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Abstract

This thesis investigates the local and global convergence analysis of the relaxed
Douglas-Rachford method. This algorithm, which was first proposed over a decade
ago, has become a standard procedure in applications. Convergence results for this
algorithm are limited either to convex feasibility or consistent nonconvex feasibility
with strong assumptions on the regularity of the underlying sets. After discussing
feasibility problems and projection methods to solve these in general, we investi-
gate the relaxed Douglas-Rachford method in detail for inconsistent and nonconvex
feasibility problems. By introducing a new type of regularity of sets, called super-
regularity at a distance, we establish sufficient conditions for local linear conver-
gence of the corresponding sequence for the method of relaxed Douglas-Rachford
subsuming already existing results in the literature. We analyze a cyclic relaxed
Douglas-Rachford scheme and state convergence results for closed and convex sets,
by considering many-set feasibility problems. We then apply the theory developed
to the famous phase retrieval problem and discuss the numerical performance of
the algorithms.





CHAPTER 1

Introduction

Feasibility problems can be found in numerous areas such as engineering, physics
and economics. Given constraints that describe the problem instance, one is seeking
a solution that fits all of the constraints. In physics, this framework can represent
some experiment including the experimental setup and some measurements. Prob-
lems in economics might consist of empirical observations and some theoretical
model. In mathematics, we can describe the constraints in each of these problem
instances as sets of points in a suitable space. A solution to the problem is then
a point that lies in all of the constraint sets. Thus, a feasibility problem consists
in finding a point in the collection of a finite number of sets as introduced in Sec-
tion 2.1. If no such point exists, that is, the sets do not intersect, we are instead
seeking an adequate approximation to the problem. We call the problem in this
case inconsistent. Feasibility problems are commonly solved by projection methods.
These are iterative algorithms defined by a mapping T , composed of projectors, that
generate a sequence (xk)k∈N by

xk+1 ∈ Txk.

Some of the most famous projection algorithms are von Neumann’s method of alter-
nating projections for two sets [124], and its many set version the cyclic projection
algorithm first discovered by Kaczmarz [83]. A different projection algorithm for a
two set approach is the Douglas-Rachford algorithm [56]. Due to their simplicity
alternating projections and its cyclic version enjoy great popularity. Although the
iterates of these procedures almost always converge, the corresponding limit might
have no connection to the initial feasibility problem (see for instance [7]). While
the Douglas-Rachford method shows remarkable performances in feasibility prob-
lems when both sets intersect, it diverges when the problem is inconsistent. By
presenting theoretical tools to prove convergence of general projection methods, we
focus in this thesis on a particular algorithm for two sets problems avoiding the
drawbacks of the cyclic projections algorithm and the Douglas-Rachford algorithm
just mentioned: the relaxed Douglas-Rachford method. Formulated over a decade
ago by Luke [97], this projection method is defined by a mapping that is a convex
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composition of the Douglas-Rachford method and a single projection. In fact, given
two sets A and B and some initial point x0 the relaxed Douglas-Rachford method
generates a sequence (xk)k∈N by

xk+1 ∈ T λA,Bxk :=
⋃

b∈PBxk

{
λ
2

(
RA(2b− xk) + xk

)
+ (1− λ)b

}
(∀ k ∈ N),

where the first part in this definition, 1
2

(
RA(2b− xk) + xk

)
, is a Douglas-Rachford

step. Introducing a new type of regularity, super-regularity at a distance, we are able
to prove local convergence of the algorithm for nonconvex inconsistent feasibility
problems. Our results subsume previous works that depend on strong regularity
assumptions like convexity (see [97, 98]), or show only convergence to stationary
points (see for instance [94]). To do so, we rely on a framework established by
Luke, Thao and Tam in [105]. In addition to the existence of fixed points of the
related mapping, here T λA,B, there are two main ingredients in the local convergence
recipe. The first is pointwise almost averagedness of the mapping. In the context
of projection methods and feasibility problems, averagedness of the mapping is
strongly connected to the regularity properties of the involved sets (see Section 3.3).
The notion of super-regularity at a distance allows us to describe the regularity
of a set relative to a point not in the set and is a special case of other, more
general, regularity notions like ε-subregularity (see [48, 105]). This is of particular
importance when analyzing convergence of the algorithms to fixed points that are
not in either of the two sets (see Section 4.2). The second ingredient is metric
subregularity of a related mapping, T λA,B − Id, a property that was recently shown
to be necessary for local linear convergence [104]. While averagedness is dependent
on the regularity of the sets itself, metric subregularity relies on the regularity of the
collection of sets. In the context of this thesis we work with substransversality. The
authors in [104] used this notion to cover the regularity of an inconsistent collection
of sets. If we are in the setting of consistent feasibility subtransversality was shown
to be necessary for R-linear convergence of alternating projections [104]. If, in
addition, the sets are convex, subtransversality is even necessary and sufficient,
i.e. equivalent to R-linear convergence [104, Theorem 8 and 9]. In Chapter 4, we
present a description of the fixed points of the relaxed Douglas-Rachford method
for super-regular at a distance sets. Moreover, we demonstrate in the main result
of Section 4.4 how the assumptions on the regularities of both the sets A and B
as well as their collection {A,B} influence the local convergence behavior of the
algorithm independent of whether or not the sets A and B have points in common.
Restricting both sets to be convex, we can even prove global convergence. In
Section 4.7, we present a class of sets that always satisfy the assumptions of the
local convergence result globally. In fact, we investigate subspaces and compare
our results on the relaxed Douglas-Rachford method to other projection methods
using the notion of the Friedrichs angle to express the regularity of the collection
of sets.

The downside of the relaxed Douglas-Rachford method is its formulation for just
two sets. To overcome this, we propose the cyclic relaxed Douglas-Rachford method
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in Chapter 5. First mentioned but not theoretically discussed in [103] by Luke,
Sabach and Teboulle, this algorithm is designed for many-set feasibility problems.
The authors in [103] analyzed the numerical performance of this algorithm, justi-
fying a deeper theoretical analysis. As a first step, we analyze its behavior when
applied to convex sets and show convergence as well as an explicit description of the
set of fixed points for the 2-set case that differs from the original relaxed Douglas-
Rachford method. Moreover, we discuss the many-set case on subspaces. Parts of
these results were published in [102] in co-authorship with Matthew K. Tam and
D. Russell Luke.

In addition to the general discussion of feasibility problems and our approach for
the relaxed Douglas-Rachford method and its cyclic version, we focus on a specific
feasibility problem, the phase retrieval problem. This problem is known from the
field of physics and appears there in several areas such as microscopy, astronomy,
optical design and holography. Given some a priori knowledge about the experi-
mental setup and some measurements, one has to reconstruct the object that was
measured. The problem is that the measurements only contain the modulus of the
Fourier transform of the object but not the phase. We present popular algorithms
to solve this problem and demonstrate how they fit into the framework of feasibility
problems in Chapter 6. Using the results from the chapters before, we state local
convergence results of the relaxed Douglas-Rachford method and other algorithms
for the phase retrieval problem. Comparing several algorithms, we point out char-
acteristics of their individual numerical performance and theoretical features used
in the statements given. We expand the discussion of the phase retrieval problem
with a chapter on uniqueness for this nonconvex problem, Chapter 7. By analyzing
when the phase retrieval problem has a unique solution, we discuss an approach for
when fixed points of projection methods are not just approximations but solutions
to the problem. We close this thesis with a short conclusion and outline possible
branches and questions for further research.





CHAPTER 2

Notation and Preliminaries

This chapter introduces the basic notation used in this thesis and presents prelim-
inary results. We introduce the notion of a feasibility problem and explain how it
fits into the framework of general optimization problems. In addition to the notions
of projectors and reflectors in Section 2.2, we discuss how these constructions can
help to solve feasibility problems. In fact, we introduce iterative algorithms includ-
ing the most common algorithms based on projectors and reflectors in Section 2.3.
Among these are the method of alternating projections and the Douglas-Rachford
algorithm.

Throughout this thesis, we denote by E a finite dimensional Euclidean space with
inner product 〈·, ·〉 and induced norm ‖·‖. We denote by B the open unit ball and
by S the unit sphere in E . The open ball with radius δ centered around a point
x ∈ E is denoted by Bδ(x). N := {0, 1, 2, . . . } denotes the natural numbers.

2.1. Feasibility Problems

The problem of finding a point x ∈ E in the intersection of a finite collection of
sets is called a feasibility problem. That is, given m ≥ 2 subsets Ω1,Ω2, . . .Ωm of
E ,

find x ∈
m⋂
i=1

Ωi. (2.1)

If the sets involved are convex, we call (2.1) a convex feasibility problem. If the
intersection of sets Ωi in (2.1) is nonempty, we say that the feasibility problem is
consistent. If, however, the intersection is empty the problem is said to be inconsis-
tent and one is interested in a suitable approximation to each of the involved sets.
Depending on what “suitable” means for the problem instance. Feasibility prob-
lems are a special case of general optimization problems that consist in minimizing
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a function over some domain. In particular, given a function f : E → R ∪ {+∞}
and some set Ω ⊂ E , an optimization problem is defined by

min
x∈Ω

f(x). (2.2)

That is, we want to find a point x ∈ Ω ⊂ E that minimizes the function. In
particular, by taking f = ∑m

i=1 ιi and Ω = E , where

ιi(x) :=

0 if x ∈ Ωi,

+∞ else,

the minimization problem in (2.2) turns into

min
x∈E

m∑
i=1

ιi(x). (2.3)

A point x ∈ E is a solution to the feasibility problem (2.1) if and only if it is a
solution to the optimization problem (2.3). If the intersection is empty the optimal
value of (2.3) is defined as +∞.

2.2. Projectors and Reflectors

The distance between two points x, y ∈ E associated to E is given by

dist (x, y) := ‖x− y‖ ,

whereas
dist (x,Ω) := inf

y∈Ω
‖x− y‖ ,

stands for the distance between the point x and the set Ω. The distance between
two subsets A and B of E is defined as

dist (A,B) := inf
a∈A
b∈B

‖a− b‖ .

The projector onto the set Ω is given by

PΩ : E ⇒ E : x 7→ {y ∈ Ω | dist (x,Ω) = ‖y − x‖} , (2.4)

where ⇒ indicates that PΩ is a point-to-set mapping. A single element of PΩx
is called a projection. Note that we restrict our analysis here to representing the
distance via the Euclidean norm, i.e. dist (x, y) = ‖y − x‖. The existence of
projections for all x ∈ E , i.e. PΩx 6= ∅, is equivalent to the closedness of Ω (see
for instance [51, Theorem 3.1, Theorem 3.8]). Note that the equivalence is due to
the finite dimensionality of E . In infinite dimensions closed subspaces do not have
to satisfy PΩx 6= ∅ for all points in the space (for an example in a Banach space
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x

PΩ1x

RΩ1x

Ω1

r2

(a) A convex set with its single-valued
projector and reflector at x.

x

p1

p2

r1

r2

Ω2

(b) A nonconvex set with a multi-valued
projector and reflector at x

(PΩ2x = {p1, p2} and RΩ2x = {r1, r2}).

Figure 2.1: Examples of projectors and reflectors.

see [51, Example 3.2]). A set Ω with the property “PΩx 6= ∅ for all x ∈ E” is called
a proximal set. Similarly to the projector, we define the reflector across a set Ω
by

RΩ : E ⇒ E : x 7→ 2PΩx− x, (2.5)

which is again a set-valued mapping. The difference 2PΩx − x is taken by the
Minkowski difference for the two sets 2PΩx and {x}. That is, given two sets A and
B the Minkowski difference is defined by

A−B := {a− b | a ∈ A, b ∈ B} .

Furthermore, we define the Minkowski sum for A and B by

A+B := {a+ b | a ∈ A, b ∈ B} .

A single element in RΩ is called a reflection. For an illustration, we consider two
sets in R2 as in Fig. 2.1. In the two examples the reflector describes the point x
reflected, or mirrored, at the projection onto the set Ω1 and Ω2 respectively.

The regularity of a set has an influence on the properties of the corresponding
projector onto the set. Convex sets yield the best properties. A convex set C is
defined as a set that contains the line segment {λx+ (1− λ)y |λ ∈ (0, 1)} for any
two points x, y ∈ C. The projector onto convex sets is not only single-valued (see
for instance [15, Theorem 3.14]), but satisfies also the following conditions.

Proposition 2.2.1 (characterization of projector onto convex sets and affine sub-
spaces [15, Theorem 3.14, Corollary 3.20]). Let C ⊂ E be closed, convex and
nonempty. Then the following are equivalent:

(i) p = PCx

(ii) p ∈ C and 〈y − p, x− p〉 ≤ 0 for all y ∈ C.
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Moreover, if the set C is an affine subspace, then (ii) holds with equality.

Following the same idea, an analogous result is true for reflectors onto convex sets.

Corollary 2.2.2 (characterization of reflector across convex sets). Let C ⊂ E be
closed, convex and nonempty. Then the following are equivalent:

(i) r = RCx

(ii) 1
2 (r + x) ∈ C and 〈y − r, x− r〉 ≤ 1

2 ‖x− r‖
2 for all y ∈ C.

Proof. This is a direct consequence of Proposition 2.2.1. Let r = RCx. By the
definition of the reflector given in (2.5), (i) is equivalent to r = 2PCx− x. Thus,

PCx = 1
2(r + x). (2.6)

Applying Proposition 2.2.1, we deduce that (2.6) is equivalent to 1
2 (r + x) ∈ C and〈

y − 1
2 (r + x) , x− 1

2 (r + x)
〉
≤ 0 for all y ∈ C.

The last term is nothing more than 〈y − r, x− r〉 ≤ 1
2 ‖x− r‖

2 for all y ∈ C, by
which the result follows.

Given a projector onto a set Ω, the projector onto the shifted set Ω + y, for some
y ∈ E , can be easily determined.

Proposition 2.2.3 (translation formula for projector). Let Ω be a closed set and
x, y ∈ E. Then

Py+Ωx = y + PΩ(x− y).

Proof. By the definition of the projector given in (2.4), it holds with a few basic
reformulations that

Py+Ωx = {z ∈ Ω + y | dist (x,Ω + y) = ‖z − x‖}
= {z ∈ Ω + y | dist (x− y,Ω) = ‖(z − y)− (x− y)‖}
= {z + y ∈ Ω + y | dist (x− y,Ω) = ‖(z)− (x− y)‖}
= y + {z ∈ Ω | dist (x− y,Ω) = ‖(z)− (x− y)‖}
= y + PΩ(x− y),

which proves the claim.

If a set is affine, we get the following fact in addition to the translation formula.
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Proposition 2.2.4 (projector is affine for affine sets). Let Ω be a closed affine
subspace. Then the projector PΩ is an affine mapping. If, in addition Ω is linear,
then PΩ is a linear mapping.

Proof. The first part can be found in [15, Corollary 3.20]. For the second part, let
Ω be a closed and linear subspace. Let x, y ∈ E , α, β ∈ R, and set z = αx + βy
and p = αPΩx+ βPΩy. Since Ω is linear, we deduce p ∈ Ω. Now, let u and v be in
Ω. By applying Proposition 2.2.1, we derive

〈u− v, z − p〉 = 〈u− v, αx+ βy − p〉
=α 〈u− v, x− PΩx〉+ β 〈u− v, y − PΩy〉 = 0.

Altogether, it follows from Proposition 2.2.1 that p = PΩz since a linear subspace
is affine as well.

Another concept closely related to that of a projector is the concept of normal
cones. For the purpose of this thesis, we define the normal cones in terms of the
projector.

Definition 2.2.5 (Normal cones). Let Ω ⊆ E . Define the smallest cone containing
Ω by

cone(Ω) := R+ · Ω := {κs |κ ∈ R+, s ∈ Ω} .

Let Ω ⊆ E and x ∈ Ω.

(i) The proximal normal cone of Ω at x is defined by

Nprox
Ω (x) = cone

(
P−1

Ω (x)− x
)
.

Equivalently, x∗ ∈ Nprox
Ω (x) whenever there exists σ ≥ 0 such that

〈x∗, y − x〉 ≤ σ‖y − x‖2 (∀y ∈ Ω).

(ii) The limiting (proximal) normal cone of Ω at x is defined by

NΩ(x) = Lim sup
y→x

Nprox
Ω (y),

where the limit superior is taken in the sense of the Painlevé–Kuratowski outer
limit (for more details on the outer limit see for instance [118, Chapter 4]).

When x 6∈ Ω all normal cones at x are empty (by definition). If the set Ω is convex,
the given normal cones coincide (see for instance [107]).
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2.3. Projection Methods

Feasibility problems, as introduced in Section 2.1, are often solved by projection-
based algorithms. In other words, projection-based algorithms are iterative algo-
rithms composed of projectors and reflectors. An iterative algorithm is a procedure
generating a sequence (xk)k∈N, given an initial point x0, via a set-valued mapping
T : E ⇒ E by

xk+1 ∈ Txk. (2.7)

Remark 2.3.1 (importance of projection based algorithms). Often there are plenty
of ways to formulate a problem and, then, how to solve it. The question that
arises is, why one should choose to work with projection based algorithms. Re-
cently this was also part of a scientific discussion [43, 70, 71]. Although there are
examples where projection methods are outperformed by specialized solvers [70,71],
their outcome in instances where they perform have some advantages as stated by
Bauschke and Koch in [21]. In particular, projection methods are easy to under-
stand, easy and inexpensive to implement, easy to maintain, easy to deploy, and can
be very fast. Therefore, they are interesting in industrial applications. There are
many areas where projection methods can be used such as, road design [21], phase
retrieval [16, 17, 106] (see also chapter Chapter 6), protein reconstruction [3, 60],
quantum channel construction [58], matrix completion problems [3], and many
more. For other examples see [4, 43] and references therein.

One of the oldest and simplest algorithms in the form of (2.7) composed of projec-
tors is the method of alternating projections (MAP). The scheme projects back and
forth between two closed subsets of E . Its origin dates back to von Neumann who
studied the MAP for closed subspaces in [124]. The MAP is defined as follows.

Algorithm 2.3.2 (method of alternating projections). Given an initial point x0

and two closed subsets A andB of E , themethod of alternating projections generates
a sequence (xk)k∈N by

xk+1 ∈ TMAPx
k := PBPAx

k (∀ k ∈ N).

There are several works that study the algorithm on convex sets. Cheney and
Goldstein were the first analyzing the method of alternating projections without
requiring the intersection to be nonempty [45]. Bauschke and Borwein proved
linear convergence for bounded linearly regular sets in [11]. This was motivated
by the fact that the rate of linear convergence for subspaces is highly dependent
on the Friedrichs angle between both sets studied first by Aronszajn in [2] (for the
explicit definition of the Friedrichs angle see Definition 4.7.5). A detailed survey
can be found in a book of Deutsch [51] and references therein. The first studies for
nonconvex sets and the MAP were made by Lewis and Malick who studied smooth
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manifolds in Euclidean spaces in [93] and Lewis et al. in [92] for super-regular
sets. This was followed by studies extending the theory on nonconvexity and the
regularity of intersections [22–24, 74]. A natural extension of the MAP to more
than two sets is the method of cyclic projections (CP) first discovered by Kaczmarz
for solving linear systems [83].

Algorithm 2.3.3 (method of cyclic projections). Given an initial point x0 and
m ≥ 2 subsets Ω1,Ω2, . . . ,Ωm of E , the method of cyclic projections generates a
sequence (xk)k∈N by

xk+1 ∈ TCPx
k := PΩmPΩm−1 · · ·PΩ1x

k (∀ k ∈ N).

The work of Neumann on MAP on two subspaces was extended by Halperin [73]
for CP on finitely many subspaces. The result by Bauschke and Borwein in [11] for
linear convergence for bounded linearly regular sets in the 2-set case was generalized
by Deutsch and Hundal to m ≥ 2 sets. They introduced an angle between convex
sets [52–54]. Other works including CP are [13,25,105].

A more sophisticated algorithm is the Douglas-Rachford method (DR). It was first
discovered by Douglas and Rachford in a paper about solving a nonlinear heat
conduction problem [56]. In the context of feasibility problems the algorithm is
defined as follows.

Algorithm 2.3.4 (Douglas-Rachford algorithm). Given an initial point x0 and two
closed subsets A and B of E , the Douglas-Rachford algorithm generates a sequence
(xk)k∈N by

xk+1 ∈ TA,Bxk :=
(1

2 (RARB + Id)
)
xk (∀ k ∈ N).

Weak convergence of DR was shown by Lion and Mercier [96] in the context of
operator splitting for two maximally monotone operators, and was later improved
by Svaiter [121]. Linear convergence of DR for affine subspaces was deduced by [76]
and thereafter addressed in [19].

Motivated by the performance of DR, Luke proposed and analyzed a convex relax-
ation of DR in the context of diffraction imaging [97].

Algorithm 2.3.5 (relaxed Douglas-Rachford algorithm). Given an initial point
x0, λ ∈ (0, 1) and two closed subsets A and B of E , the relaxed Douglas-Rachford
algorithm generates a sequence (xk)k∈N by

xk+1 ∈ T λA,Bxk :=
⋃

b∈PBxk

{
λ
2

(
RA(2b− xk) + xk

)
+ (1− λ)b

}
(∀ k ∈ N).

We analyze this algorithm in detail in Chapter 4. The different behavior of the
four introduced algorithms for subspaces is illustrated in Fig. 2.2.
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A

B
x

(a) MAP

A

B
x

(b) DR

A

B
x

(c) relaxed DR

A

B
x

(d) cyc. relaxed DR

Figure 2.2: Illustration of MAP, DR, relaxed DR and its cyclic version (λ = 0.4)
applied to two affine sets A = R×{0} and B = {x ∈ R2 |x1 = x2} with
initial point x = (1, 2) ∈ R2 showing 5 iterations.

Whereas it is simple to adapt the method of alternating projections from a 2-set
version to its many-set version, the method of cyclic projections, it is not obvious
how to do this for algorithms like DR or its relaxed version. Instead, one must use
a so-called product space trick that goes back to Pierra [114] that lifts the problem
in the product space Em, where m is the number of sets involved. In particular, by
defining the two sets

Ω := {x ∈ Em |xi ∈ Ωi ∀i ∈ {1, 2, . . . ,m}} ,
D := {x ∈ Em |x1 = x2 = · · · = xm} ,

we can consider the following feasibility problem in Em

find y ∈ Ω ∩D. (2.8)

Thus, we reduced an m-set problem to a 2-set problem. Therefore, an advantage
of this approach is that we can apply all known algorithms that are restricted to
two sets. Moreover, the projectors onto the sets Ω and D are not more complicated
than those onto the sets Ω1,Ω2 . . . ,Ωm. In fact, the projectors are given by

PΩ(y1, y2, . . . , ym) = {(x1, x2, . . . , xm) |xi ∈ PΩiyi ∀i = 1, 2, . . . ,m}

PD(y1, y2, . . . , ym) = 1
m

(
m∑
i=1

yi,
m∑
i=1

yi, . . . ,
m∑
i=1

yi

)
. (2.9)

Note that, when actually computing the projectors PΩ and PD, we only have to
compute the projectors PΩi for all i = 1, 2, . . . . ,m. Thus, we do not need any new
knowledge on the problem. However, the increased dimension of the problem, which
depends on the number of involved sets m of the original problem in (2.1), does
have an impact on the convergence speed. Instead of an m-set feasibility problem
in E , the problem given in (2.8) is a 2-set feasibility problem in Em. Furthermore,
applying an algorithm in Em on two sets as in (2.8) yields a fixed point that need
not be directly connected to the solution of the same algorithm applied in E . As
an example, consider the method of alternating projections. When applied to the
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sets C and D in (2.3.2), the sequence we deduce is nothing more but averaged
projections in each entry,

PDPΩ(y1, y2, . . . , ym) =
(

1
m

m∑
i=1

PΩiyi,
1
m

m∑
i=1

PΩiyi, . . . ,
1
m

m∑
i=1

PΩiyi

)
.

If the sets D and Ω have an empty intersection, the fixed points of both algorithms
do not relate to each other. A different approach to include more than two sets is
motivated by the method of cyclic projections. In particular, having an algorithm
defined for just two sets, one can apply it several times by interchanging the sets
involved cyclically. This idea leads to the cyclic relaxed Douglas-Rachford method.

Algorithm 2.3.6 (cyclic relaxed Douglas-Rachford). Given some point x0 ∈ E ,
a parameter λ ∈ (0, 1) and a finite collection of convex sets {Ω0,Ω1, . . . ,Ωm}.
Then the relaxed Douglas-Rachford operator on two convex sets Ωj, Ωi for i, j ∈
{1, 2, . . . ,m} is defined similar as in Algorithm 2.3.5 by

T λi,j := T λΩi,Ωj = λ

2
(
RΩjRΩi + Id

)
+ (1− λ)PΩi . (2.10)

The cyclic relaxed Douglas-Rachford operator is then given by

T λ[1...m] := T λm,1 ◦ · · · ◦ T λ2,3 ◦ T λ1,2. (2.11)

The cyclic relaxed Douglas-Rachford method generates a sequence (xk)k∈N through
the inclusion xk+1 ∈ T λ[1...m](xk).

Note that this definition is explicitly stated for convex sets. To include more general
sets one has to define T λi,j similar to Algorithm 2.3.5 to incorporate set-valuedness
of the corresponding projectors. We use here this simpler notation, since we con-
centrate in Chapter 5 on convex sets.

The idea of cyclically composing a certain operator to apply it to more than two sets
is not new. Borwein and Tam introduced and analyzed a cyclic Douglas-Rachford
method that, unlike Douglas-Rachford on its own, also converges in inconsistent
settings in [32]. In the same manner as we did, they interchanged one set in each
coupling. Bauschke et al. introduced a variant of this cyclic Douglas-Rachford
method that was anchored to one set [25]. That is, instead of changing the role of
both sets, one chosen set, the anchor, will always stay the same.
Remark 2.3.7. In addition to its formulation as a feasibility problem in terms of
indicator functions, one can always study the more general minimization problem
for general functions as mentioned in Section 2.1. The reformulation as an opti-
mization problem in (2.2) where we minimize a function over some domain Ω is
commonly addressed by forward-backward procedures. That is, given some initial
point x0 define the sequence (xk)k∈N via

xk+1 = PΩ
(
xk − λ∇f(xk)

)
, (2.12)
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where λ is a nonnegative constant. Similar to the idea of the simple forward-
backward algorithm, the proximal heterogeneous block implicit-explicit (PHeBIE)
method [77], or the proximal alternating linearized minimization (PALM) algo-
rithm [30] are used to solve a constraint optimization problem as in (2.2). Instead
of projectors these algorithms may included more general objects like proximal
mappings defined by

proxf,γ(x) := argmin y∈E

{
f(y) + 1

2γ ‖x− y‖
}

(2.13)

for a proper lower-semicontinuous convex function f : E → (−∞,+∞] and γ > 0.
If f is the indicator function ιΩ of a closed convex set Ω, (2.13) simplifies to PΩ
(see for instance [15, Example 12.25]).



CHAPTER 3

A Toolkit for Convergence

In the context of an underlying feasibility or general optimization problem, one
usually applies an iterative procedure with the hope to obtain the solution in the
limit. Therefore, questions that arise are: Does the algorithm (always) converge?
And if so, does it always converge to the same limit point? Is a limit point a
solution, or adequate approximation to a solution of the initial problem? Can we
quantify the convergence? Can we do this with a certain rate? This chapter aims to
address questions like these. Focusing on iterative algorithms defined by a mapping
T , as in (2.7), we introduce properties of mappings that yield convergence. These
are, for example, nonexpansiveness and averagedness, as well as Fejér monotonicity
(see Section 3.1). Using these properties, we recall a convergence statement which
can be traced back to Opial and, by introducing the notion ofmetric (sub)regularity,
present a related convergence template that is able to quantify convergence (see
Section 3.2).

Of special interest in this thesis are feasibility problems and thus projection-based
algorithms as presented in Section 2.3. We survey how the regularities of mappings,
as discussed in Section 3.1 in the case of projectors, are connected to regularities of
sets (see Section 3.3). Beyond that, we examine the implication that regularities of
collections of sets have on the rate of convergence. This is established in Section 3.4
by connecting regularity properties of the mapping T to those of the collections of
sets involved in the feasibility problem.

3.1. Regularities of Mappings

The concept of interest for convergence of iterative algorithms are fixed points. We
refer to Fix T as the set of fixed points of the mapping T , i.e. x ∈ Fix T if and
only if x ∈ Tx. Note that, by this definition, the set Tx need not consist entirely
of fixed points even when x ∈ Fix T (see Example 3.1.1). When dealing with fixed
points, we want to rule out special cases of those as illustrated in the following
example.
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Example 3.1.1 (inhomogenous fixed point set [105, Example 2.1]). Consider the
following two sets

A =
{

(x1, x2) ∈ R2
∣∣∣x2 ≥ −2x1 + 3

}
∩
{

(x1, x2) ∈ R2
∣∣∣x2 ≥ 1

}
,

B = R2 \ R2
++,

as illustrated in Fig. 3.1, and the mapping T = PAPB, which defines the method
of alternating projections as introduced in Algorithm 2.3.2. In this example

PB (1, 1) = {(0, 1) , (1, 0)} ,

and the point (1, 1) is a fixed point of T since (1, 1) ∈ PA {(0, 1) (1, 0)}. Neverthe-
less, the point PA (0, 1) is also in T (1, 1) but not a fixed point of T .

B

A

(1, 1)(0, 1)

(1, 0)

Figure 3.1: Illustration of the sets in Example 3.1.1.

To prevent a case like this, where we stagnate at a point that might not be of
interest, we introduce the notions of nonexpansivity and averagedness of a set-
valued mapping. The following definition is taken from [105, Definition 2.2].

Definition 3.1.2 (pointwise almost nonexpansive/averaged mappings). Let D be
a nonempty subset of E and let T : D ⇒ E be a (set-valued) mapping.

(i) T is said to be pointwise almost nonexpansive on D at y ∈ D if there exists
a constant ε ∈ [0, 1) such that

‖x+ − y+‖ ≤
√

1 + ε‖x− y‖ (y+ ∈ Ty)(∀x+ ∈ Tx)(∀x ∈ D). (3.1)

If (3.1) holds with ε = 0, then T is called pointwise nonexpansive at y on D.
If T is pointwise (almost) nonexpansive at every point on a neighborhood of
y (with the same violation constant ε) on D, then T is said to be (almost)
nonexpansive at y (with violation ε) on D.
If T is pointwise (almost) nonexpansive on D at every point y ∈ D (with
the same violation constant ε), then T is said to be pointwise (almost) non-
expansive on D (with violation ε). If D is open and T is pointwise (almost)
nonexpansive on D, then it is (almost) nonexpansive on D.
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(ii) T is called pointwise almost averaged on D at y if there is an averaging con-
stant α ∈ (0, 1) and a violation constant ε ∈ [0, 1) such that the mapping T̃
defined by

T = (1− α) Id +αT̃

is pointwise almost nonexpansive at y with violation ε/α on D.
Similarly, if T̃ is (pointwise) (almost) nonexpansive on D (at y)(with viola-
tion ε), then T is said to be (pointwise)(almost) averaged on D (at y) (with
averaging constant α and violation αε).
If the averaging constant α = 1

2 , then T is said to be (pointwise)(almost)
firmly nonexpansive on D (with violation ε)(at y).

The above definition is very general and does not allow a deep insight in the
terminology. However, such a broad description is necessary when working with
nonconvex problems. To create a feeling for this condition, we consider the simplest
version of the above definitions. In fact, we consider a non-pointwise setting without
violation (ε = 0).
Definition 3.1.3 (nonexpansive/averaged mappings without violation). Let D be
a nonempty subset of E and let T : D ⇒ E . T is said to be

(i) nonexpansive if

‖x+ − y+‖ ≤ ‖x− y‖ (∀x, y ∈ D)(∀x+ ∈ Tx)(∀y+ ∈ Ty);

(ii) averaged if there is a constant α ∈ (0, 1) such that T̃ defined by

T = (1− α) Id +αT̃

is nonexpansive. Equivalently, the mapping T is averaged with constant α if
the following hold

‖x+ − y+‖ ≤ ‖x− y‖ − 1− α
α
‖(x− x+)− (y − y+)‖

(∀x, y ∈ D)(∀x+ ∈ Tx)(∀y+ ∈ Ty),

see for instance [15, Proposition 4.25].

Nonexpansivity implies that the mapping T is single-valued (see also [105, Propo-
sition 2.2]). Therefore, we can refer to [15] for a proof of the equivalence in (ii).
A version of this property for general set-valued mappings T that are pointwise
almost averaged is given in Proposition 3.1.5. The property of being nonexpansive
is nothing more than being Lipschitz continuous with constant 1. That is, given
two points, their images under the mapping T are no further away from each other
than the initial points. The distance will never increase. In that sense averaged-
ness is a bit stricter. Here, an additional violation has to be satisfied. Thus, every
averaged mapping is nonexpansive as well. Both properties have a great impact on
the properties of the set of fixed points as well as on the convergence analysis of
the related Picard iteration as presented in this and the following section.
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Example 3.1.4. The identity mapping Id might be the most trivial example of a
nonexpansive mapping. Moreover, Id is averaged for any constant α ∈ (0, 1). This
is clear from Definition 3.1.3.

The following statement allows us to characterize averagedness in various ways.

Proposition 3.1.5 (characterization of almost averaged mappings [105, Proposi-
tion 2.1]). Let T : E ⇒ E, U ⊂ E and let α ∈ (0, 1). The following are equivalent:

(i) T is pointwise almost averaged at y on U with violation ε and averaging
constant α.

(ii)
(
1− 1

α

)
Id + 1

α
T is pointwise almost nonexpansive at y on U ⊂ E with viola-

tion ε/α.

(iii) For all x, y ∈ U, x+ ∈ Tx and y+ ∈ Ty it holds that

‖x+ − y+‖2 ≤ (1 + ε) ‖x− y‖2 − 1− α
α
‖(x− x+)− (y − y+)‖2.

Consequently, if T is pointwise almost averaged at y on U with violation ε and
averaging constant α, then T is pointwise almost nonexpansive at y on U with
violation ε.

Using Proposition 3.1.5, we can show that the projection onto a closed convex set
is averaged.

Proposition 3.1.6 (projection onto a convex set is averaged). Let C ⊂ E be closed
and convex. Then its projector satisfies the following inequality.

‖PCx− PCy‖2 + ‖(Id−PC) (x)− (Id−PC) (y)‖2 ≤ ‖x− y‖2 (∀x, y ∈ E).

Consequently, the projector onto the set C is averaged with constant α = 1/2.

Proof. This is a simple implication of Proposition 2.2.1 and Proposition 3.1.5.

Next we see that having several averaged mappings, their composition is again
averaged.

