functions ¢ ;. from Assumption 2 do not enjoy any special approximation property. This forces

us to choose a very redundant system in order to achieve a good approximation.

Remark 5.

a) An example of a function y satisfying the above assumptions is the (L2-normalized)

convolution of the indicator function of the cube [}‘, %]d with the standard mollifier. More
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generally, the Fourier transform of the indicator function of the cube [a,b] C [0, l]d
satisfies |F [1[4,p 1] > 0if |§; (b — a);| < 2r foralli = 1,...,d. In particular, taking ¢
to be a smooth approximation to the indicator function of a cube, the estimator (2.5) is

similar to that proposed by Frick et al. (2012).
b) Forn € N we have #Q,, = J24R = jodlJmax{l.d/2}] \hence

pmax{l.d/2} <#Q, < pmax{1.d/2} log n.

Proposition 3. Let ® = {l/’j,k|( J.k) € Qp, n € N} satisfy Assumption 2. Then it satisfies
Assumption 1 with Q(x) = xMX{Ld/2H+1 and I = max({1, d/2}.

See Section 7.3.3 for the proof of Proposition 3. We remark that part of the proof is based on the

characterizations of Besov spaces via local means (see Section A.3 in the Appendix).

Shearlet and curvelet frames

Another relevant example of the multiscale TV-estimator in d > 2 corresponds to the case when
® contains a directional multiscale dictionary, e.g. a frame of shearlets or curvelets. An estimator
of that form was proposed by Candes and Guo (2002), and it was shown to perform well in
simulations. We verify its good numerical performance in Chapter 5. In this example we show

how Theorem 2 implies minimax optimality up to logarithms for that estimator.

In order to state our results, we first review some facts about directional dictionaries. The first
directional multiscale systems to be introduced were curvelets (Candes and Donoho, 2000).
They were proposed as an improvements over wavelets in dimension d > 2: while wavelets
are parametrized by a scale and a position parameter, curvelets have an additional "orientation"
parameter. This allows them to resolve directional information such as boundaries better than
wavelets do. Following curvelets, many directional multiscale systems have been proposed. We
refer to Grohs et al. (2013) and references therein for a unifying mathematical framework for
these dictionaries.

There are several constructions of directional multiscale dictionaries, mostly based on partitions
of frequency space (Candeés and Donoho, 2000). We just mention here the original curvelet
system by Candes and Donoho (2000), shearlets (Labate et al., 2013), and compactly supported
shearlets (Kutyniok et al., 2012). An important remark is that these directional dictionaries can

be constructed to be tight frames of L2(R?), meaning that we have

lgllF, = > Kew, O Vg e 2R

weN
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Furthermore, the directional elements ¢, can be taken to have unit norm in 12, Moreover,
the constructions of tight curvelet frames in Borup and Nielsen (2007) and of shearlet frames
in Labate et al. (2013) yield smooth frame elements that are exponentially decaying in space.

In this example, our dictionary @ consists of a basis of S -regular Daubechies wavelets together

with a directional multiscale system. Let us fix the notation

@ =o" uoP
wavelets: @V = {y ;1. |(j.k,e) € ©V)

directional: ®° = {¢ 9l G0 € eP).

As in Section 2.1, the index set ®" indexes the wavelets with nonzero overlap with the unit cube.
Similarly, the index set ®” indexes the directional elements ¢ i whose overlap with the unit
cube is larger than a small predefined threshold. We neglect elements with a small overlap with
the unit cube, since they do not carry much information about functions supported there, and
they are hence not crucial for reconstruction purposes. We index the directional dictionary ®P
with a scale index j € Ny and a position and orientation index 6 € @n j

For n > 2, we define a finite subset of ® as

0, =0V uP

w _ . w w _ . . .
D, = {zﬁj,k,e |(j,k,e) €®, }, O, =€, in the notation of Section 2.1
o = (el LD ey, 07 ={(iB)Ij=0.....J, €0,

where G),ll) c ©P is such that #@5 = n.

Assumption 3. Let @ be a mixed system of S -regular Daubechies wavelets and a directional
dictionary as constructed above. Assume that S > max{l, d/2}, and choose the sets @,‘iV and ®nD
as indicated above, such that

#0) +#0D =< n

for any n € N.

Proposition 4. Let @ satisfy Assumption 3. Then it satisfies Assumption 1 with I' = 1 and
O(x) = C x, for a constant C > O.

The proof of Proposition 4 is given in Section 7.3.3. A direct consequence of the proposition is
that the multiscale TV-estimator with a mixed dictionary of wavelets and curvelets is minimax

optimal up to logarithms for the reconstruction of BV functions.

Remark 6. The assumption that @ contains a wavelet basis in addition to a directional frame

is crucial. Indeed, the wavelet basis allows us to upper-bound the Besov norm B;féoz by the
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maximum over the frame coefficients with respect to ®, which we need in order to establish
Assumption 1. Alternatively, if @ consisted of a curvelet frame only, the embeddings in Lemma
9 in Borup and Nielsen (2007) together with classical embeddings of Besov spaces (see Remark
4 of Section 3.5.4 in Schmeisser and Triebel (1987)) would give the bound

max 25, @)l
(j,0)e®P ’

8l g-a < C
for smooth enough and compactly supported functions g, and a 6 > 0 that depends on the
dimension. Accordingly, step 3 in the sketch of the proof of Theorem 1 would deteriorate to

6/
A n
o = fllgzan < CWPolylogd’&(n}

for some 6’ > 0, and a polylogarithmic factor that diverges as ' — 0. This results in a
polynomially suboptimal rate of convergence. We remark that this limitation arises from the
suboptimal embeddings between Besov spaces and decomposition spaces associated with the
curvelet frame (see Lemma 9 in Borup and Nielsen (2007)). The situation for the shearlet
frame is analogous, as its associated decomposition space equals that of the curvelet frame (see
Proposition 4.4 in Labate et al. (2013)).

Exceptions

We close this section presenting some dictionaries @ that do not satisfy Assumption 1, so that

Theorem 1 does not apply to them.

a) Wavelet systems of low smoothness do not satisfy Assumption 1. Our result relies crucially
on the fact that the Besov spaces B;ffg and B% | can be characterized by the size of wavelet
coeflicients. For that, wavelet bases with S — 1 vanishing moments and smoothness S are

needed, where S > max{1,d/2} (see Section 4.3 in Giné and Nickl (2015)).

b) Recall the multiscale TV-estimator with a general multiscale system: there we considered a
dictionary ® consisting of smooth functions supported on cubes in [0, 11¢. The smoothness
part is essential, since we need enough regularity in order to bound the Besov B;ﬂf -norm
in terms of this dictionary, which is done by the characterization of Besov spaces by local
means (see Section A.3 of the Appendix). In fact, if the kernel ¢ in Assumption 2 was

e.g. a discontinuous function, then the dictionary ® would not satisfy Assumption 1.

c) As argued in Remark 6, a dictionary consisting solely of a curvelet frame or a shearlet
frame does not suffice, since the decomposition spaces they generate (in the sense of Borup

and Nielsen (2007)) do not match Besov spaces exactly, so Assumption 1 does not hold.
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2.5 Regression in a discretized model

Until now we have considered the regression problem in a white noise model (1.1). In that model,
we observe the full path of function values plus white noise. There are alternative models where
one can pose the regression problem. One such model is the nonparametric regression model
with deterministic design. There, we observe the values of a function contaminated with noise at

a deterministic grid of points, i.e.,
Yi=f(x)+oe€, xjely, i=1,...,n, (2.16)
where we assume that n = m9 for some m € N, and

k k,
r,:= {(_1, ,_d)
m m

is the observation grid. Of course, different grids may be used. In (2.16), ¢; are independent

k,-e{l,...,m},izl,...,d} (2.17)

standard normal random variables, and o > 0 plays the role of the standard deviation of the
noise. Of course, for (2.16) to make sense we have to assume that f is defined on the grid ',
i.e. that f(x;) € R is well-defined for all x; € I[},.

We remark that, while the white noise model (1.1) is convenient from a theoretical perspective
(as it avoids discretization issues), the nonparametric regression model (2.16) is sometimes
more realistic to model applications, where one observes discretely sampled data. A prominent
example is image processing, where the grid I'; represents pixels. We employ this discretization

in our simulations in Chapter 5.

Given observations (2.16), our goal is to estimate the function f. In this section we explain
how to adapt the multiscale TV-estimator to this setting, and analyze its convergence properties.
For that, we have to discretize the construction from Section 2.2. Let ®,, = {¢], |w € Q,} be a

dictionary of discretized elements, i.e., each ¢/, is a vector of n values

@0); =n 2 p(xp) fori=1,....n,

1/2

which are the evaluations of ¢, at the grid points. The scaling factor n~ "/~ is chosen so that

ST = IgulZ. =1 as n— o,

X,‘EFn

for any w € Qy, i.e., so that the vectors ¢, have roughly unit norm in an % sense.
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In this setting, the multiscale TV-estimator takes the form

fp € argmin |g|gy subject to ng( | Z (#72):(g(x) — Yl-)| < k0 2log#Q,.
we

geﬁl " xiel"n

Here we show that the estimator fD is subject to a discretization error that, for d > 3, dominates

min{

_ 11 ) ) ) ) .
the minimax rate n 3 dg) of the multiscale TV-estimator in the white noise model.

Indeed, we would like to apply the strategy of Section 2.3 to bound the risk of the estimator fp.
For that, we have to relate the multiscale constraint to the Besov norm B;ffég , as explained in
step 3 of the sketch of the proof of Theorem 1. And for that, we need to show that the coefficients
of the residuals f) — f with respect to the discretized dictionary ®,, are similar to the coefficients

with respect to the "continuous" dictionary ®. In that sense, the discretization error

1 n . —
% XZEZF” (¢w)l 8(x;) ‘[[VO |

>

0n 1= max
weL),

dw(y)g(y) dy
]d

for g = fp— f will give an additional error term for the estimator fp: in particular, equation (2.15)

A log #Q L+1
1fp = fllgan < Cf—=t 4 c=Z 280 45, 2.18)
00,00 n \/71

Hence, the discretization error is not relevant as long as 9, = O(n‘l/ 2), but it dominates the error

would now be

otherwise. As it turns out, the discretization error behaves as 6, = O(n_l/ d), which means that it

dominates for d > 3.

Proposition 5. Assume that there is an w € Q, such that ¢, (x) = l[o’l]d()(f) is the indicator

function of the unit cube. Then there exist functions 2 € BV N L satisfying

max
we),

1 E n 1 -1/d
\/ﬁ Xiern (¢w)l (x ) ‘[[V()’l]d ¢ (y) (y) y 2 n

d,meN.

for infinitely many n € N of the form n = m
The proof of Proposition 5 is given in Section 7.3.4. It is a constructive proof: a function 4 with
a discontinuity at a position xD = o is constructed, where x(1) denotes the first coordinate of a
vector x € [0, 119. We lower bound the difference by using the difficulty of approximating an
irrational number « by rationals.

Proposition 5 gives just one example in which the discretization error ¢, is of order n~1/d,
This is enough to conclude that, in general, fp cannot be expected to satisfy a bound better

than (2.18). In other words, || fD —fll g2 = O(max{n_l/ d p=1/ 2}) (with high probability) cannot
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be improved in general. Following the proof of Theorem 1, this implies that

R TS B . .
Ifp = fllge < € n~ NG a) L2 (1og )3 -minid 2] (2.19)

with high probability. Observe that, for d > 3, the multiscale TV-estimator attains a strictly

slower rate in this discretized model than in the white noise model.

Remark 7 (Improved rate for smoother functions). As argued above, the slower convergence rate
in the nonparametric regression model is a consequence of the low smoothness of functions of
bounded variation. Alternatively, if g were a cs (Rd) function and {¢,} were an S -regular wavelet
basis, then we would have &, = O(n5/%). This can be easily verified by Taylor expansion and
using the vanishing moments of the wavelet basis. Consequently, if S > d/2, the discretization
error 0, would be of the order n~1/ 2, and its convergence rate would be n min{ﬁ’d%}: the same
as in the white noise model. This is consistent with known equivalence results between the white
noise and the regression models (Reif3, 2008), that state that both problems are equivalent in Le

Cam’s sense, provided that the regression function belongs to C d/2(Rd),

At this point, we could ask the question: can the slower rate in (2.19) be improved in the
discrete model, or is it the minimax rate for estimating a function f € BV} from discrete
observations (2.16)? We do not know the answer to this question, but some evidence indicates
that the rate might be improvable. Indeed, in the discrete regression model with the empirical
¢2 risk, Sadhanala et al. (2016) showed that the minimax rate for estimating BV functions is

— min{

1 1 . . . . . . . .
n 72734 up to logarithmic factors, which matches the minimax rate in the white noise model

for g = 2. By empirical £% error we mean the quantity

n
i=1

We remark, however, that it makes a big difference to consider the risk with respect to the

. 12
flx) - f(xi)|2) . (2.20)

S| =

17 = fle =

empirical £2 error and not to the continuous L? error. Indeed, in the discretized model we only
observe point evaluations of the function of interest, and it is comparably easier to bound the 2
error at those observations than to interpolate and bound the L? error. This is specially relevant
for BV functions, which due to their roughness are not well approximated by interpolation. We

do not pursue this topic any further in this thesis.
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CHAPTER 3

Inverse problems in the white noise model

In this chapter we extend the analysis from Chapter 2 to statistical inverse problems, i.e., to the
case where the operator 7 in (1.1) is not the identity. The main difference to the case T = id
concerns the dictionary used to construct the multiscale TV-estimator. In particular, using a
dictionary @ that merely satisfies Assumption 1 will not perform well: if we did so, we would

constrain our estimator to satisfy
max (v, T fo) = (Pw, dY)| < n,
we,

1.e., we would require the coeflicients of T fo to be close to the coefficients of T f, up to noise.
But due to the ill-posedness of the inverse problems, we have no guaranty that this implies that

the coeflicients of fy are close to the coefficients of f, i.e.,

(bor Thp = T1)| "small" =5 [(¢w, fo — )] "small". (3.1)

We are interested in estimating f, so we actually want an implication of the form (3.1), since
that would allow us to estimate e.g. the wavelet coefficients of f reliably, which would then
let us estimate f. A way to do so is to use the wavelet-vaguelette decomposition (WVD) of T,
provided that it admits one. In this section we show how to use the WVD of T to construct
a multiscale TV-estimator for inverse problems, and prove that the corresponding estimator is
minimax optimal up to logarithmic terms for estimating BV functions in any dimension. We also
present examples of operators 7" that have a WVD, such as the Radon transform or a convolution

operator.
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3.1 Main results

We make the following assumptions on the operator 7.

Assumption 4. Let T : D(T) C LZ(Rd) — LZ(M) denote a bounded, linear operator. For 8 > 0,
assume that the following hold:

e there is adictionary @ = {4 ((j,0) € Q} C L2(RY) satisfying Assumption 1 in Section 2.2
with I > 0, where the inequality there is replaced by

app <C max 27BJ 0, |+ C wn 112
Il < € max 277w 0. )| + Cligll

for any g € L* with supp g C [0, 11%;

e there is a set of functions {u ;¢ | (j,0) € Q} C Lz(M), which we call vaguelette system, such
that

T ujo =iy V(.0 €Q, (32)
with generalized singular values «; = 27JB. Furthermore, the vaguelettes satisfy
c1 < ||uj,9||L2 <cy V(j,0) €Q

for some real constants ¢y > ¢y > 0.
Remark 8.

a) Assumption 4 is slightly weaker than assuming that the operator 7" has a wavelet-vaguelette
decomposition (WVD) (Donoho, 1995). In particular, in a "proper" WVD the dictionary

¥ would be a wavelet basis. We nevertheless call {u g} a vaguelette system for simplicity.

b) As remarked in Section 2.1, we will only need the dictionary elements i, with nonzero
overlap with the unit cube, which we index by the set Q. We index the vaguelettes

accordingly.

¢) We recover the WVD of an operator if we choose the dictionary @ to be a basis of
Daubechies wavelets (Daubechies, 1992) in LZ(R‘Z) with D continuous partial derivatives
and whose mother wavelet has R vanishing moments, such that min{R, D} > max{1,d/2 +
B}. The condition min{R, D} > max{1,d/2 + B} is necessary for ensuring that the norms of

the Besov spaces Boo‘,lg -+ and B},,q, P, q € [1,00], can be expressed in terms of wavelet

coefficients with respect to the wavelet basis {4} (see Section 4.3 in Giné and Nickl
(2015)).
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d) Let {¢4} be a smooth enough wavelet basis. Then condition (3.2) implies that the inverse
problem (1.1) is mildly ill-posed with degree of ill-posedness . In particular, in this thesis
we only consider finitely smoothing operators. See the Conclusion in Chapter 6 for a

discussion of how to extend our construction to exponentially ill-posed problems.