Proposition 3.1.7 (compositions of averages of relatively averaged operators [105,
Proposition 2.10]). Let Tj : E ⇒ E for j = 1, 2, . . . ,m be pointwise almost averaged
on Uj at all yj ∈ Sj ⊂ E with violation εj and averaging constant αj ∈ (0, 1), where
Uj ⊃ Sj for j = 1, 2, . . . ,m.

(i) If U := U1 = U2 = · · · = Um and S := S1 = S2 = · · · = Sm, then the
weighted mapping T := ∑m

j=1wjTj with weights wj ∈ [0, 1], ∑m
j=1wj = 1,

is pointwise almost averaged at all y ∈ S with violation ε = ∑m
j=1wjεj and

averaging constant α = maxj=1,2,...,m {αj} on U .
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(ii) If TjUj ⊆ Uj−1 and TjSj ⊆ Sj−1 for j = 2, 3, . . . ,m, then the composed
mapping T := T1 ◦T2 ◦· · ·◦Tm is pointwise almost nonexpansive at all y ∈ Sm
on Um with violation at most

ε =
m∏
j=1

(1 + εj)− 1. (3.2)

(iii) If TjUj ⊆ Uj−1 and TjSj ⊆ Sj−1 for j = 2, 3, . . . ,m, then the composed
mapping T := T1 ◦ T2 ◦ · · · ◦ Tm is pointwise almost averaged at all y ∈ Sm on
Um with violation at most ε given by (3.2) and averaging constant at least

α = m

m− 1 + 1
maxj=1,2,...,m{αj}

. (3.3)

Example 3.1.8 (averaged mappings [105, Example 2.2(iv)]). We consider again
the setting in Example 3.1.1. That is, T := PAPB and the sets

A =
{

(x1, x2) ∈ R2
∣∣∣x2 ≥ −2x1 + 3

}
∩
{

(x1, x2) ∈ R2
∣∣∣x2 ≥ 1

}
B = R2 \ R2

++.

In this case, T is not pointwise almost averaged at (1, 1) for any ε > 0. In light of
Example 3.1.1, this shows that the pointwise almost averaged property is incom-
patible with fixed points whose image under the mapping T contains other points
than fixed points.

Example 3.1.1 and Example 3.1.8 highlight that we have to rule fixed points whose
image under the mapping T includes more than just fixed points. Exploiting the
property of being averaged we can avert such instances.

Proposition 3.1.9 (single-valuedness of averaged mappings [105, Proposition 2.2]).
Let T : E ⇒ E be pointwise almost averaged on D ⊂ E at x ∈ D with violation ε ≥ 0.
Then T is single-valued at x. In particular, if x ∈ Fix T , then Tx = {x}.

Related to the concept of averagedness, but different, are Fejér monotonicity and
asymptotic regularity.

Definition 3.1.10 (Fejér monotonicity). Let Ω be a nonempty subset of E and
(xk)k∈N be a sequence in E . Then (xk)k∈N is called Fejér monotone with respect to
Ω if

‖xk+1 − y‖ ≤ ‖xk − y‖ (∀y ∈ Ω)(∀k ∈ N).

Definition 3.1.11 (asymptotic regularity). Let T : E → E and x0 ∈ E . Define the
sequence (xk)k∈N via xk+1 ∈ Txk for all k ∈ N. Then (xk)k∈N is called asymptotically
regular if

xk+1 − xk → 0.
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Proposition 3.1.12 (averagedness implies Fejér monotonicity and asymptotic reg-
ularity). Let T : E → E be an averaged mapping with Fix T 6= ∅. Let x0 ∈ E and
define the sequence (xk)k∈N by xk+1 ∈ Txk. Then (xk)k∈N is Fejér monotone with
respect to Fix T and xk+1 − xk → 0.

Proof. This is a special case of [15, Proposition 5.15].

3.2. Convergence Theorems

So far, we have seen different kinds of algorithms for treating feasibility problems
and some regularity properties of the involved mappings. This section aims to
explore conditions that provide convergence. It turns out that convergence itself
routes back to regularity properties of the mapping. In application, however, one
often wants not only convergence but to be able to quantify it. This leads to a
second essential property that is called metric (sub-)regularity. The basic conver-
gence idea goes back to Opial [110]. Applying his result to our setting yields the
following statement.

Theorem 3.2.1. Let T : E ⇒ E be averaged with Fix T 6= ∅. Then the sequence
(xk)k∈N defined by xk+1 ∈ Txk converges to a point in Fix T for any x0 ∈ E.

Proof. Using averagedness of T and Proposition 3.1.9, we deduce single-valuedness
of the mapping. Moreover, since T is averaged, we can apply Proposition 3.1.12 and
deduce that the sequence (xk)k∈N is Fejér monotone and asymptotically regular.
Applying Proposition 3.1.9, yields single-valuedness of the mapping T . The result
then follows by Opial’s original statement [110, Theorem 1].

Henceforth, we will see that averagedness of T and a nonempty fixed point set is
enough to get convergence. As one would expect, it can be difficult for a map
to satisfy these properties globally (see Example 3.1.8). Nevertheless, this is of-
ten the case in nonconvex problem instances. Thus, we seek a statement that
includes local properties. That is in our case pointwise almost averagedness as in
Definition 3.1.2.

In addition to mere convergence, it is convenient to know how fast the sequence
converges. We are especially interested in linear convergence. The following types
of linear convergence can be found in [111, Chapter 9].

Definition 3.2.2 (types of linear convergence). Let (xk)k∈N be a sequence in E .
We say that the sequence (xk)k∈N converges

(i) R-linearly to a point y with rate c ∈ [0, 1) if there exists a constant γ > 0
such that

‖xk − y‖ ≤ γck (∀k ∈ N).
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(ii) Q-linearly to a point y with rate c ∈ [0, 1) if

‖xk+1 − y‖ ≤ c‖xk − y‖ (∀k ∈ N).

In the context of iterative algorithms and the sequences they produce, one needs
an additional assumption besides averagedness that also relates to the stability of
the fixed points. Here, we focus on metric regularity of set-valued mappings. This
concept has been studied by many authors in the literature (see for instance [5,55,
78, 79, 112, 118]). For the definition of metric regularity we need gauge functions.
A function µ : [0,∞) → [0,∞) is a gauge function if it is continuous and strictly
increasing with µ(0) = 0 and limt→∞ µ(t) =∞.

Definition 3.2.3 (metric regularity on a set [105, Definition 2.5]). Let Φ: E ⇒ Y ,
U ⊂ E , V ⊂ Y , where Y is a Euclidean space. Furthermore, let µ : [0,∞)→ [0,∞)
be a gauge function. The mapping Φ is called metrically regular with gauge µ on
U × V relative to Λ ⊂ E if

dist
(
x,Φ−1(y) ∩ Λ

)
≤ µ (dist (y,Φ(x))) (3.4)

holds for all x ∈ U ∩ Λ and y ∈ V with 0 < µ (dist (y,Φ(x))). When the set V
consists of a single point, V = {ȳ}, then Φ is said to be metrically subregular for ȳ
on U with gauge µ relative to Λ ⊂ E .
When µ is linear on [0,∞) (that is, µ(t) = κt,∀t ∈ [0,∞)), one says “with constant
κ” instead of “with gauge µ(t) = κt”. When Λ = E , the quantifier “relative to” is
dropped. When µ is linear, the smallest constant κ for which (3.4) holds is called
modulus of metric regularity.

Metric subregularity provides the existence of a local error bound (see [80, 86])
and is thus connected to this area of research. Moreover, metric regularity of a
set-valued mapping is equivalent to the Kurdyka-Łojasiewicz property of a related
single-valued function (see for instance [29]). A different way to understand metric
subregularity is its equivalent formulation by inverse calmness (see for instance [55,
Section 3H.]).

Remark 3.2.4. Note, that in the subsequent analysis, such as Theorem 3.2.6 and the
results on relaxed Douglas-Rachford in Chapter 4, we only consider the case when
µ is linear. Since the type of function of µ has an impact on the convergence (see for
instance [105, Theorem 2.2]), we limit the analysis to linear types of convergence.

While Definition 3.2.3 might seem abstract, there are sufficient conditions for metric
regularity or reformulations that allow to prove metric regularity. One of these is
polyhedrality. A mapping T : E ⇒ E is called polyhedral if its graph is the union of
finitely many sets that can be expressed as the intersection of finitely many closed
half-spaces and/or hyperplanes [55].
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Proposition 3.2.5 (polyhedrality implies metric subregularity [105, Proposition
2.6]). Let Λ ⊂ E be an affine subspace and T : Λ ⇒ Λ. If T is polyhedral and
Fix T ∩Λ is an isolated point, {x}, then Φ := T − Id is metrically subregular for 0
on U (metrically regular on U × {0}) relative to Λ with some constant κ for some
neighborhood U of x. In particular, U ∩ Φ−1(0) = {x}.

Collecting the concepts we have established so far, we present the following con-
vergence result that goes back to Luke, Tam and Thao in [105, Theorem 2.2] and
was later refined in [104] by Luke, Teboulle and Thao to convergence to a specific
point.

Theorem 3.2.6 ((sub)linear convergence with metric subregularity). Let T : Λ⇒
Λ for Λ ⊂ E, with Fix T nonempty and closed, Φ := T − Id and set Sδ :=
(Fix T + δB) ∩ Λ for δ ∈ R+. Suppose that, for all δ̄ > 0 small enough, there
is a γ ∈ (0, 1), ε > 0 and an α ∈ (0, 1), such that,

(i) T is pointwise almost averaged at all y ∈ Fix T ∩ Λ with averaging constant
α and violation ε on Sγδ̄, and

(ii) for S̄ := Sγδ̄ \ Fix T , Φ is metrically subregular for 0 on S̄ with constant κ
relative to Λ.

Then for any x0 ∈ Λ close enough to Fix T ∩ Λ, the iterates xj+1 ∈ Txj satisfy

dist
(
xj+1,Fix T ∩ Λ

)
≤ c dist

(
xj,Fix T ∩ Λ

)
∀xj ∈ S̄, (3.5)

where c :=
√

1 + ε−
(

1−α
κ2α

)
. If, in addition κ satisfies

κ <

√
1− α
εα

, (3.6)

then dist (xj, x̃) → 0 for some x̃ ∈ Fix T ∩ Λ at least R-linearly with rate at most
c < 1. If Fix T ∩ Λ is a single point, then convergence is Q-linear.

Remark 3.2.7. In both Theorem 3.2.1 as well as Theorem 3.2.6(i) averagedness is
the essential property for convergence of iterative algorithms. Whereas assumption
(ii) of Theorem 3.2.6 serves to quantify the convergence, the inequality in (3.5) is
closely related to the property of being paracontractive. A continuous mapping
T : Rn → Rn is paracontractive (see [61]) if for any x ∈ Rn \ Fix T and x+ = Tx it
holds

dist
(
x+, y

)
< dist (x, y) (∀y ∈ Fix T ). (3.7)

Hence, if T is single-valued, which is the case at points where T is averaged, and
E = Rn, Λ = Fix T , then (3.7) implies (3.5).
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3.3. Regularities of Sets

In the previous sections we have seen that regularities of a mapping T imply con-
vergence of the iterative algorithm corresponding to T . What is missing, is the
connection to feasibility problems and projection based algorithms. The link be-
tween these two areas is made by regularity concepts on the sets themselves, but
also the whole collection of sets involved. The former concept is treated in this
section.

There are numerous definitions available to work with nonconvex sets. A recent
survey by Kruger et al. [88] sorted the different classes of nonconvex sets to highlight
their dependencies and differences. By uniting several concepts of regularities for
sets, we propose to use the notion of ε-set regularity as introduced in [88] and
refined in [48].

Definition 3.3.1 (ε-subregularity [48, Definition 2.2]). A set Ω is ε-subregular
relative to Λ ⊂ E at x ∈ Ω for (x, v) ∈ gphNΩ if it is locally closed at x, and there
exists an ε > 0 together with a neighborhood Uε of x, such that

〈v − (y′ − y), y − x〉 ≤ ε ‖v − (y′ − y)‖ ‖y − x‖ (∀y′ ∈ Λ ∩ Uε)(∀y ∈ PΩy
′),
(3.8)

where gphT denotes the graph of the mapping T : E ⇒ E defined by gphT :=
{(x, y) ∈ E × E | y ∈ Tx}. Ω is called subregular relative to Λ at x for (x, v) ∈
gphNΩ if it is locally closed and for all ε > 0 there exists Uε such that (3.8) holds.
If Λ = {x}, then the qualifier “relative to” is dropped.

Example 3.3.2 (ε-subregularity). (i) Circles, [105, Example 3.1.b]. Consider
the set

A =
{

(x1, x2) ∈ R2
∣∣∣x2

1 + x2
2 = 1

}
.

The set A is subregular at any x ∈ A for all (x, v) ∈ gphNA. To see this, note
first that for any x ∈ A, NA(x) consists of a line passing through the origin
and the point x̂. Now, for any ε ∈ (0, 1), we choose δ = ε. Then, for any
x ∈ A∩Bδ(x), it holds cos∠ (−x, x− x) ≤ δ ≤ ε. Hence, for all x ∈ A∩Bδ(x)
and v ∈ NA(x),

〈v, x− x〉 = cos∠ (v, x− x) ‖v‖ ‖x− x‖
≤ cos∠ (−x, x− x) ‖v‖ ‖x− x‖
≤ε ‖v‖ ‖x− x‖ .

(ii) Convex sets. Let A be a closed and convex set. By Proposition 2.2.1 it holds

〈v, x− x〉 ≤ 0 (∀x ∈ A)(∀v ∈ NA(x)).

Thus, A is subregular with neighborhood U = E .
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Of special interest in this thesis are super-regular sets and their extension super-
regular sets at a distance. The latter notion is a version of the former relative to
points not belonging to the set.
Definition 3.3.3 (super-regularity [92, Definition 4.3]). Let Ω ⊆ Rn and x ∈ Ω.
The set Ω is said to be super-regular at x if it is locally closed at x, and for every
ε > 0 there is a δ > 0 such that for all (x, 0) ∈ gphNΩ ∩ {(Bδ(x), 0)}

〈y′ − y, x− y〉 ≤ ε ||y′ − y||‖x− y‖ (∀y′ ∈ Bδ(x))(∀y ∈ PΩy
′). (3.9)

Remark 3.3.4 (ε-subregularity, super-regularity and other notions). By (3.9) in
Definition 3.3.1, it is easy to see that every set Ω that is super-regular at x ∈ Ω, is
also ε-subregular at x for all (x, 0) ∈ gphNΩ ∩ {(Bδ(x), 0)}. Thus, the notion of ε-
subregularity captures super-regular sets. Moreover, there are other notions that fit
into the framework of ε-subregularity. This was shown in [88] where ε-subregularity
was called elemental (sub-)regularity. The authors proved that Clarke regularity,
prox-regularity, convexity and others imply elemental (sub-)regularity. They also
showed that these regularity notions do imply each other in the following order:
convexity ⇒ prox-regularity ⇒ super-regularity ⇒ Clarke regularity (see [88] and
references therein).

Rewriting Definition 3.3.3 leads to the following equivalent characterization of
super-regularity, which is more useful for our purposes.
Proposition 3.3.5 ([92, Proposition 4.4]). The set Ω ⊆ E is super-regular at x ∈ Ω
if and only if it is locally closed at x, and for every ε > 0 there exists δ > 0 such
that

〈v, x− y〉 ≤ ε ‖v‖ ‖x− y‖
(∀(x, v) ∈ gphNΩ ∩ (Bδ(x)× E))(∀y ∈ Ω ∩ Bδ(x)). (3.10)

To extend super-regularity to super-regularity at a distance, we employ the notion
of ε-subregular sets.
Definition 3.3.6 (super-regularity at a distance). A set Ω is called ε-super-regular
at a distance relative to Λ ⊂ E at x if it is ε-subregular relative to Λ at x for all
(x, v) ∈ Vε, where

Vε := {(x, v) ∈ gphNprox
Ω |x+ v ∈ Uε, x ∈ PΩ(x+ v)} , (3.11)

and Uε is a neighborhood of x. Ω is called super-regular at a distance relative to Λ
at x if it is ε-super-regular at a distance relative to Λ at x for all ε > 0.

Comparing Proposition 3.3.5 and Definition 3.3.6 super-regularity is more strict
than super-regularity at a distance. Note that implicitly Uε ∩ Λ 6= ∅ for all ε >
0. The notion of super-regularity at a distance is of particular importance for
our analysis of the relaxed Douglas-Rachford algorithm. In fact, we will see in
Chapter 4 that the fixed points of the relaxed Douglas-Rachford mapping T λA,B
need not be contained in A and B. Thus, we have to describe the regularity of the
sets relative to points not (necessarily) in the sets.
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B

x

Figure 3.2: Illustration of the sets in Example 3.3.8.

Remark 3.3.7 (super-regularity at a distance relative to E is equivalent to super-reg-
ularity). Super-regularity at a distance relative to Λ = E at some point x ∈ Ω im-
plies super-regularity at x. To see this, let Ω be super-regular at a distance relative
to Λ = E at x ∈ Ω. For fixed ε > 0 note that (x, 0) ∈ Vε for all x ∈ Ω ∩ Uε. With
these, (3.8) becomes

〈y − y′, y − x〉 ≤ ε ‖y − y′‖ ‖y − x‖ (3.12)

for all y′ ∈ Λ∩Uε, y ∈ PΩy and for all x ∈ Uε ∩Ω. Certainly, there exists an δ > 0
such that Bδ ⊂ Uε. Moreover, since Λ = E (3.12) holds for all y′ ∈ Uε, y ∈ PΩy
and for all x ∈ Uε ∩Ω, which is by Definition 3.3.3 super-regularity of Ω at x. The
other implication follows just by the definition of both regularities.

Note that taking Λ = E was essential to prove the equivalence. If we restrict Λ to
a proper subset of E , the equivalence does not have to hold anymore, as we see in
the next example.

Example 3.3.8 (super-regularity at a distance does not imply super-regularity).
This example considers Pac-Man.

B =
{

(x1, x2) ∈ R2
∣∣∣x2

1 + x2
2 ≤ 1, x1 ≤ |x2|

}
⊂ R2

x = (0, 0) .

The set B is super regular at a distance relative to P−1
B (x) at x. But it is not super-

regular at x. To show the first assertion, we take in Definition 3.3.6 Λ = P−1
B (x),

ε = 0 and the neighborhood Uε = E . Note that a′ ∈ P−1
B (x) implies a′ = x. Then,

for all (b, v) ∈ Vε and for all a′ ∈ A, a ∈ PBa′ we note that

〈v − (a′ − a) , a− b〉 = 〈v, a− b〉 − 〈a′ − a, a− b〉 = 〈v, x− b〉 − 〈0, x− b〉 = 0 = ε.

which shows that B is super regular at a distance relative to P−1
B (x) at x. To prove

that B is not super-regular at x, we argue similar to [48, Example 2.7]. Take any
(0, v) ∈ NB and y = tv with 0 6= v ∈ B ∩NB(0) and t ↓ 0. Then

〈v, y〉 = t 〈v, v〉 = t‖v‖ > 0.

By Proposition 3.3.5, we conclude that B is not super-regular at x.
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Besides this example the strength of the notion of super-regularity at a distance
becomes more obvious in Proposition 3.3.12 where we analyze the regularity of
projectors and reflectors on super-regular sets at a distance relative to points not
in the set.

Proposition 3.3.9 (convex sets are super-regular at a distance). Let Ω ⊂ E be
convex and closed. Then Ω is super-regular at a distance relative to Λ = E at any
x ∈ Ω.

Proof. Fix x ∈ Ω. For convex sets one has

〈v, x− y〉 ≤ 0 (∀x, y ∈ Ω)(∀v ∈ NΩ(y)).

Thus, for any open set U ⊂ E , y′ ∈ U , and y ∈ PΩy
′, which implies that y′ − y ∈

NΩ(y). From this we deduce that 〈y′ − y, x− y〉 ≤ 0 and thus

〈v − (y′ − y), y − x〉 ≤ 0 (∀y′ ∈ Λ ∩ Uε)(∀y ∈ PΩy
′).

This shows super-regularity at a distance of Ω relative to E at all x ∈ Ω as claimed.

Example 3.3.10 (circles are super-regular at a distance). Consider the set

Ω :=
{

(x1, x2) ∈ R2
∣∣∣x2

1 + x2
2 = 1

}
.

This set is ε-subregular relative to Λ = P−1
Ω (x) at any x ∈ Ω for all (x, v) ∈ gphNΩ

with ε = 0 (which implies that Ω is in fact subregular relative to Λ for all (x, v) ∈
gphNΩ) as seen in Example 3.3.2(i). Indeed, for any δ ∈ (0, 1) we have, for any
y′ ∈ Λ ∩ Bδ(x), that y ∈ PΩy

′ is given by y = x and (3.8) specializes to

〈v − (y′ − y) , y − x〉 = 〈v − (y′ − y) , x− x〉 = 0 (∀y′ ∈ Λ ∩ Bδ(x)(∀v ∈ NΩ(x)).

Moreover, the set Ω is super-regular at a distance relative to Λ = P−1
Ω (x) at any

x ∈ Ω. To see this, we first show that Ω is ε-super-regular at a distance relative
to P−1

Ω (x) at x for any ε ∈ (0, 0.5). Fix a ε ∈ (0, 0.5) and set δ = 2ε. For any
w ∈ NΩ(x) and x ∈ Ω ∩ Bδ(x) it holds cos∠ (w, x− x) ≤ cos∠ (−x, x− x). By
the law of cosine we conclude cos∠ (−x, x− x) = ‖x− x‖ /2 < δ/2 < ε. Since
v − (y′ − x) ∈ NΩ(x) for all y′ ∈ Λ ∩ Bδ(x), by the definition of the inner product
on R2, we deduce

〈v − (y′ − x) , x− x〉
= cos∠ (v − (y′ − x) , x− x) ‖v − (y′ − x)‖ ‖x− x‖
≤ ε ‖v − (y′ − x)‖ ‖x− x‖ (∀y′ ∈ Λ ∩ Bδ(x))(∀(x, v) ∈ Vδ),

where

Vδ := {(x, v) ∈ gphNprox
Ω |x+ v ∈ Bδ(x), x ∈ PΩ(x+ v)} ,



3.3 Regularities of Sets 27

Ω

x̄y′
x

x+ v

δ

Figure 3.3: Illustration of the sets in Example 3.3.10.

which shows that Ω is ε-super-regular at a distance relative to P−1
Ω (x) at x for any

ε ∈ (0, 0.5). Similarly, the same is true for any ε > 0.5 when taking a ball with
radius δ around x, where δ < 1. Thus, Ω is super-regular at a distance relative to
P−1

Ω (x) at x.

In fact, we can enlarge our neighborhood from a ball to a tube. Fix x ∈ Ω, ε > 0
and some δ ∈ (0, 1) such that the above construction is satisfied. Then

U :=
⋃

z∈P−1
Ω (x)
‖z‖≥1

Bδ(z)

is a neighborhood for x such that ε-super-regularity relative to Λ = P−1
Ω (x) is satis-

fied for Ω. Fortunately, our violation ε is not worse compared to the neighborhood
being a ball with radius δ around x. This allows us to include more points in Λ∩U
without violating (3.8).

Proposition 3.3.11 (characterization of super-regularity at a distance). The fol-
lowing hold:

(i) A nonempty set Ω ⊂ E is ε-super-regular at a distance relative to Λ at x if
and only if there is a neighborhood Uε of x such that

‖x− y‖2 ≤ ε ‖(y′ − y)− (x′ − x)‖ ‖x− y‖+ 〈x′ − y′, x− y〉
(∀y′ ∈ Uε ∩ Λ)(∀y ∈ PΩy

′)

with x′ = x+ v ∈ Uε for all (x, v) ∈ Vε for Vε defined by (3.11).

(ii) Let Ω ⊂ E be ε-super-regular at a distance relative to Λ at x. Then

‖x− y‖ ≤ ε ‖(y′ − y)− (x′ − x)‖+ ‖x′ − y′‖ (∀y′ ∈ Uε ∩ Λ)(∀y ∈ PΩy
′)

(3.13)
with x′ = x+ v ∈ Uε for all (x, v) ∈ Vε.
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Proof. (i). Let Ω ⊂ E be ε-super-regular at a distance relative to Λ ⊂ E at x. Then,
for fixed ε > 0, there exists a neighborhood Uε of x such that for all (x, v) ∈ Vε for
Vε defined by (3.11) and x′ = x+ v ∈ Uε the following hold:

‖x− y‖2 = 〈x− y, x− y〉 = 〈y′ − y − (x′ − x) , x− y〉+ 〈x′ − y′, x− y〉
≤ ε ‖y′ − y − (x′ − x)‖ ‖x− y‖+ 〈x′ − y′, x− y〉 .

This proves the first part of the equivalence. For the remaining one let Uε be a
neighborhood of x such that

‖x− y‖2 ≤ ε ‖(y′ − y)− (x′ − x)‖ ‖x− y‖+〈x′ − y′, x− y〉 (∀y′ ∈ Uε∩Λ)(∀y ∈ PΩ(y′))
(3.14)

holds with x′ = x + v ∈ Uε for all (x, v) ∈ Vε for Vε defined by (3.11). (3.14) is
equivalent to

〈y′ − y − (x′ − x) , x− y〉+〈x′ − y′, x− y〉 ≤ ε ‖(y′ − y)− (x′ − x)‖ ‖x− y‖+〈x′ − y′, x− y〉 ,

(∀y′ ∈ Uε∩Λ)(∀y ∈ PΩ(y′)) by the calculations made before. Subtracting 〈x′ − y′, x− y〉
from both sides and inserting v = x′ − x yields

〈y′ − y − v, x− y〉 ≤ ε ‖(y′ − y)− v‖ ‖x− y‖ , (∀y′ ∈ Uε ∩ Λ)(∀y ∈ PΩ(y′)).

Reordering the left-hand side we deduce the definition of ε-super-regular for Ω at
x

〈v − (y′ − y), y − x〉 ≤ ε ‖(y′ − y)− v‖ ‖x− y‖ , (∀y′ ∈ Uε ∩ Λ)(∀y ∈ PΩ(y′)).

(ii). The second part follows from (i) by applying the Cauchy-Schwarz inequality
to the vectors x′ − y′ and x− y.

Definition 3.3.6 implies pointwise almost nonexpansivity of the projector and re-
flector on a neighborhood of a point x in Ω relative to points not in Ω. This is of
particular interest, since the fixed points of T λA,B (depending on λ < 1) need not
be in either of the sets A and B if the problem is inconsistent (see Theorem 4.2.3,
where we do not require that A ∩B 6= ∅).

Proposition 3.3.12 (regularity of projectors and reflectors at a distance). Let
Ω ⊂ E be nonempty and closed, and let U be a neighborhood of x ∈ Ω. Let
Λ := P−1

Ω (x) ∩ U . If Ω is ε-super-regular at a distance at x relative to Λ with
constant ε on the neighborhood U , then the following hold:

(i) If ε ∈ [0, 1), then the projector PΩ is pointwise almost nonexpansive at each
y′ ∈ Λ with violation ε̃ on U for ε̃ := 4ε/ (1− ε)2. That is, at each y′ ∈ Λ

‖x− y‖ ≤
√

1 + ε̃ ‖x′ − y′‖ = 1 + ε

1− ε ‖x
′ − y′‖

(∀x′ ∈ U)(∀x ∈ PΩx
′)(∀y ∈ PΩy

′).
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(ii) If ε ∈ [0, 1), then the projector PΩ is pointwise almost firmly nonexpansive at
each y′ ∈ Λ with violation ε̃2 on U for ε̃2 := 4ε(1 + ε)/ (1− ε)2. That is, at
each y′ ∈ Λ

‖x− y‖2 + ‖(x′ − x)− (y′ − y)‖2 ≤ (1 + ε̃2) ‖x′ − y′‖
(∀x′ ∈ U)(∀x ∈ PΩx

′)(∀y ∈ PΩy
′).

(iii) The reflector RΩ is pointwise almost nonexpansive at each y′ ∈ Λ with viola-
tion ε̃3 := 8ε(1 + ε)/(1− ε)2 on U . That is, for all y′ ∈ Λ

‖x− y‖ ≤
√

1 + ε̃3 ‖x′ − y′‖ (∀x′ ∈ U)(∀x ∈ RΩx
′)(∀y ∈ RΩy

′).

Proof. Our proof follows that of [105, Theorem 3.1]. Before proving each of the
statements individually, note the following. Take any x′ ∈ U . Then for each
x ∈ PΩx

′ we have (x, x′ − x) ∈ gphNprox
Ω ⊂ gphNΩ. Moreover, by construction

(x, x′ − x) ∈ Vε, where Vε is defined by (3.11).

(i). By choosing x′ ∈ U and x ∈ PΩx
′ we get (x, x′ − x) ∈ gphNprox

Ω ⊂ gphNΩ.
Applying Proposition 3.3.11(ii) yields

‖y − x‖ ≤ ε ‖(x′ − x)− (y′ − y)‖+ ‖y′ − x′‖ ,

whenever y′ ∈ U ∩ Λ and y ∈ PΩy
′. Exploiting the triangle inequality we deduce

‖y − x‖ ≤ ε (‖y′ − x′‖+ ‖y − x‖) + ‖y′ − x′‖

and thus conclude the claimed result.

(ii). By super-regularity at a distance relative to Λ of Ω and Proposition 3.3.11(i)
we have

‖x− y‖2 + ‖(x′ − x)− (y′ − y)‖2

= 2 ‖x− y‖2 + ‖x′ − y′‖2 − 2 〈x′ − y′, x− y〉
≤ ‖x′ − y′‖2 + 2ε ‖(x′ − x)− (y′ − y)‖ ‖x− y‖ ,

for (x, x′ − x) ∈ Vε and y′ ∈ U ∩Λ, y ∈ PΩy
′. Together with the triangle inequality

this implies

‖x− y‖2 + ‖(x′ − x)− (y′ − y)‖2

≤ ‖x′ − y′‖2 + 2ε (‖x′ − y′‖+ ‖x− y‖) ‖x− y‖ .

Using part (i), we deduce

‖x− y‖2 + ‖(x′ − x)− (y′ − y)‖2 ≤
(

1 + 4ε 1 + ε

(1− ε)2

)
‖x′ − y′‖2 (3.15)
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for all (x, x′ − x) ∈ Vε and for all y ∈ PΩy
′ at each y′ ∈ U ∩Λ. Since, as mentioned

in the beginning, for all x′ ∈ U it holds that (x, x′ − x) ∈ Vε for all x ∈ PΩx
′, (3.15)

holds at each y′ ∈ Λ = Λ∩U for all x ∈ PΩx
′ whenever x′ ∈ U . By Proposition 3.1.5

with α = 1/2, we conclude that PΩ is pointwise almost firmly nonexpansive at each
y′ ∈ Λ with violation 4ε (1 + ε) / (1− ε)2 on U .

(iii). By (ii), PΩ is pointwise almost firmly nonexpansive at each y′ ∈ Λ with
violation 4ε (1 + ε) / (1− ε)2 on U . Thus, by Proposition 3.1.5, the reflector, RΩ :=
2PΩ − Id, is pointwise almost nonexpansive at each y′ ∈ Λ with violation

8ε (1 + ε) / (1− ε)2

on U .

Remark 3.3.13. By Remark 3.3.4, the statement in Proposition 3.3.12 is also true for
convex and prox-regular sets (this can be deduced for instance from [105, Theorem
3.1]). Moreover, in the case of convex sets, the violation ε is 0 (compare this
to Example 3.3.2(ii)). This result can be also found in [15, Proposition 4.8 and
Corollary 4.10].
Remark 3.3.14. By Proposition 3.1.7, compositions of pointwise almost averaged
mappings are again pointwise almost averaged. Proposition 3.3.12 yields that pro-
jectors and reflectors onto sets, that are super-regular at a distance, are pointwise
almost averaged. Combining both results, suggests that compositions of projec-
tors and reflectors onto sets, that are super-regular at a distance, are pointwise
almost averaged. This observation will be important for our analysis of the relaxed
Douglas-Rachford mapping in Chapter 4.

3.4. Regularities of Collections of Sets

In Theorem 3.2.6 there were two main ingredients for the quantitative convergence
result. First, the mapping T has to be almost averaged. As seen in Section 3.3,
this is implied by the regularity of sets involved if the mapping T is composed of
projectors. The second assumption made in Theorem 3.2.6 was metric subregularity
of T−Id. This section is devoted to the investigation of this property in the context
of feasibility problems.

Direct verification of metric subregularity is notoriously difficult. This is no differ-
ent for the relaxed Douglas-Rachford or its cyclic version. In principle, one must
show that the coderivative (the generalized Jacobian) of the T mapping is injective
on neighborhoods of Fix T [55, Theorems 4B.1 and 4C.2]. Since the mappings we
are interested in this thesis are based on projectors onto sets, another route is avail-
able for showing metric subregularity which uses characterizations of the regularity
of sets in relation to each other. In the context of consistent set feasibility, metric
subregularity of a particular set-valued mapping on the product space has been
shown to be equivalent to subtransversality of the collection of sets [88]. This was
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expanded in [105, Definition 3.2] to account for inconsistent set feasibility. Luke,
Thao and Teboulle showed in [104] that subtransversallity is indeed necessary for
R-linear convergence of alternating projections for consistent feasibility. If the sets
are convex, then subtransversality is even necessary and sufficient, i.e. equivalent
to R-linear convergence [104, Theorem 8 and 9]. In Chapter 4 we will use the con-
nection between subtransversality of the collection of sets also for the analysis of
the relaxed Douglas-Rachford method. Note that this general definition can sim-
plify in special cases such as intersecting sets as is discussed in Proposition 4.5.1.

Definition 3.4.1 (subtransversal collection of sets). Let {Ω1,Ω2, . . . ,Ωm} be a
collection of nonempty closed subsets of E and define Ψ: Em ⇒ Em by Ψ(x) :=
PΩ (Πx) − Πx, where Ω := Ω1 × Ω2 × · · · × Ωm, the projection PΩ is with respect
to the Euclidean norm on Em and Π : x = (x1, x2, . . . , xm) 7→ (x2, x3, . . . , xm, x1) is
the permutation mapping on the product space Em. Let x = (x1, x2, . . . , xm) ∈ Em
and y ∈ Ψ(x). The collection of sets is said to be subtransversal with constant
κ relative to Λ ⊂ Em at x for y if Ψ is metrically subregular at x for y on some
neighborhood U of x with constant κ relative to Λ.

In contrast to the original model setting, where {Ω1,Ω2, . . . ,Ωm} is a collection of
subsets on E , our definition of subtransversality is formulated on the product space
Em where Ω1 ×Ω2 × · · · ×Ωm ⊂ Em. Note that the original definition in [105] was
formulated for gauges. The advantage of the more general formulation in [105] is
to allow more generic concepts than only linear structures. Since we are, in the
context of this thesis, interested in linear convergence, the version presented here is
specialized to linear gauges. As it turns out, it will be useful that subtransversality
is preserved, when we add sets to the considered collection of sets, that are the
translates of the original sets.