Examples 2. We list here some examples of operators satisfying Assumption 4. For simplicity,

we assume that {i; ¢} is a smooth enough wavelet basis.

a) The integration operator

X
Tg(x) = foo gy)dy, xeR.
Its domain consists of functions g such that |§|_1T[g](§) € LZ(R), where ¥ denotes the
Fourier transform. The vaguelettes are given by derivatives and integrals of the wavelets
Y k.e» and the singular values are «; = 27J. Fractional integration, iterated integration
and higher dimensional integrals also define operators satisfying Assumption 4. We refer
to Donoho (1995) for more details.

b) The Radon transform, which maps a function g to
Tg(r,0) := f g(x)dx, reR, fe St (3.3)
{x-6=r}

where the integral is taken over the hyperplane defined by vectors x satisfying x - 6 = r.
See Section 3.3 for more details on how to apply the multiscale TV-estimator to Radon
data.

¢) The convolution operator
Tg(x) := fR K =y)g(y)dy

for a smooth enough kernel K € L'(RY) satisfies Assumption 4. See Section 3.3 for more

details.

d) The identity operator, in which case we are in the white noise regression model. In that
case we have u ;g = ¢ j, and the estimator (3.4) reduces to the multiscale TV-estimator

analyzed in Chapter 2.

More generally, operators satisfying a certain homogeneity condition with respect to dilations
have a WVD (see Donoho (1995) for a general result). Finally, we remark in line with Donoho

(1995) that Assumption 4 is in general not satisfied for operators 7 with a strong preference for a
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particular scale. An extreme example is convolution with a kernel whose Fourier transform has
compact support. In that case, the equation 7w , = ki jx . does not admit solutions uy , for

compactly supported wavelets ¥ x ..
In this setting, we define our estimator as follows.

Definition 2. Let the observations dY follow the model (1.1), and let the operator T satisfy

Assumption 4 with a vaguelette system {u ;g}. We denote

fq)’T € argmin |g|gy subjectto max |<uw, Tg)— (uw,dY>| < Yn, (3.4

geF,ND(T) We,
as the multiscale total variation estimator for the operator 7. In (3.4) we minimize over the set
JF, defined in (2.6), intersected with the domain of 7. We use the convention that, whenever the
feasible set of the problem (3.4) is empty (which happens with vanishingly small probability as

n grows, see Remark 9), the estimator fq),T is set to zero. &

Concerning the choice of the threshold y;,, let o > 0 be as in (1.1), and let ¢, be the constant in

Assumption 4. For a constant k > 0 to be specified later, we choose

[21og #Q
Yn =KCyOo %. 3.5

As for the estimator in Chapter 2, this threshold is chosen so that the true regression function f

satisfies the constraint in (3.4) with high probability (see Remark 9 below).

Example 2. In this example we illustrate the role played by the dictionaries {¢ ¢} and {u 4}
in the estimator (3.4). Following the logic of the multiscale TV-estimator from Chapter 2, we
require the coefficients of fq),T with respect to a dictionary {u,} to be close to the observed

coeflicients. Ignoring for simplicity the noise terms, the constraint in (3.4) is
max [(ue, Tfo.r = T < vn,
weL),

where f denotes the true regression function. Consider the following possibilities:

a) If {uy,} were a wavelet basis, then its good approximation properties would imply that
T fq)’T is close to T f. This is however no guaranty that ch,T is close to f. Let for instance
T denote convolution by a rapidly decaying kernel: it acts by locally blurring the details of
f,so T f does not preserve the small details (high frequencies) of f. Consequently, if {u,}
is a wavelet basis, the constraint does not force fq),T to match f in the high frequencies,
but it may still give a good reconstruction for the low frequencies. This phenomenon
affects the MIND estimator (Grasmair et al., 2018), which is also a variational multiscale

estimator. We recall it and illustrate it in simulations in Chapter 5.
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b) If {uy} is a vaguelette system associated with a wavelet basis {1/}, the situation is more

favorable. Again ignoring noise terms, the constraint on the estimator fq)j is

max Ko, T for = T1)| = (j’rg)ae)én 2P [0, for = ) < vn

for singular values «; = 27PJ. This constraint hence imposes similarity between fq),T
and f directly in terms of their wavelet coefficients: this is good, since wavelets have
strong approximation properties. Indeed, as in Chapter 2, we enforce similarity between
fq)’T and f at all scales simultaneously. There is however a crucial difference: the weight
27PJ implies that our constraint becomes less strict for smaller scales (large j). We have
illustrated the reason for this in the previous paragraph for a convolution operator: the
high frequencies (small scales) of T f are highly attenuated, so the high frequencies of our
observations carry relatively little information about the high frequencies of f. Exactly
how much information they carry is characterized by the degree of ill-posedness 8 and the
factor 2P/, Hence, using a vaguelette system {u,} allows the estimator (3.4) to extract as

much information as possible about the high frequencies of f.

The performance of the estimators presented in points a) and b) is illustrated in simulations in

Chapter 5, where we see the different levels of detail achieved by each of them.

Remark 9. Let us discuss the feasible set of the problem (3.4), which consists of the constraints
max [, 7¢) = (e V)| < v, ligllL= < logn, - supp g € 10, 11 (3.6)
weQ,

By Proposition 11 in Section 7.3.2 and the choice (3.5) for y;, the probability that the true
regression function f satisfies the first constraint in (3.6) is not smaller than 1 — O((#Qn)l_"z).
Aslong asn > el and f satisfies the first constraint in (3.6), it also satisfies the others, since we
assume that f € BV} . As a consequence, the feasible set of (3.4) is nonempty with probability of
the order 1 — 0((#Qn)1_K2). Hence, we will see that the caveat in Definition 2 about the feasible

set does not play a decisive role for the convergence properties of ch,T-

Proposition 6. In the setting of Definition 2, for each n € N there exists almost surely a
minimizer fq)’T € BVN L™ of (3.4).

The proof of Proposition 6 is given in Section 7.3.1. For given 3, d and ¢, recall the definition of
the exponent

B m forg < 1+2/(d +2B) a7

Dgp =1 T
m forq21+2/(d+2ﬁ)
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Theorem 4. For d € N, let T satisfy Assumption 4 with 8 > 0. Assume the model (1.1) with
f € BV for some L > 0. For g € [1, ), let i, g be as in (3.7).

a) Let y, be as in (3.5) with « > 1. Then for any n € N with n > L, the estimator f(D,T

in (3.4) with parameter 7y, satisfies

sup [|fp.7 — flize < Cn~9# (log n)>~mind:2) (3.8)
feBV,

with probability at least 1 — (#Qn)l_Kz, for a constant C > 0 independent of n.

b) Under the assumptions of part a), if K2>1+ m, then

sup Blllfp,r — flia] < Cn™"4# (logny’ -2 (3.9)
fEBVL
holds for n large enough and a constant C > 0 independent of n. The constant I' > 0 in the

condition on «? is the one from Assumption 4.
The proof of Theorem 4 is given in Section 7.1. We have the following consequence of Theorem 4.

Theorem 5. Consider the setting of Theorem 4, and assume further that the operator 7" satisfies
condition (3.11) below. Then the estimator (3.4) is asymptotically minimax optimal up to

logarithmic factors for estimating functions f € BV, L > 0, with respect to the L9-risk, for any
q € [1, ).

Proof. As in the regression setting, we show that the minimax risk over the smaller class
(Bi’1 N L*™);, c BVy is lower bounded by n~Y4s_ This matches the rate of convergence of the
multiscale TV-estimator up to logarithmic factors, which gives the claim. And indeed, according
to Theorem 6, the minimax rate of estimation in the inverse problem setting (1.1) over the class
(B%’1 N L) satisfies

R(LY, (Bh NL®)) = Cpyn Ve

which completes the proof. m|

Remark 10. In the same way as the multiscale TV-estimator for regression can be seen as a
hybrid between wavelet thresholding and variational regularization, the multiscale TV-estimator
for inverse problems is a mixture of wavelet-vaguelette thresholding and variational regularization.
This analogy raises the question of how well thresholding of the WVD performs for estimating
BV functions. This was answered by Donoho (1995), who proved that thresholding of the WVD
is minimax optimal over a range of Besov spaces. His results cover the case of BV functions for

d = 1 and B-smoothing operators with 8 € [0, 1/2). This is, to the best of our knowledge, the
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only available result for minimax optimal reconstructions of BV functions in inverse problems.

In this sense, our result is an improvement in that the estimator (3.4) is nearly minimax optimal

in any dimension d > 1 and for all 8 > 0.

Sketch of the proof of Theorem 4

The proof of Theorem 4 follows roughly the same ideas as that of Theorem 1, sketched in

Section 2.3. The main differences concern the wavelet and vaguelette dictionaries. In this section

we discuss how to deal with them.

1.

Recall that in the regression setting in Section 2.3 we work conditionally on the event A,
in (2.11), which guaranties that the observational noise is not too large. In our present
setting, the estimator fq)’T is based on the projection of dY onto the vaguelette system u .
We hence need to guarantee that the noise corrupting these observations is suitably small.

The exact condition that we need is encoded in the event

< ﬂyn} (3.10)
o

ﬁn = { max

; dw
X fM ujg(x) dW(x)

As in the sketch of Theorem 1, our strategy is to show that fq),T converges at the optimal rate
conditionally on the event Ap. Further, we show that this event happens with probability

approaching 1 asn — oo

In order to bound the L9-risk, we also use here an interpolation inequality derived from

Theorem 3. However, for reasons to become clear soon, we need to relate it to the BV and

BZF

Besov norms, 1.e.,

d+28

fo.7 = fllLe < Cllfo,r - f||”’tif,§2ﬁ||fm flig?™? ford >2 and g €[1,1+2/(d+2B)].

While the term || fq)’T — fllgy can be bounded as in Section 2.3, the term || fq)’T = fllg-ar-s
requires a special analysis, which we sketch now. First, since the dictionary @ satisfies

Assumption 4, we can bound the Besov norm as

Vo = fllyans < max 2P0, for = M+ Cllfar = fl=n™"".

The second term can be handled as in Section 2.3. For the first term, we have
max 2y g, fo.r - Nl = max 2—% NT*uj, fo.r = 1)
()R, ; (J)eQ ’

< maX |<u e,qu>T>—<u ,e,dY>|+— max [(ujg,dW)|,
(0eQ, / Vi (ieq,
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using the definition of vaguelettes and «; = 27PJ. The first term in the right-hand side
is bounded by vy, by construction of the estimator f\q)’T in (3.4), while the second term
is bounded by 7y, conditionally on the event Ap. Plugging the value (3.5) of y,,, we get
altogether the bound

lfo,1 - f||B;d£02—ﬁ <cn 12 logn

conditionally on An. Inserting this in the interpolation inequality gives part a) of Theorem 4
forg <1+2/(d+2B).

3. For g > 1+ 2/(d + 28), we use Holder’s inequality as in the sketch of the proof of
Theorem 1. Finally, the claim in part b) of convergence in expectation follows easily from
that.

Remark 11. We have sketched the proof for d > 2. As in the proof of Theorem 1, the case d = 1

requires a slightly different treatment. We refer to the proof in Section 7 for the details.

3.2 Minimax lower bounds

Here we prove a lower bound for the minimax risk over Besov spaces B; »$>0,p,te(l, 0],
for observations (1.1) from a 8-smoothing operator, with respect to the L7-risk. By the embedding

Bi | € BV this provides a lower bound on the minimax risk over BV.

In order to state the result, we make the following assumption. For § > 0, the linear operator
T : L2(RY) - L2(M) satisfies

ITW s ellp2 < c27F V(i ke) € Q (3.11)

for a constant ¢ > 0, where {{ .} is a wavelet basis of compactly supported wavelets. We
remark that any operator 7" that admits a WVD satisfies this condition (Donoho, 1995). Notice
that the case where T = id with 8 = 0 is allowed, and gives a lower bound for the minimax rates
in a regression setting. For inverse problems, the Radon transform and a convolution operator

with suitable kernel satisfy (3.11).
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Theorem 6. Let 1 < p,f <o0o,1 <g<oo,s>0and L >0. Let T satisfy (3.11) for 8 > 0. Then
there is a constant Cy - > 0 such that the minimax risk over the set (Bls) N L)y in (1.17) for

observations from the inverse problem (1.1) satisfies
R, (B),; N LP)L) 2 CLg Tns, ps1,q)

for all n € N, where

X if g < pLEst
std(L-1)
rn(s, pot,q) = (10%)2”2“2”’(5}7) ifg> pPZP and s> d/p (3.12)
)
n_ @28 ifg > p—dtl%z;fﬁ and s < d/p.

As stated in Theorem 5 above, the first consequence of Theorem 6 is that the multiscale TV-
estimator is minimax optimal over BV}, up to logarithmic factors for any g € [1, c0) and any
B =0.

More generally, Theorem 6 gives insight about the difficulty of estimating quite general functions.
The parameter regimes g < p% (dense case) and g > p% and s > d/p (sparse
case) are well understood, and the associated minimax rates have been known for a while for
Besov spaces if T = id (see Chapter 10 in Hérdle et al. (2012)), and for Sobolev spaces with
p = 2 for some inverse problems (see Cavalier and Tsybakov (2002)). Their proofs follow the
classical strategy of constructing a set of alternatives in (B;’t N L) that are well separated in

the L9-norm, and applying an information inequality (e.g. Fano’s inequality).

On the other hand, the regime g > pdz%rs;ﬁzﬁ and s < d/p is far less popular. For regression

(B = 0), this regime was observed by Goldenshluger and Lepskii (2014) and Lepskii (2015) for

anisotropic Nikolslkii classes, which in the isotropic case correspond to Bf,,oo, and in general

allows for different smoothness and integrability indices in different spatial directions.

Regarding the boundaries between regimes, Donoho et al. (1997) showed that at the boundary

q= pd":jzs , § > d/p, the lower bound can be tightened by an additional logarithmic factor. At

that boundary for s < d/p and at the boundary s = d/p we do not know whether the bounds can
be tightened, since the only estimators known to converge there (the one in Lepskii (2015) and
in the present thesis) attain the lower bound up to logarithmic factors.

Notice that for s < d/p, functions in Bz’t are not continuous. The presence of discontinuities
then precludes consistency in the L™ -risk, a phenomenon that was stressed by Lepskii (2015)
and that is well-known in dimension d = 1 for change-point estimation (Li et al., 2017). We
remark that the L inconsistency is responsible for the slower rate in Theorem 6. To see that,

consider the opposite case, i.e., s > d/p. It is well-known since Nemirovski’s work (Nemirovski,
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1985) that the minimax risk over Sobolev W*/ spaces w.r.t. the L9-risk is determined by its
values at ¢ = p(1 + 2s/d) and at g = co. For a suitable estimator (e.g. the window estimator
in Nemirovski (1985)) one has the bounds

A _1 s
”f - f”Lp(l+2s/d) <C (n log I’l) 2s+d
s—d/p

7 /
f = fllze < C(n_1 log n)2s+d-2dp

with high probability. The L9-risk for all other g € [1, co] follows by domination and interpolation,

i.e.,
R I = fll prsasiay < C (n~ ! log n)7ea if g < p(1 +2s/d)
”f - f”Lq < R P(2S‘;'d) . l_P(25;d) | s+d/q—d/p
1 = Al pasollf = fllpe ™ < C(7" logn)2+d=2die else.

This argument holds for s > d/p, since then we can guarantee that the L™ risk tends to zero.
However, for s < d/p the L™ risk does not tend to zero, whence the risk bound for g > p(1+2s/d)

deteriorates to

p(2s+d) 1— p2s+d)

o o 20 " _ sp
f = fllee < 1If = fIIL,,‘(’ﬁzX/d)IIf — fllje “ < C(m! logn),
which matches the lower bound in Theorem 6.

Remark 12 ("Ideal" risk). A practical implication of this result is that, if s < d/p, using the
L9-risk for large g comes at the cost of a slower convergence. On the other hand, in many
applications one wants to take g as large as possible. Our result suggests that the ideal g is given
by g = p(1 + 2/(d + 2)), as it is the largest index that still achieves the "fast" rate n~1/(d+26+2)
In particular, for BV functions and 8 = 0, this implies that the ¢ = 1 + 2/d risk is better suited
than, say, the L2risk for d > 3.