Lemma 3.4.2 (subtransversality under addition). Let {Ω1,Ω2 . . . ,Ωm} ⊂ E be a
subtransversal collection of sets at a point x = (x1, x2, . . . , xm) for y ∈ Ψ(x) relative
to Λ ⊂ Em with modulus κ. Then the collection

{Ω1,Ω2 . . . ,Ωm,Ω1 − g,Ω2 − g, . . . ,Ωm − g} ⊂ E

for some g ∈ E is subtransversal at

x̃ = (x1 − g, x2, x3, . . . , xm, x1, x2 − g, x3 − g, . . . , xm − g) ∈ E2m (3.16)

for
ỹ = (y, y) = (y1, y2, . . . , ym, y1, y2, . . . , ym) ∈ E2m

relative to

Λ̃ =
{
z ∈ E2m

∣∣∣ (zm+1, z2, z3, . . . , zm) ∈ Λ, (z1, zm+2, zm+3, . . . , z2m) ∈ Λ− (g, . . . , g)
}

with modulus κ.



32 3 A Toolkit for Convergence

Proof. We will show the result only for m = 2 for reasons of simplicity and since
one can easily enlarge the number of sets used in the proof by the same pattern
shown here. For s ∈ N denote by Πs

E the permutation mapping on Es.

Let U ⊂ E2 be a neighborhood of x ∈ E2 such that subtransversality holds at x for
y relative to Λ. Define Ω := Ω1×Ω2 and therefore (Ω1 − g)×(Ω2 − g) = Ω−(g, g).
Likewise set

Ũ :=
{
z ∈ E4

∣∣∣ (z3, z2) ∈ U, z1 = z3 − g, z4 = z2 − g
}
.

Thus every z ∈ Ũ∩Λ̃ can be expressed as (x1 − g, x2, x1, x2 − g)T for some (x1, x2) ∈
U ∩ Λ.

To show subtransversality of {Ω1,Ω2,Ω1 − g,Ω2 − g} we have to verify metric sub-
regularity of Ψ = PΩ(Π4

E)−Π4
E for ỹ ∈ Ψ(x̃) relative to Λ̃ on Ũ , a neighborhood of

x̃.

First, we show that ỹ ∈ Ψ(x̃), i.e. ỹ ∈ PΩ×Ω−(0,0,g,g) (Π4
E(x̃)) − Π4

E(x̃). Let x̃ be
defined by (3.16) then

PΩ×Ω−(0,0,g,g)
(
Π4
E(x̃)

)
− Π4

E(x̃)

=
(
PΩ (x̃2, x̃3)− (x̃2, x̃3) , PΩ−(g,g) (x̃4, x̃1)− (x̃4, x̃1)

)
=
(
PΩ (x2, x1)− (x2, x1) , PΩ−(g,g) (x2 − g, x1 − g)− (x2 − g, x1 − g)

)
= (PΩ (x2, x1)− (x2, x1) , PΩ (x2, x1)− (x2, x1)) , (3.17)

where the last equality holds since PC−g(x − g) = PC(x) − g for any set C. Then
(3.17) yields

PΩ×Ω−(0,0,g,g)
(
Π4
E(x̃)

)
− Π4

E(x̃)
= (PΩ (x2, x1)− (x2, x1) , PΩ (x2, x1)− (x2, x1))
3 (y, y) = ỹ,

since y ∈ PΩ(Π2
Ex)−Π2

Ex by the assumptions on subtransversality of {Ω1,Ω2, . . . ,Ωm}.
By x̃ ∈ Λ̃ this shows ỹ ∈ Ψ(x̃) as claimed.

It remains to prove that inequality (3.4) holds for Ψ and at x̃ for ỹ ∈ Ψ(x̃) relative
to Λ̃ on Ũ . For this, take a (x1 − g, x2, x1, x2 − g)T ∈ Ũ ∩ Λ̃, then:

κ2 dist2

PΩ×Ω−(0,0,g,g)

Π4
E

 x1 − g
x2
x1

x2 − g

−Π4
E

 x1 − g
x2
x1

x2 − g

 ,

 y1
y2
y1
y2


=κ2

(
dist2

(
PΩ

(
x2
x1

)
−
(
x2
x1

)
,

(
y1
y2

))
+ dist2

(
PΩ−(g,g)

(
x2 − g
x1 − g

)
−
(
x2 − g
x1 − g

)
,

(
y1
y2

)))
,

(3.18)
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by rewriting the distance on E4 in terms of the distance on E2. Using again that
PC−g(x− g) = PC(x)− g for an arbitrary set C, (3.18) ends up as

κ2
(

dist2
(
PΩ

(
Π2
E

(
x1
x2

))
−Π2

E

(
x1
x2

)
,

(
y1
y2

))
+ dist2

(
PΩ

(
x2
x1

)
−
(
x2
x1

)
,

(
y1
y2

)))
=2κ2

(
dist2

(
PΩ

(
x2
x1

)
−
(
x2
x1

)
,

(
y1
y2

)))
≥2 dist2

((
x1
x2

)
,
(
PΩ
(
Π2
E (·)
)
−Π2

E (·)
)−1

(
y1
y2

))
, (3.19)

where the last inequality holds by subtransversality of {Ω1,Ω2} at (x1, x2) for
(y1, y2) relative to Λ with modulus κ on U . Rewriting (3.19) in the distance on E4

yields

κ2 dist2

PΩ×Ω−(0,0,g,g)

Π4
E

 x1 − g
x2
x1

x2 − g

−Π4
E

 x1 − g
x2
x1

x2 − g

 ,

 y1
y2
y1
y2


≥ dist2

 x1
x2
x1
x2

 ,


 z1

z2
z3
z4

∣∣∣∣∣∣PΩ

(
z2
z1

)
−
(
z2
z1

)
3
(
y1
y2

)
, PΩ−(g,g)

(
z4
z3

)
−
(
z4
z3

)
3
(
y1
y2

)


= dist2

 x1
x2
x1
x2

 ,


 z1

z2
z3
z4

∣∣∣∣∣∣PΩ

(
z2
z1

)
−
(
z2
z1

)
3
(
y1
y2

)
, PΩ−(g,g)

(
z4
z3

)
−
(
z4
z3

)
3
(
y1
y2

)


= dist2

 x1
x2

x1 − g
x2 − g

 ,


 z1

z2
z3
z4

∣∣∣∣∣∣PΩ×Ω−(0,0,g,g)

 z2
z1
z4
z3

−
 z2

z1
z4
z3

 3
 y1

y2
y1
y2




= dist2

 x1 − g
x2
x1

x2 − g

 ,


 z3

z2
z1
z4

∣∣∣∣∣∣PΩ×Ω−(0,0,g,g)

 z2
z1
z4
z3

−
 z2

z1
z4
z3

 3
 y1

y2
y1
y2


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 x1 − g
x2
x1

x2 − g

 ,
(
PΩ×Ω−(0,0,g,g)

(
Π4
E (·)
)
−Π4

E (·)
)−1

 y1
y2
y1
y2

 ,

where the last three steps were just rearranging the expression to get the claimed
result. This completes the proof.

Remark 3.4.3. The points involved in Lemma 3.4.2 depend on the order of the sets
involved appearing in Ω. Note that the property of being subtransversal itself does
not depend on any order of the sets. Of particular interest for our later analysis is
the case of two sets A and B, where we change the order on the product space, in
comparison to Lemma 3.4.2, in the following way

(B − g)× (A− g)× A×B ⊂ E4. (3.20)

This is in contrast to the order A×B×A− g×B− g as used in Lemma 3.4.2. In
the setting of (3.20), the points x̃ and ỹ as well as the set Λ̃ change to

x̃′ = (x1, x1 − g, x2 − g, x2)
ỹ′ = (−y1,−y2, y1, y2)
Λ̃′ =

{
z ∈ E4

∣∣∣ (z3, z4) ∈ Λ, (z2, z1) ∈ Λ− (g, g)
}
.
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That is, the collection {B − g, A− g, A,B} ⊂ E is subtransversal at x̃′ for ỹ′ rel-
ative to Λ̃′. Note that the negative part of ỹ emerged from the changed order of
B and A in comparison to Lemma 3.4.2. Since {B − g, A− g, A,B} is a set of
sets, we do not have to change the order of the sets appearing in comparison to
Lemma 3.4.2. By definition there is no order. The only thing that changed was the
order of the sets appearing in the product space E4. As a consequence the points
x̃ and ỹ changed.
Remark 3.4.4 (historical remarks and other types of set-regularity). The notion of
subtransversality routes back to the research area of differential geometry (see for
instance [90]). The definition, that is used in this field, is transversality and was
originally defined for manifolds. Loosely defined, an intersection of two smooth
manifolds is transversal if it is again a smooth manifold. In finite dimensions,
subtransversality can be formulated via tangent spaces (see for instance [93]) and
is strongly connected to the Conical Hull Intersection Property (CHIP)(first men-
tioned in [46] by Chui, Deutsch and Ward). Transversality was shown to be one
assumption that yields linear convergence of alternating projections on manifolds
(see for instance [93]) for manifolds with nonempty intersection. The connection
between transversality and metric regularity for alternating projections was estab-
lished for instance in [87, 93]. Similarly, the authors in [87] also presented the
connection between subtransversality and metric subregularity for consistent feasi-
bility. They were able to prove that subtransversality for the method of alternating
projections in a consistent 2-set feasibility problem is necessary for convergence.

In addition to the historical origin of subtransversality, there are plenty of other
notions for the regularity of collection of sets. (Local) linear regularity, for instance,
was first used by Bauschke and Borwein as a key assumption for linear convergence
of cyclic projections onto closed and convex sets (see for instance [11]). In the con-
text of consistent feasibility, this property is nothing more than subtransversality
(see Proposition 4.5.1). Other notions of regularity of collections of sets include
bounded (linear) regularity [11], the normal property and Jameson’s property (for
both see [8] and references therein). Linear regularity for closed convex sets implies
CHIP [14, Theorem 3] (we can restrict this to bounded linear regularity). For a
recent survey, we refer the reader to [87]. We consider transversality again in the
context of subspaces in Section 4.7.



CHAPTER 4

Relaxed Douglas-Rachford

Having introduced several projection methods and basic concepts for their analysis,
this chapter focuses on a specific iterative algorithm—the relaxed Douglas-Rachford
method. As defined in Algorithm 2.3.5, the relaxed Douglas-Rachford method
generates a sequences of iterates (xk)k∈N for an initial point x0 ∈ E and some
parameter λ ∈ (0, 1) by

xk+1 ∈ T λA,Bxk :=
⋃

b∈PBxk

{
λ
2

(
RA(2b− xk) + xk

)
+ (1− λ)b

}
(∀ k ∈ N).

The aim of the subsequent analysis is not only to study convergence in general,
but to develop a quantitative convergence result for the relaxed Douglas-Rachford
method. By extending previous work by Luke [97, 98] and Li and Pong [94], we
focus on super-regular sets at a distance, as characterized in Definition 3.3.6. The
analysis presented here is based on the framework established by Luke, Tam and
Thao in [105], which we introduced in Section 3.2. Our basic convergence template,
Theorem 3.2.6, requires two main properties of a mapping to generate an R-linear
convergent sequence. The first of these is pointwise almost averagedness. We show
in Theorem 4.1.2 that the relaxed Douglas-Rachford method does not only satisfy

A

B x

b

2b− x

RA(2b− x)

1
2 (RA(2b− x) + x)

y

Figure 4.1: Illustration of applying T λA,B on a point x yielding y = T λA,Bx for a fixed
λ ∈ (0, 1).
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this property, but that it is also single-valued at its fixed points. Analyzing the
relaxed Douglas-Rachford method at its fixed points involves investigating these
explicitly. In Section 4.2, we establish a characterization of the fixed point set. It
depends only on single-valuedness of the mapping at these points, but not on the
regularity of the set. The second property mentioned in Theorem 3.2.6, that we
have to consider, is metric subregularity. This property on its own can be chal-
lenging to verify. For this reason, we introduced notions of regularity of collections
of sets in Section 3.4 to serve as auxiliary properties for deducing metric subreg-
ularity. We devote Section 4.4 to the construction of a product space formulation
that assists the actual proof of local convergence of the relaxed Douglas-Rachford
method. The main result, Theorem 4.4.2, states in a nutshell that, if we have
two closed super-regular sets with nonempty intersection, such that Fix T λA,B 6= ∅,
we can always find a suitable neighborhood on which the method converges R-
linearly. Beyond that, we are able to estimate the convergence rate depending on
the chosen neighborhood. Applying this result to convex sets, we get global linear
convergence (see Corollary 4.5.3). We present elementary examples in Section 4.6
to demonstrate the application of our result. We close this chapter by studying a
special class of sets, namely subspaces. For this kind of regularity, the assumptions
of our main result Theorem 4.4.2 are always satisfied. Moreover, we are able to
reformulate our convergence result in terms of the so-called Friedrichs angle. Using
an idea of Bauschke et al. [20], we improve the convergence rate for the method of
relaxed Douglas-Rachford applied to subspaces.

Parts of the subsequent chapter can be found online in the preprint [101] by Luke
and the present author.

4.1. T λA,B is Almost Averaged at Fix T λA,B

The relaxed Douglas-Rachford mapping T λA,B is a composition of projectors and
reflectors. The almost averaging property is preserved under compositions of point-
wise almost averaged mappings, as we have seen in Proposition 3.1.7. As an aux-
iliary statement for our main result of this section, Theorem 4.1.2, we start this
section with the following lemma. Note that by Uε(x) we denote a neighborhood
of the point x where the set, here Ω, is ε-super-regular at a distance with constant
ε.

Lemma 4.1.1. Let x ∈ E and let Ω ⊂ E be super-regular at a distance relative
to Λ ⊂ P−1

Ω (ω̄) at ω̄, where ω ∈ PΩx and x ∈ Λ. In addition, for each ε > 0,
let x ∈ Uε(ω), where Uε(ω) is a neighborhood of ω on which (3.8) holds. Then
PΩx = {ω}.

Proof. For some fixed ε > 0, the assumptions of super-regularity at a distance of
Ω relative to Λ and Proposition 3.3.12(i) gives that there exists some neighbor-
hood Uε(ω̄) such that PΩ is pointwise almost nonexpansive at x ∈ Λ ∩ Uε(ω̄) on
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Uε(ω̄) with violation ε̃ = 4ε/(1− ε)2. This implies single-valuedness of PΩ at x by
Proposition 3.1.9, i.e. that {ω̄} = PΩx, as claimed.

Theorem 4.1.2 (T λA,B is pointwise almost firmly nonexpansive at its fixed points).
Let A, B be closed and nonempty, λ ∈ (0, 1) and x ∈ Fix T λA,B 6= ∅. Let b ∈ PBx
and a ∈ PA(2b−x). Suppose that B is super-regular at a distance relative to Λb̄ :=
P−1
B (b̄) at b̄ and, likewise A is super-regular at a distance relative to Λa := P−1

A (ā)
at ā. Suppose, moreover, that the following hold:

(i) For each ε > 0, x ∈ Uε(b), where Uε(b) is a neighborhood of b on which (3.8)
holds for ε.

(ii) For each ε > 0, 2b− x ∈ Uε(a), where Uε(a) is a neighborhood of a on which
(3.8) holds for ε.

(iii) RB(Λb̄) ⊂ Λā.

(iv) RB(Uε(b)) ⊂ Uε(a) for all ε > 0.

Then, {b̄} = PBx, {ā} = PARBx, T λA,B is single-valued at x, and for all ε > 0
there exists a neighborhood U(B, ε, x) of b̄ such that T λA,B is pointwise almost firmly
nonexpansive at x with violation at most ε on U(B, ε, x).

Before we begin the proof of this statement, we would like to point out an im-
portant feature of our construction. The claimed pointwise almost averagedness
of T λA,B at x holds on open subsets containing both x and b = PBx. This follows
from assumption (i). The conclusion of the theorem could have been equivalently
stated: for all ε > 0 there exists a neighborhood U(B, ε, x) of x such that T λA,B is
pointwise almost averaged at x with violation at most ε on U . We have presented
the statement in terms of a neighborhood U(B, ε, x) containing b to emphasize the
fact that the open sets on which the regularity of T λA,B holds is constructed relative
to points b at a distance from the point of interest x ∈ Fix T λA,B. The usual use of
balls for neighborhoods is not convenient or appropriate for this setting.

Proof of Theorem 4.1.2. Under assumptions (i) and (ii), Lemma 4.1.1 yields {b̄} =
PBx and {ā} = PARBx, as claimed. From this, one can immediately conclude that
T λA,B is single-valued at x.

For any fixed εB > 0, we get by the assumptions on super-regularity at a distance
of B relative to Λb and Proposition 3.3.12(ii) that there exists some neighborhood
UεB(b) such that PB is pointwise almost firmly nonexpansive at x ∈ Λb̄∩U(B, εB, x)
on UεB(b) with violation εPB = 4εB(1 + εB)/(1 − εB)2. Note that this also shows
that PB is pointwise almost nonexpansive at x on UεB(b). Similarly, by Propo-
sition 3.3.12(iii), RB is pointwise almost nonexpansive at x with violation εRB =
8εB(1 + εB)/(1− εB)2 on UεB(b). Likewise, for any εA > 0 there exists a neighbor-
hood UεA(a) of a such that RA is pointwise almost nonexpansive at a = 2b−x with
violation εRA = 8εA(1 + εA)/(1− εA)2 on UεA(a).
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By (iii) and (iv), the assumptions of Proposition 3.1.7(ii) are satisfied. Hence, we
deduce that for any fixed εA > 0 there exists a neighborhood U(A, εRARB , x) such
that RARB is pointwise almost nonexpansive at x with violation at most

εRARB = εRA + εRB + εRAεRB

on U(B, ε, x).

By Proposition 3.1.5(ii) we get that 1/2(RARB + Id) is almost firmly nonexpansive
at x with violation εRARB/2 on UεB(b). Again applying Proposition 3.1.7 (i) yields
pointwise almost nonexpansivity of T λA,B at x on UεB(b) with violation at most

ε′ = λ(1/2)εRARB + (1− λ)εPB .

Since the above properties hold for each εB > 0 and εA > 0, we can construct
the neighborhoods above, given any ε > 0, so that ε′ ≤ ε. We conclude that
for any ε > 0 there is a neighborhood U(B, ε, x) such that T λA,B is pointwise al-
most nonexpansive at x on U(B, ε, x) with violation at most ε. The corresponding
neighborhood U(A, εRARB , x) of a will be denoted by U(A, ε, x). This completes
the proof.

Corollary 4.1.3. In the setting of Theorem 4.1.2, fix ε > 0 and let U(B, ε, x) and
U(A, ε, x) be neighborhoods that satisfy the assumptions (i), (ii) and (iv) such that
T λA,B is pointwise almost firmly nonexpansive at x with violation ε on U(B, ε, x).
Then, for all ε < ε there exists a neighborhood U(B, ε, x) and a neighborhood
U(A, ε, x) such that conditions (i), (ii) and (iv) hold in addition to the inclusions
U(A, ε, x) ⊂ U(A, ε, x) and U(B, ε, x) ⊂ U(B, ε, x).

Corollary 4.1.3 implies that T λA,B is pointwise almost firmly nonexpansive at x with
violation ε on U(B, ε, x). The strength of Corollary 4.1.3, however, is hidden in the
proof given below and the explicit construction of the neighborhoods U(B, ε, x) and
U(A, ε, x). Thus, under the assumptions of Theorem 4.1.2, and given the neighbor-
hoods for some fixed violation ε, we are always able to restrict these neighborhoods
to smaller sets where (3.8) holds with some violation smaller than ε.

Proof of Corollary 4.1.3. Our approach to prove this statement is based on an
explicit construction of the neighborhoods U(A, ε, x) and U(B, ε, x).

Let ε < ε. Then Theorem 4.1.2(i) implies that there exists a neighborhood
U(B, ε, x) of b where (3.8) holds such that U(B, ε, x) ⊂ U(B, ε, x). To see this,
note that by (i) the existence of U(B, ε, x) is guaranteed and thus only U(B, ε, x) ⊂
U(B, ε, x) has to be proven. Let Ũ(B, ε, x) be a neighborhood for ε where (3.8)
holds. Then (3.8) is satisfied for ε as well. Thus, U(B, ε, x) := Ũ(B, ε, x)∩U(B, ε, x)
is a neighborhood of b where Theorem 4.1.2(iv) holds and (3.8) is satisfied for both
ε and ε, which shows that U(B, ε, x) ⊂ U(B, ε, x) as required. Next, applying the
reflection onto B on both of neighborhoods U(B, ε, x) and U(B, ε, x) yields

RB (U(B, ε, x)) ⊂ RB (U(B, ε, x)) . (4.1)



4.1 T λA,B is Almost Averaged at Fix T λA,B 39

Let Ũ(A, ε, x) be a neighborhood of a where (3.8) holds for ε such that Theo-
rem 4.1.2(iv) is satisfied. That is

RB(U(B, ε, x)) ⊂ Ũ(A, ε, x). (4.2)

Combining Theorem 4.1.2(iv) for the neighborhoods U(B, ε, x) and U(A, ε, x) and
(4.1) we deduce

RB (U(B, ε, x)) ⊂ RB (U(B, ε, x)) ⊂ U(A, ε, x). (4.3)

This and (4.2) imply that

RB(U(B, ε, x)) ⊂ Ũ(A, ε, x) ∩ U(A, ε, x). (4.4)

Set

U(A, ε, x) := Ũ(A, ε, x) ∩ U(A, ε, x).

Then, U(A, ε, x) is a neighborhood of a where (3.8) holds with ε, since it is a
subset of Ũ(A, ε, x). Moreover, U(B, ε, x) and U(A, ε, x) satisfy Theorem 4.1.2(iv)
by (4.4). By the construction of U(A, ε, x) and the choice of U(B, ε, x) both sets
satisfy the inclusions U(A, ε, x) ⊂ U(A, ε, x) and U(B, ε, x) ⊂ U(B, ε, x). This
completes the proof.

Example 4.1.4. The following three examples illustrate the assumptions of The-
orem 4.1.2. For these examples it is easy to determine the sets of fixed points of
the mapping T λA,B. In Theorem 4.2.3 we give a precise characterization of Fix T λA,B.
More intuitively, the fixed points must lie on lines containing local best approxima-
tion points between the sets.

(i) (convex sets with empty intersection). Let A and B be closed convex subsets
of E . By Proposition 3.3.9 both sets are super-regular relative to E at any
of their points, i.e. ε-super-regular for all ε > 0. In fact, the violation can
be set to 0. Thus, as long as Fix T λA,B 6= ∅ the mappings PB, RB and RA

are nonexpansive (i.e. no violation) at x on the whole space E by Proposi-
tion 3.3.12. Moreover, we can apply Theorem 4.1.2 to conclude that T λA,B is
firmly nonexpansive at x on the neighborhood E . For instance, consider the
two sets

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 ≤ 1
}
,

B :=
{
x = (x1, x2) ∈ R2

∣∣∣ (x1 − 3)2 + x2
2 ≤ 1

}
.

The set of fixed points is given by the unique point

Fix T λA,B = {x} =
{

(2, 0)− λ

1− λ(1, 0)
}

for fixed λ ∈ (0, 1). Moreover, we know by the above discussion that T λA,B is
nonexpansive, since it is composed of projections onto these sets.
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A B

ā b̄
x̄

2b̄− x̄
Uε(b̄)

Uε(ā)

Figure 4.2: Illustration of a possible choice of neighborhoods in Example 4.1.4(ii).

(ii) (super-regular sets with empty intersection). Continuing with the concrete
example above, suppose that A and B are spheres instead of balls,

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}
,

B :=
{
x = (x1, x2) ∈ R2

∣∣∣ (x1 − 3)2 + x2
2 = 1

}
.

The sets A and B are both nonconvex, but still super-regular. The set of
fixed points is again given by the unique point

Fix T λA,B = {x} =
{

(2, 0)− λ

1− λ(1, 0)
}

for fixed λ ∈ (0, 1). As seen in Example 3.3.10 both sets are super regular
relative to radial directions. Thus, applying Theorem 4.1.2, we deduce that
T λA,B for some fixed λ ∈ (0, 1) is only almost firmly nonexpansive at x on
some neighborhood U . As noted before in Example 3.3.10, the neighborhood
should be rather chosen as a tube than the more conventional ball. Such a
choice of neighborhoods is visualized in Fig. 4.2

(iii) (super-regular sets with nonempty intersection). Next we translate the sets
in (ii) such that they have exactly one common point in their intersection.

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}
,

B :=
{
x = (x1, x2) ∈ R2

∣∣∣ (x1 − 2)2 + x2
2 = 1

}
.

The fixed point set then reduces to Fix T λA,B = {(1, 0)} = A ∩ B. By (ii)
we know that the assumptions of Theorem 4.1.2 are satisfied. In contrast
to (ii), the fixed point is in the intersection of both sets. Thus, balls as
neighborhoods are enough to get pointwise almost firm nonexpansivity. We
do not need tubes or other constructions of a neighborhood to include points
from a distance.

The examples show, that in case of closed balls and circles the assumptions are
easily satisfied. Nonetheless, one has to take care of choosing neighborhoods in the
right way to get a desired violation.



4.2 Characterization of Fix T λA,B 41

A B A B A B

Figure 4.3: Illustration of the sets in Example 4.1.4(i)-(iii).

Example 4.1.4(i) yields the following specialization of Theorem 4.1.2.

Corollary 4.1.5. Let λ ∈ (0, 1) and Fix T λA,B 6= ∅. If A and B are closed and
convex, then T λA,B is firmly nonexpansive on E.

Proof. Since A and B are both convex, one has by Proposition 3.3.9 that both
sets are super-regular at a distance relative to E at any of their points. Applying
Theorem 4.1.2, we deduce firm nonexpansivity of T λA,B since the violation ε can be
set to 0, as seen in the proof of Proposition 3.3.9.

4.2. Characterization of Fix T λA,B

We collect some facts and identities that will be useful throughout.

Lemma 4.2.1. Let A and B be closed and T λA,B defined as in Algorithm 2.3.5 with
λ ∈ (0, 1). Let x ∈ Fix T λA,B 6= ∅ such that T λA,B is single-valued at x. Take f ∈ PBx
and y := x− f . Then, the following hold:

(i) PBx = {f}, that is, PB is single-valued on Fix T λA,B,

(ii) PA (RBx) is single-valued, hence so is RA (RBx),

(iii) PA(2f − x) = PARBx,

(iv) TA,Bx − x = PARBx − PBx, where TA,B is the Douglas-Rachford mapping
defined in Algorithm 2.3.4.

(v) f + 1−λ
λ
y = PA(2f − x),

(vi) If A is convex, then, for e = PAf

PA
(
e+ 1

1−λ(f − e)
)

= e. (4.5)

Proof. (i)-(ii). Since

T λA,Bx =
⋃

b∈PBxk

{
λ
2

(
RA(2b− xk) + xk

)
+ (1− λ)b

}
,

is just a single point, we conclude that PBx is a single point as well. This implies
that PA (RBx) and RA (RBx) have to be single-valued too, as claimed.
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(iii). This is an easy implication of the single-valuedness of PB at x:

PA (2f − x) = PA (2PBx− x) = PA (RBx) .

(iv). This follows as well from the single-valuedness of PB at x:

TA,Bx− x = 1
2 (RA (RBx) + x)− x

= 1
2 (RA (RBx))− 1

2x

= PA (RBx)− 1
2RBx−

1
2x

= PA (RBx)− PBx.

(v). To see this, note that

x = T λA,Bx = λ

2 (RA (RBx) + x) + (1− λ)PBx

⇐⇒ (1− λ)x = λ (TDRx− x) + (1− λ)PBx
⇐⇒ (1− λ) (x− PBx) = λ (PARBx− PBx) ,

by (iv). Hence, with f = PBx, this yields

(1− λ) (x− f) = λ (PA (2f − x)− f) ⇐⇒ f + 1− λ
λ

y = PA(2f − x),

by the definition of y.

(vi). This follows from the fact that f − e ∈ Nprox
A (e). Since A is convex, then all

points in e+Nprox
A (e) project back to e.

Remark 4.2.2. Note that (i) and (ii) of Lemma 4.2.1 together at some point x ∈ E
are equivalent to the single-valuedness of T λA,B at x.

Theorem 4.2.3 (fixed points of relaxed DR). Let A,B ⊂ E both be closed and let
λ ∈ (0, 1). Let T λA,B be single-valued at its fixed points on an open set U ⊂ E. Then

Fix T λA,B ∩ U ⊂M, (4.6)

where

M :=
{
f − λ

1− λ (f − e)
∣∣∣∣∣ f ∈ PB

(
f − λ

1− λ (f − e)
)
, and e ∈ PAf

}
∩ U.

The inclusion is tight if e ∈ PA
(
f + λ

1−λ(f − e)
)
is true for the right-hand side.
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Proof. Let x ∈ Fix T λA,B ∩ U . By the assumptions T λA,B is single-valued at x, and
hence the results in Lemma 4.2.1 can be applied. As before denote by f the
projection PB(x). Reformulating Lemma 4.2.1(v) yields the desired form of the
fixed point x.

x ∈ Fix T λA,B =⇒ f + 1− λ
λ

y =PA(2f − x)

⇐⇒ f + 1− λ
λ

(x− f) =PA(2f − x)

⇐⇒ x = λ

1− λPA(2f − x)− 2λ− 1
1− λ f

⇐⇒ x =f − λ

1− λ (f − PA(2f − x)) (4.7)

By comparing with (4.6), we have to show that PAf = PA (2f − x).

Using this, then (4.7) becomes

x = f − λ

1− λ (f − PAf) .

Finally, (4.6) follows from the fact that f = PBx, since x is a fixed point.

It remains to show that the inclusion is in fact an equality when

e ∈ PA
(
f + λ

1− λ(f − e)
)

for e ∈ PAf . To see this, let x̃ ∈ M ∩ U in (4.6). Then x̃ := f − λ
1−λ (f − e) for

some e ∈ PAf and f ∈ PBx̃ and

x̃− T λA,Bx̃ =x̃− λ

2 (RARBx̃+ x̃)− (1− λ)PBx̃

=λx̃− λ

2 (2PARBx̃− 2PBx̃+ 2x̃) + (1− λ) (x̃− PBx̃)

=− λ (PARBx̃− PBx̃) + (1− λ) (x̃− PBx̃)
3 − λ (PARBx̃− f) + (1− λ) (x̃− f)
=− λ (PARBx̃− f)− λ (f − e)
=− λ (PARBx̃) + λe.

Thus 0 ∈ x̃− T λA,Bx̃ if and only if e ∈ PA RBx̃, which is equivalent to

e ∈ PA
(
f + λ

1− λ(f − e)
)
.

This concludes the proof.
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Remark 4.2.4. (i) Note that f + λ
1−λ(f − e) = e + 1

1−λ(f − e), so that for any
e ∈ PAf , f − e is in the normal cone to A at e. It follows immediately
that, if A is convex, then PA

(
e+ 1

1−λ(f − e)
)

= e for all λ ∈ (0, 1) and,
by Theorem 4.2.3 the inclusion (4.6) is in fact equality for all λ for which
f ∈ PB

(
f − λ

1−λ (f − e)
)
. Compare this to the statement in [98, Lemma

3.8], where the tight fixed point characterization holds for λ ∈ [0, 1/2]. This
is due to a slightly different characterization. The statement in [98], that f is
a local best approximation point, is actually incorrect. Where our description
includes f ∈ PB

(
f − λ

1−λ (f − e)
)
, and e ∈ PAf , the version in [98, Lemma

3.8] states that f is a local best approximation point [98, Definition 3.3].
Instead, what is needed to correct the statement is f ∈ PBPAf , and such a
point needs not be a local best approximation point. To see this, consider a
unit circle in R2 centered at the origin and a horizontal line passing through
the point (0, 3/4). For the fixed point mapping T λA,B with A the line and
B the circle, the point

(
0, 1− λ

4(1−λ)

)
is a fixed point for all λ ∈ (0, 4/5).

However, the corresponding points f = (0, 1) and e = (0, 3/4) are not local
best approximation points.

(ii) The condition e ∈ PA
(
f + λ

1−λ(f − e)
)
is easier to interpret with the identity

f + λ
1−λ(f − e) = e + 1

1−λ(f − e). As λ ↗ 1 this vector receeds from A in
the direction normal to A at e. The larger the neighborhood on which the
projection onto A exists and is single-valued, the larger λ can be before e /∈
PA

(
f + λ

1−λ(f − e)
)
. If A is convex, then λ can be arbitrarily close to 1. Still,

λ may need to be bounded away from 1 in order to ensure the other condition
in the fixed point characterization (4.6), namely f ∈ PB

(
f − λ

1−λ(f − e)
)
.

(iii) By Theorem 4.1.2 we know that T λA,B is single-valued at its fixed points if
both A and B are super-regular at a distance and assumptions (i)-(iv) of
Theorem 4.1.2 hold. The local gap f − PAf is therefore unique. In [98]
uniqueness of such gap vectors was an assumption of the convergence analysis.
Our results show that we can remove this assumption.

For two sets it is much simpler to describe the geometry. We denote for two closed
and convex sets A and B in E by E (respectively F ) the points in A (respectively
B) that are closest to B (respectively A). That is,

E := {a ∈ A | dist(a,B) = dist(A,B)} , (4.8)
F := {b ∈ B | dist(A, b) = dist(A,B)} . (4.9)

We denote by

g := PB−A(0)

the displacement vector (or gap), between the sets A and B. This construction
appeared in many works on 2-set feasibility such as [11,12,18,97,98].
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Example 4.2.5. To illustrate the sets E and F as well as the displacement vector
g, we consider three small examples. The first consists in two nonintersecting
halfspaces and is shown in Fig. 4.4a. The sets A and B are given by

A = (−∞, 1]× R and B = [2.5,∞)× R.

Here, the sets E and F are both lines describing the boundary of the sets A and
B respectively. In particular, E = {1} × R and F = {2.5} × R. The displacement
vector is given by g = (1.5, 0). If the sets change to balls, as in Fig. 4.4b, the
nearest points sets E and F change. The sets A and B are described by

A =
{
x ∈ R2

∣∣∣x2
1 + x2

2 ≤ 1
}

and B =
{
x ∈ R2

∣∣∣ (x1 − 4)2 + x2
2 ≤ 1.52

}
,

and thus, E = (1, 0) and F = (2.5, 0). If we shift the set B closer to the set A such
that they intersect in exactly one point, the sets E and F collapse to one point,
i.e. E = F = A ∩ B. For a proper treatment of the constructions E, F and g see
for instance [11,12].