Remark 13 (Multiscale alternatives). The proof of the lower bound on the minimax rate in the
regime s < d/p, which we give in Section 7.2 is based on the classical reduction to testing:
we construct a set of alternatives separated by a distance ¢ and show that no statistical testing
procedure can distinguish them perfectly. This construction is then "inverted", and implies that
any estimation procedure makes an expected error of at least 6. The largest possible lower bound
is then achieved by looking for the largest distance ¢ as a function of n such that no testing
procedure can distinguish the alternatives perfectly (see e.g. Tsybakov (2009) for more details).
As in the dense regime, our construction of the alternatives is based on Assouad’s cube applied to
a wavelet basis {{ jx .} (Assouad, 1983). For simplicity of the notation, we sketch the construction
here for 8 = 0.
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Recall that in the dense regime (g < p(1 + 2/d)), the set of alternatives that determines the lower

bound is

(ge=g0+7 D eWike|re € -1, 41), (ke)el0,....,27 — 1) x E}),
(k.e)ePIXE;

where y > 0 parametrizes the "signal strength" of the alternatives. This regime is called dense
because the difficulty of estimating is driven by functions supported everywhere. On the other
hand, the minimax lower bound in the sparse regime (¢ > p(1 + 2/d), s > d/p) is determined by

the set of alternatives

{8ke =80+ YV jke|ke) € {0,...,2/ - 1}d><Ej}-

In other words, the functions that are most difficult to estimate in this regime are localized spikes.
Finally, in the multiscale regime (¢ > p(1 + 2/d), s < d/p) the minimax lower bound is driven
by alternatives of the form

(ge=80+7 D, eWjke|ere €l-1,+1), (ke)eRy),
(k,€)eR,

forasetR; c {0,...,2/ —1}4 X E j of cardinality #R ; = |2/(d=5P) | These functions distribute
their mass among #R ; spikes whose locations can vary. Interestingly, this suggests that multiscale
estimators like (2.5), which enforce a local fitting at different locations and scales, may be optimal
in this regime. In the present work we have verified this for BV functions, and in Lepskii (2015)
a kernel estimator with spatially varying bandwidth was shown to be optimal over Nikolskii

classes in this regime.

3.3 Examples

For the following examples we choose the dictionary @ = {1 .} to consist of sufficiently regular
Daubechies wavelets. The precise regularity depends on the ill-posedness of the operator T': for
a B-smoothing operator (i.e. with singular values «; = 27JP), we choose @ to be an S -regular

basis with S times continuously differentiable elements, where S > max{1,d/2 + f}.

Radon transform

Due to its application in nondestructive imaging, in particular in medial applications, tomography
is a very relevant inverse problem. While there are plenty of mathematical models for tomography,

which mainly depend on the type of tomography and the geometry of the detector (see e.g. Chapter
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1 in Scherzer et al. (2009)), in this section we will exemplarily consider tomography modeled by
the Radon transform. For simplicity we consider here the two dimensional case, in which the

Radon transform of a function g is given by its line integrals along different directions, see (3.3).

Functions in the range of T are supported on cylindrical sets of the form M = R x [0, 27).
Moreover, the domain of T consists of functions g € Lz(Rz) whose Fourier transform satisfies
1€~ 1/ 27: 1(¢) € L2. This is a condition on the low frequencies which essentially ensures that

local averages remain reasonably small.

In this section we will show how to apply the estimation framework developed above to this type
of inverse problems. For that, let {y/ .} denote a basis of Daubechies wavelets as described in
Section 2.1. For (j, k, e) € Q, the vaguelettes are functions on the radial and angular coordinates
(r, 0) defined by

2=Jjl2
(2m)?

1, 6) = f o F 1 1110 08 6, 5in 6) € dp, (3.13)

It is easy to verify directly (see e.g. Chapter 2 in Natterer (1986)) that the vaguelettes satisfy the
equation

%
T tjke=Kj¥jke

for singular values «; = 2742 Moreover,
c1 S lujpellz <2 V(jik,e) € A,

for explicit constants ¢y, cp depending on ¥ () ., see Section 3.3 in Donoho (1995) for a proof of
this claim. Let us remark that the system {u kel is part of a WVD for T (see Donoho (1995) for
the details). In particular, it satisfies condition (3.11).

Altogether, the observations above imply that the Radon transform satisfies Assumption 4 with
B = 1/2 in dimension d = 2. By Theorem 4, the multiscale total variation estimator (3.4) is
nearly minimax optimal for recovering a function f € BV} from noisy Radon observations. We
remark that the same analysis can be performed for the Radon transform in higher dimensions,
in which case 5 = (d — 1)/2, for the X-ray transform, with § = 1/2 for any dimension (Natterer,
1986), as well as for other tomography operators, such as photoacoustic and thermoacoustic

tomography (see e.g. Haltmeier (2013)).
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Convolution

Let T denote the convolution operator with a kernel K € L (Rd), ie.,
Te = [ Kr=0)dy.

We let M = R9, and by Young’s inequality 7 is a bounded operator from D(T") = L2(RY) to itself
whose operator norm equals ||K|[; 1. The inverse problem (1.1) with a convolution operator 7" is a
model for a myriad of applications in image and signal processing, including microscopy and
astronomy models (see e.g. Bertero et al. (2009)). The problem of recovering a signal f from
noisy measurement of its convolution 7 f is hence of extreme practical relevance. In this section
we show that the multiscale TV-estimator (3.4) solves this problem in a minimax optimal sense.
For that, we need to impose regularity conditions on 7', which naturally have the form of a decay

condition on the Fourier transform of K. In particular, we assume that the kernel K satisfies
a; (1+ PP < IFIKIE| < ay (1 + P P2 e e R (3.14)

for constants aj,ap > 0 and some B > 0. Given a basis of Daubechies wavelets {1 .} like that
in Section 2.1 with § > max{1, d/2 + B}, define the system of functions

F1¥0,0,10)

Ujfe(X) 1= 2j(d/2_'8)7’_1[7_~[K](_2j.)

](2jx—k) (3.15)
indexed by the set Q2 in (2.2). These functions satisfy the following relations

T*“Jlk,e =Kj¥jke Wherek;= 2B,

€1 S lujpellpz < 2 Y(jik,e) € Q,

where we can choose ¢; = minee{o’l}d ||(—A)B/2;l/0’0,e||Lz and ¢y = MaX,¢(0,1)d 10,0l g (see
Proposition 13 in Section 7.3.5 for the proof). Further, it is easily verified that such a convolution
operator satisfies (3.11).

These results show that the convolution operator 7 under the assumptions above satisfies As-
sumption 4. By Theorem 4 we conclude that the multiscale TV-estimator is minimax optimal for
estimating functions f € BVp, up to logarithmic factors. Finally, in Section 5.2 of Chapter 5 we

analyze the numerical performance of the multiscale TV-estimator for deconvolution problems.

Here we have considered convolution kernels that decay polynomially in Fourier domain, which
correspond to mildly ill-posed inverse problems. We discuss the extension to exponentially

ill-posed inverse problems in the Conclusion in Chapter 6.
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CHAPTER 4

Computation

In this chapter we discuss how to implement and efficiently compute the multiscale estimator

fo € argmin [glpy st. max [(¢w, g) — Yu| < ya. @1
geF, weL),

Notice that this estimator covers the settings of regression and of inverse problems, in which

case the dictionary ¢, would be chosen as indicated in Chapter 3. The optimization problem

in (4.1) presents two challenges:

a)

b)

The objective function | - |gy is a non-smooth functional. This is a difficulty, since it
yields standard optimization methods such as gradient descent inapplicable. We are left
with two alternatives: either use techniques from non-smooth optimization, or find a
smooth surrogate for our problem and apply standard techniques to it. We pursue both
approaches: on one hand, we use the primal-dual Chambolle-Pock algorithm (Chambolle
and Pock, 2011) for non-smooth optimization (see Section 4.1), and on the other hand,
we use the Moreau-Yosida regularization and a Newton-type algorithm in combination
with the path-following technique (see Section 4.3). Each method has advantages and

disadvantages, which we discuss below.

The constraint in (4.1) involves the maximum over the set Q2,,. This is the index set of
the dictionary ®. As argued in the Introduction, the estimator (4.1) performs best for
very redundant dictionaries @. This implies in particular that the set Q,, will be quite
numerous (typical numbers are #, ~ 10* for d = 1 and n = 256, and #Q, ~ 10’
for d = 2 and images of size 256 X 256), thus making the evaluation of the constraint
in (4.1) a computationally demanding task. An efficient way of dealing with this problem
is to solve (4.1) by a primal-dual approach, as presented in Section 4.1. In that situation,
the constraint appears only via the proximal mapping of its Fenchel conjugate, which in
our case turns out to be simply the soft-thresholding operator. Soft-thresholding can be

implemented efficiently, which makes the primal-dual approach very successful.
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In Section 4.1 below we briefly describe the Chambolle-Pock primal-dual algorithm, and in
Section 4.2 we explain how to apply it to our problem. In Section 4.3 we present an alternative
algorithm that uses the Moreau- Yosida regularization and a Newton-type method to solve (4.1).
Finally, we briefly comment on further alternative algorithms in Section 4.4, and discuss the

advantages and disadvantages of the different approaches.