A B
E F

g

(a) Two nonintersecting
sets.

A B
E F

g

(b) Two nonintersecting
balls.

A B

E = F

(c) Two intersecting
balls.

Figure 4.4: Illustration of the sets E and F and the displacement vector g in the
three different settings of Example 4.2.5.

Corollary 4.2.6 (fixed points for closed convex sets [97, Theorem 2.2]). Let A and
B be two closed convex subsets of E and λ ∈ (0, 1). Then

Fix T λA,B = F − λ

1− λg.

In particular, if A ∩B 6= ∅, then Fix T λA,B = A ∩B.

Remark 4.2.7. Although Corollary 4.2.6 was originally proven by Luke in [97], we
are able to rediscover it with the presented theory above. The inclusion Fix T λA,B ⊂
F − λ

1−λg for A and B closed and convex is due to convexity of the sets, Theo-
rem 4.2.3 and [11, Fact 1.1]. The other inclusion, F − λ

1−λg ⊂ Fix T λA,B, can be
verified just by applying T λA,B to a point x in F − λ

1−λg and using convexity of the
sets.

Corollary 4.2.8 (fixed points of relaxed DR and the corresponding gap). In the
setting of Theorem 4.2.3, let x ∈ Fix T λA,B ∩ U . Then

{x} = PBx−
λ

1− λ (PBx− PAPBx)
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Proof. The result follows directly from the proof of Theorem 4.2.3.

In our statements we require that Fix T λA,B 6= ∅. Although this assumption is very
strong, it is not very restrictive and is satisfied under the assumption of compactness
of one of the underlying sets and convexity of both sets.

Proposition 4.2.9 (convexity and compactness imply nonempty fixed point set).
Let λ ∈ (0, 1). If A and B are convex and closed, and A is bounded, then Fix T λA,B 6=
∅. Moreover, Fix T λA,B =M, whereM is given by (4.6).

Proof. The proof follows the pattern of the proof in [98, Lemma 2.1], which es-
tablishes existence of fixed points for T λA,B by first showing the existence of fixed
points of the alternating projections mapping T := PAPB. To see this, note that T
is nonexpansive since the projectors PA and PB are nonexpansive, and the compo-
sition of nonexpansive mappings is nonexpansive by a similar argument as made
in Example 4.1.4(i). Note that U = E . Existence of fixed points of T is then an
easy consequence of [35, Theorem 2], which requires that one of the sets, A or B,
is compact. Let e ∈ Fix T . Then PBe = f and PAf = e and T λA,B, by convexity,
is single-valued. By Remark 4.2.4(i), we have f + λ

1−λ(f − e) = e + 1
1−λ(f − e)

and PA
(
e+ 1

1−λ(f − e)
)

= e for all λ ∈ (0, 1). Moreover, for all such λ we have
f = PB

(
f − λ

1−λ (f − e)
)
. Together, for x = f − λ

1−λ(f − e), this yields

T λA,B(x) =λ2 (RA(RB(x)) + x) + (1− λ)PB(x)

=λ2 (RA(2f − x) + x) + (1− λ)f

=λ2

(
2PA(e+ 1

1− λ(f − e))− 2f + x+ x
)

+ (1− λ)f

=λ2 (2e− 2f + 2x) + (1− λ)f

=λ
(
f − λ

1− λ(f − e)
)

+ (1− λ)f

=f − λ λ

1− λ(f − e) = x.

Now, applying Theorem 4.2.3 immediately yields Fix T λA,B =M, whereM is given
by (4.6). This completes the proof.

The above result on existence relies heavily on convexity. The next example shows
a scenario, in which T λA,B has no fixed points.

Example 4.2.10 (empty fixed point set). Let A be the unit circle in R2, i.e.

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}
,
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and B its origin, i.e. B := {(0, 0)}. In this setting the fixed point set of T λA,B is
empty for all λ ∈ (0, 1). To prove this we will show by a case distinction that the
fixed point set of T λA,B is empty.

First, note that the projectors and reflectors involved in T λA,B are given by

PB(x) = (0, 0) ∀x ∈ R2

PA(x) =


x
‖x‖ ∀x ∈ R2 \ (0, 0) ,
A for x = (0, 0) .

Now, let x = (0, 0). Then

T λA,B(x) = λ

2 (RARB(x) + x) + (1− λ)PB(x) = λ

2 (RA(x)) = λA.

Thus, x = (0, 0) cannot be a fixed point of T λA,B. For the other case let x 6= (0, 0).
Then

T λA,B(x) = λ

2 (RARB(x) + x) + (1− λ)PB(x) = λ

2 (RA(−x) + x) = λ

(
x− x

‖x‖

)
.

If x is a fixed point of T λA,B, that is x = T λA,B(x), the following has to hold

x = λ

(
x− x

‖x‖

)
,

which is equivalent to

1− λ
λ

x = − x

‖x‖
.

But this is only satisfied when x = (0, 0), a contradiction. From which we conclude
that x /∈ Fix T λA,B, and therefore Fix T λA,B = ∅.

A

B

x

RB(x)

TDRλ(x)

PA (RB(x))

Figure 4.5: Example 4.2.10 for a point x ∈ R2 and λ = 0.8.
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The following proposition provides a comparison of the fixed points for T λA,B for
different values of λ
Proposition 4.2.11. Let A and B be both closed subsets of E, and λ1, λ2 ∈ (0, 1)
such that λ1 ≤ λ2 and Fix T λ2

A,B 6= ∅. Moreover, let T λ2
A,B be single-valued at its fixed

points. Then
PB(Fix T λ2

A,B) ⊆ PB(Fix T λ1
A,B). (4.10)

If (4.6) holds for λ2 with equality instead of just set inclusion, then (4.10) holds
with equality.

Proof. Let x ∈ Fix TDRλ2 6= ∅. Then, by Corollary 4.2.8, we have the representation

x = PB(x)− λ2

1− λ2
(PB(x)− PA(PB(x))) . (4.11)

Consider x̃ := PB(x) − λ1
1−λ1

(PB(x)− PA(PB(x))) and note, as in the statements
before, that PB(x) as well as PA(PB(x)) are single-valued, since x is a fixed point
of TDRλ2 6= ∅. Set f := PB(x). Then f ∈ B and PB(x̃) = f . To see this,
note that λ2

1−λ2
(PA(f)− f) ∈ Nprox

B (f). Since 0 ≤ λ1
1−λ1

≤ λ2
1−λ2

, x̃ is a convex
combination of f and x, from which we conclude that PB(x̃) = f . Moreover, since
PB(x) = f = PB(x̃), we can conclude that x̃ ∈ Fix TDRλ1 . To see this, evaluate
TDRλ1(x̃)

TDRλ1(x̃) = {y | y ∈ λ1 (PA(RB(x̃)) + x̃) + (1− 2λ1)PB(x̃)}
= {y | y ∈ λ1 (PA(2f − x̃) + x̃) + (1− 2λ1) f} ,

since PB(x̃) = {f}. 2f − x̃ = 2f −
(
f − λ1

1−λ1
(f − PA(f))

)
, where PA(f) is single-

valued since x is a fixed point of TDRλ2 . This yields
2f − x̃ =f + λ1

1−λ1
(f − PA(f))

=PA(f) + 1
1−λ1

(f − PA(f)) .
Analog to what we have seen before, we can argue that PA(f) ∈ PA(2f − x̃), since
0 ≤ λ1

1−λ1
≤ λ2

1−λ2
and PA(f) = PA(2f − x) = PA(f + λ2

1−λ2
(f − PA(f))). This

implies that
λ1 (PA(f) + x̃) + (1− 2λ1) f ∈ TDRλ1 (x̃)

⇐⇒
λ1
(
PA(f) + f − λ1

1−λ1
(f − PA(f))

)
+ (1− 2λ1) f ∈ TDRλ1 (x̃)

⇐⇒
f − λ1

1−λ1
(f − PA(f)) ∈ TDRλ1 (x̃)

⇐⇒
x̃ ∈ TDRλ1 (x̃) ,

and therefore x̃ ∈ Fix TDRλ1 . In conclusion,
PB(Fix TDRλ2) ⊆ PB(Fix TDRλ1),

which proves the claim.
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4.3. T λA,B at Fix T λA,B: Metric Subregularity

We now proceed to the main goal of our study, the convergence analysis of the algo-
rithm. Almost all of the key properties of the relaxed Douglas-Rachford fixed point
mapping, T λA,B, have been established in Section 4.2. In our setting, nonemptiness
of the fixed point set and averagedness of the mapping can be identified as the
essential properties yielding convergence of the iterative sequence. It was shown
in [104], however, that gauge metric subregularity of a fixed point mapping at its
fixed points is a necessary condition for quantifiable (by said gauge) rates of con-
vergence of the fixed point iteration.1 We have already shown in Theorem 4.1.2
that T λA,B is almost averaged, with any desired violation constant ε > 0, at its fixed
points on certain neighborhoods, when A and B are super-regular at a distance.
To achieve local linear convergence, inequality (3.6) in Theorem 3.2.6 must hold.
This is where uniformity of almost averagedness with respect to ε is crucial. As
long as the mapping T λA,B−Id, or a related mapping (see the discussion below), can
be shown to be relatively metrically subregular at 0 on a neighborhood of Fix T λA,B
- regardless of the value of the modulus κ - suitable neighborhoods can be found in
the context of Theorem 4.1.2 where the violation, ε, is small enough that (3.6) is
satisfied. Hence, local linear convergence is guaranteed. Thus, the main work be-
fore us, is to show metric subregularity of the appropriate mapping at points in the
product space corresponding to fixed points of T λA,B. There are a number of ways
to go about this, but all successful strategies we found are based on a characteriza-
tion of the iterates on neighborhoods of fixed points lifted to a product space where
the tools are applied. We were unable to provide a direct approach, involving the
T λA,B mapping itself, that guarantees metric subregularity from properties of the
regularity of the sets A and B both individually (e.g. relative super-regularity at
a distance) or as a collection (e.g. subtransversality discussed below). The charac-
terization of the fixed points in Theorem 4.2.3 allows us to build auxiliary phantom
sets that are used in the analysis. To adapt the framework above to the present
setting, we build a product space, which represents not only the iterates of T λA,B,
but also a cyclic projection between the phantom sets. In particular, we define an
operator in the product space E4 whose first entry is generated by applying T λA,B.
The remaining three entries are generated by projecting the prior entry onto the
sets A and B as well as phantom versions of these sets shifted by a scaling of the
local gap vector between A and B at the reference fixed point.

For the product space formulation, we consider, instead of the two original sets,
four sets: the sets A,B and shifted sets B− λ

1−λg and A− λ
1−λg for some gap vector

g. Our aim is to show local linear convergence of T λA,B by adapting the approach
developed in [105] for cyclic projections, where it was essential that one of the sets
involved contains the fixed points of the mapping. The reason for including the set
B − λ

1−λg in our problem, therefore, lies in the characterization of the fixed point
set of the T λA,B mapping. As established in Theorem 4.2.3 and Corollary 4.2.8, fixed

1As mentioned in Remark 3.2.4, we focus here on linear gauges.
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A− λ
1−λg B − λ

1−λgζ̄1 ζ̄4 A B

z2 z1 z3 z4

Figure 4.6: Framework for the convergence analysis illustrated in E .

points x of T λA,B at which T λA,B is single-valued can be described as

{x} = PB(x)− λ

1− λ (PB(x)− PA(PB(x))) ,

which is an element in B− λ
1−λg when g = PBx−PAPBx. Thus, B− λ

1−λg contains
fixed points of T λA,B that correspond to the gap g. In order to apply our results
established in Lemma 3.4.2, we have to consider the set A− λ

1−λg as well.

We denote by Ωg the product of the collection of sets
{
B − λ

1−λg, A−
λ

1−λg, A,B
}
.

That is,

Ωg :=
(
B − λ

1− λg
)
×
(
A− λ

1− λg
)
× A×B.

Define

W0(g) :=
{
u = (u1, u2, u3, u4) ∈ E4

∣∣∣u1 ∈ PB− λ
1−λg

u2,

u2 ∈ PA− λ
1−λg

u3, u3 ∈ PAu4, u4 ∈ PBu1
}
.

(4.12)

This is the set of fixed points of the mapping PΩg ◦ Π in the product space E4

corresponding to a cycle of the cyclic projections operator PB− λ
1−λg

PA− λ
1−λg

PAPB.
By our construction, the set W0(g) could be (and for generic g will be) empty; this
would be the case when g does not correspond to a gap vector. The set of difference
vectors, ζ, is denoted by Z(x, g) and defined by

Z(x, g) :=
{
ζ := z − Πz

∣∣∣ z ∈ W0(g) ⊂ E4, z1 = x
}
. (4.13)

Given an element of the set of difference vector, we define the set

W
(
ζ̄
)

:=
{
u ∈ E4

∣∣∣u− Πu = ζ̄
}
. (4.14)

This set is an affine transformation of the diagonal of the product space and serves
as a characterization of the local geometry of the sets in relation to each other at
fixed points of T λA,B.

These sets, of course, only make sense in the context of local nearest points be-
tween the components. In particular, we are interested in points x ∈ E associated
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with fixed points of T λA,B and their associated shadow points and gap vectors, re-
spectively b ∈ PBx and g ∈ b − PAb (the local gap between A and B). Note
that by Theorem 4.1.2 for fixed points of T λA,B at which T λA,B is single-valued, we
have {b} = PBx and the gap vector g is unique. When x is a fixed point, the set
Z(x, g) characterizes the distance between the cyclically projected iterates of T λA,B
on the individual sets. This enables us to distinguish different fixed points of T λA,B
according to their respective difference vectors.

Let the assumptions of Theorem 4.1.2 hold at u ∈ Fix T λA,B and let z ∈ W0(g) ⊂ E4

for z1 = u and {g} = PB(u)− PAPB(u). Then Theorem 4.1.2 yields

(i) z3 − z4 ∈ PA (PB(z1))− PB(z1) = {−g}

(ii) z4 − z1 ∈ PB(z1)− (PB(z1)− λ
1−λg) =

{
λ

1−λg
}
,

where (ii) holds by Theorem 4.2.3 which is applicable since T λA,B is single-valued
at u by Theorem 4.1.2. Moreover, we get by the assumptions of Theorem 4.1.2
that PA(RB(u)) = PA(PB(u)) = z3. Since z3 + λ

1−λg lies in a straight line between
RB(u) = 2PB(u) − u = 2PB(u) − PB(u) + λ

1−λg = PA(PB(u)) + (1 + λ
1−λ)g and

PA(RB(u)) we also deduce PA(z3 + λ
1−λg) = z3. Using again Theorem 4.2.3 yields

(iii) z1 − z2 ∈ PB(u)− λ
1−λg − PA− λ

1−λg
(z3)

= PB(u)− λ
1−λg − PA(z3 + λ

1−λg) + λ
1−λg

= PB(u)− z3

= PB(u)− PA(PB(u))
= {g} ;

(iv) z2 − z3 = (z2 − z1) + (z1 − z4) + (z4 − z3) = − λ
1−λg.

Figure 4.6 illustrates the sets and difference vectors above. The individual entries
of z relate to the cyclically projected fixed point x on each of the individual sets.

Along with the definitions above, we define the operator

Tζ̄ : E4 ⇒ E4 : u 7→
{(
u+

1 , u
+
1 − ζ̄1, u

+
1 − ζ̄1 − ζ̄2, u

+
1 − ζ̄1 − ζ̄2 − ζ̄3

) ∣∣∣ u+
1 ∈ T λA,Bu1

}
for ζ̄ ∈ Z(x, g), where x ∈ Fix T λA,B and g = PBx − PAPBx. Note that 0 =
ζ̄1 + ζ̄2 + ζ̄3 + ζ̄4, so the expression above can be simplified to

Tζ̄ : E4 ⇒ E4 : u 7→
{(
u+

1 , u
+
1 − ζ̄1, u

+
1 − ζ̄1 − ζ̄2, u

+
1 + ζ̄4

) ∣∣∣ u+
1 ∈ T λA,Bu1

}
. (4.15)

The mapping Tζ̄ represents the iterates of T λA,B on the space E by shifting each
iterate by some fixed difference vector ζ̄. We assume, in what follows, that ζ̄
is the difference vector corresponding to the fixed point to which our iteration is
converging. Of course, when one does not know the location of the fixed points, it is
unlikely that the corresponding difference vector will be known, but this situation
is no different than other studies which assume that the problem is consistent,
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and that all fixed points correspond to the zero difference vector. Our aim here is
not to determine the difference vector or the fixed point, but rather to provide a
quantification of the convergence based on verifiable regularity of the fixed point
mapping in neighborhoods of fixed points.

We are now ready to start building our argument. The following lemma establishes
a connection between fixed points of Tζ̄ to fixed points of T λA,B.

Lemma 4.3.1. Let λ ∈ (0, 1) and A,B ⊂ E both nonempty and closed. Fix
x ∈ Fix T λA,B 6= ∅ with T λA,B being single-valued at x and set g := PBx − PAPBx.
Furthermore, let ζ̄ ∈ Z(x, g) and define Ψg :=

(
PΩg

)
◦Π−Π as well as Φζ̄ := Tζ̄−Id.

Then the following hold:

(i) Tζ̄ maps W
(
ζ̄
)
to itself. Moreover, u ∈ Fix Tζ̄ if and only if u ∈ W

(
ζ̄
)
with

u1 ∈ Fix T λA,B.

(ii)

Ψ−1
g

(
ζ̄
)
∩W

(
ζ̄
)
∩N ⊆ Φ−1

ζ̄
(0) ∩W

(
ζ̄
)
,

where N :=
{
z ∈ E4

∣∣∣PA(z4 + λ
1−λg) = z3

}
(iii) If the distance is with respect to the Euclidean norm, then

dist
(
0,Φζ̄(u)

)
= 2 dist

(
u1, T

λ
A,Bu1

)
for u ∈ W (ζ̄).

Remark 4.3.2. Note that the set N guarantees equality of the description of the
fixed point set in Theorem 4.2.3. In our main result N will not appear anymore.
This is due to the fact that the assumptions of Theorem 4.1.2 assure that the
neighborhood we consider will be a subset of N .

Proof of Lemma 4.3.1. (i). The first part of (i) follows immediately by the defini-
tion of Tζ̄ and W (ζ̄). Now let u ∈ Fix Tζ̄ ,

⇐⇒ u1 ∈ Fix T λA,B and u2 = u1 − ζ̄1, u3 = u1 − ζ̄1 − ζ̄2, u4 = u1 + ζ̄4

⇐⇒ u1 ∈ Fix T λA,B and u2 = u1 − ζ̄1, u3 = u2 − ζ̄2, u4 = u1 + ζ̄4

⇐⇒ u1 ∈ Fix T λA,B and u ∈ W (ζ̄),

which proves the rest of (i).

(ii). For the second part of the lemma let z ∈ Ψ−1
g

(
ζ̄
)
∩W (ζ̄) ∩ N . This means

nothing more than

ζ̄ ∈ Ψg (z) and z − Πz = ζ̄ ,
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which is equivalent to

ζ̄ ∈ PΩgΠz − Πz and z − Πz = ζ̄ .

This implies

z1 ∈ PB− λ
1−λg

PA− λ
1−λg

PAPBz1 and z − Πz = ζ̄ .

The mapping Φζ̄(z) = Tζ̄z−z has the image (0, 0) if z1 ∈ Fix T λA,Bz1. By ζ̄4 = z4−z1

and ζ̄4 ∈ PBz1 − z1 = λ
1−λg we know that z4 ∈ PBz1. This together with the

definition of N yields PARBz1 3 PA (2z4 − z1) = PA
(
z4 + λ

1−λg
)

= z3. Inserting
this in T λA,Bz1 yields

T λA,Bz1 =λ (PARBz1 + z1) + (1− 2λ)PBz1

3λ (z3 + z1) + (1− 2λ) z4

=z1 + λ(z3 − z4) + (1− λ) (z4 − z1)
=z1 + ζ̄3 + (1− λ) ζ̄4

=z1,

since ζ̄ is generated by a fixed point of T λA,B. Thus z1 ∈ Fix T λA,B, which proves
z ∈ Φ−1

ζ̄
(0) and completes the proof of (ii).

(iii). This part of the proof is a routine calculation:

dist
(
0,Φζ̄(u)

)
= dist

(
0, Tζ̄u− u

)

=

√√√√√dist2
(
0, T λA,Bu1 − u1

)
+

4∑
j=2

dist2

0, T λA,Bu1 −
j−1∑
i=1

ζ̄i − uj


=
√

4 dist2
(
0, T λA,Bu1 − u1

)
=2 dist

(
0, T λA,Bu1 − u1

)
.

We present next the main result of this section. In this preliminary result, we
show that the mapping Tζ̄ − Id is metrically subregular at its zeros; from this we
can conclude that the fixed point iteration generated by the mapping Tζ̄ is locally
linear convergent, which implies local linear convergence of T λA,B.

Proposition 4.3.3 (metric subregularity of Tζ̄ by subtransversality). Let λ ∈
(0, 1), x ∈ Fix T λA,B with T λA,B being single-valued at x and set g := PBx− PAPBx.
Furthermore, let ζ̄ ∈ Z (x, g) and u = (u1, u2, u3, u4) ∈ W0(g) satisfy ζ̄ = u − Πu
with u1 = x. Let Tζ̄ be defined by (4.15) and define Φζ̄ := Tζ̄ − Id. Suppose the
following hold:
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(i) the collection of sets
{
B − λ

1−λg, A−
λ

1−λg, A,B
}
is subtransversal at u for ζ̄

relative to Λ ⊆ W
(
ζ̄
)
with constant κ and neighborhood U of u;

(ii) there exists a positive constant σ such that

dist
(
ζ̄ ,Ψg(u)

)
≤ σ dist

(
0,Φζ̄(u)

)
, ∀u ∈ Λ ∩ U with u1 ∈ B − λ

1−λg.

Then the mapping Φζ̄ := Tζ̄ − Id is metrically subregular for 0 on U relative to
Λ ∩N with constant κ̄ = κσ, where N :=

{
z ∈ E4

∣∣∣PA(z4 + λ
1−λ)g = z3

}
.

Proof. This is an application of the assumptions and Lemma 4.3.1(ii)

dist
(
u,Φ−1

ζ̄
(0) ∩ Λ ∩N

)
≤ dist

(
u,Ψ−1

g (0) ∩ Λ ∩N
)

≤ κ dist
(
ζ̄ ,Ψg(u)

)
≤ κσ dist

(
0,Φζ̄(u)

)
(∀u ∈ U ∩ Λ ∩N with u1 ∈ B − λ

1−λg)

i.e. Φ is metrically subregular for 0 on U relative to Λ ∩ N with constant κ̄, as
claimed.

By Theorem 3.2.6, Proposition 4.3.3 and Theorem 4.1.2, the three ingredients to get
convergence are given by the regularity of the sets A and B, subtransversality of the
collection of sets {A,B} and the additional assumption (ii) in Proposition 4.3.3.
As seen in [105, Proposition 3.5], this is also true for the alternating projection
algorithm. If the intersection A ∩ B is nonempty, assuming the stronger property
of transversality, super-regularity is enough to show convergence of the Douglas-
Rachford algorithm (see for instance [113, Theorem 6.8] [75, Theorem 3.18]). For
alternating projections one only needs transversality at points of intersection and
super-regularity of one of the sets [92, Theorem 5.16]. In any case, the additional
assumption (ii), is not needed when the assumptions on the fixed points are strong
enough. This is also the case for consistent feasibility and the relaxed Douglas-
Rachford method as seen next.

Proposition 4.3.4 (intersecting sets). As before let λ ∈ (0, 1). Moreover, assume
that the intersection of A and B is nonempty, i.e. A∩B 6= ∅. Thus, for every x ∈
A ∩ B ⊂ Fix T λA,B we have g := PBx− PAPBx = 0. Furthermore, let ζ̄ ∈ Z (x, g).
Then (ii) in Proposition 4.3.3 is always satisfied on Λ ⊂ W (ζ̄) with σ = 1√

2λ .

Proof. Since x ∈ A ∩ B and g = 0, we get ζ̄ = (0, 0, 0, 0). Moreover, note that for
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every b ∈ B we gather T λA,Bb− b = λ(PAb− b), since

T λA,Bb− b = λ

2 (RARBb+ b) + (1− λ)PBb− b

= λ

2 (RAb+ b) + (1− λ)b− b

= λPAb− λb
= λ (PAb− b) .

Therefore, we deduce for u ∈ Λ ⊂ W (ζ̄) = {u ∈ E4 |ui = uj, i, j ∈ {1, 2, 3, 4}}
with u1 ∈ B

T0u− u =
(
T λA,Bu1 − u1, T

λ
A,Bu1 − u1, T

λ
A,Bu1 − u1, T

λ
A,Bu1 − u1

)
= (λ (PAu1 − u1) , λ (PAu1 − u1) , λ (PAu1 − u1) , λ (PAu1 − u1)) ,

and thus

dist2
(
0,Φζ̄(u)

)
= dist2 (0, T0u− u) = 4 dist2 (0, λ (PAu1 − u1)) . (4.16)

On the other hand

dist2
(
ζ̄ ,Ψg(u)

)
= dist2 ((0, 0, 0, 0),Ψ0(u))
= dist2 ((0, 0, 0, 0), PΩ0Π(u)− Π(u))
= 2 dist2 (0, PAu1 − u1) , (4.17)

since Ω0 = B × A × A × B. Combining (4.17) and (4.16) yields (ii) in Proposi-
tion 4.3.3 with σ = 1√

2λ .

4.4. Local Linear Convergence of T λA,B

Lemma 4.4.1 (uniqueness of difference vector for fixed points of T λA,B). Let λ ∈
(0, 1), and let x be a point in Fix T λA,B, where A,B ⊂ E satisfy the assumptions of
Theorem 4.1.2 with neighborhoods U(A, ε, x) and U(B, ε, x). Then {ζ̄} = Z(x, g) ⊂
E4 for {g} = PBx− PAPBx is unique and given by

ζ̄ = (ζ̄1, . . . , ζ̄4) =
(
g,− λ

1−λg,−g,
λ

1−λg
)
.

Proof. By definition (4.13), Z(x, g) is given by

Z(x, g) :=
{
ζ := z − Πz

∣∣∣ z ∈ W0(g) ⊂ E4, z1 = x
}
,

for

W0(g) :=
{
u ∈ E4

∣∣∣∣u1 ∈ PB− λ
1−λg

u2, u2 ∈ PA− λ
1−λg

u3, u3 ∈ PAu4, u4 ∈ PBu1

}
.

Thus, the uniqueness of ζ̄ is a direct implication of the uniqueness of g as seen in
Remark 4.2.4(iii).
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Next we present the main result. The proof is based on the basic convergence
result, Theorem 3.2.6, and the preliminary work done in this chapter.

Theorem 4.4.2 (local linear convergence of T λA,B). Let λ ∈ (0, 1), and let x be a
point in Fix T λA,B where A,B ⊂ E satisfy the assumptions of Theorem 4.1.2 with
neighborhoods U(A, ε, x) and U(B, ε, x). Set {g} = PBx−PAPBx and {ζ̄} = Z(x, g)
(ζ̄ = (ζ̄1, . . . , ζ̄4) ∈ E4). Suppose that, at all x ∈ Fix T λA,B with g ∈ PBx − PAPBx,
the sets A,B ⊂ E satisfy the assumptions of Theorem 4.1.2 with corresponding
neighborhoods U(A, ε, x) and U(B, ε, x). Define the set

S0 :=
{
x ∈ Fix T λA,B | {g} = PBx− PAPBx

}
(4.18)

and let

Sj :=
S0 −

j−1∑
i=1

ζ̄i

 (j = 1, 2, 3, 4) . (4.19)

Fix some ε > 0 and define the neighborhood UA := ∪x∈S0U(A, ε, x) and likewise
UB := ∪x∈S0U(B, ε, x). Then

U :=
(
UB − λ

1−λg
)
×
(
UA − λ

1−λg
)
× UA × UB

is a neighborhood of S := S1×S2×S3×S4. Suppose that, for Λ ⊆
(
W (ζ̄)

)
satisfying

S ⊂ Λ with Tζ̄ : Λ⇒ Λ, the following hold for all u = (u1, u2, u3, u4) ∈ S:

(i) for all (u3, u4) ∈ S3 × S4, the collection of sets {A,B} is subtransversal at
(u3, u4) for (u3, u4)− Π(u3, u4) relative to

Λ′ :=
{
u = (u1, u2) ∈ E2

∣∣∣∣∣
(
u2 −

λ

1− λg, u1 −
λ

1− λg, u1, u2

)
∈ Λ

}

with constant κ on the neighborhood UA × UB;

(ii) for Φζ̄ := Tζ̄ − Id and Ψg := PΩgΠ−Π there exists a positive constant σ such
that

dist
(
ζ̄ ,Ψg(u)

)
≤ σ dist

(
0,Φζ̄(u)

)
(4.20)

holds whenever u ∈ Λ̃ ∩ U with u1 ∈ B − λ
1−λg and

Λ̃ :=
{
u ∈ Λ

∣∣∣∣∣u =
(
x2 −

λ

1− λg, x1 −
λ

1− λg, x1, x2

)
for some x1, x2 ∈ E

}
.

Then there exists an ε′ ≤ ε and a neighborhood U ′ ⊂ U (U ′ = U ′1×U ′2×U ′3×U ′4 ⊂ E4)
of S, on which the sequence

(
uk
)
k∈N

generated by uk+1 ∈ Tζ̄u
k seeded by a point

u0 ∈ W
(
ζ̄
)
∩ U ′ with u0

1 ∈ U ′1 ∩
(
B − λ

1−λg
)
satisfies

dist
(
uk+1,Fix Tζ̄ ∩ S

)
≤ c dist

(
uk, S

)
(∀k ∈ N)
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for

c :=
√

1 + ε′ − 1
κ̄2 < 1, (4.21)

where κ̄ = κσ with κ and σ given by (i) and (ii). Consequently, dist
(
uk, ũ

)
→ 0

for some ũ ∈ Fix Tζ̄ ∩ S, and hence

dist
(
uk1, ũ1

)
→ 0

at least R-linearly with rate c < 1. If Fix T λA,B ∩S1 is a singleton, then convergence
is Q-linear.

Remark 4.4.3 (atlas for the assumptions). At first sight, the assumptions in Theo-
rem 4.4.2 might seem overwhelming. To provide some insight into the statement,
we discuss the most important parts of the setting.

1. The assumptions of Theorem 4.1.2 are needed to conclude almost averaged-
ness of T λA,B.

2. The requirement that the assumptions of Theorem 4.1.2 hold at all fixed
points with the same gap vector is achieved by restricting our analysis to the
set S0. This also implies that we are considering only fixed points that are
isolated relative to Λ.

3. Although we were not able to prove metric subregularity for a mapping re-
lated to T λA,B directly, we can show this property for Tζ̄ on E4. In particu-
lar, assumptions (i) and (ii) are used to guarantee metric subregularity from
Proposition 4.3.3. Assumption (i) guarantees subtransversality of the col-
lection

{
B − λ

1−λg, A−
λ

1−λg, A,B
}
since we have seen in Lemma 3.4.2 that

subtransversality is preserved under the addition of some constant vector,
here λ

1−λg.

4. The definitions of Λ′ and Λ̃ relate to the construction of the lifted product
space version of the problem.

5. The violation ε depends on the violations in Definition 3.3.6 as seen in The-
orem 4.1.2. Thus, fixing some violation ε corresponds to certain choices of
neighborhoods U(A, ε, x) and U(B, ε, x) and violations εA and εB of (3.8) for
the sets A and B respectively.

Proof of Theorem 4.4.2. First, note that U is a neighborhood of S since UA × UB
is a neighborhood of S3 × S4, since for every (u, ũ) ∈ S3 × S4 there exist x, x̃ ∈ S0
such that U(A, ε, x)× U(B, ε, x̃) ⊂ UA × UB is a neighborhood of (u, ũ).

The neighborhood U can be replaced by an enlargement of S, hence the result
follows from Theorem 3.2.6 once it can be shown that the assumptions are satisfied
for the mapping Tζ̄ on the product space E4 restricted to Λ̃.
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To do so, we note that T λA,B is almost averaged at each ỹ ∈ S1 on UB by Theo-
rem 4.1.2 since the assumptions (i)-(iv) of Theorem 4.1.2 are satisfied. Moreover,
following the proof of Theorem 4.1.2 and Proposition 3.1.7 the averaging constant
is given by α := 1/2. Similarly, the violation is given by ε on UB. Since Tζ̄ is
just T λA,B shifted by ζ̄ on the product space, it follows that Tζ̄ is pointwise almost
averaged at y ∈ S := S1 × S2 × S3 × S4 with the same violation ε and averaging
constant α = 1/2 on U .

By Lemma 3.4.2 and Remark 3.4.3 assumption (i) therefore implies that for

u = (u1, u2, u3, u4) ∈ S,

the collection of sets {
B − λ

1− λg,A−
λ

1− λg,A,B
}

is subtransversal at u for ζ̄ := u− Πu relative to Λ̃ with constant κ on the neigh-
borhood U , hence Theorem 3.2.6(i) is satisfied. Moreover, assumption (ii) of The-
orem 4.4.2 and Proposition 4.3.3 with N :=

{
z ∈ E4

∣∣∣PA(z4 + λ
1−λg) = z3

}
⊂ U

by Theorem 4.1.2(iv) yield assumption Theorem 3.2.6(ii). Altogether, the assump-
tions of Theorem 3.2.6 are all satisfied for Tζ̄ on E4 restricted to Λ̃, and thus we
conclude that (3.5) holds.

It remains to show that (3.6) holds, which would imply at least R-linear conver-
gence. To achieve this, choose some ε′ > 0 with ε′ < ε such that (3.6) is satisfied.
By Corollary 4.1.3, we can always find neighborhoods U(B, ε′, x) ⊂ U(B, ε, x)
and U(A, ε′, x) ⊂ U(A, ε, x) for all x ∈ S0 that satisfy the assumptions of The-
orem 4.1.2. Following the constructions above, we define U ′A := ∪x∈S0U(A, ε′, x)
and U ′B := ∪x∈S0U(B, ε′, x) and get U ′A ⊂ UA as well as U ′B ⊂ UB. Thus, all the
properties that we have shown to be true on U also hold on the subset U ′ defined
by

U ′ :=
(
U ′B − λ

1−λg
)
×
(
U ′A − λ

1−λg
)
× U ′A × U ′B.

In particular, the constants κ and σ in (i) and (ii) also suffice for the smaller neigh-
borhoods U ′A × U ′B and U ′. As a consequence, the assumptions of Theorem 3.2.6
are all satisfied and (3.6) holds which implies at least R-linear convergence to ũ.
Since ũ1 ∈ Fix T λA,B ∩ S1, this completes the proof.

Remark 4.4.4 (a closer look at the convergence statement). The gap vector g and
difference vector ζ̄ in Theorem 4.4.2 rely on the structure of the intersection of the
sets A and B. The consistent case, that is A ∩ B 6= ∅, leads to a simplification
of the problem. Here, the gap is 0. Similarly, the related difference vector is of
the form ζ̄ = {0, 0, 0, 0}. Hence, the assumptions which involve at least one of
these vectors can be simplified. When the intersection A∩B is empty, namely the
inconsistent case, the value of ζ̄ is dependent on the choice of λ. We distinguish
three important cases.
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1. λ = 1
2 . Here λ

1−λ reduces to 1. As a result the phantom sets are shifted by
the entire gap g such that A and B− g have a common point. The difference
vector is of the form ζ̄ = {g,−g,−g, g}.

2. λ → 1. Then λ
1−λ → +∞. That is, the phantom sets recede to the horizon

in the direction −g.

3. λ→ 0. In this case λ
1−λ converges to 0 and the phantom sets coincide in the

limit with the original ones. So, Ωg = B ×A×A×B. Cyclic projections for
these sets {B,A,A,B} in the given order is nothing more than alternating
projections between the sets A and B. At λ = 0, however, Fix T λA,B = B,
which is clearly larger than the fixed point set for alternating projections.

4.5. Global Linear Convergence of T λA,B

Although the individual assumptions of Theorem 4.4.2 can be challenging to verify,
as we see in Section 4.6, they can reduce to a simpler form if we consider a convex
and consistent setting. The reason for this is twofold. First, subtransversality
at points in the intersection is nothing more than local linear regularity of the
collection of sets [105, Proposition 3.3]. Moreover, it was shown that local linear
regularity is equivalent to the global property of linear regularity in the setting of
closed convex sets, as seen in [8, Theorem 6.1]. Thus, assuming (i) locally for closed
and convex sets, implies that this property holds globally. Second, the technical
assumption in (ii) of Theorem 4.4.2 is always satisfied if the feasibility problem
is consistent by Proposition 4.3.4. To prove this statement, we first present the
auxiliary statements, which are essential to show the global convergence result.

Proposition 4.5.1 (subtransversality at common points [105, Proposition 3.3]).
Let Em be endowed with the 2-norm, that is, ‖(x1, . . . , xm)‖2 =

(∑m
j=1 ‖xj‖

2
E

)1/2
. A

collection {Ω1,Ω2, . . . ,Ωm} of nonempty and closed subsets of E is subtransversal
relative to

Λ := {x = (u, u, . . . , u) ∈ Em | |u ∈ E}
at x = (u, u, . . . , u) with u ∈ ∩mj=1Ωj for y = 0 with constant κ if there exist a
neighborhood U ′ of u together with a constant κ′ satisfying

√
mκ′ ≤ κ such that

dist
(
u,∩mj=1Ωj

)
≤ κ′ max

j=1,...,m
dist (u,Ωi) , ∀ u ∈ U ′. (4.22)

Conversely, if {Ω1,Ω2, . . . ,Ωm} is subtransversal relative to Λ at x for y = 0 with
constant κ, then (4.22) is satisfied with any constant κ′ for which κ ≤ κ′.

The property in (4.22) is called local linear regularity at u. If the inequality holds
for all u ∈ E , the collection of sets {A,B} is said to be linearly regular at u.

Bakan, Deutsch and Li showed in [8] the equivalence of both properties when the
sets are closed and convex.
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Lemma 4.5.2 ([8, Theorem 6.1]). Let the sets A and B be nonempty closed convex
sets with A ∩B 6= ∅. Then the following are equivalent:

(i) There is a δ > 0 such that the collection of sets is locally linearly regular at
x ∈ A ∩B on Bδ(x).

(ii) The collection of sets is linearly regular at x ∈ A ∩B.

Having Proposition 4.5.1 and Lemma 4.5.2, we are now ready to state a global
convergence result for closed convex sets.

Corollary 4.5.3 (global convergence in the consistent and convex setting). Let
λ ∈ (0, 1), and let x be a point in Fix T λA,B. Moreover, let both A and B be closed and
convex with A∩B 6= ∅ and therefore Fix T λA,B = A∩B. Then {g} = PBx−PAPBx =
0 and

{
ζ̄
}

= Z(x, g) = {0} (ζ̄ =
(
ζ̄1, ζ̄2, ζ̄3, ζ̄4

)
∈ E4). Define the set

S0 := Fix T λA,B = A ∩B.

Suppose that the following hold for all u = (u1, u2) ∈ S := S0 × S0:

(i) the collection of sets {A,B} is subtransversal at (u1, u2) for (u1, u2)−Π(u1, u2)
relative to Λ′ ⊂ {u ∈ E2 |u1 = u2} with constant κ on some neighborhood
U ′ ⊂ E2 (U ′ = UA × UB);

Then the sequence (xk)k∈N generated by xk+1 ∈ T λA,Bxk seeded by a point x0 ∈ Λ′∩UB
satisfies

dist
(
xk+1,Fix T λA,B

)
≤ c dist

(
xk,Fix T λA,B

)
(∀k ∈ N)

for

c :=
√

1− λ2

κ2 < 1

with κ by (i). Consequently, dist
(
xk, x̃

)
→ 0 for some x̃ ∈ Fix T λA,B at least R-

linearly with rate c < 1. If Fix T λA,B is a singleton, then convergence is Q-linear.

Remark 4.5.4 (global convergence for convex sets). There are only two changes from
Theorem 4.4.2 to Corollary 4.5.3. First, the sets are required to be convex. Thus,
convergence in general is guaranteed as stated in Theorem 3.2.1, since convexity
of the sets implies averagedness of T λA,B by Proposition 3.3.9, Proposition 3.3.12
and Proposition 3.1.7. Moreover, the local assumption (i) in this case is a global
one, i.e. U ′ = E2, by Proposition 4.5.1 and Lemma 4.5.2. The second difference,
assumption (ii) in Theorem 4.4.2, is always satisfied by Proposition 4.3.4 since
Fix T λA,B = A ∩B.
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Proof of Corollary 4.5.3. Since A and B are convex, not only the difference vec-
tor is unique, as seen in Lemma 4.4.1, but too is the gap vector g for any fixed
point in Fix T λA,B. Thus, S0 = Fix T λA,B. Furthermore, Fix T λA,B = A ∩ B by Corol-
lary 4.2.6. With these observations, we get immediately that the sets involved in
Theorem 4.4.2 simplify to the following

S = S0 × S0 × S0 × S0,

W (ζ̄) =
{
u ∈ E4

∣∣∣u− Πu = 0
}

=
{
u ∈ E4

∣∣∣u1 = u2 = u3 = u4
}
,

U = UB × UA × UA × UB,
Λ′ ⊂

{
u ∈ E2

∣∣∣u1 = u2
}
,

since Λ ⊂ W (ζ̄). Thus, assuming (i) in Corollary 4.5.3 is equivalent to assuming
Theorem 4.4.2(i) in the convex and consistent setting. Moreover, since the sets A
and B are convex, the projector and reflector across these sets are single-valued
(see Proposition 2.2.1 and Corollary 2.2.2). Additionally, the projector is firmly
nonexpansive (see Proposition 3.3.9 and Proposition 3.3.12) and thus the reflector
is nonexpansive, (see [15, Proposition 4.2]), which implies that T λA,B is averaged
with constant α = (1/2). The conditions of Theorem 4.1.2 are therefore satisfied
with neighborhoods chosen to be E . Also, since the sets A and B are convex, they
are super-regular at a distance by Proposition 3.3.9 with ε = 0. Since every fixed
point is an element of the intersection A∩B, we deduce by Proposition 4.3.4 that
assumption (ii) of Theorem 4.4.2 holds. The local convergence result follows then
from Theorem 4.4.2. What is left to show, is the global convergence property.

By (i) and Proposition 4.5.1, the collection of sets {A,B} is locally linearly regular
on U ′. Thus, there exists a δ > 0 such that {A,B} is locally linearly regular on
Bδ(x). Using Lemma 4.5.2 we get that {A,B} is linearly regular since A and B
are convex sets. Altogether, (i) holds with U ′ = E2. That is, the assumption holds
globally. Since (ii) of Theorem 4.4.2 holds globally as well by Proposition 4.3.4,
the assumptions of the underlying convergence framework in Theorem 3.2.6 hold
on E . Therefore, the sequence converges globally, which completes the proof.

Remark 4.5.5 (linking our results to already existing literature). As noted in the
introduction, the works [49,75,94,105,113] all analyze the Douglas-Rachford algo-
rithm for consistent nonconvex feasibility. In [105] the framework used here was
applied to Douglas-Rachford for structured nonconvex optimization. In [49] the
authors showed local R-linear convergence for superregular sets intersecting linear
regular. Our analysis of relaxed Douglas-Rachford includes or subsumes that of all
previous studies in the context of set feasibility, with the exception of [94], which
addresses global convergence guarantees for consistent feasibility. The assump-
tions of that paper, namely compactness and semi-algebraicity (not to mention
nonempty intersection) are different than the notions that we work with. Certainly
compactness is a regularity assumption, as is semi-algebraicity or its more general
Kurdyka-Łojasiewicz-type regularity, but these notions serve a different purpose.
Indeed, even convex sets need not be semi-algebraic or compact. This suggests
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that Kurdyka-Łojasiewicz-type regularity and compactness could be properties in
addition to the ones we use in order to arrive at global statements. Nevertheless,
as shown in Corollary 4.5.3, in the convex case, the local analysis suffices to infer
global convergence properties. A more thorough study of the relationship between
the different notions of regularity would be fruitful, but is beyond the scope of our
paper.

Our results could be extended to sets with even weaker regularity, namely ε-
subregular sets instead of super-regular sets at a distance under the additional
assumption that suitable neighborhoods exist. But, the present setting is technical
enough - increased generality would have only made the details even more difficult
to parse. Moreover, the advantage of this specific type of nonconvexity is that we
are not only able to present existence results on neighborhoods where we get local
convergence, but we are able to construct the neighborhoods explicitly.

4.6. Elementary Examples

We demonstrate in this section explicit verification of the assumptions of Theo-
rem Theorem 4.4.2 for a typical class of problems. In particular, we consider the
configurations that arise with feasibility problems involving intersecting and non-
intersecting spheres in R2. This is of particular interest for the source localization
problem and the phase retrieval problem, especially the nonintersecting case. The
idealized source localization problem amounts to finding the intersection of spheres
that are determined by distance measurements to receivers whose locations are
known. When the distance measurements are noisy, or the given locations of the
receivers are inaccurate, the intersection over all spheres will be empty almost
always. For phase retrieval, the measurements are pointwise amplitude measure-
ments in the Fourier domain of an unknown object. In other words, the constraint
sets are two-dimensional spheres in the image of a linear transformation. Since
both the measurements and the object are assumed to have compact support, the
phase retrieval problem in diffraction imaging is fundamentally inconsistent. In our
development below, we carry out the explicit calculations to verify the assumptions
of Theorem Theorem 4.4.2 for circles (spheres in R2) which was shown in [103] to be
the fundamental geometry for phase retrieval and source location problems. Affine
subspaces are included as spheres centered at infinity.

There are 5 distinct cases to consider: 1. intersecting circles, 2. nonintersect-
ing separable circles, 3. nonintersecting, nonseparable, nonconcentric circles, 4.
nonintersecting concentric circles, and 5. tangential circles. We show that the
verification can be carried out “by hand” in the first example. For the sake
of brevity, the verification is carried out in the remaining examples with the
help of symbolic computation. We were unable to prove or disprove that the
required conditions hold in Example 4. In Example 5 we determine that the as-
sumptions are not satisfied, and therefore the algorithm cannot converge linearly.
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The symbolic worksheets where our calculations were carried out are available at
http://vaopt.math.uni-goettingen.de/en/publications.php.

For this entire section let R be a positive real-valued number and λ ∈ (0, 1) if
not specified. To verify subtransversality and the technical condition (ii) in The-
orem 4.4.2 we often did not calculate the constants explicitly but bounded them
from below. That is,

κ >
dist

(
u,Ψ−1

g (ζ̄) ∩W (ζ̄)
)

dist
(
ζ̄ ,Ψg(u)

) ,

σ >
dist

(
ζ̄ ,Ψg(u)

)
dist

(
0,Φζ̄(u)

) ,
where κ was the constant of subtransversality and σ describes the technical condi-
tion. In this section we deal with neighborhoods of fixed points. As a consequence,
the constants computed bound the rate of linear convergence from below in such
cases. Note that we can always find a neighborhood such that the convergence is
linear for examples consisting of two circles by Theorem 4.1.2 and Example 4.1.4.

Example 4.6.1 (two intersecting circles). The first example consists of two circles
intersecting at exactly two points. Without loss of generality we can restrict the
analysis to the following setting

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}

B :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + (x2 − a)2 = R2

}
,

where a ∈ R \ {0} and R ∈ (miny∈A dist ((0, a) , y) ,maxy∈A dist ((0, a) , y)). Note

A

B

Figure 4.7: Illustration of the sets in Example 4.6.1 for a = −1.5 and R = 1.

that the endpoints of the interval for R correspond to the setting of two touching
circles, see Example 4.6.5.

First, we consider the points in the intersection A ∩B, namely±
√√√√1−

(
1−R2 + a2

2a

)2

,
1−R2 + a2

2a

 .

http://vaopt.math.uni-goettingen.de/en/publications.php
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Due to the symmetry of the problem we restrict the analysis to the point

u :=

+

√√√√1−
(

1−R2 + a2

2a

)2

,
1−R2 + a2

2a

 .

The following statements regarding the assumptions made in Theorem 4.4.2 are
easily verified either by hand or with the help of symbolic computation.

(i) S0 :=
{(

+
√

1−
(

1−R2+a2

2a

)2
, 1−R2+a2

2a

)}
∈ Fix T λA,B

(ii) In R+ × R there is a unique fixed point. x = (u, u, u, u).

(iii) The difference vector is unique and given by ζ̄ = ((0, 0), (0, 0), (0, 0), (0, 0)),
since u ∈ A ∩B.

(iv) The sets A and B satisfy the assumptions of Theorem 4.1.2 at u with neigh-
borhoods U1 and U2 being open balls around u, that is Bδ(u), for δ ∈ (0, 1).
This can be shown similar to Example 4.1.4.

(v) This example considers a setting with nonempty intersection. As seen in
Proposition 4.5.1 showed by Luke, Thao and Tam, one can equivalently prove
linear regularity to get subtransversality in such instances.

Our aim is to use Proposition 4.5.1, proving that Example 4.6.1 satisfies
(4.22).

For this we assume that u ∈ U1 = U2 is an element of A. Additionally, we
take the value of u1 larger than 0. We can do this since the statements in
Theorem 4.4.2 are all with respect to the set Λ which is a subset of W (ζ̄).
Thus, the restriction to one of the sets is no contradiction. u1 > 0 ensures
that we always project onto the chosen point in the intersection, u. Then, we
have to show

dist (u,A ∩B) ≤ κ′max {dist (u,A) , dist (u,B)} ,

which simplifies to

dist (u,A ∩B) ≤ κ′ dist (u,B) ,

which we reformulate in the following to

‖u− PA∩Bu‖ ≤ κ′ ‖u− PBu‖ . (4.23)

Note that (4.23) is equivalent to (4.22) since u ∈ A and thus implies linear
regularity.
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Next, we show (4.23).

‖u− PA∩Bu‖ ≤ ‖u− PBu‖+ ‖PBu− PA∩Bu‖

≤ ‖u− PBu‖
(

1 + ‖PBu− PA∩Bu‖
‖u− PBu‖

)

Thus, it remains to show that 1 + ‖PBu−PA∩Bu‖
‖u−PBu‖

is bounded above by a non-
negative constant.

By construction we get for the individual projections

PA∩Bu =

+

√√√√1−
(

1−R2 + a2

2a

)2

,
1−R2 + a2

2a

 ,
PBu = (0, a) + u− (0, a)

‖u− (0, a)‖R.

Inserting this in the above expression yields

1 + ‖PBu− PA∩Bu‖
‖u− PBu‖

=1 +

∥∥∥∥∥(0, a) + u−(0,a)
‖u−(0,a)‖R−

(√
1−

(
1−R2+a2

2a

)2
, 1−R2+a2

2a

)∥∥∥∥∥∥∥∥u− (0, a) + u−(0,a)
‖u−(0,a)‖R

∥∥∥
≤2 +

∥∥∥∥∥u−
(√

1−
(

1−R2+a2

2a

)2
, 1−R2+a2

2a

)∥∥∥∥∥∥∥∥u− (0, a) + u−(0,a)
‖u−(0,a)‖R

∥∥∥
<2 + 1∥∥∥u− (0, a) + u−(0,a)

‖u−(0,a)‖R
∥∥∥ ,

since u ∈ A and thus
∥∥∥∥∥u−

(√
1−

(
1−R2+a2

2a

)2
, 1−R2+a2

2a

)∥∥∥∥∥ < 1. The denomi-
nator ∥∥∥∥∥u− (0, a) + u− (0, a)

‖u− (0, a)‖R
∥∥∥∥∥

can be bounded as follows.

Since u ∈ A, we get

min
y∈A

dist ((0, a) , y) ≤ ‖u− (0, a)‖ ≤ max
y∈A

dist ((0, a) , y) .

And equivalently

1
miny∈A dist ((0, a) , y) ≥

1
‖u− (0, a)‖ ≥

1
maxy∈A dist ((0, a) , y) .
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Thus,

1− R

‖u− (0, a)‖ ≥ 1− R

maxy∈A dist ((0, a) , y) ,

which implies

ρ

(
1− R

‖u− (0, a)‖

)
≥ min

y∈A
dist ((0, a) , y)

(
1− R

maxy∈A dist ((0, a) , y)

)
,

for ρ := ‖u− (0, a)‖. Hence

1
ρ
(
1− R

‖u−(0,a)‖

) ≤ 1
miny∈A dist ((0, a) , y)

(
1− R

maxy∈A dist((0,a),y)

) =: κ′.

Since
R ∈

(
min
y∈A

dist ((0, a) , y) ,max
y∈A

dist ((0, a) , y)
)
,

κ′ is bounded above.

Altogether, A ∩ B is locally linear regular at
(

+
√

1−
(

1−R2+a2

2a

)2
, 1−R2+a2

2a

)
.

By Proposition 4.5.1 we deduce subtransversality with constant κ := κ′
√

2.

(vi) The technical condition (ii) in Theorem 4.4.2 is satisfied with

σ2 = 1
2λ2

by Proposition 4.3.4.

Thus, the assumptions of Theorem 4.4.2 are satisfied and the relaxed Douglas-
Rachford algorithm converges locally linear to u with rate 1 > c >

√
1− λ2

κ′2
as

long as the starting point is close enough to u.

Similarly, this argument can be repeated for
(
−
√

1−
(

1−R2+a2

2a

)2
, 1−R2+a2

2a

)
, which

shows that, in this situation, both subtransversality and the technical condition at
the two points in the intersection are satisfied.

Note that the point (0,−1) does not lead to a fixed point of the relaxed Douglas-
Rachford algorithm. Whereas, for the Alternating Projection method, defined by
the operator PAPB, (0,−1) is always a fixed point. In particular, for any λ ∈ (0, 1)
the fixed point set of T λA,B does not contain any point of the form (0, y) for y ∈ R.

Example 4.6.2 (nonintersecting separable circles). This example consists of two
circles in R2 that are shifted by some vector in R2 such that they do not intersect
in any point. Let R > 0 and define

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}

and B :=
{
x = (x1, x2) ∈ R2

∣∣∣ (x1 − (2 +R))2 + x2
2 = R2

}
.
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A B

Figure 4.8: Illustration of the sets in Example 4.6.2 for R = 1.

The only fixed point of T λA,B on A and B is given by

u = (2, 0)− λ

1− λ (1, 0)

for λ ∈ (0, 1). The following statements regarding the assumptions made in Theo-
rem 4.4.2 are easily verified either by hand or with the help of symbolic computa-
tion.

(i) S0 := Fix T λA,B = {u}.

(ii) The difference vector is unique as well and given by

ζ̄ =
(

(1, 0),− λ

1− λ (1, 0) , (−1, 0), λ

1− λ (1, 0)
)
.

(iii) As noted in Example 4.1.4(ii) the assumptions of Theorem 4.1.2 are satisfied
for neighborhoods chosen as tubes.

(iv) The modulus of subtransversality κ bounded below as follows

κ2 >
8(R2 + 2R + 1)
R2 + 2R + 5 .

(v) The technical assumption (ii) in Theorem 4.4.2 is bounded below as follows

σ2 > γ1/16γ2,

where the constants γ1 and γ2 were calculated with SageMath and are given
by

γ1 = 4
(
R4 − 2R2 + 1

)
λ6 − 8

(
3R4 +R3 − 5R2 −R + 2

)
λ5

+
(
53R4 + 40R3 − 54R2 − 32R + 25

)
λ4 + 4R4

− 2
(
27R4 + 33R3 + 7R2 − 21R + 18

)
λ3 + 8R3

+
(
29R4 + 42R3 + 69R2 − 40R + 36

)
λ2 + 20R2

− 4
(
3R4 + 4R3 + 11R2 − 10R

)
λ,
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A B

Figure 4.9: Illustration of the sets in Example 4.6.3 for R = 1.

γ2 =
(
R4 + 6R3 + 13R2 + 12R + 4

)
λ4

− 2
(
R4 + 6R3 + 13R2 + 12R + 4

)
λ3

+
(
R4 + 6R3 + 13R2 + 12R + 4

)
λ2.

Thus, the assumptions of Theorem 4.4.2 are satisfied and the relaxed Douglas-
Rachford algorithm converges locally linear to u with rate 1 > c >

√
1− 1

(κσ)2 as
long as the starting point is close enough to u.

Example 4.6.3 (nonintersecting, nonseparable and nonconcentric circles). This
example consists of two circles having not the same center with one surround the
other. Let R > 0 and set

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}

B :=
{
x ∈ R2

∣∣∣∣x2
1 + (x2 − (−1

2 −R)) = (2 +R)2
}
.

Our analysis considers the fixed point

u =
(

0, 3
2

)
− λ

1− λ

(
0, 1

2

)
of T λA,B on A and B for λ < 2/3. The following statements regarding the assump-
tions made in Theorem 4.4.2 are easily verified either by hand or with the help of
symbolic computation.

(i) S0 := {u} ∈ Fix T λA,B.

(ii) The difference vector is unique as well and given by

ζ̄ =
((

0, 1
2

)
,− λ

1− λ

(
0, 1

2

)
,−

(
0, 1

2

)
,− λ

1− λ

(
0, 1

2

))
.

(iii) Similar to the analysis made in Example 4.1.4(ii) the assumptions of Theo-
rem 4.1.2 are satisfied for neighborhoods chosen as tubes.
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(iv) The modulus of subtransversality κ is bounded below as follows

κ2 >
9(4R2 + 12R + 9)

2R2 + 6R + 9

(v) The technical assumption (ii) of Theorem 4.4.2 is bounded below by

σ2 >
γ1

9γ2
,

where the constants γ1 and γ2 were calculated with SageMath and are given
by

γ1 = 4
(
40R4 + 320R3 + 958R2 + 1272R + 639

)
λ6

− 4
(
216R4 + 1688R3 + 5000R2 + 6675R + 3438

)
λ5

+
(
1864R4 + 14208R3 + 41826R2 + 56844R + 30591

)
λ4 + 144R4

−
(
2112R4 + 15736R3 + 46466R2 + 65427R + 37485

)
λ3 + 1008R3

+
(
1432R4 + 10504R3 + 31387R2 + 46164R + 28071

)
λ2 + 2952R2

− 24
(
26R4 + 188R3 + 563R2 + 843R + 522

)
λ+ 4320R + 2592,

and

γ2 =
(
16R4 + 64R3 + 88R2 + 48R + 9

)
λ6

− 6
(
16R4 + 64R3 + 88R2 + 48R + 9

)
λ5

+ 13
(
16R4 + 64R3 + 88R2 + 48R + 9

)
λ4

− 12
(
16R4 + 64R3 + 88R2 + 48R + 9

)
λ3

+ 4
(
16R4 + 64R3 + 88R2 + 48R + 9

)
λ2.

Thus, the assumptions of Theorem 4.4.2 are satisfied and the relaxed Douglas-
Rachford algorithm converges locally linear to u with rate 1 > c >

√
1− 1

(κσ)2 , as
long as the starting point is close enough to u.

Example 4.6.4 (nonintersecting, nonseparable concentric circles). In comparison
to Example 4.6.3, the only thing we change is that we do not allow the circles to
have different centers. Let R > 0 and define

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}

B :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = R2
}
,

where we restrict R to be strictly greater that 1, i.e. R > 12. Our analysis focuses
2For R < 1 we can change the roles of A and B, which results in the situation presented here.
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A
B

Figure 4.10: Illustration of the sets in Example 4.6.4 for R = 2.

A B

Figure 4.11: Illustration of the sets in Example 4.6.5 for R = 1.

on the fixed point

u = (0, R)− λ

1− λ (0, R− 1)

of T λA,B on A and B. Note that it is enough to consider u to get the analysis for
any other fixed point due to the symmetry of the problem instance.

Unfortunately, we were unable to verify the technical assumption (ii) in Theo-
rem 4.4.2.

Nevertheless, this example is subtransversal. The modulus of subtransversality κ
is bounded as follows

κ2 >
2R2

R4 − 2R3 + 2R2 − 2R + 1 .

Example 4.6.5 (tangential circles). Example 4.6.5 consists of 2 circles touching
at a single point. Let R > 0 and define

A :=
{
x = (x1, x2) ∈ R2

∣∣∣x2
1 + x2

2 = 1
}

B :=
{
x = (x1, x2) ∈ R2

∣∣∣ (x1 − (R + 1))2 + x2
2 = R2

}
.

Our convergence analysis focuses on the only point in the intersection of those two
sets, namely

u = (1, 0) .
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The following statements regarding the assumptions made in Theorem 4.4.2 are
easily verified either by hand or with the help of symbolic computation.

(i) S0 := {u} ∈ Fix T λA,B.

(ii) The difference vector is unique as well and given by

ζ̄ = ((0, 0), (0, 0), (0, 0), (0, 0)) .

(iii) The sets A and B satisfy the assumptions of Theorem 4.1.2 at u with neigh-
borhoods U1 and U2 being open balls around u, that is Bδ(u), for δ ∈ (0, 1).

(iv) The technical condition (ii) in Theorem 4.4.2 is satisfied with

σ2 = 1
2λ2

by Proposition 4.3.4.

(v) However, this example is not subtransversal when examining it in R2. Since
u is a point in the intersection of A and B, we equivalently check linear
regularity of the two sets (see Proposition 4.5.1). This yields a constant of
linear regularity of

2R
(R + 1)b, (4.24)

where we parametrized a point in the neighborhood of u intersected with A
as

(
√

1− b2, b), b ∈ [1,−1].

Letting b going to 0 (respectively a point close to u) yields a value of ∞ in
(4.24). This implies that Example 4.6.5 can not be linearly regular at the
point u = (1, 0) and thus is not subtransversal.

The assumptions of Theorem 4.4.2 therefore are not satisfied. In light of the neces-
sity of metric subregularity for linear convergence [104, Theorem 2], we conclude
that T λA,B cannot be linearly convergent in this case (though it might be sublinearly
convergent).

Remark 4.6.6. As shown in the examples above the constants involved for both
subtransversality and the technical condition (ii) in Theorem 4.4.2 can be cum-
bersome although the actual problem might look relatively easy. We also see in
Example 4.6.2-Example 4.6.4 that the presence of subtransversality in the inconsis-
tent case can come as a surprise. Our inability to show the technical condition (ii)
in Example 4.6.4 indicates that this condition characterizes the regularity or non-
degeneracy of the underlying model space for the algorithm. Further investigation
of this property is needed.
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4.7. Special Case: Subspaces

In the previous sections, we considered super-regular sets at a distance and spe-
cialized to convex sets in Corollary 4.5.3. The statements so far about linear con-
vergence depend on the regularity of the individual sets and the whole collection
of sets. The aim of this section is to present a class of sets that always satisfies
all of the assumptions we require to conclude convergence. In fact, we analyze the
relaxed Douglas-Rachford method for two intersecting linear subspaces. As is the
case for results on the method of alternating projections for subspaces [2, 51–54]
and the Douglas-Rachford algorithm for subspaces [19], the notion of the Friedrichs
angle is of great importance. In the following, we consider (linear) subspaces.
Moreover, note that in finite dimensions subspaces are always closed (see for ex-
ample [51, Lemma 9.36]). Whenever this specification of subspaces is omitted, we
mean closed subspaces. To start, we note the following two facts.

Lemma 4.7.1 (subspaces are super-regular at a distance). Let Ω ⊂ E be a sub-
space. Then Ω is super-regular at a distance relative to Λ = E at any x ∈ Ω and
convex.

Proof. Since subspaces are convex by definition, this follows immediately by Propo-
sition 3.3.9.

Lemma 4.7.2 (subspaces always intersect linear regularly). Let A and B be two
subspaces in E. Then {A,B} is linear regular at every x ∈ A ∩B.

Proof. By [14, Proposition 5], {A,B} has the Jameson’s property, which is equiv-
alent to linear regularity for closed convex cones by [14, Theorem 10]. Since every
subspace in E is a closed convex cone, the result follows.

Lemma 4.7.2 can be also found in [10, Theorem 5.5.4(v)]. While the first of these
statements is not surprising at all, since subspaces are convex sets, the second is
not a direct result of the tools introduced in this thesis. Using both results, we
deduce the following convergence statement.

Corollary 4.7.3 (global convergence for subspaces and consistent feasibility). Let
λ ∈ (0, 1), and let x be a point in Fix T λA,B. Moreover, let A,B ⊂ E be subpaces
with A ∩ B 6= ∅, and therefore Fix T λA,B = A ∩ B. Then {g} := PBx− PAPBx = 0
and the sequence (xk)k∈N generated by xk+1 ∈ T λA,Bx

k seeded by a point x0 ∈ B
satisfies

dist
(
xk+1,Fix T λA,B

)
≤ c dist

(
xk,Fix T λA,B

)
(∀k ∈ N)

for

c :=
√

1− λ2

κ2 < 1,
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with κ being the modulus of linear regularity. Consequently, dist
(
xk, x̃

)
→ 0 for

some x̃ ∈ Fix T λA,B at least R-linearly with rate c < 1. If Fix T λA,B is a singleton,
then convergence is Q-linear.

Proof. The statement is a direct implication of Corollary 4.5.3 using Lemma 4.7.1
and Lemma 4.7.2.

Comparing Corollary 4.7.3 to the convergence results before (Corollary 4.5.3 and
Theorem 4.4.2), we have identified a class of sets that always satisfies the assump-
tions of the convergence template in Theorem 3.2.6. This observation matches
other results for projection methods applied to subspaces. We compare the results
in the following remark.
Remark 4.7.4 (comparison of convergence rate to other projection methods). The
global convergence rate stated in Corollary 4.7.3 for the method of relaxed Douglas-
Rachford on two intersecting subspaces is bounded above by

c ≤
√

1− λ2

κ2 .

In [92] Lewis, Luke and Malick analyzed the method of alternating projections and
averaged projections. They show for super-regular sets, a regularity notion that
captures subspaces by Lemma 4.7.1, that the convergence rates for both algorithms
are bounded above as follows

cMAP ≤ 1− 1
κ2

caverP ≤ 1− 1
2κ2 ,

(see [92, Remark 7.5]). Comparing these three bounds, one would always prefer
alternating projections before averaged projections and averaged projections before
relaxed Douglas-Rachford when λ <

√
1− 1

4κ2 if only these bounds are taken into
consideration. Thus, the method of relaxed Douglas-Rachford does not seem to
be better than the method of alternating projections for subspaces. Section 6.6
illustrates that this is not always the case for nonconvex settings. Moreover, the
rate we established here is evolved from a convergence statement that included
less restrictive regularity types (see for Theorem 4.4.2). Hence, by emphasizing
the regularity of subspaces, we would expect a better convergence result for the
method of relaxed Douglas-Rachford (compare this also to Remark 4.7.14).

When working with subspaces, there is a different notion to encounter regularity
of the collection of sets {A,B}, namely angles. In particular, we are focusing here
on the Friedrichs angle.

Definition 4.7.5 (Friedrichs angle [68]). The Friedrichs angle between two sub-
spaces A and B is defined as the angle in [0, π/2] whose cosine is given by

c(A,B) := sup
{
| 〈a, b〉 |

∣∣∣ a ∈ A ∩ (A ∩B)⊥, ‖a‖ = 1, b ∈ B ∩ (A ∩B)⊥, ‖b‖ = 1
}
.
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Note that the Friedrichs angle is just one choice of many possibilities to describe
the geometry of two intersecting sets. For a survey on angles between subspaces,
we refer the reader to [50]. Lewis and Malick gave a generalization for manifolds in
E depending on a specific point in the intersection and the tangent spaces at that
point [93]. In the case of subpaces their definition coincides with Definition 4.7.5.
Our goal is to express the modulus of linear regularity in terms of the Friedrichs
angle. For this we need the following preliminary result including the notion of
transversality.

Definition 4.7.6 (transversality [87, Definition 2]). Let A,B ⊂ E . The collection
of sets {A,B} is transversal at a point x ∈ A∩B if there exists numbers κ > 0, δ > 0
and a neighborhood U of x such that

dist (x, (A− x1) ∩ (B − x2)) ≤ κmax {dist (x,A− x1) , dist (x,B − x2)}
(∀x ∈ U)(∀x1, x2 ∈ Bδ). (4.25)

We call the lower bound of all κ that satisfy (4.25) the modulus of transversality.

Note that as compared to linear regularity as defined in Proposition 4.5.1 (i.e.
subtransversality at points in the nonempty intersection), we have additional points
x1 and x2 that translate the sets A and B respectively. This makes transversality
a stricter property than linear regularity. The notion of transversality that is
presented here was studied under several names. For a comprehensive study see
[87,88]. For a historical commentary, see Remark 3.4.4.

Proposition 4.7.7 (transversality and linear regularity). Let A and B be two
subspaces in E.Then the following hold:

(i) If the collection {A,B} is transversal at a point x ∈ A ∩ B, then it is linear
regular at x as well and the modulus of transversality is greater or equal the
modulus of subtransversality.

(ii) If in addition A+B = E, then transversality of {A,B} at x ∈ A∩B is always
satisfied and the moduli of transversality and linear regularity coincide.