Remark 14. In this section we will work with the Fenchel transform of a functional F, denoted
by F*. We warn the reader of the similarity between this and the notation for the adjoint of an

operator K, denoted by K*.

4.1 The Chambolle-Pock algorithm

The Chambolle-Pock algorithm, introduced by Chambolle and Pock (2011), is an algorithm
for non-smooth convex optimization. Roughly speaking, it operates by solving the optimality
conditions for the primal and the dual problems alternatively. In order to explain it, we need
some notation. Most of the general notation and standard claims in this section can be found
in Rockafellar (2015). As customary in the optimization literature, we consider all real-valued
functionals in this section to map to the extended real line R U {+co}. This has the consequence
that infima and suprema are always attained, so we write min and max instead of inf and sup.

Let us introduce the following notation:

a) V and W are finite dimensional vector spaces with norms || - ||y and || - ||y arising from inner
products (-, -)y and (-, -)w. When it is clear from the context, we drop the dependence on
V and W from the notation and write simply || - || and (-, -). The topological dual W* of W

is identified with W as a vector space, and the same is done for V.

b) Let K : V — W* be a continuous linear mapping with operator norm || K llop := maxy <1 IKVI|.
Recall that we denote by K™ the dual of K with respect to the inner products of V and W,
ie.

(w, Kv)w = (K*w,v)y YveV,VYweW.

¢) Define the Fenchel transform (also called convex conjugate) of a convex, lower-semicontinuous

functional H : W — [0, +c0) as the mapping
H*(z) := max (z, w) — H(w), z¢€ W*.
wew

The functional H* is then convex and lower-semicontinuous (see Section 12 in Rockafellar
(2015)).
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d) Let F* : W — [0,4c0) and G : V — [0,+0) be convex, lower-semicontinuous
functionals. Assume that F* is the Fenchel conjugate of a convex, lower-semicontinuous
functional F. Then F** = F (see Rockafellar (2015)).

e) We say that a functional F is simple if the resolvent mapping

o2
v=(+ TaF)_l(w) = argmin lle = wii” + F(2)
ZEW* 2T

can be computed efficiently for any 7 > 0. Here dF denotes the subdifferential of F.
We remark that if F is simple, then F* is simple as well by Moreau’s identity (see the
remark after Theorem 31.5 in Section 31 in Rockafellar (2015)). That something can
be "computed efficiently" is an admittedly vague statement, but we shall give it a more

concrete meaning in Section 4.2 when we consider particular functionals.

In this setting, the Chambolle-Pock algorithm solves problems of the form
min F(Kv) + G(®v). (4.2)
veV

Expressing F as the convex conjugate of F*, this can be written as

min max (Kv, w) — F*(w) + G(v). 4.3)

veV weW

Assume that a solution (v, w) € V x W to (4.3) exists. It follows (see Theorem 31.3 in Section 31
in Rockafellar (2015)) that it satisfies the conditions

Kv € 0F*(w)
-K*w € 0G(v),

where we write inclusions because the subgradient of a non-smooth functional is in general
set-valued. Adding the identity mappings Iy and Iy of the spaces V and W, these equations can
be written as

w+ o Kve (ly+odF*)(w)

v—1K*w € (Iy + 1G)(),

4.4)

for any o, 7 > 0. In this setting, the Chambolle-Pock algorithm finds a solution (v, w) to (4.3) by
iteratively solving the two equations in (4.4), as show in Algorithm 1. Note that this can be done
efficiently under the assumption that F and G are simple, which is the case for the problem we

are interested in (see Section 4.2 below).
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Algorithm 1 Chambolle-Pock algorithm

Require: 0,7 > 0,60 € (0,1], N =0, (vg, wg) € X X Y, stopping criterion
1: while stopping criterion not satisfied do

WN+1 € (IW + U@F*)_I(WN + O'KVN)
vns1 « (Iy +70G) vy — T K* wyi1)
VN+1 < VN +O0(VN41 — VN)

N—N+1

2: end while
3: Return (v, wy)

The stopping criterion in Algorithm 1 typically involves a maximum number of iterations Npax

and a convergence criterion of the form max {|lvy — vyi1ll, Wy — wyi1ll} < €.

Theorem 1 in Chambolle and Pock (2011) guarantees that, if the step sizes 7 and o~ in Algorithm 1
satisfy ro < ||K II;I%, then there is a saddle-point (v, w) of (4.3) towards which the sequence
(vy,wp) converges as N — oo. Recall that v is the solution to our original problem (4.2).

Moreover, there is a variant of Algorithm 1 that uses so-called acceleration and guarantees that
vy =¥l < CN7! (4.5)

holds for N large enough, where C > 0 is a constant depending on the initialization and
the parameters of the algorithm. In a nutshell, the idea behind acceleration is to choose the
parameters 6, o and 7 in the algorithm to depend on the iteration number N. We refer to Theorem
2 of Chambolle and Pock (2011) for a proof of this result.

4.2 Implementation of the estimator

In order to compute the estimator in (4.1), we first need to discretize it. We do so by representing
a function g by its values at a regular grid of » points in [0, 114, where n = m? for m € N. More
precisely, if I';; denotes the equidistant grid in (2.17), we denote the discretization of a function g
in [0,119 by g, := {g(x)}x.er,- We see gy as a d-dimensional array of size m: e.g. g, € R"WXM
is a matrix if d = 2, and a vector g € R" if d = 1. We denote the set of all such arrays by RI».

Denote by ||D gy|l; the bounded variation seminorm of the array g;, defined as

D gally := D IDgn(0),

xel,



4.2. Implementation of the estimator 59

where

Dgal = [> |galx) - gu®)|’

y=x
and the sum is over all neighbors y of x in the grid with coordinates not smaller than those of x,
written x < y. This restriction is immaterial, but it simplifies the work with the finite difference
operator, defined below. We use the convention that two points x, y € I';; are neighbors if, when
seen as vectors x = (xy,...,Xxg7), ¥y = (J1,...,Y4), they differ by m~1in exactly one coordinate,

and are equal in the others. Finally, we define the finite difference operator D by

(gn(x) —gn(y)) ifx=<yely,

else.

Dgn(x,)’) =

Given the dictionary @ = {¢,, |w € Q} of functions, we denote by ¢7, the discretization of the

function ¢, in the grid I';;. This is again a d-dimensional array of size me.

With this notation, the discretization of the minimization problem in (4.1) can be written as

min D gull; s.t. max [(¢}}, gndr, = Yo| < vn, (4.6)
gn€RIn we,

where |
(@l &), = = >, B (Dgn(x)
n
xel,
is a discretization of the L?-inner product between the functions ¢, and g. We solve the
discretized problem (4.6) by formulating it in the form (4.2) and using the Chambolle-Pock
algorithm. For that, we turn the constraint minimization in (4.6) into a penalized minimization

problem by means of the indicator function

0 if max Zw <0
l<o(2) := Wl < for z € R¥
+o0o0  else
Hence, we can write (4.6) as
m]iRnF ID gnlli + 1<0(Kgn =Y —yn) + l<o(=Kgn + Y = yn), 4.7)
gne n

where K : RI" — R# i the linear operator that maps an array g, to the vector of its #€2,

coefficients with respect to the discretized dictionary {¢}, | w € Q,}, i.e.,

[Kgnlw = <¢Z,gn>rn for w € Q.
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Notice that (4.7) indeed has the form of (4.2) with V = Rl equipped with the inner product
¢or, W= R#n equipped with the standard inner product, the operator K as above, and

functionals

FO) =190 =Y —yn) + lg(=v+ Y —y,) forv e R¥¥,
G(w) := |Dwll; forw € RI".

Notice that G is proper, convex and lower-semicontinuous, while F is lower-semicontinuous and
convex due to the fact that the constraint set in the definition of the indicator function 1< is

convex. Furthermore, the convex conjugate of F is given by

F@i=  sup =@V +ylldi = . 2w¥ew + yakol.

max|x,—Y,|<
weQy ¢ ¢ Yn weQ,

Moreover, the mappings G and F* are simple in the sense of Section 4.1, since their proximal

mappings can be computed as the minimization problems

2
llx = v|
in IDx
xeRn
forv e Rl and 5
llz — wl|
S S +Yn Z |Zw - TYw| (4.8)
Z€R™n weQ,

for w € R#

, which can be solved efficiently for any 7 > 0: the former by Chambolle’s
algorithm (Chambolle, 2004) or by quadratic programming (Nesterov and Nemirovsky, 1994),
and the latter has an exact solution in terms of soft-thresholding. We conclude that the Chambolle-

Pock algorithm can be used to solve the minimization problem (4.7).