Proof. (i). The first part of the proposition can be found in [88, Theorem 4(i)]. We
have seen in Lemma 4.7.2 that for two subspaces we always expect subtransversal-
ity, i.e. linear regularity. What is new in this context is the implication of linear
regularity from a different property and the relationship of the moduli. Note that
the modulus of transversality and subtransversality, respectively, are the inverse of
the moduli used in [88].

(ii). For the second part assume that A + B = E . Note that A + B is closed (see
for example [51, Lemma 9.36]). Therefore, we know by Lemma 4.7.2 that {A,B} is
linear regular with some modulus κs. We show next that this implies transversality
of {A,B}. Since {A,B} is linear regular at x ∈ A ∩B with modulus κs we have

dist (x,A ∩B) ≤ κs max {dist (x,A) , dist (x,B)}
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for all x ∈ E . In the following let x ∈ E as well as x1, x2 ∈ E . Since A+B = E , for
every y ∈ E there exists a ∈ A and b ∈ B such that y = a+ b. Applying this to x1
and x2 yields

dist (x, (A− x1) ∩ (B − x2)) = dist (x, (A− a1 − b1) ∩ (B − b2 − a2))
= dist (x, (A− b1) ∩ (B − a2)) , (4.26)

since A and B are both subspaces. Next, we show that

(A− b1) ∩ (B − a2) = (A ∩B)− a2 − b1. (4.27)

The inclusion (A− b1)∩ (B − a2) ⊃ (A∩B)− a2− b1 is a simple implication since
A and B are subspaces. Thus, A− a2 = A and respectively B − b1 = B. We show
the reverse inclusion explicitly. Let y ∈ (A− b1) ∩ (B − a2). Therefore

y = a− b1

and y = b− a2,

for some a ∈ A and b ∈ B. Rewriting this yields

y = (a+ a2)− a2 − b1

and y = (b+ b1)− a2 − b1.

Since both A and B are subspaces, a+ a2 ∈ A and b+ b1 ∈ B. Furthermore,

(a+ a2)− a2 − b1 = y = (b+ b1)− a2 − b1.

From which we conclude that a + a2 = b + b1. Combining these observations, we
deduce that y ∈ (A∩B)−a2−b1. This proves the reverse implication and therefore
shows (4.27). Inserting this in (4.26) yields

dist (x, (A− x1) ∩ (B − x2)) = dist (x, (A ∩B)− a2 − b1) .

Rewriting the distance and using linear regularity, we deduce

dist (x, (A− x1) ∩ (B − x2)) = dist (x+ a2 + b1, (A ∩B))
≤ κs max (dist (x+ a2 + b1, A) , dist (x+ a2 + b1, B))
≤ κs max (dist (x,A− b1) , dist (x,B − a2))
≤ κs max (dist (x,A− x1) , dist (x,B − x2)) ,

which is the inequality describing transversality defined in (4.25). Denote by κt
the modulus of transversality. Then we have just shown κt ≤ κs. By (i) we get
κs ≤ κt and in total κs = κt.

Remark 4.7.8. Note that in Proposition 4.7.7(ii) the assumption A + B = E was
crucial. Kruger, Luke and Thao gave an example of two subspaces in R2 that
intersect subtransversally but not transversally [88, Example 5]. In particular,
they considered the two sets A = B = R× {0}. But these two sets do not satisfy
A+B = E . This is still in line with Lemma 4.7.2.
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Lemma 4.7.9 (regularity modulus in terms of the Friedrichs angle). Let A and
B be two subspaces in E.If A + B = E, the modulus of linear regularity κ for the
collection of sets {A,B} can be described by the Friedrichs angle c(A,B), namely,

κ =
√

2
1− c(A,B) .

Proof. We know, by Proposition 4.7.7, that the collection of sets is linear regular
and transversal. Moreover, the moduli of regularity coincide. Thus, we can focus
equivalently on the modulus of subtransversality instead of the modulus of linear
regularity. The result then follows from [88, Proposition 8] and [88, Theorem
2(vi)].

Corollary 4.7.10. In the setting of Corollary 4.7.3 the convergence rate c can be
described by √

1− λ2

2 + λ2

2 c(A,B).

Proof. By Lemma 4.7.9,

κ =
√

2
1− c(A,B) ,

which is equivalent to
− 1
κ2 = −1− c(A,B)

2 .

Thus, the constant c in Corollary 4.7.3 can be reformulated as follows

1 > c :=
√

1− λ2

κ2 =
√

1− λ2 1− c(A,B)
2 =

√
1− λ2

2 + λ2

2 c(A,B) ,

which proves the claim.

The motivation for the inclusion of Corollary 4.7.10 is twofold. The more apparent
reason is to present the connection of the regularity of the collection of sets {A,B}
with an angle described by both subspaces. This link serves as an intuition when we
should expect linear regularity. This relationship was also developed for manifolds
in the context of the method of alternating projections by Lewis and Malick [93].
Deutsch and Hundal [52–54] introduced a generalization of the Friedrichs angle for
more than two closed convex sets and applied their results to the method of cyclic
projections. Both works demonstrate that the rate of convergence relies strongly
on the angle between the sets. The other reason why we introduced the Friedrichs
angle goes back to Remark 4.7.4, where we compared the rate of convergence of the
relaxed Douglas-Rachford method on two subsets that is implied by Theorem 4.4.2.
As we see next, this rate is not optimal. We focus on the setting when A+B = E . In
fact, we show that in this case the method of relaxed Douglas-Rachford converges
R-linearly with rate at least c(A,B). To prove this result, we collect the following
preparatory facts.
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Lemma 4.7.11 (known but useful facts). Let A and B be two subspaces of E and
denote their intersection by M := A ∩B. Then

(i) The orthogonal complement A⊥ of the subspace A is again a subspace, and
for every x ∈ E we can write x = PAx+ PA⊥x,

(ii) Fix TA,B = A ∩ B ⇔ A + B = E, where TA,B is the mapping defined by the
Douglas-Rachford algorithm in Algorithm 2.3.4,

(iii) ‖TA,B − PFix TA,B‖ = c(A,B),

(iv) ‖PAPB − PA∩B‖ = c(A,B),

(v) c(A,B) < 1.

Proof. (i). See for instance [51, Theorem 5.8 (1) and (2)].

(ii). See for example [19, Proposition 3.6] since A + B is closed by the finite
dimension of E (see for instance [51, Lemma 9.36]).

(iii). This was shown in [19, Theorem 4.1].

(iv). See for instance [51, Lemma 9.5(7)].

(v). This is an application of [19, Fact 2.3(i)] since A + B is closed by the finite
dimension of E .

Theorem 4.7.12. Let A and B be two subspaces with A ∩ B 6= ∅. If A + B = E,
then

c(A,B) ≤ ‖T λA,B − PFix TλA,B
‖ ≤ λc(A,B) + (1− λ),

where c(A,B) denotes the Friedrichs angle between A and B defined by Defini-
tion 4.7.5. Furthermore,

‖T λA,Bx− PFix TλA,B
x‖ ≤ (λc(A,B) + (1− λ)) ‖x− PFix TλA,B

x‖,

for all x ∈ E.

Proof. By Corollary 4.2.6, the fixed points of T λA,B are given by the intersection
A ∩ B and hence PFix TλA,B

= PA∩B. Using the triangle inequality, it holds for all
x ∈ E

‖T λA,Bx− PFix TλA,B
x‖ = ‖T λA,Bx− PA∩Bx‖

= ‖λTA,Bx+ (1− λ)PBx− PA∩Bx‖ (4.28)
= ‖λ(TA,Bx− PA∩Bx) + (1− λ)(PBx− PA∩Bx)‖
≤ λ‖(TA,Bx− PA∩Bx)‖+ (1− λ)‖(PBx− PA∩Bx)‖.

By Lemma 4.7.11(ii), Fix TA,B = A ∩ B = Fix T λA,B using that A + B = E . Thus,
Lemma 4.7.11(iii) reduces to ‖TA,B − PA∩B‖ = c(A,B). Furthermore,

‖PBx− PA∩Bx‖ = ‖PB(x− PA∩Bx)‖ = ‖PBP(A∩B)⊥x‖,



78 4 Relaxed Douglas-Rachford

implying that ‖(PB − PA∩B)‖ ≤ 1. Applying both result on (4.28) yields

‖T λA,Bx− PFix TλA,B
x‖ ≤ λc(A,B) ‖x‖+ (1− λ) ‖x‖ ,

which proves that

‖T λA,B − PFix TλA,B
‖ ≤ λc(A,B) + (1− λ). (4.29)

On the other hand,

T λA,Bx− PFix TλA,B
x

= λ(PAPBx+ PA⊥PB⊥x) + (1− λ)PBx− PA∩Bx
= λ(PAPBx+ PA⊥PB⊥x) + (1− λ)(PAPBx+ PA⊥PBx)− PA∩Bx
= λPAPBx+ (1− λ)PAPBx− PA∩Bx+ λPA⊥PB⊥x+ (1− λ)PA⊥PBx
= PAPBx− PA∩Bx︸ ︷︷ ︸

∈A

+λPA⊥PB⊥x+ (1− λ)PA⊥PBx︸ ︷︷ ︸
∈A⊥

.

Using Lemma 4.7.11(i), this implies that

‖T λA,Bx− PFix TλA,B
x‖2 = ‖PAPBx− PA∩Bx‖2 + ‖λPA⊥PB⊥x+ (1− λ)PA⊥PBx‖2

≥ ‖PAPBx− PA∩Bx‖2

From which we deduce

‖T λA,Bx− PFix TλA,B
‖ ≥ ‖PAPB − PA∩B‖ = c(A,B), (4.30)

by using Lemma 4.7.11(iv). Combining (4.30) and (4.29) yields

c(A,B) ≤ ‖T λA,B − PFix TλA,B
‖ ≤ λc(A,B) + (1− λ). (4.31)

Using (4.31), we deduce by [20, Lemma 3.14(1)]

‖T λA,Bx− PFix TλA,B
x‖ ≤ (λc(A,B) + (1− λ)) ‖x− PFix TλA,B

x‖,

for all x ∈ E , which concludes the proof.

Corollary 4.7.13 (linear convergence of T λA,B with A+B = E). Let A,B ⊂ Euclid

be subspaces,then
(
T λA,B

)n
x → PA∩Bx. If A + B = E, then convergence is at least

Q-linear with rate λc(A,B) + (1− λ) < 1.

Proof. By [15, Corollary 5.16 and Proposition 5.27], we deduce
(
T λA,B

)n
x→ PA∩Bx

since A,B are subspaces, which implies that T λA,B is linear, and T λA,B is nonexpansive
by Theorem 4.1.2 and Lemma 4.7.1. T λA,B is firmly nonexpansive, which we deduce
by Proposition 3.3.12(ii), since A,B are convex and thus ε = 0. Since A+ B = E ,
we can apply Theorem 4.7.12 and get by Lemma 4.7.11(v) Q-linear convergence
with rate λc(A,B) + (1− λ) since c(A,B) < 1.
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Remark 4.7.14 (improved convergence rate for subspaces). By comparing the re-
sults in Corollary 4.7.3 and Corollary 4.7.13, we deduce that the rate

λc(A,B) + (1− λ)

estimated in the special case of two subspaces A and B such that A + B = E is
always better than the expression√

1− λ2

2 + λ2

2 c(A,B)

regardless of the choice of the parameter λ ∈ (0, 1). Thus, we expect in the special
case of two intersecting subspaces A and B with A+ B = E that the convergence
rate is not worse than λc(A,B) + (1− λ). According to a study by Bauschke et
al. [19], the Douglas-Rachford method on subspaces converges linear with rate
not worse than c(A,B). Considering the relaxed Douglas-Rachford method as a
convex relaxation between Douglas-Rachford and some projection (‖PB‖ ≤ 1 for a
subspace B), the result in Corollary 4.7.13 is not surprising. Moreover, Bauschke et
al. are not restricted to a setting with A+B = E . They also do their convergence
analysis in a Hilbert space instead of a finite-dimensional Euclidean space. We
decided to stay finite-dimensional to be consistent with the chapters before. Note
that Corollary 4.7.13 and its auxiliary results are also true in Hilbert spaces with
appropriate changes, such as A+B being closed for two closed subspaces. In Hilbert
space, we either have to require one of the subspaces to be finite-dimensional, or
A+B = E (compare this to [51, Lemma 9.36] and [19, Fact 2.3]).

Example 4.7.15 (two lines in the Euclidean plane R2). We close this section with
a small example illustrating our result in Corollary 4.7.13. In fact we consider two
lines in R2, namely,

B = R× {0}
and A = Rθ(B),

where Rθ is the (counter-clockwise) rotator defined by

Rθ :=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (∀ θ ∈ (0, π/2]).

Then, by following [19, Section 5],

A ∩B = {0} and c(A,B) = cos(θ),

as well as

PB =
(

1 0
0 0

)
, PA =

(
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

)

and
1
2 (RARB + Id) = cos(θ)Rθ.
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AA ∩B = {(0, 0)}

B for θ2 = π/4

B for θ1 = π/8

θ1

θ2

Figure 4.12: Illustration of the sets A and B in Example 4.7.15.

We thus deduce

T λA,B = λ cos(θ)Rθ + (1− λ)
(

1 0
0 0

)
,

and expect a convergence rate at least λ cos(θ) + (1 − λ) by Corollary 4.7.13. To
calculate

‖T λA,B − PA∩B‖ = ‖T λA,B‖,
we take z = (x, y) ∈ R2 with ‖z‖ = 1. Then,

‖T λA,Bz‖2

=
∥∥∥∥∥λ cos(θ)Rθz + (1− λ)

(
1 0
0 0

)
z

∥∥∥∥∥
2

=
∥∥∥∥∥λ cos(θ)

(
cos(θ)x − sin(θ)y
sin(θ)x cos(θ)y

)
+ (1− λ)

(
x
0

)∥∥∥∥∥
2

= (λ cos(θ) (cos(θ)x− sin(θ)y) + (1− λ)x)2 + (λ cos(θ) (sin(θ)x+ cos(θ)y))2

= λ2 cos2(θ)
(
cos2(θ)x2 + sin2(θ)y2

)
+ (1− λ)2x2

+ 2λ(1− λ)x cos(θ) (cos(θ)x− sin(θ)y) + λ2 cos2(θ)
(
sin2(θ)x2 + cos2(θ)y2

)
+ 2λ2 cos3(θ) sin(θ)xy

= λ2 cos2(θ) + (1− λ)2x2 + 2λ(1− λ)x cos(θ) (cos(θ)x− sin(θ)y)
+ 2λ2 cos3(θ) sin(θ)xy,

since sin2 + cos2 = 1 and x2 + y2 = ‖z‖2 = 1. By θ ∈ (0, π, 2], we deduce that both
sin(θ) ≥ 0 and cos(θ) ≥ 0. Thus, ‖T λA,Bz‖2 takes it largest value when we eliminate
the only negative term in the expression. Hence, y = 0 and x = 1, which yields

‖T λA,B‖2 =λ2 cos2(θ) + (1− λ)2 + 2λ(1− λ) cos2(θ),

and therefore,

‖T λA,B‖ =
√
λ2 cos2(θ) + (1− λ)2 + 2λ(1− λ) cos2(θ).
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This result is in line with Corollary 4.7.13, since the convergence rate, as indicated
by [20, Lemma 3.14(1)] and used in the proof of Theorem 4.7.12, is described by

‖T λA,Bx− PFix TλA,B
x‖ ≤‖T λA,B − PFix TλA,B

‖‖x− PFix TλA,B
x‖

=‖T λA,B‖‖x− PFix TλA,B
x‖,

for all x ∈ E .





CHAPTER 5

Cyclic Relaxed Douglas-Rachford

The relaxed Douglas-Rachford method is limited to 2-set feasibility. As soon as
more than two sets are involved, a different approach is needed. One way to do so
is Pierra’s product space trick presented in Section 2.3. By lifting the original sets
to a product space, the m-set feasibility problem is reduced to a 2-set feasibility
problem. Nevertheless, this approach has its drawbacks such as the increased
dimension as discussed in Section 2.3. A different idea is to cyclically compose
m mappings that act individually on one or two sets. A simple example for this
approach is the method of cyclic projections, a more sophisticated one is the method
of cyclic Douglas-Rachford by Borwein and Tam (see for instance [32, 33]). This
section analyzes the cyclic relaxed Douglas-Rachford as defined in Algorithm 2.3.6.
That is, given some point x0 ∈ E , a parameter λ ∈ (0, 1) and a finite collection
of sets {Ω0,Ω1, . . . ,Ωm}, we define the relaxed Douglas-Rachford operator for two
convex sets Ωj, Ωi for i, j ∈ {1, 2, . . . ,m} similar as in Algorithm 2.3.5 to be

T λi,j := T λΩi,Ωj = λ

2
(
RΩjRΩi + Id

)
+ (1− λ)PΩi . (5.1)

The cyclic relaxed Douglas-Rachford operator is then defined by

T λ[1...m] := T λm,1 ◦ · · · ◦ T λ2,3 ◦ T λ1,2. (5.2)

The cyclic relaxed Douglas-Rachford method generates a sequence (xk)k∈N satisfy-
ing xk+1 ∈ T λ[1...m]x

k. This method was introduced in [103] by Luke, Sabach and
Teboulle. The authors discussed the algorithm only in the context of a numerical
comparison to other projection methods indicating a good numerical performance
of it, and did not present a detailed theoretical discussion, as we aim to give here.
For λ = 0, the method of cyclic relaxed Douglas-Rachford coincides with the cyclic
Douglas-Rachford algorithm. If λ = 1, the algorithm simplifies to cyclic projec-
tions. We study the general convergence behavior of T λ[1...m] in Section 5.1 and
establish an explicit description of its fixed points for the case of 2 closed and con-
vex sets in Section 5.2. Preliminary results for the analysis of the fixed points of the
m-set cyclic relaxed Douglas-Rachford method (m ≥ 2) for inconsistent feasibility
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on subspaces are presented in Section 5.3. Note that although the analysis in the
subsequent sections was made in a Euclidean space E , the results used and state-
ments shown are not restricted to finite dimensions. Hence, the complete chapter
Chapter 5 can be read as if we work on a, possibly infinite dimensional, Hilbert
space H. In this case we have to take care of distinguishing between weak and
strong convergence. We decided to be consistent with the previous chapters, and
keep E as the working space.

Parts of the subsequent chapter have its origins in discussions and joint work with
Matthew K. Tam or are published in the paper [102] by Luke, Tam and the present
author.

5.1. General Convergence Analysis

When analyzing convergence of an iterative method defined by some mapping,
the classical statements rely on the corresponding fixed point set (see also The-
orem 3.2.1). The same is true for compositions of operators. Given that the
composition has a nonempty fixed point set, we only have to ensure that the indi-
vidual operators are averaged to obtain convergence. The following theorem was
originally formulated for Hilbert spaces and guarantees weak convergence. Since
strong and weak convergence coincide in Euclidean spaces, we get the following
version.

Theorem 5.1.1 ([15, Theorem 5.22]). Let α1, α2, . . . , αm be real numbers in (0,1).
Suppose T1, T2, . . . , Tm are nonexpansive operators, such that each Ti is αi-averaged
for i ∈ {1, 2, . . . ,m}, and Fix (T1T2 · · ·Tm) 6= ∅. Let x0 ∈ E and set

(∀n ∈ N) xn+1 = Tm · · ·T1x
n.

Then xn − (Tm · · ·T1)xn → 0 and there exists points

y1 ∈ Fix (Tm · · ·T1) , y2 ∈ Fix (T1Tm · · ·T2) , · · · , ym ∈ Fix (Tm−1 . . . T1Tm) ,

such that

xn → y1 = Tmym,

T1x
n → y2 = T1y1,

T2T1x
n → y3 = T2y2,

...
Tm−2 . . . T1x

n → ym−1 = Tm−2ym−2,

Tm−1Tm−2 . . . T1x
n → ym = Tm−1ym−1.

As shown next, the operator we focus on is averaged since it is a composition of
firmly nonexpansive operators if the sets are closed and convex.
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Lemma 5.1.2. Let C1, C2 . . . , Cm be closed convex sets in E. Then T λi,i+1 is firmly
nonexpansive and T λ[1...m] is m

m+1-averaged.

Proof. We start proving that each Ti,i+1 is firmly nonexpansive. By Remark 3.3.13,
we know that reflections are nonexpansive, which implies that 1

2 (Ri+1Ri + Id) is
firmly nonexpansive by Proposition 3.1.7. Since the projection onto closed convex
sets is firmly nonexpansive (see Remark 3.3.13) and the convex combination of
firmly nonexpansive operators is again firmly nonexpansive (see Proposition 3.1.7),
we get that each T λi,i+1 is firmly nonexpansive. The averagedness of T λ[1,2,...,m] is
an application of Combettes and Yamada’s result on compositions of averaged
operators in [47]. By [47, Proposition 2.5] T λ[1...m] is averaged with constant

1
1 + 1∑m

i=1
1/2

1−1/2

= 1
1 + 1

m

= m

m+ 1 ,

which proves the claim.

Applying Theorem 5.1.1, we get that, if Fix T λ[1,2,...,m] 6= ∅, then the cyclic relaxed
Douglas-Rachford method converges. The question of convergence thus reduces to
a question about the fixed point set.

Proposition 5.1.3. Let λ ∈ (0, 1) and let C1, C2, . . . , Cm be closed convex subsets
of E with ∩mi=1Ci 6= ∅. Then

Fix T λ[1...m] = ∩mi=1Ci.

Proof. Applying Corollary 4.2.6, we deduce

∩mi=1 Fix T λi,i+1 = ∩mi=1 (Ci ∩ Ci+1) = ∩mi=1Ci 6= ∅,

where T λm,m+1 := T λm,1 and Cm+1 := C1. Using [15, Corollary 4.37], yields

Fix T λ[1...m] = ∩mi=1 Fix T λi,i+1,

since by Lemma 5.1.2 T λi,i+1 is averaged for each k = 1, 2, . . . ,m, which concludes
the proof.

Using Proposition 5.1.3, convergence to a point in the intersection ∩mi=1Ci is guar-
anteed if the intersection is nonempty.

Corollary 5.1.4. Let C1, C2, . . . , Cm ⊂ E be closed and convex and their intersec-
tion nonempty, i.e. ∩mi=1Ci 6= ∅. Then, for any starting point x0 ∈ E, the sequence
defined by

xk+1 = T λ[1...m]x
k (∀n ∈ N)

converges to a point x such that

x ∈ C = ∩mi=1Ci,

. If the E is a Hilbert space we get additionally that (xk − xk+1)k∈N converges to 0.
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Proof. Combining Lemma 5.1.2 and Proposition 5.1.3, we deduce that T λi,i+1 is an
averaged mapping with ∩mi=1 Fix T λi,i+1 = ∩mi=1Ci 6= ∅. The result thus follows as an
application from [15, Proposition 5.15].

Remark 5.1.5. Note that the only assumptions in Theorem 5.1.1 were averagedness
of the mappings Ti and nonemptyness of the fixed point set. Hence, a similar
analysis can be made for other cyclic variants of the (relaxed) Douglas-Rachford
method. In [33], this was shown for the cyclic Douglas-Rachford algorithm by
Borwein and Tam. Bauschke, Noll and Phan [25] used this idea to analyze the
cyclically anchored Douglas-Rachford algorithm (CADRA).

When the intersection of the sets Ci is empty, i.e. ∩mi=1 = ∅, the situation is more
delicate. Unfortunately, this case is common in a lot of applications. Therefore,
the next section is dedicated to the analysis of the fixed points of T[1,2,...,m] in a,
possibly, inconsistent setting.
Remark 5.1.6 (local convergence analysis). As mentioned in [103], we believe that
a local convergence analysis is possible using the framework given in [105]. We
used this idea before, in Chapter 4, to prove local linear convergence of the relaxed
Douglas-Rachford method. As seen there, the actual proof of convergence, in con-
trast to the framework, can be quite tricky and may needs auxiliary sets to show
the behavior of the involved sequence. Therefore, we omit a proof for the cyclic
relaxed Douglas-Rachford method using the same strategy as in Chapter 4 here.

5.2. Fixed Points for Two Convex Sets

In order to analyze the convergence behavior of the cyclic relaxed Douglas-Rachford
method, we rely on a description of the fixed points of the original algorithm. To
do so, we recall the definition of the set E (respectively F ), which denotes the
points in A (respectively B) that are closest to B (respectively A) as introduced
in (4.8). Moreover,

g := PB−A(0)

stands for the displacement vector (or gap), between the sets A and B as introduced
in Section 4.2. Furthermore, recall Corollary 4.2.6 about the fixed points of relaxed
Douglas-Rachford for convex sets.

Corollary 4.2.6 (fixed points for closed convex sets [97, Theorem 2.2]). Let A and
B be two closed convex subsets of E and λ ∈ (0, 1). Then

Fix T λA,B = F − λ

1− λg.

In particular, if A ∩B 6= ∅, then Fix T λA,B = A ∩B.
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A

B
x

(a) Two intersecting lines.

A B

x

(b) Two nonintersecting balls.

Figure 5.1: Illustration of cyclic relaxed DR (λ = 0.4) applied to two affine sets
A = R × {0} and B = {x ∈ R2 |x1 = x2} and applied to two balls
A = {x ∈ R2 |x2

1 + x2
2 ≤ 1} and B = {x ∈ R2 | (x2

1 − 4) + x2 ≤ 4} with
initial point x = (1, 2) ∈ R2 showing 4 iterations each. Each arrow
represents a 2-set relaxed Douglas-Rachford iteration.

The subsequent sections take a closer look at the fixed points of the cyclic relaxed
Douglas-Rachford method in the 2-set case and the many-set case. Different state-
ments can be made by restricting the properties of the involved sets. To develop
an intuition for the behavior of the cyclic relaxed Douglas-Rachford method and
its fixed points, we begin our analysis with the simplest representative case. In
particular, we consider 2 closed convex sets A,B ⊂ E , with possibly empty inter-
section. For two sets A and B, the corresponding cyclic relaxed Douglas-Rachford
method becomes

T λ[A B] := T λB,AT
λ
A,B

=
(
λ

2 (RARB + Id) + (1− λ)PB
)(

λ

2 (RBRA + Id) + (1− λ)PA
)
,

where λ ∈ (0, 1). Even in the 2-set case the cyclic version does not coincide
with the classical relaxed Douglas-Rachford because of the sequential definition.
As was the case in Corollary 4.2.6 the displacement vector between the sets A
and B is of great importance for the description of the fixed points of the cyclic
relaxed Douglas-Rachford method. In fact, we show that the fixed points of the
cyclic relaxed Douglas-Rachford algorithm are points in A shifted by some scaled
displacement vector g. For the proof, we require the following preliminary results.

Proposition 5.2.1 (Geometry of two sets). The following assertions hold.

(i) ‖g‖ = d(A,B), and E + g = F .

(ii) E = Fix (PAPB) = A ∩ (B − g), and F = Fix (PBPA) = B ∩ (A+ g).

(iii) Let γ > 0. Then
PBe = PF e = e+ γg (∀e ∈ E),
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and
PAf = PEf = f − γg (∀f ∈ F ).

Proof. (i) and (ii). See for instance [11, Fact 1.1(i)–(ii)].

(iii). We only prove the first equality (the proof of the second is performed simi-
larly). Let λ > 0 and e ∈ E. By [11, Fact 1.1(iii)], we have PBe = PF e = e + g.
Thus, for any f ∈ F , the characterization of PF provided by Proposition 2.2.1(ii)
yields

〈(e+ γg)− PF e, f − PF e〉 = 〈(e+ g)− PF e, f − PF e〉
+ (1− γ) 〈−g, f − PF e〉

= 〈(e+ g)− PF e, f − PF e〉
+ (1− γ) 〈e− PF e, f − PF e〉
≤ 0 + (1− γ)0 = 0.

This shows that PF (e+ γg) = PF e, from which the result follows.

Lemma 5.2.2. Suppose E 6= ∅ and λ ∈ (0, 1). Then E + 1−λ
1+λg ⊆ Fix T λ[AB].

Proof. Fix e ∈ E, denote x := e + 1−λ
1+λg and denote f := e + g. Applying Propo-

sition 5.2.1(iii), yields f ∈ F , PAx = f and PB(f − γg) = f for all γ > 0. We
therefore deduce that

RAx = 2PBx− x = 2e−
(
e+ 1− λ

1 + λ
g

)

= e− 1− λ
1 + λ

g

= f − 2λ
1 + λ

g,

and hence that
PBRAx = PB

(
f − 2λ

1 + λ
g

)
= f. (5.3)

From this it follows that

y := T λA,Bx = λPBRAx+ λx+ (1− 2λ)PAx

= λf + λ

(
e+ 1− λ

1 + λ
g

)
+ (1− 2λ)e

= λf + λ

(
f − g + 1− λ

1 + λ
g

)
+ (1− 2λ)(f − g)

= f − 1− λ
1 + λ

g.
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An analogous argument with reversed roles of A and B yields

T λB,Ay = e+ 1− λ
1 + λ

g = x.

Altogether, this shows that T λ[A B]x = x, from which the claim follows.

Lemma 5.2.3. Suppose E 6= ∅ and λ ∈ (0, 1). Let x ∈ Fix T λ[A B] and denote
y := T λA,Bx. Then

x− y = 1− 3λ
1 + λ

g.

Proof. Take e ∈ E, set x′ := e + 1−λ
1+λg ⊆ Fix T λ[A B] and denote y′ = T λA,Bx

′. Since
T λA,B is firmly nonexpansive and T λB,A is nonexpansive, we deduce that

‖x− x′‖2 ≥‖(x− y)− (x′ − y′)‖2 + ‖y − y′‖2

≥‖(x− y)− (x′ − y′)‖2 + ‖x− x′‖2,

and ‖(x− y)− (x′− y′)‖ = 0. Applying Proposition 5.2.1 to x′ gives PAx′ = e and
arguing as in (5.3) gives PBRAx

′ − PAx′ = f − e = g. Altogether, we have

x− y = x′ − y′ = x′ − λ(x′ + PBRAx
′)− (1− 2λ)PAx′

= (1− λ)x′ − λ(PBRAx
′ − PAx′)− (1− λ)PAx′

= (1− λ)
(
e+ 1− λ

1 + λ
g

)
− λg − (1− λ)e

= 1− 3λ
1 + λ

g,

which proves the result.

Lemma 5.2.4. Suppose E 6= ∅ and λ ∈ (0, 1). Then Fix T λ[A B] ⊂ E + 1−λ
1+λg.

Proof. Let x ∈ Fix T λ[A B] and set y := T λA,Bx. Let e ∈ E, set x′ := e + 1−λ
1+λg and

y′ := T λA,Bx. Then by Proposition 5.2.1(iii) and Lemma 5.2.2, we have e := PAx
′

and x′ ∈ Fix T λ[AB]. Now, on one hand, since T λA,B and T λB,A are nonexpansive, we
deduce that

‖x− x′‖ ≤ ‖T λA,Bx− T λA,Bx′‖ ≤ ‖x− x′‖ =⇒ ‖x− x′‖ = ‖y − y′‖.

On the other hand, convexity of ‖ · ‖2 and firm nonexpansivity of PA give

‖y − y′‖2 = ‖λ(TA,Bx− TA,Bx′) + (1− λ)(PAx− PAx′)‖2

≤ λ‖TA,Bx− TA,Bx′‖2 + (1− λ)‖PAx− PAx′‖2

≤ λ‖x− x′‖2 + (1− λ)
[
‖x− x′‖2 − ‖(x− PAx)− (x′ − PAx′)‖2

]
= ‖x− x′‖2 − (1− λ)‖(x− PAx)− (x′ − PAx′)‖2.
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Altogether, we have ‖(x− PAx)− (x′ − PAx′)‖2 = 0 and hence

x = PAx+ x′ − PAx′ = PAx+ 1− λ
1 + λ

g. (5.4)

An anolguous argument gives

y = PBy + y′ − PBy′ = PBy −
1− λ
1 + λ

g.

Subtracting the last two equations and applying Lemma 5.2.3, we deduce

PBy − PAx = (y − x) + 2(1− λ)
1 + λ

g = 3λ− 1
1 + λ

g + 2(1− λ)
1 + λ

g = g.

That is to say, (PAx, PBy) attains the minimum distance between A and B and,
consequently, we have PAx = PEx (and PBy = PFy). Substituting this back into
(5.4) gives

x = PEx+ 1− λ
1 + λ

g ∈ E + 1− λ
1 + λ

g,

which proves the result.
Theorem 5.2.5. Suppose λ ∈ (0, 1) and assume E 6= ∅. Then

Fix T λ[A B] = E + 1− λ
1 + λ

g.

Proof. The result follows by combining Lemma 5.2.2 and Lemma 5.2.4.
Example 5.2.6. To illustrate Fix T λ[A B], we consider again the sets presented in
Example 4.2.5. Note that λ = 0.4. By Theorem 5.2.5 and the definitions in
Example 4.2.5, the fixed point sets turn into Fix T λ[A B] = (1.6, 0) × R as shown
in Fig. 5.2a, Fix T λ[A B] = (1.6, 0) for the second example as in Fig. 5.2b and
Fix T λ[A B] = (1, 0) = A ∩B for the last case shown in Fig. 5.2c.

A B

Fix T λ[A B]

(a) Two nonintersecting
sets.

A B
Fix T λ[A B]

(b) Two nonintersecting
balls.

A B

Fix T λ[A B]

(c) Two intersecting
balls.

Figure 5.2: Illustration of Fix T λ[A B] for two closed convex sets A and B (λ = 0.4).

Remark 5.2.7. Note that Theorem 5.2.5 assumes that the set of nearest points
in A to B, that is E, has to be nonempty. We conjecture that, if E = ∅ no
fixed points of T λ[A B] exist and expect that a similar dichotomy analysis can be
made for the cyclic relaxed Douglas-Rachford method on two sets as for the cyclic
Douglas-Rachford method in [32] by Borwein and Tam and for the method of cyclic
projections in [13, Theorem 5.2.1.].



5.3 Fixed Points for m Subspaces 91

5.3. Fixed Points for m Subspaces

In the section above, we were able to characterize the fixed point set of the cyclic
relaxed Douglas-Rachford method on 2 closed convex sets A and B explicitly.
The consistent m-set case was studied in Proposition 5.1.3. The inconsistent case
remains open. While it is hard to investigate the general setting of closed sets,
we are able to make some statements on (linear) subspaces. Although this is a
restriction, it is nevertheless a first step to prove results on the set of fixed points
in the inconsistent setting for general sets. To this end, we analyze difference
vectors. Similar to the definition of the difference vectors in Section 4.3, we set for
y ∈ E

x0 := y and xi+1 := Ti,i+1xi ∀i ∈ {0, . . . ,m− 1} (5.5)

Then di := xi − xi+1 for i ∈ {1, . . . ,m} are referred to as difference vectors,
{xi}i∈{1,...,m} is called the corresponding cycle of inner iterations of the point y.
Note that, in contrast to Chapter 4, the different vectors used here are elements of
E instead of E4. Despite this conceptual difference, we decided to call both objects
difference vectors.

Lemma 5.3.1. Let the sets {Ω1, . . . ,Ωm} ⊂ E be subspaces. Then

Pi+1xi+1 = Pi+1Pixi (∀i ∈ {0, 1, . . . ,m− 1}).

Proof. We begin computing Pi+1xi+1 by using the definition of xi+1.

Pi+1xi+1 = Pi+1
(
T λi,i+1xi

)
= Pi+1 (λ (Pi+1Rixi + xi) + (1− 2λ)Pixi)
= λPi+1Rixi + λPi+1xi + (1− 2λ)Pi+1Pixi,

since a projector onto a (linear) subspace is linear by Proposition 2.2.4. Using
Proposition 2.2.4 a second time and applying the definition of the reflector yields

Pi+1xi+1 = Pi+1
(
T λi,i+1xi

)
= λPi+1 (2Pixi − xi) + λPi+1xi + (1− 2λ)Pi+1Pixi

= 2λPi+1Pixi − λPi+1xi + λPi+1xi + (1− 2λ)Pi+1Pixi

= Pi+1Pixi,

which completes the proof.

Remark 5.3.2. From Lemma 5.3.1, we deduce that the projection of the inner
iterations onto the corresponding sets yield the cycle of inner iterations of the fixed
points for λ = 0, i.e. the fixed points and its inner iterations of the corresponding
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cyclic projections mapping PmPm−1 · · ·P1. In particular, using Lemma 5.3.1, we
obtain

Pmy = PmPm−1xm−1

= PmPm−1Pm−1xm−2

= · · · = PmPm−1 · · ·P1x1 = PmPm−1 · · ·P1Pmy,

for y and x1, x2, . . . , xm−1 defined as in (5.5).

Lemma 5.3.3. Let the sets {Ω1, . . . ,Ωm} be subspaces. Fix λ ∈ (0, 1) and take y ∈
Fix T λ[1...m] and denote the corresponding cycle of inner iterations by {xi}i∈{1,...,m}.
Then, for any choice of the relaxation parameter λ, the fixed points lie on the line

{tPmxm−1 + (1− t)P1Pmxm−1 | t ∈ Rn} .

Similarly, the corresponding inner iterations xm−1, xm−2, . . . , x1 lie on the lines

{tPm−1xm−2 + (1− t)PmPm−1xm−2 | t ∈ Rn}
{tPm−2xm−3 + (1− t)Pm−1Pm−2xm−3 | t ∈ Rn}

...
{tP1y + (1− t)P2P1y | ∈ Rn} .

Proof. Fix λ ∈ (0, 1) and let λ̃ ∈ (0, 1) be a relaxation parameter different than λ.
Let ỹ ∈ Fix T λ̃[1...m] and {x̃i}i∈{1,...,m} the corresponding inner iterations to λ̃. Then

ỹ = λ̃ (P1Rmxm−1) +
(
1− 2λ̃

)
Pmx̃m−1

and P1ỹ = P1Pmx̃m−1,

as before. From Remark 5.3.2, we get that the projection of ỹ coincides with the
fixed point of cyclic projections. But this is also true for P1y. Therefore,

P1ỹ = P1y, and similarly P1y = P1Pmxm−1

which implies

P1ỹ = P1Pmxm−1

Thus, it remains to show that the normal cone at P1ỹ of the set C1 can be identified
with

{tPmxm−1 − tP1Pmxm−1 | t ∈ Rn} .
To this end, note that

NC1 (P1Pmxm−1) = cone
(
P−1

1 (P1Pmxm−1)− P1Pmxm−1
)
,

since C1 is a subspace and thus convex. Moreover,

Pmxm−1 ∈ P−1
1 (P1Pmxm−1) .
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By Proposition 2.2.4, the projector onto a (linear) subspace is a linear operator.
Thus, we deduce

tPmxm−1 ∈ P−1
1 (P1Pmxm−1) .

for t ∈ R. By the same argument, one can show by contradiction that these are
the only points on P−1

1 (P1Pmxm−1). This implies

NC1 (P1Pmxm−1) = {tPmxm−1 − tP1Pmxm−1 | t ∈ Rn} .

Translating the normal cone to P1Pmxm−1 yields the claimed result for y. The
claim for xm−1 to x1 can be proven by the same strategy.

Figure 5.3: Cyclic relaxed DR (λ = 0.4) applied to three lines in R2. Shown are
the iterations and the fixed points for cyclic projections (A, B, C)
for some initial point x0. Each green line represents a 2-set relaxed
Douglas-Rachford iteration.

Remark 5.3.4. We conjecture that this statement can be further refined. Assum-
ing that the method of cyclic projections has fixed points, we believe that a fixed
point of T λ[1···m] for closed and convex sets C1, C2, . . . , Cm and its inner iterations
lie in the convex combination of a corresponding fixed point of the cyclic projec-
tions algorithm and its inner iterations. Evidence for this conjecture is provided
by experiments made using interactive geometry applets in Cinderella as shown in
Fig. 5.3 and Fig. 5.4. On the other hand, similar results on the existence of fixed
points are shown for the cyclic Douglas-Rachford method in [32]. Borwein and Tam
identified the fixed points of the cyclic Douglas-Rachford algorithm with the fixed
points of a cyclic projections scheme. Since the cyclic Douglas-Rachford method is
an extreme case of its relaxed version, it is reasonable that the existence of fixed
points of the cyclic relaxed Douglas-Rachford method depends on the fixed points
of cyclic projections as well. Unfortunately, the fixed points of cyclic projections
lack a description of their fixed points for more than 2 sets. Baillon, Combettes
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and Cominetti showed that, in general, there does not exists a variational char-
acterisation of these cycles (as for example in the 2-set case) [7]. Thus, even if
our conjecture regarding fixed points of cyclic relaxed Douglas-Rachford is true,
we still rely on the assumption that there exist fixed points of the cyclic projection
method.

Figure 5.4: Cyclic relaxed DR (λ = 0.4) applied to three balls in R2. Shown are
the iterations and the fixed points for cyclic projections (D, E, F )
for some initial point x0. Each green line represents a 2-set relaxed
Douglas-Rachford iteration.



CHAPTER 6

Phase Retrieval

The phase retrieval problem is known in physics for decades1. In mathematics this
problem got the scientists interest in the 1950s and since than has been a problem
that produced a considerable amount of findings in various fields of mathematics.
Physicists invented a diverse range of algorithms with a striking good performance
to solve this problem, but couldn’t explain theoretically why the performance is that
good, whereas mathematicians tried to find an explanation and came up with more
algorithmic ideas to create (theoretically) even better results. Acknowledging that
both areas of research have produced a wide range of results, we focus here on the
most prominent algorithms like the error reduction algorithm or Fienup’s hybrid
input output method (HIO). These algorithms, and almost all other frequently
applied methods to solve the phase retrieval problem, fit into the framework of
iterative projection algorithms as introduced in Section 2.3. That is, to remind the
reader, given some (set-valued) mapping T : E ⇒ E composed of projectors, the
iterative algorithm defines a sequence (xk)k∈N by

xk+1 ∈ Txk (∀k ∈ N). (6.1)

Algorithms used to solve the phase retrieval problem generate sequences of points
that, as one hopes, deliver an adequate solution to the problem. Given such a
sequence, convergence of it to a fixed point of T is desired. Physically the conver-
gence of the sequence (xk)k∈N to a point x [...means that the energy of the residual
signal ‖xk − x‖2 becomes arbitrarily small as k increases...] [16].

Solving the phase retrieval problem with a projection method, the mapping T has
to suit the physical setup of the underlying experiment. Additionally, to deduce
convergence of the sequence (xk)k∈N, one has to assure that regularity conditions,
as discussed in Chapter 3, are satisfied. We focus here on treating the physical
constraints as well as the convergence analysis of the algorithms theoretically. In
other words, we treat the question, what results the experimenter can expect from
its numerical data.

1One of the first references is a letter of Lord Rayleigh to A.Michelson [116].
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The phase retrieval problem consists in reconstructing an object given only the
magnitude of the object under some transformation. Thus, the solution and the
given measurements usually are elements in different spaces, but they are connected
by some transformation that represents the experimental setup. Moreover, one is
often given some a priori information that includes, for example, knowledge about
the support or the values of the object. Common qualitative constraints, besides a
support constraint, are sparsity, amplitude constraints, or nonnegativity. All this
information can be represented in constraint sets, each information in an individual
one. Seeking a solution to the phase retrieval problem is then nothing more but
finding a solution that satisfies all the constraints. Mathematically this fits into
the framework of feasibility problems.

A survey on the most prominent algorithms for the phase retrieval problem, in the
context of feasibility problems, was, for instance, done by Bauschke et al. in 2002
[16] and by Marchesini in 2007 [106]. It appears that most of the algorithms relate
to a mapping T that consists of proximal operators as defined in (2.13). Although
their description is essential to understand the problem in the context of proximal
mappings, the convergence analysis given, lacks nonconvexity. A property that is
often present in real-life applications—such as in the phase retrieval problem. The
set of measurements is highly nonconvex, as we discuss in Section 6.3, and can thus
lead to ambiguities of related projections and local minima of algorithms. Following
the framework introduced by Luke, Thao and Tam in [105], we gave a proof for
local R-linear convergence of the relaxed Douglas-Rachford method for nonconvex
feasibility problems (see Chapter 4). Their strategy to prove convergence included
two essential properties. On the one hand the regularity of the sets themselves,
and on the other hand a regularity notion of the collection of all involved sets.
The better the regularities of the sets and their collection, the better the (local)
convergence results. Following the ideas of [16], [106] and [105], our aim here is
to carry out a nonconvex convergence analysis of projection based algorithms to
solve the phase retrieval problem. This is not only showing that a lot of the well-
known algorithms fit into a certain framework, but also, that we can provide a local
convergence analysis of these. The most popular class of phase retrieval algorithms
are projection methods. Nonetheless, there are numerous ways to investigate or
solve the phase retrieval problem. Other approaches consist in using semidefinite
programming and suitable relaxations (see for instance [36–38,125]), sparsity-based
algorithms (see [26, 95]), Wirtinger Flow algorithms (see for instance [42]) and
many others. For more references the reader is referred to the following surveys
[82,99,106,120].

6.1. Phase Retrieval as a Feasibility Problem

The phase retrieval problem consists in reconstructing a complex valued object in a
plane (the object plane) from measurements of its amplitude under a unitary map-
ping in a plane somewhere downstream from the object plane (the image plane).
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Thus, the phase information of the measurements is missing. This problem is of
great importance in various areas in physics and engineering, such as electron mi-
croscopy [57], astronomy [100], optical design and holography [65,85]. The problem
just described can be broadly separated into two classes—near field and far field
imaging. Near field imaging, as its name suggests, describes a setting where the
measurements are relatively close to the object plane. Whereas in far field imaging,
the measurements are relatively far from the object plane. Both settings lead to
different types of unitary mappings that are involved in the phase retrieval prob-
lem. In the near field setup it is the Fresnel propagator, in the far field the Fourier
transform. Fortunately, both of these mappings can be computed by coupling the
Fourier transform F with some unitary linear mapping P , that contains the phys-
ical details, such as magnification and translation. The image that is measured in
the experiment contains discrete data like the photons counted in the image plane.
Hence, the Fourier transform, which we denote by F , is discrete, i.e. F ∈ Cn×n.
In particular, let x = (x1, x2, . . . , xn) ∈ Cn, then Fx = z, where

zj := 1√
n

n−1∑
k=0

xk+1 exp(−i2π (j−1)k
n

) (∀j = 1, 2, . . . , n).

Thus, the underlying space we consider in this chapter is mostly Cn and F is
unitary.

Following Luke, Sabach and Teboulle in [103], the physical model of the measure-
ments can be described by

| (F · Pjz)k | = bkj, (∀j = 1, 2, . . . ,m)(∀k = 1, 2, . . . , n), (6.2)

where z ∈ Cn is the complex-valued vector, that we wish to find and m is the
number of measurements taken. The measurements are recorded in the bkj’s. One
image of n pixels is given by a vector bj ∈ Rn

+, where Rn
+ is the set of n-dimensional

real-valued vectors with nonnegative entries. Hence, bkj is the k-th pixel of the j-th
image, bj, taken. We choose Pj instead of P to describe experiments with different
settings in each of the actual measurements, as discussed for instance in [72, 100].
Again, all mappings Pj are unitary and linear.

We model this problem as a feasibility problem. That is, given a collection of sets
we want to find a point in the intersection of these, or, if this intersection is empty,
a point that is close to each of the sets, i.e. an approximation. Thus, we have to
formulate the phase retrieval problem with respect to sets. The most important
one is the set describing the measurements as in (6.2), which we denote by

Mj :=
{
z ∈ Cn

∣∣∣ | (F · Pjz)k | = bkj, ∀k = 1, 2, . . . , n
}
. (6.3)

Similarly, one can use the set

M ′
j := {z ∈ Cn | | (Fz)k | = bkj, ∀k = 1, 2, . . . , n} , (6.4)



98 6 Phase Retrieval

or

M̂ ′
j := {z ∈ Cn | |zk| = bkj, ∀k = 1, 2, . . . , n} . (6.5)

Note that the three sets are related to each other via the following identity

Mj = P∗jM ′
j = P∗jF∗M̂j (∀j = 1, 2, . . . ,m), (6.6)

where P∗j and F∗ denote the adjoints of Pj and F , respectively. Using (6.3),(6.4)
or (6.5) for the description of the measurement constraint however, depends on
ones personal choice. Since all three sets are related to each other using unitary
mappings, as seen in (6.6), there exists a unitary isomorphism between the three
different underlying spaces [103].

In addition to the measurement constraint, there are certain a priori known quali-
tative constraints that might be added, depending on the type of experiment. This
additional information about the model can be of various character. Common ex-
amples are the support of the object, real-valuedness, nonnegativity, sparsity or the
information about an amplitude. We refer to these sets by the following notation.

support constraint S := {y ∈ Cn | yi = 0 ∀i /∈ I} (6.7)
support and real-valued constraint Sr := {y ∈ Rn | yi = 0 ∀i /∈ I} (6.8)
support and nonnegative constraint S+ :=

{
y ∈ Rn

+

∣∣∣ yi = 0 ∀i /∈ I
}

(6.9)
amplitude constraint A := {y ∈ Cn | |yk| = ak, 1 ≤ k ≤ n}

(6.10)
sparsity constraint As := {y ∈ Rn | ‖x‖0 ≤ s} (6.11)

for a set of indices I ⊂ {1, 2, . . . , n}, a ∈ Rn nonnegative and s ∈ {1, 2, . . . , n}.

Using the introduced constraint sets, we can formulate the phase retrieval problem
by finding a point x ∈ Cn that satisfies two of the introduced sets. In particular,

find x ∈ ∩mj=1Mj ∩ O, (6.12)

whereO is one of the qualitative constraints in (6.7)-(6.11). We restrict our analysis
in this chapter to a 2-set feasibility problem. If one wants to include more than
one of the a priori assumptions specified in (6.7)-(6.11), they can be combined in
one set represented here by O.

The problem of recovering the phase from just measurements of the objects modulus
is impossible to solve uniquely. It is ill-posed. One ambiguity that arises is the shift
by a global phase. If a point x ∈ ∩mj=1Mj then exp(iφ)x for any φ ∈ R is also a
point in ∩mj=1Mj. To see this, note the following

(F · Pj(exp(iφ)x))k = exp(iφ) (F · Pj(x))k (∀k = 1, 2, . . . , ),

since both F and Pj are linear. But not only the lack of information contributes to
this property of the problem. When taking real problems, measurement errors and
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noisy data play a big role. Often the measurements indicate all different solutions
that do not coincide. A solution from the provided information is then only an
approximation to the actual object. Mathematically these characteristics translate
into an inconsistent feasibility problem. That is, the intersection of the involved
sets Mj and O is empty.

6.2. Projectors onto Constraint Sets

Since we want to analyze projection methods for the phase retrieval problem, this
section is devoted to the projectors onto the constraint sets introduced in Sec-
tion 6.1. The projector onto the measurements, Mj, as defined in (6.3), can be
described as follows.

Lemma 6.2.1 (projector onto measurement constraint). Let z ∈ Cn. Then the
following are equivalent for all j ∈ {1, 2, . . . ,m}:

y ∈ PMj
z ⇔ y = P∗jF∗ŷ, (6.13)

where the entries of ŷ are given by

ŷk ∈

bkj
(FPjz)k
|(FPjz)k|

, if (FPjz)k 6= 0
{bkj exp(iφ) |φ ∈ [0, 2π]} , if (FPjz)k = 0,

for all k ∈ {1, 2, . . . , n}.

Proof. See for example [16, Example 3.6].

The sets Mj are not convex. In the Fourier domain the set Mj can be seen coordi-
natewise as spheres in R2 when all other elements are fixed (see for instance [100]).
The projector of the origin onto Mj is multi-valued, and thus leads to infinitely
many phases. Thus, whenever yj = 0, any phase will be a solution. In practice
one avoids such ambiguities by selecting a specific phase like φ = 0, which leads to
zj = bj. Despite being nonconvex, the sets Mj are closed (see for instance [16, Ex-
ample 3.15]), and its projector is still easy to compute. We analyze the regularities
of the involved sets in more detail in Section 6.3. The projectors onto the con-
straint sets are even simpler to compute than the projector onto the measurement
constraint.

Lemma 6.2.2 (projectors onto object domain constraints). Let y ∈ Cn, I ⊂
{1, 2, . . . , n} be a finite index set and a ∈ Rn be nonnegative. Then the projector
onto the support constraint, the projector onto support and real-valued constraint
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and the projector onto the support and nonnegative constraint are, respectively,
given by

PSy =z where zj =

yj if j ∈ I
0 otherwise

for i = 1, 2, . . . , n,

(6.14)

PSry =z where zj =

Re(yj) if j ∈ I
0 otherwise

for i = 1, 2, . . . , n,

(6.15)

PS+y =z where zj =

max {Re(yj), 0} if j ∈ I
0 otherwise

for i = 1, 2, . . . , n.

(6.16)

The projector onto the amplitude constraint is given by

PAy =z, (6.17)

where

zj =

aj
yj
|yj | if zj 6= 0
{exp (iφ) aj |φ ∈ [0, 2π]} otherwise

for i = 1, 2, . . . , n.

Whereas the projector onto the sparsity constraint is given by

PAsy =

z ∈ Rn

∣∣∣∣∣∣ zi =

yi, j ∈ J,
0, j /∈ J,

 for some J ∈ Js(y), (6.18)

where

Js(y) :=
{
J ⊂ {1, 2, . . . , n}

∣∣∣∣ |J| = s,min
j∈J
|xj| ≥ max

j /∈J
|xj|

}
.

Proof. (6.14)-(6.17) is a specification of [16, Example 3.14]. (6.18) can be found,
for instance, in [76] or [122].

Except for the amplitude constraint and sparsity constraint all other presented
constraint sets are closed and convex. To see that the amplitude constraint is
nonconvex, take an element x ∈ A. Then −x ∈ A as well. Assuming that A
is convex, the convex combination 1

2x + 1
2 (−x) = 0 has to be an element of A

too, which is a contradiction. This serves as an explanation why the sets Mj are
nonconvex as well. The sparsity constraint is nonconvex as well. It is known to
be not prox-regular at all of its points. This and the type of regularity of the
constraint sets is later discussed in Remark 6.3.3.
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6.3. Regularities of Constraint Sets

The phase retrieval algorithms we will analyze in Section 6.4 and Section 6.5 are
projection methods. As discussed in Chapter 3 the regularities of sets have an
impact on the regularity of the corresponding projector and thus on the projection
method. Moreover, the regularity of the method influences the convergence behav-
ior of the sequence generated by the projection method. This section is, therefore,
devoted to set-regularities as in Section 3.3, but also to the regularities of sets
involved in the phase retrieval problem as introduced in Section 6.1.

In the phase retrieval problem one type of nonconvexity, that is also covered by
ε-subregularity, is prox-regularity.

Definition 6.3.1 (prox-regular sets). A closed set Ω is called prox-regular at x ∈ Ω
if for v ∈ NΩ(x) there exist ε, δ > 0 such that

ε

2 ‖x− c‖
2 ≥ 〈v, x− c〉 (∀x, c ∈ Ω ∩ Bδ(x))(∀v ∈ NΩ(c) ∩ Bδ(v)).

This definition dates back to Federer [62] who called the property sets with pos-
itive reach. The definition presented here is taken from [115, Proposition 1.2].
The authors in [115] showed that their definition of prox-regularity at x ∈ C is
equivalent to several statements. One of the most prominent might be local single-
valuedness of the projector [115, Theorem 1.3] around x. Kruger et al. showed
that prox-regularity implies ε-subregularity in [88, Proposition 4(vi)]. Moreover,
by Example 3.3.2(ii) it is easy to see that every convex set is also prox-regular.

Lemma 6.3.2 (prox-regularity implies super-regularity at a distance). Let Ω be
prox-regular at a point x ∈ Ω. Then Ω is super-regular at a distance at x relative
to Λ = E.

Proof. By [88, Proposition 4(vi)] Ω is super-regular at x. Applying Remark 3.3.7,
we deduce super regularity at a distance relative to Λ = E .

Note that, as explained in Remark 3.3.7, we cover more than just super-regularity
with the theory developed in Chapter 4. We need super regularity at a distance
to incorporate the fixed points that may not lie in any of the sets involved and
achieve a desired averagedness of the mapping (see for instance Proposition 3.3.12
and Theorem 4.2.3). As the next remark shows, all constraint sets involved in
the phase retrieval problem are, in fact, prox-regular, and thus super-regular at a
distance by Lemma 6.3.2.
Remark 6.3.3 (phase retrieval constraint sets are prox-regular, hence super-regular
at distance). Super-regularity at a distance of the measurement sets defined in
(6.3),(6.4) and (6.5) is of great importance for the convergence analysis of the
introduced algorithms. As noted in (6.6) all three sets are related by unitary
mappings to each other. Thus, all three sets in fact describe coordinatewise circles
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of different radius in R2 when all other elements are fixed as noted before for
Mj. By Example 3.3.10 a circle Ω in R2 is super-regular at a distance relative to
P−1

Ω (x) at any of its points x and hence, (6.3),(6.4) and (6.5) are super-regular at
a distance. As mentioned before ε-subregularity covers a divers range of regularity
notions for sets. The measurement sets investigated here are not only super-regular
at a distance. In fact they are shown to be semi-algebraic [77, Proposition 3.5] and
prox-regular by [115, Theorem 1.3] and the description of the projector given in
Lemma 6.2.1.

The other sets that are involved in the phase retrieval problem are the qualitative
constraints introduced in (6.7)-(6.11). Except for the amplitude constraint and the
sparsity constraint all of these sets are convex and thus by Proposition 3.3.9 super-
regular at distance relative to E . Fortunately, the amplitude constraint describes
a circle in each coordinate like the measurement constraint. Hence, the amplitude
constraint is super-regular at a distance as well (and additionally semi-algebraic and
prox-regular). The sparsity constraint As is prox-regular at all points x satisfying
‖x‖0 = s. This can be seen by a similar argument like in the proof of [122,
Proposition 4.4]).

6.4. Phase Retrieval Algorithms

Having a problem, one is seeking for a solution to solve it. Numerically we do
this by using algorithms, and here, in particular, projection algorithms. Among
these, the most prominent, and probably one of the easiest to compute, is the
method of alternating projections. Given a point, it generates the next iterate
by consecutively projecting onto each of the individual sets (see Algorithm 2.3.3
and Algorithm 2.3.2). Applying the alternating projection algorithm to the phase
retrieval problem one set, O, is identified with some of the additional constraint
sets defined in (6.7)-(6.10). The other set represents one of the measurements Mj.
If only one image is taken, i.e. m = 1, one can define the famous error reduction
algorithm via the method of alternating projections.

Algorithm 6.4.1 (error reduction). The error reduction algorithm produces the
same sequence of iterates as the method of alternating projections on the sets M1
and S. That is, given some x0 ∈ Cn generate the sequence (xk)k∈N by

xk+1 ∈ PSPM1x
k. (6.19)

The name of the algorithm goes back to Fienup [63–67], and preparatory work by
Gerchberg and Saxton and their Gerchberg-Saxton algorithm [69]. The Gerchberg-
Saxton algorithm was originally defined for retrieving the phase from two measure-
ments. The connection of error reduction to alternating projections was made by
Levi and Stark in [91]. Having again only a single measurement, we introduce the
prominent hybrid input output method by Fienup [66].
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Algorithm 6.4.2 (Fienup’s hybrid input output method (HIO)). Given some point
x0 ∈ Cn the HIO algorithm is defined by

xk+1
j ∈

PM1x
k
j if j ∈ I

xkj − PM1x
k
j otherwise.

(6.20)

Rewriting this yields

xk+1 ∈ (PS (2PM1 − Id) + (Id−PM1)) (xk),

which is in fact the Douglas-Rachford algorithm, defined in Algorithm 2.3.4, applied
to the sets M1 and S.

The connection of HIO and Douglas-Rachford was observed by Bauschke et al.
[16].

The main focus of the chapters above was on analyzing the relaxed Douglas-
Rachford method. This algorithm enjoys great popularity in application to the
phase retrieval problem (see for instance [9, 44,84,119] and many others).

Algorithm 6.4.3 (relaxed Douglas-Rachford applied to the phase retrieval prob-
lem). Given an initial point x0 ∈ E and a parameter λ ∈ (0, 1) the relaxed Douglas-
Rachford method applied to the phase retrieval problem generates the sequence
(xk)k∈N by

xk+1 ∈ T λO,M1x :=
⋃

b∈PM1x

{
λ
2 (RO(2b− x) + x) + (1− λ)b

}
. (6.21)

This method, in the physics community, is also known by the term Relaxed Averaged
Alternating Reflections, which was used by Luke in [97,98].
Remark 6.4.4. For the sake of completeness we want to mention other projec-
tion methods for solving the phase retrieval problem than the just introduced
algorithms. These are, for example, the Hybrid Projection Reflection algorithm
(HPR) [17], difference map [59], solvent flipping algorithm [1], and Fienup’s Ba-
sic Input-Output algorithm (BIO) which is, in fact, nothing more than Dykstra’s
algorithm, see [16].
Remark 6.4.5. In addition to the formulation as a feasibility problem, one can also
define the phase retrieval problem as an optimization problem as mentioned in
Remark 2.3.7. To see this, we square the equation in (6.2) and deduce

| (F · Pjz)k |
2 = b2

kj, (∀j = 1, 2, . . . ,m)(∀k = 1, 2, . . . , n).

A solution z to these equations minimizes each of the following squared distances

Fjkz :=
∥∥∥| (F · Pjz)k |

2 − b2
kj

∥∥∥2
, (∀j = 1, 2, . . . ,m)(∀k = 1, 2, . . . , n).
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Thus, a solution z to (6.2) is also a solution to the following minimization problem

minimize
z∈C0

Fz :=
∑

j∈{1,2,...,m}
k∈{1,2,...,n}

Fjkz. (6.22)

The reformulation as an optimization problem in (6.22), where we minimize a func-
tion over some domain, is commonly addressed by forward-backward procedures.
That is, given some initial point x0 define the sequence (xk)k∈N via

xk+1 = PM0

(
xk − λ∇F (xk)

)
, (6.23)

where λ is a nonnegative constant (see also Remark 2.3.7).

6.5. Convergence Results

In Chapter 4, we analyzed how to apply our basic convergence framework in The-
orem 3.2.6 on the method of relaxed Douglas-Rachford. This section is devoted
to the analysis of other algorithms, which we introduced in Section 6.4. While
the analysis in Chapter 4 was detailed and focused on the assumptions of Theo-
rem 3.2.6 in the context of set-feasibility, this section aims to present results to
provide a broad intuition of the convergence of projection based algorithms used
to solve the phase retrieval problem. This explains also, why the statements given
next are presented in a cartoon like manner. Their statements include only the
most important parts that yield local convergence. But not, how to construct it
nor at which rate. Nevertheless, these are verifiable by following the approach by
Luke, Tam and Thao in [105], which we used in Chapter 4 as a template for our
convergence result.

Corollary 6.5.1 (convergence of the error reduction algorithm). Let x be a fixed
point of the error reduction method. That is, x ∈ Fix PSPM1. Then, the error re-
duction algorithm, defined in Algorithm 6.4.1, converges locally linearly to a point
x̃ ∈ Fix PSPM1 whenever the mapping Φ = PSPM1 − Id is locally metrically subreg-
ular at its zeros.

Proof. Following Burke, Luke and Lyon in [100, Section 3.2.2.], we represent C
as R2 and reformulate the phase retrieval problem as a feasibility problem with
entrywise values in R2. Then we can apply Theorem 3.2.6 using Remark 6.3.3,
which concludes the proof.

A detailed analysis of the method of cyclic projections in the framework of Theo-
rem 3.2.6 can be found in [105].
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Remark 6.5.2. In contrast to Theorem 4.4.2 metric subregularity is required directly
in Corollary 6.5.1. Equivalently, we could demand subtransversality of the collec-
tion of sets {S,M1} plus the additional assumption (ii) in Theorem 4.4.2. The
problem here is that, up till now, it is not clear when and where these two assump-
tions are satisfied. Illustrative examples and numerical simulations indicate that
they hold in lots of instances (see for instance Section 4.6). Nevertheless, there are
certain situations when at least one of the two assumptions is violated. Moreover,
allowing metric subregularity under some gauge, describes the reality sometimes
better than restricting the analysis to a linear setting (see Definition 3.2.3). One
example is the setting of alternating projections applied to the sphere S and a line
tangent to S at x = (0,−1). In this instance the algorithm does not converge
linearly to x, although it converges depending on the initial point (see [105]). This
problem is not only interesting for the type of convergence, but also when it comes
to the actual numerical implementation of algorithms. Although sets in real-life
applications almost never intersect tangentially, they do so because of numerical
errors. In an instance where the sets are almost tangential to each other, they
appear to be tangential in computation when the machine precision is too coarse
in relation to being almost tangential. Thus, strong inconsistency and therefore
measurement errors, that seem to be bad at first sight, can be actually an advan-
tage for the numerical performance of an algorithm. We discuss this in more detail
in Section 6.6.

Theorem 6.5.3 (convergence of Fienup’s HIO method). Let x be a fixed point of
Fienup’s HIO method. That is, x ∈ Fix (PS (2PM1 − Id) + (Id−PM1)) . Then, the
HIO algorithm, defined in Algorithm 6.4.2 converges locally linearly to a point

x̃ ∈ Fix (PS (2PM1 − Id) + (Id−PM1))

whenever the mapping Φ = (PS (2PM1 − Id) + (Id−PM1))− Id is locally metrically
subregular at its zeros.

Proof. Since Fienup’s HIO can be identified with the Douglas-Rachford method
the result follows from [105, Theorem 3.4], using the same representation of C as
R2 as mentioned in the proof of Corollary 6.5.1.

Noisy measurements make the phase retrieval problem become almost always an
inconsistent feasibility problem. Hence, it is not likely that

Φ = (PS (2PM1 − Id) + (Id−PM1))− Id

is metrically subregular at its zeros. Instead of the HIO, one can use a relaxed
version of Douglas-Rachford that we introduced in Algorithm 2.3.5 to adapt to the
inconsistent setting.

Theorem 6.5.4 (convergence of relaxed Douglas-Rachford applied to the phase
retrieval problem). Let x ∈ Fix T λO,M1 for T λO,M1 defined in Algorithm 2.3.5. The
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relaxed Douglas-Rachford applied to a phase retrieval problem converges locally lin-
early to a point x̃ ∈ Fix T λO,M1 whenever the mapping Φ = λ

2 (RORM1 + Id) + (1 −
λ)PM1 − Id is locally metrically subregular at its zeros.

A detailed convergence analysis for the relaxed Douglas-Rachford algorithm was
carried out in Chapter 4. In contrast to the original Douglas-Rachford method,
the big advantage of its relaxed version is that the set of fixed points does not
have to be empty in an inconsistent setting. Which is in fact the case for the
Douglas-Rachford method, see for instance [18, Theorem 3.13]. This indicates
that the relaxed Douglas-Rachford method is somehow more stable with respect to
inconsistency. Connecting this observation to the convergence analysis presented
here, we claim that in practice the Douglas-Rachford method has less chances to
work than its relaxed version in regard to consistency. This becomes more clear
when considering the function Φ = T−Id that has to be locally metrically regular at
its zeros. But the zeros of Φ are nothing more than the fixed points of the chosen
method T . Thus, if no fixed points exist, the method has no chance to satisfy
this assumption of Theorem 3.2.6 and therefore to converge. When considering
the fixed point set of relaxed Douglas-Rachford itself, there is another benefit of
the procedure. The fixed points of the method do not have to be points in the
intersection as seen in Theorem 4.2.3. Varying the parameter λ, we can wander as
far away from the intersection, or local gap, as we want. Thus, chances are low
that we get stuck in a local minimum as it can happen with alternating projections.
Although we did not give detailed proofs for our convergence statements, we refer
the reader to Section 4.6 for an intuition of the assumptions and when to expect
them to be satisfied. The examples considered there were circles representing the
entries of a vector satisfying the measurement constraint M1.

Other algorithms that we mentioned were the cyclic relaxed Douglas-Rachford
method, and Fienup’s BIO algorithm. Following the ideas made before, it is not
hard to show that both methods are defined by almost averaged mappings when
applied to the phase retrieval problem. Nevertheless, understanding the property
of metric subregularity in the context of feasibility problems fully is still an open
problem. Thus, local convergence on its own can be easily verified but it is hard
to quantify it.

6.6. Numerical Analysis

In addition to the theoretical investigation of an algorithm it is worth discussing its
actual numerical performance when it comes to real-life applications. Therefore, we
devote this section to the numerical analysis of the introduced projection methods
with a particular focus on the relaxed Douglas-Rachford method. All experiments
carried out below were created with Matlab using data sets provided by the Prox-
Toolbox of Luke and coauthors, which can be found online via
http://num.math.uni-goettingen.de/proxtoolbox/.

http://num.math.uni-goettingen.de/proxtoolbox/
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We already noticed in Remark 6.5.2 that the rate of convergence, or convergence at
all, depends on the numerical precision in computation. But also inconsistency has
an impact on the numerical performance. Closely related to this, we want to stress
another feature of the presented analysis. That is, less information can improve
the performance of your algorithm. For a demonstration we analyze a data set
called “tasse” recorded by undergraduates at the X-Ray Physics Institute at the
University of Göttingen. It is an optical diffraction image with model constraints
bi1, i = 1, 2, ..., n, as in (6.3) with m = 1 and n the dimension of the image
describing far field data and an additional support constraint (see Fig. 6.1).