Discretization of the BV seminorm

Remark 15 (Discretization of the BV seminorm). Since we have discretized the BV seminorm
in order to apply the Chambolle-Pock algorithm, one could ask how much we lose by dis-
cretizing the original problem. This was answered by Chambolle (2004), who showed that the
properly rescaled discretized functional ||D gj||; converges to the BV seminorm in the sense of
I'-convergence. He also showed that Chambolle’s algorithm in the discretized model produces
reconstructions that converge to the minimizer of the continuous model in the limit n — oo.

While these results imply that one can rely on Chambolle’s algorithm, some authors have shown
that the discretization of the BV seminorm can be unstable in general. In the setting of Bayesian

inverse problems, Lassas and Siltanen (2004) and Lassas et al. (2009) proved that imposing a
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discretized BV prior (analogous to regularizing with the BV seminorm) shows the following
phenomenon: as the level of discretization grows, the posterior mean estimator converges to
the posterior mean corresponding to a Sobolev H' prior (Theorem 5.1 in Lassas and Siltanen

(2004)). Further, Lassas et al. (2009) show that Besov B% | priors do not show this effect. This

1
1,1

seminorms: the former is not discretization invariant, while the latter are. We refer to Section 1.4

is one of the main computational differences between the BV and the Besov B; , or Sobolev

in the Introduction for other results concerning the discretization of the BV seminorm.

4.3 Semismooth Newton approach

Here we present an alternative approach for solving (4.1) that is based on smoothing the original
problem and applying a Newton-type method to solve it. Of course, this yields the solution
to a smoothed problem, and not to the original one. This issue is mitigated by the technique
of path-following (see e.g. Hintermiiller (2010) and Hintermiiller and Rasch (2015)), which
essentially amounts to iteratively solving the smoothed problem with a decreasing amount of
regularization. Schematically, let F denote the original functional we want to minimize, and
let F¢ denote the functional "regularized at level €", whatever this means (we will see below an
explicit example of regularization). The path-following schema is sketched in Algorithm 2, and

is based on the following assumptions:

a) it is more difficult to minimize the unregularized functional F' than its regularized version
Fe;

b) the smaller €, the more "similar" F¢ and F' are, and the more computationally demanding

it is to minimize F¢;
¢) the computational cost for minimizing F¢ depends crucially on the initialization.

With these ideas in mind, the path-following schema would ideally start with a large parameter
€0, for which the minimizer x( of F¢, is easily computed. In each iteration € will get smaller,
which means that F'¢ will be more difficult to minimize, but we will also have better initialization
points, which makes minimization easier.

So far we have only talked about "regularizing" the original problem in a broad sense. In
the following we will consider the Moreau-Yosida regularization of the subdifferential of the
functional. The reason for using it is that the semismooth Newton method applied to the Moreau-
Yosida regularization of a functional is known to achieve superlinear convergence (see Section 5
of Hintermiiller (2010)). One of the inspirations to use this approach is the work of Clason et al.

(2018), who used these techniques to solve an optimization problem involving a BV-penalty.
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Algorithm 2 Path-following schema

Require: ¢ > 0,7 (0,1), N =0,v_; € V, mapping € — F¢(-), stopping criterion
1: while stopping criterion not satisfied do

vy < argmin Fe,(#) using vy_1 as initialization
u

EN+1 < T €N
N—N+1

2: end while
3: Return vy

Let us explain this approach in more detail. We consider for simplicity the case d = 1, since the
mappings D and D* are then easier to handle. The optimality condition for the minimization

problem (4.7) is given by the set inclusion
0€ D*@ll - ll1)(Du) + K*(01<0)(Ku = Y = yn) = K*(01<0)(~Ku + Y = yn), (4.9)

where || - ||;1 denotes the subdifferential of the Ll—norm, and d1( denotes the subdifferential of
the indicator function 1<q. In d > 2, the subdifferential of the BV seminorm is slightly different,
since then we have the L! norm of the Euclidean norm of the gradient (see Section 5.2 in Clason
et al. (2018) for the details).

Our goal is to find a function u such that (4.9) holds, but the fact that the subdifferentials are
set-valued complicates matters. Our approach here is to replace them by their Moreau-Yosida
regularization, which is a single-valued Lipschitz-continuous functional. The Moreau-Yosida
regularization of the subdifferential OF of a convex, lower-semicontinuous functional F is defined
as

(OF)5(v) := %(V I+ 66F)_1(v)) for 6> 0.

We refer to Section 3 of Parikh and Boyd (2014) for further details on this regularization
technique. The Moreau- Yosida regularizations of the two subdifferentials appearing in (4.9) are

givenind = 1 by

1 ifv>6
@) =1L ifve(=5,6)
-1 else,

(01<0)5(v) = émax{O, v},
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where the maximum is applied component-wise to the vector v € R# Substituting the

subdifferentials in (4.9) by their regularized counterparts yields the equation
1
0=D*| - IL1)s, (Du) + 6—K*(max{Ku —Y — ¥, 0} — max{—Ku + Y — y,,0}) (4.10)
2

for regularization parameters 01,62 > 0. This is now an equation of the form F, 5,(«) = 0 for a
Lipschitz-continuous functional Fs, s,(-). Actually, this functional is semismooth (see Definition
2.5 in Hintermiiller (2010)), which means that the semismooth Newton method can be used, and
it converges superlinearly to a solution u of F, 5,(u) = 0 (see Theorem 2.14 in Hintermiiller
(2010)). The semismooth Newton method for this problem can be readily implemented. Denote
by Dn[Fs, s,] the Newton derivative of the functional at the position uy. We initialize the

iteration at uq and solve the linear equations

DNIFs, 5,]un+1 = DNIFs, 6,lun — Fs, 5,(uny) forN =0

iteratively until a stopping criterion is satisfied.

We have just described how to use the path-following technique for approximating a "difficult"
optimization problem by a sequence of "easier" problems. Then we have discussed how to
construct the easier problems with the Moreau-Yosida regularization, and how to solve them
with the semismooth Newton method. The question now is: do we have convergence guarantees
for this approach? The answer is yes, the combination of path-following and the semismooth
Newton method achieves local superlinear convergence (see Section 5 of Hintermiiller (2010)),
ie.,

luyy1 —ul < C|MN—ﬁ|q for Ne N

for some g > 1, a constant C > 0 depending on the derivatives of Fs, s,, and u being a solution
of Fs, 5,(u) = 0. Given a good initialization u(, the error tends to zero considerably faster than
the error of the Chambolle-Pock algorithm (4.5) does. In this sense, the semismooth Newton

approach is preferable over the Chambolle-Pock algorithm.
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4.4 Alternative methods and comparison

Linear programming

We remark that the problem (4.7) can be solved with other methods too. It is for instance

straightforward to cast (4.7) as a linear program (LP):

Dgu(x,y) < hu(x,y) Vx,y eIy,

. Z By st —Dgn(x,y) < hy(x,y) Vx,yely
(g2 )CRTm R by S Kool <Y, Vw € Q
nslln (x,y)er% [ gn]a) = 1w + Yn w e n

—[Kgnlw £ Yo +yn VYweQ,.

We can use this observation to solve the problem (4.7) by some standard method, e.g., the simplex
algorithm or an interior point method (Nesterov and Nemirovsky, 1994). In spite of its conceptual
and technical simplicity compared to the Chambolle-Pock algorithm or the semismooth Newton
method presented above, the approach to (4.7) via linear programming is feasible in dimension
d =1 only. Its complexity scales polynomially in n? = #F,% and in #€),, and since the set Q, is
bigger in higher dimensions, the linear programming approach becomes impractical already in
d=2.

Algorithm H Advantages ‘ Disadvantages
Chambolle-Pock computationally efficient poor convergence guaranty
Semismooth Newton || local superlinear convergence | computationally demanding
LP method local quadratic convergence | feasible in d = 1 only

Table 4.1: Comparison of advantages and disadvantages of computation methods available for the
problem (4.1). The Chambolle-Pock algorithm and the semismooth Newton approaches produce
good results and are feasible in dimensions d = 1,2. The iterations in the Chambolle-Pock
algorithm can be computed faster, but this method enjoys a slower theoretical convergence
guaranty than the semismooth Newton and the LP methods (see the table in Figure 4.1 for an
illustration).