The full data set has dimension n = 1392 × 1040, the limited, or cropped, data
set n = 1282. The following graphs are created by applying the relaxed Douglas-
Rachford method to the problem instance for both the full data set and the limited
data set. In both instances we used a dynamic relaxation parameter λ, generated
by a smoothed step function that evolves from 0.95 to 0.5 after 30 iterations as
suggested by Luke in [97]. The relaxed Douglas-Rachford method applied to the full
data set shows a worse convergence behavior than the relaxed Douglas-Rachford
method applied to the limited data set (see Fig. 6.2). Not only the algorithm needs
more iterations to reach a certain accuracy (9.0147× 104 instead of 947), but also
the rate of linear convergence, when the iterates reach a suitable neighborhood, is
worse. As shown in Fig. 6.3 the relaxed Douglas-Rachford method applied to the
full data set needs more than 5×104 iterations to show a linear slope. Noteworthy,
is the observed gap in both problem instances. In the full data set version the gap
is smaller than in the version with a limited data set (see Fig. 6.4). We conjecture
that this observed behavior is due to the property of metric subregularity, or in the
context of set feasibility, subtransversality. The more and better information one
has, the closer the constraint sets come to each other. Thus, they are more likely to
intersect. This also includes cases, in which the sets intersect transversally as well.
In these cases, the relaxed Douglas-Rachford method does not have to converge
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Figure 6.1: Measurement and support constraint.
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Figure 6.2: Change in iterates for data set “tasse” until iteration 1000.

locally linear but can show sublinear convergence (see for instance [105, Remark
3.2] for the method of alternating projections). The take home message in this
context is that more information does not have to yield a better image, when
applying numerical algorithms. Note that these results are not limited to the
method of relaxed Douglas-Rachford. We observed similar results with alternating
projections applied to the same data set.

In Chapter 4 we discussed the performance of the relaxed Douglas-Rachford method
and compared it to other algorithms in the context of subspaces (see Section 4.7).
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Figure 6.3: Change in iterates for full data set “tasse”.
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Figure 6.4: Gap for data set “tasse” until iteration 50.

In this convex regime the convergence rates we calculated were not promising when
compared to standard procedures, like the method of alternating projections or the
Douglas-Rachford method. The aim of this paragraph is to show the strength of
relaxed Douglas-Rachford and its cyclic version in nonconvex feasibility instances.
We use again the data set “tasse” introduced before in the size n = 1282. Note
that the strength of this data set is that it is experimental data not artificially
constructed data. We applied alternating projections to it as well as cyclic relaxed
Douglas-Rachford (λ = 0.9) and the relaxed Douglas-Rachford method with a fixed
relaxation parameter λ = 0.5 and a dynamic parameter. As before, the relaxation
parameter is generated by a smoothed step function that evolves from 0.95 to 0.5
after 30 iterations. The log of the change in the iterates for one randomly generated,
but for all algorithms the same, instance are displayed in Fig. 6.5. We observe that
in this particular instance the cyclic relaxed Douglas-Rachford method reached the
stopping criterium (log of change in iterates is less or equal than 10−12 or the max-
imum number of iterations (105) is exceeded) the fastest (see also Table 6.1). Note
that all four algorithms show a linear slope after some iterations. This is in line
with the results in this thesis and the one by Luke, Thao and Tam in [105]. All
four algorithms find the same gap of roughly 0.2 as illustrated in Fig. 6.6. While
relaxed Douglas-Rachford with a dynamic parameter needs roughly 35 iterations
till the iterations attain the gap of 0.2, the other algorithms reach it sooner. We
conjecture that this has to do with the dynamical change of the parameter after 30
iterations. Luke conjectured that, due to the dynamic relaxation, a suitable neigh-
borhood of convergence might be reached faster. Nevertheless, this algorithm was
by far the slowest algorithm of the four used in this example. Even though we have
to emphasize that this is just one example. Therefore, we extended this experiment
to 100 randomly generated instances to better compare the four algorithms. The
average number of iterations till the stopping criterium is reached as well as the
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Figure 6.5: Change in iterates for limited data set (“tasse”).

minimal amount and maximal amount of iterations needed are shown in Table 6.2.
It becomes apparent that the four algorithms roughly show need the same number
of iterations. Nevertheless, the relaxed Douglas-Rachford method with dynamic
parameter shows the best performance. It needed the smallest number of iter-
ations on average, but also generated sequences whose maximum and minimum
number of iterations is less than the numbers of the other algorithms. This obser-
vation supports Luke conjecture on the behavior of the relaxed Douglas-Rachford
method with dynamic relaxation parameter. There was no instance, under the 100
randomly generated, were one of the algorithms did not converge.

0 5 10 15 20 25 30 35 40 45 50

0.9

0.6
0.5

0.4

0.3

0.2

Iterations

lo
g
of

th
e
ga
p
di
st
an

ce

MAP
relaxed DR(λ = 0.5)

cyc. relaxed DR (λ = 0.9)
relaxed DR (λ = 0.5 to 0.95)

Figure 6.6: Gap for limited data set (“tasse”) until iteration 50.
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algorithm iteration counts
cyc. relaxed DR(λ = 0.9) 843
MAP 921
relaxed DR(λ = 0.5) 1611
relaxed DR(λ = 0.5 to 0.95) 2826

Table 6.1: Comparison of the number of iterations till stopping criterium is reached
of MAP, relaxed DR and its cyclic version.

We observed that the relaxed Douglas-Rachford algorithm and its cyclic version
in our experimental setup were unstable with respect to the relaxation parameter.
The choice of the relaxation parameter for the relaxed Douglas-Rachford method
and its cyclic version present rather good results. When varying the relaxation
parameter a bit, the results can look way worse. Further investigation of this
behavior is needed.

Although we are able to observe if the iterates of the algorithms used do converge
or not, we cannot say if the reconstructions made are “good” from the behavior
of the iterates. The reconstructions in Fig. 6.7 look very similar to each other for
the human eye. Nevertheless, the focus of this thesis was not on an error analysis
of the relaxed Douglas-Rachford method. Therefore, we omit it here and refer the
reader to the following two studies on the discussed projection methods: in [97]
Luke compared the relaxed Douglas-Rachford method to HIO and HPR using an
error measure going back to Fineup [66]; in [17] Bauschke, Combettes and Luke
compared the HIO and HPR on noisy and noisless data using the same measure.

To compare the algorithms accuracy besides their iteration count, we focus next on
a synthetic data set. In fact, we consider the James Webb Space Telescope wave-
front reconstruction data set first used in [100] by Burke, Luke and Lyon. This data
set was constructed to simulate the actual telescope that has yet not been installed.
The dimension of the image is n = 128 × 128. Given are two out-of-focus images
and one in-focus images (m = 3) and an additional amplitude constraint, which
sets the amplitude of the wavefront to be constructed to one across the aperture of
the telescope (see [100]). Like before, we run the different algorithms 100 times on

iteration counts
algorithm mean maximum minimum
relaxed DR (λ = 0.5 to 0.95) 990 5004 449
cyc. relaxed DR (λ = 0.9) 1215 5352 509
MAP 1274 6142 507
relaxed DR (λ = 0.5) 1306 6854 585

Table 6.2: Mean, minimum, and maximum number of iterations of MAP, relaxed
DR and its cyclic version for 100 random instances.
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(b) relaxed DR (λ = 0.5)
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(c) relaxed DR (λ = 0.5 to 0.95)
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Figure 6.7: Reconstruction of the optical diffraction experiment “tasse” using MAP,
relaxed DR and its cyclic version.

randomly chosen initial points. The stopping criteria is reached once the log of the
difference between successive iterates falls below 5× 10−5, or a maximum iteration
count of 6, 000 is reached. We decided for relaxed Douglas-Rachford to switch from
λ = 0.5 to λ = 0.9 dynamically after 20 iterations. Table 6.3 presents the results
concerning the number of iterations. The smallest mean shows the cyclic relaxed
Douglas-Rachford instances with 24 iterations. While cyclic projections produced
an instance with the smallest amount of iterations with 17 iterations. This is close
to the minimum iteration count of cyclic relaxed Douglas-Rachford (20 iterations).
Overall the table shows that over 100 random instances cyclic relaxed Douglas-
Rachford outperforms the other three algorithms. Again, the choice of λ had a
great impact on the results. Taking into account the relative error to the true so-
lution, as shown in Table 6.4, the cyclic relaxed Douglas-Rachford outperforms the
other three algorithms by far. Noteworthy is that the solution the iterates converge
to, independent of the algorithm, is not a specific point, but to a fixed amplitude
and fixed relative phase with a constant global phase shift from one iterate to the
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iteration counts
algorithm mean maximum minimum
relaxed DR (λ = 0.5 to 0.9) 93 133 75
cyc. relaxed DR (λ = 0.9) 24 43 20
CP 37 172 17
relaxed DR (λ = 0.9) 81 161 69

Table 6.3: Mean, minimum, and maximum number of iterations of CP, relaxed DR
and its cyclic version for 100 random instances on synthetic data.

error to true solution
algorithm mean maximum minimum
relaxed DR (λ = 0.5 to 0.9) 1.0651 1.1547 0.96205
cyc. relaxed DR (λ = 0.9) 1.5204×10−6 5.7247×10−6 1.1238×10−7
CP 3.4675 5.1304 2.0157
relaxed DR (λ = 0.9) 1.0580 1.2132 0.94077

Table 6.4: Mean, minimum, and maximum relative error to the true solution×10−5
of CP, relaxed DR and its cyclic version for 100 random instances on
synthetic data.

next as mentioned in [103]. We refer the reader for more experiments to [103],
where the authors extensively compare the discussed algorithms.

We have seen that relaxed Douglas-Rachford does not have to perform better in
“easy” setups, such as intersecting subspaces, or more sophisticated setups like
the optical diffraction example in this section. Nevertheless, the relaxed Douglas-
Rachford algorithm can be faster than other projection methods when the relax-
ation parameter is chosen wisely. Thus, it can outperform other algorithms in
nonconvex inconsistent feasibility instances. While these observations might be
not new (see for instance [97,103]), it emphasizes the importance of the theoretical
analysis we gave in Chapter 4. Moreover, it highlights the need for an analysis of
the relaxation parameter for the relaxed Douglas-Rachford algorithm and its cyclic
version.





CHAPTER 7

A Matrix World Approach

The theory presented in Chapter 4 and Chapter 5 focused on local convergence
results to fixed points of the introduced algorithms. If the sets are nonconvex these
fixed points that are approximations to the phase retrieval problem do not have to
be solutions to the problem. Therefore, this chapter is devoted to the question of
whether fixed points of algorithms can be unique solutions. By examining different
approaches from the literature, we present assumptions that imply existence of a
(up to a global phase) unique solution of the phase retrieval problem.

Focusing on intensity measurements only, Candès, Li and Soltanolkotabi introduced
the idea of the phase lift for the phase retrieval problem in [39]. Instead of solving a
nonconvex problem in Cn, they reformulated the phase retrieval problem as a rank
constrained affine problem in Cn×n. Acknowledging the fact that this “new” prob-
lem is NP hard [108], Candès and several coauthors came up with relaxation ideas
for the problem (see for instance [36,38,39]). Their approach involves relaxing the
phase retrieval problem to a trace-norm minimization problem and benefits from
semidefinite programming. Even though the phase retrieval problem is ill-posed
when including only measurement constraints, they decided to take this formula-
tion and propose using different diffraction patterns according to a certain rule. In
combination with their phase lift approach, they were able to show that their path
can recover the object exactly (up to a global phase factor) with high probability
if the number of measurements is of order n log(n) [39]. They refined their results
in [36], showing that 3 measurements can be enough to achieve perfect recovery of
the phase. Even though these results are impressive, the actual application of the
algorithm is not reasonable because of the computational drawbacks; lifting the
phase retrieval problem from a space of dimension n to a space of dimension n2

increases the time one needs for computation.

The route, we follow here is inspired by the approach of Candès and his coau-
thors, but different. Instead of relaxing the problem, which is, as we think, not
necessary to achieve global results, we employ a restricted isometry property (RIP)
(see Definition 7.0.1) assumption to state results on solutions to the phase retrieval
problem. Moreover, our results are of a theoretical nature in the lifted space. For
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applications, we leave the problem, in contrast to Candès, in the original space
Cn and thus we do not suffer from any computational drawbacks. We begin by
lifting our problem from the n-dimensional space Cn to the matrix space Cn×n of
dimension n2. For this we remind the reader on the phase retrieval problem with
only measurement constraints, which are given by

Mj :=
{
z ∈ Cn

∣∣∣ | (F · Pjz)k | = bkj, ∀k = 1, 2, . . . , n
}
, (7.1)

for j = 1, 2, . . . ,m.Then, the phase retrieval problem is given by

find x ∈ ∩mj=1Mj. (7.2)

For simplicity, we denote F · Pj by Aj and define Ajk := (Aj)k (Aj)∗k for all j =
1, 2, . . . ,m. To express (7.2) in Cn×n, we rewrite (7.1) as follows.

| (F · Pjz)k |
2 = | (Ajz)k |

2

= |
〈
(Aj)k , z

〉
|2

= Tr
(
z∗ (Aj)k (Aj)∗k y

)
= Tr

(
(Aj)k (Aj)∗k zz

∗
)

= Tr (Ajkzz∗)
= Tr (AjkZ) ,

where Z := zz∗ and Tr (X) denotes the trace of the matrix X ∈ Cn×n. Note
that zz∗ is a symmetric rank-one matrix. The mapping Tr (Ajk·) is linear and the
sets

Mj :=
{
X ∈ Cn×n

∣∣∣Tr (AjkX) = bkj, ∀k = 1, 2, . . . , n
}
,

for j = 1, 2, . . . ,m are affine subspaces. With these observations we formulate the
following feasibility problem

find X ∈ S+(n, 1) ∩
 m⋂
j=1
Mj

 , (7.3)

where S+(n, 1) is the set of symmetric rank-one matrices. That is,

S+(n, 1) :=
{
X ∈ Cn×n

∣∣∣X = xx∗ for some x ∈ Cn
}
.

Now, a solution z to (7.2) defines a solution to the problem (7.3) by zz∗. Beyond
that, a solution Z to (7.3) can be always represented by zz∗ for some z ∈ Cn. The
vector z is a solution to (7.2) up to a global phase since (z exp(iφ))(z exp(iφ))∗ =
(z exp(iφ))z∗ exp(−iφ) = zz∗ for any phase φ ∈ [0, 2π]. Altogether, we can say
that the feasibility problem (7.2) in Cn and (7.3) in Cn×n are equivalent up to a
global phase. Hence, we continue studying the feasibility problem (7.3).

(7.3) is a problem of finding a matrix in essentially two different types of sets:
a rank constraint and an affine constraint. This problem class is closely related
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to sparse affine feasibility which asks for a point in the intersection of an affine
constraint and a sparsity constraint. For more on the similarity of both problems,
see for instance [122]. Although there is a rich literature which studies relaxations
of this problem (see for instance [31,41,89]), we concentrate on uniqueness results
for the feasibility problem, rather than on new algorithms. In [76] Luke, Hesse
and Neumann studied the method of alternating projections and Douglas-Rachford
applied to sparse affine feasibility. In addition to local convergence results, they
were able to state a global convergence result for alternating projections under
a restricted isometry property. The restricted isometry property was introduced
by Candès and Tao [40] for sparse real-valued vectors. In this work, we use the
following version for complex valued matrices defined as follows.

Definition 7.0.1 (restricted isometry property on Cn×n). Let M be a matrix in
Cm×(n×n) of full rank (m ≤ n2). That is, M is a linear mapping M : Cn×n → Cm.
Then M is said to satisfy the restricted isometry property of order s if there exists
δ ∈ [0, 1] such that

(1− δ)‖X‖2 ≤ ‖M †MX‖2 ≤ ‖X‖2 ∀X ∈ Cn×n with rank(X) ≤ s,

where M † denotes the Moore-Penrose inverse M∗ (MM∗)−1. The infimum over all
such constants δ is called the restricted isometry constant.

The first generalization of Candès and Tao’s RIP for the vector case to the matrix
case dates back to Recht, Fazel and Parillo [117, Definition 3.1]. In contrast to our
version, their matrices are real-valued. Moreover, the restricted isometry property
used here is not scaled , which some authors favor. Scaled restricted isometry
properties were for instance used in [27] or [76].

Next is our main result of this chapter. Following a result by Luke, Hesse and
Neumann in [76] and a generalization of their work in Neumann’s PhD thesis [109],
we prove convergence of alternating projections between the two sets S+(n, 1) and(⋂m

j=1Mj

)
as specified in (7.3). This result does not only include convergence but

also uniqueness of the intersection of both sets. This part of the statement is much
more interesting for our purposes, since our goal is to analyze when fixed points of
algorithms are solutions to the phase retrieval problem and not just approximations.

Theorem 7.0.2 (global linear convergence of alternating projections in lifted
space). Denote by M the affine mapping describing the affine set

(⋂m
j=1Mj

)
. That

is,
m⋂
j=1
Mj =

{
X ∈ Cn×n

∣∣∣MX = b
}
,

for some suitable b. If M satisfies the RIP of order 2 with δ ∈ [0, 1/2), then
S+(n, 1) ∩

(⋂m
j=1Mj

)
is a singleton. Moreover, for any initial value X0 ∈ S :=
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{X ∈ Cn×n |X∗ = X}, the sequence (Xk)k∈N generated by alternating projections
on the two sets S+(n, 1) and ⋂m

j=1Mj converges to S+(n, 1) ∩
(⋂m

j=1Mj

)
with

dist∩mj=1Mj
(Xk) → 0 as k → ∞ at a linear rate with constant bounded above by√

δ
1−δ .

Proof. Our proof is based on [76, Theorem III.15] of Luke, Hesse and Neumann
and the generalization by Neumann in [109, Theorem 5.2.3.] between an affine set
and the lower level set of a lower semicontinuous and subadditive function φ using a
generalization of the RIP including φ. Whereas Neumann proved his result for Rn,
we show the result for Hermitian matrices in Cn×n. We restrict the analysis made
here to the rank function of a matrix. Nevertheless, following Neumann’s approach
a generalization to lower semicontinous and subadditive functions φ : Cn×n → R is
possible.

We start by showing that S+(n, 1)∩
(⋂m

j=1Mj

)
is a singleton. Assume there exist

X, Y ∈ S+(n, 1) ∩
(⋂m

j=1Mj

)
with X 6= Y . Then, we have

MX = MY = b,

where b describes the constants bkj in relation to M . Since both X and Y are of
rank one, their difference X −Y is of rank at most two. Moreover, by the linearity
of Aj and thus M we have M(X − Y ) = MX −MY = b − b = 0. This implies∥∥∥M †M(X − Y )

∥∥∥2
= 0, a contradiction to the assumption of M satisfying the RIP

of order 2. Therefore, X = Y and S+(n, 1) ∩
(⋂m

j=1Mj

)
is a singleton.

To prove convergence to S+(n, 1) ∩
(⋂m

j=1Mj

)
of the sequence (Xk)k∈N generated

by
Xk+1 = PS+(n,1)P(⋂m

j=1Mj

)Xk (∀k ∈ N),

we define the following two auxiliary functions g and q.

g(X) := 1
2 dist(X,

 m⋂
j=1
Mj

)2 = 1
2‖X − P

(⋂m

j=1Mj

)X‖2,

q(X, Y ) := g(Y ) +
〈
X − Y,M † (MY − b)

〉
+ 1

2 ‖X − Y ‖
2 .

By the definition of the projector,
Xk+1 ∈ argminX∈S+(n,1)

{
q(X,Xk)

}
.

To see this, note the following
q(X,Xk)

= g(xk) +
〈
X −Xk,M †(MXk − b)

〉
+ 1

2‖X −X
k‖2

= 1
2‖X

k − P(⋂m

j=1Mj

)Xk‖2 +
〈
X −Xk,M †(MXk − b)

〉
+ 1

2‖X −X
k‖2,
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by the definition of g. Then

q(X,Xk)

= 1
2‖X

k − P(⋂m

j=1Mj

)Xk‖2 +
〈
X −Xk,M †(MXk − b)

〉
+ 1

2‖X −X
k‖2

= 1
2‖(X

k − P(⋂m

j=1Mj

)Xk)− (Xk −X)‖2

= 1
2‖(X −X

k + (Xk − P(⋂m

j=1Mj

)Xk))‖2. (7.4)

Now, by the definition of the alternating projection sequence,

Xk+1 = PS+(n,1)P(⋂m

j=1Mj

)Xk = PS+(n,1)(Xk − (Id−P(⋂m

j=1Mj

)))Xk),

which together with (7.4), yields

Xk+1 ∈ argminX∈S+(n,1)

‖X − (Xk − (Id−P(⋂m

j=1Mj

))Xk)‖2


= argminX∈S+(n,1)

{
q(X,Xk)

}
.

That is, Xk+1 is a minimizer of q(X,Xk) in S+(n, 1). Furthermore, by the definition
of the g we have g(Xk+1) = 1

2‖M
†(MXk+1 − b)‖2. Rewriting this term yields

g(Xk+1)

= 1
2‖M

†(MXk+1 − b)‖2

= 1
2‖M

†M(Xk+1 −Xk) +M †(MXk − b)‖2

= g(Xk) +
〈
M †M(Xk+1 −Xk),M †

(
MXk − b

)〉
+ 1

2‖M
†M(Xk+1 −Xk)‖2

≤ f(Xk) +
〈
M †M(Xk+1 −Xk),M †(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2,



120 7 A Matrix World Approach

since M satisfies the RIP of order 2. Then, by the definition of M †,

g(Xk+1)

≤ f(Xk) +
〈
M †M(Xk+1 −Xk),M †(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

≤ f(Xk) +
〈
M∗(MM∗)−1M(Xk+1 −Xk),M∗(MM∗)−1(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

≤ f(Xk) +
〈
MM∗(MM∗)−1M(Xk+1 −Xk), (MM∗)−1(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

≤ f(Xk) +
〈
M(Xk+1 −Xk), (MM∗)−1(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

≤ f(Xk) +
〈
Xk+1 −Xk,M∗(MM∗)−1(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

≤ f(Xk) +
〈
Xk+1 −Xk,M †(MXk − b)

〉
+ 1

2‖(X
k+1 −Xk)‖2

= q(Xk+1, Xk),

implying that g(Xk+1) ≤ q(Xk+1, Xk). But since Xk+1 minimizes q(X,Xk+1) over
S+(n, 1), we know that for

{
X̄
}

= S+(n, 1) ∩
(⋂m

j=1Mj

)
,

q(Xk+1, Xk) ≤ q(X̄,Xk).

Moreover, by the RIP assumption we have

q(X̄,Xk) = g(Xk) +
〈
X̄ −Xk,M †(MXk − b)

〉
+ 1

2‖X̄ −X
k‖2

≤ g(Xk) +
〈
X̄ −Xk,M †(MXk − b)

〉
+ 1

2(1− δ)‖M
†M(X̄ −Xk)‖2

= g(Xk) +
〈
X̄ −Xk,M †(MXk − b)

〉
+ 1

2(1− δ)‖M
†(b−MXk)‖2.

Using the definition of g, we deduce

q(X̄,Xk) ≤
(

1 + 1
2 (1− δ)

)
g(Xk) +

〈
X̄ −Xk,M †(MXk − b)

〉
=
(

1 + 1
2 (1− δ)

)
g(Xk) +

〈
M †M(X̄ −Xk),M †(MXk − b)

〉
,

where we used that M †M = Id, since M(M †M) = M(M∗(MM∗)−1M) = M .
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Utilizing again the definition of g, yields

q(X̄,Xk) ≤
(

1 + 1
2 (1− δ)

)
g(Xk) +

〈
M †M(X̄ −Xk),M †(MXk − b)

〉
=
(

1 + 1
2(1− δ)

)
g(Xk)−

〈
M †(MXk − b),M †(MXk − b)

〉
=
(

1 + 1
2(1− δ)

)
g(Xk)− 2g(Xk)

=
(

δ

1− δ

)
g(Xk).

Combining our results, we deduce

g(Xk+1) ≤ q(Xk+1, Xk) ≤ q(X̄,Xk) ≤
(

δ

1− δ

)
g(Xk).

Since we assumed δ ∈ [0, 1/2), we have δ
1−δ ∈ [0, 1), and thus dist

(
Xk,

⋂m
j=1Mj

)
→

0 linearly as k → ∞, with rate bounded above by
√

δ
1−δ < 1. Since the iterates

Xk all lie in S+(n, 1) by definition, this proves convergence to the intersection
S+(n, 1) ∩

(⋂m
j=1Mj

)
=
{
X̄
}
as claimed.

Note that by the description of our problem in (7.3) and the choice of the initial
matrixX0 in Theorem 7.0.2 we are only considering symmetric matrices in the proof
of Theorem 7.0.2. Therefore, it would be enough to assume a RIP for symmetric
matrices only, instead for all matrices X ∈ Cn×n. Although such a restriction
would be less demanding, we decided to formulate the RIP in Definition 7.0.1
for general X ∈ Cn×n. The conclusion of Theorem 7.0.2 is that, when certain
RIP assumptions are satisfied, there exists a unique solution to the phase retrieval
problem in matrix space. By the relationship between the matrix problem (7.3)
and our original problem (7.2), this implies that there is a unique solution (up to a
global phase) to the original problem. Note that, in this chapter, we study the phase
retrieval problem with onlymeasurement constraints. Also, one has to keep in mind
that alternating projection onto the sets in (7.3) in the space Cn×n is a different
algorithm than alternating projections in the vector space Cn. Thus the iterates
themselves, in contrast to the limiting result, do not help us to make statements
on the problem (7.2) in Cn. Moreover, computing the restricted isometry constant
in general is NP-hard [123]. Nevertheless, there is hope that one might compute
a RIP constant δ with a desirable value. A number of studies have shown that
Gaussian matrices satisfy the RIP with high probability (see for instance [6, 28]).
Moreover, there are deterministic studies dedicated to the construction of matrices
satisfying the RIP (see [34, 81]). What remains open is a proof that the matrix
M in Theorem 7.0.2 satisfies the RIP or, alternatively, under which conditions M
satisfies the RIP.
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Comparing the statements just made with our discussion in Chapter 6, we collect
the following. Unique determination of the phase object is not a given fact for
the phase retrieval problem. Assuming additional RIP conditions imply that there
exists a unique solution to the phase retrieval problem (up to a global phase). This
is still true when adding additional a priori assumptions. However, a connection
between fixed points of the algorithms we discussed and the unique solution of the
phase retrieval problem is missing. We believe that there is a connection between
the fixed points of alternating projections (or any other suitable projection method)
in Cn×n and the fixed points of corresponding projection methods in Cn. A different
method analyzed was alternating projections in (Cn×n)m by Neumann in [109,
Section 10.4]. His analysis can be as well interpreted as an alternating projection
step between averaged projection method on the sets M1,M2, . . . ,Mm and the
set S+(n, 1) in Cn×n. Thus, instead of using the projectors onto the intersection
of the sets Mi, the individual projectors onto the sets are used. Although, the
connection between this approach and averaged projections in Cn applied to the sets
M1,M2, . . . ,Mm is not direct, we believe that a further investigation of their fixed
points, respectively, yields a deeper insight into the relation between RIP conditions
in Cn×n and the fixed points of projection methods in Cn. Thus, further research in
this direction would approach the question when fixed points of projection methods
are not only approximations but solutions to the phase retrieval problem.



CHAPTER 8

Conclusion and Future Work

This thesis contributes to the existing literature on feasibility problems. In particu-
lar, we studied the relaxed Douglas-Rachford method and its cyclic version in detail
to solve feasibility problems. We formulated a new regularity notion for nonconvex
sets in the framework of existing regularity schemes, super-regularity at a distance,
to prove local linear convergence of the relaxed Douglas-Rachford method. Relying
on the regularity of the sets as well as the regularity of their intersection (we used
the notion of subtransversality), we were able to quantify the rate of convergence
and gave illustrative examples to create an intuition for the involved assumptions
and constants. To complete our work, we highlighted special cases that satisfy
either an individual assumption of our main convergence theorem (convexity and
consistency) or fully satisfy all the assumptions (intersecting subspaces). To over-
come the problem that the relaxed Douglas-Rachford method is only applicable
in a 2-set feasibility instance, we focused on the cyclic relaxed Douglas-Rachford
algorithm. Motivated by its good numerical performance, we first proved conver-
gence result for closed and convex sets, and were able to characterize the fixed
point set of the underlying operator explicitly for two sets. First results for more
than two subspaces closed this chapter. In Chapter 6, we showed, how the phase
retrieval problem fits into the framework of feasibility problems. Moreover, we
gave an overview of commonly used projection methods to solve this problem and
applied our results from the previous chapters to the phase retrieval problem. We
illustrated our theoretical results with some numerical examples. The last chapter
closed our survey with a discussions about solutions on the phase retrieval problem
and the analyzed algorithms.

In the subsequent sections, we briefly state open questions in the respective topics
and outline possible directions for further research. The section titles are loosely
oriented towards the main chapters of this thesis.
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8.1. Relaxed Douglas-Rachford

When analyzing the main result in Chapter 4 on local linear convergence, Theo-
rem 4.4.2, there is one assumption that lacks an interpretation in the context of
set-feasibility. This is the technical assumption in (4.20) given by

dist
(
ζ̄ ,Ψg(u)

)
≤ σ dist

(
0,Φζ̄(u)

)
.

This assumption serves as a connection between subtransversality and metric sub-
regularity as seen in Proposition 4.3.3. In the consistent setting, this assumption
is always satisfied (see Proposition 4.3.4). In inconsistent cases, however, the tech-
nical assumption has to be shown for the individual problem instances. It is not
known if there are more instances where this property is always satisfied. How-
ever, it is reasonable to assume that there is a trade-off relationship between the
occurrence of the technical assumption and the regularity of the collection of sets.
We conjecture that, if the regularity of the intersection and the sets themselves are
strong enough, the technical assumption is redundant. This is in line with other
results in the literature on alternating projections [92] and the Douglas-Rachford
method [75,113]. Another direction for further research is the study of the relaxed
Douglas-Rachford method on subspaces. In Section 4.7, we were able to state
convergence results with rates dependent on the Friedrichs angle between the two
subpaces, although our analysis was restricted to the setting with A + B = E .
Therefore, we can’t cover simple constructions like two lines in R3. A generaliza-
tion of our result without restricting the Minkowski sum to span the whole space
would remove this drawback.

8.2. Cyclic Relaxed Douglas-Rachford

Our analysis of the cyclic relaxed Douglas-Rachford was limited to convex sets. A
natural extension of our results are generalizations to nonconvex feasibility prob-
lems. For this, a study of the fixed points for more than two sets seems to be
necessary, since one has to rely on their existence as well as the regularity of the
cyclic relaxed Douglas-Rachford mapping to analyze its convergence behavior. This
is more obvious when recalling the approach to show local linear convergence for
the relaxed Douglas-Rachford method in Chapter 4. As mentioned in Section 5.3,
we suggest starting the analysis of the fixed points for “easy” sets like subspaces
(or convex sets), since in this case experiments show that the fixed points lie in
certain areas like lines or convex hulls.
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8.3. Phase Retrieval

As an application, this thesis dealt with the phase retrieval problem and different
algorithms to solve it. Most of them can be identified with well-known projection
methods. Thus, the focus might be not on inventing new algorithms, but rather
to better understand when to choose a particular algorithm and how to set the
involved relaxation parameters. As seen in Section 6.6, it appears that for the
relaxed Douglas-Rachford method, a smooth change of the relaxation parameter
speeds up the algorithm. This was already observed by Luke in [97]. The same
need not be true for the cyclic relaxed Douglas-Rachford method, illustrating the
unstable behavior with respect to the relaxation parameter. Further research in
this direction explaining this behavior would assists the numerical analysis of the
relaxed Douglas-Rachford method. Chapter 7 dealt with uniqueness in the phase
retrieval problem. The assumption of the restricted isometry property in Theo-
rem 7.0.2 is not verified for our problem instance yet. It therefore remains open
whether the matrix M in Theorem 7.0.2 satisfies the RIP or, alternatively, under
which assumptions the matrix M is satisfying the RIP. Furthermore, an investiga-
tion of the relationship between fixed points of projection methods in Cn and the
fixed points of projection methods in Cn×n is needed as discussed at the end of
Chapter 7.
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Notation and Symbols

B open unit ball
Bδ(x) open ball with radius δ centered around a point x ∈ E
Ω closure of the set Ω
C set of complex numbers
Cn set of n-dimensional complex-valued vectors
O a priori constraint in the phase retrieval problem
A amplitude constraint
As sparsity constraint
S support constraint
S+ support and non-negative constraint
Sr support and real-valued constraint
dist(x, y) distance between the points x and y
dist(x,Ω) distance between the point x and the set Ω
dist(Ω1,Ω2) distance between the sets Ω1 and Ω2
TA,B the Douglas-Rachford mapping for the sets A and B
T λA,B the relaxed Douglas-Rachford mapping for the sets

A and B and relaxation parameter λ
T λ[1...m] the cyclic relaxed Douglas-Rachford mapping for the

sets Ω1,Ω2, . . . ,Ωm and relaxation parameter λ
E real Euclidean space
Fix T fixed point set of the mapping T
F Fourier transform
f : D → Ω single-valued mapping from the set D to the set Ω
f : D ⇒ Ω set-valued mapping from the set D to the set Ω
gphT graph of the mapping T
H real Hilbert space
〈·, ·〉 inner product on Euclidean Space
Mj j-th measurement taken in the phase retrieval prob-

lem
Ω1 − Ω2 Minkowski difference of the sets Ω1 and Ω2
Ω1 + Ω2 Minkowski sum of the sets Ω1 and Ω2



140 Notation and Symbols

N set of natural numbers {0, 1, 2, . . . }
‖·‖ norm induced by the inner product on Euclidean

space
‖·‖0 `0 norm
NΩ limiting (proximal) normal cone of Ω at x
Nprox

Ω proximal normal cone of Ω at x
U⊥ orthogonal complement of the subspace U
E points in the set A closest to the set B
F points in the set B closest to the set A
W
(
ζ̄
)

affine transformation of the diagonal of the product
space

Tζ̄ lifted relaxed Douglas-Rachford mapping
ζ difference vector
W0(g) set of fixed points of the mapping PΩg ◦ Π
Ωg product of the collection of sets in convergence proof

for T λA,B
Z(x, g) set of difference vectors
PΩx projector of the point x with respect to the set Ω
R set of real numbers
R+ set of nonnegative real numbers
R++ set of positive real numbers
Rn set of n-dimensional real-valued vectors
Rn

+ set of n-dimensional real-valued vectors with nonneg-
ative entries

Rn
++ set of n-dimensional real-valued vectors with positive

entries
RΩx reflector of the point x with respect to the set Ω
S unit sphere
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