ADMM algorithm with orthogonal projections

An alternative approach for computing the estimator in (4.7) uses a variant of the alternating
direction method of multipliers (ADMM) algorithm (Boyd et al., 2011), which was employed
by Frick et al. (2012), Frick et al. (2013) and Grasmair et al. (2018) to solve minimization
problems with a multiscale constraint of the form (4.7). It proceeds by splitting the problem into

two subproblems: a smoothing step (using the BV-seminorm in our case), and a projection to the
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constraint set. Since the constraint set is the intersection of half-spaces, the projection can be
computed e.g. with Dykstra’s algorithm (Dykstra, 1983) or some alternative method (Bauschke
et al., 2000).

We remark that the approach using the ADMM algorithm with a projection step typically has a
longer runtime than the other algorithms presented here. The reason for that is that the splitting
into a smoothing and a projection steps is highly asymmetric: the smoothing step can be solved
very efficiently, while the projection onto the intersection of many half-spaces may be quite time
consuming. The projection step is bypassed in the Chambolle-Pock algorithm by solving the
dual problem instead, which has the form of soft-thresholding (4.8).

Chambolle-Pock SS Newton
— : :
sl ruth ek | 3L [——tuth
estimator bt xS ¥ estimator
*  observations T *i [ﬂ *  observations
25 F * * * — . F
* E S
ol KX
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* ***
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e
e,
05 - . - . ] o N
0 T n:n *t*:; o *}ﬁ*{g‘
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LP method
. . — .
3l truth AT X N
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*  observations M * *: *
*
25 hd *
.| Method | Runtime (s) | Residuals
sl Chambolle-Pock | 0.25 3.17
SS Newton 51.18 4.18
s
LP method 2.84 1.83
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. *3: o p ey % #ﬁ
Ol RN
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Figure 4.1: Comparison of the Chambolle-Pock algorithm, the semismooth (SS) Newton method
and a LP method for solving the problem (4.1) in d = 1 for sample size n = 256, corrupted
with Gaussian noise with standard deviation o = 0.1 || f]|z~. The runtimes in seconds and the
L2-norm of the residuals are given in the table.
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Comparison

In Table 4.1 we give a summary of the main advantages and disadvantages of the methods we
used. We illustrate their performance in Figures 4.1 and 4.2 for examples ind = 1 and d = 2,
respectively. Notice that the semismooth Newton method produces smooth results in d = 1:
this is natural, since it smoothes the original problem in order to apply gradient methods. On
the other hand, the Chambolle-Pock algorithm and the linear programming approach produce
solutions with sharp jumps, since they do not smooth the BV-functional. Moreover, as shown in
the table in Figure 4.1, the Chambolle-Pock algorithm is two orders of magnitude faster than the
semismooth Newton method, and they achieve comparable errors.

The situation in dimension d = 2 is slightly different: here we only compute the Chambolle-Pock
and the semismooth Newton reconstructions, since the linear programming approach would
be very time-consuming. In the table in Figure 4.2 we see that the two methods have similar
runtime, but the relative error of the semismooth Newton method is one order of magnitude
smaller than that of the Chambolle-Pock algorithm. This is also visually seen in the plots in

Figure 4.2, where the semismooth Newton method provides a more satisfactory reconstruction.

Software

We implemented the estimators presented in this and the next section in MATLAB. The implemen-
tation of the Chambolle-Pock algorithm is based on the Multiscale OPtimization package (MOP),
developed by Dr. Housen Li and available at http://stochastik.math.uni-goettingen.
de/mop.

The implementation of the semismooth Newton method is based on unpublished code by
Dr. Frank Werner. In his code, the objective function to be minimized is the L2-norm instead
of the BV-seminorm. This difference added an additional difficulty, since this functional is not
smooth and required additional regularization, as sketched above.

In Figure 4.1 we solved the linear program with the dual-simplex algorithm from the Matlab

function 1linprog, see https://de.mathworks.com/help/optim/ug/linprog.html.


http://stochastik.math.uni-goettingen.de/mop
http://stochastik.math.uni-goettingen.de/mop
linprog
https://de.mathworks.com/help/optim/ug/linprog.html
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Original

Method \ Runtime (s) \ Residuals
Chambolle-Pock | 218 0.11
SS Newton 220 0.03
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Figure 4.2: Comparison of the Chambolle-Pock algorithm and the semismooth Newton method
for solving the problem (4.1) in d = 2 for an image of size n = 256 X 256 corrupted with normal
noise with standard deviation o = 0.2 ||f||;~. The cross-sections correspond to the positions
marked by the red arrows. The runtimes in seconds and the relative L2-error IIf — f l;2/Ilf1l;2 are
given in the table. Notice the different color scales, which are chosen to show the local variations

in each image.
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CHAPTER 5

Simulations

In this chapter we analyze the numerical performance of the multiscale TV-estimator on one-
dimensional signals and two-dimensional images. We consider both the regression setting

(T = id) and deconvolution inverse problems.

5.1 Simulations for regression

5.1.1 Practical considerations

In this section we show the performance of the following multiscale T'V-estimators:

1) the multiscale TV-estimator with a system of dyadic intervals (in d = 1) or squares (in
d = 2). We take the dictionary @ to consist of indicator functions of a dyadic partition
down to the lowest resolution scale of the image. We implemented it with the methods

described in Chapter 4.

2) the multiscale T'V-estimator with a curvelet frame, used on images (d = 2). The curvelets
are computed with the package fdct_wrapping_matlab from CurveLab-2.1.3 (http://www.
curvelet.org/download.html). The resulting estimator is a variant of the estimator
proposed by Candes and Guo (2002).

In our simulation study we also considered the multiscale TV-estimator with a wavelet dictio-
nary of symmlets with 6 vanishing moments (see e.g. Section 7.2.3 in Mallat (2008)). The
basis is implemented using the package Wavelab850/Orthogonal, available in http://statweb.
stanford.edu/~wavelab/Wavelab_850/download.html. This estimator performed simi-
larly to the multiscale and the curvelet constrained estimators presented below, so we do not

include it for the sake of conciseness.


http://www.curvelet.org/download.html
http://www.curvelet.org/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
http://statweb.stanford.edu/~wavelab/Wavelab_850/download.html
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Discretization

We evaluate the multiscale TV-estimator on observations from the nonparametric regression

model, presented in Section 2.5, i.e.,
Yi=f(x)+o0¢€, x;€ly, i=1,...,n, 5.1

where ¢ are independent standard normal random variables, and I';;, is an equidistant grid of n
points in [0, 114 (see (2.17)). The reason for using this model and not the white noise model is
that the nonparametric regression model is arguably a more realistic model for the signal and
image denoising problems that we consider in this section. For instance, in image processing
one typically observes pixel values, which are properly modeled by the discrete regression
model (5.1).

Besides, as shown in Section 2.5, the multiscale TV-estimator can be applied to discrete observa-
tions (5.1), yielding a discretization error of order O(n_l/ d). We showed in Section 2.5 that this
error does not affect the overall convergence rate for d = 1 and d = 2, which justifies the use of

the discretized model (5.1) in those cases.

Choice of y;,

We test the estimators on several one-dimensional (d = 1) signals of lengths n = 256 and n = 512,
and on images (d = 2) with n = 256 X 256 pixels. The theory developed in Chapters 2 and 3
states that, asymptotically as n — oo, v, should be chosen as ko \/m, k > 1, 1in the
regression setting, and correspondingly for inverse problems. For finite n, however, another
choice of vy, is possible, which gives the multiscale TV-estimator statistical interpretability. We
choose a threshold of the form vy, = o q|_,/ Vn, where g;_,, is the 1 — a-quantile of the statistic
maxeq [(Yw,dW)|, that is

P(max (Yo, dW) < q1_q) = 1 — @ (5.2)
weL),

for some fixed @ € (0, 1). This implies that the true regression function f satisfies the constraint
in (1) with probability 1 — @. In practice, we compute g_, through Monte Carlo simula-
tions, that is, as the empirical 1 — a-quantile of a sample of 5000 realizations of the statistic
maxeq [(Yw,dW)|. The quantile g;_, can be computed independently of the observations Y;,

and is in particular independent of the true regression function f.

Finally, we remark that for some dictionaries ¥, such as orthonormal wavelet bases, the

distribution of max,ecq [(Yw,dW)| equals that of the maximum of #€2, independent normal
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random variables. Its 1 — @ quantile is then given by

— 2loglog#Q, —loglog(1 —a)~! + 0(1

V2 log #Q,,

which for #€);, — oo and @ — 0 slowly enough is of the same order as o1 Vnynin (1.9). An

analogous result holds for more general dictionaries (see Kabluchko (2011)).

Figure 5.1: Test images used for the simulations in this section. The results are presented in
Table 5.1. From top left, clockwise: *Building’, Board’, ’Lens’, and *Barbara’.

Methods for comparison

We compare the multiscale TV-